The semisimplicity
 Character theory
 What if
 Induction and restriction
 The Hopf structure
 Hecke algebra

 000
 000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Overview of Representation theory

Lecture 3 — Representation of finite groups (I)

Xiong Rui

July 16, 2020

・ロト ・回ト ・ヨト ・ヨト

E • 2 < C •

Xiong Rui

The semisimplicity	Character theory What	if Induction	on and restriction	The Hopf structure	Hecke algebra
000	00000	000	00	C	00
<u> </u>					
Review					

• Let G be a finite group. Define the group algebra $\mathbb{C}[G]$ to be

$$\mathbb{C}[G] = igoplus_{g \in \mathcal{G}} \mathbb{C}g, \qquad z_1g_1 \cdot z_2g_2 \coloneqq z_1z_2g_1g_2.$$

The multiplication is called **convolution**. It satisfies

For any multiplicative map $G \to R$ for some \mathbb{C} -algebra R, there exists a unique $\hat{\rho} : \mathbb{C}[G] \to R$ extenting ρ .

イロト 不同 トイヨト イヨト

= nac

From the point view of algebra

So

Representation of
$$G = |$$
 Representation of $\mathbb{C}[G]$

▶ By the Weyl's unitary trick or the Maschke theorem, C[G] is semisimple, so by the Wedderburn-Artin theorem

$$\mathbb{C}[G] \xrightarrow{\sim} \prod_{i=1}^{s} \mathbb{M}_{n_i}(\mathbb{C}).$$

irreducible representations of G = | simple modules of $\mathbb{C}[G]$

$$=\left\{ G
ightarrow \mathbb{M}_{n_{i}}(\mathbb{C})
ightarrow \mathsf{End}(\mathbb{C}^{n_{i}})
ight\} _{i=1}^{s}$$

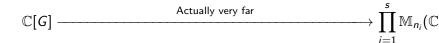
<ロト < 回 > < 三 > < 三 >

Xiong Rui

The semisimplicity	Character theory	What if	Induction and restriction	The Hopf structure	Hecke algebra
000	00000	000	00	00	00

But we nearly know nothing

► How?



But we still can say something.

 $s = #\{$ irreducilbe representation $\}$

$$s = \dim Z(\mathbb{C}[G]) = \#\{\text{conjugation class}\}$$

$$\sum_{i=1}^{s} n_i^2 = \dim \mathbb{C}[G] = |G|$$

Xiong Rui

The semisimplicity	Character theory	What if	Induction and	restriction	The Hopf structure	Hecke algebra
000	00000	000		00	(000

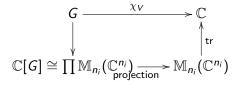
Frobenius' character theory

Let V be a representation, define its character

$$\chi_V: G \longrightarrow \mathbb{C} \qquad g \longmapsto \operatorname{tr}[V \xrightarrow{g} V].$$

This is natural if you know the Morita equivalence.

• If $V = \mathbb{C}^{n_i}$ is one of the irreducible representation, then



So for two irreducible representations V₁ and V₂,

$$\chi_{V_1} = \chi_{V_2} \iff V_1 \cong V_2.$$

Xiong Rui

The semisimplicity	Character theory	What if	Induction and	restriction	The Hopf structure	Hecke algebra
000	00000	oc	0	00		000

Trivial representation

- Let 1 be the one dimensional trivial representation, i.e. all G acts trivially.
- For any representation V, there is a way to produce invariant vectors by averaging

$$p: V \longrightarrow V \qquad v \longmapsto rac{1}{|G|} \sum_{g \in G} gv.$$

 This is definitely a projection to the trivial summand. More exactly, if

 $V = k \mathbb{1} \oplus$ non-trivial summand.

Then tr
$$p = \frac{1}{|G|} \sum_{g \in G} \chi_V(g) = k$$
.

The semisimplicity	Character theory	What if	Induction and	restriction	The Hopf structure	Hecke algebra
000	00000	00	o l	00		000

General representation

- For an irreducible representation V_i with character χ_i, how to find the multiplicity of V_i in V?
- We have

multiplicity of V_i in $V = \dim \operatorname{Hom}_G(V_i, V)$.

• Now that $Hom(V_i, V)$ is also a representation, by

 $g \cdot f : x \mapsto g \cdot f(g^{-1} \cdot x).$

 $\operatorname{Hom}_{G}(V_{i}, V) = \{f \in \operatorname{Hom}(V_{i}, V) : g \cdot f = f\}.$

• Note that $tr[A \mapsto BAC] = tr B \cdot tr C$. So

multiplicity of
$$V_i$$
 in $V = \frac{1}{|G|} \sum_{g \in G} \chi_i(g^{-1}) \chi_V(g).$

Xiong Rui

The semisimplicity	Character theory	What if	Induction and	restriction T	he Hopf structure	Hecke algebra
000	00000	0	00	00	OC	0

The outline

We can introduce a unitary product

$$\langle \cdot, \cdot \rangle : \langle f, g \rangle = \frac{1}{|G|} \sum_{x \in G} \overline{f(x)} g(x).$$

For characters, since every g ∈ G having finite order, so with eigenvalues root of unity, so χ̄(g) = χ(g⁻¹). By our computation

$$\langle \chi_V, \chi_U \rangle = \dim \operatorname{Hom}_G(V, U).$$

We consider the space of class functions,

$$\{G \xrightarrow{f} \mathbb{C} : f(xy) = f(yx)\}, \quad \langle \cdot, \cdot \rangle$$

SOR

Then by what we did, the character of irreducible representations form a set of orthogonal basis of it.

Xiong Rui

The semisimplicity	Character theory What if	Inductio	n and restriction	The Hopf structure	Hecke algebra
000	00000	000	00		000

In summary

In summary

$$\begin{tabular}{c} Finding & representations & \\ sentations & \\ \end{tabular} \rightarrow & Using & Charac- \\ ter & theory & \\ \end{tabular} \rightarrow & Until & finding & all \\ representations & \\ \end{tabular}$$

Xiong Rui

The semisimplicity	Character theory	What if	Induction and	restriction	The Hopf structure	Hecke algebra
000	00000	•0	C	00		000

What happen for ...

For compact group, do we have the Wedderburn-Artin theorem?

Theorem (Peter-Weyl)

For a compact group G, all irreducible representations are finite dimensional, and

 $L^{2}(G) = \bigoplus \operatorname{End}(V)$ (direct sum of Hilbert spaces).

No algebra structure asserted.

▶ For a compact group, do we have Frobenius' character theory?

$$\frac{1}{|G|} \sum_{g \in G} \chi(g) \stackrel{\text{exchang to}}{\longleftrightarrow} \frac{1}{\mu(G)} \int_{G} \chi d\mu.$$

Xiong Rui

The semisimplicity	Character theory	What if	Induction and	restriction	The Hopf structure	Hecke algebra
000	00000	00	0	00		000

What happen for ...

If the representation is over ℝ-space V. One can consider
 V ⊗_ℝ C its complexification.

Theorem

For an irreducible representation V, it is a complexification of some real representation if and only if

 χ_V takes real value, $\frac{1}{10}$

$$\frac{1}{|G|}\sum_{g\in G}\frac{\chi(g)^2-\chi(g)}{2}=0.$$

イロト イポト イヨト イヨト

I naa

i.e.
$$V \cong V^{\vee}$$
 and $(\wedge^2 V)^G = 0$.

Xiong Rui

The semisimplicity	Character theory 00000	What if	restriction 00	The Hopf structure	Hecke algebra	
What ha	ppen for					

► If the representation is over k, with char k | |G|. Then k[G] is not semisimple. However, k[G]/rad is. Assume k is algebraic closed. We have

Theorem (Brauer)

The number of irreducible representations of G over k equals to the number of conjugation classes whose elements are of order prime to p.

► The **Brauer** characters (some lift of characters to some characteristic zero field) forms a basis of functions over the conjugation classes whose elements are of order prime to *p*.

The semisimplicity	Character theory	What if	Induction and restriction	The Hopf structure	Hecke algebra
000	00000	000	•0	00	0

Induction and restriction

- Let $H \subseteq G$ be a subgroup.
- For a G representation V, we can view it as a representation of H, call it restriction, and denote it by

$$\operatorname{res}_{H}^{G}V=V{\downarrow}_{H}^{G}.$$

▶ For an *H* representation *W*, then there is an isomorphism

$$\operatorname{Hom}_{H}(k[G], W) \xrightarrow{\sim} k[G] \otimes_{H} W \qquad f \mapsto \sum_{x \in G} x^{-1} \otimes f(x).$$

We call it induced representation, and denote it by

$$\operatorname{ind}_{H}^{G} V = V \uparrow_{H}^{G}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Xiong Rui

000 00000 000 0 ● 000	The semisimplicity	Character theory	What if	Induction and restriction	The Hopf structure	Hecke algebra
	000	00000	000	00	00	00

Induction and restriction

We have

$$\operatorname{Hom}_{H}(V, U \downarrow_{H}^{G}) = \operatorname{Hom}_{G}(V \uparrow_{H}^{G}, U)$$
$$\operatorname{Hom}_{H}(U \downarrow_{H}^{G}, V) = \operatorname{Hom}_{G}(U, V \uparrow_{H}^{G})$$

which is known as Frobenius reciprocity.

By a direct computation,

$$\chi(x)\uparrow_{H}^{G} = \sum_{\substack{yH \in G/H: y^{-1}xy \in H \\ = \frac{1}{|H|}} \sum_{\substack{y \in G: y^{-1}xy \in H \\ y \in G: y^{-1}xy \in H}} \chi(y^{-1}xy).$$

Xiong Rui

The tensor product

► For two groups G and H, V and U two representations respectively, then this defines a natural G × H representation V ⊗ U by

$$(g,h) \cdot v \otimes u = gv \otimes hu.$$

► For a group G and two representations V and U, then V ⊗ U is also a G-representation, through diagonal map G → G × G, or exactly

$$g \cdot v \otimes u = gv \otimes gu.$$

If {V_i} and {U_j} the lists of irreducible representations respectively. Then {V_i ⊗ U_j} is the lists for G × H. Since

the conjugation class of product = the product of conjugation class.

The semisimplicity	Character theory	What if	Induction and restriction	on The Hopf structure	Hecke algebra
000	00000	000	00	0	●O

The duality

► For a representation V over G, V[∨] is a representation of G^{op}, by

$$g \cdot f : x \mapsto f(gx).$$

It is also a G-representation through the involution $G \stackrel{x\mapsto x^{-1}}{\to} G^{\mathrm{op}}$, or exactly

$$g \cdot f : x \mapsto f(g^{-1}x).$$

The semisimplicity	Character theory	What if Induction	and restriction Th	he Hopf structure Hecke algebra
000	00000	000	00	000

The Hopf structure

▶ For G-representations U, V, W, and the trivial representation k, the natural isomorphisms

$$\begin{array}{l} \operatorname{Hom}(U,V) \cong U^{\vee} \otimes V, \qquad U \otimes V \cong V \otimes U, \\ \operatorname{Hom}(U \otimes V, W) = \operatorname{Hom}(U, \operatorname{Hom}(V, W)) \\ U \otimes \Bbbk = U = \Bbbk \otimes U, \qquad \operatorname{Hom}(U, \Bbbk) = U^{\vee}. \end{array}$$

are also G-isomorphisms.

The semisimplicity	Character theory 00000	What if	on The Hopf structure	Hecke algebra

• Let B, C be two subgroups of G, consider

$$\begin{aligned} \operatorname{Hom}_{G}(\mathbb{1}\uparrow_{B}^{G},\mathbb{1}\uparrow_{C}^{G}) &= \operatorname{Hom}_{C}(\mathbb{1}\uparrow_{B}^{G}\downarrow_{C},\mathbb{1}) \\ &= \operatorname{Hom}_{C}(k[G]\otimes_{B}\mathbb{1},\mathbb{1}) \\ &= \operatorname{Hom}(\mathbb{1}\otimes_{C}k[G]\otimes_{B}\mathbb{1},\mathbb{1}) \\ &= \{G \xrightarrow{f} k : c \in C, b \in B \Rightarrow f(cxb) = f(x)\} \\ &= \{C \setminus G/B \xrightarrow{f} k\} \end{aligned}$$

• For a such $C \setminus G/B \xrightarrow{f} k$, it corresponds to

$$1\!\!\uparrow^G_B \longrightarrow 1\!\!\uparrow^G_C \qquad x \otimes 1 \mapsto \frac{1}{|C|} \sum_{g \in G} f(g^{-1}x)g^{-1} \otimes 1.$$

Xiong Rui

The semisimplicity	Character theory	What if	Induction and restriction	The Hopf structure	Hecke algebra
000	00000	000	00	00	0

▶ If $1\uparrow_B^G \xrightarrow{\varphi} 1\uparrow_C^G$ and $1\uparrow_C^G \xrightarrow{\psi} 1\uparrow_D^G$ corresponds to f and g respectively, then

$$\psi \circ \varphi$$
 corresponds to $g * f(x) = \frac{1}{|C|} \sum_{yz=x} g(y)f(z)$,

the convolution.

• If we denote $e_B = \frac{1}{B} \sum_{b \in B} b$, then there is an isomorphism

$$\{C \setminus G/B \xrightarrow{f} k\} \longrightarrow e_C \cdot \Bbbk[G] \cdot e_B \qquad f \mapsto \sum f(x)x.$$

With

$$\left(\sum g(x)x\right)\left(\sum f(x)x\right) = \frac{1}{|C|}\left(\sum (g*f)(z)z\right).$$

< □ > < □ > < 三 > < 三 > < 三 > ○ < ○

Xiong Rui

The semisimplicity	Character theory	What if	Induction and restricti	ion The Hopf structure	Hecke algebra
000	00000	000	00		000

• When B = C, the algebra

 $(\operatorname{End}_{G}(\mathbb{1}\uparrow_{B}^{G}), \operatorname{composition})$

is called the **Hecke algebra** of B.

It is isomorphism to

$$(\{C \setminus G/B \xrightarrow{f} k\}, \text{convolution})$$

with such f corresponds to $x \mapsto \frac{1}{|B|} \sum_{g \in G} f(g^{-1}x)g^{-1} \otimes 1$.

• By $f \mapsto \frac{1}{|B|} \sum f(x)x$, it is also isomorphism to

 $(e_B \cdot \Bbbk[G] \cdot e_B$, usual product).

◆□ > ◆□ > ◆三 > ◆三 > ・□ = ・ つへで

Xiong Rui

The semisimplicity	Character theory	What if	Induction and restriction	on The Hopf structure	Hecke algebra
000	00000	000	00		000

For $x \in B \setminus G/B$, denote T_x the characteristic function of x. Then for $x, y, z \in B \setminus G/B$,

$$T_{x}T_{y}(z) = \frac{1}{|B|} \# \{ab = z : a \in BxB, b \in ByB\} \\= \frac{1}{|B|} \# \{b \in G : zb^{-1} \in BxB, b \in ByB\} \\= \frac{|Bx^{-1}Bz \cap ByB|}{|B|} = |B \setminus (Bx^{-1}Bz \cap ByB)|.$$

Xiong Rui

The semisimplicity	Character theory What in 00000	f Inductio	on and restriction Th 00	he Hopf structure Heck	e algebra
Hecke al	gebra				

▶ In the case of $G = GL_n(\mathbb{F}_q)$, and *B* the upper triangle matrix, then we know that

$$G = \bigsqcup_{w \text{ permutation matrix}} BwB.$$

• Denote $s_i = (i, i+1)$, and $T_i = T_{s_i}$, we have

$$\begin{cases} T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}; \\ T_i T_j = T_j T_i, & |i-j| \ge 2; \\ T_i^2 = (q-1) T_i + q T_e. \end{cases}$$

The first relation is called the Yang-Baxter equation, or the Braid relation.

Xiong Rui

The semisimplicity	Character theory What if	Inducti 000	on and restriction Th 00	e Hopf structure Hecke algebra	а
Hecke al	gebra				

► Generally, one can define this for any Chevalley group G over finite field. Let G = G(F_q), and B the split Borel subgroup. Then we have the **Bruhat decomposition**

$$G = \bigsqcup_{w \in W} BwB, \qquad W =$$
Weyl group.

The relation can be read from its root system.

Abstractly, one can define the Hecke algebra for any Coxeter system, and in which case q is not a concrete number but a parameter.

The semisimplicity	Character theory	What if	Induction and	restriction	The Hopf structure	Hecke algebra
000	00000	000		00	(000

References

- Serre. Linear representations of finite groups.
- Etingof, Golberg, Hensel, Liu, Schwendner, Vaintrob, Yudovina, Gerovitch. Introduction to representation theory.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

- ► Fulton and Harris. Representation theory.
- Bump. Lie Groups.

The semisimplicity	Character theory	What if	Induction and	restriction	The Hopf structure	Hecke algebra
000	00000	000		00	(000

Thanks

Xiong Rui Lecture 3 — Representation of finite groups (I) ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶