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Lie groups

Definitions

A topological group is a group G which is a topological space with

G × G −→ G (x , y) 7−→ x−1y

continuous.

For a topological group G , a complex representation is a
continuous group homomorphism

ρ : G → GL(V ), V is some finite dimensional complex vector space.

We will say V is a G -representation or G -module. And write g · v by
(ρ(g))(v)
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Lie groups

Haar measure

Theorem (Haar measure)

For a locally compact group, there is a Borel measure µ over G such that

∀g ∈ G , Borel set E , µ(E ) = µ(gE ).

This measure is unique up to a nonzero scalar.

For Lie groups (defined later), this measure is computable by
differential forms.

For discrete groups, this is just the measure of counting.

For R, this is just the usual measure dx .

For R×, this is dx
x .
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Lie groups

Compact group is reductive

Theorem (Weyl’s unitary trick)

If G is compact, then any continuous group homomorphism G → GLn is
conjugated to G → Un.

The proof is easy by construction the invariant unitary form
⟨v ,w⟩ = 1

µ(G)

∫
G ⟨gv , gw⟩ dµ(g).

So for any representation V , and any submodule W ⊆ V , since we
have unitary form, V = W ⊕W⊥.

So in our principle,

G is compact ⇒ G is reductive .
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Lie groups

Definitions

A Lie group is a group G with smooth manifold structure with

G × G −→ G (x , y) 7−→ x−1y

smooth.

A Lie algebra is a finite dimensional vector space g equipped with a

bilinear map called Lie bracket g× g
[·,·]→ g such that

[x , x ] = 0,
[x , y ] + [y , x ] = 0, and
[x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0.
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Lie groups

Lie algebras of Lie groups

The Lie algebra Lie(G ) of a Lie group G is

Lie(G ) = Left invariant vector fields over G .

It equipped with Lie bracket makes it an abstract Lie algebra

[·, ·] : Lie(G )× Lie(G ) −→ Lie(G ) (X ,Y ) 7→ XY − YX .

Note that the Lie algebra is completely determined by the tangent
vector at 1 ∈ G , so

Lie(G ) = Tan1 G .

But no good interpolation of Lie bracket over Tan1 G .
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Lie groups

Exponential Map

There is a lot of way to understand tangent space, but for Lie group,
the best to connect it with Lie group is via exponential map.

There is a differential map exp : Lie(G ) → G for each Lie group G
with the following commutative diagram

Lie(H)

exp

��

Lie(φ) // Lie(G )

exp

��
H

φ

group homomorphism
// G

Tan1 Lie(R)
exp

��
R

id
// R

such that for each X ∈ Tan1 G ,

d

dt
exp(tX )

∣∣
t=0

= X ∈ Tan1 G .
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Lie groups

Examples

For R = (R,+),

Lie(R) = Tan0 = R, exp = id .

For R× = (R \ 0,×),

Lie(R) = Tan0 = R, exp = [x 7→ ex ].

For S = {z ∈ C : |z | = 1},

Lie(R) = Tan1 = iR, exp = [ix 7→ e ix ].

For C× = (C \ 0,×),

Lie(C) = Tan1 = C, exp = [z 7→ ez ].
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Lie groups

Examples

For GLn(R),

Lie(GLn) = gln := Mn(R), exp = [A 7→ eA].

Lie bracket is given by [A,B] = AB − BA.

For SLn(R),

Lie(SLn) = sln := {A ∈ gln : trA = 0}, exp = [A 7→ eA].

Lie bracket is given by [A,B] = AB − BA.
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Lie groups

From Lie groups to Lie algebras

It is easy to see that the connected component of 1 is a closed lie
subgroup. The universal covering of a connected lie group equipped
with a lie group structure.

Theorem

Let G ,H be two connected Lie groups, then

HomLie group(G ,H) → HomLie algebra(Lie(G ), Lie(H))

is injective. When G is simply connected, then it is a bijection in which
case the inverse in induced by exponential map.

Lie groups  connected Lie groups
 simply connected Lie groups
 Lie algebras.
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Lie groups

Complexification

For a real Lie algebra g define its complexification gC to be g⊗R C.
For a Lie group G , defines its complexification to be lie group
GC ⊇ G such that

For any Lie group homomorphism
G

φ→ H with H some analytic com-
plex Lie group H, it can be uniquely
extended to a analytic group homo-
morphism GC → H.

G //

  A
AA

AA
AA

A GC

���
�
�

H

Theorem

For compact Lie group G, the complexification of it exists, and
Lie(GC) = Lie(G )C.
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Lie groups

From compact Lie groups to complex Lie algebras

We have the similar theorem.

Theorem

Let G ,H be two connected complex analytic Lie groups, then

Homanalytic Lie group(G ,H) → HomLie algebra(Lie(G ), Lie(H))

is injective. When G is simply connected, then it is a bijection in which
case the inverse in induced by exponential map.

compact Lie groups  complex analytic Lie groups
 complex Lie algebras.
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Lie groups

Representations of Lie groups and Lie algebras

For a Lie group G , a complex representation is a Lie group
homomorphism

G → GL(V ), V is some finite dimensional complex vector space.

We will say V is a G -representation or G -module.

For a Lie algebra g, a complex representation is a Lie algebra
homomorphism

g → gl(V ), V is some finite dimensional complex vector space.

Equivalently, for X ,Y ∈ g,

X · (Y · v)− Y · (X · v) = [X ,Y ] · v .
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Lie groups

Summary

Lie groups
restriction connected Lie groups

connected Lie groups
universal covering simply connected Lie groups

simply connected Lie groups
tangent map!

exponential map
Lie algebras

compact Lie groups
complexification complex Lie algebras

Representation
of compact Lie groups

 Representation
of the complexification of its lie algebra

.
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Lie algebras

Reductive and Semisimple Lie algebras

We call a lie algebra g to be nilpotent, if the series

g1 = g, gn = [gn−1, g].

is zero for some n.

We call a Lie algebra g to be reductive, if it contains no nonzero
nilpotent ideal.

We call a Lie algebra g to be semisimple, if it contains no nonzero
commutative ideal (i.e. [·, ·] = 0), equivalently no solvable ideal.

Theorem

For a complex reductive lie algebra g, it is product of a semisimple lie
algebra and a commutative lie algebra.
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Lie algebras

Reductive and Semisimple Lie algebras

We call an analytic lie group G to be unipotent, if it consists only
unipotent element due to Jordan decomposition.

We call a Lie group G to be reductive, if it contains no nontrivial
unipotent normal subgroup.

We call a Lie group G to be semisimple, if it contains no nontrivial
commutative normal subgroup, equivalently no solvable normal
subgroup.

Theorem

For an analytic lie group G,

G is reductive =⇒ Lie(G ) is reductive,
G is semisimple ⇐⇒ Lie(G ) is semisimple.

Xiong Rui Lecture 2 — The structures of algebras and groups (II) July 25, 2020 16 / 25



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lie algebras

Reductive and Semisimple Lie algebras

Theorem

Let G be a compact group, its complexfication is reductive.

Theorem

Let G be a complex analytic group

G is reductive
by our philosophy.
There is no nontrivial unipo-
tent normal subgroup.

⇐⇒

G is reducitve
by our dream.
All G-representations are
semisimple.
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Lie algebras

Reductive and Semisimple Lie algebras

Theorem (Weyl’s theorem)

Let g be a complex lie algebra

g is semisimple
by our philosophy.
There is no nonezero commu-
tative ideal.

⇐⇒

g is semisimple
by our dream.
All g-representations are
semisimple.

We say a lie algebra is simple if it is not commutative and has no
nonzero ideal.

Theorem

For a complex semisimple lie algebra g, g is a direct product of simple lie
algebras.
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Lie algebras

The classification of simple lie algebras

Theorem (Classification of simple lie algebras)

The simple lie algebras are classified.

Type An: sln+1 for n ≥ 1.

Type Bn: so2n+1 for n ≥ 1.

Type Cn: spn for n ≥ 1.

Type Dn: so2n for n ≥ 1.

Finite many exceptional types, E6,E7,E8,F4,G2, say e6, e7, e8, f4, g2.

They are one-to-one correspondent to the Dynkin diagram next page.

Being isomorphic if and only if the diagram is the same.

To understand the reason is one of the main purpose in our
later lectures.
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Lie algebras

The classification of simple lie algebras

An ◦−−−−−◦−−−−−· · ·−−−−−◦−−−−−◦
Bn ◦−−−−−◦−−−−−· · ·−−−−−◦==⇒==◦
Cn ◦−−−−−◦−−−−−· · ·−−−−−◦==⇐==◦

Dn ◦−−−−−◦−−−−−· · ·−−−−−

◦

◦−−−−−◦

E6 ◦−−−−−◦−−−−−

◦

◦−−−−−◦−−−−−◦

E7 ◦−−−−−◦−−−−−

◦

◦−−−−−◦−−−−−◦−−−−−◦

E8 ◦−−−−−◦−−−−−

◦

◦−−−−−◦−−−−−◦−−−−−◦−−−−−◦
F4 ◦−−−−−◦==⇒==◦−−−−−◦
G2 ◦≡≡V≡≡◦
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Lie algebras

Realization

Theorem (Lie)

Every abstract (complex) Lie algebra can be realized as a Lie algebra of
some (complex analytic) Lie groups.

Theorem (Chevalley)

The category of complex reductive analytic lie groups is equivalent to the
category of compact lie groups.

Theorem

Let G be a Lie group, then

{connected Lie subgroup H ⊆ G} ↔ {subalgebra h ⊆ Lie(G )}.

Where Lie subgroup H means a subgroup H such that Lie(H) → Lie(G ) is
injective.
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Lie algebras

The classification of compact lie groups

Theorem

For a compact Lie group G, its universal covering G̃ is a product of R and
a compact group whose Lie algebra is semisimple.

If G̃ → G is a covering of Lie groups, then

Lie(G̃ ) = Lie(G ).

and the kernel is a central discrete subgroup.
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Lie algebras

The classification of compact lie groups

Theorem (Classification of semisimple compact lie groups)

The compact group whose Lie algebra is simple is classified.

Type An: SU(n + 1), PSU(n + 1) for n ≥ 1.

Type Bn: Spin2n+1, SO2n+1 for n ≥ 1.

Type Cn: Spn, PSpn for n ≥ 1.

Type Dn: Spin2n, SO2n, PSO2n for n ≥ 1. and when n | 2, there is
another HSpin2n.

Finite many exceptional groups, E6,E7,E8,F4,G2, say
E6,E

ad
6 ,E7,E

ad
7 ,E8,F4,G2.
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