Overview of Representation theory

Lecture 2 — The structures of algebras and groups (II)

Xiong Rui

July 25, 2020

Xiong Rui

Lecture 2 — The structures of algebras and g

July 25, 2020 1 / 25

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definitions

• A topological group is a group G which is a topological space with

$$G \times G \longrightarrow G$$
 $(x, y) \longmapsto x^{-1}y$

continuous.

• For a topological group *G*, a **complex representation** is a continuous group homomorphism

 $\rho: G \to GL(V),$ V is some finite dimensional complex vector space.

We will say V is a G-representation or G-module. And write $g \cdot v$ by $(\rho(g))(v)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Haar measure

Theorem (Haar measure)

For a locally compact group, there is a Borel measure μ over G such that

$$\forall g \in G$$
, Borel set E, $\mu(E) = \mu(gE)$.

This measure is unique up to a nonzero scalar.

- For Lie groups (defined later), this measure is computable by differential forms.
- For discrete groups, this is just the measure of counting.
- For \mathbb{R} , this is just the usual measure dx.
- For \mathbb{R}^{\times} , this is $\frac{dx}{x}$.

Compact group is reductive

Theorem (Weyl's unitary trick)

If G is compact, then any continuous group homomorphism $G \to GL_n$ is conjugated to $G \to U_n$.

- The proof is easy by construction the invariant unitary form $\langle v, w \rangle = \frac{1}{\mu(G)} \int_G \langle gv, gw \rangle d\mu(g).$
- So for any representation V, and any submodule W ⊆ V, since we have unitary form, V = W ⊕ W[⊥].
- So in our principle,

$$G$$
 is compact \Rightarrow G is reductive

Definitions

• A Lie group is a group G with smooth manifold structure with

$$G \times G \longrightarrow G$$
 $(x, y) \longmapsto x^{-1}y$

smooth.

• A Lie algebra is a finite dimensional vector space \mathfrak{g} equipped with a bilinear map called Lie bracket $\mathfrak{g} \times \mathfrak{g} \xrightarrow{[\cdot,\cdot]} \mathfrak{g}$ such that

•
$$[x, y] + [y, x] = 0$$
, and

•
$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.$$

Lie algebras of Lie groups

• The Lie algebra Lie(G) of a Lie group G is

Lie(G) = Left invariant vector fields over G.

It equipped with Lie bracket makes it an abstract Lie algebra

$$[\cdot, \cdot]$$
: Lie $(G) \times$ Lie $(G) \longrightarrow$ Lie (G) $(X, Y) \mapsto XY - YX$.

 Note that the Lie algebra is completely determined by the tangent vector at 1 ∈ G, so

$$\operatorname{Lie}(G) = \operatorname{Tan}_1 G.$$

But no good interpolation of Lie bracket over $Tan_1 G$.

Exponential Map

- There is a lot of way to understand tangent space, but for Lie group, the best to connect it with Lie group is via **exponential map**.
- There is a differential map exp : Lie(G) → G for each Lie group G with the following commutative diagram

such that for each $X \in \operatorname{Tan}_1 G$,

$$\frac{\mathsf{d}}{\mathsf{d}\mathsf{t}}\exp(tX)\big|_{t=0}=X\in\mathsf{Tan}_1\,G.$$

Examples

• For
$$\mathbb{R} = (\mathbb{R}, +)$$
,
 $\operatorname{Lie}(\mathbb{R}) = \operatorname{Tan}_0 = \mathbb{R}$, $\exp = \operatorname{id}$.
• For $\mathbb{R}^{\times} = (\mathbb{R} \setminus 0, \times)$,
 $\operatorname{Lie}(\mathbb{R}) = \operatorname{Tan}_0 = \mathbb{R}$, $\exp = [x \mapsto e^x]$.
• For $\mathbb{S} = \{z \in \mathbb{C} : |z| = 1\}$,
 $\operatorname{Lie}(\mathbb{R}) = \operatorname{Tan}_1 = i\mathbb{R}$, $\exp = [ix \mapsto e^{ix}]$.
• For $\mathbb{C}^{\times} = (\mathbb{C} \setminus 0, \times)$,
 $\operatorname{Lie}(\mathbb{C}) = \operatorname{Tan}_1 = \mathbb{C}$, $\exp = [z \mapsto e^z]$.

<ロト <回ト < 回ト < 回ト = 三日

Examples

• For $GL_n(\mathbb{R})$,

$$\operatorname{Lie}(\operatorname{GL}_n) = \mathfrak{gl}_n := \mathbb{M}_n(\mathbb{R}), \qquad \exp = [A \mapsto e^A].$$

Lie bracket is given by [A, B] = AB - BA.

• For $SL_n(\mathbb{R})$,

 $\operatorname{Lie}(\operatorname{SL}_n) = \mathfrak{sl}_n := \{A \in \mathfrak{gl}_n : \operatorname{tr} A = 0\}, \qquad \exp = [A \mapsto e^A].$

Lie bracket is given by [A, B] = AB - BA.

イロト 不得下 イヨト イヨト 二日

From Lie groups to Lie algebras

• It is easy to see that the connected component of 1 is a closed lie subgroup. The universal covering of a connected lie group equipped with a lie group structure.

Theorem

Let G, H be two connected Lie groups, then

 $\operatorname{Hom}_{Lie\ group}(G,H) \to \operatorname{Hom}_{Lie\ algebra}(\operatorname{Lie}(G),\operatorname{Lie}(H))$

is injective. When G is simply connected, then it is a bijection in which case the inverse in induced by exponential map.

July 25, 2020 10 / 25

Lie groups

Complexification

- For a real Lie algebra \mathfrak{g} define its **complexification** $\mathfrak{g}_{\mathbb{C}}$ to be $\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$.
- For a Lie group G, defines its **complexification** to be lie group $G_{\mathbb{C}} \supseteq G$ such that

For any Lie group homomorphism $G \xrightarrow{\varphi} H$ with H some analytic complex Lie group H, it can be uniquely extended to a analytic group homomorphism $G_{\mathbb{C}} \to H$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

For compact Lie group G, the complexification of it exists, and $\text{Lie}(G_{\mathbb{C}}) = \text{Lie}(G)_{\mathbb{C}}$.

From compact Lie groups to complex Lie algebras

• We have the similar theorem.

Theorem

Let G, H be two connected complex analytic Lie groups, then

 $\operatorname{Hom}_{analytic\ Lie\ group}(G,H) \to \operatorname{Hom}_{Lie\ algebra}(\operatorname{Lie}(G),\operatorname{Lie}(H))$

is injective. When G is simply connected, then it is a bijection in which case the inverse in induced by exponential map.

compact Lie groups → complex analytic Lie groups → complex Lie algebras.

Representations of Lie groups and Lie algebras

• For a Lie group *G*, a **complex representation** is a Lie group homomorphism

 $G \rightarrow GL(V)$, V is some finite dimensional complex vector space.

We will say V is a G-representation or G-module.

• For a Lie algebra g, a **complex representation** is a Lie algebra homomorphism

 $\mathfrak{g} \to \mathfrak{gl}(V), \qquad V$ is some finite dimensional complex vector space.

Equivalently, for $X, Y \in \mathfrak{g}$,

$$X \cdot (Y \cdot v) - Y \cdot (X \cdot v) = [X, Y] \cdot v.$$

Summary

July 25, 2020 14 / 25

• We call a lie algebra \mathfrak{g} to be **nilpotent**, if the series

$$\mathfrak{g}^1 = \mathfrak{g}, \qquad \mathfrak{g}^n = [\mathfrak{g}^{n-1}, \mathfrak{g}].$$

is zero for some n.

- We call a Lie algebra g to be **reductive**, if it contains no nonzero **nilpotent ideal**.
- We call a Lie algebra g to be semisimple, if it contains no nonzero commutative ideal (i.e. [·, ·] = 0), equivalently no solvable ideal.

Theorem

For a complex reductive lie algebra \mathfrak{g} , it is product of a semisimple lie algebra and a commutative lie algebra.

- We call an analytic lie group G to be **unipotent**, if it consists only unipotent element due to Jordan decomposition.
- We call a Lie group G to be **reductive**, if it contains no nontrivial unipotent normal subgroup.
- We call a Lie group *G* to be **semisimple**, if it contains no nontrivial commutative normal subgroup, equivalently no solvable normal subgroup.

Theorem

For an analytic lie group G,

G is reductive \implies Lie(G) is reductive, G is semisimple \iff Lie(G) is semisimple.

Theorem

Let G be a compact group, its complexification is reductive.

Theorem

Let G be a complex analytic group

G is reductive by our philosophy. There is no nontrivial unipotent normal subgroup. G is reducitve by our dream. All G-representations are semisimple.

Theorem (Weyl's theorem)

Let \mathfrak{g} be a complex lie algebra

g is semisimple		g is semisimple		
by our philosophy.	$ \longrightarrow $	by our dream.		
There is no nonezero commu-	\leftarrow	All	\mathfrak{g} -representations	are
tative ideal.		semisimple.		

• We say a lie algebra is **simple** if it is not commutative and has no nonzero ideal.

Theorem

For a complex semisimple lie algebra \mathfrak{g} , \mathfrak{g} is a direct product of simple lie algebras.

The classification of simple lie algebras

Theorem (Classification of simple lie algebras)

The simple lie algebras are classified.

- Type A_n : \mathfrak{sl}_{n+1} for $n \ge 1$.
- Type B_n : \mathfrak{so}_{2n+1} for $n \ge 1$.
- Type C_n : \mathfrak{sp}_n for $n \ge 1$.
- Type D_n : \mathfrak{so}_{2n} for $n \geq 1$.
- Finite many exceptional types, E_6, E_7, E_8, F_4, G_2 , say $\mathfrak{e}_6, \mathfrak{e}_7, \mathfrak{e}_8, \mathfrak{f}_4, \mathfrak{g}_2$.
- They are one-to-one correspondent to the Dynkin diagram next page.
- Being isomorphic if and only if the diagram is the same.
- To understand the reason is one of the main purpose in our later lectures.

The classification of simple lie algebras

Lecture 2 — The structures of algebras and g

July 25, 2020

20 / 25

2

Realization

Theorem (Lie)

Every abstract (complex) Lie algebra can be realized as a Lie algebra of some (complex analytic) Lie groups.

Theorem (Chevalley)

The category of complex reductive analytic lie groups is equivalent to the category of compact lie groups.

Theorem

Let G be a Lie group, then

{connected Lie subgroup $H \subseteq G$ } \leftrightarrow {subalgebra $\mathfrak{h} \subseteq Lie(G)$ }.

Where Lie subgroup H means a subgroup H such that $Lie(H) \rightarrow Lie(G)$ is injective.

The classification of compact lie groups

Theorem

For a compact Lie group G, its universal covering \tilde{G} is a product of \mathbb{R} and a compact group whose Lie algebra is semisimple.

 $\bullet~$ If $\tilde{{\it G}} \rightarrow {\it G}$ is a covering of Lie groups, then

 $\operatorname{Lie}(\tilde{G}) = \operatorname{Lie}(G).$

and the kernel is a central discrete subgroup.

The classification of compact lie groups

Theorem (Classification of semisimple compact lie groups)

The compact group whose Lie algebra is simple is classified.

- Type A_n : SU(n+1), PSU(n+1) for $n \ge 1$.
- Type B_n : Spin_{2n+1}, SO_{2n+1} for $n \ge 1$.
- Type C_n : Sp_n , PSp_n for $n \ge 1$.
- Type D_n: Spin_{2n}, SO_{2n}, PSO_{2n} for n ≥ 1. and when n | 2, there is another HSpin_{2n}.
- Finite many exceptional groups, E₆, E₇, E₈, F₄, G₂, say E₆, E₆^{ad}, E₇, E₇^{ad}, E₈, F₄, G₂.

July 25, 2020 23 / 25

• • = • • = •

References for lie groups and lie algebras

- Fredric Schuller. A series of lectures including Lie groups and their Lie algebras [Youtube, Bilibili] .
- Milne. Lie Algebras, Algebraic Groups, and Lie Groups.
- Milne. Algebraic groups.
- Knapp. Lie groups beyond an introduction.
- Kirillov. An Introduction to Lie Groups and Lie Algebras.
- Bump. Lie Groups.
- Sepanski. Compact lie groups.
- Broecker, tom Dieck. Representations of compact Lie groups.
- Serre. Complex semisimple lie algebras.

Thanks

Xiong Rui

Lecture 2 — The structures of algebras and g

July 25, 2020 25 / 25

3

< ロ > < 回 > < 回 > < 回 > < 回 >