Overview of Representation theory

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is representation?

What is semisimple

Associative algebras

References

Thanks

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

July 9, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What is representation?

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is representation?

What is semisimple

Associative algebras

References

Thanks

All of Mathematics is some kind of representation theory.

— I. M. Gelfand¹

- a representation pprox a linear space being acted
- lacksim a group representation pprox a linear space with symmetry

¹A common misunderstanding is that Gelfand referred the representation to the Gelfand representation in functional analysis. But Gelfand is also an algebraist, for example he is one of the G in BGG theory.

Why representation?

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is representation?

What is semisimple

Associative algebras

References

Thanks

- Some structure which is not easy to be understood → find a linear point of view
- Some structure which can be understood → how it acts?
- Example: \mathfrak{S}_n acts on $V \otimes \cdots \otimes V$ by permuting indices.

	The purpose of representation	
Lecture 1 — The structures of algebras and groups (I) Xiong Rui What is repre- sentation? What is semisimple	the classification some classification theory	
Associative algebras	How to put the spaces familiar to us into this theory?	
References Thanks	 How our classification theory reflects the operators on spaces? Example: GL(V) acts on V⊗ … ⊗V by diagonal action. 	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Why linearity?

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is representation?

What is semisimple

Associative algebras

References

Thanks

There is a number of theory which is specific for linear algebra

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- the dimension
- the eigenvalue
- the trace and the norm (determinant)
- the quadratic form

...

• There is a lot of linear spaces being acted.

Simple modules

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is representation?

What is semisimple

Associative algebras

References

Thanks

- For a nonezero module *M*, if the only submodule is 0 and itself, then it is called **simple** or **irreducible**.
- Note that simple modules are all of the form R/M for some left maximal ideal so it is cyclic.

Theorem (Schur)

End(M) is a division ring.

- Furthermore, if *M* is "small" and C ⊆ End(*M*), (for example the ring is a C-algebra), then C = End(*M*).
- This makes M a linear space which is easier to be understood.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Simple modules makes up modules

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is representation?

What is semisimple

Associative algebras

References

Thanks

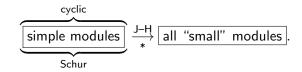
 If a module M is Noetherian and artinian (finite-dimensional linear space), then there is a filtration

$$0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_{n-1} \subseteq M_n = M$$

such that M_{i+1}/M_i is simple.

Theorem (Jordan–Hölder)

The simple modules are unique with multiplicity.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

But we lose some information Lecture 1 — The structures of algebras and groups (I) Naïvely, do we have small modules $\stackrel{1:1}{\longleftrightarrow}$ multiple-sets of simple modules? What is semisimple No, compare

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What is semisimple?

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is representation?

What is semisimple

Associative algebras

References

Thanks

- We call a module is **semisimple**, if it is a direct sum of simple modules.
- Our dream it is one to one, that is,

all "small" modules are semisimple

 \approx for all $B \subseteq A$, we have $A = A/B \oplus B$.

 \approx all short exact sequences split.

- We will call a ring semisimple if it satisfies our dream. (to be defined exactly later)
- We will call a lie algebra reductive if it satisfies our dream. (to be defined exactly later)

A philosophy

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is representation?

What is semisimple

Associative algebras

References

Thanks

To realize our dream, in philosophy,

semisimple or reductive \approx no morphism like $\begin{pmatrix} a & 1 \\ & a \end{pmatrix}$.

In principle,

$$\begin{pmatrix} a & 1 \\ & a \end{pmatrix} \text{ in algebra} \approx \begin{pmatrix} a & 1 \\ & a \end{pmatrix} \text{ appears in representations.}$$

So, the philosophy is

semisimple or reductive \approx no nilpotent stuff

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definitions

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is repre sentation?

What is semisimple

Associative algebras

References

Thanks

An associative algebra R over a field k, or just k-algebra, is a ring with

$$k \subseteq Z(R) \subseteq_{\mathsf{centre}} R
i 1.$$

We will assume all the *k*-algebras mentioned are finite-dimensional.

• We will call a *k*-algebra which is a division ring a division algebra over *k*.

Semisimple algebras

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is repre sentation?

What is semisimple

Associative algebras

References

Thanks

For an ideal $I \subseteq R$, we say it is **nilpotent** if $I^n = 0$ for some *n*.

Theorem

Let R be a k-algebra.

R is semisimple by our philosophy. There is no nonezero nilpotent ideal. R is semisimple by our dream. All R-modules are semisimple.

Matrix algebra

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is repr sentation?

What is semisimple

Associative algebras

References

Thanks

Let D be a k-division algebra. For integer n > 0, define the matrix algebra $R = M_n(D)$ by usual product.

- It is simple (no nonzero ideal).
- It is semisimple.
- The only simple *R*-module is *Dⁿ*.

Wedderburn-Artin theorem

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is representation?

What is semisimple

Associative algebras

References

Thanks

Theorem (Wedderburn–Artin)

Each semisimple k-algebra R is a finite direct product of matrix algebras over some k-division rings.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 If k is algebraic closed, then the only k-division ring (dim < ∞) is itself. So just a product of M_n(k).

The proof of Wedderburn-Artin theorem

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is representation?

What is semisimple

Associative algebras

References

Thanks

 Decompose R itself, as left R-module (so-called regular module), into simple modules,

$$\mathsf{R} = {}_{\mathsf{reg}}\mathsf{R} = \mathit{n}_1 \mathit{M}_1 \oplus \cdots \oplus \mathit{n}_k \mathit{M}_k$$

with M_i list of pairwise non-isomorphic simple modules, and nM stands for n copies of module M, i.e. Mⁿ.
Then

 $R \cong \operatorname{End}_{R}(R)^{op} \qquad r \mapsto [s \mapsto sr]$ = $\operatorname{End}_{R}(\bigoplus_{i=1}^{k} n_{i}M_{i})^{op}$ = $\prod_{i=1}^{k} \operatorname{End}_{R}(n_{i}M_{i})^{op} \qquad \operatorname{Hom}_{R}(M_{i}, M_{j\neq i}) = 0$ = $\prod_{i=1}^{k} M_{n_{i}}(\operatorname{End}_{R}(M_{i}))^{op}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is repre sentation?

What is semisimple

Associative algebras

References

Thanks

So we have

 $\begin{array}{c} R \text{ is semisimple} \\ \text{by our philosophy.} \\ \text{There is no nonzero nilpotent ideal.} \end{array} \qquad \Longleftrightarrow \qquad \begin{array}{c} R \text{ is semisimple} \\ \text{by our dream.} \\ \text{All R-modules are semisimple.} \end{array}$

Morita equivalence

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is repre sentation?

What is semisimple

Associative algebras

References

Thanks

- For two rings, if the category of finitely generated modules over them are equivalent as abelian categories, then two rings are called **Morita equivalent**.
- For a *k*-division ring *D*, there is a Morita equivalence to M_n(*D*)

 $\begin{cases} \text{finite dimensional } D \text{-} \\ \text{linear spaces} \end{cases} \cong \begin{cases} \text{finite dimensional} \\ \mathbb{M}_n(D)\text{-modules} \end{cases} .$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 Actually, the one dimensional space corresponds to the only simple module.

Classification of division algebras

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is repre sentation?

What is semisimple

Associative algebras

References

Thanks

By the Wedderburn-Artin theorem,

 $\begin{array}{c} \mbox{classification} & \mbox{of} \\ \mbox{division algebras} \end{array} = \begin{array}{c} \mbox{classification} & \mbox{of} \\ \mbox{simple algebras} \end{array}$

- For algebraic closed field, only division algebra is itself.
- For \mathbb{R} , it is well-known that the only division algebra is \mathbb{R} , \mathbb{C} and \mathbb{H} . (Frobenius theorem)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 For finite field, it is well-known that only finite division ring is a field. (Wedderburn theorem)

Central simple algebras

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is repre sentation?

What is semisimple

Associative algebras

References

Thanks

- An algebra R over field k is called **central** if its centre Z(R) = k.
- By the Wedderburn–Artin theorem, for an *k*-simple algebra *R*

 $k \subseteq Z(R) \stackrel{\text{central division ring}}{\subseteq} D \stackrel{\text{matrix algebra}}{\subseteq} \mathbb{M}_n(D).$

• Let D be a central division algebra over k,

$$k \subseteq \underbrace{L}_{\text{required subfield}} \subseteq D, \qquad [L:K] = [D:L].$$

maximal subfield

All such L splits D, i.e.

 $D \otimes_k L = \mathbb{M}_n(L), \qquad n = [L : K] = [D : L].$

Central simple algebras

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is representation?

What is semisimple

Associative algebras

References

Thanks

• For a field extension K/k,

(semi-)simple k-algebra $\xrightarrow{-\otimes_k K}$ may not still be (semi-)simple. (semi-)simple algebra $\xrightarrow{-\otimes simple}$ may not still be (semi-)simple. But central simple algebra acts well central simple k-algebra $\xrightarrow{-\otimes_k K}$ central simple K-algebra. (central) simple $\xrightarrow{-\otimes central simple}$ (central) simple These are also "if and only if" theorems.

Brauer group

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is repre sentation?

What is semisimple

Associative algebras

References

Thanks

Define the Brauer group

$$Br(k) = \bigoplus \mathbb{Z} \begin{bmatrix} all \text{ central simple} \\ algebras \text{ over } k \end{bmatrix} / \cdots$$

where the relation is generated by

• A = B if there is integer m, n such that $\mathbb{M}_n(A) = \mathbb{M}_n(B)$ (i.e. the corresponding division rings are isomorphic);

•
$$A = B + C$$
 if $A = B \otimes_k C$.

 The Brauer group can be also explained as Galois cohomology

$$\mathsf{Br}(k) = arprod_{\mathsf{finite Galois extension } \mathcal{K}/k} H^2(\mathsf{Gal}(\mathcal{K}/k), \mathcal{K}^{ imes}).$$

Summary

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is repre sentation?

What is semisimple

```
Associative algebras
```

References

Thanks

For general field k,

simple k-algebras = matrix algebras over k-division ring D.

k-division ring
$$D = \bigcup_{K/k} \underbrace{K\text{-central division ring } D}_{K\text{-central division ring } D}$$
.
K-central division ring $D \xrightarrow{\text{classified by}} Br(K)$.

In particular, for algebraic closed field k,

simple k-algebras = matrix algebras over k.

References for associative algebras

Lecture 1 — The structures of algebras and groups (I)

Xiong Rui

What is repre sentation?

What is semisimple

Associative algebras

References

Thanks

- Li. Yanqi Algebra 3.
- Milne. Class field theory.
- Pierce. Associative algebras.
- Auslander, Reiten, Smalo. Representation theory of Artin algebras.
- Benson. Representations and cohomology.
- Assem, Simson, Skowroński. Elements of the Representation Theory of Associative Algebras Volume 1 Techniques of Representation Theory.

Lec	ture	1 -	
The	stru	ctur	es
of	alge	bras	
and	grou	ps ((1)

Xiong Rui

What is representation?

What is semisimple

Associative algebras

References

Thanks

Thanks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?