KLR Algebra 3

Xiong Rui

May 20, 2021

Card for Quiver Hecke Algebras

Denote
$$q_{ij}(u, v) = \begin{cases} 0 & i = j \\ (v - u)^{\#\{i \to j\}} (u - v)^{\#\{j \to i\}} & i \neq j \end{cases}$$

Let $R(\underline{\mathbf{v}})$ be the algebra generated by $x_1, \ldots, x_n, \tau_1, \ldots, \tau_{n-1}, \mathbb{1}_{\underline{\mathbf{i}}}$, with $n = |\underline{\mathbf{v}}|$ and $\underline{\mathbf{i}} \vdash \underline{\mathbf{v}}$ with relations

$$\qquad \mathbf{1}_{\underline{\mathbf{i}}}\mathbf{1}_{\mathbf{j}} = \delta_{\underline{\mathbf{i}},\mathbf{j}}\mathbf{1}_{\underline{\mathbf{i}}}.$$

$$ightharpoonup x_k x_\ell = x_\ell x_k$$

$$\qquad \qquad \left(\tau_k x_{\ell} - x_{s_k(\ell)} \tau_k\right) \mathbb{1}_{\underline{\mathbf{i}}} = \delta_{\underline{\mathbf{i}}_k, \underline{\mathbf{i}}_{k+1}} (\delta_{k+1,\ell} - \delta_{k,\ell}) \mathbb{1}_{\underline{\mathbf{i}}}$$

$$\begin{aligned} & \left(\tau_{\ell+1}\tau_{\ell}\tau_{\ell+1} - \tau_{\ell}\tau_{\ell+1}\tau_{\ell}\right) 1\!\!1_{\underline{\mathbf{i}}} = \\ & = \delta_{\underline{\mathbf{i}}_{\ell},\underline{\mathbf{i}}_{\ell+2}} \frac{q_{\underline{\mathbf{i}}_{\ell}\underline{\mathbf{i}}_{\ell+1}}(x_{\ell},x_{\ell+1}) - q_{\underline{\mathbf{i}}_{\ell+2}\underline{\mathbf{i}}_{\ell+1}}(x_{\ell+2},x_{\ell+1})}{x_{\ell} - x_{\ell+2}} 1\!\!1_{\underline{\mathbf{i}}}. \end{aligned}$$

This standard notation differs from mine (used in last two slides) by $x_i \leftrightarrow -x_i$.

Card for Quantum Groups

For simplicity, we consider only simply-laced case. Let $U_q(\mathfrak{g})$ be the algebra generated by E_i, F_i, K_i, K_i^{-1} with $i \in \mathbb{I}$ with relations

$$K_iK_i^{-1} = K_i^{-1}K_i = 1$$

$$\triangleright [E_i, F_j] = \delta_{ij} \frac{K_i - K_i^{-1}}{q - q^{-1}}$$

$$\begin{cases} K_i E_i K_j^{-1} = q^{i \cdot j} E_i \\ K_i F_i K_j^{-1} = q^{-i \cdot j} F_i \end{cases}$$

$$\begin{cases}
E_i E_j = E_j E_i & i \cdot j = 0 \\
E_i^2 E_j - [2] E_i E_j E_i + E_j E_i^2 = 0 & i \cdot j = 1
\end{cases}$$

$$\begin{cases}
F_i F_j = F_j F_i & i \cdot j = 0 \\
F_i^2 F_j - [2] F_i F_j F_i + F_j F_i^2 = 0 & i \cdot j = 1
\end{cases}$$

Categorification Theorem

Let

$$[R \operatorname{Proj}] = \bigoplus_{\mathbf{v}} [R(\underline{\mathbf{v}}) \operatorname{Proj}].$$

We proved the following categorification theorem.

Theorem (Categorification)

$$U_q^-(\mathfrak{g}) \stackrel{\sim}{\longrightarrow} [R \operatorname{\mathsf{Proj}}] \qquad F_i \mapsto [\Theta_i].$$

Here
$$\Theta_i = R(\alpha_i) = \mathbb{Q}[x_1]\mathbb{1}_i$$
.

Some Abstract Nonsense

Consider the combinatorial category "quiver Hecke category"

$$\mathcal{H}(\textit{Q}) = \left\{ \begin{array}{ccc} \textbf{Obj} : & \underline{\mathbf{i}} & \text{ some sequence of } \mathbb{I} \\ \textbf{Mor} : & \downarrow & \text{ elements from } \in \mathbb{1}_{\underline{\mathbf{j}}} \textit{R}(\underline{\mathbf{v}}) \mathbb{1}_{\underline{\mathbf{i}}} \\ & \underline{\mathbf{j}} \end{array} \right.$$

It is the same to the full subcategory of $\{R(\underline{\mathbf{v}})\mathbb{1}_{\underline{\mathbf{i}}}\}_{\underline{\mathbf{i}}}$. But this is more combinatorial.

This is a monoidal category over \mathbb{Q} . Furthermore, the *Karoubi* envelope (=idempotent completion) is equivalent to the direct sum of the category $\bigoplus_{\mathbf{v}} R(\underline{\mathbf{v}})$ Proj.

$$\mathcal{H}(\mathit{Q})^{\oplus} \cong \bigoplus_{\mathbf{v}} \mathit{R}(\underline{\mathbf{v}}) \operatorname{\mathsf{Proj}}.$$

Modified Version

We use the modified quantum groups

$$\begin{split} \dot{\mathbf{U}}_{q}(\mathfrak{g}) &= \bigoplus_{\mu,\lambda \in \Lambda} \mathbb{1}_{\mu} \cdot U_{q}(\mathfrak{g}) \cdot \mathbb{1}_{\lambda} \\ \text{(Λ = weight lattice)} \end{split} \qquad \begin{cases} \mathbb{1}_{\lambda} \mathbb{1}_{\mu} = \delta_{\lambda\mu} \mathbb{1}_{\lambda} \\ \mathsf{K}_{i} \mathbb{1}_{\lambda} = \mathbb{1}_{\lambda} \mathsf{K}_{i} = q^{\left<\alpha_{i}^{\vee},\lambda\right>} \mathbb{1}_{\lambda} \\ E_{i} \mathbb{1}_{\lambda} = \mathbb{1}_{\lambda + \alpha_{i}} E_{i} \\ F_{i} \mathbb{1}_{\lambda} = \mathbb{1}_{\lambda - \alpha_{i}} F_{i} \end{cases}$$

For $\dot{\mathbf{U}}_q(\mathfrak{g})$, there is no coproduct. But there is a global symmetric paring, see [Lusztig Chapter 26].

$$\begin{array}{c} (\lambda,\mu) \neq (\lambda',\mu') \Rightarrow \left\langle 1\!\!1_{\mu} f 1\!\!1_{\lambda}, 1\!\!1_{\mu'} g 1\!\!1_{\lambda'} \right\rangle = 0 \\ \langle x^+ 1\!\!1_{\lambda}, y^+ 1\!\!1_{\mu} \rangle = \langle x,y \rangle_{\mathfrak{f}} \quad \langle xy,z \rangle = \langle y,\rho(x)z \rangle \quad \langle x,y \rangle = \langle y,x \rangle \end{array}$$

Here

$$\rho: \begin{cases} \mathbb{1}_{\lambda+\alpha_i} E_i \mathbb{1}_{\lambda} \longmapsto q^{(\cdots)} \mathbb{1}_{\lambda} F_i \mathbb{1}_{\lambda+\alpha_i} \\ \mathbb{1}_{\lambda+\alpha_i} F_i \mathbb{1}_{\lambda} \longmapsto q^{(\cdots)} \mathbb{1}_{\lambda} E_i \mathbb{1}_{\lambda+\alpha_i} \end{cases}$$

We can think $U_q(\mathfrak{g})$ a category with only one point

$$U_q(\mathfrak{g}) = \left\{ \begin{array}{c} \bullet \\ \bullet \\ E_i, F_i, K_i \end{array} \right\}$$

But $\dot{\mathbf{U}}_q(\mathfrak{g})$ a category with objects to be elements of Λ

Remark

We think $\dot{\mathbf{U}}_q(\mathfrak{g})$ as an algebra, also as a category

- If we just want to compute this category $\dot{\mathbf{U}}_q(\mathfrak{g})$, there is some diagrammatic approach. (In this "categorification", relations are equalities, not isomorphisms)
- For \mathfrak{gl}_n , known as *ladder diagram*, with \mathfrak{sl}_N -web, it gives a diagrammatic approach to the Howe duality. It also provides knot invariants.
- ▶ But today, we will categorify $\dot{\mathbf{U}}_q(\mathfrak{g})$. (In this "categorification", relations are isomorphisms, not equalities)

Our Main Purpose

We will construct the category $\mathcal{U}_q(\mathfrak{g})$.

lts object is all the monomials in $\dot{\mathbf{U}}_q(\mathfrak{g})$

$$\mathbf{Obj}(\mathcal{U}_q(\mathfrak{g})) = \big\{ E_i^a F_j^b \cdots \mathbb{1}_{\lambda} \big\}.$$

▶ The morphism will be constructed such that

$$\langle X, Y \rangle = \underline{\dim} \operatorname{\mathsf{Hom}}_{\mathcal{U}_q(\mathfrak{g})}(X, Y).$$

and categorify

$$\begin{cases} E_{i}E_{j} = E_{j}E_{i} & i \cdot j = 0 \\ E_{i}^{2}E_{j} - [2]E_{i}E_{j}E_{i} + E_{j}E_{i}^{2} = 0 & i \cdot j = 1 \end{cases}$$

$$\begin{cases} \mathbb{1}_{\lambda}\mathbb{1}_{\mu} = \delta_{\lambda\mu}\mathbb{1}_{\lambda} \\ E_{i}\mathbb{1}_{\lambda} = \mathbb{1}_{\lambda+\alpha_{i}}E_{i} \\ F_{i}\mathbb{1}_{\lambda} = \mathbb{1}_{\lambda-\alpha_{i}}F_{i} \end{cases}$$

$$\begin{cases} F_{i}F_{j} = F_{j}F_{i} & i \cdot j = 0 \\ F_{i}^{2}F_{j} - [2]F_{i}F_{j}F_{i} + F_{j}F_{i}^{2} = 0 & i \cdot j = 1 \end{cases}$$

$$\begin{cases} E_{i}F_{j} = F_{j}E_{i} & i \neq j, \\ E_{i}F_{i} \cdot \mathbb{1}_{\lambda} = F_{i}E_{i} \cdot \mathbb{1}_{\lambda} + [\langle \alpha_{i}^{\vee}, \lambda \rangle] \cdot \mathbb{1}_{\lambda} & i \neq j, \end{cases}$$

Objects

We use the following notations

$$\mathbb{1}_{\lambda} = {}_{\lambda} \qquad E_{i} = {}_{1}^{i} \qquad F_{i} = {}_{2}^{i}.$$

Since in $\dot{\mathbf{U}}(\mathfrak{g})$, E_i and F_i does not exists singly, so more precisely,

$$\lambda' = \lambda + \alpha_i \qquad \mathbb{1}_{\lambda'} E_i \mathbb{1}_{\lambda} = \chi' \uparrow_{\lambda} \qquad \mathbb{1}_{\lambda} F_i \mathbb{1}_{\lambda'} = \chi \downarrow_{\lambda'}.$$

For example,

$$F_1 F_2 E_1 \mathbb{1}_{\lambda} = \lambda''' \downarrow \lambda'' \downarrow \lambda' \uparrow_{\lambda} \qquad \lambda'' = \lambda' + \alpha_1 \\ \lambda''' = \lambda'' - \alpha_2 \\ \lambda''' = \lambda'' - \alpha_1$$

Serre Relations

We impose

The relations in $\mathcal{H}(Q)$ holds for \uparrow and \downarrow respectively

That is, we add the following into $\mathsf{Mor}(\mathcal{U}(\mathfrak{g}))$

For example,

Adjointness

Since under the pairing $\langle -, - \rangle$, E_i and F_i are in principle adjoint. To categorify them, we consider the unit and counit

For example,

The rest relation

Then we "force" the following morphisms to be invertible.

▶ When $i \neq j$, or i = j with $\langle \alpha_i^{\vee}, \lambda \rangle = 0$

▶ When $d := \langle \alpha_i^{\vee}, \lambda \rangle \geq 0$,

▶ When $d := \langle \alpha_i^{\vee}, \lambda \rangle \leq 0$,

Where

Actually, it is proved that if we assume the morphisms to be invertible, then the inverse can also be expressed by a long list of diagrams and relations.

Be careful, it even has imaginary "minus ●" on bubbles.

Degrees

Let us determine the degrees

	$\lambda - \alpha_i \downarrow \lambda$	$\lambda - \alpha_i$ λ i		i j λ j i	
deg	2	2	$-i \cdot j$	$-i \cdot j$	
	$i \lambda + \alpha_{ij} i$	λ	$i_{\lambda-\alpha_i}$	λ	
	λ	$i^{\lambda+\alpha_i}$ i	λ	$i^{\lambda-\alpha_i}i$	
deg	$1+\langle lpha_i,\lambda angle$	$1+\langle lpha_i,\lambda angle$	$1-\langle \alpha_i,\lambda \rangle$	$1-\langle \alpha_i,\lambda \rangle$	

Example of \mathfrak{sl}_2

In this case, let us assume $\Lambda=\mathbb{Z}$, and $\alpha_1=2\in\Lambda$. Then $\langle\alpha_1^\vee,b\rangle=b$. Then

	λ -2 \downarrow λ	$\lambda-2$ \uparrow λ	$\lambda - 2$ $\lambda - 1$ λ	$\lambda - 1$ $\lambda - 1$ $\lambda - 1$
deg	2	2	-2	-2
	$\lambda + 2 \int_{\lambda}^{i}$	λ λ λ	λ	λ λ
deg	$1 + \lambda$	$1 + \lambda$	$1-\lambda$	$1-\lambda$

Summary

$$\begin{cases} \mathbbm{1}_{\lambda}\mathbbm{1}_{\mu} = \delta_{\lambda\mu}\mathbbm{1}_{\lambda} & \text{By notation} \\ E_{i}\mathbbm{1}_{\lambda} = \mathbbm{1}_{\lambda+\alpha_{i}}E_{i} & F_{i}\mathbbm{1}_{\lambda} = \mathbbm{1}_{\lambda-\alpha_{i}}F_{i} \end{cases}$$
 By notation
$$\begin{cases} E_{i}E_{j} = E_{j}E_{i} & i \cdot j = 0 \\ E_{i}^{2}E_{j} - [2]E_{i}E_{j}E_{i} + E_{j}E_{i}^{2} = 0 & i \cdot j = 1 \\ F_{i}F_{j} = F_{j}F_{i} & i \cdot j = 0 \\ F_{i}^{2}F_{j} - [2]F_{i}F_{j}F_{i} + F_{j}F_{i}^{2} = 0 & i \cdot j = 1 \end{cases}$$
 By quiver-Hecke
$$\begin{cases} E_{i}F_{j} = F_{j}E_{i} & i \neq j, \\ E_{i}F_{i} \cdot \mathbbm{1}_{\lambda} = F_{i}E_{i} \cdot \mathbbm{1}_{\lambda} + [\langle \alpha_{i}^{\vee}, \lambda \rangle] \cdot \mathbbm{1}_{\lambda} & i \neq j, \end{cases}$$
 By forcing

Actually, there is a combinatorial formula for monomial, summing over all homotopy class, see [KL, section 2.2].

From the construction above, $[\mathcal{U}_q(\mathfrak{g})] = \dot{\mathbf{U}}_q(\mathfrak{g})$.

The 2-category $\mathcal{U}_q(\mathfrak{g})$

But actually, this construction here is too "artificial". Actually, the purpose of $\mathcal{U}_q(\mathfrak{g})$ here is different from $R(\underline{\mathbf{v}})$.

The significance here is

think $\dot{\mathbf{U}}_q(\mathfrak{g})$ as an algebra \Longrightarrow Category $\mathcal{U}_q(\mathfrak{g})$ categorify it.

think $\dot{\mathbf{U}}_q(\mathfrak{g})$ as a category \Longrightarrow 2-Category $\mathcal{U}_q(\mathfrak{g})$ categorify it.

(When mathematicians tried to categorify, Rouqier had started to categorify categories)

$$\mathcal{U}_q(\mathfrak{g}) = \left\{ egin{array}{ll} \mathbf{Obj}: & \lambda & \in \Lambda \\ \mathbf{Mor}: & \downarrow & = egin{array}{ll} \mathbf{Obj} & ext{monomials in } E_i, F_i \\ \mathbf{Mor}: & ext{spaces generated by diagrams} \end{array}
ight.$$

Representations

If we think $U_q(\mathfrak{g})$ as a one-point category with endormorphism ring $U_q(\mathfrak{g})$, then

$$U_q(\mathfrak{g}) ext{-Rep} = \operatorname{\mathsf{Fun}}(U_q(\mathfrak{g}), \Bbbk ext{-Vec}).$$

Equivalently, we find one vector space with an action E_i , F_i , K_i satisfying the relations.

Similarly,

$$\dot{f U}_q(\mathfrak{g}) ext{-Rep}={\sf Fun}(\dot{f U}_q(\mathfrak{g}),\Bbbk ext{-Vec}).$$

Equivalently, we find a famility of space parameterized by Λ , (i.e. weight space) with maps E_i , F_i between them.

2-Representations

Then, we can define 2-representation

categorification conjecture".

$$\mathcal{U}_q(\mathfrak{g}) ext{-}\mathsf{Rep} = 2 ext{-}\mathsf{Fun}(\dot{f U}_q(\mathfrak{g}), \Bbbk ext{-}\mathsf{Cat}).$$

Equivalently, we find a famility of categories parameterized by Λ , (i.e. weight space) with functor E_i , F_i between them; natural transformation (diagrams) between functors.

But, can we really find 2-representations? Yes! From geometry. Springer theory, Nakajima quiver variety, perverse sheaves, This is known as "categorificatioin of REF | REF representations". To do this, may be only do for a half of quantum group (quiver-Hecke algebra) is easier. This is known as "cyclotomic **REF**

References and Preview

- ▶ Brundan. On the definition of Kac-Moody 2-category. [arXiv]
- ► Kamnitzer. Categorification of Lie algebras [d'apres Rouquier, Khovanov-Lauda]. [arXiv]
- Rouquier. 2-Kac-Moody algebras. [arXiv]
- Khovanov, Lauda. A diagrammatic approach to categorification of quantum groups III [arXiv].

General Remarks on Categorification

As far as I see, there are two kinds of categorification

Realization algebra as a "Grothendieck group" of category

$$\mathcal{H}eck_q(W) \cong \mathbf{SSPerv}_B(G/B)$$

$$U_q(\mathfrak{g})_{\mathsf{deg}=\underline{oldsymbol{
u}}}^+\cong \mathsf{SSPerv}_{G(\underline{oldsymbol{
u}})}(E(\underline{oldsymbol{
u}}))$$

$$\mathcal{H}$$
all $(Q)\cong U_q(\mathfrak{g})^+\big|_{q=\mathbf{q}^{1/2}}.$

.

Computation of a known category combinatorially (invariant theory)

$$SSBim \cong SSPerv_B(G/B)$$

$$R(\underline{\mathbf{v}})$$
-Proj \cong **SSPerv** $_{G(\underline{\mathbf{v}})}(E(\underline{\mathbf{v}}))$

$$\mathcal{TL}^\oplus\cong U_q(\mathfrak{sl}_2)$$
-Rep

Of course, we do both of them —"diagrammatic algebra".

When realizing algebras, usually

element	object	
+	\oplus or formal sum	
	⊗, composition etc	
=	≅, exact sequence, etc	
q	degree shift	
pairing	$\underline{\dim} \operatorname{Hom}^{ullet}(-,-)$	
involution	duality	

- Subalgebra/subspace? We may consider subcategory, for example, the category of modules over a quotient algebra.
- ▶ Subalgebra fixed by a group G action? We can consider the functor category from G to C, Fun(G, C). For example, lusztig uses similar idea to construct non-simply-laced quantum groups.
- Quotient algebra/space? Well, it adds more relation so we should consider the localization of the category. For example, cyclotomic KLR algebra.
- ▶ Module \approx representation? We can consider the 2-category generated by the functor $X \otimes -$ and natural transform $\phi \otimes -$ for all object X and functor ϕ . For example, the 2-category $U\mathfrak{g}$.

When Computation of Categories, usually ...

► We only computes a category C whose Karoubi envelope (=idempotent completion) is what we want.

Usually, the diagram is a "cobordism" of the boundary.

(braid relation)

(adjointness).

(spain relation)
$$= \times + 9) ($$

(skeen rolation). (= [2]

(quiver Hecke relation)

(Hias relation)

identity .

1 colored V oriented 1 v functions objects morphisms

J valued 13

Refenrence for Diagrammatic Categorification

- REF The category of \mathfrak{sl}_2 -representations (=Temperley-Lieb category). [bilibili]
- REF The category of \mathfrak{sl}_3 -representations.
- REF The category of \mathfrak{sl}_N -representations (= \mathfrak{sl}_N -web).
- REF Heisenberg algebra. [bilibili]
- REF Realization of $\dot{\mathbf{U}}_q(\mathfrak{gl}_n)$ (=ladder diagram)
- REF Realization of $\dot{\mathbf{U}}_q(\mathfrak{g})$ (=KLR algebra). [bilibili]
- REF Realization of Hecke algebras (=Soergel bimodules). [bilibili, Youtube]