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Card for Quantum Groups

For simplicity, we consider only simply-laced case.
» The Lusztig algebra

— k(0 -] 0i0; = 0,0; i

. <
(I
= O

~_

deg; = a; € (root lattice).

» The g-twisted coproduct.

A(l) =1 Ax) =X xX,Ay) =X y®y
A0)=021+100 = Alxy) =X q iy Xy
» An pairing
<17 1> = % <X1X2,y> = <X1 ®X27A(y)>

<0i7 91> — 1 <X7 yl}/@> = <A(X)’y1 ®)/2>-



Card for Quivers

For simplicity, we consider only simply-laced case.

» For a dimension vector v = (v;);ic; € N'. We define

Y
G(v) = P GL, (k) E(v) = @5 Homy (k" k¥)

i€l i—J

Define a; = (- -0, i,0-~-) the standard basis.

» For a sequence of i = (i, ..., i) € I" with v; many i's (write i - v),
we define

Fi(i) = {o— Vo C Vi€ CV, =k dim(Va/Vey) za*}

Fi(i) = {(v*, f) € Fili) x Ew) : AV.) € v*}



Card for Cohomology

» Let G= GL,, and B the subgroup of upper triangular matrices.
Then

H(n):{ozvocvl---cvn:C":dimv,-/v,-1:1}:@/5.

» The cohomology
Ho(G/B) = Z[x1,....xa],  xi = —c2(di/di-1) = c2(O(xi))-

Here ¢; the tautological bundle of the i-th subspace.

» We also need

Hi(pt) = Z[xq, . . ., x)©", Hi(pt) = Z[x1, - . -, Xn)-



Card for Combinatorics

» For i € Z~q, we define the BGG Demazure operator 0; on

Zx1,xa,...] by
f—sif
0if = st fe Z[Xl,XQ,...].
Xi — Xit+1
» They satisfy
9?=0 0i0; = 0,0; li—jl>2
0f=0 = sf=f 0i0i4+10; = 04100111

So we can define 9, for all w € & = 5,0 G0

» Moreover, if we denote p=p,=(n—1,n—2,...,1,0),

{fe Z[X17~..7Xn] . each monomial X>\ }

of fsatisfties A < p

is closed under 9,,.



Nil-Hecke algebras

This is the case for sl whose f is easy.
» Define the n-th nil-Hecke algebra

The algebra generated by

NH, = (a) left multiplications of xi,...,x, and
(b) Demazure operators 1, ...,0p_1.
_ Q<X1,...,Xn,81,...,8n_1> QEnd(Q[xl,...,xn])

X,'XJ' = XJ'X,', 8,2 =0

0i0; = 00; li—j]>2
0i0i410; = 0i410i0i41
Oixi=1+ X,'+1(9,' >
Oixit1 = —1 + x0;

Oixj=x0;  j¢{ii+1}

Take deg x; = 2,deg 0; = —2.



Structure of NH,

Theorem

NH, = Enda,(Pn) Pn = Q[x1,- .., Xn]
= Mpiscni(An) Ao =Q[x1, ..., xa]".

» For n= 1, NH1 = @[Xl] = /\1.
» For n = 2, under the basis Q[x1, x2] = x1A2 @& A2, we have

X181 81X1 81 —81X2 X1 X2
(o) ) (7)) (5320 (anx)
6/\2 64/12

=~
xp-(ax1+b)=— b x1+ a(xix2) + b(x1 + x2)
x1 - (ax1 + b) = (a(x1 + x2) + b) x1 — a(x1x2)
—_—— ——

EN; ENs




Structure of NH,, (continued)

Theorem

NH, = Enda,(P») P, =Q[x1,...,Xn]
- IMIn!Xn!(/\n) ’ /\n - Q[le cee axn]Gn-

» This can be proved by Geometry. But algebraically, it follows
from the following three facts (classic invariant theory)

Po=ED An-x,  #{A: A< po} =nl.
A<pn

o(f-g)="r 0ig Vfe N,. = x; and 0; are all A,-maps.
NHo= & x0w-An  #{w:we &y} =nl

)\Spn,WEGn



Grothendieck Groups

Theorem
In the Grothendieck group of ProjNH,,
o) = N ¢ o (ProjN,) ) = NH, -0,

» By the structure theorem, it is clear that P, is the unique
indecomposable projective module of NH,,. And NH, = n! - P,
direct sum of n! copies of P,.

» But in practice, rather than P,, we take the left module

A < p = BWOX)‘ = 5)\p'

NH, -0 oy . .
noe wo = (}7’1’) is the longest element in &,

Actually, the corresponding idempotent is just X0, .



Grothendieck Groups (continued)

Theorem

In the Grothendieck group of ProjNH,,, taking degrees into
consideration,

_ [NH,] : (n) _
= € Ko(ProjNH,,) O = NH, -Oy,-

g"(n=1)/2.[)]

» We should take degree into consideration. We use g to denote

qM = [M(-1)]  deg_, M(~1) = Mq_.

» Under the basis x* with \ < 0,

An O

Oy = NH O =

= O
oo...

Ap O



> Take n = 3 as an example. Under the basis
x%xz,x2,X1X2,X2,x1, 1, then the degree of the entries

jzeg ‘ x%xz x% X1Xp  Xp X1 1
x| 0 2 2 4 4 6
112 2 0o 0o 2 2 4 1+2¢°+2¢* + ¢°
X1 X, -2 0 0 2 2 4
o | -4 =2 —2 o o 2 =(1+¢)1+¢+q%
w | -4 —2 -2 0o o 2
1 | -6 -4 —4 —2 —2 o0

By definition the first column is NH, -0,,. Thus
[NH,] = (1 + ¢*)(1 + ¢° + ¢*)[NH, -Oue].



Diagram Notations

Well, let us stop using the presentation, but use diagrams.

i—1 fth i+1 i+2 i—1 jth i+1
i—1 jth i+1 i+2 i—1 jth i+1
O X
deg = -2 deg =2

The diagram is read from down to up
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Geometric Picture

. 1 . .
» Actually, for one vertex quiver, o. We can assume a dimension
- n
vector v=n, and theni=1--- 1.

— —~ Y —
el ( Fite) e Fiw) Y H (Fitw)
(v) N’

=NH,=HEM(G/Bx G/B)

=P,=H%(G/B)

Here F(v) = Ly FLi).

» The closure of the G-orbit {(xB,yB) : x 'y € BwB} for
we S, acts as O,



KLR algebra

» Given a dimension vector v. Denote n = |v|, we define

P(v) = P Qlx, ... xa] - L.

iFv

Here 1; is just a symbol of projection to the summand.
» For 1 < ¢ < n, We define an operator on P(v)

gy - J (@) T 40
o(F- 1) {(Xe+1 —x)" i) (spf) - gy seli) # 1

Here h(i,j) = #{i—j} € {0,1}. (We will see that 7, does not
satisfy braid relation)



Two Vertex

Now consider the quiver
Q: c1> s (23
Then, for example, for v = (1, 2),
P(v) = Q[x1, x2, x3]1199 ® Q[x1, x2, x3] 15715 & Q[x1, X2, x3] L9571 .

Then 71, acts as

Tf- 1y = (7) - 1gqy | i=122 i=212 i=221
T=T (2 —x1)s1 st 0
T=T1 27 (x3 — x2)52 S

(Note that the 1 in the index of 7 is different from 1 in i = 122; 1 is just
the label of vertex in Q. )



KLR algebra (continued)

» Define the v-th quiver-Hecke algebra = KLR algebra

The algebra generated by

Riv) — (a) left multiplications of x,. .., X,
=/ (b) formal projections 1; with i - v and
(c) “Demazure operators” 71,...,Th-1,

_ Q<X1, ey XnyT1y ooy Tn—1, ]li . ! H !> C End(P(!))

a very very very very

Very very very very

very very very very

< Very very very very >
very very very very
very very very very
very very very long list

Actually, R(v) C Endy,(P(v)).



Diagram Notations

We will use colored notation. For example

X 1
<17 = ¢ | [|x L] T2
¢ | |x EEERAR DI

] X T 1
deg — next page AR | 1 221
deg =2 deg =0

We take the convention that
¢ | | =xlip

J" >< = lyp1 (xa72)1p19

= (X1T2)]1212 = ]1221(X17'2).



Diagram Notations (continued)

gth £+1
The degree here is normalized (we will see that the ><
relation is homogeneous).
NS |
deg — 1 7l 10t P(W)T 1o — P(V)1 5.
f-1. — (Xg+1 — Xg)(ng) -1
deg — 1 Tl 51 PV 51 — P(V)1 1o
f-1.+— (ng) -1
deg — —2 7l 11 PV 1. — P(V)T _q7..
f-1..— (9¢f) - 1...
deg — —2 7l 99t P(W)1 o5 — P(v)1 o5
f-l..— (0f) - 1...




¥ o-ix L -x

(We omit the relation in

NH)

volving only one color which is the same as



Serre Relations

Theorem (Quantum Serre Relatioin)

we have a split exact sequence in Proj R(v) with v = (1,2)

0— R(v)721 199 =y R(v)1p19 T R Iy21—0

Actually,

0=

time.

P(y)]1122 = R)nlipn = R(y)N gNH 0 ® 00
1 2
1 1 1
P(!)]1221 = (!)7'1]1221 = R(!) NH ®NH @(2) ® 06
2 1

©W. The right isomorphisms will be explained in detail next



Serre Relations (continues)

Proof: The map in the diagram is the “right multiplication the
element labelled on the arrow”

To be a complex

919<2> - 929192 + 9991 =0 g_ .

(V To be a homotopy
L

E AT A %

)=~y P

|

+

LI

Il
H,

98‘&{5@5[%[




Reference and Preview

Note that the notations in the references are slightly different.
Algebraists and a part of geometors prefer to take

xi = —c2(0(x;)) = c2(di/pi-1). So their Demazure operator is
different from us by a sign.

» Khovanov, Lauda. A diagrammatic approach to
categorification of quantum groups | [arXiv], Il [arXiv], III
[arXiv].

» Brundan. Quiver Hecke algebras and categorification. [arXiv]
Next time, we will show how to construct § from Grothendieck
group of Proj R(v) (categorification theorem), the precise
statement.

But now, let me state some geometry.


https://arxiv.org/abs/0803.4121
https://arxiv.org/abs/0804.2080
https://arxiv.org/abs/0807.3250
https://arxiv.org/abs/1301.5868

Appendix: Geometric Picture

» The picture for general quiver is the same

%
G(v)<]:£( )E( (V)> G(v)(]:g( v))

=P(v)

=R(v)

Here ﬁ(y) =l ﬁ(!) C FL(|v|). Actually, the normalized

of degree comes here — they do not have the same dimension.
» The closure of -

{(xB, yB) € Fl(|v|) x Fl(|v|) : x "ty € Bs;B} N Fl(v) acts by

7¢ mod P(v). We can compute them using a Demazure type

argument.



Take i = 12212 F v = (2,3) as an example. Denote

% % 0
G(i) = (***) CGls,  E(i)= ( ) C gls.
*k ok * ?ko

(Note that, by a permutation, G(i) = G(v) and E(i) = E(v)). We define
B(i) = G(i) N B = < ***> . ()= E@)Nnn= < "o ) -

Then
FU(i) = G(i)/BGi)  F(i) = G(i) xg) n(i)-



Let us denote P, and p, the standard parabolic
subgroup/subalgebra

Pe(i) = GA) NP, pe(i) = E(i) Npy.

There is a Demazure operator

H&”"(G(i) x n(i)) — Hz(c(i) x pe(i))

B(i) Py (i)

H((6) x w®) — Hy(6) x o))

Pe(i') B(i")

where i’ = s(i). Actually, push forward is given by

. {3ef i = s(i)

(¢ — xgp1)"eder) £, 7 £ (i),

Actually, " acts by s;; pull back is just the inclusion.



It is a general fact that (by localization theorem)

Proj R(v) = SSPervE 2"~ (E(v))
N—— —

known by Lusztig

graded

Well, actually, they are given by a Morita type equivalence. Thus
in particular, the indecomposable projective modules correspond to
weight O perverse sheaves and to the canonical basis. This is the
sketch of (my) proof of Rouquier conjecture. Actually, this is also
what Soergel did for Hecke algebras.

The following paper proved the same result.

» Varagnolo and E. Vasserot. Canonical bases and
KLR-algebras.

But | do not believe their proof.



“Homework”

» Do the exercises in the diagrams.
» Show that in NH,,, 0;f= (3,’f) + (S,'f)a;.
» Show that in NH,,

ZWEGn(_]')[(W) w
[Lic(i—x)

Hint: Use the fact 0;0w, = 0 to show O,,f € A.
» Show that

Ow, =

{Opx¢ : 0}, {O0pxg — 1 : 1}, {Opxexps1 : 0}

all satisfy the braid relation.



