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Edit: In [1], the answer gives more references for this result. I learn from
it that our conclusion is perfectly covered by [5] Page 222 31.6. And the
property we called ‘simple-path-connected’ is more often refered as arcwise con-
nected (the path is assumed to be imbedding). Although, Our proof is more
elementary and direct. But for sake of the fact that the result has been found,
out proof is not as interesting as I thought before. 2018/11/22

Abstract

A question raised reasonably when a freshman learn point-set topolo-
gy is whether path-connected implies simple-path-connected, that is any
two distinct points can be connected with injective path p. For exam-
ple, this question in MathStackExchange [4], the answer of which gives
a ghost reference and a terrible long proof. It is not difficult to consider
some examples, such as the path looks like ∝. One can easily reduce it
into simple path. We will show that for Hausdorff space the reduction is
possible.

Firstly, we give some definitions. We say a topological space X is simple-
path-connected if for any two distinct points x, y ∈ X there exists an injective
continuous map p : [0, 1]→ X such that p(0) = x, p(1) = y. For a (original) path
p : [0, 1]→ X, we say p̃ : [0, 1]→ X is a reduction of p if p(0) = p̃(0), p(1) = p̃(1)
and the image of p̃ is contained in p’s.

Our question is whether path-connected implies simple-path-connected or
not. If we replace X by the image of p, it is equivalent to that any path can
be reduced to be a simple one. One can see the first two nontrivial examples of
reduction to simple path in the following figure.

Figure 1: path reduction

As the figure above goes, it seems that it is true that one can reduce each
path into a simple one. But it is a pity that it not true in general.
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• For example, consider the trivial topology over {0, 1}, then any map
[0, 1]→ {0, 1} is continuous, but no injective one exists.

• Another example is the quotient space of [0, 1] by gluing
{

1
2n , 1−

1
2n

}
for

each n ≥ 1. Since any 0 < x < 1/2 is contained in the image of path
implies for all n, 0 < 1

2n < x, the path must pass
[

1
2n

]
=
[
1− 1

2n

]
twice.

Figure 2: two counter examples

The topology in first example is too weak. The topology in seconde example
is a little strong than the first one, since it is T1 (since any equivalent class is
closed). But the second topology is still not Hausdorff—0, 1 can not be separated
by open sets. Our theorem is that one can reduce each path into a simple one
if the space is Hausdorff.

Theorem 1 For any Hausdorff space X, two distinct points, any path connect-
ing them can be reduced to a simple path. In particular, any path-connected
space is simple-path-connected.

Proof. Let p : [0, 1] → X connected x 6= y. There is a equivalent relation R
over [0, 1] by

aR b ⇐⇒ p(a) = p(b)

it induces a injective continuous map p̂ : [0, 1]/R→ X. Let π : [0, 1]→ [0, 1]/R
be the natural map.

By replace X by [0, 1]/R, it suffices to show there is a injective continuous
map p̃ : [0, 1] → [0, 1]/R such that p̃(0) = p̃(1). An easy exercise shows that
[0, 1]/R is Hausdorff iff R is a closed set in [0, 1]× [0, 1], for example, cf [2] Page
606 Exercise A.36.

Before our proof, we define some notations

• the boundary of cube ∂
(
[a, b]× [c, d]

)
= {a, b} × [c, d] ∪ [a, b]× {c, d}

• the boundary of R, ∂R
(
[a, b]× [c, d]

)
= ∂

(
[a, b]× [c, d]

)
∩R.

• diagonal of A ⊆ [0, 1], ∆A = {(a, a) : a ∈ A}.

• the product cap R of A,B ⊆ [0, 1], A×R B = (A×B) ∩R.

Let x0 = max{x ∈ [0, 1] : (x, 0) ∈ R}, x1 = min{x ∈ [0, 1] : (x, 1) ∈ R}.
since (0, 1) /∈ R, x0 6= x1, then by replace 0, 1 by x0, x1 and multiply a suitable
scale, one can assume that

∂R[0, 1]2 = ∆{0, 1} (∗)
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Let b0 = a0 = 0, a1 = b1 = 1. Let

d 1
2

= sup

{
d > 0 : (1− d, 1]×R [0, d] = ∅

}
> 0

Since the diagonal is contained in R, so d 1
2
≤ 1/2. Pick

(
a 1

2
, b 1

2

)
∈ R be the

point over the boundary of
(
1− d 1

2
, 1
]
×
[
0, d 1

2

)
such that

• if a 1
2

= 1− d 1
2
, then take b 1

2
to be minimal,

• if b 1
2

= d 1
2
, then take b 1

2
to be maximal.

Then

• a0 < b 1
2
≤ a 1

2
< b1 and max{b1 − a 1

2
, b 1

2
− a0} < d 1

2
< 1

2 .

Since by (∗), 0 6= b 1
2
, and a 1

2
6= 1.

• x ∈ [a0, b1/2], y ∈ [a 1
2
, b1] such that xR y ⇐⇒ x = b 1

2
, y = a 1

2
. That is

[a 1
2
, b1]×R [a0, b 1

2
] = {(a 1

2
, b 1

2
)}

Since the assumption of
(
a 1

2
, b 1

2

)
.

• ∂R[a0, b 1
2
]2 = ∆{a0, b 1

2
}, ∂R[a 1

2
, b1]2 = ∆{a 1

2
, b1}.

Since {a 1
2
}×R [a0, b 1

2
] = {

(
a 1

2
, b 1

2

)
}, thus {b 1

2
}×[a0, b 1

2
] = {

(
b 1

2
, b 1

2

)
},

since cR b 1
2
⇐⇒ cR 1

2
. then by (∗) and reflection ∂R[a0, b 1

2
]2 = ∆{a0, b 1

2
}.

(1, 1)

(1, 0)
(0, 0)

(a1/2, b1/2)

(a1/4, b1/4)

(a3/4, b3/4)

Figure 3: The process of the proof

For n ≥ 1, assume that

d i
2n
> 0

(
a i

2n
, b i

2n

)
i = 0, . . . , 2n

is constructed such that
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• a0 < b 1
2n
< a 1

2n
< . . . < b 2n−1

2n
< a 2n−1

2n
< b1 and b i+1

2n
− a i

2n
< d i

2n
< 1

2n .

• For any i, then [
a i

2n
, b i+1

2n

]
×R

[
a i−1

2n
, b i

2n

]
= {(a i

2n
, b i

2n
)}

• For any i, then

∂R

[
a i

2n
, b i

2n

]2
= ∆{a i

2n
, b i

2n
}

continue the process above to
[
a i

2n
, b i+1

2n

]
, to define d∗, (a∗, b∗) ∈ R, where

∗ = 1
2

(
i
2n + i+1

2n

)
= 2i+1

2n+1 . One see that d∗, (a∗, b∗) ∈ R satisfy the above three
conditions after replacing n by n+ 1.

Finally, let F =
{

`
2n : n ≥ 1, 0 ≤ ` ≤ 2n

}
, we have construct

{(at, bt) : t ∈ F}

Let
C = I \

⋃
t∈F

(bt, at)

Figure 4: Cantor-like function

It is a Cantor-like set, one can construct Cantor-like function f : [0, 1] →
[0, 1] satisfy the following property

• f is monotone increasing.

• for any t ∈ F and at ≤ x ≤ bt, f(at) = f(x) = f(bt).

See for example, Stein [3] Page 125. Note that x, y ∈ C satisfy

xR y ⇐⇒ ∃t ∈ F, such that x = bt, y = at or x = at, y = bt

By restring f over C, one get a bijection f̂ : C/R → [0, 1]. Note that the
restriction of R on C is (C × C) ∩R which is closed also, so C/R is Hausdorff,

thus f̂ is homeomorphism. Finally, note that the natural map

C/R→ [0, 1]/R

is continuous and injective. So we finally construct an injective map [0, 1] →
[0, 1]/R. �
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