
Algebraic D-modules
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Generalities

Let k be an algebraic closed field of characteristic zero. Let
X be a smooth algebraic variety.

Denote OX the sheaf of regular functions. Denote
Mqc(X) (resp. Mq(X)) the category of quasi-coherent (re-
sp. coherent) sheaves.

Differential Operators. We say φ : O(U) → O(U)
is a differential operator over U of degree 0 if φ is a
multiplication of some f ∈ O(U); of degree k if [φ,ψ]
is a differential operator of degree k − 1 for all differential
operator of degree 0. Denote D(X) the differential operator
over X. Denote DX be the sheaf of differential operators.

As an algebra, DX is generated by the sheaf of vector
fields ΘX over OX with relation f · ξ = fξ, ξ · f − f · ξ = ξf
and ξ · η − η · ξ = [ξ, η] for any ξ, η ∈ ΘX and f ∈ OX .

Coherent D-modules. A sheaf is said to be a quasi-
coherent (resp. coherent) DX -module if it is a sheaf of
DX -module (resp. finitely generated). Denote Mqc(DX)
(resp. Mq(X)) the category of the category of quasi-
coherent (resp. coherent) DX -modules. When we say DX -
module, it is automatically quasi-coherent.

Denote the sheaf correspondent to tangent bundle by
ΘX . Note that DX is naturally filtered by degrees, with
associated graded ring commutative and isomorphic to
S∗(ΘX) over OX as OX -module. As a result, DX is noethe-
rian.

Denote Dop
X the inverse ring of DX . We identify the

sheaf of right DX -modules as sheaf of Dop
X -modules, and

call DX -modules to be left DX -modules if it is necessary
to dintinguish. We define similarly Mqc(Dop

X ), Mc(Dop
X ),

Dqc(Dop
X ), and Dc(Dop

X ).

Left and Right D-modules. The sheaf OX of reg-
ular functions is naturally a (left) D-module.

The sheaf ΩX of highest differential forms over X is a
right D-module locally by Ω · ξ = −Lξω for ξ a vector
field, where Lξ is the Lie derivative. In general, for any
left (quasi-)coherent DX -module F , we can assign a right
(quasi-)coherent DX -module Ω(F) = ΩX ⊗OX F locally by

(ω ⊗ s) · ξ = ω · ξ ⊗ s− ω ⊗ ξ · s = −Lξω ⊗ s− ω ⊗ ξ · s.

This is an equivalence of Dx(DX) and Dx(Dop
X ) for x ∈

{c, qc}. This follows from the fact Dop
X
∼= Ω⊗DX ⊗Ω−1 as

sheaf of algebras. Locally, the isomorphism is given by∑
j

fj(xi)gj
(

∂
∂xi

)
7→ dx⊗

∑
j

gj
(
− ∂

∂xi

)
fj(xi)⊗ dx−1

where dx any differential form dx1∧· · ·∧dxn and dx−1 the
dual basis for dx.

Connections. Denote the sheaf of k-forms by Ωk
X .

For a quasi-coherent sheaf F ∈ Mqc(X), a connection
over F is a morphism of k-module ∇ : F → Ω1

X⊗OXF with
∇(f · s) = df ⊗ s+ f · ∇s for all f ∈ OX and s ∈ F . It can
be naturally extended to ∇ : Ωk−1

X ⊗OX F → Ωk
X ⊗OX F

with ∇(ω ∧ s) = dω⊗ s+(−1)degωω⊗∇s for ω ∈ Ωi
X , and

s ∈ F . Define its curvature to be ∇2, it can be shown that
it is an element of HomOX (F ,Ω2

X ⊗ F), say, a tensor. A

connection is said to be flat if the curvature ∇2 vanishes.
In this case, the de Rham complex,

dR•(F) : 0→ F → Ω1 ⊗F → · · · → Ω⊗F → 0

is a complex.
For a vector field ξ ∈ ΘX , denote ∇ξ : F → F defined by

∇ξ(s) = (∇s)(1⊗ξ). Then ∇fξs = f∇ξs and ∇ξ(fs) = (ξ ·
f)s+f ·∇ξs for all f ∈ OX , ξ ∈ ΘX and s ∈ F by definition.
The curvature can be computed to be ∇2s(ξ, η) = ∇[ξ,η]s−
[∇ξ,∇η]s for s ∈ F , ξ, η ∈ ΘX . So ∇ is flat if and only if
∇[ξ,η] = [∇ξ,∇η] in Homk(F ,F).

Assume ∇ is a flat connection over F , then F is a left
DX -module defined by ξ · s = ∇ξs. Conversely, any DX -
module is induced by a flat connection. In particular, as-
sume a left DX -module F is coherent over OX , then it is a
locally free sheaf (vector bundle).

Dually, one can define the dual notation exchanging the
corresponding property by ∇fξs = ∇(fs), but it is seldom
used.

Let F ,G ∈ Mqc(X) with connections both denoted by
∇. Then we can define a connection over F ⊗OX G by
∇(s ⊗ t) = ∇s ⊗ t + s ⊗ ∇t where s ∈ F and t ∈ G.
Similarly, we can define a connection over HomOX (F ,G)
by ∇ξ(ϕ)(s) = −ϕ(∇ξs) + ∇ξ(ϕ(s)) where ξ ∈ Θ, s ∈ F
and ϕ ∈ HomOX (F ,G).

Restricting to flat connections, this construction extends
to left DX -modules. That is, for left DX -module F and
G, define a left DX -module structure over F ⊗OX G by
ξ · (s⊗ t) = ξ · s⊗ t+ s⊗ ξ · t; a left DX -module structure
over HomOX (F ,G) by

(
ξ · (ϕ)

)
(s) = −ϕ(ξ · s)+ ξ ·ϕ(s). All

notations the same as above.

Parallel Translation. Let F be a coherent sheaf
with connection ∇. We say a section s ∈ F is horizontal
or parallel if for any ξ ∈ Θ, ∇ξs = 0. Denote the set
of horizontal section over Y to be F∇(U). Note that the
sheaf U 7→ F∇(U) is a locally constant sheaf. A fortiori,
F∇ = HomDX (OX ,F).

If we remove the assumption of being algebraic, consider
the case of smooth or analytic, and k = R or C. For any
curve C, if there is any coherent sheaf F with connection,
it is necessary flat. For any x ∈ C, denote mx the only
maximal ideal of Ox. By the existence and uniqueness of
ODEs, the map F∇x → Fx → Fx/mxFx is an isomorphism.

In general, by pulling back of F along curves, we define
the parallel translation along paths. Then, the condi-
tion of being parallel is equivalent to say the section is
translation-invariant; the condition of being flat for connec-
tion is to say it does not depends on the choice of homotopy
class of paths.

Linear PDEs. Let F be a coherent DX -module. We
can take a resolution by

Dn
X

∗−→ Dm
X −→ F −→ 0,

Assume the first map ∗ is given by ej 7→
∑n

j=1Dijei, with
ei the standard basis for some Dij ∈ D(X). Consider
the linear partial differential equations

∑n
j=1Dijfi = 0 for

i = 1, . . . ,m over U . Denote Sol(U) the set of solutions of
them. Then Sol(U) is clearly forms a sheaf. One can check
directly that HomD(U)(F(U),O(U)) = Sol(U). In other
word, Sol = HomDX (F ,OX).

If we remove the assumption of being algebraic, consider
the case of smooth in which case k = R. Consider the sheaf
of distributions Dist over X, then HomD(F ,Dist) is just
the local weak solution in classic analysis.
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Direct Images and Inverse Images

Let f : X → Y be a morphism of algebraic varieties. For
a quasi-coherent sheaf F over X, we define direct im-
age/push forward f∗F = [U 7→ F(f−1(U))]. For a quasi-
coherent sheaf G over Y , we define inverse image/pull
back f∗G = OX ⊗f−1 OY

f−1G, where f−1G the sheaf as-
sociated to U 7→ lim−→V⊃f(U)

G(V ).

Inverse Image. Assume there is a connection ∇ over
G, then we can define a connection over f∗G by ∇(f ⊗ s) =
df ⊗ s+ f∇s with f ∈ OX , s ∈ f−1G which is presented by
a section s ∈ G. This is known as inverse image / pull
back of the connection. In other word, ∇ξ(f ⊗ s) = ξf ⊗
s+f∇df(ξ)s. Under local coordinate {yi} of Y , ∇ξ(f⊗s) =
ξf ⊗ s+ f

∑
i(ξyi)⊗

∂
∂yi
· s. The curvature commutes with

pull back, so the pull back of flat connection is still flat.

Restrict the case of flat connections, we defined for each
left DY -module G a D-module inverse image f∆G. As
sheaf, it coincides with inverse image of G, and the DX -
module structure over it is given by ξ(f ⊗ s) = ξf ⊗ s +
f
∑

(ξyi) ⊗ ∂
∂yi
· s, with notations above. It is clear (f ◦

g)∆ = g∗ ◦ f∆. Denote DX→Y = f∆DX . Then a fortiori,
f∆G = DY→X ⊗f−1(DX )f

−1G.

Direct Image. Let F be a right DX -module, we define
the direct image of it to be f+F = f∗(F ⊗DX DX→Y ).
Then we can transfer them into left DX -module. To be
exact, define DY←X = Ω(f∗Ω(DX)), and for left DX -
module F , define the D-module direct image f+F =
f∗(DY←X ⊗DXF). When X → Y is a closed embedding,
then DY←X is generated by DY and the sheaf of normal
vector fields ΘY |X . In particular, when f is an open em-
bedding, DY←X = DX , so f+F is f∗F as OX -module.
However, in general (f ◦ g)+ ̸= f+ ◦ g+.

Derived Categories. Denote the derived category of
bounded complexes of quasi-coherent sheaves by Dqc(X).
Denote the full subcategory in Dqc(X) consisting of com-
plexes with cohomology coherent by Dc(X). It is also the
derived category of bounded complexes of coherent sheaves.

Denote the derived category of bounded complexes of
quasi-coherent DX -modules by Dqc(DX). Denote the full
subcategory in Dqc(DX) consisting of complexes with coho-
mology coherent by Dc(DX). It is also the derived category
of bounded complexes of coherent DX -modules. The cate-
gory of quasi-coherent sheaf or quasi-coherent DX -module
have finite projective dimensions, so the derived functor can
be defined.

By an algebra argument, for F• ∈ Dc(DX) and G• ∈
Dqc(DX), we have

RHomDX (F•,G•) = RHomDX (F•,DX)⊗L
DX
G•.

Functors. For G• ∈ Dqc(Y ), define the derived in-
verse image by

f !G• = Lf∆G•[d] = DX←Y ⊗f−1 DX
f−1G[d] ∈ Dqc(X)

where d = dimX − dimY . Then (f ◦ g)! = g! ◦ f !.

For F• ∈ Dqc(X), define the derived inverse image
by

f∗F• = Rf∗(DY←X ⊗L
DX
F•) ∈ Dqc(Y ).

Then (f ◦ g)∗ = f∗ ◦ g∗.

Define the duality functor Dqc(DX)→ Dqc(DX)op by

D(F•) = RHom•DX
(F ,DX)⊗OX Ω−1

X [n]
= RHom•DX

(F ,DX ⊗OXΩ−1
X )[n],

where n = dimX. Then D2(F•) ∼= F•. Thus we can define
f∗ = Df !D and f! = Df∗D.

We have

RHomDX (F•,G•) =
(
ΩX ⊗L

OX
DF•

)
⊗L
DX
G•[−dimX]

= ΩX ⊗L
DX

(
DF• ⊗L

OX
G•

)
[−dimX]

= RHomDX (OX ,DF ⊗L
OX
G).

The Kashiwara theorem claims that for closed embed-
ding i : X → Y , i∆ :M(DX)→MX(DY ) is an equivalence
of category withMX(DY ) the category of DY -module sup-
ported over X. The inverse is the restriction of i! by view
each DX -module as a complex centralized at zero degree.

Spencer Resolution. We can pick a right DX -
module resolution

· · · → Ωn−1
X ⊗OX DX → Ωn

X ⊗OX DX(→ ΩX)→ 0

by d(ω⊗P ) = dω⊗P +
∑

i dxi ∧ω⊗
∂

∂xi
P , where ω ∈ Ωk

X ,

P ∈ DX and {xi} a local coordinate. Dualize it to a left
DX -module, we see a left DX -module resolution of OX

· · · → DX ⊗OXΛ1ΘX → DX ⊗OXΛ0ΘX(→ OX)→ 0.

Explicitly, it is given by

d(P ⊗ ξ1 ∧ · · · ∧ ξk)
=

∑k
i=1(−1)

i+1Pξi ⊗ ξ1 ∧ · · · ξ̂i · · · ∧ ξk
+
∑

1≤i<j≤k(−1)
i+jP ⊗ [ξi, ξj ]⊗ ξ1 ∧ · · · ∧ ξk.

So RHomDX (OX ,F•) = ΩX ⊗L
DX
F•[−dimX].

Holonomic D-modules

Consider the cotangent bundle T ∗X, with projection π :
T ∗X → X. For a local coordinate {xi}, the local vector
field ∂

∂xi
defines local function over T ∗X, and it will be de-

noted alternatively by ξi. It is clear {ξi, xi} form a local
coordinate of T ∗X.

Sympletic Structure. Over T ∗X, there is a tau-
tological form λX ∈ Ω1(T ∗X), such that for any form
α ∈ Ω1(X), viewing as a map X → T ∗X, the pull back
α∗(λ) is α itself. This uniquely determines λX , since for
any point x ∈ X, and y ∈ T ∗xX, the union of images of
TxX under dα for all α(x) = y is whole Ty(T

∗X). Define
ωX = dλX ∈ Ω2(T ∗X), and call it the standard sym-
pletic form. Locally, under coordinate {xi}, it is given by
λX =

∑
ξidxi, thus ωX =

∑
dξi ∧ dxi.

For smooth map f : X → Y , the map df : TxX →
Xf(x)Y for each point x induces two maps T ∗Y

p← X ×Y

T ∗Y
q→ T ∗X. Then two pull back of tautological forms co-

incide, say q∗λX = p∗λY . This is functorial in the following
sense.

X ×Z T
∗Z −→X ×Y T ∗Y −→T ∗X

↓ ↓
Y ×Z T

∗Z −→ T ∗Y
↓
T ∗Z
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Symbols. It is known that the associated graded alge-
bra of DX is S∗Θ = π∗(OT∗X). For a differential operator
P ∈ D(X), define its symbol σ(P ) to be the image in
O(T ∗X). Locally, under coordinate {xi}, it is given by∑

j

fj(xi)gj
(

∂
∂xi

)
7−→

∑
j

fj(xi)gj
(
ξi
)
,

where ξi : T ∗U → k sending df to ∂f
∂xi

as a member of
coordinate.

More general, let E and F be two vector bundles over X.
A sheaf map E → F is said to be a differential operator
if it can be expressed by a matrix with coefficients in DX

locally after some trivialization. It is in general not a OX -
module morphism (morphism of vector bundles). The asso-
ciated graded sheaf of all differential operators from E → F
is HomOX (E ,F) ⊗OX S∗(Θ) = π∗HomOT∗X (π∗E , π∗F).
For a differential operator P : E → F over X, we can define
the its symbol to be the corresponding OT∗X -morphism
π∗E → π∗F . Locally, it is simply the indices-wise symbol.

Singular Support. We denote Oi
X the differential

operators of degree ≤ i. For a quasi-coherent DX -module
F , we say it has a good filtration if there is a filtration
F0 ⊇ F1 ⊇ · · · such that Di

X ·Fj ⊆ F i+j , and F i/F i−1 is
naturally a coherent Oi

X /Oi−1
X -module. A DX -module has

a good filtration if and only if it is coherent DX -module.

Consider the associated graded module of is a coher-
ent sheaf over T ∗X with respect to some good filtration,
and we call the support of this sheaf singular support
and denote it by SS(F) ⊆ T ∗X. It turns out that sin-
gular support does not depend on the choice of good fil-
tration. We define the defect of a coherent DX -module
F to be def F = dimSS(F) − dimX. One can prove
that dimSS(F) ≥ dimX (each irreducible component), and
SS(F) is actually a union of coisotropic subvarieties. Fur-
thermore, F is coherent OX -module if and only if SS(F) is
simply the zero section of T ∗X.

Roos theorem ensures that for coherent DX -module
F , Hi(DF) = 0 unless − def F ≤ i ≤ 0, and
dimSS(Hi(DF)) ≤ dimX − i.

Holonomic D-modules. A coherent DX -module F
is called holonomic if F = 0 or dimSS(F) = dimX. An
algebraic argument ensures that holonomic DX -module is
stable under subquotient, extensions, and artinian. It is
clear from above that the duality functor D maps holomon-
ic DX -module to holomonic DX -module (rather than a
complex).

Let Dh(DX) be the full subcategory of complexes with
cohomology homonomic in Dqc(DX). It is nontrivial but
true that it is also the category of bounded complexes of
holonomic DX -module.

It turns out f !, f∗ preserve holonomicity, thus so are f!
and f∗. Under the category of Dh(DX), and a morphism
f : X → Y , we have

1. There is a canonic morphism f! → f∗, which is isomor-
phic for proper map f .

2. If f : X → Y is smooth, then f ! = f∗[2d] with d =
dimX − dimY .

3. HomDh(f!F
•,G•) = HomDh(F

•, f !G•).
4. HomDh(G

•, f∗F•) = HomDh(f
∗G•,F•).

By an induction on dimensions, one can show that for a
holonomic sheaf F , there is some dense open subset U such
that F|U is OU -coherent.

Minimal Extensions. Let Y be a locally closed s-
mooth subvariety of X. Denote i : Y → X the inclusion.
Assume i is affine, that is preimage of affine set is affine,
then DX←Y is locally free over DY , thus i∗ is exact. For
any holonomic sheaf F , i∗F is still holonomic, and so is i!F .
Define the minimal extension L(Y,F) to be the image of
i!F → i∗F .

When F is an irreducible OY -coherent DX -module,
L(Y,F) is an irreducible DX -module. It is the unique
irreducible submodule of i∗F and the unique irreducible
quotient module of i!F . Furthermore, any irreducible
holonomic module is of this form L(Y,F). Two of them
L(Y1,F1) = L(Y2,F2) if and only if Y1 = Y2 and F1 = F2

after restricting to some open subset U both in Y and Y ′.

Curves. Let C be a smooth curve. For a point p ∈ C,
denote mp the unique ideal of Op, and Kp the fraction field
of Op. There is a unique completion C containing C as an
open dense subset. For any p ∈ C\C, (j∗OC)p = Kp where
j : C → C the inclusion.

LetM be a finite dimensional Kp-module. A meromor-
phic connection is a k-linear map ∇ : M → Ω1

C ⊗Op M
with ∇(fs) = df ⊗ s + f∇s for all f ∈ Kp and s ∈ M .
It is called regular if there is an mp∇-invariant Op-lattice
L. That is, there is an Op-finitely generated submodule L
such that M = KpL and mp∇(L) ⊆ Ω1

C ⊗Op L.
Let F be an OC-coherent DC-module (that is, a flat

connection). For any p ∈ C \ C, we say F has a regular
singularity at p if (j+F)p is a regular meromorphic con-
nection We say F is regular, if it has regular singularity
at each point p ∈ C \ C.

Under local coordinate z with z(p) = 0, Op = k[x, x−1],
and Kp = k(k). We can recognize Ω1

p = Op, under which
df is recognized with df

dz
. So the condition of being Op-

coherent and mp∇-invariant is equivalent to that of being
Dν

p-invariant, where Dν
p is the subsheaf of subalgebra of DC

generated by OC and z d
dz
. So F has a regular singularity

at p if (j+F)p is a union of Dν-coherent modules.
For a holomonic DC-module F , it is said to be regular

if F|U is OU -coherent and regular in the above sense.

Regular D-modules. In general case, a holomonic
DX -module F is called regular if the restriction of it to
any curve is regular. The curve criterion asserts that a
holomonic DX -module F is regular if any irreducible sub-
quotient of it is of the form L(Y, E) with E a OY -coherent
and regular DY -module. We denote Drh(DX) the full sub-
category of complexes with cohomology regular in Dh(DX).
It turns out f !, f∗ and D preserve regularity, thus so are f!
and f∗.

Examples. Consider the case X = C. Let z be a local
coordinate, and ζ the coordinate for cotangent bundle cor-
responding to d

dz
. The DX -module F = DX /DX ·z d

dz
has

good filtration such that the corresponding OT∗X -module
is O /O ·zζ. As a result, SS(F) is the union of zero section
of T ∗C and the fibre of T ∗C at 0 ∈ C. So F is holomonic.

On the other hand, in the analytic case, the solution
z d
dz
f = 0 is given by f = c log z in any simple-connected

subspace in {z ̸= 0}.

Perverse Sheaves

In this section, we assume k = C, and we denote Xan the
underlying space of algebraic variety X equipped the com-
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plex topology. We exchange OX by the sheaf of analytic
functions, DX the sheaf of analytic differential operators,
etc.

Let X be a topological space temporarily. Denote ZX

the constant sheaf over X, andM(ZX) the category of all
sheaves over Xan. Denote the derived category of bounded
complexes in M(ZX) by D(ZX). For any continuous map
f : X → Y , we can define functors f!, f∗ : D(Xan) →
D(Y an) and f∗, f ! : D(Y an)→ D(Xan).

1. There is a canonic morphism f! → f∗, which is isomor-
phic for proper map f .

2. If f : X → Y is smooth, then f ! = f∗[2d] with d =
dimX − dimY .

3. HomY (f!F•,G•) = HomX(F•, f !G•).
4. HomY (G•, f∗F•) = HomX(f∗G•,F•).

Moreover, there is a Verdier duality functor D :
D(Xan)→ D(Xan)op.

Constructible Sheaves. Let CX be the constan-
t sheaf over Xan. We denote M(CX) the sheaf of CX -
modules, i.e. the category of sheaves of C-vector spaces
over Xan. Denote the derived category of bounded com-
plexes inM(CX) by D(Xan).

We call a sheaf F ∈ M(CX) constructible if there is
some stratification X =

∪
Xi with each Xi locally closed

algebraic subvarieties such that F|Xan
i

is finite dimensional
and locally constant. Denote the full subcategory of com-
plexes with cohomology group constructible in D(Xan) by
Dcon(X

an). It turns out f!, f∗, f
!, f∗,D preserve the con-

structibility. Furthermore D2(F•) ∼= F• and f∗ = Df !D
and f! = Df∗D.

A complex F• ∈ D(Xan) is called perverse sheaf if
dim suppHi(F) ≤ −i, and dim suppHi(F) ≤ −i. The full
subcategory of perverse sheaves forms an abelian category.

For a smooth locally closed subvariety Y ⊆ X, and
a local system E (a locally constant sheaf), the intersec-
tion homology complex of Deligne–Goresky–MacPherson,
IC•(Y,L) is a perverse sheaf with H− dimY (IC•(Y, E))|Y =
E and Hi(IC•(Y, E)) = 0 if i < −dimY .

Riemann–Hilbert Correspondence. Denote the
de Rham functor dR : D(Dan

X ) → D(Xan) by dR(F•) =
ΩX ⊗L

DX
F•. It coincides RHom(OX ,F•)[dimX], the de-

rived version of horizontal sections. Also denote Sol :
D(Dan

X )op → D(Xan) by Sol(F•) = RHomDan
X
(F•,Oan

X ).
Note that Sol(F•) ∼= dR(DF•)[−dimX].

The Riemann–Hilbert correspondence claims that

dR : Dh(DX)→ Dcos(X
an)

is an equivalence of categories commuting with f !, f∗, f!, f∗
and D.

Furthermore, if we recognize a sheaf by a complex cen-
tralized at zero position, then regular holomonic sheaves
correspond to perverse sheaves; the irreducible regular
holomonic DX -module L(Y, E) corresponds to the intersec-
tion homology complex IC•(Y, E).
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Appendix: Notations Table

Notations Explanation
OX sheaf of regular functions over X

O(U) regular functions over U
Op stalk of OX at p ∈ X
DX sheaf of differential operators over X

D(U) differential operators over U
ΘX the sheaf of vector fields
Ωk

X the sheaf of k-forms
ΩX the sheaf of highest differential forms

L(Y,F) minimal extension; it is denoted by i∗!F in [1].

SS(F) the singular support of coherent DX -module F ;
it is called by characteristic variety and denoted
by Ch(F) in [2].

f∗F push forward of coherent sheaf F
f∗G pull back of coherent sheaf G
f−1G inverse image of sheaf G
f∆F push forward of DX -module F
f+F pull back of DX -module F
f∗F• push forward of DX -module complex =

Rf∗(DY←X ⊗L
DX
F•), it is denoted by

∫
f

in

[2].

f!F• shriek-pull forward of DX -module complex =
Df !DF•, it is denoted by

∫
f !

in [2]

f∗G• pull back of DX -module complex = Df !DG•,
it is denoted by f⋆ in [2]

f !G• shriek–pull back of DX -module complex =
Lf∆G[dimX − dimY ], it is denoted by f† in
[2]

DF• duality functor =
RHom•DX

(F•,DX ⊗OXΩ−1
X )[dimX]

Mqc(X) the category of quasi-coherent sheaves

Mc(X) the category of coherent sheaves

Dqc(X) derived category of bounded complexes of qua-
sicoherent sheaves

Dc(X) derived category in Dqc(X) with cohomology
coherent

Mqc(DX) the category of quasi-coherent left DX -module

Mc(DX) the category of coherent left DX -module

Mqc(Dop
X ) the category of quasi-coherent rightDX -module

Mc(Dop
X ) the category of coherent right DX -module

Dqc(DX) derived category of bounded complexes of qua-
sicoherent DX -sheaves

Dc(DX) derived category in Dqc(DX) with cohomology
coherent

Dh(DX) derived category in Dqc(DX) with cohomology
holomonic

Drh(DX) derived category in Dqc(DX) with cohomology
regular

M(CX) the category of sheaves of CX -modules

D(Xan) the derived category of bounded complexes in
M(CX)

Dcon(X
an) the derived category in D(Xan) with cohomol-

ogy construcible

4


