Algebraic \mathcal{D} -modules

XIONG Rui

Generalities

Let \Bbbk be an algebraic closed field of characteristic zero. Let X be a smooth algebraic variety.

Denote \mathcal{O}_X the sheaf of regular functions. Denote $\mathcal{M}_{qc}(X)$ (resp. $\mathcal{M}_q(X)$) the category of quasi-coherent (resp. coherent) sheaves.

Differential Operators. We say $\varphi : \mathcal{O}(U) \to \mathcal{O}(U)$ is a **differential operator** over U of **degree** 0 if φ is a multiplication of some $f \in \mathcal{O}(U)$; of **degree** k if $[\varphi, \psi]$ is a differential operator of degree k - 1 for all differential operator of degree 0. Denote $\mathcal{D}(X)$ the differential operator over X. Denote \mathcal{D}_X be the sheaf of differential operators.

As an algebra, \mathcal{D}_X is generated by the sheaf of vector fields Θ_X over \mathcal{O}_X with relation $f \cdot \xi = f\xi$, $\xi \cdot f - f \cdot \xi = \xi f$ and $\xi \cdot \eta - \eta \cdot \xi = [\xi, \eta]$ for any $\xi, \eta \in \Theta_X$ and $f \in \mathcal{O}_X$.

Coherent \mathcal{D} -modules. A sheaf is said to be a quasicoherent (resp. coherent) \mathcal{D}_X -module if it is a sheaf of \mathcal{D}_X -module (resp. finitely generated). Denote $\mathcal{M}_{qc}(\mathcal{D}_X)$ (resp. $\mathcal{M}_q(X)$) the category of the category of quasicoherent (resp. coherent) \mathcal{D}_X -modules. When we say \mathcal{D}_X module, it is automatically quasi-coherent.

Denote the sheaf correspondent to tangent bundle by Θ_X . Note that \mathcal{D}_X is naturally filtered by degrees, with associated graded ring commutative and isomorphic to $S^*(\Theta_X)$ over \mathcal{O}_X as \mathcal{O}_X -module. As a result, \mathcal{D}_X is noetherian.

Denote $\mathcal{D}_X^{\text{op}}$ the inverse ring of \mathcal{D}_X . We identify the sheaf of right \mathcal{D}_X -modules as sheaf of $\mathcal{D}_X^{\text{op}}$ -modules, and call \mathcal{D}_X -modules to be left \mathcal{D}_X -modules if it is necessary to dintinguish. We define similarly $\mathcal{M}_{qc}(\mathcal{D}_X^{\text{op}}), \mathcal{M}_c(\mathcal{D}_X^{\text{op}}), \mathcal{D}_{qc}(\mathcal{D}_X^{\text{op}})$, and $\mathcal{D}_c(\mathcal{D}_X^{\text{op}})$.

Left and Right \mathcal{D} -modules. The sheaf \mathcal{O}_X of regular functions is naturally a (left) \mathcal{D} -module.

The sheaf Ω_X of highest differential forms over X is a right \mathcal{D} -module locally by $\Omega \cdot \xi = -L_{\xi}\omega$ for ξ a vector field, where L_{ξ} is the Lie derivative. In general, for any left (quasi-)coherent \mathcal{D}_X -module \mathcal{F} , we can assign a right (quasi-)coherent \mathcal{D}_X -module $\Omega(\mathcal{F}) = \Omega_X \otimes_{\mathcal{O}_X} \mathcal{F}$ locally by

$$(\omega \otimes s) \cdot \xi = \omega \cdot \xi \otimes s - \omega \otimes \xi \cdot s = -L_{\xi} \omega \otimes s - \omega \otimes \xi \cdot s.$$

This is an equivalence of $\mathcal{D}_x(\mathcal{D}_X)$ and $\mathcal{D}_x(\mathcal{D}_X^{\text{op}})$ for $x \in \{c, qc\}$. This follows from the fact $\mathcal{D}_X^{\text{op}} \cong \Omega \otimes \mathcal{D}_X \otimes \Omega^{-1}$ as sheaf of algebras. Locally, the isomorphism is given by

$$\sum_{\mathbf{j}} f_{\mathbf{j}}(x_i) g_{\mathbf{j}}\left(\frac{\partial}{\partial x_i}\right) \mapsto dx \otimes \sum_{\mathbf{j}} g_{\mathbf{j}}\left(-\frac{\partial}{\partial x_i}\right) f_{\mathbf{j}}(x_i) \otimes dx^{-1}$$

where dx any differential form $dx_1 \wedge \cdots \wedge dx_n$ and dx^{-1} the dual basis for dx.

Connections. Denote the sheaf of k-forms by Ω_X^k .

For a quasi-coherent sheaf $\mathcal{F} \in \mathcal{M}_{qc}(X)$, a **connection** over \mathcal{F} is a morphism of k-module $\nabla : \mathcal{F} \to \Omega_X^1 \otimes_{\mathcal{O}_X} \mathcal{F}$ with $\nabla(f \cdot s) = df \otimes s + f \cdot \nabla s$ for all $f \in \mathcal{O}_X$ and $s \in \mathcal{F}$. It can be naturally extended to $\nabla : \Omega_X^{k-1} \otimes_{\mathcal{O}_X} \mathcal{F} \to \Omega_X^k \otimes_{\mathcal{O}_X} \mathcal{F}$ with $\nabla(\omega \wedge s) = d\omega \otimes s + (-1)^{\deg \omega} \omega \otimes \nabla s$ for $\omega \in \Omega_X^i$, and $s \in \mathcal{F}$. Define its curvature to be ∇^2 , it can be shown that it is an element of $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \Omega_X^2 \otimes \mathcal{F})$, say, a tensor. A connection is said to be **flat** if the **curvature** ∇^2 vanishes. In this case, the **de Rham complex**,

$$\mathrm{dR}^{\bullet}(\mathcal{F}): 0 \to \mathcal{F} \to \Omega^1 \otimes \mathcal{F} \to \cdots \to \Omega \otimes \mathcal{F} \to 0$$

is a complex.

For a vector field $\xi \in \Theta_X$, denote $\nabla_{\xi} : \mathcal{F} \to \mathcal{F}$ defined by $\nabla_{\xi}(s) = (\nabla s)(1 \otimes \xi)$. Then $\nabla_{f\xi}s = f\nabla_{\xi}s$ and $\nabla_{\xi}(fs) = (\xi \cdot f)s + f \cdot \nabla_{\xi}s$ for all $f \in \mathcal{O}_X$, $\xi \in \Theta_X$ and $s \in \mathcal{F}$ by definition. The curvature can be computed to be $\nabla^2 s(\xi, \eta) = \nabla_{[\xi,\eta]} s - [\nabla_{\xi}, \nabla_{\eta}]s$ for $s \in \mathcal{F}, \xi, \eta \in \Theta_X$. So ∇ is **flat** if and only if $\nabla_{[\xi,\eta]} = [\nabla_{\xi}, \nabla_{\eta}]$ in $\mathcal{H}om_{\Bbbk}(\mathcal{F}, \mathcal{F})$.

Assume ∇ is a flat connection over \mathcal{F} , then \mathcal{F} is a left \mathcal{D}_X -module defined by $\xi \cdot s = \nabla_{\xi} s$. Conversely, any \mathcal{D}_X -module is induced by a flat connection. In particular, assume a left \mathcal{D}_X -module \mathcal{F} is coherent over \mathcal{O}_X , then it is a locally free sheaf (vector bundle).

Dually, one can define the dual notation exchanging the corresponding property by $\nabla_{f\xi} s = \nabla(fs)$, but it is seldom used.

Let $\mathcal{F}, \mathcal{G} \in \mathcal{M}_{qc}(X)$ with connections both denoted by ∇ . Then we can define a connection over $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ by $\nabla(s \otimes t) = \nabla s \otimes t + s \otimes \nabla t$ where $s \in \mathcal{F}$ and $t \in \mathcal{G}$. Similarly, we can define a connection over $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ by $\nabla_{\xi}(\phi)(s) = -\phi(\nabla_{\xi}s) + \nabla_{\xi}(\phi(s))$ where $\xi \in \Theta, s \in \mathcal{F}$ and $\phi \in \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$.

Restricting to flat connections, this construction extends to left \mathcal{D}_X -modules. That is, for left \mathcal{D}_X -module \mathcal{F} and \mathcal{G} , define a left \mathcal{D}_X -module structure over $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ by $\xi \cdot (s \otimes t) = \xi \cdot s \otimes t + s \otimes \xi \cdot t$; a left \mathcal{D}_X -module structure over $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ by $(\xi \cdot (\phi))(s) = -\phi(\xi \cdot s) + \xi \cdot \phi(s)$. All notations the same as above.

Parallel Translation. Let \mathcal{F} be a coherent sheaf with connection ∇ . We say a section $s \in \mathcal{F}$ is **horizontal** or **parallel** if for any $\xi \in \Theta$, $\nabla_{\xi}s = 0$. Denote the set of horizontal section over Y to be $\mathcal{F}^{\nabla}(U)$. Note that the sheaf $U \mapsto \mathcal{F}^{\nabla}(U)$ is a locally constant sheaf. A fortiori, $\mathcal{F}^{\nabla} = \mathcal{H}om_{\mathcal{D}_X}(\mathcal{O}_X, \mathcal{F}).$

If we remove the assumption of being algebraic, consider the case of smooth or analytic, and $\mathbb{k} = \mathbb{R}$ or \mathbb{C} . For any curve C, if there is any coherent sheaf \mathcal{F} with connection, it is necessary flat. For any $x \in C$, denote \mathfrak{m}_x the only maximal ideal of \mathcal{O}_x . By the existence and uniqueness of ODEs, the map $\mathcal{F}_x^{\nabla} \to \mathcal{F}_x \to \mathcal{F}_x/\mathfrak{m}_x \mathcal{F}_x$ is an isomorphism.

In general, by pulling back of \mathcal{F} along curves, we define the **parallel translation** along paths. Then, the condition of being parallel is equivalent to say the section is translation-invariant; the condition of being flat for connection is to say it does not depends on the choice of homotopy class of paths.

Linear PDEs. Let \mathcal{F} be a coherent \mathcal{D}_X -module. We can take a resolution by

$$\mathcal{D}_X^n \xrightarrow{*} \mathcal{D}_X^m \longrightarrow \mathcal{F} \longrightarrow 0,$$

Assume the first map * is given by $e_j \mapsto \sum_{j=1}^n D_{ij}e_i$, with e_i the standard basis for some $D_{ij} \in \mathcal{D}(X)$. Consider the linear partial differential equations $\sum_{j=1}^n D_{ij}f_i = 0$ for $i = 1, \ldots, m$ over U. Denote $\operatorname{Sol}(U)$ the set of solutions of them. Then $\operatorname{Sol}(U)$ is clearly forms a sheaf. One can check directly that $\operatorname{Hom}_{\mathcal{D}(U)}(\mathcal{F}(U), \mathcal{O}(U)) = \operatorname{Sol}(U)$. In other word, $\operatorname{Sol} = \mathcal{H}om_{\mathcal{D}_X}(\mathcal{F}, \mathcal{O}_X)$.

If we remove the assumption of being algebraic, consider the case of smooth in which case $\mathbb{k} = \mathbb{R}$. Consider the sheaf of distributions \mathcal{D} ist over X, then $\operatorname{Hom}_{\mathcal{D}}(\mathcal{F}, \mathcal{D}$ ist) is just the local weak solution in classic analysis.

Direct Images and Inverse Images

Let $f: X \to Y$ be a morphism of algebraic varieties. For a quasi-coherent sheaf \mathcal{F} over X, we define **direct image/push forward** $f_*\mathcal{F} = [U \mapsto \mathcal{F}(f^{-1}(U))]$. For a quasicoherent sheaf \mathcal{G} over Y, we define **inverse image/pull back** $f^*\mathcal{G} = \mathcal{O}_X \otimes_{f^{-1}\mathcal{O}_Y} f^{-1}\mathcal{G}$, where $f^{-1}\mathcal{G}$ the sheaf associated to $U \mapsto \varinjlim_{V \to f(U)} \mathcal{G}(V)$.

Inverse Image. Assume there is a connection ∇ over \mathcal{G} , then we can define a connection over $f^*\mathcal{G}$ by $\nabla(f \otimes s) = df \otimes s + f \nabla s$ with $f \in \mathcal{O}_X$, $s \in f^{-1}\mathcal{G}$ which is presented by a section $s \in \mathcal{G}$. This is known as **inverse image** / **pull back** of the connection. In other word, $\nabla_{\xi}(f \otimes s) = \xi f \otimes s + f \nabla_{df(\xi)} s$. Under local coordinate $\{y_i\}$ of Y, $\nabla_{\xi}(f \otimes s) = \xi f \otimes s + f \sum_i (\xi y_i) \otimes \frac{\partial}{\partial y_i} \cdot s$. The curvature commutes with pull back, so the pull back of flat connection is still flat.

Restrict the case of flat connections, we defined for each left \mathcal{D}_Y -module \mathcal{G} a \mathcal{D} -module inverse image $f^{\Delta}\mathcal{G}$. As sheaf, it coincides with inverse image of \mathcal{G} , and the \mathcal{D}_X -module structure over it is given by $\xi(f \otimes s) = \xi f \otimes s + f \sum_{i} (\xi y_i) \otimes \frac{\partial}{\partial y_i} \cdot s$, with notations above. It is clear $(f \circ g)^{\Delta} = g^* \circ f^{\Delta}$. Denote $\mathcal{D}_{X \to Y} = f^{\Delta} \mathcal{D}_X$. Then a fortiori, $f^{\Delta}\mathcal{G} = \mathcal{D}_{Y \to X} \otimes_{f^{-1}(\mathcal{D}_X)} f^{-1}\mathcal{G}$.

Direct Image. Let \mathcal{F} be a right \mathcal{D}_X -module, we define the **direct image** of it to be $f_+\mathcal{F} = f_*(\mathcal{F} \otimes_{\mathcal{D}_X} \mathcal{D}_{X \to Y})$. Then we can transfer them into left \mathcal{D}_X -module. To be exact, define $\mathcal{D}_{Y \leftarrow X} = \Omega(f^*\Omega(\mathcal{D}_X))$, and for left \mathcal{D}_X module \mathcal{F} , define the \mathcal{D} -module **direct image** $f_+\mathcal{F} =$ $f_*(\mathcal{D}_{Y \leftarrow X} \otimes_{\mathcal{D}_X} \mathcal{F})$. When $X \to Y$ is a closed embedding, then $\mathcal{D}_{Y \leftarrow X}$ is generated by \mathcal{D}_Y and the sheaf of normal vector fields $\Theta_Y|_X$. In particular, when f is an open embedding, $\mathcal{D}_{Y \leftarrow X} = \mathcal{D}_X$, so $f_+\mathcal{F}$ is $f_*\mathcal{F}$ as \mathcal{O}_X -module. However, in general $(f \circ g)_+ \neq f_+ \circ g_+$.

Derived Categories. Denote the derived category of bounded complexes of quasi-coherent sheaves by $\mathcal{D}_{qc}(X)$. Denote the full subcategory in $\mathcal{D}_{qc}(X)$ consisting of complexes with cohomology coherent by $\mathcal{D}_{c}(X)$. It is also the derived category of bounded complexes of coherent sheaves.

Denote the derived category of bounded complexes of quasi-coherent \mathcal{D}_X -modules by $\mathcal{D}_{qc}(\mathcal{D}_X)$. Denote the full subcategory in $\mathcal{D}_{qc}(\mathcal{D}_X)$ consisting of complexes with cohomology coherent by $\mathcal{D}_c(\mathcal{D}_X)$. It is also the derived category of bounded complexes of coherent \mathcal{D}_X -modules. The category of quasi-coherent sheaf or quasi-coherent \mathcal{D}_X -module have finite projective dimensions, so the derived functor can be defined.

By an algebra argument, for $\mathcal{F}^{\bullet} \in \mathcal{D}_{c}(\mathcal{D}_{X})$ and $\mathcal{G}^{\bullet} \in \mathcal{D}_{qc}(\mathcal{D}_{X})$, we have

$$R \operatorname{\mathcal{H}om}_{\mathcal{D}_X}(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}) = R \operatorname{\mathcal{H}om}_{\mathcal{D}_X}(\mathcal{F}^{\bullet}, \mathcal{D}_X) \otimes_{\mathcal{D}_X}^L \mathcal{G}^{\bullet}.$$

Functors. For $\mathcal{G}^{\bullet} \in \mathcal{D}_{qc}(Y)$, define the **derived inverse image** by

$$f^{!}\mathcal{G}^{\bullet} = Lf^{\Delta}\mathcal{G}^{\bullet}[d] = \mathcal{D}_{X \leftarrow Y} \otimes_{f^{-1}\mathcal{D}_{X}} f^{-1}\mathcal{G}[d] \in \mathcal{D}_{qc}(X)$$

where $d = \dim X - \dim Y$. Then $(f \circ g)^! = g^! \circ f^!$.

For $\mathcal{F}^{\bullet} \in \mathcal{D}_{qc}(X)$, define the **derived inverse image** by

$$f_*\mathcal{F}^{\bullet} = Rf_*(\mathcal{D}_{Y \leftarrow X} \otimes^L_{\mathcal{D}_X} \mathcal{F}^{\bullet}) \in \mathcal{D}_{qc}(Y).$$

Define the **duality functor** $\mathcal{D}_{qc}(\mathcal{D}_X) \to \mathcal{D}_{qc}(\mathcal{D}_X)^{op}$ by

$$\begin{aligned} \mathbf{D}(\mathcal{F}^{\bullet}) &= R \,\mathcal{H}\mathrm{om}_{\mathcal{D}_{X}}^{\bullet}(\mathcal{F}, \mathcal{D}_{X}) \otimes_{\mathcal{O}_{X}} \Omega_{X}^{-1}[n] \\ &= R \,\mathcal{H}\mathrm{om}_{\mathcal{D}_{X}}^{\bullet}(\mathcal{F}, \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{-1})[n], \end{aligned}$$

where $n = \dim X$. Then $\mathbf{D}^2(\mathcal{F}^{\bullet}) \cong \mathcal{F}^{\bullet}$. Thus we can define $f^* = \mathbf{D}f^!\mathbf{D}$ and $f_! = \mathbf{D}f_*\mathbf{D}$. We have

$$\begin{array}{ll} R \operatorname{\mathcal{H}om}_{\mathcal{D}_{X}}(\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}) &= \left(\Omega_{X} \otimes_{\mathcal{O}_{X}}^{L} \mathbf{D} \mathcal{F}^{\bullet} \right) \otimes_{\mathcal{D}_{X}}^{L} \mathcal{G}^{\bullet}[-\dim X] \\ &= \Omega_{X} \otimes_{\mathcal{D}_{X}}^{L} \left(\mathbf{D} \mathcal{F}^{\bullet} \otimes_{\mathcal{O}_{X}}^{L} \mathcal{G}^{\bullet} \right) [-\dim X] \\ &= R \operatorname{\mathcal{H}om}_{\mathcal{D}_{X}}(\mathcal{O}_{X}, \mathbf{D} \mathcal{F} \otimes_{\mathcal{O}_{X}}^{L} \mathcal{G}). \end{array}$$

The **Kashiwara theorem** claims that for closed embedding $i: X \to Y$, $i^{\Delta} : \mathcal{M}(\mathcal{D}_X) \to \mathcal{M}_X(\mathcal{D}_Y)$ is an equivalence of category with $\mathcal{M}_X(\mathcal{D}_Y)$ the category of \mathcal{D}_Y -module supported over X. The inverse is the restriction of $i^!$ by view each \mathcal{D}_X -module as a complex centralized at zero degree.

Spencer Resolution. We can pick a right \mathcal{D}_X -module resolution

$$\cdots \to \Omega_X^{n-1} \otimes_{\mathcal{O}_X} \mathcal{D}_X \to \Omega_X^n \otimes_{\mathcal{O}_X} \mathcal{D}_X (\to \Omega_X) \to 0$$

by $d(\omega \otimes P) = d\omega \otimes P + \sum_i dx_i \wedge \omega \otimes \frac{\partial}{\partial x_i} P$, where $\omega \in \Omega_X^k$, $P \in \mathcal{D}_X$ and $\{x_i\}$ a local coordinate. Dualize it to a left \mathcal{D}_X -module, we see a left \mathcal{D}_X -module resolution of \mathcal{O}_X

$$\cdots \to \mathcal{D}_X \otimes_{\mathcal{O}_X} \Lambda^1 \Theta_X \to \mathcal{D}_X \otimes_{\mathcal{O}_X} \Lambda^0 \Theta_X (\to \mathcal{O}_X) \to 0.$$

Explicitly, it is given by

$$d(P \otimes \xi_1 \wedge \dots \wedge \xi_k) = \sum_{i=1}^k (-1)^{i+1} P \xi_i \otimes \xi_1 \wedge \dots \widehat{\xi_i} \dots \wedge \xi_k + \sum_{1 \le i < j \le k} (-1)^{i+j} P \otimes [\xi_i, \xi_j] \otimes \xi_1 \wedge \dots \wedge \xi_k.$$

So $R \operatorname{Hom}_{\mathcal{D}_X}(\mathcal{O}_X, \mathcal{F}^{\bullet}) = \Omega_X \otimes^L_{\mathcal{D}_X} \mathcal{F}^{\bullet}[-\dim X].$

Holonomic \mathcal{D} -modules

Consider the cotangent bundle T^*X , with projection π : $T^*X \to X$. For a local coordinate $\{x_i\}$, the local vector field $\frac{\partial}{\partial x_i}$ defines local function over T^*X , and it will be denoted alternatively by ξ_i . It is clear $\{\xi_i, x_i\}$ form a local coordinate of T^*X .

Sympletic Structure. Over T^*X , there is a tautological form $\lambda_X \in \Omega^1(T^*X)$, such that for any form $\alpha \in \Omega^1(X)$, viewing as a map $X \to T^*X$, the pull back $\alpha^*(\lambda)$ is α itself. This uniquely determines λ_X , since for any point $x \in X$, and $y \in T^*_x X$, the union of images of $T_x X$ under $d\alpha$ for all $\alpha(x) = y$ is whole $T_y(T^*X)$. Define $\omega_X = d\lambda_X \in \Omega^2(T^*X)$, and call it the standard sympletic form. Locally, under coordinate $\{x_i\}$, it is given by $\lambda_X = \sum \xi_i dx_i$, thus $\omega_X = \sum d\xi_i \wedge dx_i$.

 $\lambda_X = \sum \xi_i dx_i$, thus $\omega_X = \sum d\xi_i \wedge dx_i$. For smooth map $f : X \to Y$, the map $df : T_x X \to X_{f(x)} Y$ for each point x induces two maps $T^*Y \stackrel{p}{\leftarrow} X \times_Y T^*Y \stackrel{q}{\to} T^*X$. Then two pull back of tautological forms coincide, say $q^*\lambda_X = p^*\lambda_Y$. This is functorial in the following sense.

$$\begin{array}{ccc} X \times_Z T^*Z \longrightarrow X \times_Y T^*Y \longrightarrow T^*X \\ \downarrow & \downarrow \\ Y \times_Z T^*Z \longrightarrow & T^*Y \\ \downarrow \\ T^*Z \end{array}$$

2

Then $(f \circ g)_* = f_* \circ g_*$.

Symbols. It is known that the associated graded algebra of \mathcal{D}_X is $S^*\Theta = \pi_*(\mathcal{O}_{T^*X})$. For a differential operator $P \in \mathcal{D}(X)$, define its **symbol** $\sigma(P)$ to be the image in $\mathcal{O}(T^*X)$. Locally, under coordinate $\{x_i\}$, it is given by

$$\sum_{\mathbf{j}} f_{\mathbf{j}}(x_i) g_{\mathbf{j}} \left(\frac{\partial}{\partial x_i} \right) \longmapsto \sum_{\mathbf{j}} f_{\mathbf{j}}(x_i) g_{\mathbf{j}} \left(\xi_i \right),$$

where $\xi_i:T^*\!U\to \Bbbk$ sending df to $\frac{\partial f}{\partial x_i}$ as a member of coordinate.

More general, let \mathcal{E} and \mathcal{F} be two vector bundles over X. A sheaf map $\mathcal{E} \to \mathcal{F}$ is said to be a **differential operator** if it can be expressed by a matrix with coefficients in \mathcal{D}_X locally after some trivialization. It is in general not a \mathcal{O}_{X^-} module morphism (morphism of vector bundles). The associated graded sheaf of all differential operators from $\mathcal{E} \to \mathcal{F}$ is $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{E}, \mathcal{F}) \otimes_{\mathcal{O}_X} S^*(\Theta) = \pi_* \operatorname{Hom}_{\mathcal{O}_{T^*X}}(\pi^*\mathcal{E}, \pi^*\mathcal{F})$. For a differential operator $P: \mathcal{E} \to \mathcal{F}$ over X, we can define the its **symbol** to be the corresponding \mathcal{O}_{T^*X} -morphism $\pi^*\mathcal{E} \to \pi^*\mathcal{F}$. Locally, it is simply the indices-wise symbol.

Singular Support. We denote \mathcal{O}_X^i the differential operators of degree $\leq i$. For a quasi-coherent \mathcal{D}_X -module \mathcal{F} , we say it has a **good filtration** if there is a filtration $\mathcal{F}^0 \supseteq \mathcal{F}^1 \supseteq \cdots$ such that $\mathcal{D}_X^i \cdot \mathcal{F}^j \subseteq \mathcal{F}^{i+j}$, and $\mathcal{F}^i/\mathcal{F}^{i-1}$ is naturally a coherent $\mathcal{O}_X^i/\mathcal{O}_X^{i-1}$ -module. A \mathcal{D}_X -module has a good filtration if and only if it is coherent \mathcal{D}_X -module.

Consider the associated graded module of is a coherent sheaf over T^*X with respect to some good filtration, and we call the support of this sheaf **singular support** and denote it by $SS(\mathcal{F}) \subseteq T^*X$. It turns out that singular support does not depend on the choice of good filtration. We define the **defect** of a coherent \mathcal{D}_X -module \mathcal{F} to be def $\mathcal{F} = \dim SS(\mathcal{F}) - \dim X$. One can prove that dim $SS(\mathcal{F}) \geq \dim X$ (each irreducible component), and $SS(\mathcal{F})$ is actually a union of coisotropic subvarieties. Furthermore, \mathcal{F} is coherent \mathcal{O}_X -module if and only if $SS(\mathcal{F})$ is simply the zero section of T^*X .

Roos theorem ensures that for coherent \mathcal{D}_X -module $\mathcal{F}, H^i(\mathbf{D}\mathcal{F}) = 0$ unless $-\det \mathcal{F} \leq i \leq 0$, and $\dim SS(H^i(\mathbf{D}\mathcal{F})) \leq \dim X - i$.

Holonomic \mathcal{D} -modules. A coherent \mathcal{D}_X -module \mathcal{F} is called **holonomic** if $\mathcal{F} = 0$ or dim SS(\mathcal{F}) = dim X. An algebraic argument ensures that holonomic \mathcal{D}_X -module is stable under subquotient, extensions, and artinian. It is clear from above that the duality functor \mathbf{D} maps holomonic \mathcal{D}_X -module to holomonic \mathcal{D}_X -module (rather than a complex).

Let $\mathcal{D}_h(\mathcal{D}_X)$ be the full subcategory of complexes with cohomology homonomic in $\mathcal{D}_{qc}(\mathcal{D}_X)$. It is nontrivial but true that it is also the category of bounded complexes of holonomic \mathcal{D}_X -module.

It turns out $f^!$, f_* preserve holonomicity, thus so are $f_!$ and f^* . Under the category of $\mathcal{D}_h(\mathcal{D}_X)$, and a morphism $f: X \to Y$, we have

- 1. There is a canonic morphism $f_! \to f_*$, which is isomorphic for proper map f.
- 2. If $f : X \to Y$ is smooth, then $f^! = f^*[2d]$ with $d = \dim X \dim Y$.
- 3. Hom_{\mathcal{D}_h} $(f_!\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}) = \operatorname{Hom}_{\mathcal{D}_h}(\mathcal{F}^{\bullet}, f^!\mathcal{G}^{\bullet}).$
- 4. Hom_{\mathcal{D}_h} ($\mathcal{G}^{\bullet}, f_* \mathcal{F}^{\bullet}$) = Hom_{\mathcal{D}_h} ($f^* \mathcal{G}^{\bullet}, \mathcal{F}^{\bullet}$).

By an induction on dimensions, one can show that for a holonomic sheaf \mathcal{F} , there is some dense open subset U such that $\mathcal{F}|_U$ is \mathcal{O}_U -coherent.

Minimal Extensions. Let Y be a locally closed smooth subvariety of X. Denote $i : Y \to X$ the inclusion. Assume i is affine, that is preimage of affine set is affine, then $\mathcal{D}_{X \leftarrow Y}$ is locally free over \mathcal{D}_Y , thus i_* is exact. For any holonomic sheaf \mathcal{F} , $i_*\mathcal{F}$ is still holonomic, and so is $i_!\mathcal{F}$. Define the **minimal extension** $\mathcal{L}(Y, \mathcal{F})$ to be the image of $i_!\mathcal{F} \to i_*\mathcal{F}$.

When \mathcal{F} is an irreducible \mathcal{O}_Y -coherent \mathcal{D}_X -module, $\mathcal{L}(Y, \mathcal{F})$ is an irreducible \mathcal{D}_X -module. It is the unique irreducible submodule of $i_*\mathcal{F}$ and the unique irreducible quotient module of $i_!\mathcal{F}$. Furthermore, any irreducible holonomic module is of this form $\mathcal{L}(Y, \mathcal{F})$. Two of them $\mathcal{L}(Y_1, \mathcal{F}_1) = \mathcal{L}(Y_2, \mathcal{F}_2)$ if and only if $\overline{Y_1} = \overline{Y_2}$ and $\mathcal{F}_1 = \mathcal{F}_2$ after restricting to some open subset U both in Y and Y'.

Curves. Let *C* be a smooth curve. For a point $p \in C$, denote \mathfrak{m}_p the unique ideal of \mathcal{O}_p , and \mathcal{K}_p the fraction field of \mathcal{O}_p . There is a unique completion \overline{C} containing *C* as an open dense subset. For any $p \in \overline{C} \setminus C$, $(j_* \mathcal{O}_C)_p = \mathcal{K}_p$ where $j: C \to \overline{C}$ the inclusion.

Let M be a finite dimensional \mathcal{K}_p -module. A **meromorphic connection** is a k-linear map $\nabla : M \to \Omega^1_C \otimes_{\mathcal{O}_p} M$ with $\nabla(fs) = df \otimes s + f \nabla s$ for all $f \in \mathcal{K}_p$ and $s \in M$. It is called **regular** if there is an $\mathfrak{m}_p \nabla$ -invariant \mathcal{O}_p -lattice L. That is, there is an \mathcal{O}_p -finitely generated submodule Lsuch that $M = \mathcal{K}_p L$ and $\mathfrak{m}_p \nabla(L) \subseteq \Omega^1_C \otimes_{\mathcal{O}_p} L$.

Let \mathcal{F} be an \mathcal{O}_C -coherent \mathcal{D}_C -module (that is, a flat connection). For any $p \in \overline{C} \setminus C$, we say \mathcal{F} has a **regular** singularity at p if $(j_+\mathcal{F})_p$ is a regular meromorphic connection We say \mathcal{F} is **regular**, if it has regular singularity at each point $p \in \overline{C} \setminus C$.

Under local coordinate z with z(p) = 0, $\mathcal{O}_p = \Bbbk[x, x^{-1}]$, and $\mathcal{K}_p = \Bbbk(k)$. We can recognize $\Omega_p^1 = \mathcal{O}_p$, under which df is recognized with $\frac{df}{dz}$. So the condition of being \mathcal{O}_p coherent and $\mathfrak{m}_p \nabla$ -invariant is equivalent to that of being \mathcal{D}_p^{ν} -invariant, where \mathcal{D}_p^{ν} is the subsheaf of subalgebra of $\mathcal{D}_{\overline{C}}$ generated by $\mathcal{O}_{\overline{C}}$ and $z\frac{d}{dz}$. So \mathcal{F} has a **regular singularity** at p if $(j_+\mathcal{F})_p$ is a union of \mathcal{D}^{ν} -coherent modules.

For a holomonic \mathcal{D}_C -module \mathcal{F} , it is said to be **regular** if $\mathcal{F}|_U$ is \mathcal{O}_U -coherent and regular in the above sense.

Regular \mathcal{D} -modules. In general case, a holomonic \mathcal{D}_X -module \mathcal{F} is called **regular** if the restriction of it to any curve is regular. The **curve criterion** asserts that a holomonic \mathcal{D}_X -module \mathcal{F} is regular if any irreducible subquotient of it is of the form $\mathcal{L}(Y, \mathcal{E})$ with \mathcal{E} a \mathcal{O}_Y -coherent and regular \mathcal{D}_Y -module. We denote $\mathcal{D}_{rh}(\mathcal{D}_X)$ the full subcategory of complexes with cohomology regular in $\mathcal{D}_h(\mathcal{D}_X)$. It turns out $f^!$, f_* and **D** preserve regularity, thus so are $f_!$ and f^* .

Examples. Consider the case $X = \mathbb{C}$. Let z be a local coordinate, and ζ the coordinate for cotangent bundle corresponding to $\frac{d}{dz}$. The \mathcal{D}_X -module $\mathcal{F} = \mathcal{D}_X / \mathcal{D}_X \cdot z \frac{d}{dz}$ has good filtration such that the corresponding \mathcal{O}_{T^*X} -module is $\mathcal{O} / \mathcal{O} \cdot z \zeta$. As a result, SS(\mathcal{F}) is the union of zero section of $T^*\mathbb{C}$ and the fibre of $T^*\mathbb{C}$ at $0 \in \mathbb{C}$. So \mathcal{F} is holomonic.

On the other hand, in the analytic case, the solution $z \frac{d}{dz} f = 0$ is given by $f = c \log z$ in any simple-connected subspace in $\{z \neq 0\}$.

Perverse Sheaves

In this section, we assume $\Bbbk = \mathbb{C}$, and we denote X^{an} the underlying space of algebraic variety X equipped the com-

plex topology. We exchange \mathcal{O}_X by the sheaf of analytic functions, \mathcal{D}_X the sheaf of analytic differential operators, etc.

Let X be a topological space temporarily. Denote $\underline{\mathbb{Z}}_X$ the constant sheaf over X, and $\mathcal{M}(\underline{\mathbb{Z}}_X)$ the category of all sheaves over X^{an} . Denote the derived category of bounded complexes in $\mathcal{M}(\underline{\mathbb{Z}}_X)$ by $\mathcal{D}(\underline{\mathbb{Z}}_X)$. For any continuous map $f : X \to Y$, we can define functors $f_!, f_* : \mathcal{D}(X^{\mathrm{an}}) \to \mathcal{D}(Y^{\mathrm{an}})$ and $f^*, f^! : \mathcal{D}(Y^{\mathrm{an}}) \to \mathcal{D}(X^{\mathrm{an}})$.

- 1. There is a canonic morphism $f_! \to f_*$, which is isomorphic for proper map f.
- 2. If $f : X \to Y$ is smooth, then $f^! = f^*[2d]$ with $d = \dim X \dim Y$.
- 3. Hom_Y $(f_!\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}) = \text{Hom}_X(\mathcal{F}^{\bullet}, f^!\mathcal{G}^{\bullet}).$
- 4. $\operatorname{Hom}_{Y}(\mathcal{G}^{\bullet}, f_{*}\mathcal{F}^{\bullet}) = \operatorname{Hom}_{X}(f^{*}\mathcal{G}^{\bullet}, \mathcal{F}^{\bullet}).$

Moreover, there is a Verdier duality functor \mathbf{D} : $\mathcal{D}(X^{\mathrm{an}}) \to \mathcal{D}(X^{\mathrm{an}})^{op}$.

Constructible Sheaves. Let $\underline{\mathbb{C}}_X$ be the constant sheaf over X^{an} . We denote $\mathcal{M}(\underline{\mathbb{C}}_X)$ the sheaf of $\underline{\mathbb{C}}_X$ -modules, i.e. the category of sheaves of \mathbb{C} -vector spaces over X^{an} . Denote the derived category of bounded complexes in $\mathcal{M}(\underline{\mathbb{C}}_X)$ by $\mathcal{D}(X^{\mathrm{an}})$.

We call a sheaf $\mathcal{F} \in \mathcal{M}(\underline{\mathbb{C}}_X)$ constructible if there is some stratification $X = \bigcup X_i$ with each X_i locally closed algebraic subvarieties such that $\mathcal{F}|_{X_i^{\mathrm{an}}}$ is finite dimensional and locally constant. Denote the full subcategory of complexes with cohomology group constructible in $\mathcal{D}(X^{\mathrm{an}})$ by $\mathcal{D}_{con}(X^{\mathrm{an}})$. It turns out $f_!, f_*, f^!, f^*, \mathbf{D}$ preserve the constructibility. Furthermore $\mathbf{D}^2(\mathcal{F}^{\bullet}) \cong \mathcal{F}^{\bullet}$ and $f^* = \mathbf{D}f^!\mathbf{D}$ and $f_! = \mathbf{D}f_*\mathbf{D}$.

A complex $\mathcal{F}^{\bullet} \in \mathcal{D}(X^{\mathrm{an}})$ is called **perverse sheaf** if dim supp $H^{i}(\mathcal{F}) \leq -i$, and dim supp $H^{i}(\mathcal{F}) \leq -i$. The full subcategory of perverse sheaves forms an abelian category.

For a smooth locally closed subvariety $Y \subseteq X$, and a local system \mathcal{E} (a locally constant sheaf), the intersection homology complex of Deligne–Goresky–MacPherson, $\mathbf{IC}^{\bullet}(Y,\mathcal{L})$ is a perverse sheaf with $H^{-\dim Y}(\mathbf{IC}^{\bullet}(Y,\mathcal{E}))|_Y = \mathcal{E}$ and $H^i(\mathbf{IC}^{\bullet}(Y,\mathcal{E})) = 0$ if $i < -\dim Y$.

Riemann–Hilbert Correspondence. Denote the de Rham functor dR : $\mathcal{D}(\mathcal{D}_X^{an}) \to \mathcal{D}(X^{an})$ by dR(\mathcal{F}^{\bullet}) = $\Omega_X \otimes_{\mathcal{D}_X}^L \mathcal{F}^{\bullet}$. It coincides $R \mathcal{H}om(\mathcal{O}_X, \mathcal{F}^{\bullet})[\dim X]$, the derived version of horizontal sections. Also denote Sol : $\mathcal{D}(\mathcal{D}_X^{an})^{op} \to \mathcal{D}(X^{an})$ by Sol(\mathcal{F}^{\bullet}) = $R \mathcal{H}om_{\mathcal{D}_X^{an}}(\mathcal{F}^{\bullet}, \mathcal{O}_X^{an})$. Note that Sol(\mathcal{F}^{\bullet}) \cong dR($\mathbf{D}\mathcal{F}^{\bullet}$)[– dim X].

The **Riemann–Hilbert correspondence** claims that

$$\mathrm{dR}: \mathcal{D}_h(\mathcal{D}_X) \to \mathcal{D}_{cos}(X^{\mathrm{an}})$$

is an equivalence of categories commuting with $f^!, f^*, f_!, f_*$ and **D**.

Furthermore, if we recognize a sheaf by a complex centralized at zero position, then regular holomonic sheaves correspond to perverse sheaves; the irreducible regular holomonic \mathcal{D}_X -module $\mathcal{L}(Y, \mathcal{E})$ corresponds to the intersection homology complex $\mathbf{IC}^{\bullet}(Y, \mathcal{E})$.

References

- [1] Bernstein. Algebraic Theory of \mathcal{D} -modules (unpublished \mathcal{I} note).
- [2] Hotta, Takeuchi, Tanisaki. \mathcal{D} -Modules, Perverse $\mathcal{D}_{con}(X^{\mathrm{an}})$ Sheaves, and Representation Theory.

- [3] Kirwan, Woolf, An introduction to intersection homology.
- [4] Etingof. Introduction to algebraic *D*-modules (unpublished note).
- [5] Beilinson, Bernstein. Deligne. Faisceux pervers.

Appendix: Notations Table

Notations Explanation

- \mathcal{O}_X sheaf of regular functions over X
- $\mathcal{O}(U)$ regular functions over U
- \mathcal{O}_p stalk of \mathcal{O}_X at $p \in X$
- \mathcal{D}_X sheaf of differential operators over X
- $\mathcal{D}(U)$ differential operators over U
- Θ_X the sheaf of vector fields
- Ω^k_X the sheaf of k-forms
- Ω_X the sheaf of highest differential forms
- $\mathcal{L}(Y, \mathcal{F})$ minimal extension; it is denoted by $i_{*!}\mathcal{F}$ in [1].
- $SS(\mathcal{F}) \qquad \text{the singular support of coherent } \mathcal{D}_X \text{-module } \mathcal{F};$ it is called by characteristic variety and denoted by Ch(\mathcal{F}) in [2].
- $f_*\mathcal{F}$ push forward of coherent sheaf \mathcal{F}
- $f^*\mathcal{G}$ pull back of coherent sheaf \mathcal{G}
- $f^{-1}\mathcal{G}$ inverse image of sheaf \mathcal{G}
- $f^{\Delta}\mathcal{F}$ push forward of \mathcal{D}_X -module \mathcal{F}
- $f_+\mathcal{F}$ pull back of \mathcal{D}_X -module \mathcal{F}
- $f_*\mathcal{F}^{\bullet} \qquad \text{push forward of } \mathcal{D}_X \text{-module complex} = Rf_*(\mathcal{D}_{Y\leftarrow X} \otimes^L_{\mathcal{D}_X} \mathcal{F}^{\bullet}), \text{ it is denoted by } \int_f \text{ in } [2].$
- $f_! \mathcal{F}^{\bullet}$ shrick-pull forward of \mathcal{D}_X -module complex = $\mathbf{D} f^! \mathbf{D} \mathcal{F}^{\bullet}$, it is denoted by $\int_{f_!}$ in [2]
- $f^*\mathcal{G}^{\bullet}$ pull back of \mathcal{D}_X -module complex = $\mathbf{D}f^!\mathbf{D}\mathcal{G}^{\bullet}$, it is denoted by f^{\bigstar} in [2]
- $f^{!}\mathcal{G}^{\bullet}$ shriek-pull back of \mathcal{D}_{X} -module complex = $Lf^{\Delta}\mathcal{G}[\dim X \dim Y]$, it is denoted by f^{\dagger} in [2]

$$\mathbf{D}\mathcal{F}^{\bullet} \quad \text{duality} \quad \begin{array}{l} \text{functor} \\ R \mathcal{H} \text{om}_{\mathcal{D}_{X}}^{\bullet}(\mathcal{F}^{\bullet}, \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{-1})[\dim X] \end{array} =$$

- $\mathcal{M}_{qc}(X)$ the category of quasi-coherent sheaves
- $\mathcal{M}_c(X)$ the category of coherent sheaves
- $\mathcal{D}_{qc}(X)$ derived category of bounded complexes of quasicoherent sheaves
- $\mathcal{D}_{c}(X)$ derived category in $\mathcal{D}_{qc}(X)$ with cohomology coherent
- $\mathcal{M}_{qc}(\mathcal{D}_X)$ the category of quasi-coherent left \mathcal{D}_X -module
- $\mathcal{M}_c(\mathcal{D}_X)$ the category of coherent left \mathcal{D}_X -module

$$\mathcal{M}_{qc}(\mathcal{D}_X^{op})$$
 the category of quasi-coherent right \mathcal{D}_X -module

- $\mathcal{M}_c(\mathcal{D}_X^{op})$ the category of coherent right \mathcal{D}_X -module
- $\mathcal{D}_{qc}(\mathcal{D}_X)$ derived category of bounded complexes of quasicoherent \mathcal{D}_X -sheaves
- $\mathcal{D}_c(\mathcal{D}_X)$ derived category in $\mathcal{D}_{qc}(\mathcal{D}_X)$ with cohomology coherent
- $\mathcal{D}_h(\mathcal{D}_X)$ derived category in $\mathcal{D}_{qc}(\mathcal{D}_X)$ with cohomology holomonic
- $\mathcal{D}_{rh}(\mathcal{D}_X)$ derived category in $\mathcal{D}_{qc}(\mathcal{D}_X)$ with cohomology regular
- $\mathcal{M}(\underline{\mathbb{C}}_X)$ the category of sheaves of $\underline{\mathbb{C}}_X$ -modules
- $\mathcal{D}(X^{\mathrm{an}})$ the derived category of bounded complexes in $\mathcal{M}(\underline{\mathbb{C}}_X)$
 -) the derived category in $\mathcal{D}(X^{\mathrm{an}})$ with cohomology construcible

(- X) · - (03(--)