Combinatorics of Crystals

Xiong Rui

March 11, 2021

1 General Crystal.

Let Λ be the weight lattice. A crystal structure over a set \mathfrak{B} is

$$
\begin{gathered}
e_{i}, f_{i}: \mathfrak{B} \rightarrow \mathfrak{B} \sqcup\{0\} \\
\epsilon_{i}, \phi_{i}: \mathfrak{B} \rightarrow \mathbb{Z} \sqcup\{-\infty\} \\
\text { wt : } \mathfrak{B} \rightarrow \Lambda
\end{gathered}
$$

A crystal is said to be of finite type if ϵ_{i} and ϕ_{i} never takes $-\infty$. A crystal is said to be seminormal if $\epsilon_{i}(x)=$ $\max \left\{k: e_{i}^{k} x \neq 0\right\}$ and $\phi_{i}(x)=\max \left\{k: f_{i}^{k} x \neq 0\right\}$. If \mathfrak{B} and \mathfrak{C} are seminormal, so is $\mathfrak{B} \otimes \mathfrak{C}$.

Let $L(\lambda)$ be an irreducible finite dimensional $U_{q}\left(\mathfrak{S l}_{2}\right)$ module with highest weight λ. For a nonzero weight vector $x \in V$, we define the Kashiwara operators
such that firstly for $x, y \in \mathfrak{B}$,
$\quad\left(\epsilon(x)-1=\epsilon(y), \quad \tilde{F} x=\frac{F^{n+1}}{\llbracket n+1 \rrbracket!} \hat{x} \quad \tilde{E} x=\frac{F^{n-1}}{\llbracket n-1 \rrbracket!} \hat{x}\right.$
 we can define the Kashiwara operators by a choice of decomposition. It turns out that it does not depend on the choice.

Let V be a finite dimensional $U_{q}(\mathfrak{g})$-module, where \mathfrak{g} is a semisimple Lie algebra. We define the Kashiwara operators \tilde{E}_{i} and \tilde{F}_{i} by embedding $U_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow$ $U_{q}(\mathfrak{g})$. An admissible lattice M of V is a free graded- $\mathbb{C}[q]$-submodule stable under Kashiwara operators. Note that Kashiwara operators will then defined over $M / q M$. A crystal basis \mathfrak{B} of V is a graded-basis for $M / q M$ for an admission lattice M, and it is stable under Kashiwara operators in the following sense

$$
\begin{aligned}
& \tilde{E}_{i}(\mathfrak{B}) \subseteq \mathfrak{B} \cup\{0\} \quad \tilde{F}_{i}(\mathfrak{B}) \subseteq \mathfrak{B} \cup\{0\} \\
& x, y \in \mathfrak{B}, \quad \tilde{E}_{i}(x)=y \Longleftrightarrow \tilde{F}_{i}(y)=x
\end{aligned}
$$

It is proved that crystal basis exists for all finite dimensional representations, and it is unique up to an automorphism.
It is clear that a crystal basis is a finite type seminormal crystal with

$$
e_{i}=\tilde{E}_{i}, \quad f_{i}=\tilde{F}_{i}, \quad \text { wt }=\text { the weight. }
$$

Let us denote $\mathfrak{B}(V)$ the crystal basis for V. One can show that the tensor product of crystals $\mathfrak{B}(V) \otimes \mathfrak{B}(U)$ is a crystal basis for $V \otimes U$. See

- Jantzen, Lectures on Quantum Groups.
- Lusztig, Canonical Bases Arising from Quantized Enveloping Algebras. II.
Alternatively,
$f_{i}\left(x_{k} \otimes x_{k-1} \otimes \cdots \otimes x_{1}\right)=x_{k} \otimes \cdots \otimes f_{i}\left(x_{j}\right) \otimes \cdots \otimes x_{1}$.
where i the first value taking the maximal value in
$\phi_{i}\left(x_{k} \otimes x_{k-1} \otimes \cdots \otimes x_{1}\right)=\max _{j=1}^{k}\left(\phi_{i}\left(x_{j}\right)+\sum_{h=1}^{j-1}\left\langle\operatorname{wt}\left(x_{h}\right), \alpha_{i}^{\vee}\right\rangle\right) \begin{aligned} & \text { resentations corresponds to non-isomorphic crystals. } \\ & \text { For a crystal } \mathfrak{B} \text {, let us consider the crystal graph }\end{aligned}$
there is a arrow from x to y labelled by i if and only if $f(x)=y$. It is clear that the crystal graph determines a seminormal crystal. Then the crystal of irreducible representation is connected.

2 Tableaux.

Consider the natural representation V of $U_{q}\left(\mathfrak{s l}_{2}\right)$. It is easy to deduce its crystal graph to be

$$
\mathfrak{B}_{\square}: 1{ }^{1} \rightarrow 2 .
$$

where $i=x_{i} \in \Lambda=\mathbb{Z} x_{1} \oplus \mathbb{Z} x_{2} /\left(x_{1}+x_{2}\right)$. For $\mathfrak{B}_{\square}^{\otimes d}$, f_{i} acts on

$$
n_{1} \otimes \cdots \otimes n_{d}
$$

as following - after canceling adjacent $1 \otimes 2$, we exchange the first 1 to 2 and 0 if impossible. Similarly, e is to exchange the first $\boxed{2}$ to 1 and 0 if impossible after cancelation. For example,

Consider $\mathfrak{B}_{\square}^{\otimes d}$. Then f_{i} acts similarly as $\mathfrak{s l}_{2}$ case on

$$
n_{1} \otimes \cdots \otimes n_{d}
$$

as following- after canceling adjacent $i \otimes i+1$, we exchange the first i to $i+1$ and 0 if impossible. Similarly, e_{i} is to exchange the first $i+1$ to i and 0 if impossible after cancelation.

For a partition $\lambda=\lambda_{1} \geq \cdots \geq \lambda_{r}$, denote $\mathfrak{B}(\lambda)$ the component of

$$
1 \otimes \stackrel{\lambda_{1}}{\cdots} \otimes 1 \otimes \cdots \cdots \cdots \cdots \otimes r \otimes \stackrel{\lambda_{r}}{\cdots} \otimes r
$$

in $\mathfrak{B}^{\otimes|\lambda|}$. Then e_{i} acts trivially on it, so it is of highest weight. Denote

by a tableaux | x_{11} | x_{12} | \cdots |
| :---: | :---: | :--- |
| | x_{21} | x_{22} |
| \cdots | \cdots | |
| | \vdots | \vdots |
| \ddots | | | of sharp λ. The tableaux

which is weakly increasing in row and strictly increasing in column is called semistandard. It is not hard to see the set of semistandard tableaux is exactly $\mathfrak{B}(\lambda)$.
Another choice is

Let $\mathfrak{B}(d)$ be the crystal of unique d-dimensional representation. Its crystal graph is
$\bullet \rightarrow \cdots \rightarrow \bullet$.
Then $\mathfrak{B}(k) \otimes \mathfrak{B}(h)$ decomposition as the following

the classic ClebschGordan formula. Note that $\mathfrak{B}(k) \otimes$ $\mathfrak{B}(h) \cong \mathfrak{B}(h) \otimes \mathfrak{B}(k)$ but not by $x \otimes y \mapsto y \otimes x$.

Now consider the natural representation V of $U_{q}\left(\mathfrak{s l}_{n}\right)$. It is easy to deduce its crystal graph to be

$$
\mathfrak{B}_{\square}: 1 \xrightarrow{1} \boxed{2} \rightarrow \cdots \stackrel{n-1}{n} n . \quad \pi=x_{i} \in \Lambda
$$

$$
\mu_{l} \otimes \stackrel{\mu_{1}}{\cdots} \otimes 1 \otimes \cdots \cdots \cdots \otimes \mu_{1} \otimes \stackrel{\mu_{1}}{\cdots} \otimes 1
$$

2 where $\mu_{1} \geq \cdots \geq \mu_{l}$ is the transposition of λ. Actually, an algorithm to determine component of \mathfrak{B}_{0}^{n}, i.e. Robinson-Schensted-Knuth (RSK) algorithm.

- Notes on Crystals.

Note that by definition

$$
\epsilon_{i}(x \otimes y) \geq \epsilon_{i}(x) \quad \phi_{i}(x \otimes y) \geq \phi_{i}(y) .
$$

We say x is highest if $e_{i}(x)=0$ for all i. Let $\mathfrak{B}(\lambda)$ be a crystal. Then $x \otimes i \in \mathfrak{B}(\lambda) \otimes \mathfrak{B}_{\square}$ is highest if and only if x is highest and adding a box in i-th row of λ is still a Young diagram. So we get the Pieri rule

$$
\mathfrak{B}(\lambda) \otimes \mathfrak{B}_{\square}=\bigoplus_{\mu=\lambda+\square} \mathfrak{B}(\mu) .
$$

We define $\lambda \leftarrow$ i to be the tableaux obtained by adding a box at i-th row, and 0 if impossible. So we get the classic Littlewood-Richardson rule

$$
\mathfrak{B}(\lambda) \otimes \mathfrak{B}(\mu)=\bigoplus_{i_{1} \otimes \cdots \otimes \mid i_{|\mu|} \in \mathfrak{B}(\mu)} \mathfrak{B}\left(\left(\cdots\left(\lambda \leftarrow i_{1}\right) \leftarrow \cdots \leftarrow i_{|\mu|}\right)\right) .
$$

This can be generalized to classical Lie algebras.

- Nakashima, Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras.
- Hong, Kang, Introduction to Quantum Groups and Crystal Bases.

3 Littelmann Path Model.

A path in Λ is a pairwise linear map $[0,1] \rightarrow \Lambda \otimes \mathbb{R}$ with endpoint in Λ, and staring from 0 . We recognize two paths if they are different by a re-coordinating. Let π be a path, we define the weight $\mathrm{wt}(\pi)$ to be its end point. We will define e_{i} and f_{i} to make them a crystal.

For two paths π_{1} and π_{2}, we define $\pi_{1} * \pi_{2}$ by the path

$$
0 \xrightarrow{\pi_{1}} \mathrm{wt}\left(\pi_{1}\right) \xrightarrow{\mathrm{wt}\left(\pi_{1}\right)+\pi_{2}} \mathrm{wt}\left(\pi_{1}\right)+\mathrm{wt}\left(\pi_{2}\right) .
$$

For a path π, we can reflect it $s_{i} \pi$. Let $[a, b] \subseteq[0,1]$, we define $\pi[a, b]$ to be the path

$$
0 \xrightarrow{\left.\pi\right|_{[a, b]}-\pi(a)} \pi(b)-\pi(a) .
$$

Define

$$
s_{i}^{[a, b]} \pi=\pi[0, a] * s_{i}(\pi[a, b]) * \pi[b, 1] .
$$

We can define s_{i}^{I} for a union of interval $I \subseteq[0,1]$.
Assume the minimum of $h_{i}(t)=\left\langle\pi(t), \alpha_{i}^{\vee}\right\rangle$ is $m \leq$ -1 . Let I the set of $t \in[0,1]$ with $h_{i}(t) \leq m-1$ such that $x \leq t \Rightarrow h_{i}(x) \leq f_{i}(t)$. That is, the sunshine set of $0 \times[m, m-1]$. Then I cut π into pieces, we define

$$
e_{i}(\pi)= \begin{cases}s_{i}^{I}, \pi & m \leq-1 \\ 0, & \text { otherwise }\end{cases}
$$

Assume the minimum of $h_{i}(t)=\left\langle\pi(t), \alpha_{i}^{\vee}\right\rangle$ is $m \leq$ $h_{i}(1)-1$. Let I^{\prime} the set of $t \in[0,1]$ with $h_{i}(t) \leq m-1$ such that $x \geq t \Rightarrow h_{i}(x) \geq f_{i}(t)$. That is, the sunshine set for $1 \times[m, m-1]$. Then I cut π into pieces, we define

$$
f_{i}(\pi)= \begin{cases}s_{i}^{I^{\prime}}, \pi & m \leq h_{i}(1)-1 \\ 0, & \text { otherwise }\end{cases}
$$

Then $\epsilon_{i}=\lfloor 0-m\rfloor$, and $\phi_{i}=\left\lfloor h_{i}(1)-m\right\rfloor$.
One can check that the crystal structure over $\left\{\pi_{1} \otimes\right.$ $\left.\pi_{2}\right\}$ is the same to $\left\{\pi_{1} \otimes \pi_{2}\right\}$.

Let us first do $\mathfrak{S l}_{2}$.

Let $C^{+}=\left\{v \in \Lambda \otimes \mathbb{R}:\left\langle v, \alpha_{i}^{\vee}\right\rangle>0\right\}$ the interior of Weyl chambre. Then π is highest if and only if
the $\pi+\rho$ lies in C^{+}completely. Equivalently, π in $\left\{v \in \Lambda \otimes \mathbb{R}:\left\langle v, \alpha_{i}^{\vee}\right\rangle>-1\right\}$.

It is not easy to prove that for a path crystal \mathfrak{B},

$$
\mathfrak{B}=\bigoplus_{\substack{\pi \in \mathfrak{B} \\ \pi+\rho \in C^{+}}} \mathfrak{B}(\operatorname{wt}(\pi))
$$

That is, any path crystal is isomorphic to the crystal of some representation.
Actually, Littelmann path model is much general than tableaux before

Then we get a generalized Littlewood-Richardson rule

$$
\mathfrak{B}(\lambda) \otimes \mathfrak{B}(\mu)=\underset{\substack{\pi \in \mathfrak{B}(\mu) \\ \rho+\lambda+\pi \text { lies in } C^{+} \text {completely }}}{ } \mathfrak{B}(\lambda+\operatorname{wt}(\pi))
$$

But to prove it gives the character formula is relatively easier. One can also prove a crystal formula of Demazure character (formula).

- Littelmann, Paths and Root Operators in Representation Theory.
- Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras.

