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1 General Crystal.

Let Λ be the weight lattice. A crystal structure over a
set B is

ei, fi : B→ B ⊔ {0}
ϵi, ϕi : B→ Z ⊔ {−∞}

wt : B→ Λ

such that firstly for x, y ∈ B,

ei(x) = y ⇐⇒ fi(y) = e in this case


ϵ(x)− 1 = ϵ(y),

ϕ(x) + 1 = ϕ(y),

wt(x) + αi = wt(y);

secondly, for any x ∈ B, ϕ(x)−ϵ(x) = ⟨wt(x), α∨
i ⟩. We

say B is a crystal.
For two crystals B and C, we can define their direct

sum in the obvious way. We can define their tensor
product by setting B⊗C the set of formal symbol b⊗c
for b ∈ B and c ∈ C;

fi(x⊗ y) =

{
fi(x)⊗ y, ϕi(x) > ϵi(y),

x⊗ fi(y), ϕi(x) ≤ ϵi(y),

ei(x⊗ y) =

{
ei(x)⊗ y, ϕi(x) ≥ ϵi(y),

x⊗ ei(y), ϕi(x) < ϵi(y),

ϕi(x⊗ y) = max(ϕi(y), ϕi(x) + ⟨wt(y), α∨
i ⟩)

ϵi(x⊗ y) = max(ϵi(x), ϵi(y)− ⟨wt(x), α∨
i ⟩).

wt(x⊗ y) = wt(x) + wt(y).

It is purely combinatorial to show that (B⊗ C)⊗D ∼=
B⊗ (C⊗D).

In general, for x1, . . . , xk from some crystal,

ei(x1 ⊗ x2 ⊗ · · · ⊗ xk) = x1 ⊗ · · · ⊗ fi(xj)⊗ · · · ⊗ xk.

where i the first value taking the maximal value in

ϵi(x1⊗x2⊗· · ·⊗xk) =
k

max
j=1

(
ϵi(xj)−

j−1∑
h=1

⟨wt(xh), α
∨
i ⟩

)
.

Alternatively,

fi(xk ⊗ xk−1 ⊗ · · · ⊗ x1) = xk ⊗ · · · ⊗ fi(xj)⊗ · · · ⊗ x1.

where i the first value taking the maximal value in

ϕi(xk⊗xk−1⊗· · ·⊗x1) =
k

max
j=1

(
ϕi(xj) +

j−1∑
h=1

⟨wt(xh), α
∨
i ⟩

)
.

A crystal is said to be of finite type if ϵi and ϕi never
takes−∞. A crystal is said to be seminormal if ϵi(x) =
max{k : eki x ̸= 0} and ϕi(x) = max{k : fk

i x ̸= 0}. If
B and C are seminormal, so is B⊗ C.
Let L(λ) be an irreducible finite dimensional Uq(sl2)-

module with highest weight λ. For a nonzero weight
vector x ∈ V , we define the Kashiwara operators

F̃ x =
Fn+1

[[n+ 1]]!
x̂ Ẽx =

Fn−1

[[n− 1]]!
x̂

where x̂ ∈ Vλ satisfies Fn+1

[[n]]! x̂ = x. For any finite di-

mensional Uq(sl2)-module (not necessarily irreducible),
we can define the Kashiwara operators by a choice of
decomposition. It turns out that it does not depend
on the choice.
Let V be a finite dimensional Uq(g)-module, where

g is a semisimple Lie algebra. We define the Kashi-
wara operators Ẽi and F̃i by embedding Uq(sl2) →
Uq(g). An admissible lattice M of V is a free
graded-C[q]-submodule stable under Kashiwara opera-
tors. Note that Kashiwara operators will then defined
over M/qM . A crystal basis B of V is a graded-basis
for M/qM for an admission lattice M , and it is stable
under Kashiwara operators in the following sense

Ẽi(B) ⊆ B ∪ {0} F̃i(B) ⊆ B ∪ {0}.

x, y ∈ B, Ẽi(x) = y ⇐⇒ F̃i(y) = x.

It is proved that crystal basis exists for all finite di-
mensional representations, and it is unique up to an
automorphism.
It is clear that a crystal basis is a finite type semi-

normal crystal with

ei = Ẽi, fi = F̃i, wt = the weight.

Let us denote B(V ) the crystal basis for V . One can
show that the tensor product of crystals B(V )⊗B(U)
is a crystal basis for V ⊗ U . See

• Jantzen, Lectures on Quantum Groups.
• Lusztig, Canonical Bases Arising from

Quantized Enveloping Algebras. II.
• Hong, Kang, Introduction to Quantum

Groups and Crystal Bases.

Denote χ(B) =
∑

b∈B ewt(b). If B is the crystal for
V , it is clear χ(V ) = χ(B). If V = U ⊕ W , then
B(V ) ∼= B(U)⊕B(W ). It is clear non-isomorphic rep-
resentations corresponds to non-isomorphic crystals.
For a crystal B, let us consider the crystal graph

with vertices elements of B labeled by whose weight,
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there is a arrow from x to y labelled by i if and only if
f(x) = y. It is clear that the crystal graph determines
a seminormal crystal. Then the crystal of irreducible
representation is connected.

2 Tableaux.

Consider the natural representation V of Uq(sl2). It is
easy to deduce its crystal graph to be

B� : 1
1→ 2 .

where i = xi ∈ Λ = Zx1 ⊕ Zx2/(x1 + x2). For B⊗d
� ,

fi acts on
n1 ⊗ · · · ⊗ nd

as following— after canceling adjacent 1 ⊗ 2 , we ex-

change the first 1 to 2 and 0 if impossible. Similarly,

e is to exchange the first 2 to 1 and 0 if impossible
after cancelation. For example,

1 ⊗ 1 −→ 2 ⊗ 1
|
|
↓

1 ⊗ 2 2 ⊗ 2

1 ⊗ 1 ⊗ 1 −→ 2 ⊗ 1 ⊗ 1 −→ 2 ⊗ 2 ⊗ 1
|
|
↓

1 ⊗ 1 ⊗ 2 −→ 2 ⊗ 1 ⊗ 2 2 ⊗ 2 ⊗ 2

Let B(d) be the crystal of unique d-dimensional rep-
resentation. Its crystal graph is

• → · · · → •.

Then B(k)⊗B(h) decomposition as the following

h︷ ︸︸ ︷

k



• → • → • →· · ·→ • → • → •
↓

• → • → • →· · ·→ • → • •
↓ ↓

• → • → • →· · ·→ • • •
↓ ↓ ↓

...
...

...
...

...
...

↓ ↓ ↓
· · · · · · · · · · · · • • •

↓ ↓ ↓
· · · · · · · · · · · · • • •

↓ ↓ ↓
· · · · · · · · · · · · • • •

↓ ↓ ↓
· · · · · · · · · · · · • • •

the classic ClebschGordan formula. Note that B(k) ⊗
B(h) ∼= B(h)⊗B(k) but not by x⊗ y 7→ y ⊗ x.

Now consider the natural representation V of
Uq(sln). It is easy to deduce its crystal graph to be

B� : 1
1→ 2 → · · · n−1→ n . i = xi ∈ Λ

Consider B⊗d
� . Then fi acts similarly as sl2 case on

n1 ⊗ · · · ⊗ nd

as following— after canceling adjacent i ⊗ i+ 1 , we

exchange the first i to i+ 1 and 0 if impossible.

Similarly, ei is to exchange the first i+ 1 to i and 0
if impossible after cancelation.
For a partition λ = λ1 ≥ · · · ≥ λr, denote B(λ) the

component of

1 ⊗ λ1· · · ⊗ 1 ⊗ · · · · · · · · · · · · ⊗ r ⊗ λr· · · ⊗ r

in B⊗|λ|. Then ei acts trivially on it, so it is of highest
weight. Denote

x1λ1 ⊗
λ1· · · ⊗ x11 ⊗ · · · · · · · · · · · · ⊗ xrλr ⊗

λr· · · ⊗ xr1

by a tableaux

x11 x12 · · ·
x21 x22 · · ·
...

...
. . .

of sharp λ. The tableaux

which is weakly increasing in row and strictly increas-
ing in column is called semistandard. It is not hard to
see the set of semistandard tableaux is exactly B(λ).
Another choice is

µl ⊗
µ1· · · ⊗ 1 ⊗ · · · · · · · · · ⊗ µ1 ⊗

µ1· · · ⊗ 1

where µ1 ≥ · · · ≥ µl is the transposition of λ. Actually,
there is an algorithm to determine component of Bn

0 ,
i.e. Robinson-Schensted-Knuth (RSK) algorithm.

• Notes on Crystals.

Note that by definition

ϵi(x⊗ y) ≥ ϵi(x) ϕi(x⊗ y) ≥ ϕi(y).

We say x is highest if ei(x) = 0 for all i. Let B(λ) be

a crystal. Then x⊗ i ∈ B(λ)⊗B� is highest if and
only if x is highest and adding a box in i-th row of λ
is still a Young diagram. So we get the Pieri rule

B(λ)⊗B� =
⊕

µ=λ+�
B(µ).

We define λ ← i to be the tableaux obtained by
adding a box at i-th row, and 0 if impossible. So we
get the classic Littlewood–Richardson rule

B(λ)⊗B(µ) =
⊕

i1 ⊗···⊗ i|µ| ∈B(µ)

B((· · · (λ← i1)← · · · ← i|µ|)).

This can be generalized to classical Lie algebras.

• Nakashima, Crystal base and a general-
ization of the Littlewood-Richardson rule
for the classical Lie algebras.

• Hong, Kang, Introduction to Quantum
Groups and Crystal Bases.
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3 Littelmann Path Model.

A path in Λ is a pairwise linear map [0, 1]→ Λ⊗R with
endpoint in Λ, and staring from 0. We recognize two
paths if they are different by a re-coordinating. Let
π be a path, we define the weight wt(π) to be its end
point. We will define ei and fi to make them a crystal.

For two paths π1 and π2, we define π1 ∗ π2 by the
path

0
π1

−−−−−−−−−−−→ wt(π1)
wt(π1)+π2

−−−−−−−−−−−→ wt(π1) + wt(π2).

For a path π, we can reflect it siπ. Let [a, b] ⊆ [0, 1],
we define π[a, b] to be the path

0
π|[a,b]−π(a)

−−−−−−−−−−−→ π(b)− π(a).

Define

s
[a,b]
i π = π[0, a] ∗ si(π[a, b]) ∗ π[b, 1].

We can define sIi for a union of interval I ⊆ [0, 1].
Assume the minimum of hi(t) = ⟨π(t), α∨

i ⟩ is m ≤
−1. Let I the set of t ∈ [0, 1] with hi(t) ≤ m− 1 such
that x ≤ t ⇒ hi(x) ≤ fi(t). That is, the sunshine set
of 0× [m,m− 1]. Then I cut π into pieces, we define

ei(π) =

{
sIi , π m ≤ −1,
0, otherwise.

Assume the minimum of hi(t) = ⟨π(t), α∨
i ⟩ is m ≤

hi(1)− 1. Let I ′ the set of t ∈ [0, 1] with hi(t) ≤ m− 1
such that x ≥ t⇒ hi(x) ≥ fi(t). That is, the sunshine
set for 1 × [m,m − 1]. Then I cut π into pieces, we
define

fi(π) =

{
sI

′

i , π m ≤ hi(1)− 1,

0, otherwise.

Then ϵi = ⌊0−m⌋, and ϕi = ⌊hi(1)−m⌋.
One can check that the crystal structure over {π1 ⊗

π2} is the same to {π1 ⊗ π2}.
Let us first do sl2.

f

f

f
e

e

e

Let C+ = {v ∈ Λ ⊗ R : ⟨v, α∨
i ⟩ > 0} the interior

of Weyl chambre. Then π is highest if and only if

the π + ρ lies in C+ completely. Equivalently, π in
{v ∈ Λ⊗ R : ⟨v, α∨

i ⟩ > −1}.
It is not easy to prove that for a path crystal B,

B =
⊕
π∈B

π+ρ∈C+

B(wt(π)).

That is, any path crystal is isomorphic to the crystal
of some representation.
Actually, Littelmann path model is much general

than tableaux before

1
2
1

1
2
2

1
3
1

1
2
3

1
3
2

1
3
3

2
3
2 2

3
3

Then we get a generalized Littlewood–Richardson rule

B(λ)⊗B(µ) =
⊕

π∈B(µ)

ρ+λ+π lies in C+ completely

B(λ+ wt(π)).

But to prove it gives the character formula is rela-
tively easier. One can also prove a crystal formula of
Demazure character (formula).

• Littelmann, Paths and Root Operators
in Representation Theory.

• Littelmann, A Littlewood–Richardson
rule for symmetrizable Kac-Moody alge-
bras.
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