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1 General Crystal.

Let A be the weight lattice. A crystal structure over a
set ‘B is
ei,fi D) —)%U{O}
6ia¢i B *)ZU{*OO}
wt: B — A

such that firstly for =,y € B,

e(r) =1 =e(y),

in this case < ¢(x) +1=¢
( )+O‘l

ei(r) =y <= fily) =e

secondly, for any x € B, ¢(z) —e(x) = (wt(z), ). We
say ‘B is a crystal.

For two crystals B and €, we can define their direct
sum in the obvious way. We can define their tensor
product by setting 28 ® € the set of formal symbol b® ¢

for b € B and c € ¢;

e JE@ @y @) > aly),
Sz @) {x®f¢(y), di(r) < €i(y),
oz o) = 4 6@ ©y, di(z) = ely),
ey {x®ei(y), ¢i(z) < €i(y),

Pi(r ®y) =
€i(z ®y) = max(e;(z), €;(y)

ax(i(y), ¢i(x) + (wt
~ (wt(z),al)).
wt(z ® y) = wt(x) + wt(y).

It is purely combinatorial to show that (B ® €)@ D
BR(ERD).

In general, for z1, ...,z from some crystal,
(1 @@ Q) =01 Q- ® fi(z;) ®- - @ xp.

where 4 the first value taking the maximal value in
j—1

( Wt CEh
h=1

) =2 Q- fi(z;)®

€(21Rx2®- - Q) = max

g
Alternatively,
filxr®@xp_1®@--- Q.
where 4 the first value taking the maximal value in

7j—1

:@%mm+2wmw

h=1

i (T QTK_1®- - -Qx1)

A crystal is said to be of finite type if €; and ¢; never
takes —oo. A crystal is said to be seminormal if €;(x) =
max{k : efz # 0} and ¢;(x) = max{k : fFz # 0}. If
B and € are seminormal, so is B ® €.

Let L(\) be an irreducible finite dimensional U, (sl )-
module with highest weight A\. For a nonzero weight
vector x € V, we define the Kashiwara operators

Fn+1 Fn—l

- ﬂn—i—l]]!x

T

%iﬁiere & € Vy satisfies £ T "4 = 2. For any finite di-
WHFonal U 4 (sl2)- module (not necessarily irreducible),
we can define the Kashiwara operators by a choice of
decomposition. It turns out that it does not depend
on the choice.

Let V be a finite dimensional U,(g)-module, where
g is a semisimple Lie algebra. We define the Kashi-
wara operators E; and F; by embedding U,(sly) —
Uy(g). An admissible lattice M of V is a free
graded-C[g]-submodule stable under Kashiwara opera-
tors. Note that Kashiwara operators will then defined
over M/qM. A crystal basis B of V is a graded-basis
for M/qM for an admission lattice M, and it is stable
under Kashiwara operators in the following sense

E;(B)CBU{0}  F(B)CBU{0}.

z,yeB, Eix)=y <= Ky ==z

It is proved that crystal basis exists for all finite di-
mensional representations, and it is unique up to an
automorphism.

It is clear that a crystal basis is a finite type semi-
normal crystal with

e; = E;, fi =L,

Let us denote B(V) the crystal basis for V. One can
show that the tensor product of crystals B(V) @B (U)
is a crystal basis for V® U. See

wt = the weight.

Jantzen, Lectures on Quantum Groups.
Lusztig, Canonical Bases Arising from
Quantized Enveloping Algebras. II.

e Hong, Kang, Introduction to Quantum
Groups and Crystal Bases.

Denote y(B) = >, o3 €. If B is the crystal for

V, it is clear x(V) = x(8B). If V. = U & W, then

B(V) =2 BU)DB(W). It is clear non-isomorphic rep-
esentations corresponds to non-isomorphic crystals.

>j For a crystal 8, let us consider the crystal graph

ith vertices elements of 96 labeled by whose weight,



there is a arrow from x to y labelled by 7 if and only if
f(x) =y. It is clear that the crystal graph determines
a seminormal crystal. Then the crystal of irreducible
representation is connected.

2 Tableaux.

Consider the natural representation V of Ugy(slz). It is
easy to deduce its crystal graph to be

%D:—1>.

where =x; € N =Zx1 ® Zxo/(x1 + x2). For %%d,

fi acts on

oo
as following— after canceling adjacent ®, we ex-
change the first | 1 |to| 2 |and 0 if impossible. Similarly,

e is to exchange the first to and 0 if impossible
after cancelation. For example,

elt] — [2]e[1]

I
[1]e[2] [2]®[2]

Helell] — [2feli]e[1] —>E®?®!

Heli]el2] — [2]eli]e[2]

Let %B(d) be the crystal of unique d-dimensional rep-
resentation. Its crystal graph is

e — ... e,

Then B(k) @ B(h) decomposition as the following

h

e — 0 -0 - --— 0 — 0 — e
e - e e —--— 0 —

e — o — o

— o o —
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o i 0 0 @ +— ---
o 0 ® < ®
e 0 0 @ — ---

the classic ClebschGordan formula. Note that B(k) ®
B(h) =B(h) @ B(k) but not by 2 @ y — y ® .

Now consider the natural representation V of
U,(sly,). It is easy to deduce its crystal graph to be

Bo: 32— "S'E [[=mea

Consider ’B%d. Then f; acts similarly as sly case on

]+ 7]

as following— after canceling adjacent | i |® , we

exchange the first to and 0 if impossible.
Similarly, e; is to exchange the first to|i|and 0
if impossible after cancelation.

For a partition A = Ay > --- > \,., denote B()\) the
component of

. o]

in B, Then e; acts trivially on it, so it is of highest
weight. Denote

BN 2. T [ RRRRRRRRRE ® o .

T11
€21

€12
22

by a tableaux

" “of sharp A. The tableaux

which is weakly increasing in row and strictly increas-

ing in column is called semistandard. It is not hard to

see the set of semistandard tableaux is exactly B(A).
Another choice is

® ot ® S EERREEEEE ® ® ot ®

®2|® here fi1 > -+ > py is the transposition of A. Actually,

ere is an algorithm to determine component of B,
i.e. Robinson-Schensted-Knuth (RSK) algorithm.

e Notes on Crystals!

Note that by definition

c(x®y) >e(x) di(r@y) > dily).

We say x is highest if e;(z) = 0 for all . Let B(\) be
a crystal. Then x ® || € B(\) ® B is highest if and
only if z is highest and adding a box in i-th row of A
is still a Young diagram. So we get the Pieri rule

BN @Bg= P Blu).
p=A+0

We define A\ to be the tableaux obtained by
adding a box at i-th row, and 0 if impossible. So we
get the classic Littlewood—Richardson rule

This can be generalized to classical Lie algebras.

BA)@B(p) = B(- - (A min) = o )

e Nakashima, Crystal base and a general-
ization of the Littlewood-Richardson rule
for the classical Lie algebras.

e Hong, Kang, Introduction to Quantum
Groups and Crystal Bases.


http://sporadic.stanford.edu/crystals/ind1_8.html

3 Littelmann Path Model.

A path in A is a pairwise linear map [0, 1] = A®R with
endpoint in A, and staring from 0. We recognize two
paths if they are different by a re-coordinating. Let
7 be a path, we define the weight wt(w) to be its end
point. We will define e; and f; to make them a crystal.

For two paths m; and 7o, we define m * o by the
path

e wt (7 )47
00— wt(m) R, wt (1) + wt(ma).

For a path 7, we can reflect it s;w. Let [a,b] C [0, 1],
we define 7[a, b] to be the path

T [a,p] —7(a)

0 ——— w(b) — w(a).
Define

s,[ia’b]w = 7|0, a] * s;(w[a, b]) * 7[b, 1].
We can define s! for a union of interval I C [0, 1].
Assume the minimum of h;(t) = (7(t), ) is m <
—1. Let I the set of t € [0,1] with h;(t) < m — 1 such
that x <t = h;(x) < f;i(t). That is, the sunshine set

of 0 x [m,m — 1]. Then I cut 7 into pieces, we define

st.m m<—1,
ei(w)—{l -

0, otherwise.
Assume the minimum of h;(t) = (7(t),q)) is m <
h;(1) — 1. Let I’ the set of t € [0, 1] with h;(t) < m—1
such that z >t = h;(x) > f;(t). That is, the sunshine
set for 1 x [m,m — 1]. Then I cut 7 into pieces, we

define
fi(n) = SZI,TF m < hi(1) — 1,
‘ 0, otherwise.

Then ¢; = |0 — m], and ¢; = |h;(1) — m].

One can check that the crystal structure over {m ®
mo} is the same to {m ® ma}.

Let us first do sls.

N
€
f
€
f
€
f

Let CT = {v € A@R : (v,a)) > 0} the interior
of Weyl chambre. Then 7 is highest if and only if

the m + p lies in CT completely.
{ve AR : (v,a)) > —1}.
It is not easy to prove that for a path crystal 93,

B= P Bwt(r)

TeB
m+peCt

Equivalently, 7 in

That is, any path crystal is isomorphic to the crystal
of some representation.

Actually, Littelmann path model is much general
than tableaux before
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Then we get a generalized Littlewood—Richardson rule

D

TEDB (1)
p+ A+ lies in O completely

B(A) @ B(p) = BN + wt(m)).

But to prove it gives the character formula is rela-
tively easier. One can also prove a crystal formula of
Demazure character (formula).

e Littelmann, Paths and Root Operators
in Representation Theory.

e Littelmann, A Littlewood—Richardson
rule for symmetrizable Kac-Moody alge-
bras.
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