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Preface

In this book, I would like to give an acceptable, clear, and concise

introduction to spectral sequences. The preliminary is basic homolog-

ical algebra and basic algebraic topology. Two mini-dictionaries are

included for last two chapters.

The first chapter is the most original part. It contains the short

proof by the author, and with detailed check. It is not painful and only

the elementary stuff are left to reader.

The second chapter is about topology. I introduced the spectral

sequences which are easy to introduce. It is a pity that I do not mention

enough examples in topology. The interested reader could read [4] and

[6] for examples and deeper topics.

The last chapter is about algebra. Here, we used only the spectral

sequences for double complex. They are almost all the spectral sequence

as I know in algebra which can be introduced shortly. The curious

reader is encouraged to ask [8] for more examples.

Last but no mean least, enjoy spectral sequences !

Xiong Rui

Email: XiongRui Math@126.com

Comments and criticisms are

welcome!
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XiongRui_Math@126.com
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Chapter 1

Basics of Spectral

Sequences

1.1 Definitions

(1.1)Definition (Spectral Sequence) In an abelian category C, a spec-

tral sequence (of homology type) is the following

• a family of objects of C

E = {Erpq : p, q ∈ Z, r ∈ Z≥0};

• a family of differentials d : E → E with dr of degree (−r, r − 1)

for each r, that is

d = {drpq : Erpq → E2
p−r,q+r−1}, dr ◦ dr = 0;

• a family of isomorphisms of

Er+1
pq
∼= Hpq(E

r) =
ker[Erpq

d
−−→· · · ]

im[· · ·
d
−−→Erpq]

= ker drpq
/
im drp+r,q−r+1.

1
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(1.2)Definition (Spectral Sequence) In an abelian category C, a spec-

tral sequence (of cohomology type) is the following

• a family of objects of C

E = {Epqr : p, q ∈ Z, r ∈ Z≥0};

• a family of differentials d : E → E with dr of degree (r,−r + 1)

for each r, that is

d = {dpqr : Erpq → E2
p+r,q−r+1}, dr ◦ dr = 0;

• a family of isomorphisms of

Epqr+1
∼= Hpq(Er) =

ker[Epqr
d
−−→· · · ]

im[· · ·
d
−−→Epqr ]

= ker dpqr
/
imdp−r,q+r−1r .

(1.3) !!Conventions— A common abuse, we will call di-

rectly E a spectral sequence rather than all above data. We

will call Erpq or E
pq
r the object in r-th page or r-th stage of

position (p, q). We will also call p+ q the (total) order

or (total) degree of Erpq.

(1.4)Hint In one word, spectral sequence is a book of complexes

diagrams. The object at (r+1)-th page of position (p, q) is the homology

group at r-th page of the same position. The morphism moves ↖ or

↘ (depends on homology or cohomology type).

•

•

• •
0��

1oo
2

gg 3

dd

•

•

•
0

OO

1 //

2
''

3

$$

•

•

•
homology type cohomology type
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Note that Erpq is recognized as a subquotient object of E1
pq, thus it

defines

0 = B1
pq ⊆ B2

pq ⊆ . . . ⊆ Brpq ⊆ . . . ⊆ Zrpq ⊆ . . . ⊆ Z2
pq ⊆ Z1

pq = E1
pq

such that Erpq = Zrpq/B
r
pq. Write

Z∞pq =
∞∩
r=1

Zrpq B∞pq =
∞∪
r=1

Brpq E∞pq = Z∞pq/B
∞
pq

(1.5)Remark Here is a picture of homological type.

(1.6)Remark Here is a picture of cohomological type in r-th stage.

q •

$$

• · · · •
...

...
. . .

. . .
...

q − r + 1 • · · · • •

· · · p · · · · · · p+ r

//

OO
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(1.7)Definition (Boundary and cycle) Let E be a spectral sequence of

cohomology type. Since the homology group is a subquotient object,

Epqr is recognized as a subquotient object of Epq0 . It defines

0 ⊆ Bpq0 ⊆ Bpq1 ⊆ Bpq2 ⊆ · · · ⊆ Bpqr ⊆ · · ·
∩

Epq0 ⊇ Zpq0 ⊇ Zpq1 ⊇ Zpq2 ⊇ · · · ⊇ Zpqr ⊆ · · ·

such that Epqr+1
∼= Zpqr /B

pq
r . We call B the boundary, Z the cycle. The

similar notations are also defined for homology type.

(1.8)Remark Consider the variation of pq, we have the following

short exact sequence

0→ Zr+1/Br︸ ︷︷ ︸
=ker dr+1

⊆
−−→Zr/Br︸ ︷︷ ︸

=Er+1

dr+1

−−→Br+1/Br︸ ︷︷ ︸
=imdr+1

→ 0.

So we have the following isomorphism

@ (p, q) Zr+1/Zr
dr+1∼= Br+1/Br @ (p− r, q + r − 1).

Give this is equivalent to give the family of isomorphisms of Epqr+1
∼=

ker(· · · )/ im(· · · ).

(1.9)Definition (Infinite terms) Given a spectral sequence E of cohomol-

ogy type, we can define the infinite objects, infinite boundary and

infinite cycle

Z∞pq =
∞∩
r=1

Zrpq, B∞pq =
∞∪
r=1

Brpq, E∞pq = Z∞pq/B
∞
pq.

The similar notations are also defined for homology type.

(1.10)Definition (Convergence) Let E be a spectral sequence of homol-

ogy type. Given a family of objects {Hn : n ∈ Z}. We say that {Erpq}
converges to {Hn}, if there exists a filtration of each Hn

0 = FsHn ⊆ . . . ⊆ Fp−1Hn ⊆ FpHn ⊆ . . .

such that
∪
p FpHn = Hn and E∞pq

∼= FpHp+q/Fp−1Hp+q. We write

Erpq =⇒ Hp+q.
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(1.11)Definition (Convergence) Let E be a spectral sequence of coho-

mology type. Given a family of objects {Hn : n ∈ Z}. We say that

{Epqr } converges to {Hn}, if there exists a filtration of each Hn

0 = FsHn ⊆ . . . ⊆ Fp+1Hn ⊆ FpHn ⊆ . . .

such that
∪
p FpH

n = Hn and Epq∞
∼= FpHp+q/Fp+1Hp+q. We write

Epqr =⇒ Hp+q.

(1.12)Hint That is, we can read the factors of each H from the book

E. Here is some direction problem. We call the nonzero factor of

H which is also a sub-object the lowest factor, i.e. minimal in the

filtration.

• For homology type, the lowest factor lies in the topmost position

of

{(p, q) : p+ q = n,Epq ̸= 0}

i.e. the position (p, q) with q = n− q as large as possible.

• For cohomology type, the lowest factor lies in the lowest position

in

{(p, q) : Epq ̸= 0, p+ q = n}

i.e. the position (p, q) with q = n− q as small as possible.

(1.13)Definition (Morphism) Given two spectral sequences, E and E, we

can define the morphism between them to be a family of morphisms

f : E→ E or degree 0, or {frpq : Erpq → E
r

pq} more precisely, such that

f commutes with d; fr+1 is induced by fr.

That is,

fr+1 =

[
Er+1 = H(Er)

H(fr)
−−−−→H(Er) = Er+1

]
.

As the end of this section, we introduce the algebra structure. For

this, we should fix some tensor product theory for complexes.
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(1.14)Koszul convention Assume we have an abelian bifuntor (like

tensor product) between abelian categories

⊗ : C × D −→ E .

For two complexes C and D of C and D respectively, one can define

C ⊗D =


(C ⊗D)n =

⊕
p+q=n

Cp ⊗Dq,

↓ d
(C⊗D)n−1

: x⊗ y 7→ dx⊗ y + (−1)deg xx⊗ dy.

It is easy to check C ⊗ D is a complex of E . Similar complex can

be defined for contravariant, co-contra variant or contra-covariant, for

example the functor Hom. This induces a functor

⊗ : C-Complex×D-Complex −→ E-Complex.

The morphisms are defined as usual (no sign).

For an abelian tri-functor, say −⊗−⊗−, we can also define as

d : x⊗y⊗z 7−→ dx⊗y⊗z+(−1)deg xx⊗dy⊗z+(−1)deg x+deg yx⊗y⊗dz.

Generally, we can define for arbitrary finite number of variables. It is

easy to check that each natural transform between them induces one

for complexes (without adjustment in signs).

One most important difference is that, if we denote

× : D × C −→ E (Y,X) 7−→ X ⊗ Y,

then for two complexes C and D

τ : D × C −→ C ⊗D y ⊗ x 7−→ (−1)deg x deg yx⊗ y

is a natural isomorphism.

Another is the shifting. For any complex C, we denote C[r]• =

C•+r. Then

(C ⊗D)[1] = C ⊗D[1] ∼= C[1]⊗D
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where the ∼= is given by

∼=: C ⊗D[1] −→ C[1]⊗D x⊗ y 7−→ (−1)deg yx⊗ y.

So

C[1]⊗D[1]
∼= //

∥
��

anti-comm.

(C ⊗D[1])[1]

∥
��

(C[1]⊗D)[1] ∼=
// (C ⊗D)[2].

In one word, using Koszul convention, we only need to be careful

when we exchange the order of variables.

For spectral sequence E, we can regard each page Er disjoint union of

complexes with degree by their total degrees. We view Er as a cochain

complex by (Er)
n =

⊕
p+q=n E

pq
r , with differential induced by all d’s.

(1.15)Definition (Multiplication structure) For three spectral sequence

E,E, Ê of cohomology type, a multiplication structure is family of

morphisms

µr : Er ⊗ Er → Êr,

preserving degrees with µr+1 induced by µr. More precisely,

µr+1 :

[
Er+1⊗Er+1

∼= H(Er)⊗H(Er)
∗
−−→H(Er⊗Er)

H(µr)
−−−−−→H(Êr) ∼= Êr+1

]
.

The ∗ above is induced by identity. It induces

µ∞ : E∞ ⊗ E∞ → Ê∞.

Similarly, we can define for mixed type (some of them with ho-

mology type), but for convention, the degree of y ∈ Er is − deg y for

homology type. But since y ≡ −y mod 2, there is no problem of signs

in all.

1.2 Filtered Complexes
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(1.16)Definition (Filtered Complexes) A chain complex C• is called a

filtered (chain) complex if it is equipped with a filtration

F : . . . ⊆ Fp−1Cn ⊆ FpCn ⊆ Fp+1Cn ⊆ . . . ⊆ Cn

such that d(FpCn) ⊆ FpCn−1, i.e. FpC• is a subcomplex of C•.

A cochian complex C• is called a filtered (cochain) complex if

it is equipped with a filtration

F : . . . ⊆ Fp+1Cn ⊆ FpCn ⊆ Fp+1Cn ⊆ . . . ⊆ Cn

such that d(FpCn) ⊆ FpCn+1, i.e. FpC• is a subcomplex of C•.

(1.17)Remark Here is a picture for cohomology type.

F0Cn The filtration

F0Cn−1

OO

F1Cn

⊆

This is not a part of spectral sequence !

...

OO

. . .

OO

⊆
. . .

⊆

F0C1

OO

· · ·

OO

⊆
. . .

OO

⊆

Fn−1Cn
⊆

F0C0

OO

F1C1

OO

⊆

· · ·

OO

⊆

Fn−1Cn−1

OO

⊆

FnCn
⊆

//

OO

(1.18)Definition We say the filtration F over complex C is

• exhaustive if Cn =
∪
p∈Z FpCn or Cn =

∪
p∈Z FpCn;
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• lower bounded or bounded below if for each n, exists p such

that FpCn = 0 or FpCn = 0.

• upper bounded or bounded above if for each n, exists p such

that FpCn = Cn or FpCn = Cn.

(1.19) !!Assumption— To protect us to use element-picking

method, in this section, we will take an abelian category

which can be embedded into some R-Mod for some ring R p-

reserving the colimit (at least the countable-infinite-filtered

union appearing). If not, we should change “exhaustive” by

“upper bounded” to make the colimit finite. See (1.50).

(1.20)Theorem Each filtered cochain complex (C,F) determines a

spectral sequence E of cohomology type with

Epq0 = FpCp+q/Fp+1Cp+q

Epq1 = Hp+q(FpC/Fp+1C).

If the filtration F over A is lower bounded and upper exhaustive then

E converges to H•(A, d). More exactly,

Epq∞
∼= FpHp+q(A, d)/Fp+1Hp+q(A, d),

where F is lower bounded and exhaustive filtration over H•(A, d).

The proof is due to Xiong myself. Firstly, it is several elementary

exercises in abstract algebra.

(1.21)Λemma (Modular property) LetA,B,C be three subgroup-

s of some bigger abelian group, if A ⊆ C, then

(A+B) ∩ C = A+ (B ∩ C).

As a result, it makes no doubt to write A+B ∩ C.
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(1.22)Λemma (Exchange Limit) Let C• be a directed family of

submodules of some bigger abelian group, that is, each pair of Ci, Cj

are submodules of some Ck. Assume A ⊆ B, then we have∪(
A+ C• ∩B

)
= A+

(∪
C•

)
∩B.

If furthermore, C• is bounded below, that is, some Ci equals to
∩
C•,

then, ∩(
A+ C• ∩B

)
= A+

(∩
C•

)
∩B.

(1.23)Λemma (Zassenhaus’ Butterfly Lemma) For four subgroup-

s A,B,C,D of some bigger abelian group, if A ⊆ B and C ⊆ D, then

A+D ∩B
A+ C ∩B

∼=
B ∩D

(B ∩ C) + (A ∩D)
∼=

(A+D) ∩ (B + C)

A+ C
∼=
C +B ∩D
C +A ∩D

.

(1.24)Λemma (Adjunct formula) LetA
f
−−→B be a homomorphis-

m, X,Y be submodules of A and B respectively.

f(f−1(Y ) ∩X) = Y ∩ f(X), f−1(f(X) + Y ) = X + f−1(Y ).

(1.25)Λemma (Adjointness) If A = f−1(A′), B = f−1(B′) and

f(C) = C ′, f(D) = D′, then

f :
A+D ∩B
A+ C ∩B

−→ A′ +D′ ∩B′

A′ + C ′ ∩B′

is an isomorphism.

Proof of (1.20), due to Xiong [10]. ]DefineKpq
r = Fp+1Cp+q + d−1(Fp+rCp+q+1) ∩ FpCp+q,

Ipqr = Fp+1Cp+q + d(Fp−r+1Cp+q−1) ∩ FpCp+q.

Then we get a filtration

Fp+1Cp+q = Ipq0 ⊆ I
pq
1 ⊆ · · · ⊆ K

pq
1 ⊆ K

pq
0 ⊆ FpCp+q.
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Then

Kpq
r

Kpq
r+1

=
Fp+1Cp+q + d−1(Fp+rCp+q+1) ∩ FpCp+q

Fp+1Cp+q + d−1(Fp+r+1Cp+q+1) ∩ FpCp+q

=
d−1(Fp+r+1Cp+q+1) + FpCp+q ∩ d−1(Fp+rCp+q+1)

d−1(Fp+r+1Cp+q+1) + Fp+1Cp+q ∩ d−1(Fp+rCp+q+1)
∵ (1.23)

d
−−→
∼

Fp+r+1Cp+q+1 + d(FpCp+q) ∩ Fp+rCp+q+1

Fp+r+1Cp+q+1 + d(Fp+1Cp+q) ∩ Fp+rCp+q+1
∵ (1.25)

=
Ip+r,q−r+1
r+1

Ip+r,q−r+1
r

.

For each stage, define Epqr =
Kpq

r

Ipqr
, and

d =

[
Epqr =

Kpq
r

Ipqr
� Kpq

r

Kpq
r+1

d
−−→
∼

Ip+r,q−r+1
r+1

Ip+r,q−r+1
r

↩→
Kp+r,q−r+1
r+1

Ip+r,q−r+1
r

= Ep+r,q−r+1
r

]
.

Then definitely, at the place (p, q),

ker d =
Kpq
r+1

Ipqr
, im d =

Ipqr+1

Ipqr
, ⇒ ker d

im d
=
Kpq
r+1

Ipqr+1

,

as desired. So we define a spectral sequence.

To show the convergence, we need to compute the

Epq∞ =
Kpq
∞
Ipq∞

=

∩
r Fp+1Cp+q + d−1(Fp+rCp+q+1) ∩ FpCp+q∪
r Fp+1Cp+q + d(Fp−r+1Cp+q−1) ∩ FpCp+q

=
Fp+1Cp+q +

∩
r d
−1(Fp+rCp+q+1) ∩ FpCp+q

Fp+1Cp+q +
∪
r d(Fp−r+1Cp+q−1) ∩ FpCp+q

∵ (1.22)

=
Fp+1Cp+q + d−1

(∩
r Fp+rCp+q+1

)
∩ FpCp+q

Fp+1Cp+q + d
(∪

r Fp−r+1Cp+q−1
)
∩ FpCp+q

=
Fp+1Cp+q + ker d ∩ FpCp+q

Fp+1Cp+q + im d ∩ FpCp+q

=
im d+ FpCp+q ∩ ker d

im d+ Fp+1Cp+q ∩ ker d

Hence the nominator and denominator defines a filtration between im d

to ker d. So it induces a filtration on FpHp+q(C, d). This is easy to be

checked to be lower bounded and exhaustive filtration by (1.22).
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(1.26)Corollary In the theorem (1.20).

Zpqr =
Kpq
r+1

Fp+1Cp+q
=
Fp+1Cp+q + d−1(Fp+r+1Cp+q+1) ∩ FpCp+q

Fp+1Cp+q
⊆ FpCp+q

Fp+1Cp+q
;

Bpqr =
Ipqr+1

Fp+1Cp+q
=
Fp+1Cp+q + d(Fp−rCp+q−1) ∩ FpCp+q

Fp+1Cp+q
⊆ FpCp+q

Fp+1Cp+q
;

FpHp+q = im d+ FpCp+q ∩ ker d

im d
⊆ ker d

im d
.

The differential in E is induced by the differential of the cochain com-

plex.

We will only prove the version of cohomology type, but we state the

homology version.

(1.27)Theorem Each filtered chain complex (C,F) determines a

spectral sequence E of homology type with

E0
pq = FpCp+q/Fp−1Cp+q

E1
pq = Hp+q(FpC/Fp−1C).

If the filtration F over A is lower bounded and exhaustive then E con-

verges to H•(A, d). More exactly,

Epq∞
∼= FpHp+q(A, d)/Fp−1Hp+q(A, d),

where F is lower bounded and exhaustive filtration over H•(A, d).

(1.28)Corollary In the theorem (1.27).

Zrpq =
Fp−1Cp+q + d−1(Fp−r+1Cp+q−1) ∩ FpCp+q

Fp−1Cp+q
⊆ FpCp+q
Fp−1Cp+q

Brpq =
Fp−1Cp+q + d(Fp+rCp+q+1) ∩ FpCp+q

Fp−1Cp+q
⊆ FpCp+q
Fp−1Cp+q

FpHp+q =
im d+ FpCp+q ∩ ker d

im d
⊆ ker d

im d
.

The differential in E is induced by the differential of the complex.
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(1.29)Definition (Filtered multiplication structure) If we have a multipli-

cation structure over filtered complexes (or objects)

C ⊗D
µ
−−→E

such that µ(FpC ⊗ FqC) ⊆ Fp+qC, we say µ is a filtered multipli-

cation structure.

(1.30)Theorem If we have a filtered multiplication structure over

three lower bounded and exhaustive filtered complexes

C ⊗ C
µ
−−→ Ĉ.

Then, in the theorem (1.20),

• the spectral sequence E, E and Ê has a multiplication structure.

• the filtration over H•(C), H•(C) and H•(Ĉ) makes it a filtered

multiplication structure.

• the isomorphism is an isomorphism between multiplication struc-

ture.

Proof. We only need to check the first two assertions, i.e. the well-

definedness, the rest is by our construction. For the first assertion, it

suffices to check

µ(Zpqr ⊗Z
p′q′

r ) ⊆ Ẑp
′+p,q′+q
r , µ(Bpqr ⊗Z

p′q′

r +Zpqr ⊗B
p′q′

r ) ⊆ B̂p
′+p,q′+q
r .

If

x ∈ d−1(Fp+rCp+q+1) ∩ FpCp+q,

y ∈ d−1(Fp′+rCp
′+q′+1

) ∩ Fp′Cp
′+q′ , then

d(µ(x⊗ y)) = µ(dx⊗ y)± µ(x⊗ dy) ∈ Fp+rCp+p
′+q+q′+1

and no problem µ(x⊗ y) ∈ Fp+p′Cp+p′+q+q′ .

If

x ∈ d(Fp−r+1Cp+q−1) ∩ FpCp+q

y ∈ d−1(Fp′+rCp′+q′+1) ∩ Fp′Cp′+q′
, say x = dz, then

µ(dz ⊗ y) = d(µ(z ⊗ y))︸ ︷︷ ︸
∈d(Fp+p′−r+1Cp+p′+q+q′−1)

− µ(z ⊗ dy)︸ ︷︷ ︸
∈Fp+p′+1Cp+p′+q+q′
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and no problem µ(x⊗ y) ∈ Fp+p′Cp+p′+q+q′ .
The checking of the second is easy by construction (1.26) — every-

thing commutes with multiplication.

(1.31)Remark The same multiplication structure theorem (1.30)

holds for mixed type. But, still, by a convention, the degree of y ∈ Er

is − deg y for homology type.

1.3 Double Complexes

Assume we have a double complex (or a bi-complex) of cohomology

type (C••, d→, d↑),

· · · · · ·

... // Cp,q+1

OO

// Cp+1,q+1

OO

//
...

... // Cpq

OO

//

(anti)
comm.

Cp+1,q

OO

//
...

· · ·

OO

· · ·

OO

Here anti-commutativity is just for convention, since the sign change

do not effect on homology groups.

We can consider its total

(TotC)n =
⊕
p+q=n

Cpq, d = d↑ + d→.

Then it admits two filtrations by columns and rows, say IF(C) =

Tot(I≤nC) and
IIF(C) = Tot(II≤nC), where

(I≤nC)
pq =

Cpq, p ≤ n,

0, p > n.
, (II≤nC)

pq =

Cpq, q ≤ n,

0, p > n.
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Let IE∗∗∗ and be IIE∗∗∗ their spectral sequences. Note that IFnC/IIFn−1C
is exactly the n-th column, and we know from the proof of (1.20) that

the differential on E1 is induced by d, so

IE1 = H(C, d↑), IE2 = H(H(C, d↑),d→).

Similarly,

IIE1 = H(C, d→), IIE2 = H(H(C, d→), d↑).

There are several common cases under which IF and IIF are both

exhaustive and lower bounded. For example, when C lies in the first

quadrant, or the third quadrant.

(1.32)Theorem Each double complex (C••, d→, d↑) of cohomology

type, determines two spectral sequences IE and IIE of cohomology type

with

IE1
pq = Hq(Cp•, d↑)

IE2
pq = Hp(Hq(C, d↑), d→).

IIE1
qp = Hp(C•q, d→)

IIE2
qp = Hq(Hp(C, d→), d↑).

If the double complex C lies in the first quadrant, or the third quadrant,

then IE and IIE converge to H•(Tot(C)).

(1.33)Remark Here is not IIEpq2 is to suit our convention (1.4).

(1.34)Theorem Each double complex (C••, d
←, d↓) of homology type,

determines two spectral sequences IE and IIE of homology type with

IEpq1 = Hq(Cp•, d
↓)

IEpq2 = Hp(Hq(C, d
↓), d←).

IIEqp1 = Hp(C•q,d
←)

IIEqp2 = Hq(Hp(C, d
←), d↓).

If the double complex C lies in the first quadrant, or the third quadrant,

then IE and IIE converge to H•(Tot(C)).
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(1.35)Application (Balancing Tor and Ext) Let P• → M and Q• →
N , the (flat) resolutions as (right and left respectively) modules. Con-

sider the double complex P ⊗Q, and compute IE and IIE

· · ·

��... oo P ⊗Q
...oo

· · ·
��

· · ·
��

· · ·

��

· · ·
��

...

��

P ⊗Q
...

��
· · · · · ·

��
· · ·

... 0oo
...oo

... 0oo
...oo

... P ⊗Noo
...oo

... 0
...

... 0
...

... Tor(M,N)
...

· · ·

��... oo P ⊗Q
...oo

· · ·
��

... oo · · ·
...oo

... oo P ⊗Q
...oo

... oo · · ·
...oo

· · ·

��

· · ·

��

· · ·

��
M ⊗Q

��

0

��

0

��
· · · · · · · · ·

· · · · · · · · ·

Tor(M,N) 0 0

· · · · · · · · ·

We find

Torn(M,N) = Hn(P• ⊗N) = Hn(M ⊗Q•) = Hn(Tot(P ⊗Q)).

Similarly, for two modules M,N . Let P• → M and N →→ I• the

(projective and injective respectively) resolution. It defines a double

(cochain) complex Hom(P, I), then

Extn(M,N) = Hn(Hom(P•, B) = Hn(Hom(A, I•)) = Hn(Tot(Hom(P, I))).

(1.36)Application (Mayer-Vietoris Spectral Sequence) Let X be a

topological space, and U = {Ui : i ∈ I} an open covering of X with

I a totally ordered set. We will write Sing• for the chain complex of

singular homology. Denote

Ui0,...,ip = Ui0 ∩ · · · ∩ Uip , Č•q(U) =
⊕

i0<...<iq∈I
Sing•(Ui0,...,iq ).
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We can define

∂ : Čpq(U) −→ Čp,q−1(U) α 7−→
q∑
j=0

(−1)jαȷ̂

where α ∈ Singq(Ui0,...,iq ), and αȷ̂ denote the image of α under the map

induced by inclusion

Singq(Ui0,...,iq )→ Singq(Ui0,...,îj ...,iq ).

It is easy to see Čpq(U) forms a double complex.

By a direct computation, (Čp•(U), ∂) is acylic, and

H0(Cp•(U)) =
∑
U∈U Singp(U) (⊆ Singp(X))

= {σ ∈ Singp(X) : the image of σ lies in some U ∈ U}
≃ Singp(X).

As a result, H(Tot(Č)) ∼= H(X). But if we consider the other direction,

we will find

E1
pq =

⊕
i0,...,iq∈I

Hp(Ui0,··· ,iq ).

We define the homology groups of E1
0• the Čech homology ȞU(X).

Of course, the chain complex enjoys a combinatorial description (left

to readers).

In particular, when all nonempty Ui0,...,ip are acyclic, then

ȞU(X) = H(X).

In some sense, Čech homology is a kind of “fat” simplicial homology,

tell us how to glue acyclic space into general space.
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All above can be carried to cohomology of sheaves, known as Čech

cohomology.

1.4 Exact couples

(1.37)Remark In the definition of spectral sequence, we assume that

every spectral sequence starts from 0-th stage (r ∈ Z≥0). But we

can also define it after removing this assumption. We will call such a

spectral sequence starting from ℓ-th page if r is assumed to be in

Z≥r.

(1.38)Definition (Exact couple) Let D,E be two objects in some abelian

category, and i : D → D, j : D → E and k : E → D be morphisms.

We present these data as in the diagram:

D

E

i // D

j
��

k

XX

We say (D,E, i, j, k) is an exact couple if this diagram is exact at

each position, that is, im i = ker j, im j = ker k and im k = ker i.

(1.39)Definition (limit) For an exact couple (D,E, i, j, k), we define the

limit of it to be

H = lim−→

[
· · ·

i
−−→D

i
−−→· · ·

]
.
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(1.40) !!Assumption— Similarly, to protect us to use element-

picking method, in this section, we will take an abelian cate-

gory which can be embedded into some R-Mod for some ring

R preserving the colimit (at least the {0 → 1 → 2 → · · · }-
colimit appearing). See (1.50).

(1.41)Remark We will use the case when D = Dpq, E = Epq are

bigraded, and

deg i = (−1, 1), deg j = (0, 0), deg k = (1, 0).

Hn = lim−→
p+q=n

Dpq = lim−→

[
· · ·

i
−−→Dpq

i
−−→· · ·

]
.

(1.42)Theorem Each exact couple of bigraded modules (D,E, i, j, k)

determines a spectral sequence E starting from the first page with

Epq1 = Epq

Epq2 = H(Epq, j ◦ k).

If the exact couple is lower bounded, i.e.
[
· · ·

i
−−→D

i
−−→· · ·

]
is started

from 0. then E converges to H∗.

(1.43)Remark It is easy to see d = j◦k is a differential, i.e. d◦d = 0.

D

E E

i // D

j

��

i // D

j
��

k

XX

k

XX

d
oo
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(1.44)Remark Someone prefer the following big diagram

...

��

...

��

...

��
· · · // D //

��

E // D //

��

E // D //

��

· · ·

· · · // D //

��

E // D //

��

E // D //

��

· · ·

· · · // D //

��

E // D //

��

E // D //

��

· · ·

...
...

...

with sequence in exact, each row the first stage of spectral sequence,

and the inductive limit of column the limit.

(1.45)Λemma[9] Theorem 8 Let C be a differential object, as-

sume d is decomposed into C
e→ D

f→ C, with D
f→ C

e→ D exact.

Then we have the following long two exact sequences

· · · → H(C, d)→ ker f → cok e→ H(C, d)→ · · ·
· · · → H(C, d)→ cok f → ker e→ H(C, d)→ · · ·

As some readers like, we have the following commutative diagram

· · · cok f

��

// ker e

��

→H→cok f

��

// ker e

��

→H→cok f

��

// ker e

��

· · ·

C

??

��

// C

??

��

// C

??

��

// C

D

??

JJ

��

D

??

JJ

��

D

??

JJ

��
· · · ker f

??

// cok e→H→ ker f

??

// cok e→H→ ker f

??

// cok e · · ·
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So for any exact couple (D,E, i, j, k), we have the following triangle

im i

D

i //

##
im i

i
;;

ker j

H(E)

//

;;

cok k
##

j
��

i

OO

k

[[

(1.46)Definition (Derived couple) Let (D,E, i, j, k) be an exact couple,

we define the derived couple to be

D′ = im i, E′ = H(E, d), and i′ in-

duced by i, j′ induced by ji−1, and

k′ induced by k.

D′

E′

i′ // D′

j′

��
k′

YY

We will denote (D(n), E(n), i(n), j(n), k(n)) the n-th derived couple.

D

E

(−1,1) // D

(0,0)
��

(1,0)

XX

E
d
−−→
(1,0)

E

⇒

D′

E′

(−1,1) // D′

(1,−1)
��

(1,0)

YY

E
d
−−−−−−−→
(2,−1)

E

⇒ · · · ⇒

D(n)

E(n)

(−1,1) // D(n)

(n,−n)
��

(1,0)

[[

E
d

−−−−−−−−−−−−−−−−−−→
(n+1,−n)

E

As a result, D(n) = im in, and i(n) induced by i, j(n) induced by ji−n,

and k(n) induced by k.

Proof of (1.42). Denote Epqr = (E(r−1))pq. Let us do some

computation

Bpqr = im d(r−1) = j(r−1)(im k(r−1)))

= j(i−(r−1)(ker i(r−1))) = j(i−r(0)),

and

Zpqr = ker d(r−1) = (k(r−1))−1(ker j(r−1))

= (k(r−1))−1(im i(r−1)) = k−1(ir(D)) ∩ Zpqr−1
= k−1(ir(D)) ∩ k−1(ir−1(D)) ∩ Zpqr−2 = k−1(ir(D)) ∩ Zpqr−2
= · · · = k−1(ir(D)).
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Then let us see the convergence

Bpq∞ =
∪
r B

pq
r =

∪
r j(i

−r(0))

= j
(∪

r i
−r(0)

)
,

Zpq∞ =
∩
r Z

pq
r =

∩
r k
−1(ir(D))

= k−1
(∩

r i
r(D)

)
.

Denote the image of Dpq in the Hp+q by D̃pq. Now we assume the exact

couple is lower bounded, then

∩
r

ir(D) = 0,
∪
r

i−r(0) = ker[D → D̃].

Thus Zpq∞ = k−1(0) = ker k = im j. Now, consider the diagram

0

��

//

0 // kerπp−1,q+1

��

// Dp−1,q+1 π //

��

D̃p−1,q+1 //

��

0

0 // kerπpq

j

��

// Dpq π //

j

��

D̃pq //

��

0

Bpq∞ // Zpq∞ // factors //// 0

The exactness of leftmost row. If x ∈ kerπpq, with j(x) = 0, then

x = i(y) for some y ∈ Dp−1,q+1. But x ∈ kerπpq =
∪
r i
−r(0), so

x ∈
∪
r i
−r(0) = kerπp−1,q+1. The rest exactness is clear.

(1.47)EXAMPLE Let C be a filtered complex of modules. Consider

the short exact sequence

0→ Fp+1C
i
−−→FpC → FpC/Fp+1C → 0
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which gives rise to

Hp+q(Fp+1C)

···

Hp+q−1(FpC/Fp+1C)

Hp+q(FpC/Fp+1C)

// Hp+q(FpC)

��

Hp+q+1(Fp+1C)

\\

Hp+q+1(FpC/Fp+1C)

// Hp+q+1(FpC)

��

Hp+q+2(Fp+1C)

\\

// Hp+q+2(FpC)

· · ·

]]

· · ·

· · · · · ·

It is an exact couple.

(1.48)Theorem By above, we can define

Epq = Hp+q(FpC/Fp+1C).

This coincides the spectral sequence of filtered complex (from the first

page).

Proof. The differential maps are all induced by d, so it suffices to

check the case r = 1. Let us see Epqr .

Epqr+1 =
Zpqr
Bpqr

=
k−1(ir(D))

j(i−r(0))

Pick x mod (· · · ) ∈ Epq1 = Hp(FpC/Fp+1C), with x ∈ FpC with dx ∈
Fp+1C,

x mod (· · · ) ∈ k−1(ir(D))⇐⇒ dx ∈ im ir + im[Fp+1C
d
−−→Fp+1C] (∗)

⇐⇒ dx ∈ Fp+r+1C + im[Fp+1C
d
−−→Fp+1C]

⇐⇒ x ∈ d−1(Fp+r+1C) + Fp+1C.
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where the i in (∗) is by the definition of connected morphism that

k(x mod (· · · )) = dx ∈ H(Fp+1C).

x mod (· · · ) ∈ j(i−r(0))⇐⇒ ∃y


y ∈ ker[FpC

d
−−→FpC],

ir(y) ∈ im[Fp−rC
d
−−→Fp−rC],

x ≡ y mod Fp+1C.

⇐⇒ ∃y

ir(y) ∈ im[Fp−rC
d
−−→Fp−rC],

x ≡ y mod Fp+1C.

⇐⇒ ∃y

y ∈ d(Fp−rC),x ≡ y mod Fp+1C.

⇐⇒ x ∈ d(Fp−rC) + Fp+1C.

So 
Zpqr =

Fp+1C + d−1(Fp+r+1C) ∩ FpC
d−1(Fp+1C)

Bpqr =
Fp+1C + d(Fp−rC) ∩ FpC

d−1(Fp+1C)

exactly coincides what we defined for filtered complex (where it starts

from 0-th page).

(1.49)Remarks on limit and colimit In the case of modules, we

may use the fact that

lim−→ : C{0→1→2→··· } −→ C
(
M0

ρ0
−−→M1

ρ1
−−→· · ·

)
7−→ lim−→

i

Mi

is exact. But in the case of modules, its dual

lim←− : C{···→2→1→0} −→ C
(
· · ·

ρ2
−−→M1

ρ1
−−→M0

)
7−→ lim←−

i

Mi

is not generally exact (but left exact).

As a result, lim−→ commutes with homology groups of complex. In

particular, if C is some filtered complex,

lim−→
p

Hn(FpC) = Hn
( ∪

FpC
)
.
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(1.50)Nothing general In these two sections, we made very narrow

assumption on our underlying abelian category. Because we have in-

finite union and even the concrete construction of filtered limit. The

point is, even though we have Freyd-Mitchell embedding theorem

that

any small abelian category admits an exact fully faithful

embedding to some category of modules.

It only claims the embedding preserves kernel and cokernel. It also

perserves finite sum since it can be defined by equations, and thus

finite limit and colimit, but may fail for infinite (co)limit.

In conclusion, the interesting theory of “general spectral

sequences” is not known, or, the theory of spectral sequences

known to be interesting is only for modules. Where “interest-

ing” means that we can construct spectral sequences from interesting

objects. For usage of other case, we should make further assumption

to reduce to modules, for example

• the colimit appearing are all finite, then everything follows from

Freyd-Mitchell embedding theorem;

• the abelian category which can be embedded into R-Mod for some

ring R preserving the colimit as we assumed.

Another fact is that unfortunately the dual category of R-Mod is not

the case as remarked in (1.49).

1.5 Calculations

Before the applications, we firstly show some calculation of special type

of spectral sequences.

For fixed n, let us call the line {(p, q) : p+ q = n} codiagonal.

(1.51)Trivial case If E all vanish in r-th stage, then H = 0.
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(1.52) Easy cases If E has at most one nonzero module in each co-

diagonal in r-th stage, then Epqr = Hp+q.

(1.53)EXAMPLE (One column/row type) When there rests only one

column or row, Hp+q = Ep+qr .

... r ≥ 1

Epqr

...

Ep0r
//

OO
r ≥ 1

E0q
r E1q

r · · · Epqr · · ·

//

OO

(1.54)Computable cases If E∗∗∗ is of homological type, and has at

most two nonzero modules at each codiagonal in r-th stage, then we

have only two terms in infinity stage. Assume that

• An, Bn are the only two modules on the codiagonal {(p, q) : p +
q = n} in some stage such that the map between A and B are all

zero except Bn+1 → An if some of them are not.

• the infinite term at An and Bn is EnA and EnB respectively;

• the submodule Hn† ⊆ Hn is the filtration of H∗.

Then there exist the following exact sequences

0→ En+1
B → Bn+1

d
−−→An → EnA → 0,

0→ 0→ Hn† → EnA → 0,

0→ Hn† → Hn → EnB → 0.
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So we have

0

En
A

��

0 · · ·

0

En+1
A

��

0 An

??

// Hn

En
B

��

// Bn

??

An+1

??

// Hn+1

��

// Bn+1

??

0

??

0

· · ·

??

0

En+1
B

??

0

Now, we get a long exact sequence

· · · → Bn+1
d
−−→An → Hn → Bn

d
−−→An−1 → · · · .

(1.55)EXAMPLE (Resolution Type) Especially these cases

E0n
r Homological type

E0n−1
r r ≥ 2

...

E00
r E10

r · · ·

d
gg

En0r
//

OO

where we have the following long exact sequence

· · · // E0n
r

// Hn // En0r

d

// E0,n−1
r

// Hn−1 // En−1,0r

···

E0,r−1
r

// Hr−1 // Er−1,0r
d=0 // 0
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Or we can illustrate it as

E0n
r

Hn
��

��

E0n−1
r

Hn−1
��

��

...

En−1,0r

gg

En0r

dd

· · ·

cc

//

OO

(1.56)EXAMPLE Dually, If E∗∗∗ is of cohomological type, and has at

most two nonzero modules at codiagonal in r-th stage, then we have

only two terms in infinity stage. We have a long exact sequence

· · · → Bn−1
d
−−→An → Hn → Bn

d
−−→An+1 → · · · ,

with now B higher, and similar assumptions.

(1.57)EXAMPLE (Spherical type) So the following two cases are also

useful.

E0n
r Ernr

E0,n−1
r Er,n−1r r ≥ 1

...
...

E00
r Er0r

gg

//

OO

E0r
r+1 E

1,r
r+1 · · · E

n,r
r+1

r ≥ 2

E00
r+1 E

10
r+1 · · ·

gg

En0r+1
//

OO

Actually, due to topological reason, they are called of spherical base

and of spherical fibre respectively.
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(1.58)EXAMPLE (Trivial Spherical type) Of course, if the gap between

the rest two columns or rows are more narrow, then the long exact

sequence splits, since d = 0 now.

E0n
R ErnR

E0,n−1
R Er,n−1R R > r ≥ 1

...
...

E00
R Er0R

dd

//

OO

E0r
R+1 E

1,r
R+1 · · · En,rR+1

R > r ≥ 2

E00
R+1 E

10
R+1 · · ·

dd

En0R+1
//

OO

(1.59) Small terms If E∗∗∗ is a homological type spectral sequence in

the first quadrant. Then, when p − r < 0, i.e. p < r, the arrow from

Epqr is zero; when q − r + 1 < 0, i.e. q + 1 < r, the arrow to Epqr is

zero. As a result, when r = max(p+1, q+2), Epqr = Epq∞. Similarly, for

cohomological type, when r = max(p+ 1, q + 2), Epqr = Epq∞.

(1.60)EXAMPLE (First five terms) So it is useful to get the first several

terms if we know E2. In the homological type, we have

• For n = 0, then no problem, E00
2 = H0.

• For n = 1,

0→ E20
∞ → E20

2 → E01
2 → E10

∞ → 0,

0→ E01
∞ → H1 → E10

2 → 0.

• For n = 2, we know that E02
∞ = E02

2 forms a topmost factor of H2.

• So we have the following exact sequence

H2 → E20
2 → E01

2 → H1 → E10
2 → 0.
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The diagram is

· · ·

��

0

��
0 // H2

†
//

��

H2 //

  

E20
∞

//

��

0

E11
∞

��

E20
2

��
0 E01

2

��   

0

��
0 // E01

∞

��

// H1 //

  

E10
∞

//

��

0

0 E10
2

��
0

Or, in summary,

0 0

H0
��

��

E01
2

H1
��

��

· · ·

H2

��

· · ·

E00
2

gg

E10
2

gg

E20
2

gg

//

OO

(1.61)EXAMPLE (First five terms) Dually, in the cohomological type,

besides E00
2 = H0, we have the following exact sequence

0→ E10
2 → H1 → E01

2 → E20
2 → H2
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0

''

0

''''

E01
2

''

· · · · · ·

E00
2

H0__

__

E10
2

H1__
__

E20
2

H2__

//

OO

Exercises

I (1.62)Exercise. Prove all the lemmate we do not prove (1.21), (1.22),

(1.23), (1.25) and (1.45).

I (1.63)Exercise. Prove the derived exact couple (1.46) is exact couple

by element-picking.

I (1.64)Exercise. Check the exactness claimed in (1.49).

I (1.65)Exercise. If we have the following diagram with the row exact,

show that it induces a short

exact sequence

0→ im f → im g
†
−−→ imh→ 0.

D

h

  
g

��
A

f
//

??

B
†

// C

I (1.66)Exercise. If we have the following diagram with the row exact

show that it induces a short

exact sequence

0→ im f → im g
†
−−→ imh→ 0.

D
†

  
A //

f
????

B

g

OO

h
// C

I (1.67)Exercise ([9], Theorem 3). For

A
f //

g

��
d

  

B

h
��

C
k

// D
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show that we have the following diagram

0
,,

��

ker f
++

��

ker k
B ,,

��

cok g
,,

��

cokh **

��

0

H1

??

��

ker d

??

��

H2

??

��

cok d

??

��

H3

??

��
0 33

??

ker g 33

??

kerh
C

22

??

cok f 22

??

cokh 44

??

0

with each braid exact. Where H1,H2,H3 are exactly the homology

groups of

0→
1

A→
2

B ⊕ C→
3

D→ 0.

Hint: View it as a double complex, then two of them follows

from spectral sequence of double complex. The rest two is kernel-cokernel

sequence for composition.

I (1.68)Exercise (Transgression). Given a chain map between two

chain complexes C•
f
−−→D• which are both exact, show that

H•−1(ker f) ∼= H•+1(cok f).

This isomorphism is called transgression. Show this reprove the snake

lemma and five lemma. Hint: View it as a bicomplex with only

two rows.

I (1.69)Exercise. Given a finite length sequence of exact complexes

0→ A1
• → · · · → An• → 0

then we get

0→ H•(A
1)→ · · · → H•(A

n)→ 0

if for all positions other than H•(A
i) is exact, show that it is exact.

I (1.70)Problem (Rees system). Historically, the following commuta-
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tive diagram

J I

H

N

D
i //

β

~~

D

j~~

β

  
F

γ
��

E

k

``

k

��

F

γ
��

∼

OO

D
ı

//

α

OO

D

ȷ

__ α

OO

where N’s all exact at each position, is called a Rees system. It is

easy to see j ◦k = ȷ◦k. Show that the following diagram is also a Rees

system

H

N

D′
i′ //

β′

~~

D′

j′~~

β′

  
F

γ′ ��

E′
k′

``

k
′

~~

F

γ′��

∼

OO

D
′

ı′
//

α′

OO

D
′

ȷ′
`` α′

OO

with the two N’s the derived couples, and α′ induced by α, β′ by βi−1,

γ′ by γ.

I (1.71)Problem (Comparison). If we have a morphism C
f
−−→C be-

tween filtered complexes (f compatible with the filtration) where C

and C are both lower bounded and exhausive. If the induced mor-

phism E•
f
−−→E• is isomorphic when • ≫ 0, show that H(C)

f∼= H(C).

Hint: By five or snake lemma, FpH(C)
f∼= FpH(C), then take

the union.

I (1.72)Problem. Here is some further remarks on the exactness of

limit (1.49).
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(1) Give an example where it fails to be right exact. Hint: Consider

0→ pnZ→ Z→ Z/pnZ→ 0.

(2) If (· · · → A2 → A1 → A0) satisfies the followingMittag-Leffler

condition

∀j ≫ 0, ∃i > j, ∀k > i, im[Ak → Aj ] = im[Ai → Aj ].

That is, descending condition holds on the image at each position. Then

lim←− is exact at 0→ A→ B → C → 0.

(3) If we have a filtered complex C, show that

lim←−
p

Hp(C/FpC) = Hp( Ĉ )

where Ĉ = lim←−p C/F
pC the completion. Hint: lim←− commutes with

kernel by left exactness. On image, in our case, the map between

them are all surjective, thus of course they satisfy Mittag-Leffler

condition. By (2), lim←− commutes with H = ker / im.

I (1.73)Exercise. Consider the complex and the filtration

0→ Z
n7→3n
−−−−−−→Z→ 0, · · · ⊆ 4Z ⊆ 2Z ⊆ Z

Compute that E1 = 0, but H(C) ̸= 0.



Chapter 2

Applications in Topology

2.1 Mini-dictionary of Topology

Local coefficient homology For a topological space X, denote its

fundamental groupoid by Π1(X). A local coefficient system R is an

assignment of abelian group Rx to each point of x, with Π1(X) acting

on Rx.

§ We can define

Singn(X;R) =
⊕
x∈X

Fnx ⊗Rx,

where Fnx is the free abelian group generated by the continuous map

△n
f
−−→X, with the centre of △n mapped to x. Then we can define the

differential

[△n
f
−−→X]⊗ rx 7→

n∑
i=0

(−1)n[△n−1
i-th boundary
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→△n

f
−−→X]⊗ γi(rx)

where γi is the path
[
[0, 1]

∗
−−→△n

f
−−→X

]
, with ∗ mapping the centre

of △n to centre of i-th boundary. The homology group of Singn(X,R)
is called local coefficient homology.

35
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§ We can also define local coefficient cohomology by

Singn(X;R) =
⊕
x∈X

Hom(Fnx ;Rx).

We can also define relative local coefficient (co)homology. One

can prove homotopy invariance, excision etc.

§ If X admits a cellular structure, say

X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ · · ·

then we can define the cellular homology by

Celln = Hn(X
n, Xn−1;R)

with the differential the connection morphism. An easy exercise is that

Hn(Cell;R) = Hn(X;R), more precisely, H•(X
n, Xn−1;R) vanishes

only except n.

Let
Cn = small open disks around centres of all n-cells

Dn = Cn = small closed disks around centres of all n-cells

|B|n−1 = Bn \ Cn

∥B∥n−1 = Bn \Dn

The standard computation

Hn(X
n, Xn−1;R) = Hn

(
Bn, |B|n−1;R

)
= Hn

(
Bn \ ∥B∥n−1, |B|n−1 \ ∥B∥n−1;R

)
= Hn

(
Dn, Cn;R

)
=

⊕
all n-cells c Hn

(
Dn, Sn−1;Rc

)
=

⊕
all n-cells c Hp(Dp, Sp)⊗ Hq

(
Fc

)
where Rc stands for abelian group of the centre of c. Then by chasing

through the isomorphisms, the differential is given by ∂ ⊗ γi, where γi
the the path from the center of n-cell to the target (n− 1)-cell.
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§ When the action of Π1 is trivial, for example, the space is sim-

ply connected, we say Rx is constant. In particular, when X is path

connected then the local coefficient (co)homology coincide with the

(co)homology of coefficient of any Rx0 for x0 ∈ X.

Fibre Generally, a bundle is a surjective between topological space

E
ξ
−−→B. We call E the total space, B the base space. For any

x ∈ B, {x ∈ E : ξ(x) = B} is called the fibre at x. For convention, we

will write E = E(ξ) and B = B(ξ), and E(ξ)x for the fibre at x. For

any subset U ⊆ B, we denote E|U = ξ−1(U).

§ In topology, we say a bundle ξ : E → B is a fibration if it satisfy

homotopy lifting property (HLP) for any space X, more precisely,

For any α and λmakes the

square commutes, there

exists Λ making two trian-

gle commute.

X
α //

=X×{0}
��

E

ξ

��
X × [0, 1]

Λ

::

λ
// B

For any x ∈ B, denote F the fibre at x. Pick some y ∈ Fx ⊆ E, then

it induces long exact sequence for homotopy group

· · · → π1(B, x)→ π0(F, y)→ π0(E, y)→ π0(B, x)→ 1.

Clearly, covering is a standard example of fibration.

If B is path connected and x, y ∈ B are two points, by the HLP, for

any path x
γ
−−→ y, there is a transformation between fibres Fx → Fy at

x and y, called change of fibre through γ. If γ1 and γ2 are vertices-

fixing-homotopic, then the resulting transformation is homotopic. In

particular, in this case, all fibres are of the same homotopy type, we

will write

F → E → B.

§ In geometry, we starts from some topological group G. We say

E
ξ
−−→B is a G-bundle of fibre F , if F is a G-set, and there is an open
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covering U = {Ui} such that

For each i, there is

a homeomorphism φi

make the square com-

mute.

E|Ui

��

φi // Ui × F

projection

��
Ui Ui

For each i, j, de-

note U = Ui∩Uj ,
there is a con-

tinuous map

U
ψji

−−→G such

that the square

commute.

E|U
φi

{{

φj

##
U × F

ψ∗
ij

(u,y)7→(u,ψi(u)·y)
//

��

U × F

��
U U

For each i, j, k, then

ψkjψji = ψki. In par-

ticular, the diagram com-

mutes where U = Ui ∩
Uj ∩ Uk.

E|U

��

��

��
U × F

��

// U × F

U × F

??

We will callG the structure group. It is easy to define the morphisms,

isomorphisms between fibre bundles. For example, when G = GLn, F

is an n dimensional space, then it is nothing but vector bundle.

§ If F = G, then we call ξ a G-principal bundle. For any topolog-

ical group G, there exists (called Milnor construction) a G-principal

bundle EG → BG with EG contractible. Then for any Cw-complex

X, the equivalence class of G-principal bundle over X is classified by

the homotopy class from X to BG, say

[X,BG] −→ G-PrinX [X
f
−−→BG] 7−→ f∗ξ.

The fibre bundle EG
ξ
−−→BG is called classifying bundle.



39

§ For a bundle E
ξ
−−→B, and a map B′

f
−−→B, then we can define

E′ = {(x, y) ∈ B′ × E : f(x) = ξ(y)}
projection
−−−−−−−−−−−−−−−−−−→B′

called pull back by f , and denoted by f∗ξ. Note that the pull back

shares the same fibre. An exercise is to prove when ξ is fibration, then

so is its pull back.

2.2 The Leray–Serre Spectral sequence

The purpose is to calculate the (co)homology group H(E;R) for some

commutative ring R with E in the fibration

F ↩→ E → B.

We assume B to be path-connected. The fibre change defines a system

of local coefficient H(F )x = H(F )x.

(2.1) Leray–Serre Assume we have a fibration E
π
−−→B with fibre F ,

then there is a spectral sequence E with

E2
pq = Hp(B;Hq(F ;R))

converging to H•(B;R).

Proof. We will omit R for simplicity.

We use the technique of Cw-approximation. Let B′ → B be a Cw-

approximation, i.e. B′ is Cw complex, and it induces isomorphism

between homotopy groups. Let E′ → B′ be the pull back of E → B (of

the same fibre). By long exact sequence of fibration, E′ → E is weakly

equivalence, thus induces the isomorphism between homology.

So it suffices to deal with when B is a Cw complex, say filtered by

B0 ⊆ B1 ⊆ · · · ⊆ Bp ⊆ · · · ⊆ B

Denote Ei = E|Bi = π−1(Bi). Now, Sing•(E) is filered by this lower

bounded and exhaustive filtration

Sing•(X
0) ⊆ Sing•(X

1) ⊆ · · · ⊆ Sing•(X
p) ⊆ · · ·
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So it induces a spectral sequence E with

E0
pq = Singp+q(X

p)/Singp+q(X
p−1).

Then,

E1
pq = Hp+q(X

p, Xp−1).

By our construction d inside E1 is given by

d : Hp+q(X
p, Xp−1)

connecting map
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Hp+q−1(X

p−1, Xp−2).

Let
Cp = small open disks around centres of all p-cells

Dp = Cp = small closed disks around centres of all p-cells

|B|p−1 = Bp \ Cp

∥B∥p−1 = Bp \Dp

Then

Hp(B
p, Bp−1) = Hp

(
Bp, |B|p−q

)
= Hp

(
Bp \ ∥B∥p−1, |B|p−q \ ∥B∥p−1

)
= Hp+q

(
Dp, Cp

)
Hp+q(X

p, Xp−1) = Hp+q
(
π−1(Bp), π−1(Bp−1)

)
= Hp+q

(
π−1(Bp), π−1(|B|p−1)

)
= Hp+q

(
π−1(Bp) \ π−1(∥B∥p−1), π−1(|B|p−1) \ π−1(∥B∥p−1)

)
= Hp+q

(
π−1(Dp), π−1(Cp)

)
Now every isomorphism commutes with connecting map.

Hp(B
p, Bp−q) =

⊕
all n-cells c Hp+q

(
Dp,Sp

)
Hp+q(X

p, Xp−1) =
⊕

all n-cells c Hp+q
(
Dp × Fc, Sp × Fc

)
=

⊕
all n-cells c Hp(Dp,Sp)⊗ Hq

(
Fc

)
Here we use some homotopy induced by HLP. So under the isomorphis-

m, d is given exactly by the local coefficient homology complex. As a

result,

E2
pq = Hp(B,Hq(F,R)).

The proof is complete.
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(2.2) Leray–Serre Assume we have a fibration E
π
−−→B with fibre F ,

then there a spectral sequence E with

Epq2 = Hp(B;Hq(F ;R))

which converges to H•(B;R).

The next problem is about the cup product and cap product.

(2.3)Corollary Assume we have a fibration E
π
−−→B with fibre F ,

then the cup product ∪ induced from X on Epq2 is given by

∪ : Epq2 × Ep
′q′

2 −→ Ep+p
′,q+q′

2 (x, y) 7−→ (−1)p
′qx ⌣ y

where ⌣ is the cup product for Hp(B;Hq(F ;R)).

Proof. Note that Hp(B;Hq(F ;R)) are from Cp(B)⊗ Cq(F ), so

Cp(B) ⊗ Cq(F ) ⊗Cp′(B)⊗ Cq′(F ) ∪ // Cp+p
′
(B)⊗ Cq+q′(F )

Cp(B) ⊗Cp′(B)⊗ Cq(F ) ⊗ Cq′(F ) ⌣⊗⌣// Cp+p′(B)⊗ Cq+q′(F )

one need ∗ = (−1)p′q to adjust the sign by Koszul convention (1.14).

(2.4)Corollary Assume we have a fibration E
π
−−→B with fibre F ,

then the cap product ∩ induced from X on E2
pq is given by

∩ : Epq2 × E2
p′q′ −→ E2

p′−p,q′−q (x, y) 7−→ (−1)p
′qx ⌢ y

where ⌢ is the cap product for Hp(B;Hq(F ;R)).

HHHj

H0(B,H2(F ;R)) H1(B,H2(F ;R)) H2(B,H2(F ;R))

H0(B,H1(F ;R)) H1(B,H1(F ;R)) H2(B,H1(F ;R))

H0(B,H0(F ;R)) H1(B,H0(F ;R)) H2(B,H0(F ;R))
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(2.5)EXAMPLE (Gysin sequence) Let Sn → E → B be a sphere bun-

dle. If B is orientable, since automorphism of H•(Sn) is {±1}, then
H•(Sn) is constant.

HHHj

H0(B;Hn(Sn)) H1(B,Hn(Sn)) H2(B;Hn(Sn))
...

. . .
...

0 0
. . .

...
...

...
. . .

H0(B) H1(B) H2(B) · · · Hn(B)

So we get Hi(B) = Hi(E) for 0 ≤ i ≤ n− 1, and exact sequence

0→ Hn(B)→ Hn(E)→ H0(B)
∗
−−→Hn+1(B)→ Hn+1(E)→ H1(B)

∗
−−→Hn+2(B)→ Hn+2(E)→ · · ·

The map Hi(B)
∗
−−→Hi+n+1(B) is actually given by a cup product. Let

γ be the image of 1 ∈ H0(B) in Hn+1(B). Let [x] ∈ Hi(B;Hn(Sn)), say

presented by x⊗ 1n, then

d(x⊗ 1n) = d(x⊗ 10 ⌣ 1⊗ 1n)

= d(x⊗ 10)⌣ 1⊗ 1n ± x⊗ 10 ⌣ d(1⊗ 1n)

= ±x⊗ 10 ⌣ γ

its image in Hi+n+1(B;Z) is ±x ⌣ γ. The γ is known as Euler class.

(2.6)EXAMPLE (Leray-Hirsch) Let F
i
−−→E

p
−−→B be a filtration with

B path-connected. Assume H•(F ;R) is a finitely generated free R-

module for each •, and there is a subset {ci} ⊆ H•(E) such that i∗(ci)

forms an R-basis for H•(F ). Then by Leray-Hirsch theorem,

L : H•(B;R)⊗ H•(F ;R) −→ H•(E;R) b⊗ i∗(ci) 7−→ p∗(b)⌣ cj

is an isomorphism.

Now, by the HLP, the property holds for any fibre, and the local

system is constant. So

Epq2 = Hp(B;H(F ;R)) = Hp(B;R)⊗R Hq(F ;R).



43

By our proof, locally, the isomorphism Epq2 = Hp(B;H(F ;R)) is given

by product, so Epq∞ =⇒ H•(E) is induced by L above. So Epq2 = Epq∞ yet.

2.3 The Eilenburg–Moore Spectral sequence

The purpose is to calculate the cohomology group of pull back

Where E
π
−−→B is a fibration,

X
f
−−→B a map, and Ef is the pull

back.

Ef
f̃ //

ξ

��

E

π

��
X

f
// B

We will use some convention of differential algebra.

(2.7)Definition (Cross product) Consider

×f : Sing•(X)⊗Sing•(B)Sing
•(E) −→ Sing•(Ef ) x⊗y 7−→ ξ∗x ⌣ f̃∗y

it induces cross product

H•(X)⊗H•(B) H
•(X)

×f

−−→H•(E).

(2.8) Eilenburg–Moore Let E → B be a fibration over simply

connected space B, and X
f
−−→B be some map. Denote the pull back

of ξ through f by Ef . Then there exists a spectral sequence E such

that

Epq2 = degree p part of TorH
•(B;R)
q (H•(X;R),H•(E;R))

and E converges to H•(Ef ;R).

Proof. By Leray-Serre spectral sequence, we have a filtration F over

Sing•(Ef ) and Sing•(X). Note that they are also S•(E) and S•(B)-

module, so one can take resolution with compatible with filtration

P•∗ (Ef )
∼ // Sing•(Ef )

P•∗ (X) ∼
//

OO

Sing•(X)

OO
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So it induces

P•∗ (Ef )
∼ // Sing•(Ef )

P•∗ (X) ⊗
Sing•(B)

Sing•(E) //

∗

OO

Sing•(X) ⊗
Sing•(B)

Sing•(E)

×

OO

It is funny that over the total of P•∗ (X) ⊗
Sing•(B)

Sing•(E), there are

three filtrations, the column, the row, and the mixed filtration induced

by F ⊗F . Consider the spectral sequence induced by mixed filtration

on(
Tot•∗ P•∗ (X)

)
⊗

Sing•(B)
Sing•(E)

∗
−−→Tot•∗ P•∗ (Ef )

∼
−−→Sing•(Ef ).

Since P•∗ (X) is free Sing•(B)-module, so the mixed filtration of left

hand side can be computed. Also note that TotP•∗ (X) is weakly equiv-

alence to Sing•(X), On E1-level, it is(
H•(X) ⊗

H•(B)
H•(B•, B•−1)⊗Hq(F )

)
•=p
→ Hp(Xp, Xp+1)⊗Hq(F )

On E2-level, it is

H•(X) ⊗
H•(B)

H•(B,Hq(F ))
×
−−→H•(X,Hq(F ))

an isomorphism. As a result, the homology group of

Tot P•∗ (X) ⊗
Sing•(B)

Sing•(E)

is exactly H(Ef ). It is also a double complex, so(
Tot P•∗ (X) ⊗

Sing•(B)
Sing•(E)

)
∗=p,•=q

q∣∣∣∣ (Tot P•∗ (X) ⊗
H•(B)

H•(E)

)
∗=p,•=q

p∣∣∣∣ (TorH•(B)
q

(
H•∗(X),H•(E)

))
∗=p

.

The proof is complete.
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(2.9)Remark Actually, we have

TorSing
•(B)(Sing•(X), Sing•(E)) = H•(Ef ;R)

by computing
(
Tot•∗ P•∗ (X)

)
⊗Sing•(B) Sing

•(E) directly.

(2.10)Corollary The natural product of Tor on Epq2 coincides the

cup product.

Proof. Consider

Ef

��

//

��

E

��

��

Ef × Ef

��

// E × E

��

X //

��

B

��
X ×X // B ×B

and we can take the resolution of H•(B) ⊗ H•(B) to be P ⊗ P in the

proof.

(2.11)Remark By a similar argument, if X and Y are G-spaces with

X a principal bundle, then

TorSing•(G)(Sing•(X), Sing•(Y )) = Sing•(X ×G Y ).

and there exists spectral sequence E with

E2 = TorH(G)(H(X),H(Y ))

converges to H(X ×G Y ).
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2.4 The Bockstein Spectral Sequences

Let X be a topological space. Then the short exact sequence

0→ Sing•(X)
·n
−−→Sing•(X)→ Sing•(X;Z/n)→ 0

gives rise to an exact couple

H•(X)

H•(X;Z/n)

i // H•(X)

j
��

k

\\

To make it a bigraded exact couple, we consider

Dpq = Hp+q(X), and Epq = Hp+q(X;Z/n).

(2.12)Definition (Bockstein operator) The first page differential is given

by j ◦ k, or

÷n : H•(X,Z/n) −→ H•(X,Z/n) [x] 7−→ [y]

where x ∈ Sing•(X) with dx = ny for some y ∈ Sing•(Y ). This is

called Bockstein operator.

(2.13)Proposition The Bockstein operator is the connected mor-

phism induced by

0→ Sing•(X;Z/n)
·n
−−→Sing•(X;Z/n2)→ Sing•(X;Z/n)→ 0

Proof. Consider

0 // Z //

��

Z //

��

Z/n //

��

0

0 // Z/n // Z/n2 // Z/n // 0
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(2.14)EXAMPLE The Bockstein operator for n = 2 is exactly the first

steenrod operator Sq1.

(2.15)Bockstein Spectral Sequences For a topological space X

with H•(X) a finite generated abelian group for each •, there is a spec-

tral sequence E with
E1
pq = Hp+q(X;Z/n),

E2
pq = Hp+q(H•(X;Z/n),÷n)

E∞pq =
(
free part of Hp+q(X)

)
⊗ Z/n

“converging” to S−1H•(X), the localization with respect to S = {1, n, n2, . . .}.
Here “convergence” means there is a filtration F onH• = H•(X)n, with∩
FH = 0, and

∪
FH = H, and FpCp+q/Fp−1Cp+q ∼= E•pq.

Proof. Recall the proof of (1.42). The crucial step is∩
r

ir(D) = 0,
∪
r

i−r(0) = ker[D → D̃],

which holds when the topological space is of finite type, i.e. H•(X) is a

finite generated abelian group. So the proof still holds, if we loose the

assumption of convergence.

The rest is some computation,

lim←−
[
· · ·

n
−−→Z

n
−−→Z

n
−−→· · ·

]
= lim←−

[
· · ·

⊆
−−→Z

⊆
−−→ 1

nZ
⊆
−−→· · ·

]
=

∪
k

1

nk
Z = S−1Z

Then filtered limit commutes tensor product, so

lim←−

[
· · ·

i
−−→D

i
−−→· · ·

]
= S−1H•(X).

Also, in the proof,

E∞pq = im
[
H•(X)→ H•(X)n

]
⊗ Z/n

=
(
free part of Hp+q(X)

)
⊗ Z/n.

The proof is complete.
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Exercises

I (2.16)Problem (Wang sequence). Let F → E → Sn be bundle over

sphere with n ̸= 0, 1. Show that there is the following Wang sequence

0→ Hn−1(F ;R)
∗
−−→H0(F ;R)→ Hn(E;R)→ Hn(F ;R)

∗
−−→H1(F ;R)→ Hn+1(E;R)→ · · ·

and Hi(F ;R) = Hi(E;R) for 0 ≤ i ≤ n− 2. Hint: Consider

HHHj

Hn(F ;R)
...

...

H2(F ;R)
...

...
... H2(F ;R)

H1(F ;R)
... 0

... H1(F ;R)

H0(F ;R)
... 0

... H0(F ;R)

Note that the Θ = ∗ satisfies Θ(x ⌣ y) = Θ(x)⌣ y+(−1)|x|(n−1)x ⌣
Θy.



Chapter 3

Applications in Algebra

3.1 Mini-dictionary of Algebra

Hyper resolutions Let A be an abelian category of enough projec-

tives. Let C• be a complex of A.

§ A double complex P∗∗ is said to be a Hyper resolution if for

each column i,

Pi•

↓
Ci

im[Pi−1,• → Pi•]

↓
im[Ci−1 → Ci]

H[Pi−1,• → Pi• → Pi+1,•]

↓
H[Ci−1 → Ci → Ci+1]

are all projective resolutions.

§ As a result, the following are automatically projective resolution.

ker[Pi,• → Pi+1,•]

↓
ker[Ci → Ci+1]

cok[Pi−1,• → Pi•]

↓
cok[Ci−1 → Cr]

For each row,

· · · → P∗,q+1 → P∗,q → P∗,q−1 → · · ·

is direct sum of 0→ • = • → 0, and 0→ • → 0.
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§ By horseshoe lemma, there always Hyper resolution for all com-

plexes.

Group (co)homology Let G be a discrete group. Consider the cat-

egory of G-Mod = Z[G]-Mod. For any left G-module M , we can view

it as a right module by x · g = g−1x. So we will not distinguish left and

right modules, but distinguish two-side and one-side.

§ For a G-module M , we define the group cohomology and ho-

mology by

Hi(G;M) = ExtiG(Z,M), Hi(G;M) = TorGi (Z,M),

where Z is the trivial module. Note that, there is an augment map

Z[G]
ϵ
−−→Z, whose kernel is Z-free generated by {(1 − g) : g ∈ G \ 1}.

It is easy to see thatH0(G;M) = HomG(Z,M) = {x ∈M : ∀g ∈ G, gx = x} =MG

H0(G;M) = Z⊗GM =M/ ⟨(1− g)x : g ∈ G⟩ =M/IGM =MG

Conversely, H•(G;−) is the right derived functor of M 7→ MG and

H•(G;−) is the left derived functor of M 7→MG.

§ For two left G-modules M,N ,

HomZ(M,N), M ⊗Z N

has a natural G-structure by g · f : x 7→ gf(g−1x), and g · (x ⊗ y) =

gx⊗ gy. Under this, we have the following isomorphisms of G-module

HomZ(M,HomZ(N,L)) = HomZ(M,HomZ(N,L)) = HomZ(N ; HomZ(M,L)).

This is known as the structure of Hopf module.

We have

HomZ(M,N)G = HomG(M,N),
(
M ⊗Z N

)
G
=M ⊗G N.
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Generally, if we take a free resolution P• → Z, then P•⊗ZM →M has

two structure g(x⊗ y) = gx⊗ y and gx⊗ gy, but they are isomorphic.

Actually, over Z[G]⊗GM ,


h⊗ x //

g⊗1
��

h⊗ hx

g⊗g
��

gh⊗ x // gh⊗ ghx

, so is all free

modules. Then

ExtiG(M,N) = Hi(HomG(P• ⊗Z M,N))

= Hi(HomG(P•,HomZ(M,N))) = Hi(G; HomZ(M,N)),

TorGi (M,N) = Hi(P• ⊗Z M ⊗G N) = Hi(G;M ⊗G N).

§ For a subgroup H ≤ G, any G-module M is naturally an H-

module, but we write M ↓GH= M if necessary to differ. For any H-

module N , we can define the induced moduleN ⇑GH= HomH(Z[G], N), g · f : x 7→ f(xg).

N ↑GH= Z[G]⊗H N, g · (z ⊗ y) = gz ⊗ y

Then, HomG(M,N ⇑GH) = HomH(M ↓GH , N),

HomG(N ↑GH ,M) = HomH(N,M ↓GH).

Note that a G-resolution F• → Z is also an H-resolution, so

H•(G;M ⇑GH) = H•(HomG(F•, N ⇑GH)) = H•(HomH(F•, N)) = H•(H;M).

H•(G;M ↑GH) = H•(F• ⊗G Z[G]⊗H N) = H•(F• ⊗H N) = H•(H;M).

These facts are known as Shapiro lemma.

If a G-module is of the form HomZ(Z[G], A) = A ⇑G for some

abelian group A, it will be called coinduced G-module. Dually, a

G-module is of the form Z[G]⊗A = A ↑G for some abelian group A, is

called induced G-module Note that,

H•(G;A ⇑G) = H•(1, A) =

A, • = 0,

0, • ≥ 1.

H•(G;A ↑G) = H•(1, A) =

A, • = 0,

0, • ≥ 1.
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If G is finite, then ↑ coincides with ⇑ (as G-module) by f 7→∑
g∈G g ⊗ f(g−1). Since gf 7→

∑
x∈G x ⊗ f((x)−1g) =

∑
x∈G gx ⊗

f(x−1).

§ For a subgroup H, G-moduleM , we have maps by universal prop-

erty of derived functor

res : Hi(G;M)→ Hi(H;M), cores : Hi(H;M)→ Hi(G;M),

called restriction and corestriction induced by

HomG(P•,M)→ HomH(P•,M), P• ⊗GM → P• ⊗H M.

When we have a normal subgroup N , G-module M , we also have

Hi(G/N ;M)
inf
−−→Hi(G;MN ), Hi(G;M)

coinf
−−→Hi(G/N ;MN ),

called inflaction and coinflation induced by

HomG/N (PN• ,M
N )→ HomG(P•,M), P• ⊗GM → (P•)N ⊗N MN .

§ When H ⊆ G is of finite index, and G-module H, one can define

transfer and cotransfer

Hi(H;M)
tr
−−→Hi(G;M), Hi(G;M)

cotr
−−→Hi(H;M).

induced by AH
x 7→Nx
−−−−−−−−→AG and AG

x 7→xN
−−−−−−−−→AH , with N the sum of repre-

sentatives of coset in G/H. Then by a direct computation,Hi(G;M)
tr
−−→Hi(H;M)

res
−−→Hi(G;M),

Hi(G;M)
cores
−−→Hi(H;M)

cotr
−−→Hi(G;M),

are just scalar product by the index [G : H].

§ When G is finite, we can define Tate cohomology by

H̃i(G;M) =



Hi(G;M), i ≥ 1,

cok[MG

N
−−→MG] =MG/N ·M, i = 0,

ker[MG

N
−−→MG] = {x ∈M : Nx = 0}/I ·M, i = −1,

H−1−i(G;M) i ≤ −2.
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It also has two-side long exact sequence for each short exact sequence

of G-Mod. By a trick of dimension shift, res, cores, tr and cotr can be

extended on Tate cohomology, and res = cotr and cores = tr.

§ If we take resolution P• → Z, it is easy to find P• ⊗Z P• is a

resolution also for Z. So the map induced cup product

Hi(G;M)⊗ Hj(G;N)
⌣
−−→Hi(G;M ⊗N).

In particular, whenM = N = Z, H•(G;Z) forms a graded commutative

ring. More precisely, for α ∈ Hi(G;M) presented by Pi
a
−−→M and

β ∈ Hj(G;N) presented by Pi
β
−−→N , then α ⌣ β is presented by

Pi ⊗ Pj
a⊗b
−−→M ⊗N . When M = N = Z, using Koszul convention, and

Eckmann-Hilton argument

α ⌣ β = (−1)|α||β|β ⌣ α.

§ Geometrically, we can find a contractible G-cellular space EG

with free G-action. Denote BG = EG/G, then the natural map EG→

BG is a covering, and πi(BG) =

G, i = 1

0 i ̸= 1
. Such BG is called

K(G; 1). Then, now, the chain complex of cellular homology of EG, say

C•(EG), forms a G-resolution of Z. Given a G-module M , EG×GM
forms a local coefficient system over BG, sayM, then

H•(G;M) = H•(BG;M), H•(G;M) = H•(BG;M).

In particular, if M is trivial, then it is just the (co)homology of BG

with coefficientM . More particularly, ifM = Z, then two cup products

coincide.

3.2 The Künneth Spectral Sequences

It is natural to compare the homology of a complex and after tensoring

some module. Let C• be a complex in R-Mod, andM a right R-module.

We will compare H•(M ⊗ C•) and M ⊗H•(C•).
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Let P• →M be a resolution as Rmodule. It forms a double complex

P• ⊗ C•. Then

↓
... Pp ⊗ Cq

...

↓

· · ·
← Pp ⊗ Hq(C•) ←

· · ·

· · ·
... Torp(M,Hq(C•))

...

· · ·

To get clear result, we assume C• is flat for each •, then

· · ·
← Pp ⊗ Cq ←

· · ·

↓ 0 · · ·
M ⊗ Cq 0 · · ·
↓ 0 · · ·

· · · 0 · · ·
Hq(M ⊗ C•) 0 · · ·

· · · 0 · · ·

It goes from ← to ↓, so we need to exchange pq to suit our convention

(1.4).

(3.1) Theorem Let C• be a nonnegative complex in R-Mod, and M

a right R-module. Then there is a spectral sequence E with

E2
pq = Torp(M,Hq(C•))

converging to H•(M ⊗ C•).
If C• satisfies

for each n, Cn is flat, and d(Cn) ⊆ Cn−1 is also flat, (∗)

Then ker d is flat by considering the long exact sequence of 0→ ker→
C → im→ 0. Then H(C) has flat dimension at most 1 by considering

the long exact sequence of 0→ im→ ker→ H(C)→ 0.

M ⊗ Hq(C•) Tor1(M,Hq(C•)) 0 · · ·
...

...
...

M ⊗ H0(C•) Tor1(M,H0(C•)) 0 · · ·

(3.2)Corollary (Universal coefficient theorem) If C• satisfies

(∗), then we have the exact sequence

0→M ⊗R Hn(C•)→ Hn(M ⊗R C•)→ TorR1 (M,Hn−1(C•))→ 0.
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Here we do not assume the C• to be nonnegative since we can firstly

truncate the complex.

(3.3)Remark If furthermore, d(C•) is projective, then the sequence

splits. Consider

· · · // M ⊗ im // M ⊗ ker //

��

M ⊗H(C) //

��

0

0 // im(M ⊗ C) // ker(M ⊗ C) // H(M ⊗ C) // 0

Now, ker d is summand of C•, so M ⊗ ker d is summand of M ⊗ C, so
is summand of ker(M ⊗ C). Since summand is summand of subgroup

containing it. More precisely,

A⊕B = C,

A ⊆ D ⊆ C

}
=⇒ A⊕ (B ∩D) = D.

Then the right row splits. More categorially, note that a short exact

sequenceC splits iff Hom(X,C) is short exact for anyX, then it reduces

to diagram chasing over

0

��

0

��
Hom(X,M ⊗ ker)

��

// Hom(X,TorR1 (M,Hn−1(C•)))

��
Hom(X, ker(M ⊗ C))

��

// Hom(X,TorR1 (M,H(M ⊗ C)))

��
Hom(X, cok)

��

Hom(X, cok)

0

where cok = cok[M ⊗ ker → ker(M × C)]. Or, equivalently, take

X = cok in the above diagram.
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Generally, we want a theorem to compute the homology group of

tensor product of two complexes. For this, we need a resolution to a

complex. LetM• and C• be two complexes. Let P∗∗ →M• be a proper

resolution. Now, we need to consider the tri-complex

P•• ⊗ C•

Then

⊕
s+t=q

Pps ⊗ Ct

q∣∣∣∣ ⊕
s+t=q

Hs(Pp∗)⊗ Ht(C)

p∣∣∣∣ ⊕
s+t=q

Torp(Hs(M),Ht(C))

The first computation is because Pp• splits. To get clear result, we

assume C• is flat for each •, then

⊕
s+t=q

Pps ⊗ Ct

p∣∣∣∣

⊕

s+t=qMs ⊗ Ct p = 0

0 p ̸= 0
=⇒ H•(M ⊗ C)

(3.4)Künneth spectral sequences If two complexes C•, D• are non-

negative, with one of them flat, then we have a spectral sequence E with

E2
pq =

⊕
s+t=q

Torp(Hs(M•),Ht(C•))

which converges to H•(C ⊗D).

(3.5)Classic Künneth theorem If two complexes C•, D• are non-

negative, with one of them satisfying (∗), then we have the following

spilt short exact sequence⊕
p+q=n

Hp(C)⊗Hq(D) ↩→ Hn(C⊗D) �
⊕

p+q=n−1
Tor1(Hs(M•),Ht(C•)).

(3.6)Remark If furthermore, when the complex satisfying (∗) with

d(C•) projective, the sequence splits. The proof is the same.
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3.3 The Hoshschild–Serre Spectral Sequences

Let G be a discrete group, and N be a normal subgroup. Fix an G-

module M . We want to study the relation of Hi(N ;M) and Hi(G;M).

Let P• → Z be a free G-resolution.

Hi(G;M) = Hi(HomG(P•,M)) = Hi(HomN (P•,M)G/N )

Then we can take a G/N -resolution Q• → Z, and consider the double

complex

C•• = HomG/N (Q•,HomN (P•,M)).

Then, Hi(Tor(C)) = Hi(G;M).

↑
... Cpq

...

↑

...→ 0 →
...

...→ 0 →
...

...→ HomN (Pp,M)G/N →
...

... 0
...

... 0
...

· · · Hp(G;M) · · ·

On the other hand,

HomG/N (Qq,HomN (Pp,M))

p∣∣∣∣ HomG/N (Qq,H
p(N ;M))

q∣∣∣∣ Hq(G/N ;Hp(N ;M)).

(3.7)Hoshschild–Serre Let G be a discrete group, and N be a

normal subgroup. For any G-module M , there a spectral sequence E

with

Epq2 = Hp(G/N ;Hq(N ;M))

converging to H•(G;M).

HHHj

H2(N ;M)G/N H1(G/N ;H2(N ;M)) H2(G/N ;H2(N ;M))

H1(N ;M)G/N H1(G/N ;H1(N ;M)) H2(G/N ;H1(N ;M))

(MN )G/N H1(G/N ;MN ) H2(G/N ;MN )

By (1.60), we get first term sequence.
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(3.8)Corollary We have the following exact sequence

0 // H1(G/N ;MN )
inf // H1(G;M)

res // H1(N ;M)G/N

d

// H2(G/N ;MN )
inf // H2(G;M)

Proof. Only rest to prove the map given by spectral sequence coin-

cide the inflation and restriction. The map Hi(G/N ;MN )
inf
−−→Hi(G;M)

is induced by some chain map

HomG/N (Qi,HomN (P0,M))→ HomN (P•,M)G/N → HomG(Pi,M).

If we take Qi = PNi , this is what we defined. The map H1(G;M) →
H1(N ;M)G/N is induced by

HomG(Pi,M)→ HomG/N (Q0,HomN (Pi,M)).

So it also coincides the definition of restriction.

Dually, we have the following.

(3.9)Hoshschild-Serre Let G be a discrete group, and N be a nor-

mal subgroup. For any G-module M , there a spectral sequence E with

Epq2 = Hp(G/N ;Hq(N ;M))

which converges to H•(G;M).

(3.10)Corollary We have the following exact sequence

H2(G;M)
coinf// H2(G/N ;MN )

d

// H1(N ;M)G/N
cores // H1(G;M)

coinf// H1(G/N ;MN ) // 0
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3.4 The Grothendieck Spectral Sequences

Here is a generalization of (3.7) last section.

Consider the functors between abelian categories with enough pro-

jectives

A

F ��

GF // C

B
G

??

assume F,G are both right exact. Denote LiF and LiG the correspond-

ing left derived functors satisfies

F sends projective objects to acyclic objects of G.

It means, there are enough projective objects, say

A, in A, such that L≥1G(A) = 0.

(3.11)Grothendieck spectral sequences As above, for any object

A, there exists a spectral sequence E with

E2
pq = (LpG ◦ LqF )(A)

converging to L∗(G ◦ F )(A).

Proof. Take the projective resolution P• → A, and take the proper

resolution Q∗∗ → F (P•). Now let us compute the homology of G(Q∗∗).

G(Qpq)

q∣∣∣∣ LqG(F (Pp)) =

G(F (Pp)), q = 0,

0, q ̸= 0.
=⇒ L•(GF )(A).

Secondly,

G(Qpq)

p∣∣∣∣ G(Hp(Q•q))
q∣∣∣∣ LpG(LqF (A)),

since Hp(Q•q) is a resolution of the homological group of F (P•), i.e.

LqF (A).
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(3.12)Corollary We have the following exact sequence of functors

L2(F ◦G)→ L2F ◦G→ F ◦ L1(G)→ L1(F ◦G)→ L1F ◦G→ 0.

Dually, we have the similar result for left exact functors. Consider

the functors between abelian categories with enough injectives where

F,G are both left exact. De-

note RiF and RiG the corre-

sponding right derived func-

tors. Assume F sends injec-

tive objects to acyclic objects

of G.

A

F ��

GF // C

B
G

??

(3.13)Grothendieck spectral sequences As above, for any object

A, there exists a spectral sequence E with

Epq2 = (RpG ◦ RqF )(A)

which converges to R∗(GF )(A).

(3.14)EXAMPLE Let A
φ
−−→B be a ring homomorphism. Let M be

an A module, N be a B module (left or right indicated by notations).

A-Mod
−⊗AN //

−⊗AB   

Ab

Bop-Mod

−⊗BN

AA A-Mod
N⊗A− //

B⊗A− ��

Ab

B-Mod

N⊗B−

CC

A-Mod
HomA(−,N)//

B⊗A− ��

Abop

B-Mod

HomB(−,N)

AA A-Mod
HomA(N,−) //

HomA(B,−) ��

Ab

B-Mod

HomB(N,−)

CC

We have the spectral sequences

• E with E2
pq = TorBp (Tor

A
q (M,B), N) converges to TorA∗ (M,N).

• E with E2
pq = TorBp (N,Tor

A
q (B,M)) converges to TorA∗ (N,M).
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• E with Eqp2 = ExtpB(Tor
A
q (B,M), N) converges to Ext∗A(M,N).

• E with Epq2 = ExtpB(N,Ext
A
q (B,M)) converges to Ext∗A(N,M).

That the third is not Epq2 is to suit our convention (1.4).

(3.15)EXAMPLE (Leray Sequences) LetX → Y be map between topo-

logical space, then

Sheaf(X)
f∗ //

Γ $$

Sheaf(Y )

Γzz
Ab

gives rise to a spectral sequence E for each sheaf F over X, with

Epq2 = Hp(Y ;Rqf∗F )

converges to H•(X,F ). For sheaves, since the double complex of first

quadratic involves only finite colimit, so there is no problem mentioned

(1.49).

Exercises

I (3.16)Exercise. Under the assumption of (3.7), if further more,

H•(N ;M) = 0 for 1 ≤ • ≤ q − 1, show that we have the following

exact sequence

0 // Hq(G/N ;MN )
inf // Hq(G;M)

res // Hq(N ;M)G/N

d

// Hq+1(G/N ;MN )
inf // Hq+1(G;M)
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Hint: Now it becomes

Hq(N ;M)G/N H1(G/N ;Hq(N ;M)) H2(G/N ;Hq(N ;M))

0
... 0

...
...

...

0 0 0
...

(MN )G/N H1(G/N ;MN ) H2(G/N ;MN ) · · · Hq(G/N ;MN )

The same trick we used in (1.60).



Appendix A

Cohomology for

Topological Groups

The main result of this chapter is by Borel in [2].

A.1 Comparison Theorem

(A.1)Λemma For a chain of complex C•, we have the following exact

sequence

0→ ker d→ C
d
−−→C → cok d→ 0

0→ H(C)→ cok
d
−−→ ker→ H(C)→ 0

(A.2)Λemma If we have the following diagram with rows exact

0 // A //

α

��

B //

β

��

C //

γ

��

D //

δ
��

0

0 // A′ // B′ // C ′ // D′ // 0

Then

β is injective⇒ α is injective

63
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β is surjective

γ is injective

}
⇒

{
α is surjective

δ is injective

γ is surjective⇒ δ is surjective

(A.3)Λemma Let f : E→ E be a morphism of spectral sequences of

cohomology type. Then if the condition

f is

isomorphic on Epqr for p ≤ k − r

injective on Epqr for p ≤ k

holds for some r = R, then it holds for r ≥ R.

(A.4)Λemma Let f : E→ E be a morphism of spectral sequences of

cohomology type. Then if the condition

f is

isomorphic on Epqr for q ≤ k − r + 1

sujective on Epqr for q ≤ k

holds for some r = R, then it holds for r ≥ R.

(A.5) Zeeman comparison theorem Assume we have a morphism

between two first quadratic spectral sequences from the second page

E
f
−−→E, with the following diagram with rows exact

0 // Ep02 ⊗ E01
2

//

f⊗f
��

Epq2
//

f

��

Tor1(E
p+1,0
2 ,E0q

2 ) //

Tor(f,f)
��

0

0 // E
p0

2 ⊗ E
01

2
// E
pq // Tor1(E

p+1,0

2 ,E
0q

2 ) // 0

Then any two of the following conditions

• f is isomorphic on Ep02 for each p.

• f is isomorphic on E0q
2 for each q.

• f is isomorphic on Epq∞ for each p, q.
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imply that f is an isomorphism.

Proof. The first two imply the f is isomorphism on Epq2 , so f is an

isomorphism.

Assume f is isomorphism on Epq∞ and E0q
2 . If f is isomorphic on Epq2

for p ≤ k, then consider

Ek−1,12

��

Ek−3,34

��

· · ·

Ek+1,0
2

��

Ek+1,0
4

��

· · ·

��

Ek+1,0
∞

Ek+1,0
3

??

· · ·

??

Ek+1,0
k+1

??

Ek−2,23

??

· · · E0,k
k+1

??

The f on the modules in boxes have been proven to be isomorphic by

lemma above. So f is isomorphic on Ek+1,0
2 . Then by the assumption

of big diagram, f is isomorphic on Epq2 for p ≤ k + 1. The proof is

complete.

When f is isomorphism on Epq∞ and Ep02 . It follows by the similar

induction.

A.2 Transgression

(A.6)Definition (Transgression) If we have the diagram with row exact

· · · // A //

��

B
π //

β

��

C //

��

· · ·

· · · // A′
ι

// B′ // C ′ // · · ·

There is a well-defined map called transgression

ι−1(β(B)) −→ C/π(β−1(0)) x 7−→ β(π−1(ι(x))).
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(A.7)Definition For a fibration F → E → B, the transgression is

defined to be the transgression of the following diagram

· · · // Hn(E) //

��

Hn(E,F ) //

��

Hn−1(F ) //

��

· · ·

· · · // Hn(B) // Hn(B, ∗) // Hn−1(∗) // · · ·

Note that for first quadratic spectral sequence E, E≥2p0 are all sub-

group of E2
p0 and E≥20q are all quotient group of E2

0q.

(A.8)Theorem In Leray-Serre spectral sequence E of fibration

[F
i
−−→E

p
−−→B]

induces to commute diagram

Hn(B)
OO

� ?

// Hn(B, ∗)OO

� ?
0 // E∞n0 // Enn0 // En0,n−1 // E∞0,n−1 // 0

0 // imH(p∗) // ♡ // ♢ // imH(i∗) // 0

Hn(E)

OOOO

// Hn(E,F )

OOOO

// Hn−1(F )

OOOO

// Hn−1(E)
��

_�

where ♡ → ♢ is the transgression.

Proof. We argue by the funtoriality of Leray-Serre spectral se-

quences.
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F↓E
↓
B

→
 ∗↓B
↓
B

 =⇒

E2
n0 Hn(B) // Hn(B)

E∞n0 //?�

OO

E
∞
n0

Hn(E) //

OOOO

Hn(B)

shows

E∞n0 = im[Hn(E)→ Hn(B)] = imH(p∗)

The relative version, since E2
0q = H0(E,F ;Hq(F )) = 0,


F
↓

(E,F )
↓

(B, ∗)

→

∗
↓

(B, ∗)
↓

(B, ∗)

 =⇒

Hn(B, ∗) // Hn(B, ∗)

Enn0 E∞n0 //?�

OO

E∞0n

Hn(E,F ) //

OOOO

Hn(B, ∗)

for n ≥ 1, then

E∞n0 = j−1 im[Hn(E,F )→ Hn(B, ∗)]

where j : Hn(B)→ Hn(B, ∗).
The morphism between fibrations

F↓F
↓
∗

→
F↓E
↓
B

 =⇒

Hn(F ) // Hn(F )

����
Ê∞0n // E∞0n� _

��
Hn(F ) // Hn(E)

So

E∞0n = im[Hn(F )→ Hn(E)] = imH(i∗).
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Last, we have established (the middle � commutes since they are

all induced by d)

Hn(B)
OO

// Hn(B, ∗)OO

0 // E∞n0 // Enn0
d //

�

En0,n−1 // E∞0,n−1 // 0

Hn(E)

OO

// Hn(E,F )

OO

d
// Hn−1(F )

OO

// im i∗

OO

So by an algebraic argument, En0,n−1 must be the codomain of trans-

gression, say, by diagram chasing, or computation the push out of the

�.

(A.9)Definition (transgression) For a fibration F → E → B, the trans-

gression is defined to be the transgression of the following diagram

· · · // Hn−1(∗) //

��

Hn(B, ∗) //

��

Hn(B) //

��

· · ·

· · · // Hn−1(F ) // Hn(E,F ) // Hn(E) // · · ·

(A.10)Theorem In Leray-Serre spectral sequence E of fibration

[F
i
−−→E

p
−−→B]
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induces to commute diagram

Hn(B, ∗)

����

// Hn(B)

����
0 // E0,n−1

∞
// E0,n−1
n

// En0n // En0∞ // 0

0 // imH(i∗) // ♡ // ♢ // imH(p∗) // 0

Hn−1(E)

OOOO

// Hn−1(F )
��

_�

// Hn(E,F )
��

_�

// Hn(E)
��

_�

where ♡ → ♢ is the transgression.

(A.11)Definition We will call the elements in the domain of transgres-

sion the transgressive elements. It is, by theorem, the element x

with dx = 0 until the last d.

A.3 The Borel Theorem

(A.12)Borel Let k be a field. Consider

a fibration with E contractible and

B simply connected.
F → E → B

If

H•(F ; k) = Λk(x1, . . . , xn)

the exterior algebra in x1, . . . , xn, transgressive elements of odd degrees,

then

H•(B; k) = k[y1, . . . , yn]

the polynomial ring in y1, . . . , yn the image of x1, . . . , xn under trans-

gression.

Zeeman, [11]. Since k is a field,

Epq2 = Hp(B; k)⊗ Hq(F ; k).
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Consider

iE
pq
2 =

(
k[yi]

)
p
⊗
(
Λk(xi)

)
q

which has only two rows, and define

d : iE
pq
r −→ iE

p+r,q−r+1
r ypi ⊗ xi 7−→

y
p+1
i |yi| = r

0 otherwise

This makes iE a spectral sequence with multiplication structure. Define

f2 : iE2 −→ E2 ypi ⊗ xi 7−→ ypi ⊗ xi.

If fr−1 is defined, then fr = H(fr−1) is a chain map for r < |yi|.
Actually, since iE has only two rows, we need to check

0 //

��

Ep−r,r−1r

��
iE
p0
r

// Ep0r

iE
0q
r

//

��

E0q
r

��
0 // Er,q−r+1

r

The first square always commutes, and the second commutes since xi is

assumed to be transgressive. The rest nonzero entries commute because

of multiplication structure.

In the last step, that is, when r = |yi|, fr is also a chain morphism,

since

xi ∈
_

��

iE
0,r−1
r

//

��

E0,r−1
r

transgression

��
yi ∈ iE

r0
r

// Er0r

The rest is also due to multiplication structure.

So we get a well-defined map

f : E =
n⊗
i=1

iE
⊗f
−−→

n⊗
i=1

E
⌣
−−→E.

Then E
pq

∞ =

k, (p, q) = 0,

0, (p, q) ̸= 0.
since each iE does, and are made by
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free k-modules. So by Zeeman comparison theorem (A.5), H•(B; k) =

k[y1, . . . , yn].

(A.13)Borel Let k be a field. Consider

a fibration with E contractible and

B simply connected.
F → E → B

If

H•(F ; k) = Λk(a1, . . . , an)

with a1, . . . , an of odd degrees, then we can pick transgressive elements

x1, . . . , xn, such that

H•(F ; k) = Λk(x1, . . . , xn).

Proof. Since k is a field,

Epq2 = Hp(B; k)⊗ Hq(F ; k).

We will make induction.

Assume we have adjusted {xi} such that d•xi ̸= 0 only when the

target touch Ep0 for • < r.

Assume drx• ̸= 0 only when the target touch Ep0 is proved for

deg x• ≤ |xi|.
Consider the drxi ∈ Eρςr . We can assume

drxi is presented by
∑

βk ⊗ γk ∈ Eρς2 = Hρ(B)⊗ Hς(F ).

with γk polynomial in {x• : |x•| < xi}. Then some transgressive ele-

ment αk 7→ βk through transgression. Fortunately, since |xi| is of odd
degree, so drγk do not touch E∗0, so

∑
αk ⊗ drγk is 0.

dr
(∑

αk ∧ γk
)
=

∑
βk ⊗ γk +

∑
αk ⊗ drγk︸ ︷︷ ︸

=0
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Next, for • < r,

d•
(∑

αk ∧ γk
)
=

∑
d•βk ∧ γk︸ ︷︷ ︸

0

+
∑

αk ∧ d•γk︸ ︷︷ ︸
(∗)

.

The first term vanishes since αk is transgressive. Note that d•(drxi) =∑
βk ⊗ d•γk = 0. So dr(∗) = 0. But there is no nonzero differential to

the position of (∗) after r-th page, so (∗) = 0.

The proof above is given by author myself.

A.4 Cohomology Computation

(A.14) !!Assumption— We assume in this section that k

is a field of characteristic zero.

(A.15)Borel–Hopf If a graded commutative Hopf k-algebra H is

generated by x of nonzero degree as k-algebra, if x is of odd degree,

then H = Λk(x), the exterior algebra, if x is of even degree, H = k[x],

the polynomial ring.

Proof. If x is of odd degree, it is easy, since x2 = −x2. When x is

of even degree, since x is of least nonzero degree, so one must have

∆(x) = 1⊗ x+ x⊗ 1.

Then

∆(xn) =
n∑
k=0

(
n

k

)
xk ⊗ xn−k.

So xk ̸= 0 ̸= xh implies xk+h ̸= 0.

(A.16)Corollary For a path-connected topological group G of finite

dimensional Cw-complex structure,

H•(G; k) = Λk(x1, . . . , xn)
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with x1, . . . , xn of odd degrees.

Proof. Note that any nonzero element, of least nonzero degree is

primitive. Let x1 be such an element in H•(G; k). Consider the ideal

generated by x1, and so on. We can find that H•(G; k) itself is generated

by elements of odd degrees as an ideal, so as an algebra.

(A.17)Corollary For a path-connected topological group G of finite

dimensional Cw-complex structure,

H•(BG; k) = k[y1, . . . , yn]

with y1, . . . , yn of even degrees.

Proof. By Borel’s theorem (A.12) and (A.13).

(A.18)EXAMPLE For torus S1, BS1 = CP∞,

H•(S1; k) = Λ(x), deg x = 1.

H•(CP∞; k) = k[y], deg y = 2.

(A.19)EXAMPLE For unitary group U(n), BU(n) = GrassC(n) the

infinite complex Grassmannian,

H•(U(n); k) = Λ(x1, . . . , x2n−1), deg x• = •

H•(GrassC(n); k) = k[c2, . . . , c2n], deg c• = •

(A.20)EXAMPLE For symplectic group Sp(2n), BSp(2n) = GrassH(n)

the infinite Hermiterian Grassmannian,

H•(Sp(2n); k) = Λ(x3, . . . , x4n−1), deg x• = •

H•(GrassH(n); k) = k[p4, . . . , p4n], deg deg p• = •
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(A.21)EXAMPLE For unitary group SO(n), BSO(n) = GrassR(n) the

infinite real Grassmannian,

H•(SO(2k + 1); k) = Λ(x3, . . . , x4k−1), deg x• = •

H•(GrassR(2k + 1); k) = k[p4, . . . , p4n], deg p• = •

H•(SO(2k + 2); k) = Λ(x3, . . . , x4k−1, x2k+1), deg x• = •

H•(GrassR(2k + 1); k) = k[p4, . . . , p4n, p2k+2], deg p• = •

(A.22)Collapse theorem Let G be a path-connected topological

group of finite dimensional Cw-complex structure, and H be a closed

subgroup of G. There is a spectral sequence E with

E2 = TorH(BG)(k,H(BH))

collapsing at E≥2 and converging to H(G/H).

Proof. The existence is just an application of Eilenburg–Moore

spectral sequence (2.8) by considering the pull back square

G/H //

��

BH

��
∗ // BG

By (A.17), H(BH) and H(BG) are polynomial ring with only even

dimension, so there no differential anymore.

(A.23)Remark When k is not of characteristic zero, the cohomology

group is complicated. The calculation over C can be done by Chern-

Weil theory.
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Exercises

I (A.24)Problem (Universal transgressive). For a topological group

G, x ∈ H•(G) is said to be universal transgressive if for any G-

principal bundle E → B, x is transgressive. Show that, x is universal

transgressive if and only if it is transgressive for classifying bundle

EG→ BG. Hint: Since one can find (E → B)→ (EG→ BG).

Then consider G
↓
EG
↓
BG

←
G↓E
↓
B

 =⇒

H•(G)

��

H•(G)

��
E // E



Appendix B

Cohomology for

Compact Lie Groups

The topic is mainly from [5].

B.1 The Koszul Complex

Let R be a commutative ring.

(B.1)Definition (Koszul complex) For x ∈ R, and M an R-module, de-

note

K(x) : 0→ R
x
−−→R→ 0

For arbitrary x1, . . . , xn, denote

K(x1, . . . , xn) = Tot
(
K(x1)⊗R · · · ⊗R K(xn)

)
the Koszul complex.

(B.2)Theorem The Koszul complex K(x1, . . . , xn) is isomorphic to

Λ•R⊕n with

d : ΛpR⊕n −→ Λp−1R⊕n e1∧· · ·∧ep 7−→
p∑
i=1

(−1)ixi·e1∧· · · êi · · ·∧ep

76
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Proof. By definition,

K(x1, . . . , xn)p =
⊕

1≤i1<···<ip≤n

the i•-th tensormand is of degree 1︷ ︸︸ ︷
R⊗ · · · ⊗R

So set the summand for i1 < · · · < ip isomorphic to ei1 ∧ · · · ∧ eipR.
Then use Koszul convention, we get the expression of differential.

(B.3)Definition Let x = (x1, . . . , xn) a sequence of elements in R, and

an R-module M , denote

Hn(x,M) = Hn(HomR(K(x),M)), Hn(x,M) = Hn(K(x)⊗RM)

(B.4)Proposition For x = (x1, . . . , xn), and an R-module M ,H0(x,M) =M/ ⟨x1, . . . , xn⟩M,

H0(x,M) = {a ∈M : x1a = 0, . . . , xna = 0}.

(B.5)Künneth theorem For a complex C•, and x ∈ R

0→ H0(x,Hq(C))→ Hq(K(x)⊗ C•)→ H1(x,Hq−1(C))→ 0.

Proof. Consider

0 // R

��

// R

x

��

// 0

��

// 0

0 // 0 // R // R // 0

and tensoring it with C, we get

Hq+1(C[−1])
x
−−→Hq(C)→ Hq(K(x)⊗ C•)→ Hq(C[−1])

x
−−→Hq(C).

This is exactly the desired exact sequence.
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(B.6)Definition (Regular sequence) Let x = (x1, . . . , xn), and an R-

module M , we say x is regular on M , if xi is not a zero divisor over

M/ ⟨x1, . . . , xi−1⟩M for all i.

(B.7)Theorem If the sequence x = (x1, . . . , xn) is regular on M ,

then H•(x,M) =

M/ ⟨x1, . . . , xn⟩M, • = 0,

0 • ̸= 0.
.

Proof. By induction from (B.5).

(B.8)Theorem If we have two ideals a and b generated by regular

sequences x = (x1, . . . , xn) and y = (y1, . . . , yn) respectively, then

TorR• (R/a, R/b) = H•(x,R/b) = H•(y,R/a).

Proof. Because the Koszul complex R(x) and R(y) form a free

resolution of R/a and R/b respectively.

B.2 Some Commutative Algebra

For sake of lack of reference, the proof is presented here. The paper

mentioned assume for local ring, but one can move the proof over poly-

nomial ring.

(B.9)Theorem Let R be a commutative ring, M a module, x ∈ R
not a zero divisor of R and M . Then p.dimR/xRM/xM ≤ p.dimRM .

Proof. Consider a resolution of P• → M , then P• ⊗ R/xR →
M/xM forms a resolution, since Tor(R/x,M) = 0 by long exact se-

quence of 0→ R
x
−−→R→ R/xR→ 0.
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(B.10)Auslander–Buchsbaum, [1] Proposition 6.2 Let R be a

noetherian ring. If M admits a finite finitely generated projective res-

olution of equal rank, then the annihilator of M is trivial or contains a

nonzero divisor in R.

Proof. Denote the annihilator of M by a. Take p ∈ assR. Then

Mp itself is free. Actually, consider

0→ Rnp
φ
−−→Rmp →M → 0.

If the graded ideal b generated by n-mirror of matrix of φ lies in p. But

some x ∈ R with p = {y ∈ R : xy = 0}, then φ(x, . . . , x) = 0, so zx = 0

for some z /∈ p, a contradiction. So b = R, so the φ splits.

But a ⊗ Rp kills Mp. So either a ⊗ Rp = 0 or Mp = 0. Since it is

of finite projective dimension, by consider the rank of each module of

free resolution, all Mp = 0 or all Mp ̸= 0.

Note that for any finitely generated module N , Np = 0 for all

p ∈ assR means

annN *
∪

p∈assR
p = z. divR.

In our case, a contains a non zero divisor, or ann a contains. But the

latter means a = 0.

(B.11)Vasconcelos, [7] For a polynomial ring R over field, the ho-

mogenous ideal I is generated by a regular sequence of homogenous

elements if I/I2 is free over R/I.

Proof. By Hilbert’s syzygy theorem, any finitely generated graded

module admits a finite finitely generated projective resolution. Since

we will make induction, let us make clear whet we are going to prove.

� Claim If the ring R is graded noetherian, the homogenous ideal I

admits admits a finite finitely generated projective resolution of equal

rank such that I/I2 is free over R/I, then I is generated by a regular

sequence.
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Firstly, R/I also admits a finite finitely rank free (twisted) reso-

lution. So as the annihilator of R/I, I does not fully consist of zero

divisor.

I claim, there is some x ∈ I \ R+I which is non zero divisor of

R. Otherwise, I ⊆ R+I ∪
∪

p∈assR p. Since I ̸= R+I, and by prime

avoidance, I lies in some p, full of zero divisor, a contradiction.

Pick a nonzero divisor x ∈ I \R+I, then consider R = R/xR, and I

the image of I. It is clear, now I/I
2
= I/(I2 + xR) is free of less rank

than R/I = R/I. Also, I is of finite projective dimension.

(B.12)Λemma (Prime avoidance) If a ⊆ p1 ∪ · · · ∪ pn with at

most two of pi’s are not prime, then a lies in one of pi.

(B.13)Λemma Under the assumption of above theorem (B.11), any

permutation of regular sequence is still a regular sequence.

Proof. It suffices to prove for two elements. Assume x, y are regular

sequence, then y, x forms. Since if yz = 0, pick the z to be homogenous

and of minimal degree, we see y(z mod xR) = 0, so z ∈ xR, say z = xz0,

but x is not zero divisor, then we find a smaller z. Then, assume

x(w mod yR) = 0, then xw = yz for some z, so y(z mod xR) = 0,

hence z ∈ xR. Since we have proven x is not a zero divisor, so w ∈ yR,
i.e. (w mod yR) = 0.

(B.14)Theorem Under the assumption of above theorem (B.11), any

element presenting a set of basis of I/I2 over R/I forms a regular

sequence.

Proof. By our process, the regular sequence presenting a set of ba-

sis. So for any choice of basis, it differs in each degree by an invertible

matrix over field. Write the invertible matrix into product of elemen-

tary transform, it turns out it suffices to show the permutation of two

elements in regular sequence.
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B.3 Flag Manifolds

(B.15) !!Notation— Let k be a field, we will write H(−) =
H(−; k) for short. Let G a compact lie group, T its maximal

torus. The homogenous space G/T , known as flag mani-

fold. Let ∆ be its root system, and M = L⊗ k where L is

the weight lattice, W its Weyl group.

(B.16)Theorem The odd degree of H•(Fℓ(G); k) is zero.

Proof. Due to the theory of lie groups (Bruhat decomposition),

Fℓ(G) admits a cellular decomposition whose cells have only even di-

mensions.

(B.17)Definition For any χ ∈ L, it defines T
χ
−−→C, we can get a line

bundle G ×T C over G/T . Define its Chern class by ψ(χ). Then it

extends to S(M)
ψ
−−→H•(G/T ).

(B.18)Theorem The ψ coincides the transgression.

Proof. Consider the following diagram

· · · // Hn−1(∗) //

��

Hn(G/T, ∗) //

��

Hn(G/T ) //

��

· · ·

· · · // Hn−1(∗) //

��

__

Hn(CP∞, ∗) //

��

__

Hn(CP∞) //

��

__

· · ·

· · · // Hn−1(T ) // Hn(G,T ) // Hn(G) // · · ·

· · · // Hn−1(C) //

__

Hn(G×T C,C) //

__

Hn(G/T ) //

__

· · ·

when n = 2, it is exactly what we want Chern class.
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(B.19)Theorem Let α ∈ ∆, there is a unique ∆αx such that

x− sαx = ψ(α)∆αx

for all x ∈ H•(G/T ).

Proof. For each α ∈ ∆, denote Sα the subgroup of G of rank 1

corresponding to α. Then SαT/T = Sα/Sα ∩ T ∼= CP 1. Consider the

fibration

SαT/T → G/T
p
−−→G/SαT.

By a Leray-Hirsch (or spectral sequence) argument,

H•(G/T ) ∼= H•(G/SαT )⊗ H•(CP 1)

So any x ∈ H•(G/T ) can be written uniquely as

x = x1ϕ(Rα) + x2, xi ∈ p∗(H•(G/SαT ))

where Rα is any weight ⟨Rα, α∨⟩ = 1. Then, since xi is stable under

the reflection sα,

sαx = sαx1 · sαϕ(Rα) + sαx2

= x1ϕ(sαRα) + x2

= x1ϕ(Rα − α) + x2.

Take the difference, then we get what we want.

(B.20)Definition (Difference operator) Let α ∈ ∆ be a root.

• Over H•(G/T ), we defined above ∆α the unique element such

that

x− sαx = ψ(α)∆αx.

• Over S(M) we also have algebraic difference operator

∆αx =
x− sαx

α
.

Clearly, ψ∆α(x) = ∆αψ(x).
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(B.21)Λemma As notations above,

kerψ =

{
f ∈ S(M) :

∀α1, . . . , αn ∈ ∆,

∆α1 ◦ · · · ◦∆αnf ∈ S+(M).

}
.

Proof. If ψ(f) = 0, then of course ∆α1 ◦ · · · ◦∆αnf 7→ 0, so ∆α1 ◦
· · · ◦∆αnf ∈ S+(M). Conversely,it suffices to prove that H•(G/T )W =

H0(G/T ). For such an x ∈ H•(G/T ), it must come from G/SαT for all

α. The cellular decomposition do not allow this except the constant.

(B.22)Λemma As notations above, kerψ is generated by a regular

sequence.

Proof. Denote I = kerψ. By (B.11), it suffices to show I/I2 is free

over S(M)/I. Let y1, . . . , yn be a set of generator with

deg y1 ≤ deg y2 ≤ · · · , yk /∈
∑
i<k

yiS(M) + I2. (∗)

So ∆αyk ∈
∑
i<k yiS(M) + I2. If∑

siyi ∈ I2

Pick the si /∈ I with deg yi maximal. Then applying ∆α several times

reduce si to some nonzero constant, but then it contradicts to (∗).

(B.23)Λemma As notations above, H•(G/T ) is a free module over

imϕ.

Proof. Note that H•(G/T )/ ⟨ψ(M)⟩ is an S(M)/ ⟨M⟩ = k-module.

So pick a representative yi of basis. So
∑
yi imψ = H•(G/T ). If∑

ψ(ai)yi = 0

If ψ(ai) ̸= 0, we can apply some ∆α to get a smaller relation, a contra-

diction.
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(B.24)Remark For field of characteristic zero,

kerψ = the ideal generated by SW+ (M).

Denote the right hand side by I. For fg with g ∈ SW+ (M), ∆α(fg) =

(∆αf) · g, so I ⊆ kerψ ⊆. Conversely, if α ∈ ∆, with ∆αf ∈ I, then
f ≡ sαf mod I, so f ≡ 1

|W |
∑
w∈W f mod I, where 1

|W |
∑
w∈W f is of

course invariant.

It is well-known that S(M) is a free SW (M)-module, and SW (M)

isomorphic to a polynomial ring, say of fundamental invariants

e1, . . . , en. Assume S(W ) = S(M)W ⊗ kn, then the ideal generated

by S(M)W+ is exactly S(M)W+ ⊗ kn. So as S(M)W -module,

S(W ) = S(M)W ⊗ S(M)W .

Then the Poincaré series

P(S(M)W ) =
P(S(W ))

P(S(W )W )
=

∏n
i=1

1
1−t∏n

i=1
1

1−tdeg ei

=

n∏
i=1

1− tdeg ei
1− t

.

B.4 Cohomology Computation

Let k be a field.

(B.25)The Collapse Theorem For a compact Lie group G, with

its maximal torus T , the Leray-Serre spectral sequence E for

T → G→ G/T

collapse for E≥3, that is, d≥3 = 0. Moreover,

E3 = H•(G/T ; k)/ ⟨ψ(M)⟩ ⊗k Λk(ξ2d1−1, · · · , ξ2dℓ−1)

where the isomorphism preserves the multiplication structure, and d1, . . . , dℓ

are the degrees of regular sequence claimed in (B.22).
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Proof. Now H•(T ) = Λ(M), so

E2 = H•(G/T )⊗ H•(T )

= H•(G/T )/ ⟨imψ⟩ ⊗k imψ ⊗k Λ(M)

= H•(G/T )/ ⟨imψ⟩ ⊗k S(M)/ kerψ ⊗S(M) Λ(S(M)⊗kM)

Over E2, the differential is generated by the transgression

E01
2 = H1(T ) =M

ψ
−−→H2(G/T ) = E20

2 .

So there is no differential over H•(G/T )/ ⟨imψ⟩⊗k. If we pick any basis

m1, . . . ,mr of M , then

Λ(S(M)⊗kM) = K(m1, . . . ,mr)

Let xd1 , . . . , xdℓ be homogenous regular sequence generated kerψ. Then

consider the double complex

K(m1, . . . ,mr)⊗K(xd1 , . . . , xdℓ).

By a standard trick used hundred times, and the fact S(M)/ ⟨m1, . . . ,mr⟩ =
k, we can find that

H

(
S(M)/kerψ ⊗S(M) Λ(S(M)⊗kM)

)
= Λk(xd1 , . . . , xdℓ),

with xi from the i-th homology group of

(
S(M)/kerψ

)
i
⊗S(M)

(
Λ(S(M)⊗kM)

)
1
.

The next task is to find the degree of preimage of xdi . Actually,

since ψ twice the degree, we point the degree of S(M)/kerψ ⊗S(M)
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Λ(S(M)⊗kM) in this digram

E2

5 55

''

65

''

75

''

85

4 44

''

54

''

64

''

74

3 33

''

43

''

53

''

64

2 22

''

32

''

42

''

52

1 11

''

21

''

31

''

41

0 00 10 20 30

0 1 2 3 4 5 6 7

OO

//

So

E3 = H•(G/T ; k)/ ⟨imψ⟩ ⊗k Λk(ξ2d1−1, · · · , ξ2dℓ−1).

Now, E3 is generated by Ep03 and Ep13 , so d3 is zero. By induction, Er is

generated by Ep03 and Ep13 , so d≥3 is zero.

(B.26)Theorem If k is of characteristic zero, then

• H•(G/T ; k) = S(M)W .

• H•(G; k) = Λk(ξ2d1−1, · · · , ξ2dℓ−1), with d1, . . . , dℓ the degree of

fundamental invariants.

Proof. In view of Borel–Hopf theorem (A.15), the cohomology

group H•(G; k) has no place for even dimensional generating stuff. So

H•(G/T ; k)/ ⟨ψ(M)⟩ = k.

(B.27)EXAMPLE For U(n), the Weyl group acts by permutating in-

dices on variables of k[x1, . . . , xn]. So its fundamental invariants are
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just symmetric polynomials. So for characteristic zero field k,

H•(G; k) = Λk(ξ1, · · · , ξ2n−1).

(B.28)Remark The degree of fundamental invariants can be com-

puted.

An 2, 3, 4, . . . , n+ 1 F4 2, 6, 8, 12

Bn, Cn 2, 4, 6, . . . , 2n E6 2, 5, 6, 8, 9, 12

Dn 2, 4, 6, . . . , 2n− 1, n E7 2, 6, 8, 10, 12, 14, 18

G2 2, 6 E8 2, 8, 12, 14, 18, 20, 24, 30

(B.29)Remark The computation over characteristic zero can be done

by Schubert calculus.

Exercises

I (B.30)Problem. Over characteristic zero field, determine H•(G) →
H•(T ) induced by the inclusion. Assuming G is simply connected.

Hint: Remind our theorem (A.10), and (B.25). If H1(G) = Λ(x•)

only the x• of degree 1 maps to a nozero element of H•(T ). But

it never exists due to simple-connectedness.



Appendix C

Cohomology for Discrete

Groups

The material of this chapter is mainly from [3].

C.1 Equivariant cohomology

(C.1) !!Notation— Let G be a discrete group.

(C.2)Definition Given a chain complex C• in G-Mod, we can define the

equivariant homology group

H•(G;C) = H•(Tot(F• ⊗G C•)),

where F• → Z a resolution.

For a cochian complex C• in G-Mod, we can similarly define the

equivariant cohomology group

H•(G;C) = H•(Tot(HomG(F•, C
•))).

This can be understood as the homology theory in G-Mod.

88
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(C.3)Theorem Given a chain complex C• in G-Mod, then there is

two spectral sequences E’s with

E2
pq = Hq(Hp(G;C•)) and E2

pq = Hp(G;Hq(C•))

respectively which both converge to H•(G;C).

Proof. Actually,

Fp ⊗G Cq

p∣∣∣∣ Hp(G;Cq)
q∣∣∣∣ Hq(Hp(G;C•))

Fp ⊗G Cq

q∣∣∣∣ Fp ⊗G Hq(C•)

p∣∣∣∣ Hq(G;Hp(C•))
The above says everything.

(C.4)Theorem Given a cochain complex C• in G-Mod, then there

is two spectral sequence E’s with

Epq2 = Hq(Hp(G;C•)) and Epq2 = Hp(G;Hq(C•))

respectively which both converge to H•(G;C).

Proof. Since

HomG(Fp, C
q)

p∣∣∣∣ Hp(G;Cq)
q∣∣∣∣ Hq(Hp(G;C•))

HomG(Fp, C
q)

q∣∣∣∣ HomG(Fp,H
q(C•))

p∣∣∣∣ Hq(G;Hp(C•))
A daily computation.

(C.5)EXAMPLE If C is acyclic, say with H0(C) =M or H0(C) =M ,

then

H•(G;C) = H•(G;M), H•(G;C) = H•(G;M).
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(C.6)EXAMPLE If C is trivial G-module, then

F• ⊗G C• =
(
F• ⊗G Z

)
⊗Z C•,

HomG(F•, C
•) = HomZ(F• ⊗G Z, C•).

If C• is flat abelian group, then it can be compute by universal coeffi-

cient theorem.

(C.7)EXAMPLE If C• is projective (or generally co-induced)G-module,

then

Hq(Hp(G;C•)) =

Hq(G; (C•)G), p = 1

0 p ≥ 1

Thus H(G;C) = H(CG). So we get a spectral sequence E with Epq2 =

Hq(G;Hp(C•)) converges to H(CG).

(C.8)EXAMPLE If C• is projective (or generally induced) G-module,

then

Hq(Hp(G;C
•)) =

Hq(G; (C•)G), p = 1

0 p ≥ 1

Hence H(G;C) = H(CG). So we get a spectral sequence E with E2
pq =

Hq(G;Hp(C•)) converges to H(CG).

C.2 The Cartan–Leray Spectral Sequence

(C.9)Definition For a G-set X, we can define the equivariant homology

group and cohomology of X

HG• (X) = H•(G;C•(X))

= H•(Tot(F• ⊗G C•(X)));

H•G(X) = H•(G;C•(X)) = H•(G; HomG(F•,Tot(Hom(C•(X),Z))))
= H•(G; Tot(HomZ(F• ⊗G C•(X),Z)))
= H•(G; HomZ(Tot(F• ⊗G C•(X)),Z)).

where C is some (co)homology theory, for example, singular (co)homology,

cellular (co)homology if X admits a G-cellular structure, etc.
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(C.10)Remark Generally, if G is a topological group, X a G-set,

then the equivariant cohomology is defined by

H•G(X) = H•(EG×G X)

which can be proven by (2.11).

(C.11)EXAMPLE Here list some special cases.

• If X is a trivial G-set, then C•(EG)⊗G Z = C•(BG), thus

H•G = Hi(BG×X).

• If X is a G-set with G acting freely, then C•(X) and C•(X) are

all free Z[G]-modules. If further, X admits a G-celluar structure,

then we can compute by cellular homology, then (C•(X))G and

C•(X) are nothing but C•(X/G), and C
•(X/G).

(C.12)Cartan–Leray Spectral Sequence If X is a connected s-

pace on which G acts freely and properly, then there is a spectral se-

quence E with

E2
pq = Hp(G,Hq(X))

and converging to H•(X/G).

Proof. In which case, X → X/G is a covering map, and we take

some Cw-approximation of X/G, then we get a Cw-structure over X

which is compatible with G-action.

(C.13)Cartan–Leray Spectral Sequence If X is a connected s-

pace on which G acts freely and properly, then there is a spectral se-

quence E with

Epq2 = Hp(G,Hq(X))

and converging to H•(X/G).
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(C.14)EXAMPLE WhenG is finite, and assume the coefficient is taken

to be some field k of characteristic zero, then H≥2 = 0, and H≥2 = 0.

So

H•(X/G; k) = H•(X)G, H•(X/G; k) = H•(X)G

In particular, when X = EG, H•(BG; k) = 0 and H•(BG; k) = 0.

Actually, H•(G;Z) and H•(G;Z) are both finite abelian groups.

Exercises

I (C.15)Exercise. IfX
f
−−→Y is map betweenG-set, if H•(X)

H(f)
−−−→H•(Y )

are all isomorphism, show that so are H•G(X)→ H•G(Y ).
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