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Abstract Harmonic Analysis

References:

— Hewitt Ross. Abstract Harmonic Analysis.
— Rudin. Fourier Analysis on groups.

— Graham, McGekee. Commutative Harmonic

Analysis.

Topological Group

A topological group G is a topological space

and also a group such that

GxG@—G (z,y) — "ty

is continuous. A locally compact group (LC
group) is a top group which is locally compact. A
locally compact abelian group (LCA groups) is a

LC group which is abelian.

We will only concentrate on locally compact
groups (LCgroups), and mostly locally compact a-
belian groups (LCA groups).

1 Haar Measure

(1.1) !! Notation— Denote
L,:G—G T —azr

R,:G— G T — Ta

(1.2) Theorem | For any LC group G, there exists a

(Borel) measure p > 0 over G, such that

p#0, ply 'E)=pu(E),Vyeq.

and it is unique up to a scalar.

(1.3) Definition(Haar Measure) We call this uo-to-

scalar-unique measure the Haar measure of G.
Similarly, we have right invariant measure, to clarify

if necessary, we will say left /right Haar measure.

(1.4) EXAMPLE |For discrete group G, the counting

measure serves.

(1.5) EXAMPLE [For R™ and the circle T® = R /Z",

the Lebsgue measures serve.

(1.6) EXAMPLE | For R*, the measure d*z

dz
x

serve.

(1.7) EXAMPLE | For any Lie group G, there exists

a left-invariant integral form w by left translation
from the unit. Then we can take the measure to be

dp = w.

(1.8) EXAMPLE| In particular, for GL,(R), the

Adzij

measure 18 W

1.1 The existence

Representation theorem

Assume S is a locally compact space, denote
CH(S) the space of nonnegative, continuous and
compactly supported functions on S. Then the linear
functional

®:CF(S) — Rxg

is uniquely represented by ®(f) = [ g fdu for some

regular nonnegative measure y on S.

(1.9) Definition We say T : CHG) = Ry is

(1) left invariant if I(f o L,-1) = I(f);

(2) homogenous if I(\f) = AI(f);

(3) subadditive if I(f + f') < I(f)+I(f');
(4) monotone if f < g=-I(f) < I(g).

Let us reform the theorem of existence.

(1.10) Theorem | There exists a left invariant non-

negative nonzero additive homogenous functional A
on CH(Q).

Construction 1

|
Fix g € CH(G), and g # 0. For f € CF, define
there exists a finite subset A C
G, and {¢, > 0:a € A} such
that f < > caca(go Lg-1),
and Y ¢, < s

I,(f)=inf{ s:

Note that I;(f) < co by compactness, and I is left
invariant, homogenous and monotone by definition.

(1) 1,(F + 1) < L) + L,(f").

(2) Iy(u) < Ig(p)1,(u) for all u.

To normalize, fix some function ¢ € CFH(G) \ 0,
and g € C(G) \ 0, put the “average”

1
ANy=—I,<1,.
g Ig(‘P)g v



The functional I, (A,) is a rough (average) ap-
proximation of translation of the “local ruler” g. We
want to make supp g shrink to identity, and g non-

singular as possible.

(1.11) ! Notation— Let V' be a neighbor-
hood (nbd) of 1,

P(V)={f € CH(G):supp f C V. [ # 0},

and P, (V) ={f € P(V): f(g) = flg~1)}.

(1.12) Aemma | For fiseo s fn € C(G), and r > 1,

there exists a nbd V' of 1, such that

I(f" + 1) < Ig(f) + 1o(f) < v (f'+ f)

for all g € P(V).

(1.13) Aemma | For all f € CH(G), and r > 1,

there exists a nbd U of 1, such that for all g € P..(U),
there exists a nbd W of 1 with

In(f) < Ly(£)In(g) < r1n(f)

for all h € P(W).

(1.14) Corollary ‘ For all f € CHG), and r > 1,

there exists a nbd U of 1, such that for all g € P.(U),
there exists a nbd W of 1 with

%Ag(f) < ZE(J;))

for all h € P(W).

< TAg(f)

PROOF. One can find a W serves for both f and
@. So for any h € P(W),

Iy(f)In(g) <
Iy(p)In(g) < rin(p).

In(f)
In(p)

IN A

Then divide them each other, we get the desired in-

equality.
Let
there exists nbd W of 1
H.(f) =14 g€ P(G):such that for all h €3,

PW), Ag(f) < rAn(f)

Kr(f) = Sup{Ag(f) g€ Hr(f)}7

Since A.(p) =1, A #0.
By the lemmate above, for f, f' € CF(G), we

have

R+ SR AL S PR+ P,

So A is left-invariant and additive.

So everything is done except the proof of lemma

and lemma .
| PROOF OF LEMMA [(1.12)].

and uniformly continuity, for € > 0, one can find F

By Urysohn lemma

satisfying

I(f + 1) < 1y(F) < 1+ L, (f + ).

for any g, and a nbd V of 1 whenever a~ 'y € V,

0] (1
() < f(a) L
F(y) F(a)
Assume
F< Z ca(go Ly-1),
acA
then
JiZ % . F
f(/)
<D acaar T (goLy—1)

As a result,

Mﬂ+%ﬁ)<Z%Mm(f

S (1 + 26) ZaGA Ca
< (14201, (F)
S (4201 + )Ly (f + 1)

The proof is complete.

| PROOF OF LEMMA [(1.13)].
Lemma, there exists f and nbd U of 1 such that
f(z) < f(y) whenever z7'y € U, and

Firstly, by Urysohn

In(f) < (L+e)In(f)

for any h. Now, if g € P,(U), one can find § and
nbd V of 1 such that g(z~'y) < g(z7'a) = gla™'z)

whenever a~'y € V, and

In(g) < (L+€)In(g).



Now, assume supp f € U,c 4 aV. By decomposition (1.17) Theorem | For compact group G, left right

of unity, write f = > aca fa- Then Haar measure coincide.
f(x)gla™'y) < Fly)g(z~'y) | PROOF. Let p and v be the left and right Haar
<D uea fa®)g(z™1y) measure respectively. Take f = 1, then
S ZaeA fa(y)g(ailz%
So Ac(g)n(G) = p(G).
I I < L,(Ff ), (g
o(NInlg) < Xaealn(fa)ls(9) As & result, Aa(g) = 1.
< (A +e)(f)Iy(9) |
< (L+¢€)21,(f) > (1.18) Exercisk. For Haar measure p, show that if

The proof is complete. feCHG)\O, then [, fdu > 0.

(1.15) Remark | If we take

X = H [(Ip9) ", Iog] > (1.19) Exercise.  If G/[G,G] is compact, show
gecd

and K (V) the closure of {A, : suppg € V}. Then
Mabav K (V) # 0 by Tychonoff theorem. In this case,
lemma, is not needed. The element in the in-

tersection is a desired linear functional. But this ar- » (1.20) ProBLEM. About modular character, show

gument uses the axiom of choice which is not needed. that

that left right Haar measure coincide.

dz = A(z)d(z™1).
1.2 The uniqueness

Let p be a left-invariant measure, and v a right-

invariant measure,

Jo fdu- Jg9dv = [ f(z) ([ g(ya)dv(y)) du(z)
= Jave F@)g(yz)dp(z)dv(y)
= Joxe fy o)g(@)dp(z)dv(y)
= Jorva9@) (J fly ta)dv(y)) du(z)

[y ta)dv(y)
Jo fdu

is continuous and independent with respect to f # 0.

So

» (1.21) ProprEM. Let G = {(*Y) : 2 > 0,y €

R}, calculate the left /right Haar measures which are
different.

Then apply x = 1, this is desired uniqueness.

1.3 Modular character

(1.16) Definition For a LC group G, p its Haar mea-

sure, we define Modular character Ag : G — Ry
by
du(z) = Ac(g)dp(grg™).
Equivalently,
Aclg) [ Fag)iuta) = [ faduto)
It is easy to see Ag is a character, i.e.
Ag(gh) = Ac(g)A(h).

It is also easy to see that the left right Haar measure

coincide if and only if Ag is trivial.



2 LCA Groups

Commutative Banach Algebra

|
If A is a commutative Banach algebra with uni-

ty, we denote M(A) the spectrum (of Gelfand space)
by

M(A) = {%0 A . P70 isanalgebra homo_}

morphism.

with w*-topology, i.e. the smallest topology such

that the evaluation

eva, : M(A) — C ©+— p(a)

is continuous. We know that
(1) any ¢ € M(A) is continuous with norm 1;
(2) M(A) is w*-closed subset of A*, i.e.
o(A*, A), therefore M(A) is compact.
(3) under the imbedding

m: A— C(M(A)) a+—> evag,

m(A) is a separating subalgebra. One can define

llel

= [levaq |

= spectral norm of a

— lim o /Tl < Jal.

What happens if there is no unity ?

Let

A={(a,z

with norm ||a + xe|| =

J:a€ Az eC}

la|| + |z|. Then S = M(A) is
compact. It has the infinity point

0o:A—C a+xe— e,

which is the only element ¢ with p(A4) = 0. We
| define M(A) = M(A)\ po. |

(2.1) ! Notation— In this section, the G
is a LCA group. We will write it additively
with Haar measure m if we need to clarify.
For a function over G, u € G, we denote

the translation f, defined by

Tuf = fu(z) = f(z — ).

(2.2) Definition (Convolution) For two functions f,g¢

over LCA group G, we define the convolution

/fw— y)dy=/Gf(y)g(x—

This makes sense whenever / |f(z—v)g(y)|dy < oo.

f*gx

(2.3) Proposition | For fixed f € LP(G), the map

G—IP(G)  ursf,

is uniformly continuous.

PRrROOF. It is true if f € C.(G). For f € LP(G),
one can find g € C.(G) such that ||f — g|, <e.

Properties of Convolution

|
1. If f € L' and g € L™, then f * g is bounded

and uniformly continuous.

< [ ia=w)

< llglloe - 1£1]1-

|f*g(x l9(y)|dy

S0 [|f * glloe < [lgllooll fll1- Similarly,

[f*g(@1) = f+ Ga)l < = mazfll1 - |9lloe-

2. Ifl<p<oo, qg=7p,ie %Jr%:l. Then

f * g is is bounded and uniformly continuous.

< [ 1@ =wl lawldy

< (fo lf @ = )Pdy) " - (f51g(y)|2dy)
— 171 - gl

|f *g(x

3. If f,g € L*(G), then f*g € L'

[1f gz < / £z — )| lg(y)|dady

= [1atl- ([ 156~ ylac)

< [1fllx - llglls-

The fact that | f(x—y)g(y)| is integrable follows from
when f, g is characteristic functions of measurable

sets, and the continuity of addition.

4. fxg=gxf. |

So L'(G) is a Banach algebra under convolution.

It has a unity if and only if G is discrete.



(2.4) Approximation of identity Let f € (2.8) Remark | So we find a bijection between G

LY(G), C > 0. For all ¢ > 0, there exists a nbd and M(G). We can topologize G by the topology of
V of 0 such that for any v € L*(G) which vanishes M(G).
outside of V', and
(2.9) Proposition | If G is discrete, then G is com-
./U =1 / ] pact. If G is compact, then G is discrete.

— <
we have |[fxv—fl: <e | ProoOF. If G is compact, then all characters in

L'(@). We normalize Haar measure m such that

2.1 Characters

m(G) = 1. Now,
(2.5) Definition (Character) A continuous function 1, v=1
v: G — T C C* is called a character if v is a evay(y) = /17(55)(155 =3¢ ’
homomorphism, that is [y(z)] = 1 and y(z + y) = 0 7# L
V(@) (y). since [y(z)dr = [y(z+wo)dr = y(z0) [ 7(x)dx for
So 4(0) = 1 and y(—z) = y(z). any zo € G. But eva, is continuous, so G is discrete.

Conversely, if G is discrete, then L'(G) has uni-

(2.6) Definition (Dual Group) Denote all characters of ty, so & is compact.

G by G, which equipped with a group structure. We
call G the dual group.

(2.10) EXAMPLE |For G = R, then G = R given by
(2.7) Theorem | Any ¢ € M(G) is of the form the pairing

= / f(x)mdlf B:R"xR" —C (z,a) — e,

for some character . More exactly, if we denote the character correspond-

| ing to a € G = R, then v,(z) = B(a, z).
PROOF. Firstly, it is definitely a homomorphism.

More generally, for G = R"”, then G=R" given

e(f*xg) = / [ —y)g(y)y(z)dzdy by the pairing
/ z —y)y(z —y)g(y)y(y)dedy B:R"xR" —C (z,a) — €™,
(/f > </9(y)’y(y)dy) where (-, -) is standard inner product.
Jel9). (2.11) EXAMPLE |For G = T = R/Z, G = Z given
Conversely, since the homomorphism is locally L?, by the pairing

1 == 1 = = 1 )
there exists v € L>(G) with ||7]|e = ||| , such BiR/ZXTZ —C (2, ) —» ¢2miva,

that
/ f(z where xa mod Z is well-defined. Conversely, for G =
) Z, G = R/Z by the same pairing.
Now, we also have ¢(f x g) (g), i.e. R )
For G = T" = R"/Z", then G = Z™ given by
/ flz—y)g(y)y(z)dedy = //f (z) v(y)dzdy. the pairing
Since g is arbitrary, B:R"/Z" x 7" — C (z,y) — o)

/ f(2)v(z +y) / f(z—y)y(z)dz = / f(x)y(z)v(y)dz Here (-,-) is standard inner product. Conversely, for
G =R/Z, G = Z by the same pairing.

since f is also arbitrary, v(z + y) = (y). Then
[ fle -y )dx (2.12) EXAMPLE | For G = Z/nZ, then G = Z/Z
YY) = . —
[ [z ( given by the pairing
is continuous. Since |y(z)] < 1 and } ‘ = B:Z/nZ x Z/nZ — C (z,9) — 2T

|h(=2)| <1, y(z) € T C C*.
| Here 2% mod Z is well-defined.




(2.13) Definition(Fourier transform) Let f € L(G),

define its Fourier transform

we%;ummw

(2.14) !! Notation— Denote

f:é—>(C

A=LNG)={f: fe L")}

Properties of A

1. A is an subalgebra of C Co(G). Since G =
M(Im) \ o, and f(y) is actually eva;T', with
I' € M(LY(G)). But evas o = 0. This is known as
Riemann-Lebsgue lemma.

2. A separate points of G. -

3. A is self adjoint. Actually, f/(\o) =

As a result, A is dense in Co(G).

4. A is translation invariant, and is invariant

—

f(=e).

under multiplication by characters.

:/fx_
_/f
[ o
/f 7o)

= f(7p).

s+y

(2.15) Theorem | The dual group Gisa topological

group under Gelfand topology.

(2.16) !! Notation— Let K C G be a com-
pact set, € > 0, denote

Uke={yeG : Ve K,|y(x)—1] <e}.

Let C C G be a compact set, € > 0, denote

Vee={x e G:VyeC,|y(x) — 1| < €}

(2.17) Aemma | The pairing

GxG—C (z,7) — y(x)

is continuous.

PROOF. Find some good f € L'(G). Note that

F@ = Fo(). 50 4(@) = L Then
)
Fe) = F@] < 1fo() = L@ +17:(0) = £,(9)
<1F() = L)+ 1 = 4]
< |fa(v) = L)+ 1 fz = fylls-
The proof is complete.
(2.18) Proposition The set {Uk,.

K compact,e > 0} forms a basis of nbd of

unity of G.

PROOF. It is open by tube lemma.
Pick 7o € G, fi,...,fn € LYG).
subset of the form W = {y € G : |f;(70) —
,N} is a basis of G.
We need to find Ug . such that yo + Uk, C W.
By shifting, it may be assumed that vy = 0. Note

The open

fj(7)| <

e7=1,...

that C.(Q) is dense in L'(G), we can also assume

fi € Ce(G), since |(f; — G| < If5 — gyl Let
K = Jsupp f;. Suppose |y(z)—1] < d for all x € K,

then
50501 = | [ @0 -3
< 5/ | fi(@)|dz = 6| f5]]1-

So we can take € = 6/ max; || f;||1.

> (2.19) EXERCISE.

> (2.20) EXERCISE.

» (2.21) PROBLEM.

PRrROOF OF |(2.15 ;I That is, the map

GxG—G (V1,72) — 71 — 72

is continuous, since Uk, Uk, . € Uk, nk,,2e. More
precisely, |6102(z) — 1| = [61(x) — da(z)| < |61(z) —

1] + |d2(x) — 2|.

Prove example l2.10 j

Prove example .
[2.10)

Find a direct proof of Riemann-

Lebsgue lemma over R.



3 Fourier Analysis over LCA GI‘OU.pS}.5) Definition(Positive definite) A complex continu-

ous function ¢ on G is said to be positive definite

(3.1) ! Notation— Let M (G) the space of if
finite regular Borel measures over G. Z Cn  Cm 0T — X)) >0
n,m=1
(3.2) Definition (Convolution) Let C¢(G) be space of for any ¢; € C and z; € G.

functions of compact support. Given two finite reg-

ular Borel measure i, v on G, the functional (3.6) Proposition If ¢ is positive definite, then

C6)—C o [[ 1@t pdu@an [ 107wt +yyazay = 0

is generated by some measure A, i.e.
(3.7) Bochner’s theorem | A complex continuous

/fd)\ = / flx+y)du(x)dv(y). function ¢ is positive definite if and only if there is
a measure u € M(G),

We will denote A = p * v the convolution of y and
v. It makes M(G) a Banach algebra (with unity do). p=0, @)= /G’Y(x)dﬂ(’Y)~

(3.3) Remark |Let A = pxv. |

THE “if” PART. We have

o Note that N
Z Cn @‘p(ajn _mm)
:// 1g(z+y)dp(z)dv(y) = /M(E—y)dV(y)- mm=l
o : / Z Cn - Con (X0 — T )dp(7)
So if p is absolutely continuous wrt Haar mea- nom=1
sure, then so is pu * v.
=/ ch(x F (7) > 0.
j=1

o If 4 is absolutely continuous wrt Haar measure,
say (E) = [, fdz, then

/ o yf )dzdv(y) (3.8) EXAMPLE |For f, we denote f(z) = f(—z). If
/ </ - )i )) da f € L?(G), then f x f is positive.

> cnmp(@m — )
:ch@/f Tn —Tm —Y )f(_y)dy

density

o If v is also absolutely continuous wrt Haar mea- _
. - chcm/f Ty — T y)dy
sure, say pu(E) = [, gdz, then the density of A
is | f(z —y)gly)dy = [ +g. ‘}:% 4y =0

By above, the embedding L'(G) — M(G) makes
L'(G) an ideal.

Ifo:G—Ci itive. When N = 1. That
(3.4) Definition (Fourier transform) For € M(G), we ’ 5 posthve o §

is, c¢p(0) > 0, so ¢(0) > 0. When N = 2. We

have ( #(0) W(QC)) is hermitian and of determinant
p(—z) ¢(0)

i G—cC v — /W(x)du(x). nonnegative, so

define its Fourier transform

Then clearly, (u* )N = fi- 0 e(@) = p(-z), |p(@)] < |e(0)]-

In particular, ¢ is bounded.
3.1 Bochner’s theorem



(3.9) ! Notation— By above, we may as-
sume ¢(0) = 1. Define

T,: L' (G) —C f'—>/fg0dm.

Then ||T.|| = esssuplp| = 1. For f,g €
LY(G), set

[fs 9] = To(f % 9),
where f(z) = f(—x)

Firstly, note that

f9) = [ @) [ )3

g(x — u)dudz

Z//fugywu—y)dudy-
So, [—, —] is hermitian, i.e. [f,g] = [g, f], and so it
has Cauchy inequality, |[f,g]|” < [f. /] - g, 4.

| PROOF OF (3.7;|. We are going to take some ap-

proximation of identity for g. Let ¢ = xy = %7

with V' a symmetric compact nbd of 1. Then

/m/j

Vv Shrlnks

[fsxv] y)dydx

(@)p(z)de =T, f.

V shrinks
©(0) = 1.

[Xv7 XV] —

So
|T<pf‘2 <[f, f] :Tw(f*f)~

Put h = f % f, then h = h, and

| Tp(h)] < |Tp(hox b)Y
< |T,(h* hxhxh)|/4
1/2"

T(h*~--*h)
—_——

2’”
1/2

IN

1oz -+ hl
2n

So [Ty (k)| < [Ih] = [[Alloc. But we know h = ff =
|f12, s0

T (] < 1 lloo-
Since IT(E) is dense in Cy(G), by Banach extension
theorem, and the fact that f — f is an embedding
by Gelfand theory, there is a Borel measure u on G
such that

T, f =/f(—7)du(v)

:iﬂméﬂmwww

So ¢(z) = [g(x)du(x). Now, 1 = ¢(0) = [du =

w(T) < lu]] <1, so p is nonnegative.

3.2 Inversion formula

We want this theorem on uniqueness.

(3.10) Uniqueness
n=0.

If p € M(G) and ji = 0, then

(3. 11) Dual Uniqueness | Suppose v € M(G), and
Je(x) ) =0 for all z € G, then v = 0.

| PROOF. Let f € L'(G).

= T
- ).

7)dv ().

But we know that L/l(\G) is dense in Co(G).

The set of {fi : u € M(G)} is translation invari-

ant, and is stable under multiplication by ~(z).

(3.12) ! Notation— Denote
= Ja(x)du(y) for some}

finite regular Borel measure.

B = {1

By uniqueness ) above, we can write
f= Jev(@)dus( )

If f € LY(G) N B(G),

(3.13) Inversion Formula

then
/f )y,

for some Haar measure over G.

| PrOOF. Let f € LY(G) N B(G). For h € L',
/ h(—
fﬁ )d
G)

, then

hx £(0) ()dz
z)dpg(y)de
)dper (7).
If g € LY(G) N B(
/ﬁ@duf = [ hx gduy
G ~ ~
:h*g*f(O):/h-fdug.

As a result, gdu; = fdu,. So {dﬂ g € LYG)N

G)} glues up a global nonzero measure on G. But

Aﬂw— /f

dug'y—i—T)
gy +7)




so dpg/g is G’—invariant, so there is some constant c
such that

c-gdy =dpg
where d’y is the Haar measure of G. Since f(z) =

Jer(@
need.

), by a normalization, we get what we

The Fourier transform uniquely

(3.17) Corollary

extended to a unitary operator from L*(G) to L*(G).

(3.14) ! Notation— Recall what we de-
fined in . Let C C G be a compact
set, € > 0, denote

Vee={x € G:VyeC|y(z)—1| <€}

(3.15) Proposition The set {Vo,e
C compact,e > 0} forms a basis of nbd of u-
nity of G.

| PROOF. These are all open subsets by tube lemma.
Let V be a nbd of 0 in G. Let W be a compact

nbd of 0 with W —W C V. Consider f = IWP/
g = f*f. Then g is positive definite and g = |f|? >

> and

0. (g is so-called Fejér kernel). By Bochner theorem

and inversion formula 7
@) = [ an.
We have the following.

o [a(y)dy=yg(0)=1.

e There exists a compact subset C' C é, such that

/Cé(v)dv > %

Assume z is such that |1 — v(z)| < 1/3. Now

ol = |([+ [, )i
- /C G (@)dy + /G AOn@a
> /Cg(fy)’y(x)dv‘ - /c‘:\c g(v)y(z)dy
25-5-3>5
So z € V. We proved that Vi 1,3 C V.

3.3 Plancherel theorem

The Fourier transfor-

(3.16) Plancherel theorem
m maps L*(G) N LY(G) isometrically into a dense
subset of L*(G).

PROOF OF [(3.16). Let f € L?(G) N L*(G). Con-
sider ¢ = f* f. Then g is positive definite and
g = |f|> > 0. So by Bochner theorem and

inversion formula [ ,
[ @)@ = wdu = () = [ s@lf)Par.

Apply z =0, we get fELz( ) and ||fH2: [ f1]2-

So it remains to prove the image is dense. Note

that the image is stable under translation and by a
multiplication of a character. If ¢ € L?(G) such that

[ e (y)dy =0
G

for any ¢ lying in the image. Replace ¢ by o(v)y(z).
By , -1 = 0, so by a translation of any ¢ # 0,
Y =0.

(3.18) Corollary | The image of Fourier transform

LNG) = {fi* fo: s fo € L)},

> (3.19) EXERCISE.

» (3.20) PROBLEM.

> (3.22) PR,()BLLI\].

PRrROOF. Note that, for f,g € L?(G)
[ t@gwis = [ Foa-a

Replace g by 7o(x)
/ f(z x)dx

/f 9(0 = )dy = £ * §(0).

Note that h € L'(G) if and only if h =
f.9 € L*(G).

fg 70

fg with

If p is continuous, show that p*v

is continuous.

Find an elementary proof of
Bochner theorem when G = Z/nZ.

> (3. 21)E\’FR(‘ISF If p € LY(G) with f = @(z) =

Jre(z)v(x)dy € LY(G), show that f = .
If F is a nonempty open subset
of G, show that there exists f € L'(G) for some

f e LY(@), such that f # 0 but f = 0 outside E.



4 Structure of LCA Groups

4.1 Pontryagin Duality

(4.1) !! Notation— Let G be a LCA group,
I' its dual, and I" the dual of I'. Denote

a:G—T x— [y = vy(z)].

(4.2) Pontryagin | The map « is a topological group

isomorphism.

PROOF. In view of k2.16)| and k3.15)|, « is an em-
bedding (note that I" separate points of G and f‘)
By , if «(G) is not dense, then one can
find an f € L'(G) such that f(a(G)) = 0 but f # 0.
Then for x €I,

Feo= / Fen)x(7)dy.

In particular, when x = a(z), it shows [ fy(x)dy =
0, then f = 0 by dual uniqueness .

So it rests to prove that I' = a(Q).
x € G, pick a basis of compact nbd of I, say V. For
any V € V, pick some z, € (x+ V) Na(G). Now
{zv : V € V} forms a Cauchy net in o(G),

For any

for any nbd V of 0 in a(G), there

exists U € V, such that for any

W, W e V with WWV C U, we

have xw — zyw € V.
More precisely, U € V such that (U—-U)Na(G) C V.
But a(G) is locally compact, so zy — x9 € a(G).
So zo € Nyep(x+V)Na(G), ie o= x.

(4.3) Corollary | If G is not discrete, then L'(G)

has no unity.

(4.4) Corollary | If G is not compact, then 1 ¢

LY(G) € Co(I).

(4.5) Corollary | If 11 is a finite regular Borel mea-

sure over G, with i € L'(G), then yu is absolutely
continuous with density f(x) = [z~(x)i(y)dy.

Let G be LCA group, and I" be its dual group.
We denote M(X) the space of finite Borel measures

over space X. For f € L}(G) and m € M(G), denote

the Fourier transform

For ¢ € L'(I') and p € M(T), denote the inverse

Fourier transform

Fo=¢@) = [po(y)y(z)dy,
Fu=ji(z) = [py(x)du(y).

If m € M(G), with Fm = 7 =€ L'(T"), then
dm = F(Fm)dg.
If 4 € M(T), with Fu € LY(G), then
du = F(Fp)dy.

In particular, for f € LY(G) and ¢ € LY(I),
then
p=f = f=¢

The classic Fourier invention formula.

(4.6) Theorem | If H is a closed subgroup of G, de-

note

A=H'={yeTl:Voe H~(x)=1}.

then T is the dual group of G/H, and T'/A is the
dual group of H.

PROOF. Since we have proved the dual theorem
, so it suffices to show the first assertion. Al-
gebraically, there is no problem. To show they are
homeomorphism, look at k2.16)| and k3.15i.

4.2 Structure theorem

(4.7) Structure Theorem |Let G be a LCA group,

then there exists n € Zx>q, and G contains an open

subgroup of the form H & R", where H is a compact
group.

(4.8) Remark | This means the compactness is due
to the discrete G/Gy, and locally R™, where Gg is

the connected component of 0 € G.




(4.9) Aemma | Suppose that there is a homomor-

phism Z -5 G so that p(Z) is dense. Then G is

compact or G = 7.

PROOF. Suppose G is discrete, then G is quotient
group of Z there is nothing to prove. So assume G
p(k). Pick V be a

symmetric nbd of 0 in G, with V' compact. Now any

is not discrete. Denote z, =
nbd of 0 meets infinite many x, so in particular,

oo

G= U(xl + V).
i=1

More precisely, if y € G, then y € z;, + W, with W
symmetric and W 4+ W C V, say y — zp € W, but
some [m| > 0, xyy, € W, soy—ap+x, € WH+W C
V.

Assume Uf;l(ﬂcz + V) covers V. For any y, find
the smallest n > 0, such that y € z, + V. Then
Yy — Ty € Uio(zi +V),if n > N, then we will get a

smaller n, a contradiction. So G = J_ (z; + V).

(4.10) Aemma
pact nbd V' of 0. Then there is a closed subgroup
H of G isomorphic to Z™ such that G/H is compact
and VNH=0.

Suppose G is generated by a com-

| PROOF. We can firstly assume V = —V, define
V,, = V+ -"- +V. Then by assumption, G = UV
Assume V +V C | JV_ (z; + V). Let H be the sub-
Then V + H = G,

group generated by x1,...,Zp.

since

Vipr =V +Va,CV+(V+H)
=(V+V)+HC(V+H)+H

=V +H

by induction. Let H; = Zz;. If all H; are compact,
then G itself is compact, so n = 0 serves. Suppose
some i such that H; is not compact, then H; = H; =
Z by lemma above . Then take the subgroup
H' of H isomorphic to Z" of maximal rank r. Then
H'NYV is finite, so we can replace H' by a finite index
subgroup so that H' NV = 0. Now, the image of H
under G — G/H’ is compact by our choice. So this

is desired subgroup.

(4.11) !"! Locally isomorphic— We say two

topological group is locally isomorphic, if

there exists nbd V' and W respectively, and
f

homeomorphism V — W with f(z +y) =

f(z)+ f(y) whenever z,y,x +y € V.

(4.12) Aemma ‘ Let G be connected. Assume G is

locally isomorphic to R™, if G does not contain the

infinite compact subgroup, then G = R".

| PROOF. One can extend to a group homomor-

phism R” LG, by set o(xz) = ne(z/n). Then ¢
is injective (by the assumption that G' does not con-
tain the infinite compact subgroups), and open, so
p(R") =G.
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We may use some knowledge of totally discon-

nected spaces/groups, which is outlined in exercises,

see .
| PROOF OF [(4.7).

components. Let GGg be component of 0 in G. Then

Firstly, let us deal with the

Gy is closed, and G/Gy is totally disconnected.

So by , there exists an open compact sub-
group K of G/Gy. Denote G; = 7 }(K) where
m: G — G/Gy. Then G; does not have open sub-
group of infinite index, i.e. G; does not have any
infinite discrete quotient groups.

Since 7 is open, there exists a compact nbd V' of
0 such that ¢(V) = K. Then V generates Gy, since
it is open, and intersects all cosets of Gy. The by
, G; contains a subgroup H =~ 2", with G1/H
compact, and HNV = 0.

The consider the dual group, H+ = CTl/\H is
discrete, H is a torus T". So by , I, =G is
locally isomorphic to R™. Let I'g the component of 0
in 'y, and T’y has no infinite compact subgroups. So
I'o = R™. In conclusion, I'y contains R™ as an open
subgroup.

Now A = I'; /T is discrete, since H+ 4Ty =T';.

Since R™ is injective module, there is section

0 R™ Iy A 0

——
since A is discrete, so it is continuous, thus, I'y =
R" @ A.

Then G; = R™ & A with A compact. The proof

is complete.

(4.13) EXAMPLE | Consider

only finitely many (,’s are}

= {{cn} € (z/4)"

“equal to 1 or 3.



Then K = {zr € G : 22 = 0} = {0,2}Z is compact
and open. We do not in general have G = G1®G/G;.
In this example, if so, G/G1 intersects K by a infinite
sets, contradicts to the fact K is compact. (Since
G /G cannot be finite, since G is not. )

(4.14) EXAMPLE |Let {Gq : o € A} be a family of

topological groups. Define its direct sum

Z G — {(ma) . H . onb;é Oﬁnitely many}
Ta .

If all G, ’s are compact, then [ . 4 G is locally com-
pact and [[, Go =", G.a.
(4.15) Exercise. For locally compact group G, and

a family § of open compact subsets, show that

§ forms a basis of nbd <= ﬂ F={1}.
Feg

(4.16) Exerciske. For a compact space X, show that
the component of z € X is the intersection of all open

compact subsets containing x.

(4.17) ProBLEM. Show that, for a local compact to-
tally disconnected space X, the open compact sub-

sets containing x forms a nbd basis of x.

(4.18) Exercisk. For a totally disconnected locally
LC group G. Any open compact subspace E, show
that there is an open compact group H such that
H-FE = FE, so that F is a union of cosets of H.
In particular, the family of open compact subgroup
forms a basis of nbd of 1. When G is compact, then
the family of open normal subgroup forms a basis
of nbd of 1.
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> (4.19) PROBLEM (Pro-finite groups). If a topological
group G is compact and totally disconnected, show
that G = I&nl G; with each G; finite.

» (4.20) ProBLEM. For topological group G and com-
pact subgroup H, show that G/H is (locally) com-
pact if and only if G is (locally) compact.

> (4.21) PrOBLEM (“Fubini”). Let H be a closed sub-
group of a LC group G. If we take a left Haar measure
v on H, and assume there exists a left G-invariant
measure v on G/H. Show that

w(E) = /G/H v(zT'EN H)dv(zH)

is nonzero and left invariant, so a scaler of left Haar
measure over G.

» (4.22) PROBLEM (Poisson  summation  formula).
Let H be a closed subgroup of G. Suppose that
f € LY(G), such that

(1) for each x, [h+— f(z + h)] € L*(H);

(2) [+ H ~ [, f(x+h)dh] € L' (G/H);

(3) [y f()] € L (H).

show that

‘/fwmh= FO)dr
H H+L

with dh and d\ some Haar measure on H and H~L.



5 Compact Groups
5.1 Representations

(5.1) Definition Let H be a Hilbert space, a continu-
ous group homomorphism from G to U(H) the uni-
tary operators over H, is called a unitary represen-

tation (and will be called directly a representation
(rep)) of G .

(5.2) Definition (Irreducible representation) Let H be

a rep of G, if there is no G-invariant closed subspace,

then H is called an irreducible rep.

(5.3) Theorem | For a compact group G, any rep is

direct sum of irreducible rep s, and each irreducible

rep is finite dimensional.

Let {H; : i € I} be a family of Hilbert spaces.
Denote

PH = {(mi) e[[H: D llil? < oo},

icl i€l i€l

with inner product

(@), () =D (wir i) -
il
It is a Hilbert space.
If {H;} is a family of pairwise orthogonal closed
subspaces in some big Hilbert space H. Then the

map

é%;fﬁ — EE:fL

el iel

(2;) — Z Ti

is continuous bijection, so it is an isomorphism (by

open map theorem).

(5.4) Aemma | For a compact group G, any repH

contains a finite dimensional rep.

PROOF. Let V be any nonzero finite dimensional

subspace of H. Let p be the projection on V. Then
P:H—H zr—>/g'p(gfl'x)dg
G

is a nonzero bounded operator over H. It is also
unitary and compact, since it is a limit of finite di-

mensional unitary operator.

15

Then, by spectral theorem, there is some eigen-
value A such that Hy = {v € H : Pv = \v} is

nonzero and finite dimensional. Now

Pv = v = Pgv = A\gv

1

since gPg~" = P. So H, is a finite dimensional G-

invariant subspace.

(5.5) Aemma | For a compact group G, any rep H

and G-invariant closed subspace has its orthogonal

complement invariant.

| PROOF. Since g acts as unitary operator,

{gv, w) = (v, gw).

| ProOOF OF [(5.3). Let V be a rep. Pick the maxi-

mal element among by Zorn’s Lemma (it is nonempty

by above )

{ U;’s are finite dimensional pairwise}

" orthogonal, G-invariant subspaces.

Assume the maximal element is (U;), then >_U; has
complement zero, by maximality, and .

(5.6) Remark |For a finite group G, the assertion of
direct sum in l! 5.3]| can be algebraic. Where one need

to check any short exact sequence of G-rep splits. Say

0>V ->U—->W-=0

Consider any projection from U on V, say p, then

consider
1 -1
P:H—H a+— — [ g-plg”" - 2)dg
Gl Ja

it still maps U on V, and invariant on V, so P? = 1.
Then U = V & ker P, so the short exact sequence
splits.

5.2 Characters

(5.7) Definition (Character) Let V be a finite dimen-

sional G-rep. We define its character

xv:G— C gr—trg



(5.8) Dixmier’s generalization of Schur Lemma

If V is an irreducible G-rep of at most countable
dimension, then any G-endormorphism of V is the

scalar product of C.

| PROOF. Let A be such an endormorphism. Then

Ag = gA for any g € G. The image of A is G-
invariant, so must be 0 or V. The same reason, the
kernel of A must be 0 or V. So if A is not a scalar,
then it is invertible.

Then so is all A — Al for A € C. Let be
its inverse, then { 57 A€ (C} is linearly indepen-

A)\l

dent, otherwise A will be algebraic over C thus a
scalar.

But V is generated by any nonzero element, so
{A : gA = Ag} has dimension at most V, which is

assumed to be at most countable. A contradiction.

(5.9) Corollary

then any G-homomorphism between V' and W is

For two G-irreducible rep s V., W,

an isomorphism or zero V =W

Zero otherwise.

(5.10) Theorem
uv,

For two finite irreducible rep s

1, U=V,

ﬁ /G wiowlis =

| PROOF. Pick two basis for U and V, and let A be

a linear map between them, Consider

otherwise.

R 1
A:U—V x»—>—/g-A(g_1-a:)dg
G| Ja

which is a G-homomorphism.

Pick basis for U and V, say uq,...,u, and
V1,...,Un. Then
= [ xwl@xviag
— U \%
Gl J X
1 s
-G /G S5 (gusus) Tgon, vi)dg
j=1i=1
1

If U 2V, or WLOG assume V' = U and take
u; = v;. By Schur’s lemma above,

A-dimU =trA-1.

But
i [ e e
el 25
6/ r Adg = tr A.

a

So

@ [ xw@niang -

1G] GXUQXVQ 9= |G| dlmU

1,7=1

If U is not isomorphic to V, then by Schur’s
lemma above, always A=0. So

ﬁ /GXU(9>XV(9)d

The proof is complete.
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Consider any LCA group G, and

(5.11) EXAMPLE

any finite dimensional G-rep. Note that, a linear al-
gebra exercise shows the elements of G share a com-
mon eigenvector. As a result, the irreducible finite-
dimensional rep s of LCA group are all one dimension-
al with the character of them coincides the character
defined for LCA.

(5.12) EXAMPLE | For a compact group G, and a

finite dimensional space V where G linearly acts on

it. Then we can introduce an inner product by

(z,y) = /G (9z, gy)dg

with (-,
respect to (-, ).

-) any inner product. Now ¢ is unitary with

(5.13) EXAMPLE |For any LC group G, G acts nat-

urally on its function space, for example L?(G) and

C(G). More exactly, it has two actions

sfit— f3(t) = f(ts), sfit— f(s71).

(5.14) Definition (Class function) If a map ¢ : G — C

satisfies p(st) = p(ts) for any s,t € G, we will call ¢

is a class function.



(5.15) EXAI\/IPLE| Consider the special unitary

group
SU@) ={(%52):a,BeC |a+|B2 =1}
It acts on polynomial by

(25 f(zw) = F((z,w) (2 5)) = flaz+yw, Bz+dw).

Consider the space of two-variable polynomial of to-
tal degree n, say V.

Firstly, V,, is irreducible for all n > 0. This fol-
lows by Schur lemma — due to , it suffices to
show End(V},) is only scalars. Pick ¢ € End(V},).
Note that (¢ 1/a) € SU(2), and (° 1/a)zkw"—’f =

an—Qk B kan—k,.

By an argument of homogenous,
2FPwn =% — ¢pzFw™F for some ¢, € C. Then note
that (;ﬁfg _Csisnea) € SU(2). Then by a direct com-
putation, ¢ = ¢,. So @ is a scalar, thus V, is ir-
reducible. They are non-isomorphic by dimension
reason.

Then, we are going to compute the characters.
Consider T' = {(e“ o) 1t € R} CSU(2). Consider
the map

G x T —— G/conj

[
W

G/TxT—G

This is surjective by linear algebra. Over G/conj,
there is two measures one from the Haar measure,
one from G x T. If the union of some conjugation
classes E of zero measure, then {(g,t) : ztz~! €
E} = {(z,t) : t € E} = |[ENT| must has zero

measure. Since |[ENzTz~ | = |ENT], so

As a corollary, {V,,} gives the full list of irre-
ducible rep s of SU(2). Since

2 i 1)t
™ / X(t)w sin tdt = 0
T

™ S11

and class functions are even period function, so this
implies x = 0.
5.3 Representative functions

Assume we have an n-dimensional rep V', then
G — End(V) = M,,(C) has n x n entries.

(5.16) Proposition | For a function G-f—>(C, the
following conditions are equivalent.
(1) span{f(es) : s € G} is of finite dimension.
(2) span{f(s~'e) : s € G} is of finite dimension.

(3) f is linear combination of matrix coefficients

of some finite dimensional rep.

f
(5.17) Definition A function G — C, is called finite

dimensional or representative if span{ f® : s € G}

is of finite dimension.

B Claim | Any entry is a finite dimensional function.

| PROOF. Since aj;(e) = a;j(es) = >_ aix(e)ar;(s)

lies in the space spanned by the entries.
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Let f be finite dimensional function over G. De-
note V = span{f*® : s € G}, then V is finite dimen-

sional G-rep.

B Claim | The space V = span{f*® : s € G} is con-

tained in the space spanned by matrix coefficients
G — End(V).

|EmT|T:/ |EﬂxTx_1|dx:/ /Edtdxz Elo. | _
G/T q/TJr PRrROOF. For any f € V, we take the functional

So we have some density g(¢) with ¢t € T such that

Lamwzéammw

for class function ¢.
Note that for t = (e“ it ), its character x,, for
V., is
n
- x sin(n + 1)t
t) = i(2k—n)t ti Sln(n )
Xn( ) I;)e sint
Since [ XnXm = JpXnXm9 = Omn and xn(t) is

dense in continuous even period functions. So g =
2

s

sin®t is the only choice.

» (5.18) EXERCISE.

evay : f+— f(1). So f(s) = (evaq, f*) is in the space
spanned by matrix coefficients G — End(V).

Prove the classic Schur lemma
that if V' is an irreducible finite dimensional G-rep,
then any G-endormorphism of V' is the scalar prod-
uct of C.
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6 Fourier Analysis over Compact Greups)| > c. If f € L%(G) with ||f|| < 1, then

6.1 Peter—Weyl theorem

(6.1) Peter—Weyl theorem | The set of continu-

ous finite dimensional function is dense in C(G) and
L3(@G).

| PROOF FOR L?(G). Let N the orthogonal of the

set of all finite dimensional function. Denote f(s) =
f(s71). Note that if f = % +if2—7c, so it suffices to
show for that {g € N : g = g} = 0. Let f € L*(G).

Consider the compact operator
7,5(5) = | alsu)fu)a

Then Ty is a self-adjoint operator by purely algebraic

computation
<f17Tgf2 /fl / St 1)f2( )dtds
fa(t / st=1) f1(s)dsdt
/f2 / 1) fi(s)dsdt

= (Tyf1, f2) -

So by spectral theorem, T, has at most countably
many nonzero eigenvalue \; € R\ 0 with {f : T, f =
Aif} finite dimensional. Assume T,¢ = Ay, then

Ty'(5) = [ glsueutidu
_ / glstu™")p(u)du
= /ngo(st) = (Typ)'(s).

As a result, any ¢ € {f : T,f = A f} is finite
dimensional. Hence ¢ = § € N C kerT,, but

0) = [g(u)gw)du = gl
desired g = 0.

We get what we

| PrOOF FOR C(G). Let f € C(G). For any € > 0,
find an open nbd U of 1 € G such that st™' € U =
|f(s) — f(t)] > e. Take g € C.(U) such that g > 0
and ||g|]| = 1, furthermore without loss of generality

Then |f - T,/ < e,

assume that g(s) = g(s71).

where
7,5(5) = | alsu) )i

Similar to the process above, T}, is a self-adjoint op-
erator. For compactness, take € > 0, then there is
an open nbd U of 1 € G such that st™! € U =

for any st~! € U,

T, £6)=Ty 0] < [ latsu™)=g(eu™)| Flu)du < =
So {Tyf :|Ifll =1} is compact by Ascoli lemma.
Similar to the process above, the eigenspace belong-
ing to any nonzero eigenvalue \ consists of finite di-
mensional functions. So T}, f can be approximated

by them. The proof is complete.

(6.2) Remark | The L? part is essentially done by
k5.3 j This is also known as “generalized Peter—Weyl

theorem”.

(6.3) Theorem ‘ The space generated by characters

of irreducible rep s forms is dense in the space of

continuous class functions.

PROOF. For any continuous class function f, we

can find a finite dimensional ¢ such that || f — || < e.

Now @ = [ f(gzg™
class function with ||f — ¢| < e.

)dg forms a finite dimensional

So it suffices to show any finite dimensional class
function f is a linear combination of characters. By
, we can assume f is from some matrix coef-
ficient of some rep. Then we reduce to the case of
rep.

Let V be a irreducible rep E = @, E,, and
f(g9) = >, (ws, gvs). We can assume that any i, the
v;, w; comes from one irreducible representation F;

with character ¢;. Then consider

<wi,/ mgm_lvidx>.
G

By the proof of applying to the lin-
ear transform v — gv,

g Xi(9) (wi, vi).
flg) = fG 2 <wi7$9$_1vi>d$7 the proof is com-

the above is exactly

Since f is class function, so

plete.

6.2 Fourier transform

(6.4) Definition Let G be a compact group, denote G
the set of equivalent class of irreducible representa-
tion of G. We define

= @ End(V

ved



where End(V) is equipped with the norm
|A||? = trace AA*

where (Av, w) = (v, A*w) for any unitary inner prod-
uct. Equivalently, if there is a orthogonal basis B,
then [|A]]? =35, g [| Ao,

(6.5) Definition We define the Fourier transform
LXG) — EG) ¢

where

o= Z {v — (dimV)1/2/ v(g) ogvdg} .
ve& ¢
We define the inverse Fourier transform
EG) — LAG)
\4 2 V] ~— [g+ (dim V)2 trace(g~1A4)].

(6.6) Remark | If we use the isomorphism End V' =

V ® VV, then the inverse Fourier transform can be

written in the following way

E@) — L*G)
VeaVVseaf — [gr (dim V)2 f(ge)].

(6.7) Theorem | The Fourier transform and inverse

Fourier transform are well-defined, norm preserving

and inverse to each other.

| PROOF. If p(g) = (dim V)2 f(ge) for some e € V
and f € VV, then

By the proof of applying to the linear trans-
form f(e) - v, it is (trace f(e)v)e = f(v)e. So F o F’
is identity, where I’ the Fourier transform, and F”
the inverse Fourier transform.

The image of inverse Fourier transform is exact-
ly the closure of the space generated by matrix coef-
ficients. Hence the map is surjective by Peter—Weyl
theorem.

Take a orthogonal basis B(V) for each V € G,
Let B = {(v,-) : v € B(V),V € G} which is also a

set of unit orthogonal basis for £(G), since

(v, ), (w, ")) = Z (v, u) (w, u).

ueB(V)
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Now
B ={[g— dim VY2 (gu,v)] : V € G,v € B(V)},

the inverse Fourier transform of B, is also a set of
unit orthogonal basis for L?(G). Actually,

(p, ) =dimV [ (gv,v) (gw,w)dg

= dimV/<g <gilw,w> vdg, 11> .

By the proof of applying to the linear trans-
form (e, w) - v, it is ((v, w) w,v).

So F'f is convergent for any f € L%*(G), and
F’ o F is identity.

(6.8) Theorem | We have the isomorphism of G x G-

rep

£(G) = @ VevYy= @ End(V) = L*(G).

ve& ve&

(6.9) Corollary The multiplicity of V in L*(G) is

dim V.

(6.10) Remark | We should regard an element of

& (CJ) a matrix-value function, where at each point
V the fibre of value range is End(V).

Now, for any g € G, it defines a matrix-value
function, say g(V) = [VﬂV]. For two A,B €

End(V), we can define the trace form
Ao B = trace(AB).

If we denote the measure p over G with {V'} of mea-
sure dim V.
For f € £(G), we can define

g) = /G 9V o F(V)du(V).

Here ¥ stands for transposition. For ¢ € L?(G), we

can define
sov(V):/GMg%g(V)dg-

These two definitions may be more similar to the
abelian case.

Then f — f" and ¢ — ¢ are mutually inverse.
Of course, not isotropic, but differ by our definition

by an automorphism.



» (6.11) ProBLEM. If a compact group G admits

a faithful representation V', then the algebra gen-
erated by the matrix coefficient of V and V'V is
dense in C(G).

» (6.12) ProBLEM. If a compact group G cannot have
infinite descending closed subgroups chain (for exam-
ple compact Lie group), then

(1) G admits a faithful representation.

(2) Every closed subgroup H of G is {g € G :

gv = v} for some representation V and v € V.

A

(A.1) Definition Let f € LY*(R"), denote

f = [ f@ye 0
the Fourier transform of f and
fla) = [ Fem el

the inverse Fourier transform of f.

Differentiation

(A.2) Proposition For any polynomial P, we have

e (PO))Nt) = P(—it) - f(t), if P(D)f exists.
« (P- ) =P@0)(f).

(A.3) Definition (Schwarz space) The Schwarz s-

pace or rapid decreasing functions space is
P-0“f are bounded for all
S =< fed™ ] .
a and polynomial P
Or formally, for all N > 0,
sup <sup [(1+4+ |$|)N8°‘f(x)|> < oo.

lal<N 3

We topologize . by the countable norms above.

“Non-abstract” Harmonic Anal

The space . is a Fréchet s-

(A.4) Proposition

pace.

(A.5) Theorem
map from . to itself.

Fourier transform is a continuous

(A.6) Inverse formula for . | The Fourier trans-

form ¥ — % is isomorphism preserving norm with

inverse the inverse Fourier transform.

Holomorphism

(A.7) Paley | Assume f is holomorphic over upper
plane H = {z € C: Sz > 0}, with

sup
O0<y<oo

1/ (o +iy)ll2 < oo,
then there exists F € L*(0,00) such that

f(z) = /0 h F(t)e S

(A.8) Wiener
tion with |f(z)| < Cel?! (known as entire function
of order A). Assume that [, |f(x)[*dz < oo, then
there exists F' € L?(—A, A) such that

ysis

Assume A,C > 0, f a entire func-

A
F(z) = [ ) F(t)eitz;i;.

Miscellaneous

(A.9) Poisson Summation |Given f € L' and f €

L', assume

P 1
fandf<<W,

then

Y fw)y= Y flw).

wEL™ wEL™

(A.10) Hausdorff-Young ‘ If1 < p < 2, assume
f € LP, then f € LY and

1fllg < 1/,

where 1/p+1/q = 1.

(A.11) Heisenberg uncertain principle
S (R) with ||¢|l2 = 1. Then

If p €

R 1
lzp(@)]l2 - lE2@)ll2 = 5
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