Topology and Geometry Seminar

Equivariant Version (II)

Xiong Rui

November 16, 2020
(1) Fixed Points and Tori
(2) Localization Theorem (I)
(3) Localization Theorem (II)
(4) Localization Theorem (III)
(5) Localization Theorem (IV)
(6) Localization Theorem (V)
(7) Thanks

\S Fixed Points and Tori §

Remind

- Let G be a group, X be a G-set, the equivariant cohomology

$$
H_{G}^{*}(X)=H^{*}\left(E G \times_{G} X\right) .
$$

- In particular, when the action of X is trivial, then by definition,

$$
H_{G}^{*}(X)=H^{*}(B G \times X)
$$

- In particular, by Künneth theorem,

$$
H_{G}^{*}(X ; \mathbb{Q})=H^{*}(B G ; \mathbb{Q}) \otimes H^{*}(X ; \mathbb{Q})
$$

Fixed Points

- Let X be a G-space. We denote X^{G} the fixed points of X. There is a map induced by the inclusion X^{G}, called Localization

$$
H_{G}^{*}(X) \longrightarrow H_{G}^{*}\left(X^{G}\right)
$$

- Note that X^{G} is a trivial G-space. So

$$
H_{G}^{*}\left(X^{G} ; \mathbb{Q}\right)=H_{G}^{*}(\mathrm{pt} ; \mathbb{Q}) \otimes H^{*}\left(X^{G} ; \mathbb{Q}\right)
$$

- Usually, the restriction loss much information using ordinary cohomology. But in equivariant case, in good case, it restores most of information.

Examples

Let G / B be the flag manifold.

- Note that $(G / B)^{G}=\varnothing$, so $H_{G}^{*}\left((G / B)^{G}\right)=0$.
- Let T be the maximal torus of G contained in B, then

$$
\begin{aligned}
(G / B)^{T} & =\left\{x B: T_{x} B=x B\right\}=\left\{x B: x T^{-1} \subseteq B\right\} \\
& =\left\{x B: x T x^{-1}=T \subseteq B\right\} \\
& =N_{G}(T) \cdot B / B=N_{G}(T) / T=\text { Weyl group } W .
\end{aligned}
$$

So the localization

$$
H_{T}^{*}(G / B) \longrightarrow H_{T}^{*}\left(\bigcup_{w \in W} w B / B\right)=\bigoplus_{w \in W} H_{T}^{*}(\mathrm{pt})
$$

Both sides have the same rank over $H_{T}^{*}(\mathrm{pt})$.

Tori

- Today, the main role is the case G is a torus $\left(\mathbb{C}^{\times}\right)^{n}$. It is equivalent to consider $\left(S^{1}\right)^{n}$ as its maximal compact subgroup.
- Recall that

- For points, $H_{T}^{*}(\mathrm{pt})=H^{*}(B T)$,

$$
H_{T}^{*}(\mathrm{pt})=\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right] .
$$

Note that $\operatorname{deg} t_{i}=2$.

Tori

- However, we should work for abstract torus, without a specific choice of isomorphism. We say
an $\underset{\text { Lie group }}{\text { algebraic group }} T$ is an $\begin{gathered}\text { algebraic torus } \\ \text { topological torus }\end{gathered}$ if it is $\begin{gathered}\text { isomorphism to }\left(\mathbb{C}^{\times}\right)^{n} \\ \text { homoemorphism to }\left(S^{1}\right)^{n}\end{gathered}$
- Let its character group

$$
\mathrm{Ch}(T)=\left\{\begin{array}{c}
\text { algebraic } \\
\text { continuous }
\end{array} \text { group homomorphism } T \rightarrow \mathbb{C}^{\times}\right\} .
$$

- Note that $\operatorname{Ch}(T)$ is a free abelian group of finite rank $\operatorname{dim} T$. Say, if $T=\mathbb{C}^{\times}$, then $\operatorname{Ch}(T)=\left\{\left[z \mapsto z^{n}\right]: n \in \mathbb{Z}\right\}$.
- Let \mathfrak{t} be the complexification of the Lie algebra of T, consider the dual space t^{*}.
- We can think $\mathrm{Ch}(T) \subseteq \mathfrak{t}^{*}$. By the following diagram

$$
\begin{array}{rll|rll}
\mathfrak{t} & \rightarrow & \mathbb{C} & \mathfrak{t} & \rightarrow & i \mathbb{R} \quad \subseteq \mathbb{C} \\
\exp \downarrow & & \downarrow \exp & \exp \downarrow & & \downarrow \exp \\
T & \rightarrow & \mathbb{C}^{\times} & T & \rightarrow & S^{1} \subseteq \mathbb{C}^{\times}
\end{array}
$$

- Say, we usually write $\lambda \in \operatorname{Ch}(T)$, where formally $\lambda \in \mathfrak{t}^{*}$, the map is given by

$$
\left[x \mapsto e^{\lambda(t)}\right], \quad x=\exp (t) \in T
$$

So the product is always written additively (be careful!).

Tori

- The conclusion is, $H^{2}(B T)=\operatorname{Ch}(T)$, by

$$
\mathrm{Ch}(T) \longrightarrow H^{2}(B T) \quad \lambda \longmapsto-c_{2}\left[\begin{array}{c}
E T \times T \mathbb{C} \lambda \\
\downarrow \\
B T
\end{array}\right]
$$

where $\mathbb{C} \lambda$ is a copy of \mathbb{C} acted by T through character λ.

- This can be checked easily from a choice of isomorphism. Say, from the isomorphism we know

$$
H^{*}\left(B\left(\mathbb{C}^{\times}\right)^{n}\right)=\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]
$$

t_{i} is the character of i-th projection $\left(\mathbb{C}^{\times}\right)^{n} \rightarrow \mathbb{C}^{\times}$.

Tori

- And $H^{*}(B T)$ is generated freely by $H^{2}(B T)$. Formally, $H^{*}(B T)=$ Symmetric power of $\mathrm{Ch}(T)$.
- In particular,

$$
H^{*}(B T ; \mathbb{C})=\mathbb{C}[t]=\text { polynomials functions over } t
$$

$>$ Questions?

\oint Localization Theorem (I) \oint

Let T be a $\begin{gathered}\text { algebraic torus } \\ \text { topological torus' }\end{gathered}, X$ be a $\begin{gathered}\text { variety } \\ \text { manifold }\end{gathered}$ acted by T algebraically smoothly .
Theorem (Borel)
The equivariant cohomology $H_{T}^{*}\left(X \backslash X^{T} ; \mathbb{Q}\right)$ is a torsion $H_{T}^{*}(\mathrm{pt})$-module. As a result, if X^{T} is a submanifold, the kernel and cokernel of

$$
H_{T}^{*}(X ; \mathbb{Q}) \longrightarrow H_{T}^{*}\left(X^{T} ; \mathbb{Q}\right)
$$

are both torsion modules.
In particular, denote F the fraction field of $H_{T}^{*}(\mathrm{pt})$, then

$$
H_{T}^{*}(X ; \mathbb{Q}) \otimes F \longrightarrow H_{T}^{*}\left(X^{T} ; \mathbb{Q}\right) \otimes F
$$

is an isomorphism.

Proof

- Firstly, we only need to work in compact group, since any Lie group is homotopy equivalent to its maximal compact group.
- In compact case, we have "equivariant tubular neighborhood theorem". We can pick a neighborhood U of X^{T}, then

$$
H_{T}^{*}\left(X, X^{T}\right)=H_{T}^{*}(X, U)=H_{T}^{*}\left(X \backslash X^{T}, U \backslash X^{T}\right)
$$

Since $H_{T}^{*}\left(X \backslash X^{T}\right)$ and $H_{T}^{*}\left(U \backslash X^{T}\right)$ are all torsion module.

Proof

- Then to prove $H_{T}^{*}\left(X \backslash X^{T} ; \mathbb{Q}\right)$ is torsion module. It suffices to show the case $T=S^{1}$ or \mathbb{C}^{\times}, since

$$
X \backslash X^{T_{1} \times \ldots \times T_{n}}=\left(X \backslash X^{T_{1}}\right) \cup \cdots \cup\left(X \backslash X^{T_{n}}\right)
$$

the Mayer-Vietoris sequences shows.

Proof

- In the case $T=S^{1}$ or \mathbb{C}^{\times}, the stablizer of $x \in X \backslash X^{T}$ is finite. The action is nearly to be free. Actually this is hidden in the \mathbb{Q}-coefficients.
- In this case, the map

$$
E T \times_{T}\left(X \backslash X^{T}\right) \longrightarrow \text { orbit space of } X \backslash X^{T},
$$

has fibre $B G_{x}$ at orbit of x. Note that $H^{*}\left(B G_{x} ; \mathbb{Q}\right)$ is \mathbb{Q}-acyclic, since G_{x} is finite. Some refined topology shows that

$$
\left.H_{T}^{*}\left(X \backslash X^{T} ; \mathbb{Q}\right)=H^{*} \text { (orbit space of } X \backslash X^{T} ; \mathbb{Q}\right)
$$

of finite dimension.

Remarks

- We have $\chi(X)=\chi\left(X^{T}\right)$. Actually, for any $H_{T}^{*}(\mathrm{pt})$, we can define its equivariant Euler character

$$
\chi_{T}(X)=\sum(-1)^{i} \operatorname{dim}_{F} H_{T}^{i}(X ; \mathbb{Q}) \otimes F
$$

- Then by the Serre-Leray spectral sequences,

$$
\begin{aligned}
\chi(X) & =\sum(-1)^{i} \operatorname{dim}_{\mathbb{Q}} H^{i}(X ; \mathbb{Q}) \\
& =\sum(-1)^{i} \operatorname{dim}_{F} E_{2}^{p q} \otimes F \\
& =\sum(-1)^{i} \operatorname{dim}_{F} E_{3}^{p q} \otimes F \\
& =\cdots=\sum^{i}(-1)^{i} \operatorname{dim}_{F} E_{\infty}^{p q} \otimes F \\
& =\sum(-1)^{i} \operatorname{dim}_{F} H_{T}^{i}(X ; \mathbb{Q}) \otimes F \\
& =\chi_{T}(X) .
\end{aligned}
$$

Examples

- Recall $(G / B)^{T}$ is the Weyl group W, so

$$
H_{T}^{*}(G / B) \longrightarrow H_{T}^{*}(w \cdot B / B)=\bigoplus_{w \in W} H_{T}^{*}(\mathrm{pt})
$$

Since we computed $H_{T}^{*}(G / B)$ is free $H_{T}^{*}(\mathrm{pt})$-module, so this map is injective.

- One can see that for each Schubert cells $B w B / B$, it has one fixed point w. It is the evidence that $\chi(G / B)=\chi\left((G / B)^{T}\right)$.
- This is not a coincidence, it is called the Białynicki-Birula decomposition. See Milne.
$>$ Questions?
\ll

\oint Localization Theorem (II) \oint

Support

- Recall the concept support of commutative algebra. For a module M over ring R,

$$
\operatorname{supp}(M)=\left\{\mathfrak{p} \in \operatorname{spec} R: M_{\mathfrak{p}} \neq 0\right\}
$$

- In our case,

$$
R=H_{T}^{*}(\mathrm{pt} ; \mathbb{C})=\mathbb{C}[\mathrm{t}]
$$

its spectrum is exactly \mathfrak{t}.

- For a T-space X, we denote

$$
\operatorname{supp}(X)=\operatorname{supp}\left(H_{T}^{*}(X ; \mathbb{C})\right) \subseteq \mathfrak{t}
$$

Let T be a $\begin{gathered}\text { algebraic torus } \\ \text { topological torus, }\end{gathered} X$ be a $\begin{aligned} & \text { projective variety } \\ & \text { compact manifold }\end{aligned}$ acted by $T \begin{gathered}\text { algebraically } \\ \text { smoothly }\end{gathered}$.
Theorem (Atiyah-Segal)
The stablizer of $x \in X$ has only finite possibility, and

$$
\operatorname{supp}(X) \subseteq \bigcup_{x \in X} \mathfrak{t}_{x} \subseteq \mathfrak{t}
$$

where \mathfrak{t}_{x} is the Lie algebra of stablizer of x.

Proof

- Similarly, it suffices to prove for compact torus. Actually, for each orbit, we can find a tubular neighborhood, since we assume X to be compact, we can find a finite subcovering. So it suffices to show for each conormal bundle.
- For each conormal bundle of orbit, the stablizer has only finite many choice. But the projection of conormal to itself is a homotopy equivalence, thus has the same equivariant cohomology. Moreover, the orbit has bigger stablizer. So finally, it reduces to show for one orbit.

Proof

- Let T_{0} be the stablizer of this orbit.

$$
E T \times_{T} X=E T \times_{T} T / T_{0} \times_{T_{0}} X=B T_{0} \times_{T_{0}} X
$$

it is a fibre bundle of X with fibre $B T_{0}$.

- We see that the algebra map factors through

$$
H_{T}^{*}(\mathrm{pt}) \xrightarrow{\text { augment }} H_{T_{0}}^{*}(\mathrm{pt}) \longrightarrow H_{T}^{*}(X) .
$$

This finishes the proof.
$>$ Questions?
\ll

\oint Localization Theorem (III) \oint

The inverse

- Remind in the case of ordinary cohomology, if $Y \subseteq X$ is a closed submanifold of codimension n, the composition of push forward and pull back

$$
H^{*}(Y) \xrightarrow{i_{*}} H^{*+n}(X) \xrightarrow{i^{*}} H^{*+n}(Y),
$$

factors through

$$
\begin{array}{rllll}
H^{*}(Y) & \xrightarrow{\text { Thom }} & H^{*+n}(U, U \backslash Y) & \xrightarrow{i^{*}} & H^{*+n}(Y) \\
& H^{*+n}(X, X \backslash Y) & & & { }_{i} \\
& & H^{*+n}(Y)
\end{array}
$$

- Therefore it is given by the cup product with Euler class of normal bundle of Y in X.

Equivariant case

- Let $E \rightarrow X$ be a equivariant vector bundle, its equivariant Euler class is define by the Euler class of its Borel construction. Say

- If it is a complex bundle, then its equivariant Chern class is defined by the Chern class of its Borel construction.
- It is clear, the highest Chern class is the Euler class.

Let T be a $\begin{gathered}\text { algebraic torus } \\ \text { topological torus, }\end{gathered} X$ be a $\begin{aligned} & \text { projective variety } \\ & \text { compact manifold }\end{aligned}$ acted by $T \begin{gathered}\text { algebraically } \\ \text { smoothly }\end{gathered}$.
Theorem (Atiayh)
Assume X^{\top} is smooth, then

$$
H_{T}^{*}\left(X^{T}\right) \xrightarrow{i_{*}} H_{T}^{*}(X) \xrightarrow{i^{*}} H_{T}^{*}\left(X^{T}\right)
$$

is given by cup product with equivariant Euler class of normal bundle of X^{T}.
Denote for a component $\alpha \in \pi_{0}\left(X^{T}\right)$, denote i^{α} the inclusion of $\alpha \subseteq X$, and N_{α} the normal bundle of α in X. As a result, the localization map $H_{T}^{*}(X) \otimes F \rightarrow H_{T}^{*}\left(X^{T}\right) \otimes F$ has an inverse

$$
\sum_{\alpha \in \pi_{0}\left(X^{T}\right)} \frac{i_{*}^{\alpha}}{e\left(N_{\alpha}\right)}: H_{T}^{*}\left(X^{T}\right) \otimes F \longrightarrow H_{T}^{*}(X) \otimes F .
$$

Computation for a point

- Let V be a representation of T. Then as an equivariant vector bundle of pt, its equivariant Euler class and Chern class

$$
c_{T}(V)=\operatorname{det}(1-[V \xrightarrow{t} V]) \in H_{T}^{*}(\mathrm{pt})=\text { Symmetric power of } \mathrm{Ch}(T)
$$

- Say, if $V=\bigoplus \lambda_{i}$ with $\lambda_{i} \in \operatorname{Ch}(T)$ the 1-dimensional representation. Then

$$
c_{T}(V)=\prod\left(1-\lambda_{i}\right) \in H_{T}^{*}(\mathrm{pt})
$$

This is tautologically from Whitney formula and definition.

Computation for a point

- For Euler class it is the same, since the only real representation of T is trivial.
- So in particular, under the condition of Atiyah localization theorem. If X^{T} is simply points, then in particular, this map is given by equivariant Euler class is the determinant of T action on cotangent bundle,

$$
\bigoplus_{x \in X^{T}} \operatorname{det}\left(-\left[T_{x} X \xrightarrow{t} T_{x} X\right]\right)=\bigoplus_{x \in X^{T}} \operatorname{det}\left(\left[T_{x}^{*} X \xrightarrow{t} T_{x}^{*} X\right]\right) .
$$

$>$ Questions?
\ll

\oint Localization Theorem (IV) \oint

Equivariant K-theory

- In opposite of equivariant cohomology, the equivariant K-theory

$$
K_{T}(\mathrm{pt})=R(G)=\text { Group algebra of } \mathrm{Ch}(T)
$$

We will write e^{λ} for $\lambda \in \operatorname{Ch}(T)$ the 1-dimensional representation with character λ.

- It is convenient to view it as a subspace of class functions. Then for a representation $V,[V]$ corresponds its character $\operatorname{tr}([V \xrightarrow{t} V])$.
- Note: the line bundle with the second Chern class λ is $e^{-\lambda}$.
- It also has similar localization theorem (I), (II) and (III). The main difference is the following.
- Note that

$$
\begin{aligned}
\operatorname{spec} K_{T}(\mathrm{pt}) \otimes \mathbb{C} & =\text { class functions } \\
& =\text { conj class of closed subgroups. }
\end{aligned}
$$

- The push forward and pull back (only defined for algebraic K-theory)

$$
K(Y) \rightarrow K(X) \rightarrow K(Y)
$$

is given by the product with $\sum(-1)^{i} \Lambda^{i} N^{*}$ where N^{*} is the dual of normal bundle of X in Y.

Let T be an algebraic torus, X be a projective variety acted by T algebraically.

Theorem (Atiayh-Bott)
Assume X^{\top} is smooth, then

$$
K_{T}^{*}\left(X^{T}\right) \xrightarrow{i_{*}} K_{T}^{*}(X) \xrightarrow{i^{*}} K_{T}^{*}\left(X^{T}\right)
$$

is given by product with $\sum(-1)^{i} \Lambda^{i} N^{*}$ where N^{*} is the dual of normal bundle of X in Y.
Assume X^{\top} are points, for an equivariant vector bundle ξ over X,

$$
\sum(-1)^{i} \operatorname{tr}\left(t ; H^{i}(X, \xi)\right)=\sum_{x \in X^{T}} \frac{\operatorname{tr}\left(t ; \xi_{x}\right)}{\operatorname{det}\left(1-\left.t\right|_{T_{x}^{*}}\right)}
$$

where T_{x}^{*} is the cotangent bundle.

Proof of the second assertion

- Let V be a representation of T. Then as an equivariant vector bundle of pt, then $\sum(-1)^{i}\left[\Lambda^{i} V\right]$ is presented by

$$
\sum(-1)^{i} \operatorname{tr}\left(t ; \Lambda^{i} V\right)=\operatorname{det}(1-[V \xrightarrow{t} V])
$$

by linear algebra.

- Denote $\pi: X \rightarrow \mathrm{pt}$. Then the left hand side is $\pi_{*}(\xi)$. The right hand side is $(\pi \circ i)_{*} i^{*}\left(i_{*} i^{*}\right)^{-1}(\xi)$.

Weyl Character formula

- For G / B, and λ a weight, denote $\mathcal{L}_{\lambda}=G \times{ }_{B} \mathbb{C} \lambda$.

Theorem (Borel-Weil)
For λ negative,

$$
H^{0}\left(\mathcal{L}_{\lambda} ; \mathbb{C}\right)
$$

is the dual of irreducible representation of G of highest weight λ and its higher cohomology groups vanish.

- We can reprove Weyl character formula.

Theorem (Weyl)
For λ positive, let V be the irreducible representation of G of highest weight λ

$$
\operatorname{tr}(t ; V)=\sum_{w \in W}(-1)^{w} \frac{e^{w(\lambda+\rho)}}{\Delta}
$$

where W the Weyl group, ρ the half of sum of positive roots, and $\Delta=\prod_{\lambda \in \Phi^{+}}\left(e^{\lambda / 2}-e^{-\lambda / 2}\right)$ the discriminant with Φ^{+}the set of positive roots.

- let \mathfrak{b} be Lie algebra of B, and \mathfrak{n} be its nilpotent radical.
- At the fixed point $w \cdot B / B$, its tangent bundle bundle is isomorphism to $\mathfrak{g} / \operatorname{ad}_{w} \mathfrak{b}$, thus cotangent bundle is $\operatorname{ad}_{w} \mathfrak{n}$ by Killing form. So

$$
\operatorname{det}\left(1-\left[T_{x}^{*} \xrightarrow{t} T_{x}^{*}\right]\right)=\prod_{\lambda \in \Phi^{+}}\left(1-e^{w(\lambda)}\right)=(-1)^{\ell(w)} e^{w \rho}(-1)^{\ell\left(w_{0}\right)} \Delta .
$$

- For λ a weight, \mathcal{L}_{λ} is an equivariant T-vector bundle,

$$
\operatorname{tr}\left(t ;\left(\mathcal{L}_{\lambda}\right)_{w}\right)=e^{w \lambda}
$$

- So from Atyiah-Bott localization theorem,

$$
\operatorname{tr}\left(t ; H^{0}\left(\mathcal{L}_{\lambda} ; \mathbb{C}\right)\right)=\sum_{w \in W}(-1)^{\ell(w)} \frac{e^{w(\lambda-\rho)}}{(-1)^{\ell\left(w_{0}\right)} \Delta}
$$

Exchanging t to $-t$, we get the Weyl character formula.
$>$ Questions?
\ll

\oint Localization Theorem (V) \oint

GKM theory

- A more combinatorial of localization theorem is discovered by Goresky, Kottwitz, and MacPherson.
- The description would be a little long. Let X be a smooth projective variety over \mathbb{C} equipped with an algebraic action of torus $T=\left(\mathbb{C}^{\times}\right)^{n}$. Assume X has finite fixed points and finitely one-dimensional orbit.
- The closure of one-dimensional orbit is a copy of $\mathbb{C} P^{1}$ with two fixed points.

Theorem (Goresky, Kottwitz, Macpherson, 1998)
The image of the localization map

$$
H_{T}^{*}(X ; \mathbb{Q}) \longrightarrow \bigoplus_{x \in X^{T}} H_{T}^{*}(x ; \mathbb{Q})
$$

is

$$
\left\{\left(\alpha_{x}\right): \begin{array}{c}
\forall \mathbb{C} P^{1} \text { connecting } x \xrightarrow{p} y, \\
\left.\alpha_{x}\right|_{t_{p}}=\left.\alpha_{y}\right|_{t_{p}}
\end{array}\right\}
$$

where \mathfrak{t}_{p} is the Lie algebra of stablizer of any point of p.

Example

- The best example is G / B.
- All T-orbit is in some B-orbit, thus in some Schubert cells. By analysis of T-action on Schubert cells, it gives

$$
H_{T}(G / B)^{*}=\left\{\left(\lambda_{w}\right)_{w \in W} \in \bigoplus_{w \in W} H_{T}^{*}(\mathrm{pt}): \begin{array}{l}
\forall \alpha_{i} \in \Phi^{+}, w \in W \\
\alpha_{i} \mid \lambda_{s_{i} w}-\lambda_{w}
\end{array}\right\}
$$

See Jantzen 1.13 for details (One can use exponential map to do the same work, but it is not "suitable" for a fact holding for algebraic group).
$>$ Questions?
\ll

§ Thanks §

References

- Milne. Algebraic Groups.
- Hsiang. Cohomology Theory of Topological Transformation Groups.
- Chriss, Ginzburg. Representation Theory and Complex Geometry.
- Goresky, Kottwitz, and MacPherson. Equivariant cohomology, Koszul duality, and the localization theorem.
- Jantzen. Moment graphs and representations.
- Kaji. Three presentations of torus equivariant cohomology of flag manifolds. [arXiv]

Next Time

- Language of Sheaf Theory.
- Examples.

