Topology and Geometry Seminar

Computations

Xiong Rui

October 30, 2020
(1) Trivial Bundles
(2) Spheres
(3) Projective Spaces
(4) Determinant
(5) Curves

6 Classifying Spaces
(7) Flag Manifolds
(8) Grassmannians

9 Classifying Spaces
(10) Flag Manifolds
(11) Grassmannians
(12) Thanks

Theorem

If ξ is the real trivial bundle, then the Stiefel-Whitney classes $\operatorname{sw}(\xi)=1$. If ξ is the complex trivial bundle, then the Chern classes $c(\xi)=1$.

- Note that trivial bundle is classified by $X \rightarrow \mathrm{pt} \rightarrow \mathcal{G} r(n, \infty)$.
- Alternatively, $\xi=n \mathbb{1}$, and $c(\mathbb{1})=1$, so $c(\xi)=c(\mathbb{1})^{n}=1$.
- If ξ has a nowhere vanishing frame, then ξ is trivial. More exactly, if v_{1}, \ldots, v_{n} is, this assignment can be extended to a map $n \mathbb{1} \rightarrow \xi$, which is isomorphic at each fibre. By a set-point topology, one can check the converse is continuous.
- In particular, the normal bundle (the highest degree exterior algebra) is trivial if and only if the manifold is orientable.
- For a contractible CW-complex X, then any vector bundle is trivial. Due to homotopy invariance, it suffices to consider $X=\mathrm{pt}$. Then a vector bundle over pt is nothing but a vector space.

Spheres

- Let S^{n} be the n-dimensional spheres. Of course,

$$
H^{k}\left(S^{n}\right)= \begin{cases}\mathbb{Z}, & k=0, n \\ 0, & \text { otherwise }\end{cases}
$$

- The tangent bundle of S^{n} is generally not trivial (hairy ball theorem).
- The classification of real or complex vector bundles over S^{1}, S^{2}, S^{3}, see Lecture 4.

Theorem
The tangent bundle of S^{n} has trivial Stiefel-Whitney classes.

- Note that for S^{n}
$\tau \oplus \nu=($ tangent bundle $) \oplus($ normal bundle $)=($ total space $)=\mathbb{1}^{n+1}$
But ν is also trivial. So $w(\tau)=w(\tau) w(\nu)=w(\mathbb{1})^{n}=1$.

Projective Spaces

- Note that as ring

$$
H^{*}\left(\mathbb{C} P^{n}\right)=\mathbb{Z}[t] /\left(t^{n+1}\right), \quad \operatorname{deg} t=2
$$

- It is clear from the definition for the invertible sheaf $\mathcal{O}(n)$,

$$
c(\mathcal{O}(n))=1+n t .
$$

- Next, we shall consider tangent space.

Theorem
For $\mathbb{C} P^{n}$, the tangent bundle \mathcal{T} satisfies the following exact sequence

$$
0 \rightarrow \mathcal{O} \rightarrow \mathcal{O}(1)^{n+1} \rightarrow \mathcal{T} \rightarrow 0 .
$$

In particular,

$$
c(\mathcal{T})=(1+t)^{n+1} .
$$

- Roughly, tangent space is the infinitesimal movement. Such can be written as $\mathcal{H o m}\left(\mathcal{O}(-1), \mathbb{1}^{n+1}\right)$, but moving along the line oneself should not be counted, so it is $\mathcal{H o m}\left(\mathcal{O}(-1), \mathbb{1}^{n+1} / \mathcal{O}(-1)\right)=\mathcal{O}(1)^{n+1} / \mathcal{O}$.

Theorem
For an n-dimensional real vector bundle ξ,

$$
\operatorname{sw}\left(\wedge^{k} \xi\right)=\operatorname{sw}(\xi)_{\leq n+1-k}=1+\operatorname{sw}_{1}(\xi)+\cdots+\operatorname{sw}_{k}(\xi)
$$

For an n-dimensional complex vector bundle ξ,

$$
c\left(\wedge^{k} \xi\right)=c(\xi)_{\leq 2(n+1-k)}=1+c_{1}(\xi)+\cdots+c_{k}(\xi)
$$

- By splitting lemma, assume $\xi=\xi_{1} \oplus \cdots \oplus \xi_{n}$,

$$
\Lambda^{k} \xi=\bigoplus_{i_{1}<\ldots<i_{k}} \xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{k}}
$$

Theorem

The manifold M is orientable if the first SW class of tangent bundle is zero.

- This follows from the fact that the first SW class determines the line bundle.
- For projective space $\mathbb{R} P^{k}$, we see that $(1+t)^{k+1}=1+(k+1) t+$. So $\mathbb{R} P^{k}$ is orientable if and only if k is odd.
- For complex manifold, the SW classes of the underlying real vector space is the same to Chern classes taking coefficients in $\mathbb{Z} / 2$. So complex manifold is always oritentable.
- It is known that for nonsingular curve X over algebraic closed field

$$
K(X)=\operatorname{Pic}(X) \oplus \mathbb{Z}
$$

by exterior product and rank, in both algebraic and topological senses.

- Algebraic sense see Hartshorne II.ex6.11.
- Topological sense due to the fact that when the $\operatorname{rank}_{\mathbb{C}} \xi \geq \operatorname{dim} X / 2$, we can find a nonwhere vanishing section since the Euler class is zero. This also follows from the computation that $\pi_{n}\left(B G L_{m}\right) \rightarrow \pi_{n}\left(B G L_{m+1}\right)$ is isomorphic for $m>n / 2$.
- For a complex elliptic curve X, the underlying space is a torus (very famous, parameterized by the Weiestrass function).
- The topological K-group is

$$
K(X)=\operatorname{Pic}(X) \oplus \mathbb{Z}=H^{2}(X) \oplus \mathbb{Z}=\mathbb{Z} \oplus \mathbb{Z}
$$

- The algebraic K-group is

$$
K(X)=\operatorname{Pic}(X) \oplus \mathbb{Z}=\mathrm{Cl}(X) \oplus \mathbb{Z}=X \oplus \mathbb{Z} \oplus \mathbb{Z}
$$

They are different. (see Hartshorne II.6.10.2)

- The main difference is $\mathrm{CH}^{1}(X) \neq H^{2}(X)$, or, actually, any two points are not rational equivalent.
- If there are two points not rational equivalent, it will be a rational curve $\mathbb{C} P^{1}$ the Riemann sphere, so this difference exists for all irrational curves.

Elliptic Curves

Classifying spaces

- We know for $G=\mathbb{C}^{\times}, B_{G}=\mathbb{C} P^{\infty}, E_{G}=\mathbb{C}^{\infty} \backslash 0$. So

$$
H^{*}\left(B_{G}\right)=H^{*}\left(\mathbb{C} P^{\infty}\right)=\mathbb{Z}[t], \quad \operatorname{deg} t=2 .
$$

- Then consider the fibre bundle $\mathbb{C} \rho=\left[\begin{array}{c}E_{G} \times{ }_{G} \mathbb{C} \rho \\ \downarrow \\ B_{G}\end{array}\right]$ with the action of G on $\mathbb{C} \rho=\mathbb{C}$ by ρ. Actually, $-c_{2}(\mathbb{C} \rho)=\rho$.
- Warning: This minus is due to the fact that of $E_{G} \times_{G} \mathbb{C}$ is the tautological bundle.
- Warning: For a character ρ, following the classic notation $\left[z \mapsto z^{n}\right]=n t \in \mathbb{Z} \cdot t$.
- Let K be a compact group, and T_{K} be its maximal torus. We call K / T_{K} the flag manifold.
- Let $G=K_{\mathbb{C}}$ be a reductive group, T maximal torus and B its Borel subgroup, by the Iwasawa decomposition $G / B \cong K / T_{K}$. Note that this equips K / T_{K} with a complex structure.
- Denote the Weyl group $W=N_{K}\left(T_{K}\right) / T=N_{G}(T) / T$.
- It is known as the Bruhat decomposition that G / B decomposes in to cells $\bigsqcup_{w \in W} B w B / B$, with each $B w B / B \cong \mathbb{C}^{\ell(w)}$ with ℓ the length function.
- So $H^{*}(G / B)$ is of only even dimensions, and free abelian of rank $|W|$.
- Actually, $H^{*}\left(G / N_{G}(T) ; \mathbb{Q}\right)=H^{*}(p t ; \mathbb{Q})$. Since $G / T \rightarrow G / N_{G}(T)$ is a W-covering, so

$$
H^{*}(G / N(T) ; \mathbb{Q})=H^{*}(G / T ; \mathbb{Q})^{W}
$$

has only even dimensions. Then Euler characteristic forces $H^{*}(G / N(T) ; \mathbb{Q})$ has only one dimension.

Theorem

$$
H^{*}\left(B_{G} ; \mathbb{Q}\right)=H^{*}\left(B_{T} ; \mathbb{Q}\right)^{W}
$$

Note that $B_{T}=\left(\mathbb{C} P^{\infty}\right)^{n}, H^{*}\left(B_{T} ; \mathbb{Q}\right)=\mathbb{Q}[t]$, a polynomial ring in rank $G=\operatorname{dim} T$ variables.

- Firstly, we take a contractible $E=E_{G}$ such that G acts freely, then for any subgroup $H, B_{H}=E / H$, by the Milnor construction.
- Now $B_{G} \rightarrow B_{N_{G}(T)}$ is a fibre bundle with fibre $G / N_{G}(T)$ which is \mathbb{Q}-acyclic, and $B_{N(G)} \rightarrow B_{T}$ is an W-covering. So the proof is complete.
- Consider the space of all flags $\mathcal{F} \ell(V)$ in the vector space V, where a flag means a chain of subspaces

$$
0=V_{0} \subseteq V_{1} \subseteq \cdots \subseteq V_{n}=\mathbb{C}^{n}
$$

with $\operatorname{dim} V_{i}=i$.

- Let $G=\mathrm{GL}_{n}$, and B the group of upper triangular matrices. By assigning the flag with i-th space the space spanned by the first column i-vectors, we can find a bijection $G / B \cong \mathcal{F} \ell(n)$.
- Denote $K=\mathrm{U}_{n}$ and T the diagonal matrices, we can also find $K / T \cong \mathcal{F} \ell(n)$.
- In this case, the Weyl group is the symmetric group \mathfrak{S}_{n}.

Theorem (Borel)

$$
H^{*}(G / T ; \mathbb{Q})=H^{*}\left(B_{T} ; \mathbb{Q}\right) \underset{H^{*}\left(B_{G} ; \mathbb{Q}\right)}{\otimes} \mathbb{Q}
$$

- Consider the fibre bundle $B_{T} \rightarrow B_{G}$ whose fibre is G / T. By the Serre-Leray spectral sequence, since all of cohomology of the spaces are of only even dimensions, so there is no nonzero differentials. So

$$
H^{*}\left(B_{T} ; \mathbb{Q}\right)=H^{*}\left(B_{G} ; \mathbb{Q}\right) \otimes H^{*}(G / T ; \mathbb{Q})
$$

as $H^{*}\left(B_{G} ; \mathbb{Q}\right)$-module.

- So the restriction of $H^{*}\left(B_{T} ; \mathbb{Q}\right) \rightarrow H^{*}(G / T ; \mathbb{Q})$ factors through the right hand side.
- For any character ρ of T, denote the line bundle $\mathbb{C} \rho=\left[\begin{array}{c}G \times_{T} \mathbb{C} \rho \\ \downarrow \\ G / T\end{array}\right]$ where T acts on $\mathbb{C} \rho=\mathbb{C}$ by ρ. Then $-c_{2}(\mathbb{C} \rho)$ is presented by ρ.
- This follows easily from the fact that fibre bundle $G \rightarrow G / T$ is classified by the inclusion $G / T \rightarrow B T$.
- Warning: the minus also comes from the fact that $E_{T} \times{ }_{T} \mathbb{C}$ is the tautological bundle.
- Consider the case $G=G L_{n}$, then

$$
\begin{aligned}
& H^{*}\left(B_{G} ; \mathbb{Q}\right)=H^{*}\left(B_{T} ; \mathbb{Q}\right)^{\mathfrak{S}_{n}} \\
&=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]^{\mathfrak{G}_{n}} . \\
& H^{*}(\mathcal{F} \ell(n), \mathbb{Q})=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] \otimes_{\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] \mathfrak{G}_{n}} \mathbb{Q} \\
&= \frac{\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]}{\left\langle e_{1}, \ldots, e_{n}\right\rangle},
\end{aligned}
$$

where e_{1}, \ldots, e_{n} are elementary symmetric polynomials.

- In the case $n=2, \mathcal{F} \ell(2)=\mathbb{C} P^{1}$, the $x_{1} \in H^{*}(G / T)$ is the Chern class of $\mathcal{O}(1)$.
- So how to express the cohomology class of a cell $B w B / B$?
- The answer is the Schubert polynomials (cf. Lascoux and Schützenberger's unaccessible paper).

$$
[B w B / B]=\mathfrak{S}_{w}(x)
$$

where $\mathfrak{S}_{w_{0}}=x_{1}^{n-1} \cdots x_{n-1}$, and

$$
\ell\left(w s_{i}\right)-1=\ell(w) \quad \Longrightarrow \quad \mathfrak{S}_{w}=\partial_{i} \mathfrak{S}_{w s_{i}},
$$

with ∂_{i} the Demazure operator

$$
\partial_{i} f(x)=\frac{f\left(\cdots, x_{i}, x_{i+1}, \cdots\right)-f\left(\cdots, x_{i+1}, x_{i}, \cdots\right)}{x_{i}-x_{i+1}} .
$$

- Consider the space of all k-dimensional spaces $\mathcal{G r}(k, V)$ in the vector space V.
- Let $G=\mathrm{GL}_{n+k}$, and $P=\left(\begin{array}{cc}\mathrm{GL}_{k} & * \\ & \mathrm{GL}_{n}\end{array}\right)$. By assigning the space spanned by the first column k-vectors, we can find a bijection $G / P \cong \mathcal{G} r(k, n+k)=\mathcal{G r}\left(k, \mathbb{C}^{n+k}\right)$.
- We can also find $\mathrm{U}_{n+k} / \mathrm{U}_{k} \times \mathrm{U}_{n} \cong \mathcal{G} r(k, n+k)$.

Theorem

$$
H^{*}(\mathcal{G r}(k, n+k) ; \mathbb{Q})=H^{*}\left(B G L_{k} \times B G L_{n} ; \mathbb{Q}\right) \otimes_{H^{*}\left(B G L_{n+k} ; \mathbb{Q}\right)}^{\otimes} \mathbb{Q} .
$$

- Consider the fibre bundle $B G L_{n} \times B G L_{k} \rightarrow B G L_{n+k}$ whose fibre is homotopy equivalent to $\operatorname{Gr}(k, n+k)$. By the Serre-Leray spectral sequence, since all of cohomology of the spaces are of only even dimensions, so there is no nonzero differentials. So the desired expression.
- We can compute

$$
\begin{align*}
H^{*}(\mathcal{G r}(k, n+k) ; \mathbb{Q}) & =H^{*}\left(B G L_{k} \times B G L_{n} ; \mathbb{Q}\right) \\
& =\frac{\mathbb{Q}\left[e_{1}(x), \ldots, e_{k}(x), e_{1}(y), \ldots, e_{n}(y)\right]}{\left\langle e_{1}(x, y), \ldots, e_{n+k}(x, y)\right\rangle}
\end{align*}
$$

Since any

$$
e_{n}(y)=e_{n}(x, y)-e_{n-1}(y)(\cdots)-\cdots,
$$

$H^{*}(\mathcal{G r}(k, n) ; \mathbb{Q})$ is generated by $e_{1}(x), \ldots, e_{k}(x)$. That is, a quotient ring of the symmetric polynomials.

- Actually, the total Chern class of the dual of the tautological bundle of $\mathcal{G} r(k, n)$ is exactly $1+e_{1}(x)+\ldots+e_{k}(x)$.
- Like Flag manifolds, Grassmannians also admit cellular structure. Denote the Schubert cells for λ with Young diagram inside $n \times k$ boxes.

$$
\Sigma_{\lambda}(\digamma)=\left\{V \in \mathcal{G r}(k, n+k): \begin{array}{l}
\forall i=1, \ldots, k, \\
\operatorname{dim}\left(V \cap V_{k-i+\lambda_{i}}\right) \geq k-i
\end{array}\right\},
$$

where $0 \subseteq V_{1} \subseteq \cdots \subseteq V_{n-1} \subseteq \mathbb{C}^{n}$ is some flag.

- So how to express the cohomology class of a cell Σ_{λ} ?
- The answer is the Schur polynomials.

$$
\Sigma_{\lambda}=s_{\lambda}(x)=\frac{\left|\begin{array}{ccc}
x_{1}^{\lambda_{1}+n-1} & \cdots & x_{n}^{\lambda_{1}+n-1} \\
\vdots & \ddots & \vdots \\
x_{1}^{\lambda_{n}+n-n} & \cdots & x_{n}^{\lambda_{n}+n-n}
\end{array}\right|}{\left|\begin{array}{ccc}
x_{1}^{n-1} & \cdots & x_{n}^{n-1} \\
\vdots & \ddots & \vdots \\
x_{1}^{0} & \cdots & x_{n}^{0}
\end{array}\right|} .
$$

- The famous question, how many lines lie on a smooth cubic hyperplane in $\mathbb{C} P^{3}$, can be answered after introduction of the Schubert cells. (27)
- The sets of all lines in $\mathbb{C} P^{3}$ is exactly $\mathcal{G} r(2,4)$.
- Note that a line L lies on the cubic hyperplane $\{f=0\}$ if any only if $\left.f\right|_{L}=0$. So the number is the Euler class of $S^{3} \mathcal{T}^{*}$ where \mathcal{T} is the tautological bundle of $\mathcal{G r}(2,4)$.

$$
\begin{aligned}
& c\left(\mathcal{T}^{*}\right)=1+e_{1}+e_{2}=\left(1+x_{1}\right)\left(1+x_{2}\right) . \\
& c\left(S^{3}\left(\mathcal{T}^{*}\right)\right)=\left(1+3 x_{1}\right)\left(1+2 x_{1}+x_{2}\right)\left(1+x_{1}+2 x_{2}\right)\left(1+3 x_{2}\right) . \\
& \text { the coefficient in front of } s \text { in } f \\
&= \text { the coefficient in front of } x_{1}^{2+1} x_{2}^{2} \text { in } f \Delta
\end{aligned}
$$

the coefficient in front of $x_{1}^{3} x_{2}^{2}$ in $3 x_{1}\left(2 x_{1}+x_{2}\right)\left(x_{1}+2 x_{2}\right)\left(3 x_{2}\right)\left(x_{1}-x_{2}\right)$.

$$
=9 \cdot(-2+4+1)=27 \text {. }
$$

- There is a natural map $\mathcal{F} \ell(n+k) \rightarrow \mathcal{G} r(k, n+k)$ which assign the k-th space of flag. This map can be proven to be cellular, so the Schur polynomials can be computed as a special case of Schubert polynomials.

- For G a compact Lie group, for any finite dimensional representation V, we can consider

$$
\left[\begin{array}{c}
E G \times{ }_{G} V \\
\downarrow \\
B G
\end{array}\right],
$$

so we get a $\operatorname{map} R(G) \rightarrow K(B G)$.

- Note that, in this case, $K(B G)=\pi(B G, B G L \times \mathbb{Z})$. Actually, any representation $G \rightarrow \mathrm{GL}_{n}$ induces a map $B G \rightarrow B G L$.
- Atiyah and Segal:

$$
K(B G)=\widehat{R(G)}, \quad K^{1}(B G)=0
$$

where $\hat{*}$ is the completion with respect to the augment ideal $\operatorname{ker}[R(G) \rightarrow \mathbb{Z}]$. (proof, see Atiyah and Segal, equivariant K-theory and completion)

- On one hand, using Atyiah-Hirzebruch Spectral Sequence,

$$
H^{p}\left(G / T ; K^{q}(p t)\right) \Longrightarrow K^{p+q}(G / T)
$$

has only even dimensional stuff, so $K^{1}(G / T)=0$, and $K(G / T)$ is free abelian of order $|W|$.

- The algebraic K-theory also gives the same answer, say the push forward of $\mathcal{O}_{B w B / B}$ to G / B forms a basis (use a little higher K-theory).
- On the other hand, using the fibre bundle $B T \rightarrow B G$,

Since $K(G / T)$ is finite dimensional,

$$
K(G / T)=K(B T) \underset{K(B G)}{\otimes} \mathbb{Q}=R(T) \otimes_{R(G)} \mathbb{Q} .
$$

- For the case $G=U_{n}$,

$$
\begin{gathered}
R(T)=\mathbb{Z}\left[e^{x_{1}}, \ldots, e^{x_{n}}\right] \\
R(G)=\mathbb{Z}\left[e^{x_{1}}, \ldots, e^{x_{n}}\right]^{\mathfrak{S}_{n}}
\end{gathered}
$$

Note that $e^{x_{1}}$ stands for the dual of the representation of character $e^{x_{1}}$, so that in the case $T=\mathbb{C}^{\times}$, the generator is $\mathcal{O}(1)$.

$$
\begin{aligned}
& R(G) \rightarrow \mathbb{Z} \quad e^{x_{i}} \mapsto 1 . \\
& K(G / T)=R(T) \otimes_{R(G)} \\
&\left.\left.=\frac{\mathbb{Q}}{\left\langle f \in \mathbb{Q}\left[e^{x_{1}}, \ldots, e^{x_{1}}, \ldots, e^{x_{n}}\right]\right.}\right]^{\sigma_{n}}: f\left(e^{0}, \ldots, e^{0}\right)=0\right\rangle
\end{aligned} .
$$

It is suggested to use $X_{i}=1-e^{-x_{i}}$, in this case,

$$
K(G / T)=\frac{\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]}{\left\langle e_{i}(X): i=1, \ldots, n\right\rangle}
$$

with e_{i} the i-th elementary symmetric polynomial.

- So how to express the class of a cell $\mathcal{O}_{B w B / B}$?
- The answer is the Grothendieck polynomials (still cf. the unaccessible paper).

$$
\left[B w_{0} w B / B\right]=\mathfrak{G}_{w}(X)
$$

where $\mathfrak{G}_{w_{0}}=X_{1}^{n-1} \ldots X_{n-1}$, and

$$
\ell\left(w s_{i}\right)-1=\ell(w) \quad \Longrightarrow \quad \mathfrak{S}_{w}=\pi_{i} \mathfrak{S}_{w s_{i}},
$$

with π_{i} the isobaric Demazure operator

$$
\begin{gathered}
\pi_{i} f(X)=\frac{\left(1-X_{i+1}\right) f\left(\cdots, X_{i}, X_{i+1}, \cdots\right)-\left(1-X_{i}\right) f\left(\cdots, X_{i+1}, X_{i}, \cdots\right)}{X_{i}-X_{i+1}} \\
\pi_{i} f\left(e^{x}\right)=\frac{e^{x_{i}} f\left(\cdots, e^{x_{i}}, e^{x_{i+1}}, \cdots\right)-e^{x_{i+1}} f\left(\cdots, e^{x_{i+1}}, e^{x_{i}}, \cdots\right)}{e^{x_{i}}-e^{x_{i+1}}}
\end{gathered}
$$

- For Grassmannians, on one hand, push forward of $\mathcal{O}_{\Sigma_{\lambda}}$ forms a basis, and on the other hand, we can compute by spectral sequences. Completely the same with the cohomology version.
- For the push forward of $\mathcal{O}_{\Sigma_{\lambda}}$, it is known as "symmetric Grothendieck polynomials".

References

- May. A concise introduction to algebraic topology.
- Harris, Eisenbud. 3264 and all that. (homework: find out the statement of tangent bundle of Grassmannians, and as a result, when the real Grassmannian $\mathcal{G r}(k, n)$ is orientable)
- Fulton. Young tableaux with applications in Algebra and Geometry. For an introduction to Schur polynomial.
- For Schubert polynomials and Grothendieck polynomials, good references are by searching the names in arXiv, but the best reference is by computing yourself unfortunately.
Next Time
- Equivariant cohomology.
- Localization theorem.
$\sim \oint$ THANKS $\oint \sim$

