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Trivial Bundles

Trivial Bundles

Theorem

If ξ is the real trivial bundle, then the Stiefel-Whitney classes sw(ξ) = 1. If
ξ is the complex trivial bundle, then the Chern classes c(ξ) = 1.

Note that trivial bundle is classified by X → pt→Gr(n,∞).

Alternatively, ξ = n11, and c(11) = 1, so c(ξ) = c(11)n = 1.
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Trivial Bundles

Trivial Bundles

If ξ has a nowhere vanishing frame, then ξ is trivial.
More exactly, if v1, . . . , vn is, this assignment can be extended to a
map n11→ ξ, which is isomorphic at each fibre. By a set-point
topology, one can check the converse is continuous.

In particular, the normal bundle (the highest degree exterior algebra)
is trivial if and only if the manifold is orientable.

For a contractible CW-complex X , then any vector bundle is trivial.
Due to homotopy invariance, it suffices to consider X = pt. Then a
vector bundle over pt is nothing but a vector space.
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Spheres

Spheres

Let Sn be the n-dimensional spheres. Of course,

Hk(Sn) =

{
Z, k = 0, n,

0, otherwise.

The tangent bundle of Sn is generally not trivial (hairy ball theorem).

The classification of real or complex vector bundles over S1, S2, S3,
see Lecture 4.
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Spheres

Spheres

Theorem

The tangent bundle of Sn has trivial Stiefel-Whitney classes.

Note that for Sn

τ ⊕ ν = (tangent bundle)⊕ (normal bundle) = (total space) = 11n+1

But ν is also trivial. So w(τ) = w(τ)w(ν) = w(11)n = 1.
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Projective Spaces

Projective Spaces

Note that as ring

H∗(CPn) = Z[t]/(tn+1), deg t = 2.

It is clear from the definition for the invertible sheaf O(n),

c(O(n)) = 1 + nt.

Next, we shall consider tangent space.
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Projective Spaces

Projective Spaces

Theorem

For CPn, the tangent bundle T satisfies the following exact sequence

0→O→O(1)n+1→T → 0.

In particular,
c(T ) = (1 + t)n+1.

Roughly, tangent space is the infinitesimal movement. Such can be
written as Hom(O(−1), 11n+1), but moving along the line oneself
should not be counted, so it is
Hom(O(−1), 11n+1/O(−1)) = O(1)n+1/O.
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Determinant

Determinant

Theorem

For an n-dimensional real vector bundle ξ,

sw(Λkξ) = sw(ξ)≤n+1−k = 1 + sw1(ξ) + · · ·+ swk(ξ)

For an n-dimensional complex vector bundle ξ,

c(Λkξ) = c(ξ)≤2(n+1−k) = 1 + c1(ξ) + · · ·+ ck(ξ)

By splitting lemma, assume ξ = ξ1 ⊕ · · · ⊕ ξn,

Λkξ =
⊕

i1<...<ik

ξi1 ⊗ · · · ⊗ ξik

Xiong Rui Computations October 30, 2020 8 / 37



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Determinant

Orientation

Theorem

The manifold M is orientable if the first SW class of tangent bundle is zero.

This follows from the fact that the first SW class determines the line
bundle.

For projective space RPk , we see that (1 + t)k+1 = 1 + (k + 1)t + ·.
So RPk is orientable if and only if k is odd.

For complex manifold, the SW classes of the underlying real vector
space is the same to Chern classes taking coefficients in Z/2. So
complex manifold is always oritentable.
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Curves

Curves

It is known that for nonsingular curve X over algebraic closed field

K (X ) = Pic(X )⊕ Z

by exterior product and rank, in both algebraic and topological senses.

Algebraic sense see Hartshorne II.ex6.11.

Topological sense due to the fact that when the rankC ξ ≥ dimX/2,
we can find a nonwhere vanishing section since the Euler class is zero.
This also follows from the computation that
πn(BGLm)→πn(BGLm+1) is isomorphic for m > n/2.
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Curves

Elliptic Curves

For a complex elliptic curve X , the underlying space is a torus (very
famous, parameterized by the Weiestrass function).

The topological K-group is

K (X ) = Pic(X )⊕ Z = H2(X )⊕ Z = Z⊕ Z.

The algebraic K-group is

K (X ) = Pic(X )⊕ Z = Cl(X )⊕ Z = X ⊕ Z⊕ Z.

They are different. (see Hartshorne II.6.10.2)

The main difference is CH1(X ) ̸= H2(X ), or, actually, any two points
are not rational equivalent.

If there are two points not rational equivalent, it will be a rational
curve CP1 the Riemann sphere, so this difference exists for all
irrational curves.
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Curves

Elliptic Curves

∞

a

b

a+ b℘, ℘′

∞
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Classifying Spaces

Classifying spaces

We know for G = C×, BG = CP∞, EG = C∞ \ 0. So

H∗(BG ) = H∗(CP∞) = Z[t], deg t = 2.

Then consider the fibre bundle Cρ =

[
EG×GCρ

↓
BG

]
with the action of G

on Cρ = C by ρ. Actually, −c2(Cρ) = ρ.

Warning: This minus is due to the fact that of EG ×G C is the
tautological bundle.

Warning: For a character ρ, following the classic notation
[z 7→ zn] = nt ∈ Z · t.
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Classifying Spaces

Lie groups

Let K be a compact group, and TK be its maximal torus. We call
K/TK the flag manifold.

Let G = KC be a reductive group, T maximal torus and B its Borel
subgroup, by the Iwasawa decomposition G/B ∼= K/TK . Note that
this equips K/TK with a complex structure.

Denote the Weyl group W = NK (TK )/T = NG (T )/T .
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Classifying Spaces

Bruhat decomposition

It is known as the Bruhat decomposition that G/B decomposes in
to cells

⊔
w∈W BwB/B, with each BwB/B ∼= Cℓ(w) with ℓ the length

function.

So H∗(G/B) is of only even dimensions, and free abelian of rank |W |.
Actually, H∗(G/NG (T );Q) = H∗(pt;Q). Since G/T →G/NG (T ) is
a W -covering, so

H∗(G/N(T );Q) = H∗(G/T ;Q)W

has only even dimensions. Then Euler characteristic forces
H∗(G/N(T );Q) has only one dimension.
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Classifying Spaces

Classifying spaces

Theorem

H∗(BG ;Q) = H∗(BT ;Q)W

Note that BT = (CP∞)n, H∗(BT ;Q) = Q[t], a polynomial ring in
rankG = dimT variables.

Firstly, we take a contractible E = EG such that G acts freely, then
for any subgroup H, BH = E/H, by the Milnor construction.

Now BG →BNG (T ) is a fibre bundle with fibre G/NG (T ) which is
Q-acyclic, and BN(G)→BT is an W -covering. So the proof is
complete.
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Flag Manifolds

Flag manifolds

Consider the space of all flags Fℓ(V ) in the vector space V , where a
flag means a chain of subspaces

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = Cn

with dimVi = i .

Let G = GLn, and B the group of upper triangular matrices. By
assigning the flag with i-th space the space spanned by the first
column i-vectors, we can find a bijection G/B ∼= Fℓ(n).

Denote K = Un and T the diagonal matrices, we can also find
K/T ∼= Fℓ(n).

In this case, the Weyl group is the symmetric group Sn.
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Flag Manifolds

Flag manifolds

Theorem (Borel)

H∗(G/T ;Q) = H∗(BT ;Q) ⊗
H∗(BG ;Q)

Q

Consider the fibre bundle BT →BG whose fibre is G/T . By the
Serre–Leray spectral sequence, since all of cohomology of the spaces
are of only even dimensions, so there is no nonzero differentials. So

H∗(BT ;Q) = H∗(BG ;Q)⊗ H∗(G/T ;Q)

as H∗(BG ;Q)-module.

So the restriction of H∗(BT ;Q)→H∗(G/T ;Q) factors through the
right hand side.
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Flag Manifolds

Geometric meaning

For any character ρ of T , denote the line bundle Cρ =

[
G×TCρ

↓
G/T

]
where T acts on Cρ = C by ρ. Then −c2(Cρ) is presented by ρ.

This follows easily from the fact that fibre bundle G →G/T is
classified by the inclusion G/T →BT .

Warning: the minus also comes from the fact that ET ×T C is the
tautological bundle.
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Flag Manifolds

Examples

Consider the case G = GLn, then

H∗(BG ;Q) = H∗(BT ;Q)Sn

= Q[x1, . . . , xn]
Sn .

H∗(Fℓ(n),Q) = Q[x1, . . . , xn]⊗Q[x1,...,xn]Sn Q
= Q[x1,...,xn]

⟨e1,...,en⟩ ,

where e1, . . . , en are elementary symmetric polynomials.

In the case n = 2, Fℓ(2) = CP1, the x1 ∈ H∗(G/T ) is the Chern
class of O(1).
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Flag Manifolds

Cells

So how to express the cohomology class of a cell BwB/B?

The answer is the Schubert polynomials (cf. Lascoux and
Schützenberger’s unaccessible paper).

[BwB/B] = Sw (x).

where Sw0 = xn−1
1 · · · xn−1, and

ℓ(wsi )− 1 = ℓ(w) =⇒ Sw = ∂iSwsi ,

with ∂i the Demazure operator

∂i f (x) =
f (· · · , xi , xi+1, · · · )− f (· · · , xi+1, xi , · · · )

xi − xi+1
.
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Grassmannians

Grassmannians

Consider the space of all k-dimensional spaces Gr(k ,V ) in the vector
space V .

Let G = GLn+k , and P =

(
GLk ∗

GLn

)
. By assigning the space

spanned by the first column k-vectors, we can find a bijection
G/P ∼= Gr(k, n + k) = Gr(k,Cn+k).

We can also find Un+k /Uk ×Un
∼= Gr(k , n + k).
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Grassmannians

Grassmannians

Theorem

H∗(Gr(k, n + k);Q) = H∗(BGLk × BGLn;Q) ⊗
H∗(BGLn+k ;Q)

Q.

Consider the fibre bundle BGLn × BGLk →BGLn+k whose fibre is
homotopy equivalent to Gr(k, n + k). By the Serre–Leray spectral
sequence, since all of cohomology of the spaces are of only even
dimensions, so there is no nonzero differentials. So the desired
expression.
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Grassmannians

Grassmannians

We can compute

H∗(Gr(k, n + k);Q) = H∗(BGLk × BGLn;Q) ⊗
H∗(BGLn+k ;Q)

Q

= Q[e1(x),...,ek (x),e1(y),...,en(y)]
⟨e1(x ,y),...,en+k(x ,y)⟩

Since any
en(y) = en(x , y)− en−1(y)(· · · )− · · · ,

H∗(Gr(k, n);Q) is generated by e1(x), . . . , ek(x). That is, a quotient
ring of the symmetric polynomials.

Actually, the total Chern class of the dual of the tautological bundle
of Gr(k, n) is exactly 1 + e1(x) + . . .+ ek(x).
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Grassmannians

Cells

Like Flag manifolds, Grassmannians also admit cellular structure.
Denote the Schubert cells for λ with Young diagram inside n × k
boxes.

Σλ(z) = {V ∈ Gr(k, n + k) : ∀i=1,...,k,
dim(V∩Vk−i+λi

)≥k−i},

where 0 ⊆ V1 ⊆ · · · ⊆ Vn−1 ⊆ Cn is some flag.

dim(V ∩ −)

V0 V1 V2 V3 V4 V5 V6 V7

k
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Grassmannians

Cells

So how to express the cohomology class of a cell Σλ?

The answer is the Schur polynomials.

Σλ = sλ(x) =

∣∣∣∣∣∣∣
xλ1+n−1
1 · · · xλ1+n−1

n
...

. . .
...

xλn+n−n
1 · · · xλn+n−n

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xn−1
1 · · · xn−1

n
...

. . .
...

x01 · · · x0n

∣∣∣∣∣∣∣
.
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Grassmannians

Digression

The famous question, how many lines lie on a smooth cubic
hyperplane in CP3, can be answered after introduction of the
Schubert cells. (27)

The sets of all lines in CP3 is exactly Gr(2, 4).
Note that a line L lies on the cubic hyperplane {f = 0} if any only if
f |L = 0. So the number is the Euler class of S3T ∗ where T is the
tautological bundle of Gr(2, 4).
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Grassmannians

Digression

c(T ∗) = 1 + e1 + e2 = (1 + x1)(1 + x2).

c(S3(T ∗)) = (1 + 3x1)(1 + 2x1 + x2)(1 + x1 + 2x2)(1 + 3x2).

the coefficient in front of s in f

= the coefficient in front of x2+1
1 x22 in f∆

the coefficient in front of x31x
2
2 in 3x1(2x1 + x2)(x1 + 2x2)(3x2)(x1 − x2).

= 9 · (−2 + 4 + 1) = 27.
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Grassmannians

Cells

There is a natural map Fℓ(n + k)→Gr(k , n + k) which assign the
k-th space of flag. This map can be proven to be cellular, so the
Schur polynomials can be computed as a special case of Schubert
polynomials.
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Classifying Spaces

Classifying spaces

For G a compact Lie group, for any finite dimensional representation
V , we can consider [

EG×GV

↓
BG

]
,

so we get a map R(G )→K (BG ).

Note that, in this case, K (BG ) = π(BG ,BGL× Z). Actually, any
representation G →GLn induces a map BG →BGL.

Atiyah and Segal:

K (BG ) = R̂(G ), K 1(BG ) = 0,

where ∗̂ is the completion with respect to the augment ideal
ker[R(G )→Z]. (proof, see Atiyah and Segal, equivariant K-theory
and completion)
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Flag Manifolds

Flag manifolds

On one hand, using Atyiah–Hirzebruch Spectral Sequence,

Hp(G/T ;K q(pt)) =⇒ Kp+q(G/T ),

has only even dimensional stuff, so K 1(G/T ) = 0, and K (G/T ) is
free abelian of order |W |.
The algebraic K-theory also gives the same answer, say the push
forward of OBwB/B to G/B forms a basis (use a little higher
K-theory).
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Flag Manifolds

Flag manifolds

On the other hand, using the fibre bundle BT →BG ,

Hp(BG ;Kq(G/T )) =⇒ Kp+q(BT )
↑
|

↑
|

Hp(BG ;Kq(pt)) =⇒ K p+q(BG )

Since K (G/T ) is finite dimensional,

K (G/T ) = K (BT ) ⊗
K(BG)

Q = R(T )⊗R(G) Q.
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Flag Manifolds

Examples

For the case G = Un,

R(T ) = Z[ex1 , . . . , exn ]

R(G ) = Z[ex1 , . . . , exn ]Sn

Note that ex1 stands for the dual of the representation of character
ex1 , so that in the case T = C×, the generator is O(1).

R(G )→Z exi 7→ 1.

K (G/T ) = R(T )⊗R(G) Q
= Q[ex1 ,...,exn ]

⟨f ∈Q[ex1 ,...,exn ]Sn :f (e0,...,e0)=0⟩ .

It is suggested to use Xi = 1− e−xi , in this case,

K (G/T ) =
Z[X1, . . . ,Xn]

⟨ei (X ) : i = 1, . . . , n⟩
with ei the i-th elementary symmetric polynomial.
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Flag Manifolds

Cells

So how to express the class of a cell OBwB/B?

The answer is the Grothendieck polynomials (still cf. the
unaccessible paper).

[Bw0wB/B] = Gw (X ).

where Gw0 = X n−1
1 · · ·Xn−1, and

ℓ(wsi )− 1 = ℓ(w) =⇒ Sw = πiSwsi ,

with πi the isobaric Demazure operator

πi f (X ) =
(1− Xi+1)f (· · · ,Xi ,Xi+1, · · · )− (1− Xi )f (· · · ,Xi+1,Xi , · · · )

Xi − Xi+1
.

πi f (e
x) =

exi f (· · · , exi , exi+1 , · · · )− exi+1f (· · · , exi+1 , exi , · · · )
exi − exi+1

.
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Grassmannians

Grassmannians

For Grassmannians, on one hand, push forward of OΣλ
forms a basis,

and on the other hand, we can compute by spectral sequences.
Completely the same with the cohomology version.

For the push forward of OΣλ
, it is known as “symmetric Grothendieck

polynomials”.
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Grassmannians

References

May. A concise introduction to algebraic topology.

Harris, Eisenbud. 3264 and all that. (homework: find out the
statement of tangent bundle of Grassmannians, and as a result, when
the real Grassmannian Gr(k, n) is orientable)
Fulton. Young tableaux with applications in Algebra and Geometry.
For an introduction to Schur polynomial.

For Schubert polynomials and Grothendieck polynomials, good
references are by searching the names in arXiv, but the best reference
is by computing yourself unfortunately.

Next Time

Equivariant cohomology.

Localization theorem.
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Thanks

∼ § Thanks § ∼
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