Topology and Geometry Seminar

K-theory (II)

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Thanks

K-theory (II)

Xiong Rui

October 22, 2020

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Thanks

K-theory (II)

Xiong Rui

K in Algebra

< in Analysis

K in Algebraic Geometry

Higher K

Thanks

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Thanks

\sim § <u>K in Algebra</u> § \sim

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Algebraic K_0

K-theory (II)

Xiong Rui

K in Algebra

< in Analysis

K in Algebraic Geometry

Higher K

Thanks

 Let R be a ring, and denote proj R be the full subcategory of finitely generated projective modules.
 We can define the K₀ of R to be

$$\mathcal{K}_{0}(R) = \frac{\bigoplus_{M \in \operatorname{proj} R} \mathbb{Z} \cdot [M]}{\left\langle [M] = [M_{1}] + [M_{2}] : \begin{array}{c} \text{there exists a short exact sequence} \\ 0 \to M_{1} \to M \to M_{2} \to 0 \end{array} \right\rangle}$$

- Since [M₁] + [M₂] = [M₁ ⊕ M₂], each element of K₀(R) is presented by a difference of two f.g. projective modules. Therefore, [M] [R^m].
- Two elements [M] [R^m], [N] [Rⁿ] present the same element in K₀(R), if and only if M ⊕ R^{n+N} ≅ N ⊕ R^{m+N} for some N. Note that we cannot simply cancel N as topological case.

- ▶ For a field *F*, $K_0(F) = \mathbb{Z}$, the map is given by dim.
- For a PID R, $K_0(R) = \mathbb{Z}$, the map is given by rank.
- For a semisimple ring R, K₀(R) is the free abelian group generated by the classes of simple modules. This follows from the Jordan–Hölder theorem.
- In particular, for a group algebra R = k[G] for finite group G over characteristic zero field k, K₀(R) is the representation ring (it is a ring due to the Hopf structure).

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Examples (continued)

- Generally, for an artinnian ring *R*, *K*₀ is the free abelian group generated by the classes of indecomposable projective modules. This follows from the Krull–Schmidts theorem.
- For a Dedekind domian R, K₀(R) = Cl(R) ⊕ Z. This follows from the theorem that any finitely generated projective module of R is a direct sum of (fractional) ideals; a ⊕ b = ab ⊕ R. See Milnor P9.
- For a compact Hausdorff space X, denote R = C(X) the Banach algebra of complex continuous functions, then K₀(R) = K⁰(X) the topological K-theory. Since there is a category equivalence between proj R and Vec_ℂ X (Swan theorem).

K-theory (II)

Xiong Rui

K in Algebra

in Analysis

K in Algebraic Geometry

Higher K

Milnor Patching

Assume we have the following ring pull back

$$R = \ker[R_1 \oplus R_2 \xrightarrow{\text{difference}} R_0] \begin{vmatrix} R & \to & R_1 \\ \downarrow & & \downarrow \\ R_2 & \to & R_0 \end{vmatrix}$$

Given two modules P_1, P_2 over R_1, R_2 respectively with $R_0 \otimes_{R_1} P_1 \cong R_0 \otimes_{R_2} P_2 \cong P_0$. We can construct pull back

$$P = \ker[P_1 \oplus P_2 \xrightarrow{\text{difference}} P_0] \begin{vmatrix} P & \to & P_1 \\ \downarrow & & \downarrow \\ P_2 & \to & P_0 \end{vmatrix}$$

▶ When $R_1 \rightarrow R_0$ is surjective, then this construction gives all f.g. projective modules over *R*. (see Milnor P19, Weibel P15 2.7) K-theory (II)

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

For ring without unit

Let I be a ring without unit, and any ring R acting I both sides, for example Z. We can define

$$K_0(I) = \ker[K_0(I \rtimes R) \to K_0(R)].$$

This is well-defined by Milnor patching which case, we can lift the patching.

$$\operatorname{ng} \begin{bmatrix} I \rtimes \mathbb{Z} \to I \rtimes R \\ \downarrow & \downarrow \\ \mathbb{Z} \to R \end{bmatrix}; \text{ in }$$

We have the exact sequence in the case I is an ideal of R,

$$\begin{split} & \mathcal{K}_0(I) \to \mathcal{K}_0(R) \to \mathcal{K}_0(R/I) \\ \text{still by Milnor patching} \begin{bmatrix} I \rtimes \mathbb{Z} \to R \\ \downarrow & \downarrow \\ \mathbb{Z} \to R/I \end{bmatrix}. \end{split}$$

K-theory (II)

Xiong Rui

K in Algebra

in Analysis

K in Algebraic Geometry

Higher K

Thanks

・ロト・西ト・ヨト・ヨー うへぐ

This is an analogue of excision. Let R = C(X) the complex functions over compact X, and I be the functions vanishing at closed subset Y. Then

$$\begin{array}{ll} R/I &= \text{functions over } Y \\ I &= \text{functions over } X \setminus Y \text{ vanishing at infinity.} \\ I \rtimes \mathbb{C} &= \text{functions over one point compactification of } X \setminus Y. \end{array}$$

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

So,
$$K_0(I) = K_c^0(X \setminus Y)$$
.

Xiong Rui

K in Algebra

< in Analysis

K in Algebraic Geometry

Higher K

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Thanks

\sim § <u>K in Analysis</u> § \sim

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Let A be a C*-algebra, that is a complex Banach space with C-algebra (with unit) structure and involution * compatible with norm. Denote the set of equivalent class of Hermitian projections

$$\operatorname{proj} \mathcal{H} = \frac{\{p \in \mathbb{M}_{\infty}(\mathcal{A}) : p^{2} = p = p^{*}\}}{p \sim q \iff \frac{\exists v, \text{such that}}{p = v^{*}v, q = v^{*}v}}$$

where * is the transposition and the *-involution. Here $\mathbb{M}_{\infty} = \bigcup_{n \geq 0} \mathbb{M}_n$ by adding infinite many 1's in the diagonal.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

K-theory (II)

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

By M_{2∞}(A) × M_{2∞+1}(A) → M_∞(A), we can define the sum of two projections which makes proj A a monoid. Then, we can define

$$K_0(\mathcal{A}) =$$
group-ization of proj \mathcal{A} .

Let A be a C*-algebra without unit, then we define

$$K_0(\mathcal{A}) = \ker[K_0(\mathbb{A} \rtimes \mathbb{C}) \to \mathbb{Z}],$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

as we expected.

K-theory (II)

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

- For C(X), for a compact space X, it is the topological K-theory K₀(C(X)) = K⁰(X). Generally, for a local compact space X, K₀(C(X)) = K⁰_c(X). This follows from the fact that any bundle can be equipped with a unitary inner product.
- For any finite dimensional C-algebra A, with *-involution, K₀(A) coincides with the algebraic K-theory. But it is not interesting, since the finite dimensional C*-algebra are semisimple, i.e. product of matrix algebra.

Xiong Rui

K in Algebra

${\sf K}$ in Analysis

K in Algebraic Geometry

Higher K

For \mathbb{K} the compact operators over ℓ^2 , $\mathcal{K}_0(\mathbb{K}) = \mathbb{Z}$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

- Since the compact operators over c , $\mathcal{N}_0(\mathbb{R}) = \mathbb{Z}$. Since the compact operator which is a projection is of finite rank.
- For B the bounded operators over l², K₀(B) = 0. The same to the Calkin algebra B/K.
 Since there is an infinite dimension projection P, such that p ⊕ P ~ P.

K-theory (II)

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Definition of K_1

• We can define for a unitary C^* -algebra \mathcal{A}

 ${\mathcal K}_1({\mathcal A}) = {\operatorname{GL}}_\infty({\mathcal A}) \big/ \operatorname{GL}_\infty({\mathcal A})^\circ,$

where $GL(\mathcal{A})^{\circ}$ is the component of the identity. Here $GL_{\infty} = \bigcup_{n \geq 0} GL_n$ by adding infinite many 1's in the diagonal.

- For algebra without unit, we define K₁(A) = K₁(A ⋊ C).
- Note that K₁ is equipped with a commutative multiplication, since

$$\binom{uv_1}{1} \equiv \binom{u}{v} \equiv \binom{v}{u} \equiv \binom{vu}{1}.$$

What is important, we still have Bott periodicity!

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Thanks

Still, for C(X) with X compact, K₁(C(X)) = K⁻¹(X) the topological K-theory. Since,

$$\begin{split} \mathcal{K}^{-1}(X) &= \pi(\mathcal{S}X_{\cup\infty},\mathsf{BGL}) \\ &= \pi(X_{\cup\infty},\mathsf{GL}) \\ &= \mathsf{GL}_{\infty}(\mathcal{C}(X))/\,\mathsf{GL}_{\infty}(\mathcal{C}(X))^0 \\ &= \mathcal{K}_1(X). \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

- $\mathcal{K}_1(\mathbb{C}) = 0$, since $GL(\mathbb{C})$ is connected.
- K₁(𝔅) = 0, since the spectra of compact operator is discrete.
- ▶ $K_1(\mathbb{B}) = 0$, since $GL(\mathbb{B}) = GL_1(\mathbb{B}) = \mathbb{B}^{\times}$ is connected.
- K₁(𝔅/𝔅) = K₀(𝔅) = ℤ, by Bott periodicity and exact sequence. Actually, GL(𝔅/𝔅) = GL₁(𝔅/𝔅) = (𝔅/𝔅)[×], and the map is given by the Fredholm index.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

K-theory (II)

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Thanks

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

$\sim \S \quad \underline{\text{K in Algebraic Geometry}}$ $\S \sim$

Xiong Rui

< in Algebra

< in Analysis

K in Algebraic Geometry

Higher K

Thanks

• We can define Grothendieck group for a scheme X to be

$$\mathcal{K}(X) = \frac{\bigoplus_{\mathcal{F} \in \mathcal{C}oh \ X} \mathbb{Z} \cdot [\mathcal{F}]}{\left\langle [\mathcal{F}] = [\mathcal{F}_1] + [\mathcal{F}_2] : \frac{\text{there exists a short exact sequence}}{0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0} \right\rangle}$$

where Coh X the category of coherent sheaves.

The construction based on the locally trivial sheaves should also be considered. It follows from the Hilbert's syzygy theorem, each coherent sheaf admits a finite resolution of locally trivial bundle over smooth variety over fields. In this case, the two constructions coincide.

- For affine space Aⁿ, K(Aⁿ) = Z. This is a part of Hilbert's syzygy theorem, any finitely generated module over k[x₁,..., x_n] admits a finite free resolution. Actually, By Serre–Quillen–Suslin theorem, any finitely generated projective module is free.
- For projective space \mathbb{P}^k , we can compute by excision

$$\mathcal{K}(\mathbb{P}^{k-1}) \to \mathcal{K}(\mathbb{P}^k) \to \mathcal{K}(\mathbb{A}^k) \to 0.$$

Consider the image of basis of $K(\mathbb{P}^{k-1})$, one can conclude it is also left exact. So the result is the same to the topological one.

K-theory (II)

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

ligher K

K-theory in AG

Now we can define pull back and push forward sheaf-theoretically. Consider a morphism of noetherian schemes f : X → Y over field.

▶ If *f* is projective, then the push forward

 $[\mathcal{F}]\longmapsto \sum (-1)^{i}[Rf_{*}^{i}\mathcal{F}]$

makes sense (cf Hartshorne III.8.8)

If f is flat, then the pull back f* is exact, so

$$[\mathcal{G}]\longmapsto [f^*\mathcal{G}]$$

makes sense (cf Hartshorne III.9). Generally if f has finite torsion-dimension, then we can also define, for example the closed immersion.

K-theory (II)

Xiong Rui

K in Algebra

< in Analysis

K in Algebraic Geometry

Higher K

K-theory in AG

 In algebraic geometry level, we can also define the Chern character

 $\operatorname{ch}: K(X) \to \operatorname{Ch}(X) \otimes \mathbb{Q},$

this commutes with pull back.

- But for push forward, we need a correction, the Todd class of the tangent bundle.
- Theorem (Grothendieck-Riemann-Roch)

Consider a proper morphism $f : X \rightarrow Y$ between smooth quasi-projective schemes,

$$\mathsf{Td}(X) \cdot \mathsf{ch} - egin{array}{ccc} \mathcal{K}(X) & \stackrel{f_{*}}{
ightarrow} \mathcal{K}(Y) \ & \downarrow & \mathsf{Td}(Y) \cdot \mathsf{ch} - \ & \downarrow & \downarrow & \mathsf{Td}(Y) \cdot \mathsf{ch} - \ & \mathsf{Ch}(X) \otimes \mathbb{Q} & \stackrel{
ightarrow}{
ightarrow} \mathsf{Ch}(Y) \otimes \mathbb{Q} \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

K-theory (II)

Xiong Rui

(in Algebra

< in Analysis

K in Algebraic Geometry

Higher K

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Thanks

\sim § <u>Higher K</u> § \sim

・ロト・日本・日本・日本・日本・日本

Let C be a category, put the n-dimensional simplexes

$$\Delta^n = \{ \text{length } n+1 \text{ chain} : X_0 \to \cdots \to X_n \},\$$

and define the *i*-th face $\partial_i(X_0 \rightarrow \cdots \rightarrow X_n)$ to be

$$X_0 \rightarrow \cdots \rightarrow X_{i-1} \stackrel{\text{composition}}{\longrightarrow} X_{i+1} \rightarrow \cdots \rightarrow X_n$$

and *i*-th degeneracy $d(X_0 \rightarrow \cdots \rightarrow X_n)$ to be

$$X_0 \rightarrow \cdots \rightarrow X_i \xrightarrow{\text{identity}} X_i \rightarrow \cdots \rightarrow X_n$$

We can realize it geometrically, known as BC.

K-theory (II)

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic
Geometry

Higher K

Nerves

000

 $X_0 \rightarrow X_1 \rightarrow X_3$

000

012

122

002

 $\sqrt{222}$

 $X_0 \to X_1 \to X_2 \to X_3$

111

K-theory (II)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Examples and Properties

- ► For the category of {0,..., n}, with morphism by ≤, the BC is exactly the simplex.
- For the category of a single point, but morphism a group element, then BC is the same to the classifying space BG with G discrete.
- $\pi_0(BC)$ is the connected component of C.
- ▶ Functor $C_1 \rightarrow C_2$ induces a cellular map $BC_1 \rightarrow BC_2$.
- ▶ Natural transform induces homotopy $BC_1 \times I \rightarrow BC_2$.

Xiong Rui

K in Algebra

< in Analysis

K in Algebraic Geometry

Higher K

Let C be an exact category, consider the category Q(C) with same objects but morphisms from M to M' of the form

$$M \leftarrow N \hookrightarrow M'.$$

Say, M appears as a subquotient of M'. The composition is by exchanging indicated in the following diagram

$$M \twoheadleftarrow \underbrace{N \hookrightarrow M' \twoheadleftarrow N'}_{N \twoheadleftarrow N \times_{M'} N' \hookrightarrow N'} \hookrightarrow M''.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

• Quillen shows that $\pi_1(BQ(\mathcal{C}), 0) = K_0(\mathcal{C})$.

K-theory (II)

Xiong Rui

K in Algebra

< in Analysis

K in Algebraic Geometry

Higher K

The sketch of the proof

- Generally, let us consider a covering of BC. For a covering X → BC, we consider the fibre X(c) of c ∈ C. This defines a functor C → Set with morphisms invertible.
- Conversely, if we are given a functor F : C → Set with morphisms invertible. Then we can construct F\C to be the category of pairs (c, x) with x ∈ F(c). Then B(F\C) → BC is the desired covering.

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

The sketch of the proof

- Now, let us consider the functor BQC → Set with morphisms invertible corresponding to the universal covering.
- Since each morphism in the image of F is invertible we can normalize F if necessary to assume F(M) = F(0) and

$$F([0 \leftarrow 0 \hookrightarrow M]) = \mathsf{id} \, .$$

Then

$$F(M \leftarrow N \hookrightarrow M') = F(M \leftarrow N \hookrightarrow M') \circ F(0 \leftarrow 0 \hookrightarrow M)$$

= $F(0 \leftarrow K \hookrightarrow M')$ where $K = \ker[N \to M]$
= $F(K \leftarrow K \hookrightarrow M') \circ F(0 \leftarrow K \hookrightarrow K)$
= $F(0 \leftarrow 0 \hookrightarrow M') \circ F(0 \leftarrow K \hookrightarrow K)$
= $F(0 \leftarrow K \hookrightarrow K)$

・ロト・西ト・ヨト・ヨー シック

K-theory (II)

Xiong Rui

< in Algebra</pre>

(in Analysis

K in Algebraic Geometry

Higher K

The sketch of the proof

Let M ∈ C, consider the map [M] : F(0) → F(0) defined by

$$F(0 \leftarrow M \hookrightarrow M).$$

Then F is a functor if and only if

there exists a short exact sequence $\Longrightarrow [M] = [M_1][M_2].$

(homological algebra)

As a result,

$$\pi_1(BQC,0)=K_0(C).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

K-theory (II)

Xiong Rui

K in Algebra

< in Analysis

K in Algebraic Geometry

Higher K

We can define

 $K_i(\mathcal{C}) = \pi_{i+1}(BQ(\mathcal{C}), 0).$

For the case C the category of finitely generated projective modules over R. It turns out the K_i defined here coincides with the Quillen plus construction in particular with K₁ and K₂ by Bass and Milnor.

K-theory (II)

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

- All K-theory have the same resource, but the properties are quite different.
- There are a number of higher K-theory, differently subtly each other but most of them are far from being periodic.
- There is not generally true to have even a comparison map between different K-theory. Most of the known result is based on the computation of small spaces and the way of construction.

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Thanks

\sim § <u>Thanks</u> § \sim

- ► Milnor. Introduction to algebraic K-theory.
- Weibel. The K-book, an introduction to algebraic K-theory.
- ▶ Olsen. K-theory and C*-algebra, a friendly approach.
- Quillen. Higher algebraic K-theory: I.
- Megurn. An Algebraic Introduction to K-Theory

Xiong Rui

K in Algebra

< in Analysis

K in Algebraic Geometry

Higher K

Thanks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のへで

Xiong Rui

K in Algebra

< in Analysis

K in Algebraic Geometry

Higher K

Thanks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Computations of cohomology and characteristic classes.
- Computations of K-groups.