Topology and Geometry Seminar

K-theory (II)

Xiong Rui

October 22, 2020
K in Algebra

K in Analysis

K in Algebraic Geometry

Higher K

Thanks

Algebraic K_{0}

- Let R be a ring, and denote proj R be the full subcategory of finitely generated projective modules. We can define the K_{0} of R to be

$$
\left.K_{0}(R)=\frac{\bigoplus_{M \in \text { proj } R} \mathbb{Z} \cdot[M]}{\left\langle[M]=\left[M_{1}\right]+\left[M_{2}\right]: \begin{array}{c}
\text { there exists a short exact sequence } \\
0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0
\end{array}\right.}\right\rangle
$$

- Since $\left[M_{1}\right]+\left[M_{2}\right]=\left[M_{1} \oplus M_{2}\right]$, each element of $K_{0}(R)$ is presented by a difference of two f.g. projective modules. Therefore, $[M]-\left[R^{m}\right]$.
- Two elements $[M]-\left[R^{m}\right],[N]-\left[R^{n}\right]$ present the same element in $K_{0}(R)$, if and only if $M \oplus R^{n+N} \cong N \oplus R^{m+N}$ for some N. Note that we cannot simply cancel N as topological case.

Examples

- For a field $F, K_{0}(F)=\mathbb{Z}$, the map is given by dim.
- For a PID $R, K_{0}(R)=\mathbb{Z}$, the map is given by rank.
- For a semisimple ring $R, K_{0}(R)$ is the free abelian group generated by the classes of simple modules. This follows from the Jordan-Hölder theorem.
- In particular, for a group algebra $R=k[G]$ for finite group G over characteristic zero field $k, K_{0}(R)$ is the representation ring (it is a ring due to the Hopf structure).

Examples (continued)

- Generally, for an artinnian ring R, K_{0} is the free abelian group generated by the classes of indecomposable projective modules.
This follows from the Krull-Schmidts theorem.
- For a Dedekind domian $R, K_{0}(R)=\mathrm{Cl}(R) \oplus \mathbb{Z}$. This follows from the theorem that any finitely generated projective module of R is a direct sum of (fractional) ideals; $\mathfrak{a} \oplus \mathfrak{b}=\mathfrak{a b} \oplus R$. See Milnor P9.
- For a compact Hausdorff space X, denote $R=\mathcal{C}(X)$ the Banach algebra of complex continuous functions, then $K_{0}(R)=K^{0}(X)$ the topological K -theory. Since there is a category equivalence between proj R and $\mathrm{Vec}_{\mathbb{C}} X$ (Swan theorem).

Milnor Patching

- Assume we have the following ring pull back

$$
R=\operatorname{ker}\left[R_{1} \oplus R_{2} \xrightarrow{\text { difference }} R_{0}\right] \left\lvert\, \begin{array}{ccc}
R & \rightarrow & R_{1} \\
\downarrow & & \downarrow \\
R_{2} & \rightarrow & R_{0}
\end{array}\right.
$$

Given two modules P_{1}, P_{2} over R_{1}, R_{2} respectively with $R_{0} \otimes_{R_{1}} P_{1} \cong R_{0} \otimes_{R_{2}} P_{2} \cong P_{0}$. We can construct pull back

$$
P=\operatorname{ker}\left[P_{1} \oplus P_{2} \xrightarrow{\text { difference }} P_{0}\right] \left\lvert\, \begin{array}{ccc}
P & \rightarrow & P_{1} \\
\downarrow & & \downarrow \\
P_{2} & \rightarrow & P_{0}
\end{array}\right.
$$

- When $R_{1} \rightarrow R_{0}$ is surjective, then this construction gives all f.g. projective modules over R. (see Milnor P19, Weibel P15 2.7)

For ring without unit

- Let I be a ring without unit, and any ring R acting I both sides, for example \mathbb{Z}. We can define

$$
K_{0}(I)=\operatorname{ker}\left[K_{0}(I \rtimes R) \rightarrow K_{0}(R)\right]
$$

This is well-defined by Milnor patching $\left[\begin{array}{ccc}I \times \mathbb{Z} & \rightarrow I \times R \\ \downarrow \\ \mathbb{Z} & \rightarrow & \downarrow \\ \hline\end{array}\right]$; in which case, we can lift the patching.

- We have the exact sequence in the case I is an ideal of R,

$$
K_{0}(I) \rightarrow K_{0}(R) \rightarrow K_{0}(R / I)
$$

still by Milnor patching $\left[\begin{array}{ccc}I \times \mathbb{Z} & \rightarrow & R \\ \downarrow \\ \mathbb{Z} & \rightarrow & \downarrow / I\end{array}\right]$.

For ring without unit

- This is an analogue of excision. Let $R=\mathcal{C}(X)$ the complex functions over compact X, and I be the functions vanishing at closed subset Y. Then

$$
\begin{aligned}
R / I & =\text { functions over } Y \\
I & =\text { functions over } X \backslash Y \text { vanishing at infinity. } \\
I \rtimes \mathbb{C} & =\text { functions over one point compactification of } X \backslash Y .
\end{aligned}
$$

So, $K_{0}(I)=K_{c}^{0}(X \backslash Y)$.
\gg Questions? <<

```
K in Algebra
K in Analysis
K in Algebraic
Geometry
```

Higher K

K-theory of Banach Algebras

- Let \mathcal{A} be a C^{*}-algebra, that is a complex Banach space with \mathbb{C}-algebra (with unit) structure and involution * compatible with norm. Denote the set of equivalent class of Hermitian projections

$$
\operatorname{proj} \mathcal{H}=\frac{\left\{p \in \mathbb{M}_{\infty}(\mathcal{A}): p^{2}=p=p^{*}\right\}}{p \sim q \Longleftrightarrow \substack{\exists v, \text { such that } \\ p=v^{*} v, q=v^{*} v}}
$$

where $*$ is the transposition and the $*$-involution. Here $\mathbb{M}_{\infty}=\bigcup_{n \geq 0} \mathbb{M}_{n}$ by adding infinite many 1 's in the diagonal.

For algebra without unit

- By $\mathbb{M}_{2 \infty}(\mathcal{A}) \times \mathbb{M}_{2 \infty+1}(\mathcal{A}) \rightarrow \mathbb{M}_{\infty}(\mathcal{A})$, we can define the sum of two projections which makes proj \mathcal{A} a monoid. Then, we can define

$$
K_{0}(\mathcal{A})=\text { group-ization of } \operatorname{proj} \mathcal{A}
$$

- Let \mathcal{A} be a C^{*}-algebra without unit, then we define

$$
K_{0}(\mathcal{A})=\operatorname{ker}\left[K_{0}(\mathbb{A} \rtimes \mathbb{C}) \rightarrow \mathbb{Z}\right]
$$

as we expected.

Examples

- For $\mathcal{C}(X)$, for a compact space X, it is the topological K-theory $K_{0}(\mathcal{C}(X))=K^{0}(X)$. Generally, for a local compact space $X, K_{0}(\mathcal{C}(X))=K_{c}^{0}(X)$.
This follows from the fact that any bundle can be equipped with a unitary inner product.
- For any finite dimensional \mathbb{C}-algebra \mathcal{A}, with *-involution, $K_{0}(\mathcal{A})$ coincides with the algebraic K-theory. But it is not interesting, since the finite dimensional C^{*}-algebra are semisimple, i.e. product of matrix algebra.

Examples

- For \mathbb{K} the compact operators over $\ell^{2}, K_{0}(\mathbb{K})=\mathbb{Z}$. Since the compact operator which is a projection is of finite rank.
- For \mathbb{B} the bounded operators over $\ell^{2}, K_{0}(\mathbb{B})=0$. The same to the Calkin algebra \mathbb{B} / \mathbb{K}.
Since there is an infinite dimension projection P, such that $p \oplus P \sim P$.

Definition of K_{1}

- We can define for a unitary C^{*}-algebra \mathcal{A}

$$
K_{1}(\mathcal{A})=\mathrm{GL}_{\infty}(\mathcal{A}) / \mathrm{GL}_{\infty}(\mathcal{A})^{\circ}
$$

where $\mathrm{GL}(\mathcal{A})^{\circ}$ is the component of the identity. Here $\mathrm{GL}_{\infty}=\bigcup_{n \geq 0} \mathrm{GL}_{n}$ by adding infinite many 1 's in the diagonal.

- For algebra without unit, we define $K_{1}(\mathcal{A})=K_{1}(\mathcal{A} \rtimes \mathbb{C})$.
- Note that K_{1} is equipped with a commutative multiplication, since

$$
\left({ }^{u v}{ }_{1}\right) \equiv\left({ }^{u}{ }_{v}\right) \equiv\left({ }^{v}{ }_{u}\right) \equiv\left({ }^{v u}{ }_{1}\right) .
$$

- What is important, we still have Bott periodicity!

Examples

- Still, for $\mathcal{C}(X)$ with X compact, $K_{1}(\mathcal{C}(X))=K^{-1}(X)$ the topological K-theory. Since,

$$
\begin{aligned}
K^{-1}(X) & =\pi\left(S X_{\cup \infty}, \mathrm{BGL}\right) \\
& =\pi\left(X_{\cup \infty}, \mathrm{GL}\right) \\
& =\mathrm{GL}_{\infty}(\mathcal{C}(X)) / \mathrm{GL}_{\infty}(\mathcal{C}(X))^{0} \\
& =K_{1}(X)
\end{aligned}
$$

Exmaples

- $K_{1}(\mathbb{C})=0$, since $G L(\mathbb{C})$ is connected.
- $K_{1}(\mathbb{K})=0$, since the spectra of compact operator is discrete.
- $K_{1}(\mathbb{B})=0$, since $G L(\mathbb{B})=\mathrm{GL}_{1}(\mathbb{B})=\mathbb{B}^{\times}$is connected.
- $K_{1}(\mathbb{B} / \mathbb{K})=K_{0}(\mathbb{K})=\mathbb{Z}$, by Bott periodicity and exact sequence. Actually, $\mathrm{GL}(\mathbb{B} / \mathbb{K})=\mathrm{GL}_{1}(\mathbb{B} / \mathbb{K})=(\mathbb{B} / \mathbb{K})^{\times}$, and the map is given by the Fredholm index.

K in Algebra
K in Analysis
K in Algebraic Geometry

Higher K
Thanks
\gg Questions? <<

```
K in Algebra
K in Analysis
K in Algebraic
Geometry
```

Higher K
$\sim \oint \underline{\text { K IN Algebraic Geometry }}$ $\oint \sim$

K-theory in AG

- We can define Grothendieck group for a scheme X to be

$$
\left.K(X)=\frac{\bigoplus_{\mathcal{F} \in \mathcal{C} \text { oh } X} \mathbb{Z} \cdot[\mathcal{F}]}{\left\langle[\mathcal{F}]=\left[\mathcal{F}_{1}\right]+\left[\mathcal{F}_{2}\right]: \begin{array}{c}
\text { there exists a short exact sequence } \\
0 \rightarrow \mathcal{F}_{1} \rightarrow \mathcal{F} \rightarrow \mathcal{F}_{2} \rightarrow 0
\end{array}\right.}\right\rangle,
$$

where \mathcal{C} oh X the category of coherent sheaves.

- The construction based on the locally trivial sheaves should also be considered. It follows from the Hilbert's syzygy theorem, each coherent sheaf admits a finite resolution of locally trivial bundle over smooth variety over fields. In this case, the two constructions coincide.

Examples

- For affine space $\mathbb{A}^{n}, K\left(\mathbb{A}^{n}\right)=\mathbb{Z}$. This is a part of Hilbert's syzygy theorem, any finitely generated module over $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ admits a finite free resolution. Actually, By Serre-Quillen-Suslin theorem, any finitely generated projective module is free.
- For projective space \mathbb{P}^{k}, we can compute by excision

$$
K\left(\mathbb{P}^{k-1}\right) \rightarrow K\left(\mathbb{P}^{k}\right) \rightarrow K\left(\mathbb{A}^{k}\right) \rightarrow 0
$$

Consider the image of basis of $K\left(\mathbb{P}^{k-1}\right)$, one can conclude it is also left exact. So the result is the same to the topological one.

K-theory in AG

- Now we can define pull back and push forward sheaf-theoretically. Consider a morphism of noetherian schemes $f: X \rightarrow Y$ over field.
- If f is projective, then the push forward

$$
[\mathcal{F}] \longmapsto \sum(-1)^{i}\left[R f_{*}^{i} \mathcal{F}\right]
$$

makes sense (cf Hartshorne III.8.8)

- If f is flat, then the pull back f^{*} is exact, so

$$
[\mathcal{G}] \longmapsto\left[f^{*} \mathcal{G}\right]
$$

makes sense (cf Hartshorne III.9). Generally if f has finite torsion-dimension, then we can also define, for example the closed immersion.

K-theory in AG

- In algebraic geometry level, we can also define the Chern character

$$
\text { ch : } K(X) \rightarrow \operatorname{Ch}(X) \otimes \mathbb{Q}
$$

this commutes with pull back.

- But for push forward, we need a correction, the Todd class of the tangent bundle.

Theorem (Grothendieck-Riemann-Roch)

Consider a proper morphism $f: X \rightarrow Y$ between smooth quasi-projective schemes,

Higher K
Thanks
\gg Questions? <<
K in Algebra
K in Analysis
K in Algebraic Geometry

Higher K
$\sim \oint$ Higher K $\oint \sim$

Nerves

$$
\Delta^{n}=\left\{\text { length } n+1 \text { chain : } X_{0} \rightarrow \cdots \rightarrow X_{n}\right\}
$$

and define the i-th face $\partial_{i}\left(X_{0} \rightarrow \cdots \rightarrow X_{n}\right)$ to be

$$
X_{0} \rightarrow \cdots \rightarrow X_{i-1} \xrightarrow{\text { composition }} X_{i+1} \rightarrow \cdots \rightarrow X_{n}
$$

and i-th degeneracy $d\left(X_{0} \rightarrow \cdots \rightarrow X_{n}\right)$ to be

$$
X_{0} \rightarrow \cdots \rightarrow X_{i} \xrightarrow{\text { identity }} X_{i} \rightarrow \cdots \rightarrow X_{n}
$$

We can realize it geometrically, known as $B C$.

Nerves

K-theory (II)
Xiong Rui

K in Algebra

K in Analysis
K in Algebraic Geometry

Higher K
Thanks

Examples and Properties

- For the category of $\{0, \ldots, n\}$, with morphism by \leq, the $B C$ is exactly the simplex.
- For the category of a single point, but morphism a group element, then $B C$ is the same to the classifying space $B G$ with G discrete.
- $\pi_{0}(B C)$ is the connected component of \mathcal{C}.
- Functor $\mathcal{C}_{1} \rightarrow \mathcal{C}_{2}$ induces a cellular map $B \mathcal{C}_{1} \rightarrow B \mathcal{C}_{2}$.
- Natural transform induces homotopy $B \mathcal{C}_{1} \times I \rightarrow B \mathcal{C}_{2}$.

Quillen construction

- Let \mathcal{C} be an exact category, consider the category $Q(\mathcal{C})$ with same objects but morphisms from M to M^{\prime} of the form

$$
M \leftrightarrow N \hookrightarrow M^{\prime} .
$$

Say, M appears as a subquotient of M^{\prime}. The composition is by exchanging indicated in the following diagram

$$
M \longleftarrow \underbrace{N \hookrightarrow N^{\prime} \longleftarrow N^{\prime}}_{N \longleftarrow N \times_{M^{\prime}} N^{\prime} \hookrightarrow N^{\prime}} \hookrightarrow M^{\prime \prime} .
$$

- Quillen shows that $\pi_{1}(B Q(\mathcal{C}), 0)=K_{0}(\mathcal{C})$.

The sketch of the proof

- Generally, let us consider a covering of $B \mathcal{C}$. For a covering $X \rightarrow B \mathcal{C}$, we consider the fibre $X(c)$ of $c \in \mathcal{C}$. This defines a functor $\mathcal{C} \rightarrow$ Set with morphisms invertible.
- Conversely, if we are given a functor $F: \mathcal{C} \rightarrow$ Set with morphisms invertible. Then we can construct $F \backslash \mathcal{C}$ to be the category of pairs (c, x) with $x \in F(c)$. Then $B(F \backslash \mathcal{C}) \rightarrow B \mathcal{C}$ is the desired covering.

The sketch of the proof

- Now, let us consider the functor $B Q \mathcal{C} \rightarrow$ Set with morphisms invertible corresponding to the universal covering.
- Since each morphism in the image of F is invertible we can normalize F if necessary to assume $F(M)=F(0)$ and

$$
F([0 \leftrightarrow 0 \hookrightarrow M])=\text { id } .
$$

Then

$$
\begin{aligned}
F\left(M \longleftarrow N \hookrightarrow M^{\prime}\right) & =F\left(M \longleftarrow N \hookrightarrow M^{\prime}\right) \circ F(0 \longleftarrow 0 \hookrightarrow M) \\
& =F\left(0 \leftarrow K \hookrightarrow M^{\prime}\right) \quad \text { where } K=\operatorname{ker}[N \rightarrow M] \\
& =F\left(K \longleftarrow K \hookrightarrow M^{\prime}\right) \circ F(0 \leftarrow K \hookrightarrow K) \\
& =F\left(0 \leftarrow 0 \hookrightarrow M^{\prime}\right) \circ F(0 \leftarrow K \hookrightarrow K) \\
& =F(0 \leftarrow K \hookrightarrow K)
\end{aligned}
$$

The sketch of the proof

- Let $M \in \mathcal{C}$, consider the map $[M]: F(0) \rightarrow F(0)$ defined by

$$
F(0 \longleftarrow M \hookrightarrow M) .
$$

- Then F is a functor if and only if

$$
\begin{aligned}
& \text { there exists a short exact sequence } \Longrightarrow[M]=\left[M_{1}\right]\left[M_{2}\right] . \\
& 0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0
\end{aligned}
$$

(homological algebra)

- As a result,

$$
\pi_{1}(B Q \mathcal{C}, 0)=K_{0}(\mathcal{C})
$$

The sketch of the proof

- We can define

$$
K_{i}(\mathcal{C})=\pi_{i+1}(B Q(\mathcal{C}), 0)
$$

- For the case \mathcal{C} the category of finitely generated projective modules over R. It turns out the K_{i} defined here coincides with the Quillen plus construction in particular with K_{1} and K_{2} by Bass and Milnor.

Warning

- All K-theory have the same resource, but the properties are quite different.
- There are a number of higher K-theory, differently subtly each other but most of them are far from being periodic.
- There is not generally true to have even a comparison map between different K-theory. Most of the known result is based on the computation of small spaces and the way of construction.
\gg Questions? <<

K in Algebra

K in Analysis
K in Algebraic Geometry

Higher K
Thanks
$\sim \oint \underline{\text { THANKS }} \oint \sim$

References

- Milnor. Introduction to algebraic K-theory.
- Weibel. The K-book, an introduction to algebraic K-theory.
- Olsen. K-theory and C^{*}-algebra, a friendly approach.
- Quillen. Higher algebraic K-theory: I.
- Megurn. An Algebraic Introduction to K-Theory

Next time

- Computations of cohomology and characteristic classes.
- Computations of K-groups.

