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Algebraic K0

I Let R be a ring, and denote projR be the full
subcategory of finitely generated projective modules.
We can define the K0 of R to be

K0(R) =

⊕
M∈projR Z · [M]⟨

[M] = [M1] + [M2] :
there exists a short exact sequence

0→M1 →M →M2 → 0

⟩ .
I Since [M1] + [M2] = [M1 ⊕M2], each element of K0(R)

is presented by a difference of two f.g. projective
modules. Therefore, [M]− [Rm].

I Two elements [M]− [Rm], [N]− [Rn] present the same
element in K0(R), if and only if
M ⊕ Rn+N ∼= N ⊕ Rm+N for some N. Note that we
cannot simply cancel N as topological case.
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Examples

I For a field F , K0(F ) = Z, the map is given by dim.

I For a PID R, K0(R) = Z, the map is given by rank.

I For a semisimple ring R, K0(R) is the free abelian
group generated by the classes of simple modules.
This follows from the Jordan–Hölder theorem.

I In particular, for a group algebra R = k[G ] for finite
group G over characteristic zero field k, K0(R) is the
representation ring (it is a ring due to the Hopf
structure).
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Examples (continued)

I Generally, for an artinnian ring R, K0 is the free abelian
group generated by the classes of indecomposable
projective modules.
This follows from the Krull–Schmidts theorem.

I For a Dedekind domian R, K0(R) = Cl(R)⊕ Z.
This follows from the theorem that any finitely
generated projective module of R is a direct sum of
(fractional) ideals; a⊕ b = ab⊕ R. See Milnor P9.

I For a compact Hausdorff space X , denote R = C(X )
the Banach algebra of complex continuous functions,
then K0(R) = K 0(X ) the topological K-theory.
Since there is a category equivalence between projR
and VecC X (Swan theorem).
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Milnor Patching

I Assume we have the following ring pull back

R = ker[R1 ⊕ R2

difference
−−−−−→R0]

R → R1

↓ ↓
R2 → R0

Given two modules P1,P2 over R1,R2 respectively with
R0 ⊗R1 P1

∼= R0 ⊗R2 P2
∼= P0. We can construct pull

back

P = ker[P1 ⊕ P2

difference
−−−−−→P0]

P → P1

↓ ↓
P2 → P0

I When R1→R0 is surjective, then this construction gives
all f.g. projective modules over R. (see Milnor P19,
Weibel P15 2.7)
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For ring without unit

I Let I be a ring without unit, and any ring R acting I
both sides, for example Z. We can define

K0(I ) = ker[K0(I o R)→K0(R)].

This is well-defined by Milnor patching

[
IoZ
↓
Z

→

→

IoR
↓
R

]
; in

which case, we can lift the patching.

I We have the exact sequence in the case I is an ideal of
R,

K0(I )→K0(R)→K0(R/I )

still by Milnor patching

[
IoZ
↓
Z

→

→

R
↓

R/I

]
.
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For ring without unit

I This is an analogue of excision. Let R = C(X ) the
complex functions over compact X , and I be the
functions vanishing at closed subset Y . Then

R/I = functions over Y
I = functions over X \ Y vanishing at infinity.

I oC = functions over one point compactification of X \ Y .

So, K0(I ) = K 0
c (X \ Y ).
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≫ Questions? ≪
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K-theory of Banach Algebras

I Let A be a C ∗-algebra, that is a complex Banach space
with C-algebra (with unit) structure and involution ∗
compatible with norm. Denote the set of equivalent
class of Hermitian projections

projH =
{p ∈ M∞(A) : p2 = p = p∗}
p ∼ q ⇐⇒ ∃v ,such that

p=v∗v ,q=v∗v

.

where ∗ is the transposition and the ∗-involution. Here
M∞ =

∪
n≥0Mn by adding infinite many 1’s in the

diagonal.
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For algebra without unit

I By M2∞(A)×M2∞+1(A)→M∞(A), we can define
the sum of two projections which makes projA a
monoid. Then, we can define

K0(A) = group-ization of projA.

I Let A be a C ∗-algebra without unit, then we define

K0(A) = ker[K0(Ao C)→Z],

as we expected.
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Examples

I For C(X ), for a compact space X , it is the topological
K-theory K0(C(X )) = K 0(X ). Generally, for a local
compact space X , K0(C(X )) = K 0

c (X ).
This follows from the fact that any bundle can be
equipped with a unitary inner product.

I For any finite dimensional C-algebra A, with
∗-involution, K0(A) coincides with the algebraic
K-theory. But it is not interesting, since the finite
dimensional C ∗-algebra are semisimple, i.e. product of
matrix algebra.
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Examples

I For K the compact operators over ℓ2, K0(K) = Z.
Since the compact operator which is a projection is of
finite rank.

I For B the bounded operators over ℓ2, K0(B) = 0. The
same to the Calkin algebra B/K.
Since there is an infinite dimension projection P , such
that p ⊕ P ∼ P.
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Definition of K1

I We can define for a unitary C ∗-algebra A

K1(A) = GL∞(A)
/
GL∞(A)◦,

where GL(A)◦ is the component of the identity. Here
GL∞ =

∪
n≥0 GLn by adding infinite many 1’s in the

diagonal.

I For algebra without unit, we define
K1(A) = K1(AoC).

I Note that K1 is equipped with a commutative
multiplication, since

(uv 1) ≡ (uv ) ≡ (v u) ≡ (vu1).

I What is important, we still have Bott periodicity!
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Examples

I Still, for C(X ) with X compact, K1(C(X )) = K−1(X )
the topological K-theory. Since,

K−1(X ) = π(SX∪∞,BGL)
= π(X∪∞,GL)
= GL∞(C(X ))/GL∞(C(X ))0

= K1(X ).
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Exmaples

I K1(C) = 0, since GL(C) is connected.
I K1(K) = 0, since the spectra of compact operator is

discrete.

I K1(B) = 0, since GL(B) = GL1(B) = B× is connected.

I K1(B/K) = K0(K) = Z, by Bott periodicity and exact
sequence. Actually, GL(B/K) = GL1(B/K) = (B/K)×,
and the map is given by the Fredholm index.



K-theory (II)

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic
Geometry

Higher K

Thanks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

≫ Questions? ≪
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K-theory in AG

I We can define Grothendieck group for a scheme X to be

K (X ) =

⊕
F∈CohX Z · [F ]⟨

[F ] = [F1] + [F2] :
there exists a short exact sequence

0→F1 →F →F2 → 0

⟩ ,
where CohX the category of coherent sheaves.

I The construction based on the locally trivial sheaves
should also be considered. It follows from the Hilbert’s
syzygy theorem, each coherent sheaf admits a finite
resolution of locally trivial bundle over smooth variety
over fields. In this case, the two constructions coincide.
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Examples

I For affine space An, K (An) = Z. This is a part of
Hilbert’s syzygy theorem, any finitely generated module
over k[x1, . . . , xn] admits a finite free resolution.
Actually, By Serre–Quillen–Suslin theorem, any finitely
generated projective module is free.

I For projective space Pk , we can compute by excision

K (Pk−1)→K (Pk)→K (Ak)→ 0.

Consider the image of basis of K (Pk−1), one can
conclude it is also left exact. So the result is the same
to the topological one.
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K-theory in AG

I Now we can define pull back and push forward
sheaf-theoretically. Consider a morphism of noetherian
schemes f : X →Y over field.

I If f is projective, then the push forward

[F ] 7−→
∑

(−1)i [Rf i∗F ]

makes sense (cf Hartshorne III.8.8)

I If f is flat, then the pull back f ∗ is exact, so

[G] 7−→ [f ∗G]

makes sense (cf Hartshorne III.9). Generally if f has
finite torsion-dimension, then we can also define, for
example the closed immersion.
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K-theory in AG

I In algebraic geometry level, we can also define the
Chern character

ch : K (X )→Ch(X )⊗Q,

this commutes with pull back.

I But for push forward, we need a correction, the Todd
class of the tangent bundle.

Theorem (Grothendieck–Riemann–Roch)

Consider a proper morphism f : X →Y between smooth
quasi-projective schemes,

K (X )
f∗→ K (Y )

Td(X ) · ch− ↓ ↓ Td(Y ) · ch−
Ch(X )⊗Q →

f∗
Ch(Y )⊗Q
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≫ Questions? ≪
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Nerves

I Let C be a category, put the n-dimensional simplexes

∆n = {length n + 1 chain : X0→· · ·→Xn},

and define the i-th face ∂i (X0→· · ·→Xn) to be

X0→· · ·→Xi−1
composition−→ Xi+1→· · ·→Xn

and i-th degeneracy d(X0→· · ·→Xn) to be

X0→· · ·→Xi
identity−→ Xi →· · ·→Xn.

We can realize it geometrically, known as BC.



K-theory (II)

Xiong Rui

K in Algebra

K in Analysis

K in Algebraic
Geometry

Higher K

Thanks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Nerves

X1 → X2 → X3

X0 → X1 → X2

X0 → X1 → X3

X0 → X1 → X2 → X3

X0 → X2 → X3

01 02

12

0

1 2

012

000

002

022

222
122

112
111

011

001

2211

00
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Examples and Properties

I For the category of {0, . . . , n}, with morphism by ≤,
the BC is exactly the simplex.

I For the category of a single point, but morphism a
group element, then BC is the same to the classifying
space BG with G discrete.

I π0(BC) is the connected component of C.
I Functor C1→C2 induces a cellular map BC1→BC2.
I Natural transform induces homotopy BC1 × I →BC2.
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Quillen construction

I Let C be an exact category, consider the category Q(C)
with same objects but morphisms from M to M ′ of the
form

M � N ↩→ M ′.

Say, M appears as a subquotient of M ′. The
composition is by exchanging indicated in the following
diagram

M � N ↩→ M ′ � N ′︸ ︷︷ ︸
N�N×M′N′↪→N′

↩→ M ′′.

I Quillen shows that π1(BQ(C), 0) = K0(C).
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The sketch of the proof

I Generally, let us consider a covering of BC. For a
covering X →BC, we consider the fibre X (c) of c ∈ C.
This defines a functor C→ Set with morphisms
invertible.

I Conversely, if we are given a functor F : C→ Set with
morphisms invertible. Then we can construct F\C to be
the category of pairs (c , x) with x ∈ F (c). Then
B(F\C)→BC is the desired covering.
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The sketch of the proof

I Now, let us consider the functor BQC→ Set with
morphisms invertible corresponding to the universal
covering.

I Since each morphism in the image of F is invertible we
can normalize F if necessary to assume F (M) = F (0)
and

F ([0 � 0 ↩→ M]) = id .

Then

F (M � N ↩→ M ′) = F (M � N ↩→ M ′) ◦ F (0 � 0 ↩→ M)
= F (0 � K ↩→ M ′) where K = ker[N→M]
= F (K � K ↩→ M ′) ◦ F (0 � K ↩→ K )
= F (0 � 0 ↩→ M ′) ◦ F (0 � K ↩→ K )
= F (0 � K ↩→ K )
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The sketch of the proof

I Let M ∈ C, consider the map [M] : F (0)→F (0) defined
by

F (0 � M ↩→ M).

I Then F is a functor if and only if

there exists a short exact sequence
0→M1 →M →M2 → 0 =⇒ [M] = [M1][M2].

(homological algebra)

I As a result,
π1(BQC, 0) = K0(C).
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The sketch of the proof

I We can define

Ki (C) = πi+1(BQ(C), 0).

I For the case C the category of finitely generated
projective modules over R. It turns out the Ki defined
here coincides with the Quillen plus construction in
particular with K1 and K2 by Bass and Milnor.
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Warning

I All K-theory have the same resource, but the properties
are quite different.

I There are a number of higher K-theory, differently
subtly each other but most of them are far from being
periodic.

I There is not generally true to have even a comparison
map between different K-theory. Most of the known
result is based on the computation of small spaces and
the way of construction.
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≫ Questions? ≪
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∼ § Thanks § ∼
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Next time

I Computations of cohomology and characteristic classes.

I Computations of K-groups.
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