Topology and Geometry Seminar

Characteristic Classes (II)

Xiong Rui

October 10, 2020

Preface

- As suggested by Wang Liao that, the definition of Chern class in algebraic geometry can be found in Fulton's intersection theory with less assumption.
- Still suggested by the same audience, the computation of Chow ring of $\mathbb{P}(\mathcal{E})$ is no that easy.
(1) Axioms of Chern Classes
(2) CC in Differential Geomtry
(3) CC in Algebraic Geometry
(4) General Characteristic Classes
(5) Vector Bundles over Spheres
(6) Thanks

\sim § Axioms of Chern Classes $\S \sim$

Remind

- For a CW-complex B, the rank n vector bundles is classified by the homotopy class of $B \rightarrow \mathcal{G} r(n, \infty)$. Namely,

$$
\operatorname{Vec}^{n} B \stackrel{1: 1}{\longleftrightarrow} \pi(B, \mathcal{G} r(n, \infty)) .
$$

- For a vector bundle ξ over B, which is classified by φ, we define the Chern classes

$$
c(\xi)=1+c_{2}(\xi)+c_{4}(\xi)+\cdots+c_{2 n}(\xi), \quad c_{2 k}=\varphi^{*}\left(e_{2 k}\right)
$$

with $e_{2 k} \in H^{2 k}(\mathcal{G r}(n, \infty))$, the description, see last lecture.

Properties (1) - Functorial Property

- For $f: X \rightarrow Y$, and ξ a vector bundle over Y, we define $f^{*} \xi$ the pull back (see the diagram below).
- The Chern classes are functorial.

$$
f^{*} c(\xi)=c\left(f^{*} \xi\right) \cdot \left\lvert\, \begin{array}{ccc}
E\left(f^{*} \xi\right) & \rightarrow & E(\xi) \\
\downarrow & \text { pull } & \downarrow \xi \\
X & \rightarrow & Y
\end{array}\right.
$$

This property is indicated from the definition.

Properties (2) — Whitney Sum

- Chern class acts well for direct sum

$$
c(\xi \oplus \eta)=c(\xi) c(\eta)
$$

This follows from our computation of $e_{2 k}$.

$$
\mathbb{C} P^{\infty} \times n^{n} \times \mathbb{C} P^{\infty} \rightarrow \mathcal{G} r(n, \infty)
$$

- By factoring through $\mathcal{F} \ell(n, \infty)$ one can also show $c(\xi)=c(\eta) c(\xi / \eta)$, for any sub-vector bundle $\eta \subseteq \xi$.

Properties (3) - Special Value

- $c_{0}=1$.
- For tautological bundle τ over $\mathbb{C} P^{\infty}$,

$$
-c_{2}(\tau)=\text { the canonic generator of } H^{*}\left(\mathbb{C} P^{\infty}\right)
$$

the Poincaré dual of hyperplane class. Equivalently,

$$
c_{2}(\tau)=e(\tau)=\text { the Euler class of } \tau
$$

- We can change ∞ by each N.
- Actually, generally, the top Chern class is the Euler class in general.

Axioms of Chern classes

Theorem

The following axioms characterize the total Chern classes as the assignment $\operatorname{Vec} B \rightarrow H^{*}(B)$ for each $C W$-complex B.

- $f^{*} c(\xi)=c\left(f^{*} \xi\right)$.
- $c(\xi \oplus \eta)=c(\xi) c(\eta)$.

Functorial Property

- $c(\tau)=1+e(\tau)$.

Whitney Sum
recover Euler Class for projective space
The proof is clear.

$>$ Questions?

$\sim \S$ CC in Differential Geomtry $\S \sim$

The de Rham Cohomology

- Let us fix some (not standard) notation, denote the fibre bundle and the space of global sections of differential forms,

$$
\Lambda^{*} M, \quad \Omega^{*}(M)
$$

- Recall de Rham cohomology complex

$$
0 \rightarrow \Omega^{0}(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n}(M) \rightarrow 0 .
$$

It computes $H^{*}(M ; \mathbb{R})$.

Connections

- For a (smooth) vector bundle E over a smooth manifold M. We consider the vector bundle E but with coefficient differential forms, and its global section

$$
\Lambda^{*} M \otimes E, \quad \Omega^{*}(M ; E)
$$

- Define the connection ∇ over E to be a map

$$
\Omega^{*}(M ; E) \rightarrow \Omega^{*+1}(M ; E)
$$

such that for $\alpha \in \Omega^{*}(M)$, and $s \in \Omega^{*}(M ; E)$,

$$
\nabla(\alpha \wedge s)=d \alpha \otimes s+(-1)^{\operatorname{deg} \alpha} \alpha \wedge \nabla(s)
$$

Connections (continued)

- For any

$$
\nabla: \Omega^{0}(M ; E) \rightarrow \Omega^{1}(M ; E)
$$

satisfying

$$
\nabla(f s)=d f \otimes s+f \nabla s
$$

uniquely extends to a connection.

- Note that ∇ is generally not a tensor, that is, not an element in

$$
\Gamma\left(M ; \operatorname{Hom}\left(\wedge^{*} M \otimes E, \wedge^{*+1} M \otimes E\right)\right)
$$

Curvature Tensor

- But its square $\nabla^{2}: \Omega^{0}(M ; E) \rightarrow \Omega^{2}(M ; E)$ is, known as the curvature tensor K

$$
\Gamma\left(M ; \operatorname{Hom}\left(\Lambda^{0} M \otimes E, \Lambda^{2} M \otimes E\right)\right)=\Omega^{2}(M ; \operatorname{End}(E))
$$

- To check one thing is a tensor, it suffices to show it is linear with respect to $C^{\infty}(M)$. So

$$
\begin{aligned}
\nabla \nabla(f s) & =\nabla(d f \otimes s+f \nabla s) \\
& =d(d f) \otimes s-d f \otimes \nabla s+d f \otimes \nabla s+f \nabla \nabla s \\
& =f \nabla \nabla s
\end{aligned}
$$

Curvature Tensor

- It is useful to see how it locally looks like. Denote $\xi_{i}=\frac{\partial}{\partial x^{i}}$ the local tangent fields with respect to local coordinate $\left\{x_{i}\right\}$.

$$
\nabla \xi_{i}=\sum \theta^{i j} \xi_{j}, \quad \theta^{i j} \in \Omega^{1}(M)
$$

- Then

$$
\begin{aligned}
\nabla \nabla \xi_{i} & =\nabla\left(\sum \theta^{i j} \xi_{j}\right) \\
& =\sum d \theta^{i j} \otimes \xi_{j}-\sum \theta^{i j} \wedge \theta^{j k} \xi_{k}
\end{aligned}
$$

So $K=d \theta-\theta \wedge \theta$.

Chern Classes

- Then consider the curvature tensor K as matrix with coefficients in $\Omega^{2}(M)$. The index-wise d,

$$
\begin{aligned}
d K & =d(d \theta-\theta \wedge \theta) \\
& =-d \theta \wedge \theta+\theta \wedge d \theta \\
& =-K \wedge \theta+\theta \wedge K=[\theta, K]
\end{aligned}
$$

- An genius observation is that any symmetric polynomial in eigenvalues is closed, since the following genius observation

$$
\begin{aligned}
d \operatorname{tr} K^{k} & =\sum \operatorname{tr}[K \cdots d K \cdots K] \\
& =\sum \operatorname{tr}[K \cdots[\theta, K] \cdots K]=0
\end{aligned}
$$

Chern Classes

- We can define the Chern classes $c_{2 k}(E ; \nabla) \in H^{2}(M ; \mathbb{C})$ to be $\frac{1}{(2 \pi i)^{k}}(k$-th elementary symmetric polynomial in eigenvalues of $K)$ which appears as coefficients of characteristic polynomial.
- The Chern class is actually homotopy invariant. Consider the map "integral over $[0,1]$ "

$$
Q: \Omega^{*}(M \times[0,1]) \rightarrow \Omega^{*-1}(M)
$$

It satisfies $d Q-Q d=i_{1}^{*}-i_{0}^{*}$. Apply this formula on the curvature tensor over $M \times[0,1]$, we get the homotopy invariance.

- In particular, the class does not rely on the choice of ∇.

Chern Classes

Theorem

The Chern classes defined above is the same as we defined for topological space after complexification and tensoring over \mathbb{C} (actually over \mathbb{R}).

- To prove this, simply check the axioms.
- To make it is functoral, one can define the pull back of connection.
- By direct sum of connections, it is easy to check it has the Whitney sum property.
- To work better in the category of smooth manifold, we should consider $\mathbb{C} P^{N}$ for all N.

Riemannian Geometry

- In terms of Riemannian Geometry, and $E=T M$, we defined the Levi-Civita conenction $\nabla_{X} Y$, which turns out to be a tensor in X, so it defines a connection $\nabla: \mathfrak{X}(M)=\Omega^{0}(M ; T M) \rightarrow \Omega^{1}(M ; T M)$. Namely by

$$
\langle\nabla Y, X \otimes 1\rangle=\nabla_{X} Y
$$

- Recall the Riemannian curvature tensor

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

I claim this is exactly the tensor we just defined.

The proof

- Let us denote the pairing $\langle X \wedge Y \otimes \mathrm{id}, s\rangle=s(X, Y)$ for $s \in \Omega^{2}(M ; T M)$ for short, the similar for Ω^{1}.
- Since ∇ is torsionfree, there is a formula for $s \in \Omega^{1}(M ; T M)$,

$$
(\nabla s)(X, Y)=\nabla_{X}(s(Y))-\nabla_{Y}(s(X))-s([X, Y])
$$

Actually, this can be understood as a generalization of the formula $d \omega(X, Y)=X \omega(Y)-Y \omega(X)-\omega([X, Y])$.

- In particular, when $s=\nabla Z$, a fortiori $s(A)=\nabla_{A} Z$,

$$
\left(\nabla^{2} Z\right)(X, Y)=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z=R(X, Y) Z
$$

$>$ Questions?

\sim § CC in Algebraic Geometry § ~

Chow Groups

- We can define for a variety X over algebraic closed field \mathbb{k} a Chow group by

$$
\mathrm{Ch}^{p}(X)=\frac{\sum_{\substack{\text { subvarity } Y \\ \text { codim } Y=p}} \mathbb{Z} \cdot[Y]}{\text { Rational equivalence }} .
$$

- Two subvarieties Y_{0}, Y_{1} are said to be rational equivalent if there is an codimensional $p+1$ irreducible $Z \subseteq \mathbb{P}_{X}^{1}$ which is not "vertical" with

$$
Y_{0}=Z \cap(X \times\{0\}), \quad Y_{1}=Z \cap(X \times\{1\})
$$

Here vertical means the projection of Z to $\mathbb{P}_{\mathbb{k}}^{1}$ is not a point (say, Z not live over one point).

Chow Rings

- When X is smooth, then Chow group is equipped with a ring structure (in which case, it will be called Chow ring) with the product by "transversal intersection".
- For smooth (regular) variety $X, \mathrm{Ch}^{1}(X)$ is exactly the class group $\mathrm{Cl}(X)$. The same story appears, so we hope to define Chern class for algebraic vector bundle (locally trivial sheaf).
- Tips: there is no 2 !

Chern Classes

- The construction is due to Grothendieck.
- For a locally trivial sheaf \mathcal{E} of rank n over X, we can define the associated projective bundle $\mathbb{P}(\mathcal{E}) \rightarrow X$.
- Then $\mathcal{O}(1)$ is defined over $\mathbb{P}(\mathcal{E})$, which defines an element $\zeta \in \operatorname{Ch}^{1}(\mathbb{P}(\mathcal{E}))$. By more effort, one can show that $\operatorname{Ch}(\mathbb{P}(\mathcal{E}))$ is freely generated by $1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}$ over $\mathrm{Ch}(X)$ by excision property of Chow ring.
- As a result, there is a relation

$$
\zeta^{n}+c_{1} \zeta^{n-1}+\cdots+c_{n}=0 \in \operatorname{Ch}(\mathbb{P}(\mathcal{E})), \quad c_{k} \in \operatorname{Ch}(X)
$$

Then we simply define the Chern class $c_{k}(\mathcal{E})=c_{k}$.

The Axioms of Chern Classes

Theorem

The following axioms characterize the total Chern classes as the assignment LocTri $X \rightarrow \mathrm{Ch}(X)$ for each smooth varieties X.

- For any morphism of variety

Functorial Property

$$
f^{*} c(\mathcal{E})=c\left(f^{*} \mathcal{E}\right)
$$

- For short exact sequence $0 \rightarrow \mathcal{F} \rightarrow \mathcal{E} \rightarrow \mathcal{G} \rightarrow 0$

Whitney Sum

$$
c(\mathcal{E})=c(\mathcal{F}) c(\mathcal{G})
$$

- The first Chern class is constant $1=[X]$. The second Chern class gives the isomorphism $\mathrm{Cl}(X) \rightarrow \mathrm{Ch}^{1}(X)$ we stated before.

The proof

- The theorem should be proven simultaneously with splitting principle. But we cannot have an "algebraic" splitting, but a filtration. Say, consider $\mathcal{F} \ell(\mathcal{E}) \rightarrow X$, with the fibre of $x \in X$ to be $\mathcal{F} \ell(\mathcal{E} \otimes k(x))$.
- The the tautological flag forms a filtration of pull back of E.
- This is essentially the same to what we did last time, since $\mathcal{F} \ell(\mathcal{E})$ can be built by set-by-set projective bundles.
- Repeat what we do for projective bundles, we can conclude that $\operatorname{Ch}(X) \rightarrow \operatorname{Ch}(\mathcal{F} \ell(\mathcal{E}))$ is injective.

The proof

- Then we can assume that we have

$$
0=\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \cdots \subseteq \mathcal{F}_{n}=\mathcal{E}
$$

Denote $\mathcal{Q}_{i}=\mathcal{F}_{i} / \mathcal{F}_{i-1}$. We can also assume $\mathcal{F}_{i} / \mathcal{F}_{i-1}^{*}$ has nonzero global section from the construction.

- By picking a nonzero section over $\left(\mathcal{F}_{i} / \mathcal{F}_{i-1}\right)^{*}$, we can talk about "coordinate".
- Put $\pi: \mathbb{P}(\mathcal{E}) \rightarrow X$. Now $\mathcal{O}(-1) \cong \pi^{*} \mathcal{Q}_{i}$ over the open set of the i-th coordinate none zero.
- So $\zeta+c\left(Q_{i}\right)$ can be chosen to be combination of subvarities out of this region. But these regions intersect empty. The proves $\left(\zeta+c\left(Q_{1}\right)\right) \cdots\left(\zeta+c\left(Q_{n}\right)\right)=0$.

$>$ Questions?

\sim General Characteristic Classes §~

Stiefel-Whitney Classes

- For \mathbb{R}, as we stated, real line bundle is classifies by $H^{1}(X ; \mathbb{Z} / 2)$. So we also has a systematic class to extend this, called the Stiefel-Whitney Classes.
- We can do the same computation for real Grassmanian, say the map

$$
\mathbb{R} P^{\infty} \times \cdots \times \mathbb{R} P^{\infty} \rightarrow \mathcal{G} r(n, \infty)
$$

induces an injection in cohomology group

$$
H^{*}(\mathcal{G} r(n, \infty) ; \mathbb{Z} / 2) \rightarrow H^{*}\left(\mathbb{R} P^{\infty} \times \cdots \times \mathbb{R} P^{\infty}\right)=\mathbb{Z} / 2\left[x_{1}, \ldots, x_{n}\right]
$$

with image exactly the symmetric polynomials. So we can define Stiefel-Whitney class similar to Chern class.

Stiefel-Whitney Classes

Theorem

The following axioms characterize the total Stiefel-Whitney classes as the assignment Vec $B \rightarrow H^{*}(B ; \mathbb{Z} / 2)$ for each $C W$-complex B.

- $f^{*} c(\xi)=s\left(f^{*} \xi\right)$.
- $s(\xi \oplus \eta)=s(\xi) s(\eta)$.

Functorial Property

- $s(\tau)=1+e(\tau)$.

Whitney Sum

- $s(\tau)=1+e(\tau)$ recover Euler Class for projective space

Pontryagin Classes

- One can consider the Chern class of the complexification of real bundle. It is well-defined for any coefficient ring with $1 / 2 \in R$, and only nontrivial terms appear in $H^{4 *}$. This is (up to a subtle sign) called Pontryagin classes.
- Actually, we can compute

$$
H^{*}(\mathcal{G} r(n, \infty) ; R)=R\left[p_{4}, \ldots, p_{4 n}\right]
$$

One can show they coincide, and they also admit an axioms description.

Principal bundle

- We call a locally trivial fibre bundle $\xi=\left[\begin{array}{c}E \\ \downarrow \\ B\end{array}\right]$ a G-principal bundle if G acts on E freely, with $B=E / G$, and ξ the natural projection. Equivalently, each fibre is a copy of G, and are glued by left multiplication of G. Here is left because

Aut right $(G, G)=$ left multiplication of G.

Principal bundle

- For vector bundle ξ, we can naturally associate to a GL_{n}-principal bundle by picking invertible element in $F \otimes F^{*}$.
- Conversely, for a GL_{n}-principal bundle $\left[\begin{array}{c}E \\ \downarrow \\ B\end{array}\right]$, we can define $E \times{ }_{G} \mathbb{F}^{n}$ a vector bundle over B.
- So there is a natural equivalence

$$
\operatorname{Vect}^{n} B \stackrel{1: 1}{\longleftrightarrow} \mathrm{GL}_{n}-\operatorname{Prin} B
$$

- This allows us to generalize the classifying theorem.

Milnor construction

Theorem (Milnor)

For any topological group G of CW-type then there is a principal bundle $\left[\begin{array}{c}E_{G} \\ \downarrow \\ B_{G}\end{array}\right]$, such that for any $C W$-complex B

$$
G-\operatorname{Prin} B \stackrel{1: 1}{\longleftrightarrow} \pi\left(B, B_{0}\right) .
$$

Besides, this E_{G} is contractible, and any principal bundle $\left[\begin{array}{c}E \\ \downarrow \\ B\end{array}\right]$ satisfies this property if and only if E is contractible.

In some way, to find out a classfying space is simply to find a big enough space such that G acts freely and contractible.

Examples

- For discrete group $G, B_{G}=K(G, 1)$ the Eilenberg-MacLane space, E_{G} its universal covering.
- For $G=\mathrm{GL}_{n}$, then $B_{G}=\mathcal{G} r(n, \infty)$, by the equivalence what we stated, and E_{G} corresponding to the tautological bundle.
- For $G=\mathrm{O}_{n}$, then B_{G} is exactly real Grassmannian, by picking Riemannian metric, E_{G} the Stiefel variety (say, the fibre at L is the set of choice of orthogonal basis L).
- For $G=U_{n}$, then B_{G} is exactly complex Grassmannian, by picking unitary metric.
- For $G=\operatorname{Sp}_{2 n}$, then B_{G} is the exactly Quaternionic Grassmannians.

General Characteristic Classes

- Actually,

Any computation of $H^{*}\left(B_{G}\right)$ gives a theory of characteristic classes
As we did for vector bundle.

- For example Euler class appear in the

$$
H^{*}\left(B S L_{n}(\mathbb{R}) ; R\right)=H^{*}\left(B S O_{n}(\mathbb{R}) ; R\right)
$$

for $1 / 2 \in R$. Note that $B S O_{n}$ is a two fold covering of $B O_{n}$.

General Characteristic Classes

- The same story holds for manifold - characteristic classes can be computed by connection and curvature. But in this case curvature should be Lie-algebra-valued.
- Actually, for a compact Lie group or a reductive group, G, we know

$$
\mathbb{C}[\mathfrak{g}]^{G} \cong \mathbb{C}[\mathfrak{h}]^{W}
$$

where G acts on the polynomial over its Lie algebra \mathfrak{g} by adjoint action, \mathfrak{h} the Cartan subalgebra, Lie algebra of torus, and W the Weyl group.

- In the case of $G=G L_{n}(\mathbb{C})$, the left hand side is the symmetric polynomials in eigenvalues.

General Characteristic Classes

- Generally, the right hand side $\mathbb{C}[\mathfrak{h}]^{W}$ can be shown to be $H^{*}(B G ; \mathbb{C})$ (lectures later).
- The Chern-Weil theory set up the exact relations. The most famous result is the Chern-Gauss-Bonnet theorem

$$
\left(\frac{-1}{2 \pi}\right)^{k} \int_{M} \operatorname{Pf} K=\chi(M)
$$

where M is a $2 k$-dimensional compact Riemannian manifold, Pf the Pfaffian and $\chi(M)$ the Euler characteristic.

- More precisely, $\operatorname{Pf} \in \mathbb{C}\left[\mathfrak{s o}_{2 k}\right]^{\mathrm{SO}_{2 k}}$ corresponds to the Euler class $e \in H^{k}\left(B S O_{2 k} ; \mathbb{C}\right)=\mathbb{C}\left[x_{1}, \ldots, x_{k}\right]^{D_{n}}$.

$>$ Questions?

$\sim \oint$ Vector Bundles over Spheres $\oint \sim$

Vector bundles over spheres

- For $B=S^{n}$, and $\mathbb{F}=\mathbb{R}$,

$$
\begin{aligned}
\operatorname{Vec}^{k} S^{n} & =\pi\left(S^{n}, B G L\right) \\
& =\pi_{n}\left(B G L_{k}\right) \quad \because G L \text { is connected } \\
& =\pi_{n-1}\left(\mathrm{GL}_{k}\right) \quad \because \text { long exact sequence } \\
& =\pi_{n-1}\left(\mathrm{O}_{k}\right)
\end{aligned}
$$

This is classically proven by the contractibility of the Stiefel varieties.

- So we have the following table

\mathbb{R}	Vec^{1}	Vec^{2}	Vec^{3}	Vec^{4}	Vec^{5}	\cdots
S^{1}	$\mathbb{Z} / 2$	\cdots				
S^{2}	1	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	\cdots
S^{3}	1	1	1	1	1	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Vector bundles over spheres

- For $B=S^{n}$, and $\mathbb{F}=\mathbb{C}$,

$$
\operatorname{Vec}^{k} S^{n}=\pi_{n-1}\left(\mathrm{U}_{k}\right)
$$

- So we have the following table

\mathbb{C}	Vec 1	Vec 2	Vec^{3}	Vec^{4}	Vec^{5}	\cdots
S^{1}	1	1	1	1	1	\cdots
S^{2}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\cdots
S^{3}	1	1	1	1	1	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

The Hopf vector bundle (tautological bundle of $S^{2}=\mathbb{C} P^{1}$) is the generator. The unit circle form $\left[\begin{array}{c}S^{3} \\ \downarrow \\ S^{2}\end{array}\right]$ with fibre S^{1}, the famous Hopf fibration.

The second homotopy groups of Lie groups vanish

- Note that the flag manifold G / T is simply connected, and $H^{*}(G / T)$ is free abelian. In particular, by Hurewicz theorem, $\pi_{2}(G / T)$ is free abelian.
- Then consider the long exact sequence

$$
\underbrace{\pi_{2}(T)}_{=0} \rightarrow \pi_{2}(G) \rightarrow \pi_{2}(G / T) \rightarrow \pi_{1}(T) \rightarrow \pi_{1}(G) \rightarrow \underbrace{\pi_{1}(G / T)}_{=0}
$$

- The connection map can be computed by the standard trick using SU_{2} map. This computes

$$
\pi_{1}(G)=\text { ker } \exp /\left\langle h_{\alpha} \in \mathfrak{h}: \alpha \in \operatorname{root}\right\rangle, \quad \pi_{2}(G)=0
$$

References

- Benson. Cohomology and representation volume II.
- Morita. Geometry of differential forms.
- Husemoller. Fibre Bundles. GTM20.
- Fulton. Young Tableaux with applications in algebra and geometry.
- Fulton. Intersection theory.
- Werner Greub, Stephen Halperin, Ray Vanstone, Connections, Curvature, and Cohomology
- May. A concise introduction to Algebraic Topology.

$>$ Questions?

\ll

$\sim \oint \underline{\text { THANKS }} \oint \sim$

