Vector Bundles

Classifying Vector Bundles

Chern Classes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Thanks 0

Topology and Geometry Seminar

Characteristic Classes (I)

Xiong Rui

October 2, 2020

2 Classifying Vector Bundles

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

\sim § <u>Vector Bundles</u> § \sim

Vector Bundles o●ooooooo	Classifying Vector Bundles	Chern Classes	Thanks 0
Locally Trivial	Fibre Bundles		

hood U, such that $\begin{bmatrix} E | U \\ \downarrow \\ U \end{bmatrix} = \begin{bmatrix} F \times U \\ \downarrow \\ U \end{bmatrix} = \begin{bmatrix} V \\ \downarrow \\ U \end{bmatrix} = \begin{bmatrix} V \\ \downarrow \\ U \end{bmatrix}$

The isomorphism $\varphi : E|_U \to F \times U$ is called a **trivialization** or **local coordinate** of U.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Vector Bundles

Classifying Vector Bundles

Chern Classes

Structure Group

• For a locally trivial fibre bundle $\begin{bmatrix} E \\ \downarrow \\ B \end{bmatrix}$, two localizations define a automorphism over intersection. Namely, if φ and ψ are the localization of U and V respectively, then there is a map $U \cap V \rightarrow \operatorname{Aut}(F, F)$, such that

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Vector Bundles

- Denote $G = \operatorname{GL}_n(\mathbb{F})$, and $F = \mathbb{F}^n$, with $\mathbb{F} = \mathbb{R}, \mathbb{C}$.
- A rank *n* vector bundle is a local trivial fibre bundle $\xi = \begin{bmatrix} E \\ \downarrow \\ B \end{bmatrix}$, with giving local coordinates of an open covering of *B*, say, $\{(U_i, \varphi_i) : i \in I\}$ with the map $\varphi_{ji} : U_i \cap U_j \rightarrow \operatorname{Aut}(F, F)$ continuous and taking value in *G* continuously.
- Formally, we need to assume $\varphi_{kj}\varphi_{ji} = \varphi_{ki}$ whenever defined.

- Philosophically, vector bundle is a local trivial fibre bundle of fibre a vector space, but we can distinguish stuff in the vector space what GL can distinguish (see below).
- A (global) section of a fibre $\xi = \begin{bmatrix} E \\ \downarrow \\ B \end{bmatrix}$ is a map $\sigma : B \to E$ with value of $x \in B$ taking value in its fibre, say $\xi \circ \sigma = id_B$.
- There exists a section for a vector bundle $\begin{bmatrix} E \\ \downarrow \\ B \end{bmatrix}$, just assign **the** 0 in each fibre at for each $x \in B$, (but generally not for fibre bundles of fibre vector space).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Vector Bundles 000000000	Classifying Vector Bundles	Chern Classes	Thanks O
Operators			

• The bundle
$$1 = \begin{bmatrix} F \times B \\ \downarrow \\ B \end{bmatrix}$$
 is called the **trivial bundle**.

• We take what we can do for vector bundle, say, dual space, tensor product, Hom, symmetric product, exterior product, direct sum. It has all the **natural** isomorphisms like

 $\operatorname{Hom}(\xi, \mathbb{1}) = \xi^*, \quad \operatorname{Hom}(\xi \otimes \eta, \zeta) = \operatorname{Hom}(\xi, \operatorname{Hom}(\eta, \zeta)), \quad \dots$

- For example, direct sum (historically called the **Whitney sum**). We firstly take local coordinate, then do direct sum locally, and finally glue them up.
- Generally, kernel, image, cokernel may not be vector bundle except the map is of local constant rank.

Vector Bundles 0000000000	Classifying Vector Bundles	Chern Classes	Thanks O
Reduce to (Compact Group		

- In particular, it is harmless to change $G = O_n$.
- As a result, $\xi \cong \xi^*$ for real vector bundle.
- For a CW-complex *B*, we can find a unitary metric over any complex vector bundle $\xi = \begin{bmatrix} E \\ \downarrow \\ R \end{bmatrix}$.
- In particular, it is harmless to change $G = U_n$.
- Note, there is no natural isomorphism $\xi \cong \xi^*$ for unitary space.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Chern Classes

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Vector Bundles

Classifying Vector Bundles

Chern Classes

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

\sim § <u>Classifying Vector Bundles</u> § \sim

Vector Bundles

Classifying Vector Bundles

Chern Classes

Homotopy-invariance

Theorem

For a CW-complex X, for any vector bundle ξ over X \times I, then

 $\xi|_{X\times 0}\cong \xi|_{X\times 1}.$

・ロト・日本・日本・日本・日本・日本

Vector	Bundles

Classifying Vector Bundles

Chern Classes

Proof

- We can cover B × I by countable open sets of the form U × (a, b) such that ξ is trivial over any of them.
- Since along I, we can easily glue the trivialization by "direction" $0 \rightarrow 1$, refining U if necessary, we can actually assume them to be $U \times I$.
- Denote ξ₁ = ξ|_{X×1} and ξ₀ = ξ|_{X×0}. We can exchange ξ₁ to ξ₀ over U_i one by one, by restriction on the graph of partial sum of partition of unity.

Vector Bundles 000000000	Classifying Vector Bundles	Chern Classes	Thanks O
Classifying	map		
• Deno	te the Grassmannian man	ifold	

 $\mathcal{G}r(k,n) = \{$ k-dimensional subspace $V \subseteq \mathbb{F}^n \}.$

By $\mathbb{F}^n \hookrightarrow \mathbb{F}^{n+1}$, it defines

$$\mathcal{G}r(k,\infty) = \varinjlim_{n\to\infty} \mathcal{G}r(k,n) = \bigcup_{n\geq 0} \mathcal{G}r(k,n).$$

Theorem

Let B be a CW-complex (still, or general paracompact space). There is a natural bijection between

$$\mathsf{Vect}^k_{\mathbb{F}}B \leftrightarrow \pi(B,\mathcal{Gr}(k,\infty)),$$

where the left side is the set of equivalent classes of rank k vector bundles and the right hand side stands for the homotopic class of map $B \rightarrow Gr(k, \infty)$. Vector Bundles

Classifying Vector Bundles

Chern Classes

Tautological Bundle

• Consider the tautological bundle

$$\tau = \begin{bmatrix} \{(V, x) \in \mathcal{G}r(k, \infty) \times \mathbb{F}^{\infty} : x \in V\} \\ \downarrow \\ \mathcal{G}r(k, \infty) \end{bmatrix}$$

That is, the fibre at V is $V \subseteq \mathbb{C}^{\infty}$ itself.

Note that

$$\tau \subseteq \begin{bmatrix} \mathcal{G}r(k,\infty) \times \mathbb{F}^{\infty} \\ \downarrow \\ \mathcal{G}r(k,\infty) \end{bmatrix}$$

the trivial "infinite vector bundle". The coordinate map $x_i : \mathcal{G}r \times \mathbb{C}^{\infty} \to \mathbb{C}^{\infty} \to \mathbb{C}$ restricts to τ , which defines a set of global sections $\{x_i\}$ of τ^* .

First proof

- Let $\xi : \begin{bmatrix} E \\ \downarrow \\ B \end{bmatrix}$ be a vector bundle, we can find a set of global sections $\{s_i\}$ such that at each point s_i spans the fibre (by partition of unity), then
 - we hope to define the map $\phi \mid E \xrightarrow{\Phi} E(\tau^*)$ and Φ of fibre bundles (see $\downarrow \qquad \downarrow$ right) such that $x_i \circ \varphi = \Phi \circ s_i$. $B \xrightarrow{\phi} \mathcal{G}r$

• If so, then this is a pull back map, thus E is determined by ϕ .

First proof (continued)		
Vector Bundles Classifying Vector Bundles	Chern Classes 000000000000000	Thanks 0

• For $b \in B$, and $v \in E_b$, assume v is write as $\sum c_i s_i(b)$. We can define

$$\Phi(v) = \sum c_i x_i = \sum c_i x_i(\varphi(b))$$

and

$$\phi(b) = \{(x_1,\ldots) \in \mathbb{C}^{\infty} : \underset{\Rightarrow a_1 \times 1 + \cdots = 0}{\overset{a_1 \times 1}{\Rightarrow} a_1 \times 1 + \cdots = 0}\} \in \mathcal{G}r(k,\infty).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• This is well-defined, and proves our first claim.

First proof (continued)

- Actually, conversely, any pull back τ^* has such global sections.
- So for one fixed vector space, different choice of map B→Gr(k,∞) corresponds to the different choice of {s_i}. Then the homotopy of global sections {(1 - t)s_i} ∪ {ts'_i} (still countable), gives rise a homotopy of B→Gr(k,∞).
- There are two gaps, we should show changing order of $\{s_i\}$ and removing zeros in $\{s_i\}$ are harmless. But this is easy to check.

Vector Bundles 000000000	Classifying Vector Bundles	Chern Classes	Thanks 0
Second proof			

• Let $\xi : \begin{bmatrix} E \\ \downarrow \\ B \end{bmatrix}$ be a vector bundle, we hope to include ξ in some trivial bundle (maybe infinite),

$$\mathbb{F}^{\infty} \times B \supseteq E \xrightarrow{\Psi} E(\tau) \searrow \downarrow \qquad \downarrow B \xrightarrow{}_{\psi} \mathcal{G}r$$

Then we simply map $b \in B$ to its fibre $E_b \subseteq \mathbb{F}^{\infty}$.

• If so, then this is a pull back map, thus E is determined by ψ .

Second proof ((continued)		
Vector Bundles	Classifying Vector Bundles	Chern Classes	Thanks
00000000		000000000000000	O

- We can find a countable open covering $\mathcal{U} = \{U_i\}$ with partition of unity $\{\iota_i\}$, and $E|_{U_i}$ is trivial for all U_i , say by the trivialization by $\varphi_i : E|_{U_i} \to \mathbb{F}^n \times B$ for each *i*.
- Since $(\mathbb{F}^n)^\infty = \mathbb{F}^\infty$, we can define $E \to \mathbb{F}^\infty imes B$ by

$$(\underbrace{\iota_1\varphi_1}, \underbrace{\iota_2\varphi_2}, \ldots) \in \mathbb{F}^{\infty}$$

n-tuple *n*-tuple

As we desired.

Second pro	of (continued)		
Vector Bundles	Classifying Vector Bundles	Chern Classes 000000000000000	Thanks 0

- Still, any pull back of τ gives an inclusion $E \subseteq \mathbb{F}^{\infty} \times B$.
- So for one fixed vector space, different choice of map $B \rightarrow \mathcal{G}r(k, \infty)$ corresponds to the different embedding $\mathbb{F}^{\infty} \times B$.
- By $\mathbb{F}^{2\infty}\oplus\mathbb{F}^{2\infty+1}=\mathbb{F}^\infty$, the obvious homotopy

preserves the property of being k-dimension of E. As a result, it induces a homotopy of $B \rightarrow \mathcal{G}r(k, \infty)$.

Remark

- It is equivalent to say $Vect^k B$ is representable.
- Two proofs use different bundles τ* and τ. The first proof maybe of more algebraic geometry, the latter is more topological geometry.
- There is also an analogue in algebraic geometry where there are two defects. Firstly, there is not Gr(k,∞) but only Gr(k, n); secondly, we may not have enough global sections. Adding more restriction, we can get a so-called "universal property of Grassmannian".

Chern Classes

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Vector Bundles

Classifying Vector Bundles

Chern Classes

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 \sim § <u>Chern Classes</u> § \sim

Vector Bundles	Classifying Vector Bundles	Chern Classes	Thanks
000000000		00000000000000	O
Line bundles			

 Just a notation, line bundle is defined to rank 1 vector bundle, and the set of equivalent classes is denoted by Cl(X) = Vec¹(X) called the class group.

• For
$$k=1,$$
 $\mathcal{G}r(1,\infty)=\mathbb{P}(\mathbb{F}^\infty)$, the projective space. We know

$$\mathbb{R}P^{\infty} = K(\mathbb{Z}/2, 1), \qquad \mathbb{C}P^{\infty} = K(\mathbb{Z}, 2),$$

the Eilenberg-MacLane space. As a result,

$$\begin{array}{l} \mathsf{Cl}_{\mathbb{R}}^{1}B = \pi(B,\mathbb{R}P^{\infty}) = H^{1}(X,\mathbb{Z}/2), \\ \mathsf{Cl}_{\mathbb{C}}^{1}B = \pi(B,\mathbb{C}P^{\infty}) = H^{2}(X,\mathbb{Z}). \end{array}$$

Euler class again

- Assume B is a compact oriented smooth manifold. Assume we work in C.
- Let ξ be a vector bundle over B, then it is classified by $\varphi: B \to \mathbb{C}P^n$ for n big (since B is compact).
- By definition, the cohomology class in H²(X, Z) is given by φ^{*}(h) where h is chosen to be the Poincaré duality of homotopy class of any hyperplane H ⊆ CPⁿ.
- We can change φ by a smooth map transverse to this hyperplane H. Then φ^{*}(h) is the Poincaré duality of homologic class of φ⁻¹(H) ⊆ B.

Vector Bundles	Classifying Vector Bundles	Chern Classes	Thanks
00000000		00000000000000	O
Euler class agai	n (continued)		

• Let us fix the bundle over $\mathbb{C}P^n$ to be $\tau^*,$ that is, we have the following pull back

$$\begin{array}{ccc} \mathsf{E} & \to & \mathsf{E}(\tau^*) \\ \downarrow & & \downarrow \\ \mathsf{B} & \xrightarrow{\varphi} & \mathbb{C}\mathsf{P}^n. \end{array}$$

Note that *H* is the zero locus of a linear map (say, x_1), that is, a section of τ^* . So, $\varphi^*(h)$ is exactly the zero locus of a general section of ξ .

- This is exactly the Euler class of E!
- Remark: If the geometric meaning is correct, then it can be proven by identities of dual/cup/cap product.

• For general rank *n* vector bundle ξ , it locally looks like $\mathbb{C}^n \times B \to B$, so a section can be viewed as *n* functions. The **Chern classes** is roughly defined in analogy to the Euler class by

 c_{2k} = Poincaré dual to {k of the functions vanish} $\in H^{2k}(B)$.

• If ξ is a direct sum of *n* line bundles, say $\xi_1 \oplus \cdots \oplus \xi_n$, then the Chern class should be defined to be

$$1 + c_2(\xi) + \cdots = (1 + e(\xi_1)) \cdots (1 + e(\xi_n))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

where $e = c_2$ the Euler class.

Construction

Consider

$$\mathbb{C}P^{\infty}\times \cdot \stackrel{n}{\cdots}\times \mathbb{C}P^{\infty}\to \mathcal{G}r(n,\infty)$$

induced by some choice of $\mathbb{C}^{\infty} \times \stackrel{n}{\cdots} \times \mathbb{C}^{\infty} = \mathbb{C}^{\infty}$. It is clear, pull back of tautological bundle is still tautological.

 To see this induced an injection in cohomology, we need the intermediary of flag manifold. Consider the Flag manifold *Fℓ(n,∞)* the set of flags of length *n* in C[∞].

Construction

• Then we have the following

$$\mathbb{C}P^{\infty} \times \stackrel{n}{\cdots} \times \mathbb{C}P^{\infty} \to \mathcal{F}\ell(n,\infty) \to \mathcal{G}r(n,\infty)$$

- By the Serre-Leray spectral sequence or the Leray-Hirsch theorem, the cohomology map induced by the first map is isomorphic, say H*(Fℓ(n,∞)) = Z[x₁,...,x_n]; the cohomology map induced by Fℓ(n,∞) → Gr(n,∞) is injective, and the image is the symmetric polynomials.
- So we simply define c_{2k} to be the *k*-th elementary polynomial in x_i .

Chern Classes

 So we can define the Chern class for a rank n vector bundle ξ over a CW complex X to be

$$c(\xi) = 1 + c_2(\xi) + \cdots + c_n(\xi), \qquad c_{2k} = \varphi^*(c_{2k}),$$

with $\varphi : X \to \mathcal{G}r(n, \infty)$ the classifying map i.e. the pull back of τ^* is ξ . Call c_{2k} the *k*-th Chern class.

Vector Bundles

Classifying Vector Bundles

Chern Classes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Properties of Chern Classes

• From definition, we can see the Whitney property

$$c(\xi \oplus \eta) = c(\xi)c(\eta),$$

since

$$\begin{array}{rcl} (\mathbb{C}P^{\infty})^{n} \times (\mathbb{C}P^{\infty})^{m} &= & (\mathbb{C}P^{\infty})^{m+n} \\ \downarrow & & \downarrow \\ \mathcal{G}r(m+n,\infty) &\leftarrow & \mathcal{G}r(m,\infty) \times \mathcal{G}r(n,\infty) \end{array}$$

Vector Bundles

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Splitting principle

Theorem

For any vector bundle ξ over some CW complex X, there always exists $Y \xrightarrow{f} X$ such that $f^* : H^*(X) \to H^*(Y)$ is injective, and the pull back of ξ splits into line bundles.

Proof

- We consider the associated projective bundle $\mathbb{P}(\xi)$ of ξ , namely, the fibre of $x \in X$ is the projective space of the fibre of x.
- By a Mayer-Vietoris argument, $H^*(\mathbb{P}(\xi))$ is free over $H^*(X)$.
- Now the pull back of ξ has a sub-line-bundle, say the dual of tautological bundle τ (the fibre at the line in fibre at x is the line itself).
- By picking a unitary product, the pull back splits into small dimension. The general facts follows from induction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Remark

• There is a cellular structure over $Gr(n, \infty)$, say Schubert cells, for a length *n* partition $\lambda_1 \geq \cdots \geq \lambda_n$,

$$\Sigma_{\lambda}(F) = \{ V \in \mathcal{G}r(n,\infty) : \stackrel{\forall i=1,\dots,n,}{\dim(V \cap V_{\lambda_i+i}) \ge i} \},\$$

where V_k is the first k-coordinate. Actually, $\Sigma_{\lambda} \cong \mathbb{C}^{|\lambda|}$.

• Then the cohomology class of the cell $\sum_{1 \geq \cdots \geq 1 \geq 0}^{k}$ is exactly c_{2k} .

Classifying Vector Bundles

Chern Classes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

References

- Husemo. Fibre Bundles. GTM20.
- Eisenbud, Harris, 3264 and all that. For the so-called "universal property of Grassmannian".
- Broden. Topology and Geometry. GTM129. P337 Theorem 11.16.
- Hatcher. Algebraic Topology. P433.
- Fulton. Young tableau with applications in algebra and geometry.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Next Time

- Axioms of Chern classes.
- Gallery of characteristic classes.
 - General Classifying bundles
 - Stiefel-Whitney Classes
 - Pontryagin Classes
 - Euler Class
 - Characteristic classes in differential geometry.
 - Characteristic classes in algebraic geometry.

Chern Classes

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 \sim § <u>Thanks</u> § \sim

