
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sheaf Theory (II)

Topology and Geometry Seminar

Sheaf Theory (II)

Xiong Rui

December 4, 2020

https://www.cnblogs.com/XiongRuiMath/p/13679974.html


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sheaf Theory (II)

1 Homological Algebra (I)

2 Realization of Topology (I)

3 Homological Algebra (II)

4 Realization of Topology (II)

5 Thanks



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sheaf Theory (II)

Homological Algebra (I)

§ Homological Algebra (I) §



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sheaf Theory (II)

Homological Algebra (I)

Homological Algebra (I)

AssumeM is an abelain category with enough injective
objects, and F :M→N an additive functor to another
abelian category which is left exact. We can define R iF as the
following.

For any object M ∈M, and fix an injective resolution
M→ I •M , define

R iF (M) = H i (F (I •M)) = i-th cohomology of F (I •M)

For any morphism φ : M→N inM, any choice of lifting
φ̂ : I •M→ I •N , it induces a unique map R iF (M)→R iF (N).

In particular, R0F = F , and for injective object I ,
R≥iF (I ) = 0 for any such F .
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Homological Algebra (I)

The case of Sheaves

Theorem

In our case, the category of sheaves over X has enough injective
objects.

For any sheaf F , define the Godment injective sheaf for F

IF :=

[
U 7−→

∏
p∈U
Fp

]
.

Formally, denote for each point p ∈ X , the inclusion
ip : {p}→X , then

IF =
∏
p∈X

(ip)∗(ip)
∗F .
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Sheaf Theory (II)

Homological Algebra (I)

The case of Sheaves

Note that

HomX (G, IF ) =
∏

p∈X HomX (G, (ip)∗(ip)∗F)
=

∏
p∈X Homp((ip)

∗G, (ip)∗F)
=

∏
p∈X Homp(Gp,Fp).

So HomX (−, IF ) is exact, so IF is an injective object.

The natural map F → IF is definitely injective morphism by
checking at each stalk.

Note that it is the set-theoretic section of F =
⊔
Fx→X .

The similar case for coherent case. See Hartshorn III. 2.2.
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Homological Algebra (I)

The case of Sheaves

Remind for a continuous map f : X →Y , the functor f∗ and f!
is left exact, so it defines Rf i∗ and Rf i! from X - Sh to Y - Sh.

In particular, taking global section Γ or Γc from X - Sh to
pt - Sh define R iΓ and R iΓc , which will be denoted by

H i (X ;F) := R iΓ(X ;F), H i
c(X ;F) := R iΓc(X ;F).

Actually,

R i f∗F = [U 7→ H i (f −1(U);F|f −1(U))]
†.

R i f!Fy = H i
c(f

−1(y);F|f −1(y)).

By 5-lemma after constructing a morphism.
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Homological Algebra (II)

For a left exact functor F :M→N . Assume M→ I • with all
R≥1F (I ) = 0, then the cohomology group of F (I •) coincides
with R iF (M).

Actually, this follows from spectral sequence of double
complex. We can resolve I • by a double complex J.

Jpq
next page
−−−−−→ δq=0I

p
next page
−−−−−→ δ(p,q)=(0,0)M

converges to
=====⇒ δn=0M

So Hn(Tot J) = δn=0M, Tot J is a resolution of M. Then

F (Jpq)
next page
−−−−−→ RqF (I p)

= δq=0F (I
p)

converges to
=====⇒ Hn(F (I •))

As a result Hn(F (I •)) = Hn(TotF (J)) = Hn(F (Tot J)).
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Sheaf Theory (II)

Homological Algebra (I)

Soft Sheaves

We call a sheave F is flappy if any open subset U,
F(X )→F(U) is surjective.

We call a sheave F is soft if any closed subset K ,
F(X )→F(K ) is surjective.

We call a sheave F is fine if there exists a partition of unity
over F .
Clearly,

flappy ⇒ soft ⇐ fine .

Theorem

For soft sheaves F over paracompact spaces, if X is locally
compact H≥0(X ,F) = 0. So the soft sheaves are enough to
compute Γ.
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Homological Algebra (I)

Soft Sheaves

It suffices to show that when F is soft the global section Γ is
exact at the following short exact sequence

0→F→G φ→H→ 0.

For any s ∈ Γ(H), we can use Zorn Lemma to pick a maximal
open subset U and ŝ ∈ G(U) with the property φ(ŝ) = s|U .
Then for any point x outside of U, we can lift some ŝ ′ in a
neighborhood V of x . Then t = ŝ|U∩V − ŝ ′|U∩V ∈ F(U ∩ V ).
Then think t in F(K \ U) where K ⊆ V is some closed
neighborhood of x . By assumption it can be lift to t̂ ∈ F(X ),
then t = t̂ in a neighborhood of K \ U, replace this
neighborhood by V . We can exchange ŝ ′ by ŝ ′ + t, then ŝ ′

and s can be successfully glued.

Here we use the assumption of paracompact to ensure that
F(K ) = lim−→W⊇K

F(W ).
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Homological Algebra (III)

Assume we have bifunctor B(−,−) which is left exact
indices-wise. Then

H i (B(I •M ,N)) = H i (B(M, I •N)) = H i (TotB(I •M , I
•
N)).

This follows easily from spectral sequences.

Actually,

B(I pM , I
q
N)

next page
−−−−−→ δq=0B(I

p
M ,N)

converges to
=====⇒ H i (B(I •M ,N))

B(I pM , I
q
N)

next page
−−−−−→ δp=0B(M, I pN)

converges to
=====⇒ H i (B(M, I •N))
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Homological Algebra (I)

Tor Functor

In the category of coherent sheaves, there is no enough
projective objects in general. But it has enough flat objects.

For coherent sheaf F , any open subset U and section
s ∈ F(U), denote jU the inclusion U ⊆ X . Then
OU→(jU) ∗ F with 1 7→ s defines (jU)!OU→F .
The map is definitely a surjection⊕

s∈F(U)

(jU)!OU −→ F .

And (jU)!OU is flat follows from local criteria.

See stack project 05NI.

https://stacks.math.columbia.edu/tag/05NI
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Homological Algebra (I)

Tor Functor

So let us fix a choice of flat resolution PF
• for each coherent

sheaf F .
For two coherent sheaves F and G, we can define

TorXi (F ,G) = Hi (P
F
• ⊗OG) = Hi (F⊗OP

G
• ) = Hi (TotP

F
• ⊗OP

G
• ).

It is a fortune that localization is exact, and commutes with
tensor product, so to make it a functor, we can simply glue
the unique induced map locally.

It is the universal derived functor.
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Ext Functor

To define Ext over coherent sheaves, we define

ExtiOX
(F ,G) = R i

[
HomOX

(F ,−)
]
(G).

ExtiOX
(F ,G) = R i

[
HomOX

(F ,−)
]
(G).

But for i ≥ 1 it is not generally true that

ExtiOX
(F ,G) = [U 7−→ ExtiOU

(F|U ,G|U)],

but
ExtiOX

(F ,G)|U = ExtiOU
(F|U ,G|U).
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Ext Functor

The main defect is due to the non-exactness of Γ(X ,−).

OX - Sh
Hom(F ,−)
−−−−−−−→ Abel

Hom(F ,−)↘ ↗ Γ(X ,−)

OX - Sh

Then it satisfies the condition of Grothendieck spectral
sequences.
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≫ Questions? ≪
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Singular Cohomology

Theorem

The cohomology group

H i (X ;Z) = R iΓ(X ;Z)

with Z the constant sheaf coincides with singular cohomology X
when X is locally contractible.

Let Sn(U) be the n-dimensional singular cochain inside open
set U. Then it is clear that [U 7→ S(U)] is a presheaf.

Unfortunately, it is not a sheaf, so we consider the associated
sheaf to Sn, and show that

H i (S•(X )) = H i ((S•)†(X )).
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Singular Cohomology

Note that

F†(U0) = lim−→
U cover U0

ker
[ ∏
U∈U
F(U)→

∏
U,V∈U

F(U ∩ V )
]
.

Algebraic topology tells us

ker
[ ∏
U∈U
S•(U)→

∏
U,V∈U

S•(U ∩ V )
]
= Hom

( ∑
U∈U
S•(U),Z

)
computes the same cohomology with S•(U0).

The injective limit commutes with taking cohomology since it
is filtered.
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Singular Cohomology

Now, (Sn)† is clearly flappy.

When X is locally contractible, (S•)† is a resolution of
constant sheaf Z. So by the discussion above,

H i (X ;Z) = RΓ(X ;Z) = H i ((S•)†(X )) = H i (S•(X )) = H i
singular(X ;Z).

The same method, we can show that

H i
c(X ;Z) = RΓc(X ;Z) = H i

c(X ).
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De Rham Theorem

Another example of resolution is de Rham complex. By the
Poincaré lemma, it is a resolution of the constant sheaf R. So

H i (X ;R) = RΓ(X ;R) = H i (Ω•(X )) = H i
de Rham(X ).

In particular, H i
de Rham(X ) = H i

singular(X ;R).
The same method, we can show that

H i
c(X ;R) = H i

compact supp de Rham(X ).
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Cup Product

The cup product is induced by Z⊗Z Z→Z. More generally, if
we have a map F ⊗Z G→H, it induces

I •F ⊗Z I •G
∗−→ I •H.

We can pick Z-flat resolution, so left hand side is a resolution
of F ⊗Z G.

=⇒ Γ(I •F )⊗ Γ(I •G)−→ Γ(I •F ⊗Z I •G)−→ Γ(I •H).

=⇒ H iΓ(I •F )⊗H jΓ(I •G)−→H i+j(Γ(I •F )⊗Γ(I •G))−→H i (Γ(I •H)).

Why cup product of Hsingular and Hde Rham coincides? It is
merely because that ∗ is a morphism of complex (we only
need this!).
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Realization of Topology (I)

Singular Homology

Now turn to homology.

Denote CBM• (U) the set of sum of simplex which is locally
finite. We view the simplex the same to its subdivision. Then
we can well-define the restriction

CBM• (U)→CBM• (V )

by ∆ 7→ ∆ ∩ V , where ∆ ∩ V is a locally sum over V .

For paracompact space, it is a sheaf. We define the homology
of CBM• (X ) to be the Borel–Moore homology HBM

∗ (X ).
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Realization of Topology (I)

Singular Homology

Theorem

For compact space X , HBM
∗ (X ) = H∗(X ).

The first assertion is trivial, since locally finite is just finite.
Then CBM• (X ) = lim−→subdivision

Cordinary• of course computes the
same cohomology group.
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Realization of Topology (I)

Singular Homology

Theorem

For an open subset U ⊆ X, we have long exact sequence

· · · −→HBM
∗ (X \ U)−→HBM

∗ (X )−→HBM
∗ (U)−→· · ·

(Note that this is not true for ordinary homology which cannot
realize as a sheaf)

We have C•(X )→C•(U), which is of course surjective. By
definition, the kernel is just the local finite sum of simplex
over X \ U.
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Singular Homology

Theorem

For a locally compact X , HBM
∗ (X ) = Hordinary

∗ (X∪∞,∞).

Theorem

The Borel–Moore “cohomology”, cohomology group of
Hom(CBM• (X ),Q) coincides with H∗

c (X ;Q) cohomology of
compact support for locally compact X .

Since H∗
c (X ;Q) = H∗(X∪∞,∞) dual to

H∗(X∪∞,∞) = CBM• (X ) over Q.
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Realization of Topology (I)

PoincarD́uality

Theorem (Poincaré duality)

Assume X is locally compact, and embedded in some oriented
m-dimensional manifold M, we have HBM

∗ (X ) = Hm−∗(M,M \ X ).

Actually, this theorem is a version of Poincaré duality itself.
We can find [M] ∈ HBM

m (M) by orientation, and define cap
product

Hm−∗(M,M \ X )→HBM
∗ (M).

The main techinque is the Bootstrap Lemma (see Broden)
that any closed set in Euclidean space is intersection of finite
union of convex closed sets.

The main step is CBM∗
(∩

Xi

)
= lim←−C

BM
∗ (Xi ), since any

element from the right hand side restricted to be 0 over the
complement of

∩
Xi .
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≫ Questions? ≪
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Homological Algebra (II)

Motivation

Derived category we will define is an analogy to the category
of CW-complexes

CW-complex ↔ complex
cellular map ↔ complex morphism
homotopy ↔ homotopy

homotopy group ↔ homology
weak homotopy equvalence ↔ quasi-isomorphism

suspension ↔ dimension shift
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Homological Algebra (II)

Motivation

In topology, cohomology group is relatively superficial with
respect to homotopy. We may lose important information
after taking cohomology. So the idea is to express everything
before “taking cohomology”.

Language of cohomology Essence
cohomology group complex
always exact = split homotopy
inducing isomorphism quasi-isomorphism
long exact sequence exact triangle
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Definition

For an abelian categoryM, define the derived category D of
M the category with

Obj : complexes inM
Mor : complex morphisms

+

{
φ = ψ if they are Homotopy

φ is invertible if it is quasi-isomorphism

Quasi-isomorphism = inducing isomorphism in cohomology.
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Some Examples

For any M ∈M, consider M as a complex centralized at 0.
Then a resolution M→ I • is an quasi-isomorphism, thus
invertible in derived category.

· · ·→ 0→ 0→M→ 0 → 0 →· · ·
↓ ↓ ↓ ↓ ↓

· · ·→ 0→ 0→ I 0→ I 1→ I 2→· · ·

Actually, if we consider the full subcategory of complex
bounded below, then it is equivalent to the category of
complexes of injective objects bounded below by taking
hyper-resolution.

Note that, between complexes injective objects bounded
below, quasi-isomorphism is invertible already, up to
homotopy.
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Homological Algebra (II)

Some Examples

Theorem

Assume I • is a complex of injective objects bounded below, then

HomD(A
•, I •) = Homcomplex(A

•, I •)/homotopy.

By construction, a morphism A•→ I • is presented by

A• φ→B• ψ−1

→ I •

Let us pick a hyper-injective resolution J• of B•, from the
below picture, we can exchange B• by J•.

A• φ→ B• ψ← I •

↘ ↓ ↙
J•

We can simply shrink the right triangle to a point, since they
differ only by a homotopy.
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Some Examples

For any N ∈M, think it at position n, denote by N[−n].
Then

HomD(N[−n],M) = ExtnM(N,M).

Since

HomD(N[−n],M) = HomD(N[−n], I •) definition
= ExtnM(N,M)

· · ·→ 0→M→ 0 →· · ·→ 0 →· · ·
↓ ↓ ↓ ↓

· · ·→ 0→ I 0→ I 1→· · ·→ I n→· · ·
↑ ↑ ↑ ↑

· · ·→ 0→ 0 → 0 →· · ·→N→· · ·
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Exact Triangles

For complex A•, denote A•[n] = A•+n the dimension shift.

For a complex morphism f : X •→Y •, define its mapping cone

cone f • = X •+1⊕Y •, d
(
x
y

)
=

(−d 1
d

)(x
y

)
=

(
−dx

f (x) + dy

)
.

Then it defines a triangle

X • f−→Y • y 7→(0,y)−→ cone f •
(x ,y) 7→−x−→ X •+1

Any triangle homotopy equivalent to above is called an exact
triangle.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sheaf Theory (II)

Homological Algebra (II)

≫ Questions? ≪
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§ Realization of Topology (II) §
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Derived Functors

Since we want everything before cohomology, we need to
define a more general derived functor.

Let F :M→N be a left exact functor. Denote D(M) and
D(N ) the derived category of lower bounded complexes. Then
they are equivalent to the derived category of lower bounded
injective complexes (again, quasi-isomorphisms are already
invertible). For A•, pick a hyper injective resolution I •A, define

RF • = F (I •A) ∈ D(N ).

The morphism are defined automatically.

Note that the usually RF are nothing but the composition

M concentrated at 0−→ D(M)
RF−→D(N )

taking cohomology−→ N
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Sheaves

Return our case of sheaves. Denote D(X ) = D>−∞(X - Sh).
Then for any continuous map f : X →Y , we have

Rf∗ : D(X )→D(Y ), Rf! : D(X )→D(Y )

f ∗ : D(Y )→D(X ).

We do not write Rf ∗ because f ∗ is exact.

Then all conclusions before can be lifted to the derived
category. Rg∗ ◦ Rf∗ = R(g ◦ f )∗ since f send injective to
injective. The fact Rg! ◦ Rf! = R(g ◦ f )! is not trivial, but
some fine sheaf theory.
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Sheaves

The adjoint

HomD(X )(f
∗G•,F•) = Hom(f ∗G•, I •F )

/
homotopy

= Hom(G•, f∗I •F )
/
homotopy

= HomD(Y )(G•,Rf∗F•)

For a Cartesian square G

W
↓
Z

F→

→
f

Y
↓
X

g , then f ∗ ◦ Rg! = RG! ◦ F ∗.

Since

f ∗ ◦ RG!(F•) = f ∗ ◦ G!(I
•
F ) = G! ◦ F ∗(I •F ) = RG! ◦ F ∗(F•).
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An Exact Triangle

Consider closed immersion i : F →X and open immersion
j : U→X with F ⊔ U = X . Then there is an exact triangle
for each complex F•

Rj!j
∗F•−→F•−→Ri∗i

∗F• +1−→,

since it is a short exact sequence of complex, which is
homotopy to an exact triangle. Actually, by the universal
property of mapping cone, any sequence inducing long exact
sequence is from some exact triangle.

Taking in F be the constand sheaf Z over X concentred at 0
gives long exact sequence

. . .→H∗
c (U)→H∗(X )→H∗(F )→· · · .
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Poincaré Duality

Recall we proved Poincaré duality for Borel–Moore homology
and cohomology, which can be restated that

· · · → 0→ Z →· · · → 0 →· · ·
... ↓ ↓ ↓ ↓

...
· · · → 0→CBMn →· · · →CBM0 →· · ·

is a quasi-equivalence. The map is given by 1 7→ [M]. This
follows from the local computation and the easy fact CBM is
flappy.

So it essentially does not need the technique Bootstrap
Lemma — framework of sheaves does all the work.
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Duality

For a sheaf, F , U 7→ Γc(U;F) is not a sheaf, but when F is
c-soft (soft for compact subset), it is a “cosheaf”. Say, for
any cover U of U0⊕

Γc(U ∩ V ;F)−→
⊕

Γc(U;F)−→ Γc(U0;F)−→ 0.

So Hom(Γc(U;F),Q) forms a sheaf, which can be understood
as a “dual”.

Actually, from the discussion above, Q is “dual” to CBM• .

How to generalize the notation of dual is important, this is
the Verdier duality.
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Theorem (Verdier)

For any continuous map f : X →Y , there is an
f ! : D>−∞(Y )→D>−∞(X ), such that

HomD(X )(F•, f !G•) = HomD(Y )(Rf!F•,G•)
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Proof Sketch

Let us define

f !G• :=
[
U 7→ R Hom(f!(jU)!I

•
Z|U ,G•)

]
One can check that it forms a sheaf, and maps
quasi-isomorphisms to quasi-isomorphisms. Then one can
prove the adjointness holds, firstly for (jU)!ZU , then all by a
finite resolution (finiteness from paracompactness). See
Verdier.
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Dualizing Complexes

For π : X → pt, denote ω•
X = π!Z, and call it dualizing

complex.

Theorem

Assume X is locally compact, then the dualizing complex ωX is
quasi-isomorphic to CBM• .

For an open subset U,

HomD(X )(Z|U , π!Z) = HomD(pt)(π!Z|U ,Z).

The left hand side is exactly ωX (U), the right hand is the dual
of complex S•c (U) of compact support cochains over U.

There is a map CBM• →HomD(pt)(S•c ,Z), by a long exact
sequence argument over U∪∞, their cohomologies are the
same.
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Theorem

For closed embedding i : F →X, i∗ coincides the functor induced
by

i !F :=
[
U 7−→ lim

V⊇U
{s ∈ F(V ) : supp s ⊆ F}

]†
.

For open embedding j : U→X, j∗ = j !.

Actually, it suffices to show the adjointness. But the
adjointness holds in the category of sheaves already.

Theorem

For locally trivial fibre π : E→B, with fibre F an oriented smooth
manifold, π∗ = π![dimF ].

I believe that to prove it, it suffces to show j!ZU for U small
enough as usual.
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Exact Triangle

Recall that

Rj!j
∗F•−→F•−→Ri∗i

∗F• +1−→,

gives

· · ·→H∗
c (U)→H∗(X )→H∗(X \ U)→· · · .

It has the following dual form, see Hartshorne Ex.II.1.20

Ri∗i
!F•−→F•−→Rj∗j

∗F• +1−→ .

which gives long exact sequence

· · ·→HBM
∗ (X \ U)→HBM

∗ (X )→HBM
∗ (U)→· · · .

· · ·→H∗(X ,U)→H∗(X )→H∗(U)→· · · .
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≫ Questions? ≪
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