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Introduction

@ Spectral sequence is a strong tool to understand (co)homology
group (especially in computation) created by Leray During the second
world war. This is so powerful so that it becomes the standard notion
recently.

o It simplifies computations, constructions and proofs heavily, and our
subsequent lectures rely on this tool more or less. Actually, one can
find the material which is spectral-sequence-free, but it will be very
long and tedious, also hard to understand.

@ Roughly speaking, spectral sequence is a collection of all useful exact
sequences, so it also helps understand homological algebra.
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Filtered complexes

~ § FILTERED COMPLEXES § ~
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Filtered complexes

Filtered complexes

o Let C* be a (cochain) complex in some module category
_1d d
s CmISen S et

@ Assume it is equipped with a (cochain) filtration F* over the C*®.
(Note: the index bigger, the module finer)

F: -..CFrPflcrc FpCcrcC FPICchC
and compatible with d

FPC*: . PP S FPCn S FRCtl L
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Filtered complexes
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Filtered complexes

Filtered complexes

@ The complex (formally, the graded complex with respect to the
filtration)

Fecrt o FPCn FPC
e fp+1 Ccn-1 - ]:‘p+1 Cn - J‘_‘p—i—l Cn+1 e

is easy to be understood.

@ Toy example: consider a CW topological space X. The chain of
singular homology complex S*(X) = S_o(X) has a filtration (indices
to suit our convention)

FPS® = S_o(Xdim<p)

Frcn—1
Then et = Se(Xdim<p, Xdim<p-1)-
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Filtered complexes

Toy example

@ We then have a long exact sequence

1)
= He(X<p) = He(X<p) 5 He(X<p, X<p) = Ho—1(Xdim<p) = -

We get the cellular complex

Tod

-+ = Hp(X<py X<p) — Hp—1(X<p-1, Xcp-1) =

Zcell C of dim p Z'[C]v e=p
0, otherwise.

e We know He(Xdim<p, Xdim<p) = , so above

complex computes the cohomology of He(X) (standard topology).

@ The chain of singular cohomology complex S*(X) has a filtration
F"5® = ker[S*(X) = S*(Xdim<n)]
has the similar property.
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Filtered complexes

Spectral Sequences

A spectral sequence is the following

@ a family of modules of C
E={EP9:p,qeZ,r> 0}

e a family of differentials d : E — E with d" of degree (r,—r + 1) for
each r, that is

d={dP9: EPI—EPTI "} dTod" =0;
@ a family of isomorphisms of

_ ker[EPT % .. ]

Equ ~ HPQ(Er)
im[- - % EP9)

— Pq / ; p—r,q+r—1
1 = = ker d! /lmd, .
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Filtered complexes
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Filtered complexes

Convergence

@ Under certain finiteness condition, for each p, q, Ef? = EJ}; for
r > 0. So we can write EXY.

@ Let E be a spectral sequence. Given a family of objects {H" : n € Z}.
We say that {EF?} converges to {H"}, if there exists a filtration of

each H"
0=F°H"C...C FPHIH" C FPH" C ...

such that |J, F,H" = H, and EEY = FPHPHY /| FPHIHPTE. We write

EPI — HPTA,
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Filtered complexes
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Filtered complexes

SS for filtered complexes

Theorem

Each filtered (cochain) complex (C, F) determines a spectral sequence E
with

Eé’q - ]:P(_‘p+q/]:p+1 CcpP+a

E{JCI — Hp+q(]:p C/]:p+1 C).
If the filtration F over C is lower bounded and upper exhaustive then E
converges to H*(C). More exactly,

Egoq o ]:PHp+q(C7 d)/]:eral+q(C7 d),

where F is lower bounded and exhaustive filtration over H*(C, d).

@ lower bounded <= for any n, FPC" = 0 for some p.
o exhaustive < (J,FPC"=C".
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Sketch of the Proof

What we want is the kernel and image of C°.

@ hat we can compute is the kernel and image of FPC®/FPT1C®. That
is,

F*C* +d Y FrC*)n FrC, FC+d(FC)nF*C*

where * are some indices.

@ So we have a filtration over im d by d(F*C*) and a filtration over
kerd by d~1(F*C*). So we can use the Zassenhaus' butterfly lemma
to analyse.

o Carefully dealing with them, we will get the result.
@ Ref: my paper https://arxiv.org/abs/2002.06394.
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For chain of complexes

@ The same result holds for chain of complexes.

e Everything works by simply Ej, = E” , _, but of course, we should
put it in the first quadratic. By convention, we always draw arrows of
gentle slope.

o Formally,

o= Cr1—>C—>Chp— -

The filtration is defined to be (Note: the index bigger, the module
bigger)
"'g]:pflco g]:pcogfp+lcog"' .

The filtration of the convergence also takes this order.
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Filtered complexes
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Filtered complexes

o0
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Spectral Sequences (I) September 18, 2020 18 / 40



Leray—Serre Spectral Sequences

~ § LERAY—SERRE SPECTRAL SEQUENCES § ~
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A short discussion of fibre bundle

E
e For convenience, let us use only (local trivial) fibre bundle 7 = | |
B
of fibre F, say, for each point x € B, there is a neighborhood U of x,
such that
7 U) 2 UxF
) L proj
U = U

@ Toy example: E = B x F. Then the cohomology can be computed by
the Kiinneth formula. For example, if the coefficient ring is a field,
then H*(E) = H*(B) ® H*(F).

e Toy example: vector bundles (we will face it several times in lectures

after) always with F = C". For example, tangent bundles over
manifolds.
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Leray—Serre Spectral Sequences

Statement

Theorem (Leray—Serre)

E
Assume we have a fibration [i] with fibre F, then there is a spectral
B
sequence E with
EL7 = HP(Bi HI(F))

converging to H*(E; R).

@ Here 79(F) stands for the local coefficient system of cohomology of

fibre. If in particular when B is simply connected, it will be simply
HI(F).
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Sketch of the proof

@ We can assume B is a CW complex (by approximation). Then we can
filtered X by the preimage of Byim<e. Let us, an abuse of notation,

simply denote X<,.
@ Then, as we stated S*(X) has a filtration by

FPS® =ker(S*(X) = S*(X<p)),
and then

EP? = HPHI(X<p, X<p)

= Zi+j=p+q H’(ng, B<p) ® Hj(F) :
= H”(ng, B<p) ® Hq(F)

@ Analysing dj carefully, we get it is exactly the cellular cohomology
chain to compute HP(B; HI(F; R)).
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Leray—Serre Spectral Sequences

Remarks

@ We have the same result for homology
Epq = Hp(Bi Hq(F))

and it converges to Hpi4(E).

@ The cup product is well-defined, say
EP9 x Erp’q’ N Erp+p’,q+q/

compatible with taking cohomology, and compatible with the
subquotient HPT9(E). The same for cap produce.
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Leray—Serre Spectral Sequences

Remarks (continued)

@ There is also a relative version, say,
Hp(B, Bo; Hq(F, R))
converges to H,y4(E, Eg), where Eg = 7~ 1(B);
Hp(B: Hq(F; Fo, R))

converges to Hp4(E, Eg), where Eq is a subbundle of F with fibre Fy.

@ As a result, it also has the version for cohomology of compact support
(more generally the Borel-Moore (co)homology).
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Leray—Serre Spectral Sequences

Remarks (continued)

@ This spectral sequences constructed is also functorial, since the map
can be approximated by cellular map.

F E
@ As a result, the map [¢] — [i] shows that the map
pt B

H*(E) — EX% C H*(F) coincides with the induced map.

E B
@ As another result, the map [i] — [i] shows that the map
B B

H*(B) —» E%* — H*(E) coincides with the induced map.

o Actually, we can say more, the map E>"* — E™° is described, called
the transgression.
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Leray—Serre Spectral Sequences

Remarks (continued)

@ Assume the fibre F to be orientable, compact and smooth of
dimension d. Now, EF9 vanishes for g > d, and if B is orientable,
then HI(F) = HY(F). Now E;Od is the a factor module, so

H*T9(E) — E2Y C E39 = H*(B; HY(F)) = H*(B).
@ | claim this map coincides with the push forward defined as follows,

H*"(E) ———— H.(E)™ H.(B) «+—+— HY(B)
Poincaré duality Poincaré duality
If both B, E is orientable, compact and smooth of dimension b, b+ d.

@ Since formally Poincaré duality is taking cap product with
fundamental class. We know Hy(B; Hy(F)) = Hpd(E), it suffices to
show that [B] ® [F] corresponds to [E].
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Leray—Serre Spectral Sequences
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Applications

N§ APPLICATIONS §N
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Applications

Thom isomorphism

E

o Let [i] be a vector bundle of rank d with B orientable, compact

B

and smooth. Since H2(R9) has only one nonvanishing dimension, and

when B is orientable, H2(RY) = H*(RY) and H*(B) = H2(B), so

H"(B) = HI*(E),

known as the Thom isomorphism.

AN

AN

AN

AN
Hg)

AN
Hi\(Q) Hﬁ\(@

N ~
H?‘( g Hd 3‘1{5)

N
HEPn(E)

N N
AN AN
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Applications

Thom classes

o Let us call the image of 1 € H%(B) under this isomorphism by the
Thom class. It is originally defined by the image of the fundamental
class of [B] under

Hy(B) ——— Ho(E) ——— HY(X)

zero section Poincaré duality
@ The Thom isomorphism can be written by
H"(B) = H"(E) =% HZT9(E),

where 7 € HI(E) is the Thom class.

@ The proof is easy, note that the isomorphism given by the spectral
sequence is simply due to H.(B) — H.(E).
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Applications

Remark

e Equivalently, we can consider the unit disc at each point (first choose
a Riemannian metric), say W, and apply the compactification at each

X
fibre, denoting the resulting fibre be [i]
B

HITI(X) = H™ (W, 0W) = H™9(X; B),

where B, the infinite section.

@ Thom class is useful to define the “cycle”. Let N — M be an
embedding, consider its normal bundle as a “tube” W, then it induces

H"(N) — HY(W,0W) — H™ (M, M\ N) — H"T9(M)

which is dual to H,(N) — H,(M). This is the strict way to explain
the intersection product.
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Applications

Gysin sequences

E
@ If the fibre F = S9 we will call [i] a sphere bundle. Then, since
B

H*(F) = H*(S?) has only two nonvanishing dimensions, so there is a
long exact sequence

o HY(B) S H(E) S H*9(B) % H*T}(B) — - --

called the Gysin sequence.

AN N N AN N

N N
H%{ Hi\(g N Hd\*’i@ H‘m@

N N N N N
G G NNN

N By Y N Ny N
W@ | e | Y |rMe |HRE | Y| N
N N AN N AN

N N AN N N
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Applications

HOB) | Hi(B Hd‘H(Q Hd+2(,3{
S S S A
HOB) | HY(B) HHL(B) |HH2(B)
before achieving E
N N N N N
N N N N N
N N N N N
*N N N *N *N
N N N N N
N ~ N
G N NN
N N N N N
N N\ N \ N
* * N *N *N N N
~ N N N N
N N N N N
Ewx
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Applications

Euler Classes

@ The m, and 7* is well-understood, at least when everything is
orientable, compact and smooth.

o Denote the image of 1 € H°(B) under d, say e € H¥*1(B), and call
it the Euler class. Since d processes the Lebniz rule with respect to
multiplicative, d is simply cup product with e.

E
@ Classically, the Euler class is defined for a vector bundle [i] by
B

restricting the Thom class in HY(E) to HY(B) = HY(B) by zero
section B C E.

@ The unit sphere at each point defines an S9! bundle, say Es. The
coincidence is actually proven by the transgression.
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Euler Classes

@ The name Euler class is more ancient. The Euler class for tangent
bundle is Poincaré dual to the Eular characteristic (alternative sum of
Betti numbers). The proof is by the diagonal embedding M — M x M
whose normal bundle is isomorphic to the tangent bundle of M, then
it follows by a computation of the class of diagonal.

@ The geometric meaning is really curious. Dualizing everything to the
homology group, then Thom class is exactly the cycle of any section,
then the Euler class is exactly the zero locus of any section. In
particular, this gives a proof of Poincaré—Hopf theorem.
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Leray—Hirsch theorem

@ There is a classic theorem about the cohomology of fibre bundle by

E
Leray and Hirsch. For a fibre bundle {i} if each fibre F, = 771(x)
B
has free cohomology, and there is a set {a} C H*(E) present the

bases restricting each fibre. Then
H*(B) @ H*(F) — H*(E) B X oo — TS — «

is an isomorphism of H*(B)-modules.

@ | am not sure whether Leray—Serre spetral sequence implies
Leray—Hirsch theorem.
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Remarks

@ It is classic to use the Leray—Hirsch theorem to compute several
cohomology of fibre bundles

Sp(n), GL(n; C) ~ U(n), SL(n; C) ~ SU(n), Gr(n,o00),

which | do not want to present the details here.

@ The classic proof of the Leray—Hirsch theorem is very standard trick
of algebraic topology, which | want to explain it here. We construct
some map which is “natural”, and check it is true for the simplest
case, and check it is an isomorphism all over all CW complexes by five
lemma.
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Applications

References

@ Benson. Cohomology and Representation, second volume.
This book gives a quick course of topology, and also discusses
spectral sequences. The definition and proofs suit better the flavor of
algebraists.

@ May. A Concise Course in Algebraic Topology.
This book gives a self-contained and concise (and correct)
introduction to topology.

@ Broden. Topology and Geometry.
The classic treatment of Thom class and Euler class.

@ Hatcher. Algebraic Topology.
The classic computation using the Leray—Hirsch theorem.
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Applications

Next time

@ The Spectral Sequences for Double Complex.
@ Grothendieck Spectral Sequence.
@ Other Spectral Sequences.

@ We will not discuss the exact couple, Elienburg—Moore spectral
sequences and Adams spectral sequences.
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