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1 Introduction

> BiE: B

We will present 3 different proofs of Jordan cardinal form with remarks
and explanations. Firstly, the standard statement will be given of the theorem
of Jordan form.
> BHE: RAVEE S H Jordan /R ER W = A FENEFAFEHBEEFIFE. &
FFATR 4 H Jordan r/ERE B AT AR,

We call the following square matrix Jordan block belonging to A of size

Al

reC nEZZl
Al

A

nXxn
What’s more, matrices in the form of diag(Jy,...,Js) are called Jordan car-
dinal form, where J, is Jordan blocks.
> BE RN THAEREET N A/NKE n B Jordan #£.

A1
reC n € x>
A1
nxn
Wz 4, A diag(Jy, ..., Js) B AE[E W AR A Jordan ARUERL, E o J, # &

Jordan 3%.

Theorem (matrix form). FEach square complex matrix A is
similar to a Jordan cardinal form, and the corresponding Jordan
cardinal form is unique up to the order of Jordan block.

> HE: RE (BEEPR). F—ANEEHE A HEMUT Jordan 47

AL HX B Jordan ARVERE S ITIF T 2 vE — 4.



By the well-known correspondence between matrix and linear transfor-
mation, we can translate the theorem in the geometrical form.
> BV ARE A KR T o S SR R, AT DL R T4 T L

A .

Theorem (geometrical form). For any linear transformation
A over finite-dimensional C-vector space V', we can pick a set of
basis of V/

v11 V12 ... ‘e Viry

V21 V22 ’1)27«2
Tl,...,TSGZZO

Vsl Vg2 eev een aen Ugp,

Such that

(1) Each wv;; is eigenvector belonging to certain A;,. That is,
Avip = Avir.

(2) For fixed 4, (A — AT)v;; = v; j—1 holds for 2 < j <r;, .

> WF: EE (JLARRX). SEEFARE C-L4HEZH V TH&H
T A FATT UHkiE V — 4

v11 V12 ... Ulry
U921 V292 . '1'2,.2

(A T rs € Lo
Us1 Us2 Usy

(1) %}/‘\ Vi1 %B%;%/V /\,j Hl]’if"?i\/i EU Al,',‘l = )\,j(,',jl.

(2) @ ;E ] <A o /\I)I'i‘} = Vi,j—1 X:JL 2 < } < Ejhi j’,



2 Method I, \-matrices

> BE HE—, \EE
The standard proof of Jordan cardinal form is given by theory of -

matrices. The main process of proof is
1. Prove the criterion of equivalence of A\-matrix in some invariants.

2. Show the equivalence of characteristic matrix is equivalent to the simi-

larity of matrix.
3. Calculate the invariants of characteristic matrix of Jordan form.
> FiE: AR Jordan ARER R EAEAE B NEMEL Y. TENSFF T
1. B — 8 & 4 \-JE AR KA A 4.

2. I BF R AE A [ B AR K S5 1 T 4B [ 9 A8 L.
3. & Jordan frEE RS RN E E.
We say a matrix is a A-matrix, if its entries are all in polynomial in A.
For each square matrix A, we call AI — A the characteristic polynomial of A.
A M-matrix P()\) is said to be invertible if there exists another A-matrix Q(\)
such that P(A)Q(A) = Q(\)P(N) = 1.
> BiF: BRATR—NNERE NERERELENMIE LAZ XN WSO, XE
M A, FAIR N - AR A BREERE. — M MEE PON) HRATER
WRELE G NEE QN FEF P(A ),,g( )=QN)P(\) =1.
Nearly obviously, by the adjoint matrix, a A-matrix is invertible iff its
determinant of it is a nonzero constant number (rather than a polynomial in

A). We say two A\-matrices A(\), B(\) are equivalent if there exists invertible

> BE: L FRANE, REMHER BT ST
C(TIFR N TR). ROTWFAN MEHE AN, BO) £hwEfrk
TR A 1E[ P()),Q(\) EE P(AANQN) = B(N).




2.1 Smith norm form

We will first prove the so-called ‘Smith norm form’ that each A-matrix

A()) is equivalent to
diag(dl()‘)a dQ()‘)a s dr(A)v 0,... 70)

where d;(\) are all nonzero polynomial in A and dy|ds]. .. |d,.
> BF: RATE KIUEEA FTIE R “Smith FR/EARD, £ N B A(N) #HAEKE

diag(dy(N),da(A),...dr(N),0,..., 0)

L LJF (] ( ) g" Tl] it = 'ﬁ/' Iriié (/1‘(/2‘ e ‘(1,..
Direct observation ensures that the exchange of rows or columns of A

does not affect the conclusion. Let
an(/\) e aln(/\)
AN) = L :
an1(A) oo apn(A)
We illustrate by induction.
> BE: AENAEHRZLSE A TR RER. 4
(1,11(A) (ll,,(A)
A(X) = : - f
(/ul()\) Urzn()\>
AT VA4 AL B 4
Without loss of generality, assume the (1,1)-entry of A(\) takes the
least degree among the equivalent class of A(X). We will demonstrate that
au()\)|aij()\) for all 4 ]
> FF TR a; R AN B (1 1) frE A AN HREF RN,
Firstly, a11|a1j for all j # 1. Otherwise, denote

d = (a1, 0,1]') fann +ga; =d a1 =dh ay; = dk



Where (

) stands for maximal common divisor. Note that

e A
(au a1j) (g b —(d 0)
~——

det(:)=1
Now degd < degai, a contradiction.
> B B4, anlay, HEE j £

&

d= ((/,11,(11/>

&, 1g
fai +gai; =d a1 = dh ay; = dk
o (o) BREAANY. EEE
(111 ayj ( ) ('l U>
d(t(
degd < degaq, T JE.

> HE:

Secondly, a11|a;; for all i # 1 for dual reason
R, SEH, arla

XA i A 1

Last but no means least, a11]a;; for all ¢ # 1, j # 1. Note that
11 1
1
———

air  aij\
—ai/ann 1 a;1
~— ———
det(-)=1

aiil

aij
det(:)=1
Then by the discussion above, we have a11|a;;
> HE: wJE

W Ja (111‘(1@‘ MEE i #£1,j# 1 EEE
1 1 1 ail a1y
1 *(l,‘]/(ln 1 (073
——
det(-)=1

j a1l
; a,-_,-) - (
BT LR £ B G, B an ;.

[£%7%] + ( . -)(Il\j
* *

Finally, using the elementary transform, we can assume A(\) equivalent

d(A)
d(A)A' (M)

aij—|—(

.. .)a1j>

to



The desired Smith form follows by induction.
> BE: mEERAMERE, TUBER AN) M T

d(\)
d(N)A'(N)

M E ) Smith (38 3T VT4 EFAE.

Now, we are going to define some invariants. Given a A\-matrix A()), let
k-th determinant factor be the maximal common divisor among the deter-
minants of all k-submatrices of A(\). This is invariant up to a scale under
equivalence by Cauchy-Binet formula.
> B TH, RNEEXN—RATE. AF M NEME AN, 4% kE NMT7
RETFZ AN FiF kE BZTAA WAH‘J mA N FE A, XRHE Cauchy-Binet 2
REXAMEETAEHN (HE-NHRELT).

The determinant factors of the Smith normal form
diag(dy(N),da(A),...d-(N),0,...,0)
with dy|dg|...|d, are exactly
dq dqdy dids .. .d, 0 0

So determinant factors determines the equivalent class.
» HE: Smith #r7EA

diag(dy(N),da(N),...d-(N),0,...,0)
#1T5IX I FER
(]1 dldg (']1({2...('],. 0 0

HE dy|da|...|dr. BTUATHI KB FHE T HEKEFN K.



However, the determinant factors are pronounced to be inconvenient to

utilize. If i-th determinant factor of A(\) is D;(A), define i-th invariant factor

Dy =1
di(\) =4 D;/D;-1 D; #0
0 D;=0

Trivially, the invariant factors can recover the determinant factors. Besides,
these d;’s are precisely the d;’s over the diagonal of Smith norm form.

> HE B TARERTETER, R AN & i MTAIRXEF & D;(N),
EXH i FEET

D i=1
di(\) =< D;/D;-y D;#0
0 D; =0

FAHE, AXHEAFTATUKRETHXET. HXEW d; 32 Smith 4743 3
& Eeg AR ;.

In some ways, the invariant factors are not convenient enough. If i-th
invariant factor of A(X) is d;(A). To get clean conclusion, the discussion
following assumes det(A(X)) # 0 so that all d;(\) # 0. Assume

m
di:Hp?” 0<ky <kgy<...
j=1

Where ¢; are different monic irreducible polynomial. All those pf” ’s with
ki; # 0 (with multiplicities) are called elementary factors. Then elementary
factors of A can recover invariant factors, since only the ke’s vanishing omit.

> B EBEEL TEEFLTHHFE BR AN FiATEET

A

T by hib, TE B EE det(A(N)




£ g RFRME—TTAL TR, FA by £ 0 8 ph (R EH) BAHH A
SEF. B AN HNEEFTURETEET, BH R

AL i,

A7

N

|27 AP RE

2.2 Criterion of similarity

In this paragraph, we will show that that A\l — A is equivalent to A\I — B
iff that A is similar to B.
> WIF AR, RAOVEIEHA N - AMHEKT M -B YERY A EUT B.
Assume P(A)(AT — A) = (AI — B)Q()\) with P(X), Q()) invertible. An
analogue of Euclidean algorithm can be applied to get
PN = -B)UMN+ P
Q) =V —A)+ Qo

where Py, Qg are all constant matrices. Then we have
(M — B) [U()\) — V(A)] (M—-A)+ [PO(AI —A)— (M- B)Qo| =0

By considering the term of degree more than 2, it is obligatory that U(\) —
V(A\) vanishes. Therefore,

P0(>\I - A) = ()\I — B)QO i.e. PO = Qo, P()A = BQO

The rest of efforts will be put to show the invertibility of Py. Once it gets

proved, the proof will complete.
> BiE: {?«i& PO\ — A) = (M — B)Q(\), % P()),Q(\) T, — 4Kk
jttg’/r'\;a = 577~ L L/L/'f—“fj

PA) =\ —-B)UMN+ P
Q) = V(MM = A4) + Qo

B Py, Qo BHHKEME. TERNA

QIB%UQ)VM@@IA)+{@M]A)M[BM% =0

10



3t E R R DL T, A UN) - V() BUE. FHil
Po(AM —A)=(N—-B)Qy Bl Py=Qo, PFPyA=DBQ

TR AEWATRAE Py 1. —BERXBIE, IERAE 0L .
Assume
P71\ = (M — AW\ + Ry

Then

=W —-B)UMNP~ ( )+ Po(M — A)W(N) + PyRo
= (M = B)UNPH(A) + (M = B) QoW (X) + Ry Ro
=M = B)(...)+ PR

By consider the term of degree more than 1, (...) is forced to vanish, thus
I = PyRy.
> BE: BR

P\ = (M - A\W(N\) + Ry

I =PX)P(N)
— (AL = B)UA)P~Y(A) + Po(M — AW (X) + PyRy
= (AT = BYUN)P~Y(N) + (M — B) QoW (\) + Py Ry
= (M= B)(...)+ PyRy

BAEE—RULTHT, (L) HER 0, TE I = RRy.

Now, we assume the base field to be C and are going to compute the
elementary factors of characteristic matrix of Jordan norm form. Note that
for any matrix A its characteristic polynomial det(AI — A) is nonzero.
> BE: I, RITBREEBRE C, FHEEIHHE Jordan /BRI ER
MEET. EEIEMERE A, B4 TX det(M — A) %,

11



The calculation begins with Jordan block. Let J be a Jordan block

belonging to Ag of size n.
A=A -1

M—J=
A=) -1
A—Xo
Note that for any i < n, there always exists a submatrix of size i with its
determinant 1. So elementary factors of J are nothing but (A — Ag)™.

> BE: 1T E A Jordan BREGFE. A J & n BT Ao B9 Jordan k.
A= —1

M—J=

EREMEM i<n, BF i B THEEELFT
,TFF{' (/\ — /\[):)”.
Then we can handle with a little general case. The elementary factors of

diag(AI — A, \I — B) is simply the union (by adding multiplicities) of those of

Al — A and AI — B respectively. By Smith norm form, it reduces to calculate
the elementary factors of diag(dy(A),...,d,(\)). Assume

m
di =[] v
j=1

Where ¢; are different monic irreducible polynomial. We claim that all those
Kijs

p;’s with k;; # 0 (with multiplicities) are exactly elementary factors. For

each j, let
1 <ky <.

to be the reorder of ky;, kaj,.... Then it is not difficult to compute that i-th

determinant factor

i AP
D=L
j=1

12



Then the elementary factors coincide.

> B TE, RATT UL EBGE— R ER. diag(M — A\ — B) W& H
FTARLEN —AR N -BWFHTZH (EHAMEM). RIE Smith #F7EE,
WAL it & diag(di(N),...,d.(N\)) BIAIEE F. BRIX

m

ki
di =[] ;"
Jj=1

He g 254 HEI'J H—AIANLZHA. KA E A kij #0 0 p IR
l%’—. =2
kl[j < k-/gj <

% /11,]\2, E}/‘]%’ﬁ}z ﬁﬁ/lx;r\xﬁlfﬁi% i /l\ﬁi'ﬂfi@%

m

D, = [
Jj=1
TEMFETEHEE.

To sum up, the elementary factors of characteristic matrix of Jordan
norm form diag(Jy, ..., Js) is the collection (with multiplicities) of (A — A;)™
where J; is Jordan block belonging to A; of size r;.
> BF: R4 KK, Jordan 7R R diag(Jy,...,Js) WS EFEZHAE (A -
N)(HER), £ J, BT N\ 8 B Jordan Bt

To show the existence of Jordan cardinal form, it suffices to note that
the product of the elementary factors of AI — A is precisely the characteristic
polynomial. So there exists one Jordan cardinal form J such that A\l — A
gets equivalent to Al — J. Thus A is similar to J. Now that the criterion of
similarity is given, it is also easy to deduce the uniqueness
> HE: N TIEHH Jordan ARER B FE AN, REEEEE AN - A EV‘]W] %[
TR IEZFE 2 TR, BT EFE—A Jordan #REA J ff — A fu
M —J Ak TR AR J AN BRAEUNAECEEHET, AW%?%@J

13



2.3 Remarks

In the above demonstration, I intensionally avoid using Euclidean algo-
rithm and the concept of elementary matrices for the sake of generation in
principle ideal rings where invertible matrix need not to be products of ele-
mentary matrices. As a result, Cauchy-Binet formula is used in depict the
determinant factors rather than elementary matrix.

S R R R F AT
<0 A A R T Y AR
, T A R A % JE [

The proof of the fact that the equivalence of characteristic matrix is

equivalent to the similarity of matrix is a little different from popular one,

because I think my proof is more easy to be understand. The proof is due to

KAIEHE 2 7 #
Standing over a higher point view, we can view V' = C" by a C[\]-module

through X -v = Av. To compute the structure, we use the standard resolution
0 CA eV ¥ cNeV 5V -0

In language of matrix, the first map is AI — A.
: - RATTH V = Cn HfE—A CIX]-#, Bt X v = Av.
TV TR

()H"C[A} R ‘v /\IHIX\C[/\‘vH‘YH()

FIAEERES I, & — MBS E N — A
The condition that P(A\)(AI—A)Q(\) = AI—B with P()), Q()) invertible

can illustrated in the following diagram

0—=CNoVX2AcNeV —=V —=0

\
i@l ey J{P(A) |
A—B ¥

0—=CM\oV —CMN®V—=V —=0

14



Which by snake lemma, the two structures of C[A]-module are isomorphic.
» EiE: A PON)(M —A)Q(\) =M — B &% P(\),Q(\) T#F LU T R
Jffz\ [_1 # 1* '

0——=C\ eV AL CNQV —=V —>0

\
i@‘ (\) J/P(/\) |
\

0——=C[\NoV H(\,[ |V ——=V ——=0

MBI E, A CI\-EEHE M.

The criterion of similarity is the most powerful conclusion we got above
which can be used to deduce other cardinal form over other fields.
> HE EUAEE FERNEFENE LR ANE L, XU EFE A
H AT A

3 Method 1I, basis choice

> BWE: o, K&
The second method is classic and thought to be of more intuition. We
will make suitable choice of basis to satisfy the geometrical version of Jordan

cardinal form. The main steps are
1. Primary decomposition, that is, root subspace decomposition.
2. Cyclic decomposition, where it reduces to the nilpotent case.

To simplify the proof, we will use the language of quotient space.
> HE: B _MAERZENEHINANEFTEL EE. RITERE YL RH
T U RS Jordan #R/ER., FE S HEWT

2. EH M, XLEANIFTRKIL

AT BMIEHR, RITELSERATSHWIES.



3.1 Primary Decomposition

Now, fix an n-dimensional C-space V', and a linear transformation A over

it. Assume the characteristic polynomial of A is
FO)= A =A™ (A= Am)"™
where \;’s are pairwise distinct. Let the root subspace belonging to \; be
VW=Vi={zeV:UA-ND)"z =0} =ker(A—\)™

We will show first V=V, ®... D V,,.
> WF HEBEE— I n ECANTHV, ITENEAETHR A BIX AW

+ /T A7 7 =
’*’\T’ fﬂ' % W\ A&

FO) = A =X)™ (A=)

Heb N AAAE. ABT N\ WRFEE A
Vi, =Vi={zeV:(A=-ND)"z=0}=ker(A— \)"

KNEEREV=V18...0V,.
Denote f;(A) = f(A)/(A = X;)™. Since A;’s are pairwise different, there
exists g;’s such that
afit. ot gmfm=1

So for any v € V', we have
a(A)fi(A)v+ ...+ gm(A) fm(Av =0

Note that
(A= Xi)"[g:(A) fi(A)v] = gi(A) f(A)v =0

by Hamilton-Cayley theorem, therefore, V.=V, + ...+ V,,.
> BT i) = FO)/ A=) BN BE AR, & g 5

f/l,/'l + ...+ .(/m,/'m =1

16



g1 <'A)}Ll (A)'[' +...+ Im (A>fm <A){ =0
v B 2R £ Hamilton-Cayley = #
(A= 2)"[gi(A) fi(A)v] = gi(A) f(A)v =0

ULV =Vi+...+Vn
For any v; € V;, note that

(%3 i:j

0 i#j

95 (A f; (Ayvi =

Therefore, if 0 = vy + ...+ v,, with v; € V;, then
vj =g;(A)fi(A) (1 +...+v,)=0

Thus V =Vi®...® V. Actually, g;(A)f;(A) is the projection from V to V;.
> BiE: HER v eV, ERE

3.2 Cyclic Decomposition

Then, we will work in each V; and with the restriction of A over it. To
simplify the notation, without loss of generality, assume V = V;, and replace
A by A — A\Z in which case A is nilpotent.

17



d@V

#E: TH, BRNEEEANV, LITHE LB AEXL LR KT HMAID
, k- ‘“f“ﬁbx\ Vi, I A-XNT BR A ZFEAREET.
Writing V' = {v € V : A% = 0} = ker A%, we have the following filtered

chain
o=Vvocvic..cvr=Vv

We will work in the so-called subquotient
veevrvt o vyt
Abuse of notation, write
A:VHYVE S VIVIEL u gk Ve Ao+ VI

These are injective for ¢ > 1.
> BF L Vi={veV: Av =0}, RATF T IEHE

0= ",r(l C ‘/rl c...C V=V

AT EEFTIRN T H

‘xrl ",,,72 /‘/rl o ‘/ru, /‘/rn -1

=

P IIE. WAIEE

!
Il

A . "',r/ 1 /‘*/ — "jf /"/ 1 v+ ‘/,r/ — ./4 v+ ‘/r/‘ 1

R 0> 1 B EA
So we have the following filtered chain of V'

Aty L c AV IV vt

Pick a basis of A"~H(V"/V"71) v11,...,v51, and expand it to a basis of
A"=2(Vn=1/V"n=2) t0 v13,. .., vs,1. Proceed this procedure, we get a basis of

V1 vi1,...,v, such that for any k

A"_k(V"_kH/V"_k) = span(viy,...,Vs,1)

18



Let v;; € V such that
.Ajil(’Uij + Vjil) = V;1 that is Ajilvij = Vi1

These v;; are exactly basis desired.
> BE: TERIDUAE A V! st

All,fl(‘/’n/‘/’ll*l) C...C A(‘/Q/‘/’l> - ‘/l

WHR ANV VY —H vy, vsi1, IR ET A A2(VL /Y2
B — A vy, Usp1. PAMLEHE, AT UUEE —AE v11,...,00, EFX
T3k,

ArR(yn=k Ly n=ky — span(vyg, . .., v,1)

A‘jirl (l,/ + ‘/,']',]> = V;1 RpJ .A'jirl Vij = Vi1

Btk g, R R K.

Last but no mean least, we turn to the part of uniqueness. We can find
that the type Jordan cardinal form of each eigenvalue is completely decided
by

dim V! > dimV?/V! > ... > dim V" /vt

BE: &Ja, ZAIkRBE M. BATTULAFANEMAEMEH Jordan 7/ A
o
T

i ¥
H

dim V! > dim VQ/ vi> ... >dimV" / yn-l

PR

3.3 Remarks

This proof is direct and intuitive. The defect is also obvious, that the
proof cannot get any information without the assumption of C being basis
field.

19



The primary decomposition can also be demonstrated by induction using
the famous exercise that for relative prime polynomial f,g if f(A)g(.A) = 0,
then the space is the direct sum of ker f(A) and g(.A).
> W EERSMAHVEINEER, AFANAZFLENIA LR LW
A fog, R f(A)g(A) =0,

2.2 8% ker f(A) 5 g(A) WWEFA.
The cyclic decomposition actually decompose the space into the direct

A2 % |a

sum of C[A]/(A—X¢)™ which is known as cyclic module. In my proof, exploiting
the language of quotient space, it involves anything but complicated change
of basis.

1. FEFHY

EBA =, AR B = ] A

It is typical to use Young diagram to illustrate the structure of cyclic
decomposition. Follow the notation above, to get a Young diagram, bullets,
o’s, will be drawn at first dim V! rows in the first column, first dim V2/V!
rows in the second column, ..., and first dim V™ /V"~! rows in the n-th column.

For example,

dimV! =6 dimV®/V* =2 c o o o o o
dimV?/Vl =5 dimV%/V5 =2 e o o o
dimV3/V2 =4 dimV7/V6 =1 o o o o
dimV4/V3 =4  the other =0 *

.

We can read the following information from Young diagram

o The total number of bullets of first & columns is dim V*. In particular,
the total number of bullets is so-called algebraic multiplicity, the number

of first column is so-called geometrical multiplicity.

e Each row corresponds to a Jordan block. The number of bullets coin-

cides the size of Jordan block.

20



\|

» B #F Young Bk B TREN M2 H AW, 15 A L, # 7T 1F2| Young
H, 7% o B AEF —FIME dim V! 1T, & Z 7w dimV2/VI 4T, ., & n
FI# dim V" /vt 47, Bl

N

dimV?! =6 dimV®/V* =2 e e o o o o
dimV?/Vl =5 dimVS/V5 =2 e o o o
dimV3/V2 =4 dimV7/V6 =1 e o o 0
dimV*/V3 =4 the other = 0 °©

o

FATFT LA Young #3415 &

o Bl kFIMTHEHE dimVFE RAH, REREMBNREEL, F—
5\ 6% B ot A& B i B LT E 4

o EHF—ATHIX B — Jordan 3. FHEEIE L ER Jordan kY AN,

Following the proof above, we can proof the following conclusion. Given
an A-invariant subspace W of V| if the matrix of A over W is a Jordan block
under certain basis of W, then this basis can be expended to a basis of V'
such that the matrix of A over V is a Jordan norm form under it. Note that
‘Jordan block’ above cannot be changed to ‘Jordan form’.
> B RELEAIER, RNOTULEALTER. XTVH ALETFEE
W, R AAZW FHETHWEME Jordan 3, A LAXHETUY TR V B
—HEFEF A EXHAETRE Jordan /R, FEE LHEH “Jordan 7 1
g AR “Jordan A7,

4 Method III, matrix trick

> WE: k=, TR
The last method seems to be terrible and tricky, but actually not. We

will use language of matrix only to deduce Jordan cardinal form.

21



> B REWHENFET AN T+ R, BEEZNAR RITEEARA
5B B 1E = 3 B Jordan AR E AL
For any complex matrix A. Assume Av; = Avp for some v; € C™ \ {0}

and A € C. We can expand {v;} to a basis {v1,...,v,} of C", then

A(vy .o yvn) = (V1,0 ., 0p) (A 1:0>

A
So A is similar to ( . By induction, we can assume that Ay is in form

0
of Jordan norm form. Assume more that

A
As

Where A; arranges Jordan block belonging to A, and A, arranges the others.
> B HEAEEME A BIE Avy = v FEA v € C*\ {0} F2 )\ e C.

KA {vi} ¥ HAE C — A& {vr,..., 00}, B4

*

) A
BTl A AT
;1()

% (8 3%

>. WABVIG 2, ¥ UURIE Ag & Jordan AR Rl #—
Ay
11() =
112
He A, #H7FET N8 Jordan 3k, Ay HF & H .

4.1 The existence

Using the following trick

—
I
8
>
o
IS}
_|_
=
8
I
S
8

1 T A0 a =
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we can eliminate all the entries over Ay in the first row.
> BiE: A W T 4T

1 x A0 a x 1 —x A0 a+pxr—Ar *

BAVT LA A E —1T Ax LA E.
Usmg the following trick

1 T A0 a b 1 —x A 0 ab+=x

we can eliminate all the entries over A; except the first column of each Jordan
block.
» BiE FIRART

1 x A0 a b 1 —x A 0 ab+=x
1 A1 1 - A1
ENTUBEEE—THRT &4 Jordan 3% —7% A, E 7L E.

Usmg the following trick

1 A aer 0 bey 1 A aer 0 (b—za)ex
1 xl J A 1 -zl J
J/ .. = J/
I J I J
we can eliminate all the entries at the first column of each Jordan block and
J A
the first row except at most one entry. Where e; = (1,0,...,0), J is

a Jordan block bigger than .J.
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» FE: AR

1 A aer 0 be 1 A aer 0 (b—=za)es
I rl 7 A I —xl 7 A
J! - J'
I J 7 J

HAVT UK E —TEA Jordan & —F| E AWML EMHEEFESL — A K+

J A 7 ,
e1 = (1,0,...,0), ]/> &t J A Jordan .

)0 )0

The proof is complete.
> B RE—F R

)06

4.2 The uniqueness

Last step is

BT IIE 4% B

Finally, we turn to uniqueness. Let

5 2 _ (The number of Jordan block appearing in Jor—)

dan norm form of A belonging to A of size k
Direct computation gives that for k > 1,
n—rank(A - XDF =5} + 255 + ... 4 (k—1)(sp_)) + k(sp + ...+ 5))
This shows the uniqueness.
> BE BERNERE— . 4
A <A # Jordan ARUER F BT N B k B Jordan>

é]\f bk g B
b7k &1
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HENTELSHENT k> 1,
n—rank(A— AN =5} +20 + ...+ (k—1D(sp_ )+ k(sp +...+5))

TR T E— .

4.3 Remarks

Actually, the proof above is essentially using induction on C"/Cv. If
suitable basis of C™/Cuv is given, we will choose the suitable lift of them in V.
> BF: R L, PRIEAARR X C/Co EER T A%, R Ct/Co B
, FATEM A s Z L E A6 L B8R .

The case of different eigenvalues is easy, as if Av = v, (A—pul)w = u+vv

we can always select suitable v such that (A — p)(w+vv) = u provided A # p.
> BE: FRFMEEHNEREEZZN, B R Av= v, (A—pl)w=u+vv
BATREEEE L0 v £/ (A—p)(w+vv)=u RE XN #p.

In the case of a single eigenvalue. By lifting of the ‘deepest’ vector the

problem reduces to the lift of eigenvectors. Some of the eigenvectors of C" /Cv
may not lift to a eigenvectors. Using the vector such that (A4 — )z = v
have solutions for as many k’s as possible. Using the most ‘profound’ vector
to change the basis, this phenomenon occurs only on at most one eigenvector.
> HE EEANREENELT. BXRA “REW WE, 7252 N4E R A
BEMEL % CY/Cv WHIEREALRRANHERE. BULEAR

R MNERGE, XA RREETS —AREREL

5 References

I recommend linear algebra of 2% & to learn Method I and II mentioned

above.
b HIE REFETHINAERERFIREN T E— T EZ.
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