Half of Advanced Algebra
(With Hints)
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Preface

For some reasons, the linear algebra is a course with serial difficult prob-
lems, especially the part afterwards involving similarity and Jordan cardinal
form. But actually, such problems are limited, some classic conclusions can
solve a large branch of problems. However, it seems to be less convenient to
find a book collecting them, so I make one. Besides the classic conclusions, I
also add some problems of profound background from algebra or analysis.
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In my book, only the problems without any difficulties do not have a
hint. Most of problems have detailed guidance. The exercises are divided
into three types, exercises, problems and fuxercises (Feeling-Upset exercises).
Exercises are not hard. Problems are not easy and important. Fuxercises are
really hard but not of importance for linear algebra, so do not disturb yourself
if not figure them out.
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I wish you could enjoy these problems.
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1 Week 1 (25 Feb - 3 Mar)
> BE: A (2F 25 H-3A3H)

Exercise 1 Let [a,b] be a closed interval in R, and €[a, b] be all the continuous

function from [a,b] to R.

> BF: A [0, 0] EEH LR, A Cla,b] ZHF [a,b] - R WESER
(0)Check that €|a,b] is an R-linear space under the natural addition and

scaler product.

> B (0) BIE Cla,b] X B ok A BT R — A R-Z = 4.
(1)Show that €la,b] cannot be finite dimensional.

> BiF: (1) iEH Cla,b) TEERAIRE.
(2)Prove that fi,..., fn € €[a,b] is linearly independent iff

Jz1,..., 2, € [a,b], such that det(fi(z;))i; #0

> B (2) iEH fi,.. ., fn € Cla,b] =&ML AN S HXY

Jxq, ..., , Ty, € [a,b], 45 det(fi(z;))i; #0

(3)Prove that fi1,..., fn € €la,b] has rank r then there exists v f;’s, say
fivsooon fir, and a1, ..., € [a,b] such that det(f;, (x;))x; # 0.



> BE: (3) L fi,...,fn € Cla,b) WKE r BMLAFE r A fi, BA
Jivseoos fins a1, ... 2 € [a,b] 47 det(fi, (2))k; # 0.
(4)Point out which fact (3) is a general form of.

> BE: B (3) RMANBLHE).
Exercise 2 Given a vector space V.
> BE R ANEREERE D

(1)Prove that if two subspaces UW C V', such that U U W is still a
subspace, then U CW or W CU.
> B (1) EHAATER UW CV WRER UUW 942 ST 50,
ML UCW B WCU.

(2)Can you give the general case of (1) for more subspace?

> BT (2) IREESH (1) W— BT

Exercise 3 Prove the following ‘modular property’.
> BEF AT E R HEME
Let A, B,C be subspace of some bigger linear space. If C C A, then

(ANB)+C=AN(B+C)

And point out by giving example that if releases the condition C C A, the
above statement breaks.
» HiE: A ABCZENEALKEZEWTZE]E, 1R CCA, AL

(ANB)+C=AN(B+C)

SRR TSR EREM O C A, ARG HAK.
Notes that there is no ‘distribution law’ for linear space, that is

(U+V)NW not in general equals to (UNW) + (VNW)
(UNV)+ W not in general equals to (U +W)N(V + W)



> HF ERE LT EEA S BRE, B

U+V)NW —BRARETFTUNW)+ (VW)
Unv)+w 4 AFEFTU+W)N(V+W)

Exercise 4 Show that for any matriz A of size n X n, there exists polynomial
f # 0 such that f(A) = 0. And one can assume more deg f < n?.

> B EAEE 0 T A AFEEZELTK f E£HF f(A) =0 B
BV deg f < n?.
And if A is invertible, prove that we can assume the constant term of f

can be taken to be nonzero.
> B R A ERE f ERIT UBAEER

Exercise 5 Culculate the integral for m,n € Z>q,
1 21 1 2 1 27
cosnf cosmfdd — / cosnfsinmbdfd — / sin nd sin m6df
to show {cosnz :n € Z>o} U {sinnz : n € Z>o} is linearly independent.
> BE: X mon € Zso, TETH M
27 21 1 27

1
— cosnbf cosmbdl) — cosnfsinmfdd — sin n# sin modo
27 Jo 27 Jo 21 Jo

KkFH {cosnz:n €Zso} U{sinnz :n € Z>o} £ LML AM.

Problem 6 (Subspace avoidance) In this problem, we will give several
proof of the fact ‘finite proper subspaces cannot cover whole space’. More
precisely, given a linear space V' over, for example Q, Uy,..., U, g V are
proper subspaces, then
0u...ul, SV
> %Eﬂ%iif—- (FrAER) EATEY, RAFEL B AR T HREAFEH
BB EEANTE BILH. EABHY, T, flin Q ki, &K=NA V,

U,..., U GV RETZEME, A4



The first proof is by using induction.
> B F— B R B G,
(1)Firstly, prove the case of n = 2.
> BT (1) B, EHA n=2 WIFEL.
(2)Secondly, by induction, assume for any U;, U; is not contained in

Uyu...uU f]\, U...U,. Where * means skip. thus one can pick x; such that
XTi € Uj = i=7

Note that |{z, + A\x; : A € Q}| = oo, thus by pigeonhole principle, for some
Uj, ©n + Az, 2 + Ny € Uj for X # X, then x; € Uj, then i = j, then
T, € U;, a contradiction.

Write down the proof above with more details.
> B (2) ok, REVIGE, BRER U, U; 4% UyU...UT;U...U,
Zof Ak Rk, TEYMUKE o F5

x; € (/Y/ = 1=

FEE o, +Az; 0 X € QY = oo, MARIE , SRAU;, o, +
/\.1:,1..1:,,,, +Na, eU; ¥ XN#£N, T& x, €U )\ ,j, ﬁm] xn € U;, FFHE
FIE. B ERIEAE R AT T k.

The second proof is based on Vandermonde determinant.
> B £ Z/MEHET Vandermonde 177 5.
(3)Firstly, pick a set of basis of V', say ey, ..., ey, consider

Tyx=e1+ s+ ...+ N le,

show that any n members of {x : A € Q} forms basis for V.
> BE: (3) B, BBV 4K ey,... e, T

Ty =e€1+ N+ ...+ \"le,

WHHAERE n N {xy:NeQ} PTEFR V —4HXE.



(4)Prove that U; can only has finite many member of {x : A € Q}. Thus
the proof is complete
> BIE: (4) I U, EaR {or: A€ Q) AIRM AR, IEH T .

The third proof is based on some idea of algebraic geometry.
> BE FoMERET - ERELA .

(5)Prove that there is no loss of generality to assume U; is of codimension
1 (that is, dimU; = dimV — 1)
> BE: (5) IEABIL U; REHAME 1 F Ak,

(6’)By assuming V = Q”, show that U; is zero of some linear polynomial
of X1,..., Xn. And Uy U ... UU, is zero of their product.
> EE: (6) BIBKZV =Q", R U, EENM LKL TANE &, U1U...UU,
N AR E A

(7)Complete the proof.

> BE: (7) % RIEH.

Problem 7 Prove that countable many proper subspaces of R-linear space

cannot cover the whole space.

> B EATHN R-AMEEEANETEE AR 2 .

Problem 8 (Algebraic number) In this problem, we will introduce the
concept of algebraic number. A number a € C is said to be an algebraic
number if there exists nonzero polynomial f(X) € Q[X] such that f(a) =0
> BF (REE) EXAMEAY, RITEENEREENHS. —MEH o
WA REE, R EFEEFELTA f(X) € QX] #EHF fla) =0.

(1) Write the Q-linear subspace of C expanded by 1,a,a?,... by Qla].
Prove that

dim Qo] < 0o <= « is an algebraic number



» BE: (1) 18 Qo) £ 1,a,a?,... £ C FIKAW Q-& K F= . IEH:

dimQla] < 0 <= o ARHKHK

(2)Show that the sum, the difference, the product and the quotient (with
denominator nonzero, of course) of algebraic number are still algebraic num-

ber.

> FE L REBHWEER (S8, BRSO EIAT) KRIBEREKEK.

Problem 9 In this problem, we will show the fact that if f,g € R[T] are two
polynomials in T, then there exists nonzero polynomial h(X,Y) € R[X,Y]
such that

h(f(T),9(T)) =0
It is a special case of theory of transcendant basis. But here it only involves
linear algebra.
> B EAFEE, ROBEEA L TEE, 0% fgcRIT] RAAUT
NN ETHZ RN, MLFEEZELTX (X,Y) e RIX, Y] #£F

h(f(T),9(T)) =0

XEMEBERRWEAREN. ExXE AR SEREK
(1)For fized integers m,n,k > 0, show that the inequality mz + ny < k

—(k_gggf_") solutions, where x,y are both required to

of (z,y) has more than
be non-negative integers.
> BE: B EM >0, EHET (z,y) WIAERX ma+ny <k BED
(pen) Mg, b oy HRH SES

(2)Complete the proof.

> BE T RAEH.



2 Week 2 (4 Mar - 10 Mar)

» BiF: F_F 3A4H-3A10H)

Exercise 10 Given a linear space V, if V.= A® B =C&® D and A C C,
prove that C = A® (BNC).

> BE: M TAMEEREV, £V =A0B=Co®D, 5 ACC, Kik:
C=Aa(BNC).

Exercise 11 For two fields K, F C C, assume that K C F'.
> BFE: A THEAE K,FCC, wk KCF.
(Z)vae that F' is a K-linear space.
> BiE: (1) F & K-ZHE=.
(2)Prove that any F-linear space is naturally a K-linear space.
> BIE: (2) M F-BEEARERAY KBl
(3)If F is of n-dimensional over K, and V' an F-linear of dimension m,
show that V is of dimension mn as a linear space over K.
> BE: () WRFAEK EEHRE NV Em4E F-ZEZH, LAV ER
K %M A& mn 0.

Exercise 12 Given an R-linear space V and a linear transform P :V — V.
If P? =P, we say P is a projection
> BIF T —ARAEAMEZEV A—ANALBETHE PV V. R P2=7P,
MR P 2— A HEF.

(1)Prove that V. = kerP @ imP, and V acts as identity over imP.

Can you give a geometry interpretation of these transform ?

E: (1) EBH V =kerP@imP, #H V £ imP HEARZESEBL. K
fb e X R A e — AN LT R
(2)Let P' =1 — P, show that

v, ¢

(P2 =P ker P = im P’
PP =P'P=0 ker P’ =im P

10



(P)? =P ker P = im P’
PP =P'P=0 ker P’ = im P

(8)Prove that the decompositions V. = V3 ® Vs are one-to-one correspond-

ing to the projections P over V' through

Vi = kerP Vo =imP

> BEEANEV =ViaV, BV EWEY P Rt

V) = ker P Vo =imP

Exercise 13 Given a finite dimensional R-linear space V' and a linear trans-
form SV = V. IfS? = I, we say S is a reflection.
> EHE T A REAETEV AL EZTHR SV V. R S2=1,
MW S 2— MR AT
(1)Let FixS = {v € V : Sv = v}. Show that V = FixS @ Fix(-S§).

Can you give a geometry interpretation of these transform ¢

> BiE: (1) A FixS={veV:Sv=v}. iIEH V =FixS & Fix(-8). 1r&k
R RE G — AL RET?

(2)If dimFix(—S8) = 1, then we say S is a simple reflection. Prove that
Each reflection is a product of simple reflection. We use the convention that
product of nothing is identz’ty

& R dimFix(—=S) =1, A 2EKANHF S 2— A2 K& EHEN R4
T B R AT R %@NA'U ¥ T BB S i St B9 20

(8)For a finite subset R of V' \ {0} spanning V, and a fized vector v € R.

Show that there are at most one simple réflection S such that S(R) C R and

11



> HF R V\{0} WERTE RKART V, #ERZ -1 veR ILHE
SRA—NBRH S #/F S(R)CR H Sv=—

Problem 14 Consider M, (R) as an R-linear space. The subset of the in-

vertible matriz of M, (R) is written by GL,(R). If we regard M, (R) as R"*™,

then we can talk about open, closed subset over it.

> BE: B M,(R) LE—A R-&ME=E. AP EFERNTEIDH

GL,(R). R FEATH M, (R) B R™*", A2 BATE LLBEL £ @ 8y 7T A0 ]
(1)Prove that GL,,(R) is an open subset.

» #iF: (1) LA GL,(R) 2 —AF£.
(2)Prove that GLy,(R) is dense, that is, any matriz is a limit of a sequence

of invertible matrices.

> FE: L GL,(R) Z Aoy, BT [ #0= 5 A~ ¥] 2 22 [ 1| AR IR .

Fuxercise 15 Are there any nontrivial linear subspace U of M, (R) such that
all members of U are not invertible? What is the mazximal dimension of them?
And prove your statement.
> BE: £ M,(R) FRERFEFANTZEE U EREM U 78RR
W7 AT EH R AR S D2 AR L.

If you can give a right solution to this problem next time submitting

your homework, you can skip homework for a mouth (So the hint

is postponed to next week).

> FE WRAREEAET —RAE AR L B 4 X A 7] 7 — A IE 7 1 A7
& AR A=A A A B (BT AR T BLI).

12



Problem 16 (Fitting Lemma) Given a finite-dimensional R-linear space
V and a linear transform A:V — V.
B (Fitting 518 ) ¥ T — AN AR%E RABEZH V F—NE&ET#
A:V =V,
(1)Show that
ker A C ker A? C
imA Dim A% D
» B (1) A
ker A C ker A% C ...
im.A D im A% D

(2)Show that one of inequality achieves equality, then so are all the in-
equalities after it.
> EE: (2) IEAWR FRTEX—ANETHE, HLZEHALES WA
WA
Let
ker A® = ker A Uker A% U
imA® =im.ANim.4%2 N

ker A~ = ker 4 U ker .42 U
imA® =imANim.A%N

(8)Prove that they are all A-invariant, that is, A(ker A*) C ker A and
A(im A*) C im A,
> B (8) EHMmAIAE A W, Bl Aker A®) C ker A® MK
A(im A>) C im A,

(4)Check that Alxer as : ker A® — ker A is nilpotent, that is, (Alker 4> )™ =
0 for some integer n > 0, and Alim 4 : im A — im A is invertible.
> BE: (4) BIE Alger = : ker A — ker A ZFFH, Bl (Alker a~)" =0
AEMNEEH n, LK Aljm a= 1 im A® — im A &7 1 5.

(5)Prove that V = ker A @im A>.

13



> BIE: (5) I V = ker A @ im A>.

(6)If V =V1 @ Va such that A(V1) C Vi and A(Va) C Va, and Aly, is
nilpotent, and Aly, is invertible, then Vi = ker A, and Vo = im A*.
> EE: (6) RV =ViaVs £/ AV1)C Vi EVy, C W, Ay, EFEM,
Alv, 228, 24 V) =ker A, Vo = im A®.

Problem 17 (inverse formula of binomial) In this problem, we will get

the famous ‘inverse formula of binomial’.
> BT (ZHREAR) ARAFAY, KN ERINZLH ““HRELAR

1)Consider the linear space R[X|geg<n, show that for any a € R,
g
L(X —a),(X —a)?... (X —a)"!

forms a basis.
> BE: (1) FREUZE R[X]qegan, LA ENM a € R,

1,(X —a),(X —a)?,...,(X —a)"!

#j /%V\Q *‘ Z/EL % .
(2)Let

(17X7 X2a s ’anl) = (1a (X - a)v (X - a)2, R (X - a)nil)A(a)
Where A(a) is so-called ‘transition matriz’ Show that
A(a)A(—a) =1

Without calculate concisely.

(LX, X% ..., X" ) =A4(a) - (1,(X —a),(X —a)*,...,(X —a)" )



HeF A(a) IR XM FNERTAKITE, EH

A(a)A(—a) =1

(3)Prove that

'f)(l'11'>
0<i,j<n—1

(4)Given a sequence {x, : n = 0,1,...} and {y, : n = 0,1,...}, prove
that
a k i h
n= 30 () = o= S0
h=0 k=0
This is known as ‘“inverse formula of binomial’

> BiE: (4) A THF] {2, :n=0,1,...} 7 {y,:n=0,1,...}, IEH

k

me=3 (-1)" <f>,, =y = (1) @ N

h=0
TR A “ZTR N
(5)For two finite sets A, B, assume |A| = a,|B| = b, compute the num-

ber of surjective maps from A to B.

15



> BiE: (5) ¥ THENERE A B, B% |Al =a,|B| =0b, A % B W

3 Week3 (11 Mar - 17 Mar)
> #E: #F=RA (3 A 11 H-3HA17H)

Exercise 18 Give a example of matriz is not diagolizable.
> B B — AN A T

Exercise 19 Let the eigenvalues of A is {\;}1_, (with multiplicity), show
that det A = H:L 1
> B A A aﬁ EH* EEA {N}ry, EH det A =[], \i.

Exercise 20 If A is an eigenvalue of A, prove that f(\) is an eigenvalue of
f(A), where f is an arbitrary polynomial.
BT RN R AWEEE, EH fO) & f(A) WRER, £+ f REE

& TE %
% 3\

Exercise 21 (Naive Lie Theorem) Given two linear transforms of finite
dimensional space A, B, if their Lie bracket [A, B] = AB — BA = AB. Denote
V(A ) = {v: Av = pv} to be the eigensubspaces.

» #iF: (Ah&E Lie /f@)”‘*/”ﬁlﬂ AT AB WmRMNINEES
[A.B} AB — BA = \B. 10 VA(A) = {v: Av = v} ZFEETFZ ﬁ].

16



(1)Show that v € V,(A) = Bv € V,a(A).

> FE: (1) A v e V,(A) = Bv € V,ya(A)
Now assume that the base field is C.
» BE: THE, BRxEERE C.

(2)If A =0, show that A and B share some common eigenvector.

> BE: (2) R N=0, LA A B Aot HHIERE.

(8)In X\ # 0, show that A and B share some common eigenvector.

> BE: (3) R NA0, IEH A B HNEHAERE.
(4)Show that v € V,,(B) = Av € V,(B). (DO NOT DWELL ON IT. )
> EE: I v eV, (B) = Ave V,(B). (EAETIL.)

Exercise 22 (1)What is the eigenvalues of upper matriz?
> BEF: (1) LZABENREERTA?
(2) Without utilization of Jordan cardinal form, using induction, prove

that any matriz A € M, (C) is similar to some upper matriz.

> FE: (2) AFA Jordan AFVER, TR VIHE, IEAEMERE A € M,(C)
AMTEN L =R
(3)Use the fact of (2) to prove Hamilton-Caylay theorem.

> EIE: AlA (2) WE LKA Hamilton-Caylay 3.

17



(4)Show that if the eigenvalues of A is {\;}_,, then for any polynomial
f, the eigenvalues of f(A) is {f(\i)}1—,. Note that this argument also claim
the correspondence of multiplicity, where we can grasp more information than
> WF EHAER A WBEER (N, BLAHEREZTAKX )
EE {fO)Y,. EEIXERNT S m ?ﬁ*faﬁ 7, KL :%x w
'TEL {:{— /7 .

Exercise 23 Given a linear space V, and a linear transform A:V — V.
> BE T ARBEZTE V RAERR AV V.

(1)Let f,g be two relative prime polynomials. show that ker f(A) N
ker g(A) = 0.

(1) 4 EAANE % T, ¥ ker f(A) Nker g(A) = 0.

(Q)And, n addztwn, assume h = fg satisfying h(A) = O, show that
V =ker f(A) @ kerg(A).
> BFE: (2) WREMBK h=fg EF WA = O, iEHA V = ker f(A) @
ker g(A).

(8) What assumption should be made on f1, ..., fi such thatV = ker f1(A)®

.. ®ker fir,(A)?
> BFE: (3) MEZA fi,..., Jr EAMHBREES V = ker f1(A) & ... @
ker fr(A)?

(4)Assume the characteristic polynomial of A is f = fi'* ... I, with
f1,-- ., [s pairwisely coprime, show that V = ker f{"* (A) @ ... @ ker fI'* (A).
Note that this argument prove Fz’tting lemma @ again.

b B () B ABBESRRE f= M. fre, £ f . f AL
IE Efﬂ V =ker f{''(A) @ ... & ker fI=(A). 7EEF|XXIWIET — K Fitting

Problem 24 Here are some problems on diagonalizable matrices. It can be
considered as a successor of exercise @ But the conclusion below can also be

derived from the theory of A-matrices.

18



b B REE AT AEMNEE RTERE Y apIn R BE
TENE R4 & \-2EEELFE
(5)Prove that if there exists some polynomial f without multiple roots,
such that f(A) =0, then A is diagonalizable over C. That is, the matriz of
A is a diagonal matriz under some basis.
> BE: (5) MHWREEFANATERNESTR f 5 f(A) =0, T4 ALK
C Ee[xtm. BN, A ERAETHAEF R A,
Note that, the most important examples, projections and reflections, are
given in exercise IE and exercise @
> BE EEE, REEWAT, RA R4, BT T A T g
(6)Does reverse of (5) still hold?
> B (6) R1F (5) R TE X2

Ay
Ay
(7)If a square matriz A = ) . Show that A is diago-
As
nalizable iff so are A;’s.
/1'1
> BE: (1) B E A= ' CIEBR A X A S B AX
A,

Y A, #HE A
(8)If two complex diagonalizable matrices A, B satisfy AB = BA, show

that they can be diagonalized simultaneously, i.e.

Jinvertible P, such that PAP~Y, PBP~! is diagonal matriz

> BE: () MEFRANTMALEE A B %E AB = BA, iERMATT UL
7l Bt 7 4L, B

IT# P , {£{FPAP™, PBP~ &3 A%

19



(9)If a family of complex diagonalizable matrices {A;}icr satisfy (i,j €
I = AA; = AjA;), demonstrate that they can be diagonalized simultaneously,
i.e.

Jinvertible P, such that (i € [ = PA;P~" is diagonal matriz)

> BE: (9) R —IET A BN {Aiticr HE (1,5 €1 = AjA; = AjA,;),
TE B A AT DA [B] B X A Ak, B

ITH#EMP , EF(Gc[ = PAP™" 23 A%)

Problem 25 Ezxplain why the following plausible proof of Hamilton-Caylay
theorem is not eligible

> BE BENMTATREMEEWN Hamilton-Caylay % 32 89E B 2 1 A4 E
=4

Proof. Let f be the characteristic polynomial. Note that f(\) =
det(A\Z—A), by taking A = A, f(A) = det(AZ—A) = det(O) = 0.

The proof is complete. O
> BF:EH A f RFELZTX. EREE f(N) = det(\T — A),
WA A=AF f(A) =det(AZ — A) = det(O) = 0. FTIEAE. O

20



Problem 26 In this problem, we will get some analytic information of diago-
nalizable matrices. We will regard M,,(C) as a C-vector space with dimension
n? although this problem.
> B ARAFEEE, KNERE—LETHAEENBTER. RITEAK
B T M, (C) A—A n? % C-%k

(1)Given a polynomial f € C[Xy,...,X,], show that if f =0 (as func-

tion) over some open subset of C™, then f = 0.

7 ‘p‘_

f=0EA&EH), L f
(2)For a nonzero polynomial f in n variables taking its coefficients in
C, show that the subset {(x1,...,x,) € C* : f(x1,...,2,) # 0} is dense

in C".

,“ s ‘,JE J'L’] _/%U] t;i /t I [ C” E\l] 7? E’\ J:

> B B AEE 0 TARRSTR, EATE {(21,...,0,) € C"

flx1,...,x,) #0} £ C* H 2 EH
(3)Using the fact that if the characteristic polynomial of a matriz has

no multiple roots then it can be diagonalized to prove that the diagonalizable

21



matrices are dense in M, (C).

APPENDIX—hint to the ‘Bonus exercise’ last week @

By considering all the matrices A such that (1,0,...,0)A = 0,
one see the maximal dimension > n(n — 1). To prove it achieves
maximality, using induction. More precisely, pick a basis A for
U. Consider the rank of {first row of A € A}, if it has rank
0, the proof is complete. If of rank r > 1, then replace U by
{BXC : X € U} for some invertible B, C, one can assume, some
Ay,... A, € A with first row (1,0,...,0),(0,1,0,...),..., and
the other A;’s with first line and first r columns blank (WHY?).
Then {delate first cow and first colume of A € A} can not have
a invertible matrix (WHY, too?), so its dimension is no more
than (n — 1)(n — 2). By adding the first column, the dimension
of the linear space spanned by ‘the other A;’s’ is no more than
(m—1(n—-2)+n—1=(n—1)>2 If r < n— 1, then proof is
complete. In fact, it is a must that one of lines fails to be full rank
(WHY?).

4 Week4 (18 Mar - 24 Mar)

Exercise 27 Demonstrate that

. HWA (3 A 18 H-3 A 24 H)

Ay, Ay are square matriz and generally not of same size.

> EHiF:

by 77 [

22
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o Ay
is similar to . Where
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Exercise 28 Given a finite-dimensional linear space V' and a linear transform
AV =V, ilustrate that all the eigenvalues of A are 0 iff A is nilpotent.

> HiF RN ERELES \77 VA= MER®E AV >V, IEH AW
RAEEAZ 0 YEHRY A BFEN.

Exercise 29 (Trace) In this exercise, we will introduce the concept of trace.
Although the conception of trace is seldom mentioned in advanced algebra,
it abounds in several advanced algebras, and numbers of critical structural
information is under the sway of it.

> BN () EARAE, BAVE EA?
M%ﬁ”#ak’H%vﬁxdmﬁémw—w'gfl,fi
4.

Imitating what we have done for determinant, we define it firstly for

ETHMAEEER

matriz. Given an n X n matric A, the trace of A is defined to be sum of the
indices lying in main diagonal. More precisely, assume A = (a;;), then its
trace is written by tr A = a1 + ... + Gpn.

> B T BERAAIATEIA P (éxfﬂ’ EMESEEEXL. T —4N nxnfE
A, AWEHEEXHES AL TR M. B, B0 A = (a;5), ICEEF
trA=ai+...+an,.

(1)Demonstrate the following basic properties

tr(A+ AB) =trA+ A\ tr B tr(AB) = tr(BA)

And exploit them to illustrate that tr(PAP~') = tr A, so trace is stable under
basis change, thus it can be defined for linear transform of finite-dimensional

space.

> FE IR 2 T A A
tr(A+AB) =trA+ Atr B tr(AB) = tr(BA)

(1TRIEH tr(PAP™Y) = tr A, Frildi e £ % % TR %, 87 44 IR

””L?ﬁ%ﬁ&%&i%ﬂ

(2)Before proceeding the discussion, exemplify that

tr(ABC) not generally equals to tr(ACB)
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> B EBEE LA, 0T

tr(ABC)—#& =% F tr(ACB)

(8)Prove that for a matriz A of size n X n, the characteristic polynomial
of A

det(M — A) = A" + (=) Htr AN+ (. )N+ det A

Therefore, tr A is the sum of the eigenvalue (with multiplicity).
> BEEANT n A A, ARES TR A

detOA —A) = A"+ (=1)" T tr DN+ .+ (. )N+ det A
il tr A R EENMR (FHEHTE )

Problem 30 Synthesize the exercises above, demonstrate that a square ma-
triz A is nilpotent iff tr A¥ = 0 for all k > 1.

> BE: ZAELEIA, EH AN FME ARTLENY trAF =0 HHEE

Exercise 31 Recollecting problem @ concerning on Lie theorem. Under the
condition of [A, B] = AA with A\ # 0, we can plausibly draw the reasonable

conclusion that A is a nilpotent matrizx.

24



il % [A,B] =\, RIITLUEE A 25

> B EIZXT Lie REM )
THEMEWAELE L, EF N#0.
(1)Show that tr[X,Y] =0 for any couples of square matrices X,Y .
> BE: (1) [X,Y] =0 EFMAEN X,Y.
(2)Show that tr A™ = 0 for all positive integers n.

> FiF: (2) iEBH tr A" =0 X FTH EEHK n.

Problem 32 For a subfield K of C, given two square matrices A, B whose
indices take value in K, demonstrate that the sufficient and necessary condi-
tion that A and B are similar over K is simply that A and B get similar over
C. Feeling frustrated and constrained, to facilitate, you can firstly confine

yourself to the case K = R.

> BE: AT CXLTFHK, AN K L7 A B, iEH A% B & K EAHW
WRASEFHITR AM B A C LA E#REAEMZR, AL,
A

7B K =R.

EIR>

Exercise 33 InR2, classify all the linear transform A satisfying the following
properties

1) takes integer points to integer points, that 1s, maps o0 4~°, an
i) takes int ints to int ints, that is, A 72 to 72, and

(ii) possess finite order, i.e. for somen >0, A" =T.
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> FE: AR LR AHRRTIGHHEET SR A
(1) HERRIEL, BE, AK 22 BAE 22

(2) AFARHN, BI, #FEEANn>0, A" =T.

5 Week5 (25 Mar - 31 Mar)
> B FLBE 3H 25 H-3A31H)

Exercise 34 (1)Utilizing Jordan cardinal form, demonstrate that A is similar

to AT, where x| stands for transposition.

> BE: (1) FIA Jordan AREREGER A fn AT ML, HF o«T REKE.
(2)Applying theory of A-matrices, illustrate the same fact.
> B (2) AR NSRS A

Exercise 35 (1)Utilizing Jordan cardinal form, demonstrate that that A is

A B
similar to B iff that s similar to .
A B

< | _ v ] - 41
> EE: (1) A Jordan AFAERGEH A A B AEM L HRX Y | u

B
(7 ) me
B

(2)Applying theory of A\-matrices, illustrate the same fact.
> BE: (2) AR A8 B 8
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Exercise 36 Show that any matrices which commute with any matrices which

commute A are exact polynomial in A.

> BE EAEASETE A IR BWERTRENELEERE A WL T

Problem 37 (Jordan decomposition) We will show that each complex

square matrix A can be uniquely written as D + N, such that
D is diagoalizable N is nilpotent DN =ND

and, in fact, D and N are polynomials in A.
> BE: (Jordan 2 fR) HATEEEHAENE 7% A #YLULE—F R D+ N
TD‘ET
DT 3 A N#HE DN =ND

JFH,ELE DR NHZE ANSIARX.

(1 )Prove the existence e:cploztmg Jordan cardinal form.
> EIF: AlA Jordan ¥rVEREBAFE .

Denote V=R", Vx ={v €V :n> 0= (A— A)"v = 0}, where >
means ‘be sufficiently large’ We have shown in FEzercise @ that V=@, Vi,
with A going through all the eigenvalues of A.

> EF L V=R, Vi={veV:in>0=(A-A)"v =0}, £F > &£
AR, HAEEES E”.Iﬂ:%m V = @\ Vi, £ )\ ik A BTA AL
A&
1EL.

(2)Show that the projection from V' to each V) is polynomial in A, i.e. the
map 3, vu = va] where v, € V..

> BIE: (2) BV E V) MERAR A MR, BB [, 0,0 0] &

Fou, €V,
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(3)Illustrate that the desired D is a polynomial of A, so, so is N.
> BE: (3) IERAREEN D 2 AWEARN, TR, W=
(4)Prove the following nearly trivial conclusion that if NyNo = NoNy,
Ny, Ny are both nilpotent = Ny + Ny is nilpotent
> BIE: (4) MW THEFERNES, R NNy = NoN,

A\vl. \72 lﬁt }(?: '/Z; = 4\71 + A\vz }rg\ //\T;

(5)Demonstrate that the uniqueness.

> FE: ERFEK.

Exercise 38 Prove the multiplicative version of Jordan decomposition. Each

complex invertible matriz A can be uniquely written as DU, such that
D is diagoalizable U is unipotent DU =UD

Where U is unipotent’ means that U — I is nilpotent.
> B LB Jordan 4 fRENFEMIAR. AN HEZEME A HE—HTE K
DU, #+

DEBSH:RS UR 248 DU =UD
He U BRLHHENRE U -1 ZREW.
Are D and U still polynomzals in A?
p BE:HAED MU B—F2 AWETHD?

Fuxercise 39 (Exponent map) In this exercise, we will define exp for ma-
trices whose indices are all complex number. Recollecting the fact that for any
z € C,
* :expzé1+z+1z2+...+lz"+...
2 n!
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(In this occasion, 2 represents ‘is defined to be’ rather than ‘heating’ )
> BE (FEEBAT) ERFE AT, RATEMN EEMEE N exp BE. EZHT
Fx, AR 2 €C,

2 M
(%/’f(xp,flJr + 4. ..+é—+...
2 n!
. Ay e Y Ny e B 4
(ERE, = RR “GENXH"MWAR “WIk” )

Since it involves infinite series, certain analysis is required to ensure the
convergence. A well-known theorem is that different normsEI in Buclidean

space are all equivalent. Therefore, we will use this norm to proceed without

1A= [> layl? A= (ay)
\ 7

> B EHRPREFAK, RIOFE—LAMRARESLYE. — A F L8
RERRKAZ N TRMER S SN, FRRNTE ARG

loss of generality

A= ((I,,jj)

FAE AT B R AL
(1)Show that |AB| < ||A||l - ||Bl|. Consequently, ||A™| < ||A|".

> B (1) i ||AB] < ||A] - |BI. &, 47| < |A|".

Ak
(2)1llustrate that for each complex matriz A, {Z is an Cauchy
n=1
sequence.
Ak ,
> EE: LM ENEERE A, Z o & Cauchy 7.
k=0 n=1
1 We refer a norm of V to a map | - || : V = Rxq such that |la|| =0 <= a =0,
lla +bll < llall + [|b]] and [[Aal| = |A] - [[a|.
b B RAWEEHIGHE BRI ||V > Reg 8 |l =0 < a =0,

lla+0ll < [lall + [[oll B [[Aal| = [A] - [[a]l
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Now, we can define

(In this occasion, := represents ‘is defined to be’ rather than ‘said’ )

» FE: A, RATUEX

(EXE, = T WRXHA TR W7 )

(8)Demonstrate the following basic properties
ePAP™! = peApl AB = BA = e4eP = A+B

Where X € C.
> B (3) T A AR

ePAP™! = ped pl AB = BA = e/eP = A8
£+ NeC.
Al
A
(4)Compute e’ | where J(\) =
A
Al
A
> B (4) HE SN HF ) =
A

(5)Show that

AI:e)\I

A = ]



> B (5) iEH

dete? = e A

(6)Ezemplify that e”e® not in general equals to ePe?.

> BE: (6) BIIE ete? — A% T eBed.
(7)Prove that X (t) = [t — exptA] is a solution of the following differen-

tial equation

——=X)A
& (t)
by Calculating de%gm).
> B (7)EH X(t) = [t — exptA] R T FEHE
dX (t)
- =X(tA
dt (®)
Aitit 2

(8)Assume X = (z;5) and eX = (yi;), by regarding y;;’s as a function of
xi;’s, show that
aylch _ 1 (Zvj) = (ka h)
Ozijlx=0 |0 (i,5) # (k. h)
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> BE BIE X = (2) UK eX = (yiy), BEN vy WEE z;; WERBIEHA
1 (i,7) = (k,h)
X=0 0 (i,7)# (k,h)

(9)(Weak Hausdorff Formula)Illustrate that

OYkn

ox ij

exp(tX) exp(tY) = exp <t(X +Y)+ g(XY -YX)+ 0(t2)>

where o(t?) means certain function f with limy_o f/t*> = 0.
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> BN (9)(5 Hausdorff /»3) iE ¥

t _,
exp(tX)exp(tY) = exp </(X +Y)+ 7(XY -YX)+ ()(/,2))
H ot?) RREMNMER limyo f/t2 =08 f.

Problem 40 (Spectral radius) In Ezercise @, norm is introduced. Now,

let || - || be a norm of complex matriz. Show that
li_)IIl |A™||Y™ = max{|\| : \ is eigenvalue of A}

This result is known as ‘spectral radius formula’ which still holds over Banach

algebra. This formula is known as

> BE: (E27) EIABYE, RNNLT %, TH, A ||| £R—AEE
AzwL IIE B

”131; A" = max{|A| : AR A #9454E{H)
X—4E RN “GERERNRT, XX Banach = 8] AL gk ST .

6 Week6 (1 Apr - 7 Apr)

> BE: ZAEUALH-4A7H)
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Exercise 41 Given a complex invertible matriz A, what condition should
be made on A such that the group generated by A is bounded? That is,
{A™ :n € Z} is a bounded subset of C"*™.

> BE AT EESE A NZE A LA EES A ERWEER
Fee BI, (A" :ncZ) £ CY" FHHERE.

Problem 42 Reading Different proofs of Jordan norm form.
> FE: i (Jordan ARV EY JLAREBA )

Problem 43 (Cyclic subspace) Given a finite-dimensional C-space V', and
a linear transformation A over it. Let W be an A-invariant subspace of V

such that there is a basis eq,. .., e, such that

e AT AT g AT

we will call W an A-cyclic space belonging to A of dimension r. Prove that
W is A-invariant. Try to compute all the A-invariant subspace(s) of a cyclic
subspace.

> BE A TEE) & —NARSE C-EAERE V —ANHE EEH
T A. Clearly, the theorem of Jordan norm form claims that V is direct
sum of cyclic subspace. > W = V WW—" AT FZEEEFLE—HE
€1,...,e, FEH

>

A—AT A—AT A—AT
er H— .. — e +— 0

HAIW 2T \NHH N r Wy A f‘ﬁg FF =, B, Jordan FREER F BT
FV EAERTFZEWNERM. ZRITEBAFEEANIE AT FEHE.

Problem 44 For what kind of linear transformation over finite-dimensional

C-space has only finite many invariant subspace?

> BE: HEHENAERE CAETEWAKELE, AAARMMET=NR?

Fuxercise 45 Given a finite-dimensional C-space V', and a linear transfor-

mation A over it.
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> EE: BR—AAIRE C-AMZERV K EWAETHR A
(1)Let W C V be an A-invariant subspace. If under certain basis of W
the matriz of A is a Jordan block, show that it can be expanded to a basis

of V under which the matriz of A is Jordan norm form.

> EE AWCV BN ATETEN. WREW XAET, AWEHR
& Jordan ¥, AT UK XHET TRV A—HEEFR A £ E/H% T HY &
M2 Jordan AR/

(2) Exemplify that the ‘Jordan block’ above cannot be replaced with ‘Jordan

form’.

> BE: BIE ER “Jordan 7 T EEEIE AN “Jordan A7

Fuxercise 46 (Structural theorem of invariant subspace) Given a finite-
dimensional C-space V', and a linear transformation A over it.

P (AE TR g EE) R —ANFIRE C-AETHE V i—AHE
55 f/«L A A
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(1)Show that each A-cyclic subspace W belonging to X of V is of form
W=WU-\D'"U ke€Zsy V=UaU

with U A-cyclic and U’ A-invariant.

]

> BIELRER VA ABRTEE W HEEBTHR
=(A-\D'U V=UalU

a

Heb U BT TEE, AU 2 ATLH.
(2)Show that each A-invariant subspace W of V' is of form

W=WU-MND"U,®...0(A-\ D),
Where
e FEach \; € C and each k; € Z>y.

e Each Uy is A-cyclic and accepts an A-complement Uy, i.e. an A-

invariant subspace U{ such that Uy @ U] = V.

> HEF RSNV N ATETFER W HAEFEN
=A-MDMU @ ... B (A- N\, D) U,
Hoof
e BN eC, Bk € L.

. B4 U BE ABTBEE AAE UL, -4 A TETENE U] 18
UiaU =V.

Fuxercise 47 Recollect the exercise @ where violent computation is asked by
hint. But now, we can show it more abstractly without resorting to violence.
Let B be a linear transformation commuting with all the linear transformation

commuting with A.
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> B @'l\lf\]?@% RRTERFTEANITE. AERNTUERBZ N
WA, AR & A. A B E— MR A 72880 S0 2 40 7] 203k 09 414
pEz

(1)We firstly prove the weak form. That is

Yo € V,3f € C[X], such that f(A)v = Bv

Which is equivalent to that any A-invariant subspace is also B-invariant.

[

> BE BATE LIEHAFRA,
Vo e V,3f € C[X], such that f(A)v = Bv

RENTHEM AR TFTEELE B-TXH.
(2)Now deduce the conclusion by considering (V1, AT) where

Ver AN (g, o) e (Aug, . Aoy
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> B A AEBEIEE (VAT £
yon At (v1, ..., vn) — (Avg, ..., Av,,)
R 456
The above proof is a generation form of the proof due to Bourbaki of

density theorem due to Jacobson and Chevally.
> BiF: ERIEAR Jacobson #1 Chevally 1425 1% © 3 Bourbaki i ¥ 893 )~

7 Week7 (8 Apr - 14 Apr)

> B FEE (4 A8H-4H14H)

Exercise 48 Given an Hermitian matriz A, show that A 4 il is invertible
and (A — iI) (A +4I)~1 is unitary. Give a geometrical explanation.
71 Harmite 8% A, iEH A+il B # W H i(A—il)(A+il)~!

Exercise 49 (Bessel Inequality) Given an inner product space V| ifer, ... en

are pairwise orthogonal unit vectors, show that for any x € V

Note that we do not make assumption that V is finite-dimensional.
> WiF: (Bessel 7% ) T —AAHEE, 0k e,..., en A& W P IE3T I %
AHE, EANER zeV

= RATEH BV RHIREH.

!,WH

VE

Exercise 50 (Orthogonal projection) Recollect that projection is intro-
duced in exercise . Given an space V' equipped with an inner product, show

that for projection P the following statements are equivalent
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(a) ker P =imP+.

(b) imP = ker P+.

(c) the decomposition V' =ker P @ im P is orthogonal.

(d) P is symmetric.
(e) P is normal, i.e. PPT =PTP.

(f) (Pz,z) >0 forallzeV.

The projection satisfying the above condition is called orthogonal projection.

> EiF /ii’ﬂ%?ﬁ) EEE ﬁ/a % e 57 B di
BF % 4% L A

?\‘ﬂ

(1) ker P =im P+,
(2) imP = ker PL.
(3) ##F V =kerP ®imP REXH.

(3) P EAAM.
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R AR B ERHRY,

Exercise 51 (Orthogonal reflection) Recollect that projection is introduced

in ewercise
- 8 (E2AM) B A% T EdA .
(1)Given an space V' equipped with an inner product, show that for re-

flection S the following statements are equivalent

(a) FixS = Fix(-8)*.

(b) Fix(-S) = FixSt.

(c) the decomposition V = Fix S @ Fix(—S8) is orthogonal.
(d) S is orthogonal.

(e) S is normal, i.e. SST =STS.

(f) (Sz,z) > (x,z) forallz € V.

The reflection satisfying the above condition is called orthogonal reflection.

> BE: (1) B MARZE V, BN T RA S TAKEFNT
(1) ker P =im P+,
(2) imP = ker P+,

B) 2V =kerP®imP ZIERH.

(4) P 2EAL, B PPT =PTP.
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(5) (Pr.x) >0 HFA z V.

# £ 3R At RO B R 2 KA
(2)Let V' be a space equipped with an inner product. Let v € V' \ {0},
there is a unique orthogonal reflection S such that Fix(—S) = Rv, write it

down and show the uniqueness. It is called simple orthogonal reflection by v.

> EE MEEE—H—MRE S EF
Fix(—S) = Ruv, :auw B E v BB IER KA.

ow at 1n equippea wi e standard inner proauct, € mairixr

3)Show that in R™ equipped with the standard duct, the matri

of stmple orthogonal reflection by v is I — 2?@”@

> BE: EHAAERTAAEAMRE R L, BF v WEERXRAWEREE
T

I—27%.

Problem 52 (QR decomposition) In this problem, we deal with the fa-
mous QR decomposition.
> BEF: (QR ofR) EXANEA T, RNTEELEZFLH QR 4 #

Prove that each real square matriz A can be written as

(1)A = QR with Q an orthogonal matriz and R an upper matriz.

(2)A = RQ with Q an orthogonal matriz and R an upper matriz.

(3)A = QL with Q an orthogonal matriz and L an lower matriz.

(4)A = LQ with Q an orthogonal matriz and L an lower matriz.

> B ERAEA AN EME A #E LS )
(1)A=QR #+ Q REX4EM R ;E,t = B
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(2JA=RQ £F Q REXMEME R Z =AM,
(3)A=QL ¥ Q RIEEXMHESE L BT =A%,
(JJA=LQ H¥ Q REXRMEME L BT =fAKE.

(5)If A is invertible, we assume more that the diagonal indices of R or L

are positive, show that the decomposition is unique.
> BT (5) R AT, #H— PSRk RN ATEIEN, LR, 2% —
i

Problem 53 Given a finite dimensional R-space V.
> B AE—AEREZEMER V.
(1) What kind of linear transformation is orthogonal for some inner prod-

uct?

> BE (1) NEFNAEREEEANNRTHWER L2
(2)Given a finite set X of invertible linear transformation of V.. Assume

that X is a group, i.e.
IeX ABeX=>ABecX AcX=>A'leXx

Show that under certain inner product, all members of X are orthogonal.

> EE: BBV NTEAERRARNAERE X, BX X 28, N

ITeX ABeX=>ABecX AcX=>A'leX

42



WERAEENHNIRT, BTE X W R RAZ ERXH.

Problem 54 Given a unitary space V', show that a linear transformation A
is Hermitian iff (Az,z) € R for allz € V.

2

> HE: AE—NBESE, IEH—ANEETHR A £ Hermite #1% H L Y
(Az,z) eR X FrH z€V.

Problem 55 (1)For any complex square matriz A, show that there exists a

unitary matriz U such that UAU™! is an upper matriz.

[]

> B (1) HTEALAIE A EREE— TR U B/ UAU R E
=A.

(2)For any real square matriz A with all eigenvalue real, show that there
exists an orthogonal matriz P such that PAP~! is an upper matriz.
> BF: (2) NEMAAREEREZHNTE A EAFE - MEXE U
F/ UAU B E=fkETE.
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8 Week8 (8 Apr - 14 Apr)

> #E: %/\E (4 HA8H-4814H)

Problem 56 For any invertible square complexr matrix A and n > 1, show

that there exists a complexr matrix B such that B™ = A.

T A AMERES n > 1, EREELLEE B #4

Fuxercise 57 (Riesz functional calculus) Let V be a finite-dimensional
C-space, and A be a linear transformation of V. Let f be an analytic functionﬂ.
In this problem, we will define f(A) as much as possible.

X G >V E— I FRE C-LaMZH, A Z— 14K
, ; 2 G B RATEERA g E L f(A).
(1)If A— AT is nilpotent, and X lies in the defined domain of f, then we

can define

Show that this is well-defined.

2 We say a function f is analytic at p if there exists an €, > 0 such that

> f(k)
fopl<e = JE@=3 e
k=0 :

We say a function f is analytic if the defined domain D is an open subset of C and f is
analytic all over the domain.

> B RATL— DB f Ep EENMWEFE ¢, >0 EHF
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> B (1) R AN REZW, FE N E f WEXBE, AR U

pee

k=(

E A X & B E .
(2)If all of eigenvalues of A lie in the defined domain of f, then there

exists a unique f(A) such that for any A-invariant subspace W
f(Alw) = f(A)lw

whenever Alw satisfies the condition in (1). Further more, actually, f(A) is
a polynomial in A.

> HE: (2) mR ANFEERE f WEXRE, H2FEE—H f(A) &
B ATETER W

f(Alw) = f(A)|w

HE Alw R (1) 5. 3tHE, ZirE f(A) 2 A WZ T,
(8)Assume zy and € > 0 such that

¢y (,
mnl<e = g =3 T

k=0

If A — \T is nilpotent, and |\ — zo| < €, show that

nli)ngozn: %(A — 2I)* = f(A) defined in (1)

Note that, this generalize the exponential map in Ezercise @
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> B B oz A e>0 HE

|z — 20l <e = f(z2)= : }-'/4(, (z — 20)"
k=0
ﬁﬂ% .A*)\I %?\ E ‘A*Z()‘<E, IEHH
[ k __ S
”151; Z 200)" = f(A) defined in (1)

k=0
BB RS Eﬁlmﬂ e 4

(4)What is the most difficult, show that for two analytic functions f,g
with they composition g o f analytic, show that

(g0 f)(A) = g(f(A)

whenever all the above notation is defined, that is, all the eigenvalues of A

lie in the domain of f and are mapped by f into the domain of g.

> HF: HEWE, AN T BATER f,9 7 go f AT, LA
(g0 f)(A) = g(f(A))

B ERICTRAXE, B, iR A BREEA f XL, B# f B3] g 8
X .
(5)Show that exp in Ezercise @ is surjection to GL,(C).
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> FE: LAY R ' € X HY exp = 2| GL,(C) 4.
(6)Is exp : Mn( ) — GL,,(R) a surjection?
> B B A exp: M, (R) — GL,(R) 3 & #5 2

APPENDIX—PROPERTIES OF ANALYTIC FUNCTIONS

1. If f is analytic at z, with the radius €, then f is analytic at
every point of {w : |w — z| < €}. Further more, the radius of w is

no less than € — |w — z|.

Proor.  Without loss of generality, assume z = 0. Let f =
> axz*. Then

f@) =g m® = 3532 ar Yoh_((@ —w) + w)*
:ZZQOZ;’?L o ar ()W (z — w)"
_Zh 02 e kak() P —w)h
= O(Zh k( )arw"™ h) (z —w)t
_ZOO £ )|(w)( w)h

If the change of order ~ above holds, the proof is complete. Note
that

k k _
>0 2neo lak] () [w]* "z — w|

= > nzo larl(jw] + |z — wl)¥

< Do laxlfxl?

< 0 -- radius formula

A mathematical analysis theorem ensures the exchange of order i

2. If f, g are analytic at a, then so is fg.

30ne know that

o0 oo oo o0 o0 oo
DD lanml<oo= D > anm= 3 ) anm

n=1m=1 n=1m=1 m=1n=1
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Proor. Without loss of generality, assume a = 0. Let

= iak:ﬂk g(z) = i bpa"
k=0 h=0

Then
(fg)(x) = 33lgana® X250, by
= Z;o:o 2211 apbpxzh
”

=220 Yk n ARz’
=0 (Zé=k+h akbh) x

If the change of order < above holds, the proof is complete. Since
f or g is absolutely convergent, the exchange is ValidE.

3. If f is analytic at a, g is analytic at f(a), then go f is analytic

at a.

Firstly, the convergence of 3->°_, anm is clear. Secondly,

M o oo oo [eS) [eS) feS) e}
SPILMED S IL B DD S ED Sl S
m=1n=1 n=1m=1 n=1m=MN n=1m=M+

N =S} =S} oS}

Z Z |anm|+ Z Z |anm|

n=1m=M+1 n=N+1m=M+1

N oo 0o o

n=1m=M+1 n=N+1m=1

Given € > 0, pick N sufficient large such that the second term < €/2. And pick M sufficient

large such that for all 1 <n < N, 357/ lanm| < €/(2N).
4 Assume ¢; = Zz:k+h apby and h =372, cozt. Then

lh<nl  =|20p @iz g<n—
=|fg<n — X0zt (g — g<n—i)|
< |fg<nl + 2200 laimillg — g<n—il
< \f9<n|+Z 0|a1931Hg 9<n— z‘JFZZ alam\lg 9<n— il

Given € > 0, pick N such that n > N, |g — g<n| < ¢, if n —a > N, then the third term

n n n
D laiwillg = g<n—il <Y laiwile <Y lagzile
i=a i=a 1=0

Let n — oo, we get the desired result.
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Proor. Without loss of generality, assume a = f(a) = 0. Let

fl)=> aa®  gly)=> bny"
k=1 h=0

Then
(9o f)la) =35Zobn (04 akmk)h
=Y heo bn gy Anxa™
= 2nt0 L=t bnAnka”
= o (Zthl bhAhK> ¥
Note that

N M
tho ZK:l |bhAhK17K|

h App is polynomial in ay’s
< 3o bal [0 lawllzl*]"

with positive coeflicients.

Since @ — Y po; |ak||z|® is continuous, we can pick z sufficient
small so that it lies in the convergent circle of > 5 |bn|y" when

the sum above < oco.

Exercises seminar(11 Apr)
> BiF: AR (4 A 11 H)
Exercise 58 Show that
sl,(R) = span{[4,B] = AB— BA: A,B € M,,(R)}
is of dimension n?> — 1, a set of basis can be taken as
{Bun - Bty U {Eijlizy

and sl,(R) = {A € M,(R) : tr A = 0}.
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i

» EE: FEH

sl,(R) = span{AB — BA: A, B € M,,(R)}
AEAHEH n? -1, H—HETEHE
{Bu — Euliy U {Eij}iz
#HH s1,(R) = {A € M,(R) : tr A = 0}.
Fuxercise 59 For a matriz A € M,(Q), we shall show that if tr A =0, then
A is similar to some matriz whose entries in diagonal vanish.
> B AT A M, (Q), RITEEHALE trd=0, M4 A L

TENASATERE 0 HEME.

(1)Prove the argument for diagonal matriz.

> BE: XA R B 2 8

(2)Using rational norm form to deduce the conclusion.

> BE AAERERRGEIER.
(3)Does the statement hold for R or C?
> FE: R R K CAEXNEG?

Fuxercise 60 Prove that the ‘span’ in exercise @ can be omitted (how a-
mazing!). More exactly, for any matric X € M, (R) with tr X = 0, there
exist A, B € M,(R) such that AB— BA =X.

> B E9 D B pan” 2T LMW (£ F W), BRI,
MHAEEEME X € M, R) % tr X =0, A LHFEHE A B € M,(R) £
AB - BA=X.
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Fuxercise 61 Show that any complex matriz is a product of two symmetry

matrices. Does it hold for real case?

b B AR 4 4B AR AR A B I B AR 2 SN R R D 2

9 Week9 (15 Apr - 21 Apr)
> WE: EHAE (4 A 15H-4A21H)

Exercise 62 (1)Show that any orthogonal transform is a product of rotations.

Where rotation means that under certain unit orthogonal basis the matriz is

) . cosf) —sinf
in form of diag ;1.1 .
sin9 cos 6

B (1) EAEAEREMEAZ RN, Lt E XA LN

e cosf —sinf
EXETHEEHw diag ; ... 1.
sinf  cos6

(2)Show that any orthogonal transform is a product of reflections. Where

rotation means that under certain unit orthogonal basis the matriz is in form
of diag(—1,1,1,...,1).

> B (1) IEAETEREEMERAHRMN. LF KRS EXE B
ERETHEMER 4 diag(—1,1,1,..., 1).

Problem 63 Given two square matrices A, B, show that the matriz equation
AX = XB only admits zero solution if and only if A, B share no common

eigenvalue.
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> HIE: AT A DB, IEAESE TR AX = XB RAEZMBYHNY A B
To SEAFAEE.

Exercise 64 In this problem, we will deal with Hermitian matrices. Let A
be an Hermitz'anﬂ matriz, that is, AAH = AHA.
> BE EXAEAF, RAITEZAE Hermite 215, Assume the eigenvalues
of Aare M\, ..., \n. A A B—/ Hermite 58[%, Bl AAH = AHA. % A
BAEE R M, ..y A

(1)Show that there exists unitary matriz U such that UAU" is diagonal.

L]

> BE: (1) EAGFABEENM U F5F UAUN 22X AERE.

(2)For any continuous function f, there exists a unique matriz f(A)
whose eigenvalues are f(A1),..., f(An) and Av = v = f(A)v = f(\)v.

5the “H” is silent.
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> BB (2) MEMESEEK f, FEE—WER fA) EFEEE
FOM)s- s fO), B BA= AB = Bf(A) = f(A)B

(8)Assume the sequence {fn} converges to f uniformly in some neigh-
borhood of \1,..., \n. Show that lim,, . f,(A) = f(A).
> BE BIRFE {fu) —BBRSEE fE A, N IEANEEA. IEH
limy, 00 fn(A) = f(A).

Problem 65 Given a matric A € M, »,,(R), we can define the 2-norm as
follow

[All2 = sup

|Az|
TzER™ | |

where |(T1, -, %n or m)| = V]T12+ -+ [T or m|?

> FE: —HEE A€ M,yn(C), RATFT LR XK 2-50 40 T

Ax
|All2 = sup — |
rECn l‘
j;t; Efj ‘<'771 sy Ln or m)‘ - \/‘577'1 ‘2 + ...+ ‘.’Y?” or rrl,P'

(1)Show that

[All2 = supp =, [Az|
= SUpP|y|<1 |Az|

= inf{c € Ry¢ : |Az| < c|z|}

= inf{c € Ry¢ : |Az| < c|z|}

As a result, by analysis, the supremum achieves.

> BIiE: (1) i

[Allz = supp, -, [Az|
= Sup|, <1 |Az|
= inf{c € Ry : |Az| < c|z|}
= inf{c € Ry : |[Az| < c|z|}
TE, RESH, L5 FTHE.

(2)If U,V is orthogonal show that |[UAV |2 = || 4]|2-
> BiE: WR UV ZREX, |
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Fuxercise 66 (Singular value decomposition and polar decomposition)
Given a matrix A € My, xm(R), we will show there exist orthogonal matrices
P,Q such that

01

b
|
)

o2 Q

The elements lie in diagonal o1,...,0, are unique counting with the multi-
plicities, and are called the singular values of A. The above decomposition is
called singular value decomposition.

> B (5 REARBII) DR A € M (R), RIHELA S
TEIERHEME PQ #

g1
A=P 02 Q
H, WAL LWTE o1,..., o, BEIREHE—W, UM A NTRE. R
NIRRT F R E A

(1)Show the uniqueness.

> B LB E—

(2)If n = m and A is invertible, show that the decomposition ezists.

> EE: (1) wR n=m B AT, FHPMHEFE

(8)Prove the decomposition exists for arbitrary matriz.
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> B (2) AR — AR BT R B L
(4)Point what is | A||2 defined in Exercise @

> BE: (4) 45 T B e Al 2440
(5)Using SVD deduce the polar decomposition that any square matriz A

can be written as PC with P orthogonal and C semi-positive-defined. Explain
why it is called ‘polar decomposition’?

> EE: (5) M SVD BEIR i, BIEMT— T4 A JUE & PC &
PEXHCHERE. FEMBHMIENRN “Waif?

Fuxercise 67 We will concern on the topological properties of GL,(R) and
GL,,(C) encore.
> BEF: HATEF KX AXE GL,(R) f2 GL,(C) W#HEIMER.

(1)Show that GL,,(C) is connected.

> BF: (1) iEH GL,(C) R&EE .
(2)Show that GL,(R) is not connected.

> BF: (2) EH CGL,(R) T2 %8 8.
(3)Show that GL (R) = {A € GL,(R) : det A > 0} is connected.

> B (3) i GLI(R) = {A € GL,(R) : det A > 0} Z& .
(4)Show that SL,(R) = {A € GL,(R) : det A = 1} is connected.
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» FiE: (4) IE B SL,(R) = {A € GL,(R) : det A = 1} EEEH.

(5)Show that SL,,(C) = {A € GL,,(C) : det A = 1} is connected.

> BliE: (5) P SL,(C) = {A € GL,(C) :det A = 1} 2.

10 Week10 (22 Apr - 28 Apr)
> BE: S+ (4 A22H-4H28H)
Exercise 68 Given a matrix A € M,,(C), denote
ads : M, (C) — M,,(C) B+ [A,B]= AB— BA

be the adjoint map.
> HiE: H—MEME AeM,(C), it

ady : M, (C) — M, (C) B+~ [A,B]=AB — BA

2 B AT

Show that
(1) A is diagonalizable = diagonalizable is ad 4
(2) A is nilpotent = nilpotent is ad4
(3) A is diagonalizable < diagonalizable is ad g
(4) A is nilpotent <& nilpotent is ad 4
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X

> BiF: LEH

I

(1) ARTHARY = THILGE ady
(2) A AFENY = FRENL ady
(3) A ZTMAKE < THALEE ady
(4) ARFREN o FRENAZ ady

Exercise 69 Given a bilinear function f(—,—) over some R-linear space V.
Show that

Vr € ‘/af(mvx) =0 <~ Vx,y € ‘/af(x7y) = _f(yam)
> BE o NIEUETE V ERREE B f(—, ). EH

Ve eV, f(v,x) =0 < Va,y eV, f(z,y) =—f(y,z)

Problem 70 (Pfaffian) We will introduce Pfaffian for anti-symmetric ma-
trices.
» BiF: (Pfaff) BATEX KA BTN Plaff.

Let X = {z;; : 1 < i < j < n} be a set of indeterminants with i, j
integers. We take x;; = 0 and x;; = x;; for convenience.
> B (1) X = {;1;,-,\,- 1 <i<j<n} E—ELET, ¥ i, BEH.
KO FERAMN i =0, x5 = x45.

(1)Show that det(z;;) = (f/g)? for some polynomials f,g in X.

> B (1) A det(zy;) = (f/g)* EF f,9 £ X ®ZTA.
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(2)Prove that the g in (1) can be taken as 1, and the coefficients of f are
all integers.
> FE: (2) LA (1) FH g TUBUE (1), B f R EHEER.

Now, we fix a specific choice of f, and for anti-symmetric matriz A =
(ai;) denote PfaffA = f(a;;). Clearly, (PfaffA)? = det A.
> FHE: A, RNEE—MeEr f witE, FESRAIRERE A= (a;)
10 PfaffA = f(a;;). B4, (PfaffA)? = det A.

(3)Let A be an anti-symmetric matriz, show that Pfaff(BT AB) = det B -
PfaffA.

> BE: (3) A A RRXNMAEME, iEH Pfaff(BT AB) = det B - PfaffA.
(4)Let S be a symplectic matriz, that is, a matriz such that

Show that det S = 1.
> BE: () 4 S R—AEER, B—AMER

()

HYAE[E, FEH det S = 1.
(5)Prove that the determinants of anti-symmetric matrices with integer

coefficients are perfect squares.

> FE: (5) AR ERKEENTIAZ T LFTEK.

Fuxercise 71 Given a bilinear function f(—,—) over some R-linear space V.
Show that if

f(z,y) =0 < f(y,2) =0

then f is symmetric or anti-symmetric.
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the denominator, we use x, f(x,x)y — f(x,y)x instead. Then f(x, f(x,z)y —
flx,y)x) =0 implies

[ (@ 2)y — fz,y)z,2) = f(z,2)[f(y,2) = f(z,y)] = 0
This means
Ve,yeV,  (flz,2) =0)A(f(z,y) = f(y,2)) ()
What we need to show is
(Ve eV, f(z,x) =0) A (Va,y € V. (f(z,9) = f(y, 7)) (%)
Let
A={z eV, f(z,x)=0} B={zeV:VyeV, f(z,y) =0}

Note that
(x) @V =AUB (x¢¥) & (V=A orV=DRB)

If (xx) does not hold, pick a € A\ B,b € B\ A, then we shall consider the
‘reproduction’ of them, that is, a + \b.

o Ifa+ \b € A, that is,

0 = fla+Ab,a+ Ab) cat+Abe A
= f(a,a) + Af(a,b) + Af(b,a) + A f(b,b)
=0+ 2A\f(a,b) + A2 f(b,b) ‘cac€AbeB

The assumption b ¢ A indicates f(b,b) # 0. As a result, at most one
A # 0 such the above equality holds.

e Ifa+ \b € B, that is,

0 = fla+Ab,x)— f(z,a+ \b) a+AbeEB
o (a,x) *f(ﬂj,(l) +>\[f(b,$) 7f((£,b)]
= fla,z) = f(z,a) beB

But a ¢ B means f(a,x) # f(x,a) for some x.
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> B B AEEREER V EER AR f(—,—). ERE
flz,y) =0 <= f(y,2) =0
AL [ RAAREI B A KA.

Problem 72 (Maximal modulus principle) In this problem, we will prove
the famous ‘mazimal modulus principle for polynomials. Let F(z) be a poly-
nomial in z. We will show that for any zy € C, r > 0, there exists some z

with |z — zo| = r such that

|f (z0)| < | ()]

unless f is a constant.
> EIE (mABRE) EXANMEAE, RINEEN S TAERAEF LW “RA
W7 REE. A F(z) 2z EZOX. RMNEELEANEER 20€C, r>0, FE

Az BR7 |z — 2|l =r ER

£ (20)] <[£(2)

(1)Firstly, show the following orthogonal relation

2m S 1 n=m
L eeimt Jo =

2m Jo 0 n#m

where n,m are integers.
> B BARIEHAERXAR

1 n=m

1 27 )
5 / e'mfeimd gp —
™ Jo

4T

0 n#m

-
H n,m

W
<=

aE

Al
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2)Secondly, using the substitution z = zy + re’ show the argument.
Y g 9

> B HRAAER 2= B 20 =0,r =1 HIEH.
(3)Let w1, ..., w, be unit vectors on a plane, show that there are some

unit vector z such that

|z —wi| ..oz —wy| > 1

> EIE A w,.. ., w, = THLWEMHE, THAFEENENHEE 2 F15

|z —wy,| > 1

|z — wq| -

Problem 73 (Fisher’s inequality) Let k > 0 and A;,..., A, be subsets
of {1,...,n}. If |[A;NAj| =k for any i # j, show that m < n.

> BiE: (F'/'s'/l('r’ FER) A k>0, A, An & {1,..., n} W& R
|A; NA;| =k * THEE i # 4, iEH m > n.

11 Weekll (29 Apr - 5 May)

» B F+—F 4 A29H-5H5H)
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Exercise 74 For two complex matrices A, B, if [A,[A, B]] = 0, show that
[A, B] is nilpotent.

> BE: WHHA LS A B, Wk [A[A B] =0, if¥ [A,B] £E.

Exercise 75 For two real symmetric matrices A, B, if A is positive-defined,
show that exists some invertible P such that PT AP and PT BP are diagonal
simultaneously.

> BE A THEANKERE A, B, Rk A RERW, IEHAFET
# PTAP #n PTBP [F Bt 2t f1 46 %

Problem 76 Given two square matrices A, B, if AB = BA, show that there
exists invertible P such that PAP~' and PBP~" are upper matrices.

> Bk 4TAEME ADB, R AB = BA, TG ETHERE P #ER
PAP~!' fn PBP! #{ & L= A4 %

Can you generalize this conclusion to the case of k?
> BE RS E kMBS ?

Problem 77 Given two real square matrices A, B, if AB = BA, show that
det(A? + B?) > 0.

> BiF: HFANEE A B, InR AB = BA, iE# det(A? 4+ B?) > 0.

Fuxercise 78 Generalize Ezercise [T'f to the case of k.
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> BiE 4T BB ko

Problem 79 Letvy,..., v, w1,...,w, € V. Assume that for every R-linear

map f:V = R, (f(v1),...,f(vn)) and (f(w1),..., f(wy)) coincide up to
permutation of the indices. Deduce that (v1,...,vy,) and (w1, ..., w,) coincide

up to permutation of the indices.
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> EE: A v, oW, wn €V BYEKETR R-ZMBRE FV -
K, (f(v1),...,flwp)) # (fwy),..., fwy)) FiHIRFEXLTHE, i #
(V1. yvn) B (W, .. wy) AR E X TAEE.

Problem 80 Describe the connected components of

{A€M,(C): A™ =TI}

> BF R TRESAERNERL L

{A€M,(C): A™ =TI}

Exercise 81 Let A, B be two matrices of size n X m and m X n respectively.

(1)Show that
A" det(AT — AB) = A" det(I — BA)

In particular, the eigenvalues of AB and BA coincide except the number of

ZET0S.

> BE: LA
A" det(A — AB) = A" det(I — BA)

KR\ M, AB 1 BA BIAEEL T TR E#HE —FEW.
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(2)Let g be the minimal polynomial of AB and h be the counterpart of
BA, show that either

zh(z) =g(x)  h(x)=g(z) or h(x)=wg(z)

> BlE: 4 g & ABWR/ASZTK, h & BA W, LA THIE R EZ —

xh(z) = g(x) h(z) = g(x) h(z) = zg(x)

Last but not least, no matter whether feel frustrated or not, just enjoy

it, because it is math!

> BE: RE, TR TREEN, Tl F A H
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Here are the exam paper and the answer of middle term in 2019.

IR 2 G ST 7Y

2019 FF 4 H 24 H

B 1 (15 43). XFREEE n, iEH

{X eM,(R):tr X =0} =span{AB — BA: A, B € M,,(R)}
BE 2 (15 43). WERBHALTEE A, B /ENEREFEARALL, U At
IRy SEHE Rt AR AL
BRE 3 (20 43). WRWNEITIE A, B i AB = BA, iE#H

A, B 7 RlRI vt = A, B A] LA A AL

B)RR 4. XTAERYES LM VvV _ERdkitas e A, FRATEIEH

TEE v e VS {f(A)v: FRETIR} = V 4 HAY A A
{FME K] Jordan ¥t R —H.

(1)(10 %) it A BIFTAE RFEEEEN A, ..o A, BEES 5N

N1y vy T, UEAH
V=ker(A—MD)" @& ... ®dker(A— N\, I)"™

(2)(10 43) WA AT W AERGEE w € W {f(A)w:
FRETR) = W. WAL,
(3)(10 47) UEWIZEL.

B&E 5 (20 47). X n 4ERNRIEE V, 4R e, ... e, W
RABATPII AR, 5K B R .

A S PR R A
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BIEE 1 (15 4%). JAL. SR, 55\ Exercise 3. > bs.

BIE 2 (15 4). 5. 55PUJE Problem 6. =Y

EI8E 3 (20 4Y). . SJEEYHT. % Problem 7 (8). >Jp4.
Bl 4. (1)(10 47) JFdH. R YEE. 5=/ Ecercise 6 (4). 2@@.

BIRE 4. (2)(10 93) AEBEAL T W, EHREE/DWAEFZ A F 55
f(Av e W, BANEH f(A)v BR2ZERE w. F£E 2 e W, 8K x = g(A)v,
fERBRE g = df +r, T52& r(A)v =2 — d(A) f(A)v, BN r IRECE /N, X8
ffir=0. X 2 =dAf(Av=dAw.

&R 4. (3)(10 43) SGiEMI M. B (1) RO, FE o € V E
3 ker(A — NI)™ = {f(A)x;}. ¥ fAE N LJEIT, ATEIAEAH x;, (A —
NL) g,y (A= NI)™ ay SR BEAS ker(A — NZ)™ R AT I FRIXFE I A B
TG, W EHORUE AT AL RO — A, FEIRHFE T, A O REANRHEE A A —
B Jordan FRUERS. 2, BB ker(A — NI)™ #RALIEIA T3 0], BBEARAT]
H oz, (A= ND)xiy .., (A= NI)" Loy BREL A 21+ ..+ 2 FURTHEE SR
PRI v BN (1) B0 TR 0, 30 200 p; 15 2, = pi(A)v.

EJRE 5 (20 47). Wler,... es ZRMEASC, Rkt o0 R4 IE 1 REPEAT 2]

L::Z)\iei:Z)\ieiZZR A >0,AuBC{l,...,s}
icA i€B
Bt A, B AE%, 3B 0 < (L, L) = (R, L) < 0, FJ&, i A, B ZHuHZE.
PERFERPE S BRI S5 ey = 0 FEP A, > 0. SKBEAA s = — 1, ¥ E5%
e, ERAREEI N = 0. BEEBR I, e, ... epmg ZRMEMDE, T r <n+1.
AT RN RAR, W AE VA NE, R ey, £E IS AM A5 TR AR L
ey el MNBU N, ERE

<€; — €Cnt1, 6;‘ - €€n+1> = <€;,€}> + € (ent1, ent1)

HfEN 0<e< \/max#j | <eg,e;.> |
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Here are the exam paper and the answer of middle term in 2018.
- Ay N M2 \\ »
AR At
2018 4= 5 H 03 H

B& 1 (10 47). XN T&MWTFR V, #V=AeB=CaoD, H
A C C, Ril:
C=Aa(BnN0O)

BEE 2 (10 4). W BAE T AB ALY E ALY

GBIt

[B]72 3 (10 47, Bessel AFR). T R-AMZE V(FeHR
), BHRANBELIAE ey, .., e, WHIER, SRIE, SHET 2 € V,

() = 3" | Gei)

B8R 4 (20 4%, Schur NFX). LW SEANEEFE A #FEHL
Bl E=M. Bk, G UR UNU = B, {1 ROt
HiE) F =AM T 615

A=UTU !

o | 2 BT Jordan BHAC BUFRAT 4 UM RS —AERT—
A RS | = 0 A

BJRE 5(25 47). W1 C-&EziE vV, KAWL A, B,
H A, B arsg e, Kilk:

A, B WX <= A, B AT A Ml

LT (JRIIT) e 41 0 B A7 6 — AL, FEIRALIE TR, () 2
PEASHOR B HORRE () RN ARARE. #eE 2, fEfE—All (A35)
AL FJRe L 5
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BF 6(25 43, Jordan 73f#). XTTAHRYE C-ZH=H V, A 2
H BRI A e, AR H PR TIE W~ Jordan 7 ffA71E
HiE—
A=D+N
Hi DN #2E V ERZRPEAR#e, Hj2
o D HIUX L. WBFZ, FAE—HE e, . 6, FFEME

)\1,...,Ai ’TE?%L Dei:)\iei, XTJ'Q/I\ ISZSTL (Eﬁ'ﬁﬁ%
FAF)

o N RWEN. BIELE m >0 15 N = 0. (REHEA)
o AMHE D, N wAcH. Bl AD = DA, AN = NA. (A2 H#k
%AF)
AR AENMRARBWOTIRENDR, TEMBRITATESHES
(RIEFAZEMRAIS 5 47).
HAERAAEE D B MLk EROZIEHEEHAIE A B PTE RHIE
B, (HRIX T ERE AR, Ak, B A FRHE 2 0N
FXO) = (X =A)™ . (X =X)™  AL,....\, € C FFIAR
I Hid g THRAEE N BT 25 1A)

Vi=ker[(A—\)"]CV

(1)(5 4%) IEM: V; & A-ARAE 1450,
(2)(5 4%) EHH:
V=Vi®...0V,

PR | REFEAMNFHALRNZHR f,g BV = ker f(A) @
ker g(A).

(3)(5 47) WEM]: XAMER 1 < j < n, FAEZT f;(X) 15

[fj(.A)](Ul—F...—FUk) =, Yv; € V;
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PUBE [f(A) () = v Mi=4, T =022+ LG
[ Bézout EIH.

BEAR MG, £ (X) BAH
D(X) = Mfi(X)+...+ M fe(X)  N(X)=X-D(X)

4
D=D(A) N =N(A)

(4)(5 47) WEBH: W1 BB DN B2 Jordan SRR =2 ER. R
F, gy, DN HEEILZ A K2 T
(5)(5 71, ME—E) & D', N i & Jordan 7Rt = 252K, N

=D,N' =N

AR EXBRAEREE 5 e, BEREEBRIEHE 5
HEERFRIIE L D & A MBI, FMEEFWH
AT R A B 2 R RE 0.

S I AR

B 1 (10 7). ®H, AN(BNC)C AnB=1{0},  AnB = {0}. Ik
Ve CCV, Mlae=a+b HFacACCbeB Mb=x—-acC, ik
beBNC, H C=A+(BNC). 4 Lfiid C=Aa (BNO).

B 2 (10 43). SEWHEAR TR B A B MR Jordan FrifER

Jasda, 0l (A A>,<B B) ﬁj\%wfmu%( J)(JB )F%’@

A B

& Jordan FRifER, & ( A) ,( ) ARARL, T ( > < )
HAMZE—2 Jordan REJHES, 11 Ja4 1 Jp B Jordan B IFZIX¥E Jordan Bk

f—2F, W Ja 5 Jp ML (BRI TE)
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Bl 3 (10 43, Bessel AFER). (z,¢;) IE2& o 1F e; LM, ZI)E K,
fEy=a-=31" (2 e)e;, W y L e MMER 1 < <n. HRYE 2 EH
2

+lylP* >

2 n

=3 J(a,e) P

i=1

n

Z <1'7 ei> €;

=1

n

Z (z,ei)e;

=1

1] =

FHIE.
iBlRE 4 (20 47, Schur ~FR). WIBABIEAEH, A SHRERE, #id
FALAL, NGRS ), T T A A (A — AT TR A, TEIX
LT A MR

A%

(o )

A BRI (3 A) GRIE RIS EAHE (S PR AT AR R RO 1

=R (Jordan FrER), LLA QR F1if.)
e — B, R AR BRI SR, R A, B IERXHEE T IR A, B,

ME;
AiEIdIEBEE U E, Be A = , o\, BHANH
B
By ... DB
[, % B i AFFER 733 B = Do |, Wik AB = BA 53|
Bui ... DB

NiBij = X\jBij, RIREGE Ny PIRIARE, # B;; = O % i # j. Wt B =
Bll
, AN B wixt fafk, By thalstfatk, & P, 15 P,B, Pt
Bk,
Py
okt AR, W P = . PAP~' = A, H PbP~! Xt fRE.
Py
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Bl# 6(25 43, Jordan 73fR). (1) {EE z €V,
(A=X\)" (Az) = A(A = X\)"z=A0=0

(2) B, b f,g B, H fg(A) = O B, V 2 ker[f(A)] @ ker[g(A)].
RIEZ A Bézout B, F1E w,o 15 fut+gv = 1, M Vo € V,
= u(A)f(A)z +v(A)g(A)z, H g(Au(A)f(A)z =0, f(A)v(A)g(A)z =0,
MV = ker[f(A)] + ker[g(A)]. # x € ker[f(A)] Nker[g(A)], W f(A)z =
0,9(A)z =0, M\l x = u(A)f(A)z + v(A)g(A)x = 0, HZEEA.

WRIE, FRXE, HF (X = )™ M /(X — )™, RGETFZHE
ker[f/(X — A\)™] LIAghAT43.

(i B LS, TP R, (R B R N LRI 750 2
LA 0. )

(3) %J& F, = (X /\) —, MATTE BT, A Bézout & B, fEE w; 113
S wiF =1, W f = iy EEF fi(vy) = 0 %0 £ § N, A S RAE
fitvj)=v; Mi=7,1M =02i#j.

(4) BA @ 3 V; B3, AT RIS & — AR (BN EA). H D S
AV BERRECR, TR AL, T KA B R 40 0, FRRIEZ T
WA X A LIS R e 2 2

5) B A=D +N', H AL D N Z#, MEHEHN DN Z& AMZH
A, DN WE DN X MDD =N -N. RENT =0, N" =0
RN AE e, B DURIH IR v 18 (W — N)™ = O, it w %, 1 D, D’
(R Sy m] 22 e H AT LIOGE A 40 v 15 ] DLIE S S fA 4k, BROR 3 2 A RE R AR AR #T N 0,
MEREHAEET D — D ZX M, I D =D ¥ N =N
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