
Reference Documentation

Version 1.3.2

Last Updated August 1, 2011 (Latest documentation)

Copyright © 2004-2008 Mark Pollack, Rick Evans, Aleksandar Seovic, Bruno
Baia, Erich Eichinger, Federico Spinazzi, Rob Harrop, Griffin Caprio, Ruben
Bartelink, Choy Rim, Erez Mazor, Stephen Bohlen, The Spring Java Team

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that

each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Framework (Version 1.3.2) ii

1. Preface .. 1

2. Introduction ... 2

2.1. Overview .. 2

2.2. Background ... 2

2.3. Modules .. 3

2.4. Usage Scenarios .. 4

2.5. Quickstart applications ... 5

2.6. Associated Spring.NET Projects ... 6

2.7. License Information ... 6

2.8. Support ... 6

3. Background information ... 7

3.1. Inversion of Control .. 7

4. Migrating from 1.1 M2 .. 8

4.1. Introduction ... 8

4.2. Important Changes .. 8

4.2.1. Namespaces .. 8

4.2.2. Core ... 9

4.2.3. Web ... 9

4.2.4. Data ... 9

4.3. Support for .NET 4 .. 9

I. Core Technologies .. 10

5. The IoC container .. 11

5.1. Introduction ... 11

5.2. Container overview .. 11

5.2.1. Configuration metadata ... 12

5.2.2. Instantiating a container .. 13

5.2.3. Using the container ... 17

5.2.4. Object definition overview .. 17

5.2.5. Instantiating objects .. 19

5.2.6. Object creation of generic types ... 21

5.3. Dependencies .. 23

5.3.1. Dependency injection .. 23

5.3.2. Dependencies and configuration in detail .. 30

5.3.3. Declarative Event Listener Registration .. 39

5.3.4. Using depends-on ... 41

5.3.5. Lazily-initialized objects .. 41

5.3.6. Autowiring collaborators ... 42

5.3.7. Checking for dependencies .. 43

5.3.8. Method injection ... 44

5.3.9. Setting a reference using the members of other objects and classes. 47

5.3.10. Provided IFactoryObject implementations ... 51

5.4. Object Scopes ... 51

5.4.1. The singleton scope .. 52

5.4.2. The prototype scope .. 52

5.4.3. Singleton objects with prototype-object dependencies 53

5.4.4. Request, session and web application scopes ... 53

5.5. Type conversion .. 53

5.5.1. Type Conversion for Enumerations .. 54

5.5.2. Built-in TypeConverters .. 54

The Spring.NET Framework

Spring Framework (Version 1.3.2) iii

5.5.3. Custom Type Conversion .. 55

5.6. Customizing the nature of an object .. 57

5.6.1. Lifecycle interfaces ... 57

5.6.2. IApplicationContextAware and IObjectNameAware 58

5.7. Object definition inheritance .. 59

5.8. Container extension points ... 60

5.8.1. Obtaining an IFactoryObject, not its product ... 61

5.9. Container extension points ... 61

5.9.1. Customizing objects with IObjectPostProcessors ... 61

5.9.2. Customizing configuration metadata with ObjectFactoryPostProcessors 66

5.9.3. Customizing instantiation logic using IFactoryObjects 71

5.10. The IApplicationContext .. 72

5.10.1. IObjectFactory or IApplicationContext? .. 73

5.11. Configuration of IApplicationContext ... 73

5.11.1. Registering custom parsers .. 74

5.11.2. Registering custom resource handlers ... 75

5.11.3. Registering Type Aliases ... 76

5.11.4. Registering Type Converters .. 77

5.12. Added functionality of the IApplicationContext ... 77

5.12.1. Context Hierarchies ... 77

5.12.2. Using IMessageSource .. 78

5.12.3. Using resources within Spring.NET .. 80

5.12.4. Loosely coupled events ... 80

5.12.5. Event notification from IApplicationContext ... 81

5.13. Customized behavior in the ApplicationContext ... 83

5.13.1. The IApplicationContextAware marker interface 83

5.13.2. The IObjectPostProcessor .. 83

5.13.3. The IObjectFactoryPostProcessor ... 83

5.13.4. The PropertyPlaceholderConfigurer .. 83

5.14. Configuration of ApplicationContext without using XML ... 83

5.15. Service Locator access ... 84

5.16. Stereotype attributes ... 85

6. The IObjectWrapper and Type conversion ... 86

6.1. Introduction ... 86

6.2. Manipulating objects using the IObjectWrapper ... 86

6.2.1. Setting and getting basic and nested properties .. 86

6.2.2. Other features worth mentioning .. 88

6.3. Type conversion .. 88

6.3.1. Type Conversion for Enumerations .. 89

6.4. Built-in TypeConverters ... 89

6.4.1. Custom type converters ... 90

7. Resources .. 91

7.1. Introduction ... 91

7.2. The IResource interface ... 91

7.3. Built-in IResource implementations .. 92

7.3.1. Registering custom IResource implementations ... 92

7.4. The IResourceLoader ... 93

7.5. The IResourceLoaderAware interface ... 93

7.6. Application contexts and IResource paths ... 94

The Spring.NET Framework

Spring Framework (Version 1.3.2) iv

8. Threading and Concurrency Support ... 95

8.1. Introduction ... 95

8.2. Thread Local Storage ... 95

8.3. Synchronization Primitives ... 96

8.3.1. ISync .. 96

8.3.2. SyncHolder ... 96

8.3.3. Latch .. 97

8.3.4. Semaphore .. 97

9. Object Pooling ... 99

9.1. Introduction ... 99

9.2. Interfaces and Implementations .. 99

10. Spring.NET miscellanea .. 100

10.1. Introduction ... 100

10.2. PathMatcher ... 100

10.2.1. General rules ... 100

10.2.2. Matching filenames ... 100

10.2.3. Matching subdirectories ... 101

10.2.4. Case does matter, slashes don't ... 101

11. Expression Evaluation ... 103

11.1. Introduction ... 103

11.2. Evaluating Expressions ... 103

11.3. Language Reference ... 104

11.3.1. Literal expressions ... 104

11.3.2. Properties, Arrays, Lists, Dictionaries, Indexers 105

11.3.3. Methods .. 106

11.3.4. Operators .. 106

11.3.5. Assignment ... 109

11.3.6. Expression lists ... 109

11.3.7. Types .. 109

11.3.8. Type Registration .. 110

11.3.9. Constructors .. 110

11.3.10. Variables ... 110

11.3.11. Ternary Operator (If-Then-Else) ... 111

11.3.12. List Projection and Selection .. 111

11.3.13. Collection Processors and Aggregators .. 112

11.3.14. Spring Object References ... 115

11.3.15. Lambda Expressions .. 116

11.3.16. Delegate Expressions ... 117

11.3.17. Null Context ... 117

11.4. Classes used in the examples .. 117

12. Validation Framework .. 119

12.1. Introduction ... 119

12.2. Example Usage .. 119

12.3. Validator Groups ... 121

12.4. Validators .. 121

12.4.1. Condition Validator ... 121

12.4.2. Required Validator .. 122

12.4.3. Regular Expression Validator ... 122

12.4.4. Generic Validator .. 123

The Spring.NET Framework

Spring Framework (Version 1.3.2) v

12.4.5. Conditional Validator Execution ... 123

12.5. Validator Actions ... 124

12.5.1. Error Message Action .. 124

12.5.2. Exception Action ... 124

12.5.3. Generic Actions .. 125

12.6. Validator References .. 125

12.7. Progammatic usage .. 126

12.8. Usage tips within ASP.NET ... 126

12.8.1. Rendering Validation Errors ... 127

12.8.2. How Validate() and Validation Controls play together 128

13. Aspect Oriented Programming with Spring.NET .. 130

13.1. Introduction ... 130

13.1.1. AOP concepts ... 130

13.1.2. Spring.NET AOP capabilities ... 131

13.1.3. AOP Proxies in Spring.NET .. 132

13.2. Pointcut API in Spring.NET ... 132

13.2.1. Concepts ... 133

13.2.2. Operations on pointcuts ... 133

13.2.3. Convenience pointcut implementations ... 134

13.2.4. Custom pointcuts ... 136

13.3. Advice API in Spring.NET ... 137

13.3.1. Advice Lifecycle ... 137

13.3.2. Advice types ... 137

13.4. Advisor API in Spring.NET ... 142

13.5. Using the ProxyFactoryObject to create AOP proxies ... 142

13.5.1. Basics ... 143

13.5.2. ProxyFactoryObject Properties ... 143

13.5.3. Proxying Interfaces .. 144

13.5.4. Proxying Classes ... 146

13.5.5. Concise proxy definitions .. 146

13.6. Proxying mechanisms ... 147

13.6.1. InheritanceBasedAopConfigurer ... 148

13.7. Creating AOP Proxies Programatically with the ProxyFactory 148

13.8. Manipulating Advised Objects .. 149

13.9. Using the "autoproxy" facility .. 150

13.9.1. Autoproxy object definitions .. 150

13.9.2. Using attribute-driven auto-proxying .. 155

13.10. Using AOP Namespace .. 155

13.11. Using TargetSources .. 156

13.11.1. Hot swappable target sources ... 157

13.11.2. Pooling target sources .. 157

13.11.3. Prototype target sources ... 158

13.11.4. ThreadLocal target sources ... 159

13.12. Defining new Advice types ... 159

13.13. Further reading and resources ... 159

14. Aspect Library .. 160

14.1. Introduction ... 160

14.2. Caching ... 160

14.3. Exception Handling .. 162

The Spring.NET Framework

Spring Framework (Version 1.3.2) vi

14.3.1. Language Reference .. 165

14.4. Logging ... 165

14.5. Retry ... 167

14.5.1. Language Reference .. 168

14.6. Transactions ... 168

14.7. Parameter Validation .. 168

15. Common Logging ... 170

15.1. Introduction ... 170

16. Testing ... 171

16.1. Introduction ... 171

16.2. Unit testing .. 171

16.3. Integration testing .. 171

16.3.1. Context management and caching ... 172

16.3.2. Dependency Injection of test fixtures .. 172

16.3.3. Transaction management .. 174

16.3.4. Convenience variables ... 175

II. Middle Tier Data Access .. 176

17. Transaction management ... 177

17.1. Introduction ... 177

17.2. Motivations .. 177

17.3. Key Abstractions ... 179

17.4. Resource synchronization with transactions ... 180

17.4.1. High-level approach .. 181

17.4.2. Low-level approach ... 181

17.5. Declarative transaction management .. 181

17.5.1. Understanding Spring's declarative transaction implementation 182

17.5.2. Example of declarative transaction implementation 183

17.5.3. Declarative transactions using the transaction namespace 185

17.5.4. Transaction attribute settings .. 190

17.5.5. Declarative Transactions using AutoProxy .. 191

17.6. Programmatic transaction management .. 192

17.6.1. Using the TransactionTemplate .. 192

17.6.2. Using the PlatformTransactionManager .. 194

17.7. Choosing between programmatic and declarative transaction management 195

17.8. Transaction lifecycle and status information .. 195

18. DAO support .. 196

18.1. Introduction ... 196

18.2. Consistent exception hierarchy .. 196

18.3. Consistent abstract classes for DAO support .. 199

19. DbProvider ... 201

19.1. Introduction ... 201

19.2. IDbProvider and DbProviderFactory ... 201

19.3. XML based configuration ... 204

19.4. Connection String management ... 205

19.5. Additional IDbProvider implementations ... 206

19.5.1. UserCredentialsDbProvider .. 206

19.5.2. MultiDelegatingDbProvider ... 207

20. Data access using ADO.NET .. 209

20.1. Introduction ... 209

The Spring.NET Framework

Spring Framework (Version 1.3.2) vii

20.2. Motivations .. 210

20.3. Provider Abstraction .. 211

20.3.1. Creating an instance of IDbProvider ... 212

20.4. Namespaces ... 212

20.5. Approaches to Data Access .. 212

20.6. Introduction to AdoTemplate .. 213

20.6.1. Execute Callback ... 213

20.6.2. Execute Callback in .NET 2.0 .. 213

20.6.3. Execute Callback in .NET 1.1 .. 215

20.6.4. Quick Guide to AdoTemplate Methods ... 216

20.6.5. Quick Guide to AdoTemplate Properties ... 218

20.7. Transaction Management .. 219

20.8. Exception Translation ... 219

20.9. Parameter Management .. 219

20.9.1. IDbParametersBuilder .. 220

20.9.2. IDbParameters ... 220

20.9.3. Parameter names in SQL text ... 221

20.10. Custom IDataReader implementations ... 221

20.11. Basic data access operations ... 221

20.11.1. ExecuteNonQuery .. 222

20.11.2. ExecuteScalar .. 222

20.12. Queries and Lightweight Object Mapping .. 222

20.12.1. ResultSetExtractor ... 222

20.12.2. RowCallback ... 223

20.12.3. RowMapper .. 224

20.12.4. Query for a single object .. 225

20.12.5. Query using a CommandCreator ... 225

20.13. DataTable and DataSet ... 227

20.13.1. DataTables .. 228

20.13.2. DataSets .. 228

20.14. TableAdapters and participation in transactional context ... 230

20.15. Database operations as Objects ... 231

20.15.1. AdoQuery ... 231

20.15.2. MappingAdoQuery .. 232

20.15.3. AdoNonQuery ... 232

20.15.4. Stored Procedure ... 233

21. Object Relational Mapping (ORM) data access .. 235

21.1. Introduction ... 235

21.2. NHibernate .. 236

21.2.1. Resource management ... 236

21.2.2. Transaction Management ... 237

21.2.3. SessionFactory set up in a Spring container ... 238

21.2.4. Implementing DAOs based on plain Hibernate 1.2/2.x API 240

21.2.5. Declarative transaction demarcation .. 242

21.2.6. Programmatic transaction demarcation .. 244

21.2.7. Transaction management strategies ... 245

21.2.8. Web Session Management ... 245

21.2.9. Session Scope ... 246

21.2.10. Integration Testing ... 246

The Spring.NET Framework

Spring Framework (Version 1.3.2) viii

III. The Web .. 248

22. Spring.NET Web Framework .. 249

22.1. Introduction to Spring.NET Web Framework ... 249

22.2. Comparing Spring.NET and ASP.NET .. 250

22.3. Automatic context loading and hierarchical contexts .. 251

22.3.1. Configuration of a web application ... 251

22.3.2. Context hierarchy .. 253

22.4. Dependency injection for ASP.NET pages ... 254

22.4.1. Injecting dependencies into controls ... 255

22.4.2. Injecting dependencies into custom HTTP modules 256

22.4.3. Injecting dependencies into HTTP handlers and handler factories 256

22.4.4. Injecting dependencies in custom ASP.NET providers 257

22.4.5. Customizing control dependency injection .. 258

22.5. Web object scopes ... 259

22.6. Support for ASP.NET 1.1 master pages in Spring.Web ... 259

22.6.1. Linking child pages to their master page file ... 261

22.7. Bidirectional data binding and data model management .. 261

22.7.1. Data binding under the hood .. 265

22.7.2. Using DataBindingPanel .. 270

22.7.3. Customizing model persistence .. 271

22.8. Localization and message sources ... 271

22.8.1. Working with localizers ... 272

22.8.2. Automatic localization with localizers ("push" localization) 273

22.8.3. Global message sources ... 274

22.8.4. Applying resources manually ("pull" localization) 275

22.8.5. Localizing images within a web application .. 276

22.8.6. User culture management ... 276

22.8.7. Changing cultures .. 277

22.9. Result mapping .. 278

22.9.1. Registering user defined transfer modes .. 280

22.10. Client-side scripting ... 281

22.10.1. Registering scripts within the head HTML section 281

22.10.2. Adding CSS definitions to the head section ... 282

22.10.3. Well-known directories .. 282

22.11. Spring user controls ... 282

22.11.1. Validation controls .. 282

22.11.2. Databinding controls .. 283

22.11.3. Calendar control .. 283

22.11.4. Panel control ... 283

23. ASP.NET AJAX ... 284

23.1. Introduction ... 284

23.2. Web Services ... 284

23.2.1. Exposing Web Services ... 284

23.2.2. Calling Web Services by using JavaScript ... 285

24. Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 2.0 ... 286

24.1. Introduction to Spring.NET ASP.NET MVC Infrastructure ... 286

24.2. Automatic context loading and hierarchical contexts .. 286

24.2.1. Configuration of a ASP.NET MVC Application 286

24.2.2. Customizing the Behavior of the ASP.NET MVC Application Class 287

The Spring.NET Framework

Spring Framework (Version 1.3.2) ix

24.3. Web object scopes ... 289

25. Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 3.0 ... 290

25.1. Introduction to Spring.NET ASP.NET MVC Infrastructure ... 290

25.2. Automatic context loading and hierarchical contexts .. 290

25.2.1. Configuration of a ASP.NET MVC Application 290

25.2.2. Customizing the Behavior of the ASP.NET MVC Application Class 291

25.3. Web object scopes ... 292

IV. Services ... 294

26. Introduction to Spring Services ... 295

26.1. Introduction ... 295

27. .NET Remoting ... 297

27.1. Introduction ... 297

27.2. Publishing SAOs on the Server ... 297

27.2.1. SAO Singleton .. 297

27.2.2. SAO SingleCall ... 298

27.2.3. IIS Application Configuration .. 299

27.3. Accessing a SAO on the Client .. 300

27.4. CAO best practices .. 301

27.5. Registering a CAO object on the Server .. 301

27.5.1. Applying AOP advice to exported CAO objects 302

27.6. Accessing a CAO on the Client .. 302

27.6.1. Applying AOP advice to client side CAO objects. 302

27.7. XML Schema for configuration .. 303

27.8. Additional Resources ... 303

28. .NET Enterprise Services .. 304

28.1. Introduction ... 304

28.2. Serviced Components ... 304

28.3. Server Side .. 304

28.4. Client Side .. 306

29. Web Services ... 307

29.1. Introduction ... 307

29.2. Server-side ... 307

29.2.1. Removing the need for .asmx files .. 307

29.2.2. Injecting dependencies into web services .. 308

29.2.3. Exposing POCOs as Web Services ... 310

29.2.4. Exporting an AOP Proxy as a Web Service ... 311

29.3. Client-side ... 312

29.3.1. Using VS.NET generated proxy ... 312

29.3.2. Generating proxies dynamically ... 312

29.3.3. Configuring the proxy instance .. 313

30. Windows Communication Foundation (WCF) .. 314

30.1. Introduction ... 314

30.2. Configuring WCF services via Dependency Injection ... 314

30.2.1. Dependency Injection .. 314

30.3. Apply AOP advice to WCF services ... 316

30.4. Creating client side proxies declaratively ... 316

30.5. Exporting POCOs as WCF Services .. 317

V. Integration ... 318

31. Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS ... 319

The Spring.NET Framework

Spring Framework (Version 1.3.2) x

31.1. Introduction ... 319

31.1.1. Multiple Vendor Support ... 319

31.1.2. Separation of Concerns .. 320

31.1.3. Interoperability and provider portability .. 321

31.1.4. The role of Messaging API in a 'WCF world' .. 321

31.2. Using Spring Messaging ... 321

31.2.1. Messaging Template overview ... 321

31.2.2. Connections .. 322

31.2.3. Caching Messaging Resources ... 322

31.2.4. Dynamic Destination Management ... 323

31.2.5. Message Listener Containers .. 324

31.2.6. Transaction Management ... 324

31.3. Sending a Message .. 324

31.3.1. Using MessageConverters .. 325

31.. Session and Producer Callback ... 327

31.5. Receiving a message .. 327

31.5.1. Synchronous Reception .. 327

31.5.2. Asynchronous Reception .. 328

31.5.3. The ISessionAwareMessageListener interface ... 330

31.5.4. MessageListenerAdapater ... 330

31.5.5. Processing messages within a messaging transaction 332

31.5.6. Messaging Namespace support ... 332

32. Message Oriented Middleware - TIBCO EMS .. 335

32.1. Introduction ... 335

32.2. Interface based APIs .. 335

32.3. Using Spring's EMS based Messaging ... 336

32.3.1. Overivew .. 336

32.3.2. Connections .. 336

32.3.3. Caching Messaging Resources ... 336

32.3.4. Dynamic Destination Management ... 337

32.3.5. Accessing Admistrated objects via JNDI ... 337

32.3.6. MessageListenerContainers .. 339

32.3.7. Transaction Management ... 339

32.3.8. Sending a Message .. 339

32.4. Using MessageConverters ... 340

32.5. Session and Producer Callback ... 340

32.6. Receiving a messages ... 340

32.6.1. Synchronous Reception .. 340

32.6.2. Asynchronous Reception .. 341

32.6.3. The ISessionAwareMessageListener interface ... 341

32.6.4. MessageListenerAdapter .. 342

32.6.5. Processing messages within a messaging transaction 342

32.6.6. Messaging Namespace support ... 342

33. Message Oriented Middleware - MSMQ .. 343

33.1. Introduction ... 343

33.2. A quick tour for the impatient .. 344

33.3. Using Spring MSMQ ... 347

33.3.1. MessageQueueTemplate ... 347

33.3.2. MessageQueueFactoryObject ... 348

The Spring.NET Framework

Spring Framework (Version 1.3.2) xi

33.3.3. MessageQueue and IMessageConverter resource management 349

33.3.4. Message Listener Containers .. 349

33.4. MessageConverters .. 354

33.4.1. Using MessageConverters .. 354

33.5. Interface based message processing ... 355

33.5.1. .. 355

33.6. Comparison with using WCF .. 356

34. Scheduling and Thread Pooling ... 358

34.1. Introduction ... 358

34.2. Using the Quartz.NET Scheduler .. 358

34.2.1. Using the JobDetailObject ... 358

34.2.2. Using the MethodInvokingJobDetailFactoryObject 359

34.2.3. Wiring up jobs using triggers and the SchedulerFactoryObject 360

35. Template Engine Support .. 361

35.1. Introduction ... 361

35.2. Dependencies ... 361

35.3. Configuring a VelocityEngine ... 361

35.3.1. Simple file based template engine definition ... 361

35.3.2. Configuration Options ... 361

35.3.3. Assembly based template loading ... 362

35.3.4. Using Spring's IResourceLoader to load templates 362

35.3.5. Defining a custom resource loader .. 363

35.3.6. Resource Loader configuration options ... 363

35.3.7. Using a custom configuration file ... 363

35.3.8. Logging .. 364

35.4. Merging a template .. 364

35.5. Configuring a VelocityEngine without a custom namespace .. 364

VI. VS.NET Integration .. 366

36. Visual Studio.NET Integration .. 367

36.1. XML Editing and Validation .. 367

36.2. Enhancing the XML Editing and Validation Experience using the Spring.NET Visual

Studio 2010 Extension .. 369

36.3. Solution Templates .. 369

36.3.1. Class Library .. 370

36.3.2. ADO.NET based application library ... 371

36.3.3. NHibernate based application library .. 372

36.3.4. Spring based web application ... 373

36.4. Resharper Type Completion ... 374

36.5. Resharper templates ... 375

36.6. Versions of XML Schema .. 376

36.7. API documentation .. 376

VII. Quickstart applications .. 377

37. IoC Quickstarts ... 378

37.1. Introduction ... 378

37.2. Movie Finder ... 378

37.2.1. Getting Started - Movie Finder ... 378

37.2.2. First Object Definition ... 379

37.2.3. Setter Injection .. 380

37.2.4. Constructor Injection ... 380

The Spring.NET Framework

Spring Framework (Version 1.3.2) xii

37.2.5. Summary .. 381

37.2.6. Logging .. 382

37.3. ApplicationContext and IMessageSource ... 383

37.3.1. Introduction .. 383

37.4. ApplicationContext and IEventRegistry ... 385

37.4.1. Introduction .. 385

37.5. Pooling example .. 386

37.5.1. Implementing Spring.Pool.IPoolableObjectFactory 386

37.5.2. Being smart using pooled objects ... 388

37.5.3. Using the executor to do a parallel grep .. 389

37.6. AOP .. 389

38. AOP QuickStart .. 390

38.1. Introduction ... 390

38.2. The basics ... 390

38.2.1. Applying advice .. 390

38.2.2. Using Pointcuts - the basics ... 393

38.3. Going deeper ... 395

38.3.1. Other types of Advice ... 395

38.3.2. Using Attributes to define Pointcuts ... 401

38.4. The Spring.NET AOP Cookbook .. 402

38.4.1. Caching .. 402

38.4.2. Performance Monitoring .. 403

38.4.3. Retry Rules ... 403

38.5. Spring.NET AOP Best Practices ... 403

39. Portable Service Abstraction Quick Start ... 404

39.1. Introduction ... 404

39.2. .NET Remoting Example .. 404

39.3. Implementation .. 406

39.4. Running the application .. 411

39.5. Remoting Schema .. 412

39.6. .NET Enterprise Services Example .. 413

39.7. Web Services Example ... 414

39.8. Additional Resources ... 418

40. Web Quickstarts ... 419

40.1. Introduction ... 419

41. SpringAir - Reference Application ... 420

41.1. Introduction ... 420

41.2. Getting Started ... 420

41.3. Container configuration .. 420

41.4. Bi-directional data binding ... 422

41.5. Declarative Validation .. 422

41.6. Internationalization ... 423

41.7. Web Services ... 423

42. ADO.NET Data Access QuickStart .. 425

42.1. Introduction ... 425

42.1.1. Database configuration .. 425

42.1.2. CommandCallback .. 426

43. Transactions QuickStart .. 428

43.1. Introduction ... 428

The Spring.NET Framework

Spring Framework (Version 1.3.2) xiii

43.2. Application Overview .. 428

43.2.1. Interfaces .. 428

43.3. Implementation .. 429

43.4. Configuration ... 432

43.4.1. Rollback Rules .. 433

43.5. Adding additional Aspects .. 434

44. NHibernate QuickStart .. 436

44.1. Introduction ... 436

44.2. Getting Started ... 436

44.3. Implementation ... 439

44.3.1. The Data Access Layer .. 439

44.3.2. The domain objects ... 440

44.3.3. NHibernate based DAO implementation ... 441

44.3.4. The Service layer .. 444

44.3.5. Integration testing .. 445

44.3.6. Web Application ... 447

45. Quartz QuickStart ... 449

45.1. Introduction ... 449

45.2. Application Overview .. 449

45.3. Standard job scheduling ... 449

45.4. Scheduling arbitrary methods as jobs .. 450

46. NMS QuickStart ... 452

46.1. Introduction ... 452

46.2. Message Destinations ... 452

46.3. Gateways ... 453

46.4. Message Data .. 453

46.5. Message Handlers .. 455

46.6. Message Converters ... 456

46.7. Messaging Infrastructure .. 456

46.8. Running the application .. 457

47. TIBCO EMS QuickStart ... 459

47.1. Introduction ... 459

47.2. Message Destinations ... 459

47.3. Messaging Infrastructure .. 460

47.4. Running the application .. 461

48. MSMQ QuickStart .. 463

48.1. Introduction ... 463

48.2. Message Destinations ... 463

48.3. Gateways ... 463

48.4. Message Data .. 463

48.5. Message Handlers .. 464

48.6. MessageConverters .. 464

48.7. Messaging Infrastructure .. 464

48.8. Running the application .. 466

49. WCF QuickStart ... 467

49.1. Introduction ... 467

49.2. The server side .. 467

49.2.1. WCF Dependency Injection and AOP in self-hosted application 468

49.2.2. WCF Dependency Injection and AOP in IIS web application 468

The Spring.NET Framework

Spring Framework (Version 1.3.2) xiv

49.3. Client access .. 468

VIII. Spring.NET for Java developers ... 470

50. Spring.NET for Java Developers ... 471

50.1. Introduction ... 471

50.2. Beans to Objects .. 471

50.3. PropertyEditors to TypeConverters .. 472

50.4. ResourceBundle-ResourceManager ... 472

50.5. Exceptions ... 472

50.6. Application Configuration .. 472

50.7. AOP Framework .. 473

50.7.1. Cannot specify target name at the end of interceptorNames for

ProxyFactoryObject .. 473

IX. Appendices .. 475

A. Classic Spring Usage ... 476

A.1. Classic Hibernate Usage .. 476

A.1.1. The HibernateTemplate ... 476

A.1.2. Implementing Spring-based DAOs without callbacks 477

A.2. Classic Declarative Transaction Configurations ... 478

A.2.1. Declarative Transaction Configuration using

DefaultAdvisorAutoProxyCreator .. 478

A.2.2. Declarative Transactions using TransactionProxyFactoryObject 479

A.2.3. Concise proxy definitions ... 480

A.2.4. Declarative Transactions using ProxyFactoryObject 481

B. XML Schema-based configuration .. 483

B.1. Introduction .. 483

B.2. XML Schema-based configuration ... 483

B.2.1. Referencing the schemas ... 483

B.2.2. The tx (transaction) schema .. 484

B.2.3. The aop schema ... 485

B.2.4. The db schema ... 486

B.2.5. The wcf schema ... 486

B.2.6. The remoting schema .. 487

B.2.7. The nms messaging schema .. 488

B.2.8. The validation schema .. 488

B.2.9. The objects schema .. 489

B.3. Setting up your IDE .. 489

C. Extensible XML authoring ... 490

C.1. Introduction .. 490

C.2. Authoring the schema .. 490

C.3. Coding a INamespaceParser ... 491

C.4. Coding an IObjectDefinitionParser ... 492

C.5. Registering the handler and the schema .. 493

C.5.1. NamespaceParsersSectionHandler .. 493

C.6. Using a custom extension in your Spring XML configuration ... 493

C.7. Further Resources ... 494

D. Spring.NET's spring-objects.xsd ... 495

Spring Framework (Version 1.3.2) 1

Chapter 1. Preface
Developing software applications is hard enough even with good tools and technologies. Spring provides a light-

weight solution for building enterprise-ready applications. Spring provides a consistent and transparent means

to configure your application and integrate AOP into your software. Highlights of Spring's functionality are

providing declarative transaction management for your middle tier as well as a full-featured ASP.NET framework.

Spring could potentially be a one-stop-shop for many areas of enterprise application development; however,

Spring is modular, allowing you to use just those parts of it that you need, without having to bring in the rest. You

can use just the IoC container to configure your application and use traditional ADO.NET based data access code,

but you could also choose to use just the Hibernate integration code or the ADO.NET abstraction layer. Spring

has been (and continues to be) designed to be non-intrusive, meaning dependencies on the framework itself are

generally none (or absolutely minimal, depending on the area of use).

This document provides a reference guide to Spring's features. Since this document is still to be considered very

much work-in-progress, if you have any requests or comments, please post them on the user mailing list or on

the support forums at forum.springframework.net.

Before we go on, a few words of gratitude are due to Christian Bauer (of the Hibernate team), who prepared and

adapted the DocBook-XSL software in order to be able to create Hibernate's reference guide, thus also allowing us

to create this one. Also thanks to Russell Healy for doing an extensive and valuable review of some of the material.

http://forum.springframework.net
http://www.hibernate.org/

Spring Framework (Version 1.3.2) 2

Chapter 2. Introduction

2.1. Overview

Spring.NET is an application framework that provides comprehensive infrastructural support for developing

enterprise .NET applications. It allows you to remove incidental complexity when using the base class libraries

makes best practices, such as test driven development, easy practices. Spring.NET is created, supported and

sustained by SpringSource.

The design of Spring.NET is based on the Java version of the Spring Framework, which has shown real-world

benefits and is used in thousands of enterprise applications world wide. Spring .NET is not a quick port from the

Java version, but rather a 'spiritual port' based on following proven architectural and design patterns in that are

not tied to a particular platform. The breadth of functionality in Spring .NET spans application tiers which allows

you to treat it as a ‘one stop shop’ but that is not required. Spring .NET is not an all-or-nothing solution. You can

use the functionality in its modules independently. These modules are described below.

Enterprise applications typically are composed of a number of a variety of physical tiers and within each tier

functionality is often split into functional layers. The business service layer for example typically uses a objects

in the data access layer to fulfill a use-case. No matter how your application is architected, at the end of the day

there are a variety of objects that collaborate with one another to form the application proper. The objects in an

application can thus be said to have dependencies between themselves.

The .NET platform provides a wealth of functionality for architecting and building applications, ranging all the

way from the very basic building blocks of primitive types and classes (and the means to define new classes), to

rich full-featured application servers and web frameworks. One area that is decidedly conspicuous by its absence

is any means of taking the basic building blocks and composing them into a coherent whole; this area has typically

been left to the purvey of the architects and developers tasked with building an application (or applications). Now

to be fair, there are a number of design patterns devoted to the business of composing the various classes and

object instances that makeup an all-singing, all-dancing application. Design patterns such as Factory, Abstract

Factory, Builder, Decorator, and Service Locator (to name but a few) have widespread recognition and acceptance

within the software development industry (presumably that is why these patterns have been formalized as patterns

in the first place). This is all very well, but these patterns are just that: best practices given a name, typically

together with a description of what the pattern does, where the pattern is typically best applied, the problems

that the application of the pattern addresses, and so forth. Notice that the last paragraph used the phrase “... a

description of what the pattern does...”; pattern books and wikis are typically listings of such formalized best

practice that you can certainly take away, mull over, and then implement yourself in your application.

The Spring Framework takes best practices that have been proven over the years in numerous applications and

formalized as design patterns, and actually codifies these patterns as first class objects that you as an architect

and developer can take away and integrate into your own application(s). This is a Very Good Thing Indeed as

attested to by the numerous organizations and institutions that have used the Spring Framework to engineer robust,

maintainable applications. For example, the IoC component of the Spring Framework addresses the enterprise

concern of taking the classes, objects, and services that are to compose an application, by providing a formalized

means of composing these various disparate components into a fully working application ready for use

2.2. Background

In early 2004, Martin Fowler asked the readers of his site: when talking about Inversion of Control: “the question

is, what aspect of control are [they] inverting?”. Fowler then suggested renaming the principle (or at least giving

http://www.springsource.com

Introduction

Spring Framework (Version 1.3.2) 3

it a more self-explanatory name), and started to use the term Dependency Injection. His article then continued

to explain the ideas underpinning the Inversion of Control (IoC) and Dependency Injection (DI) principle. If

you need a decent insight into IoC and DI, please do refer to the article : http://martinfowler.com/articles/

injection.html.

2.3. Modules

The Spring Framework contains a lot of features, which are well-organized into modules shown in the diagram

below. The diagram below shows the various core modules of Spring.NET.

Click on the module name for more information.

Spring.Core is the most fundamental part of the framework allowing you to configure your application using

Dependency Injection. Other supporting functionality, listed below, is located in Spring.Core

Spring.Aop - Use this module to perform Aspect-Oriented Programming (AOP). AOP centralizes common

functionality that can then be declaratively applied across your application in a targeted manner. Spring's aspect

library provides predefined easy to use aspects for transactions, logging, performance monitoring, caching,

method retry, and exception handling.

Spring.Data - Use this module to achieve greater efficiency and consistency in writing data access functionality

in ADO.NET and to perform declarative transaction management.

Spring.Data.NHibernate - Use this module to integrate NHibernate with Spring’s declarative transaction

management functionality allowing easy mixing of ADO.NET and NHibernate operations within the same

transaction. NHibernate 1.0 users will benefit from ease of use APIs to perform data access operations.

Spring.Messaging - Use this module to raise the level of abstraction when interacting with the Microsoft MSMQ

message queing middleware

Spring.Messaging.NMS - Use this module to raise the level of abstraction when interacting with the Apache

ActiveMQ (NMS) message queing middleware

Spring.Messaging.EMS - Use this module to raise the level of abstraction when interacting with the Tibco

Enterprise Message Service (EMS) message queing middleware

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

Introduction

Spring Framework (Version 1.3.2) 4

Spring.Web - Use this module to raise the level of abstraction when writing ASP.NET web applications allowing

you to effectively address common pain-points in ASP.NET such as data binding, validation, and ASP.NET page/

control/module/provider configuration.

Spring.Web.Mvc - Use this module to integrate the functionality of the Spring.Core and Spring.Aop modules into

your ASP.NET MVC 2 projects.

Spring.Web.Mvc3 - Use this module to integrate the functionality of the Spring.Core and Spring.Aop modules

into your ASP.NET MVC 3 projects.

Spring.Web.Extensions - Use this module to raise the level of abstraction when writing ASP.NET web

applications allowing you to effectively address common pain-points in ASP.NET such as data binding,

validation, and ASP.NET page/control/module/provider configuration.

Spring.Services - Use this module to adapt plain CLR objects so they can be used with a specific distributed

communication technology, such as .NET Remoting, Enterprise Services, and ASMX Web Services. These

services can be configured via dependency injection and ‘decorated’ by applying AOP.

Spring.Testing.NUnit - Use this module to perform integration testing with NUnit.

Spring.Testing.MSTest - Use this module to perform integration testing with MSTest

Spring.Scheduling.Quartz - Use this module to support interacting with the Quartz.NET job scheduler

infrastructure.

The Spring.Core module also includes the following additional features

• Expression Language - provides efficient querying and manipulation of an object graphs at runtime.

• Validation Framework - a robust UI agnostic framework for creating complex validation rules for business

objects either programatically or declaratively.

• Data binding Framework - a UI agnostic framework for performing data binding.

• Dynamic Reflection - provides a high performance reflection API

• Threading - provides additional concurrency abstractions such as Latch, Semaphore and Thread Local Storage.

• Resource abstraction - provides a common interface to treat the InputStream from a file and from a URL in a

polymorphic and protocol-independent manner.

2.4. Usage Scenarios

With the building blocks described above you can use Spring in all sorts of scenarios, from simple stand alone

console applications to fully-fledged enterprise applications using Spring's transaction management functionality

and web framework integration.

It is important to note that the Spring Framework does not force you to use everything within it; it is not an all-

or-nothing solution. Existing front-ends built using standard ASP.NET can be integrated perfectly well with a

Spring-based middle-tier, allowing you to use the transaction and/or data access features that Spring offers. The

only things you need to do is wire up your business logic using Spring's IoC container and integrate it into your

web layer using WebApplicationContext to locate middle tier services and/or configure your standard ASP.NET

pages with depdenency injection.

Introduction

Spring Framework (Version 1.3.2) 5

While the Spring framework does not force any particular application architecure it encourages the use of a well

layered application architecture with distinct tiers for the presentation, service, data access, and database.

2.5. Quickstart applications

There are several sample applications that showcase individual features. If you are already familiar with the

concepts of dependency injection, AOP, or have experience using the Java version of the Spring framework you

may find jumping into the examples a better way to bootstrap the learning processing process. The following

quickstart applications are available and can be found in the examples directory in the distribution. Click on the

links for additional information.

• Movie Finder - A simple demonstration of Dependency Injection (DI) techniques using Spring's Inversion of

Control (IoC) container.

• Application Context - Demonstrates IoC container features such as localization, accessing of ResourceSet

objects, and applying resources to object properties.

• Aspect Oriented Programming - Demonstrates use of the AOP framework to add additional behavior to your

existing objects. Examples of programmatic and declarative AOP configuration are shown.

• Distributed Computing - A calculator demonstrating remote service abstractions that let you 'export' a

plain CLR object (POCO) via .NET Remoting, Web Services, or an EnterpriseService ServiceComponent.

Corresponding client side proxies are also demonstrated.

• WCF - Shows a WCF based calculator example that configures your WCF service via dependency injection

and apply AOP advice.

• Web Application - SpringAir -A ticket booking application that demonstrates the ASP.NET framework

showing features such as DI for ASP.NET pages, data binding, validation, and localization.

• Web Development - Introductory examples showing use of dependency injection and Spring's bi-directional

data binding in ASP.NET.

• ASP.NET MVC2 - Introductory example showing use of dependency injection and container integration into

the ASP.NET MVC2 framework.

• ASP.NET MVC3 - Introductory example showing use of dependency injection and container integration into

the ASP.NET MVC3 framework.

• Data Access - Demonstrates the ADO.NET framework showing how to simplify developing ADO.NET based

data access layers.

• Transaction Management : Demonstrates the use of declarative transaction management for both local and

distributed transaction in both .NET 1.1 and 2.0.

• AJAX : Demonstrates how to access a plain CLR object (POCO) as a webservice in client side JavaScript

• NHibernate Northwind: Demonstrates use of Spring's NHibernate integration to simplify the use of NHibernate.

Web tier is also included showing how to use the Open-Session In View approach to session management in

the web tier.

• Quartz Quickstart - Application that shows the use of Quartz.NET integration for scheduling.

• MSMQ - Application demonstrating MSMQ helper classes.

Introduction

Spring Framework (Version 1.3.2) 6

• NMS - Applicatoin demonstrating NMS helper classes.

2.6. Associated Spring.NET Projects

There is a lot more to Spring.NET than just the Spring.NET project itself. Spring.NET is enriched and empowered

by a collection of supporting projects that provide additional capabilities beyond those found in the core

Spring.NET Framework. Ranging from configuration-enhancing tools and libraries to REST clients to support

for additional messaging frameworks and standards, the list of associated projects is growing rapidly and includes

some of the following:

Spring.NET CodeConfig

• Spring.NET CodeConfig provides the ability to configure a Spring container using standard .NET code instead

of or in addition to XML configuration.

• See http://springframework.net/codeconfig/ for resources, downloads, and more information

Spring.NET REST Client

• Spring.NET REST Client simplifies communication with HTTP servers, and enforces RESTful principles. It

handles HTTP connections, leaving application code to provide URLs (with possible template variables) and

extract results.

• See http://springframework.net/rest/ for resources, downloads, and more information

Spring.NET AMQP

• Spring.NET AMQP supports the Spring programming model with AMQP, especially but not limited to

RabbitMQ

• See http://springframework.net/amqp/ for resources, downloads, and more information

Spring.NET Visual Studio Add-In

• Spring.NET Visual Studio Add-In provides intellisense assistance in authoring Spring XML configuration files

in VS.NET 2010

• See http://springframework.net/vsaddin/ [http://springframework.net/amqp/] for resources,

downloads, and more information

Adopters of Spring.NET are encouraged to explore these projects (and more!) that help to round out the

comprehensive Spring.NET experience and provide additional capabilities beyond those of the core Spring.NET

Framework to increase developer efficiency and effectiveness.

2.7. License Information

Spring.NET is licensed according to the terms of the Apache License, Version 2.0. The full text of this license are

available online at http://www.apache.org/licenses/LICENSE-2.0 . You can also view the full text of the license

in the license.txt file located in the root installation directory.

2.8. Support

Training and support are available through SpringSource in addition to the mailing lists and forums you can find

on the main Spring.NET website.

http://springframework.net/codeconfig/
http://springframework.net/rest/
http://springframework.net/amqp/
http://springframework.net/amqp/
http://springframework.net/amqp/
http://www.apache.org/licenses/LICENSE-2.0
http://www.springsource.com
http://www.springframework.net

Spring Framework (Version 1.3.2) 7

Chapter 3. Background information

3.1. Inversion of Control

In early 2004, Martin Fowler asked the readers of his site: when talking about Inversion of Control: "the question,

is what aspect of control are they inverting?". After talking about the term Inversion of Control Martin suggests

renaming the pattern, or at least giving it a more self-explanatory name, and starts to use the term Dependency

Injection. His article continues to explain some of the ideas behind this important software engineering principle.

Other references you may find useful are

• Wikipedia Article - Dependency Injection

• CodeProject article - Dependency Injection for Loose Coupling

http://martinfowler.com/articles/injection.html
http://en.wikipedia.org/wiki/Dependency_injection
http://www.codeproject.com/cs/design/DependencyInjection.asp

Spring Framework (Version 1.3.2) 8

Chapter 4. Migrating from 1.1 M2

4.1. Introduction

Several API changes were made after 1.1 M2 (before 1.1 RC1)due primarily by the need to refactor the code base

to remove circular dependency cycles, which are now all removed. Class and schema name changes were also

made to provide a more consistent naming convention across the codebase. As a result of these changes, you can

not simply drop in the new .dlls as you may have done in previous release. This document serves as a high level

guide to the most likely areas where you will need to make changes to either your configuration or your code.

The file, BreakingChanges-1.1.txt, in the root directory of the distribution contains the full listing of breaking

changes made for RC1 and higher

4.2. Important Changes

This section covers the common areas were you will need to make changes in code/configuration when migration

from M2 to RC1or higher.

4.2.1. Namespaces

Note: If you previously installed Spring .xsd files to your VS.NET installation directory, remove them manually,

and copy over the new ones, which have the -1.1.xsd suffix.

The names of the section handlers to register custom schemas has changed, from ConfigParsersSectionHandler

to NamespaceParsersSectionHandler.

The target namespaces have changed, the 'directory' named /schema/ has been removed. For example, the target

schema changed from http://www.springframework.net/schema/tx to http://www.springframework.net/tx.

A typical declaration to use custom schemas within your configuration file looks like this

<objects xmlns='http://www.springframework.net'

 xmlns:db="http://www.springframework.net/database"

 xmlns:tx="http://www.springframework.net/tx"

 xmlns:aop="http://www.springframework.net/aop">

The class XmlParserRegistry was renamed to NamespaceParserRegistry.

Renamed Spring.Validation.ValidationConfigParser to

Spring.Validation.Config.ValidationNamespaceParser

Renamed from DatabaseConfigParser to DatabaseNamespaceParser

Renamed/Moved Remoting.RemotingConfigParser to Remoting.Config.RemotingNamespaceParser

A typical registration of custom parsers within your configuration file looks like this

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

Migrating from 1.1 M2

Spring Framework (Version 1.3.2) 9

 <spring>

 <parsers>

 <parser type="Spring.Aop.Config.AopNamespaceParser, Spring.Aop" />

 <parser type="Spring.Data.Config.DatabaseNamespaceParser, Spring.Data" />

 <parser type="Spring.Transaction.Config.TxNamespaceParser, Spring.Data" />

 </parsers>

 </spring>

A manual registration would look like this

NamespaceParserRegistry.RegisterParser(typeof(AopNamespaceParser));

NamespaceParserRegistry.RegisterParser(typeof(DatabaseNamespaceParser));

NamespaceParserRegistry.RegisterParser(typeof(TxNamespaceParser));

4.2.2. Core

Moved Spring.Util.DynamicReflection to Spring.Reflection.Dynamic

Moved TypeRegistry and related classes from Spring.Context.Support to Spring.Core.TypeResolution

Moved Spring.Objects.TypeConverters to Spring.Core.TypeConvesion

4.2.3. Web

Moved Spring.Web.Validation to Spring.Web.UI.Validation

4.2.4. Data

Changed schema to use 'provider' instead of 'dbProvider' element, usage is now <db:provider ... /> and not

<db:dbProvider .../>

Moved TransactionTemplate, TransactionDelegate and ITransactionCallback from Spring.Data to

Spring.Data.Support

Moved AdoTemplate, AdoAccessor, AdoDaoSupport, RowMapperResultSetExtractor from Spring.Data to

Spring.Data.Core

Moved AdoPlatformTransactionManager, ServiceDomainPlatformTransactionManager, and

TxScopeTransactionManager from Spring.Data to Spring.Data.Core

4.3. Support for .NET 4

Beginning with the 1.3.2 release of Spring.NET, full compatibility with the .NET 4 Common Language Runtime

(CLR) is provided via a comprehensive collection of Spring.NET compiled assemblies specifically targeting

the .NET 4 framework. Spring.NET 1.3.1 provided interim support for .NET 4 via the approach typically refered

to as In-Process Side-by-Side or just In-Proc SxS.

Note

For more information on the In-Process Side-by-Side support introduced into the .NET 4 Framework,

see the MSDN Magazine article located here: http://msdn.microsoft.com/en-us/magazine/

ee819091.aspx

Beginning with Spring.NET 1.3.2, this approach is no longer necessary and fuill native support of .NET is now

provided.

http://msdn.microsoft.com/en-us/magazine/ee819091.aspx
http://msdn.microsoft.com/en-us/magazine/ee819091.aspx

Spring Framework (Version 1.3.2) 10

Part I. Core Technologies
This initial part of the reference documentation covers all of those technologies that are absolutely integral to

the Spring Framework.

Foremost amongst these is the Spring Framework's Inversion of Control (IoC) container. A thorough treatment

of the Spring Framework's IoC container is closely followed by comprehensive coverage of Spring's Aspect-

Oriented Programming (AOP) technologies. The Spring Framework has its own AOP framework, which is

conceptually easy to understand, and which successfully addresses the 80% sweet spot of AOP requirements in

enterprise programming.

The core functionality also includes an expression language for lightweight scripting and a ui-agnostic validation

framework.

Finally, the adoption of the test-driven-development (TDD) approach to software development is certainly

advocated by the Spring team, and so coverage of Spring's support for integration testing is covered (alongside

best practices for unit testing). The Spring team have found that the correct use of IoC certainly does make both

unit and integration testing easier (in that the presence of properties and appropriate constructors on classes makes

them easier to wire together on a test without having to set up service locator registries and suchlike)... the chapter

dedicated solely to testing will hopefully convince you of this as well.

• Chapter 5, The IoC container

• Chapter 6, The IObjectWrapper and Type conversion

• Chapter 7, Resources

• Chapter 8, Threading and Concurrency Support

• Chapter 9, Object Pooling

• Chapter 11, Expression Evaluation

• Chapter 10, Spring.NET miscellanea

• Chapter 12, Validation Framework

• Chapter 13, Aspect Oriented Programming with Spring.NET

• Chapter 14, Aspect Library

• Chapter 15, Common Logging

• Chapter 16, Testing

Spring Framework (Version 1.3.2) 11

Chapter 5. The IoC container

5.1. Introduction

This chapter covers the Spring Framework implementation of the Inversion of Control (IoC) 1 principle

The Spring.Core assembly is the basis for Spring.NET's IoC container.

The IObjectFactory [http://www.springframework.net/doc-latest/api/net-2.0/html/

Spring.Core~Spring.Objects.Factory.IObjectFactory.html] interface provides an advanced configuration

mechanism capable of managing any type of object. IApplicationContext [http://

www.springframework.net/doc-latest/api/net-2.0/html/

Spring.Core~Spring.Context.IApplicationContext.html] is a sub-interface of IObjectFactory. It adds

easier integration with Spring.NET's Aspect Oriented Programming (AOP) features, message resource

handling (for use in internationalization), event propagation and application layer-specific context such as

WebApplicationContext for use in web applications.

In short, the IObjectFactory provides the configuration framework and basic functionality, and the

IApplicationContext adds more enterprise-specific functionality. The IApplicationContext is a complete

superset of the IObjectFactory and is used exclusively in this chapter in descriptions of Spring's IoC container.

If you are new to Spring.NET or IoC containers in general, you may want to consider starting with Chapter 37,

IoC Quickstarts, which contains a number of introductory level examples that actually demonstrate a lot of what

is described in detail below. Don't worry if you don't absorb everything at once... those examples serve only to

paint a picture of how Spring.NET hangs together in really broad brushstrokes. Once you have finished with those

examples, you can come back to this section which will fill in all the fine detail.

5.2. Container overview

The interface IApplicationContext represents the Spring IoC container and is responsible for instantiating,

configuring, and assembling many of the objects in your application. The container gets its instructions on what

objects to instantiate, configure, and assemble by reading configuration metadata. The configuration metadata is

represented in XML. The configuration metadata allows you to express the objects that compose your application

and the rich interdependencies between such objects.

Note

Note that other ways to specify the metadata, such as attributes and .NET code, are planned for future

releases, the core IoC container does not assume any specific metadata format. The Java version of

Spring already supports such functionality.

Several implementations of the IApplicationContext interface are supplied out-of-the-box with Spring.

In standalone applications it is common to create an instance of an XmlApplicationContext either

programmatically or declaratively in your applications App.config file. In web applications Spring provides

a WebApplicationContext implementation which is configured by adding a custom HTTP module and HTTP

handler to your Web.config file. See the section on Web Configuration for more details.

1See the section entitled Section 3.1, “Inversion of Control”

http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Objects.Factory.IObjectFactory.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Objects.Factory.IObjectFactory.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Objects.Factory.IObjectFactory.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Context.IApplicationContext.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Context.IApplicationContext.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Context.IApplicationContext.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Context.IApplicationContext.html

The IoC container

Spring Framework (Version 1.3.2) 12

The following diagram is a high-level view of how Spring works. Your application classes are combined with

configuration metadata so that after the ApplicationContext is created and initialized, you have a fully configured

and executable system or application.

5.2.1. Configuration metadata

As the preceding diagram shows, the Spring IoC container consumes a form of configuration metadata; this

configuration metadata represents how you as an application developer tell the Spring container to instantiate,

configure, and assemble the objects in your application. Configuration metadata is supplied in a simple and

intuitive XML format

Note

XML-based metadata is by far the most commonly used form of configuration metadata. It is not

however the only form of configuration metadata that is allowed. The Spring IoC container itself is

totally decoupled from the format in which this configuration metadata is actually written. Attribute

based and code based metadata will be part of an upcoming release and it is already part of the Spring

Java framework.

Spring configuration consists of at least one and typically more than one object definition that the container must

manage. XML- based configuration shows these objects as <object/> elements inside a top-level <objects/>

element.

The IoC container

Spring Framework (Version 1.3.2) 13

These object definitions correspond to the actual objects that make up your application. Typically you define

service layer objects, data access objects (DAOs), presentation objects such as ASP.NET page instances,

infrastructure objects such as NHibernate SessionFactories, and so forth. Typically one does not configure fine-

grained domain objects in the container, because it is usually the responsibility of DAOs and business logic to

create/load domain objects.

The following example shows the basic structure of XML-based configuration metadata:

<objects xmlns="http://www.springframework.net">

 <object id="..." type="...">

 <!-- collaborators and configuration for this object go here -->

 </object>

 <object id="...." type="...">

 <!-- collaborators and configuration for this object go here -->

 </object>

 <!-- more object definitions go here -->

</objects>

The id attribute is a string that you use to identify the individual object definition. The type attribute defines

the type of the object and uses the fully qualified type name, including the assembly name. The value of the

id attribute refers to collaborating objects. The XML for referring to collaborating objects is not shown in this

example; Dependencies for more information.

Spring.NET comes with an XSD schema to make the validation of the XML object definitions a whole lot easier.

The XSD document is thoroughly documented so feel free to take a peek inside (see Appendix D, Spring.NET's

spring-objects.xsd). The XSD is currently used in the implementation code to validate the XML document. The

XSD schema serves a dual purpose in that it also facilitates the editing of XML object definitions inside an XSD

aware editor (typically Visual Studio) by providing validation (and Intellisense support in the case of Visual

Studio). You may wish to refer to Chapter 36, Visual Studio.NET Integration for more information regarding

such integration.

5.2.2. Instantiating a container

Instantiating a Spring IoC container is straightforward. The location path or paths suppied to an

IApplicationContext constructor are actually resource strings that allow the container to load configuration

metadata from a variety of external resources such as the local file system, embedded assembly resources, and

so on.

IApplicationContext context = new XmlApplicationContext("services.xml", "data-access.xml");

The following example shows the service layer objects (services.xml) configuration file.

<objects xmlns="http://www.springframework.net">

 <object id="PetStore" type="PetStore.Services.PetStoreService, PetStore">

 <property name="AccountDao" ref="AccountDao"/>

 <property name="ItemDao" ref="ItemDao"/>

 <!-- additional collaborators and configuration for this object go here -->

 </object>

 <!-- more object definitions for services go here -->

</objects>

The following example shows the data access objects (daos.xml) configuration file:

The IoC container

Spring Framework (Version 1.3.2) 14

<objects xmlns="http://www.springframework.net">

 <object id="AccountDao" type="Petstore.Dao.HibernateAccountDao, PetStore">

 <!-- additional collaborators and configuration for this object go here -->

 </object>

 <object id="ItemDao" type="Petstore.Dao.HibernateItemDao, PetStore">

 <!-- additional collaborators and configuration for this object go here -->

 </object>

 <!-- more object definitions for data access objects go here -->

</objects>

In the preceeding example, the service layer consists of the class PetStoreService, and two data access objects of

the type HibernateAccountDao and HibernateItemDao are based on the NHibernate Object/Relational mapping

framework. The property name element refers to the name of the class's property, and the ref element refers to the

name of another object definition. This linkage between id and ref elements expresses the dependency between

collaborating objects. For details of configuring an object's dependencies, see Dependencies.

5.2.2.1. Loading configuration metadata from non-default resource locations

In the previous example the configuration resources are assumed to be located in the bin\Debug

directory. You can use Spring's IResource [http://www.springframework.net/doc-latest/api/net-2.0/html/

Spring.Core~Spring.Core.IO.IResource.html] abstraction to load resources from other locations.

The following example shows how to create an IoC container referring to resources located in the root directory

of the filesystem an as an embedded assembly resource.

IApplicationContext context = new XmlApplicationContext(

 "file:///services.xml",

 "assembly://MyAssembly/MyDataAccess/data-access.xml");

The above example uses Spring.NET's IResource [http://www.springframework.net/doc-latest/api/net-2.0/html/

Spring.Core~Spring.Core.IO.IResource.html] abstraction. The IResource interface provides a simple and

uniform interface to a wide array of IO resources that can represent themselves as System.IO.Stream.

Note

After you learn about Spring's IoC container, you may want to know

more about Spring's IResource [http://www.springframework.net/doc-latest/api/net-2.0/html/

Spring.Core~Spring.Core.IO.IResource.html] abstraction to load metadata from other locations as

desribed below and alsoin the chapter Chapter 7, Resources

These resources are most frequently files or URLs but can also be resources that have been embedded inside

a .NET assembly. A simple URI syntax is used to describe the location of the resource, which follows the standard

conventions for files, i.e. file:///services.xml and other well known protocols such as http.

The following snippet shows the use of the URI syntax for referring to a resource that has been embedded inside

a .NET assembly, assembly://<AssemblyName>/<NameSpace>/<ResourceName>. The IResource abstraction is

explained further in Section 7.1, “Introduction”.

Note

To create an embedded resource using Visual Studio you must set the Build Action of the .xml

configuration file to Embedded Resource in the file property editor. Also, you will need to explicitly

rebuild the project containing the configuration file if it is the only change you make between

http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Core.IO.IResource.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Core.IO.IResource.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Core.IO.IResource.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Core.IO.IResource.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Core.IO.IResource.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Core.IO.IResource.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Core.IO.IResource.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Core.IO.IResource.html
http://www.springframework.net/doc-latest/api/net-2.0/html/Spring.Core~Spring.Core.IO.IResource.html

The IoC container

Spring Framework (Version 1.3.2) 15

successive builds. If using NAnt to build, add a <resources> section to the csc task. For example

usage, look at the Spring.Core.Tests.build file included the distribution.

5.2.2.2. Declarative configuration of the container in App.config/Web.config

You can also create a container by using a custom configuration section in the standard .NET application

configuration file (one of App.config or Web.config). A custom configuration section that creates the same

IApplicationContext as the previous example is

<spring>

 <context>

 <resource uri="file://services.xml"/>

 <resource uri="assembly://MyAssembly/MyDataAccess/data-access.xml"/>

 </context>

</spring>

The context type (specified as the value of the type attribute of the context element) is optional. In a standalone

application the context type defaults to the Spring.Context.Support.XmlApplicationContext class and in a

Web application defaults to WebApplicationContext. An example of explicitly configuring the context type The

following example shows explicit use of the context type attribute:

<spring>

 <context type="Spring.Context.Support.XmlApplicationContext, Spring.Core">

 <resource uri="file:///services.xml"/>

 <resource uri="assembly://MyAssembly/MyDataAccess/data-access.xml"/>

 </context>

</spring>

To acquire a reference to an IApplicationContext using a custom configuration section, one simply uses the

following code;

IApplicationContext ctx = ContextRegistry.GetContext();

The ContextRegistry is used to both instantiate the application context and to perform service locator style

access to other objects. (See Section 5.15, “Service Locator access” for more information). The glue that makes

this possible is an implementation of the Base Class Library (BCL) provided IConfigurationSectionHandler

interface, namely the Spring.Context.Support.ContextHandler class. The handler class needs to be registered

in the configSections section of the .NET configuration file as shown below.

<configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.ContextHandler, Spring.Core"/>

 </sectionGroup>

</configSections>

This declaration now enables the use of a custom context section starting at the spring root element.

In some usage scenarios, user code will not have to explicitly instantiate an appropriate implementation

IApplicationContext interface, since Spring.NET code will do it for you. For example, the ASP.NET web layer

provides support code to load a Spring.NET WebApplicationContext automatically as part of the normal startup

process of an ASP.NET web application. As such, once the container has been created for you, it is often the

case that you will never need to explicitly interact with it again in your code, for example when configuring

ASP.NET pages.

Spring.NET comes with an XSD schema to make the validation of the XML object definitions a whole lot easier.

The XSD document is thoroughly documented so feel free to take a peek inside (see Appendix D, Spring.NET's

spring-objects.xsd). The XSD is currently used in the implementation code to validate the XML document. The

XSD schema serves a dual purpose in that it also facilitates the editing of XML object definitions inside an XSD

aware editor (typically Visual Studio) by providing validation (and Intellisense support in the case of Visual

The IoC container

Spring Framework (Version 1.3.2) 16

Studio). You may wish to refer to Chapter 36, Visual Studio.NET Integration for more information regarding

such integration.

Your XML object definitions can also be defined within the standard .NET application configuration file by

registering the Spring.Context.Support.DefaultSectionHandler class as the configuration section handler for

inline object definitions. This allows you to completely configure one or more IApplicationContext instances

within a single standard .NET application configuration file as shown in the following example.

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.ContextHandler, Spring.Core"/>

 <section name="objects" type="Spring.Context.Support.DefaultSectionHandler, Spring.Core" />

 </sectionGroup>

 </configSections>

 <spring>

 <context>

 <resource uri="config://spring/objects"/>

 </context>

 <objects xmlns="http://www.springframework.net">

 ...

 </objects>

 </spring>

</configuration>

Other options available to structure the configuration files are described in Section 5.12.1, “Context Hierarchies”

and Section 5.2.2.3, “Composing XML-based configuration metadata”.

The IApplicationContext can be configured to register other resource handlers, custom parsers to integrate

user-contributed XML schema into the object definitions section, type converters, and define type aliases. These

features are discussed in section Section 5.11, “Configuration of IApplicationContext”

5.2.2.3. Composing XML-based configuration metadata

It can be useful to have object definitions span multiple XML files. Often each individual XML configuration

file represents a logical layer or module in your architecture.

You can use the IApplicationContext constructor to load object definitions from all these XML fragments. This

constructor takes multiple IResource locations, as was shown in the previous section. Alternatively, use one or

more occurrences of the <import/> element to load object definitions from another file (or files). For example:

<objects xmlns="http://www.springframework.net">

 <import resource="services.xml"/>

 <import resource="resources/messageSource.xml"/>

 <import resource="/resources/themeSource.xml"/>

 <object id="object1" type="..."/>

 <object id="object2" type="..."/>

</objects>

In the preceeding example, external object definitions are being loaded from three files, services.xml,

messageSource.xml, and themeSource.xml. All location paths are relative to the definition file doing

the importing, so services.xml must be in the same directory as the file doing the importing, while

messageSource.xml and themeSource.xml must be in a resources location below the location of the importing

file. As you can see, a leading slash is ignored, but given that these paths are relative, it is better form not to use

The IoC container

Spring Framework (Version 1.3.2) 17

the slash at all. The contents of the files being imported, including the top level <objects/> element, must be

valid XML object definitions according to the Spring Schema.

5.2.3. Using the container

An IApplicationContext is the interface for an advanced factory capable of maintaining a registry of different

objects and their dependencies. Using the method GetObject(string) or the indexer [string] you can retrieve

instances of your objects.

The IApplicationContext enables you to read object definitions and access them as follows:

// create and configure objects

IApplicationContext context = new XmlApplicationContext("services.xml", "daos.xml");

// retrieve configured instance

PetStoreService service = (PetStoreService) context.GetObject("PetStoreService");

// use configured instance

IList userList = service.GetUserNames();

You use the method GetObject to retrieve instances of your objects. The IApplicationContext interface has a

few other methods for retrieving objects, but ideally your application code should never use them. Indeed, your

application code should have no calls to the GetObject method at all, and thus no dependency on Spring APIs at

all. For example, Spring's integration with web frameworks provides for dependency injection for various web

framework classes such as ASP.NET pages and user controls.

Note

The syntactical inconvenience of the cast will be addressed in a future release of Spring.NET that is

based on a generic API. Note, that even when using a generic API, looking up an object by name in

no way guarantees that the return type will be that of the generic type.

5.2.4. Object definition overview

A Spring IoC container manages one or more objects. These objects are created with the configuration metadata

that you supply to the container.

Within the container itself, these object definitions are represented as IObjectDefinition objects, which contain

(among other information) the following metadata:

• A type name: typically the actual implementation class of the object being defined..

• Object behavioral configuration elements, which state how the object should behave in the container (i.e.

prototype or singleton, lifecycle callbacks, and so forth)

• References to other objects which are needed for the object to do its work: these references are also called

collaborators or dependencies.

• Other configuration settings to set in the newly created object. An example would be the number of threads to

use in an object that manages a worker thread pool, or the size limit of the pool.

This metadata translates to a set of properties that make up each object definition. The following table lists some

of these properties, with links to documentation

Table 5.1. Object definition explanation

Property More info

type Section 5.2.5, “Instantiating objects”

The IoC container

Spring Framework (Version 1.3.2) 18

Property More info

id and name Section 5.2.4.1, “Naming objects”

singleton or prototype Section 5.4, “Object Scopes”

object properties Section 5.3.1, “Dependency injection”

constructor arguments Section 5.3.1, “Dependency injection”

autowiring mode Section 5.3.6, “Autowiring collaborators”

dependency checking mode Section 5.3.7, “Checking for dependencies”

initialization method Section 5.6.1, “Lifecycle interfaces”

destruction method Section 5.6.1, “Lifecycle interfaces”

In addition to object definitions which contain information on how to create a specific object, the

IApplicationContext implementations also permit the registration of existing objects that are created

outside the container, by users. This is done by accessing the ApplicationContext's IObjectFactory via

the property ObjectFactory which returns the IObjectFactory implementation DefaultListableObjectFactory.

DefaultListableObjectFactory supports registration through the methods RegisterSingleton(..) and

RegisterObjectDefinition(..). However, typical applications work soley with objects defined through

metadata object definitions.

5.2.4.1. Naming objects

Every object has one or more identifiers. These identifiers must be unique within the container that hosts the

objects. An object usually has only one identifier, but if it requires more than one, the extra ones can be considered

aliases.

A convention that has evolved is to use the standard C# convention for Property names when naming

objects. That is, object names start with a uppercase letter, and are camel-cased from then on. Examples of

such names would be (without quotes) 'AccountManager', 'AccountService', 'UserDao', 'LoginController',

and so forth.

Naming object consistently makes your configuration easier to read and understand, and if you are using

Spring AOP it helps a lot when applying advice to a set of objects related by name.

When using XML-based configuration metadata, you use the 'id' and/or 'name'attributes to specify the object

identifier(s). The 'id' attribute allows you to specify exactly one id, and because it is a real XML element ID

attribute, the XML parser is able to do some extra validation when other elements reference the id. As such, it

is the preferred way to specify an object id. However, the XML specification does limit the characters which

are legal in XML IDs. This is usually not a constraint, but if you have a need to use one of these special XML

characters, or want to introduce other aliases to the object, you can specify them in the 'name' attribute , separated

by a comma (,), semicolon (;), or whitespace.

Note

You are not required to supply a name or id for a object. If no name or id is supplied explicitly, the

container will generate a unique name for that object. However, if you want to refer to that object

The IoC container

Spring Framework (Version 1.3.2) 19

by name, through the use of the ref element or Service Location style lookup, you must provide a

name. The motivations for not supplying a name for a object are to use autowiring and inline-objects

which will be discussed later.

5.2.4.1.1. Aliasing an object outside the object definition

In an object definition itself, you may supply more than one name for the object, by using a combination of up

to one name specified by the id attribute, and any number of other names in the name attribute. These names are

equivalent aliases to the same object, and are useful for some situations, such as allowing each component in an

application to refer to a common dependency by using a object name that is specific to that component itself.

Specifying all aliases where the object is actually defined is not always adequate, however. It is sometimes

desirable to introduce an alias for an object that is defined elsewhere. This is commonly the case in large systems

where configuration is split amongst each subsystem, each subsystem having its own set of object defintions. In

XML-based configuration metadata, you can use of the <alias/> element to accomplish this.

 <alias name="fromName" alias="toName"/>

In this case, an object in the same container which is named fromName, may also after the use of this alias definition,

be referred to as toName.

For example, the configuration metadata for subsystem A may refer to a DbProvider via the name 'SubsystemA-

DbProvider. The configuration metadata for subsystem B may refer to a DbProvider via the name 'SubsystemB-

DbProvider'. When composing the main application that uses both these subsystems the main application refers

to the DbProvider via the name 'MyApp-DbProvider'. To have all three names refer to the same object you add

to the MyApp configuration metadata the following aliases definitions:

<alias name="SubsystemA-DbProvider" alias="SubsystemB-DbProvider"/>

<alias name="SubsystemA-DbProvider" alias="MyApp-DbProvider"/>

Now each component and the main app can refer to the connection through a name that is unique and guaranteed

not to clash with any other definition (effectively there is a namespace), yet they refer to the same object.

5.2.5. Instantiating objects

An object definition essentially is a recipe for creating one or more objects. The container looks at the recipe for

a named object when asked, and uses the configuration metadata encapsulated by that object definition to create

(or acquire) an actual object.

If you are using XML-based configuration metadata, you can specify the type of object that is to be instantiated

in the 'type' attribute of the <object/> element. This 'type' attribute (which internally is a Type property on a

IObjectDefinition instance) is usually mandatory. (For exceptions see the section called Instantiation using an

instance factory method and Object definition inheritance.) You use the Type property in one of two ways:

• Typically, to specify the type of of the object to be constructed in the case where the container itself directly

creates the object by calling its constructor reflectively, somewhat equivalent to C# code using the 'new'

operator.

• To specify the actual class containing the static factory method that will be invoked to create the object, in

the less common case where the container invokes a static factory method on a class to create the object.

The object type returned from the invocation of the static factory method may be the same type or another

type entirely.

The IoC container

Spring Framework (Version 1.3.2) 20

5.2.5.1. Instantiatoin with a constructor

When you create an object using the constructor approach, all normal classes are usable by and compatible with

Spring. That is, the class being developed does not need to implement any specific interfaces or to be coded in

a specific fashion. Simply specifying the object type should be sufficient. However, depending on what type of

IoC you are going to use for that specific object, you may need to create a default constructor.

With XML-based configuration metadata you can specify your object class as follows:

<object id="exampleObject" type="Examples.ExampleObject, ExamplesLibrary"/>

For details about the mechanism for supplying arguments to the constructor (if required), and setting object

instance properties after the object is constructed, see Section 5.3.1, “Dependency injection”.

This XML fragment describes an object definition that will be identified by the exampleObject name, instances of

which will be of the Examples.ExampleObject type that has been compiled into the ExamplesLibrary assembly.

Take special note of the structure of the type attribute's value... the namespace-qualified name of the class is

specified, followed by a comma, followed by (at a bare minimum) the name of the assembly that contains the

class. In the preceding example, the ExampleObject class is defined in the Examples namespace, and it has been

compiled into the ExamplesLibrary assembly.

The name of the assembly that contains the type must be specified in the type attribute. Furthermore, it is

recommended that you specify the fully qualified assembly name 2 in order to guarantee that the type that

Spring.NET uses to instantiate your object (s) is indeed the one that you expect. Usually this is only an issue if

you are using classes from (strongly named) assemblies that have been installed into the Global Assembly Cache

(GAC).

If you have defined nested classes use the addition symbol, +, to reference the nested class. For example, if the

class Examples.ExampleObject had a nested class Person the XML declaration would be

<object id="exampleObject" type="Examples.ExampleObject+Person, ExamplesLibrary"/>

If you are defining classes that have been compiled into assemblies that are available to your application (such as

the bin directory in the case of ASP.NET applications) via the standard assembly probing mechanisms, then you

can specify simply the name of the assembly (e.g. ExamplesLibrary.Data)... this way, when (or if) the assemblies

used by your application are updated, you won't have to change the value of every <object/> definition's type

attribute to reflect the new version number (if the version number has changed)... Spring.NET will automatically

locate and use the newer versions of your assemblies (and their attendant classes) from that point forward.

5.2.5.2. Instantiation with a static factory method

When defining an object which is to be created using a static factory method, you use the type attribute to specify

the type containing the static factory method and an attribute named factory-method to specify the name of the

factory method itself. You should be able to call this method (with an optional list of arguments as described

later) and return a live object, which subsequently is treated as if it had been created through a constructor. One

use for such an object definition is to call static factories in legacy code.

The following object definition specifies that the object will be created by calling a factory-method. The definition

does not specify the type of the returned object, only the type containing the factory method. In this example,

CreateInstance must be a static method.

2More information about assembly names can be found in the Assembly Names section of the .NET Framework Developer's Guide (installed

as part of the .NET SDK), or online at Microsoft's MSDN website, by searching for Assembly Names.

The IoC container

Spring Framework (Version 1.3.2) 21

<object id="exampleObject"

 type="Examples.ExampleObjectFactory, ExamplesLibrary"

 factory-method="CreateInstance"/>

For details about the mechanism for supplying (optional) arguments to the factory method and setting object

instance properties after it has been returned from the factory, see Section 5.3.2, “Dependencies and configuration

in detail”

5.2.5.3. Object creation via an instance factory method

Similar to instantiation through a static factory method, instantiation with an instance factory method invokes

a a non-static method on an existing object from the container to create a new object. To use this mechanism,

leave the type attribute empty, and in the factory-object attribute specify the name of an object in the current

(or parent/ancestor) container that contains the instance method that is to be invoked to create the object. Set the

name of the factory method itself with the factory-method attribute.

<!-- the factory object, which contains an instance method called 'CreateInstance' -->

<object id="exampleFactory" type="...">

 <!-- inject any dependencies required by this object -->

</object>

<!-- the object that is to be created by the factory object -->

<object id="exampleObject"

 factory-method="CreateInstance"

 factory-object="exampleFactory"/>

This approach shows that the factory object itself can be managed and configured through dependency injection

(DI). See Dependencies and configuraiton in detail.

Note

In Spring documentation, 'factory object', refers to an object that is configured in the Spring container

that will create objects via an instance or static factory method. By contrast, IFactoryObject (notice

the capitalization) refers to a Spring-specific IFactoryObject .

5.2.6. Object creation of generic types

Generic types can also be created in much the same manner an non-generic types.

5.2.6.1. Object creation of generic types via constructor invocation

The following examples shows the definition of simple generic types and how they can be created in Spring's

XML based configuration file.

namespace GenericsPlay

{

 public class FilterableList<T>

 {

 private List<T> list;

 private String name;

 public List<T> Contents

 {

 get { return list; }

 set { list = value; }

 }

 public String Name

 {

 get { return name; }

The IoC container

Spring Framework (Version 1.3.2) 22

 set { name = value; }

 }

 public List<T> ApplyFilter(string filterExpression)

 {

 /// should really apply filter to list ;)

 return new List<T>();

 }

 }

}

The XML configuration to create and configure this object is shown below

<object id="myFilteredIntList" type="GenericsPlay.FilterableList<int>, GenericsPlay">

 <property name="Name" value="My Integer List"/>

</object>

There are a few items to note in terms how to specify a generic type. First, the left bracket that specifies the

generic type, i.e. <, is replaced with the string < due to XML escape syntax for the less than symbol. Yes, we

all realize this is less than ideal from the readability point of view. Second, the generic type arguments can not be

fully assembly qualified as the comma is used to separate generic type arguments. Alternative characters used to

overcome the two quirks can be implemented in the future but so far, all proposals don't seem to help clarify the

text. The suggested solution to improve readability is to use type aliases as shown below

<typeAliases>

 <alias name="GenericDictionary" type=" System.Collections.Generic.Dictionary<,>" />

 <alias name="myDictionary" type="System.Collections.Generic.Dictionary<int,string>" />

</typeAliases>

So that instead of something like this

<object id="myGenericObject"

 type="GenericsPlay.ExampleGenericObject<System.Collections.Generic.Dictionary<int , string>>,

 GenericsPlay" />

It can be shortened to

<object id="myOtherGenericObject"

 type="GenericsPlay.ExampleGenericObject<GenericDictionary<int , string>>, GenericsPlay" />

or even shorter

<object id="myOtherOtherGenericObject"

 type="GenericsPlay.ExampleGenericObject<MyIntStringDictionary>, GenericsPlay" />

Refer to Section 5.11, “Configuration of IApplicationContext” for additional information on using type aliases.

5.2.6.2. Object creation of generic types via static factory method

The following classes are used to demonstrate the ability to create instances of generic types that themselves are

created via a static generic factory method.

public class TestGenericObject<T, U>

{

 public TestGenericObject()

 {

 }

 private IList<T> someGenericList = new List<T>();

 private IDictionary<string, U> someStringKeyedDictionary =

 new Dictionary<string, U>();

 public IList<T> SomeGenericList

 {

The IoC container

Spring Framework (Version 1.3.2) 23

 get { return someGenericList; }

 set { someGenericList = value; }

 }

 public IDictionary<string, U> SomeStringKeyedDictionary

 {

 get { return someStringKeyedDictionary; }

 set { someStringKeyedDictionary = value; }

 }

}

The accompanying factory class is

public class TestGenericObjectFactory

{

 public static TestGenericObject<V, W> StaticCreateInstance<V, W>()

 {

 return new TestGenericObject<V, W>();

 }

 public TestGenericObject<V, W> CreateInstance<V, W>()

 {

 return new TestGenericObject<V, W>();

 }

}

The XML snippet to create an instance of TestGenericObject where V is a List of integers and W is an integer

is shown below

<object id="myTestGenericObject"

 type="GenericsPlay.TestGenericObjectFactory, GenericsPlay"

 factory-method="StaticCreateInstance<System.Collections.Generic.List<int>,int>"

/>

The StaticCreateInstance method is responsible for instantiating the object that will be associated with the id

'myTestGenericObject'.

5.2.6.3. Object creation of generic types via instance factory method

Using the class from the previous example the XML snippet to create an instance of a generic type via an instance

factory method is shown below

<object id="exampleFactory" type="GenericsPlay.TestGenericObject<int,string>, GenericsPlay"/>

<object id="anotherTestGenericObject"

 factory-object="exampleFactory"

 factory-method="CreateInstance<System.Collections.Generic.List<int>,int>"/>

This creates an instance of TestGenericObject<List<int>,int>

5.3. Dependencies

A typical enterprise application does not consist of a single object. Even the simplest application has a few objects

that work together to present what the end-user sees as a coherent application. This next section explains how

you go from defining a number of object definitions that stand-alone to a fully realized application where objects

collaborate to achieve a goal.

5.3.1. Dependency injection

Dependency injection (DI) is a process whereby objects define their dependencies, that is, the other objects

they work with, only through constructor arguments and properties that are set on the object instance after it

The IoC container

Spring Framework (Version 1.3.2) 24

is constructed. (Factory methods may be considered a special case of providing constructor arguments for the

purposes of this description). The container injects these dependencies when it creates the object. This process

is fundamentally the inverse to the case when the object itself is controlling the instantiation or location of

its dependencies by using direct construction of classes, or the Service Locator pattern. The inverting of this

responsibility is why the name Inversion of Control (IoC) is used to describe the container's actions.

Code is cleaner when using DI and decoupling is more effective when objects are provided with their

dependencies. The object does not look up its dependencies, and does not know the location or class of the

dependencies. Long sections of initialization code that you used to hide in a #region tag simply go away, and are

placed by container configuration metadata. One can also consider this clean up an application of the principal

of Separation of Concerns. Before using DI, you class was responsible for business logic AND its configuration,

it was concerns with doing more than one thing. DI removes the responsibility of configuration from the class,

leaving it only with a single purpose, as the location of business logic. Furthermore, since you class does not know

the location of its dependencies these classes also become easier to test, in particular when the dependencies are

interfaces or abstract base classes allowing for stub or mock implementation to be used in unit tests.

Dependency injection exists in two major variants, Constructor-based dependency injection and Setter-based

dependency injection.

5.3.1.1. Constructor-based dependency injection

Constructor-based DI is accomplished by the container invoking a constructor with a number of arguments, each

representing a dependency. Calling a static factory method with specific arguments to construct the object is

nearly equivalent, and this discussion treats arguments to a constructor and to a static factory method similarly.

The following example shows a class that can only be dependency-injected with constructor injection. Notice that

there is nothing special about this class (no container specific interfaces, base classes or attributes)

public class SimpleMovieLister

{

 // the SimpleMovieLister has a dependency on a MovieFinder

 private IMovieFinder movieFinder;

 // a constructor so that the Spring container can 'inject' a MovieFinder

 public MovieLister(IMovieFinder movieFinder)

 {

 this.movieFinder = movieFinder;

 }

 // business logic that actually 'uses' the injected IMovieFinder is omitted...

}

5.3.1.1.1. Constructor argument resolution

Constructor argument resolution matching occurs using the argument's type. If ambiguity exists in the constructor

arguments of a object definition, then the order in which the constructor arguments are defined in a object

definition is the order in which those arguments are supplied to the appropriate constructor when the object being

instantiated. Consider the following class:

namespace X.Y

{

 public class Foo

 {

 public Foo(Bar bar, Baz baz)

 {

 // ...

 }

 }

}

The IoC container

Spring Framework (Version 1.3.2) 25

No potential ambiguity exists, assuming of course that Bar and Baz classes are not related by inheritance. Thus

the following configuration will work just fine, and you do not need to specify the constructor argument indexes

and / or types explicitly in the <contructor-arg/> element.

<object id="foo" type="X.Y.Foo, Example">

 <constructor-arg ref="bar"/>

 <constructor-arg ref="baz"/>

</object>

<object id="bar" type="X.Y.Bar, Example"/>

<object id="baz" type="X.Y.Baz, Example"/>

When another object is referenced, the type is known, and matching can occur (as was the case with the preceding

example).

When a simple type is used, such as <value>true<value>, Spring cannot determine the type of the value, and so

cannot match by type without help. Consider the following class:

using System;

namespace SimpleApp

{

 public class ExampleObject

 {

 private int years; //No. of years to the calculate the Ultimate Answer

 private string ultimateAnswer; //The Answer to Life, the Universe, and Everything

 public ExampleObject(int years, string ultimateAnswer)

 {

 this.years = years;

 this.ultimateAnswer = ultimateAnswer;

 }

}

5.3.1.1.1.1. Constructor argument type matching

In the preceding scenario, the container can use type matching with simple types by explicitly specifying the type

of the constructor argument using the 'type' attribute. For example:

<object name="exampleObject" type="SimpleApp.ExampleObject, SimpleApp">

 <constructor-arg type="int" value="7500000"/>

 <constructor-arg type="string" value="42"/>

</object>

The type attribute specifies the System.Type of the constructor argument, such as System.Int32. Alias' are

available to for common simple types (and their array equivalents). These alias' are...

Table 5.2. Type aliases

Type Alias' Array Alias'

System.Charchar, Char char[], Char()

System.Int16short, Short short[], Short()

System.Int32int, Integer int[], Integer()

System.Int64long, Long long[], Long()

System.UInt16ushort ushort[]

System.UInt32uint uint[]

The IoC container

Spring Framework (Version 1.3.2) 26

Type Alias' Array Alias'

System.UInt64ulong ulong[]

System.Floatfloat, Single float[], Single()

System.Doubledouble, Double double[], Double()

System.Datedate, Date date[], Date()

System.Decimaldecimal, Decimal decimal[], Decimal()

System.Boolbool, Boolean bool[], Boolean()

System.Stringstring, String string[], String()

5.3.1.1.1.2. Constructor argument Index

Use the index attribute to specify explicitly the index of constructor arguments. For example:

<object name="exampleObject" type="SimpleApp.ExampleObject, SimpleApp">

 <constructor-arg index="0" value="7500000"/>

 <constructor-arg index="1" value="42"/>

</object>

In addition to resolving the ambiguity of multiple simple values, specifying an index also resolves ambiguity

where a constructor has two arguments of the same type. Note that the index is 0 based.

5.3.1.1.1.3. Constructor arguments by name

You can specify constructor argumetn by name using name attribute of the <constructor-arg> element.

<object name="exampleObject" type="SimpleApp.ExampleObject, SimpleApp">

 <constructor-arg name="years" value="7500000"/>

 <constructor-arg name="ultimateAnswer" value="42"/>

</object>

5.3.1.2. Setter-based dependency injection

Setter-based DI is accomplished by the container invoking setter properties on your objects after invoking a no-

argument constructor or no-argument static factory method to instantiate your object.

The following eample shows a class that can only be dependency injected using pure setter injection.

public class MovieLister

{

 private IMovieFinder movieFinder;

 public IMovieFinder MovieFinder

 {

 set

 {

 movieFinder = value;

 }

 }

 // business logic that actually 'uses' the injected IMovieFinder is omitted...

}

The IoC container

Spring Framework (Version 1.3.2) 27

Constructor-based or setter-based DI?

The Spring team generally advocates the usage of setter injection, since a large number of constructor

arguments can get unwieldy, especially when some properties are optional. The presence of setter properties

also makes objects of that class amenable to reconfigured or reinjection later. Managment through WMI

is a compelling use case.

Some purists favor constructor-based injection. Supplying all object dependencies means that the object

is always returned to client (calling) code in a totally initialized state. The disadvantage is that the object

becomes less amenable to reconfiguration and re-injection.

Use the DI that makes the most sense for a particular class. Sometimes, when dealing with third-party

classes to which you do not have the source, the choice is made for you. A legacy class may not expose any

setter methods, and so constructor injection is the only available DI.

Since you can mix both, Constructor- and Setter-based DI, it is a good rule of thumb to use constructor

arguments for mandatory dependencies and setters for optional dependencies.

The IAppliationContext supports constructor- and setter-based DI for the objects it manages. It also supports

setter-based DI after some dependencies have already been supplied via the constructor approach..

The configuration for the dependencies comes in the form of the IObjectDefinition class, which is used together

with TypeConverters to know how to convert properties from one format to another. However, most users of

Spring.NET will not be dealing with these classes directly (that is programatically), but rather with an XML

definition file which will be converted internally into instances of these classes, and used to load an entire Spring

IoC container instance. Refer to Section 6.3, “Type conversion” for more information regarding type conversion,

and how you can design your classes to be convertible by Spring.NET.

The container resolves object dependeices as:

1. The IApplicationContext is created and initialized with a configuration that describes all the objects.

Most Spring.NET users use an IObjectFactory or IApplicationContext variant that supports XML format

configuration files.

2. Each object has dependencies expressed in the form of properties, constructor arguments, or arguments to the

static-factory method if you are using that instead of a normal constructor. These dependencies apre provided

to the object, when the object is actually created.

3. Each property or constructor argument is either an actual definition of the value to set, or a reference to another

object in the container.

4. Each property or constructor argument which is a value must be able to be converted from whatever format it

was specified in, to the actual System.Type of that property or constructor argument. By default Spring.NET

can convert a value supplied in string format to all built-in types, such as int, long, string, bool, etc.

The Spring container validates the configuration of each object as the container is created, including the validation

of whether object reference properties refer to valid object. However, the object properties themselves are not set

until the object is actually created. Objects that are defined as singletons and set to be pre-instantiated, are created

when the container is created. Otherwise, the object is created only when it is requested. Creation of an object

potentially causes a graph of objects to be created as the objects dependencies and its dependencies' dependencies

(and so on) are created and assigned.

The IoC container

Spring Framework (Version 1.3.2) 28

Circular Dependencies

If you are using predominantly constructor injection it is possible to create unresolvable circular dependency

scenario.

For example: Class A, which requires an instance of class B to be provided via constructor injection, and

class B, which requires an instance of class A to be provided via constructor injection. If you configure

objects for classes A and B to be injected into each other, the Spring IoC container detects this circular

reference at runtime, and throw a ObjectCurrentlyInCreationException.

One possible solution to this issue is to edit the source code of some of your classes to be configured via

setters instead of via constructors. Alternatively, avoid constructor injection and stick to setter injection

only. In other words, although it is not recommended, you can configure circular dependencies with setter

injection.

Unlike the typical case (with no circular dependencies), a circular dependency between object A and object

B will force one of the objects to be injected into the other prior to being fully initialized itself (a classic

chicken/egg scenario).

You can generally trust Spring.NET to do the right thing. It detects configuration problems, such as references

to non-existent object definitions and circular dependencies, at container load-time. Spring sets properties and

resolves dependencies as late as possible, which is when the object is actually created. This means that a Spring

container which has loaded correctly can later generate an exception when you request an object if there is

a problem creating that object or one of its dependencies. For example, the object throws an exception as

a result of a missing or invalid property. This potentially delayed visibility of some configuration issues is

why IApplicationContext by default pre-instantiate singleton objects. At the cost of some upfront time and

memory to create these objects before they are actually needed, you discover configuration issues when the

IApplicationContext is created, not later. If you wish, you can still override this default behavior and set any

of these singleton objects will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating objects are being injected into a dependent

object, each collaborating object is totally configured prior to being passed into the dependent object. This means

that if object A has a dependency on object B, the Spring IoC container completely configures object B prior

to invoking the setter method on object A. In other words, the object is instantiated (if not a pre-instantiated

singleton), its dependencies are set, and the relevant lifecycle methods (such as a configured init method or the

IIntializingObject callback method) will all be invoked.

5.3.1.3. Examples of dependency injection

First, an example of using XML-based configuration metadata for setter-based DI. A small part of a Spring XML

configuration file specifying some object definitions:

<object id="exampleObject" type="Examples.ExampleObject, ExamplesLibrary">

 <!-- setter injection using the ref attribute -->

 <property name="objectOne" ref="anotherExampleObject"/>

 <property name="objectTwo" ref="yetAnotherObject"/>

 <property name="IntegerProperty" value="1"/>

</object>

<object id="anotherExampleObject" type="Examples.AnotherObject, ExamplesLibrary"/>

<object id="yetAnotherObject" type="Examples.YetAnotherObject, ExamplesLibrary"/>

[C#]

public class ExampleObject

{

The IoC container

Spring Framework (Version 1.3.2) 29

 private AnotherObject objectOne;

 private YetAnotherObject objectTwo;

 private int i;

 public AnotherObject ObjectOne

 {

 set { this.objectOne = value; }

 }

 public YetAnotherObject ObjectTwo

 {

 set { this.objectTwo = value; }

 }

 public int IntegerProperty

 {

 set { this.i = value; }

 }

}

In the preceding example, setters have been declared to match against the properties specified in the XML file.

Find below an example of using constructor-based DI.

<object id="exampleObject" type="Examples.ExampleObject, ExamplesLibrary">

 <constructor-arg name="objectOne" ref="anotherExampleObject"/>

 <constructor-arg name="objectTwo" ref="yetAnotherObject"/>

 <constructor-arg name="IntegerProperty" value="1"/>

</object>

<object id="anotherExampleObject" type="Examples.AnotherObject, ExamplesLibrary"/>

<object id="yetAnotherObject" type="Examples.YetAnotherObject, ExamplesLibrary"/>

[Visual Basic.NET]

Public Class ExampleObject

 Private myObjectOne As AnotherObject

 Private myObjectTwo As YetAnotherObject

 Private i As Integer

 Public Sub New (

 anotherObject as AnotherObject,

 yetAnotherObject as YetAnotherObject,

 i as Integer)

 myObjectOne = anotherObject

 myObjectTwo = yetAnotherObject

 Me.i = i

 End Sub

End Class

Ghe constructor arguments specified in the object definition will be used to pass in as arguments to the constructor

of the ExampleObject.

Now consider a variant of this where instead of using a constructor, Spring is told to call a static factory method

to return an instance of the object

<object id="exampleObject" type="Examples.ExampleFactoryMethodObject, ExamplesLibrary"

 factory-method="CreateInstance">

 <constructor-arg name="objectOne" ref="anotherExampleObject"/>

 <constructor-arg name="objectTwo" ref="yetAnotherObject"/>

 <constructor-arg name="intProp" value="1"/>

</object>

<object id="anotherExampleObject" type="Examples.AnotherObject, ExamplesLibrary"/>

<object id="yetAnotherObject" type="Examples.YetAnotherObject, ExamplesLibrary"/>

[C#]

public class ExampleFactoryMethodObject

{

 private AnotherObject objectOne;

The IoC container

Spring Framework (Version 1.3.2) 30

 private YetAnotherObject objectTwo;

 private int i;

 // a private constructor

 private ExampleFactoryMethodObject()

 {

 }

 public static ExampleFactoryMethodObject CreateInstance(AnotherObject objectOne,

 YetAnotherObject objectTwo,

 int intProp)

 {

 ExampleFactoryMethodObject fmo = new ExampleFactoryMethodObject();

 fmo.AnotherObject = objectOne;

 fmo.YetAnotherObject = objectTwo;

 fmo.IntegerProperty = intProp;

 return fmo;

 }

 // Property definitions

}

Arguments to the static factory method are supplied via <constructor-arg/> elements, exactly the same as if

a constructor had actually been used. The type of the class being returned by the factory method does not have

to be of the same type as the class which contains the static factory method, although in this example it is. An

instance (non-static) factory method would be used in an essentially identical fashion (aside from the use of the

factory-object attribute instead of the type attribute), so will not be detailed here.

Note that Setter Injection and Constructor Injectionare not mutually exclusive. It is perfectly reasonable to use

both for a single object definition, as can be seen in the following example:

<object id="exampleObject" type="Examples.MixedIocObject, ExamplesLibrary">

 <constructor-arg name="objectOne" ref="anotherExampleObject"/>

 <property name="objectTwo" ref="yetAnotherObject"/>

 <property name="IntegerProperty" value="1"/>

</object>

<object id="anotherExampleObject" type="Examples.AnotherObject, ExamplesLibrary"/>

<object id="yetAnotherObject" type="Examples.YetAnotherObject, ExamplesLibrary"/>

[C#]

public class MixedIocObject

{

 private AnotherObject objectOne;

 private YetAnotherObject objectTwo;

 private int i;

 public MixedIocObject (AnotherObject obj)

 {

 this.objectOne = obj;

 }

 public YetAnotherObject ObjectTwo

 {

 set { this.objectTwo = value; }

 }

 public int IntegerProperty

 {

 set { this.i = value; }

 }

}

5.3.2. Dependencies and configuration in detail

As mentioned in the previous section, you can define object properties and constructor arguments as

either references to other managed objects (collaborators), or as values defined inline. Spring's XML-based

The IoC container

Spring Framework (Version 1.3.2) 31

configuration metadata supports sub-element types within its <property/> and <constructor-arg/> elements

for this purpose.

5.3.2.1. Straight values (primitives, strings, and so on)

The value attribute of the <property/> element specifies a property or constructor argument as a human-readable

string representation. As mentioned previously, TypeConverter instances are used to convert these string values

from a System.String to the actual property or argument type.

In the following example, we use a SqlConnection from the System.Data.SqlClient namespace. This class

(like many other existing classes) can easily configured by Spring as it offers a convenient public property for

configuration of its ConnectionString property.

<objects xmlns="http://www.springframework.net">

 <object id="myConnection" type="System.Data.SqlClient.SqlConnection">

 <!-- results in a call to the setter of the ConnectionString property -->

 <property

 name="ConnectionString"

 value="Integrated Security=SSPI;database=northwind;server=mySQLServer"/>

 </object>

</objects>

5.3.2.1.1. The idref element

An idref element is simply an error-proof way to pass the id (string value - not a reference) of another object in

the container to a <constructor-arg/> or <property/> element.

<object id="theTargetObject" type="...">

 . . .

</object>

<object id="theClientObject" type="...">

 <property name="targetName">

 <idref object="theTargetObject"/>

 </property>

</object>

This above object definition snipped is exactly equivalent (at runtime) to the following snippit:

<object id="theTargetObject" type="...">

 . . .

</object>

<object id="theClientObject" type="...">

 <property name="targetName" value="theTargetObject"/>

</object>

The first form is preferable to the second is that using the idref tag allows the container to validate at deployment

time that the referenced, named object actually exists. In the second variation, no validation is performed on the

value that is passed to the targetName property of the client object. Typos are only discovered (with ost mikely

fatal results) when the 'client' object is actually instantiated. If the 'client' object is a prototype object, this typo

and the resulting exception may only be discovered long after the container is deployed.

Additionally, if the reference object is in the same XML unit, and the object name is the object id, you can use

the local attribute which allows the XML parser itself to validate the object name earlier, at XML document

parse time.

<property name="targetName">

 <idref local="theTargetObject"/>

</property>

The IoC container

Spring Framework (Version 1.3.2) 32

5.3.2.1.2. Whitespace Handling

Usually all leading and trailing whitespaces are trimmed from a <value /> element's text. In some cases it is

necessary to maintain whitespaces exactly as they are written into the xml element. The parser does understand

the xml:space attribute in this case:

<property name="myProp">

 <value xml:space="preserve">
	</value>

</property>

The above configuration will result in the string " \n\r\t". Note, that you don't have to explicitely specifiy the 'xml'

namespace on top of your configuration.

5.3.2.2. References to other objects (collaborators)

The ref element is the final element allowed inside a <constructor-arg/> or <property/> definition element.

Here you set the value of the specified property to be a reference to another object (a collaborator) managed by the

container. The referenced object is a dependency of the object whose property will be set, and it is initialzed on

demand as needed before the property is set. (If the collaborator is a singleton object it may be initialized already

by the container.) All references are ultimately just a reference to another object. Scoping and validation depend

on whether you specify the id/name of the object through the object, local, or parent attributes.

Specifying the target object through the object attribute of the ref tag is the most general form, and allows

creation of a reference to any object in the same container or parent container, regardless of whether it is in the

same XML file. The value of the object attribute may be the same as the id attribute of the target object, or as

one of the values in the name attribute of the target object.

<ref object="someObject"/>

Specifying the target object by using the local attribute leverages the ability of the XML parser to validate XML

id references within the same file. The value of the local attribute must be the same as the id attribute of the

target object. The XML parser will issue an error if no matching element is found in the same file. As such, using

the local variant is the best choice (in order to know about errors are early as possible) if the target object is in

the same XML file.

<ref local="someObject"/>

Specifying the target object through the parent attribute creates a reference to an object that is in a parent container

of the current container. The value of the 'parent' attribute may be the same as either the 'id' attribute of the

target object, or one of the values in the 'name' attribute of the target object, and the target object must be in a

parent container to the current one. You use this object reference variant mainly when you have a hierarchy of

containers and you want to wrap an existing object in a parent container with some sort of proxy which will have

the same name as the parent object.

<!-- in the parent context -->

<object id="AccountService" type="MyApp.SimpleAccountService, MyApp">

 <!-- insert dependencies as required as here -->

</object>

<!-- in the child (descendant) context -->

<object id="AccountService" <-- notice that the name of this object is the same as the name of the 'parent'

 object

 type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop">

 <property name="target">

 <ref parent="AccountService"/> <-- notice how we refer to the parent object -->

 </property>

 <!-- insert other configuration and dependencies as required as here -->

</object>

The IoC container

Spring Framework (Version 1.3.2) 33

5.3.2.3. Inner objects

An <object/> element inside the <constructor-arg/> or <property/> element defines so called inner object.

<object id="outer" type="...">

 <!-- Instead of using a reference to target, just use an inner object -->

 <property name="target">

 <object type="ExampleApp.Person, ExampleApp">

 <property name="name" value="Tony"/>

 <property name="age" value="51"/>

 </object>

 </property>

</object>

An inner object definition does not require a defined id or name; the container ignores these values. It also ignores

the scope flag. Inner object are always anonymous and they are always scoped as prototypes. It is not possible to

inject inner objects into collaborating objects other than into the enclosing object.

5.3.2.4. Setting collection values

The list, set, name-values and dictionary elements allow properties and arguments of the type IList, ISet,

NameValueCollection and IDictionary, respectively, to be defined and set.

<objects xmlns="http://www.springframework.net">

 <object id="moreComplexObject" type="Example.ComplexObject">

 <!--

 results in a call to the setter of the SomeList (System.Collections.IList) property

 -->

 <property name="SomeList">

 <list>

 <value>a list element followed by a reference</value>

 <ref object="myConnection"/>

 </list>

 </property>

 <!--

 results in a call to the setter of the SomeDictionary (System.Collections.IDictionary) property

 -->

 <property name="SomeDictionary">

 <dictionary>

 <entry key="a string => string entry" value="just some string"/>

 <entry key-ref="myKeyObject" value-ref="myConnection"/>

 </dictionary>

 </property>

 <!--

 results in a call to the setter of the SomeNameValue (System.Collections.NameValueCollection) property

 -->

 <property name="SomeNameValue">

 <name-values>

 <add key="HarryPotter" value="The magic property"/>

 <add key="JerrySeinfeld" value="The funny (to Americans) property"/>

 </name-values>

 </property>

 <!--

 results in a call to the setter of the SomeSet (Spring.Collections.ISet) property

 -->

 <property name="someSet">

 <set>

 <value>just some string</value>

 <ref object="myConnection"/>

 </set>

 </property>

 </object>

</objects>

Many classes in the BCL expose only read-only properties for collection classes. When Spring.NET encounters

a read-only collection, it will configure the collection by using the getter property to obtain a reference to the

The IoC container

Spring Framework (Version 1.3.2) 34

collection class and then proceed to add the additional elements to the existing collection. This results in an

additive behavior for collection properties that are exposed in this manner.

The value of a Dictionary entry, or a set value, can also again be any of the following elements:

(object | ref | idref | expression | list | set | dictionary |

 name-values | value | null)

The shortcut forms for value and references are useful to reduce XML verbosity when setting collection properties.

See Section 5.3.2.9, “Value and ref shortcut forms” for more information.

5.3.2.5. Setting generic collection values

Spring supports setting values for classes that expose properties based on the generic collection interfaces

IList<T> and IDictionary<TKey, TValue>. The type parameter for these collections is specified by

using the XML attribute element-type for IList<T> and the XML attributes key-type and value-

type for IDictionary<TKey, TValue>. The values of the collection are automaticaly converted from a

string to the appropriate type. If you are using your own user-defined type as a generic type parameter

you will likely need to register a custom type converter. Refer to Section 5.5, “Type conversion” for

more information. The implementations of IList<T> and IDictionary<TKey, TValue> that is created are

System.Collections.Generic.List and System.Collections.Generic.Dictionary.

The following class represents a lottery ticket and demonstrates how to set the values of a generic IList.

public class LotteryTicket {

 List<int> list;

 DateTime date;

 public List<int> Numbers {

 set { list = value; }

 get { return list; }

 }

 public DateTime Date {

 get { return date; }

 set { date = value; }

 }

}

The XML fragment that can be used to configure this class is shown below

<object id="MyLotteryTicket" type="GenericsPlay.Lottery.LotteryTicket, GenericsPlay">

 <property name="Numbers">

 <list element-type="int">

 <value>11</value>

 <value>21</value>

 <value>23</value>

 <value>34</value>

 <value>36</value>

 <value>38</value>

 </list>

 </property>

 <property name="Date" value="4/16/2006"/>

</object>

The following shows the definition of a more complex class that demonstrates the use of generics using

the Spring.Expressions.IExpression interface as the generic type parameter for the IList element-type

and the value-type for IDictionary. Spring.Expressions.IExpression has an associated type converter,

Spring.Objects.TypeConverters.ExpressionConverter that is already pre-registered with Spring.

 public class GenericExpressionHolder

The IoC container

Spring Framework (Version 1.3.2) 35

 {

 private System.Collections.Generic.IList<IExpression> expressionsList;

 private System.Collections.Generic.IDictionary<string,IExpression> expressionsDictionary;

 public System.Collections.Generic.IList<IExpression> ExpressionsList

 {

 set { this.expressionsList = value; }

 }

 public System.Collections.Generic.IDictionary<string, IExpression> ExpressionsDictionary

 {

 set { this.expressionsDictionary = value; }

 }

 public IExpression this[int index]

 {

 get

 {

 return this.expressionsList[index];

 }

 }

 public IExpression this[string key]

 {

 get { return this.expressionsDictionary[key]; }

 }

 }

An example XML configuration of this class is shown below

<object id="genericExpressionHolder"

 type="Spring.Objects.Factory.Xml.GenericExpressionHolder,

 Spring.Core.Tests">

 <property name="ExpressionsList">

 <list element-type="Spring.Expressions.IExpression, Spring.Core">

 <value>1 + 1</value>

 <value>date('1856-7-9').Month</value>

 <value>'Nikola Tesla'.ToUpper()</value>

 <value>DateTime.Today > date('1856-7-9')</value>

 </list>

 </property>

 <property name="ExpressionsDictionary">

 <dictionary key-type="string" value-type="Spring.Expressions.IExpression, Spring.Core">

 <entry key="zero">

 <value>1 + 1</value>

 </entry>

 <entry key="one">

 <value>date('1856-7-9').Month</value>

 </entry>

 <entry key="two">

 <value>'Nikola Tesla'.ToUpper()</value>

 </entry>

 <entry key="three">

 <value>DateTime.Today > date('1856-7-9')</value>

 </entry>

 </dictionary>

 </property>

</object>

5.3.2.6. Collection Merging

As of Spring 1.3, the container supports the merging of collections. An application developer can define a parent-

style <list/>, <dictionary/>, <set/> or <name-value/> element, and have child-style <list/>, <dictionary/

>, <set/> or <name-value/> elements inherit and override values from the parent collection. That is, the child

collection's values are the result of merging the elements of the parent and child collections, with the child's

collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child object mechanism. Readers unfamiliar with parent and child

object definitions may wish to read the relevant section before continuing.

The IoC container

Spring Framework (Version 1.3.2) 36

The following example demonstrates collection merging:

 <object id="parent" abstract="true" type="Example.ComplexObject, Examples">

 <property name="AdminEmails">

 <name-values>

 <add key="administrator" value="administrator@example.com"/>

 <add key="support" value="support@example.com"/>

 </name-values>

 </property>

 </object>

 <object id="child" parent="parent" >

 <property name="AdminEmails">

 <!-- the merge is specified on the *child* collection definition -->

 <name-values merge="true">

 <add key="sales" value="sales@example.com"/>

 <add key="support" value="support@example.co.uk"/>

 </name-values>

 </property>

 </object>

Notice the use of the merge=true attribute on the <name-values/> element of the AdminEmails property of the

child object definition. When the child object is resolved and instantiated by the container, the resulting instance

has an AdminEmails Properties collection that contains the result of the merging of the child's AdminEmails

collection with the parent's AdminEmails collection.

administrator=administrator@example.com

sales=sales@example.com

support=support@example.co.uk

The child Properties collection's value set inherits all property elements from the parent <name-values/>, and

the child's value for the support value overrides the value in the parent collection. This merging behavior applies

similarly to the <list/>, <dictionary/>, and <set/> collection types. In the specific case of the <list/> element,

the semantics associated with the IList collection type, that is, the notion of an ordered collection of values,

is maintained; the parent's values precede all of the child list's values. In the case of the IDictionary, ISet,

and NameValue collection types, no ordering exists. Hence no ordering semantics are in effect for the collection

types that underlie the associated IDictionary, ISet, and NameValueCollection implementation types that the

container uses internally.

5.3.2.7. Null and empty values

Spring treats empty arguments for properties and the like as empty Strings. The following XML-based

configuration metadata snippet sets the email property to the empty String value ("")

<object type="Examples.ExampleObject, ExamplesLibrary">

 <property name="email" value=""/>

</object>

This results in the email property being set to the empty string value (""), in much the same way as can be seen

in the following snippet of C# code

exampleObject.Email = "";

The <null> element is used to handle null values. For example:

<object type="Examples.ExampleObject, ExamplesLibrary">

 <property name="email"><null/></property>

</object>

This results in the email property being set to null, again in much the same way as can be seen in the following

snippet of C# code:

The IoC container

Spring Framework (Version 1.3.2) 37

exampleObject.Email = null;

5.3.2.8. Setting indexer properties

An indexer lets you set and get values from a collection using a familiar bracket [] notation. Spring's XML

configuration supports the setting of indexer properties. Overloaded indexers as well as multiparameter indexers

are also supported. The property expression parser described in Chapter 11, Expression Evaluation is used to

perform the type conversion of the indexer name argument from a string in the XML file to a matching target

type. As an example consider the following class

public class Person

{

 private IList favoriteNames = new ArrayList();

 private IDictionary properties = new Hashtable();

 public Person()

 {

 favoriteNames.Add("p1");

 favoriteNames.Add("p2");

 }

 public string this[int index]

 {

 get { return (string) favoriteNames[index]; }

 set { favoriteNames[index] = value; }

 }

 public string this[string keyName]

 {

 get { return (string) properties[keyName]; }

 set { properties.Add(keyName, value); }

 }

}

The XML configuration snippet to populate this object with data is shown below

<object id="person" type="Test.Objects.Person, Test.Objects">

 <property name="[0]" value="Master Shake"/>

 <property name="['one']" value="uno"/>

</object>

Note

The use of the property expression parser in Release 1.0.2 changed how you configure indexer

properties. The following section describes this usage.

The older style configuration uses the following syntax

<object id="objectWithIndexer" type="Spring.Objects.TestObject, Spring.Core.Tests">

 <property name="Item[0]" value="my string value"/>

</object>

You can also change the name used to identify the indexer by adorning your indexer method

declaration with the attribute [IndexerName("MyItemName")]. You would then use the string

MyItemName[0] to configure the first element of that indexer.

There are some limitations to be aware in the older indexer configuration. The indexer can only

be of a single parameter that is convertible from a string to the indexer parameter type. Also,

multiple indexers are not supported. You can get around that last limitation currently if you use the

IndexerName attribute.

The IoC container

Spring Framework (Version 1.3.2) 38

5.3.2.9. Value and ref shortcut forms

Spring XML used to be even more verbose. What is now popular usage is actually the shortcut from of the original

way to specify values and references.

There are also some shortcut forms that are less verbose than using the full value and ref elements. The property,

constructor-arg, and entry elements all support a value attribute which may be used instead of embedding a

full value element. Therefore, the following:

<property name="myProperty">

 <value>hello</value>

</property>

<constructor-arg>

 <value>hello</value>

</constructor-arg>

<entry key="myKey">

 <value>hello</value>

</entry>

are equivalent to:

<property name="myProperty" value="hello"/>

<constructor-arg value="hello"/>

<entry key="myKey" value="hello"/>

In general, when typing definitions by hand, you will probably prefer to use the less verbose shortcut form.

The property and constructor-arg elements support a similar shortcut ref attribute which may be used instead

of a full nested ref element. Therefore, the following...

<property name="myProperty">

 <ref object="anotherObject"/>

</property>

<constructor-arg index="0">

 <ref object="anotherObject"/>

</constructor-arg>

is equivalent to...

<property name="myProperty" ref="anotherObject"/>

<constructor-arg index="0" ref="anotherObject"/>

Note

The shortcut form is equivalent to a <ref object="xxx"> element; there is no shortcut for either

the <ref local="xxx"> or <ref parent="xxx"> elements. For a local or parent ref, you must still

use the long form.

Finally, the entry element allows a shortcut form the specify the key and/or value of a dictionary, in the form of

key/key-ref and value/value-ref attributes. Therefore, the following

<entry>

 <key>

 <ref object="MyKeyObject"/>

 </key>

 <ref object="MyValueObject"/>

</entry>

The IoC container

Spring Framework (Version 1.3.2) 39

Is equivalent to:

<entry key-ref="MyKeyObject" value-ref="MyValueObject"/>

As mentioned previously, the equivalence is to <ref object="xxx"> and not the local or parent forms of object

references.

5.3.2.10. Compound property names and Spring expression references

You can use compound or nested property names when you set object properties. Property names are interpreted

using the Spring Expression Language (SpEL) and therefore can leverage its many features to set property names.

For example, in this object definition a simple nested property name is configured

<object id="foo" type="Spring.Foo, Spring.Foo">

 <property name="bar.baz.name" value="Bingo"/>

</object>

As an example of some alternative ways to declare the property name, you can use SpEL's support for indexers

to configure a Dictionary key value pair as an alternative to the nested <dictionary> element. More importantly,

you can use the 'expression' element to refer to a Spring expression as the value of the property. Simple examples

of this are shown below

<property name=“minValue” expression=“int.MinValue” />

<property name=“weekFromToday” expression="DateTime.Today + 7"/>

Using SpEL's support for method evaluation, you can easily call static method on various helper classes in your

XML configuraiton.

5.3.3. Declarative Event Listener Registration

In C# events are built right into the language thanks to the event keyword. Under the scenes, events are essentially

a shorthand notation for delegates with some additional guidelines as to what the parameters to an event handler

method should be (i.e. a sender System.Object and an System.EventArgs object).

public class EventSource

public event EventHandler Click;

In use, .NET events are combined with one or more event handler methods. Each handler method is

programmatically added, or removed, from the event and corresponds to an object's method that should be invoked

when a particular event occurs. When more than one handler method is added to an event, then each of the

registered methods will be invoked in turn when an event occurs.

TestObject source = new TestObject();

TestEventHandler eventListener1 = new TestEventHandler();

TestEventHandler eventListener2 = new TestEventHandler();

source.Click += eventListener1.HandleEvent; // Adding the first event handler method to the event

source.Click += eventListener2.HandleEvent; // Adding a second event handler method to the event

source.OnClick(); // First eventListener1.HandleEvent is invoked, then eventListener2.HandleEvent

When OnClick() is invoked, the event is fired.

public void OnClick()

{

 if (Click != null)

 {

 Click(this, EventArgs.Empty); // Fire the event off to the registered handler methods

 }

The IoC container

Spring Framework (Version 1.3.2) 40

}

One of the not so nice things about using events is that, without employing late binding, you declare the objects

that are registered with a particular event programmatically. Spring .NET offers a way to declaratively register

your handler methods with particular events using the <listener> element inside your <object> elements.

5.3.3.1. Declarative event handlers

Rather than having to specifically declare in your code that you are adding a method to be invoked on an event,

using the <listener> element you can register a plain object's methods with the corresponding event declaratively

in your application configuration.

Using the listener element you can:

• Configure a method to be invoked when an event is fired.

• Register a collection of handler methods based on a regular expression.

• Register a handler method against an event name that contains a regular expression.

5.3.3.2. Configuring a method to be invoked when an event is fired

The same event registration in the example above can be achieved using configuration using the <listener>

element.

<object id="eventListener1" type="SpringdotNETEventsExample.TestEventHandler, SpringdotNETEventsExample">

 <!-- wired up to an event exposed on an instance -->

 <listener event="Click" method="HandleEvent">

 <ref object="source"/>

 </listener>

</object>

<object id="eventListener2" type="SpringdotNETEventsExample.TestEventHandler, SpringdotNETEventsExample">

 <!-- wired up to an event exposed on an instance -->

 <listener event="Click" method="HandleEvent">

 <ref object="source"/>

 </listener>

</object>

In this case the two different objects will have their HandleEvent method invoked, as indicated explicitly using

the method attribute, when a Click event, as specified by the event attribute, is triggered on the object referred

to by the ref element.

5.3.3.3. Registering a collection of handler methods based on a regular expression

Regular expressions can be employed to wire up more than one handler method to an object that contains one

or more events.

<object id="eventListener" type="SpringdotNETEventsExample.TestEventHandler, SpringdotNETEventsExample">

 <listener method="Handle.+">

 <ref object="source"/>

 </listener>

</object>

Here all the eventListener's handler methods that begin with 'Handle', and that have the corresponding two

parameters of a System.Object and a System.EventArgs, will be registered against all events exposed by the

source object.

You can also use the name of the event in regular expression to filter your handler methods based on the type

of event triggered.

The IoC container

Spring Framework (Version 1.3.2) 41

<object id="eventListener" type="SpringdotNETEventsExample.TestEventHandler, SpringdotNETEventsExample">

 <!-- For the Click event, the HandleClick handler method will be invoked. -->

 <listener method="Handle${event}">

 <ref object="source"/>

 </listener>

</object>

5.3.3.4. Registering a handler method against an event name that contains a regular
expression

Finally, you can register an object's handler methods against a selection of events, filtering based on their name

using a regular expression.

<object id="eventListener" type="SpringdotNETEventsExample.TestEventHandler, SpringdotNETEventsExample">

 <listener method="HandleEvent" event="Cl.+">

 <ref object="source"/>

 </listener>

</object>

In this example the eventListener's HandleEvent handler method will be invoked for any event that begins with

'Cl'.

5.3.4. Using depends-on

If an object is a dependency of another that usually means that one object is set as a property of another. Typically

you accomplish this with the <ref/> element in XML-based configuration metadata. However, sometimes

dependencies between objects are less direct; for example, a static initializer in a class needs to be triggered, such

as device driver registration. The depends-on attribute can explicitly force one or more objects to be initialized

before the object using this element is initialized. The following example uses the depends-on attribute to express

a dependency on a single object:

<object id="objectOne" type="Examples.ExampleObject, ExamplesLibrary" depends-on="manager">

 <property name="manager" ref="manager"/>

</object>

<object id="manager" type="Examples.ManagerObject, ExamplesLibrary"/>

To express a dependency on multiple objects, supply a list of object names as the value of the 'depends-on'

attribute, with commas, whitespace and semicolons used as valid delimiters:

<object id="objectOne" type="Examples.ExampleObject, ExamplesLibrary" depends-on="manager,accountDao">

 <property name="manager" ref="manager" />

</object>

<object id="manager" type="Examples.ManagerObject, ExamplesLibrary" />

<object id="accountDao" type="Examples.AdoAccountDao, ExamplesLibrary" />

Note

The depends-on attribute in the object definition can specify both an initialization time dependency

and, in the case of a singleton object only, a corresponding destroy time dependency. Dependent

objects that define a depends-on relationship with a given object are destroyed first, prior to the given

object itself being destroyed. Thus depends-on can also control shutdown order.

5.3.5. Lazily-initialized objects

By default, IApplicationContext implementations eagerly pre-instantiate all singleton objects as part of

the initialization process. Generally this pre-instantiation is desirable, because errors in configuration or the

The IoC container

Spring Framework (Version 1.3.2) 42

surrounding environment are discovered immediately, as opposed to hours or even days later. When this behavior

is not desirable, you can prevent pre-instantiation of a singleton object by marking the object definition as lazy-

initialized. A lazy-initialized object tells the IoC container to create an object instance when it is first requested,

rather than at startup.

In XML, this behavior is controlled by the 'lazy-init'attribute on the <object/> element; for example:

<object id="lazy" type="MyCompany.ExpensiveToCreateObject, MyApp" lazy-init="true"/>

<object name="not.lazy" type="MyCompany.AnotherObject, MyApp"/>

When the preceding configuration is consumed by an IApplicationContext, the object named lazy is not eagerly

pre-instantiated when the IApplicationContext is starting up, whereas the not.lazy object is eagerly pre-

instantiated.

However, when a lazy-initialized object is a dependency of a singleton object that is not lazy-initialized,

the IApplicationContext creates the lazy-initialized object at startup, because it must satisfy the singleton's

dependencies. The lazy-initialized object is injected into a singleton object elsewhere that is not lazy-initialized.

You can also control lazy-initialization at the container level by using the default-lazy-init attribute on the

<objects/> element; for example:

<objects default-lazy-init="true">

 <!-- no objects will be pre-instantiated... -->

</objects>

5.3.6. Autowiring collaborators

The Spring container is able to autowire relationships between collaborating objects. This means that it is possible

to automatically let Spring resolve collaborators (other objects) for your object by inspecting the contents of the

IoC container.. The autowiring functionality has five modes. Autowiring is specified per object and can thus be

enabled for some object, while other objects will not be autowired. Using autowiring, it is possible to reduce or

eliminate the need to specify properties or constructor arguments, thus saving a significant amount of typing.

When using XML-based configuration metadata, the autowire mode for an object definition is specified by using

the autowire attribute of the <object/> element. The following values are allowed:

Table 5.3. Autowiring modes

Mode Explanation

no No autowiring at all. This is the default value and you are encouraged not to change this

for large applications, since specifying your collaborators explicitly gives you a feeling for

what you're actually doing (always a bonus) and is a great way of somewhat documenting

the structure of your system.

byName This option will inspect the objects within the container, and look for an object named exactly

the same as the property which needs to be autowired. For example, if you have an object

definition that is set to autowire by name, and it contains a Master property, Spring.NET will

look for an object definition named Master, and use it as the value of the Master property

on your object definition.

byType This option gives you the ability to resolve collaborators by type instead of by name.

Supposing you have an IObjectDefinition with a collaborator typed SqlConnection,

Spring.NET will search the entire object factory for an object definition of type

SqlConnection and use it as the collaborator. If 0 (zero) or more than 1 (one) object

The IoC container

Spring Framework (Version 1.3.2) 43

Mode Explanation

definitions of the desired type exist in the container, a failure will be reported and you won't

be able to use autowiring for that specific object.

constructor This is analogous to byType, but applies to constructor arguments. If there isn't exactly one

object of the constructor argument type in the object factory, a fatal error is raised.

autodetect Chooses constructor or byType through introspection of the object class. If a default

constructor is found, byType gets applied.

Note that explicit dependencies in property and constructor-arg settings always override autowiring. Please also

note that it is not currently possible to autowire so-called simple properties such as primitives, Strings, and Types

(and arrays of such simple properties). (This is by-design and should be considered a feature.) When using either

the byType or constructor autowiring mode, it is possible to wire arrays and typed-collections. In such cases all

autowire candidates within the container that match the expected type will be provided to satisfy the dependency.

Strongly-typed IDictionaries can even be autowired if the expected key type is string. An autowired IDictionary

values will consist of all object instances that match the expected type, and the IDictionary's keys will contain

the corresponding object names.

Autowire behavior can be combined with dependency checking, which will be performed after all autowiring

has been completed. It is important to understand the various advantages and disadvantages of autowiring. Some

advantages of autowiring include:

• Autowiring can significantly reduce the volume of configuration required. However, mechanisms such as the

use of a object template (discussed elsewhere in this chapter) are also valuable in this regard.

• Autowiring can cause configuration to keep itself up to date as your objects evolve. For example, if you need

to add an additional dependency to a class, that dependency can be satisfied automatically without the need to

modify configuration. Thus there may be a strong case for autowiring during development, without ruling out

the option of switching to explicit wiring when the code base becomes more stable.

Some disadvantages of autowiring:

• Autowiring is more magical than explicit wiring. Although, as noted in the above table, Spring is careful to

avoid guessing in case of ambiguity which might have unexpected results, the relationships between your

Spring-managed objects are no longer documented explicitly.

• Wiring information may not be available to tools that may generate documentation from a Spring container.

Another issue to consider when autowiring by type is that multiple object definitions within the container may

match the type specified by the setter method or constructor argument to be autowired. For arrays, collections, or

IDictionary, this is not necessarily a problem. However for dependencies that expect a single value, this ambiguity

will not be arbitrarily resolved. Instead, if no unique object definition is available, an Exception will be thrown.

When deciding whether to use autowiring, there is no wrong or right answer in all cases. A degree of consistency

across a project is best though; for example, if autowiring is not used in general, it might be confusing to developers

to use it just to wire one or two object definitions.

5.3.7. Checking for dependencies

The Spring IoC container can check for unresolved dependencies of an object deployed into the container. When

enabling checking for unresolved dependencies all properties of the object must have an explicit values set for

them in the object definition or have their values set via autowiring.

The IoC container

Spring Framework (Version 1.3.2) 44

This feature useful when you want to ensure that all properties (or all properties of a certain type) are set on

an object. An object often has default values for many properties, or some properties do not apply to all usage

scenarios, so this feature is of limited use. You can enable dependency checking per object, just as with the

autowiring functionality. The default is not not check dependencies. In XML-based configuration metadata, you

specify dependency checking via the dependency-check attribute in an object definition, which may have the

following values.

Table 5.4. Dependency checking modes

Mode Explanation

none (Default) No dependency checking. Properties of the object which have no value specified

for them are simply not set.

simple Dependency checking for primitive types and collections (everything except collaborators).

object Dependency checking for collaborators only.

all Dependency checking for collaborators, primitive types and collections.

5.3.8. Method injection

In most application scenarios, most object in the container are singletons. When a singleton object needs to

collaborate with another singleton object, or a non-singleton object needs to collaborate with another non-

singleton object, you typically handle the dependency by defining one object as a property of the other. A

problem arrises when the object lifecycles are different. Suppose singleton object A needs to use a non-singleton

(prototype) object B, perhaps on each method invocation on A. The container only creates the singleton object

A once, and thus only gets one opportunity to set the properties. The container cannot provide object A with a

new instance of object B every time one is needed.

A solution is to forego some inversion of control. You can make object A aware of the container by implementing

the IApplicationContextAware interface, and by making a GetObject("B") call to the container ask for (a

typically new) object B every time it needs it. Find below an example of this approach

using System.Collections;

using Spring.Objects.Factory;

namespace Fiona.Apple

{

 public class CommandManager : IObjectFactoryAware

 {

 private IObjectFactory objectFactory;

 public object Process(IDictionary commandState)

 {

 // grab a new instance of the appropriate Command

 Command command = CreateCommand();

 // set the state on the (hopefully brand new) Command instance

 command.State = commandState;

 return command.Execute();

 }

 // the Command returned here could be an implementation that executes asynchronously, or whatever

 protected Command CreateCommand()

 {

 return (Command) objectFactory.GetObject("command"); // notice the Spring API dependency

 }

 public IObjectFactory ObjectFactory

 {

 set { objectFactory = value; }

The IoC container

Spring Framework (Version 1.3.2) 45

 }

 }

}

The preceding is not desirable, because the business code is aware of and coupled to the Sring Framework. Method

Injection, a somewhat advanced feature of the Spring IoC container, allows this use case to be handled in a clean

fashion.

5.3.8.1. Lookup Method Injection

Lookup method injection is the ability of the container to override methods on container managed objects,

to return the result of looking up another named object in the container. The lookup typically involves a

prototype object as in the scenario described in the preceding section. The Spring framework implements

this method injection by a dynamically generating a subclass overriding the method using the classes in the

System.Reflection.Emit namespace.

Note

You can read more about the motivation for Method Injection in this blog entry [http://

blog.springframework.com/rod/?p=1].

Looking at the CommandManager class in the previous code snippit, you see that the Spring container will

dynamically override the implementation of the CreateCommand() method. Your CommandManager class will not

have any Spring dependencies, as can be seen in this reworked example below:

using System.Collections;

namespace Fiona.Apple

{

 public abstract class CommandManager

 {

 public object Process(IDictionary commandState)

 {

 Command command = CreateCommand();

 command.State = commandState;

 return command.Execute();

 }

 // okay... but where is the implementation of this method?

 protected abstract Command CreateCommand();

 }

}

In the client class containing the method to be injected (the CommandManager in this case) the method to be

injected requires a signature of the following form:

<public|protected> [abstract] <return-type> TheMethodName(no-arguments);

If the method is abstract, the dynamically-generated subclass implements the method. Otherwise, the

dynamically-generated subclass overrides the concrete method defined in the original class. Let's look at an

example:

<!-- a stateful object deployed as a prototype (non-singleton) -->

<object id="command" class="Fiona.Apple.AsyncCommand, Fiona" singleton="false">

 <!-- inject dependencies here as required -->

</object>

<!-- commandProcessor uses a statefulCommandHelpder -->

<object id="commandManager" type="Fiona.Apple.CommandManager, Fiona">

 <lookup-method name="CreateCommand" object="command"/>

http://blog.springframework.com/rod/?p=1
http://blog.springframework.com/rod/?p=1
http://blog.springframework.com/rod/?p=1

The IoC container

Spring Framework (Version 1.3.2) 46

</object>

The object identified as commandManager will calls its own method CreateCommand whenever it needs a new

instance of the command object. You must be careful to deploy the command object as prototype, if that is actually

what is needed. If it is deployed as a singleton the same instance of singleShotHelper will be returned each time.

Note that lookup method injection can be combined with Constructor Injection (supplying optional constructor

arguments to the object being constructed), and also with Setter Injection (settings properties on the object being

constructed).

5.3.8.2. Arbitrary method replacement

A less commonly useful form of method injection than Lookup Method Injection is the ability to replace arbitrary

methods in a managed object with another method implementation.

With XML-based configuration metadata, you can use the replaced-method element to replace an existing

method implementation with another, for a deployed object. Consider the following class, with a method

ComputeValue, which we want to override:

public class MyValueCalculator {

 public virtual string ComputeValue(string input) {

 // ... some real code

 }

 // ... some other methods

}

A class implementing the Spring.Objects.Factory.Support.IMethodReplacer interface is needed to provide

the new (injected) method definition.

/// <summary>

/// Meant to be used to override the existing ComputeValue(string)

/// implementation in MyValueCalculator.

/// </summary>

public class ReplacementComputeValue : IMethodReplacer

{

 public object Implement(object target, MethodInfo method, object[] arguments)

 {

 // get the input value, work with it, and return a computed result...

 string value = (string) arguments[0];

 // compute...

 return result;

 }

}

The object definition to deploy the original class and specify the method override would look like this:

<object id="myValueCalculator" type="Examples.MyValueCalculator, ExampleAssembly">

 <!-- arbitrary method replacement -->

 <replaced-method name="ComputeValue" replacer="replacementComputeValue">

 <arg-type match="String"/>

 </replaced-method>

</object>

<object id="replacementComputeValue" type="Examples.ReplacementComputeValue, ExampleAssembly"/>

You can use one or more contained arg-type elements within the replaced-method element to indicate the

method signature of the method being overridden. The signature for the arguments is necessaryonly if the method

is overloaded and multiple variants exist within the class. For convenience, the type string for an argument may

be a substring of the fully qualified type name. For example, the following all match System.String.

 System.String

The IoC container

Spring Framework (Version 1.3.2) 47

 String

 Str

Because the number of arguments is often enough to distinguish between each possible choice, this shortcut can

save a lot of typing, by allowing you to typ just the shortest string which will match an argument type.

5.3.9. Setting a reference using the members of other objects and classes.

This section details those configuration scenarios that involve the setting of properties and constructor arguments

using the members of other objects and classes. This kind of scenario is quite common, especially when dealing

with legacy classes that you cannot (or won't) change to accommodate some of Spring.NET's conventions...

consider the case of a class that has a constructor argument that can only be calculated by going to say, a database.

The MethodInvokingFactoryObject handles exactly this scenario ... it will allow you to inject the result of an

arbitrary method invocation into a constructor (as an argument) or as the value of a property setter. Similarly,

PropertyRetrievingFactoryObject and FieldRetrievingFactoryObject allow you to retrieve values from

another object's property or field value. These classes implement the IFactoryObject interface which indicates

to Spring.NET that this object is itself a factory and the factories product, not the factory itself, is what will be

associated with the object id. Factory objects are discussed further in Section 5.9.3, “Customizing instantiation

logic using IFactoryObjects”

5.3.9.1. Setting a reference to the value of property.

The PropertyRetrievingFactoryObject is an IFactoryObject that addresses the scenario of setting one of the

properties and / or constructor arguments of an object to the value of a property exposed on another object or

class. One can use it to get the value of any public property exposed on either an instance or a class (in the case

of a property exposed on a class, the property must obviously be static).

In the case of a property exposed on an instance, the target object that a PropertyRetrievingFactoryObject

will evaluate can be either an object instance specified directly inline or a reference to another arbitrary object.

In the case of a static property exposed on a class, the target object will be the class (the .NET System.Type)

exposing the property.

The result of evaluating the property lookup may then be used in another object definition as a property

value or constructor argument. Note that nested properties are supported for both instance and class property

lookups. The IFactoryObject is discussed more generally in Section 5.9.3, “Customizing instantiation logic

using IFactoryObjects”.

Here's an example where a property path is used against another object instance. In this case, an inner object

definition is used and the property path is nested, i.e. spouse.age.

<object name="person" type="Spring.Objects.TestObject, Spring.Core.Tests">

 <property name="age" value="20"/>

 <property name="spouse">

 <object type="Spring.Objects.TestObject, Spring.Core.Tests">

 <property name="age" value="21"/>

 </object>

 </property>

</object>

// will result in 21, which is the value of property 'spouse.age' of object 'person'

<object name="theAge" type="Spring.Objects.Factory.Config.PropertyRetrievingFactoryObject, Spring.Core">

 <property name="TargetObject" ref="person"/>

 <property name="TargetProperty" value="spouse.age"/>

</object>

An example of using a PropertyRetrievingFactoryObject to evaluate a static property is shown below.

The IoC container

Spring Framework (Version 1.3.2) 48

<object id="cultureAware"

 type="Spring.Objects.Factory.Xml.XmlObjectFactoryTests+MyTestObject, Spring.Core.Tests">

 <property name="culture" ref="cultureFactory"/>

</object>

<object id="cultureFactory"

 type="Spring.Objects.Factory.Config.PropertyRetrievingFactoryObject, Spring.Core">

 <property name="StaticProperty">

 <value>System.Globalization.CultureInfo.CurrentUICulture, Mscorlib</value>

 </property>

</object>

Similarly, an example showing the use of an instance property is shown below.

<object id="instancePropertyCultureAware"

 type="Spring.Objects.Factory.Xml.XmlObjectFactoryTests+MyTestObject, Spring.Core.Tests">

 <property name="Culture" ref="instancePropertyCultureFactory"/>

</object>

<object id="instancePropertyCultureFactory"

 type="Spring.Objects.Factory.Config.PropertyRetrievingFactoryObject, Spring.Core">

 <property name="TargetObject" ref="instancePropertyCultureAwareSource"/>

 <property name="TargetProperty" value="MyDefaultCulture"/>

</object>

<object id="instancePropertyCultureAwareSource"

 type="Spring.Objects.Factory.Xml.XmlObjectFactoryTests+MyTestObject, Spring.Core.Tests"/>

5.3.9.2. Setting a reference to the value of field.

The FieldRetrievingFactoryObject class addresses much the same area of concern as the

PropertyRetrievingFactoryObject described in the previous section. However, as its name might suggest, the

FieldRetrievingFactoryObject class is concerned with looking up the value of a public field exposed on either

an instance or a class (and similarly, in the case of a field exposed on a class, the field must obviously be static).

The following example demonstrates using a FieldRetrievingFactoryObject to look up the value of a (public,

static) field exposed on a class

<object id="withTypesField"

 type="Spring.Objects.Factory.Xml.XmlObjectFactoryTests+MyTestObject, Spring.Core.Tests">

 <property name="Types" ref="emptyTypesFactory"/>

</object>

<object id="emptyTypesFactory"

 type="Spring.Objects.Factory.Config.FieldRetrievingFactoryObject, Spring.Core">

 <property name="TargetType" value="System.Type, Mscorlib"/>

 <property name="TargetField" value="EmPTytypeS"/>

</object>

The example in the next section demonstrates the look up of a (public) field exposed on an object instance.

<object id="instanceCultureAware"

 type="Spring.Objects.Factory.Xml.XmlObjectFactoryTests+MyTestObject, Spring.Core.Tests">

 <property name="Culture" ref="instanceCultureFactory"/>

</object>

<object id="instanceCultureFactory"

 type="Spring.Objects.Factory.Config.FieldRetrievingFactoryObject, Spring.Core">

 <property name="TargetObject" ref="instanceCultureAwareSource"/>

 <property name="TargetField" value="Default"/>

</object>

<object id="instanceCultureAwareSource"

 type="Spring.Objects.Factory.Xml.XmlObjectFactoryTests+MyTestObject, Spring.Core.Tests"/>

The IoC container

Spring Framework (Version 1.3.2) 49

5.3.9.3. Setting a property or constructor argument to the return value of a method invocation.

The MethodInvokingFactoryObject rounds out the trio of classes that permit the setting of

properties and constructor arguments using the members of other objects and classes. Whereas the

PropertyRetrievingFactoryObject and FieldRetrievingFactoryObject classes dealt with simply looking up

and returning the value of property or field on an object or class, the MethodInvokingFactoryObject allows one

to set a constructor or property to the return value of an arbitrary method invocation,

The MethodInvokingFactoryObject class handles both the case of invoking an (instance) method on another

object in the container, and the case of a static method call on an arbitrary class. Additionally, it is

sometimes necessary to invoke a method just to perform some sort of initialization.... while the mechanisms

for handling object initialization have yet to be introduced (see Section 5.6.1.1, “IInitializingObject / init-

method”), these mechanisms do not permit any arguments to be passed to any initialization method, and are

confined to invoking an initialization method on the object that has just been instantiated by the container. The

MethodInvokingFactoryObject allows one to invoke pretty much any method on any object (or class in the case

of a static method).

The following example (in an XML based IObjectFactory definition) uses the MethodInvokingFactoryObject

class to force a call to a static factory method prior to the instantiation of the object...

<object id="force-init"

 type="Spring.Objects.Factory.Config.MethodInvokingFactoryObject, Spring.Core">

 <property name="StaticMethod">

 <value>ExampleNamespace.ExampleInitializerClass.Initialize</value>

 </property>

</object>

<object id="myService" depends-on="force-init"/>

Note that the definition for the myService object has used the depends-on attribute to refer to the force-init

object, which will force the initialization of the force-init object first (and thus the calling of its configured

StaticMethod static initializer method, when myService is first initialized. Please note that in order to effect this

initialization, the MethodInvokingFactoryObject object must be operating in singleton mode (the default.. see

the next paragraph).

Note that since this class is expected to be used primarily for accessing factory methods, this factory defaults

to operating in singleton mode. As such, as soon as all of the properties for a MethodInvokingFactoryObject

object have been set, and if the MethodInvokingFactoryObject object is still in singleton mode, the method

will be invoked immediately and the return value cached for later access. The first request by the container for

the factory to produce an object will cause the factory to return the cached return value for the current request

(and all subsequent requests). The IsSingleton property may be set to false, to cause this factory to invoke the

target method each time it is asked for an object (in this case there is obviously no caching of the return value).

A static target method may be specified by setting the targetMethod property to a string representing the static

method name, with TargetType specifying the Type that the static method is defined on. Alternatively, a target

instance method may be specified, by setting the TargetObject property to the name of another Spring.NET

managed object definition (the target object), and the TargetMethod property to the name of the method to call

on that target object.

Arguments for the method invocation may be specified in two ways (or even a mixture of both)... the first involves

setting the Arguments property to the list of arguments for the method that is to be invoked. Note that the ordering

of these arguments is significant... the order of the values passed to the Arguments property must be the same

as the order of the arguments defined on the method signature, including the argument Type. This is shown in

the example below

The IoC container

Spring Framework (Version 1.3.2) 50

<object id="myObject" type="Spring.Objects.Factory.Config.MethodInvokingFactoryObject, Spring.Core">

 <property name="TargetType" value="Whatever.MyClassFactory, MyAssembly"/>

 <property name="TargetMethod" value="GetInstance"/>

 <!-- the ordering of arguments is significant -->

 <property name="Arguments">

 <list>

 <value>1st</value>

 <value>2nd</value>

 <value>and 3rd arguments</value>

 <!-- automatic Type-conversion will be performed prior to invoking the method -->

 </list>

 </property>

</object>

The second way involves passing an arguments dictionary to the NamedArguments property... this dictionary maps

argument names (Strings) to argument values (any object). The argument names are not case-sensitive, and order

is (obviously) not significant (since dictionaries by definition do not have an order). This is shown in the example

below

<object id="myObject" type="Spring.Objects.Factory.Config.MethodInvokingFactoryObject, Spring.Core">

 <property name="TargetObject">

 <object type="Whatever.MyClassFactory, MyAssembly"/>

 </property>

 <property name="TargetMethod" value="Execute"/>

 <!-- the ordering of named arguments is not significant -->

 <property name="NamedArguments">

 <dictionary>

 <entry key="argumentName"><value>1st</value></entry>

 <entry key="finalArgumentName"><value>and 3rd arguments</value></entry>

 <entry key="anotherArgumentName"><value>2nd</value></entry>

 </dictionary>

 </property>

</object>

The following example shows how use MethodInvokingFactoryObject to call an instance method.

<object id="myMethodObject" type="Whatever.MyClassFactory, MyAssembly" />

<object id="myObject" type="Spring.Objects.Factory.Config.MethodInvokingFactoryObject, Spring.Core">

 <property name="TargetObject" ref="myMethodObject"/>

 <property name="TargetMethod" value="Execute"/>

</object>

The above example could also have been written using an anonymous inner object definition... if the object on

which the method is to be invoked is not going to be used outside of the factory object definition, then this is the

preferred idiom because it limits the scope of the object on which the method is to be invoked to the surrounding

factory object.

Finally, if you want to use MethodInvokingFactoryObject in conjunction with a method that has a variable

length argument list, then please note that the variable arguments need to be passed (and configured) as a list.

Let us consider the following method definition that uses the params keyword (in C#), and its attendant (XML)

configuration...

[C#]

public class MyClassFactory

{

 public object CreateObject(Type objectType, params string[] arguments)

 {

 return ... // implementation elided for clarity...

 }

}

<object id="myMethodObject" type="Whatever.MyClassFactory, MyAssembly" />

The IoC container

Spring Framework (Version 1.3.2) 51

<object id="paramsMethodObject" type="Spring.Objects.Factory.Config.MethodInvokingFactoryObject, Spring.Core">

 <property name="TargetObject" ref="myMethodObject"/>

 <property name="TargetMethod" value="CreateObject"/>

 <property name="Arguments">

 <list>

 <value>System.String</value>

 <!-- here is the 'params string[] arguments' -->

 <list>

 <value>1st</value>

 <value>2nd</value>

 </list>

 </list>

</object>

5.3.10. Provided IFactoryObject implementations

In addition to PropertyRetrievingFactoryObject, MethodInvokingFactoryObject, and

FieldRetrievingFactoryObject Spring.NET comes with other useful implementations of the IFactoryObject

interface. These are discussed below.

5.3.10.1. Common logging

The LogFactoryObject is useful when you would like to share a Common.Logging log object across a

number of classes instead of creating a logging instance per class or class hierarchy. Information on the

Common.Logging project can be found here [http://netcommon.sourceforge.net/]. In the example shown below

the same logging instance, with a logging category name of "DAOLogger", is used in both the SimpleAccountDao

and SimpleProductDao data access objects.

<objects xmlns="http://www.springframework.net"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.net

 http://www.springframework.net/xsd/spring-objects.xsd" >

 <object name="daoLogger" type="Spring.Objects.Factory.Config.LogFactoryObject, Spring.Core">

 <property name="logName" value="DAOLogger"/>

 </object>

 <object name="productDao" type="PropPlayApp.SimpleProductDao, PropPlayApp ">

 <property name="maxResults" value="100"/>

 <property name="dbConnection" ref="myConnection"/>

 <property name="log" ref="daoLogger"/>

 </object>

 <object name="accountDao" type="PropPlayApp.SimpleAccountDao, PropPlayApp ">

 <property name="maxResults" value="100"/>

 <property name="dbConnection" ref="myConnection"/>

 <property name="log" ref="daoLogger"/>

 </object>

 <object name="myConnection" type="System.Data.Odbc.OdbcConnection, System.Data">

 <property name="connectionstring" value="dsn=MyDSN;uid=sa;pwd=myPassword;"/>

 </object>

</objects>

5.4. Object Scopes

When you create an object definition, you create a recipe for creating actual instances of the class defined by that

object definition. The idea that an object definition is a recipe is important, because it means that, as with a class,

you can create many object instances from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into an object

that is created from a particular object definition, but also the scope of the objects created from a particular object

http://netcommon.sourceforge.net/
http://netcommon.sourceforge.net/

The IoC container

Spring Framework (Version 1.3.2) 52

definition. This approach powerful and flexible in that you can choose the scope of the objects you create through

configuration instead of having to bake in the scope of an object at the .NET class level. Ob jects can be defined

to be deployed in one of a number of scopes: out of the box, the Spring Framework supports five scopes, three

of which are available only if you use a web-aware IApplicationContext.

The following scopes supported. Support for user defined custom scopes is planned for Spring .NET 2.0.

Table 5.5. Object Scopes

Scope Description

singleton Scopes a single object definition to a single object instance per Spring IoC

container.

prototype Scopes a single object definition to any number of object instances.

request Scopes a single object definition to the lifecycle of a single HTTP request;

that is, each and every HTTP request has its own instance of an object

created off the back of a single object definition. Only valid in the context

of a web-aware Spring ApplicationContext.

session Scopes a single object definition to the lifecycle of a HTTP Session. Only

valid in the context of a web-aware Spring ApplicationContext.

application Scopes a single object definition to the lifecycle of a web application. Only

valid in the context of a web-aware Spring ApplicationContext.

5.4.1. The singleton scope

Singleton scoped objects have only one shared instance of an object managed by the container. All request for

objects with an id or ids matching that object definition result in that one specific object instance being returned

by the Spring container.

To put it another way, when you define an object definition and it is scoped as a singleton, the Spring IoC container

creates exactly one instance of the object defined by that object definition. This single instance is stored in a cache

of such singleton object, and all subsequent requests and references for that named object return the cached object.

Spring's concept of a singleton differns from the Singleton pattern as defined in the Gang of Four (GoF) patterns

book. The GoF Singleton hard-codes the scope of an object such that one and only one instance of a particular

class is created per ApplicationDomain. The scope of the Spring singleton is best described as per container and

per object. This means that if you define one object for a particular class in a single Spring container, then the

Spring container creates one and only one instance of the class defined by that object definition. The singleton

scope is the default scope in Spring. To define an object as a singleton in XML, you would write, for example:

<object id="accountService" type="MyApp.DefaultAccountService, MyApp"/>

<!-- the following is equivalent, though redundant (singleton scope is the default) -->

<object id="accountService" type="MyApp.DefaultAccountService, MyApp" singleton="true"/>

5.4.2. The prototype scope

The non-singleton, prototype scope of object deployment results in the creation of a new object instance every

time a request for that specific object is made. That is, the object is injected into another object or you request

The IoC container

Spring Framework (Version 1.3.2) 53

through a GetObject() method call on the container. As a rule use the prototype scope for all objects that are

stateful and the singleton scope for stateless objects.

The following examples defines an object as a prototype in XML:

<object id="exampleObject" type="Examples.ExampleObject, ExamplesLibrary" scope="prototype"/>

Note

The <singleton/> attribute was introduced Spring 1.0 as there were only two types of scopes,

singleton and prototype. The element singleton=true refers to singleton scope and singleton=false

refers to prototype scope. In Spring 1.1 the additional web scopes were introduced along with the

new elment 'scope'. The scope element is the preferred element to use.

In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype object: the container

instantiates, configures, decorates and otherwise assembles a prototype object, hands it to the client, with no

further record of that prototype instance. Thus, although initialization lifecycle callback methods are called on all

objects regardless of scope, in the case of prototypes, configured destruction lifecycle callbacks are not called.

The client code must clean up prototype-scoped objects and release any expensive resources that the prototype

object(s) are holding. To get the Spring container to release resources held by prototype-scoped objects, try using

a custom object post processor which would hold a reference to the objects that need to be cleaned up.

In some respects, the Spring container's role in regard to a prototype-scoped object is a replacement for the C#

'new' operator. All lifecycle management past that point must be handled by the client. (For details on the lifecycle

of an object in the Spring container, see Section 5.6.1, “Lifecycle interfaces”.

5.4.3. Singleton objects with prototype-object dependencies

When you use singleton-scoped objects with dependencies on prototype objects, be aware that dependencies

are resolved at instantiation time. Thus if you dependency-inject a prototype-scoped objects into a singleton-

scoped object, a new prototype object is instantiated and then dependency-injected into the singleton object. The

prototype instance is the sole instance that is ever supplied to the singleton-scoped object.

However, suppose you want the singleton-scoped object to acquire a new instance of the prototype-scoped

object repeatedly at runtime. You cannot dependency-inject a prototype-scoped object into your singleton object,

because that injection occurs only once, when the Spring container is instantiating the singleton object and

resolving and injecting its dependencies. If you need a new instance of a prototype object at runtime more than

once, see Section 5.3.8, “Method injection”.

5.4.4. Request, session and web application scopes

The request, session and application scopes are only available if you use a web-aware Spring IApplicationContext

implementation, such as WebApplicationContext. If you use these scopes with regular Spring IoC containers such

as the XmlApplicationContext, you will get an exception complaining about an unknown object scope.

Please refer to the web documentation on object scopes for more information.

5.5. Type conversion

Type converters are responsible for converting objects from one type to another. When using the XML based file

to configure the IoC container, string based property values are converted to the target property type. Spring will

The IoC container

Spring Framework (Version 1.3.2) 54

rely on the standard .NET support for type conversion unless an alternative TypeConverter is registered for a

given type. How to register custom TypeConverters will be described shortly. As a reminder, the standard .NET

type converter support works by associating a TypeConverter attribute with the class definition by passing the

type of the converter as an attribute argument. 3 For example, an abbreviated class definition for the BCL type

Font is shown below.

[Serializable, TypeConverter(typeof(FontConverter)), ...]

public sealed class Font : MarshalByRefObject, ICloneable, ISerializable, IDisposable

{

 // Methods

 ... etc ..

}

5.5.1. Type Conversion for Enumerations

The default type converter for enumerations is the System.ComponentModel.EnumConverter class. To specify

the value for an enumerated property, simply use the name of the property. For example the TestObject class

has a property of the enumerated type FileMode. One of the values for this enumeration is named Create. The

following XML fragment shows how to configure this property

<object id="rod" type="Spring.Objects.TestObject, Spring.Core.Tests">

 <property name="name" value="Rod"/>

 <property name="FileMode" value="Create"/>

</object>

5.5.2. Built-in TypeConverters

Spring.NET pre-registers a number of custom TypeConverter instances (for example, to convert a type expressed

as a string into a real System.Type object). Each of those is listed below and they are all located in the

Spring.Objects.TypeConverters namespace of the Spring.Core library.

Table 5.6. Built-in TypeConverters

Type Explanation

RuntimeTypeConverter Parses strings representing System.Types to actual System.Types

and the other way around.

FileInfoConverter Capable of resolving strings to a System.IO.FileInfo object.

StringArrayConverter Capable of resolving a comma-delimited list of strings to a string-

array and vice versa.

UriConverter Capable of resolving a string representation of a Uri to an actual Uri-

object.

CredentialConverter Capable of resolving a string representation of a credential for Web

client authentication into an instance of System.Net.ICredentials

StreamConverter Capable of resolving Spring IResource Uri (string) to its

corresponding InputStream-object.

ResourceConverter Capable of resolving Spring IResource Uri (string) to an IResource

object.

3More information about creating custom TypeConverter implementations can be found online at Microsoft's MSDN website, by searching

for Implementing a Type Converter.

The IoC container

Spring Framework (Version 1.3.2) 55

Type Explanation

ResourceManagerConverter Capable of resolving a two part string (resource name, assembly

name) to a System.Resources.ResourceManager object.

RgbColorConverter Capable of resolving a comma separated list of Red, Green, Blue

integer values to a System.Drawing.Color structure.

ExpressionConverter Capable of resolving a string into an instance of an object that

implements the IExpression interface.

NameValueConverter Capable of resolving an XML formatted string to a

Specialized.NameValueCollection

RegexConverter Capable of resolving a string into an instance of Regex

RegistryKeyConverter Capable of resolving a string into a Microsoft.Win32.RegistryKey

object.

Spring.NET uses the standard .NET mechanisms for the resolution of System.Types, including, but not limited to

checking any configuration files associated with your application, checking the Global Assembly Cache (GAC),

and assembly probing.

5.5.3. Custom Type Conversion

There are a few ways to register custom type converters. The fundamental storage area in Spring for

custom type converters is the TypeConverterRegistry class. The most convenient way if using an XML

based implementation of IObjectFactory or IApplicationContext is to use the custom configuration section

handler TypeConverterSectionHandler This is demonstrated in section Section 5.11, “Configuration of

IApplicationContext”

An alternate approach, present for legacy reasons in the port of Spring.NET from the Java code base, is to

use the object factory post-processor Spring.Objects.Factory.Config.CustomConverterConfigurer. This is

described in the next section.

If you are constructing your IoC container Programatically then you should use the

RegisterCustomConverter(Type requiredType, TypeConverter converter) method of the

ConfigurableObjectFactory interface.

5.5.3.1. Using CustomConverterConfigurer

This section shows in detail how to define a custom type converter that does not use the .NET TypeConverter

attribute. The type converter class is standalone and inherits from the TypeConverter class. It uses the legacy

factory post-processor approach.

Consider a user class ExoticType, and another class DependsOnExoticType which needs ExoticType set as a

property:

public class ExoticType

{

 private string name;

 public ExoticType(string name)

 {

 this.name = name;

 }

The IoC container

Spring Framework (Version 1.3.2) 56

 public string Name

 {

 get { return this.name; }

 }

}

and

public class DependsOnExoticType

{

 public DependsOnExoticType() {}

 private ExoticType exoticType;

 public ExoticType ExoticType

 {

 get { return this.exoticType; }

 set { this.exoticType = value; }

 }

 public override string ToString()

 {

 return exoticType.Name;

 }

}

When things are properly set up, we want to be able to assign the type property as a string, which a TypeConverter

will convert into a real ExoticType object behind the scenes:

<object name="sample" type="SimpleApp.DependsOnExoticType, SimpleApp">

 <property name="exoticType" value="aNameForExoticType"/>

</object>

The TypeConverter looks like this:

public class ExoticTypeConverter : TypeConverter

{

 public ExoticTypeConverter()

 {

 }

 public override bool CanConvertFrom (

 ITypeDescriptorContext context,

 Type sourceType)

 {

 if (sourceType == typeof (string))

 {

 return true;

 }

 return base.CanConvertFrom (context, sourceType);

 }

 public override object ConvertFrom (

 ITypeDescriptorContext context,

 CultureInfo culture, object value)

 {

 string s = value as string;

 if (s != null)

 {

 return new ExoticType(s.ToUpper());

 }

 return base.ConvertFrom (context, culture, value);

 }

}

Finally, we use the CustomConverterConfigurer to register the new TypeConverter with the

IApplicationContext, which will then be able to use it as needed:

<object id="customConverterConfigurer"

 type="Spring.Objects.Factory.Config.CustomConverterConfigurer, Spring.Core">

 <property name="CustomConverters">

The IoC container

Spring Framework (Version 1.3.2) 57

 <dictionary>

 <entry key="SimpleApp.ExoticType">

 <object type="SimpleApp.ExoticTypeConverter"/>

 </entry>

 </dictionary>

 </property>

</object>

5.6. Customizing the nature of an object

5.6.1. Lifecycle interfaces

To interact with the container's management of the object lifecycle, you can implement the Spring

InitializingObject and standard System.IDisposable interfaces. The container calls AfterPropertiesSet()

method for the former and the Dispose() method for the latter, thus allowing you to do things upon the

initialization and destruction of your objects. You can also achieve the same integration with the container without

coupling your objects to Spring interfaces though the use of init-method and destroy-method object definition

metadata.

Internally, Spring.NET uses implementations of the IObjectPostProcessor interface to process any call

interfaces it can find and call the appropriate methods. If you need custom features or other lifecycle behavior

Spring.NET does not offer out-of-the-box, you can implement an IObjectPostProcessor yourself. For more

information seeSection 5.9.1, “Customizing objects with IObjectPostProcessors”.

5.6.1.1. IInitializingObject / init-method

The Spring.Objects.Factory.IInitializingObject interface allows an object to perform initialization work

after all the necessary properties on an object are set by the container. The IInitializingObject interface

specifies a single method:

• void AfterPropertiesSet(): called after all properties have been set by the container. This method enables

you to do checking to see if all necessary properties have been set correctly, or to perform further initialization

work. You can throw any Exception to indicate misconfiguration, initialization failures, etc.

It is recommended that you do not use the IInitializingObject interface because it unnecessarily coupules the

code to Spring. Alternatively, specify an POJO initialization method. In the case of XML-based configuration

metadata, you use the init-method attribute to specify the name of the method that has a void no-argument

signature. For example, the following definition:

<object id="exampleInitObject" type="Examples.ExampleObject" init-method="init"/>

[C#]

public class ExampleObject

{

 public void Init()

 {

 // do some initialization work

 }

}

...is exactly the same as...

<object id="exampleInitObject" type="Examples.AnotherExampleObject"/>

[C#]

public class AnotherExampleObject : IInitializingObject

{

 public void AfterPropertiesSet()

 {

 // do some initialization work

 }

The IoC container

Spring Framework (Version 1.3.2) 58

}

... but does not couple the code to Spring.NET.

5.6.1.2. IDisposable / destroy-method

Implementing the System.IDisposable interface allows an object to get a callback callback when the container

containing it is destroyed. The IDisposable interface specifies a single method:

• void Dispose(): and is called on destruction of the container. This allows you to release any resources you

are keeping in this object (such as database connections). You can throw any Exception here... however, any

such Exception will not stop the destruction of the container - it will only get logged.v

Since the IDisposable interface resides in the core .NET library, it does not couple your class to Spring as in

the case with the IInitializingObject interface. However, you may also specify a destruction method that is not

tied to the IDisposable interface. In the case of XML-based configuration metadata, you use the destroy-method

attribute to specify the name of the method that has a void no-argument signature. For example, the following

definition:

<object id="exampleInitObject" type="Examples.ExampleObject" destroy-method="cleanup"/>

[C#]

public class ExampleObject

{

 public void cleanup()

 {

 // do some destruction work (such as closing any open connection (s))

 }

}

is exactly the same as:

<object id="exampleInitObject" type="Examples.AnotherExampleObject"/>

[C#]

public class AnotherExampleObject : IDisposable

{

 public void Dispose()

 {

 // do some destruction work

 }

}

5.6.2. IApplicationContextAware and IObjectNameAware

When an IApplicationContext creates a class that implements the IApplicationContextAware interface, the class

is provided with a reference to that IApplicationContext.

public interface IApplicationContextAware {

 IApplicationContext ApplicationContext {

 set;

 }

}

Thus objects can manipulate programmatically the IApplicationContext that created them, through the

IApplicationContext interface, or by casting the reference to a known subclass of this interface, such as

IConfigurableApplicationContext, which exposes additional functionality. One use would be the programmatic

retrieval of other objects. Sometimes this capability is useful; however, in general you should avoid it, because it

couples the code to Spring and does not follow the Inversion of Control style, where collaborators are provided

to objects as properties. Other methods of the IApplicationContext provide access to file resources, publishing

application events, and accessing a IMessageSource. These additional features are described in Section 5.10, “The

IApplicationContext”

The IoC container

Spring Framework (Version 1.3.2) 59

5.6.2.1. IObjectNameAware

When an IApplicationContext creates a class that implements the Spring.Objects.Factory.IObjectNameAware

interface, the class is provided with a reference to the name defined in its associated object definition.

public interface IObjectNameAware {

 string ObjectName {

 set;

 }

}

The callback is invoked after population of normal object properties but before an initialization callback such as

IInitializingObject 's AfterPropertiesSet method or a custom initalization method is invoked.

5.7. Object definition inheritance

An object definition can contain a lot of configuration information, including constructor arguments, property

values, and container-specific information such as initialization method, static factory method name, and so on. A

child object definition inherits configuration data from a parent definition. The child definition can override some

values, or add others, as needed. Using parent and child object definitions can save a lot of typing. Effectively,

this is a form of templating.

If you work with an IApplicationContext interface programmatically, child object definitions are represented

by the ChildObjectDefinition class. Most users do not work with them on this level, instead configuring

object definitions declaratively in something like the XmlApplicationContext. When you use XML-based

configuration metadata, you indicate a child object using the parent attribute, specifying the parent object

definition as the value of this attribute.

<object id="inheritedTestObject" type="Spring.Objects.TestObject, Spring.Core.Tests" abstract="true">

 <property name="name" value="parent"/>

 <property name="age" value="1"/>

</object>

<object id="inheritsWithDifferentClass" type="Spring.Objects.DerivedTestObject, Spring.Core.Tests"

 parent="inheritedTestObject" init-method="Initialize">

 <property name="name" value="override"/>

 <!-- age will inherit value of 1 from parent -->

</object>

A child object definition uses the object class from the parent definition if none is specified, but can also override

it. In the latter case, the child object class must be compatible with the parent, that is, it must accept the parent's

property values.

A child object definition inherits constructor argument values, property values and method overrides from the

parent, with the option to add new values. Any initialization method, destroy method and/or static factory methods

that you specify will override the corresponding parent settings.

The remaining settings are always be taken from the child definition: depends on, autowire mode, dependency

check, singleton, lazy init.

The preceding example explicitly marks the parent object definition as abstract using the abstract attribute. If

the parent definition does not specify a class, explicitly marking the parent object definition as abstract is required,

as follows:

<object id="inheritedTestObjectWithoutClass" abstract="true">

 <property name="name" value="parent"/>

 <property name="age" value="1"/>

</object>

<object id="inheritsWithClass" type="Spring.Objects.DerivedTestObject, Spring.Core.Tests"

The IoC container

Spring Framework (Version 1.3.2) 60

 parent="inheritedTestObjectWithoutClass" init-method="Initialize">

 <property name="name" value="override"/>

 <!-- age will inherit value of 1 from parent -->

</object>

The parent object cannot be instantiated on its own since it incomplete, and it is also explicitly marked as abstract.

When a definition is abstract like this, it is usable only as a pure template object definition that serves as a parent

definition for child definitions. Trying to use such an abstract parent object on its own, by referring to it as

a ref property of another object, or doing an explicit GetObject() with the parent object id, returns an error.

The container's internal PreInstantiateSingletons method will completely ignore object definitions that are

considered abstract.

Note

Application contexts pre-instantiate all singletons by default. Therefore it is important (at least for

singleton objects) that if you have a (parent) object definition which you intend to use only as a

template, and this definition specifies a class, you must make sure to set the abstract attribute to true

, otherwise the application context will actually (attempt to) pre-instantiate the abstract object.

5.8. Container extension points

The Spring container is essentially nothing more than an advanced factory capable of maintaining a registry of

different

objects and their dependencies. The IObjectFactory enables you to read object definitions and access them using

the object factory. When using just the IObjectFactory you would create an instance of one and then read in

some object definitions in the XML format as follows:

[C#]

IResource input = new FileSystemResource ("objects.xml");

XmlObjectFactory factory = new XmlObjectFactory(input);

That is pretty much it. Using GetObject(string) (or the more concise indexer method factory ["string"])

you can retrieve instances of your objects...

[C#]

object foo = factory.GetObject ("foo"); // gets the object defined as 'foo'

object bar = factory ["bar"]; // same thing, just using the indexer

You'll get a reference to the same object if you defined it as a singleton (the default) or you'll get a new instance

each time if you set the singleton property of your object definition to false.

<object id="exampleObject" type="Examples.ExampleObject, ExamplesLibrary"/>

<object id="anotherObject" type="Examples.ExampleObject, ExamplesLibrary" singleton="false"/>

[C#]

object one = factory ["exampleObject"]; // gets the object defined as 'exampleObject'

object two = factory ["exampleObject"];

Console.WriteLine (one == two) // prints 'true'

object three = factory ["anotherObject"]; // gets the object defined as 'anotherObject'

object four = factory ["anotherObject"];

Console.WriteLine (three == four); // prints 'false'

The client-side view of the IObjectFactory is surprisingly simple. The IObjectFactory interface has only seven

methods (and the aforementioned indexer) for clients to call:

• bool ContainsObject(string): returns true if the IObjectFactory contains an object definition that matches

the given name.

The IoC container

Spring Framework (Version 1.3.2) 61

• object GetObject(string): returns an instance of the object registered under the given name. Depending

on how the object was configured by the IObjectFactory configuration, either a singleton (and thus shared)

instance or a newly created object will be returned. An ObjectsException will be thrown when either the object

could not be found (in which case it'll be a NoSuchObjectDefinitionException), or an exception occurred

while instantiated and preparing the object.

• Object this [string]: this is the indexer for the IObjectFactory interface. It functions in all other respects

in exactly the same way as the GetObject(string) method. The rest of this documentation will always refer

to the GetObject(string) method, but be aware that you can use the indexer anywhere that you can use the

GetObject(string) method.

• Object GetObject(string, Type): returns an object, registered under the given name. The object returned

will be cast to the given Type. If the object could not be cast, corresponding exceptions will be thrown

(ObjectNotOfRequiredTypeException). Furthermore, all rules of the GetObject(string) method apply (see

above).

• bool IsSingleton(string): determines whether or not the object definition registered under the given name

is a singleton or a prototype. If the object definition corresponding to the given name could not be found, an

exception will be thrown (NoSuchObjectDefinitionException)

• string[] GetAliases(string): returns the aliases for the given object name, if any were defined in the

IObjectDefinition.

• void ConfigureObject(object target, string name): Injects dependencies into the supplied target instance

assigning the supplied name to the abstract object definition. This method is typically used when objects are

instantiated outside the control of a developer, for example when ASP.NET instantiates web controls and when

a WinForms application creates UserControls.

A sub-interface of IObjectFactory, IConfigurableObjectFactory adds some convenient methods such as

• void RegisterSingleton(string name, object objectInstance) : Register the given existing object as

singleton in the object factory under the given object name.

• void RegisterAlias(string name, string theAlias); Given an object name, create an alias.

Check the SDK docs for additional details on IConfigurableObjectFactory methods and properties and the full

IObjectFactory class hierarchy.

5.8.1. Obtaining an IFactoryObject, not its product

Sometimes there is a need to ask an IObjectFactory for an actual IFactoryObject instance itself, not the object

it produces. This may be done by prepending the object id with & when calling the GetObject method of the

IObjectFactory and IApplicationContext interfaces. So for a given IFactoryObject with an id myObject,

invoking GetObject("myObject") on the IObjectFactory will return the product of the IFactoryObject, but

invoking GetObject("&myObject") will return the IFactoryObject instance itself.

5.9. Container extension points

The IoC component of the Spring Framework has been designed for extension. There is typically no need for an

application developer to subclass any of the various IObjectFactory or IApplicationContext implementation

classes. The Spring IoC container can be infinitely extended by plugging in implementations of special integration

interfaces. The next few sections are devoted to detailing all of these various integration interfaces.

5.9.1. Customizing objects with IObjectPostProcessors

The first extension point that we will look at is the Spring.Objects.Factory.Config.IObjectPostProcessor

interface. This interface defines a number of callback methods that you as an application developer can implement

The IoC container

Spring Framework (Version 1.3.2) 62

in order to provide your own (or override the containers default) instantiation logic, dependency-resolution logic,

and so forth. If you want to do some custom logic after the Spring container has finished instantiating, configuring

and otherwise initializing an object, you can plug in one or more IObjectPostProcessor implementations.

You can configure multiple IObjectPostProcessors if you wish. You can control the order in which

these IObjectPostProcessor execute by setting the 'Order' property (you can only set this property if the

IObjectPostProcessor implements the IOrdered interface; if you write your own IObjectPostProcessor you

should consider implementing the IOrdered interface too); consult the SDK docs for the IObjectPostProcessor

and IOrdered interfaces for more details.

Note

IObjectPostProcessor operate on object instances; that is to say, the Spring IoC container will have

instantiated a object instance for you, and then IObjectPostProcessors get a chance to do their

stuff. If you want to change the actual object definition (that is the recipe that defines the object),

then you rather need to use a IObjectFactoryPostProcessor (described below in the section entitled

Customizing configuration metadata with IObjectFactoryPostProcessors.

Also, IObjectPostProcessors are scoped per-container. This is only relevant if you are using

container hierarchies. If you define a IObjectPostProcessor in one container, it will only do its

stuff on the objects in that container. Objects that are defined in another container will not be post-

processed by IObjectPostProcessors in another container, even if both containers are part of the

same hierarchy.

The Spring.Objects.Factory.Config.IObjectPostProcessor interface, which consists of two callback

methods shown below.

object PostProcessBeforeInitialization(object instance, string name);

object PostProcessAfterInitialization(object instance, string name);

When such a class is registered as a post-processor with the container, for each object instance that is created

by the container,(see below for how this registration is effected), for each object instance that is created by the

container, the post-processor will get a callback from the container both before any initialization methods (such

as the AfterPropertiesSet method of the IInitializingObject interface and any declared init method) are

called, and also afterwards. The post-processor is free to do what it wishes with the object, including ignoring the

callback completely. An object post-processor will typically check for marker interfaces, or do something such

as wrap an object with a proxy. Some Spring.NET AOP infrastructure classes are implemented as object post-

processors as they do this proxy-wrapping logic.

Other extensions to the IObjectPostProcessors interface are IInstantiationAwareObjectPostProcessor and

IDestructionAwareObjectPostProcessor defined below

public interface IInstantiationAwareObjectPostProcessor : IObjectPostProcessor

{

 object PostProcessBeforeInstantiation(Type objectType, string objectName);

 bool PostProcessAfterInstantiation(object objectInstance, string objectName);

 IPropertyValues PostProcessPropertyValues(IPropertyValues pvs, PropertyInfo[] pis, object

 objectInstance, string objectName);

}

public interface IDestructionAwareObjectPostProcessor : IObjectPostProcessor

{

 void PostProcessBeforeDestruction (object instance, string name);

}

The IoC container

Spring Framework (Version 1.3.2) 63

The PostProcessBeforeInstantiation callback method is called right before the container creates the object.

If the object returned by this method is not null then the default instantiation behavior of the container is short

circuited. The returned object is the one registered with the container and no other IObjectPostProcessor

callbacks will be invoked on it. This mechanism is useful if you would like to expose a proxy to the object instead

of the actual target object. The PostProcessAfterInstantiation callback method is called after the object has

been instantiated but before Spring performs property population based on explicit properties or autowiring. A

return value of false would short circuit the standard Spring based property population. The callback method

PostProcessPropertyValues is called after Spring collects all the property values to apply to the object, but

before they are applied. This gives you the opportunity to perform additional processing such as making sure

that a property is set to a value if it contains a [Required] attribute or to perform attribute based wiring, i.e.

adding the attribute [Inject("objectName")] on a property. Both of these features are scheduled to be included

in Spring .12.

The IDestructionAwareObjectPostProcessor callback contains a single method,

PostProcessBeforeDestruction, which is called before a singleton's destroy method is invoked.

It is important to know that the IObjectFactory treats object post-processors slightly differently than the

IApplicationContext. An IApplicationContext will automatically detect any objects which are deployed into

it that implement the IObjectPostProcessor interface, and register them as post-processors, to be then called

appropriately by the factory on object creation. Nothing else needs to be done other than deploying the post-

processor in a similar fashion to any other object. On the other hand, when using plain IObjectFactories, object

post-processors have to manually be explicitly registered, with a code sequence such as...

ConfigurableObjectFactory factory = new; // create an IObjectFactory

... // now register some objects

// now register any needed IObjectPostProcessors

MyObjectPostProcessor pp = new MyObjectPostProcessor();

factory.AddObjectPostProcessor(pp);

// now start using the factory

...

This explicit registration step is not convenient, and this is one of the reasons why the various

IApplicationContext implementations are preferred above plain IObjectFactory implementations in the vast

majority of Spring-backed applications, especially when using IObjectPostProcessors.

Note

IObjectPostProcessors and AOP auto-proxying

Classes that implement the IObjectPostProcessor interface are special, and so they are treated

differently by the container. All IObjectPostProcessors and their directly referenced object will

be instantiated on startup, as part of the special startup phase of the IApplicationContext, then

all those IObjectPostProcessors will be registered in a sorted fashion - and applied to all

further objects. Since AOP auto-proxying is implemented as a IObjectPostProcessor itself, no

IObjectPostProcessors or directly referenced objects are eligible for auto-proxying (and thus will

not have aspects 'woven' into them). For any such object, you should see an info log message: “Object

'foo' is not eligible for getting processed by all IObjectPostProcessors (for example: not eligible

for auto-proxying)”.

5.9.1.1. Example: Hello World, IObjectPostProcessor-style

This first example is hardly compelling, but serves to illustrate basic usage. All we are going to do is code a

custom IObjectPostProcessor implementation that simply invokes the ToString() method of each object as it is

The IoC container

Spring Framework (Version 1.3.2) 64

created by the container and prints the resulting string to the system console. Yes, it is not hugely useful, but

serves to get the basic concepts across before we move into the second example which is actually useful. The

basis of the example is the MovieFinder quickstart that is included with the Spring.NET distribution.

Find below the custom IObjectPostProcessor implementation class definition

using System;

using Spring.Objects.Factory.Config;

namespace Spring.IocQuickStart.MovieFinder

{

 public class TracingObjectPostProcessor : IObjectPostProcessor

 {

 public object PostProcessBeforeInitialization(object instance, string name)

 {

 return instance;

 }

 public object PostProcessAfterInitialization(object instance, string name)

 {

 Console.WriteLine("Object '" + name + "' created : " + instance.ToString());

 return instance;

 }

 }

}

And the following configuration

<?xml version="1.0" encoding="utf-8" ?>

<objects xmlns="http://www.springframework.net" >

 <description>An example that demonstrates simple IoC features.</description>

 <object id="MyMovieLister"

 type="Spring.IocQuickStart.MovieFinder.MovieLister, Spring.IocQuickStart.MovieFinder">

 <property name="movieFinder" ref="MyMovieFinder"/>

 </object>

 <object id="MyMovieFinder"

 type="Spring.IocQuickStart.MovieFinder.SimpleMovieFinder, Spring.IocQuickStart.MovieFinder"/>

 <!-- when the above objects are instantiated, this custom IObjectPostProcessor implementation

 will output the fact to the system console -->

 <object type="Spring.IocQuickStart.MovieFinder.TracingObjectPostProcessor,

 Spring.IocQuickStart.MovieFinder"/>

</objects>

Notice how the TracingObjectPostProcessor is simply defined; it doesn't even have a name, and because it is a

object it can be dependency injected just like any other object.

Find below a small driver script to exercise the above code and configuration;

IApplicationContext ctx =

 new XmlApplicationContext(

 "assembly://Spring.IocQuickStart.MovieFinder/Spring.IocQuickStart.MovieFinder/AppContext.xml");

MovieLister lister = (MovieLister) ctx.GetObject("MyMovieLister");

Movie[] movies = lister.MoviesDirectedBy("Roberto Benigni");

LOG.Debug("Searching for movie...");

foreach (Movie movie in movies)

{

 LOG.Debug(string.Format("Movie Title = '{0}', Director = '{1}'.", movie.Title, movie.Director));

}

LOG.Debug("MovieApp Done.");

The output of executing the above program will be:

INFO - Object 'Spring.IocQuickStart.MovieFinder.TracingObjectPostProcessor' is not eligible for being

 processed by all IObjectPostProcessors

The IoC container

Spring Framework (Version 1.3.2) 65

 (for example: not eligible for auto-proxying).

Object 'MyMovieFinder' created : Spring.IocQuickStart.MovieFinder.SimpleMovieFinder

Object 'MyMovieLister' created : Spring.IocQuickStart.MovieFinder.MovieLister

DEBUG - Searching for movie...

DEBUG - Movie Title = 'La vita e bella', Director = 'Roberto Benigni'.

DEBUG - MovieApp Done.

5.9.1.2. Example: the RequiredAttributeObjectPostProcessor

Using callback interfaces or annotations in conjunction with a custom IObjectPostProcessor implementation

is a common means of extending the Spring IoC container. The [Required] attribute in the

Spring.Objects.Factory.Attributes namespace can be used to mark a property as being 'required-to-be-set'

(i.e. an setter property with this attribute applied must be configured to be dependency injected with a value), else

an ObjectInitializationException will be thrown by the container at runtime.

The best way to illustrate the usage of this attribute is with an example.

public class MovieLister

{

 // the MovieLister has a dependency on the MovieFinder

 private IMovieFinder _movieFinder;

 // a setter property so that the Spring container can 'inject' a MovieFinder

 [Required]

 public IMovieFinder MovieFinder

 {

 set { _movieFinder = value; }

 }

 // business logic that actually 'uses' the injected MovieFinder is omitted...

}

Hopefully the above class definition reads easy on the eye. Any and all IObjectDefinitions for the MovieLister

class must be provided with a value.

Let's look at an example of some XML configuraiton that will not pass validation.

<object id="MyMovieLister"

 type="Spring.IocQuickStart.MovieFinder.MovieLister, Spring.IocQuickStart.MovieFinder">

 <!-- whoops, no MovieFinder is set (and this property is [Required]) -->

 </object>

At runtime the following message will be generated by the Spring container

Error creating context 'spring.root': Property 'MovieFinder' required for object 'MyMovieLister'

There is one last little piece of Spring configuration that is required to actually 'switch on' this behavior. Simply

annotating the 'setter' properties of your classes is not enough to get this behavior. You need to enable a component

that is aware of the [Required] attribute and that can process it appropriately.

This component is the RequiredAttributeObjectPostProcessor class. This is a special IObjectPostProcessor

implementation that is [Required]-aware and actually provides the 'blow up if this required property has not

been set' logic. It is very easy to configure; simply drop the following object definition into your Spring XML

configuration.

<object type="Spring.Objects.Factory.Attributes.RequiredAttributeObjectPostProcessor, Spring.Core"/>

Finally, one can configure an instance of the RequiredAttributeObjectPostProcessor class to look for another

Attribute type. This is great if you already have your own [Required]-style attribute. Simply plug it into

the definition of a RequiredAttributeObjectPostProcessor and you are good to go. By way of an example,

The IoC container

Spring Framework (Version 1.3.2) 66

let's suppose you (or your organization / team) have defined an attribute called [Mandatory]. You can make a

RequiredAttributeObjectPostProcessor instance [Mandatory]-aware like so:

<object type="Spring.Objects.Factory.Attributes.RequiredAttributeObjectPostProcessor, Spring.Core">

 <property name="RequiredAttributeType" value="MyApp.Attributes.MandatoryAttribute, MyApp"/>

</object>

5.9.2. Customizing configuration metadata with
ObjectFactoryPostProcessors

The next extension point that we will look at is the

Spring.Objects.Factory.Config.IObjectFactoryPostProcessor. The semantics of this interface are similar

to the IObjectPostProcessor, with one major difference. IObjectFactoryPostProcessors operate on; that is

to say, the Spring IoC container will allow IObjectFactoryPostProcessors to read the configuration metadata

and potentially change it before the container has actually instantiated any other objects. By implementing this

interface, you will receive a callback after the all the object definitions have been loaded into the IoC container

but before they have been instantiated. The signature of the interface is shown below

public interface IObjectFactoryPostProcessor

{

 void PostProcessObjectFactory (IConfigurableListableObjectFactory factory);

}

You can configure multiple IObjectFactoryPostProcessors if you wish. You can control the order in

which these IObjectFactoryPostProcessors execute by setting the 'Order' property (you can only set this

property if the IObjectFactoryPostProcessors implements the IOrdered interface; if you write your own

IObjectFactoryPostProcessors you should consider implementing the IOrdered interface too); consult the

SDK docs for the IObjectFactoryPostProcessors and IOrdered interfaces for more details.

Note

If you want to change the actual object instances (the objects that are created from the configuration

metadata), then you rather need to use a IObjectObjectPostProcessor (described above in the

section entitled Customizing objects with IObjectPostProcessors.

Also, IObjectFactoryPostProcessors are scoped per-container. This is only relevant if you are

using container hierarchies. If you define a IObjectFactoryPostProcessors in one container, it will

only do its stuff on the object definitions in that container. Object definitions in another container

will not be post-processed by IObjectFactoryPostProcessors in another container, even if both

containers are part of the same hierarchy.

An object factory post-processor is executed manually (in the case of a IObjectFactory) or automatically

(in the case of an IApplicationContext) to apply changes of some sort to the configuration metadata

that defines a container. Spring.NET includes a number of pre-existing object factory post-processors,

such as PropertyResourceConfigurer and PropertyPlaceHolderConfigurer, both described below and

ObjectNameAutoProxyCreator, which is very useful for wrapping other objects transactionally or with any other

kind of proxy, as described later in this manual.

In an IObjectFactory, the process of applying an IObjectFactoryPostProcessor is manual, and will be similar

to this:

XmlObjectFactory factory = new XmlObjectFactory(new FileSystemResource("objects.xml"));

// create placeholderconfigurer to bring in some property

// values from a Properties file

The IoC container

Spring Framework (Version 1.3.2) 67

PropertyPlaceholderConfigurer cfg = new PropertyPlaceholderConfigurer();

cfg.setLocation(new FileSystemResource("ado.properties"));

// now actually do the replacement

cfg.PostProcessObjectFactory(factory);

This explicit registration step is not convenient, and this is one of the reasons why the various

IApplicationContext implementations are preferred above plain IObjectFactory implementations in the vast

majority of Spring-backed applications, especially when using IObjectFactoryPostProcessors.

An IApplicationContext will detect any objects which are deployed into it that implement the

ObjectFactoryPostProcessor interface, and automatically use them as object factory post-processors, at the

appropriate time. Nothing else needs to be done other than deploying these post-processor in a similar fashion

to any other object.

Note

Just as in the case of IObjectPostProcessors, you typically don't want to have

IObjectFactoryPostProcessors marked as being lazily-initialized. If they are marked as such, then

the Spring container will never instantiate them, and thus they won't get a chance to apply their custom

logic. If you are using the 'default-lazy-init' attribute on the declaration of your <objects/> element, be

sure to mark your various IObjectFactoryPostProcessor object definitions with 'lazy-init="false"'.

5.9.2.1. Example: The PropertyPlaceholderConfigurer

The PropertyPlaceholderConfigurer is an excellent solution when you want to externalize a few properties

from a file containing object definitions. This is useful to allow the person deploying an application to customize

environment specific properties (for example database configuration strings, usernames, and passwords), without

the complexity or risk of modifying the main XML definition file or files for the container.

Variable substitution is performed on simple property values, lists, dictionaries, sets, constructor values, object

type name, and object names in runtime object references. Furthermore, placeholder values can also cross-

reference other placeholders.

Note that IApplicationContexts are able to automatically recognize and apply objects deployed in them

that implement the IObjectFactoryPostProcessor interface. This means that as described here, applying

a PropertyPlaceholderConfigurer is much more convenient when using an IApplicationContext. For

this reason, it is recommended that users wishing to use this or other object factory postprocessors use an

IApplicationContext instead of an IObjectFactory.

In the example below a data access object needs to be configured with a database connection and also a value for

the maximum number of results to return in a query. Instead of hard coding the values into the main Spring.NET

configuration file we use place holders, in the NAnt style of ${variableName}, and obtain their values from

NameValueSections in the standard .NET application configuration file. The Spring.NET configuration file looks

like:

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.ContextHandler, Spring.Core"/>

 </sectionGroup>

 <section name="DaoConfiguration" type="System.Configuration.NameValueSectionHandler"/>

 <section name="DatabaseConfiguration" type="System.Configuration.NameValueSectionHandler"/>

 </configSections>

 <DaoConfiguration>

The IoC container

Spring Framework (Version 1.3.2) 68

 <add key="maxResults" value="1000"/>

 </DaoConfiguration>

 <DatabaseConfiguration>

 <add key="connection.string" value="dsn=MyDSN;uid=sa;pwd=myPassword;"/>

 </DatabaseConfiguration>

 <spring>

 <context>

 <resource uri="assembly://DaoApp/DaoApp/objects.xml"/>

 </context>

 </spring>

</configuration>

Notice the presence of two NameValueSections in the configuration file. These name value pairs will be referred

to in the Spring.NET configuration file. In this example we are using an embedded assembly resource for the

location of the Spring.NET configuration file so as to reduce the chance of accidental tampering in deployment.

This Spring.NET configuration file is shown below.

<objects xmlns="http://www.springframework.net"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.net

 http://www.springframework.net/xsd/spring-objects.xsd" >

 <object name="productDao" type="DaoApp.SimpleProductDao, DaoApp ">

 <property name="maxResults" value="${maxResults}"/>

 <property name="dbConnection" ref="myConnection"/>

 </object>

 <object name="myConnection" type="System.Data.Odbc.OdbcConnection, System.Data">

 <property name="connectionstring" value="${connection.string}"/>

 </object>

 <object name="appConfigPropertyHolder"

 type="Spring.Objects.Factory.Config.PropertyPlaceholderConfigurer, Spring.Core">

 <property name="configSections">

 <value>DaoConfiguration,DatabaseConfiguration</value>

 </property>

 </object>

</objects>

The values of ${maxResults} and ${connection.string} match the key names used

in the two NameValueSectionHandlers DaoConfiguration and DatabaseConfiguration. The

PropertyPlaceholderConfigurer refers to these two sections via a comma delimited list of section names

in the configSections property. If you are using section groups, prefix the section group name, for example

myConfigSection/DaoConfiguraiton.

The PropertyPlaceholderConfigurer class also supports retrieving name value pairs from other

IResource locations. These can be specified using the Location and Locations properties of the

PropertyPlaceHolderConfigurer class.

If there are properties with the same name in different resource locations the default behavior is that the last

property processed overrides the previous values. This is behavior is controlled by the LastLocationOverrides

property. True enables overriding while false will append the values as one would normally expect using

NameValueCollection.Add.

Note

In an ASP.NET environment you must specify the full, four-part name of the assembly when using

a NameValueFileSectionHandler

The IoC container

Spring Framework (Version 1.3.2) 69

 <section name="hibernateConfiguration"

 type="System.Configuration.NameValueFileSectionHandler, System,

 Version=1.0.3300.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/>

5.9.2.1.1. Type, Ref, and Expression substitution

The PropertyPlaceholderConfigurer can be used to substitute type names, which is sometimes useful when you

have to pick a particular implementation class at runtime. For example:

<object id="MyMovieFinder" type="${custom.moviefinder.type}"/>

If the class is unable to be resolved at runtime to a valid type, resolution of the object will fail once it is about to be

created (which is during the PreInstantiateSingletons() phase of an ApplicationContext for a non-lazy-init object.)

Similarly you can replace 'ref' and 'expression' metadata, as shown below

<object id="TestObject" type="Simple.TestObject, MyAssembly">

 <property name="age" expression="${ageExpression}"/>

 <property name="spouse" ref="${spouse-ref}"/>

</object>

5.9.2.1.2. Replacement with Environment Variables

You may also use the value environment variables to replace property placeholders. The use of environment

variables is controlled via the property EnvironmentVariableMode. This property is an enumeration of the

type EnvironmentVariablesMode and has three values, Never, Fallback, and Override. Fallback is the

default value and will resolve a property placeholder if it was not already done so via a value from a

resource location. Override will apply environment variables before applying values defined from a resource

location. Never will, quite appropriately, disable environment variable substitution. An example of how the

PropertyPlaceholderConfigurer XML is modified to enable override usage is shown below

<object name="appConfigPropertyHolder"

 type="Spring.Objects.Factory.Config.PropertyPlaceholderConfigurer, Spring.Core">

 <property name="configSections" value="DaoConfiguration,DatabaseConfiguration"/>

 <property name="EnvironmentVariableMode" value="Override"/>

 </object>

</objects>

5.9.2.2. Example: The PropertyOverrideConfigurer

The PropertyOverrideConfigurer, another object factory post-processor, is similar to the

PropertyPlaceholderConfigurer, but in contrast to the latter, the original definitions can have default values

or no values at all for object properties. If an overriding configuration file does not have an entry for a certain

object property, the default context definition is used.

Note that the object factory definition is not aware of being overridden, so it is not immediately obvious when

looking at the XML definition file that the override configurer is being used. In case that there are multiple

PropertyOverrideConfigurer instances that define different values for the same object property, the last one

will win (due to the overriding mechanism).

The example usage is similar to when using PropertyPlaceHolderConfigurer except that the key name refers

to the name given to the object in the Spring.NET configuration file and is suffixed via 'dot' notation with the

name of the property For example, if the application configuration file is

<configuration>

The IoC container

Spring Framework (Version 1.3.2) 70

 <configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.ContextHandler, Spring.Core"/>

 </sectionGroup>

 <section name="DaoConfigurationOverride" type="System.Configuration.NameValueSectionHandler"/>

 </configSections>

 <DaoConfigurationOverride>

 <add key="productDao.maxResults" value="1000"/>

 </DaoConfigurationOverride>

 <spring>

 <context>

 <resource uri="assembly://DaoApp/DaoApp/objects.xml"/>

 </context>

 </spring>

</configuration>

Then the value of 1000 will be used to overlay the value of 2000 set in the Spring.NET configuration file shown

below

<objects xmlns="http://www.springframework.net"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.net http://www.springframework.net/xsd/spring-

objects.xsd" >

 <object name="productDao" type="PropPlayApp.SimpleProductDao, PropPlayApp " >

 <property name="maxResults" value="2000"/>

 <property name="dbConnection" ref="myConnection"/>

 <property name="log" ref="daoLog"/>

 </object>

 <object name="daoLog" type="Spring.Objects.Factory.Config.LogFactoryObject, Spring.Core">

 <property name="logName" value="DAOLogger"/>

 </object>

 <object name="myConnection" type="System.Data.Odbc.OdbcConnection, System.Data">

 <property name="connectionstring">

 <value>dsn=MyDSN;uid=sa;pwd=myPassword;</value>

 </property>

 </object>

 <object name="appConfigPropertyOverride" type="Spring.Objects.Factory.Config.PropertyOverrideConfigurer,

 Spring.Core">

 <property name="configSections">

 <value>DaoConfigurationOverride</value>

 </property>

 </object>

</objects>

5.9.2.3. IVariableSource

The IVariableSource is the base interface for providing the ability to get the value of property placeholders (name-

value) pairs from a variety of sources. Out of the box, Spring.NET supports a number of variable sources that

allow users to obtain variable values from .NET config files, java-style property files, environment variables,

command line arguments and the registry and the new connection strings configuration section in .NET 2.0. The

list of implementing classes is listed below. Please refer to the SDK documentation for more information.

• ConfigSectionVariableSource

• PropertyFileVariableSource

• EnvironmentVariableSource

• CommandLineArgsVariableSource

The IoC container

Spring Framework (Version 1.3.2) 71

• RegistryVariableSource

• SpecialFolderVariableSource

• ConnectionStringsVariableSource

• ConfigurableVariableSource

You use this by defining an instance of Spring.Objects.Factory.Config.VariablePlaceholderConfigurer in

your configuration and set the property VariableSource to a single IVariableSource instance or the list property

VariableSources to a list of IVariableSource instances. In the case of the same property defined in multiple

IVariableSource implementations, the first one in the list that contains the property value will be used.

<object type="Spring.Objects.Factory.Config.VariablePlaceholderConfigurer, Spring.Core">

 <property name="VariableSources">

 <list>

 <object type="Spring.Objects.Factory.Config.PropertyFileVariableSource, Spring.Core">

 <property name="Location" value="~\application.properties" />

 <property name="IgnoreMissingResources" value="true"/>

 </object>

 <object type="Spring.Objects.Factory.Config.ConfigSectionVariableSource, Spring.Core">

 <property name="SectionNames" value="CryptedConfiguration" />

 </object>

 </list>

 </property>

</object>

Note

The use of the IgnoreMissingResources property above will mean that if the property file is not found

it will be silently ignored and the resolution will continue to ConfigSectionVariableSource.

The IVariableSource interface is shown below

public interface IVariableSource

{

 string ResolveVariable(string name);

}

This is a simple contract to implement if you should decide to create your own custom implemention. Look at

the source code of the current implementations for some inspiration if you go that route. To register your own

custom implemenation, simply configure VariablePlaceholderConfigurer to refer to your class.

5.9.3. Customizing instantiation logic using IFactoryObjects

The Spring.Objects.Factory.IFactoryObject interface is to be implemented by objects that are themselves

factories.

The IFactoryObject interface is a point of pluggability into the Spring IoC containers instantiation logic. If you

have some complex initialization code that is better expressed in C# as opposed to a (potentially) verbose amount

of XML, you can create your own IFactoryObject, write the complex initialization inside that class, and then

plug your custom IFactoryObject into the container.

The IFactoryObject interface provides one method and two (read-only) properties:

• object GetObject(): has to return an instance of the object this factory creates. The instance can possibly be

shared (depending on whether this factory provides singletons or prototypes).

The IoC container

Spring Framework (Version 1.3.2) 72

• bool IsSingleton: has to return true if this IFactoryObject returns singletons, false otherwise.

• Type ObjectType: has to return either the object type returned by the GetObject() method or null if the type

isn't known in advance.

IFactoryObject

The IFactoryObject concept and interface is used in a number of places within the Spring Framework. Some

examples of its use is described in Section 5.3.9, “Setting a reference using the members of other objects and

classes.” for the PropertyRetrievingFactoryObject and FieldRetrievingFactoryObject. An additional use

of creating an custom IFactoryObject implementation is to retrieve an object from an embedded resource file and

use it to set another objects dependency. An example of this is provided here [http://jira.springframework.org/

browse/SPRNET-133#action_19743].

Finally, there is sometimes a need to ask a container for an actual IFactoryObject instance itself, not the object

it produces. This may be achieved by prepending the object id with '&' (sans quotes) when calling the GetObject

method of the IObjectFactory (including IApplicationContext). So for a given IFactoryObject with an id of

'myObject', invoking GetObject("myObject") on the container will return the product of the IFactoryObject,

but invoking GetObject("&myObject") will return the IFactoryObject instance itself.

5.9.3.1. IConfigurableFactoryObject

The Spring.Objects.Factory.IConfigurableFactoryObject interface inherits from IFactoryObject interface

and adds the following property.

• IObjectDefinition ProductTemplate : Gets the template object definition that should be used to configure

the instance of the object managed by this factory.

IConfigurableFactoryObject implementions you already have examples of in Section 29.3, “Client-side” are

WebServiceProxyFactory.

5.10. The IApplicationContext

While the Spring.Objects namespace provides basic functionality for managing and manipulating objects,

often in a programmatic way, the Spring.Context namespace introduces the IApplicationContext interface,

which enhances the functionality provided by the IObjectFactory interface in a more framework-oriented

style. Many users will use ApplicationContext in a completely declarative fashion, not even having to create

it manually, but instead relying on support classes such as the .NET configuration section handlers such as

ContextHandler and WebContextHandler together to declaratively define the ApplicationContext and retrieve it

though a ContextRegistry. (Of course it is still possible to create an IApplicationContext Programatically).

The basis for the context module is the IApplicationContext interface, located in the Spring.Context

namespace. Deriving from the IObjectFactory interface, it provides all the functionality of the IObjectFactory.

To be able to work in a more framework-oriented fashion, using layering and hierarchical contexts, the

Spring.Context namespace also provides the following functionality

• Loading of multiple (hierarchical) contexts, allowing some of them to be focused and used on one particular

layer, for example the web layer of an application.

• Access to localized resources at the application level by implementing IMessageSource.

• Uniform access to resources that can be read in as an InputStream, such as URLs and files by implementing

IResourceLoader

• Loosely Coupled Event Propagation. Publishers and subscribers of events do not have to be directly aware of

each other as they register their interest indirectly through the application context.

http://jira.springframework.org/browse/SPRNET-133#action_19743
http://jira.springframework.org/browse/SPRNET-133#action_19743
http://jira.springframework.org/browse/SPRNET-133#action_19743

The IoC container

Spring Framework (Version 1.3.2) 73

5.10.1. IObjectFactory or IApplicationContext?

Short version: use an IApplicationContext unless you have a really good reason for not doing so. For those of

you that are looking for slightly more depth as to the 'but why' of the above recommendation, keep reading.

As the IApplicationContext includes all the functionality the object factory via its inheritance of the

IObjectFactory interface, it is generally recommended to be used over the IObjectFactory except for a few

limited situations where memory consumption might be critical. This may become more important if the .NET

Compact Framework is supported. The history of IObjectFactory comes from the Spring Java framework, where

the use of Spring in Applets was a concern to reduce memory consumption. However, for most 'typical' enterprise

applications and systems, the IApplicationContext is what you will want to use. Spring generally makes heavy

use of the IObjectPostProcessor extension point (to effect proxying and suchlike), and if you are using just a

plain IObjectFactory then a fair amount of support such as transactions and AOP will not take effect (at least

not without some extra steps on your part), which could be confusing because nothing will actually be wrong

with the configuration.

Find below a feature matrix that lists what features are provided by the IObjectFactory and

IApplicationContext interfaces (and attendant implementations). The following sections describe functionality

that IApplicationContext adds to the basic IObjectFactory capabilities in a lot more depth than the said feature

matrix.)

Table 5.7. Feature Matrix

Feature IObjectFactory IApplicationContext

Object instantiation/wiring Yes Yes

Automatic IObjectPostProcessor

registration

No Yes

Automatic

IObjectFactoryPostProcessor

registration

No Yes

Convenient IMessageSource

access

No Yes

ApplicationEvent publication No Yes

Singleton service locator style

access

No Yes

Declarative registration of custom

resource protocol handler, XML

Parsers for object definitions, and

type aliases

No Yes

5.11. Configuration of IApplicationContext

Well known locations in the .NET application configuration file are used to register resource handlers, custom

parsers, type alias, and custom type converts in addition to the context and objects sections mentioned previously.

A sample .NET application configuration file showing all these features is shown below. Each section requires

The IoC container

Spring Framework (Version 1.3.2) 74

the use of a custom configuration section handler. Note that the types shown for resource handlers and parsers

are fictional.

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.ContextHandler, Spring.Core"/>

 <section name="objects" type="Spring.Context.Support.DefaultSectionHandler, Spring.Core" />

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core"/>

 <section name="resourceHandlers" type="Spring.Context.Support.ResourceHandlersSectionHandler,

 Spring.Core"/>

 <section name="typeAliases" type="Spring.Context.Support.TypeAliasesSectionHandler, Spring.Core"/>

 <section name="typeConverters" type="Spring.Context.Support.TypeConvertersSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <parsers>

 <parser type="Spring.Aop.Config.AopNamespaceParser, Spring.Aop" />

 <parser type="Spring.Data.Config.DatabaseNamespaceParser, Spring.Data" />

 </parsers>

 <resourceHandlers>

 <handler protocol="db" type="MyCompany.MyApp.Resources.MyDbResource"/>

 </resourceHandlers>

 <context caseSensitive="false">

 <resource uri="config://spring/objects"/>

 <resource uri="db://user:pass@dbName/MyDefinitionsTable"/>

 </context>

 <typeAliases>

 <alias name="WebServiceExporter" type="Spring.Web.Services.WebServiceExporter, Spring.Web"/>

 <alias name="DefaultPointcutAdvisor" type="Spring.Aop.Support.DefaultPointcutAdvisor, Spring.Aop"/>

 <alias name="AttributePointcut" type="Spring.Aop.Support.AttributeMatchMethodPointcut, Spring.Aop"/>

 <alias name="CacheAttribute" type="Spring.Attributes.CacheAttribute, Spring.Core"/>

 <alias name="MyType" type="MyCompany.MyProject.MyNamespace.MyType, MyAssembly"/>

 </typeAliases>

 <typeConverters>

 <converter for="Spring.Expressions.IExpression,

 Spring.Core" type="Spring.Objects.TypeConverters.ExpressionConverter, Spring.Core"/>

 <converter for="MyTypeAlias" type="MyCompany.MyProject.Converters.MyTypeConverter, MyAssembly"/>

 </typeConverters>

 <objects xmlns="http://www.springframework.net">

 ...

 </objects>

 </spring>

</configuration>

The new sections are described below. The attribute caseSensitive allows the for both IObjectFactory and

IApplicationContext implementations to not pay attention to the case of the object names. This is important in

web applications so that ASP.NET pages can be resolved in a case independent manner. The default value is true.

5.11.1. Registering custom parsers

Instead of using the default XML schema that is generic in nature to define an object's properties and dependencies,

you can create your own XML schema specific to an application domain. This has the benefit of being easier to

type and getting XML intellisense for the schema being used. The downside is that you need to write code that will

transform this XML into Spring object definitions. One would typically implement a custom parser by deriving

from the class ObjectsNamespaceParser and overriding the methods int ParseRootElement(XmlElement

The IoC container

Spring Framework (Version 1.3.2) 75

root, XmlResourceReader reader) and int ParseElement(XmlElement element, XmlResourceReader

reader). Registering custom parsers outside of App.config will be addressed in a future release.

To register a custom parser register a section handler of the type

Spring.Context.Support.NamespaceParsersSectionHandler in the configSecitons section of App.config. The

parser configuration section contains one or more <parser> elements each with a type attribute. Below is an

example that registers all the namespaces provided in Spring.

Note

As of Spring.NET 1.2.0 it is no longer necessary to explicitly configure the namespace parsers

that come with Spring via a custom section in App.config. You will still need to register custom

namespace parsers if you are writing your own.

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <!-- other configuration section handler defined here -->

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <parsers>

 <parser type="Spring.Aop.Config.AopNamespaceParser, Spring.Aop" />

 <parser type="Spring.Data.Config.DatabaseNamespaceParser, Spring.Data" />

 <parser type="Spring.Transaction.Config.TxNamespaceParser, Spring.Data" />

 <parser type="Spring.Validation.Config.ValidationNamespaceParser, Spring.Core" />

 <parser type="Spring.Remoting.Config.RemotingNamespaceParser, Spring.Services" />

 </parsers>

 </spring>

</configuration>

You can also register custom parser programmatically using the NamespaceParserRegistry. Here is an example

taken from the code used in the Transactions Quickstart application.

NamespaceParserRegistry.RegisterParser(typeof(DatabaseNamespaceParser));

NamespaceParserRegistry.RegisterParser(typeof(TxNamespaceParser));

NamespaceParserRegistry.RegisterParser(typeof(AopNamespaceParser));

IApplicationContext context =

 new XmlApplicationContext("assembly://Spring.TxQuickStart.Tests/Spring.TxQuickStart/system-test-local-

config.xml");

5.11.2. Registering custom resource handlers

Creating a custom resource handler means implementing the IResource interface. The base class

AbstractResource is a useful starting point. Look at the Spring source for classes such as FileSystemResource

or AssemblyResource for implementation tips. You can register your custom resource handler either within

App.config, as shown in the program listing at the start of this section using a .ResourceHandlersSectionHandler

or define an object of the type Spring.Objects.Factory.Config.ResourceHandlerConfigurer as you would

any other Spring managed object. An example of the latter is shown below:

<object id="myResourceHandlers" type="Spring.Objects.Factory.Config.ResourceHandlerConfigurer, Spring.Core">

 <property name="ResourceHandlers">

 <dictionary>

 <entry key="db" value="MyCompany.MyApp.Resources.MyDbResource, MyAssembly"/>

 </dictionary>

 </property>

</object>

The IoC container

Spring Framework (Version 1.3.2) 76

5.11.3. Registering Type Aliases

Type aliases allow you to simplify Spring configuration file by replacing fully qualified type name with an alias

for frequently used types. Aliases can be registered both within a config file and programatically and can be used

anywhere in the context config file where a fully qualified type name is expected. Type aliases can also be defined

for generic types.

One way to configure a type alias is to define them in a custom config section in the Web/App.config file for your

application, as well as the custom configuration section handler. See the previous XML configuration listing for

an example that makes an alias for the WebServiceExporter type. Once you have aliases defined, you can simply

use them anywhere where you would normally specify a fully qualified type name:

<object id="MyWebService" type="WebServiceExporter">

 ...

</object>

<object id="cacheAspect" type="DefaultPointcutAdvisor">

 <property name="Pointcut">

 <object type="AttributePointcut">

 <property name="Attribute" value="CacheAttribute"/>

 </object>

 </property>

 <property name="Advice" ref="aspNetCacheAdvice"/>

</object>

To register a type alias register a section handler of the type

Spring.Context.Support.TypeAliasesSectionHandler in the configSecitons section of App.config. The type

alias configuration section contains one or more <alias> elements each with a name and a type attribute. Below

is an example that registers the alias for WebServiceExporter

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <!-- other configuration section handler defined here -->

 <section name="typeAliases" type="Spring.Context.Support.TypeAliasesSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <typeAliases>

 <alias name="WebServiceExporter" type="Spring.Web.Services.WebServiceExporter, Spring.Web"/>

 </typeAliases>

 </spring>

</configuration>

For an example showing type aliases for generic types see Section 5.2.6, “Object creation of generic types”.

Another way is to define an object of the type Spring.Objects.Factory.Config.TypeAliasConfigurer within

the regular <objects> section of any standard Spring configuration file. This approach allows for more modularity

in defining type aliases, for example if you can't access App.config/Web.config. An example of registration using

a TypeAliasConfigurer is shown below

<object id="myTypeAlias" type="Spring.Objects.Factory.Config.TypeAliasConfigurer, Spring.Core">

 <property name="TypeAliases">

 <dictionary>

 <entry key="WebServiceExporter" value="Spring.Web.Services.WebServiceExporter, Spring.Web"/>

 <entry key="DefaultPointcutAdvisor" value="Spring.Aop.Support.DefaultPointcutAdvisor,

 Spring.Aop"/>

 <entry key="MyType" value="MyCompany.MyProject.MyNamespace.MyType, MyAssembly"/>

 </dictionary>

 </property>

The IoC container

Spring Framework (Version 1.3.2) 77

</object>

5.11.4. Registering Type Converters

The standard .NET mechanism for specifying a type converter is to add a TypeConverter attribute to a type

definition to specify the type of the Converter. This is the preferred way of defining type converters if you control

the source code for the type that you want to define a converter for. However, this configuration section allows

you to specify converters for the types that you don't control, and it also allows you to override some of the

standard type converters, such as the ones that are defined for some of the types in the .NET Base Class Library.

You can specify the type converters in App.config by using

Spring.Context.Support.TypeConvertersSectionHandler as shown before or define an object of the

type Spring.Objects.Factory.Config.CustomConverterConfigurer. An example of registration using a

CustomConverterConfigurer is shown below

<object id="myTypeConverters" type="Spring.Objects.Factory.Config.CustomConverterConfigurer, Spring.Core">

 <property name="CustomConverters">

 <dictionary>

 <entry key="System.Date" value="MyCompany.MyProject.MyNamespace.MyCustomDateConverter,

 MyAssembly"/>

 </dictionary>

 </property>

</object>

5.12. Added functionality of the IApplicationContext

As already stated in the previous section, the IApplicationContext has a couple of features that distinguish it

from the IObjectFactory. Let us review them one-by-one.

5.12.1. Context Hierarchies

You can structure the configuration information of application context into hierarchies that naturally reflect the

internal layering of your application. As an example, abstract object definitions may appear in a parent application

context configuration file, possibly as an embedded assembly resource so as not to invite accidental changes.

<spring>

 <context>

 <resource uri="assembly://MyAssembly/MyProject/root-objects.xml"/>

 <context name="mySubContext">

 <resource uri="file://objects.xml"/>

 </context>

 </context>

</spring>

The nesting of context elements reflects the parent-child hierarchy you are creating. The nesting can be to any

level though it is unlikely one would need a deep application hierarchy. The xml file must contain the <objects>

as the root name. Another example of a hierarchy, but using sections in the application configuration file is shown

below.

<configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.ContextHandler, Spring.Core"/>

 <section name="objects" type="Spring.Context.Support.DefaultSectionHandler, Spring.Core" />

 <sectionGroup name="child">

 <section name="objects" type="Spring.Context.Support.DefaultSectionHandler, Spring.Core" />

 </sectionGroup>

 </sectionGroup>

</configSections>

<spring>

The IoC container

Spring Framework (Version 1.3.2) 78

 <context name="ParentContext">

 <resource uri="config://spring/objects"/>

 <context name="ChildContext">

 <resource uri="config://spring/child/objects"/>

 </context>

 </context>

 <objects xmlns="http://www.springframework.net">

 ...

 </objects>

 <child>

 <objects xmlns="http://www.springframework.net">

 ...

 </objects>

 </child>

</spring>

As a reminder, the type attribute of the context tag is optional and defaults to

Spring.Context.Support.XmlApplicationContext. The name of the context can be used in conjunction with

the service locator class, ContextRegistry, discussed in Section 5.15, “Service Locator access”

5.12.2. Using IMessageSource

The IApplicationContext interface extends an interface called IMessageSource and provides localization (i18n

or internationalization) services for text messages and other resource data types such as images. This functionality

makes it easier to use .NET's localization features at an application level and also offers some performance

enhancements due to caching of retrieved resources. Together with the NestingMessageSource, capable of

hierarchical message resolving, these are the basic interfaces Spring.NET provides for localization. Let's quickly

review the methods defined there:

• string GetMessage(string name): retrieves a message from the IMessageSource and using

CurrentUICulture.

• string GetMessage(string name, CultureInfo cultureInfo): retrieves a message from the

IMessageSource using a specified culture.

• string GetMessage(string name, params object[] args): retrieves a message from the IMessageSource

using a variable list of arguments as replacement values in the message. The CurrentUICulture is used to resolve

the message.

• string GetMessage(string name, CultureInfo cultureInfo, params object[] args): retrieves a

message from the IMessageSource using a variable list of arguments as replacement values in the message.

The specified culture is used to resolve the message.

• string GetMessage(string name, string defaultMessage, CultureInfo culture, params object[]

arguments): retrieves a message from the IMessageSource using a variable list of arguments as replacement

values in the message. The specified culture is used to resolve the message. If no message can be resolved,

the default message is used.

• string GetMessage(IMessageSourceResolvable resolvable, CultureInfo culture) : all properties used

in the methods above are also wrapped in a class - the MessageSourceResolvable, which you can use in this

method.

• object GetResourceObject(string name):Get a localized resource object, i.e. Icon, Image, etc. given the

resource name. The CurrentUICulture is used to resolve the resource object.

• object GetResourceObject(string name, CultureInfo cultureInfo):Get a localized resource object, i.e.

Icon, Image, etc. given the resource name. The specified culture is used to resolve the resource object.

The IoC container

Spring Framework (Version 1.3.2) 79

• void ApplyResources(object value, string objectName, CultureInfo cultureInfo): Uses a

ComponentResourceManager to apply resources to all object properties that have a matching key name.

Resource key names are of the form objectName.propertyName

When an IApplicationContext gets loaded, it automatically searches for an IMessageSource object defined in

the context. The object has to have the name messageSource. If such an object is found, all calls to the methods

described above will be delegated to the message source that was found. If no message source was found, the

IApplicationContext checks to see if it has a parent containing a similar object, with a similar name. If so, it

uses that object as the IMessageSource. If it can't find any source for messages, an empty StaticMessageSource

will be instantiated in order to be able to accept calls to the methods defined above.

Fallback behavior

The fallback rules for localized resources seem to have a bug that is fixed by applying Service Pack 1

for .NET 1.1. This affects the use of IMessageSource.GetMessage methods that specify CultureInfo.

The core of the issue in the .NET BCL is the method ResourceManager.GetObject that accepts

CultureInfo.

Spring.NET provides two IMessageSource implementations. These are ResourceSetMessageSource and

StaticMessageSource. Both implement IHierarchicalMessageSource to resolve messages hierarchically. The

StaticMessageSource is hardly ever used but provides programmatic ways to add messages to the source. The

ResourceSetMessageSource is more interesting and an example is provided for in the distribution and discussed

more extensively in the Chapter 37, IoC Quickstarts section. The ResourceSetMessageSource is configured by

providing a list of ResourceManagers. When a message code is to be resolved, the list of ResourceManagers

is searched to resolve the code. For each ResourceManager a ResourceSet is retrieved and asked to resolve

the code. Note that this search does not replace the standard hub-and-spoke search for localized resources. The

ResourceManagers list specifies the multiple 'hubs' where the standard search starts.

<object name="messageSource" type="Spring.Context.Support.ResourceSetMessageSource, Spring.Core">

 <property name="resourceManagers">

 <list>

 <value>Spring.Examples.AppContext.MyResource, Spring.Examples.AppContext</value>

 </list>

 </property>

</object>

You can specify the arguments to construct a ResourceManager as a two part string value containing the

base name of the resource and the assembly name. This will be converted to a ResourceManager via the

ResourceManagerConverter TypeConverter. This converter can be similarly used to set a property on any object

that is of the type ResourceManager. You may also specify an instance of the ResourceManager to use via

an object reference. The convenience class Spring.Objects.Factory.Config.ResourceManagerFactoryObject

can be used to conveniently create an instance of a ResourceManager.

<object name="myResourceManager" type="Spring.Objects.Factory.Config.ResourceManagerFactoryObject,

 Spring.Core">

 <property name="baseName">

 <value>Spring.Examples.AppContext.MyResource</value>

 </property>

 <property name="assemblyName">

 <value>Spring.Examples.AppContext</value>

 </property>

</object>

In application code, a call to GetMessage will retrieve a properly localized message string based on a

code value. Any arguments present in the retrieved string are replaced using String.Format semantics. The

ResourceManagers, ResourceSets and retrieved strings are cached to provide quicker lookup performance. The

The IoC container

Spring Framework (Version 1.3.2) 80

key 'HelloMessage' is contained in the resource file with a value of Hello {0} {1}. The following call on the

application context will return the string Hello Mr. Anderson. Note that the caching of ResourceSets is via the

concatenation of the ResourceManager base name and the CultureInfo string. This combination must be unique.

string msg = ctx.GetMessage("HelloMessage",

 new object[] {"Mr.", "Anderson"},

 CultureInfo.CurrentCulture);

It is possible to chain the resolution of messages by passing arguments that are themselves messages to be resolved

giving you greater flexibility in how you can structure your message resolution. This is achieved by passing

as an argument a class that implements IMessageResolvable instead of a string literal. The convenience class

DefaultMessageResolvable is available for this purpose. As an example if the resource file contains a key name

error.required that has the value '{0} is required {1}' and another key name field.firstname with the

value 'First name'. The following code will create the string 'First name is required dude!'

string[] codes = {"field.firstname"};

DefaultMessageResolvable dmr = new DefaultMessageResolvable(codes, null);

ctx.GetMessage("error.required",

 new object[] { dmr, "dude!" },

 CultureInfo.CurrentCulture));

The examples directory in the distribution contains an example program, Spring.Examples.AppContext, that

demonstrates usage of these features.

The IMessageSourceAware interface can also be used to acquire a reference to any IMessageSource that has

been defined. Any object that is defined in an IApplicationContext that implements the IMessageSourceAware

interface will be injected with the application context's IMessageSource when it (the object) is being created and

configured.

5.12.3. Using resources within Spring.NET

A lot of applications need to access resources. Resources here, might mean files, but also news feeds from the

Internet or normal web pages. Spring.NET provides a clean and transparent way of accessing resources in a

protocol independent way. The IApplicationContext has a method (GetResource(string)) to take care of this.

Refer to Section 7.1, “Introduction” for more information on the string format to use and the IResource abstraction

in general.

5.12.4. Loosely coupled events

The Eventing Registry allows developers to utilize a loosely coupled event wiring mechanism. By decoupling the

event publication and the event subscription, most of the mundane event wiring is handled by the IoC container.

Event publishers can publish their event to a central registry, either all of their events or a subset based on criteria

such as delegate type, name, return value, etc... Event subscribers can choose to subscribe to any number of

published events. Subscribers can subscriber to events based on the type of object exposing them, allowing one

subscriber to handle all events of a certain type without regards to how many different instances of that type are

created.

The Spring.Objects.Events.IEventRegistry interface represents the central registry and defines publish and

subscribe methods.

• void PublishEvents(object sourceObject): publishes all events of the source object to subscribers that

implement the correct handler methods.

• void Subscribe(object subscriber): The subscriber receives all events from the source object for which

it has matching handler methods.

The IoC container

Spring Framework (Version 1.3.2) 81

• void Subscribe(object subscriber, Type targetSourceType): The subscriber receives all events from

a source object of a particular type for which it has matching handler methods.

• void Unsubscribe(object subscriber): Unsubscribe all events from the source object for which it has

matching handler methods.

• void Unsubscribe(object subscriber, Type targetSourceType): Unsubscribe all events from a source

object of a particular type for which it has matching handler methods.

IApplicationContext implements this interface and delegates the implementation to an instance of

Spring.Objects.Events.Support.EventRegistry. You are free to create and use as many EventRegistries as

you like but since it is common to use only one in an application, IApplicationContext provides convenient

access to a single instance.

Within the example/Spring/Spring.Examples.EventRegistry directory you will find an example on how to use

this functionality. When you open up the project, the most interesting file is the EventRegistryApp.cs file. This

application loads a set of object definitions from the application configuration file into an IApplicationContext

instance. From there, three objects are loaded up: one publisher and two subscribers. The publisher publishes its

events to the IApplicationContext instance:

// Create the Application context using configuration file

IApplicationContext ctx = ContextRegistry.GetContext();

// Gets the publisher from the application context

MyEventPublisher publisher = (MyEventPublisher)ctx.GetObject("MyEventPublisher");

// Publishes events to the context.

ctx.PublishEvents(publisher);

One of the two subscribers subscribes to all events published to the IApplicationContext instance, using the

publisher type as the filter criteria.

// Gets first instance of subscriber

MyEventSubscriber subscriber = (MyEventSubscriber)ctx.GetObject("MyEventSubscriber");

// Gets second instance of subscriber

MyEventSubscriber subscriber2 = (MyEventSubscriber)ctx.GetObject("MyEventSubscriber");

// Subscribes the first instance to the any events published by the type MyEventPublisher

ctx.Subscribe(subscriber, typeof(MyEventPublisher));

This will wire the first subscriber to the original event publisher. Anytime the event publisher fires an event,

(publisher.ClientMethodThatTriggersEvent1();) the first subscriber will handle the event, but the second

subscriber will not. This allows for selective subscription, regardless of the original prototype definition.

5.12.5. Event notification from IApplicationContext

Event handling in the IApplicationContext is provided through the IApplicationEventListener interface

that contains the single method void HandleApplicationEvent(object source, ApplicationEventArgs

applicationEventArgs). Classes that implement the IApplicationEventListener interface are automatically

registered as a listener with the IApplicationContext. Publishing an event is done via the context's

PublishEvent(ApplicationEventArgs eventArgs) method. This implementation is based on the traditional

Observer design pattern.

The event argument type, ApplicationEventArgs, adds the time of the event firing as a property. The derived

class ContextEventArgs is used to notify observers on the lifecycle events of the application context. It

contains a property ContextEvent Event that returns the enumeration Refreshed or Closed.. The Refreshed

enumeration value indicated that the IApplicationContext was either initialized or refreshed. Initialized here

means that all objects are loaded, singletons are pre-instantiated and the IApplicationContext is ready for

The IoC container

Spring Framework (Version 1.3.2) 82

use. The Closed is published when the IApplicationContext is closed using the Dispose() method on the

IConfigurableApplicationContext interface. Closed here means that singletons are destroyed.

Implementing custom events can be done as well. Simply call the PublishEvent method on the

IApplicationContext, specifying a parameter which is an instance of your custom event argument subclass.

Let's have a look at an example. First, the IApplicationContext:

<object id="emailer" type="Example.EmailObject">

 <property name="blackList">

 <list>

 <value>black@list.org</value>

 <value>white@list.org</value>

 <value>john@doe.org</value>

 </list>

 </property>

</object>

<object id="blackListListener" type="Example.BlackListNotifier">

 <property name="notificationAddress">

 <value>spam@list.org</value>

 </property>

</object>

and then, the actual objects:

public class EmailObject : IApplicationContextAware {

 // the blacklist

 private IList blackList;

 public IList BlackList

 {

 set { this.blackList = value; }

 }

 public IApplicationContext ApplicationContext

 {

 set { this.ctx = value; }

 }

 public void SendEmail(string address, string text) {

 if (blackList.contains(address))

 {

 BlackListEvent evt = new BlackListEvent(address, text);

 ctx.publishEvent(evt);

 return;

 }

 // send email...

 }

}

public class BlackListNotifier : IApplicationEventListener

{

 // notification address

 private string notificationAddress;

 public string NotificationAddress

 {

 set { this.notificationAddress = value; }

 }

 public void HandleApplicationEvent(ApplicationEvent evt)

 {

 if (evt instanceof BlackListEvent)

 {

 // notify appropriate person

 }

 }

}

The IoC container

Spring Framework (Version 1.3.2) 83

5.13. Customized behavior in the ApplicationContext

The IObjectFactory already offers a number of mechanisms to control the lifecycle of objects deployed in

it (such as marker interfaces like IInitializingObject and System.IDisposable, their configuration only

equivalents such as init-method and destroy-method) attributes in an XmlObjectFactory configuration, and

object post-processors. In an IApplicationContext, all of these still work, but additional mechanisms are added

for customizing behavior of objects and the container.

5.13.1. The IApplicationContextAware marker interface

All marker interfaces available with ObjectFactories still work. The IApplicationContext does add one extra

marker interface which objects may implement, IApplicationContextAware. An object which implements this

interface and is deployed into the context will be called back on creation of the object, using the interface's

ApplicationContext property, and provided with a reference to the context, which may be stored for later

interaction with the context.

5.13.2. The IObjectPostProcessor

Object post-processors are classes which implement the

Spring.Objects.Factory.Config.IObjectPostProcessor interface, have already been mentioned. It is worth

mentioning again here though, that post-processors are much more convenient to use in IApplicationContexts

than in plain IObjectFactory instances. In an IApplicationContext, any deployed object which implements

the above marker interface is automatically detected and registered as an object post-processor, to be called

appropriately at creation time for each object in the factory.

5.13.3. The IObjectFactoryPostProcessor

Object factory post-processors are classes which implement the

Spring.Objects.Factory.Config.IObjectFactoryPostProcessor interface, have already been mentioned. It

is worth mentioning again here though, that object factory post-processors are much more convenient to use in

IApplicationContexts. In an IApplicationContext, any deployed object which implements the above marker

interface is automatically detected as an object factory post-processor, to be called at the appropriate time.

5.13.4. The PropertyPlaceholderConfigurer

The PropertyPlaceholderConfigurer has already been described in the context of its use within an

IObjectFactory. It is worth mentioning here though, that it is generally more convenient to use it with

an IApplicationContext, since the context will automatically recognize and apply any object factory post-

processors, such as this one, when they are simply deployed into it like any other object. There is no need for

a manual step to execute it.

5.14. Configuration of ApplicationContext without using XML

The class GenericApplicationContext can be used as a basis for creating an IApplicationContext implementation

that read the container metadata from sources other than XML. This could be by scanning objects in a .DLL

for known attributes or a scripting language that leverages a DSL to create terse IObjectDefinitions. There is a

class, Spring.Objects.Factory.Support.ObjectDefinitionBuilder offers some convenience methods for creating an

IObjectDefinition in a less verbose manner than using the RootObjectDefinition API. The following shows how

to configure the GenericApplicationContext to read from XML, just so show familiar API usage

The IoC container

Spring Framework (Version 1.3.2) 84

GenericApplicationContext ctx = new GenericApplicationContext();

XmlObjectDefinitionReader reader = new XmlObjectDefinitionReader(ctx);

reader.LoadObjectDefinitions("assembly://Spring.Core.Tests/Spring.Context.Support/contextB.xml");

reader.LoadObjectDefinitions("assembly://Spring.Core.Tests/Spring.Context.Support/contextC.xml");

reader.LoadObjectDefinitions("assembly://Spring.Core.Tests/Spring.Context.Support/contextA.xml");

ctx.Refresh();

The implementation of IObjectDefinitionReader is responsible for creating the configuration metadata, i.e.,

implementations of RootObjectDefinition, etc. Note a web version of this application class has not yet been

implemented.

An example, with a yet to be created DLL scanner, that would get configuration metadata from the .dll named

MyAssembly.dll located in the runtime path, would look something like this

GenericApplicationContext ctx = new GenericApplicationContext();

ObjectDefinitionScanner scanner = new ObjectDefinitionScanner(ctx);

scanner.scan("MyAssembly.dll");

ctx.refresh();

Refer to the Spring API documentation for more information.

5.15. Service Locator access

The majority of the code inside an application is best written in a Dependency Injection (Inversion of Control)

style, where that code is served out of an IObjectFactory or IApplicationContext container, has its own

dependencies supplied by the container when it is created, and is completely unaware of the container.

However, there is sometimes a need for singleton (or quasi-singleton) style access to an IObjectFactory or

IApplicationContext. For example, third party code may try to construct a new object directly without the ability

to force it to get these objects out of the IObjectFactory. Similarly, nested user control components in a WinForms

application are created inside the generated code in InitializeComponent. If this user control would like to obtain

references to objects contained in the container it can use the service locator style approach and 'reach out' from

inside the code to obtain the object it requires. (Note support for DI in WinForms is under development.)

The Spring.Context.Support.ContextRegistry class allows you to obtain a reference to an

IApplicationContext via a static locator method. The ContextRegistry is initialized when creating

an IApplicationContext through use of the ContextHandler discussed previously. The simple static

method GetContext() can then be used to retrieve the context. Alternatively, if you create an

IApplicationContext though other means you can register it with the ContextRegistry via the method void

RegisterContext(IApplicationContext context) in the start-up code of your application. Hierarchical context

retrieval is also supported though the use of the GetContext(string name) method, for example:

IApplicationContex ctx = ContextRegistry.GetContext("mySubContext");

This would retrieve the nested context for the context configuration shown previously.

<spring>

 <context>

 <resource uri="assembly://MyAssembly/MyProject/root-objects.xml"/>

 <context name="mySubContext">

 <resource uri="file://objects.xml"/>

 </context>

 </context>

</spring>

Do not call ContextRegistry.GetContext within a constructor as it will result in and endless recursion. (This is

scheduled to be fixed in 1.1.1) In this case it is quite likely you can use the IApplicationContextAware interface

and then retrieve other objects in a service locator style inside an initialization method.

The IoC container

Spring Framework (Version 1.3.2) 85

The ContextRegistry.Clear() method will remove all contexts. On .NET 2.0, this will also call the

ConfigurationManager's RefreshSection method so that the Spring context configuration section will be reread

from disk when it is retrieved again. Note that in a web application RefeshSection will not work as advertised

and you will need to touch the web.config files to reload a configuration.

5.16. Stereotype attributes

Beginning with Spring 1.2, the [Repository] attribute was introduced as a marker for any class that fulfills the role

or stereotype of a repository (a.k.a. Data Access Object or DAO). Among the possibilities for leveraging such a

marker is the automatic translation of exceptions as described in Exception Translation.

Spring 1.2 introduces further stereotype annotations: [Component] and [Service]. [Component] serves as a generic

stereotype for any Spring-managed component; whereas, [Repository] and [Service] serve as specializations of

[Component] for more specific use cases (e.g., in the persistence and service layers, respectively). The ASP.NET

MVC [Controller] attribute will serve this purpose for the controller layer. What this means is that you can

annotate your component classes with [Component], but by annotating them with [Repository] or [Service] your

classes are more properly suited for processing by tools or associating with aspects. For example, these stereotype

annotations make ideal targets for pointcuts. Of course, it is also possible that [Repository] and [Service] may

carry additional semantics in future releases of the Spring Framework. Thus, if you are making a decision between

using [Component] or [Service] for your service layer, [Service] is clearly the better choice. Similarly, as stated

above, [Repository] is already supported as a marker for automatic exception translation in your persistence layer.

The next version of Spring will use the [Component] attribute to perform attribute based autowiring by-type as

in the Spring Java Framework.

Spring Framework (Version 1.3.2) 86

Chapter 6. The IObjectWrapper and Type
conversion

6.1. Introduction

The concepts encapsulated by the IObjectWrapper interface are fundamental to the workings of the core

Spring.NET libraries The typical application developer most probably will not ever have the need to use the

IObjectWrapper directly... because this is reference documentation however, we felt that some explanation of

this core interface might be right. The IObjectWrapper is explained in this chapter since if you were going to

use it at all, you would probably do that when trying to bind data to objects, which, nicely enough, is precisely

the area that the IObjectWrapper addresses.

6.2. Manipulating objects using the IObjectWrapper

One quite important concept of the Spring.Objects namespace is encapsulated in the definition IObjectWrapper

interface and its corresponding implementation, the ObjectWrapper class. The functionality offered by the

IObjectWrapper includes methods to set and get property values (either individually or in bulk), get property

descriptors (instances of the System.Reflection.PropertyInfo class), and to query the readability and

writability of properties. The IObjectWrapper also offers support for nested properties, enabling the setting of

properties on subproperties to an unlimited depth. The IObjectWrapper usually isn't used by application code

directly, but by framework classes such as the various IObjectFactory implementations.

The way the IObjectWrapper works is partly indicated by its name: it wraps an object to perform actions on a

wrapped object instance... such actions would include the setting and getting of properties exposed on the wrapped

object.

Note: the concepts explained in this section are not important to you if you're not planning to work with the

IObjectWrapper directly.

6.2.1. Setting and getting basic and nested properties

Setting and getting properties is done using the SetPropertyValue() and GetPropertyValue() methods, for

which there are a couple of overloaded variants. The details of the various overloads (including return values and

method parameters) are all described in the extensive API documentation supplied as a part of the Spring.NET

distribution.

The aforementioned SetPropertyValue() and GetPropertyValue() methods have a number of conventions for

indicating the path of a property. A property path is an expression that implementations of the IObjectWrapper

interface can use to look up the properties of the wrapped object; some examples of property paths include...

Table 6.1. Examples of property paths

Path Explanation

name Indicates the name property of the wrapped object.

account.name Indicates the nested property name of the account property of the wrapped

object.

The IObjectWrapper and Type conversion

Spring Framework (Version 1.3.2) 87

Path Explanation

account[2] Indicates the third element of the account property of the wrapped

object. Indexed properties are typically collections such as lists and

dictionaries, but can be any class that exposes an indexer.

Below you'll find some examples of working with the IObjectWrapper to get and set properties. Consider the

following two classes:

[C#]

public class Company

 {

 private string name;

 private Employee managingDirector;

 public string Name

 {

 get { return this.name; }

 set { this.name = value; }

 }

 public Employee ManagingDirector

 {

 get { return this.managingDirector; }

 set { this.managingDirector = value; }

 }

}

[C#]

public class Employee

{

 private string name;

 private float salary;

 public string Name

 {

 get { return this.name; }

 set { this.name = value; }

 }

 public float Salary

 {

 get { return salary; }

 set { this.salary = value; }

 }

}

The following code snippets show some examples of how to retrieve and manipulate some of the properties of

IObjectWrapper-wrapped Company and Employee instances.

[C#]

Company c = new Company();

IObjectWrapper owComp = new ObjectWrapper(c);

// setting the company name...

owComp.SetPropertyValue("name", "Salina Inc.");

// can also be done like this...

PropertyValue v = new PropertyValue("name", "Salina Inc.");

owComp.SetPropertyValue(v);

// ok, let's create the director and bind it to the company...

Employee don = new Employee();

IObjectWrapper owDon = new ObjectWrapper(don);

owDon.SetPropertyValue("name", "Don Fabrizio");

owComp.SetPropertyValue("managingDirector", don);

// retrieving the salary of the ManagingDirector through the company

float salary = (float)owComp.GetPropertyValue("managingDirector.salary");

The IObjectWrapper and Type conversion

Spring Framework (Version 1.3.2) 88

Note that since the various Spring.NET libraries are compliant with the Common Language Specification (CLS),

the resolution of arbitrary strings to properties, events, classes and such is performed in a case-insensitive fashion.

The previous examples were all written in the C# language, which is a case-sensitive language, and yet the Name

property of the Employee class was set using the all-lowercase 'name' string identifier. The following example

(using the classes defined previously) should serve to illustrate this...

[C#]

// ok, let's create the director and bind it to the company...

Employee don = new Employee();

IObjectWrapper owDon = new ObjectWrapper(don);

owDon.SetPropertyValue("naMe", "Don Fabrizio");

owDon.GetPropertyValue("nAmE"); // gets "Don Fabrizio"

IObjectWrapper owComp = new ObjectWrapper(new Company());

owComp.SetPropertyValue("ManaGINGdirecToR", don);

owComp.SetPropertyValue("mANaGiNgdirector.salARY", 80000);

Console.WriteLine(don.Salary); // puts 80000

The case-insensitivity of the various Spring.NET libraries (dictated by the CLS) is not usually an issue... if you

happen to have a class that has a number of properties, events, or methods that differ only by their case, then you

might want to consider refactoring your code, since this is generally regarded as poor programming practice.

6.2.2. Other features worth mentioning

In addition to the features described in the preceding sections there a number of features that might be interesting

to you, though not worth an entire section.

• determining readability and writability: using the IsReadable() and IsWritable() methods, you can

determine whether or not a property is readable or writable.

• retrieving PropertyInfo instances: using GetPropertyInfo(string) and GetPropertyInfos() you can

retrieve instances of the System.Reflection.PropertyInfo class, that might come in handy sometimes when

you need access to the property metadata specific to the object being wrapped.

6.3. Type conversion

If you associate a TypeConverter with the definition of a custom Type using the standard .NET mechanism (see

the example code below), Spring.NET will use the associated TypeConverter to do the conversion.

[C#]

[TypeConverter (typeof (FooTypeConverter))]

public class Foo

{

}

The TypeConverter class from the System.ComponentModel namespace of the .NET BCL is used extensively by

the various classes in the Spring.Core library, as said class “... provides a unified way of converting types of

values to other types, as well as for accessing standard values and subproperties.” 1

For example, a date can be represented in a human readable format (such as 30th August 1984), while we're

still able to convert the human readable form to the original date format or (even better) to an instance of the

System.DateTime class. This behavior can be achieved by using the standard .NET idiom of decorating a class

with the TypeConverterAttribute. Spring.NET also offers another means of associating a TypeConverters with

a class. You might want to do this to achieve a conversion that is not possible using standard idiom... for example,

1More information about creating custom TypeConverter implementations can be found online at Microsoft's MSDN website, by searching

for Implementing a Type Converter.

The IObjectWrapper and Type conversion

Spring Framework (Version 1.3.2) 89

the Spring.Core library contains a custom TypeConverter that converts comma-delimited strings to String array

instances. Registering custom converters on an IObjectWrapper instance gives the wrapper the knowledge of

how to convert properties to the desired Type.

An example of where property conversion is used in Spring.NET is the setting of properties on objects,

accomplished using the aforementioned TypeConverters. When mentioning System.String as the value of a

property of some object (declared in an XML file for instance), Spring.NET will (if the type of the associated

property is System.Type) use the RuntimeTypeConverter class to try to resolve the property value to a Type

object. The example below demonstrates this automatic conversion of the Example.Xml.SAXParser (a string) into

the corresponding Type instance for use in this factory-style class.

<objects xmlns="http://www.springframework.net">

<object id="parserFactory" type="Example.XmlParserFactory, ExamplesLibrary"

destroy-method="Close">

 <property name="ParserClass" value="Example.Xml.SAXParser, ExamplesLibrary"/>

</object>

</objects>

[C#]

public class XmlParserFactory

{

 private Type parserClass;

 public Type ParserClass

 {

 get { return this.parserClass; }

 set { this.parserClass = value; }

 }

 public XmlParser GetParser ()

 {

 return Activator.CreateInstance (ParserClass);

 }

}

6.3.1. Type Conversion for Enumerations

The default type converter for enumerations is the System.ComponentModel.EnumConverter class. To specify

the value for an enumerated property, simply use the name of the property. For example the TestObject class

has a property of the enumerated type FileMode. One of the values for this enumeration is named Create. The

following XML fragment shows how to configure this property

<object id="rod" type="Spring.Objects.TestObject, Spring.Core.Tests">

 <property name="name" value="Rod"/>

 <property name="FileMode" value="Create"/>

</object>

6.4. Built-in TypeConverters

Spring.NET has a number of built-in TypeConverters to make life easy. Each of those is listed below and they

are all located in the Spring.Objects.TypeConverters namespace of the Spring.Core library.

Table 6.2. Built-in TypeConverters

Type Explanation

RuntimeTypeConverter Parses strings representing System.Types to actual System.Types

and the other way around.

FileInfoConverter Capable of resolving strings to a System.IO.FileInfo object.

The IObjectWrapper and Type conversion

Spring Framework (Version 1.3.2) 90

Type Explanation

StringArrayConverter Capable of resolving a comma-delimited list of strings to a string-

array and vice versa.

UriConverter Capable of resolving a string representation of a URI to an actual

Uri-object.

FileInfoConverter Capable of resolving a string representation of a FileInfo to an actual

FileInfo-object.

StreamConverter Capable of resolving Spring IResource URI (string) to its

corresponding InputStream-object.

ResourceConverter Capable of resolving Spring IResource URI (string) to an IResource

object.

ResourceManagerConverter Capable of resolving a two part string (resource name, assembly

name) to a System.Resources.ResourceManager object.

RgbColorConverter Capable of resolving a comma separated list of Red, Green, Blue

integer values to a System.Drawing.Color structure.

RegexConverter Converts string representation of regular expression into an instance

of System.Text.RegularExpressions.Regex

Spring.NET uses the standard .NET mechanisms for the resolution of System.Types, including, but not limited to

checking any configuration files associated with your application, checking the Global Assembly Cache (GAC),

and assembly probing.

6.4.1. Custom type converters

You can register a custom type converter either Programatically using the class TypeConverterRegistry or through

configuration of Spring's container and described in the section Registering Type Converters.

Spring Framework (Version 1.3.2) 91

Chapter 7. Resources

7.1. Introduction

The IResource interface contained in the Spring.Core.IO namespace provides a common interface to describe

and access data from diverse resource locations. This abstraction lets you treat the InputStream from a file

and from a URL in a polymorphic and protocol-independent manner... the .NET BCL does not provide such

an abstraction. The IResource interface inherits from IInputStream that provides a single property Stream

InputStream. The IResource interface adds descriptive information about the resource via a number of additional

properties. Several implementations for common resource locations, i.e. file, assembly, uri, are provided and you

may also register custom IResource implementations.

7.2. The IResource interface

The IResource interface is shown below

public interface IResource : IInputStreamSource

{

 bool IsOpen { get; }

 Uri Uri { get; }

 FileInfo File { get; }

 string Description { get; }

 bool Exists { get; }

 IResource CreateRelative(string relativePath);

}

Table 7.1. IResource Properties

Property Explanation

InputStream Inherited from IInputStream. Opens and returns a System.IO.Stream. It is

expected that each invocation returns a fresh Stream. It is the responsibility of

the caller to close the stream.

Exists returns a boolean indicating whether this resource actually exists in physical

form.

IsOpen returns a boolean indicating whether this resource represents a handle with an

open stream. If true, the InputStream cannot be read multiple times, and must

be read once only and then closed to avoid resource leaks. Will be false for all

usual resource implementations, with the exception of InputStreamResource.

Description Returns a description of the resource, such as the fully qualified file name or

the actual URL.

Uri The Uri representation of the resource.

File Returns a System.IO.FileInfo for this resource if it can be resolved to an

absolute file path.

and the methods

Resources

Spring Framework (Version 1.3.2) 92

Table 7.2. IResource Methods

Method Explanation

IResource CreateRelative

(string relativePath)

Creates a resource relative to this resource using relative path like notation (./

and ../).

You can obtain an actual URL or File object representing the resource if the underlying implementation is

compatible and supports that functionality.

The Resource abstraction is used extensively in Spring itself, as an argument type in many method signatures

when a resource is needed. Other methods in some Spring APIs (such as the constructors to various

IApplicationContext implementations), take a String which is used to create a Resource appropriate to that

context implementation

While the Resource interface is used a lot with Spring and by Spring, it's actually very useful to use as a general

utility class by itself in your own code, for access to resources, even when your code doesn't know or care about

any other parts of Spring. While this couples your code to Spring, it really only couples it to this small set of

utility classes and can be considered equivalent to any other library you would use for this purpose

7.3. Built-in IResource implementations

The resource implementations provided are

• AssemblyResource accesses data stored as .NET resources inside an assembly. Uri syntax is assembly://

<AssemblyName>/<NameSpace>/<ResourceName>

• ConfigSectionResource accesses Spring.NET configuration data stored in a custom configuration section in

the .NET application configuration file (i.e. App.config). Uri syntax is config://<path to section>

• FileSystemResource accesses file system data. Uri syntax is file://<filename>

• InputStreamResource a wrapper around a raw System.IO.Stream . Uri syntax is not supported.

• UriResource accesses data from the standard System.Uri protocols such as http and https. In .NET 2.0 you can

use this also for the ftp protocol. Standard Uri syntax is supported.

Refer to the MSDN documentation for more information on supported Uri scheme types.

7.3.1. Registering custom IResource implementations

The configuration section handler, ResourceHandlersSectionHandler, is used to register any custom

IResource implementations you have created. In the configuration section you list the type of

IResource implementation and the protocol prefix. Your custom IResource implementation must provide

a constructor that takes a string as it's sole argument that represents the URI string. Refer to the

SDK documentation for ResourceHandlersSectionHandler for more information. An example of the

ResourceHandlersSectionHandler is shown below for a fictional IResource implementation that interfaces with

a database.

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name='context' type='Spring.Context.Support.ContextHandler, Spring.Core'/>

 <section name="resourceHandlers"

 type="Spring.Context.Support.ResourceHandlersSectionHandler, Spring.Core"/>

 </sectionGroup>

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemurimemberstopic.asp

Resources

Spring Framework (Version 1.3.2) 93

 </configSections>

 <spring>

 <resourceHandlers>

 <handler protocol="db" type="MyCompany.MyApp.Resources.MyDbResource, MyAssembly"/>

 </resourceHandlers>

 <context>

 <resource uri="db://user:pass@dbName/MyDefinitionsTable"/>

 </context>

 </spring>

</configuration>

7.4. The IResourceLoader

To load resources given their Uri syntax, an implementation of the IResourceLoader is used. The default

implementation is ConfigurableResourceLoader. Typically you will not need to access this class directly since

the IApplicationContext implements the IResourceLoader interface that contains the single method IResource

GetResource(string location). The provided implementations of IApplicationContext delegate this method

to an instance of ConfigurableResourceLoader which supports the Uri protocols/schemes listed previously. If

you do not specify a protocol then the file protocol is used. The following shows some sample usage.

IResource resource = appContext.GetResource("http://www.springframework.net/license.html");

resource = appContext.GetResource("assembly://Spring.Core.Tests/Spring/TestResource.txt");

resource = appContext.GetResource("https://sourceforge.net/");

resource = appContext.GetResource("file:///C:/WINDOWS/ODBC.INI");

StreamReader reader = new StreamReader(resource.InputStream);

Console.WriteLine(reader.ReadToEnd());

Other protocols can be registered along with a new implementations of an IResource that must correctly parse a Uri

string in its constructor. An example of this can be seen in the Spring.Web namespace that uses Server.MapPath

to resolve the filename of a resource.

The CreateRelative method allows you to easily load resources based on a relative path name. In the case of

relative assembly resources, the relative path navigates the namespace within an assembly. For example:

IResource res = new AssemblyResource("assembly://Spring.Core.Tests/Spring/TestResource.txt");

IResource res2 = res.CreateRelative("./IO/TestIOResource.txt");

This loads the resource TestResource.txt and then navigates to the Spring.Core.IO namespace and loads the

resource TestIOResource.txt

7.5. The IResourceLoaderAware interface

The IResourceLoaderAware interface is a special marker interface, identifying objects that expect to be provided

with a IResourceLoader reference.

public interface IResourceLoaderAware

{

 IResourceLoader ResourceLoader

 {

 set;

 get;

 }

}

When a class implements IResourceLoaderAware and is deployed into an application context (as a Spring-

managed object), it is recognized as IResourceLoaderAware by the application context. The application context

Resources

Spring Framework (Version 1.3.2) 94

will then invoke the ResourceLoader property, supplying itself as the argument (remember, all application

contexts in Spring implement the IResourceLoader interface).

Of course, since an IApplicationContext is a IResourceLoader, the object could also implement the

IApplicationContextAware interface and use the supplied application context directly to load resources, but in

general, it's better to use the specialized IResourceLoader interface if that's all that's needed. The code would

just be coupled to the resource loading interface, which can be considered a utility interface, and not the whole

Spring IApplicationContext interface.

7.6. Application contexts and IResource paths

An application context constructor (for a specific application context type) generally takes a string or array of

strings as the location path(s) of the resource(s) such as XML files that make up the definition of the context. For

example, you can create an XmlApplicationContext from two resources as follows:

IApplicationContext context = new XmlApplicationContext(

 "file://objects.xml", "assembly://MyAssembly/MyProject/objects-dal-layer.xml");

Spring Framework (Version 1.3.2) 95

Chapter 8. Threading and Concurrency
Support

8.1. Introduction

The purpose of the Spring.Threading namespace is to provide a place to keep useful concurrency abstractions

that augment those in the BCL. Since Doug Lea has provided a wealth of mature public domain concurrency

abstractions in his Java based 'EDU.oswego.cs.dl.util.concurrent' libraries we decided to port a few of his

abstractions to .NET. So far, we've only ported three classes, the minimum necessary to provide basic object

pooling functionality to support an AOP based pooling aspect and to provide a Semaphore class that was

mistakenly not included in .NET 1.0/1.1.

There is also an important abstraction, IThreadStorage, for performing thread local storage.

8.2. Thread Local Storage

Depending on your runtime environment there are different strategies to use for storing objects in thread

local storage. If you are in web applications a single Request may be executed on different threads.

As such, the location to store thread local objects is in HttpContext.Current. For other environments

System.Runtime.Remoting.Messaging.CallContext is used. For more background information on the

motivation behind these choices, say as compared to the attribute [ThreadStatic] refer to "Piers7"'s blog and this

forum post. The interface IThreadStorage serves as the basis for the thread local storage abstraction and various

implementations can be selected from depending on your runtime requirements. Configuring the implementation

of IThreadStorage makes it easier to have more portability across runtime environments.

The API is quite simple and shown below

public interface IThreadStorage

{

 object GetData(string name)

 void SetData(string name, object value)

 void FreeNamedDataSlot(string name)

}

The methods GetData and SetData are responsible for retrieving and setting the object that is to be bound to

thread local storage and associating it with a name. Clearing the thread local storage is done via the method

FreeNamedDataSlot.

In Spring.Core is the implementation, CallContextStorage, that directly uses CallContext and also

the implementation LogicalThreadContext which by default uses CallContextStorage but can be

configured via the static method SetStorage(IThreadStorage). The methods on CallContextStorage and

LogicalThreadContext are static.

In Spring.Web is the implementation HttpContextStorage which uses the HttpContext to store thread local data

and HybridContextStorage that uses HttpContext if within a web environment, i.e. HttpContext.Current !

= null, and CallContext otherwise.

http://piers7.blogspot.com/2005/11/threadstatic-callcontext-and_02.html
http://forum.springframework.net/showthread.php?t=572&highlight=LogicalThreadContext

Threading and Concurrency Support

Spring Framework (Version 1.3.2) 96

Spring internally uses LogicalThreadContext as this doesn't require a coupling to the System.Web namespace.

In the case of Spring based web applications, Spring's WebSupportModule sets the storage strategy of

LogicalThreadContext to be HybridContextStorage.

8.3. Synchronization Primitives

When you take a look at these synchronization classes, you'll wonder why it's even necessary when

System.Threading provides plenty of synchronization options. Although System.Threading provides great

synchronization classes, it doesn't provide well-factored abstractions and interfaces for us. Without these

abstractions, we will tend to code at a low-level. With enough experience, you'll eventually come up with some

abstractions that work well. Doug Lea has already done a lot of that research and has a class library that we can

take advantage of.

8.3.1. ISync

ISync is the central interface for all classes that control access to resources from multiple threads. It's a simple

interface which has two basic use cases. The first case is to block indefinitely until a condition is met:

void ConcurrentRun(ISync lock) {

 lock.Acquire(); // block until condition met

 try {

 // ... access shared resources

 }

 finally {

 lock.Release();

 }

}

The other case is to specify a maximum amount of time to block before the condition is met:

void ImpatientConcurrentRun(ISync lock) {

 // block for at most 10 milliseconds for condition

 if (lock.Attempt(10)) {

 try {

 // ... access shared resources

 }

 finally {

 lock.Release();

 }

 } else {

 // complain of time out

 }

}

8.3.2. SyncHolder

The SyncHolder class implements the System.IDisposable interface and so provides a way to use an ISync with

the using C# keyword: the ISync will be automatically Acquired and then Released on exiting from the block.

This should simplify the programming model for code using (!) an ISync:

ISync sync = ...

...

using (new SyncHolder(sync))

 {

 // ... code to be executed

 // holding the ISync lock

 }

There is also the timed version, a little more cumbersome as you must deal with timeouts:

Threading and Concurrency Support

Spring Framework (Version 1.3.2) 97

ISync sync = ...

long msecs = 100;

...

// try to acquire the ISync for msecs milliseconds

try

{

 using (new SyncHolder(sync, msecs))

 {

 // ... code to be executed

 // holding the ISync lock

 }

}

catch (TimeoutException)

{

 // deal with failed lock acquisition

}

8.3.3. Latch

The Latch class implements the ISync interface and provides an implementation of a latch. A latch is a boolean

condition that is set at most once, ever. Once a single release is issued, all acquires will pass. It is similar to a

ManualResetEvent initialized unsignalled (Reset) and can only be Set(). A typical use is to act as a start signal

for a group of worker threads.

class Boss {

 Latch _startPermit;

 void Worker() {

 // very slow worker initialization ...

 // ... attach to messaging system

 // ... connect to database

 _startPermit.Acquire();

 // ... use resources initialized in Mush

 // ... do real work

 }

 void Mush() {

 _startPermit = new Latch();

 for (int i=0; i<10; ++i) {

 new Thread(new ThreadStart(Worker)).Start();

 }

 // very slow main initialization ...

 // ... parse configuration

 // ... initialize other resources used by workers

 _startPermit.Release();

 }

}

8.3.4. Semaphore

The Semaphore class implements the ISync interface and provides an implementation of a semaphore.

Conceptually, a semaphore maintains a set of permits. Each Acquire() blocks if necessary until a permit is

available, and then takes it. Each Release() adds a permit. However, no actual permit objects are used; the

Semaphore just keeps a count of the number available and acts accordingly. A typical use is to control access

to a pool of shared objects.

class LimitedConcurrentUploader {

 // ensure we don't exceed maxUpload simultaneous uploads

 Semaphore _available;

 public LimitedConcurrentUploader(maxUploads) {

 _available = new Semaphore(maxUploads);

 }

 // no matter how many threads call this method no more

Threading and Concurrency Support

Spring Framework (Version 1.3.2) 98

 // than maxUploads concurrent uploads will occur.

 public Upload(IDataTransfer upload) {

 _available.Acquire();

 try {

 upload.TransferData();

 }

 finally {

 _available.Release();

 }

 }

}

Spring Framework (Version 1.3.2) 99

Chapter 9. Object Pooling

9.1. Introduction

The Spring.Pool namespace contains a generic API for implementing pools of objects. Object pooling is a well

known technique to minimize the creation of objects that can take a significant amount of time. Common examples

are to create a pool of database connections such that each request to the database can reuse an existing connection

instead of creating one per client request. Threads are also another common candidate for pooling in order to

increase responsiveness of an application to multiple concurrent client requests.

.NET contains support for object pooling in these common scenarios. Support for database connection pools is

directly supported by ADO.NET data providers as a configuration option. Similarly, thread pooling is supported

via the System.ThreadPool class. Support for pooling of other objects can be done using the CLR managed API

to COM+ found in the System.EnterpriseServices namespace.

Despite this built-in support there are scenarios where you would like to use alternative pool implementations. This

may be because the default implementations, such as System.ThreadPool, do not meet your requirements. (For

a discussion on advanced ThreadPool usage see Smart Thread Pool by Ami Bar.) Alternatively, you may want

to pool classes that do not inherit from System.EnterpriseServices.ServicedComponent. Instead of making

changes to the object model to meet this inheritance requirement, Spring .NET provides similar support for

pooling, but for any object, by using AOP proxies and a generic pool API for managing object instances.

Note, that if you are concerned only with applying pooling to an existing object, the pooling APIs discussed

here are not very important. Instead the use and configuration of Spring.Aop.Target.SimplePoolTargetSource

is more relevant. Pooling of objects can either be done Programatically or through the XML configuration of

the Spring .NET container. Attribute support for pooling, similar to the ServicedComponent approach, will be

available in a future release of Spring.NET.

Chapter 37, IoC Quickstarts contains an example that shows the use of the pooling API independent of AOP

functionality.

9.2. Interfaces and Implementations

The Spring.Pool namespace provides two simple interfaces to manage pools of objects. The first

interface, IObjectPool describes how to take and put back an object from the pool. The second interface

IPoolableObjectFactory is meant to be used in conjunction with implementations of the IObjectPool to provide

guidance in calling various lifecycle events on the objects managed by the pool. These interfaces are based on the

Jakarta Commons Pool API. Spring.Pool.Support.SimplePool is a default implementation of IObjectPool and

Spring.Aop.Target.SimplePoolTargetSource is the implementation of IPoolableObjectFactory for use with

AOP. The current goal of the Spring.Pool namespace is not to provide a one-for-one replacement of the Jakarta

Commons Pool API, but rather to support basic object pooling needs for common AOP scenarios. Consequently,

other interfaces and base classes available in the Jakarta package are not available.

http://www.codeproject.com/KB/threads/smartthreadpool.aspx

Spring Framework (Version 1.3.2) 100

Chapter 10. Spring.NET miscellanea

10.1. Introduction

This chapter contains miscellanea information on features, goodies, caveats that does not belong to any paricular

area.

10.2. PathMatcher

Spring.Util.PathMatcher provides Ant/NAnt-like path name matching features.

To do the match, you use the method:

static bool Match(string pattern, string path)

If you want to decide if case is important or not use the method:

static bool Match(string pattern, string path, bool ignoreCase)

10.2.1. General rules

To build your pattern, you use the *, ? and ** building blocks:

• *: matches any number of non slash characters;

• ?: matches exactly 1 (one) non slash/dot character;

• **: matches any subdirectory, without taking care of the depth;

10.2.2. Matching filenames

A file name can be matched using the following notation:

foo?bar.*

matches:

fooAbar.txt

foo1bar.txt

foo_bar.txt

foo-bar.txt

does not match:

foo.bar.txt

foo/bar.txt

foo\bar.txt

The classical all files pattern:

.

matches:

foo.db

.db

foo

foo.bar.db

foo.db.db

db.db.db

Spring.NET miscellanea

Spring Framework (Version 1.3.2) 101

does not match:

c:/

c:/foo.db

c:/foo

c:/.db

c:/foo.foo.db

//server/foo

10.2.3. Matching subdirectories

A directory name can be matched at any depth level using the following notation:

/db/

That pattern matches the following paths:

/db

//server/db

c:/db

c:/spring/app/db/foo.db

//Program Files/App/spaced dir/db/foo.db

/home/spring/spaced dir/db/v1/foo.db

but does not match these:

c:/spring/app/db-v1/foo.db

/home/spring/spaced dir/db-v1/foo.db

You can compose subdirectories to match like this:

/bin//tmp/**

That pattern matches the following paths:

c:/spring/foo/bin/bar/tmp/a

c:/spring/foo/bin/tmp/a/b.c

but does not match these:

c:/spring/foo/bin/bar/temp/a

c:/tmp/foo/bin/bar/a/b.c

You can use more advanced patterns:

/.spring-assemblies*/

matches:

c:/.spring-assemblies

c:/.spring-assembliesabcd73xs

c:/app/.spring-assembliesabcd73xs

c:/app/.spring-assembliesabcd73xs/foo.dll

//server/app/.spring-assembliesabcd73xs

does not match:

c:/app/.spring-assemblie

10.2.4. Case does matter, slashes don't

.NET is expected to be a cross-platform development ... platform. So, PathMatcher will match taking care of the

case of the pattern and the case of the path. For example:

Spring.NET miscellanea

Spring Framework (Version 1.3.2) 102

/db//*.DB

matches:

c:/spring/service/deploy/app/db/foo.DB

but does not match:

c:/spring/service/deploy/app/DB/foo.DB

c:spring/service/deploy/app/spaced dir/DB/foo.DB

//server/share/service/deploy/app/DB/backup/foo.db

If you do not matter about case, you should explicitly tell the Pathmatcher.

Back and forward slashes, in the very same cross-platform spirit, are not important:

spring/foo.bar

matches all the following paths:

c:\spring\foo.bar

c:/spring\foo.bar

c:/spring/foo.bar

/spring/foo.bar

\spring\foo.bar

Spring Framework (Version 1.3.2) 103

Chapter 11. Expression Evaluation

11.1. Introduction

The Spring.Expressions namespace provides a powerful expression language for querying and manipulating an

object graph at runtime. The language supports setting and getting of property values, property assignment,

method invocation, accessing the context of arrays, collections and indexers, logical and arithmetic operators,

named variables, and retrieval of objects by name from Spring's IoC container. It also supports list projection and

selection, as well as common list aggregators.

The functionality provided in this namespace serves as the foundation for a variety of other features in Spring.NET

such as enhanced property evaluation in the XML based configuration of the IoC container, a Data Validation

framework, and a Data Binding framework for ASP.NET. You will likely find other cool uses for this library in

your own work where run-time evaluation of criteria based on an object's state is required. For those with a Java

background, the Spring.Expressions namespace provides functionality similar to the Java based Object Graph

Navigation Language, OGNL.

This chapter covers the features of the expression language using an Inventor and Inventor's Society class as the

target objects for expression evaluation. The class declarations and the data used to populate them are listed at

the end of the chapter in section Section 11.4, “Classes used in the examples”. These classes are blatantly taken

from the NUnit tests for the Expressions namespace which you can refer to for additional example usage.

11.2. Evaluating Expressions

The simplest, but not the most efficient way to perform expression evaluation is by using one of the static

convenience methods of the ExpressionEvaluator class:

public static object GetValue(object root, string expression);

public static object GetValue(object root, string expression, IDictionary variables)

public static void SetValue(object root, string expression, object newValue)

public static void SetValue(object root, string expression, IDictionary variables, object newValue)

The first argument is the 'root' object that the expression string (2nd argument) will be evaluated against. The

third argument is used to support variables in the expression and will be discussed later. Simple usage to get the

value of an object property is shown below using the Inventor class. You can find the class listing in section

Section 11.4, “Classes used in the examples”.

Inventor tesla = new Inventor("Nikola Tesla", new DateTime(1856, 7, 9), "Serbian");

tesla.PlaceOfBirth.City = "Smiljan";

string evaluatedName = (string) ExpressionEvaluator.GetValue(tesla, "Name");

string evaluatedCity = (string) ExpressionEvaluator.GetValue(tesla, "PlaceOfBirth.City"));

The value of 'evaluatedName' is 'Nikola Tesla' and that of 'evaluatedCity' is 'Smiljan'. A period is used to navigate

the nested properties of the object. Similarly to set the property of an object, say we want to rewrite history and

change Tesla's city of birth, we would simply add the following line

ExpressionEvaluator.SetValue(tesla, "PlaceOfBirth.City", "Novi Sad");

http://www.ognl.org/

Expression Evaluation

Spring Framework (Version 1.3.2) 104

A much better way to evaluate expressions is to parse them once and then evaluate as many times as you want

usingExpressionclass. Unlike ExpressionEvaluator, which parses expression every time you invoke one of its

methods, Expression class will cache the parsed expression for increased performance. The methods of this class

are listed below:

public static IExpression Parse(string expression)

public override object Get(object context, IDictionary variables)

public override void Set(object context, IDictionary variables, object newValue)

The retrieval of the Name property in the previous example using the Expression class is shown below

IExpression exp = Expression.Parse("Name");

string evaluatedName = (string) exp.GetValue(tesla, null);

The difference in performance between the two approaches, when evaluating the same expression many times,

is several orders of magnitude, so you should only use convenience methods of the ExpressionEvaluator class

when you are doing one-off expression evaluations. In all other cases you should parse the expression first and

then evaluate it as many times as you need.

There are a few exception classes to be aware of when using the ExpressionEvaluator. These are

InvalidPropertyException, when you refer to a property that doesn't exist, NullValueInNestedPathException,

when a null value is encountered when traversing through the nested property list, and ArgumentException and

NotSupportedException when you pass in values that are in error in some other manner.

The expression language is based on a grammar and uses ANTLR to construct the lexer and parser. Errors relating

to bad syntax of the language will be caught at this level of the language implementation. For those interested in the

digging deeper into the implementation, the grammar file is named Expression.g and is located in the src directory

of the namespace. As a side note, the release version of the ANTLR DLL included with Spring.NET was signed

with the Spring.NET key, which means that you should always use the included version of antlr.runtime.dll

within your application. Upcoming releases of ANTLR will provide strongly signed assemblies, which will

remove this requirement.

11.3. Language Reference

11.3.1. Literal expressions

The types of literal expressions supported are strings, dates, numeric values (int, real, and hex), boolean and null.

String are delimited by single quotes. To put a single quote itself in a string use the backslash character. The

following listing shows simple usage of literals. Typically they would not be used in isolation like this, but as part

of a more complex expression, for example using a literal on one side of a logical comparison operator.

string helloWorld = (string) ExpressionEvaluator.GetValue(null, "'Hello World'"); // evals to "Hello World"

string tonyPizza = (string) ExpressionEvaluator.GetValue(null, "'Tony\\'s Pizza'"); // evals to "Tony's

 Pizza"

double avogadrosNumber = (double) ExpressionEvaluator.GetValue(null, "6.0221415E+23");

int maxValue = (int) ExpressionEvaluator.GetValue(null, "0x7FFFFFFF"); // evals to 2147483647

DateTime birthday = (DateTime) ExpressionEvaluator.GetValue(null, "date('1974/08/24')");

DateTime exactBirthday =

 (DateTime) ExpressionEvaluator.GetValue(null, " date('19740824T131030', 'yyyyMMddTHHmmss')");

bool trueValue = (bool) ExpressionEvaluator.GetValue(null, "true");

http://www.antlr.org/

Expression Evaluation

Spring Framework (Version 1.3.2) 105

object nullValue = ExpressionEvaluator.GetValue(null, "null");

Note that the extra backslash character in Tony's Pizza is to satisfy C# escape syntax. Numbers support

the use of the negative sign, exponential notation, and decimal points. By default real numbers are parsed

using Double.Parse unless the format character "M" or "F" is supplied, in which case Decimal.Parse and

Single.Parse would be used respectfully. As shown above, if two arguments are given to the date literal then

DateTime.ParseExact will be used. Note that all parse methods of classes that are used internally reference the

CultureInfo.InvariantCulture.

11.3.2. Properties, Arrays, Lists, Dictionaries, Indexers

As shown in the previous example in Section 11.2, “Evaluating Expressions”, navigating through properties is

easy, just use a period to indicate a nested property value. The instances of Inventor class, pupin and tesla, were

populated with data listed in section Section 11.4, “Classes used in the examples”. To navigate "down" and get

Tesla's year of birth and Pupin's city of birth the following expressions are used

int year = (int) ExpressionEvaluator.GetValue(tesla, "DOB.Year")); // 1856

string city = (string) ExpressionEvaluator.GetValue(pupin, "PlaCeOfBirTh.CiTy"); // "Idvor"

For the sharp-eyed, that isn't a typo in the property name for place of birth. The expression uses mixed cases to

demonstrate that the evaluation is case insensitive.

The contents of arrays and lists are obtained using square bracket notation.

// Inventions Array

string invention = (string) ExpressionEvaluator.GetValue(tesla, "Inventions[3]"); // "Induction motor"

// Members List

string name = (string) ExpressionEvaluator.GetValue(ieee, "Members[0].Name"); // "Nikola Tesla"

// List and Array navigation

string invention = (string) ExpressionEvaluator.GetValue(ieee, "Members[0].Inventions[6]") // "Wireless

 communication"

The contents of dictionaries are obtained by specifying the literal key value within the brackets. In this case,

because keys for the Officers dictionary are strings, we can specify string literal.

// Officer's Dictionary

Inventor pupin = (Inventor) ExpressionEvaluator.GetValue(ieee, "Officers['president']";

string city = (string) ExpressionEvaluator.GetValue(ieee, "Officers['president'].PlaceOfBirth.City"); //

 "Idvor"

ExpressionEvaluator.SetValue(ieee, "Officers['advisors'][0].PlaceOfBirth.Country", "Croatia");

You may also specify non literal values in place of the quoted literal values by using another expression inside the

square brackets such as variable names or static properties/methods on other types. These features are discussed

in other sections.

Indexers are similarly referenced using square brackets. The following is a small example that shows the use of

indexers. Multidimensional indexers are also supported.

public class Bar

{

 private int[] numbers = new int[] {1, 2, 3};

 public int this[int index]

 {

 get { return numbers[index];}

 set { numbers[index] = value; }

Expression Evaluation

Spring Framework (Version 1.3.2) 106

 }

}

Bar b = new Bar();

int val = (int) ExpressionEvaluator.GetValue(bar, "[1]") // evaluated to 2

ExpressionEvaluator.SetValue(bar, "[1]", 3); // set value to 3

11.3.2.1. Defining Arrays, Lists and Dictionaries Inline

In addition to accessing arrays, lists and dictionaries by navigating the graph for the context object, Spring.NET

Expression Language allows you to define them inline, within the expression. Inline lists are defined by simply

enclosing a comma separated list of items with curly brackets:

{1, 2, 3, 4, 5}

{'abc', 'xyz'}

If you want to ensure that a strongly typed array is initialized instead of a weakly typed list, you can use array

initializer instead:

new int[] {1, 2, 3, 4, 5}

new string[] {'abc', 'xyz'}

Dictionary definition syntax is a bit different: you need to use a # prefix to tell expression parser to expect key/

value pairs within the brackets and to specify a comma separated list of key/value pairs within the brackets:

#{'key1' : 'Value 1', 'today' : DateTime.Today}

#{1 : 'January', 2 : 'February', 3 : 'March', ...}

Arrays, lists and dictionaries created this way can be used anywhere where arrays, lists and dictionaries obtained

from the object graph can be used, which we will see later in the examples.

Keep in mind that even though examples above use literals as array/list elements and dictionary keys and values,

that's only to simplify the examples -- you can use any valid expression wherever literals are used.

11.3.3. Methods

Methods are invoked using typical C# programming syntax. You may also invoke methods on literals.

//string literal

char[] chars = (char[]) ExpressionEvaluator.GetValue(null, "'test'.ToCharArray(1, 2)")) // 't','e'

//date literal

int year = (int) ExpressionEvaluator.GetValue(null, "date('1974/08/24').AddYears(31).Year") // 2005

// object usage, calculate age of tesla navigating from the IEEE society.

ExpressionEvaluator.GetValue(ieee, "Members[0].GetAge(date('2005-01-01')") // 149 (eww..a big anniversary is

 coming up ;)

11.3.4. Operators

11.3.4.1. Relational operators

The relational operators; equal, not equal, less than, less than or equal, greater than, and greater than or equal

are supported using standard operator notation. These operators take into account if the object implements the

IComparable interface. Enumerations are also supported but you will need to register the enumeration type, as

described in Section Section 11.3.8, “Type Registration”, in order to use an enumeration value in an expression

if it is not contained in the mscorlib.

Expression Evaluation

Spring Framework (Version 1.3.2) 107

ExpressionEvaluator.GetValue(null, "2 == 2") // true

ExpressionEvaluator.GetValue(null, "date('1974-08-24') != DateTime.Today") // true

ExpressionEvaluator.GetValue(null, "2 < -5.0") // false

ExpressionEvaluator.GetValue(null, "DateTime.Today <= date('1974-08-24')") // false

ExpressionEvaluator.GetValue(null, "'Test' >= 'test'") // true

Enumerations can be evaluated as shown below

FooColor fColor = new FooColor();

ExpressionEvaluator.SetValue(fColor, "Color", KnownColor.Blue);

bool trueValue = (bool) ExpressionEvaluator.GetValue(fColor, "Color == KnownColor.Blue"); //true

Where FooColor is the following class.

public class FooColor

{

 private KnownColor knownColor;

 public KnownColor Color

 {

 get { return knownColor;}

 set { knownColor = value; }

 }

}

In addition to standard relational operators, Spring.NET Expression Language supports some additional, very

useful operators that were "borrowed" from SQL, such as in, like and between, as well as is and matches operators,

which allow you to test if object is of a specific type or if the value matches a regular expression.

ExpressionEvaluator.GetValue(null, "3 in {1, 2, 3, 4, 5}") // true

ExpressionEvaluator.GetValue(null, "'Abc' like '[A-Z]b*'") // true

ExpressionEvaluator.GetValue(null, "'Abc' like '?'") // false

ExpressionEvaluator.GetValue(null, "1 between {1, 5}") // true

ExpressionEvaluator.GetValue(null, "'efg' between {'abc', 'xyz'}") // true

ExpressionEvaluator.GetValue(null, "'xyz' is int") // false

ExpressionEvaluator.GetValue(null, "{1, 2, 3, 4, 5} is IList") // true

ExpressionEvaluator.GetValue(null, "'5.0067' matches '^-?\\d+(\\.\\d{2})?$'")) // false

ExpressionEvaluator.GetValue(null, @"'5.00' matches '^-?\d+(\.\d{2})?$'") // true

Note that the Visual Basic and not SQL syntax is used for the like operator pattern string.

11.3.4.2. Logical operators

The logical operators that are supported are and, or, and not. Their use is demonstrated below

// AND

bool falseValue = (bool) ExpressionEvaluator.GetValue(null, "true and false"); //false

string expression = @"IsMember('Nikola Tesla') and IsMember('Mihajlo Pupin')";

bool trueValue = (bool) ExpressionEvaluator.GetValue(ieee, expression); //true

// OR

bool trueValue = (bool) ExpressionEvaluator.GetValue(null, "true or false"); //true

string expression = @"IsMember('Nikola Tesla') or IsMember('Albert Einstien')";

Expression Evaluation

Spring Framework (Version 1.3.2) 108

bool trueValue = (bool) ExpressionEvaluator.GetValue(ieee, expression); // true

// NOT

bool falseValue = (bool) ExpressionEvaluator.GetValue(null, "!true");

// AND and NOT

string expression = @"IsMember('Nikola Tesla') and !IsMember('Mihajlo Pupin')";

bool falseValue = (bool) ExpressionEvaluator.GetValue(ieee, expression);

11.3.4.3. Bitwise operators

The bitwise operators that are supported are and, or, xor and not. Their use is demonstrated below. Note, that

the logical and bitwise operators are the same and their interpretation depends if you pass in integral values or

boolean values.

// AND

int result = (int) ExpressionEvaluator.GetValue(null, "1 and 3"); // 1 & 3

// OR

int result = (int) ExpressionEvaluator.GetValue(null, "1 or 3"); // 1 | 3

// XOR

int result = (int) ExpressionEvaluator.GetValue(null, "1 xor 3"); // 1 ^ 3

// NOT

int result = (int) ExpressionEvaluator.GetValue(null, "!1"); // ~1

11.3.4.4. Mathematical operators

The addition operator can be used on numbers, strings and dates. Subtraction can be used on numbers and dates.

Multiplication and division can be used only on numbers. Other mathematical operators supported are modulus

(%) and exponential power (^). Standard operator precedence is enforced. These operators are demonstrated below

// Addition

int two = (int)ExpressionEvaluator.GetValue(null, "1 + 1"); // 2

String testString = (String)ExpressionEvaluator.GetValue(null, "'test' + ' ' + 'string'"); //'test string'

DateTime dt = (DateTime)ExpressionEvaluator.GetValue(null, "date('1974-08-24') + 5"); // 8/29/1974

// Subtraction

int four = (int) ExpressionEvaluator.GetValue(null, "1 - -3"); //4

Decimal dec = (Decimal) ExpressionEvaluator.GetValue(null, "1000.00m - 1e4"); // 9000.00

TimeSpan ts = (TimeSpan) ExpressionEvaluator.GetValue(null, "date('2004-08-14') -

 date('1974-08-24')"); //10948.00:00:00

// Multiplication

int six = (int) ExpressionEvaluator.GetValue(null, "-2 * -3"); // 6

int twentyFour = (int) ExpressionEvaluator.GetValue(null, "2.0 * 3e0 * 4"); // 24

// Division

int minusTwo = (int) ExpressionEvaluator.GetValue(null, "6 / -3"); // -2

int one = (int) ExpressionEvaluator.GetValue(null, "8.0 / 4e0 / 2"); // 1

// Modulus

int three = (int) ExpressionEvaluator.GetValue(null, "7 % 4"); // 3

int one = (int) ExpressionEvaluator.GetValue(null, "8.0 % 5e0 % 2"); // 1

// Exponent

Expression Evaluation

Spring Framework (Version 1.3.2) 109

int sixteen = (int) ExpressionEvaluator.GetValue(null, "-2 ^ 4"); // 16

// Operator precedence

int minusFortyFive = (int) ExpressionEvaluator.GetValue(null, "1+2-3*8^2/2/2"); // -45

11.3.5. Assignment

Setting of a property is done by using the assignment operator. This would typically be done within a call

to GetValue since in the simple case SetValue offers the same functionality. Assignment in this manner is

useful when combining multiple operators in an expression list, discussed in the next section. Some examples

of assignment are shown below

Inventor inventor = new Inventor();

String aleks = (String) ExpressionEvaluator.GetValue(inventor, "Name = 'Aleksandar Seovic'");

DateTime dt = (DateTime) ExpressionEvaluator.GetValue(inventor, "DOB = date('1974-08-24')");

//Set the vice president of the society

Inventor tesla = (Inventor) ExpressionEvaluator.GetValue(ieee, "Officers['vp'] = Members[0]");

11.3.6. Expression lists

Multiple expressions can be evaluated against the same context object by separating them with a semicolon and

enclosing the entire expression within parentheses. The value returned is the value of the last expression in the

list. Examples of this are shown below

//Perform property assignments and then return Name property.

String pupin = (String) ExpressionEvaluator.GetValue(ieee.Members,

 "([1].PlaceOfBirth.City = 'Beograd'; [1].PlaceOfBirth.Country = 'Serbia'; [1].Name)"));

// pupin = "Mihajlo Pupin"

11.3.7. Types

In many cases, you can reference types by simply specifying type name:

ExpressionEvaluator.GetValue(null, "1 is int")

ExpressionEvaluator.GetValue(null, "DateTime.Today")

ExpressionEvaluator.GetValue(null, "new string[] {'abc', 'efg'}")

This is possible for all standard types from mscorlib, as well as for any other type that is registered with the

TypeRegistry as described in the next section.

For all other types, you need to use special T(typeName) expression:

Type dateType = (Type) ExpressionEvaluator.GetValue(null, "T(System.DateTime)")

Type evalType = (Type) ExpressionEvaluator.GetValue(null, "T(Spring.Expressions.ExpressionEvaluator,

 Spring.Core)")

bool trueValue = (bool) ExpressionEvaluator.GetValue(tesla, "T(System.DateTime) == DOB.GetType()")

Note

The implementation delegates to Spring's ObjectUtils.ResolveType method for the actual type

resolution, which means that the types used within expressions are resolved in the exactly the same

way as the types specified in Spring configuration files.

Expression Evaluation

Spring Framework (Version 1.3.2) 110

11.3.8. Type Registration

To refer to a type within an expression that is not in the mscorlib you need to register it with the TypeRegistry.

This will allow you to refer to a shorthand name of the type within your expressions. This is commonly used in

expression that use the new operator or refer to a static properties of an object. Example usage is shown below.

TypeRegistry.RegisterType("Society", typeof(Society));

Inventor pupin = (Inventor) ExpressionEvaluator.GetValue(ieee, "Officers[Society.President]");

Alternatively, you can register types using typeAliases configuration section.

11.3.9. Constructors

Constructors can be invoked using the new operator. For classes outside mscorlib you will need to register your

types so they can be resolved. Examples of using constructors are shown below:

// simple ctor

DateTime dt = (DateTime) ExpressionEvaluator.GetValue(null, "new DateTime(1974, 8, 24)");

// Register Inventor type then create new inventor instance within Add method inside an expression list.

// Then return the new count of the Members collection.

TypeRegistry.RegisterType(typeof(Inventor));

int three = (int) ExpressionEvaluator.GetValue(ieee.Members, "{ Add(new Inventor('Aleksandar Seovic',

 date('1974-08-24'), 'Serbian')); Count}"));

As a convenience, Spring.NET also allows you to define named constructor arguments, which are used to set

object's properties after instantiation, similar to the way standard .NET attributes work. For example, you could

create an instance of the Inventor class and set its Inventions property in a single statement:

Inventor aleks = (Inventor) ExpressionEvaluator.GetValue(null, "new Inventor('Aleksandar Seovic',

 date('1974-08-24'), 'Serbian', Inventions = {'SPELL'})");

The only rule you have to follow is that named arguments should be specified after standard constructor

arguments, just like in the .NET attributes.

While we are on the subject, Spring.NET Expression Language also provides a convenient syntax for .NET

attribute instance creation. Instead of using standard constructor syntax, you can use a somewhat shorter and more

familiar syntax to create an instance of a .NET attribute class:

WebMethodAttribute webMethod = (WebMethodAttribute) ExpressionEvaluator.GetValue(null, "@[WebMethod(true,

 CacheDuration = 60, Description = 'My Web Method')]");

As you can see, with the exception of the @ prefix, syntax is exactly the same as in C#.

Slightly different syntax is not the only thing that differentiates an attribute expression from a standard constructor

invocation expression. In addition to that, attribute expression uses slightly different type resolution mechanism

and will attempt to load both the specified type name and the specified type name with an Attribute suffix, just

like the C# compiler.

11.3.10. Variables

Variables can referenced in the expression using the syntax #variableName. The variables are passed in and out

of the expression using the dictionary parameter in ExpressionEvaluator's GetValue or SetValue methods.

public static object GetValue(object root, string expression, IDictionary variables)

Expression Evaluation

Spring Framework (Version 1.3.2) 111

public static void SetValue(object root, string expression, IDictionary variables, object newValue)

The variable name is the key value of the dictionary. Example usage is shown below;

IDictionary vars = new Hashtable();

vars["newName"] = "Mike Tesla";

ExpressionEvaluator.GetValue(tesla, "Name = #newName", vars));

You can also use the dictionary as a place to store values of the object as they are evaluated inside the expression.

For example to change Tesla's first name back again and keep the old value;

ExpressionEvaluator.GetValue(tesla, "{ #oldName = Name; Name = 'Nikola Tesla' }", vars);

String oldName = (String)vars["oldName"]; // Mike Tesla

Variable names can also be used inside indexers or maps instead of literal values. For example;

vars["prez"] = "president";

Inventor pupin = (Inventor) ExpressionEvaluator.GetValue(ieee, "Officers[#prez]", vars);

11.3.10.1. The '#this' and '#root' variables

There are two special variables that are always defined and can be references within the expression: #this and

#root.

The #this variable can be used to explicitly refer to the context for the node that is currently being evaluated:

// sets the name of the president and returns its instance

ExpressionEvaluator.GetValue(ieee, "Officers['president'].(#this.Name = 'Nikola Tesla'; #this)")

Similarly, the #root variable allows you to refer to the root context for the expression:

// removes president from the Officers dictionary and returns removed instance

ExpressionEvaluator.GetValue(ieee, "Officers['president'].(#root.Officers.Remove('president'); #this)")

11.3.11. Ternary Operator (If-Then-Else)

You can use the ternary operator for performing if-then-else conditional logic inside the expression. A minimal

example is;

String aTrueString = (String) ExpressionEvaluator.GetValue(null, "false ? 'trueExp' : 'falseExp'") // trueExp

In this case, the boolean false results in returning the string value 'trueExp'. A less artificial example is shown

below

ExpressionEvaluator.SetValue(ieee, "Name", "IEEE");

IDictionary vars = new Hashtable();

vars["queryName"] = "Nikola Tesla";

string expression = @"IsMember(#queryName)

 ? #queryName + ' is a member of the ' + Name + ' Society'

 : #queryName + ' is not a member of the ' + Name + ' Society'";

String queryResultString = (String) ExpressionEvaluator.GetValue(ieee, expression, vars));

// queryResultString = "Nikola Tesla is a member of the IEEE Society"

11.3.12. List Projection and Selection

List projection and selection are very powerful expression language features that allow you to transform the

source list into another list by either projecting across its "columns", or selecting from its "rows". In other

words, projection can be thought of as a column selector in a SQL SELECT statement, while selection would

be comparable to the WHERE clause.

Expression Evaluation

Spring Framework (Version 1.3.2) 112

For example, let's say that we need a list of the cities where our inventors were born. This could be easily obtained

by projecting on the PlaceOfBirth.City property:

IList placesOfBirth = (IList) ExpressionEvaluator.GetValue(ieee, "Members.!{PlaceOfBirth.City}") //

 { 'Smiljan', 'Idvor' }

Or we can get the list of officers' names:

IList officersNames = (IList) ExpressionEvaluator.GetValue(ieee, "Officers.Values.!{Name}") // { 'Nikola

 Tesla', 'Mihajlo Pupin' }

As you can see from the examples, projection uses !{projectionExpression} syntax and will return a new list of

the same length as the original list but typically with the elements of a different type.

On the other hand, selection, which uses ?{projectionExpression} syntax, will filter the list and return a new

list containing a subset of the original element list. For example, selection would allow us to easily get a list of

Serbian inventors:

IList serbianInventors = (IList) ExpressionEvaluator.GetValue(ieee, "Members.?{Nationality == 'Serbian'}") //

 { tesla, pupin }

Or to get a list of inventors that invented sonar:

IList sonarInventors = (IList) ExpressionEvaluator.GetValue(ieee, "Members.?{'Sonar' in Inventions}") //

 { pupin }

Or we can combine selection and projection to get a list of sonar inventors' names:

IList sonarInventorsNames = (IList) ExpressionEvaluator.GetValue(ieee, "Members.?{'Sonar' in Inventions}.!

{Name}") // { 'Mihajlo Pupin' }

As a convenience, Spring.NET Expression Language also supports a special syntax for selecting the first or

last match. Unlike regular selection, which will return an empty list if no matches are found, first or last match

selection expression will either return an instance of the matched element, or null if no matching elements were

found. In order to return a first match you should prefix your selection expression with ^{ instead of ?{, and to

return last match you should use ${ prefix:

ExpressionEvaluator.GetValue(ieee, "Members.^{Nationality == 'Serbian'}.Name") // 'Nikola Tesla'

ExpressionEvaluator.GetValue(ieee, "Members.${Nationality == 'Serbian'}.Name") // 'Mihajlo Pupin'

Notice that we access the Name property directly on the selection result, because an actual matched instance is

returned by the first and last match expression instead of a filtered list.

11.3.13. Collection Processors and Aggregators

In addition to list projection and selection, Spring.NET Expression Language also supports several collection

processors, such as distinct, nonNull and sort, as well as a number of commonly used aggregators, such as

max, min, count, sum and average.

The difference between processors and aggregators is that processors return a new or transformed collection,

while aggregators return a single value. Other than that, they are very similar -- both processors and aggregators

are invoked on a collection node using standard method invocation expression syntax, which makes them very

simple to use and allows easy chaining of multiple processors.

11.3.13.1. Count Aggregator

The count aggregator is a safe way to obtain a number of items in a collection. It can be applied to a collection

of any type, including arrays, which helps eliminate the decision on whether to use Count or Length property

depending on the context. Unlike its standard .NET counterparts, count aggregator can also be invoked on the

Expression Evaluation

Spring Framework (Version 1.3.2) 113

null context without throwing a NullReferenceException. It will simply return zero in this case, which makes

it much safer than standard .NET properties within larger expression.

ExpressionEvaluator.GetValue(null, "{1, 5, -3}.count()") // 3

ExpressionEvaluator.GetValue(null, "count()") // 0

11.3.13.2. Sum Aggregator

The sum aggregator can be used to calculate a total for the list of numeric values. If numbers within the list

are not of the same type or precision, it will automatically perform necessary conversion and the result will

be the highest precision type. If any of the collection elements is not a number, this aggregator will throw an

InvalidArgumentException.

ExpressionEvaluator.GetValue(null, "{1, 5, -3, 10}.sum()") // 13 (int)

ExpressionEvaluator.GetValue(null, "{5, 5.8, 12.2, 1}.sum()") // 24.0 (double)

11.3.13.3. Average Aggregator

The average aggregator will return the average for the collection of numbers. It will use the same type coercion

rules, as the sum aggregator in order to be as precise as possible. Just like the sum aggregator, if any of the

collection elements is not a number, it will throw an InvalidArgumentException.

ExpressionEvaluator.GetValue(null, "{1, 5, -4, 10}.average()") // 3

ExpressionEvaluator.GetValue(null, "{1, 5, -2, 10}.average()") // 3.5

11.3.13.4. Minimum Aggregator

The minimum aggregator will return the smallest item in the list. In order to determine what "the smallest"

actually means, this aggregator relies on the assumption that the collection items are of the uniform type

and that they implement the IComparable interface. If that is not the case, this aggregator will throw an

InvalidArgumentException.

ExpressionEvaluator.GetValue(null, "{1, 5, -3, 10}.min()") // -3

ExpressionEvaluator.GetValue(null, "{'abc', 'efg', 'xyz'}.min()") // 'abc'

11.3.13.5. Maximum Aggregator

The maximum aggregator will return the largest item in the list. In order to determine what "the largest"

actually means, this aggregator relies on the assumption that the collection items are of the uniform type

and that they implement IComparable interface. If that is not the case, this aggregator will throw an

InvalidArgumentException.

ExpressionEvaluator.GetValue(null, "{1, 5, -3, 10}.max()") // 10

ExpressionEvaluator.GetValue(null, "{'abc', 'efg', 'xyz'}.max()") // 'xyz'

11.3.13.6. Non-null Processor

A non-null processor is a very simple collection processor that eliminates all null values from the collection.

ExpressionEvaluator.GetValue(null, "{ 'abc', 'xyz', null, 'abc', 'def', null}.nonNull()") // { 'abc', 'xyz',

 'abc', 'def' }

ExpressionEvaluator.GetValue(null, "{ 'abc', 'xyz', null, 'abc', 'def', null}.nonNull().distinct().sort()")

 // { 'abc', 'def', 'xyz' }

11.3.13.7. Distinct Processor

A distinct processor is very useful when you want to ensure that you don't have duplicate items in the collection.

It can also accept an optional Boolean argument that will determine whether null values should be included in

the results. The default is false, which means that they will not be included.

Expression Evaluation

Spring Framework (Version 1.3.2) 114

ExpressionEvaluator.GetValue(null, "{ 'abc', 'xyz', 'abc', 'def', null, 'def' }.distinct(true).sort()") //

 { null, 'abc', 'def', 'xyz' }

ExpressionEvaluator.GetValue(null, "{ 'abc', 'xyz', 'abc', 'def', null, 'def' }.distinct(false).sort()") //

 { 'abc', 'def', 'xyz' }

11.3.13.8. Sort Processor

The sort processor can be used to sort uniform collections of elements that implement IComparable.

ExpressionEvaluator.GetValue(null, "{1.2, 5.5, -3.3}.sort()") // { -3.3, 1.2, 5.5 }

ExpressionEvaluator.GetValue(null, "{ 'abc', 'xyz', 'abc', 'def', null, 'def' }.sort()") // { null, 'abc',

 'abc', 'def', 'def', 'xyz' }

The sort processor also accepts a boolean value as an argument to determine sort order, sort(false) will sort the

collection in decending order.

11.3.13.9. Type Conversion Processor

The convert processor can be used to convert a collection of elements to a given Type.

object[] arr = new object[] { "0", 1, 1.1m, "1.1", 1.1f };

decimal[] result = (decimal[]) ExpressionEvaluator.GetValue(arr, "convert(decimal)");

11.3.13.10. Reverse Processor

The reverse processor returns the reverse order of elements in the list

object[] arr = new object[] { "0", 1, 2.1m, "3", 4.1f };

object[] result = new ArrayList((ICollection) ExpressionEvaluator.GetValue(arr, "reverse()")).ToArray(); //

 { 4.1f, "3", 2.1m, 1, "0" }

11.3.13.11. OrderBy Processor

Collections can be ordered in three ways, an expression, a SpEL lamda expreression, or a delegate.

// orderBy expression

IExpression exp = Expression.Parse("orderBy('ToString()')");

object[] input = new object[] { 'b', 1, 2.0, "a" };

object[] ordered = exp.GetValue(input); // { 1, 2.0, "a", 'b' }

// SpEL lambda expressions

IExpression exp = Expression.Parse("orderBy({|a,b| $a.ToString().CompareTo($b.ToString())})");

object[] input = new object[] { 'b', 1, 2.0, "a" };

object[] ordered = exp.GetValue(input); // { 1, 2.0, "a", 'b' }

Hashtable vars = new Hashtable();

Expression.RegisterFunction("compare", "{|a,b| $a.ToString().CompareTo($b.ToString())}", vars);

exp = Expression.Parse("orderBy(#compare)");

ordered = exp.GetValue(input, vars); // { 1, 2.0, "a", 'b' }

// .NET delegate

private delegate int CompareCallback(object x, object y);

private int CompareObjects(object x, object y)

{

 if (x == y) return 0;

 return x.ToString().CompareTo(""+y);

}

Hashtable vars = new Hashtable();

vars["compare"] = new CompareCallback(CompareObjects);

IExpression exp = Expression.Parse("orderBy(#compare)");

object[] input = new object[] { 'b', 1, 2.0, "a" };

object[] ordered = exp.GetValue(input); // { 1, 2.0, "a", 'b' }

Expression Evaluation

Spring Framework (Version 1.3.2) 115

11.3.13.12. User Defined Collection Processor

You can register your own collection processor for use in evaluation a collection. Here is an example of a

ICollectionProcessor implementation that sums only the even numbers of an integer list

 public class IntEvenSumCollectionProcessor : ICollectionProcessor

 {

 public object Process(ICollection source, object[] args)

 {

 object total = 0d;

 foreach (object item in source)

 {

 if (item != null)

 {

 if (NumberUtils.IsInteger(item))

 {

 if ((int)item % 2 == 0)

 {

 total = NumberUtils.Add(total, item);

 }

 }

 else

 {

 throw new ArgumentException("Sum can only be calculated for a collection of

 numeric values.");

 }

 }

 }

 return total;

 }

 }

 public void DoWork()

 {

 Hashtable vars = new Hashtable();

 vars["EvenSum"] = new IntEvenSumCollectionProcessor();

 int result = (int)ExpressionEvaluator.GetValue(null, "{1, 2, 3, 4}.EvenSum()", vars)); // 6

 }

11.3.14. Spring Object References

Expressions can refer to objects that are declared in Spring's application context using the

syntax @(contextName:objectName). If no contextName is specified the default root context name

(Spring.RootContext) is used. Using the application context defined in the MovieFinder example from

Chapter 37, IoC Quickstarts, the following expression returns the number of movies directed by Roberto Benigni.

public static void Main()

{

 . . .

// Retrieve context defined in the spring/context section of

// the standard .NET configuration file.

IApplicationContext ctx = ContextRegistry.GetContext();

int numMovies = (int) ExpressionEvaluator.GetValue(null,

 "@(MyMovieLister).MoviesDirectedBy('Roberto Benigni').Length");

 . . .

}

The variable numMovies is evaluated to 2 in this example.

Expression Evaluation

Spring Framework (Version 1.3.2) 116

11.3.15. Lambda Expressions

A somewhat advanced, but a very powerful feature of Spring.NET Expression Language are lambda expressions.

Lambda expressions allow you to define inline functions, which can then be used within your expressions just

like any other function or method. You may also use .NET delegates as described in the next section.

The syntax for defining lambda expressions is:

#functionName = {|argList| functionBody }

For example, you could define a max function and call it like this:

ExpressionEvaluator.GetValue(null, "(#max = {|x,y| $x > $y ? $x : $y }; #max(5,25))", new Hashtable()) // 25

As you can see, any arguments defined for the expression can be referenced within the function body using a local

variable syntax, $varName. Invocation of the function defined using lambda expression is as simple as specifying

the comma-separated list of function arguments in parentheses, after the function name.

Lambda expressions can be recursive, which means that you can invoke the function within its own body:

ExpressionEvaluator.GetValue(null, "(#fact = {|n| $n <= 1 ? 1 : $n * #fact($n-1) }; #fact(5))", new

 Hashtable()) // 120

Notice that in both examples above we had to specify a variables parameter for the GetValue method. This

is because lambda expressions are actually nothing more than parameterized variables and we need variables

dictionary in order to store them. If you don't specify a valid IDictionary instance for the variables parameter,

you will get a runtime exception.

Also, in both examples above we used an expression list in order to define and invoke a function in a single

expression. However, more likely than not, you will want to define your functions once and then use them within

as many expressions as you need. Spring.NET provides an easy way to pre-register your lambda expressions by

exposing a static Expression.RegisterFunction method, which takes function name, lambda expression and

variables dictionary to register function in as parameters:

IDictionary vars = new Hashtable();

Expression.RegisterFunction("sqrt", "{|n| Math.Sqrt($n)}", vars);

Expression.RegisterFunction("fact", "{|n| $n <= 1 ? 1 : $n * #fact($n-1)}", vars);

Once the function registration is done, you can simply evaluate an expression that uses these functions, making

sure that the vars dictionary is passed as a parameter to expression evaluation engine:

ExpressionEvaluator.GetValue(null, "#fact(5)", vars) // 120

ExpressionEvaluator.GetValue(null, "#sqrt(9)", vars) // 3

Finally, because lambda expressions are treated as variables, they can be assigned to other variables or passed

as parameters to other lambda expressions. In the following example we are defining a delegate function that

accepts function f as the first argument and parameter n that will be passed to function f as the second. Then we

invoke the functions registered in the previous example, as well as the lambda expression defined inline, through

our delegate:

Expression.RegisterFunction("delegate", "{|f, n| $f($n) }", vars);

ExpressionEvaluator.GetValue(null, "#delegate(#sqrt, 4)", vars) // 2

ExpressionEvaluator.GetValue(null, "#delegate(#fact, 5)", vars) // 120

ExpressionEvaluator.GetValue(null, "#delegate({|n| $n ^ 2 }, 5)", vars) // 25

While this particular example is not particularly useful, it does demonstrate that lambda expressions are indeed

treated as nothing more than parameterized variables, which is important to remember.

Expression Evaluation

Spring Framework (Version 1.3.2) 117

11.3.16. Delegate Expressions

Delegate expressions allow you to refer to .NET delegates which can then be used within your expressions just

like any other function or method.

For example, you can define a max delegate and call it like this

private delegate double DoubleFunctionTwoArgs(double arg1, double arg2);

private double Max(double arg1, double arg2)

{

 return Math.Max(arg1, arg2);

}

public void DoWork()

{

 Hashtable vars = new Hashtable();

 vars["max"] = new DoubleFunctionTwoArgs(Max);

 double result = (double) ExpressionEvaluator.GetValue(null, "#max(5,25)", vars); // 25

}

11.3.17. Null Context

If you do not specify a root object, i.e. pass in null, then the expressions evaluated either have to be

literal values, i.e. ExpressionEvaluator.GetValue(null, "2 + 3.14"), refer to classes that have static methods

or properties, i.e. ExpressionEvaluator.GetValue(null, "DateTime.Today"), create new instances of objects, i.e.

ExpressionEvaluator.GetValue(null, "new DateTime(2004, 8, 14)") or refer to other objects such as those in the

variable dictionary or in the IoC container. The latter two usages will be discussed later.

11.4. Classes used in the examples

The following simple classes are used to demonstrate the functionality of the expression language.

public class Inventor

{

 public string Name;

 public string Nationality;

 public string[] Inventions;

 private DateTime dob;

 private Place pob;

 public Inventor() : this(null, DateTime.MinValue, null)

 {}

 public Inventor(string name, DateTime dateOfBirth, string nationality)

 {

 this.Name = name;

 this.dob = dateOfBirth;

 this.Nationality = nationality;

 this.pob = new Place();

 }

 public DateTime DOB

 {

 get { return dob; }

 set { dob = value; }

 }

 public Place PlaceOfBirth

 {

 get { return pob; }

 }

 public int GetAge(DateTime on)

 {

Expression Evaluation

Spring Framework (Version 1.3.2) 118

 // not very accurate, but it will do the job ;-)

 return on.Year - dob.Year;

 }

}

public class Place

{

 public string City;

 public string Country;

}

public class Society

{

 public string Name;

 public static string Advisors = "advisors";

 public static string President = "president";

 private IList members = new ArrayList();

 private IDictionary officers = new Hashtable();

 public IList Members

 {

 get { return members; }

 }

 public IDictionary Officers

 {

 get { return officers; }

 }

 public bool IsMember(string name)

 {

 bool found = false;

 foreach (Inventor inventor in members)

 {

 if (inventor.Name == name)

 {

 found = true;

 break;

 }

 }

 return found;

 }

}

The code listings in this chapter use instances of the data populated with the following information.

Inventor tesla = new Inventor("Nikola Tesla", new DateTime(1856, 7, 9), "Serbian");

tesla.Inventions = new string[]

 {

 "Telephone repeater", "Rotating magnetic field principle",

 "Polyphase alternating-current system", "Induction motor",

 "Alternating-current power transmission", "Tesla coil transformer",

 "Wireless communication", "Radio", "Fluorescent lights"

 };

tesla.PlaceOfBirth.City = "Smiljan";

Inventor pupin = new Inventor("Mihajlo Pupin", new DateTime(1854, 10, 9), "Serbian");

pupin.Inventions = new string[] {"Long distance telephony & telegraphy", "Secondary X-Ray

 radiation", "Sonar"};

pupin.PlaceOfBirth.City = "Idvor";

pupin.PlaceOfBirth.Country = "Serbia";

Society ieee = new Society();

ieee.Members.Add(tesla);

ieee.Members.Add(pupin);

ieee.Officers["president"] = pupin;

ieee.Officers["advisors"] = new Inventor[] {tesla, pupin};

Spring Framework (Version 1.3.2) 119

Chapter 12. Validation Framework

12.1. Introduction

Data validation is a very important part of any enterprise application. ASP.NET has a validation framework but it

is very limited in scope and starts falling apart as soon as you need to perform more complex validations. Problems

with the out of the box ASP.NET validation framework are well documented by Peter Blum on his web site, so

we are not going to repeat them here. Peter has also built a nice replacement for the standard ASP.NET validation

framework, which is worth looking into if you prefer the standard ASP.NET validation mechanism to the one

offered by Spring.NET for some reason. Both frameworks will allow you to perform very complex validations

but we designed the Spring.NET validation framework differently for the reasons described below.

On the Windows Forms side the situation is even worse. Out of the box data validation features are completely

inadequate as pointed out by Ian Griffiths in this article. One of the major problems we saw in most validation

frameworks available today, both open source and commercial, is that they are tied to a specific presentation

technology. The ASP.NET validation framework uses ASP.NET controls to define validation rules, so these rules

end up in the HTML markup of your pages. Peter Blum's framework uses the same approach. In our opinion,

validation is not applicable only to the presentation layer so there is no reason to tie it to any particular technology.

As such, the Spring.NET Validation Framework is designed in a way that enables data validation in different

application layers using the same validation rules.

The goals of the validation framework are the following:

1. Allow for the validation of any object, whether it is a UI control or a domain object.

2. Allow the same validation framework to be used in both Windows Forms and ASP.NET applications, as well

as in the service layer (to validate parameters passed to the service, for example).

3. Allow composition of the validation rules so arbitrarily complex validation rule sets can be constructed.

4. Allow validators to be conditional so they only execute if a specific condition is met.

The following sections will describe in more detail how these goals were achieved and show you how to use the

Spring.NET Validation Framework in your applications.

12.2. Example Usage

Decoupling validation from presentation was the major goal that significantly influenced design of the validation

framework. We wanted to be able to define a set of validation rules that are completely independent from the

presentation so we can reuse them (or at least have the ability to reuse them) in different application layers. This

meant that the approach taken by Microsoft ASP.NET team would not work and custom validation controls were

not an option. The approach taken was to configure validation rules just like any other object managed by Spring

- within the application context. However, due to possible complexity of the validation rules we decided not to

use the standard Spring.NET configuration schema for validator definitions but to instead provide a more specific

and easier to use custom configuration schema for validation. Note that the validation framework is not tied to

the use of XML, you can use its API Programatically. The following example shows validation rules defined for

the Trip object in the SpringAir sample application:

<objects xmlns="http://www.springframework.net" xmlns:v="http://www.springframework.net/validation">

http://www.peterblum.com/VAM/ValMain.aspx
http://pluralsight.com/wiki/default.aspx/Craig/WinFormsValidationBroken.html

Validation Framework

Spring Framework (Version 1.3.2) 120

 <object type="TripForm.aspx" parent="standardPage">

 <property name="TripValidator" ref="tripValidator" />

 </object>

 <v:group id="tripValidator">

 <v:required id="departureAirportValidator" test="StartingFrom.AirportCode">

 <v:message id="error.departureAirport.required" providers="departureAirportErrors, validationSummary"/

>

 </v:required>

 <v:group id="destinationAirportValidator">

 <v:required test="ReturningFrom.AirportCode">

 <v:message id="error.destinationAirport.required" providers="destinationAirportErrors,

 validationSummary"/>

 </v:required>

 <v:condition test="ReturningFrom.AirportCode !=

 StartingFrom.AirportCode" when="ReturningFrom.AirportCode != ''">

 <v:message id="error.destinationAirport.sameAsDeparture" providers="destinationAirportErrors,

 validationSummary"/>

 </v:condition>

 </v:group>

 <v:group id="departureDateValidator">

 <v:required test="StartingFrom.Date">

 <v:message id="error.departureDate.required" providers="departureDateErrors, validationSummary"/>

 </v:required>

 <v:condition test="StartingFrom.Date >= DateTime.Today" when="StartingFrom.Date != DateTime.MinValue">

 <v:message id="error.departureDate.inThePast" providers="departureDateErrors, validationSummary"/>

 </v:condition>

 </v:group>

 <v:group id="returnDateValidator" when="Mode == 'RoundTrip'">

 <v:required test="ReturningFrom.Date">

 <v:message id="error.returnDate.required" providers="returnDateErrors, validationSummary"/>

 </v:required>

 <v:condition test="ReturningFrom.Date >= StartingFrom.Date" when="ReturningFrom.Date !=

 DateTime.MinValue">

 <v:message id="error.returnDate.beforeDeparture" providers="returnDateErrors, validationSummary"/>

 </v:condition>

 </v:group>

 </v:group>

</objects>

There are a few things to note in the example above:

• You need to reference the validation schema by adding a xmlns:v="http://www.springframework.net/

validation" namespace declaration to the root element.

• You can mix standard object definitions and validator definitions in the same configuration file as long as both

schemas are referenced.

• The Validator defined in the configuration file is identified by and id attribute and can be referenced in the

standard Spring way, i.e. the injection of tripValidator into TripForm.aspx page definition in the first <object>

tag above.

• The validation framework uses Spring's powerful expression evaluation engine to evaluate both validation rules

and applicability conditions for the validator. As such, any valid Spring expression can be specified within the

test and when attributes of any validator.

The example above shows many of the features of the framework, so let's discuss them one by one in the following

sections.

Validation Framework

Spring Framework (Version 1.3.2) 121

12.3. Validator Groups

Validators can be grouped together. This is important for many reasons but the most typical usage scenario is to

group multiple validation rules that apply to the same value. In the example above there is a validator group for

almost every property of the Trip instance. There is also a top-level group for the Trip object itself that groups

all other validators.

There are three types of validator groups each with a different behavior:

While the first type (AND) is definitely the most useful, the other two allow you to implement some specific

validation scenarios in a very simple way, so you should keep them in mind when designing your validation rules.

Table 12.1. Validator Groups

TypeXML Tag Behavior

ANDgroup Returns true only if all contained validators return true. This is the most commonly

used validator group.

OR any Returns true if one or more of the contained validators return true.

XORexclusive Returns true if only one of the contained validators return true.

One thing to remember is that a validator group is a validator like any other and can be used anywhere validator is

expected. You can nest groups within other groups and reference them using validator reference syntax (described

later), so they really allow you to structure your validation rules in the most reusable way.

12.4. Validators

Ultimately, you will have one or more validator definitions for each piece of data that you want to validate.

Spring.NET has several built-in validators that are sufficient for most validations, even fairly complex ones. The

framework is extensible so you can write your own custom validators and use them in the same way as the built-

in ones.

12.4.1. Condition Validator

The condition validator evaluates any logical expression that is supported by Spring's evaluation engine. The

syntax is

<v:condition id="id" test="testCondition" when="applicabilityCondition" parent="parentValidator">

 actions

</v:condition>

An example is shown below

<v:condition test="StartingFrom.Date >= DateTime.Today" when="StartingFrom.Date != DateTime.MinValue">

 <v:message id="error.departureDate.inThePast" providers="departureDateErrors, validationSummary"/>

</v:condition>

In this example the StartingFrom property of the Trip object is compared to see if it is later than the current

date, i.e. DateTime but only when the date has been set (the initial value of StartingFrom.Date was set to

DateTime.MinValue).

The condition validator could be considered "the mother of all validators". You can use it to achieve almost

anything that can be achieved by using other validator types, but in some cases the test expression might be very

Validation Framework

Spring Framework (Version 1.3.2) 122

complex, which is why you should use more specific validator type if possible. However, condition validator is

still your best bet if you need to check whether particular value belongs to a particular range, or perform a similar

test, as those conditions are fairly easy to write.

Note

Keep in mind that Spring.NET Validation Framework typically works with domain objects. This is

after data binding from the controls has been performed so that the object being validated is strongly

typed. This means that you can easily compare numbers and dates without having to worry if the

string representation is comparable.

12.4.2. Required Validator

This validator ensures that the specified test value is not empty. The syntax is

<v:required id="id" test="requiredValue" when="applicabilityCondition" parent="parentValidator">

 actions

</v:required>

An example is shown below

<v:required test="ReturningFrom.AirportCode">

 <v:message id="error.destinationAirport.required" providers="destinationAirportErrors, validationSummary"/>

</v:required>

The specific tests done to determine if the required value is set is listed below

Table 12.2. Rules to determine if required value is valid

System.Type Test

System.Type Type exists

System.String not null or an empty string

system.DateTime Not System.DateTime.MinValue and not system.DateTime.MaxValue

One of the number types. not zero

System.Char Not System.Char.MinValue or whitespace.

Any reference type other than System.String not null

Required validator is also one of the most commonly used ones, and it is much more powerful than the ASP.NET

Required validator, because it works with many other data types other than strings. For example, it will allow

you to validate DateTime instances (both MinValue and MaxValue return false), integer and decimal numbers, as

well as any reference type, in which case it returns true for a non-null value and false for {{null}}s.

The test attribute for the required validator will typically specify an expression that resolves to a property of a

domain object, but it could be any valid expression that returns a value, including a method call.

12.4.3. Regular Expression Validator

The syntax is

Validation Framework

Spring Framework (Version 1.3.2) 123

<v:regex id="id" test="valueToEvaluate" expression="regularExpressionToMatch" when="applicabilityCondition" parent="parentValidator">

 <v:property name="Options" value="regexOptions"/>

 actions

</v:regex>

An example is shown below

<v:regex test="ReturningFrom.AirportCode" expression="[A-Z][A-Z][A-Z]">

 <v:message id="error.destinationAirport.threeCharacters" providers="destinationAirportErrors,

 validationSummary"/>

</v:regex>

Regular expression validator is very useful when validating values that need to conform to some predefined

format, such as telephone numbers, email addresses, URLs, etc.

Note

Note that current behavior limits the Regular Expression Validator to expressions to being full

matches, i.e., ^(expression)$, thus limiting functionality. To not change this behavior in a point

release, a property AllowPartialMatching has been added in 1.3.1 to support the correct behavior.

This property will be removed for next major/minor version and implementation will be fixed to get

the intented behavior.

12.4.4. Generic Validator

The syntax is

<v:validator id="id" test="requiredValue" when="applicabilityCondition" type="validatorType" parent="parentValidator">

 actions

</v:validator>

An example is shown below

<v:validator test="ReturningFrom.AirportCode" type="MyNamespace.MyAirportCodeValidator, MyAssembly">

 <v:message id="error.destinationAirport.invalid" providers="destinationAirportErrors, validationSummary"/>

</v:required>

Generic validator allows you to plug in your custom validator by specifying its type name. Custom validators

are very simple to implement, because all you need to do is extend BaseValidator class and implement abstract

bool Validate(object objectToValidate) method. Your implementation simply needs to return true if it

determines that object is valid, or false otherwise

12.4.5. Conditional Validator Execution

As you can see from the examples above, each validator (and validator group) allows you to define its applicability

condition by specifying a logical expression as the value of the when attribute. This feature is very useful and

is one of the major deficiencies in the standard ASP.NET validation framework, because in many cases specific

validators need to be turned on or off based on the values of the object being validated.

For example, when validating a Trip object we need to validate return date only if the Trip.Mode property is set

to the TripMode.RoundTrip enum value. In order to achieve that we created following validator definition:

<v:group id="returnDateValidator" when="Mode == 'RoundTrip'">

 // nested validators

</v:group>

Validators within this group will only be evaluated for round trips.

Validation Framework

Spring Framework (Version 1.3.2) 124

Note

You should also note that you can compare enums using the string value of the enumeration. You

can also use fully qualified enum name, such as:

Mode == TripMode.RoundTrip

However, in this case you need to make sure that alias for the TripMode enum type is registered using

Spring's standard type aliasing mechanism.

12.5. Validator Actions

Validation actions are executed every time the containing validator is executed. They allow you to do anything

you want based on the result of the validation. By far the most common use of the validation action is to add

validation error message to the errors collection, but theoretically you could do anything you want. Because adding

validation error messages to the errors collection is such a common scenario, Spring.NET validation schema

defines a separate XML tag for this type of validation action.

12.5.1. Error Message Action

The syntax is

<v:message id="messageId" providers="errorProviderList" when="messageApplicabilityCondition">

 <v:param value="paramExpression"/>

</v:message>

An example is shown below

<v:message id="error.departureDate.inThePast" providers="departureDateErrors, validationSummary">

 <v:param value="StartingFrom.Date.ToString('D')"/>

 <v:param value="DateTime.Today.ToString('D')"/>

</v:message>

There are several things that you have to be aware of when dealing with error messages:

• id is used to look up the error message in the appropriate Spring.NET message source.

• providers specifies a comma separated list of "error buckets" particular error message should be added to.

These "buckets" will later be used by the particular presentation technology in order to display error messages

as necessary.

• a message can have zero or more parameters. Each parameter is an expression that will be resolved using

current validation context and the resolved values will be passed as parameters to IMessageSource.GetMessage

method, which will return the fully resolved message.

12.5.2. Exception Action

If you would like an exception to be thrown when validation fails use the exception action.

<v:exception/>

This will throw an exception of the type ValidationException and you can access error information via its

ValidationErrors property. To throw your own custom exception, provide a SpEL fragment that instantiates the

custom exception.

Validation Framework

Spring Framework (Version 1.3.2) 125

<v:exception throw='new System.InvalidOperationException("invalid")'/>

12.5.3. Generic Actions

The syntax is

<v:action type="actionType" when="actionApplicabilityCondition">

 properties

</v:action>

An example is shown below

<v:action type="Spring.Validation.Actions.ExpressionAction, Spring.Core" when="#page != null">

 <v:property name="Valid" value="#page.myPanel.Visible = true"/>

 <v:property name="Invalid" value="#page.myPanel.Visible = false"/>

</v:action>

Generic actions can be used to perform all kinds of validation actions. In simple cases, such as in the example

above where we turn control's visibility on or off depending on the validation result, you can use the built-in

ExpressionAction class and simply specify expressions to be evaluated based on the validator result.

In other situations you may want to create your own action implementation, which is fairly simple thing to do –

all you need to do is implement IValidationAction interface:

public interface IValidationAction

{

 /// <summary>

 /// Executes the action.

 /// </summary>

 /// <param name="isValid">Whether associated validator is valid or not.</param>

 /// <param name="validationContext">Validation context.</param>

 /// <param name="contextParams">Additional context parameters.</param>

 /// <param name="errors">Validation errors container.</param>

 void Execute(bool isValid, object validationContext, IDictionary contextParams, ValidationErrors errors);

}

12.6. Validator References

Sometimes it is not possible (or desirable) to nest all the validation rules within a single top-level validator group.

For example, if you have an object graph where both ObjectA and ObjectB have a reference to ObjectC, you

might want to set up validation rules for ObjectC only once and reference them from the validation rules for both

ObjectA and ObjectB, instead of duplicating them within both definitions.

The syntax is shown below

<v:ref name="referencedValidatorId" context="validationContextForTheReferencedValidator"/>

An example is shown below

<v:group id="objectA.validator">

 <v:ref name="objectC.validator" context="MyObjectC"/>

 // other validators for ObjectA

</v:group>

<v:group id="objectB.validator">

 <v:ref name="objectC.validator" context="ObjectCProperty"/>

 // other validators for ObjectB

</v:group>

<v:group id="objectC.Validator">

 // validators for ObjectC

</v:group>

Validation Framework

Spring Framework (Version 1.3.2) 126

It is as simple as that — you define validation rules for ObjectC separately and reference them from within other

validation groups. Important thing to realize that in most cases you will also want to "narrow" the context for the

referenced validator, typically by specifying the name of the property that holds referenced object. In the example

above, ObjectA.MyObjectC and ObjectB.ObjectCProperty are both of type ObjectC, which objectC.validator

expects to receive as the validation context.

12.7. Progammatic usage

You can also create Validators programmatically using the API. An example is shown below

UserInfo userInfo = new UserInfo(); // has Name and Password props

ValidatorGroup userInfoValidator = new ValidatorGroup();

userInfoValidator.Validators

 .Add(new RequiredValidator("Name", null));

userInfoValidator.Validators

 .Add(new RequiredValidator("Password", null));

ValidationErrors errors = new ValidationErrors();

bool userInfoIsValid = userInfoValidator.Validate(userInfo, errors);

No matter if you create your validators programmatically or declaratively, you can invoke them in service side

code via the 'Validate' method shown above and then handle error conditions. Spring provides AOP parameter

validation advice as part of ithe aspect library which may also be useful for performing server-side validation.

12.8. Usage tips within ASP.NET

Now that you know how to configure validation rules, let's see what it takes to evaluate those rules within your

typical ASP.NET application and to display error messages.

The first thing you need to do is inject validators you want to use into your ASP.NET page, as shown in the

example below:

<objects xmlns="http://www.springframework.net" xmlns:v="http://www.springframework.net/validation">

 <object type="TripForm.aspx" parent="standardPage">

 <property name="TripValidator" ref="tripValidator" />

 </object>

 <v:group id="tripValidator">

 <v:required id="departureAirportValidator" test="StartingFrom.AirportCode">

 <!-- write error message to 2 providers -->

 <v:message id="error.departureAirport.required" providers="departureAirportErrors, errorSummary"/>

 </v:required>

 <v:group id="destinationAirportValidator">

 <v:required test="ReturningFrom.AirportCode">

 <!-- write error message to 2 providers -->

 <v:message id="error.destinationAirport.required" providers="destinationAirportErrors,

 errorSummary"/>

 </v:required>

 </v:group>

 </v:group>

</objects>

Once that's done, you need to perform validation in one or more of the page event handlers, which typically looks

similar to this:

public void SearchForFlights(object sender, EventArgs e)

{

Validation Framework

Spring Framework (Version 1.3.2) 127

 if (Validate(Controller.Trip, tripValidator))

 {

 Process.SetView(Controller.SearchForFlights());

 }

}

Note

Keep in mind that your ASP.NET page needs to extend Spring.Web.UI.Page in order for the code

above to work.

Finally, you need to define where validation errors should be displayed by adding one or more

<spring:validationError/> and <spring:validationSummary/> controls to the ASP.NET form:

<!-- code snippet taken from the SpringAir sample application -->

<%@ Page Language="c#" MasterPageFile="~/Web/

StandardTemplate.master" Inherits="TripForm" CodeFile="TripForm.aspx.cs" %>

 <!-- render all error messages sent to 'errorSummary' provider -->

 <spring:ValidationSummary ID="summary" Provider="errorSummary" runat="server" />

 <table>

 <tr>

 <td>

 <asp:Label ID="leavingFrom" runat="server" /></td>

 <td>

 <asp:DropDownList ID="leavingFromAirportCode" AutoCallBack="true" runat="server" />

 <!-- render error messages sent to 'departureAirportErrors' provider -->

 <spring:ValidationError ID="leavingFromError" Provider="departureAirportErrors" runat="server" />

 </td>

 <td>

 <asp:Label ID="goingTo" runat="server" /></td>

 <td>

 <asp:DropDownList ID="goingToAirportCode" AutoCallBack="true" runat="server" />

 <!-- render error messages sent to 'destinationAirportErrors' provider -->

 <spring:ValidationError ID="goingToError" Provider="destinationAirportErrors" runat="server" />

 </td>

 </tr>

 </table>

12.8.1. Rendering Validation Errors

Spring.NET allows you to render validation errors within the page in several different ways, and if none

of them suits your needs you can implement your own validation errors renderer. Implementations of the

Spring.Web.Validation.IValidationErrorsRenderer that ship with the framework are:

Table 12.3. Validation Renderers

Name Class Description

Block Spring.Web.Validation.DivValidationErrorsRendererRenders validation errors as list items within a <div> tag. Default

renderer for <spring:validationSummary> control.

Inline Spring.Web.Validation.SpanValidationErrorsRendererRenders validation errors within a tag. Default renderer for

<spring:validationError> control.

Icon Spring.Web.Validation.IconValidationErrorsRendererRenders validation errors as error icon, with error messages displayed

in a tooltip. Best option when saving screen real estate is important.

These three error renderers should be sufficient for most applications, but in case you want

to display errors in some other way you can write your own renderer by implementing

Spring.Web.Validation.IValidationErrorsRenderer interface:

Validation Framework

Spring Framework (Version 1.3.2) 128

namespace Spring.Web.Validation

{

 /// <summary>

 /// This interface should be implemented by all validation errors renderers.

 /// </summary>

 /// <remarks>

 /// <para>

 /// Validation errors renderers are used to decouple rendering behavior from the

 /// validation errors controls such as <see cref="ValidationError"/> and

 /// <see cref="ValidationSummary"/>.

 /// </para>

 /// <para>

 /// This allows users to change how validation errors are rendered by simply plugging in

 /// appropriate renderer implementation into the validation errors controls using

 /// Spring.NET dependency injection.

 /// </para>

 /// </remarks>

 public interface IValidationErrorsRenderer

 {

 /// <summary>

 /// Renders validation errors using specified <see cref="HtmlTextWriter"/>.

 /// </summary>

 /// <param name="page">Web form instance.</param>

 /// <param name="writer">An HTML writer to use.</param>

 /// <param name="errors">The list of validation errors.</param>

 void RenderErrors(Page page, HtmlTextWriter writer, IList errors);

 }

}

12.8.1.1. Configuring which Error Renderer to use.

The best part of the errors renderer mechanism is that you can easily change it across the application by modifying

configuration templates for <spring:validationSummary> and <spring:validationError> controls:

<!-- Validation errors renderer configuration -->

<object id="Spring.Web.UI.Controls.ValidationError" abstract="true">

 <property name="Renderer">

 <object type="Spring.Web.Validation.IconValidationErrorsRenderer, Spring.Web">

 <property name="IconSrc" value="validation-error.gif"/>

 </object>

 </property>

</object>

<object id="Spring.Web.UI.Controls.ValidationSummary" abstract="true">

 <property name="Renderer">

 <object type="Spring.Web.Validation.DivValidationErrorsRenderer, Spring.Web">

 <property name="CssClass" value="validationError"/>

 </object>

 </property>

</object>

It's as simple as that!

12.8.2. How Validate() and Validation Controls play together

Validation Controls (ValidationSummary, ValidationError) need to somehow get the list of errors collected during

validation. Both, Spring.Web.UI.Page and Spring.Web.UI.UserControl come with a ValidationErrors property

and implement IValidationContainer. ValidationControls will automatically pick the IValidationContainer

control they are placed on:

// ASPX / ASCX Template Code

<%@ Control Language="c#"%>

 <!-- render all error messages sent to 'errorSummary' provider -->

 <spring:ValidationSummary ID="summary" Provider="errorSummary" runat="server" />

 <asp:DropDownList ID="leavingFromAirportCode" AutoCallBack="true" runat="server" />

 <!-- render error messages sent to 'departureAirportErrors' provider -->

Validation Framework

Spring Framework (Version 1.3.2) 129

 <spring:ValidationError ID="leavingFromError" Provider="departureAirportErrors" runat="server" />

<script language="C#" runat="server">

public void SearchForFlights(object sender, EventArgs e)

{

 if (Validate(Controller.Trip, tripValidator))

 {

 Process.SetView(Controller.SearchForFlights());

 }

}

</script>

If you need to render errors from a UserControl not in the hierarchy of your Validation control, you can specify

the name of the target validation container control:

// ASPX / ASCX Template Code

<%@ Page Language="c#" %>

<%@ Register TagPrefix="user" TagName="EmployeeInfoEditor" Src="EmployeeInfoEditor.ascx" %>

 <spring:ValidationSummary ID="summary" Provider="summary" ValidationContainerName="editor" runat="server"

 />

 <user:EmployeeInfoEditor ID="editor" runat="server" />

Spring Framework (Version 1.3.2) 130

Chapter 13. Aspect Oriented
Programming with Spring.NET

13.1. Introduction

Aspect-Oriented Programming (AOP) complements OOP by providing another way of thinking about program

structure. Whereas OO decomposes applications into a hierarchy of objects, AOP decomposes programs into

aspects or concerns. This enables the modularization of concerns such as transaction management that would

otherwise cut across multiple objects (such concerns are often termed crosscutting concerns).

One of the key components of Spring.NET is the AOP framework. While the Spring.NET IoC container does not

depend on AOP, meaning you don't need to use AOP if you don't want to, AOP complements Spring.NET IoC

to provide a very capable middleware solution.

AOP is used in Spring.NET:

• To provide declarative enterprise services, especially as a replacement for COM+ declarative services. The

most important such service is declarative transaction management, which builds on Spring.NET's transaction

abstraction. This functionality is planed for an upcoming release of Spring.NET

• To allow users to implement custom aspects, complementing their use of OOP with AOP.

Thus you can view Spring.NET AOP as either an enabling technology that allows Spring.NET to provide

declarative transaction management without COM+; or use the full power of the Spring.NET AOP framework

to implement custom aspects.

For those who would like to hit the ground running and start exploring how to use Spring's AOP functionality,

head on over to Chapter 38, AOP QuickStart.

13.1.1. AOP concepts

Let us begin by defining some central AOP concepts. These terms are not Spring.NET-specific. Unfortunately,

AOP terminology is not particularly intuitive. However, it would be even more confusing if Spring.NET used

its own terminology.

• Aspect: A modularization of a concern for which the implementation might otherwise cut across multiple

objects. Transaction management is a good example of a crosscutting concern in enterprise applications.

Aspects are implemented using Spring.NET as Advisors or interceptors.

• Joinpoint: Point during the execution of a program, such as a method invocation or a particular exception being

thrown.

• Advice: Action taken by the AOP framework at a particular joinpoint. Different types of advice include

"around," "before" and "throws" advice. Advice types are discussed below. Many AOP frameworks, including

Spring.NET, model an advice as an interceptor, maintaining a chain of interceptors "around" the joinpoint.

• Pointcut: A set of joinpoints specifying when an advice should fire. An AOP framework must allow developers

to specify pointcuts: for example, using regular expressions.

• Introduction: Adding methods or fields to an advised class. Spring.NET allows you to introduce new interfaces

to any advised object. For example, you could use an introduction to make any object implement an IAuditable

interface, to simplify the tracking of changes to an object's state.

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 131

• Target object: Object containing the joinpoint. Also referred to as advised or proxied object.

• AOP proxy: Object created by the AOP framework, including advice. In Spring.NET, an AOP proxy is a

dynamic proxy that uses IL code generated at runtime.

• Weaving: Assembling aspects to create an advised object. This can be done at compile time (using the Gripper-

Loom.NET compiler, for example), or at runtime. Spring.NET performs weaving at runtime.

Different advice types include:

• Around advice: Advice that surrounds a joinpoint such as a method invocation. This is the most powerful kind

of advice. Around advice will perform custom behaviour before and after the method invocation. They are

responsible for choosing whether to proceed to the joinpoint or to shortcut executing by returning their own

return value or throwing an exception.

• Before advice: Advice that executes before a joinpoint, but which does not have the ability to prevent execution

flow proceeding to the joinpoint (unless it throws an exception).

• Throws advice: Advice to be executed if a method throws an exception. Spring.NET provides strongly typed

throws advice, so you can write code that catches the exception (and subclasses) you're interested in, without

needing to cast from Exception.

• After returning advice: Advice to be executed after a joinpoint completes normally: for example, if a method

returns without throwing an exception.

Spring.NET provides a full range of advice types. We recommend that you use the least powerful advice type

that can implement the required behaviour. For example, if you need only to update a cache with the return value

of a method, you are better off implementing an after returning advice than an around advice, although an around

advice can accomplish the same thing. Using the most specific advice type provides a simpler programming

model with less potential for errors. For example, you don't need to invoke the proceed() method on the

IMethodInvocation used for around advice, and hence can't fail to invoke it.

The pointcut concept is the key to AOP, distinguishing AOP from older technologies offering interception.

Pointcuts enable advice to be targeted independently of the OO hierarchy. For example, an around advice

providing declarative transaction management can be applied to a set of methods spanning multiple objects. Thus

pointcuts provide the structural element of AOP.

13.1.2. Spring.NET AOP capabilities

Spring.NET AOP is implemented in pure C#. There is no need for a special compilation process - all weaving is

done at runtime. Spring.NET AOP does not need to control or modify the way in which assemblies are loaded,

nor does it rely on unmanaged APIs, and is thus suitable for use in any CLR environment.

Spring.NET currently supports interception of method invocations. Field interception is not implemented,

although support for field interception could be added without breaking the core Spring.NET AOP APIs.

Field interception arguably violates OO encapsulation. We don't believe it is wise in application development.

Spring.NET provides classes to represent pointcuts and different advice types. Spring.NET uses the term advisor

for an object representing an aspect, including both an advice and a pointcut targeting it to specific joinpoints.

Different advice types are IMethodInterceptor (from the AOP Alliance interception API); and the advice

interfaces defined in the Spring.Aop namespace. All advices must implement the AopAlliance.Aop.IAdvice

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 132

tag interface. Advices supported out the box are IMethodInterceptor ; IThrowsAdvice; IBeforeAdvice; and

IAfterReturningAdvice. We'll discuss advice types in detail below.

Spring.NET provides a .NET translation of the Java interfaces defined by the AOP Alliance . Around advice must

implement the AOP Alliance AopAlliance.Interceptr.IMethodInterceptor interface. Whilst there is wide

support for the AOP Alliance in Java, Spring.NET is currently the only .NET AOP framework that makes use of

these interfaces. In the short term, this will provide a consistent programming model for those doing development

in both .NET and Java, and in the longer term, we hope to see more .NET projects adopt the AOP Alliance

interfaces.

The aim of Spring.NET AOP support is not to provide a comprehensive AOP implementation on par with the

functionality available in AspectJ. However, Spring.NET AOP provides an excellent solution to most problems

in .NET applications that are amenable to AOP.

Thus, it is common to see Spring.NET's AOP functionality used in conjunction with a Spring.NET IoC container.

AOP advice is specified using normal object definition syntax (although this allows powerful "autoproxying"

capabilities); advice and pointcuts are themselves managed by Spring.NET IoC.

13.1.3. AOP Proxies in Spring.NET

Spring.NET generates AOP proxies at runtime using classes from the System.Reflection.Emit namespace to

create necessary IL code for the proxy class. This results in proxies that are very efficient and do not impose any

restrictions on the inheritance hierarchy.

Another common approach to AOP proxy implementation in .NET is to use ContextBoundObject and the .NET

remoting infrastructure as an interception mechanism. We are not very fond of ContextBoundObject approach

because it requires classes that need to be proxied to inherit from the ContextBoundObject either directly or

indirectly. In our opinion this an unnecessary restriction that influences how you should design your object model

and also excludes applying AOP to "3rd party" classes that are not under your direct control. Context-bound

proxies are also an order of magnitude slower than IL-generated proxies, due to the overhead of the context

switching and .NET remoting infrastructure.

Spring.NET AOP proxies are also "smart" - in that because proxy configuration is known during proxy generation,

the generated proxy can be optimized to invoke target methods via reflection only when necessary (i.e. when

there are advices applied to the target method). In all other cases the target method will be called directly, thus

avoiding performance hit caused by the reflective invocation.

Finally, Spring.NET AOP proxies will never return a raw reference to a target object. Whenever a target method

returns a raw reference to a target object (i.e. "return this;"), AOP proxy will recognize what happened and will

replace the return value with a reference to itself instead.

The current implementation of the AOP proxy generator uses object composition to delegate calls from the proxy

to a target object, similar to how you would implement a classic Decorator pattern. This means that classes that

need to be proxied have to implement one or more interfaces, which is in our opinion not only a less-intruding

requirement than ContextBoundObject inheritance requirements, but also a good practice that should be followed

anyway for the service classes that are most common targets for AOP proxies.

In a future release we will implement proxies using inheritance, which will allow you to proxy classes without

interfaces as well and will remove some of the remaining raw reference issues that cannot be solved using

composition-based proxies.

13.2. Pointcut API in Spring.NET

Let's look at how Spring.NET handles the crucial pointcut concept.

http://aopalliance.sourceforge.NET/

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 133

13.2.1. Concepts

Spring.NET's pointcut model enables pointcut reuse independent of advice types. It's possible to target different

advice using the same pointcut.

The Spring.Aop.IPointcut interface is the central interface, used to target advices to particular types and

methods. The complete interface is shown below:

public interface IPointcut

{

 ITypeFilter TypeFilter { get; }

 IMethodMatcher MethodMatcher { get; }

}

Splitting the IPointcut interface into two parts allows reuse of type and method matching parts, and fine-grained

composition operations (such as performing a "union" with another method matcher).

The ITypeFilter interface is used to restrict the pointcut to a given set of target classes. If the Matches() method

always returns true, all target types will be matched:

public interface ITypeFilter

{

 bool Matches(Type type);

}

The IMethodMatcher interface is normally more important. The complete interface is shown below:

public interface IMethodMatcher

{

 bool IsRuntime { get; }

 bool Matches(MethodInfo method, Type targetType);

 bool Matches(MethodInfo method, Type targetType, object[] args);

}

The Matches(MethodInfo, Type) method is used to test whether this pointcut will ever match a given method

on a target type. This evaluation can be performed when an AOP proxy is created, to avoid the need for a test on

every method invocation. If the 2-argument matches method returns true for a given method, and the IsRuntime

property for the IMethodMatcher returns true, the 3-argument matches method will be invoked on every method

invocation. This enables a pointcut to look at the arguments passed to the method invocation immediately before

the target advice is to execute.

Most IMethodMatchers are static, meaning that their IsRuntime property returns false. In this case, the 3-argument

Matches method will never be invoked.

Whenever possible, try to make pointcuts static... this allows the AOP framework to cache the results of pointcut

evaluation when an AOP proxy is created.

13.2.2. Operations on pointcuts

Spring.NET supports operations on pointcuts: notably, union and intersection.

Union means the methods that either pointcut matches.

Intersection means the methods that both pointcuts match.

Union is usually more useful.

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 134

Pointcuts can be composed using the static methods in the Spring.Aop.Support.Pointcuts class, or using the

ComposablePointcut class in the same namespace.

13.2.3. Convenience pointcut implementations

Spring.NET provides several convenient pointcut implementations. Some can be used out of the box; others are

intended to be subclassed in application-specific pointcuts.

13.2.3.1. Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method's arguments. Static

pointcuts are sufficient--and best--for most usages. It's possible for Spring.NET to evaluate a static pointcut only

once, when a method is first invoked: after that, there is no need to evaluate the pointcut again with each method

invocation.

Let's consider some static pointcut implementations included with Spring.NET.

13.2.3.1.1. Regular expression pointcuts

One obvious way to specify static pointcuts is using regular expressions. Several AOP frameworks besides

Spring.NET make this possible. The Spring.Aop.Support.SdkRegularExpressionMethodPointcut class is a

generic regular expression pointcut, that uses the regular expression classes from the .NET BCL.

Using this class, you can provide a list of pattern Strings. If any of these is a match, the pointcut will evaluate to

true (so the result is effectively the union of these pointcuts.). The matching is done against the full class name

so you can use this pointcut if you would like to apply advice to all the classes in a particular namespace.

The usage is shown below:

<object id="settersAndAbsquatulatePointcut"

 type="Spring.Aop.Support.SdkRegularExpressionMethodPointcut, Spring.Aop">

 <property name="patterns">

 <list>

 <value>.*set.*</value>

 <value>.*absquatulate</value>

 </list>

 </property>

</object>

As a convenience, Spring provides the RegularExpressionMethodPointcutAdvisor class that allows us to

reference an IAdvice instance as well as defining the pointcut rules (remember that an IAdvice instance can be

an interceptor, before advice, throws advice etc.) This simplifies wiring, as the one object serves as both pointcut

and advisor, as shown below:

<object id="settersAndAbsquatulateAdvisor"

 type="Spring.Aop.Support.RegularExpressionMethodPointcutAdvisor, Spring.Aop">

 <property name="advice">

 <ref local="objectNameOfAopAllianceInterceptor"/>

 </property>

 <property name="patterns">

 <list>

 <value>.*set.*</value>

 <value>.*absquatulate</value>

 </list>

 </property>

</object>

The RegularExpressionMethodPointcutAdvisor class can be used with any Advice type.

If you only have one pattern you can use the property name pattern and specify a single value instead of using

the property name patterns and specifying a list.

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 135

You may also specify a Regex object from the System.Text.RegularExpressions namespace. The built in

RegexConverter class will perform the conversion. See Section 6.4, “Built-in TypeConverters” for more

information on Spring's build in type converters. The Regex object is created as any other object within the IoC

container. Using an inner-object definition for the Regex object is a handy way to keep the definition close to the

PointcutAdvisor declaration. Note that the class SdkRegularExpressionMethodPointcut has a DefaultOptions

property to set the regular expression options if they are not explicitly specified in the constructor.

13.2.3.1.2. Attribute pointcuts

Pointcuts can be specified by matching an attribute type that is associated with a method. Advice associated

with this pointcut can then read the metadata associated with the attribute to configure itself. The class

AttributeMatchMethodPointcut provides this functionality. Sample usage that will match all methods that have

the attribute Spring.Attributes.CacheAttribute is shown below.

<object id="cachePointcut" type="Spring.Aop.Support.AttributeMatchMethodPointcut, Spring.Aop">

 <property name="Attribute" value="Spring.Attributes.CacheAttribute, Spring.Core"/>

</object>

This can be used with a DefaultPointcutAdvisor as shown below

<object id="cacheAspect" type="Spring.Aop.Support.DefaultPointcutAdvisor, Spring.Aop">

 <property name="Pointcut">

 <object type="Spring.Aop.Support.AttributeMatchMethodPointcut, Spring.Aop">

 <property name="Attribute" value="Spring.Attributes.CacheAttribute, Spring.Core"/>

 </object>

 </property>

 <property name="Advice" ref="aspNetCacheAdvice"/>

</object>

where aspNetCacheAdvice is an implementation of an IMethodInterceptor that caches method return values.

See the SDK docs for Spring.Aop.Advice.CacheAdvice for more information on this particular advice.

As a convenience the class AttributeMatchMethodPointcutAdvisor is provided to defining an attribute based

Advisor as a somewhat shorter alternative to using the generic DefaultPointcutAdvisor. An example is shown

below.

<object id="AspNetCacheAdvice" type="Spring.Aop.Support.AttributeMatchMethodPointcutAdvisor, Spring.Aop">

 <property name="advice">

 <object type="Aspect.AspNetCacheAdvice, Aspect"/>

 </property>

 <property name="attribute" value="Framework.AspNetCacheAttribute, Framework" />

</object>

13.2.3.2. Dynamic Pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method arguments, as

well as static information. This means that they must be evaluated with every method invocation; the result cannot

be cached, as arguments will vary.

The main example is the control flow pointcut.

13.2.3.2.1. Control Flow Pointcuts

Spring.NET control flow pointcuts are conceptually similar to AspectJ cflow pointcuts, although less powerful.

(There is currently no way to specify that a pointcut executes below another pointcut.). A control flow pointcut

is dynamic because it is evaluated against the current call stack for each method invocation. For example, if

method ClassA.A() calls ClassB.B() then the execution of ClassB.B() has occurred in ClassA.A()'s control flow. A

control flow pointcut allows advice to be applied to the method ClassA.A() but only when called from ClassB.B()

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 136

and not when ClassA.A() is executed from another call stack. Control flow pointcuts are specified using the

Spring.Aop.Support.ControlFlowPointcut class.

Note

Control flow pointcuts are significantly more expensive to evaluate at runtime than even other

dynamic pointcuts.

When using control flow point cuts some attention should be paid to the fact that at runtime the JIT compiler

can inline the methods, typically for increased performance, but with the consequence that the method no longer

appears in the current call stack. This is because inlining takes the callee's IL code and inserts it into the caller's

IL code effectively removing the method call. The information returned from System.Diagnostics.StackTrace,

used in the implementation of ControlFlowPointcut is subject to these optimizations and therefore a control

flow pointcut will not match if the method has been inlined.

Generally speaking, a method will be a candidate for inlining when its code is 'small', just a few lines of

code (less than 32 bytes of IL). For some interesting reading on this process read David Notario's blog entries

(JIT Optimizations I and JIT Optimizations II). Additionally, when an assembly is compiled with a Release

configuration the assembly metadata instructs the CLR to enable JIT optimizations. When compiled with a Debug

configuration the CLR will disable (some?) these optimizations. Empirically, method inlining is turned off in a

Debug configuration.

The way to ensure that your control flow pointcut will not be overlooked because of method

inlining is to apply the System.Runtime.CompilerServices.MethodImplAttribute attribute with the value

MethodImplOptions.NoInlining. In this (somewhat artificial) simple example, if the code is compiled in release

mode it will not match a control flow pointcut for the method "GetAge".

public int GetAge(IPerson person)

{

 return person.GetAge();

}

However, applying the attributes as shown below will prevent the method from being inlined even in a release

build.

[MethodImpl(MethodImplOptions.NoInlining)]

public int GetAge(IPerson person)

{

 return person.GetAge();

}

13.2.4. Custom pointcuts

Because pointcuts in Spring.NET are .NET types, rather than language features (as in AspectJ) it is possible

to declare custom pointcuts, whether static or dynamic. However, there is no support out of the box for the

sophisticated pointcut expressions that can be coded in the AspectJ syntax. However, custom pointcuts in

Spring.NET can be as arbitrarily complex as any object model.

Spring.NET provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are the most common and generally useful pointcut type, you'll probably subclass

StaticMethodMatcherPointcut, as shown below. This requires you to implement just one abstract method

(although it is possible to override other methods to customize behaviour):

public class TestStaticPointcut : StaticMethodMatcherPointcut {

http://blogs.msdn.com/davidnotario/archive/2004/10/28/248953.aspx
http://blogs.msdn.com/davidnotario/archive/2004/11/01/250398.aspx

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 137

 public override bool Matches(MethodInfo method, Type targetType) {

 // return true if custom criteria match

 }

}

13.3. Advice API in Spring.NET

Let's now look at how Spring.NET AOP handles advice.

13.3.1. Advice Lifecycle

Spring.NET advices can be shared across all advised objects, or unique to each advised object. This corresponds

to per-class or per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors. These do not

depend on the state of the proxied object or add new state; they merely act on the method and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds state to the

proxied object.

It's possible to use a mix of shared and per-instance advice in the same AOP proxy.

13.3.2. Advice types

Spring.NET provides several advice types out of the box, and is extensible to support arbitrary advice types. Let

us look at the basic concepts and standard advice types.

13.3.2.1. Interception Around Advice

The most fundamental advice type in Spring.NET is interception around advice.

Spring.NET is compliant with the AOP Alliance interface for around advice using method interception. Around

advice is implemented using the following interface:

public interface IMethodInterceptor : IInterceptor

{

 object Invoke(IMethodInvocation invocation);

}

The IMethodInvocation argument to the Invoke() method exposes the method being invoked; the target

joinpoint; the AOP proxy; and the arguments to the method. The Invoke() method should return the invocation's

result: the return value of the joinpoint.

A simple IMethodInterceptor implementation looks as follows:

public class DebugInterceptor : IMethodInterceptor {

 public object Invoke(IMethodInvocation invocation) {

 Console.WriteLine("Before: invocation=[{0}]", invocation);

 object rval = invocation.Proceed();

 Console.WriteLine("Invocation returned");

 return rval;

 }

}

Note the call to the IMethodInvocation's Proceed() method. This proceeds down the interceptor chain towards the

joinpoint. Most interceptors will invoke this method, and return its return value. However, an IMethodInterceptor,

like any around advice, can return a different value or throw an exception rather than invoke the Proceed()

method. However, you don't want to do this without good reason!

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 138

13.3.2.2. Before advice

A simpler advice type is a before advice. This does not need an IMethodInvocation object, since it will only

be called before entering the method.

The main advantage of a before advice is that there is no need to invoke the Proceed()method, and therefore no

possibility of inadvertently failing to proceed down the interceptor chain.

The IMethodBeforeAdvice interface is shown below.

public interface IMethodBeforeAdvice : IBeforeAdvice

{

 void Before(MethodInfo method, object[] args, object target);

}

Note the return type is void. Before advice can insert custom behaviour before the joinpoint executes, but cannot

change the return value. If a before advice throws an exception, this will abort further execution of the interceptor

chain. The exception will propagate back up the interceptor chain. If it is unchecked, or on the signature of the

invoked method, it will be passed directly to the client; otherwise it will be wrapped in an unchecked exception

by the AOP proxy.

An example of a before advice in Spring.NET, which counts all methods that return normally:

public class CountingBeforeAdvice : IMethodBeforeAdvice {

 private int count;

 public void Before(MethodInfo method, object[] args, object target) {

 ++count;

 }

 public int Count {

 get { return count; }

 }

}

Before advice can be used with any pointcut.

13.3.2.3. Throws advice

Throws advice is invoked after the return of the joinpoint if the joinpoint threw an exception. The

Spring.Aop.IThrowsAdvice interface does not contain any methods: it is a tag interface identifying that the

implementing advice object implements one or more typed throws advice methods. These throws advice methods

must be of the form:

AfterThrowing([MethodInfo method, Object[] args, Object target], Exception subclass)

Throws-advice methods must be named 'AfterThrowing'. The return value will be ignored by the Spring.NET

AOP framework, so it is typically void. With regard to the method arguments, only the last argument is required.

Thus there are exactly one or four arguments, depending on whether the advice method is interested in the method,

method arguments and the target object.

The following method snippets show examples of throws advice.

This advice will be invoked if a RemotingException is thrown (including subclasses):

public class RemoteThrowsAdvice : IThrowsAdvice {

 public void AfterThrowing(RemotingException ex) {

 // Do something with remoting exception

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 139

 }

}

The following advice is invoked if a SqlException is thrown. Unlike the above advice, it declares 4 arguments,

so that it has access to the invoked method, method arguments and target object:

public class SqlExceptionThrowsAdviceWithArguments : IThrowsAdvice {

 public void AfterThrowing(MethodInfo method, object[] args, object target, SqlException ex) {

 // Do something will all arguments

 }

}

The final example illustrates how these two methods could be used in a single class, which handles both

RemotingException and SqlException. Any number of throws advice methods can be combined in a single class,

as can be seen in the following example.

public class CombinedThrowsAdvice : IThrowsAdvice {

 public void AfterThrowing(RemotingException ex) {

 // Do something with remoting exception

 }

 public void AfterThrowing(MethodInfo method, object[] args, object target, SqlException ex) {

 // Do something will all arguments

 }

}

Finally, it is worth stating that throws advice is only applied to the actual exception being thrown.

What does this mean? Well, it means that if you have defined some throws advice that handles

RemotingExceptions, the applicable AfterThrowing method will only be invoked if the type of the thrown

exception is RemotingException... if a RemotingException has been thrown and subsequently wrapped

inside another exception before the exception bubbles up to the throws advice interceptor, then the throws

advice that handles RemotingExceptions will never be called. Consider a business method that is advised

by throws advice that handles RemotingExceptions; if during the course of a method invocation said

business method throws a RemoteException... and subsequently wraps said RemotingException inside a

business-specific BadConnectionException (see the code snippet below) before throwing the exception,

then the throws advice will never be able to respond to the RemotingException... because all the throws

advice sees is a BadConnectionException. The fact that the RemotingException is wrapped up inside the

BadConnectionException is immaterial.

public void BusinessMethod()

 {

 try

 {

 // do some business operation...

 }

 catch (RemotingException ex)

 {

 throw new BadConnectionException("Couldn't connect.", ex);

 }

 }

Note
Please note that throws advice can be used with any pointcut.

13.3.2.4. After Returning advice

An after returning advice in Spring.NET must implement the Spring.Aop.IAfterReturningAdvice interface,

shown below:

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 140

public interface IAfterReturningAdvice : IAdvice

{

 void AfterReturning(object returnValue, MethodBase method, object[] args, object target);

}

An after returning advice has access to the return value (which it cannot modify), invoked method, methods

arguments and target.

The following after returning advice counts all successful method invocations that have not thrown exceptions:

public class CountingAfterReturningAdvice : IAfterReturningAdvice {

 private int count;

 public void AfterReturning(object returnValue, MethodBase m, object[] args, object target) {

 ++count;

 }

 public int Count {

 get { return count; }

 }

}

This advice doesn't change the execution path. If it throws an exception, this will be thrown up the interceptor

chain instead of the return value.

Note
Please note that after-returning advice can be used with any pointcut.

13.3.2.5. Advice Ordering

When multiple pieces of advice want to run on the same joinpoint the precedence is determined by having the

advice implement the IOrdered interface or by specifying order information on an advisor.

13.3.2.6. Introduction advice

Spring.NET allows you to add new methods and properties to an advised class. This would typically be done

when the functionality you wish to add is a crosscutting concern and want to introduce this functionality as a

change to the static structure of the class hierarchy. For example, you may want to cast objects to the introduction

interface in your code. Introductions are also a means to emulate multiple inheritance.

Introduction advice is defined by using a normal interface declaration that implements the tag interface IAdvice.

Note
The need for implementing this marker interface will likely be removed in future versions.

As an example, consider the interface IAuditable that describes the last modified time of an object.

public interface IAuditable : IAdvice

{

 DateTime LastModifiedDate

 {

 get;

 set;

 }

}

where

public interface IAdvice

{

}

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 141

Access to the advised object can be obtained by implementing the interface ITargetAware

public interface ITargetAware

{

 IAopProxy TargetProxy

 {

 set;

 }

}

with the IAopProxy reference providing a layer of indirection through which the advised object can be accessed.

public interface IAopProxy

{

 object GetProxy();

}

A simple class that demonstrates this functionality is shown below.

public interface IAuditable : IAdvice, ITargetAware

{

 DateTime LastModifiedDate

 {

 get;

 set;

 }

}

A class that implements this interface is shown below.

public class AuditableMixin : IAuditable

{

 private DateTime date;

 private IAopProxy targetProxy;

 public AuditableMixin()

 {

 date = new DateTime();

 }

 public DateTime LastModifiedDate

 {

 get { return date; }

 set { date = value; }

 }

 public IAopProxy TargetProxy

 {

 set { targetProxy = value; }

 }

}

Introduction advice is not associated with a pointcut, since it applies at the class and not the method level. As

such, introductions use their own subclass of the interface IAdvisor, namely IIntroductionAdvisor, to specify

the types that the introduction can be applied to.

public interface IIntroductionAdvisor : IAdvisor

{

 ITypeFilter TypeFilter { get; }

 Type[] Interfaces { get; }

 void ValidateInterfaces();

}

The TypeFilter property returns the filter that determines which target classes this introduction should apply to.

The Interfaces property returns the interfaces introduced by this advisor.

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 142

The ValidateInterfaces() method is used internally to see if the introduced interfaces can be implemented by

the introduction advice.

Spring.NET provides a default implementation of this interface (the DefaultIntroductionAdvisor class) that

should be sufficient for the majority of situations when you need to use introductions. The most simple

implementation of an introduction advisor is a subclass that simply passes a new instance the base constructor.

Passing a new instance is important since we want a new instance of the mixin classed used for each advised object.

public class AuditableAdvisor : DefaultIntroductionAdvisor

{

 public AuditableAdvisor() : base(new AuditableMixin())

 {

 }

}

Other constructors let you explicitly specify the interfaces of the class that will be introduced. See the SDK

documentation for more details.

We can apply this advisor Programatically, using the IAdvised.AddIntroduction(), method, or (the

recommended way) in XML configuration using the IntroductionNames property on ProxyFactoryObject,

which will be discussed later.

Unlike the AOP implementation in the Spring Framework for Java, introduction advice in Spring.NET is not

implemented as a specialized type of interception advice. The advantage of this approach is that introductions

are not kept in the interceptor chain, which allows some significant performance optimizations. When a method

is called that has no interceptors, a direct call is used instead of reflection regardless of whether the target

method is on the target object itself or one of the introductions. This means that introduced methods perform

the same as target object methods, which could be useful for adding introductions to fine grained objects. The

disadvantage is that if the mixin functionality would benefit from having access to the calling stack, it is not

available. Introductions with this functionality will be addressed in a future version of Spring.NET AOP.

13.4. Advisor API in Spring.NET

In Spring.NET, an advisor is a modularization of an aspect. Advisors typically incorporate both an advice and

a pointcut.

Apart from the special case of introductions, any advisor can be used with any advice. The

Spring.Aop.Support.DefaultPointcutAdvisor class is the most commonly used advisor implementation. For

example, it can be used with a IMethodInterceptor, IBeforeAdvice or IThrowsAdvice and any pointcut

definition.

Other convenience implementations provided are: AttributeMatchMethodPointcutAdvisor shown in

usage previously in Section 13.2.3.1.2, “Attribute pointcuts” for use with attribute based pointcuts.

RegularExpressionMethodPointcutAdvisor that will apply pointcuts based on the matching a regular expression

to method names.

It is possible to mix advisor and advice types in Spring.NET in the same AOP proxy. For example, you could

use a interception around advice, throws advice and before advice in one proxy configuration: Spring.NET will

automatically create the necessary interceptor chain.

13.5. Using the ProxyFactoryObject to create AOP proxies

If you're using the Spring.NET IoC container for your business objects - generally a good idea - you will want

to use one of Spring.NET's AOP-specific IFactoryObject implementations (remember that a factory object

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 143

introduces a layer of indirection, enabling it to create objects of a different type - Section 5.3.9, “Setting a reference

using the members of other objects and classes.”).

The basic way to create an AOP proxy in Spring.NET is to use the Spring.Aop.Framework.ProxyFactoryObject

class. This gives complete control over ordering and application of the pointcuts and advice that will apply to

your business objects. However, there are simpler options that are preferable if you don't need such control.

13.5.1. Basics

The ProxyFactoryObject, like other Spring.NET IFactoryObject implementations, introduces a level of

indirection. If you define a ProxyFactoryObject with name foo, what objects referencing foo see is not the

ProxyFactoryObject instance itself, but an object created by the ProxyFactoryObject's implementation of the

GetObject() method. This method will create an AOP proxy wrapping a target object.

One of the most important benefits of using a ProxyFactoryObject or other IoC-aware classes that create AOP

proxies, is that it means that advice and pointcuts can also be managed by IoC. This is a powerful feature, enabling

certain approaches that are hard to achieve with other AOP frameworks. For example, an advice may itself

reference application objects (besides the target, which should be available in any AOP framework), benefiting

from all the pluggability provided by Dependency Injection.

13.5.2. ProxyFactoryObject Properties

Like most IFactoryObject implementations provided with Spring.NET, the ProxyFactoryObject is itself a

Spring.NET configurable object. Its properties are used to:

• Specify the target object that is to be proxied.

• Specify the advice that is to be applied to the proxy.

Some key properties are inherited from the Spring.Aop.Framework.ProxyConfig class: this class is the superclass

for all AOP proxy factories in Spring.NET. Some of the key properties include:

• ProxyTargetType: a boolean value that should be set to true if the target class is to be proxied directly, as

opposed to just proxying the interfaces exposed on the target class.

• Optimize: whether to apply aggressive optimization to created proxies. Don't use this setting unless you

understand how the relevant AOP proxy handles optimization. The exact meaning of this flag will differ

between proxy implementations and will generally result in a trade off between proxy creation time and runtime

performance. Optimizations may be ignored by certain proxy implementations and may be disabled silently

based on the value of other properties such as ExposeProxy.

• IsFrozen: whether advice changes should be disallowed once the proxy factory has been configured. The

default is false.

• ExposeProxy: whether the current proxy should be exposed via the AopContext so that it can be accessed by

the target. (It's available via the IMethodInvocation without the need for the AopContext.) If a target needs to

obtain the proxy and ExposeProxy is true, the target can use the AopContext.CurrentProxy property.

• AopProxyFactory: the implementation of IAopProxyFactory to use when generating a proxy. Offers a way

of customizing whether to use remoting proxies, IL generation or any other proxy strategy. The default

implementation will use IL generation to create composition-based proxies.

Other properties specific to the ProxyFactoryObject class include:

• ProxyInterfaces: the array of string interface names we're proxying.

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 144

• InterceptorNames: string array of IAdvisor, interceptor or other advice names to apply. Ordering is

significant... first come, first served that is. The first interceptor in the list will be the first to be able to interceptor

the invocation (assuming it concerns a regular MethodInterceptor or BeforeAdvice).

The names are object names in the current container, including objectnames from container hierarchies. You

can't mention object references here since doing so would result in the ProxyFactoryObject ignoring the

singleton setting of the advise.

• IntroductionNames: The names of objects in the container that will be used as introductions to the target

object. If the object referred to by name does not implement the IIntroductionAdvisor it will be passed to the

default constructor of DefaultIntroductionAdvisor and all of the objects interfaces will be added to the target

object. Objects that implement the IIntroductionAdvisor interface will be used as is, giving you a finer level

of control over what interfaces you may want to expose and the types for which they will be matched against.

• IsSingleton: whether or not the factory should return a single proxy object, no matter how often the

GetObject() method is called. Several IFactoryObject implementations offer such a method. The default

value is true. If you would like to be able to apply advice on a per-proxy object basis, use a IsSingleton value

of false and a IsFrozen value of false. If you want to use stateful advice--for example, for stateful mixins--

use prototype advices along with a IsSingleton value of false.

13.5.3. Proxying Interfaces

Let's look at a simple example of ProxyFactoryObject in action. This example involves:

• A target object that will be proxied. This is the "personTarget" object definition in the example below.

• An IAdvisor and an IInterceptor used to provide advice.

• An AOP proxy object definition specifying the target object (the personTarget object) and the interfaces to

proxy, along with the advices to apply.

<object id="personTarget" type="MyCompany.MyApp.Person, MyCompany">

 <property name="name" value="Tony"/>

 <property name="age" value="51"/>

</object>

<object id="myCustomInterceptor" type="MyCompany.MyApp.MyCustomInterceptor, MyCompany">

 <property name="customProperty" value="configuration string"/>

</object>

<object id="debugInterceptor" type="Spring.Aop.Advice.DebugAdvice, Spring.Aop">

</object>

<object id="person" type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop">

 <property name="proxyInterfaces" value="MyCompany.MyApp.IPerson"/>

 <property name="target" ref="personTarget"/>

 <property name="interceptorNames">

 <list>

 <value>debugInterceptor</value>

 <value>myCustomInterceptor</value>

 </list>

 </property>

</object>

Note that the InterceptorNames property takes a list of strings: the object names of the interceptor or advisors

in the current context. Advisors, interceptors, before, after returning and throws advice objects can be used. The

ordering of advisors is significant.

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 145

You might be wondering why the list doesn't hold object references. The reason for this is that if the

ProxyFactoryObject's singleton property is set to false, it must be able to return independent proxy instances.

If any of the advisors is itself a prototype, an independent instance would need to be returned, so it's necessary

to be able to obtain an instance of the prototype from the context; holding a reference isn't sufficient.

The "person" object definition above can be used in place of an IPerson implementation, as follows:

IPerson person = (IPerson) factory.GetObject("person");

Other objects in the same IoC context can express a strongly typed dependency on it, as with an ordinary .NET

object:

<object id="personUser" type="MyCompany.MyApp.PersonUser, MyCompany">

 <property name="person" ref="person"/>

</object>

The PersonUser class in this example would expose a property of type IPerson. As far as it's concerned, the AOP

proxy can be used transparently in place of a "real" person implementation. However, its type would be a proxy

type. It would be possible to cast it to the IAdvised interface (discussed below).

It's possible to conceal the distinction between target and proxy using an anonymous inline object, as follows. (for

more information on inline objects see Section 5.3.2.3, “Inner objects”.) Only the ProxyFactoryObject definition

is different; the advice is included only for completeness:

<object id="myCustomInterceptor" type="MyCompany.MyApp.MyCustomInterceptor, MyCompany">

 <property name="customProperty" value="configuration string"/>

</object>

<object id="debugInterceptor" type="Spring.Aop.Advice.DebugAdvice, Spring.Aop">

</object>

<object id="person" type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop">

 <property name="proxyInterfaces" value="MyCompany.MyApp.IPerson"/>

 <property name="target">

 <!-- Instead of using a reference to target, just use an inline object -->

 <object type="MyCompany.MyApp.Person, MyCompany">

 <property name="name" value="Tony"/>

 <property name="age" value="51"/>

 </object>

 </property>

 <property name="interceptorNames">

 <list>

 <value>debugInterceptor</value>

 <value>myCustomInterceptor</value>

 </list>

 </property>

</object>

This has the advantage that there's only one object of type Person: useful if we want to prevent users of the

application context obtaining a reference to the un-advised object, or need to avoid any ambiguity with Spring

IoC autowiring. There's also arguably an advantage in that the ProxyFactoryObject definition is self-contained.

However, there are times when being able to obtain the un-advised target from the factory might actually be an

advantage: for example, in certain test scenarios.

13.5.1. Applying advice on a per-proxy basis.

Let's look at an example of configuring the proxy objects retrieved from ProxyFactoryObject.

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 146

 <!-- create the object to reference -->

 <object id="RealObjectTarget" type="MyRealObject" singleton="false"/>

 <!-- create the proxied object for everyone to use-->

 <object id="MyObject" type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop">

 <property name="proxyInterfaces" value="MyInterface" />

 <property name="isSingleton" value="false"/>

 <property name="targetName" value="RealObjectTarget" />

 </object>

If you are using a prototype as the target you must set the TargetName property with the name/object id of your

object and not use the property Target with a reference to that object. This will then allow a new proxy to be

created around a new prototype target instance.

Consider the above Spring.Net object configuration. Notice that the IsSingleton property of the

ProxyFactoryObject instance is set to false. This means that each proxy object will be unique. Thus, you can

configure each proxy object with its' own individual advice(s) using the following syntax

// Will return un-advised instance of proxy object

MyInterface myProxyObject1 = (MyInterface)ctx.GetObject("MyObject");

// myProxyObject1 instance now has an advice attached to it.

IAdvised advised = (IAdvised)myProxyObject1;

advised.AddAdvice(new DebugAdvice());

// Will return a new, un-advised instance of proxy object

MyInterface myProxyObject2 = (MyInterface)ctx.GetObject("MyObject");

13.5.4. Proxying Classes

What if you need to proxy a class, rather than one or more interfaces?

Imagine that in our example above, there was no IPerson interface, rather we needed to advise a class called

Person that didn't implement any business interface. In this case the ProxyFactoryObject will proxy all public

virtual methods and properties if no interfaces are explicitly specified or if no interfaces are found to be present

on the target object. One can configure Spring.NET to force the use of class proxies, rather than interface proxies,

by setting the ProxyTargetType property on the ProxyFactoryObject above to true.

Class proxying works by generating a subclass of the target class at runtime. Spring.NET configures this generated

subclass to delegate method calls to the original target: the subclass is used to implement the Decorator pattern,

weaving in the advice.

Class proxying should generally be transparent to users. However, there is an important issue to consider:

Non-virtual methods can't be advised, as they can't be overridden. This may be a limiting factor when using

existing code as it has been common practice not to declare methods as virtual by default.

13.5.5. Concise proxy definitions

Especially when defining transactional proxies, if you do not make use of the transaction namespace, you may

end up with many similar proxy definitions. The use of parent and child object definitions, along with inner object

definitions, can result in much cleaner and more concise proxy definitions.

First a parent, template, object definition is created for the proxy:

<object id="txProxyTemplate" abstract="true"

 type="Spring.Transaction.Interceptor.TransactionProxyFactoryObject, Spring.Data">

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 147

 <property name="PlatformTransactionManager" ref="adoTransactionManager"/>

 <property name="TransactionAttributes">

 <name-values>

 <add key="*" value="PROPAGATION_REQUIRED"/>

 </name-values>

 </property>

 </object>

This will never be instantiated itself, so may actually be incomplete. Then each proxy which needs to be created

is just a child object definition, which wraps the target of the proxy as an inner object definition, since the target

will never be used on its own anyway.

<object name="testObjectManager" parent="txProxyTemplate">

 <property name="Target">

 <object type="Spring.Data.TestObjectManager, Spring.Data.Integration.Tests">

 <property name="TestObjectDao" ref="testObjectDao"/>

 </object>

 </property>

</object>

It is of course possible to override properties from the parent template, such as in this case, the transaction

propagation settings:

<object name="testObjectManager" parent="txProxyTemplate">

 <property name="Target">

 <object type="Spring.Data.TestObjectManager, Spring.Data.Integration.Tests">

 <property name="TestObjectDao" ref="testObjectDao"/>

 </object>

 </property>

 <property name="TransactionAttributes">

 <name-values>

 <add key="Save*" value="PROPAGATION_REQUIRED"/>

 <add key="Delete*" value="PROPAGATION_REQUIRED"/>

 <add key="Find*" value="PROPAGATION_REQUIRED,readonly"/>

 </name-values>

 </property>

</object>

Note that in the example above, we have explicitly marked the parent object definition as abstract by using the

abstract attribute, as described previously, so that it may not actually ever be instantiated. Application contexts

(but not simple object factories) will by default pre-instantiate all singletons. It is therefore important (at least

for singleton object) that if you have a (parent) object definition which you intend to use only as a template, and

this definition specifies a class, you must make sure to set the abstract attribute to true, otherwise the application

context will actually try to pre-instantiate it.

13.6. Proxying mechanisms

Spring creates AOP proxies built at runtime through the use of the TypeBuilder API.

Two types of proxies can be created, composition based or inheritance based. If the target object implements at

least one interface then a composition based proxy will be created, otherwise an inheritance based proxy will

be created.

The composition based proxy is implemented by creating a type that implements all the interfaces specified on the

target object. The actual class name of this dynamic type is 'GUID' like. A private field holds the target object and

the dynamic type implementation will first execute any advice before or after making the target object method

call on the target object.

The inheritance based mechanism creates a dynamic type where that inherits from the target type. This lets you

downcast to the target type if needed. Please note that in both cases a target method implementation that calls

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 148

other methods on the target object will not be advised. To force inheritance based proxies you should either set

the ProxyTargetType to true property of a ProxyFactory or set the XML namespace element proxy-target-type

= true when using an AOP schema based configuration.

Note

An important alternative approach to inheritance based proxies is disucssed in the next section.

In .NET 2.0 you can define the assembly level attribute, InternalsVisibleTo, to allow access of internal

interfaces/classes to specified 'friend' assemblies. If you need to create an AOP proxy on an internal

class/interface add the following code, [assembly: InternalsVisibleTo("Spring.Proxy")] and [assembly:

InternalsVisibleTo("Spring.DynamicReflection")] to your to AssemblyInfo file.

13.6.1. InheritanceBasedAopConfigurer

There is an important limitation in the inheritance based proxy as described above, all methods that manipulate

the state of the object should be declared as virtual. Otherwise some method invocations get directed to the private

'target' field member and others to the base class. Winform object are an example of case where this approach

does not apply. To address this limitation, a new post-processing mechanism was introduced in version 1.2 that

creates a proxy type without the private 'target' field. Interception advice is added directly in the method body

before invoking the base class method.

To use this new inheritance based proxy described in the note above, declare an instance of the

InheritanceBasedAopConfigurer, and IObjectFactoryPostProcessor, in yoru configuraiton file. Here is an

example.

<object type="Spring.Aop.Framework.AutoProxy.InheritanceBasedAopConfigurer, Spring.Aop">

 <property name="ObjectNames">

 <list>

 <value>Form*</value>

 <value>Control*</value>

 </list>

 </property>

 <property name="InterceptorNames">

 <list>

 <value>debugInterceptor</value>

 </list>

 </property>

</object>

<object id="debugInterceptor" type="AopPlay.DebugInterceptor, AopPlay"/>

This configuraiton style is similar to the autoproxy by name approach described here and is particuarly appropriate

when you want to apply advice to WinForm classes.

13.7. Creating AOP Proxies Programatically with the
ProxyFactory

It's easy to create AOP proxies Programatically using Spring.NET. This enables you to use Spring.NET AOP

without dependency on Spring.NET IoC.

The following listing shows creation of a proxy for a target object, with one interceptor and one advisor. The

interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFactory(myBusinessInterfaceImpl);

factory.AddAdvice(myMethodInterceptor);

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 149

factory.AddAdvisor(myAdvisor);

IBusinessInterface tb = (IBusinessInterface) factory.GetProxy();

The first step is to construct an object of type Spring.Aop.Framework.ProxyFactory. You can create this with a

target object, as in the above example, or specify the interfaces to be proxied in an alternate constructor.

You can add interceptors or advisors, and manipulate them for the life of the ProxyFactory.

There are also convenience methods on ProxyFactory (inherited from AdvisedSupport) allowing you to add

other advice types such as before and throws advice. AdvisedSupport is the superclass of both ProxyFactory

and ProxyFactoryObject.

Note
Integrating AOP proxy creation with the IoC framework is best practice in most applications. We

recommend that you externalize configuration from .NET code with AOP, as in general.

13.8. Manipulating Advised Objects

However you create AOP proxies, you can manipulate them using the Spring.Aop.Framework.IAdvised

interface. Any AOP proxy can be cast to this interface, whatever other interfaces it implements. This interface

includes the following methods and properties:

public interface IAdvised

{

 IAdvisor[] Advisors { get; }

 IIntroductionAdvisor[] Introductions { get; }

 void AddInterceptor(IInterceptor interceptor);

 void AddInterceptor(int pos, IInterceptor interceptor);

 void AddAdvisor(IAdvisor advisor);

 void AddAdvisor(int pos, IAdvisor advisor);

 void AddIntroduction(IIntroductionAdvisor advisor);

 void AddIntroduction(int pos, IIntroductionAdvisor advisor);

 int IndexOf(IAdvisor advisor);

 int IndexOf(IIntroductionAdvisor advisor);

 bool RemoveAdvisor(IAdvisor advisor);

 void RemoveAdvisor(int index);

 bool RemoveInterceptor(IInterceptor interceptor);

 bool RemoveIntroduction(IIntroductionAdvisor advisor);

 void RemoveIntroduction(int index);

 void ReplaceIntroduction(int index, IIntroductionAdvisor advisor);

 bool ReplaceAdvisor(IAdvisor a, IAdvisor b);

}

The Advisors property will return an IAdvisor for every advisor, interceptor or other advice type that has been

added to the factory. If you added an IAdvisor, the returned advisor at this index will be the object that you

added. If you added an interceptor or other advice type, Spring.NET will have wrapped this in an advisor with

a IPointcut that always returns true. Thus if you added an IMethodInterceptor, the advisor returned for this

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 150

index will be a DefaultPointcutAdvisor returning your IMethodInterceptor and an IPointcut that matches

all types and methods.

The AddAdvisor() methods can be used to add any IAdvisor. Usually this will be the generic

DefaultPointcutAdvisor, which can be used with any advice or pointcut (but not for introduction).

By default, it's possible to add or remove advisors or interceptors even once a proxy has been created. The only

restriction is that it's impossible to add or remove an introduction advisor, as existing proxies from the factory

will not show the interface change. (You can obtain a new proxy from the factory to avoid this problem.)

It's questionable whether it's advisable (no pun intended) to modify advice on a business object in production,

although there are no doubt legitimate usage cases. However, it can be very useful in development: for example,

in tests. I have sometimes found it very useful to be able to add test code in the form of an interceptor or other

advice, getting inside a method invocation I want to test. (For example, the advice can get inside a transaction

created for that method: for example, to run SQL to check that a database was correctly updated, before marking

the transaction for roll back.)

Depending on how you created the proxy, you can usually set a Frozen flag, in which case the IAdvised IsFrozen

property will return true, and any attempts to modify advice through addition or removal will result in an

AopConfigException. The ability to freeze the state of an advised object is useful in some cases: For example,

to prevent calling code removing a security interceptor.

13.9. Using the "autoproxy" facility

So far we've considered explicit creation of AOP proxies using a ProxyFactoryObject or similar factory objects.

For applications that would like create many AOP proxies, say across all the classes in a service layer, this

approach can lead to a lengthy configuration file. To simplify the creation of many AOP proxies Spring provides

"autoproxy" capabilities that will automatically proxy object definitions based on higher level criteria that will

group together multiple objects as candidates to be proxied.

This functionality is built on Spring "object post-processor" infrastructure, which enables modification of any

object definition as the container loads. Refer to Section 5.9.1, “Customizing objects with IObjectPostProcessors”

for general information on object post-processors.

In this model, you set up some special object definitions in your XML object definition file configuring the auto

proxy infrastructure. This allows you just to declare the targets eligible for autoproxying: you don't need to use

ProxyFactoryObject.

• Using an autoproxy creator that refers to specific objects in the current context.

• A special case of autoproxy creation that deserves to be considered separately; autoproxy creation driven by

source-level attributes.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain an un-

advised object. Calling GetObject("MyBusinessObject1") on an ApplicationContext will return an AOP proxy,

not the target business object. The "inline object" idiom shown earlier in Section 13.5.3, “Proxying Interfaces”

also offers this benefit.)

13.9.1. Autoproxy object definitions

The namespace Spring.Aop.Framework.AutoProxy provides generic autoproxy infrastructure, should you

choose to write your own autoproxy implementations, as well as several out-of-the-box implementations. Two

implementations are provided, ObjectNameAutoProxyCreator and DefaultAdvisorAutoProxyCreator. These

are discussed in the following sections.

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 151

13.9.1.1. ObjectNameAutoProxyCreator

The ObjectNameAutoProxyCreator automatically creates AOP proxies for object with names matching literal

values or wildcards. The pattern matching expressions supported are of the form "*name", "name*", and "*name*"

and exact name matching, i.e. "name". The following simple classes are used to demonstrate this autoproxy

functionality.

public enum Language

{

 English = 1,

 Portuguese = 2,

 Italian = 3

}

public interface IHelloWorldSpeaker

{

 void SayHello();

}

public class HelloWorldSpeaker : IHelloWorldSpeaker

{

 private Language language;

 public Language Language

 {

 set { language = value; }

 get { return language; }

 }

 public void SayHello()

 {

 switch (language)

 {

 case Language.English:

 Console.WriteLine("Hello World!");

 break;

 case Language.Portuguese:

 Console.WriteLine("Oi Mundo!");

 break;

 case Language.Italian:

 Console.WriteLine("Ciao Mondo!");

 break;

 }

 }

}

public class DebugInterceptor : IMethodInterceptor

{

 public object Invoke(IMethodInvocation invocation)

 {

 Console.WriteLine("Before: " + invocation.Method.ToString());

 object rval = invocation.Proceed();

 Console.WriteLine("After: " + invocation.Method.ToString());

 return rval;

 }

}

The following XML is used to automatically create an AOP proxy and apply a Debug interceptor to object

definitions whose names match "English*" and "PortugueseSpeaker".

<object id="ProxyCreator" type="Spring.Aop.Framework.AutoProxy.ObjectNameAutoProxyCreator, Spring.Aop">

 <property name="ObjectNames">

 <list>

 <value>English*</value>

 <value>PortugeseSpeaker</value>

 </list>

 </property>

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 152

 <property name="InterceptorNames">

 <list>

 <value>debugInterceptor</value>

 </list>

 </property>

</object>

<object id="debugInterceptor" type="AopPlay.DebugInterceptor, AopPlay"/>

<object id="EnglishSpeakerOne" type="AopPlay.HelloWorldSpeaker, AopPlay">

 <property name="Language" value="English"/>

</object>

<object id="EnglishSpeakerTwo" type="AopPlay.HelloWorldSpeaker, AopPlay">

 <property name="Language" value="English"/>

</object>

<object id="PortugeseSpeaker" type="AopPlay.HelloWorldSpeaker, AopPlay">

 <property name="Language" value="Portuguese"/>

</object>

<object id="ItalianSpeakerOne" type="AopPlay.HelloWorldSpeaker, AopPlay">

 <property name="Language" value="Italian"/>

</object>

As with ProxyFactoryObject, there is an InterceptorNames property rather than a list of interceptors, to allow

correct behavior for prototype advisors. Named "interceptors" can be advisors or any advice type.

The same advice will be applied to all matching objects. Note that if advisors are used (rather than the interceptor

in the above example), the pointcuts may apply differently to different objects.

Running the following simple program demonstrates the application of the AOP interceptor.

IApplicationContext ctx = ContextRegistry.GetContext();

IDictionary speakerDictionary = ctx.GetObjectsOfType(typeof(IHelloWorldSpeaker));

foreach (DictionaryEntry entry in speakerDictionary)

{

 string name = (string)entry.Key;

 IHelloWorldSpeaker worldSpeaker = (IHelloWorldSpeaker)entry.Value;

 Console.Write(name + " says; ");

 worldSpeaker.SayHello();

}

The output is shown below

ItalianSpeakerOne says; Ciao Mondo!

EnglishSpeakerTwo says; Before: Void SayHello()

Hello World!

After: Void SayHello()

PortugeseSpeaker says; Before: Void SayHello()

Oi Mundo!

After: Void SayHello()

EnglishSpeakerOne says; Before: Void SayHello()

Hello World!

After: Void SayHello()

13.9.1.2. DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is DefaultAdvisorAutoProxyCreator. This will

automatically apply eligible advisors in the current application context, without the need to include specific

object names in the autoproxy advisor's object definition. It offers the same merit of consistent configuration and

avoidance of duplication as ObjectNameAutoProxyCreator.

Using this mechanism involves:

• Specifying a DefaultAdvisorAutoProxyCreator object definition

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 153

• Specifying any number of Advisors in the same or related contexts. Note that these must be Advisors, not

just interceptors or other advices. This is necessary because there must be a pointcut to evaluate, to check the

eligibility of each advice to candidate object definitions.

The DefaultAdvisorAutoProxyCreator will automatically evaluate the pointcut contained in each advisor, to

see what (if any) advice it should apply to each object defined in the application context.

This means that any number of advisors can be applied automatically to each business object. If no pointcut in

any of the advisors matches any method in a business object, the object will not be proxied.

The DefaultAdvisorAutoProxyCreator is very useful if you want to apply the same advice consistently to many

business objects. Once the infrastructure definitions are in place, you can simply add new business objects without

including specific proxy configuration. You can also drop in additional aspects very easily--for example, tracing

or performance monitoring aspects--with minimal change to configuration.

The following example demonstrates the use of DefaultAdvisorAutoProxyCreator. Expanding on the previous

example code used to demonstrate ObjectNameAutoProxyCreator we will add a new class, SpeakerDao, that acts

as a Data Access Object to find and store IHelloWorldSpeaker objects.

public interface ISpeakerDao

{

 IList FindAll();

 IHelloWorldSpeaker Save(IHelloWorldSpeaker speaker);

}

public class SpeakerDao : ISpeakerDao

{

 public System.Collections.IList FindAll()

 {

 Console.WriteLine("Finding speakers...");

 // just a demo...fake the retrieval.

 Thread.Sleep(10000);

 HelloWorldSpeaker speaker = new HelloWorldSpeaker();

 speaker.Language = Language.Portuguese;

 IList list = new ArrayList();

 list.Add(speaker);

 return list;

 }

 public IHelloWorldSpeaker Save(IHelloWorldSpeaker speaker)

 {

 Console.WriteLine("Saving speaker...");

 // just a demo...not really saving...

 return speaker;

 }

}

The XML configuration specifies two Advisors, that is, the combination of advice (the behavior to add) and a

pointcut (where the behavior should be applied). A RegularExpressionMethodPointcutAdvisor is used as a

convenience to specify the pointcut as a regular expression that matches methods names. Other pointcuts of your

own creation could be used, in which case a DefaultPointcutAdvisor would be used to define the Advisor. The

object definitions for these advisors, advice, and SpeakerDao object are shown below

<object id="SpeachAdvisor" type="Spring.Aop.Support.RegularExpressionMethodPointcutAdvisor, Spring.Aop">

 <property name="advice" ref="debugInterceptor"/>

 <property name="patterns">

 <list>

 <value>.*Say.*</value>

 </list>

 </property>

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 154

</object>

<object id="AdoAdvisor" type="Spring.Aop.Support.RegularExpressionMethodPointcutAdvisor, Spring.Aop">

 <property name="advice" ref="timingInterceptor"/>

 <property name="patterns">

 <list>

 <value>.*Find.*</value>

 </list>

 </property>

</object>

// Advice

<object id="debugInterceptor" type="AopPlay.DebugInterceptor, AopPlay"/>

<object id="timingInterceptor" type="AopPlay.TimingInterceptor, AopPlay"/>

// Speaker DAO Object - has 'FindAll' Method.

<object id="speakerDao" type="AopPlay.SpeakerDao, AopPlay"/>

// HelloWorldSpeaker objects as previously listed.

Adding an instance of DefaultAdvisorAutoProxyCreator to the configuration file

<object id="ProxyCreator" type="Spring.Aop.Framework.AutoProxy.DefaultAdvisorAutoProxyCreator, Spring.Aop"/>

will apply the debug interceptor on all objects in the context that have a method that contains the text "Say" and

apply the timing interceptor on objects in the context that have a method that contains the text "Find". Running

the following code demonstrates this behavior. Note that the "Save" method of SpeakerDao does not have any

advice applied to it.

IApplicationContext ctx = ContextRegistry.GetContext();

IDictionary speakerDictionary = ctx.GetObjectsOfType(typeof(IHelloWorldSpeaker));

foreach (DictionaryEntry entry in speakerDictionary)

{

 string name = (string)entry.Key;

 IHelloWorldSpeaker worldSpeaker = (IHelloWorldSpeaker)entry.Value;

 Console.Write(name + " says; ");

 worldSpeaker.SayHello();

}

ISpeakerDao dao = (ISpeakerDao)ctx.GetObject("speakerDao");

IList speakerList = dao.FindAll();

IHelloWorldSpeaker speaker = dao.Save(new HelloWorldSpeaker());

This produces the following output

ItalianSpeakerOne says; Before: Void SayHello()

Ciao Mondo!

After: Void SayHello()

EnglishSpeakerTwo says; Before: Void SayHello()

Hello World!

After: Void SayHello()

PortugeseSpeaker says; Before: Void SayHello()

Oi Mundo!

After: Void SayHello()

EnglishSpeakerOne says; Before: Void SayHello()

Hello World!

After: Void SayHello()

Finding speakers...

Elapsed time = 00:00:10.0154745

Saving speaker...

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so that only certain

advisors are evaluated, allowing use of multiple, differently configured, AdvisorAutoProxyCreators in the same

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 155

factory) and ordering. Advisors can implement the Spring.Core.IOrdered interface to ensure correct ordering

if this is an issue. The default is unordered.

13.9.1.3. PointcutFilteringAutoProxyCreator

An AutoProxyCreator that identified objects to proxy by matching a specified IPointcut.

13.9.1.4. TypeNameAutoProxyCreator

An AutoProxyCreator that identifies objects to proxy by matching their Type.FullName against a list of patterns.

13.9.1.5. AttributeAutoProxyCreator

An AutoProxyCreator, that identifies objects to be proxied by checking any System.Attribute defined on a given

type and that types interfaces.

13.9.1.6. AbstractFilteringAutoProxyCreator

The base class for AutoProxyCreator implementations that mark objects eligible for proxying based on arbitrary

criteria.

13.9.1.7. AbstractAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own autoproxy creators by

subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to the behavior

of the framework DefaultAdvisorAutoProxyCreator.

13.9.2. Using attribute-driven auto-proxying

A particularly important type of autoproxying is driven by attributes. The programming model is similar to using

Enterprise Services with ServicedComponents.

In this case, you use the DefaultAdvisorAutoProxyCreator, in combination with Advisors that understand

attributes. The Advisor pointcut is identified by the presence of .NET attribute in the source code and it is

configured via the data and/or methods of the attribute. This is a powerful alternative to identifying the advisor

pointcut and advice configuration through traditional property configuration, either programmatic or through

XML based configuration.

Several of the aspect provided with Spring use attribute driven autoproxying. The most prominent example is

Transaction support.

13.10. Using AOP Namespace

The AOP namespace allows you to define an advisor, i.e pointcut + 1 piece of advice, in a more declarative

manner. Under the covers the DefaultAdvisorAutoProxyCreator is being used. Here is an example,

<objects xmlns="http://www.springframework.net"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:aop="http://www.springframework.net/aop">

 <aop:config>

 <aop:advisor id="getDescriptionAdvisor" pointcut-ref="getDescriptionCalls" advice-

ref="getDescriptionCounter"/>

 </aop:config>

 <object id="getDescriptionCalls"

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 156

 type="Spring.Aop.Support.SdkRegularExpressionMethodPointcut, Spring.Aop">

 <property name="patterns">

 <list>

 <value>.*GetDescription.*</value>

 </list>

 </property>

 </object>

 <object id="getDescriptionCounter" type="Spring.Aop.Framework.CountingBeforeAdvice, Spring.Aop.Tests"/>

 <object name="testObject" type="Spring.Objects.TestObject, Spring.Core.Tests"/>

</objects>

In this example, the TestObject, which implements the interface ITestObject, is having AOP advice applied to

it. The method GetDescription() is specified as a regular expression pointcut. The aop:config tag and subsequent

child tag, aop:advisor, brings together the pointcut with the advice.

In order to have Spring.NET recognise the aop namespace, you need to declare the namespace parser in the main

Spring.NET configuration section. For convenience this is shown below. Please refer to the section titled context

configuration for more extensive information..

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.ContextHandler, Spring.Core"/>

 <section name="objects" type="Spring.Context.Support.DefaultSectionHandler, Spring.Core" />

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <parsers>

 <parser type="Spring.Aop.Config.AopNamespaceParser, Spring.Aop" />

 </parsers>

 <context>

 <resource uri="config://spring/objects"/>

 </context>

 <objects xmlns="http://www.springframework.net">

 ...

 </objects>

 </spring>

</configuration>

13.11. Using TargetSources

Spring.NET offers the concept of a TargetSource, expressed in the Spring.Aop.ITargetSource interface.

This interface is responsible for returning the "target object" implementing the joinpoint. The TargetSource

implementation is asked for a target instance each time the AOP proxy handles a method invocation.

Developers using Spring.NET AOP don't normally need to work directly with TargetSources, but this provides

a powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a pooling

TargetSource can return a different target instance for each invocation, using a pool to manage instances.

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 157

If you do not specify a TargetSource, a default implementation is used that wraps a local object. The same target

is returned for each invocation (as you would expect).

Let's look at the standard target sources provided with Spring.NET, and how you can use them.

When using a custom target source, your target will usually need to be a prototype rather than a singleton object

definition. This allows Spring.NET to create a new target instance when required.

13.11.1. Hot swappable target sources

The org.Spring.NETframework.aop.target.HotSwappableTargetSource exists to allow the target of an AOP

proxy to be switched while allowing callers to keep their references to it.

Changing the target source's target takes effect immediately. The HotSwappableTargetSource is thread safe.

You can change the target via the swap() method on HotSwappableTargetSource as follows:

HotSwappableTargetSource swapper =

 (HotSwappableTargetSource) objectFactory.GetObject("swapper");

object oldTarget = swapper.swap(newTarget);

The XML definitions required look as follows:

<object id="initialTarget" type="MyCompany.OldTarget, MyCompany">

</object>

<object id="swapper"

 type="Spring.Aop.Target.HotSwappableTargetSource, Spring.Aop">

 <constructor-arg><ref local="initialTarget"/></constructor-arg>

</object>

<object id="swappable"

 type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop"

>

 <property name="targetSource">

 <ref local="swapper"/>

 </property>

</object>

The above swap() call changes the target of the swappable object. Clients who hold a reference to that object will

be unaware of the change, but will immediately start hitting the new target.

Although this example doesn't add any advice--and it's not necessary to add advice to use a TargetSource--of

course any TargetSource can be used in conjunction with arbitrary advice.

13.11.2. Pooling target sources

Using a pooling target source provides a programming model in which a pool of identical instances is maintained,

with method invocations going to free objects in the pool.

A crucial difference between Spring.NET pooling and pooling in .NET Enterprise Services pooling is that

Spring.NET pooling can be applied to any POCO. (Plain old CLR object). As with Spring.NET in general, this

service can be applied in a non-invasive way.

Spring.NET provides out-of-the-box support using a pooling implementation based on Jakarta Commons

Pool 1.1, which provides a fairly efficient pooling implementation. It's also possible to subclass

Spring.Aop.Target.AbstractPoolingTargetSource to support any other pooling API.

Sample configuration is shown below:

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 158

<object id="businessObjectTarget" type="MyCompany.MyBusinessObject, MyCompany" singleton="false">

 ... properties omitted

</object>

<object id="poolTargetSource" type="Spring.Aop.Target.SimplePoolTargetSource, Spring.Aop">

 <property name="targetObjectName" value="businessObjectTarget"/>

 <property name="maxSize" value="25"/>

</object>

<object id="businessObject" type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop">

 <property name="targetSource" ref="poolTargetSource"/>

 <property name="interceptorNames" value="myInterceptor"/>

</object>

Note that the target object--"businessObjectTarget" in the example--must be a prototype. This allows the

PoolingTargetSource implementation to create new instances of the target to grow the pool as necessary.

See the SDK documentation for AbstractPoolingTargetSource and the concrete subclass you wish to use for

information about it's properties: maxSize is the most basic, and always guaranteed to be present.

In this case, "myInterceptor" is the name of an interceptor that would need to be defined in the same IoC context.

However, it isn't necessary to specify interceptors to use pooling. If you want only pooling, and no other advice,

don't set the interceptorNames property at all.

It's possible to configure Spring.NET so as to be able to cast any pooled object to the

Spring.Aop.Target.PoolingConfig interface, which exposes information about the configuration and current

size of the pool through an introduction. You'll need to define an advisor like this:

<object id="poolConfigAdvisor"

 type="Spring.Object.Factory.Config.MethodInvokingFactoryObject, Spring.Aop">

 <property name="target" ref="poolTargetSource" />

 <property name="targetMethod" value="getPoolingConfigMixin" />

</object>

This advisor is obtained by calling a convenience method on the AbstractPoolingTargetSource class, hence the

use of MethodInvokingFactoryObject. This advisor's name ('poolConfigAdvisor' here) must be in the list of

interceptor names in the ProxyFactoryObject exposing the pooled object.

The cast will look as follows:

PoolingConfig conf = (PoolingConfig) objectFactory.GetObject("businessObject");

Console.WriteLine("Max pool size is " + conf.getMaxSize());

Pooling stateless service objects is not usually necessary. We don't believe it should be the default choice, as most

stateless objects are naturally threadsafe, and instance pooling is problematic if resources are cached.

Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any autoproxy

creator.

13.11.3. Prototype target sources

Setting up a "prototype" target source is similar to a pooling TargetSource. In this case, a new instance of the

target will be created on every method invocation. Although the cost of creating a new object may not be high,

the cost of wiring up the new object (satisfying its IoC dependencies) may be more expensive. Thus you shouldn't

use this approach without very good reason.

To do this, you could modify the poolTargetSource definition shown above as follows. (the name of the definition

has also been changed, for clarity.)

<object id="prototypeTargetSource"

Aspect Oriented Programming with Spring.NET

Spring Framework (Version 1.3.2) 159

 type="Spring.Aop.Target.PrototypeTargetSource, Spring.Aop">

 <property name="targetObjectName" value="businessObject" />

</object>

There is only one property: the name of the target object. Inheritance is used in the TargetSource implementations

to ensure consistent naming. As with the pooling target source, the target object must be a prototype object

definition, the singleton property of the target should be set to false.

13.11.4. ThreadLocal target sources

ThreadLocal target sources are useful if you need an object to be created for each incoming request (per thread that

is). The concept of a ThreadLocal provides a facility to transparently store resource alongside a thread. Setting

up a ThreadLocalTargetSource is pretty much the same as was explained for the other types of target source:

<object id="threadlocalTargetSource"

 type="Spring.Aop.Target.ThreadLocalTargetSource, Spring.Aop">

 <property name="targetObjectName" value="businessObject" />

</object>

13.12. Defining new Advice types

Spring.NET AOP is designed to be extensible. While the interception implementation strategy is presently used

internally, it is possible to support arbitrary advice types in addition to interception around, before, throws, and

after returning advice, which are supported out of the box.

The Spring.Aop.Framework.Adapter package is an SPI (Service Provider Interface) package allowing support

for new custom advice types to be added without changing the core framework. The only constraint on a custom

Advice type is that it must implement the AopAlliance.Aop.IAdvice tag interface.

Please refer to the Spring.Aop.Framework.Adapter namespace documentation for further information.

13.13. Further reading and resources

The Spring.NET team recommends the excellent AspectJ in Action by Ramnivas Laddad (Manning, 2003) for

an introduction to AOP.

If you are interested in more advanced capabilities of Spring.NET AOP, take a look at the test suite as it illustrates

advanced features not discussed in this document.

Spring Framework (Version 1.3.2) 160

Chapter 14. Aspect Library

14.1. Introduction

Spring provides several aspects in the distribution. The most popular of which is transactional advice, located in

the Spring.Data module. However, the aspects that are documented in this section are those contained within the

Spring.Aop module itself. The aspects in within Spring.Aop.dll are Caching, Exception Handling, Logging, Retry,

and Parameter Validation. Other traditional advice types such as validation, security, and thread management,

will be included in a future release.

14.2. Caching

Caching the return value of a method or the value of a method parameter is a common approach to increase

application performance. Application performance is increased with effective use of caching since layers in the

application that are closer to the user can return information within their own layer as compared to making more

expensive calls to retrieve that information from a lower, and more slow, layer such as a database or a web service.

Caching also can help in terms of application scalability, which is generally the more important concern.

The caching support in Spring.NET consists of base cache interfaces that can be used to specify a specific storage

implementation of the cache and also an aspect that determines where to apply the caching functionality and its

configuration.

The base cache interface that any cache implementation should implement is Spring.Caching.ICache

located in Spring.Core. Two implementations are provided, Spring.Caching.AspNetCache located in

Spring.Web which stores cache entries within an ASP.NET cache and a simple implementation,

Spring.Caching.NonExpiringCache that stores cache entries in memory and never expires these entries. Custom

implementations based on 3rd party implementations, such as Oracle Coherence, or memcached, can be used by

implementing the ICache interface.

The cache aspect is Spring.Aspects.Cache.CacheAspect located in Spring.Aop. It consists of three pieces of

functionality, the ability to cache return values, method parameters, and explicit eviction of an item from the

cache. The aspect currently relies on using attributes to specify the pointcut as well as the behavior, much like

the transactional aspect. Future versions will allow for external configuration of the behavior so you can apply

caching to a code base without needing to use attributes in the code.

The following attributes are available

• CacheResult - used to cache the return value

• CacheResultItems - used when returning a collection as a return value

• CacheParameter - used to cache a method parameter

• InvalidateCache - used to indicate one or more cache items should be invalidated.

Each CacheResult, CacheResultItems, and CacheParameter attributes define the following properties.

• CacheName - the name of the cache implementation to use

• Key - a string representing a Spring Expression Language (SpEL) expression used as the key in the cache.

Aspect Library

Spring Framework (Version 1.3.2) 161

• Condition - a SpEL expression that should be evaluated in order to determine whether the item should be

cached.

• TimeToLive - The amount of time an object should remain in the cache (in seconds).

The InvalidateCache attribute has properties for the CacheName, the Key as well as the Condition, with the

same meanings as listed previously.

Each ICache implementation will have properties that are specific to a caching technology. In the case of

AspNetCache, the two important properties to configure are:

• SlidingExperation - If this property value is set to true, every time the marked object is accessed it's

TimeToLive value is reset to its original value

• Priority - the cache item priority controlling how likely an object is to be removed from an associated cache

when the cache is being purged.

• TimeToLive - The amount of time an object should remain in the cache (in seconds).

The values of the Priority enumeration are

• Low - low likelihood of deletion when cache is purged.

• Normal - default priority for deletion when cache is purged.

• High - high likelihood of deletion when cache is purged.

• NotRemovable - cache item not deleted when cache is purged.

An important element of the applying these attributes is the use of the expression language that allows for calling

context information to drive the caching actions. Here is an example taken from the Spring Air sample application

of the AirportDao implementation that implements an interface with the method GetAirport(long id).

[CacheResult("AspNetCache", "'Airport.Id=' + #id", TimeToLive = "0:1:0")]

public Airport GetAirport(long id)

{

 // implementation not shown...

}

The first parameter is the cache name. The second string parameter is the cache key and is a string expression

that incorporates the argument passed into the method, the id. The cache key value cannot be null or an empty

string (""). The method parameter names are exposed as variables to the key expression. The expression may also

call out to other objects in the Spring container allowing for a more complex key algorithm to be encapsulated.

The end result is that the Airport object is cached by id for 60 seconds in a cache named AspNetCache. The

TimetoLive property could also have been specified on the configuration of the AspNetCache object.

The configuration to enable the caching aspect is shown below

<object" id="CacheAspect" type="Spring.Aspects.Cache.CacheAspect, Spring.Aop"/>

<object id="AspNetCache" type="Spring.Caching.AspNetCache, Spring.Web">

 <property name="SlidingExpiration" value="true"/>

 <property name="Priority" value="Low"/>

 <property name="TimeToLive" value="00:02:00"/>

</object>

<!-- Apply aspects to DAOs -->

<object type="Spring.Aop.Framework.AutoProxy.ObjectNameAutoProxyCreator, Spring.Aop">

Aspect Library

Spring Framework (Version 1.3.2) 162

 <property name="ObjectNames">

 <list>

 <value>*Dao</value>

 </list>

 </property>

 <property name="InterceptorNames">

 <list>

 <value>CacheAspect</value>

 </list>

 </property>

</object>

in this example an ObjectNameAutoProxyCreator was used to apply the cache aspect to objects that have Dao

in their name. The AspNetCache setting for TimeToLive will override the TimeToLive value set at the method

level via the attribute.

14.3. Exception Handling

In some cases existing code can be easily adopted to a simple error handling strategy that can perform one of

the following actions

• translations - either wrap the thrown exception inside a new one or replace it with a new exception type (no

inner exception is set).

• return value - the exception is ignored and a return value for the method is provided instead

• swallow - the exception is ignored.

• execute - Execute an abritrary Spring Expression Language (SpEL expression)

The applicability of general exception handling advice depends greatly on how tangled the code is regarding

access to local variables that may form part of the exception. Once you get familiar with the feature set of Spring

declarative exception handling advice you should evaluate where it may be effectively applied in your code base.

It is worth noting that you can still chain together multiple pieces of exception handling advice allowing you to mix

the declarative approach shown in this section with the traditional inheritance based approach, i.e. implementing

IThrowsAdvice or IMethodInterceptor.

Declarative exception handling is expressed in the form of a mini-language relevant to the domain at hand,

exception handling. This could be referred to as a Domain Specific Language (DSL). Here is a simple example,

which should hopefully be self explanatory.

<object name="exceptionHandlingAdvice" type="Spring.Aspects.Exceptions.ExceptionHandlerAdvice, Spring.Aop">

 <property name="exceptionHandlers">

 <list>

 <value>on exception name ArithmeticException wrap System.InvalidOperationException</value>

 </list>

 </property>

</object>

What this is instructing the advice to do is the following bit of code when an ArithmeticException is thrown,

throw new System.InvalidOperationException("Wrapped ArithmeticException", e), where e is the original

ArithmeticException. The default message, "Wrapped ArithmethicException" is automatically appended. You

may however specify the message used in the newly thrown exception as shown below

on exception name ArithmeticException wrap System.InvalidOperationException 'My Message'

Similarly, if you would rather replace the exception, that is do not nest one inside the other, you can use the

following syntax

Aspect Library

Spring Framework (Version 1.3.2) 163

on exception name ArithmeticException replace System.InvalidOperationException

or

on exception name ArithmeticException replace System.InvalidOperationException 'My Message'

Both wrap and replace are special cases of the more general translate action. An example of a translate expression

is shown below

on exception name ArithmeticException translate new System.InvalidOperationException('My Message, Method Name

 ' + #method.Name, #e)

What we see here after the translate keyword is text that will be passed into Spring's expression language (SpEL)

for evaluation. Refer to the chapter on the expression language for more details. One important feature of the

expression evaluation is the availability of variables relating to the calling context when the exception was thrown.

These are

• method - the MethodInfo object corresponding to the method that threw the exception

• args - the argument array to the method that threw the exception, signature is object[]

• target - the AOP target object instance.

• e - the thrown exception

You can invoke methods on these variables, prefixed by a '#' in the expression. This gives you the flexibility to

call special purpose constructors that can have any piece of information accessible via the above variables, or

even other external data through the use of SpEL's ability to reference objects within the Spring container.

You may also choose to 'swallow' the exception or to return a specific return value, for example

on exception name ArithmeticException swallow

or

on exception name ArithmeticException return 12

You may also simply log the exception

on exception name ArithmeticException,ArgumentException log 'My Message, Method Name ' + #method.Name

Here we see that a comma delimited list of exception names can be specified.

The logging is performed using the Commons.Logging library that provides an abstraction over the underlying

logging implementation. Logging is currently at the debug level with a logger name of "LogExceptionHandler"

The ability to specify these values will be a future enhancement and likely via a syntax resembling a constructor

for the action, i.e. log(Debug,"LoggerName").

Multiple exception handling statements can be specified within the list shown above. The processing flow is

on exception, the name of the exception listed in the statement is compared to the thrown exception to see if

there is a match. A comma separated list of exceptions can be used to group together the same action taken for

different exception names. If the action to take is logging, then the logging action is performed and the search

for other matching exception names continues. For all other actions, namely translate, wrap, replace, swallow,

return, once an exception handler is matched, those in the chain are no longer evaluated. Note, do not confuse

this handler chain with the general advice AOP advice chain. For translate, wrap, and replace actions a SpEL

Aspect Library

Spring Framework (Version 1.3.2) 164

expression is created and used to instantiate a new exception (in addition to any other processing that may occur

when evaluating the expression) which is then thrown.

The exception handling DSL also supports the ability to provide a SpEL boolean expression to determine if the

advice will apply instead of just filtering by the expression name. For example, the following is the equivalent to

the first example based on exception names but compares the specific type of the exception thrown

on exception (#e is T(System.ArithmeticException)) wrap System.InvalidOperationException

The syntax use is 'on exception (SpEL boolean expression)' and inside the expression you have access to the

variables of the calling context listed before, i.e. method, args, target, and e. This can be useful to implement

a small amount of conditional logic, such as checking for a specific error number in an exception, i.e. (#e is

T(System.Data.SqlException) && #e.Errors[0].Number in {156,170,207,208}), to catch and translate bad

grammar codes in a SqlException.

While the examples given above are toy examples, they could just as easily be changed to convert your application

specific exceptions. If you find yourself pushing the limits of using SpEL expressions, you will likely be better

off creating your own custom aspect class instead of a scripting approach.

You can also configure the each of the Handlers individually based on the action keyword. For example, to

configure the logging properties on the LogExceptionHandler.

<object name="logExceptionHandler" type="Spring.Aspects.Exceptions.LogExceptionHandler, Spring.Aop">

 <property name="LogName" value="Cms.Session.ExceptionHandler" />

 <property name="LogLevel" value="Debug"/>

 <property name="LogMessageOnly" value="true"/>

</object>

<object name="exceptionHandlingAdvice" type="Spring.Aspects.Exceptions.ExceptionHandlerAdvice, Spring.Aop">

 <property name="ExceptionHandlerDictionary">

 <dictionary>

 <entry key="log" ref="logExceptionHandler"/>

 </dictionary>

 </property>

 <property name="ExceptionHandlers">

 <list>

 <value>on exception name ArithmeticException,ArgumentException log 'My Message, Method Name ' +

 #method.Name</value>

 </list>

 </property>

</object>

You can also configure ExceptionHandlerAdvice to use an instance of IExceptionHandler by specifing it as

an entry in the ExceptionHandlers list. This gives you complete control over all properties of the handler but

you must set ConstraintExpressionText and ActionExpressionText which are normally parsed for you from the

string. To use the case of configuring the LogExceptionHandler, this approach also lets you specify advanced

logging functionality, but at a cost of some additional complexity. For example setting the logging level and pass

the exception into the logging subsystem

<object name="exceptionHandlingAdvice" type="Spring.Aspects.Exceptions.ExceptionHandlerAdvice, Spring.Aop">

 <property name="exceptionHandlers">

 <list>

 <object type="Spring.Aspects.Exceptions.LogExceptionHandler">

 <property name="LogName" value="Cms.Session.ExceptionHandler" />

 <property name="ConstraintExpressionText" value="#e is T(System.Threading.ThreadAbortException)" />

 <property name="ActionExpressionText" value="#log.Fatal('Request Timeout occured', #e)" />

 </object>

 </list>

 </property>

</object>

Aspect Library

Spring Framework (Version 1.3.2) 165

The configuration of the logger name, level, and weather or not to pass the thrown exception as the second

argument to the log method will be supported in the DSL style in a future release.

14.3.1. Language Reference

The general syntax of the language is

on exception name [ExceptionName1,ExceptionName2,...] [action] [SpEL expression]

or

on exception (SpEL boolean expression) [action] [SpEL expression]

The exception names are required as well as the action. The valid actions are

• log

• translate

• wrap

• replace

• return

• swallow

• execute

The form of the expression depends on the action. For logging, the entire string is taken as the SpEL expression

to log. Translate expects an exception to be returned from evaluation the SpEL expression. Wrap and replace are

shorthand for the translate action. For wrap and replace you specify the exception name and the message to pass

into the standard exception constructors (string, exception) and (string). The exception name can be a partial or

fully qualified name. Spring will attempt to resolve the typename across all referenced assemblies. You may also

register type aliases for use with SpEL in the standard manner with Spring.NET and those will be accessible from

within the exception handling expression.

14.4. Logging

The logging advice lets you log the information on method entry, exit and thrown exception (if any). The

implementation is based on the logging library, Common.Logging, that provides portability across different

logging libraries. There are a number of configuration options available, listed below

• LogUniqueIdentifier

• LogExecutionTime

• LogMethodArguments

• LogReturnValue

• Separator

• LogLevel

http://netcommon.sourceforge.net/

Aspect Library

Spring Framework (Version 1.3.2) 166

You declare the logging advice in IoC container with the following XML fragment. Alternatively, you can use

the class SimpleLoggingAdvice programatically.

<object name="loggingAdvice" type="Spring.Aspects.Logging.SimpleLoggingAdvice, Spring.Aop">

 <property name="LogUniqueIdentifier" value="true"/>

 <property name="LogExecutionTime" value="true"/>

 <property name="LogMethodArguments" value="true"/>

 <property name="LogReturnValue" value="true"/>

 <property name="Separator" value=";"/>

 <property name="LogLevel" value="Info"/>

 <property name="HideProxyTypeNames" value="true"/>

 <property name="UseDynamicLogger" value="true"/>

</object>

The default values for LogUniqueIdentifier, LogExecutionTime, LogMethodArguments and LogReturnValue

are false. The default separator value is ", " and the default log level is Common.Logging's LogLevel.Trace.

You can set the name of the logger with the property LoggerName, for example "DataAccessLayer" for a

logging advice that would be applied across the all the classes in the data access layer. That works well when

using a 'category' style of logging. If you do not set the LoggerName property, then the type name of the

logging advice is used as the logging name. Another approach to logging is to log based on the type of the

object being called, the target type. Since often this is a proxy class with a relatively meaningless name, the

property HideProxyTypeNames can be set to true to show the true target type and not the proxy type. The

UseDynamicLogger property determines which ILog instance should be used to write log messages for a particular

method invocation: a dynamic one for the Type getting called, or a static one for the Type of the trace interceptor.

The default is to use a static logger.

To further extend the functionality of the SimpleLoggingAdvice you can subclass SimpleLoggingAdvice and

override the methods

• string GetEntryMessage(IMethodInvocation invocation, string idString)

• string GetExceptionMessage(IMethodInvocation invocation, Exception e, TimeSpan

executionTimeSpan, string idString)

• string GetExitMessage(IMethodInvocation invocation, object returnValue, TimeSpan

executionTimeSpan, string idString)

The default implementation to calculate a unique identifier is to use a GUID. You

can alter this behavior by overriding the method string CreateUniqueIdentifier(). The

SimpleLoggingAdvice class inherits from AbstractLoggingAdvice, which has the abstract method object

InvokeUnderLog(IMethodInvocation invocation, ILog log) and you can also override the method ILog

GetLoggerForInvocation(IMethodInvocation invocation) to customize the logger instance used for logging.

Refer to the SDK documentation for more details on subclassing AbstractLoggingAdvice.

As an example of the Logging advice's output, adding the advice to the method

public int Bark(string message, int[] luckyNumbers)

{

 return 4;

}

And calling Bark("hello", new int[]{1, 2, 3}), results in the following output

Entering Bark, 5d2bad47-62cd-435b-8de7-91f12b7f433e, message=hello; luckyNumbers=System.Int32[]

Aspect Library

Spring Framework (Version 1.3.2) 167

Exiting Bark, 5d2bad47-62cd-435b-8de7-91f12b7f433e, 30453.125 ms, return=4

The method parameters values are obtained using the ToString() method. If you would like to

have an alternate implementation, say to view some values in an array, override the method string

GetMethodArgumentAsString(IMethodInvocation invocation).

14.5. Retry

When making a distributed call it is often a common requirement to be able to retry the method invocation if there

was an exception. Typically the exception will be due to a communication issue that is intermittent and retrying

over a period of time will likely result in a successful invocation. When applying retry advice it is important to

know if making two calls to the remote service will cause side effects. Generally speaking, the method being

invoked should be idempotent, that is, it is safe to call multiple times.

The retry advice is specified using a little language, i.e a DSL. A simple example is shown below

on exception name ArithmeticException retry 3x delay 1s

The meaning is: when an exception that has 'ArithmeticException' in its type name is thrown, retry the invocation

up to 3 times and delay for 1 second between each retry event.

You can also provide a SpEL (Spring Expression Language) expression that calculates the time interval to sleep

between each retry event. The syntax for this is shown below

on exception name ArithmeticException retry 3x rate (1*#n + 0.5)

As with the exception handling advice, you may also specify a boolean SpEL that must evaluate to true in order

for the advice to apply. For example

on exception (#e is T(System.ArithmeticException)) retry 3x delay 1s

on exception (#e is T(System.ArithmeticException)) retry 3x rate (1*#n + 0.5)

The time specified after the delay keyword is converted to a TimeSpan object using Spring's TimeSpanConverter.

This supports setting the time as an integer + time unit. Time units are (d, h, m, s, ms) representing (days, hours,

minutes, seconds, and milliseconds). For example; 1d = 1day, 5h = 5 hours etc. You can not specify a string such

as '1d 5h'. The value that is calculated from the expression after the rate keyword is interpreted as a number of

seconds. The power of using SpEL for the rate expression is that you can easily specify some exponential retry

rate (a bigger delay for each retry attempt) or call out to a custom function developed for this purpose.

When using a SpEL expression for the filter condition or for the rate expression, the following variable are

available

• method - the MethodInfo object corresponding to the method that threw the exception

• args - the argument array to the method that threw the exception, signature is object[]

• target - the AOP target object instance.

• e - the thrown exception

You declare the advice in IoC container with the following XML fragment. Alternatively, you can use the

RetryAdvice class programatically.

<object name="exceptionHandlingAdvice" type="Spring.Aspects.RetryAdvice, Spring.Aop">

http://en.wikipedia.org/wiki/Idempotent#Computer_Science

Aspect Library

Spring Framework (Version 1.3.2) 168

 <property name="retryExpression" value="on exception name ArithmeticException retry 3x delay 1s"/>

</object>

14.5.1. Language Reference

The general syntax of the language is

on exception name [ExceptionName1,ExceptionName2,...] retry [number of times]x [delay|rate]

[delay time|SpEL rate expression]

or

on exception (SpEL boolean expression) retry [number of times]x [delay|rate] [delay time|

SpELrate expression]

14.6. Transactions

The transaction aspect is more fully described in the section on transaction management.

14.7. Parameter Validation

Spring provides a UI-agnostic validation framework in which you can declare validation rules, both

progammatically and declaratively, and have those rules evaluated against an arbitrary .NET object. Spring

provides additional support for the rendering of validation errors within Spring's ASP.NET framework. (See the

section on ASP.NET usage tips for more information.) However, validation is not confined to the UI tier. It is a

common task that occurs across most, if not all, applications layers. Validation that is performed in the UI layer is

often repeated in the service layer, in order to be proactive in case non UI-based clients invoke the service layer.

Validation rules completely different from those used in the UI layer may also be used on the server side.

To address some of the common needs for validation on the server side, Spring provides parameter validation

advice so that applies Spring's validation rules to the method parameters. The class ParameterValidationAdvice

is used in conjunction with the Validated attribute to specify which validation rules are applied to method

parameters. For example, to apply parameter validation to the method SuggestFlights in the BookingAgent class

used in the SpringAir sample application, you would apply the Validated attribute to the method parameters as

shown below.

public FlightSuggestions SuggestFlights([Validated("tripValidator")] Trip trip)

{

 // unmodified implementation goes here

}

The Validated attribute takes a string name that specifies the name of the validation rule, i.e. the name of

the IValidator object in the Spring application context. The Validated attribute is located in the namespace

Spring.Validation of the Spring.Core assembly.

The configuration of the advice is to simply define the an instance of the ParameterValidationAdvice class and

apply the advice, for example based on object names using an ObjectNameAutoProxyCreator, as shown below,

<object id="validationAdvice" type="Spring.Aspects.Validation.ParameterValidationAdvice, Spring.Aop"/>

<object type="Spring.Aop.Framework.AutoProxy.ObjectNameAutoProxyCreator, Spring.Aop">

 <property name="ObjectNames">

 <list>

 <value>bookingAgent</value>

 </list>

 </property>

Aspect Library

Spring Framework (Version 1.3.2) 169

 <property name="InterceptorNames">

 <list>

 <value>validationAdvice</value>

 </list>

 </property>

</object>

When the advised method is invoked first the validation of each method parameter is performed. If all validation

succeeds, then the method body is executed. If validation fails an exception of the type ValidationException is

thrown and you can retrieve errors information from its property ValidationErrors. See the SDK documentation

for details.

Spring Framework (Version 1.3.2) 170

Chapter 15. Common Logging

15.1. Introduction

Spring uses a simple logging abstraction in order to provide a layer of indirection between logging calls made

by Spring and the specific logging library used in your application (log4net, EntLib logging, NLog). The library

is available for .NET 1.0, 1.1, and 2.0 with both debug and strongly signed assemblies. Since this need is not

specific to Spring, the logging library was moved out of the Spring project and into a more general open source

project called Common Infrastructure Libraries for .NET. The logging abstraction within the project is known as

Common.Logging. Note that it is not the intention of this library to be a replacement for the many fine logging

libraries that are out there. The API is incredibly minimal and will very likely stay that way. Please note that this

library is intended only for use where the paramount requirement is portability and you will generally be better

served by using a specific logging implementation so that you can leverage its advanced features and extended

APIs to your advantage.

You can find online documentation on how to configure Common.Logging is available in HTML , PDF, and

HTML Help formats.

http://netcommon.sourceforge.net/
http://netcommon.sourceforge.net/doc-latest/reference/html/index.html
http://netcommon.sourceforge.net/doc-latest/reference/pdf/commong-logging-reference.pdf
http://netcommon.sourceforge.net/doc-latest/reference/htmlhelp/htmlhelp.chm

Spring Framework (Version 1.3.2) 171

Chapter 16. Testing

16.1. Introduction

The Spring team considers developer testing to be an absolutely integral part of enterprise software development.

A thorough treatment of testing in the enterprise is beyond the scope of this chapter; rather, the focus here is on

the value add that the adoption of the IoC principle can bring to unit testing; and on the benefits that the Spring

Framework provides in integration testing.

16.2. Unit testing

One of the main benefits of Dependency Injection is that your code is much less likely to have any hidden

dependencies on the runtime environment or other configuration subsystems. This allows for unit tests to be

written in a manner such that the object under test can be simply instantiated with the new operator and have its

dependences set in the unit test code. You can use mock objects (in conjunction with many other valuable testing

techniques) to test your code in isolation. If you follow the architecture recommendations around Spring you

will find that the resulting clean layering and componentization of your codebase will naturally faciliate easier

unit testing. For example, you will be able to test service layer objects by stubbing or mocking DAO interfaces,

without any need to access persistent data while running unit tests.

True unit tests typically will run extremely quickly, as there is no runtime infrastructure to set up, i.e., database,

ORM tool, or whatever. Thus emphasizing true unit tests as part of your development methodology will boost

your productivity. The upshot of this is that you do not need this section of the testing chapter to help you write

effective unit tests for your IoC-based applications.

16.3. Integration testing

However, it is also important to be able to perform some integration testing enabling you to test things such as:

• The correct wiring of your Spring IoC container contexts.

• Data access using ADO.NET or an ORM tool. This would include such things such as the correctness of SQL

statements / or NHibernate XML mapping files.

The Spring Framework provides support for integration testing when using NUnit and Microsoft's Testing

framework 'MSTest'. The NUnit classses are located in the assembly Spring.Testing.NUnit.dll and the MSTest

is located in Spring.Testing.Microsoft.dll.

Note

The Spring.Testing.NUnit.dll library is compiled against NUnit 2.5.1. Note that test runners

integrated inside VS.NET may or may not support this version. At the time of this writing Reshaper

4.5.0 did not properly support NUnit 2.5.1. To use Resharper with NUnit 2.5.1 you need to download

4.5.1 RC2 or later.

These namespaces provides NUnit and MSTest superclasses for integration testing using a Spring container.

These superclasses provide the following functionality:

• Spring IoC container caching between test case execution.

Testing

Spring Framework (Version 1.3.2) 172

• The pretty-much-transparent Dependency Injection of test fixture instances (this is nice).

• Transaction management appropriate to integration testing (this is even nicer).

• A number of Spring-specific inherited instance variables that are really useful when integration testing.

16.3.1. Context management and caching

The Spring.Testing.NUnit and Spring.Testing.Microsoft namespace provides support for consistent loading

of Spring contexts, and caching of loaded contexts. Similarly Spring.TestingSupport for the caching of loaded

contexts is important, because if you are working on a large project, startup time may become an issue - not because

of the overhead of Spring itself, but because the objects instantiated by the Spring container will themselves take

time to instantiate. For example, a project with 50-100 NHibernate mapping files might take 10-20 seconds to

load the mapping files, and incurring that cost before running every single test case in every single test fixture

will lead to slower overall test runs that could reduce productivity.

To address this issue, the AbstractDependencyInjectionSpringContextTests has an protected property that

subclasses must implement to provide the location of context definition files:

protected abstract string[] ConfigLocations { get; }

Implementations of this method must provide an array containing the IResource locations of XML configuration

metadata used to configure the application. This will be the same, or nearly the same, as the list of configuration

locations specified in App.config/Web.config or other deployment configuration.

By default, once loaded, the configuration file set will be reused for each test case. Thus the setup cost

will be incurred only once (per test fixture), and subsequent test execution will be much faster. In the

unlikely case that a test may 'dirty' the config location, requiring reloading - for example, by changing

an object definition or the state of an application object - you can call the SetDirty() method on

AbstractDependencyInjectionSpringContextTests to cause the test fixture to reload the configurations and

rebuild the application context before executing the next test case.

16.3.2. Dependency Injection of test fixtures

When AbstractDependencyInjectionSpringContextTests (and subclasses) load your application context, they

can optionally configure instances of your test classes by Setter Injection. All you need to do is to define instance

variables and the corresponding setters. AbstractDependencyInjectionSpringContextTests will automatically

locate the corresponding object in the set of configuration files specified in the ConfigLocations property.

Consider the scenario where we have a class, HibernateTitleDao, that performs data access logic for say, the

Title domain object. We want to write integration tests that test all of the following areas:

• The Spring configuration; basically, is everything related to the configuration of the HibernateTitleDao object

correct and present?

• The Hibernate mapping file configuration; is everything mapped correctly and are the correct lazy-loading

settings in place?

• The logic of the HibernateTitleDao; does the configured instance of this class perform as anticipated?

Let's look at the NUnit test class itself (we will look at the configuration immediately afterwards).

/// Using NUnit

Testing

Spring Framework (Version 1.3.2) 173

[TestFixture]

public class HibernateTitleDaoTests : AbstractDependencyInjectionSpringContextTests {

 // this instance will be (automatically) dependency injected

 private HibernateTitleDao titleDao;

 // a setter method to enable DI of the 'titleDao' instance variable

 public HibernateTitleDao HibernateTitleDao {

 set { titleDao = value; }

 }

 [Test]

 public void LoadTitle() {

 Title title = this.titleDao.LoadTitle(10);

 Assert.IsNotNull(title);

 }

 // specifies the Spring configuration to load for this test fixture

 protected override string[] ConfigLocations {

 return new String[] { "assembly://MyAssembly/MyNamespace/daos.xml" };

 }

}

The file referenced by the ConfigLocations method ('classpath:com/foo/daos.xml') looks like this:

<?xml version="1.0" encoding="utf-8" ?>

<objects xmlns="http://www.springframework.net">

 <!-- this object will be injected into the HibernateTitleDaoTests class -->

 <object id="titleDao" type="Spring.Samples.HibernateTitleDao, Spring.Samples">

 <property name="sessionFactory" ref="sessionFactory"/>

 </object>

 <object id="sessionFactory" type="Spring.Data.NHibernate.LocalSessionFactoryObject,

 Spring.Data.NHibernate">

 <!-- dependencies elided for clarity -->

 </object>

</objects>

The AbstractDependencyInjectionSpringContextTests classes uses autowire by type. Thus if you have

multiple object definitions of the same type, you cannot rely on this approach for those particular object. In that

case, you can use the inherited applicationContext instance variable, and explicit lookup using (for example)

an explicit call to applicationContext.GetObject("titleDao").

Using AbstractDependencyInjectionSpringContextTests with MSTest is very similar.

/// Using Microsoft's Testing Framework

[TestClass]

public class HibernateTitleDaoTests : AbstractDependencyInjectionSpringContextTests {

 // this instance will be (automatically) dependency injected

 private HibernateTitleDao titleDao;

 // a setter method to enable DI of the 'titleDao' instance variable

 public HibernateTitleDao HibernateTitleDao {

 set { titleDao = value; }

 }

 [Test]

 public void LoadTitle() {

 Title title = this.titleDao.LoadTitle(10);

 Assert.IsNotNull(title);

 }

 // specifies the Spring configuration to load for this test fixture

 protected override string[] ConfigLocations {

 return new String[] { "assembly://MyAssembly/MyNamespace/daos.xml" };

Testing

Spring Framework (Version 1.3.2) 174

 }

}

If you don't want dependency injection applied to your test cases, simply don't declare any set properties.

Alternatively, you can extend the AbstractSpringContextTests - the root of the class hierarchy in the

Spring.Testing.NUnit and Spring.Testing.Microsoft namespaces. It merely contains convenience methods

to load Spring contexts, and performs no Dependency Injection of the test fixture.

16.3.2.1. Field level injection

If, for whatever reason, you don't fancy having setter properties in your test fixtures, Spring can (in this one case)

inject dependencies into protected fields. Find below a reworking of the previous example to use field level

injection (the Spring XML configuration does not need to change, merely the test fixture).

[TestFixture]

public class HibernateTitleDaoTests : AbstractDependencyInjectionSpringContextTests{

 public HibernateTitleDaoTests() {

 // switch on field level injection

 PopulateProtectedVariables = true;

 }

 // this instance will be (automatically) dependency injected

 protected HibernateTitleDao titleDao;

 [TestMethod]

 public void LoadTitle() {

 Title title = this.titleDao.LoadTitle(10);

 Assert.IsNotNull(title);

 }

 // specifies the Spring configuration to load for this test fixture

 protected override string[] ConfigLocations {

 return new String[] { "assembly://MyAssembly/MyNamespace/daos.xml" };

 }

}

In the case of field injection, there is no autowiring going on: the name of your protected instances variable(s)

are used as the lookup object name in the configured Spring container.

16.3.3. Transaction management

One common issue in tests that access a real database is their effect on the state of the persistence store. Even

when you're using a development database, changes to the state may affect future tests. Also, many operations -

such as inserting to or modifying persistent data - cannot be done (or verified) outside a transaction.

The AbstractTransactionalDbProviderSpringContextTests superclass (and subclasses) exist to meet this

need. By default, they create and roll back a transaction for each test. You simply write code that can assume

the existence of a transaction. If you call transactionally proxied objects in your tests, they will behave correctly,

according to their transactional semantics.

AbstractTransactionalSpringContextTests depends on a IPlatformTransactionManager object being

defined in the application context. The name doesn't matter, due to the use of autowire by type.

Typically you will extend the subclass, AbstractTransactionalDbProviderSpringContextTests. This also

requires that a DbProvider object definition - again, with any name - be present in the configurations. It creates

an AdoTemplate instance variable that is useful for convenient querying, and provides handy methods to delete

the contents of selected tables (remember that the transaction will roll back by default, so this is safe to do).

Testing

Spring Framework (Version 1.3.2) 175

If you want a transaction to commit - unusual, but occasionally useful when you want a

particular test to populate the database - you can call the SetComplete() method inherited from

AbstractTransactionalSpringContextTests. This will cause the transaction to commit instead of roll back.

There is also convenient ability to end a transaction before the test case ends, through calling the

EndTransaction() method. This will roll back the transaction by default, and commit it only if SetComplete()

had previously been called. This functionality is useful if you want to test the behavior of 'disconnected' data

objects, such as Hibernate-mapped objects that will be used in a web or remoting tier outside a transaction. Often,

lazy loading errors are discovered only through UI testing; if you call EndTransaction() you can ensure correct

operation of the UI through your NUnit test suite.

16.3.4. Convenience variables

When you extend the AbstractTransactionalDbProviderSpringContextTests class you will have access to

the following protected instance variables:

• applicationContext (a IConfigurableApplicationContext): inherited from the

AbstractDependencyInjectionSpringContextTests superclass. Use this to perform explicit object lookup,

or test the state of the context as a whole.

• adoTemplate: inherited from AbstractTransactionalDbProviderSpringContextTests. Useful for querying

to confirm state. For example, you might query before and after testing application code that creates an object

and persists it using an ORM tool, to verify that the data appears in the database. (Spring will ensure that the

query runs in the scope of the same transaction.) You will need to tell your ORM tool to 'flush' its changes for

this to work correctly, for example using the Flush() method on NHibernate's ISession interface.

Often you will provide an application-wide superclass for integration tests that provides further useful instance

variables used in many tests.

Spring Framework (Version 1.3.2) 176

Part II. Middle Tier Data Access
This part of the reference documentation is concerned with othe middle tier, and specifically the data access

responsibilities of said tier.

Spring's comprehensive transaction management support is covered in some detail, followed by thorough

coverage of the various middle tier data access frameworks and technologies that the Spring Framework integrates

with.

• Chapter 17, Transaction management

• Chapter 18, DAO support

• Chapter 19, DbProvider

• Chapter 20, Data access using ADO.NET

• Chapter 21, Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 177

Chapter 17. Transaction management

17.1. Introduction

Spring.NET provides a consistent abstraction for transaction management that provides the following benefits

• Provides a consistent programming model across different transaction APIs such as ADO.NET, Enterprise

Services, System.Transactions, and NHibernate.

• Support for declarative transaction management with any of the above data access technologies

• Provides a simple API for programmatic transaction management

• Integrates with Spring's high level persistence integration APIs such as AdoTemplate.

This chapter is divided up into a number of sections, each detailing one of the value-adds or technologies of the

Spring Framework's transaction support. The chapter closes with some discussion of best practices surrounding

transaction management.

• The first section, entitled Motivations describes why one would want to use the Spring Framework's transaction

abstraction as opposed to using System.Transactions or a specific data access technology transaction API.

• The second section, entitled Key Abstractions outline the core classes as well as how to configure them.

• Th third section, entitled Declarative transaction management, covers support for declarative transaction

management.

• The fourth section, entitled Programmatic transaction management, covers support for programmatic

transaction management.

17.2. Motivations

The data access technology landscape is a broad one, within the .NET BCL there are three APIs for performing

transaction management, namely ADO.NET, Enterprise Services, and System.Transactions. Other data access

technologies such as object relational mappers and result-set mapping libraries are also gaining in popularity

and each come with their own APIs for transaction management. As such, code is often directly tied to a

particular transaction API which means you must make an up-front decision which API to use in your application.

Furthermore, if the need arises to change your approach, it quite often will not be a simple refactoring. Using

Spring's transaction API you can keep the same API across different data access technologies. Changing

the underlying transaction implementation that is used is a simple matter of configuration or a centralized

programmatic change as compared to a major overhauling.

Hand in hand with the variety of options available is the establishment generally agreed upon best practices

for data access. Martin Fowler's book, Patterns of Enterprise Application Architecture, is an excellent source of

approaches to data access that have been successful in the real world. One approach that is quite common is to

introduce a data access layer into your architecture. The data access layer is concerned not only with providing

some portability between different data access technologies and databases but its scope is strictly related to data

access. A simple data access layer would be not much more than data access objects (DAOs) with 'Create/Retrieve/

Update/Delete' (CRUD) methods devoid of any business logic. Business logic resides in another application layer,

the business service layer, in which business logic will call one or more DAOs to fulfill a higher level end-user

function.

Transaction management

Spring Framework (Version 1.3.2) 178

In order to perform this end-user function with all-or-nothing transactional semantics, the transaction context

is controlled by the business service layer (or other 'higher' layers). In such a common scenario, an important

implementation detail is how to make the DAO objects aware of the 'outer' transaction started in another layer.

A simplistic implementation of a DAO would perform its own connection and transaction management, but this

would not allow grouping of DAO operations with the same transaction as the DAO is doing its own transaction/

resource management. As such there needs to be a means to transfer the connection/transaction pair managed

in the business service layer to the DAOs. There are a variety of ways to do this, the most invasive being the

explicitly pass a connection/transaction object as method arguments to your DAOs. Another way is to store the

connection/transaction pair in thread local storage. In either case, if you are using ADO.NET you must invent

some infrastructure code to perform this task.

But wait, doesn't Enterprise Services solve this problem - and what about the functionality in the

System.Transactions namespace? The answer is yes...and no. Enterprise Services lets you use the 'raw' ADO.NET

API within a transaction context such that multiple DAO operations are grouped within the same transaction.

The downside to Enterprise Services is that it always uses distributed (global) transactions via the Microsoft

Distributed Transaction Coordinator (MS-DTC). For most applications this is overkill just to get this functionality

as global transactions are significantly less performant than local ADO.NET transactions.

There are similar issues with using the 'using TransactionScope' construct within the new System.Transactions

namespace. The goal with TransactionScope is to define a, well - transaction scope - within a using statement.

Plain ADO.NET code within that using block will then be a local ADO.NET based transaction if only a single

transactional resource is accessed. However, the 'magic' of System.Transactions (and the database) is that local

transactions will be promoted to distributed transactions when a second transaction resource is detected. The name

that this goes by is Promotable Single Phase Enlistment (PSPE). However, there is a big caveat - opening up a

second IDbConnection object to the same database with the same database string will trigger promotion from

local to global transactions. As such, if your DAOs are performing their own connection management you will

end up being bumped up to a distributed transaction. In order to avoid this situation for the common case of an

application using a single database, you must pass around a connection object to your DAOs. It is also worth

to note that many database providers (Oracle for sure) do not yet support PSPE and as such will always use a

distributed transaction even if there is only a single database.

Last but not least is the ability to use declarative transaction management. Not many topics in database transaction-

land give developers as much 'bang-for-the-buck' as declarative transactions since the noisy tedious bits of

transactional API code in your application are pushed to the edges, usually in the form of class/method attributes.

Only Enterprise Services offers this feature in the BCL. Spring fills the gap - it provides declarative transaction

management if you are using local ADO.NET or System.Transactions (the most popular) or other data access

technologies. Enterprise Services is not without it small warts as well, such as the need to separate your query/

retrieve operations from your create/update/delete operations if you want to use different isolation levels since

declarative transaction metadata can only be applied at the class level. Nevertheless, all in all, Enterprise Services,

in particular with the new 'Services Without Components' implementation for XP SP2/Server 2003, and hosted

within the same process as your application code is as good as it gets out of the .NET box. Despite these positive

points, it hasn't gained a significant mindshare in the development community.

Spring's transaction support aims to relieve these 'pain-points' using the data access technologies within the BCL

- and for other third party data access technologies as well. It provides declarative transaction management with

a configurable means to obtain transaction option metadata - out of the box attributes and XML within Spring's

IoC configuration file are supported.

Finally, Spring's transaction support lets you mix data access technologies within a single transaction - for example

ADO.NET and NHibernate operations.

Transaction management

Spring Framework (Version 1.3.2) 179

With this long winded touchy/feely motivational section behind us, lets move on to see the code.

17.3. Key Abstractions

The key to the Spring transaction management abstraction is the notion of a transaction strategy. A transaction

strategy is defined by the Spring.Transaction.IPlatformTransactionManager interface, shown below:

public interface IPlatformTransactionManager {

 ITransactionStatus GetTransaction(ITransactionDefinition definition);

 void Commit(ITransactionStatus transactionStatus);

 void Rollback(ITransactionStatus transactionStatus);

}

This is primarily a 'SPI' (Service Provider Interface), although it can be used Programatically. Note that in keeping

with the Spring Framework's philosophy, IPlatformTransactionManager is an interface, and can thus be easily

mocked or stubbed as necessary. IPlatformTransactionManager implementations are defined like any other

object in the IoC container. The following implementations are provided

• AdoPlatformTransactionManager - local ADO.NET based transactions

• ServiceDomainPlatformTransactionManager - distributed transaction manager from Enterprise Services

• TxScopePlatformTransactionManager - local/distributed transaction manager from System.Transactions.

• HibernatePlatformTransactionManager - local transaction manager for use with NHibernate or mixed

ADO.NET/NHibernate data access operations.

Under the covers, the following API calls are made. For the AdoPlatformTransactionManager,

Transaction.Begin(), Commit(), Rollback(). ServiceDomainPlatformTransactionManager uses the

'Services without Components' update so that your objects do not need to inherit from

ServicedComponent or directly call the Enterprise Services API ServiceDomain.Enter(), Leave;

ContextUtil.SetAbort(). TxScopePlatformTransactionManager calls; new TransactionScope(); .Complete(),

Dispose(), Transaction.Current.Rollback(). Configuration properties for each transaction manager are specific to

the data access technology used. Refer to the API docs for comprehensive information but the examples should

give you a good basis for getting started. The HibernatePlatformTransactionManager is described more in the

following section .

The GetTransaction(..) method returns a ITransactionStatus object, depending on a

ITransactionDefinition parameters. The returned ITransactionStatus might represent a new or existing

transaction (if there was a matching transaction in the current call stack - with the implication being that a

ITransactionStatus is associated with a logical thread of execution.

The ITransactionDefinition interface specified

• Isolation: the degree of isolation this transaction has from the work of other transactions. For example, can this

transaction see uncommitted writes from other transactions?

• Propagation: normally all code executed within a transaction scope will run in that transaction. However, there

are several options specifying behavior if a transactional method is executed when a transaction context already

exists: for example, simply continue running in the existing transaction (the common case); or suspending the

existing transaction and creating a new transaction.

Transaction management

Spring Framework (Version 1.3.2) 180

• Timeout: how long this transaction may run before timing out (and automatically being rolled back by the

underlying transaction infrastructure).

• Read-only status: a read-only transaction does not modify any data. Read-only transactions can be a useful

optimization in some cases (such as when using NHibernate).

These settings reflect standard transactional concepts. If necessary, please refer to a resource discussing

transaction isolation levels and other core transaction concepts because understanding such core concepts is

essential to using the Spring Framework or indeed any other transaction management solution.

The ITransactionStatus interface provides a simple way for transactional code to control transaction execution

and query transaction status.

Regardless of whether you opt for declarative or programmatic transaction management in Spring, defining

the correct IPlatformTransactionManager implementation is absolutely essential. In good Spring fashion, this

important definition typically is made using via Dependency Injection.

IPlatformTransactionManager implementations normally require knowledge of the environment in which

they work, ADO.NET, NHibernate, etc. The following example shows how a standard ADO.NET based

IPlatformTransactionManager can be defined.

We must define a Spring IDbProvider and then use Spring's AdoPlatformTransactionManager, giving it a

reference to the IDbProvider. For more information on the IDbProvider abstraction refer to the next chapter.

<objects xmlns='http://www.springframework.net'

 xmlns:db="http://www.springframework.net/database">

 <db:provider id="DbProvider"

 provider="SqlServer-1.1"

 connectionString="Data Source=(local);Database=Spring;User

 ID=springqa;Password=springqa;Trusted_Connection=False"/>

 <object id="TransactionManager"

 type="Spring.Data.Core.AdoPlatformTransactionManager, Spring.Data">

 <property name="DbProvider" ref="DbProvider"/>

 </object>

 . . . other object definitions . . .

</objects>

We can also use a transaction manager based on System.Transactions just as easily, as shown in the following

example

 <object id="TransactionManager"

 type="Spring.Data.Core.TxScopeTransactionManager, Spring.Data">

 </object>

Similarly for the HibernateTransactionManager as shown in the section on ORM transaction management.

Note that in all these cases, application code will not need to change at all since, dependency injection is a perfect

companion to using the strategy pattern. We can now change how transactions are managed merely by changing

configuration, even if that change means moving from local to global transactions or vice versa.

17.4. Resource synchronization with transactions

How does application code participate with the resources (i.e. Connection/Transactions/Sessions) that are created/

reused/cleanedup via the different transaction managers? There are two approaches - a high-level and a low-level

approach

Transaction management

Spring Framework (Version 1.3.2) 181

17.4.1. High-level approach

The preferred approach is to use Spring's high level persistence integration APIs. These do not replace native

APIs, but internally handle resource creation/reuse, cleanup, and optional transaction synchronization (i.e. event

notification) of the resources and exception mapping so that user data access code doesn't have to worry about

these concerns at all, but can concentrate purely on non-boilerplate persistence logic. Generally, the same

inversion of control approach is used for all persistence APIs. In this approach the API has a callback method or

delegate that presents the user code with the relevant resource ready to use - i.e. a DbCommand with its Connection

and Transaction properties set based on the transaction option metadata. These classes go by the naming scheme

'template', examples of which are AdoTemplate and HibernateTemplate. Convenient 'one-liner' helper methods

in these template classes build upon the core callback/IoC design by providing specific implementations of the

callback interface.

17.4.2. Low-level approach

A utility class can be used to directly obtain a connection/transaction pair that is aware of the transactional

calling context and returns a pair suitable for that context. The class ConnectionUtils contains the static method

ConnectionTxPair GetConnectionTxPair(IDbProvider provider) which serves this purpose.

public class LowLevelIntegration

{

 // Spring's IDbProvider abstraction

 private IDbProvider dbProvider;

 public IDbProvider dbProvider

 {

 set { dbProvider = value; }

 }

 public void DoWork() {

 ConnectionTxPair connTxPair = ConnectionUtils.GetConnectionTxPair(dbProvider);

 //Use some data access library that allows you to pass in the transaction

 DbWrapper dbWrapper = new DbWrapper();

 string cmdText = ... // some command text

 dbWrapper.ExecuteNonQuery(cmdText, connTxPair.Transaction);

 }

}

17.5. Declarative transaction management
Most Spring users choose declarative transaction management. It is the option with the least impact on application

code, and hence is most consistent with the ideals of a non-invasive lightweight container.

Spring's declarative transaction management is made possible with Spring's aspect-oriented programming (AOP),

although, as the transactional aspects code comes with Spring and may be used in a boilerplate fashion, AOP

concepts do not generally have to be understood to make effective use of this code.

The approach is to specify transaction behavior (or lack of it) down to the individual method level. It is also

possible to mark a transaction for rollback by calling the SetRollbackOnly() method within a transaction context

if necessary. Some of the highlights of Spring's declarative transaction management are:

• Declarative Transaction management works in any environment. It can work with ADO.NET,

System.Transactions, NHibernate etc, with configuration changes only.

• Enables declarative transaction management to be applied to any class, not merely special classes such as those

that inherit from ServicedComponent or other infrastructure related base classes.

Transaction management

Spring Framework (Version 1.3.2) 182

• Declarative rollback rules. Rollback rules can be control declaratively and allow for only specified exceptions

thrown within a transactional context to trigger a rollback

• Spring gives you an opportunity to customize transactional behavior, using AOP. For example if you want to

insert custom behavior in the case of a transaction rollback, you can. You can also add arbitrary advice, along

with the transactional advice.

• Spring does not support propagation of transaction context across remote calls.

The concept of rollback rules is important: they enable us to specify which exceptions should cause automatic

roll back. We specify this declaratively, in configuration, not in code. So, although you can still call

SetRollbackOnly() on the ITransactionStatus object to roll the current transaction back, most often you can

specify a rule that MyApplicationException must always result in rollback. This has the significant advantage

that business objects do not depend on the transaction infrastructure. For example, they typically don't need to

import any Spring transaction APIs or other Spring APIs. However, to rollback the transaction programmatically

when using declarative transaction management, use the utility method

TransactionInterceptor.CurrentTransactionStatus.SetRollbackOnly();

Note

Prior to Spring.NET 1.2 RC1 the API call would be

TransactionInterceptor.CurrentTransactionStatus.RollbackOnly = true;

17.5.1. Understanding Spring's declarative transaction implementation

It is not sufficient to tell you simply to annotate your classes with the [Transaction] attribute, add the line

(<tx:attribute-driven/>) to your configuration, and then expect you to understand how it all works. This

section explains the inner workings of the Spring Framework's declarative transaction infrastructure in the event

of transaction-related issues.

The most important concepts to grasp with regard to the Spring Framework's declarative transaction support are

that this support is enabled via AOP proxies, and that the transactional advice is driven by metadata (currently

XML- or attribute-based). The combination of AOP with transactional metadata yields an AOP proxy that uses a

TransactionInterceptor in conjunction with an appropriate IPlatformTransactionManager implementation to drive

transactions around method invocations.

Note

Spring AOP is covered in Chapter 13, Aspect Oriented Programming with Spring.NET

Conceptually, calling a method on a transactional proxy looks like this.

Transaction management

Spring Framework (Version 1.3.2) 183

17.5.2. Example of declarative transaction implementation

Consider the following interface. The intent is to convey the concepts to you so you can concentrate on the

transaction usage and not have to worry about domain specific details.

Note

A QuickStart application for declarative transaction management is included in the Spring.NET

distribution and is decribed here.

The ITestObjectManager is a poor-mans business service layer - the implementation of which will make two

DAO calls. Clearly this example is overly simplistic from the service layer perspective as there isn't any business

logic at all!. The 'service' interface is shown below.

public interface ITestObjectManager

{

 void SaveTwoTestObjects(TestObject to1, TestObject to2);

 void DeleteTwoTestObjects(string name1, string name2);

}

The implementation of ITestObjectManager is shown below

public class TestObjectManager : ITestObjectManager

{

 // Fields/Properties ommited

 [Transaction]

 public void SaveTwoTestObjects(TestObject to1, TestObject to2)

 {

Transaction management

Spring Framework (Version 1.3.2) 184

 TestObjectDao.Create(to1.Name, to1.Age);

 TestObjectDao.Create(to2.Name, to1.Age);

 }

 [Transaction]

 public void DeleteTwoTestObjects(string name1, string name2)

 {

 TestObjectDao.Delete(name1);

 TestObjectDao.Delete(name2);

 }

}

Note the Transaction attribute on the methods. Other options such as isolation level can also be specified but in

this example the default settings are used. However, please note that the mere presence of the Transaction attribute

is not enough to actually turn on the transactional behavior - the Transaction attribute is simply metadata that can

be consumed by something that is Transaction attribute-aware and that can use the said metadata to configure the

appropriate objects with transactional behavior.

The TestObjectDao property has basic create update delete and find method for the 'domain' object TestObject.

TestObject in turn has simple properties like name and age.

public interface ITestObjectDao

{

 void Create(string name, int age);

 void Update(TestObject to);

 void Delete(string name);

 TestObject FindByName(string name);

 IList FindAll();

}

The Create and Delete method implementation is shown below. Note that this uses the AdoTemplate class

discussed in the following chapter. Refer to Section 17.4, “Resource synchronization with transactions”

for information on the interaction between Spring's high level persistence integration APIs and transaction

management features.

public class TestObjectDao : AdoDaoSupport, ITestObjectDao

{

 public void Create(string name, int age)

 {

 AdoTemplate.ExecuteNonQuery(CommandType.Text,

 String.Format("insert into TestObjects(Age, Name) VALUES ({0}, '{1}')",

 age, name));

 }

 public void Delete(string name)

 {

 AdoTemplate.ExecuteNonQuery(CommandType.Text,

 String.Format("delete from TestObjects where Name = '{0}'",

 name));

 }

}

The TestObjectManager is configured with the DAO objects by standard dependency injection techniques. The

client code, which in this case directly asks the Spring IoC container for an instance of ITestObjectManager,

will receive a transaction proxy with transaction options based on the attribute metadata. Note that typically the

ITestObjectManager would be set on yet another higher level object via dependency injection, for example a

web service.

The client calling code is shown below

IApplicationContext ctx =

 new XmlApplicationContext("assembly://Spring.Data.Integration.Tests/Spring.Data/

autoDeclarativeServices.xml");

ITestObjectManager mgr = ctx["testObjectManager"] as ITestObjectManager;

Transaction management

Spring Framework (Version 1.3.2) 185

TestObject to1 = new TestObject();

to1.Name = "Jack";

to1.Age = 7;

TestObject to2 = new TestObject();

to2.Name = "Jill";

to2.Age = 8;

mgr.SaveTwoTestObjects(to1, to2);

mgr.DeleteTwoTestObjects("Jack", "Jill");

The configuration of the object definitions of the DAO and manager classes is shown below.

<objects xmlns='http://www.springframework.net'

 xmlns:db="http://www.springframework.net/database">

 <db:provider id="DbProvider"

 provider="SqlServer-1.1"

 connectionString="Data Source=(local);Database=Spring;User

 ID=springqa;Password=springqa;Trusted_Connection=False"/>

 <object id="transactionManager"

 type="Spring.Data.Core.AdoPlatformTransactionManager, Spring.Data">

 <property name="DbProvider" ref="DbProvider"/>

 </object>

 <object id="adoTemplate" type="Spring.Data.AdoTemplate, Spring.Data">

 <property name="DbProvider" ref="DbProvider"/>

 </object>

 <object id="testObjectDao" type="Spring.Data.TestObjectDao, Spring.Data.Integration.Tests">

 <property name="AdoTemplate" ref="adoTemplate"/>

 </object>

 <!-- The object that performs multiple data access operations -->

 <object id="testObjectManager" type="Spring.Data.TestObjectManager, Spring.Data.Integration.Tests">

 <property name="TestObjectDao" ref="testObjectDao"/>

 </object>

</objects>

This is standard Spring configuration and as such provides you with the flexibility to parameterize your connection

string and to easily switch implementations of your DAO objects.

The following section shows how to configure the declarative transactions using Spring's transaction namespace.

17.5.3. Declarative transactions using the transaction namespace

Spring provides a custom XML schema to simplify the configuration of declarative transaction management. If

you would like to perform attribute driven transaction management you first need to register the custom namespace

parser for the transaction namespace. This can be done in the application configuration file as shown below

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core" />

 <!-- other spring config sections like context, typeAliases, etc not shown for brevity -->

 </sectionGroup>

Transaction management

Spring Framework (Version 1.3.2) 186

 </configSections>

 <spring>

 <parsers>

 <parser type="Spring.Data.Config.DatabaseNamespaceParser, Spring.Data" />

 <parser type="Spring.Transaction.Config.TxNamespaceParser, Spring.Data" />

 <parser type="Spring.Aop.Config.AopNamespaceParser, Spring.Aop" />

 </parsers>

 </spring>

 </configSections>

Instead of using the XML configuration listed at the end of the previous section (declarativeServices.xml you can

use the following. Note that the schemaLocation in the objects element is needed only if you have not installed

Spring's schema into the proper VS.NET 2005 location. See the chapter on VS.NET integration for more details.

<objects xmlns="http://www.springframework.net"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:tx="http://www.springframework.net/tx"

 xmlns:db="http://www.springframework.net/database"

 xsi:schemaLocation="http://www.springframework.net http://www.springframework.net/schema/objects/

spring-objects.xsd

 http://www.springframework.net/schema/tx http://www.springframework.net/schema/tx/spring-tx-1.1.xsd"

 http://www.springframework.net/schema/db http://www.springframework.net/schema/db/spring-

database.xsd">

 <db:provider id="DbProvider"

 provider="SqlServer-1.1"

 connectionString="Data Source=(local);Database=Spring;User

 ID=springqa;Password=springqa;Trusted_Connection=False"/>

 <object id="transactionManager"

 type="Spring.Data.Core.AdoPlatformTransactionManager, Spring.Data">

 <property name="DbProvider" ref="DbProvider"/>

 </object>

 <object id="adoTemplate" type="Spring.Data.AdoTemplate, Spring.Data">

 <property name="DbProvider" ref="DbProvider"/>

 </object>

 <object id="testObjectDao" type="Spring.Data.TestObjectDao, Spring.Data.Integration.Tests">

 <property name="AdoTemplate" ref="adoTemplate"/>

 </object>

 <!-- The object that performs multiple data access operations -->

 <object id="testObjectManager"

 type="Spring.Data.TestObjectManager, Spring.Data.Integration.Tests">

 <property name="TestObjectDao" ref="testObjectDao"/>

 </object>

 <tx:attribute-driven transaction-manager="transactionManager"/>

</objects>

Tip

You can actually omit the 'transaction-manager' attribute in the <tx:attribute-driven/> tag

if the object name of the IPlatformTransactionManager that you want to wire in has the name

'transactionManager'. If the PlatformTransactionManager object that you want to dependency

inject has any other name, then you have to be explicit and use the 'transaction-manager' attribute

as in the example above.

The various optional elements of the <tx:attribute-driven/> tag are summarised in the following table

Transaction management

Spring Framework (Version 1.3.2) 187

Table 17.1. <tx:annotation-driven/> settings

Attribute Required? Default Description

transaction-manager No transactionManager The name of transaction

manager to use. Only

required if the name of

the transaction manager is

not transactionManager,

as in the example above.

proxy-target-type No Controls what type

of transactional proxies

are created for classes

annotated with the

[Transaction] attribute.

If "proxy-target-type"

attribute is set to "true",

then class-based proxies

will be created (proxy

inherits from target class,

however calls are still

delegated to target object

via composition. This

allows for casting to base

class. If "proxy-target-

type" is "false" or if

the attribute is omitted,

then a pure composition

based proxy is created

and you can only cast

the proxy to implemented

interfaces. (See the section

entitled Section 13.6,

“Proxying mechanisms”

for a detailed examination

of the different proxy

types.)

order No Defines the order of

the transaction advice

that will be applied to

objects annotated with

[Transaction]. More on

the rules related to

ordering of AOP advice

can be found in the

AOP chapter (see section

Section 13.3.2.5, “Advice

Ordering”). Note that not

specifying any ordering

Transaction management

Spring Framework (Version 1.3.2) 188

Attribute Required? Default Description

will leave the decision as

to what order advice is run

in to the AOP subsystem.

Note

The "proxy-target-type" attribute on the <tx:attribute-driven/> element controls what type of

transactional proxies are created for classes annotated with the Transaction attribute. If "proxy-

target-type" attribute is set to "true", then inheritance-based proxies will be created. If "proxy-

target-type" is "false" or if the attribute is omitted, then composition based proxies will be created.

(See the section entitled Section 13.6, “Proxying mechanisms” for a detailed examination of the

different proxy types.)

You can also define the transactional semantics you want to apply through the use of a <tx:advice> definition.

This lets you define the transaction metadata such as propagation and isolation level as well as the methods for

which that metadata applies external to the code unlike the case of using the transaction attribute. The <tx:advice>

definition creates an instance of a ITransactionAttributeSource during parsing time. Switching to use <tx:advice>

instead of <tx:attribute-driven/> in the example would look like the following

<tx:advice id="txAdvice" transaction-manager="transactionManager">

 <tx:attributes>

 <tx:method name="Save*"/>

 <tx:method name="Delete*"/>

 </tx:attributes>

</tx:advice>

This says that all methods that start with Save and Delete would have associated with them the default settings

of transaction metadata. These default values are listed below..

Here is an example using other elements of the <tx:method/> definition

 <!-- the transactional advice (i.e. what 'happens'; see the <aop:advisor/> object below) -->

 <tx:advice id="txAdvice" transaction-manager="transactionManager">

 <!-- the transactional semantics... -->

 <tx:attributes>

 <!-- all methods starting with 'get' are read-only -->

 <tx:method name="Get*" read-only="true"/>

 <!-- other methods use the default transaction settings (see below) -->

 <tx:method name="*"/>

 </tx:attributes>

 </tx:advice>

The <tx:advice/> definition reads as “... all methods on starting with 'Get' are to execute in the context of a read-

only transaction, and all other methods are to execute with the default transaction semantics”. The 'transaction-

manager' attribute of the <tx:advice/> tag is set to the name of the PlatformTransactionManager object that is

going to actually drive the transactions (in this case the 'transactionManager' object).

You can also use the AOP namespace <aop:advisor> element to tie together a pointcut and the above defined

advice as shown below.

<object id="serviceOperation" type="Spring.Aop.Support.SdkRegularExpressionMethodPointcut, Spring.Aop">

 <property name="pattern" value="Spring.TxQuickStart.Services.*"/>

</object>

<aop:config>

 <aop:advisor pointcut-ref="serviceOperation" advice-ref="txAdvice"/>

Transaction management

Spring Framework (Version 1.3.2) 189

</aop:config>

This is assuming that the service layer class, TestObjectManager, in the namespace Spring.TxQuickStart.Services.

The <aop:config/> definition ensures that the transactional advice defined by the 'txAdvice' object actually

executes at the appropriate points in the program. First we define a pointcut that matches any operation defined

on classes in the Spring.TxQuickStart.Services (you can be more selective in your regular expression). Then we

associate the pointcut with the 'txAdvice' using an advisor. In the example, the result indicates that at the execution

of a 'SaveTwoTestObjects' and 'DeleteTwoTestObject', the advice defined by 'txAdvice' will be run.

The various transactional settings that can be specified using the <tx:advice/> tag. The default <tx:advice/>

settings are listed below and are the same as when you use the Transaction attribute.

• The propagation setting is TransactionPropagation.Required

• The isolation level is IsolationLevel.ReadCommitted

• The transaction is read/write

• The transaction timeout defaults to the default timeout of the underlying transaction system, or none if timeouts

are not supported

• EnterpriseServicesInteropOption (.NET 2.0 only with TxScopeTransactionManager) - options between

transaction created with System.Transactions and transactions created through COM+

• Any exception will trigger rollback.

These default settings can be changed; the various attributes of the <tx:method/> tags that are nested within

<tx:advice/> and <tx:attributes/> tags are summarized below:

Table 17.2. <tx:method/> settings

Attribute Required? Default Description

name Yes The method name(s) with

which the transaction

attributes are to be

associated. The wildcard

(*) character can be

used to associate

the same transaction

attribute settings with

a number of methods;

for example, 'Get*',

'Handle*', 'On*Event',

and so forth.

propagation No Required The transaction

propagation behavior

isolation No ReadCommitted The transaction isolation

level

timeout No -1 The transaction timeout

value (in seconds)

Transaction management

Spring Framework (Version 1.3.2) 190

Attribute Required? Default Description

read-only No false Is this transaction read-

only?

EnterpriseServicesInteropOptionNo None Interoperability options

with COM+ transactions.

(.NET 2.0 and

TxScopeTransactionManager

only)

rollback-for No The Exception(s) that

will trigger rollback;

comma-delimited. For

example,

'MyProduct.MyBusinessException,ValidationException'

no-rollback-for No The Exception(s) that

will not trigger rollback;

comma-delimited. For

example,

'MyProduct.MyBusinessException,ValidationException'

17.5.4. Transaction attribute settings

The Transaction attribute is metadata that specifies that a class or method must have transactional semantics. The

default Transaction attribute settings are

• The propagation setting is TransactionPropagation.Required

• The isolation level is IsolationLevel.ReadCommitted

• The transaction is read/write

• The transaction timeout defaults to the default timeout of the underlying transaction system, or none if timeouts

are not supported

• EnterpriseServicesInteropOption (.NET 2.0 only with TxScopeTransactionManager) - options between

transaction created with System.Transactions and transactions created through COM+

• Any exception will trigger rollback.

The default settings can, of course, be changed; the various properties of the Transaction attribute are summarised

in the following table

Table 17.3. Transaction attribute properties

Property Type Description

TransactionPropagation enumeration,

Spring.Transaction.TransactionPropagation

optional propagation setting. Required,

Supports, Mandatory, RequiresNew,

NotSupported, Never, Nested

Isolation System.Data.IsolationLevel optional isolation level

Transaction management

Spring Framework (Version 1.3.2) 191

ReadOnly boolean read/write vs. read-only transaction

EnterpriseServicesInteropOption enumeration

System.Transactions.EnterpriseServicesInteropOption

Options for interoperability with COM

+ transactions (.NET 2.0 and

TxScopeTransactionManager only)

Timeout int (in seconds granularity) the transaction timeout

RollbackFor an array of Type objects an optional array of exception classes that

must cause rollback

NoRollbackFor an array of Type objects an optional array of exception classes that

must not cause rollback

Note that setting the TransactionPropagation to Nested will throw a NestedTransactionNotSupportedException

in a case where an actual nested transaction occurs, i.e. not in the case of applying the Nested propagation but in

fact no nested calls are made. This will be fixed for the Spring 1.2 release for SqlServer and Oracle which support

nested transactions. Also note, that changing of isolation levels on a per-method basis is also scheduled for the

Spring 1.2 release since it requires detailed command text metadata for each dbprovider. Please check the forums

for news on when this feature will be introduced into the nightly builds.

If you specify an exception type for 'NoRollbackFor' the action taken is to commit the work that has been done in

the database up to the point where the exception occurred. The exception is still propagated out to the calling code.

The ReadOnly boolean is a hint to the data access technology to enable read-only optimizations. This currently

has no effect in Spring's ADO.NET framework. If you would like to enable read-only optimizations in ADO.NET

this is generally done via the 'Mode=Read' or 'Mode=Read-Only" options in the connection string. Check your

database provider for more information. In the case of NHibernate the flush mode is set to Never when a new

Session is created for the transaction.

Throwing exceptions to indicate failure and assuming success is an easier and less invasive programming model

than performing the same task Programatically - ContextUtil.MyTransactionVote or TransactionScope.Complete.

The rollback options are a means to influence the outcome of the transaction based on the exception type which

adds an extra degree of flexibility.

Having any exception trigger a rollback has similar behavior as applying the AutoComplete attribute available

when using .NET Enterprise Services. The difference with AutoComplete is that using AutoComplete is also

coupled to the lifetime of the ServicedComponent since it sets ContextUtil.DeactivateOnReturn to true. For a

stateless DAO layer this is not an issue but it could be in other scenarios. Spring's transactional aspect does not

affect the lifetime of your object.

17.5.5. Declarative Transactions using AutoProxy

if you choose not to use the transaction namespace for declarative transaction management then you can use 'lower

level' object definitions to configure declarative transactions. The use of Spring's autoproxy functionality defines

criteria to select a collection of objects to create a transactional AOP proxy. There are two AutoProxy classes that

you can use, ObjectNameAutoProxyCreator and DefaultAdvisorAutoProxyCreator. If you are using the new

transaction namespace support you do not need to configure these objects as a DefaultAdvisorAutoProxyCreator

is created 'under the covers' while parsing the transaction namespace elements

Transaction management

Spring Framework (Version 1.3.2) 192

17.5.5.1. Creating transactional proxies with ObjectNameAutoProxyCreator

The ObjectNameAutoProxyCreator is useful when you would like to create transactional proxies for many

objects. The definitions for the TransactionInterceptor and associated attributes is done once. When you add

new objects to your configuration file that need to be proxies you only need to add them to the list of object

referenced in the ObjectNameAutoProxyCreator. Here is an example showing its use. Look in the section that

use ProxyFactoryObject for the declaration of the transactionInterceptor.

 <object name="autoProxyCreator"

 type="Spring.Aop.Framework.AutoProxy.ObjectNameAutoProxyCreator, Spring.Aop">

 <property name="InterceptorNames" value="transactionInterceptor"/>

 <property name="ObjectNames">

 <list>

 <idref local="testObjectManager"/>

 </list>

 </property>

 </object>

17.5.5.2. Creating transactional proxies with DefaultAdvisorAutoProxyCreator

This is not longer a common way to configure declarative transactions but is discussed in the "Classic Spring"

appendiex here.

17.6. Programmatic transaction management

Spring provides two means of programmatic transaction management:

• Using the TransactionTemplate

• Using a IPlatformTransactionManager implementation directly

These are located in the Spring.Transaction.Support namespace. If you are going to use programmatic transaction

management, the Spring team generally recommends the first approach (i.e. Using the TransactionTemplate)

17.6.1. Using the TransactionTemplate

The TransactionTemplate adopts the same approach as other Spring templates such as AdoTemplate and

HibernateTemplate. It uses a callback approach, to free application code from having to do the boilerplate

acquisition and release of resources, and results in code that is intention driven, in that the code that is written

focuses solely on what the developer wants to do. Granted that the using construct of System.Transaction alleviates

much of this. One key difference with the approach taken with the TransactionTemplate is that a commit is

assumed - throwing an exception triggers a rollback instead of using the TransactionScope API to commit or

rollback. This also allows for the use of rollback rules, that is a commit can still occur for exceptions of certain

types.

Note

As you will immediately see in the examples that follow, using the TransactionTemplate absolutely

couples you to Spring's transaction infrastructure and APIs. Whether or not programmatic transaction

management is suitable for your development needs is a decision that you will have to make yourself.

Application code that must execute in a transaction context looks like this. You, as an application developer, will

write a ITransactionCallback implementation (typically expressed as an anonymous delegate) that will contain

all of the code that you need to have execute in the context of a transaction. You will then pass an instance of

Transaction management

Spring Framework (Version 1.3.2) 193

your custom ITransactionCallback to the Execute(..) method exposed on the TransactionTemplate. Note that the

ITransactionCallback can be used to return a value:

public class SimpleService : IService

{

 private TransactionTemplate transactionTemplate;

 public SimpleService(IPlatformTransactionManager transactionManager)

 {

 AssertUtils.ArgumentNotNull(transactionManager, "transactionManager");

 transactionTemplate = new TransactionTemplate(transactionManager);

 }

 public object SomeServiceMethod()

 {

 return tt.Execute(delegate {

 UpdateOperation(userId);

 return ResultOfUpdateOperation2();

 });

 }

}

This code example is specific to .NET 2.0 since it uses anonymous delegates, which provides a particularly elegant

means to invoke a callback function as local variables can be referred to inside the delegate, i.e. userId. In this

case the ITransactionStatus was not exposed in the delegate (delegate can infer the signature to use), but one

could also obtain a reference to the ITransactionStatus instance and set the RollbackOnly property to trigger

a rollback - or alternatively throw an exception. This is shown below

tt.Execute(delegate(ITransactionStatus status)

 {

 try {

 UpdateOperation1();

 UpdateOperation2();

 } catch (SomeBusinessException ex) {

 status.RollbackOnly = true;

 }

 return null;

 });

If you are using .NET 1.1 then you should provide a normal delegate reference or an instance of a class that

implements the ITransactionCallback interface. This is shown below

tt.Execute(new TransactionRollbackTxCallback(amount));

 public class TransactionRollbackTxCallback : ITransactionCallback

 {

 private decimal amount;

 public TransactionRollbackTxCallback(decimal amount)

 {

 this.amount = amount

 }

 public object DoInTransaction(ITransactionStatus status)

 {

 adoTemplate.ExecuteNonQuery(CommandType.Text, "insert into dbo.Debits (DebitAmount) VALUES

 (@amount)", "amount", DbType.Decimal, 0,555);

 // decide you need to rollback...

 status.RollbackOnly = true;

 return null;

 }

 }

Application classes wishing to use the TransactionTemplate must have access to a

IPlatformTransactionManager (which will typically be supplied to the class via dependency injection). It is

easy to unit test such classes with a mock or stub IPlatformTransactionManager.

Transaction management

Spring Framework (Version 1.3.2) 194

17.6.1.1. Specifying transaction settings

Transaction settings such as the propagation mode, the isolation level, the timeout, and so forth can be set on the

TransactionTemplate either programmatically or in configuration. TransactionTemplate instances by default

have the default transactional settings. Find below an example of programmatically customizing the transactional

settings for a specific TransactionTemplate.

public class SimpleService : IService

{

 private TransactionTemplate transactionTemplate;

 public SimpleService(IPlatformTransactionManager transactionManager)

 {

 AssertUtils.ArgumentNotNull(transactionManager, "transactionManager");

 transactionTemplate = new TransactionTemplate(transactionManager);

 // the transaction settings can be set here explicitly if so desired

 transactionTemplate.TransactionIsolationLevel = IsolationLevel.ReadUncommitted;

 transactionTemplate.TransactionTimeout = 30;

 // and so forth...

 }

 . . .

}

Find below an example of defining a TransactionTemplate with some custom transactional settings, using Spring

XML configuration. The 'sharedTransactionTemplate' can then be injected into as many services as are required.

<object id="sharedTransactionTemplate"

 type="Spring.Transaction.Support.TransactionTemplate, Spring.Data">

 <property name="TransactionIsolationLevel" value="IsolationLevel.ReadUncommitted"/>

 <property name="TransactionTimeout" value="30"/>

</object>

Finally, instances of the TransactionTemplate class are threadsafe, in that instances do not maintain any

conversational state. TransactionTemplate instances do however maintain configuration state, so while a

number of classes may choose to share a single instance of a TransactionTemplate, if a class needed to

use a TransactionTemplate with different settings (for example, a different isolation level), then two distinct

TransactionTemplate instances would need to be created and used.

17.6.2. Using the PlatformTransactionManager

You can also use the PlatformTransactionManager directly to manage your transaction. Simply pass the

implementation of the PlatformTransactionManager you're using to your object via a object reference through

standard Dependency Injection techniques. Then, using the TransactionDefinition and ITransactionStatus objects,

you can initiate transactions, rollback and commit.

DefaultTransactionDefinition def = new DefaultTransactionDefinition();

def.PropagationBehavior = TransactionPropagation.Required;

ITransactionStatus status = transactionManager.GetTransaction(def);

try

{

 // execute your business logic here

} catch (Exception e)

{

 transactionManager.Rollback(status);

 throw;

}

Transaction management

Spring Framework (Version 1.3.2) 195

transactionManager.Commit(status);

Note that a corresponding 'using TransactionManagerScope' class can be modeled to get similar API usage to

System.Transactions TransactionScope.

17.7. Choosing between programmatic and declarative
transaction management

Programmatic transaction management is usually a good idea only if you have a small number of transactional

operations. For example, if you have a web application that require transactions only for certain update operations,

you may not want to set up transactional proxies using Spring or any other technology. In this case, using the

TransactionTemplate may be a good approach. On the other hand, if your application has numerous transactional

operations, declarative transaction management is usually worthwhile. It keeps transaction management out of

business logic, and is not difficult to configure in Spring.

17.8. Transaction lifecycle and status information

You can query the status of the current Spring managed transaction with the class

TransactionSynchronizationManager. Typical application code should not need to rely on using this class but

in some cases it is convenient to receive events around the lifecycle of the transaction, i.e. before committing,

after committing. TransactionSynchronizationManager provides a method to register a callback object that is

informed on all significant stages in the transaction lifecycle. Note that you can register for lifecycle call back

information for any of the transaction managers you use, be it NHibernate or local ADO.NET transactions.

The method to register a callback with the TransactionSynchronizationManager is

public static void RegisterSynchronization(ITransactionSynchronization synchronization)

Please refer to the SDK docs for information on other methods in this class.

The ITransactionSynchronization interface is

public interface ITransactionSynchronization

{

 // Typically used by Spring resource management code

 void Suspend();

 void Resume();

 // Transaction lifeycyle callback methods

 // Typically used by Spring resource management code but maybe useful in certain cases to application code

 void BeforeCommit(bool readOnly);

 void AfterCommit();

 void BeforeCompletion();

 void AfterCompletion(TransactionSynchronizationStatus status);

}

The TransactionSynchronizationStatus is an enum with the values Committed, Rolledback, and Unknown.

Spring Framework (Version 1.3.2) 196

Chapter 18. DAO support

18.1. Introduction

Spring promotes the use of data access interfaces in your application architecture. These interfaces encapsulate

the storage and retrieval of data and objects specific to your business domain without reference to a specific

persistence API. Within a layered architecture, the service layer is typically responsible for coordinating responses

to a particular business request and it delegates any persistence related activities to objects that implement

these data access interfaces. These objects are commonly referred to as DAOs (Data Access Objects) and the

architectural layer as a DAL (Data Access Layer).

The benefits of using DAOs in your application are increased portability across persistence technology and ease

of testing. Testing is more easily facilitated because a mock or stub implementation of the data access interface

can be easily created in a NUnit test so that service layer functionality can be tested without any dependency on

the database. This is beneficial because tests that rely on the database are usually hard to set up and tear down

and also are impractical for testing exceptional behavior.

The Data Access Object (DAO) support in Spring is aimed at making it easy to work with data access technologies

like ADO.NET and NHibernate in a standardized way. Spring provides two central pieces of functionality to meet

this goal. The first is providing a common exception hierarchy across providers and the second is providing base

DAOs classes that raise the level of abstraction when performing common ADO.NET operations. This allows

one to switch between the aforementioned persistence technologies fairly easily and it also allows one to code

without worrying about catching exceptions that are specific to each technology.

18.2. Consistent exception hierarchy

Database exceptions in the ADO.NET API are not consistent across providers. The .NET 1.1 BCL did not provide

a common base class for ADO.NET exceptions. As such you were required to handle exceptions specific to each

provider such as System.Data.SqlClient.SqlException or System.Data.OracleClient.OracleException.

The .NET 2.0 BCL improved in this regard by introducing a common base class for exceptions,

System.Data.Common.DbException. However the common DbException is not very portable either as it provides

a vendor specific error code as the underlying piece of information as to what went wrong. This error code is

different across providers for the same conceptual error, such as a violation of data integrity or providing bad

SQL grammar.

To promote writing portable and descriptive exception handling code Spring provides a

convenient translation from technology specific exceptions like System.Data.SqlClient.SqlException

or System.Data.OracleClient.OracleException to its own exception hierarchy with the

Spring.Dao.DataAccessException as the root exception. These exceptions wrap the original exception so there

is never any risk that one might lose any information as to what might have gone wrong.

In addition to exceptions from ADO.NET providers, Spring can also wrap NHibernate-specific exceptions.. This

allows one to handle most persistence exceptions, which are non-recoverable, only in the appropriate layers,

without boilerplate using or catch and throw blocks, and exception declarations. As mentioned above, ADO.NET

exceptions (including database-specific dialects) are also converted to the same hierarchy, meaning that one can

perform some operations with ADO.NET within a consistent programming model. The above holds true for the

various template-based versions of the ORM access framework.

The exception hierarchy that Spring uses is outlined in the following image:

DAO support

Spring Framework (Version 1.3.2) 197

(Please note that the class hierarchy detailed in the above image shows only a subset of the whole, rich,

DataAccessException hierarchy.)

The exception translation functionality is in the namespace Spring.Data.Support and is based on the interface

IAdoExceptionTranslator shown below.

public interface IAdoExceptionTranslator

{

 DataAccessException Translate(string task, string sql, Exception exception);

}

The arguments to the translator are a task string providing a description of the task being attempted, the SQL query

or update that caused the problem, and the 'raw' exception thrown by the ADO.NET data provider. The additional

task and SQL arguments allow for very readable and clear error messages to be created when an exception occurs.

A default implementation, ErrorCodeExceptionTranslator, is provided that uses the error codes defined for each

data provider in the file dbproviders.xml. Refer to this file, an embedded resource in the Spring.Data assembly,

for the exact mappings of error codes to Spring DataAccessExceptions.

A common need is to modify the error codes that are map onto the exception hierarchy. There are several ways

to accomplish this task.

One approach is to override the error codes that are defined in assembly://Spring.Data/Spring.Data.Common/

dbproviders.xml. By default, the DbProviderFactory will look for additional metadata for the IoC container

it uses internally to define and manage the DbProviders in a file named dbProviders.xml located in the root

DAO support

Spring Framework (Version 1.3.2) 198

runtime directory. (You can change this location, see the documentation on DbProvider for more information.)

This is a standard Spring application context so all features, such as ObjectFactoryPostProcessors are available

and will be automatically applied. Defining a PropertyOverrideConfigurer in this additional configuration file

will allow for you to override specific property values defined in the embedded resource file. As an example, the

additional dbProviders.xml file shown below will add the error code 2601 to the list of error codes that map to

a DataIntegrityViolationException.

<objects xmlns='http://www.springframework.net'>

 <alias name='SqlServer-2.0' alias='SqlServer2005'/>

 <object name="appConfigPropertyOverride" type="Spring.Objects.Factory.Config.PropertyOverrideConfigurer,

 Spring.Core">

 <property name="Properties">

 <name-values>

 <add key="SqlServer2005.DbMetadata.ErrorCodes.DataIntegrityViolationCodes"

 value="544,2601,2627,8114,8115"/>

 </name-values>

 </property>

 </object>

</objects>

The reason to define the alias is that PropertyOverrideConfigurer assumes a period (.) as the separator to pick

out the object name but the names of the objects in dbProviders.xml have periods in them (i.e. SqlServer-2.0 or

System.Data.SqlClient). Creating an alias that has no periods in the name is a workaround.

Another way to customize the mappings of error codes to exceptions is to

subclass ErrorCodeExceptionTranslator and override the method, DataAccessException

TranslateException(string task, string sql, string errorCode, Exception exception). This will be

called before referencing the metadata to perform exception translation. The vendor specific error code provided

as a method argument has already been parsed out of the raw ADO.NET exception. If you create your own specific

subclass, then you should set the property ExceptionTranslator on AdoTemplate and HibernateTemplate/

HibernateTransactionManager to refer to your custom implementation (unless you are using autowiring).

The third way is to write an implementation of IAdoExceptionTranslator and set the property

FallbackTranslator'on ErrorCodeExceptionTranslator. In this case you are responsible for parsing our

the vendor specific error code from the raw ADO.NET exception. As with the case of subclassing

ErrorCodeExceptionTranslator, you will need to refer to this custom exception translator when using AdoTemplate

or HibernateTemplate/HibernateTransactionManager.

The ordering of the exception translation processing is as follows. The method TranslateException is called first,

then the standard exception translation logic, then the FallbackTranslator.

Note that you can use this API directly in your own Spring independent data layer. If you are using Spring's

ADO.NET abstraction class, AdoTemplate, or HibernateTemplate, the converted exceptions will be thrown

automatically. Somewhere in between these two cases is using Spring's declarative transaction management

features in .NET 2.0 with the raw ADO.NET APIs and using IAdoExceptionTranslator in your exception

handling layer (which might be implemented in AOP using Spring's exception translation aspect).

Some of the more common data access exceptions are described here. Please refer to the API documentation for

more details.

Table 18.1. Common DataAccessExceptions

Exception Description

BadSqlGrammarException Exception thrown when SQL specified is invalid.

DAO support

Spring Framework (Version 1.3.2) 199

Exception Description

DataIntegrityViolationException Exception thrown when an attempt to insert or update

data results in violation of an integrity constraint. For

example, inserting a duplicate key.

PermissionDeniedDataAccessException Exception thrown when the underling resource denied

a permission to access a specific element, such as a

specific database table.

DataAccessResourceFailureException Exception thrown when a resource fails completely, for

example, if we can't connect to a database.

ConcurrentyFailureException Exception thrown when a concurrency error

occurs. OptimisticLockingFailureException and

PessimisticLockingFailureException are subclasses.

This is a useful exception to catch and to retry the

transaction again. See Spring's Retry Aspect for an

AOP based solution.

OptimisticLockingFailureException Exception thrown when there an optimistic

locking failure occurs. The subclass

ObjectOptimisticLockingFailureException can be

used to examine the Type and the IDof the object that

failed the optimistic locking.

PessimisticLockingFailure Exception thrown when a pessimistic

locking failure occures. Subclasses of

this exception are CannotAcquireLockException,

CannotSerializeTransactionException, and

DeadlockLoserDataAccessException.

CannotAcquireLockException Exception thrown when a lock can not be acquired, for

example during an update, i..e a select for update

CannotSerializeTransactionException Exception thrown when a transaction can not be

serialized.

18.3. Consistent abstract classes for DAO support

To make it easier to work with a variety of data access technologies such as ADO.NET, NHibernate, and

iBatis.NET in a consistent way, Spring provides a set of abstract DAO classes that one can extend. These abstract

classes have methods for providing the data source and any other configuration settings that are specific to the

technology one is currently using.

DAO support classes:

• AdoDaoSupport - super class for ADO.NET data access objects. Requires a DbProvider to be provided; in turn,

this class provides a AdoTemplate instance initialized from the supplied DbProvider to subclasses. See the

documentation for AdoTemplate for more information.

• HibernateDaoSupport - super class for NHibernate data access objects. Requires a ISessionFactory

to be provided; in turn, this class provides a HibernateTemplate instance initialized from the supplied

DAO support

Spring Framework (Version 1.3.2) 200

SessionFactory to subclasses. Can alternatively be initialized directly via a HibernateTemplate, to reuse the

latter's settings like SessionFactory, flush mode, exception translator, etc. This is contained in a download

separate from the main Spring.NET distribution.

Spring Framework (Version 1.3.2) 201

Chapter 19. DbProvider

19.1. Introduction

Spring provides a generic factory for creating ADO.NET API artifacts such as IDbConnection and IDbCommand. The

factory API is very similar to the one introduced in .NET 2.0 but adds extra metadata needed by Spring to support

features provided by its DAO/ADO.NET framework such as error code translation to a DAO exception hierarchy.

The factory itself is configured by using a standard Spring XML based configuration file though it is unlikely

you will need to modify those settings yourself, you only need be concerned with using the factory. Out of the

box several popular databases are supported and an extension mechanism is available for defining new database

providers or modifying existing ones. A custom database namespace for configuration aids in making terse XML

based declarations of Spring's database objects you wish to use.

The downside of Spring's factory as compared to the one in .NET 2.0 is that the types returned are lower

level interfaces and not the abstract base classes in System.Data.Common. However, there are still 'holes' in

the current .NET 2.0 provider classes that are 'plugged' with Spring's provider implementation. One of the most

prominent is the that the top level DbException exposes the HRESULT of the remote procedure call, which is

not what you are commonly looking for when things go wrong. As such Spring's provider factory exposes the

vendor sql error code and also maps that error code onto a consistent data access exception hierarchy. This makes

writing portable exception handlers much easier. In addition, the DbParameter class doesn't provide the most

common convenient methods you would expect as when using say the SqlServer provider. If you need to access

the BCL provider abstraction, you still can through Spring's provider class. Furthermore, a small wrapper around

the standard BCL provider abstraction allows for integration with Spring's transaction management facilities,

allowing you to create a DbCommand with its connection and transaction properties already set based on the

transaction calling context.

19.2. IDbProvider and DbProviderFactory

The IDbProvider API is shown below and should look familiar to anyone using .NET 2.0 data providers. Note that

Spring's DbProvider abstraction can be used on .NET 1.1 in addition to .NET 2.0

public interface IDbProvider

{

 IDbCommand CreateCommand();

 object CreateCommandBuilder();

 IDbConnection CreateConnection();

 IDbDataAdapter CreateDataAdapter();

 IDbDataParameter CreateParameter();

 string CreateParameterName(string name);

 string CreateParameterNameForCollection(string name);

 IDbMetadata DbMetadata

 {

 get;

 }

 string ConnectionString

 {

 set;

 get;

 }

DbProvider

Spring Framework (Version 1.3.2) 202

 string ExtractError(Exception e);

 bool IsDataAccessException(Exception e);

}

ExtractError is used to return an error string for translation into a DAO exception. On .NET 1.1 the method

IsDataAccessException is used to determine if the thrown exception is related to data access since in .NET 1.1

there isn't a common base class for database exceptions. CreateParameterName is used to create the string for

parameters used in a CommandText object while CreateParameterNameForCollection is used to create the string

for a IDataParameter.ParameterName, typically contained inside a IDataParameterCollection.

The class DbProviderFactory creates IDbProvider instances given a provider name. The connection string

property will be used to set the IDbConnection returned by the factory if present. The provider names, and

corresponding database, currently configured are listed below.

• SqlServer-1.1 - Microsoft SQL Server, provider V1.0.5000.0 in framework .NET V1.1

• SqlServer-2.0 (aliased to System.Data.SqlClient) - Microsoft SQL Server, provider V2.0.0.0 in

framework .NET V2.0

• SqlServerCe-3.1 - Microsoft SQL Server Compact Edition, provider V9.0.242.0

• SqlServerCe-3.5.1 (aliased to System.Data.SqlServerCe) - Microsoft SQL Server Compact Edition,

provider V3.5.1.0

• OleDb-1.1 - OleDb, provider V1.0.5000.0 in framework .NET V1.1

• OleDb-2.0 (aliased to System.Data.OleDb) - OleDb, provider V2.0.0.0 in framework .NET V2.0

• OracleClient-2.0 (aliased to System.Data.OracleClient) - Oracle, Microsoft provider V2.0.0.0

• OracleODP-2.0 (aliased to System.DataAccess.Client) - Oracle, Oracle provider V2.102.2.20 (Oracle 10g)

• OracleODP-11-2.0 - Oracle, Oracle provider V2.111.7.20 (Oracle 11g)

• MySql - MySQL, MySQL provider 1.0.10.1

• MySql-1.0.9 - MySQL, MySQL provider 1.0.9

• MySql-5.0 - MySQL, MySQL provider 5.0.7.0

• MySql-5.0.8.1 - MySQL, MySQL provider 5.0.8.1

• MySql-5.1 - MySQL, MySQL provider 5.1.2.2

• MySql-5.1.4 - MySQL, MySQL provider 5.1.2.2

• MySql-5.2.3 - MySQL, MySQL provider 5.2.3.0

• MySql-6.1.3 - MySQL, MySQL provider 6.1.3.0

• MySql-6.2.2 (aliased to MySql.Data.MySqlClient) - MySQL, MySQL provider 6.2.2.0

• Npgsql-1.0 - Postgresql provider 1.0.0.0 (and 1.0.0.1 - were build with same version info)

• Npgsql-2.0-beta1 - Postgresql provider 1.98.1.0 beta 1

DbProvider

Spring Framework (Version 1.3.2) 203

• Npgsql-2.0 - Postgresql provider 2.0.0.0

• DB2-9.0.0-1.1 - IBM DB2 Data Provider 9.0.0 for .NET Framework 1.1

• DB2-9.0.0-2.0 (aliased to IBM.Data.DB2) - IBM DB2 Data Provider 9.0.0 for .NET Framework 2.0

• DB2-9.1.0-1.1 - IBM DB2 Data Provider 9.1.0 for .NET Framework 1.1

• DB2-9.1.0.2 (aliased to IBM.Data.DB2.9.1.0) - IBM DB2 Data Provider 9.1.0 for .NET Framework 2.0

• iDB2-10.0.0.0 - IBM iSeries DB2 Data Provider 10.0.0.0 for .NET Framework 2.0

• SQLite-1.0.43 - SQLite provider 1.0.43 for .NET Framework 2.0

• SQLite-1.0.44 - SQLite provider 1.0.44 for .NET Framework 2.0

• SQLite-1.0.47 - SQLite provider 1.0.47 for .NET Framework 2.0

• SQLite-1.0.56 - SQLite provider 1.0.56 for .NET Framework 2.0

• SQLite-1.0.65 (aliased to System.Data.SQLite) - SQLite provider 1.0.65 for .NET Framework 2.0

• SQLite-1.0.65 - SQLite provider 1.0.66 for .NET Framework 2.0

• SQLite-1.0.72 - SQLite provider 1.0.72 for .NET Framework 2.0 from http://sqlite.phxsoftware.com/

• Note

The default parameter prefix used in SQLite is : and not @, please write your SQL accordingly

or define a provider definition for SQLite.

• Firebird-2.1 (aliased to Firebird-2.1) - Firebird Server, provider V2.1.0.0 in framework .NET V2.0

• SybaseAse-12 - Sybase ASE provider for ASE 12.x

• SybaseAse-15 - Sybase ASE provider for ASE 15.x

• SybaseAse-AdoNet2 - Sybase ADO.NET 2.0 provider for ASE 12.x and 15.x

• Odbc-1.1 - ODBC provider V1.0.5000.0 in framework .NET V1.1

• Odbc-2.0 - ODBC provider V2.0.0.0 in framework .NET V2

• Cache-2.0.0.1 (aliased to InterSystems.Data.CacheClient) - Cache provider Version 2.0.0.1 in

framework .NET V2

• IfxOdbc - Informix, ODBC provider in framework .NET V2

• IfxSQLI-3.0.0.2 - Informix, old native provider

• IfxDRDA-9.0.0.2 - Informix, IBM.Data.DB2 9.7

Note

If your exact version of the database provider is not listed, you can pick the general provider name,

i.e. MySql.Data.MySqlClient, and then perform an assembly redirect in App.config. This will often

be sufficient to upgrade to newer versions. As shown below

DbProvider

Spring Framework (Version 1.3.2) 204

<runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <dependentAssembly>

 <assemblyIdentity name="Npgsql"

 publicKeyToken="5d8b90d52f46fda7"

 culture="neutral"/>

 <bindingRedirect oldVersion="0.0.0.0-65535.65535.65535.65535

 newVersion="2.0.0.0"/>

 </dependentAssembly>

 </assemblyBinding>

</runtime>

An example using DbProviderFactory is shown below

IDbProvider dbProvider = DbProviderFactory.GetDbProvider("System.Data.SqlClient");

The default definitions of the providers are contained in the assembly resource assembly://Spring.Data/

Spring.Data.Common/dbproviders.xml. If the provider you want to use is not provided "out of the box" you

can provide additional definitions. To do this follow the format of object definitions defined in the previously

mentioned assembly resource.

From Spring 1.3.1 an on you can specify the additional Spring IResource location where additional providers

are defined within Spring's XML configuration file. See the next section for an example. Alternatively, you can

set the public static property DBPROVIDER_ADDITIONAL_RESOURCE_NAME in DbProviderFactory to a

Spring resource location. The default value is file://dbProviders.xml. (That isn't a typo, there is a difference

in case with the name of the embedded resource).

It may happen that the version number of an assembly you have downloaded is different than the one listed above.

If it is a point release, i.e. the API hasn't changed in anyway that is material to your application, you should add

an assembly redirect of the form shown below.

<dependentAssembly>

 <assemblyIdentity name="MySql.Data"

 publicKeyToken="c5687fc88969c44d"

 culture="neutral"/>

 <bindingRedirect oldVersion="0.0.0.0-65535.65535.65535.65535"

 newVersion="1.0.10.1"/>

</dependentAssembly>

This redirects any reference to an older version of the assembly MySql.Data to the version 1.0.10.1.

19.3. XML based configuration

Creating a DbProvider in Spring's XML configuration file is shown below in the typical case of using it to specify

the DbProvider property on an AdoTemplate.

<objects xmlns='http://www.springframework.net'

 xmlns:db="http://www.springframework.net/database">

 <db:provider id="DbProvider"

 provider="System.Data.SqlClient"

 connectionString="Data Source=(local);Database=Spring;User

 ID=springqa;Password=springqa;Trusted_Connection=False"/>

 <object id="adoTemplate" type="Spring.Data.Core.AdoTemplate, Spring.Data">

 <property name="DbProvider" ref="DbProvider"/>

 </object>

DbProvider

Spring Framework (Version 1.3.2) 205

</objects>

If you need to register an additional IDbProvider defintions from your own configuration file, set the attribute

'additonalDbProviders' to the IResource location of those definitions. Examples of the format for additional

provider definitions can be found within the Spring.Data assembly, location assembly://Spring.Data/

Spring.Data.Common/dbproviders.xml. Open it up in Visual Studio or Reflector to see the contents of the

dbproviders.xml file.

<objects xmlns='http://www.springframework.net'

 xmlns:db="http://www.springframework.net/database">

 <db:additionalProviders resource="assembly://MyAssembly/MyAssembly.MyNamespace/AdditionalProviders.xml"/>

 <db:provider id="DbProvider"

 provider="System.Data.SqlClient"

 connectionString="Data Source=(local);Database=Spring;User

 ID=springqa;Password=springqa;Trusted_Connection=False"/>

</objects>

A custom namespace should be registered in the main application configuration file to use this syntax. This

configuration, only for the parsers, is shown below. Additional section handlers are needed to specify the rest of

the Spring configuration locations as described in previous chapters.

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core" />

 </sectionGroup>

 </configSections>

 <spring>

 <parsers>

 <parser type="Spring.Data.Config.DatabaseNamespaceParser, Spring.Data" />

 </parsers>

 </spring>

</configuration>

19.4. Connection String management

There are a few options available to help manage your connection strings.

The first option is to leverage the Spring property replacement functionality, as described in Section 5.9.2.1,

“Example: The PropertyPlaceholderConfigurer”. This lets you insert variable names as placeholders for values in

a Spring configuration file. In the following example specific parts of a connection string have been parameterized

but you can also use a variable to set the entire connection string.

An example of such a setting is shown below

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name='context' type='Spring.Context.Support.ContextHandler, Spring.Core'/>

 </sectionGroup>

 <section name="databaseSettings" type="System.Configuration.NameValueSectionHandler, System,

 Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" />

 </configSections>

DbProvider

Spring Framework (Version 1.3.2) 206

 <spring>

 <context>

 <resource uri="Aspects.xml" />

 <resource uri="Services.xml" />

 <resource uri="Dao.xml" />

 </context>

 </spring>

 <!-- These properties are referenced in Dao.xml -->

 <databaseSettings>

 <add key="db.datasource" value="(local)" />

 <add key="db.user" value="springqa" />

 <add key="db.password" value="springqa" />

 <add key="db.database" value="Northwind" />

 </databaseSettings>

</configuration>

Where Dao.xml has a connection string as shown below

<objects xmlns='http://www.springframework.net'

 xmlns:db="http://www.springframework.net/database">

 <db:provider id="DbProvider"

 provider="System.Data.SqlClient"

 connectionString="${db.datasource};Database=${db.database};User ID=${db.user};Password=

${db.password};Trusted_Connection=False"/>

 <object id="adoTemplate" type="Spring.Data.Core.AdoTemplate, Spring.Data">

 <property name="DbProvider" ref="DbProvider"/>

 </object>

 <!-- configuration of what values to substitute for ${ } variables listed above -->

 <object name="appConfigPropertyHolder"

 type="Spring.Objects.Factory.Config.PropertyPlaceholderConfigurer, Spring.Core">

 <property name="configSections" value="DatabaseConfiguration"/>

 </object>

</objects>

Please refer to the Section Section 5.9.2.1, “Example: The PropertyPlaceholderConfigurer” for more information.

19.5. Additional IDbProvider implementations

Spring provides some convenient implementations of the IDbProvider interface that add addtional behavior on

top of the standard implementation.

Note

These provider implementations do not take into account usage with NHibernate. NHibernate scopes

a SessionFactory, where second level caching is managed, to each connection. This forum thread

[http://forum.springframework.net/showthread.php?t=4462], contains an implementation of the class

LocalDelegatingSessionFactoryObject that will create multiple SessionFactories for each database

connection.

19.5.1. UserCredentialsDbProvider

This UserCredentialsDbProvider will allow you to change the username and password of a database connection

at runtime. The API contains the properties Username and Password which are used as the default strings

representing the user and password in the connection string. You can then change the value of these properties in

the connection string by calling the method SetCredentialsForCurrentThread and fall back to the default values

by calling the method RemoveCredentialsFromCurrentThread. You call the SetCredentialsForCurrentThread

method at runtime, before any data access occurs, to determine which database user should be used for the current

http://forum.springframework.net/showthread.php?t=4462
http://forum.springframework.net/showthread.php?t=4462

DbProvider

Spring Framework (Version 1.3.2) 207

user-case. Which user to select is up to you. You may retrieve the user information from an HTTP session for

example. Example configuration and usage is shown below

<object id="DbProvider" type="Spring.Data.Common.UserCredentialsDbProvider, Spring.Data">

 <property name="TargetDbProvider" ref="targetDbProvider"/>

 <property name="Username" value="User ID=defaultName"/>

 <property name="Password" value="Password=defaultPass"/>

</object>

<db:provider id="targetDbProvider" provider="SqlServer-2.0"

 connectionString="Data Source=MARKT60\SQL2005;Database=Spring;Trusted_Connection=False"/>

If you use dependency injection to configure a class with a property of the type IDbProvider, you will need to

downcast to the subtype or you can change your class to have a property of the type UserCredentialsDbProvider

instead of IDbProvider.

userCredentialsDbProvider.SetCredentialsForCurrentThread("User ID=springqa", "Password=springqa");

UserCredentialsDbProvider's has a base class, DelegatingDbProvider, and is intended for you to use in your

own implementations that delegate calls to a target IDbProvider instance. This class in meant to be subclassed

with subclasses overriding only those methods, such as CreateConnection(), that should not simply delegate

to the target IDbProvider.

19.5.2. MultiDelegatingDbProvider

There are use-cases in which there will need to be a runtime selection of the database to connect to among many

possible candidates. This is often the case where the same schema is installed in separate databases for different

clients. The MultiDelegatingDbProvider implements the IDbProvider interface and provides an abstraction to

the multiple databases and can be used in DAO layer such that the DAO layer is unaware of the switching between

databases. MultiDelegatingDbProvider does its job by looking into thread local storage. This storage location

stores the name of the dbProvider that is to be used for processing the request.

MultiDelegatingDbProvider is configured using the dictionary property TargetDbProviders. The key of this

dictionary contains the name of a dbProvider and its value is a dbProvider object. You can also provide this

dictionary as a constructor argument. The property DefaultDbProvider can be set with the name of the DbProvider

to use if no provider name is found in thread local storage

During request processing, once you have determined which target dbProvider should be use, in this example

database1ProviderName, you should execute the following code is you are using Spring 1.2 M1 or later

// Spring 1.3.0 or later

MultiDelegatingDbProvider.CurrentDbProviderName = "database1ProviderName"

// Spring 1.2 M1 or later

LogicalThreadContext.SetData(MultiDelegatingDbProvider.CURRENT_DBPROVIDER_SLOTNAME, "database1ProviderName")

and the following ocde if you are using earlier versions

// Prior to Spring 1.2 M1

LogicalThreadContext.SetData("dbProviderName", "database1ProviderName")

and then call the data access layer.

Note

If you do not change the name of the IDbProvider stored in thread local storage during request

processing, say in the web tier where a user is identified, then you will always refer to the default

DbProvider

Spring Framework (Version 1.3.2) 208

provider if the property DefaultDbProvider has been set. If the DefaultDbProvider property has not

been set than an InvalidDataAccessApiUsageException will be thrown.

Here is a sample configuration to build up an object definition for MultiDelegatingDbProvider.

<db:provider id="CreditAndDebitsDbProvider"

 provider="System.Data.SqlClient"

 connectionString="Data Source=MARKT60\SQL2005;Initial Catalog=CreditsAndDebits;User ID=springqa;

 Password=springqa"/>

<db:provider id="CreditDbProvider"

 provider="System.Data.SqlClient"

 connectionString="Data Source=MARKT60\SQL2005;Initial Catalog=Credits;User ID=springqa;

 Password=springqa"/>

<object id="dbProviderDictionary" type="Spring.Collections.SynchronizedHashtable, Spring.Core">

 <property name="['DbProvider1']" ref="CreditAndDebitsDbProvider"/>

 <property name="['DbProvider2']" ref="CreditDbProvider"/>

</object>

<object id="DbProvider" type="Spring.Data.MultiDelegatingDbProvider, Spring.Data">

 <property name="TargetDbProviders" ref="dbProviderDictionary"/>

 <property name="DefaultDbProvider" value="CreditDbProvider"/>

</object>

As seen above, MultidelegatingDbProvider works via a thread local storage mechansims. If you prefer

to place the logic to switch databases in a single location, within a single class, then create a subclass

MultiDelegatingDbProvider and override the method GetTargetProvider. You can then select which provider to

return based on your own implementation that does not involve thread local storage.

Note

This class is not recommended for usage with NHibernate. NHibernate usage typically involves

caches that are scoped at the level of the SessionFactory. If you switch the database that hibernate

is pointing to and do not also managed switching the cache, then the cache will end up with results

from two different databases - which of course you don't want to have. The helper class contained

in this post [http://forum.springframework.net/showthread.php?p=11234#post11234] may help you

if you when using NHibernate with multiple databases.

http://forum.springframework.net/showthread.php?p=11234#post11234
http://forum.springframework.net/showthread.php?p=11234#post11234

Spring Framework (Version 1.3.2) 209

Chapter 20. Data access using ADO.NET

20.1. Introduction

Spring provides an abstraction for data access via ADO.NET that provides the following benefits and features

• Consistent and comprehensive database provider interfaces for both .NET 1.1 and 2.0

• Integration with Spring's transaction management features.

• Template style use of DbCommand that removes the need to write typical ADO.NET boiler-plate code.

• 'One-liner' implementations for the most common database usage patterns lets you focus on the 'meat' of your

ADO.NET code.

• Easy database parameter creation/management

• Provider independent exceptions with database error codes and higher level DAO exception hierarchy.

• Centralized resource management for connections, commands, data readers, etc.

• Simple DataReader to Object mapping framework.

This chapter is divided up into a number of sections that describe the major areas of functionality within Spring's

ADO.NET support.

• Motivations - describes why one should consider using Spring's ADO.NET features as compared to using 'raw'

ADO.NET API.

• Provider Abstraction - a quick overview of Spring's provider abstraction.

• Approaches to ADO.NET Data Access - Discusses the two styles of Spring's ADO.NET data access classes

- template and object based.

• Introduction to AdoTemplate - Introduction to the design and core methods of the central class in Spring's

ADO.NET support.

• Exception Translation - Describes the features of Spring's data access exceptions

• Parameter Management - Convenience classes and methods for easy parameter management.

• Custom IDataReader implementations - Strategy for providing custom implementations of IDataReader. This

can be used to centralized and transparently map DBNull values to CLR types when accessing an IDataReader

or to provide extended mapping functionality in sub-interfaces.

• Basic data access operations - Usage of AdoTemplate for IDbCommand 'ExecuteScalar' and

'ExecuteNonScalar' functionality

• Queries and Lightweight Object Mapping - Using AdoTemplate to map result sets into objects

• DataSet and DataTable operations - Using AdoTemplate with DataSets and DataTables

• Modeling ADO.NET operations as .NET objects - An object-oriented approach to data access operations.

Data access using ADO.NET

Spring Framework (Version 1.3.2) 210

20.2. Motivations

There are a variety of motivations to create a higher level ADO.NET persistence API.

Encapsulation of common 'boiler plate' tasks when coding directly against the ADO.NET API. For example here

is a list of the tasks typically required to be coded for processing a result set query. Note that the code needed

when using Spring's ADO.NET framework is in italics.

1. Define connection parameters

2. Open the connection

3. Specify the command type and text

4. Prepare and execute the statement

5. Set up the loop to iterate through the results (if any)

6. Do the work for each iteration

7. Process any exception

8. Display or rollback on warnings

9. Handle transactions

10.Close the connection

Spring takes care of the low-level tasks and lets you focus on specifying the SQL and doing the real work of

extracting data. This standard boiler plate pattern is encapsulated in a class, AdoTemplate. The name 'Template'

is used because if you look at the typical code workflow for the above listing, you would essentially like to

'template' it, that is stick in the code that is doing the real work in the midst of the resource, transaction, exception

management.

Another very important motivation is to provide an easy means to group multiple ADO.NET operations within

a single transaction while at the same time adhering to a DAO style design in which transactions are initiated

outside the DAOs, typically in a business service layer. Using the 'raw' ADO.NET API to implement this design

often results in explicitly passing around of a Transaction/Connection pair to DAO objects. This infrastructure

task distracts from the main database task at hand and is frequently done in an ad-hoc manner. Integrating with

Spring's transaction management features provides an elegant means to achieve this common design goal. There

are many other benefits to integration with Spring's transaction management features, see Chapter 17, Transaction

management for more information.

Provider Independent Code: In .NET 1.1 writing provider independent code was difficult for a variety of reasons.

The most prominent was the lack of a lack of a central factory for creating interface based references to the

core ADO.NET classes such as IDbConnection, IDbCommand, DbParameter etc. In addition, the APIs exposed

by many of these interfaces were minimal or incomplete - making for tedious code that would otherwise be

more easily developed with provider specific subclasses. Lastly, there was no common base class for data access

exceptions across the providers. .NET 2.0 made many changes for the better in that regard across all these areas

of concern - and Spring only plugs smaller holes in that regard to help in the portability of your data access code.

Resource Management: The 'using' block is the heart of elegant resource management in .NET from the API

perspective. However, despite its elegance, writing 2-3 nested using statements for each data access method also

Data access using ADO.NET

Spring Framework (Version 1.3.2) 211

starts to be tedious, which introduces the risk of forgetting to do the right thing all the time in terms of both direct

coding and 'cut-n-paste' errors. Spring centralizes this resource management in one spot so you never forget or

make a mistake and rely on it always being done correctly.

Parameter management: Frequently much of data access code is related to creating appropriate parameters. To

alleviate this boiler plate code Spring provides a parameter 'builder' class that allows for succinct creation of

parameter collections. Also, for the case of stored procedures, parameters can be derived from the database itself

which reduces parameter creation code to just one line.

Frequently result set data is converted into objects. Spring provides a simple framework to organize that mapping

task and allows you to reuse mapping artifacts across your application.

Exceptions: The standard course of action when an exception is thrown from ADO.NET code is to look up the

error code and then re-run the application to set a break point where the exception occurred so as to see what the

command text and data values were that caused the exception. Spring provides exceptions translation from these

error codes (across database vendors) to a Data Access Object exception hierarchy. This allows you to quickly

understand the category of the error that occurred and also the 'bad' data which lead to the exception.

Warnings: A common means to extract warning from the database, and to optionally treat those warnings as a

reason to rollback is not directly supported with the new System.Data.Common API

Portability: Where possible, increase the portability of code across database provider in the higher level API. The

need adding of a parameter prefix, i.e. @ for SqlServer or ':' for oracle is one such example of an area where a

higher level API can offer some help in making your code more portable.

Note that Spring's ADO.NET framework is just 'slightly' above the raw API. It does not try to compete with other

higher level persistence abstractions such as result set mappers (iBATIS.NET) or other ORM tools (NHibernate).

(Apologies if your favorite is left out of that short list). As always, pick and choose the appropriate level of

abstraction for the task at hand. As a side note, Spring does offer integration with higher level persistence

abstractions (currently NHibernate) providing such features as integration with Spring's transaction management

features as well as mixing orm/ado.net operations within the same transaction.

20.3. Provider Abstraction

Before you get started executing queries against the database you need to connect to it. Chapter 19, DbProvider

covers this topic in detail so we only discuss the basic idea of how to interact with the database in this section.

One important ingredient that increases the portability of writing ADO.NET applications is to refer to the base

ADO.NET interfaces, such as IDbCommand or IDbParameter in your code. However, In the .NET 1.1 BCL

the only means to obtain references to instances of these interfaces is to directly instantiate the classes, i.e. for

SqlServer this would be

 IDbCommand command = new SqlCommand();

One of the classic creational patterns in the GoF Design Patterns book addresses this situation directly, the Abstract

Factory pattern. This approach was applied in the .NET BCL with the introduction of the DbProviderFactory

class which contains various factory methods that create the various objects used in ADO.NET programming. In

addition, .NET 2.0 introduced new abstract base classes that all ADO.NET providers must inherit from. These

base classes provide more core functionality and uniformity across the various providers as compared to the

original ADO.NET interfaces.

Spring's database provider abstraction has a similar API to that of .ADO.NET 2.0's DbProviderFactory. The

central interface is IDbProvider and it has factory methods that are analogous to those in the DbProviderFactory

Data access using ADO.NET

Spring Framework (Version 1.3.2) 212

class except that they return references to the base ADO.NET interfaces. Note that in keeping with the Spring

Framework's philosophy, IDbProvider is an interface, and can thus be easily mocked or stubbed as necessary.

Another key element of this interface is the ConnectionString property that specifies the specific runtime

information necessary to connect to the provider. The interface also has a IDbMetadata property that contains

minimal database metadata information needed to support the functionality in rest of the Spring ADO.NET

framework. It is unlikely you will need to use the DatabaseMetadata class directly in your application.

For more information on configuring a Spring database provider refer to Chapter 19, DbProvider

20.3.1. Creating an instance of IDbProvider

Each database vendor is associated with a particular implementation of the IDbProvider interfaces. A variety of

implementations are provided with Spring such as SqlServer, Oracle and MySql. Refer to the documentation on

Spring's DbProvider for creating a configuration for database that is not yet provided. The programmatic way to

create an IDbProvider is shown below

IDbProvider dbProvider = DbProviderFactory.GetDbProvider("System.Data.SqlClient");

Please refer to the Chapter 19, DbProvider for information on how to create a IDbProvider in Spring's XML

configuration file.

20.4. Namespaces

The ADO.NET framework consists of a few namespaces, namely Spring.Data, Spring.Data.Generic,

Spring.Data.Common, Spring.Data.Support, and Spring.Data.Object.

The Spring.Data namespace contains the majority of the classes and interfaces you will deal with on a day to

day basis.

The Spring.Data.Generic namespaces add generic versions of some classes and interfaces and you will also

likely deal with this on a day to day basis if you are using .NET 2.0

The Spring.Data.Common namespaces contains Spring's DbProvider abstraction in addition to utility classes for

parameter creation.

The Spring.Data.Object namespaces contains classes that represent RDBMS queries, updates, and stored

procedures as thread safe, reusable objects.

Finally the Spring.Data.Support namespace is where you find the IAdoExceptionTransactor translation

functionality and some utility classes.

20.5. Approaches to Data Access

Spring provides two styles to interact with ADO.NET. The first is a 'template' based approach in which you

create an single instance of AdoTemplate to be used by all your DAO implementations. Your DAO methods are

frequently implemented as a single method call on the template class as described in detail in the following section.

The other approach a more object-oriented manner that models database operations as objects. For example, one

can encapsulate the functionality of a database query via an AdoQuery class and a create/update/delete operation

as a AdoNonQuery class. Stored procedures are also modelled in this manner via the class StoredProcedure. To

use these classes you inherit from them and define the details of the operation in the constructor and implement

an abstract method. This reads very cleanly when looking at DAO method implementation as you can generally

see all the details of what is going on.

Data access using ADO.NET

Spring Framework (Version 1.3.2) 213

Generally speaking, experience has shown that the AdoTemplate approach reads very cleanly when looking at

DAO method implementation as you can generally see all the details of what is going on as compared to the object

based approach. The object based approach however, offers some advantages when calling stored procedures

since it acts as a cache of derived stored procedure arguments and can be invoked passing a variable length

argument list to the 'execute' method. As always, take a look at both approaches and use the approach that provides

you with the most benefit for a particular situation.

20.6. Introduction to AdoTemplate

The class AdoTemplate is at the heart of Spring's ADO.NET support. It is based on an Inversion of Control (i.e.

callback) design with the central method 'Execute' handing you a IDbCommand instance that has its Connection

and Transaction properties set based on the transaction context of the calling code. All resource management is

handled by the framework, you only need to focus on dealing with the IDbCommand object. The other methods in

this class build upon this central 'Execute' method to provide you a quick means to execute common data access

scenarios.

There are two implementations of AdoTemplate. The one that uses Generics and is in the namespace

Spring.Data.Generic and the other non-generic version in Spring.Data. In either case you create an instance

of an AdoTemplate by passing it a IDbProvider instance as shown below

AdoTemplate adoTemplate = new AdoTemplate(dbProvider);

AdoTemplate is a thread-safe class and as such a single instance can be used for all data access operations in

you applications DAOs. AdoTemplate implements an IAdoOperations interface. Although the IAdoOperations

interface is more commonly used for testing scenarios you may prefer to code against it instead of the direct

class instance.

If you are using the generic version of AdoTemplate you can access the non-generic version via the property

ClassicAdoTemplate.

The following two sections show basic usage of the AdoTemplate 'Execute' API for .NET 1.1 and 2.0.

20.6.1. Execute Callback

The Execute method and its associated callback function/inteface is the basic method upon which all the other

methods in AdoTemplate delegate their work. If you can not find a suitable 'one-liner' method in AdoTemplate for

your purpose you can always fall back to the Execute method to perform any database operation while benefiting

from ADO.NET resource management and transaction enlistment. This is commonly the case when you are using

special provider specific features, such as XML or BLOB support.

20.6.2. Execute Callback in .NET 2.0

In this example a simple query against the 'Northwind' database is done to determine the number of customers

who have a particular postal code.

public int FindCountWithPostalCode(string postalCode)

{

 return adoTemplate.Execute<int>(delegate(DbCommand command)

 {

 command.CommandText =

 "select count(*) from Customers where PostalCode = @PostalCode";

 DbParameter p = command.CreateParameter();

Data access using ADO.NET

Spring Framework (Version 1.3.2) 214

 p.ParameterName = "@PostalCode";

 p.Value = postalCode;

 command.Parameters.Add(p);

 return (int)command.ExecuteScalar();

 });

}

The DbCommand that is passed into the anonymous delegate is already has it Connection property set to the

corresponding value of the dbProvider instance used to create the template. Furthermore, the Transaction

property of the DbCommand is set based on the transactional calling context of the code as based on the use of

Spring's transaction management features. Also note the feature of anonymous delegates to access the variable

'postalCode' which is defined 'outside' the anonymous delegate implementation. The use of anonymous delegates

is a powerful approach since it allows you to write compact data access code. If you find that your callback

implementation is getting very long, it may improve code clarity to use an interface based version of the callback

function, i.e. an ICommandCallback shown below.

As you can see, only the most relevant portions of the data access task at hand need to be coded. (Note that in

this simple example you would be better off using AdoTemplate's ExecuteScalar method directly. This method

is described in the following sections). As mentioned before, the typical usage scenario for the Execute callback

would involve downcasting the passed in DbCommand object to access specific provider API features.

There is also an interface based version of the execute method. The signatures for the delegate and interface are

shown below

public delegate T CommandDelegate<T>(DbCommand command);

public interface ICommandCallback

{

 T DoInCommand<T>(DbCommand command);

}

While the delegate version offers the most compact syntax, the interface version allows for reuse. The

corresponding method signatures on Spring.Data.Generic.AdoTemplate are shown below

public class AdoTemplate : AdoAccessor, IAdoOperations

{

 ...

 T Execute<T>(ICommandCallback action);

 T Execute<T>(CommandDelegate<T> del);

 ...

}

While it is common for .NET 2.0 ADO.NET provider implementations to inherit from the base class

System.Data.Common.DbCommand, that is not a requirement. To accommodate the few that don't, which as of

this writing are the latest Oracle (ODP) provider, Postgres, and DB2 for iSeries, two additional execute methods

are provided. The only difference is the use of callback and delegate implementations that have IDbCommand

and not DbCommand as callback arguments. The following listing shows these methods on AdoTemplate.

public class AdoTemplate : AdoAccessor, IAdoOperations

{

 ...

 T Execute<T>(IDbCommandCallback action);

 T Execute<T>(IDbCommandDelegate<T> del);

Data access using ADO.NET

Spring Framework (Version 1.3.2) 215

 ...

}

where the signatures for the delegate and interface are shown below

public delegate T IDbCommandDelegate<T>(IDbCommand command);

public interface IDbCommandCallback<T>

{

 T DoInCommand(IDbCommand command);

}

Internally the AdoTemplate implementation delegates to implementations of IDbCommandCallback so

that the 'lowest common denominator' API is used to have maximum portability. If you accidentally

call Execute<T>(ICommandCallback action)and the command does not inherit from DbCommand, an

InvalidDataAccessApiUsageException will be thrown.

Depending on how portable you would like your code to be, you can choose among the two callback styles. The

one based on DbCommand has the advantage of access to the more user friendly DbParameter class as compared

to IDbParameter obtained from IDbCommand.

20.6.3. Execute Callback in .NET 1.1
>

AdoTemplate differs from its .NET 2.0 generic counterpart in that it exposes the interface IDbCommand in

its 'Execute' callback methods and delegate as compared to the abstract base class DbProvider. Also, since

anonymous delegates are not available in .NET 1.1, the typical usage pattern requires you to create a explicitly

delegate and/or class that implements the ICommandCallback interface. Example code to query In .NET 1.1 the

'Northwind' database is done to determine the number of customers who have a particular postal code is shown

below.

public virtual int FindCountWithPostalCode(string postalCode)

{

 return (int) AdoTemplate.Execute(new PostalCodeCommandCallback(postalCode));

}

and the callback implementation is

private class PostalCodeCommandCallback : ICommandCallback

{

 private string cmdText = "select count(*) from Customer where PostalCode = @PostalCode";

 private string postalCode;

 public PostalCodeCommandCallback(string postalCode)

 {

 this.postalCode = postalCode;

 }

 public object DoInCommand(IDbCommand command)

 {

 command.CommandText = cmdText;

 IDbDataParameter p = command.CreateParameter();

 p.ParameterName = "@PostalCode";

 p.Value = postalCode;

 command.Parameters.Add(p);

 return command.ExecuteScalar();

 }

Data access using ADO.NET

Spring Framework (Version 1.3.2) 216

}

Note that in this example, one could more easily use AdoTemplate's ExecuteScalar method.

The Execute method has interface and delegate overloads. The signatures for the delegate and interface are shown

below

public delegate object CommandDelegate(IDbCommand command);

public interface ICommandCallback

{

 object DoInCommand(IDbCommand command);

}

The corresponding method signatures on Spring.Data.AdoTemplate are shown below

public class AdoTemplate : AdoAccessor, IAdoOperations

{

 ...

 object Execute(CommandDelegate del);

 object Execute(ICommandCallback action);

 ...

}

Note that you have to cast to the appropriate object type returned from the execute method.

20.6.4. Quick Guide to AdoTemplate Methods

There are many methods in AdoTemplate so it is easy to feel a bit overwhelmed when taking a look at the SDK

documentation. However, after a while you will hopefully find the class 'easy to navigate' with intellisense. Here is

a quick categorization of the method names and their associated data access operation. Each method is overloaded

to handle common cases of passing in parameter values.

The generic 'catch-all' method

• Execute - Allows you to perform any data access operation on a standard DbCommand object. The connection

and transaction properties of the DbCommand are already set based on the transactional calling context. There

is also an overloaded method that operates on a standard IDbCommand object. This is for those providers that

do not inherit from the base class DbCommand.

The following methods mirror those on the DbCommand object.

• ExecuteNonQuery - Executes the 'NonQuery' method on a DbCommand, applying provided parameters and

returning the number of rows affected.

• ExecuteScalar - Executes the 'Scalar' method on a DbCommand, applying provided parameters, and returning

the first column of the first row in the result set.

Mapping result sets to objects

• QueryWithResultSetExtractor - Execute a query mapping a result set to an object with an implementation

of the IResultSetExtractor interface.

• QueryWithResultSetExtractorDelegate - Same as QueryWithResultSetExtractor but using a

ResultSetExtractorDelegate to perform result set mapping.

Data access using ADO.NET

Spring Framework (Version 1.3.2) 217

• QueryWithRowCallback - Execute a query calling an implementation of IRowCallback for each row in the

result set.

• QueryWithRowCallbackDelegate - Same as QueryWithRowCallback but calling a RowCallbackDelegate for

each row.

• QueryWithRowMapper - Execute a query mapping a result set on a row by row basis with an implementation

of the IRowMapper interface.

• QueryWithRowMapperDelegate - Same as QueryWithRowMapper but using a RowMapperDelegate to perform

result set row to object mapping.

Mapping result set to a single object

• QueryForObject - Execute a query mapping the result set to an object using a IRowMapper. Exception is thrown

if the query does not return exactly one object.

Query with a callback to create the DbCommand object. These are generally used by the framework itself to

support other functionality, such as in the Spring.Data.Objects namespace.

• QueryWithCommandCreator - Execute a query with a callback to IDbCommandCreator to create a IDbCommand

object and using either a IRowMapper or IResultSetExtractor to map the result set to an object. One variation

lets multiple result set 'processors' be specified to act on multiple result sets and return output parameters.

DataTable and DataSet operations

• DataTableCreate - Create and Fill DataTables

• DataTableCreateWithParameters - Create and Fill DataTables using a parameter collection.

• DataTableFill - Fill a pre-existing DataTable.

• DataTableFillWithParameters - Fill a pre-existing DataTable using parameter collection.

• DataTableUpdate - Update the database using the provided DataTable, insert, update, delete SQL.

• DataTableUpdateWithCommandBuilder - Update the database using the provided DataTable, select SQL, and

parameters.

• DataSetCreate - Create and Fill DataSets

• DataSetCreateWithParameters - Create and Fill DataTables using a parameter collection.

• DataSetFill - Fill a pre-existing DataSet

• DataSetFillWithParameters - Fill a pre-existing DataTable using parameter collection.

• DataSetUpdate - Update the database using the provided DataSet, insert, update, delete SQL.

• DataSetUpdateWithCommandBuilder - Update the database using the provided DataSet, select SQL, and

parameters..

Note

These methods are not currently in the generic version of AdoTemplate but accessible through the

property ClassicAdoTemplate.

Data access using ADO.NET

Spring Framework (Version 1.3.2) 218

Parameter Creation utility methods

• DeriveParameters - Derive the parameter collection for stored procedures.

In turn each method typically has four overloads, one with no parameters and three for providing parameters.

Aside from the DataTable/DataSet operations, the three parameter overloads are of the form shown below

• MethodName(CommandType cmdType, string cmdText, CallbackInterfaceOrDelegate, parameter setting

arguments)

The CallbackInterfaceOrDelegate is one of the three types listed previously. The parameters setting arguments

are of the form

• MethodName(... string parameterName, Enum dbType, int size, object parameterValue)

• MethodName(... IDbParameters parameters)

• MethodName(... ICommandSetter commandSetter)

The first overload is a convenience method when you only have one parameter to set. The database enumeration

is the base class 'Enum' allowing you to pass in any of the provider specific enumerations as well as the common

DbType enumeration. This is a trade off of type-safety with provider portability. (Note generic version could be

improved to provide type safety...).

The second overload contains a collection of parameters. The data type is Spring's IDbParameters collection class

discussed in the following section.

The third overload is a callback interface allowing you to set the parameters (or other properties) of the

IDbCommand passed to you by the framework directly.

If you are using .NET 2.0 the delegate versions of the methods are very useful since very compact definitions

of database operations can be created that reference variables local to the DAO method. This removes some

of the tedium in passing parameters around with interface based versions of the callback functions since they

need to be passed into the constructor of the implementing class. The general guideline is to use the delegate

when available for functionality that does not need to be shared across multiple DAO classes or methods and

use interface based version to reuse the implementation in multiple places. The .NET 2.0 versions make use of

generics where appropriate and therefore enhance type-safety.

20.6.5. Quick Guide to AdoTemplate Properties

AdoTemplate has the following properties that you can configure

• LazyInit - Indicates if the IAdoExceptionTranslator should be created on first encounter of an exception

from the data provider or when AdoTemplate is created. Default is true, i.e. to lazily instantiate.

• ExceptionTranslator - Gets or sets the implementation of IAdoExceptionTranslator to use. If no custom

translator is provided, a default ErrorCodeExceptionTranslator is used.

• DbProvider - Gets or sets the IDbProvider instance to use.

• DataReaderWrapperType - Gets or set the System.Type to use to create an instance of IDataReaderWrapper

for the purpose of providing extended mapping functionality. Spring provides an implementation to use as the

Data access using ADO.NET

Spring Framework (Version 1.3.2) 219

basis for a mapping strategy that will map DBNull values to default values based on the standard IDataReader

interface. See the section custom IDataReader implementations for more information.

• CommandTimeout - Gets or sets the command timeout for IDbCommands that this AdoTemplate executes.

Default is 0, indicating to use the database provider's default.

20.7. Transaction Management

The AdoTemplate is used in conjunction with an implementation of a IPlatformTransactionManager, which is

Spring's portable transaction management API. This section gives a brief overview of the transaction managers

you can use with AdoTemplate and the details of how you can retrieve the connection/transaction ADO.NET

objects that are bound to the thread when a transaction starts. Please refer to the section key abstractions in the

chapter on transactions for more comprehensive introduction to transaction management.

To use local transactions, those with only one transactional resource (i.e. the database) you will typically use

AdoPlatformTransactionManager. If you need to mix Hibernate and ADO.NET data access operations within

the same local transaction you should use HibernatePlatformTransaction manager which is described more in

the section on ORM transaction management.

While it is most common to use Spring's transaction management features to avoid the low level management of

ADO.NET connection and transaction objects, you can retrieve the connection/transaction pair that was created

at the start of a transaction and bound to the current thread. This may be useful for some integration with other

data access APIs. The can be done using the utility class ConnectionUtils as shown below.

IDbProvider dbProvider = DbProviderFactory.GetDbProvider("System.Data.SqlClient");

ConnectionTxPair connectionTxPairToUse = ConnectionUtils.GetConnectionTxPair(dbProvider);

IDbCommand command = DbProvider.CreateCommand();

command.Connection = connectionTxPairToUse.Connection;

command.Transaction = connectionTxPairToUse.Transaction;

It is possible to provide a wrapper around the standard .NET provider interfaces such that you can use the plain

ADO.NET API in conjunction with Spring's transaction management features.

If you are using ServiceDomainPlatformTransactionManager or TxScopePlatformTransactionManager then

you can retrieve the currently executing transaction object via the standard .NET APIs.

20.8. Exception Translation

AdoTemplate's methods throw exceptions within a Data Access Object (DAO) exception hierarchy described in

Chapter 18, DAO support. In addition, the command text and error code of the exception are extracted and logged.

This leads to easier to write provider independent exception handling layer since the exceptions thrown are not

tied to a specific persistence technology. Additionally, for ADO.NET code the error messages logged provide

information on the SQL and error code to better help diagnose the issue.

20.9. Parameter Management

A fair amount of the code in ADO.NET applications is related to the creation and population of parameters.

The BCL parameter interfaces are very minimal and do not have many convenience methods found in provider

implementations such as SqlClient. Even still, with SqlClient, there is a fair amount of verbosity to creating and

populating a parameter collection. Spring provides two ways to make this mundane task easier and more portable

across providers.

Data access using ADO.NET

Spring Framework (Version 1.3.2) 220

20.9.1. IDbParametersBuilder

Instead of creating a parameter on one line of code, then setting its type on another and size on another, a

builder and parameter interface, IDbParametersBuilder and IDbParameter respectfully, are provided so that this

declaration process can be condensed. The IDbParameter support chaining calls to its methods, in effect a simple

language-constrained domain specific language, to be fancy about it. Here is an example of it in use.

IDbParametersBuilder builder = CreateDbParametersBuilder();

builder.Create().Name("Country").Type(DbType.String).Size(15).Value(country);

builder.Create().Name("City").Type(DbType.String).Size(15).Value(city);

// now get the IDbParameters collection for use in passing to AdoTemplate methods.

IDbParameters parameters = builder.GetParameters();

Please note that IDbParameters and IDbParameter are not part of the BCL, but part of the Spring.Data.Common

namespace. The IDbParameters collection is a frequent argument to the overloaded methods of AdoTemplate.

The parameter prefix, i.e. '@' in Sql Server, is not required to be added to the parameter name. The DbProvider

is aware of this metadata and AdoTemplate will add it automatically if required before execution.

An additional feature of the IDbParametersBuilder is to create a Spring FactoryObject that creates IDbParameters

for use in the XML configuration file of the IoC container. By leveraging Spring's expression evaluation language,

the above lines of code can be taken as text from the XML configuration file and executed. As a result you

can externalize your parameter definitions from your code. In combination with abstract object definitions and

importing of configuration files your increase the chances of having one code base support multiple database

providers just by a change in configuration files.

20.9.2. IDbParameters

This class is similar to the parameter collection class you find in provider specific implementations of

IDataParameterCollection. It contains a variety of convenience methods to build up a collection of parameters.

Here is an abbreviated listing of the common convenience methods.

• int Add(object parameterValue)

• void AddRange(Array values)

• IDbDataParameter AddWithValue(string name, object parameterValue)

• IDbDataParameter Add(string name, Enum parameterType)

• IDbDataParameter AddOut(string name, Enum parameterType)

• IDbDataParameter AddReturn(string name, Enum parameterType)

• void DeriveParameters(string storedProcedureName)

Here a simple usage example

// inside method has has local variable country and city...

IDbParameters parameters = CreateDbParameters();

Data access using ADO.NET

Spring Framework (Version 1.3.2) 221

parameters.AddWithValue("Country", country).DbType = DbType.String;

parameters.Add("City", DbType.String).Value = city;

// now pass on to AdoTemplate methods.

The parameter prefix, i.e. '@' in Sql Server, is not required to be added to the parameter name. The DbProvider

is aware of this metadata and AdoTemplate will add it automatically if required before execution.

20.9.3. Parameter names in SQL text

While the use of IDbParameters or IDbParametersBuilder will remove the need for use to vendor specific

parameter prefixes when creating a parameter collection, @User in Sql SqlSerer vs. :User in Oracle, you still

need to specify the vendor specific parameter prefix in the SQL Text. Portable SQL in this regard is possible to

implement, it is available as a feature in Spring Java. If you would like such a feature, please raise an issue [http://

jira.springsource.org/secure/CreateIssue!default.jspa?pid=10020].

20.10. Custom IDataReader implementations

The passed in implementation of IDataReader can be customized. This lets you add a strategy for handling null

values to the standard methods in the IDataReader interface or to provide sub-interface of IDataReader that

contains extended functionality, for example support for default values. In callback code, i.e. IRowMapper and

associated delegate, you would downcast to the sub-interface to perform processing.

Spring provides a class to map DBNull values to default values. When reading from a IDataReader there is often the

need to map DBNull values to some default values, i.e. null or say a magic number such as -1. This is usually done

via a ternary operator which decreases readability and also increases the likelihood of mistakes. Spring provides

an IDataReaderWrapper interface (which inherits from the standard IDataReader) so that you can provide your

own implementation of a IDataReader that will perform DBNull mapping for you in a consistent and non invasive

manner to your result set reading code. A default implementation, NullMappingDataReader is provided which

you can subclass to customize or simply implement the IDataReaderWrapper interface directly. This interface

is shown below

 public interface IDataReaderWrapper : IDataReader

 {

 IDataReader WrappedReader

 {

 get;

 set;

 }

 }

All of AdoTemplates callback interfaces/delegates that have an IDataReader as an argument are wrapped with a

IDataReaderWrapper if the AdoTemplate has been configured with one via its DataReaderWrapperType property.

Your implementation should support a zero-arg constructor.

Frequently you will use a common mapper for DBNull across your application so only one instance of

AdoTemplate and IDataReaderWrapper in required. If you need to use multiple null mapping strategies you will

need to create multiple instances of AdoTemplate and configure them appropriately in the DAO objects.

20.11. Basic data access operations

The 'ExecuteNonQuery' and 'ExecuteScalar' methods of AdoTemplate have the same functionality as the same

named methods on the DbCommand object

http://jira.springsource.org/secure/CreateIssue!default.jspa?pid=10020
http://jira.springsource.org/secure/CreateIssue!default.jspa?pid=10020
http://jira.springsource.org/secure/CreateIssue!default.jspa?pid=10020

Data access using ADO.NET

Spring Framework (Version 1.3.2) 222

20.11.1. ExecuteNonQuery

ExecuteNonQuery is used to perform create, update, and delete operations. It has four overloads listed below

reflecting different ways to set the parameters.

An example of using this method is shown below

 public void CreateCredit(float creditAmount)

 {

 AdoTemplate.ExecuteNonQuery(CommandType.Text,

 String.Format("insert into Credits(creditAmount) VALUES ({0})",

 creditAmount));

 }

20.11.2. ExecuteScalar

An example of using this method is shown below

int iCount = (int)adoTemplate.ExecuteScalar(CommandType.Text, "SELECT COUNT(*) FROM TestObjects");

20.12. Queries and Lightweight Object Mapping

A common ADO.NET development task is reading in a result set and converting it to a collection of domain

objects. The family of QueryWith methods on AdoTemplate help in this task. The responsibility of performing

the mapping is given to one of three callback interfaces/delegates that you are responsible for developing. These

callback interfaces/delegates are:

• IResultSetExtractor / ResultSetExtractorDelegate - hands you a IDataReader object for you to iterate over and

return a result object.

• IRowCallback / RowCallbackDelegate - hands you a IDataReader to process the current row. Returns void and

as such is usually stateful in the case of IRowCallback implementations or uses a variable to collect a result

that is available to an anonymous delegate.

• IRowMapper / RowMapperDelegate - hands you a IDataReader to process the current row and return an object

corresponding to that row.

There are generic versions of the IResultSetExtractor and IRowMapper interfaces/delegates providing you with

additional type-safety as compared to the object based method signatures used in the .NET 1.1 implementation.

As usual with callback APIs in Spring.Data, your implementations of these interfaces/delegates are only

concerned with the core task at hand - mapping data - while the framework handles iteration of readers and

resource management.

Each 'QueryWith' method has 4 overloads to handle common ways to bind parameters to the command text.

The following sections describe in more detail how to use Spring's lightweight object mapping framework.

20.12.1. ResultSetExtractor

The ResultSetExtractor gives you control to iterate over the IDataReader returned from the query. You are

responsible for iterating through all the result sets and returning a corresponding result object. Implementations

of IResultSetExtractor are typically stateless and therefore reusable as long as the implementation doesn't access

stateful resources. The framework will close the IDataReader for you.

Data access using ADO.NET

Spring Framework (Version 1.3.2) 223

The interface and delegate signature for ResutSetExtractors is shown below for the generic version in the

Spring.Data.Generic namespace

public interface IResultSetExtractor<T>

{

 T ExtractData(IDataReader reader);

}

public delegate T ResultSetExtractorDelegate<T>(IDataReader reader);

The definition for the non-generic version is shown below

public interface IResultSetExtractor

{

 object ExtractData(IDataReader reader);

}

public delegate object ResultSetExtractorDelegate(IDataReader reader);

Here is an example taken from the Spring.DataQuickStart. It is a method in a DAO class that inherits from

AdoDaoSupport, which has a convenience method 'CreateDbParametersBuilder()'.

 public virtual IList<string> GetCustomerNameByCountryAndCityWithParamsBuilder(string country, string

 city)

 {

 IDbParametersBuilder builder = CreateDbParametersBuilder();

 builder.Create().Name("Country").Type(DbType.String).Size(15).Value(country);

 builder.Create().Name("City").Type(DbType.String).Size(15).Value(city);

 return AdoTemplate.QueryWithResultSetExtractor(CommandType.Text,

 customerByCountryAndCityCommandText,

 new CustomerNameResultSetExtractor<List<string>>(),

 builder.GetParameters());

 }

The implementation of the ResultSetExtractor is shown below.

 internal class CustomerNameResultSetExtractor<T> : IResultSetExtractor<T> where T : IList<string>, new()

 {

 public T ExtractData(IDataReader reader)

 {

 T customerList = new T();

 while (reader.Read())

 {

 string contactName = reader.GetString(0);

 customerList.Add(contactName);

 }

 return customerList;

 }

 }

Internally the implementation of the QueryWithRowCallback and QueryWithRowMapper methods are

specializations of the general ResultSetExtractor. For example, the QueryWithRowMapper implementation

iterates through the result set, calling the callback method 'MapRow' for each row and collecting the results

in an IList. If you have a specific case that is not covered by the QueryWithXXX methods you can subclass

AdoTemplate and follow the same implementation pattern to create a new QueryWithXXX method to suit your

needs.

20.12.2. RowCallback

The RowCallback is usually a stateful object itself or populates another stateful object that is accessible to the

calling code. Here is a sample take from the Data QuickStart

Data access using ADO.NET

Spring Framework (Version 1.3.2) 224

 public class RowCallbackDao : AdoDaoSupport

 {

 private string cmdText = "select ContactName, PostalCode from Customers";

 public virtual IDictionary<string, IList<string>> GetPostalCodeCustomerMapping()

 {

 PostalCodeRowCallback statefullCallback = new PostalCodeRowCallback();

 AdoTemplate.QueryWithRowCallback(CommandType.Text, cmdText,

 statefullCallback);

 // Do something with results in stateful callback...

 return statefullCallback.PostalCodeMultimap;

 }

 }

The PostalCodeRowCallback builds up state which is then retrieved via the property PostalCodeMultimap. The

Callback implementation is shown below

 internal class PostalCodeRowCallback : IRowCallback

 {

 private IDictionary<string, IList<string>> postalCodeMultimap =

 new Dictionary<string, IList<string>>();

 public IDictionary<string, IList<string>> PostalCodeMultimap

 {

 get { return postalCodeMultimap; }

 }

 public void ProcessRow(IDataReader reader)

 {

 string contactName = reader.GetString(0);

 string postalCode = reader.GetString(1);

 IList<string> contactNameList;

 if (postalCodeMultimap.ContainsKey(postalCode))

 {

 contactNameList = postalCodeMultimap[postalCode];

 }

 else

 {

 postalCodeMultimap.Add(postalCode, contactNameList = new List<string>());

 }

 contactNameList.Add(contactName);

 }

 }

20.12.3. RowMapper

The RowMapper lets you focus on just the logic to map a row of your result set to an object. The creation of

a IList to store the results and iterating through the IDataReader is handled by the framework. Here is a simple

example taken from the Data QuickStart application

 public class RowMapperDao : AdoDaoSupport

 {

 private string cmdText = "select Address, City, CompanyName, ContactName, " +

 "ContactTitle, Country, Fax, CustomerID, Phone, PostalCode, " +

 "Region from Customers";

 public virtual IList<Customer> GetCustomers()

 {

 return AdoTemplate.QueryWithRowMapper<Customer>(CommandType.Text, cmdText,

 new CustomerRowMapper<Customer>());

 }

 }

where the implementation of the RowMapper is

 public class CustomerRowMapper<T> : IRowMapper<T> where T : Customer, new()

Data access using ADO.NET

Spring Framework (Version 1.3.2) 225

 {

 public T MapRow(IDataReader dataReader, int rowNum)

 {

 T customer = new T();

 customer.Address = dataReader.GetString(0);

 customer.City = dataReader.GetString(1);

 customer.CompanyName = dataReader.GetString(2);

 customer.ContactName = dataReader.GetString(3);

 customer.ContactTitle = dataReader.GetString(4);

 customer.Country = dataReader.GetString(5);

 customer.Fax = dataReader.GetString(6);

 customer.Id = dataReader.GetString(7);

 customer.Phone = dataReader.GetString(8);

 customer.PostalCode = dataReader.GetString(9);

 customer.Region = dataReader.GetString(10);

 return customer;

 }

 }

You may also pass in a delegate, which is particularly convenient if the mapping logic is short and you need to

access local variables within the mapping logic.

 public virtual IList<Customer> GetCustomersWithDelegate()

 {

 return AdoTemplate.QueryWithRowMapperDelegate<Customer>(CommandType.Text, cmdText,

 delegate(IDataReader dataReader, int rowNum)

 {

 Customer customer = new Customer();

 customer.Address = dataReader.GetString(0);

 customer.City = dataReader.GetString(1);

 customer.CompanyName = dataReader.GetString(2);

 customer.ContactName = dataReader.GetString(3);

 customer.ContactTitle = dataReader.GetString(4);

 customer.Country = dataReader.GetString(5);

 customer.Fax = dataReader.GetString(6);

 customer.Id = dataReader.GetString(7);

 customer.Phone = dataReader.GetString(8);

 customer.PostalCode = dataReader.GetString(9);

 customer.Region = dataReader.GetString(10);

 return customer;

 });

 }

20.12.4. Query for a single object

The QueryForObject method is used when you expect there to be exactly one object returned from the mapping,

otherwise a Spring.Dao.IncorrectResultSizeDataAccessException will be thrown. Here is some sample usage

taken from the Data QuickStart.

 public class QueryForObjectDao : AdoDaoSupport

 {

 private string cmdText = "select Address, City, CompanyName, ContactName, " +

 "ContactTitle, Country, Fax, CustomerID, Phone, PostalCode, " +

 "Region from Customers where ContactName = @ContactName";

 public Customer GetCustomer(string contactName)

 {

 return AdoTemplate.QueryForObject(CommandType.Text, cmdText,

 new CustomerRowMapper<Customer>(),

 "ContactName", DbType.String, 30, contactName);

 }

 }

20.12.5. Query using a CommandCreator

There is a family of overloaded methods that allows you to encapsulate and reuse a particular configuration

of a IDbCommand object. These methods also allow for access to returned out parameters as well as a method

that allows processing of multiple result sets. These methods are used internally to support the classes in the

Data access using ADO.NET

Spring Framework (Version 1.3.2) 226

Spring.Data.Objects namespace and you may find the API used in that namespace to be more convenient. The

family of methods is listed below.

• object QueryWithCommandCreator(IDbCommandCreator cc, IResultSetExtractor rse)

• void QueryWithCommandCreator(IDbCommandCreator cc, IRowCallback rowCallback)

• IList QueryWithCommandCreator(IDbCommandCreator cc, IRowMapper rowMapper)

There is also the same methods with an additional collecting parameter to obtain any output parameters. These are

• object QueryWithCommandCreator(IDbCommandCreator cc, IResultSetExtractor rse, IDictionary

returnedParameters)

• void QueryWithCommandCreator(IDbCommandCreator cc, IRowCallback rowCallback, IDictionary

returnedParameters)

• IList QueryWithCommandCreator(IDbCommandCreator cc, IRowMapper rowMapper, IDictionary

returnedParameters)

The IDbCommandCreator callback interface is shown below

 public interface IDbCommandCreator

 {

 IDbCommand CreateDbCommand();

 }

The created IDbCommand object is used when performing the QueryWithCommandCreator method.

To process multiple result sets specify a list of named result set processors,(i.e. IResultSetExtractor,

IRowCallback, or IRowMapper). This method is shown below

• IDictionary QueryWithCommandCreator(IDbCommandCreator cc, IList namedResultSetProcessors)

The list must contain objects of the type Spring.Data.Support.NamedResultSetProcessor. This is the class

responsible for associating a name with a result set processor. The constructors are listed below.

public class NamedResultSetProcessor {

 public NamedResultSetProcessor(string name, IRowMapper rowMapper) { ... }

 public NamedResultSetProcessor(string name, IRowCallback rowcallback) { ... }

 public NamedResultSetProcessor(string name, IResultSetExtractor resultSetExtractor) { ... }

 . . .

}

The results of the RowMapper or ResultSetExtractor are retrieved by name from the dictionary that is returned.

RowCallbacks, being stateless, only have the placeholder text, "ResultSet returned was processed by an

IRowCallback" as a value for the name of the RowCallback used as a key. Output and InputOutput parameters

can be retrieved by name. If this parameter name is null, then the index of the parameter prefixed with the letter

'P' is a key name, i.e P2, P3, etc.

The namespace Spring.Data.Objects.Generic contains generic versions of these methods. These are listed below

• T QueryWithCommandCreator<T>(IDbCommandCreator cc, IResultSetExtractor<T> rse)

Data access using ADO.NET

Spring Framework (Version 1.3.2) 227

• IList<T> QueryWithCommandCreator<T>(IDbCommandCreator cc, IRowMapper<T> rowMapper)

and overloads that have an additional collecting parameter to obtain any output parameters.

• T QueryWithCommandCreator<T>(IDbCommandCreator cc, IResultSetExtractor<T> rse, IDictionary

returnedParameters)

• IList<T> QueryWithCommandCreator<T>(IDbCommandCreator cc, IRowMapper<T> rowMapper,

IDictionary returnedParameters)

When processing multiple result sets you can specify up to two type safe result set processors.

• IDictionary QueryWithCommandCreator<T>(IDbCommandCreator cc, IList namedResultSetProcessors)

• IDictionary QueryWithCommandCreator<T,U>(IDbCommandCreator cc, IList

namedResultSetProcessors)

The list of result set processors contains either objects of the type

Spring.Data.Generic.NamedResultSetProcessor<T> or Spring.Data.NamedResultSetProcessor. The generic

result set processors, NamedResultSetProcessor<T>, is used to process the first result set in the case of

using QueryWithCommandCreator<T> and to process the first and second result set in the case of using

QueryWithCommandCreator<T,U>. Additional Spring.Data.NamedResultSetProcessors that are listed can be

used to process additional result sets. If you specify a RowCallback with NamedResultSetProcessor<T>, you still

need to specify a type parameter (say string) because the RowCallback processor does not return any object. It is

up to subclasses of RowCallback to collect state due to processing the result set which is later queried.

20.13. DataTable and DataSet

AdoTemplate contains several 'families' of methods to help remove boilerplate code and reduce common

programming errors when using DataTables and DataSets. There are many methods in AdoTemplate so it is

easy to feel a bit overwhelmed when taking a look at the SDK documentation. However, after a while you will

hopefully find the class 'easy to navigate' with intellisense. Here is a quick categorization of the method names

and their associated data access operation. Each method is overloaded to handle common cases of passing in

parameter values.

The 'catch-all' Execute methods upon which other functionality is built up upon are shown below.

In Spring.Data.Core.AdoTemplate

• object Execute(IDataAdapterCallback dataAdapterCallback) - Execute ADO.NET operations on a

IDbDataAdapter object using an interface based callback.

Where IDataAdapterCallback is defined as

public interface IDataAdapterCallback

{

 object DoInDataAdapter(IDbDataAdapter dataAdapter);

}

The passed in IDbDataAdapter will have its SelectCommand property created and set with its Connection and

Transaction values based on the calling transaction context. The return value is the result of processing or null.

There are type-safe versions of this method in Spring.Data.Generic.AdoTemplate

Data access using ADO.NET

Spring Framework (Version 1.3.2) 228

• T Execute<T>(IDataAdapterCallback<T> dataAdapterCallback) - Execute ADO.NET operations on a

IDbDataAdapter object using an interface based callback.

• T Execute<T>(DataAdapterDelegate<T> del) - Execute ADO.NET operations on a IDbDataAdapter object

using an delegate based callback.

Where IDataAdapterCallback<T> and DataAdapterDelegate<T> are defined as

public interface IDataAdapterCallback<T>

{

 T DoInDataAdapter(IDbDataAdapter dataAdapter);

}

public delegate T DataAdapterDelegate<T>(IDbDataAdapter dataAdapter);

20.13.1. DataTables

DataTable operations are available on the class Spring.Data.Core.AdoTemplate. If you are using the

generic version, Spring.Data.Generic.AdoTemplate, you can access these methods through the property

ClassicAdoTemplate, which returns the non-generic version of AdoTemplate. DataTable operations available fall

into the general family of methods with 3-5 overloads per method.

• DataTableCreate - Create and Fill DataTables

• DataTableCreateWithParameters - Create and Fill DataTables using a parameter collection.

• DataTableFill - Fill a pre-existing DataTable.

• DataTableFillWithParameters - Fill a pre-existing DataTable using a parameter collection.

• DataTableUpdate - Update the database using the provided DataTable, insert, update, delete SQL.

• DataTableUpdateWithCommandBuilder - Update the database using the provided DataTable, select SQL, and

parameters.

20.13.2. DataSets

DataSet operations are available on the class Spring.Data.Core.AdoTemplate. If you are using the

generic version, Spring.Data.Generic.AdoTemplate, you can access these methods through the property

ClassicAdoTemplate, which returns the non-generic version of AdoTemplate. DataSet operations available fall

into the following family of methods with 3-5 overloads per method.

• DataSetCreate - Create and Fill DataSets

• DataSetCreateWithParameters - Create and Fill DataTables using a parameter collection.

• DataSetFill - Fill a pre-existing DataSet

• DataSetFillWithParameters - Fill a pre-existing DataTable using parameter collection.

• DataSetUpdate - Update the database using the provided DataSet, insert, update, delete SQL.

• DataSetUpdateWithCommandBuilder - Update the database using the provided DataSet, select SQL, and

parameters.

The following code snippets demonstrate the basic functionality of these methods using the Northwind database.

See the SDK documentation for more details on other overloaded methods.

Data access using ADO.NET

Spring Framework (Version 1.3.2) 229

public class DataSetDemo : AdoDaoSupport

{

 private string selectAll = @"select Address, City, CompanyName, ContactName, " +

 "ContactTitle, Country, Fax, CustomerID, Phone, PostalCode, " +

 "Region from Customers";

 public void DemoDataSetCreate()

 {

 DataSet customerDataSet = AdoTemplate.DataSetCreate(CommandType.Text, selectAll);

 // customerDataSet has a table named 'Table' with 91 rows

 customerDataSet = AdoTemplate.DataSetCreate(CommandType.Text, selectAll, new string[] { "Customers" });

 // customerDataSet has a table named 'Customers' with 91 rows

}

 public void DemoDataSetCreateWithParameters()

 {

 string selectLike = @"select Address, City, CompanyName, ContactName, " +

 "ContactTitle, Country, Fax, CustomerID, Phone, PostalCode, " +

 "Region from Customers where ContactName like @ContactName";

 DbParameters dbParameters = CreateDbParameters();

 dbParameters.Add("ContactName", DbType.String).Value = "M%';

 DataSet customerLikeMDataSet = AdoTemplate.DataSetCreateWithParams(CommandType.Text, selectLike,

 dbParameters);

 // customerLikeMDataSet has a table named 'Table' with 12 rows

 }

 public void DemoDataSetFill()

 {

 DataSet dataSet = new DataSet();

 dataSet.Locale = CultureInfo.InvariantCulture;

 AdoTemplate.DataSetFill(dataSet, CommandType.Text, selectAll);

 }

Updating a DataSet can be done using a CommandBuilder, automatically created from the specified select

command and select parameters, or by explicitly specifying the insert, update, delete commands and parameters.

Below is an example, refer to the SDK documentation for additional overloads

public class DataSetDemo : AdoDaoSupport

{

 private string selectAll = @"select Address, City, CompanyName, ContactName, " +

 "ContactTitle, Country, Fax, CustomerID, Phone, PostalCode, " +

 "Region from Customers";

 public void DemoDataSetUpdateWithCommandBuilder()

 {

 DataSet dataSet = new DataSet();

 dataSet.Locale = CultureInfo.InvariantCulture;

 AdoTemplate.DataSetFill(dataSet, CommandType.Text, selectAll, new string[]{ "Customers" });

 AddAndEditRow(dataSet);.

 AdoTemplate.DataSetUpdateWithCommandBuilder(dataSet, CommandType.Text, selectAll, null, "Customers");

 }

 public void DemoDataSetUpdateWithoutCommandBuilder()

 {

 DataSet dataSet = new DataSet();

 dataSet.Locale = CultureInfo.InvariantCulture;

 AdoTemplate.DataSetFill(dataSet, CommandType.Text, selectAll, new string[]{ "Customers" });

 AddAndEditRow(dataSet);.

 string insertSql = @"INSERT Customers (CustomerID, CompanyName) VALUES (@CustomerId, @CompanyName)";

 IDbParameters insertParams = CreateDbParameters();

 insertParams.Add("CustomerId", DbType.String, 0, "CustomerId"); //.Value = "NewID";

Data access using ADO.NET

Spring Framework (Version 1.3.2) 230

 insertParams.Add("CompanyName", DbType.String, 0, "CompanyName"); //.Value = "New Company Name";

 string updateSql = @"update Customers SET Phone=@Phone where CustomerId = @CustomerId";

 IDbParameters updateParams = CreateDbParameters();

 updateParams.Add("Phone", DbType.String, 0, "Phone");//.Value = "030-0074322"; // simple change, last

 digit changed from 1 to 2.

 updateParams.Add("CustomerId", DbType.String, 0, "CustomerId");//.Value = "ALFKI";

 AdoTemplate.DataSetUpdate(dataSet, "Customers",

 CommandType.Text, insertSql, insertParams,

 CommandType.Text, updateSql, updateParams,

 CommandType.Text, null , null);

 }

 private static void AddAndEditRow(DataSet dataSet)

 {

 DataRow dataRow = dataSet.Tables["Customers"].NewRow();

 dataRow["CustomerId"] = "NewID";

 dataRow["CompanyName"] = "New Company Name";

 dataRow["ContactName"] = "New Name";

 dataRow["ContactTitle"] = "New Contact Title";

 dataRow["Address"] = "New Address";

 dataRow["City"] = "New City";

 dataRow["Region"] = "NR";

 dataRow["PostalCode"] = "New Code";

 dataRow["Country"] = "New Country";

 dataRow["Phone"] = "New Phone";

 dataRow["Fax"] = "New Fax";

 dataSet.Tables["Customers"].Rows.Add(dataRow);

 DataRow alfkiDataRow = dataSet.Tables["Customers"].Rows[0];

 alfkiDataRow["Phone"] = "030-0074322"; // simple change, last digit changed from 1 to 2.

 }

}

In the case of needing to set parameter SourceColumn or SourceVersion properties it may be more convenient

to use IDbParameterBuilder.

20.14. TableAdapters and participation in transactional context

Typed DataSets need to have commands in their internal DataAdapters and command collections explicitly set

with a connection/transaction in order for them to correctly participate with a surrounding transactional context.

The reason for this is by default the code generated is explicitly managing the connections and transactions.

This issue is very well described in the article System.Transactions and ADO.NET 2.0 by ADO.NET guru

Sahil Malik. Spring offers a convenience method that will use reflection to internally set the transaction

on the table adapter's internal command collection to the ambient transaction. This method on the class

Spring.Data.Support.TypedDataSetUtils and is named ApplyConnectionAndTx. Here is sample usage of a

DAO method that uses a VS.NET 2005 generated typed dataset for a PrintGroupMapping table.

public PrintGroupMappingDataSet FindAll()

{

 PrintGroupMappingTableAdapter adapter = new PrintGroupMappingTableAdapter();

 PrintGroupMappingDataSet printGroupMappingDataSet = new PrintGroupMappingDataSet();

 printGroupMappingDataSet = AdoTemplate.Execute(delegate(IDbCommand command)

 {

 TypedDataSetUtils.ApplyConnectionAndTx(adapter, command);

 adapter.Fill(printGroupMappingDataSet.PrintGroupMapping);

 return printGroupMappingDataSet;

 })

 as PrintGroupMappingDataSet;

 return printGroupMappingDataSet;

}

http://www.code-magazine.com/Article.aspx?quickid=0605031

Data access using ADO.NET

Spring Framework (Version 1.3.2) 231

This DAO method may be combined with other DAO operations inside a transactional context and they will all

share the same connection/transaction objects.

There are two overloads of the method ApplyConnectionAndTx which differ in the second method argument,

one takes an IDbCommand and the other IDbProvider. These are listed below

public static void ApplyConnectionAndTx(object typedDataSetAdapter, IDbCommand sourceCommand)

public static void ApplyConnectionAndTx(object typedDataSetAdapter, IDbProvider dbProvider)

The method that takes IDbCommand is a convenience if you will be using AdoTemplate callback's as the passed in

command object will already have its connection and transaction properties set based on the current transactional

context. The method that takes an IDbProvider is convenient to use when you have data access logic that is not

contained within a single callback method but is instead spead among multiple classes. In this case passing the

transactionally aware IDbCommand object can be intrusive on the method signatures. Instead you can pass in

an instance of IDbProvider that can be obtained via standard dependency injection techniques or via a service

locator style lookup.

20.15. Database operations as Objects

The Spring.Data.Objects and Spring.Data.Objects.Generic namespaces contains classes that allow one to

access the database in a more object-oriented manner. By way of an example, one can execute queries and get

the results back as a list containing business objects with the relational column data mapped to the properties of

the business object. One can also execute stored procedures and run update, delete and insert statements.

Note

There is a view borne from experience acquired in the field amongst some of the Spring

developers that the various RDBMS operation classes described below (with the exception of the

StoredProcedure class) can often be replaced with straight AdoTemplate calls... often it is simpler to

use and plain easier to read a DAO method that simply calls a method on a AdoTemplate direct (as

opposed to encapsulating a query as a full-blown class).

It must be stressed however that this is just a view... if you feel that you are getting measurable value

from using the RDBMS operation classes, feel free to continue using these classes.

20.15.1. AdoQuery

AdoQuery is a reusable, threadsafe class that encapsulates an SQL query. Subclasses must implement the

NewRowMapper(..) method to provide a IRowMapper instance that can create one object per row obtained from

iterating over the IDataReader that is created during the execution of the query. The AdoQuery class is rarely

used directly since the MappingAdoQuery subclass provides a much more convenient implementation for mapping

rows to .NET classes. Another implementations that extends AdoQuery is MappingadoQueryWithParameters (See

SDK docs for details).

The AdoNonQuery class encapsulates an IDbCommand 's ExecuteNonQuery method functionality. Like the

AdoQuery object, an AdoNonQuery object is reusable, and like all AdoOperation classes, an AdoNonQuery can have

parameters and is defined in SQL. This class provides two execute methods

• IDictionary ExecuteNonQuery(params object[] inParameterValues)

• IDictionary ExecuteNonQueryByNamedParam(IDictionary inParams)

Data access using ADO.NET

Spring Framework (Version 1.3.2) 232

This class is concrete. Although it can be subclassed (for example to add a custom update method) it can easily

be parameterized by setting SQL and declaring parameters.

An example of an AdoQuery subclass to encapsulate an insert statement for a 'TestObject' (consisting only name

and age columns) is shown below

public class CreateTestObjectNonQuery : AdoNonQuery

{

 private static string sql = "insert into TestObjects(Age,Name) values (@Age,@Name)";

 public CreateTestObjectNonQuery(IDbProvider dbProvider) : base(dbProvider, sql)

 {

 DeclaredParameters.Add("Age", DbType.Int32);

 DeclaredParameters.Add("Name", SqlDbType.NVarChar, 16);

 Compile();

 }

 public void Create(string name, int age)

 {

 ExecuteNonQuery(name, age);

 }

}

20.15.2. MappingAdoQuery

MappingAdoQuery is a reusable query in which concrete subclasses must implement the abstract MapRow(..)

method to convert each row of the supplied IDataReader into an object. Find below a brief example of a custom

query that maps the data from a relation to an instance of the Customer class.

public class TestObjectQuery : MappingAdoQuery

{

 private static string sql = "select TestObjectNo, Age, Name from TestObjects";

 public TestObjectQuery(IDbProvider dbProvider)

 : base(dbProvider, sql)

 {

 CommandType = CommandType.Text;

 }

 protected override object MapRow(IDataReader reader, int num)

 {

 TestObject to = new TestObject();

 to.ObjectNumber = reader.GetInt32(0);

 to.Age = reader.GetInt32(1);

 to.Name = reader.GetString(2);

 return to;

 }

}

20.15.3. AdoNonQuery

The AdoNonQuery class encapsulates an IDbCommand 's ExecuteNonQuery method functionality. Like the

AdoQuery object, an AdoNonQuery object is reusable, and like all AdoOperation classes, an AdoNonQuery can have

parameters and is defined in SQL. This class provides two execute methods

• IDictionary ExecuteNonQuery(params object[] inParameterValues)

• IDictionary ExecuteNonQueryByNamedParam(IDictionary inParams)

This class is concrete. Although it can be subclassed (for example to add a custom update method) it can easily

be parameterized by setting SQL and declaring parameters.

public class CreateTestObjectNonQuery : AdoNonQuery

Data access using ADO.NET

Spring Framework (Version 1.3.2) 233

{

 private static string sql = "insert into TestObjects(Age,Name) values (@Age,@Name)";

 public CreateTestObjectNonQuery(IDbProvider dbProvider) : base(dbProvider, sql)

 {

 DeclaredParameters.Add("Age", DbType.Int32);

 DeclaredParameters.Add("Name", SqlDbType.NVarChar, 16);

 Compile();

 }

 public void Create(string name, int age)

 {

 ExecuteNonQuery(name, age);

 }

}

20.15.4. Stored Procedure

The StoredProcedure class is designed to make it as simple as possible to call a stored procedure. It takes advantage

of metadata present in the database to look up names of in and out parameters.. This means that you don't have

to explicitly declare parameters. You can of course still declare them if you prefer. There are two versions of the

StoredProcedure class, one that uses generics and one that doesn't. Using the StoredProcedure class consists of

two steps, first defining the in/out parameter and any object mappers and second executing the stored procedure.

The non-generic version of StoredProcedure is in the namespace Spring.Data.Objects. It contains the following

methods to execute a stored procedure

• IDictionary ExecuteScalar(params object[] inParameterValues)

• IDictionary ExecuteScalarByNamedParam(IDictionary inParams)

• IDictionary ExecuteNonQuery(params object[] inParameterValues)

• IDictionary ExecuteNonQueryByNamedParam(IDictionary inParams)

• IDictionary Query(params object[] inParameterValues)

• IDictionary QueryByNamedParam(IDictionary inParams)

Each of these methods returns an IDictionary that contains the output parameters and/or any results from Spring's

object mapping framework. The arguments to these methods can be a variable length argument list, in which case

the order must match the parameter order of the stored procedure. If the argument is an IDictionary it contains

parameter key/value pairs. Return values from stored procedures are contained under the key "RETURN_VALUE".

The standard in/out parameters for the stored procedure can be set programmatically by adding to the parameter

collection exposed by the property DeclaredParameters. For each result sets that is returned by the stored

procedures you can registering either an IResultSetExtractor, IRowCallback, or IRowMapper by name, which

is used later to extract the mapped results from the returned IDictionary.

Lets take a look at an example. The following stored procedure class will call the CustOrdersDetail stored

procedure in the Northwind database, passing in the OrderID as a stored procedure argument and returning a

collection of OrderDetails business objects.

 public class CustOrdersDetailStoredProc : StoredProcedure

 {

 private static string procedureName = "CustOrdersDetail";

 public CustOrdersDetailStoredProc(IDbProvider dbProvider) : base(dbProvider, procedureName)

 {

Data access using ADO.NET

Spring Framework (Version 1.3.2) 234

 DeriveParameters();

 AddRowMapper("orderDetailRowMapper", new OrderDetailRowMapper());

 Compile();

 }

 public virtual IList GetOrderDetails(int orderid)

 {

 IDictionary outParams = Query(orderid);

 return outParams["orderDetailRowMapper"] as IList;

 }

 }

The 'DeriveParameters' method saves you the trouble of having to declare each parameter explicitly. When using

DeriveParameters is it often common to use the Query method that takes a variable length list of arguments. This

assumes additional knowledge on the order of the stored procedure arguments. If you do not want to follow this

loose shorthand convention, you can call the method QueryByNamesParameters instead passing in a IDictionary

of parameter key/value pairs.

Note

If you would like to have the return value of the stored procedure included in the returned dictionary,

pass in true as a method parameter to DeriveParameters().

The StoredProcedure class is threadsafe once 'compiled', an act which is usually done in the constructor. This

sets up the cache of database parameters that can be used on each call to Query or QueryByNamedParam.

The implementation of IRowMapper that is used to extract the business objects is 'registered' with the class

and then later retrieved by name as a fictional output parameter. You may also register IRowCallback and

IResultSetExtractor callback interfaces via the AddRowCallback and AddResultSetExtractor methods.

The generic version of StoredProcedure is in the namespace Spring.Data.Objects.Generic. It allows you to define

up to two generic type parameters that will be used to process result sets returned from the stored procedure. An

example is shown below

 public class CustOrdersDetailStoredProc : StoredProcedure

 {

 private static string procedureName = "CustOrdersDetail";

 public CustOrdersDetailStoredProc(IDbProvider dbProvider) : base(dbProvider, procedureName)

 {

 DeriveParameters();

 AddRowMapper("orderDetailRowMapper", new OrderDetailRowMapper<OrderDetails>());

 Compile();

 }

 public virtual List<OrderDetails> GetOrderDetails(int orderid)

 {

 IDictionary outParams = Query<OrderDetails>(orderid);

 return outParams["orderDetailRowMapper"] as List<OrderDetails>;

 }

 }

You can find ready to run code demonstrating the StoredProcedure class in the example 'Data Access' that is part

of the Spring.NET distribution.

Spring Framework (Version 1.3.2) 235

Chapter 21. Object Relational Mapping
(ORM) data access

21.1. Introduction

The Spring Framework provides integration with NHibernate in terms of resource management, DAO

implementation support, and transaction strategies. For example for NHibernate, there is first-class support with

lots of IoC convenience features, addressing many typical NHibernate integration issues. All of these support

packages for O/R (Object Relational) mappers comply with Spring's generic transaction and DAO exception

hierarchies. There are usually two integration styles: either using Spring's DAO 'templates' or coding DAOs

against the 'plain' NHibernate APIs. In both cases, DAOs can be configured through Dependency Injection and

participate in Spring's resource and transaction management.

You can use Spring's support for NHibernate without needing to use Spring IoC or transaction management

functionality. The NHibernate support classes can be used in typical 3rd party library style. However, usage inside

a Spring IoC container does provide additional benefits in terms of ease of configuration and deployment; as such,

most examples in this section show configuration inside a Spring container.

Some of the benefits of using the Spring Framework to create your ORM DAOs include:

• Ease of testing. Spring's IoC approach makes it easy to swap the implementations and config locations of

Hibernate SessionFactory instances, ADO.NET DbProvider instances, transaction managers, and mapper

object implementations (if needed). This makes it much easier to isolate and test each piece of persistence-

related code in isolation.

• Common data access exceptions. Spring can wrap exceptions from your O/R mapping tool of choice, converting

them from proprietary exceptions to a common runtime DataAccessException hierarchy. You can still trap

and handle exceptions anywhere you need to. Remember that ADO.NET exceptions (including DB specific

dialects) are also converted to the same hierarchy, meaning that you can perform some operations with

ADO.NET within a consistent programming model.

• General resource management. Spring application contexts can handle the location and configuration of

Hibernate ISessionFactory instances, ADO.NET DbProvider instances and other related resources. This

makes these values easy to manage and change. Spring offers efficient, easy and safe handling of persistence

resources. For example: related code using NHibernate generally needs to use the same NHibernate Session for

efficiency and proper transaction handling. Spring makes it easy to transparently create and bind a Session to

the current thread, either by using an explicit 'template' wrapper class at the code level or by exposing a current

Session through the Hibernate SessionFactory (for DAOs based on plain Hibernate 1.2 API). Thus Spring

solves many of the issues that repeatedly arise from typical NHibernate usage, for any transaction environment

(local or distributed).

• Integrated transaction management. Spring allows you to wrap your O/R mapping code with either a

declarative, AOP style method interceptor, or an explicit 'template' wrapper class at the code level. In either

case, transaction semantics are handled for you, and proper transaction handling (rollback, etc) in case of

exceptions is taken care of. As discussed below, you also get the benefit of being able to use and swap various

transaction managers, without your Hibernate/ADO.NET related code being affected: for example, between

local transactions and distributed, with the same full services (such as declarative transactions) available in

both scenarios. As an additional benefit, ADO.NET-related code can fully integrate transactionally with the

Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 236

code you use to do O/R mapping. This is useful for data access that's not suitable for O/R mapping which still

needs to share common transactions with ORM operations.

The NHibernate Northwind example in the Spring distribution shows a NHibernate implementation of a

persistence-technology agnostic DAO interfaces. (In the upcoming RC1 release the SpringAir example will

demonstrate an ADO.NET and NHibernate based implementation of technology agnostic DAO interfaces.) The

NHibernate Northwind example serves as a working sample application that illustrates the use of NHibernate in a

Spring web application. It also leverages declarative transaction demarcation with different transaction strategies.

Both NHibernate 1.0 and NHibernate 1.2 are supported. Differences relate to the use of generics and new features

such as contextual sessions. For information on the latter, refer to the section Implementing DAOs based on the

plain NHibernate API. The NHibernate 1.0 support is in the assembly Spring.Data.NHibernate and the 1.2 support

is in the assembly Spring.Data.NHibernate12

At the moment the only ORM supported in NHibernate, but others can be integrated with Spring (in as much as

makes sense) to offer the same value proposition.

21.2. NHibernate

We will start with a coverage of NHibernate in a Spring environment, using it to demonstrate the approach that

Spring takes towards integrating O/R mappers. This section will cover many issues in detail and show different

variations of DAO implementations and transaction demarcations. Most of these patterns can be directly translated

to all other supported O/R mapping tools.

The following discussion focuses on Hibernate 1.0.4, the major differences with NHibernate 1.2 being the ability

to participate in Spring transaction/session management via the normal NHibernate API instead of the 'template'

approach. Spring supports both NHibernate 1.0 and NHibernate 1.2 via separate .dlls with the same internal

namespace.

21.2.1. Resource management

Typical business applications are often cluttered with repetitive resource management code. Many projects try

to invent their own solutions for this issue, sometimes sacrificing proper handling of failures for programming

convenience. Spring advocates strikingly simple solutions for proper resource handling, namely IoC via

templating; for example infrastructure classes with callback interfaces, or applying AOP interceptors. The

infrastructure cares for proper resource handling, and for appropriate conversion of specific API exceptions to

a common infrastructure exception hierarchy. Spring introduces a DAO exception hierarchy, applicable to any

data access strategy. For direct ADO.NET, the AdoTemplate class mentioned in a previous section cares for

connection handling, and for proper conversion of ADO.NET data access exceptions (not even singly rooted

in .NET 1.1) to Spring's DataAccessException hierarchy, including translation of database-specific SQL error

codes to meaningful exception classes. It supports both distributed and local transactions, via respective Spring

transaction managers.

Spring also offers Hibernate support, consisting of a HibernateTemplate analogous to AdoTemplate, a

HibernateInterceptor, and a Hibernate transaction manager. The major goal is to allow for clear application

layering, with any data access and transaction technology, and for loose coupling of application objects. No more

business service dependencies on the data access or transaction strategy, no more hard-coded resource lookups, no

more hard-to-replace singletons, no more custom service registries. One simple and consistent approach to wiring

up application objects, keeping them as reusable as possible. All the individual data access features are usable

on their own but integrate nicely with Spring's application context concept, providing XML-based configuration

and cross-referencing of plain object instances that don't need to be Spring-aware. In a typical Spring application,

http://www.hibernate.org/

Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 237

many important objects are plain CLR objects: data access templates, data access objects (that use the templates),

transaction managers, business services (that use the data access objects and transaction managers), ASP.NET

web pages (that use the business services),and so on.

21.2.2. Transaction Management

While NHibernate offers an API for transaction management you will quite likely find the benefits of using

Spring's generic transaction management features to be more compelling to use, typically for use of a declarative

programming model for transaction demarcation and easily mixing ADO.NET and NHibernate operations within

a single transaction. See the chapter on transaction management for more information on Spring's transaction

management features. There are two choices for transaction management strategies, one based on the NHibernate

API and the other the .NET 2.0 TransactionScope API.

The first strategy is encapsulated in the class Spring.Data.NHibernate.HibernateTransactionManager in

both the Spring.Data.NHibernate namespace. This strategy is preferred when you are using a single database.

ADO.NET operations can also participate in the same transaction, either by using AdoTemplate or by retrieving

the ADO.NET connection/transaction object pair stored in thread local storage when the transaction begins.

Refer to the documentation of Spring's ADO.NET framework for more information on retrieving and using

the connection/transaction pair without using AdoTemplate. You can use the HibernateTransactionManager and

associated classes such as SessionFactory, HibernateTemplate directly as you would any third party API, however

they are most commonly used through Spring's XML configuration file to gain the benefits of easy configuration

for a particular runtime environment and as the basis for the configuration of a data access layer also configured

using XML. An XML fragment showing the declaration of HibernateTransactionManager is shown below.

 <object id="transactionManager"

 type="Spring.Data.NHibernate.HibernateTransactionManager, Spring.Data.NHibernate">

 <property name="DbProvider" ref="DbProvider"/>

 <property name="SessionFactory" ref="MySessionFactory"/>

 </object>

The important property of HibernateTransactionManager are the references to the DbProvider and the Hibernate

ISessionFactory. For more information on the DbProvider, refer to the chapter DbProvider and the following

section on SessionFactory set up.

The second strategy is to use the class Spring.Data.TxScopeTransactionManager that uses .NET 2.0

System.Transaction namespace and its corresponding TransactionScope API. This is preferred when you are using

multiple transactional resources, such as multiple databases. Note that due to changes in the manner in which

NHibernate manages its own transactions introduced in NHibernate 2.1.2 (and later), when using NHibernate

2.1.2 (and later) in the context of the .NET System.Transaction class and its TransactionScope API Spring.NET

users are advised to use the Spring.Data.HibernateTxScopeTransactionManager class which is specifically

designed to manage the new NHibernate transcational model when used in the context of the System.Transaction

API. The API of the Spring.Data.HibernateTxScopeTransactionManager class is functionally equivalent to

that of the Spring.Data.HibernateTransactionManager class but it is designed to cooperate with the .NET

System.Transaction TransactionScope API for NHibernate 2.1.2 (and later).

All of these strategies associate one Hibernate Session for the scope of the transaction (scope in the general

demarcation sense, not System.Transaction sense). If there is no transaction then a new Session will be opened

for each operation. The exception to this rule is when using the OpenSessionInViewModule in a web application

in single session mode (see Section 21.2.8, “Web Session Management”). In this case the session will be created

on the start of the web request and closed on the end of the request. Note that the session's flush mode will be set

to FlushMode.NEVER at the start of the request. If a non-readonly transaction is performed, then during the scope

Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 238

of that transaction processing the flush mode will be changed to AUTO, and then set back to NEVER at the end

of the transaction scope so that any changes to objects associated with the session during rendering will not be

persisted back to the database when the session is closed at the end of the web request.

21.2.3. SessionFactory set up in a Spring container

To avoid tying application objects to hard-coded resource lookups, Spring allows you to define resources like a

DbProvider or a Hibernate SessionFactory as objects in an application context. Application objects that need to

access resources just receive references to such pre-defined instances via object references (the DAO definition

in the next section illustrates this). The following excerpt from an XML application context definition shows how

to set up Spring's ADO.NET DbProvider and a Hibernate SessionFactory on top of it:

<objects xmlns="http://www.springframework.net"

 xmlns:db="http://www.springframework.net/database">

 <!-- Property placeholder configurer for database settings -->

 <object type="Spring.Objects.Factory.Config.PropertyPlaceholderConfigurer, Spring.Core">

 <property name="ConfigSections" value="databaseSettings"/>

 </object>

 <!-- Database and NHibernate Configuration -->

 <db:provider id="DbProvider"

 provider="SqlServer-1.1"

 connectionString="Integrated Security=false; Data Source=(local);Integrated

 Security=true;Database=Northwin;User ID=springqa;Password=springqa;"/>

 <object id="MySessionFactory" type="Spring.Data.NHibernate.LocalSessionFactoryObject,

 Spring.Data.NHibernate">

 <property name="DbProvider" ref="DbProvider"/>

 <property name="MappingAssemblies">

 <list>

 <value>Spring.Northwind.Dao.NHibernate</value>

 </list>

 </property>

 <property name="HibernateProperties">

 <dictionary>

 <entry key="hibernate.connection.provider"

 value="NHibernate.Connection.DriverConnectionProvider"/>

 <entry key="hibernate.dialect"

 value="NHibernate.Dialect.MsSql2000Dialect"/>

 <entry key="hibernate.connection.driver_class"

 value="NHibernate.Driver.SqlClientDriver"/>

 </dictionary>

 </property>

 </object>

</objects>

Many of the properties on LocalSessionFactoryObject are those you will commonly configure, for example

the property MappingAssemblies specifies a list of assemblies to seach for hibernate mapping files. The property

HibernateProperies are the familiar NHibernate properties used to set typical options such as dialect and driver

class. The location of NHibernate mapping information can also be specified using Spring's IResource abstraction

via the property MappingResources. The IResource abstraction supports opening an input stream from assemblies,

file system, and http(s) based on a Uri syntax. You can also leverage the extensibility of IResource and thereby

allow NHibernate to obtain its configuration information from locations such as a database or LDAP.For other

Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 239

properties you can configure them as you normal using the file hibernate.cfg.xml and refer to it via the property

ConfigFileNames. This property is a string array so multiple configuration files are supported.

There are other properties in LocalSessionFactoryObject that relate to the integration of Spring with

NHibernate. The property ExposeTransactionAwareSessionFactory is discussed below and allows you to use

Spring's declarative transaction demarcation functionality with the standard NHibernate API (as compared to

using HibernateTemplate).

The property DbProvider is used to infer two NHibernate configurations options.

• Infer the connection string, typically done via the hibernate property "hibernate.connection.connection_string".

• Delegate to the DbProvider itself as the NHibernate connection provider instead of listing it via property

hibernate.connection.provider via HibernateProperties.

If you specify both the property hibernate.connection.provider and DbProvider (as shown above) the configuration

of the property hibernate.connection.provider is used and a warning level message is logged. If you use

Spring's DbProvider as the NHibernate connection provider then you can take advantage of IDbProvider

implementations that will let you change the connection string at runtime such as UserCredentialsDbProvider

and MultiDelegatingDbProvider.

Note

UserCredentialsDbProvider and MultiDelegatingDbProvider only change the connection string at

runtime based on values in thread local storage and do not clear out the Hibernate cache that is unique

to each ISessionFactory instance. As such, they are only useful for selecting at runtime a single

database instance. Cleaning up an existing session factory when switching to a new database is left

to user code.

21.2.3.1. Creating a new SessionFactory per Connection String with
DelegatingLocalSessionFactory Object

Beginning with Spring.NET 1.3.1 there is direct support for creating a new session factory per connection

string (assuming the same mapping files can be used across all databases connections). To support this

functionality, DelegatingLocalSessionFactoryObject subclasses LocalSessionFactoryObject and overrides

the method ISessionFactory NewSessionFactory(Configuration config) so that it returns an implementation

of ISessionFactory that selects among multiple instances based on values in thread local storage, much like

the implementation of MultiDelegatingDbProvider. Note that due to variations in the NHibernate project's

ISessionFactory API, this approach is only supported under NHibernate 2.1.2 and NHibernate 3.0

21.2.3.2. Using FluentNHibernate to configure mappings with LocalSessionFactoryObject

Direct support for configuration of NHibernate mapping files using FluentNHibernate will be included in a future

release. Until then, to see how you can extend LocalSessionFactoryObject to suppport using FluentNHibernate

follow the instructions on Benny Michielson's blog post here [http://www.bennymichielsen.be/post/2009/01/04/

Using-Fluent-NHibernate-in-SpringNet.aspx].

21.2.3.3. Spring's IByteCodeProvider implementation

Introduced in Hibernate 2.1 is support for dependency injection of hibernate managed objects [http://

fabiomaulo.blogspot.com/2009/05/nhibernate-ioc-integration.html] via the IBytecodeProvider extension point.

As of Spring 1.3 provides Spring.Data.NHibernate.Bytecode.BytecodeProvider as the default IBytecodeProvider

implementation when using LocalSessionFactory object to configure an ISessionFactory. To use a different

http://www.bennymichielsen.be/post/2009/01/04/Using-Fluent-NHibernate-in-SpringNet.aspx
http://www.bennymichielsen.be/post/2009/01/04/Using-Fluent-NHibernate-in-SpringNet.aspx
http://www.bennymichielsen.be/post/2009/01/04/Using-Fluent-NHibernate-in-SpringNet.aspx
http://fabiomaulo.blogspot.com/2009/05/nhibernate-ioc-integration.html
http://fabiomaulo.blogspot.com/2009/05/nhibernate-ioc-integration.html
http://fabiomaulo.blogspot.com/2009/05/nhibernate-ioc-integration.html

Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 240

IBytecodeProvider configure it via the standard the Hibernate means, using App.confg or Web.config

via the element <bytecode-provider type="..."/> inside the <hibernate-configuration> section or

progammatically by setting Environment.BytecodeProvider.

21.2.4. Implementing DAOs based on plain Hibernate 1.2/2.x API

Hibernate 1.2 introduced a feature called "contextual Sessions", where Hibernate itself manages one current

ISession per transaction. This is roughly equivalent to Spring's synchronization of one Hibernate Session per

transaction. A corresponding DAO implementation looks like as follows, based on the plain Hibernate API:

public class ProductDaoImpl implements IProductDao {

 private SessionFactory sessionFactory;

 public ISessionFactory SessionFactory

 {

 get { return sessionFactory; }

 set { sessionFactory = value; }

 }

 public IList<Product> LoadProductsByCategory(String category) {

 return SessionFactory.GetCurrentSession()

 .CreateQuery("from test.Product product where product.category=?")

 .SetParameter(0, category)

 .List<Product>();

 }

}

public class HibernateCustomerDao : ICustomerDao {

 private ISessionFactory sessionFactory;

 public ISessionFactory SessionFactory

 {

 set { sessionFactory = value; }

 }

 public Customer SaveOrUpdate(Customer customer)

 {

 sessionFactory.GetCurrentSession().SaveOrUpdate(customer);

 return customer;

 }

}

The above DAO follows the Dependency Injection pattern: it fits nicely into a Spring IoC container, just like it

would if coded against Spring's HibernateTemplate. Of course, such a DAO can also be set up in plain C# (for

example, in unit tests): simply instantiate it and call SessionFactory property with the desired factory reference.

As a Spring object definition, it would look as follows:

<objects>

 <object id="CustomerDao" type="Spring.Northwind.Dao.NHibernate.HibernateCustomerDao,

 Spring.Northwind.Dao.NHibernate">

 <property name="sessionFactory" ref="MySessionFactory"/>

 </object>

</objects>

The SessionFactory configuration to support this programming model can be done two ways,

both via configuration of Spring's LocalSessionFactoryObject. You can enable the use of Spring's

implementation of the NHibernate extension interface, ICurrentSessionContext, by setting the property

'ExposeTransactionAwareSessionFactory' to true on LocalSessionFactoryObject. This is just a short-cut for

setting the NHibernate property current_session_context_class with the name of the implementation class to use.

Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 241

The first way is shown below

<object id="sessionFactory" type="Spring.Data.NHibernate.LocalSessionFactoryObject, Spring.Data.NHibernate12">

 <property name="ExposeTransactionAwareSessionFactory" value="true" />

 <!-- other configuration settings omitted -->

</object>

Which is simply a shortcut for the following configuration

<object id="sessionFactory" type="Spring.Data.NHibernate.LocalSessionFactoryObject, Spring.Data.NHibernate12">

 <!-- other configuration settings omitted -->

 <property name="HibernateProperties">

 <dictionary>

 <!-- other dictionary entries omitted -->

 <entry key="hibernate.current_session_context_class"

 value="Spring.Data.NHibernate.SpringSessionContext, Spring.Data.NHibernate12"/>

 </dictionary>

 </property>

</object>

The main advantage of this DAO style is that it depends on the Hibernate API only; no import of any Spring

class is required. This is of course appealing from a non-invasiveness perspective, and will no doubt feel more

natural to Hibernate developers.

21.2.4.1. Exception Translation

However, the DAO implemenation as shown throws plain HibernateException which means that callers can only

treat exceptions as generally fatal - unless they want to depend on Hibernate's own exception hierarchy. Catching

specific causes such as an optimistic locking failure is not possible without tying the caller to the implementation

strategy. This trade off might be acceptable to applications that are strongly Hibernate-based and/or do not need

any special exception treatment. As an alternative you can use Spring's exception translation advice to convert

the NHibernate exception to Spring's DataAccessException hierarchy.

Spring offers a solution allowing exception translation to be applied transparently through the [Repository]

attribute:

[Repository]

public class HibernateCustomerDao : ICustomerDao {

 // class body here

}

and register an exception translation post processor.

<objects>

 <!-- configure session factory (omittied for brevity) -->

 <!-- Exception translation object post processor -->

 <object type="Spring.Dao.Attributes.PersistenceExceptionTranslationPostProcessor, Spring.Data"/>

 <!-- Same DAO configuration as before -->

 <object id="CustomerDao" type="Spring.Northwind.Dao.NHibernate.HibernateCustomerDao,

 Spring.Northwind.Dao.NHibernate">

 <property name="sessionFactory" ref="MySessionFactory"/>

Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 242

 </object>

</objects>

The postprocessor will automatically look for all exception translators (implementations of the

IPersistenceExceptionTranslator interface) and advise all object marked with the [Repository] attribute

so that the discovered translators can intercept and apply the appropriate translation on the thrown exceptions.

Spring's LocalSessionFactory object implements the IPersistenceExceptionTranslator interface and

performs the same exception translation as was done when using HibernateTemplate.

The [Repository] attribute is definedin the Spring.Data assembly, however it is used as a 'marker' attribute, and

you can provide your own if you would like to avoid coupling your DAO implementation to a Spring attribute. This

is done by setting PersistenceExceptionTranslationPostProcessor's property RepositoryAttributeType

to your own attribute type.

Note

In summary: DAOs can be implemented based on the plain Hibernate 1.2/2.0 API, while still being

able to participate in Spring-managed transactions and exception translation.

21.2.5. Declarative transaction demarcation

Alternatively, one can use Spring's declarative transaction support, which essentially enables you to replace

explicit transaction demarcation API calls in your C# code with an AOP transaction interceptor configured in a

Spring container. You can either externalize the transaction semantics (like propagation behavior and isolation

level) in a configuration file or use the Transaction attribute on the service method to set the transaction semantics.

An example showing attribute driven transaction is shown below

<objects>

 <object id="TransactionManager"

 type="Spring.Data.NHibernate.HibernateTransactionManager, Spring.Data.NHibernate">

 <property name="DbProvider" ref="DbProvider"/>

 <property name="SessionFactory" ref="MySessionFactory"/>

 </object>

 <!-- DAO definition not listed, see above for an example. -->

 <object id="FulfillmentService" type="Spring.Northwind.Service.FulfillmentService,

 Spring.Northwind.Service">

 <property name="CustomerDao" ref="CustomerDao"/>

 <property name="OrderDao" ref="OrderDao"/>

 <property name="ShippingService" ref="ShippingService"/>

 </object>

 <!-- Import 'standard xml' configuration for attribute driven declarative tx management -->

 <import resource="DeclarativeServicesAttributeDriven.xml"/>

</objects>

Note that with the new transaction namespace, you can replace the importing of

DeclarativeServicesAttributeDriven.xml with the following single line, <tx:attribute-driven/> that more

clearly expresses the intent as compared to the contents of DeclarativeServicesAttributeDriven.xml.

<objects xmlns="http://www.springframework.net"

 xmlns:tx="http://www.springframework.net/schema/tx">

Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 243

 <object id="transactionManager"

 type="Spring.Data.NHibernate.HibernateTransactionManager, Spring.Data.NHibernate">

 <property name="DbProvider" ref="DbProvider"/>

 <property name="SessionFactory" ref="MySessionFactory"/>

 </object>

 <!-- DAO definition not listed, see above for an example. -->

 <object id="FulfillmentService" type="Spring.Northwind.Service.FulfillmentService,

 Spring.Northwind.Service">

 <property name="CustomerDao" ref="CustomerDao"/>

 <property name="OrderDao" ref="OrderDao"/>

 <property name="ShippingService" ref="ShippingService"/>

 </object>

 <tx:attribute-driven/>

</objects>

The placement of the transaction attribute in the service layer method is shown below.

public class FulfillmentService : IFulfillmentService

{

 // fields and properties for dao object omitted, see above

 [Transaction(ReadOnly=false)]

 public void ProcessCustomer(string customerId)

 {

 //Find all orders for customer

 Customer customer = CustomerDao.FindById(customerId);

 foreach (Order order in customer.Orders)

 {

 //Validate Order

 Validate(order);

 //Ship with external shipping service

 ShippingService.ShipOrder(order);

 //Update shipping date

 order.ShippedDate = DateTime.Now;

 //Update shipment date

 OrderDao.SaveOrUpdate(order);

 //Other operations...Decrease product quantity... etc

 }

 }

}

If you prefer to not use attribute to demarcate your transaction boundaries, you can import a configuration file

with the following XML instead of using <tx:attribute-driven/>

 <object id="TxProxyConfigurationTemplate" abstract="true"

 type="Spring.Transaction.Interceptor.TransactionProxyFactoryObject, Spring.Data">

 <property name="PlatformTransactionManager" ref="HibernateTransactionManager"/>

 <property name="TransactionAttributes">

 <name-values>

 <!-- Add common methods across your services here -->

 <add key="Process*" value="PROPAGATION_REQUIRED"/>

 </name-values>

 </property>

 </object>

Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 244

Refer to the documentation on Spring Transaction management for configuration of other features, such as

rollback rules.

21.2.6. Programmatic transaction demarcation

Transactions can be demarcated in a higher level of the application, on top of such lower-level data access services

spanning any number of operations. There are no restrictions on the implementation of the surrounding business

service here as well, it just needs a Spring PlatformTransactionManager. Again, the latter can come from

anywhere, but preferably as an object reference via a TransactionManager property - just like the productDAO

should be set via a setProductDao(..) method. The following snippets show a transaction manager and a

business service definition in a Spring application context, and an example for a business method implementation.

<objects>

 <object id="TransactionManager"

 type="Spring.Data.NHibernate.HibernateTransactionManager, Spring.Data.NHibernate">

 <property name="DbProvider" ref="DbProvider"/>

 <property name="SessionFactory" ref="MySessionFactory"/>

 </object>

 <!-- DAO definition not listed, see above for an example. -->

 <object id="FulfillmentService" type="Spring.Northwind.Service.FulfillmentService,

 Spring.Northwind.Service">

 <property name="CustomerDao" ref="CustomerDao"/>

 <property name="OrderDao" ref="OrderDao"/>

 <property name="ShippingService" ref="ShippingService"/>

 <property name="TransactionManager" ref="TransactionManager"/>

 </object>

</objects>

public class FulfillmentService : IFulfillmentService

 private TransactionTemplate transactionTemplate;

 private IProductDao productDao;

 private ICustomerDao customerDao;

 private IOrderDao orderDao;

 private IShippingService shippingService;

 public TransactionManager TransactionManager

 {

 set { transactionTemplate = new TransactionTemplate(value);

 }

 public void ProcessCustomer(string customerId)

 {

 tt.Execute(delegate(ITransactionStatus status)

 {

 //Find all orders for customer

 Customer customer = CustomerDao.FindById(customerId);

 foreach (Order order in customer.Orders)

 {

 //Validate Order

 Validate(order);

 //Ship with external shipping service

 ShippingService.ShipOrder(order);

 //Update shipping date

 order.ShippedDate = DateTime.Now;

Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 245

 //Update shipment date

 OrderDao.SaveOrUpdate(order);

 //Other operations...Decrease product quantity... etc

 }

 return null;

 });

 }

}

21.2.7. Transaction management strategies

Both TransactionTemplate and TransactionInterceptor (not yet seen explicitly in above configuration,

TransactionProxyFactoryObject uses a TransactionInterceptor, you would have to specify it explicitly

if you were using an ordinary ProxyFactoryObject.) delegate the actual transaction handling to a

PlatformTransactionManager instance, which can be a HibernateTransactionManager (for a single

Hibernate SessionFactory, using a ThreadLocal Session under the hood) or a TxScopeTransactionManager

(delegating to MS-DTC for distributed transaction) for Hibernate applications. You could even use a custom

PlatformTransactionManager implementation. So switching from native Hibernate transaction management to

TxScopeTransactionManager, such as when facing distributed transaction requirements for certain deployments

of your application, is just a matter of configuration. Simply replace the Hibernate transaction manager with

Spring's TxScopeTransactionManager implementation. Both transaction demarcation and data access code will

work without changes, as they just use the generic transaction management APIs.

For distributed transactions across multiple Hibernate session factories, simply combine

TxScopeTransactionManager as a transaction strategy with multiple LocalSessionFactoryObject definitions.

Each of your DAOs then gets one specific SessionFactory reference passed into it's respective object property.

TO BE DONE

HibernateTransactionManager can export the ADO.NET Transaction used by Hibernate to plain ADO.NET

access code, for a specific DbProvider. (matching connection string). This allows for high-level transaction

demarcation with mixed Hibernate/ADO.NET data access!

21.2.8. Web Session Management

The open session in view pattern keeps the hibernate session open during page rendering so lazily loaded hibernate

objects can be displayed. You configure its use by adding an additional custom HTTP module declaration as

shown below

 <system.web>

 <httpModules>

 <add name="OpenSessionInView" type="Spring.Data.NHibernate.Support.OpenSessionInViewModule,

 Spring.Data.NHibernate"/>

 </httpModules>

...

 </system.web>

You can configure which SessionFactory the OpenSessionInViewModule will use by setting 'global' application

key-value pairs as shown below. (this will change in future releases)

 <appSettings>

 <add key="Spring.Data.NHibernate.Support.OpenSessionInViewModule.SessionFactoryObjectName" value="SessionFactory"/

>

 </appSettings>

Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 246

The default behavior of the module is that a single session is currently used for

the life of the request. Refer to the earlier section on Transaction Management in this

chapter for more information on how sessions are managed in the OpenSessionInViewModule.

You can also configure in the application setting the EntityInterceptorObjectName using the

key Spring.Data.NHibernate.Support.OpenSessionInViewModule.EntityInterceptorObjectName and if

SingleSession mode is used via the key

Spring.Data.NHibernate.Support.OpenSessionInViewModule.SingleSession. If SingleSession is set to

false, referred to as 'deferred close mode', then each transaction scope will use a new Session and kept open until

the end of the web request. This has the drawback that the first level cache is not reused across transactions and

that objects are required to be unique across all sessions. Problems can arise if the same object is associated with

more than one hibernate session.

Important

By default, OSIV applies FlushMode.NEVER on every session it creates. This is because if OSIV

flushed pending changes during "EndRequest" and an error occurs, all response has already been sent

to the client. There would be no way of telling the client about the error.

By default this means you MUST explicitly demarcate transaction boundaries around non-

readonly statements when using OSIV. For configuring transactions see Section 21.2.5, “Declarative

transaction demarcation” or the Spring.Data.NHibernate.Northwind example application.

21.2.9. Session Scope

The class Spring.Data.NHibernate.Support.SessionScope allows for you to use a single NHibernate session across

multiple transactions. The usage is shown below

using (new SessionScope())

{

 ... do multiple operations with a single session, possibly in multiple transactions.

}

Refer to the API documentation for information on overloaded constructor. At the end of the using block the

session is automatically closed. All transactions within the scope use the same session, if you are using Spring's

HibernateTemplate or using Spring's implementation of NHibernate 1.2's ICurrentSessionContext interface. See

other sections in this chapter for further information on those usage scenarios.

21.2.10. Integration Testing

When using Spring's Integration Testing support, you should make sure that the hibernate session is flushed so

that the database is updated, as compared to just updating the hibernate session cache. You can implement a base

class as shown below to help with the integration testing

public abstract class NHibernateIntegrationTests : AbstractTransactionalSpringContextTests

{

 private SessionFactory sessionFactory;

 public ISessionFactory SessionFactory

 {

 get { return sessionFactory; }

 set { sessionFactory = value; }

 }

 protected override void OnSetUpInTransaction()

 {

 base.OnSetUpInTransaction();

 Assert.IsNotNull(SessionFactory);

Object Relational Mapping (ORM) data access

Spring Framework (Version 1.3.2) 247

 SessionFactory.GetCurrentSession().FlushMode = FlushMode.Always;

 SessionFactory.GetCurrentSession().CacheMode = CacheMode.Ignore;

 }

}

Spring Framework (Version 1.3.2) 248

Part III. The Web
This part of the reference documentation covers the Spring Framework's support for the presentation tier,

specifically web-based presentation tiers.

• Chapter 22, Spring.NET Web Framework

• Chapter 23, ASP.NET AJAX

• Chapter 24, Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 2.0

• Chapter 25, Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 3.0

Spring Framework (Version 1.3.2) 249

Chapter 22. Spring.NET Web Framework

22.1. Introduction to Spring.NET Web Framework

The Spring.NET Web Framework increases your productivity when you write ASP.NET WebForms applications

by offering capabilities not found in other .NET web frameworks.

The Spring.NET Web Framework makes it easy to write 'thin and clean' web applications. "Thin" refers to

WebForm's role as a small as possible adapter between the HTML- based world of the web and the Object-oriented

world of your application. The business logic does not reside in the web tier; it resides in the application layer

with which your web form communicates. "Clean" refers to the framework's appropriate separation of concerns,

separating web specific processing such as copying data out and into from element from a data model from calling

into a buiness tier and redirecting to the next page. This results in an event-handler that does not contain any

reference to UI elements thereby making it possible to test your event handler code in integration style tests. The

Spring.NET Web Framework reduces the incidental complexity of common tasks in the web tier, for example, the

conversion of HTML control data to objects and then vice-versa after the request is processed by the application

layer.

Highlights of Spring's Web framework are:

• Dependency Injection. Provided for all ASP.NET artifacts, inlcuding pages and user controls, modules,

providers, and HTTP handlers. Your pages, controls, and so on do not require any dependency on Spring in

order to be configured via dependency injection.

• Bidirectional data binding. Allows you to declaratively define the data that will be marshaled out of your HTML

and user controls and into a data model that in turn is generally submitted to the application layer. After the

data model is updated in the application layer, those changes are automatically reflected in the HTML and user

controls on post back. This process removes large amounts of tedious, error-prone boilerplate code.

• Web object scopes. Can be defined at the application, session, or request scope. This capability makes it easy

to inject, for example, a session scoped shopping cart, into your page without any lower level programming.

• Data model management. Provides a mechanism similar to view state to help manage your data model. (While

ASP.NET manages the view state of your form, it does not offer facilities to manage the data model that you

build up to submit to the application layer.)

• UI-agnostic validation framework. Enables you to declaratively define complex validation rules, for example,

that take into account complex relationships in your data model. Spring's error controls easily render validation

failure. Thus you can centralize your validation logic and also reuse it on the server side, for example, by using

parameter validation advice described in the aspect library chapter.

• Externalized page navigation through result mapping. Instead of hard-coding URLs and data to direct where

a page should go next and what data should be carried along, you can define and configure result mappings

externally that associate logical names and a URL (+ data). This capability also allows you to encrypt the values

that are sent through Response.Redirect.

• Improved localization and master page support. Provides advanced localization features (including image

localization) and make it easy to declaratively configure which master page to apply to different parts of your

web application.

All you know about ASP.NET development still applies. Spring's approach is to 'embrace and extend' the basic

ASP.NET programming model to make you as productive as possible.

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 250

Note

Support for ASP.NET MVC is planned for Spring.NET 2.0.

This chapter describes the Spring.NET Web Framework in detail. The framework is not an all-or-nothing solution.

For example, you can choose to use only dependency injection and bi-directional data binding. You can adopt the

web framework incrementally, addressing problems areas in your current web application with a specific feature.

The Spring.NET distribution ships with a Web Quick Start application and a complete reference application,

SpringAir. The Web QuickStart is the best way to learn each Spring.NET Web Framework (also referred to in

this document as Spring.Web) feature, by following simple examples. The SpringAir reference application has

a Spring.Web-enabled frontend that uses many best practices for Spring.NET web applications, so refer to it as

you are reading this (reference) material (see Chapter 41, SpringAir - Reference Application).

22.2. Comparing Spring.NET and ASP.NET

Many developers dislike the ASP.NET programming model because currently it is not a "true MVC" (model-

view-controller) implementation; controller-type logic within the page is too tightly coupled to the view. For

example, event handlers within the page class typically have references to view elements, such as input controls,

in many code behind locations, most typically the event handler. Controller-type logic, such as the code within

page event handlers in ASP.NET, should not depend on the view elements.

However, ASP.NET has its good points. Server-side forms and controls make developers significantly more

productive and allow you to significantly simplify page markup. They also make cross-browser issues easier to

deal with, as each control can make sure that it renders correct markup based on the user's browser. The ability to

hook custom logic into the lifecycle of the page, as well as to customize the HTTP processing pipeline, are also

very powerful features. The ability to interact with the strongly typed server-side controls instead of manipulating

string-based HTTP request collections, such as Form and QueryString, is a much needed layer of abstraction in

web development.

Thus, instead of developing a new, pure and true MVC web framework as part of Spring.NET, Spring decided to

extend ASP.NET so that most of its shortcomings are eliminated. With the introduction of a 'true MVC framework'

to .NET there are several opportunities for integration with IoC containers such as Spring.NET. Furthermore, as

Spring for Java has a very popular MVC framework, much of that experience and added value can be transliterated

to help developers be more productive when using Spring's future support for ASP.NET MVC.

Spring.Web also supports the application of the dependency injection principle to one's ASP.NET Pages and

Controls as well as to HTTP modules and custom provider modules. Thus application developers can easily

inject service dependencies into web controllers by leveraging the power of the Spring.NET IoC container. See

Dependency Injection for ASP.NET Pages.

Event handlers in code-behind classes should not have to deal with ASP.NET UI controls directly. Such event

handlers should rather work with the presentation model of the page, represented either as a hierarchy of domain

objects or an ADO.NET DataSet. Spring.NET implemented a bidirectional data binding framework to handle the

mapping of values to and from the controls on a page to the underlying data model. The data binding framework

also transparently implements data type conversion and formatting, enabling application developers to work with

fully typed data (domain) objects in the event handlers of code-behind files. See Bidirectional Data Binding and

Model Management.

The Spring.NET Web Framework also addresses concerns about the flow of control through an application.

Typical ASP.NET applications use Response.Redirect or Server.Transfer calls within Page logic to navigate

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 251

to an appropriate page after an action is executed. This usage often leads to hard-coded target URLs in the Page,

which is never a good thing. Result mapping solves this problem by allowing application developers to specify

aliases for action results that map to target URLs based on information in an external configuration file that can

easily be edited. See Result Mapping.

Standard localization support is also limited in versions of ASP.NET prior to ASP.NET 2.0. Even though Visual

Studio 2003 generates a local resource file for each ASP.NET Page and user control, those resources are never

used by the ASP.NET infrastructure. This means that application developers have to deal directly with resource

managers whenever they need access to localized resources, which in the opinion of the Spring.NET team should

not be the case. Spring.Web adds comprehensive support for localization using both local resource files and global

resources that are configured within and for a Spring.NET container. See Localization and Message Sources.

In addition to the aforementioned core features, Spring.Web ships with lesser features that might be useful to

many application developers. Some of these additional features include back-ports of ASP.NET 2.0 features that

can be used with ASP.NET 1.1, such as Master Page support. See Master Pages in ASP.NET 1.1 .

To implement some features, the Spring.NET team had to extend (as in the object-oriented sense) the standard

ASP.NET Page and UserControl classes. This means that in order to take advantage of the full feature stack of

Spring.Web (most notably bidirectional data binding, localization and result mapping), your code-behind classes

must extend Spring.Web specific base classes such as Spring.Web.UI.Page. However, powerful features such

as dependency injection for ASP.NET Pages, controls, and providers can be leveraged without having to extend

Spring.Web-specific base classes. By taking advantage of some of the more useful features offered by Spring.Web,

you will be coupling the presentation tier of your application(s) to Spring.Web. The choice of whether or not this

is appropriate is, of course, left to you.

22.3. Automatic context loading and hierarchical contexts

22.3.1. Configuration of a web application

Spring.Web builds on top of the Spring.NET IoC container, and makes heavy use (internally) of the easy

pluggability and standardized configuration afforded by the IoC container. ASP.NET Pages and UserControls

that make up a typical Spring.Web-enabled application are configured with the same standard Spring.NET XML

configuration syntax used for non web objects. To integrate with the ASP.NET runtime you need to make a few

modifications to your Web.config file.

Spring.Web uses a custom PageHandlerFactory implementation to load and configure a Spring.NET IoC

container, which is in turn used to locate an appropriate Page to handle a HTTP request. The WebSupportModule

configures miscellaneous Spring infrastructure classes for use in a web environment, for example setting the

storage strategy of LogicalThreadContext to be HybridContextStorage.

The instantiation and configuration of the Spring.NET IoC container by the Spring.Web infrastructure is wholly

transparent to application developers, who typically never have to explicitly instantiate and configure an IoC

container manually (by, for example, using the new operator in C#). To effect the transparent bootstrapping of

the IoC container, you need to insert the following configuration snippet into the root Web.config file of every

Spring.Web-enabled web application. (You can of course change the verb and path properties from the values

that are shown.)

Note

If you are using the solution templates that ship with Spring.NET this configuration will be done for

you automatically whent he solution is created.

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 252

<system.web>

 <httpHandlers>

 <add verb="*" path="*.aspx" type="Spring.Web.Support.PageHandlerFactory, Spring.Web"/>

 </httpHandlers>

 <httpModules>

 <add name="Spring" type="Spring.Context.Support.WebSupportModule, Spring.Web"/>

 </httpModules>

 ...

</system.web>

This snippet of standard ASP.NET configuration is only required in the root directory of each Spring.Web

web application (that is, in the Web.config file present in the top level virtual directory of an ASP.NET web

application).

The above XML configuration snippet directs the ASP.NET infrastructure to use Spring.NET's page factory,

which in turn creates instances of the appropriate .aspx Page, possibly injects dependencies into that Page (as

required), and then forwards the handling of the request to the Page.

After the Spring.Web page factory is configured, you also need to define a root application context by adding a

Spring.NET configuration section to that same Web.config file. The final configuration file should resemble the

following; your exact configuration may vary in particulars.

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.WebContextHandler, Spring.Web"/>

 </sectionGroup>

 </configSections>

 <spring>

 <context>

 <resource uri="~/Config/CommonObjects.xml"/>

 <resource uri="~/Config/CommonPages.xml"/>

 <!-- TEST CONFIGURATION -->

 <!--

 <resource uri="~/Config/Test/Services.xml"/>

 <resource uri="~/Config/Test/Dao.xml"/>

 -->

 <!-- PRODUCTION CONFIGURATION -->

 <resource uri="~/Config/Production/Services.xml"/>

 <resource uri="~/Config/Production/Dao.xml"/>

 </context>

 </spring>

 <system.web>

 <httpHandlers>

 <add verb="*" path="*.aspx" type="Spring.Web.Support.PageHandlerFactory, Spring.Web"/>

 </httpHandlers>

 <httpModules>

 <add name="Spring" type="Spring.Context.Support.WebSupportModule, Spring.Web"/>

 </httpModules>

 </system.web>

</configuration>

Notes about the preceding configuration:

• Define a custom configuration section handler for the <context> element. If you use Spring.NET for many

applications on the same web server, it might be easier to move the whole definition of the Spring.NET section

group to your machine.config file.

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 253

• The custom configuration section handler is of the type Spring.Context.Support.WebContextHandler which

in turn instantiates an IoC container of the type Spring.Context.Support.WebApplicationContext. This

ensures that all features provided by Spring.Web, such as request and session-scoped object definitions, are

handled properly.

• Within the <spring> element, define a root context element. Next, specify resource locations that contain the

object definitions that are used within the web application (such as service or business tier objects) as child

elements within the <context> element. Object definition resources can be fully-qualified paths or URLs, or

non-qualified, as in the example above. Non-qualified resources are loaded using the default resource type for

the context, which for the WebApplicationContext is the WebResource type.

• The object definition resources do not have to be the same resource type (for example, all file://, all http://,

all assembly://, and so on). This means that you can load some object definitions from resources embedded

directly within application assemblies (assembly://) while continuing to load other object definitions from

web resources that can be more easily edited.

22.3.1.1. Configuration for IIS 7.0 on Windows Server 2008 and Windows Vista

There is some configuration that is specific to using IIS7, the appropriate code snippit to place in web.config

shown below.

<system.webServer>

 <validation validateIntegratedModeConfiguration="false"/>

 <modules>

 <add name="Spring" type="Spring.Context.Support.WebSupportModule, Spring.Web"/>

 </modules>

 <handlers>

 <add name="SpringPageHandler" verb="*" path="*.aspx" type="Spring.Web.Support.PageHandlerFactory,

 Spring.Web"/>

 <add name="SpringContextMonitor" verb="*" path="ContextMonitor.ashx" type="Spring.Web.Support.ContextMonitor,

 Spring.Web"/>

 </handlers>

</system.webServer>

22.3.2. Context hierarchy

ASP.NET has a hierarchical configuration mechanism that enables application developers to override

configuration settings specified at a higher level in the web application directory hierarchy with configuration

settings specified at the lower level.

For example, a web application's root Web.config file overrides settings from the (higher level) machine.config

file. In the same fashion, settings specified within the web.config file within a subdirectory of a web application

will override settings from the root Web.config and so on. You can also add seettings to lower level Web.config

files that were not previously defined anywhere.

Spring.Web leverages this ASP.NET feature to provide support for a context hierarchy. You can add new object

definitions to lower level Web.config files or override existing ones per virtual directory.

What this means to application developers is that one can easily componentize an application by creating a

virtual directory per component and creating a custom context for each component that contains the necessary

configuration info for that particular context. The configuration for a lower level component generally contains

only those definitions for the pages that the component consists of and (possibly) overrides for some definitions

from the root context (for example, menus).

Because each such lower level component usually contains only a few object definitions, application developers

are encouraged to embed those object definitions directly into the Web.config for the lower level context instead of

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 254

relying on an external resource containing object definitions. This is easily accomplished by creating a component

Web.config similar to the following one:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="objects" type="Spring.Context.Support.DefaultSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <context type="Spring.Context.Support.WebApplicationContext, Spring.Web">

 <resource uri="config://spring/objects"/>

 </context>

 <objects xmlns="http://www.springframework.net">

 <object type="MyPage.aspx" parent="basePage">

 <property name="MyRootService" ref="myServiceDefinedInRootContext"/>

 <property name="MyLocalService" ref="myServiceDefinedLocally"/>

 <property name="Results">

 <!-- ... -->

 </property>

 </object>

 <object id="myServiceDefinedLocally" type="MyCompany.MyProject.Services.MyServiceImpl, MyAssembly"/>

 </objects>

 </spring>

</configuration>

The <context/> element seen above (contained within the <spring/> element) simply tells the Spring.NET

infrastructure code to load (its) object definitions from the spring/objects section of the web.config

configuration file.

If Spring.NET is used for multiple applications on the same server, you can avoid the need to specify the

<configSections/> element as shown in the previous example, by moving the configuration handler definition

for the <objects> element to a higher level (root) Web.config file, or even to the level of the machine.config file.

This component-level context can reference definitions from its parent context(s). If a referenced object definition

is not found in the current context, Spring.NET searches all ancestor contexts in the context hierarchy until it

finds the object definition (or ultimately fails and throws an exception).

22.4. Dependency injection for ASP.NET pages

An example of how Spring.Web builds on the capabilities of ASP.NET is the way in which Spring.Web has

used the code-behind class of the Page mechanism to satisfy the Controller portion of the MVC architectural

pattern. In MVC-based (web) applications, the Controller is typically a thin wrapper around one or more service

objects. It is important that service object dependencies be easily injected into Page Controllers. Accordingly,

Spring.Web provides first class support for dependency injection in ASP.NET Pages. Application developers can

inject any required service object dependencies (and indeed any other dependencies) into their Pages using the

standard Spring.NET configuration instead of having to rely on custom service locators or manual object lookups

in a Spring.NET application context.

After an application developer configures the Spring.NET web application context, the developer can easily create

object definitions for the pages that compose that web application.

<objects xmlns="http://www.springframework.net">

 <object name="basePage" abstract="true">

 <property name="MasterPageFile" value="~/Web/StandardTemplate.master"/>

 </object>

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 255

 <object type="Login.aspx">

 <property name="Authenticator" ref="authenticationService"/>

 </object>

 <object type="Default.aspx" parent="basePage"/>

</objects>

The preceding example contains three definitions:

• An abstract definition for the base page from which many other pages in the application will inherit. In this

case, the definition simply specifies which page is to be referenced as the master page, but it typically also

configures localization-related dependencies and root folders for images, scripts, and CSS stylesheets.

• A login page that neither inherits from the base page nor references the master page. This page shows how to

inject a service object dependency into a page instance (the authenticationService is defined elsewhere).

• A default application page that, in this case, simply inherits from the base page in order to inherit the master

page dependency, but apart from that it does not need any additional dependency injection configuration.

The configuration of ASP.NET pages differs from the configuration of other .NET classes in the value passed to

the type attribute. As can be seen in the above configuration snippet, the type name is actually the path to the

.aspx file for the Page, relative to its directory context. When configuring other .NET classes one would specify

at minimum the fully qualified type name and the partial assembly name.

In the case of the above example, those definitions are in the root context ,so Login.aspx and Default.aspx files

also must be located in the root of the web application's virtual directory. The master page is defined using an

absolute path because it could conceivably be referenced from child contexts that are defined within subdirectories

of the web application.

The definitions for the Login and Default pages do not specify either of the id and name attributes, in marked

contrast to typical object definitions in Spring.NET, where the id or name attributes are usually mandatory

(although not always, as in the case of inner object definitions). In the case of Spring.Web manged Page instances,

one typically wants to use the name of the .aspx file name as the identifier. If an id is not specified, the

Spring.Web infrastructure will simply use the name of the .aspx file as the object identifier (minus any leading

path information, and minus the file extension too).

Nothing prevents an application developer from specifying an id or name value explicitly; explicit naming

can be useful when, for example, one wants to expose the same page multiple times using a slightly different

configuration, such as Add / Edit pages. To use abstract object definitions and have your page inherit from them,

use the name attribute instead of the id attribute on the abstract object definition.

22.4.1. Injecting dependencies into controls

Spring.Web also allows application developers to inject dependencies into controls (both user controls and

standard controls) that are contained within a page. You can accomplish this globally for all controls of a particular

Type by using the location of the .ascx as the object type identifier. This process is similar to injecting into .aspx

pages, shown above.

<object type="~/controls/MyControl.ascx" abstract="true">

 <!-- inject dependencies here... -->

</object>

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 256

Note

In either case, be sure to mark the object definition as abstract (by adding abstract="true" to the

attribute list of the <object/> element).

22.4.2. Injecting dependencies into custom HTTP modules

You can inject dependencies into custom HTTP modules by using the class

Spring.Context.Support.HttpApplicationConfigurer. You register your custom HTTP module as you would

normally; for example, a module of the type HtmlCommentAppenderModule, taken from the Web Quick Start,

appends additional comments into the http response. It is registered as follows:

<httpModules>

 <add name="HtmlCommentAppender" type="HtmlCommentAppenderModule"/>

</httpModules>

To configure this module, you use naming conventions to identify the module name with configuration

instructions in the Spring configuration file. The ModuleTemplates property of HttpApplicationConfigurer is a

dictionary that takes as a key the name of the HTTP module, in this case HtmlCommentAppender, and the Spring

object definition that describes how to perform dependency injection. The object definition is in the standard

<object/> style that you are used to normally when configuring an object with Spring. An example is shown

below. HttpApplicationConfigurer' that configures the HtmlCommentAppender's AppendText property.

<object name="HttpApplicationConfigurer" type="Spring.Context.Support.HttpApplicationConfigurer, Spring.Web">

 <property name="ModuleTemplates">

 <dictionary>

 <entry key="HtmlCommentAppender"> <!-- this name must match the module name -->

 <object>

 <!-- select "view source" in your browser on any page to see the appended html comment -->

 <property name="AppendText" value="My configured comment!" />

 </object>

 </entry>

 </dictionary>

 </property>

</object>

You can see this example in action in the Web Quick Start.

22.4.3. Injecting dependencies into HTTP handlers and handler factories

Performing dependency injection on instances of IHttpHandlers and IHttpHandlerFactory allows for a fully

Spring-managed <httpHandlers> configuration section. To perform dependency injection onan IHttpHandler

or IHttpHandlerFactory, register Spring's MappingHandlerFactory with a specific path or wildcard string (that

is, *.aspx) using the standard configuration of an <httpHandler> in web.config. For example:

<system.web>

 <httpHandlers>

 <!--

 the lines below map *any* request ending with *.ashx or *.whatever

 to the global(!) MappingHandlerFactory. Further "specialication"

 of which handler to map to is done within MappingHandlerFactory's configuration -

 use MappingHandlerFactoryConfigurer for this (see below)

 -->

 <add verb="*" path="*.ashx" type="Spring.Web.Support.MappingHandlerFactory, Spring.Web" validate="true"/>

 <add verb="*" path="*.whatever" type="Spring.Web.Support.MappingHandlerFactory,

 Spring.Web" validate="false"/>

 </httpHandlers>

</system.web>

Spring's MappingHandlerFactory serves a layer of indirection so that you can configure multiple handler

mappings with Spring. You do this by configuring a IDictionary HandlerMap property on the class

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 257

MappingHandlerFactoryConfigurer. The dictionary key is a regular expression that matches the request URL, and

the value is a reference to the name of a Spring managed instance of an IHttpHandler or IHttpHandlerFactory . The

Spring managed instance is configured via dependency injection using the standard <object/> XML configuraiton

schema.

The configuration of MappingHandlerFactoryConfigurer is shown:

<objects xmlns="http://www.springframework.net">

 <!-- configures the global GenericHandlerFactory instance -->

 <object name="mappingHandlerFactoryConfigurer" type="Spring.Web.Support.MappingHandlerFactoryConfigurer,

 Spring.Web">

 <property name="HandlerMap">

 <dictionary>

 <!-- map any request ending with *.whatever to NoOpHandler -->

 <entry key="\.whatever$" value="myCustomHandler" />

 <entry key="\.ashx$" value="standardHandlerFactory" />

 </dictionary>

 </property>

 </object>

 <object name="standardHandlerFactory" type="Spring.Web.Support.DefaultHandlerFactory, Spring.Web" />

 <!-- defines a standard singleton that will handle *.whatever requests -->

 <object name="myCustomHandler" type="MyCustomHttpHandler, App_Code">

 <property name="MessageText" value="This text is injected via Spring" />

 </object>

 <!--

 used for configuring ~/DemoHandler.ashx custom handler

 note, that this is an abstract definition because 'type' is not specified

 -->

 <object name="DemoHandler.ashx">

 <property name="OutputText">

 <value>This text is injected via Spring</value>

 </property>

 </object>

</objects>

Spring's DefaultHandlerFactory uses the .NET class System.Web.UI.SimpleHandlerFactory to create handler

instances and configures each instance by using an object definition whose name matches the request URL's

filename. The abstract object definition of DemoHandler.ashx is an example of this approach. You can also

configure standard classes that implement the IHttpHandler interface as demonstrated in the example above for

the class MyCustomHttpHandler.

Refer to the Web Quick Start application too see this in action.

22.4.4. Injecting dependencies in custom ASP.NET providers

Custom providers can be configured via dependency injection with Spring. The approach to configuration for

providers is to use a family of adapters that correspond 1-to-1 with the standard ASP.NET providers that are

registered via the standard ASP.NET mechanism. The adapters inherit from their correspondingly named provider

class in the .NET class library.

• MembershipProviderAdapter

• ProfileProviderAdapter

• RoleProviderAdapter

• SiteMapProviderAdapter

Here is an example of how to register the adapter for membership providers.

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 258

 <membership defaultProvider="mySqlMembershipProvider">

 <providers>

 <clear/>

 <add connectionStringName="" name="mySqlMembershipProvider"

 type="Spring.Web.Providers.MembershipProviderAdapter, Spring.Web"/>

 </providers>

 </membership>

The name of the provider must match the name of the object in the Spring configuration that will serve as the actual

provider implementation. Configurable versions of the providers are found in ASP.NET so that you can use the

full functionality of Spring to configure these standard provider implementations, by using property placeholders,

and so on. The providers are:

• ConfigurableActiveDirectoryMembershipProvider

• ConfigurableSqlMembershipProvider

• ConfigurableSqlProfileProvider

• ConfigurableSqlRoleProvider

• ConfigurableXmlSiteMapProvider

This example configuration taken from the Web Quick Start application sets the description property and

connection string.

 <object id="mySqlMembershipProvider" type="Spring.Web.Providers.ConfigurableSqlMembershipProvider">

 <property name="connectionStringName" value="MyLocalSQLServer" />

 <property name="parameters">

 <name-values>

 <add key="description" value="membershipprovider description" />

 </name-values>

 </property>

 </object>

Your own custom providers of course will contain additional configuration specific to your implementation.

22.4.5. Customizing control dependency injection

You may need to customize Spring.Web's dependency injection processing, such as when using GridViews or

other complex 3rd party custom controls. Often these controls are not configured using dependency injection

but Spring considers each control and its nested child controls as candidates for DI. With very large (>1000)

nested controls that candidate evaluation process can unecessarily slow down your page. To address this problem,

you can tell Spring to not attempt to configure via DI the sections of your page that contain these controls or

implementing the interface ISupportsWebDependencyInjection and explicitly ask Spring to inject dependencies

on a particular contorol. These approaches are shown below

[C#]

class MyControl : Control, ISupportsWebDependencyInjection

{

 private IApplicationContext _defaultApplicationContext;

 public IApplicationContext DefaultApplicationContext

 {

 get { return _defaultApplicationContext; }

 set { _defaultApplicationContext = value; }

 }

 override protected AddedControl(Control control, int index)

 {

 // handle DI for children ourselves -

 // defaults to a call to InjectDependenciesRecursive

 WebUtils.InjectDependenciesRecursive(_defaultApplicationContext, control);

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 259

 base.AddedControl(control, index);

 }

}

A Spring server control, Panel, provides an easier way to turn off dependency injection for parts of your page:

<spring:Panel runat="server"

 suppressDependencyInjection="true"

 renderContainerTag="false">

 .. put your heavy controls here - they won't be touched by DI

</spring:Panel>

By wrapping the performance-sensitive parts of your page within this panel, you can easily turn off DI by setting

the attribute suppressDependencyInjection to true. By default <spring:Panel/> will not render a container tag

(<div>, , and so on). You can modify this behavior by setting the attribute renderContainerTag accordingly.

22.5. Web object scopes

Spring.NET web applications support an additional attribute within object definition elements that allows you to

control the scope of an object:

<object id="myObject" type="MyType, MyAssembly" scope="application | session | request"/>

Possible values for the scope attribute are application, session, and request. Application scope is the default, and

is used for all objects with an undefined scope attribute. This scope creates a single instance of an object for the

duration of the IIS application, so that the objects works exactly like the standard singleton objects in non-web

applications. Session scope defines objects so that an instance is created for each HttpSession. This scope is ideal

for objects such as user profile, shopping cart, and so on that you want bound to a single user.

Request scope creates one instance per HTTP request. Unlike calls to prototype objects, calls to

IApplicationContext.GetObject return the same instance of the request-scoped object during a single HTTP

request. This allows you, for example, to inject the same request-scoped object into multiple pages and then use

server-side transfer to move from one page to another. As all the pages are executed within the single HTTP

request in this case, they share the same instance of the injected object.

Objects can only reference other objects that are in the same or broader scope. This means that application-scoped

objects can only reference other application-scoped objects, session-scoped objects can reference both session

and application-scoped objects, and request-scoped objects can reference other request-, session-, or application-

scoped objects. Also, prototype objects (including all ASP.NET web pages defined within Spring.NET context)

can reference singleton objects from any scope, as well as other prototype objects.

22.6. Support for ASP.NET 1.1 master pages in Spring.Web

Support for ASP.NET 1.1 master pages in Spring.Web is very similar to the support for master pages in ASP.NET

2.0.

A web developer can define a layout template for the site as a master page and specify content placeholders that

other pages can then reference and populate. A sample master page (MasterLayout.ascx) could look like this:

<

%@ Control language="c#" Codebehind="MasterLayout.ascx.cs" AutoEventWireup="false" Inherits="MyApp.Web.UI.MasterLyout" %>

<%@ Register TagPrefix="spring" Namespace="Spring.Web.UI.Controls" Assembly="Spring.Web" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<html>

 <head>

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 260

 <title>Master Page</title>

 <link rel="stylesheet" type="text/css" href="<%= Context.Request.ApplicationPath %>/css/styles.css">

 <spring:ContentPlaceHolder id="head" runat="server"/>

 </head>

 <body>

 <form runat="server">

 <table cellPadding="3" width="100%" border="1">

 <tr>

 <td colspan="2">

 <spring:ContentPlaceHolder id="title" runat="server">

 <!-- default title content -->

 </spring:ContentPlaceHolder>

 </td>

 </tr>

 <tr>

 <td>

 <spring:ContentPlaceHolder id="leftSidebar" runat="server">

 <!-- default left side content -->

 </spring:ContentPlaceHolder>

 </td>

 <td>

 <spring:ContentPlaceHolder id="main" runat="server">

 <!-- default main area content -->

 </spring:ContentPlaceHolder>

 </td>

 </tr>

 </table>

 </form>

 </body>

</html>

In the preceding code, the master page defines the overall layout for the page, in addition to four content

placeholders that other pages can override. The master page can also include default content within the placeholder

that will be displayed if a derived page does not override the placeholder.

A page that uses this master page (Child.aspx) might look like this:

<%@ Register TagPrefix="spring" Namespace="Spring.Web.UI.Controls" Assembly="Spring.Web" %>

<

%@ Page language="c#" Codebehind="Child.aspx.cs" AutoEventWireup="false" Inherits="ArtFair.Web.UI.Forms.Child" %>

<html>

 <body>

 <spring:Content id="leftSidebarContent" contentPlaceholderId="leftSidebar" runat="server">

 <!-- left sidebar content -->

 </spring:Content>

 <spring:Content id="mainContent" contentPlaceholderId="main" runat="server">

 <!-- main area content -->

 </spring:Content>

 </body>

</html>

The <spring:Content/> control in the example uses the contentPlaceholderId attribute (property) to specify

exactly which placeholder from the master page is to be overridden. Because this particular page does not define

content elements for the head and title placeholders, the content elements are defined by the default content

supplied in the master page.

Both the ContentPlaceHolder and Content controls can contain any valid ASP.NET markup: HTML, standard

ASP.NET controls, user controls, and so on.

Tip

Technically, the <html> and <body> tags from the previous example are not strictly necessary because

they are already defined in the master page. However, if these tags are omitted, Visual Studio 2003

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 261

complains about a schema, and IntelliSense does not work. So it is much easier to work in the HTML

view if those tags are included. They are ignored when the page is rendered.

22.6.1. Linking child pages to their master page file

The Spring.Web.UI.Page class exposes a property called MasterPageFile, which you can use to specify the

master page.

The recommended way to do this is by leveraging the Spring.NET IoC container and creating definitions similar

to the following:

<?xml version="1.0" encoding="utf-8" ?>

<objects xmlns="http://www.springframework.net">

 <object name="basePage" abstract="true">

 <property name="MasterPageFile" value="~/MasterLayout.ascx"/>

 </object>

 <object type="Child.aspx" parent="basePage">

 <!-- inject other objects that page needs -->

 </object>

</objects>

This approach allows application developers to change the master page for a number of pages within a web

application. You can still override the master page on a per context or per page basis by creating a new abstract

page definition within a child context, or by specifying the MasterPageFile property directly.

22.7. Bidirectional data binding and data model management

The existing data binding support in ASP.NET is one-way only. It allows application developers to bind page

controls to the data model and display information from the data model, but it does not permit the extraction of

values from the controls when the form is submitted. Spring.Web adds bidirectional data binding to ASP.NET

by allowing developers to specify data binding rules for their page, and by automatically evaluating configured

data binding rules at the appropriate time in the page's lifecycle.

ASP.NET does support model management within the postbacks. It has a ViewState management, but that takes

care of the control state only and does not address the state of any presentation model objects to which these

controls are bound. To manage a model within ASP.NET, developers typically use an HTTP session object to

store the model between the postbacks. This process results in boilerplate code that can and should be eliminated,

which is exactly what Spring.Web does by providing a simple set of model management methods.

To take advantage of the bidirectional data binding and model management support provided by Spring.Web,

you will have to couple your presentation layer to Spring.Web; this is because features require you to extend a

Spring.Web.UI.Page instead of the usual System.Web.UI.Page class.

Spring.Web data binding is very easy to use. Simply override the protected InitializeDataBindings method

and configure data binding rules for the page. You also need to override three model management methods:

InitializeModel, LoadModel and SaveModel. This process is illustrated by an example from the SpringAir

reference application. First, take a look at the page markup:

<%@ Page Language="c#" Inherits="TripForm" CodeFile="TripForm.aspx.cs" %>

<asp:Content ID="body" ContentPlaceHolderID="body" runat="server">

 <div style="text-align: center">

 <h4><asp:Label ID="caption" runat="server"></asp:Label></h4>

 <table>

 <tr class="formLabel">

 <td> </td>

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 262

 <td colspan="3">

 <spring:RadioButtonGroup ID="tripMode" runat="server">

 <asp:RadioButton ID="OneWay" runat="server" />

 <asp:RadioButton ID="RoundTrip" runat="server" />

 </spring:RadioButtonGroup>

 </td>

 </tr>

 <tr>

 <td class="formLabel" align="right">

 <asp:Label ID="leavingFrom" runat="server" /></td>

 <td nowrap="nowrap">

 <asp:DropDownList ID="leavingFromAirportCode" runat="server" />

 </td>

 <td class="formLabel" align="right">

 <asp:Label ID="goingTo" runat="server" /></td>

 <td nowrap="nowrap">

 <asp:DropDownList ID="goingToAirportCode" runat="server" />

 </td>

 </tr>

 <tr>

 <td class="formLabel" align="right">

 <asp:Label ID="leavingOn" runat="server" /></td>

 <td nowrap="nowrap">

 <spring:Calendar ID="departureDate" runat="server" Width="75px" AllowEditing="true" Skin="system" />

 </td>

 <td class="formLabel" align="right">

 <asp:Label ID="returningOn" runat="server" /></td>

 <td nowrap="nowrap">

 <div id="returningOnCalendar">

 <spring:Calendar ID="returnDate" runat="server" Width="75px" AllowEditing="true" Skin="system" />

 </div>

 </td>

 </tr>

 <tr>

 <td class="buttonBar" colspan="4">

 <asp:Button ID="findFlights" runat="server"/></td>

 </tr>

 </table>

 </div>

 </asp:Content>

Ignore for the moment the fact that none of the label controls have text defined; defining label controls is described

later when we discuss localization in Spring.NET. For the purposes of the current discussion, a number of

input controls are defined: tripMode radio button group, leavingFromAirportCode and goingToAirportCode

dropdown lists, as well as two Spring.NET Calendar controls, departureDate and returnDate.

Take a look at the model to which you bind the form:

namespace SpringAir.Domain

{

 [Serializable]

 public class Trip

 {

 // fields

 private TripMode mode;

 private TripPoint startingFrom;

 private TripPoint returningFrom;

 // constructors

 public Trip()

 {

 this.mode = TripMode.RoundTrip;

 this.startingFrom = new TripPoint();

 this.returningFrom = new TripPoint();

 }

 public Trip(TripMode mode, TripPoint startingFrom, TripPoint returningFrom)

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 263

 {

 this.mode = mode;

 this.startingFrom = startingFrom;

 this.returningFrom = returningFrom;

 }

 // properties

 public TripMode Mode

 {

 get { return this.mode; }

 set { this.mode = value; }

 }

 public TripPoint StartingFrom

 {

 get { return this.startingFrom; }

 set { this.startingFrom = value; }

 }

 public TripPoint ReturningFrom

 {

 get { return this.returningFrom; }

 set { this.returningFrom = value; }

 }

 }

 [Serializable]

 public class TripPoint

 {

 // fields

 private string airportCode;

 private DateTime date;

 // constructors

 public TripPoint()

 {}

 public TripPoint(string airportCode, DateTime date)

 {

 this.airportCode = airportCode;

 this.date = date;

 }

 // properties

 public string AirportCode

 {

 get { return this.airportCode; }

 set { this.airportCode = value; }

 }

 public DateTime Date

 {

 get { return this.date; }

 set { this.date = value; }

 }

 }

 [Serializable]

 public enum TripMode

 {

 OneWay,

 RoundTrip

 }

}

As you can see, Trip class uses the TripPoint class to represent departure and return, which are exposed as

StartingFrom and ReturningFrom properties. It also uses TripMode enumeration to specify whether the trip is

one way or return trip, which is exposed as Mode property.

Here is the code-behind class that ties everything together:

public class TripForm : Spring.Web.UI.Page

{

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 264

 // model

 private Trip trip;

 public Trip Trip

 {

 get { return trip; }

 set { trip = value; }

 }

 // service dependency, injected by Spring IoC container

 private IBookingAgent bookingAgent;

 public IBookingAgent BookingAgent

 {

 set { bookingAgent = value; }

 }

 // model management methods

 protected override void InitializeModel()

 {

 trip = new Trip();

 trip.Mode = TripMode.RoundTrip;

 trip.StartingFrom.Date = DateTime.Today;

 trip.ReturningFrom.Date = DateTime.Today.AddDays(1);

 }

 protected override void LoadModel(object savedModel)

 {

 trip = (Trip) savedModel;

 }

 protected override object SaveModel()

 {

 return trip;

 }

 // data binding rules

 protected override void InitializeDataBindings()

 {

 BindingManager.AddBinding("tripMode.Value", "Trip.Mode");

 BindingManager.AddBinding("leavingFromAirportCode.SelectedValue", "Trip.StartingFrom.AirportCode");

 BindingManager.AddBinding("goingToAirportCode.SelectedValue", "Trip.ReturningFrom.AirportCode");

 BindingManager.AddBinding("departureDate.SelectedDate", "Trip.StartingFrom.Date");

 BindingManager.AddBinding("returnDate.SelectedDate", "Trip.ReturningFrom.Date");

 }

 // event handler for findFlights button, uses injected 'bookingAgent'

 // service and model 'trip' object to find flights

 private void SearchForFlights(object sender, EventArgs e)

 {

 FlightSuggestions suggestions = bookingAgent.SuggestFlights(trip);

 if (suggestions.HasOutboundFlights)

 {

 // redirect to SuggestedFlights page

 }

 }

}

Note the following about the three preceding pieces of code:

1. When the page is initially loaded (IsPostback == false), the InitializeModel() method is called, which

initializes the trip object by creating a new instance and setting its properties to desired values. Right before

the page is rendered, the SaveModel() method is invoked, and the value it returns is stored within the HTTP

session. On each postback, the LoadModel() method is called, and the value returned by the previous call to

SaveModel is passed to SaveModel as an argument.

In this particular case the implementation is very simple because our whole model is just the trip object. As

such, SaveModel() simply returns the trip object, and LoadModel() casts the SaveModel() argument to Trip

and assigns it to the trip field within the page. In more complex scenarios, the SaveModel() method will

typically return a dictionary that contains your model objects. Those values will be read from the dictionary

within the LoadModel() method.

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 265

2. InitializeDataBindings method defines the binding rules for all of the five input controls on the form.

The controls are represented by the variables tripMode, leavingFromAirportCode, goingToAirportCode,

departueDate, and returnDate. The binding rules are created by invoking the AddBinding method on the

BindingManager exposed by the page. The AddBinding method is heavily overloaded and it allows you to

specify a binding direction and a formatter to use in addition to the source and target binding expressions that

are used above. These optional parameters are discussed later in this chapter. For now, focus on the source

and target expressions.

The Spring.NET data binding framework uses Spring.NET Expression Language to define binding

expressions. In most cases, as in the example above, both source and target expression will evaluate to a

property or a field within one of the controls or a data model. This is always the case when you are setting a

bidirectional binding, as both binding expressions need to be "settable". The InitializeDataBindings method

is executed only once per page type. Basically, all binding expressions are parsed the first time the page is

instantiated, and are then cached and used by all instances of that same page type that are created at a later time.

This is done for performance reasons, as data binding expression parsing on every postback is unnecessary

and would add a significant overhead to the overall page processing time.

3. Notice that the SearchForFlights event handler has no dependencies on the view elements. It simply uses the

injected bookingAgent service and a trip object in order to obtain a list of suggested flights. Furthermore, if you

make any modifications to the trip object within your event handler, bound controls are updated accordingly

just before the page is rendered.

Note

The lack of view elements in the event handler accomplishes one of the major goals we set out

to achieve, allowing developers to remove view element references from the page event handlers

and decouple controller-type methods from the view.

22.7.1. Data binding under the hood

This section describes how data binding is actually implemented, the extension points, and additional features

that make the data binding framework usable in real-world applications.

The Spring.NET data binding framework revolves around two main interfaces: IBinding and

IBindingContainer. The IBinding interface is definitely the more important one of the two, as it has to be

implemented by all binding types. This interface defines several methods, with some of them being overloaded

for convenience:

public interface IBinding

{

 void BindSourceToTarget(object source, object target, ValidationErrors validationErrors);

 void BindSourceToTarget(object source, object target, ValidationErrors validationErrors,

 IDictionary variables);

 void BindTargetToSource(object source, object target, ValidationErrors validationErrors);

 void BindTargetToSource(object source, object target, ValidationErrors validationErrors,

 IDictionary variables);

 void SetErrorMessage(string messageId, params string[] errorProviders);

}

The BindSourceToTarget method is used to extract and copy bound values from the source object to the target

object, and BindTargetToSource does the opposite. Both method names and parameter types are generic because

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 266

the data binding framework can be used to bind any two objects. Using it to bind web forms to model objects is just

one of its possible uses, although a very common one and tightly integrated into the Spring.NET Web Framework.

The ValidationErrors parameter requires further explanation. Although the data binding framework is not in

any way coupled to the data validation framework, they are in some ways related. For example, while the data

validation framework is best suited to validate the populated model according to the business rules, the data

binding framework is in a better position to validate data types during the binding process. However, regardless of

where specific validation is performed, all error messages should be presented to the user in a consistent manner.

In order to accomplish this, Spring.NET Web Framework passes the same ValidationErrors instance to binding

methods and to any validators that might be executed within your event handlers. This process ensures that all

error messages are stored together and are displayed consistently to the end user, using Spring.NET validation

error controls.

The last method in the IBinding interface, SetErrorMessage, enables you to specify the resource id of the error

message to be displayed in case of binding error, as well as a list of strings, that server as identifiers to tag error

messages for the purposes of linking specific error messages to locations in the page markup. We wil see an

example of the SetErrorMessage usage in a later section.

The IBindingContainer interface extends the IBinding interface and adds the following members:

public interface IBindingContainer : IBinding

{

 bool HasBindings { get; }

 IBinding AddBinding(IBinding binding);

 IBinding AddBinding(string sourceExpression, string targetExpression);

 IBinding AddBinding(string sourceExpression, string targetExpression, BindingDirection direction);

 IBinding AddBinding(string sourceExpression, string targetExpression, IFormatter formatter);

 IBinding AddBinding(string sourceExpression, string targetExpression, BindingDirection direction,

 IFormatter formatter);

}

The IBindingContainer interface has several overloaded AddBinding methods. AddBinding(IBinding

binding) is the most generic one, as it can be used to add any binding type to the container. The other four

are convenience methods that provide a simple way to add the most commonly used implementation of the

IBinding interface, SimpleExpressionBinding. The SimpleExpressionBinding was used under the covers in

the example at the beginning of this section to bind our web form to a Trip instance when calling methods

on the property BindingManager. Note that the BindingManager property is of the type IBindingContainer.

SimpleExpressionBinding uses Spring.NET Expression Language (SpEL) to extract and to set values within

source and target objects.

In the TripForm example, the configuration of the BindingManager shows the basic usage of how SpEL can be

used to specify a sourceExpression and targetExpression arguments. This code section is repeated below

 protected override void InitializeDataBindings()

 {

 BindingManager.AddBinding("tripMode.Value", "Trip.Mode");

 BindingManager.AddBinding("leavingFromAirportCode.SelectedValue", "Trip.StartingFrom.AirportCode");

 BindingManager.AddBinding("goingToAirportCode.SelectedValue", "Trip.ReturningFrom.AirportCode");

 BindingManager.AddBinding("departureDate.SelectedDate", "Trip.StartingFrom.Date");

 BindingManager.AddBinding("returnDate.SelectedDate", "Trip.ReturningFrom.Date");

 }

In this case, the first argument is a sourceExpression evaluated in the context of the page itself. The

sourceExpression 'tripMode.Value' represents the value in the HTML control and the targetExpression

"Trip.Mode" represents the value it will be mapped onto whent the page is rendered. When the post-back happens

values from in "Trip.Mode" get placed back into the HTML control "tripMode.Value". This is a common case

in which bi-directional data mapping is symmetric in terms of the sourceExpression and targetExpression for

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 267

both the initial rendering of the page and when the post-back occurs. There other overloaded methods that take

BindingDirection and IFormatter arguments are discussed in the next section.

22.7.1.1. Binding direction

The direction argument determines whether the binding is bidirectional or unidirectional. By default, all data

bindings are bidirectional unless the direction argument is set to either BindingDirection.SourceToTarget

or BindingDirection.TargetToSource. If one of these values is specified, binding is evaluated only when

the appropriate BindDirection method is invoked, and is completely ignored in the other direction. This

configuration is very useful when you want to bind some information from the model into non-input controls,

such as labels.

However, unidirectional data bindings are also useful when your form does not have a simple one-to-one mapping

to a presentation model. In the earlier trip form example, the presentation model was intentionally designed to

allow for simple one-to-one mappings. For the sake of discussion, let's add the Airport class and modify our

TripPoint class as follows:

namespace SpringAir.Domain

{

 [Serializable]

 public class TripPoint

 {

 // fields

 private Airport airport;

 private DateTime date;

 // constructors

 public TripPoint()

 {}

 public TripPoint(Airport airport, DateTime date)

 {

 this.airport = airport;

 this.date = date;

 }

 // properties

 public Airport Airport

 {

 get { return this.airport; }

 set { this.airport = value; }

 }

 public DateTime Date

 {

 get { return this.date; }

 set { this.date = value; }

 }

 }

 [Serializable]

 public class Airport

 {

 // fields

 private string code;

 private string name;

 // properties

 public string Code

 {

 get { return this.code; }

 set { this.code = value; }

 }

 public string Name

 {

 get { return this.name; }

 set { this.name = value; }

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 268

 }

 }

}

Instead of the string property AirportCode, our TripPoint class now exposes an Airport property of type

Airport, which is defined in the preceding example. What was formerly a simple string-to-string binding, with

the airport code selected in a dropdown being copied directly into the TripPoint.AirportCode property and

vice versa, now becomes a not-so-simple string-to-Airport binding. So let's see how we can solve this mismatch

problem of converting a string to an Airport instance and an Airport instance to a string.

Binding from the model to the control, namely the Airport to the string, is still very straightforward. You set

up one-way bindings from the model to controls: The Model-To-Control is represented more generally by the

enumeration, BindingDirection.TargetToSource.

protected override void InitializeDataBindings()

 {

 BindingManager.AddBinding("leavingFromAirportCode.SelectedValue", "Trip.StartingFrom.Airport.Code",

 BindingDirection.TargetToSource);

 BindingManager.AddBinding("goingToAirportCode.SelectedValue", "Trip.ReturningFrom.Airport.Code",

 BindingDirection.TargetToSource);

 ...

 }

You extract the airport code value from the Trip.StartingFrom.Airport.Code instead of

Trip.StartingFrom.AirportCode since now the Code in encapsulated inside the Airport class. Unfortunately,

binding from the control to the model the same way won't work, we need a way to create an Airport instance

from a string. Instead, you need to find an instance of the Airport class based on the airport code and set the

TripPoint.Airport property to it. Fortunately, Spring.NET data binding makes this simple, especially because

you already have airportDao object defined in the Spring context (see SpringAir Spring context configuration file

for details.). The AirportDao has a GetAirport(string airportCode) finder method. You set up data bindings

from source to target (control-to-model) that will invoke this finder method when the page is submitted and the

binding infrastructure maps the sourceExpression onto the targetExpression.evaluating the source expression.

Our complete set of bindings for these two drop-down lists will then look like this:

protected override void InitializeDataBindings()

 {

 BindingManager.AddBinding("@(airportDao).GetAirport(leavingFromAirportCode.SelectedValue)", "Trip.StartingFrom.Airport",

 BindingDirection.SourceToTarget);

 BindingManager.AddBinding("leavingFromAirportCode.SelectedValue", "Trip.StartingFrom.Airport.Code",

 BindingDirection.TargetToSource);

 BindingManager.AddBinding("@(airportDao).GetAirport(goingToAirportCode.SelectedValue)", "Trip.ReturningFrom.Airport",

 BindingDirection.SourceToTarget);

 BindingManager.AddBinding("goingToAirportCode.SelectedValue", "Trip.ReturningFrom.Airport.Code",

 BindingDirection.TargetToSource);

 ...

 }

By using a pair of bindings for each control, one for each direction and using SpEL's feature to reference objects

defined in the Spring context, you can resolve this data binding issue.

22.7.1.2. formatter argument

The last overloaded methods of IBindingContainer we need to discuss are those that take a IFormatter argument.

is an argument to the AddBinding method. This argument allows you to specify a formatter that you use to parse

string value from the input control before it is bound to the model, and to format strongly typed model value

before the model is bound to the control.

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 269

You typically use one of the formatters provided in the Spring.Globalization.Formatters namespace, but if your

requirements cannot be satisfied by a standard formatter, you can write your own by implementing a simple

IFormatter interface:

public interface IFormatter

{

 string Format(object value);

 object Parse(string value);

}

Standard formatters provided with Spring.NET are: CurrencyFormatter, DateTimeFormatter, FloatFormatter,

IntegerFormatter, NumberFormatter and PercentFormatter, which are sufficient for most usage scenarios.

22.7.1.3. Type conversion

Because the data binding framework uses the same expression evaluation engine as the Spring.NET IoC container,

it uses any registered type converters to perform data binding. Many type converters are included with Spring.NET

(take a look at the classes in Spring.Objects.TypeConverters namespace) and are automatically registered for

you, but you can implement your own custom converters and register them by using standard Spring.NET type

converter registration mechanisms.

22.7.1.4. Data binding events

Spring.Web's base Page class adds two events to the standard .NET page lifecycle: DataBound and DataUnbound.

You can register for an DataUnbound event which will be fired after the data model is updated with values from

the controls. Specifically, in terms of the Page lifecycle, it is fired right after the Load event and only on postbacks,

because it not make sense to update the data model with the controls' initial values.

The DataBound event is fired after controls are updated with values from the data model. This event occurs right

before the PreRender event.

The fact that the data model is updated immediately after the Load event and that controls are updated right before

the PreRender event means that your event handlers can work with a correctly updated data model, as they execute

after the Load event, and that any changes you make to the data model within event handlers are reflected in the

controls immediately afterwards, as the controls are updated prior to the actual rendering.

22.7.1.5. Rendering binding errors

If errors occur in the databinding (for example, in trying to bind a string 'hello' to an integer property on the

model), you can specify how those fundamental binding errors should be rendered. The following snippet is from

the Web Quick Start 'RobustEmployeeInfo' example:

[Default.aspx.cs]

protected override void InitializeDataBindings()

{

 // collect txtId.Text binding errors in "id.errors" collection

 BindingManager.AddBinding("txtId.Text", "Employee.Id").SetErrorMessage("ID has to be an

 integer", "id.errors");

 ...

[Default.aspx]

...

<asp:TextBox ID="txtId" runat="server" />

<!-- output validation errors from "id.errors" collection -->

<spring:ValidationError Provider="id.errors" runat="server" />

...

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 270

The SetErrorMessage specifies the message text or resource id of the error message to be displayed. This is

followed by a a variable length list of strings that serve to as a means to assign a friendly name to associate with

this error should it occur. The same 'tag', or error provider name, can be used across different calls to 'AddBinding'.

This is commonly the case if you want to present several errors together in the page. In the preceding example, the

'tag' or error provider name is "id.errors" will be rendered in Spring's ValidationError User Control, for example as

shown below in this fragment of page markup. Validation controls are discussed more extensively in this section.

 <td>

 <asp:TextBox ID="txtId" runat="server" EnableViewState="false" />

 <spring:ValidationError ID="errId" Provider="id.errors" runat="server" /><!-- read msg from

 "id.error" provider -->

 </td>

22.7.1.6. HttpRequestListBindingContainer

HttpRequestListBindingContainer extracts posted raw values from the request and populates the specified IList

by creating objects of the type specified and populating each object according to the requestBindings collection.

Please check out the Web Quick Start sample's demo of HttpRequestListBindingContainer. Below is an exerpt

from that example showing how to use a HttpRequestListBindingContainer.

protected override void InitializeDataBindings()

{

 // HttpRequestListBindingContainer unbinds specified values from Request -> Productlist

 HttpRequestListBindingContainer requestBindings =

 new HttpRequestListBindingContainer("sku,name,quantity,price", "Products", typeof(ProductInfo));

 requestBindings.AddBinding("sku", "Sku");

 requestBindings.AddBinding("name", "Name");

 requestBindings.AddBinding("quantity", "Quantity", quantityFormatter);

 requestBindings.AddBinding("price", "Price", priceFormatter);

 BindingManager.AddBinding(requestBindings);

}

Note
Because browsers do not send the values of unchecked checkboxes, you cannot use

HttpRequestListBindingContainer with <input type="checkbox" > html controls.

22.7.2. Using DataBindingPanel

To simplify use of Spring's Data Binding feature on web pages and controls, Spring.Web provides a special

DataBindingPanel container control. A DataBindingPanel does not render any html code itself, but allows you to

define additional, data binding-related attributes for its child controls.

<%@ Page Language="C#" CodeFile="Default.aspx.cs" Inherits="DataBinding_EasyEmployeeInfo_Default" %>

<%@ Register TagPrefix="spring" Namespace="Spring.Web.UI.Controls" Assembly="Spring.Web" %>

<html>

<body>

<spring:DataBindingPanel ID="ctlDataBindingPanel" runat="server">

 <table cellpadding="3" cellspacing="3" border="0">

 <tr>

 <td>Employee ID:</td>

 <td>

 <asp:TextBox ID="txtId" runat="server" BindingTarget="Employee.Id" />

 </td>

 </tr>

 <tr>

 <td>First Name:</td>

 <td><asp:TextBox ID="txtFirstName" runat="server" BindingTarget="Employee.FirstName" /></td>

 </tr>

 </table>

</spring.DataBindingPanel>

</body>

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 271

</html>

Using DataBindingPanel, you can specify the binding information directly on the control declaration. The

following attributes are recognized by a DataBindingPanel:

• BindingTarget corresponds to the target expression used in IBindingContainer.AddBinding().

• BindingSource corresponds to the source expression used in IBindingContainer.AddBinding(). For standard

controls you don't need to specify the source expression. If you are binding to some custom control, of course

you must specific this attribute.

• BindingDirection is one of the values of the BindingDirection enumeration.

• BindingFormatter is the object name of a custom formatter. The formatter instance is obtained by a call to

IApplicationContext.GetObject() each time it is needed.

• BindingType is the type of a completely customized binding. Note that a custom binding type must implement

the following constructor signature:

ctor(string source,string target, BindingDirection, IFormatter)

Note
The Visual Studio Web Form Editor complains about binding attributes because it does not recognize

them. You can safely ignore those warnings.

22.7.3. Customizing model persistence

As mentioned in the chapter introduction, model management needs an application developer to override

InitializeModel(), SaveModel() and LoadModel() in order to store model information between requests in the

user's session. On web farms, storing information in a user's session is not a good strategy. You can choose another

persistence strategy by setting the ModelPersistenceMedium property on Spring's base Page or UserContorl class

(e.g. Spring.Web.UI.UserControl)

<object id="modelPersister" type="Sample.DatabaseModelPersistenceMedium, MyCode"/>

<object type="UserRegistration.aspx">

 <property name="ModelPersistenceMedium" ref="modelPersister"/>

</object>

To implement any arbitrary persistence strategy, implement the IModelPersistenceMedium interface:

public interface IModelPersistenceMedium

{

 // Load the model for the specified control context.

 object LoadFromMedium(Control context);

 // Save the specified model object.

 void SaveToMedium(Control context, object modelToSave);

}

22.8. Localization and message sources

Although the .NET framework has excellent localization support, the support within ASP.NET 1.x is incomplete.

Spring provides support for localization in ASP.NET 1.1 apps in the manner of ASP.NET 2.0. Despite the initial

focus on righer localization for ASP.NET 1.1 applications, using Spring's localization features in ASP.NET 2.0

or higher applications does provide some useful additional features with a similar programming model, such as

image localization, push mechansims, and built-in support for user culture management via various mechansims.

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 272

Every .aspx page in an ASP.NET project has a resource file associated with it, but those resources are never used

by the current ASP.NET infrastructure). ASP.NET 2.0 changes this and allow application developers to use local

resources for pages. In the meantime, the Spring.NET team built in to Spring.Web support for using local pages

resources, thus allowing ASP.NET 1.1 application developers to using ASP.NET 2.0-like page resources.

Spring.Web supports several different approaches to localization within a web application, which can be mixed

and matched as appropriate. You can use push and pull mechanisms, as well as globally defined resources when

a local resource cannot be found. Spring.Web also supports user culture management and image localization,

which are described in later sections.

Tip

For introductory information covering ASP.NET globalization and localization, see Globalization

Architecture for ASP.NET and Localization Practices for ASP.NET 2.0 by Michele Leroux

Bustamante.

22.8.1. Working with localizers

A localizer is an object that implements the Spring.Globalization.ILocalizer interface.

Spring.Globalization.AbstractLocalizer is a convenient base class for localization: this class has one

abstract method, LoadResources. This method must load and return a list of all resources that must be

automatically applied from the resource store.

To apply resources automatically, a localizer needs to be injected into all pages that require automatic resource

application. You typically accomplish configuration using dependency injection of a page base page definition

that other page definitions will inherit from. The injected localizer inspects the resource file when the page is

first requested, caches the resources that start with the '$this' marker string value, and applies the values to the

controls that populate the page prior to the page being rendered.

Spring.NET ships with one concrete implementation of a localizer,

Spring.Globalization.Localizers.ResourceSetLocalizer, that retrieves a list of resources to apply from the

local resource file. Future releases of Spring.NET may provide other localizers that read resources from an XML

file or even from a flat text file that contains resource name-value pairs that allow application developers to store

resources within the files in a web application instead of as embedded resources in an assembly. Of course, if an

application developer prefers to store such resources in a database, the developer can write a custom ILocalizer

implementation that loads a list of resources to apply from a database.

You typically configure the localizer to be used within an abstract base definition for those pages that require

localization:

<object id="localizer" type="Spring.Globalization.Localizers.ResourceSetLocalizer, Spring.Core"/>

<object name="basePage" abstract="true">

 <description>

 Pages that reference this definition as their parent

 (see examples below) will automatically inherit following properties.

 </description>

 <property name="Localizer" ref="localizer"/>

</object>

Of course, nothing prevents an application developer from defining a different localizer for each page in the

application; in any case, one can always override the localizer defined in a base (page) definition. Alternatively,

if one does want any resources to be applied automatically one can completely omit the localizer definition.

http://msdn.microsoft.com/asp.net/community/authors/mlb/default.aspx?pull=/library/en-us/dnaspp/html/aspnet-globalarchi.asp
http://msdn.microsoft.com/asp.net/community/authors/mlb/default.aspx?pull=/library/en-us/dnaspp/html/aspnet-globalarchi.asp
http://www.theserverside.net/articles/showarticle.tss?id=LocalizationPractices

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 273

One last thing to note is that Spring.NET UserControl instances will (by default) inherit the localizer and other

localization settings from the page that they are contained within, but one can similarly also override that behavior

using explicit dependency injection.

22.8.2. Automatic localization with localizers ("push" localization)

With push localization, an application developer specifies localization resources in the resource file for the page,

and the framework automatically applies those resources to the user controls on the page. For example, an

application developer could define a page such as UserRegistration.aspx:

<%@ Register TagPrefix="spring" Namespace="Spring.Web.UI.Controls" Assembly="Spring.Web" %>

<%@ Page language="c#" Codebehind="UserRegistration.aspx.cs"

 AutoEventWireup="false" Inherits="ArtFair.Web.UI.Forms.UserRegistration" %>

<html>

 <body>

 <spring:Content id="mainContent" contentPlaceholderId="main" runat="server">

 <div align="right">

 <asp:LinkButton ID="english" Runat="server" CommandArgument="en-US">English</

asp:LinkButton>

 <asp:LinkButton ID="serbian" Runat="server" CommandArgument="sr-SP-Latn">Srpski</

asp:LinkButton>

 </div>

 <table>

 <tr>

 <td><asp:Label id="emailLabel" Runat="server"/></td>

 <td><asp:TextBox id="email" Runat="server" Width="150px"/></td>

 </tr>

 <tr>

 <td><asp:Label id="passwordLabel" Runat="server"/></td>

 <td><asp:TextBox id="password" Runat="server" Width="150px"/></td>

 </tr>

 <tr>

 <td><asp:Label id="passwordConfirmationLabel" Runat="server"/></td>

 <td><asp:TextBox id="passwordConfirmation" Runat="server" Width="150px"/></td>

 </tr>

 <tr>

 <td><asp:Label id="nameLabel" Runat="server"/></td>

 <td><asp:TextBox id="name" Runat="server" Width="150px"/></td>

 </tr>

...

 <tr>

 <td colspan="2">

 <asp:Button id="saveButton" Runat="server"/>

 <asp:Button id="cancelButton" Runat="server"/>

 </td>

 </tr>

 </table>

 </spring:Content>

 </body>

</html>

In the preceding .aspx code, none of the Label or Button controls have had a value assigned to the Text property.

The values of the Text property for these controls are stored in the local resource file (of the page) using the

following convention to identify the resource (string).

$this.controlId.propertyName

The corresponding local resource file, UserRegistration.aspx.resx, is shown below.

<root>

 <data name="$this.emailLabel.Text">

 <value>Email:</value>

 </data>

 <data name="$this.passwordLabel.Text">

 <value>Password:</value>

 </data>

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 274

 <data name="$this.passwordConfirmationLabel.Text">

 <value>Confirm password:</value>

 </data>

 <data name="$this.nameLabel.Text">

 <value>Full name:</value>

 </data>

...

 <data name="$this.countryLabel.Text">

 <value>Country:</value>

 </data>

 <data name="$this.saveButton.Text">

 <value>$messageSource.save</value>

 </data>

 <data name="$this.cancelButton.Text">

 <value>$messageSource.cancel</value>

 </data>

</root>

Viewing .resx file in Visual Studio 2003

To view the .resx file for a page, you may need to enable "Project/Show All Files" in Visual Studio.

When "Show All Files" is enabled, the .resx file appears like a "child" of the code-behind page.

When Visual Studio creates the .resx file, it includes an xds:schema element and several reshead

elements. Your data elements will follow the reshead elements. When working with the .resx files,

you may want to choose "Open With" from the context menu and select the "Source Code" text editor.

There is no way to visually edit resources in a RESX file. Lutz Roeder has created a tool named

Resourcer [http://www.lutzroeder.com/dotnet/] that you can use to edit them

Creating a .resx file in Visual Studio 2005/8

To create a resource file in VS 2005, open your control or page in design mode and select "Tools/

Generate local resource" from the menu.

You must create a localizer for the page to enable automatic localization:

<object id="localizer" type="Spring.Globalization.Localizers.ResourceSetLocalizer, Spring.Core"/>

<object type="UserRegistration.aspx">

 <property name="Localizer" ref="localizer"/>

</object>

For more information on configuring localizers see Section 22.8.1, “Working with localizers”

22.8.3. Global message sources

Two resource definitions from the previous section require some additional explanation:

<data name="$this.saveButton.Text">

 <value>$messageSource.save</value>

 </data>

 <data name="$this.cancelButton.Text">

 <value>$messageSource.cancel</value>

 </data>

In some cases it makes sense to apply a resource that is defined globally as opposed to locally. In this example,

it makes better sense to define values for the Save and Cancel buttons globally as they will probably be used

throughout the application.

http://www.lutzroeder.com/dotnet/
http://www.lutzroeder.com/dotnet/

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 275

The above example demonstrates how one can achieve that by defining a resource redirection expression as the

value of a local resource by prefixing a global resource name with the following string.

$messageSource.

In the preceding example, this string tells the localizer to use the save and cancel portions of the resource key

as lookup keys to retrieve the actual values from a global message source. You need to define a resource redirect

only once, typically in the invariant resource file. Any lookup for a resource redirect falls back to the invariant

culture, and results in a global message source lookup using the correct culture.

Global resources are (on a per-context basis) defined as a plain vanilla object definition using the reserved name

of messageSource, which you can add to your Spring.NET configuration file:

<object id="messageSource" type="Spring.Context.Support.ResourceSetMessageSource, Spring.Core">

 <property name="ResourceManagers">

 <list>

 <value>MyApp.Web.Resources.Strings, MyApp.Web</value>

 </list>

 </property>

</object>

for .NET 2.0 or higher

To use resources from your App_GlobalResources folder, specify App_GlobalResources as the

assembly name:

<value>Resources.Strings, App_GlobalResources</value>

See the SpringAir example application for more. The global resources are cached within the Spring.NET

IApplicationContext and are accessible through the Spring.NET IMessageSource interface.

The Spring.Web Page and UserControl classes have a reference to their owning IApplicationContext and its

associated IMessageSource. As such, they automatically redirect resource lookups to a global message source

if a local resource cannot be found.

Currently, the ResourceSetMessageSource is the only message source implementation that ships with

Spring.NET.

22.8.4. Applying resources manually ("pull" localization)

Although automatic localization as described above works well for many form-like pages, it doesn't work nearly

as well for controls defined within any iterative controls, because the IDs for such iterative controls are not fixed.

Nor does automatic localization work well if you need to display the same resource multiple times within the

same page. For example, think of the header columns for outgoing and return flights tables within the SpringAir

application (see Chapter 41, SpringAir - Reference Application).

These situations call for a pull-style mechanism for localization, which is a simple GetMessage call:

<asp:Repeater id="outboundFlightList" Runat="server">

 <HeaderTemplate>

 <table border="0" width="90%" cellpadding="0" cellspacing="0" align="center" class="suggestedTable">

 <thead>

 <tr class="suggestedTableCaption">

 <th colspan="6">

 <%= GetMessage("outboundFlights") %>

 </th>

 </tr>

 <tr class="suggestedTableColnames">

 <th><%= GetMessage("flightNumber") %></th>

 <th><%= GetMessage("departureDate") %></th>

 <th><%= GetMessage("departureAirport") %></th>

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 276

 <th><%= GetMessage("destinationAirport") %></th>

 <th><%= GetMessage("aircraft") %></th>

 <th><%= GetMessage("seatPlan") %></th>

 </tr>

 </thead>

 <tbody>

 </HeaderTemplate>

The GetMessage method is available within both the Spring.Web.UI.Page and Spring.Web.UI.UserControl

classes, and it falls back automatically to a global message source lookup if a local resource is not found.

22.8.5. Localizing images within a web application

Unlike text resources, which can be stored within embedded resource files, XML files, or even a database, images

in a typical web application are usually stored as files on the file system. Using a combination of directory naming

conventions and a custom ASP.NET control, Spring.Web allows you to localize images within the page as easily

as you do text resources.

The Spring.Web Page class exposes the ImagesRoot property, with which you define the root directory where

images are stored. The default value is Images, which means that the localizer expects to find an Images directory

within the application root. But you can set the property to any value in the definition of the page.

To localize images, you create a directory for each localized culture under the ImagesRoot directory:

/MyApp

 /Images

 /en

 /en-US

 /fr

 /fr-CA

 /sr-SP-Cyrl

 /sr-SP-Latn

 ...

Once an appropriate folder hierarchy is in place, you put the localized images in the appropriate directories and

make sure that different translations of the same image have the same image name within the folders. To place

a localized image on a page, you use the <spring:LocalizedImage>:

<%@ Page language="c#" Codebehind="StandardTemplate.aspx.cs"

 AutoEventWireup="false" Inherits="SpringAir.Web.StandardTemplate" %>

<%@ Register TagPrefix="spring" Namespace="Spring.Web.UI.Controls" Assembly="Spring.Web" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<html>

 <body>

 <spring:LocalizedImage id="logoImage" imageName="spring-air-logo.jpg" borderWidth="0" runat="server" />

 </body>

</html>

This control will find the most specific directory that contains an image with the specified name using standard

localization fallback rules and the user's culture. For example, if the user's culture is 'en-US', the localizer will

look for the spring-air-logo.jpg file in Images/en-US, then in Images/en and finally, if the image file has still

not been found, in the root Images directory (which for all practical purposes serves as an invariant culture folder).

22.8.6. User culture management

In addition to global and local resource management, Spring.Web supports user culture management by exposing

the current CultureInfo through the UserCulture property on the Page and UserControl classes.

The UserCulture property delegates culture resolution to an implementation of the

Spring.Globalization.ICultureResolver interface. You specify the culture resolver to use by configuring the

CultureResolver property of the Page class in the relevant object definition:

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 277

<object name="BasePage" abstract="true">

 <property name="CultureResolver">

 <object type="Spring.Globalization.Resolvers.CookieCultureResolver, Spring.Web"/>

 </property>

</object>

Several useful implementations of ICultureResolver ship as part of Spring.Web, so it is unlikely that application

developers need to implement their own culture resolver. However, you do need to implement your own culture

resolver, the resulting implementation should be fairly straightforward as you need to implement only two

methods. The following sections discuss each available implementation of the ICultureResolver interface.

22.8.6.1. DefaultWebCultureResolver

DefaultWebCultureResolver, the default culture resolver implementation, is used if you do not specify a culture

resolver for a page, or if you inject a DefaultWebCultureResolver into a page definition explicitly. The latter

case (explicit injection) is sometimes useful because you can specify a culture that should always be used, by

defining the DefaultCulture property on the resolver.

The DefaultWebCultureResolver looks first at the DefaultCulture property and return its value if said property

value is not null. If it is null, the DefaultWebCultureResolver falls back to request header inspection. If no

'Accept-Lang' request headers are present , the resolver returns the UI culture of the currently executing thread.

22.8.6.2. RequestCultureResolver

The RequestCultureResolver resolver operates similar to the DefaultWebCultureResolver, except that it always

checks request headers first, and only then falls back to the value of the DefaultCulture property or the culture

code of the current thread.

22.8.6.3. SessionCultureResolver

The SessionCultureResolver resolver looks for culture information in the user's session and returns

the information if it finds it. If not, SessionCultureResolver falls back to the behavior of the

DefaultWebCultureResolver.

22.8.6.4. CookieCultureResolver

This resolver looks for culture information in a cookie, and return it if it finds one. If not, it falls back to the

behavior of the DefaultWebCultureResolver.

Warning

CookieCultureResolver does not work if your application uses localhost as the server URL, which

is a typical setting in a development environment.

To work around this limitation, use SessionCultureResolver during development and switch

to CookieCultureResolver before you deploy the application in a production. This is easily

accomplished in Spring.Web (simply change the config file) but is something that you should be

aware of.

22.8.7. Changing cultures

To change the culture, application developers need to define one of the culture resolvers that support culture

changes, such as SessionCultureResolver or CookieCultureResolver in the Spring application context. For

example,

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 278

You also can write a custom ICultureResolver that persists culture information in a database, as part of a user's

profile.

 <object id="cultureResolver" type="Spring.Globalization.Resolvers.SessionCultureResolver, Spring.Web" />

Once that requirement is satisfied, you set the UserCulture property to a new CultureInfo object before the

page is rendered. In the following .aspx example, two link buttons can be used to change the user's culture.

In the code-behind, this is all one need do to set the new culture. A code snippet for the code-behind file

(UserRegistration.aspx.cs) is shown below.

protected override void OnInit(EventArgs e)

{

 InitializeComponent();

 this.english.Command += new CommandEventHandler(this.SetLanguage);

 this.serbian.Command += new CommandEventHandler(this.SetLanguage);

 base.OnInit(e);

}

private void SetLanguage(object sender, CommandEventArgs e)

{

 this.UserCulture = new CultureInfo((string) e.CommandArgument);

}

22.9. Result mapping

In many ASP.NET applications, no built-in way exists to externalize the flow of the application. The most

common way of defining application flow is by hardcoding calls to the Response.Redirect and Server.Transfer

methods within event handlers.

This approach is problematic because any changes to the flow of an application necessitates code changes (with

the attendant recompilation, testing, redeployment, and so on). A better way, which works in many MVC (Model-

View-Controller) web frameworks, is to enable you to externalize the mapping of action results to target pages.

Spring.Web adds this functionality to ASP.NET by allowing you to define result mappings within the definition

of a page, and to then simply use logical result names within event handlers to control application flow.

In Spring.Web, a logical result is encapsulated and defined by the Result class; thus you can configure results

like any other object:

<objects xmlns="http://www.springframework.net">

 <object id="homePageResult" type="Spring.Web.Support.Result, Spring.Web">

 <property name="TargetPage" value="~/Default.aspx"/>

 <property name="Mode" value="Transfer"/>

 <property name="Parameters">

 <dictionary>

 <entry key="literal" value="My Text"/>

 <entry key="name" value="%{UserInfo.FullName}"/>

 <entry key="host" value="%{Request.UserHostName}"/>

 </dictionary>

 </property>

 </object>

 <object id="loginPageResult" type="Spring.Web.Support.Result, Spring.Web">

 <property name="TargetPage" value="Login.aspx"/>

 <property name="Mode" value="Redirect"/>

 </object>

 <object type="UserRegistration.aspx" parent="basePage">

 <property name="UserManager" ref="userManager"/>

 <property name="Results">

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesMVC.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesMVC.asp

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 279

 <dictionary>

 <entry key="userSaved" value-ref="homePageResult"/>

 <entry key="cancel" value-ref="loginPageResult"/>

 </dictionary>

 </property>

 </object>

</objects>

The only property for which you must supply a value for each result is the TargetPage property. The value of

the Mode property can be Transfer, TransferNoPreserve, or Redirect, and defaults to Transfer if none is

specified. TransferNoPreserve issues a server-side transfer with 'preserveForm=false', so that QueryString and

Form data are not preserved.

If your target page requires parameters, you can define them with the Parameters dictionary property. You

specify literal values or object navigation expressions for such parameter values. An expression is evaluated in

the context of the page in which the result is being referenced. In the preceding example, any page that uses the

homePageResult needs to expose a UserInfo property on the page class itself.

Note

In Spring.NET 1.1.0 and earlier, the prefix indicated an object navigation expression in the

Parameters dictionary property was the dollar sign, for example, ${UserInfo.FullName}.This

convention conflicted with the prefix used to perform property replacement, the dollar sign, as

described in the section PropertyPlaceholderConfigurer. As a workaround you can differentiate the

prefix and suffix used in PropertyPlaceholderConfigurer, for example prefix = $${ and suffix = }.

In Spring. NET 1.1.1, a new prefix character, the percent sign (i.e.%{UserInfo.FullName}.) can be

used in the Parameters dictionary to avoid this conflict , so you can keep the familiar NAnt style

PropertyPlaceholderConfigurer defaults.

Parameters are handled differently depending on the result mode. For redirect results, every parameter is converted

to a string, then URL encoded, and finally appended to a redirect query string. Parameters for transfer results are

added to the HttpContext.Items collection before the request is transferred to the target page. Transfers are more

flexible because any object can be passed as a parameter between pages. They are also more efficient because they

don't require a round-trip to the client and back to the server, so transfer mode is recommended as the preferred

result mode (it is also the current default).

Tip

If you need to customize how a redirect request is generated, for example, to encrypt the request

parameters, subclass the Request object and override one or more protected methods, for example

string BuildUrl(string resolvedPath, IDictionary resolvedParameters). See the API

documentation for additional information.

The preceding example shows independent result object definitions, which are useful for global results such as

a home- and login- page. Result definitions are only used by one page should be simply embedded within the

definition of a page, either as inner object definitions or using a special shortcut notation for defining a result

definition:

<object type="~/UI/Forms/UserRegistration.aspx" parent="basePage">

 <property name="UserManager">

 <ref object="userManager"/>

 </property>

 <property name="Results">

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 280

 <dictionary>

 <entry key="userSaved" value="redirect:UserRegistered.aspx?status=Registration Successful,user=

${UserInfo}"/>

 <entry key="cancel" value-ref="homePageResult"/>

 </dictionary>

 </property>

</object>

The short notation for the result must adhere to the following format...

[<mode>:]<targetPage>[?param1,param2,...,paramN]

Possible values for the mode value referred to in the preceding notation snippet:

• redirect: calls Response.Redirect(string)

• redirectNoAbort: calls Response.Redirect(string, false)

• transfer: calls Server.Transfer(string)

• TransferNoPreserve: calls Server.Transfer(string, false)

These values correspond to the values of the ResultMode enumeration. A comma separates parameters instead

of an ampersand; this avoids laborious ampersand escaping within an XML object definition. The use of the

ampersand character is still supported if required, but you then have to specify the ampersand character using

the well known & entity reference.

After you define your results, you can use them within the event handlers of your pages

(UserRegistration.apsx.cs):

private void SaveUser(object sender, EventArgs e)

{

 UserManager.SaveUser(UserInfo);

 SetResult("userSaved");

}

public void Cancel(object sender, EventArgs e)

{

 SetResult("cancel");

}

protected override void OnInit(EventArgs e)

{

 InitializeComponent();

 this.saveButton.Click += new EventHandler(this.SaveUser);

 this.cancelButton.Click += new EventHandler(this.Cancel);

 base.OnInit(e);

}

You can further refactor the preceding example and use defined constants, which is advisable when a logical

result name such as "home" is likely to be referenced by many pages.

22.9.1. Registering user defined transfer modes

You can also register a custom interpreter that can parse the shorthand string representation that creates a Result

object. To do this you should view the result mapping string representation as consisting of two parts:

<resultmode>:<textual result representation>

The interface IResultFactory is responsible for creating an IResult object from these two pieces:

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 281

public interface IResultFactory

{

 IResult CreateResult(string resultMode, string resultText);

}

You use a ResultFactoryRegistry to associate a given resultmode string with an IResultFactory

implementation:

class MySpecialResultLogic : IResult

{

 ...

}

class MySpecialResultLogicFactory : IResultFactory

{

 IResult Create(string mode, string expression) {

 /* ... convert 'expression' into MySpecialResultLogic */

 }

}

// register with global factory

ResultFactoryRegistry.RegisterResultFactory("mySpecialMode", new MySpecialResultLogicFactory);

You then use the custom continue mode in your page:

<-- configure your Results -->

<object type="mypage.aspx">

 <property name="Results">

 <dictionary>

 <entry key="continue" value="mySpecialMode:<some MySpecialResultLogic string representation>" />

 </dictionary>

 </property>

</object>

The result redirection is done as before, by calling myPage.SetResult("cancel");

22.10. Client-side scripting

ASP.NET supports client-side scripting through the use of the Page.RegisterClientScriptBlock and

Page.RegisterStartupScript methods. However, neither method allows you to output a registered script

markup within a <head> section of a page, which in many cases is exactly what you need to do.

22.10.1. Registering scripts within the head HTML section

Spring.Web adds several methods to enhance client-side scripting to the base Spring.Web.UI.Page class:

RegisterHeadScriptBlock and RegisterHeadScriptFile, each with a few overrides. You can call these methods

from your custom pages and controls in order to register script blocks and script files that must be included in

the <head> section of the final HTML page.

You must use the <spring:Head> server-side control to define your <head> section instead of using the standard

HTML <head> element. This is shown below.

<%@ Page language="c#" Codebehind="StandardTemplate.aspx.cs"

 AutoEventWireup="false" Inherits="SpringAir.Web.StandardTemplate" %>

<%@ Register TagPrefix="spring" Namespace="Spring.Web.UI.Controls" Assembly="Spring.Web" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<html>

 <spring:Head runat="server" id="Head1">

 <title>

 <spring:ContentPlaceHolder id="title" runat="server">

 <%= GetMessage("default.title") %>

 </spring:ContentPlaceHolder>

 </title>

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 282

 <LINK href="<%= CssRoot %>/default.css" type="text/css" rel="stylesheet">

 <spring:ContentPlaceHolder id="head" runat="server"></spring:ContentPlaceHolder>

 </spring:Head>

 <body>

 ...

 </body>

</html>

The preceding example above shows how you typically set-up a <head> section within a master page template to

be able to change the title value and to add additional elements to the <head> section from the child pages using

<spring:ContentPlaceholder> controls. However, only the <spring:Head> declaration is required in order for

Spring.NET Register* scripts to work properly.

22.10.2. Adding CSS definitions to the head section

In a similar fashion, you can add references to CSS files, or even specific styles, directly to the <head> HTML

section using Page.RegisterStyle and Page.RegisterStyleFile methods. The latter one simply allows you to

include a reference to an external CSS file, while the former one allows you to define embedded style definitions

by specifying the style name and definition as the parameters. The final list of style definitions registered this

way will be rendered within the single embedded style section of the final HTML document.

22.10.3. Well-known directories

To make the manual inclusion of client-side scripts, CSS files and images easier, the Spring.Web Page class

exposes several properties that help you reference such artifacts with absolute paths. This capability gives web

application developers convenience functionality straight out of the box if they stick to common conventions such

as a web application (directory) structure.

These properties are ScriptsRoot, CssRoot and ImagesRoot. They have default values of Scripts, CSS and

Images, which work well if you create and use these directories in your web application root. However, if you

prefer to place them somewhere else, you can always override default values by injecting new values into your

page definitions (you will typically inject these values only in the base page definition, as they are normally shared

by all the pages in the application). An example of such configuration is shown below:

<object name="basePage" abstract="true">

 <description>

 Convenience base page definition for all the pages.

 Pages that reference this definition as their parent (see the examples below)

 will automatically inherit the following properties....

 </description>

 <property name="CssRoot" value="Web/CSS"/>

 <property name="ImagesRoot" value="Web/Images"/>

</object>

22.11. Spring user controls

Spring provides several custom user controls that are located in the Spring.Web.UI.Controls namespace. This

section lists the controls and points to other documentation to provide additional information. Check the SDK

docs for descriptions of controls that are not mentioned here.

22.11.1. Validation controls

You can specify the location in the web page where validation errors are to be rendered by using the

ValidationSummary and ValidationError controls. Two controls exist because they have different defaults

for how errors are rendered. ValidationSummary is used to display potentially multiple errors identified by the

Spring.NET Web Framework

Spring Framework (Version 1.3.2) 283

validation framework. ValidationError is used to display field-level validation errors. Please refer to the section

ASP.NET usage tips in the chapter on the Validation Framework more information.

22.11.2. Databinding controls

Some standard controls are not easy to use with Spring's databinding support. Examples are check boxes and ratio

button groups. Here you should use the CheckBoxList and RadioButtonGroup controls. You can do databinding

itself by using the DataBindingPanel instead of the using the BindingManager API within the code behind page.

22.11.3. Calendar control

A pop-up DHTML calendar control is provided. It is a slightly modified version of the Dynarch.com DHTML

Calendar control written by Mihai Bazon.

22.11.4. Panel control

You can suppress dependency injection for controls inside your ASP.NET by using the Panel control. See

Customizing control dependency injection .

http://www.dynarch.com/projects/calendar
http://www.dynarch.com/projects/calendar

Spring Framework (Version 1.3.2) 284

Chapter 23. ASP.NET AJAX

23.1. Introduction

Spring's ASP.NET AJAX integration allows for a plain CLR object (POCO), that is one that doesn't have any

attributes or special base classes, to be exported as a web service, configured via dependency injection, 'decorated'

by applying AOP, and then exposed to client side JavaScript.

23.2. Web Services

Spring.NET, and particularly Spring.Web, improved support for web services in .NET with the

WebServiceExporter. Exporting of an ordinary plain .NET object as a web service is achieved by registering a

custom implementation of the WebServiceHandlerFactory class as the HTTP handler for *.asmx requests.

Microsoft ASP.NET AJAX introduced a new HTTP handler

System.Web.Script.Services.ScriptHandlerFactory to allow a Web Service to be invoked from the browser

by using JavaScript.

Spring's integration allows for both Spring.Web and ASP.NET AJAX functionality to be used together by creating

a new HTTP handler.

23.2.1. Exposing Web Services

The WebServiceExporter combined with the new HTTP handler exposes POCOs as Web Services in your

ASP.NET AJAX application.

In order for a Web service to be accessed from script, the WebServiceExporter should decorate the Web

Service class with the ScriptServiceAttribute. The code below is taken from the sample application

Spring.Web.Extensions.Sample, aka the 'AJAX' shortcut in the installation. :

<object id="ContactWebService" type="Spring.Web.Services.WebServiceExporter, Spring.Web">

 <property name="TargetName" value="ContactService"/>

 <property name="Namespace" value="http://Spring.Examples.Atlas/ContactService"/>

 <property name="Description" value="Contact Web Services"/>

 <property name="TypeAttributes">

 <list>

 <object type="System.Web.Script.Services.ScriptServiceAttribute, System.Web.Extensions"/>

 </list>

 </property>

</object>

All that one needs to do in order to use the WebServiceExporter is:

1. Configure the Web.config file of your ASP.NET AJAX application as a Spring.Web application.

<sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.WebContextHandler, Spring.Web"/>

</sectionGroup>

<spring>

http://www.springframework.net/doc-latest/reference/html/webservices.html
http://www.springframework.net/doc-latest/reference/html/webservices.html

ASP.NET AJAX

Spring Framework (Version 1.3.2) 285

 <context>

 <resource uri="~/Spring.config"/>

 </context>

</spring>

2. Register the HTTP handler and the Spring HttpModule under the system.web section.

<httpHandlers>

 <remove verb="*" path="*.asmx"/>

 <add verb="*" path="*.asmx" validate="false" type="Spring.Web.Script.Services.ScriptHandlerFactory,

 Spring.Web.Extensions"/>

 <add verb="*" path="*_AppService.axd" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory,

 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>

 <add verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler,

 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,

 PublicKeyToken=31bf3856ad364e35" validate="false"/>

</httpHandlers>

<httpModules>

 <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=1.0.61025.0,

 Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>

 <add name="SpringModule" type="Spring.Context.Support.WebSupportModule, Spring.Web"/>

</httpModules>

3. Register the HTTP handler and the Spring HttpModule under system.webServer section.

<modules>

 <add name="ScriptModule" preCondition="integratedMode" type="System.Web.Handlers.ScriptModule,

 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>

 <add name="SpringModule" type="Spring.Context.Support.WebSupportModule, Spring.Web"/>

</modules>

<handlers>

 <remove name="WebServiceHandlerFactory-Integrated" />

 <add name="ScriptHandlerFactory" verb="*" path="*.asmx" preCondition="integratedMode"

 type="Spring.Web.Script.Services.ScriptHandlerFactory, Spring.Web.Extensions"/>

 <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd" preCondition="integratedMode"

 type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=1.0.61025.0,

 Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>

 <add name="ScriptResource" preCondition="integratedMode" verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler,

 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" />

</handlers>

You can find a full Web.config file in the example that comes with this integration.

23.2.2. Calling Web Services by using JavaScript

A proxy class is generated for each Web Service. Calls to Web Services methods are made by using this proxy

class. When using the WebServiceExporter, the name of the proxy class is equal to the WebServiceExporter's id.

// This function calls the Contact Web service method

// passing simple type parameters and the callback function

function GetEmails(prefix, count)

{

 ContactWebService.GetEmails(prefix, count, GetEmailsOnSucceeded);

}

Spring Framework (Version 1.3.2) 286

Chapter 24. Spring.NET ASP.NET MVC
Infrastructure for ASP.NET MVC 2.0

24.1. Introduction to Spring.NET ASP.NET MVC Infrastructure

The Spring.NET for ASP.NET MVC Infrastructure increases your productivity when you write ASP.NET MVC

2.0 applications by making the full power of the Spring.NET framework available to your MVC projects.

Highlights of the Spring.NET for ASP.NET MVC Infrastructure (also referred to in this document as

Spring.Web.Mvc) are:

• Dependency Injection of Controllers and ActionFilters. ASP.NET MVC 2.0 provides two primary extensbility

points for Dependency Injection: Controllers and ActionFilters. Spring.Web.Mvc makes it extremely

simple to inject dependencies into either your MVC Controllers or ActionFilters. Simply register your

Controllers and ActionFilters with the context using any one of the typical object definition approaches

supported by Spring.NET and the Spring.Web.Mvc infrastructure will ensure these objects are assembled

correctly when the ASP.NET MVC run-time has need of them.

• Web object scopes. Just as with the Spring.NET Web Infrastructure for ASP.NET Webforms, Spring.Web.Mvc

objects can be defined at the application, session, or request scope. This capability makes it easy to inject, for

example, a session scoped shopping cart, into your controllers without any lower level programming.

The Spring.NET distribution ships with a Web.Mvc Quick Start application. The Web.Mvc QuickStart is the best

way to see how to integrate Spring.Web.Mvc into your own ASP.NET MVC applications.

24.2. Automatic context loading and hierarchical contexts

24.2.1. Configuration of a ASP.NET MVC Application

Spring.Web.Mvc builds on top of the Spring.NET IoC container. Controllers and ActionFilters that make

up a typical Spring.Web.Mvc-enabled application are configured with the same standard Spring.NET XML

configuration syntax used for non web objects. To integrate with the ASP.NET MVC runtime you need to make

a few modifications to your Web.config file and your Global.asax.

The instantiation and configuration of the Spring.NET IoC container by the Spring.Web.Mvc infrastructure is

wholly transparent to application developers, who typically never have to explicitly instantiate and configure an

IoC container manually (by, for example, using the new operator in C#). To effect the transparent bootstrapping

of the IoC container, you need to modify the primary Application class in the Global.asax so as to derive it

from the special SpringMvcApplication class as shown in the following snippet:

 public class MvcApplication : SpringMvcApplication

 {

 }

Note that the SpringMvcApplication class is abstract so that developers may only use it indirectly as a superclass

of their own global application class in the Global.asax of their ASP.NET MVC applications.

After the Global.asax is modified as indicated above, you also need to define a root application context by adding

a Spring.NET configuration section to your Web.config file. The final configuration file should resemble the

Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 2.0

Spring Framework (Version 1.3.2) 287

following; your exact configuration may vary in particulars and the following snippet illustrates only the Spring-

specfic entries and excludes the remainder of the content (typically) required by ASP.NET MVC.

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.MvcContextHandler, Spring.Web.Mvc"/>

 </sectionGroup>

 </configSections>

 <spring>

 <context>

 <resource uri="~/Config/Controllers.xml"/>

 <resource uri="~/Config/Filters.xml"/>

 <resource uri="~/Config/Production/Services.xml"/>

 <resource uri="~/Config/Production/Dao.xml"/>

 </context>

 </spring>

</configuration>

Notes about the preceding configuration:

• Define a custom configuration section handler for the <context> element. If you use Spring.NET for many

applications on the same web server, it might be easier to move the whole definition of the Spring.NET section

group to your machine.config file.

• The custom configuration section handler is of the type Spring.Context.Support.MvcContextHandler which

in turn instantiates an IoC container of the type Spring.Context.Support.MvcApplicationContext. This

ensures that all features provided by Spring.Web.Mvc, such as request and session-scoped object definitions,

are handled properly.

• Within the <spring> element, define a root context element. Next, specify resource locations that contain the

object definitions that are used within the web application (such as service or business tier objects) as child

elements within the <context> element. Object definition resources can be fully-qualified paths or URLs, or

non-qualified, as in the example above. Non-qualified resources are loaded using the default resource type for

the context, which for the MvcApplicationContext is the WebResource type.

• The object definition resources do not have to be the same resource type (for example, all file://, all http://,

all assembly://, and so on). This means that you can load some object definitions from resources embedded

directly within application assemblies (assembly://) while continuing to load other object definitions from

web resources that can be more easily edited.

24.2.2. Customizing the Behavior of the ASP.NET MVC Application Class

The default behavior, settings, ASP.NET MVC start-up related and Spring.NET container-configuration

behaviors can be modified and controlled by overriding various methods of the SpringMvcApplication in your

own derived instance. The following section describes these overridable methods and their existing behavior

provided in the base SpringMvcApplication class. Please note that if you choose to override any of these methods

and do not subsequently invoke the base SpringMvcApplication class' implementation of that same method,

then you are completely responsible for ensuring that the underlying reponsibilities of that method in the base

class are satisfied by your overloaded implementation. Without either ensuring this or invoking the base class

implementation within your overridden method, the underlying behavior of the ASP.NET MVC runtime (and its

integration with Spring.NET) is unlikley to function as intended.

Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 2.0

Spring Framework (Version 1.3.2) 288

24.2.2.1. Application_Start(object sender, EventArgs e)

This method is provided by the Microsoft base HttpApplication class and is overridden in the

SpringMvcApplication base class to be responsible for invoking the RegisterRoutes() and RegisterAreas()

methods. If you choose to override the Application_Start() implementation of the SpringMvcApplication

class in your own implementation, ensure that you either call base.Application_Start() or explicitly invoke

both the RegisterRoutes() and RegisterAreas() methods within your within your override of this method.

24.2.2.2. ConfigureApplicationContext()

This method is invoked by the SpringMvcApplication class after it has been configured with all of its object

definitions and other settings (as detailed in Configuration of a ASP.NET MVC Application) but immediately

prior to its being handed off to the ASP.NET MVC infrastructure for its use. Overridding this method provides

you with your last possible moment to make any additional modifications to the IApplicationContext before it

is put into service for the ASP.NET MVC framework's use. In the SpringMvcApplication base class, this method

is a no-op and thus does nothing. It exists only to provide an extensibility point for developers wishing to interact

with the IApplicationContext at this point in the application startup/context configuration lifecycle.

24.2.2.3. RegisterSpringControllerFactory()

This method is responsible for registering the SpringControllerFactory with the ASP.NET MVC framework,

in effect telling ASP.NET MVC "please use the SpringControllerFactory to create Controllers." This is the

manner in which the Spring.NET container is subsequently invoked to satisfy dependencies on Controllers

when they are instantiated by ASP.NET MVC in response to an Http Request. Generally, there should be little

need for the developer to override this method, but if you do you must ensure that your either invoke the

base implementation of RegisterSpringControllerFactory() from within your implementation or that you

explicitly register the SpringControllerFactory with the ASP.NET MVC infrastructure yourself from witihin

this method (or elsewhere at the appropriate time).

24.2.2.4. RegisterRoutes(RouteCollection routes)

This method is responsible for registering ASP.NET MVC Routes during application startup and is automatically

invoked from within the Application_Start() method in the SpringMvcApplication base class. The provided

implementation of this method in the SpringMvcApplication class merely registers the same Default route as is

present in any new ASP.NET MVC project that Visual Studio creates (e.g., "{controller}/{action}/{id}"). As

such it is expected that most developers will override this method and provide their own implementation wherein

they will register their own routes. Unless you desire to retain the out-of-the-box Default routing configuration

of "{controller}/{action}/{id}" it is not necessary for developers to call the RegisterRoutes() method of

the SpringMvcApplication base class from within their own overrides of this method.

24.2.2.5. RegisterAreas()

This method is responsible for registering ASP.NET MVC Areas during application startup and is

automatically invoked from within the Application_Start() method in the SpringMvcApplication base

class. The provided implementation of this method in the SpringMvcApplication class merely invokes

AreaRegistration.RegisterAllAreas() in the ASP.NET MVC framework. As such, it is not common to have

to override this method as provided in the SpringMvcApplication base class unless you desire more fine-grained

control over registering areas. If you choose to override this method in your own derived class, you are assuming

the responsibility of registering all Areas with the ASP.NET MVC runtime.

Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 2.0

Spring Framework (Version 1.3.2) 289

24.3. Web object scopes

Spring.NET web applications support an additional attribute within object definition elements that allows you to

control the scope of an object:

<object id="myObject" type="MyType, MyAssembly" scope="application | session | request"/>

Possible values for the scope attribute are application, session, and request. Application scope is the default, and

is used for all objects with an undefined scope attribute. This scope creates a single instance of an object for the

duration of the IIS application, so that the objects works exactly like the standard singleton objects in non-web

applications. Session scope defines objects so that an instance is created for each HttpSession. This scope is ideal

for objects such as user profile, shopping cart, and so on that you want bound to a single user.

Request scope creates one instance per HTTP request. Unlike calls to prototype objects, calls to

IApplicationContext.GetObject return the same instance of the request-scoped object during a single HTTP

request. This allows you, for example, to inject the same request-scoped object into multiple pages and then use

server-side transfer to move from one page to another. As all the pages are executed within the single HTTP

request in this case, they share the same instance of the injected object.

Objects can only reference other objects that are in the same or broader scope. This means that application-scoped

objects can only reference other application-scoped objects, session-scoped objects can reference both session

and application-scoped objects, and request-scoped objects can reference other request-, session-, or application-

scoped objects. Also, prototype objects (including all ASP.NET web pages defined within Spring.NET context)

can reference singleton objects from any scope, as well as other prototype objects.

Spring Framework (Version 1.3.2) 290

Chapter 25. Spring.NET ASP.NET MVC
Infrastructure for ASP.NET MVC 3.0

25.1. Introduction to Spring.NET ASP.NET MVC Infrastructure

The Spring.NET for ASP.NET MVC Infrastructure increases your productivity when you write ASP.NET MVC

3.0 applications by making the full power of the Spring.NET framework available to your MVC projects.

Highlights of the Spring.NET for ASP.NET MVC Infrastructure for ASP.NET MVC 3.0 (also referred to in this

document as Spring.Web.Mvc) are:

• Spring.NET-specific Implementation of IDependencyResolver for Injection of Controllers, ActionFilters,

and all other types requested by the ASP.NET MVC 3.0 runtime. ASP.NET MVC 3.0 finally centralizes

the previous multiple extensbility points for Dependency Injection into a single, central responsibility: any

imlementation of the IDependencyResolver interface. Spring.Web.Mvc makes it extremely simple to inject

dependencies of any type into your MVC applications. Simply register your Controllers, ActionFilters,

etc. with the context using any one of the typical object definition approaches supported by Spring.NET and

the Spring.Web.Mvc infrastructure will ensure these objects are assembled correctly when the ASP.NET MVC

run-time has need of them.

• Web object scopes. Just as with the Spring.NET Web Infrastructure for ASP.NET Webforms, Spring.Web.Mvc

objects can be defined at the application, session, or request scope. This capability makes it easy to inject, for

example, a session scoped shopping cart, into your controllers without any lower level programming.

The Spring.NET distribution ships with a Web.Mvc Quick Start application. The Web.Mvc QuickStart is the best

way to see how to integrate Spring.Web.Mvc into your own ASP.NET MVC applications.

25.2. Automatic context loading and hierarchical contexts

25.2.1. Configuration of a ASP.NET MVC Application

Spring.Web.Mvc builds on top of the Spring.NET IoC container. Object Definitions that make up a typical

Spring.Web.Mvc-enabled application are configured with the same standard Spring.NET XML configuration

syntax used for non web objects. To integrate with the ASP.NET MVC runtime you need to make a few

modifications to your Web.config file and your Global.asax.

The instantiation and configuration of the Spring.NET IoC container by the Spring.Web.Mvc infrastructure is

wholly transparent to application developers, who typically never have to explicitly instantiate and configure an

IoC container manually (by, for example, using the new operator in C#). To effect the transparent bootstrapping

of the IoC container, you need to modify the primary Application class in the Global.asax so as to derive it

from the special SpringMvcApplication class as shown in the following snippet:

 public class MvcApplication : SpringMvcApplication

 {

 }

Note that the SpringMvcApplication class is abstract so that developers may only use it indirectly as a superclass

of their own global application class in the Global.asax of their ASP.NET MVC applications.

Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 3.0

Spring Framework (Version 1.3.2) 291

After the Global.asax is modified as indicated above, you also need to define a root application context by adding

a Spring.NET configuration section to your Web.config file. The final configuration file should resemble the

following; your exact configuration may vary in particulars and the following snippet illustrates only the Spring-

specfic entries and excludes the remainder of the content (typically) required by ASP.NET MVC.

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.MvcContextHandler, Spring.Web.Mvc"/>

 </sectionGroup>

 </configSections>

 <spring>

 <context>

 <resource uri="file://~/Config/Controllers.xml"/>

 <resource uri="file://~/Config/Filters.xml"/>

 <resource uri="file://~/Config/Production/Services.xml"/>

 <resource uri="file://~/Config/Production/Dao.xml"/>

 </context>

 </spring>

</configuration>

Notes about the preceding configuration:

• Define a custom configuration section handler for the <context> element. If you use Spring.NET for many

applications on the same web server, it might be easier to move the whole definition of the Spring.NET section

group to your machine.config file.

• The custom configuration section handler is of the type Spring.Context.Support.MvcContextHandler which

in turn instantiates an IoC container of the type Spring.Context.Support.MvcApplicationContext. This

ensures that all features provided by Spring.Web.Mvc, such as request and session-scoped object definitions,

are handled properly.

• Within the <spring> element, define a root context element. Next, specify resource locations that contain the

object definitions that are used within the web application (such as service or business tier objects) as child

elements within the <context> element. Object definition resources can be fully-qualified paths or URLs, or

non-qualified, as in the example above. Non-qualified resources are loaded using the default resource type for

the context, which for the MvcApplicationContext is the WebResource type.

• The object definition resources do not have to be the same resource type (for example, all file://, all http://,

all assembly://, and so on). This means that you can load some object definitions from resources embedded

directly within application assemblies (assembly://) while continuing to load other object definitions from

web resources that can be more easily edited.

25.2.2. Customizing the Behavior of the ASP.NET MVC Application Class

The default behavior, settings, ASP.NET MVC start-up related and Spring.NET container-configuration

behaviors can be modified and controlled by overriding various methods of the SpringMvcApplication in your

own derived instance. The following section describes these overridable methods and their existing behavior

provided in the base SpringMvcApplication class. Please note that if you choose to override any of these methods

and do not subsequently invoke the base SpringMvcApplication class' implementation of that same method,

then you are completely responsible for ensuring that the underlying reponsibilities of that method in the base

class are satisfied by your overloaded implementation. Without either ensuring this or invoking the base class

implementation within your overridden method, the underlying behavior of the ASP.NET MVC integration with

Spring.NET is unlikley to function as intended.

Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 3.0

Spring Framework (Version 1.3.2) 292

25.2.2.1. Application_BeginRequest(object sender, EventArgs e)

This method is provided by the Microsoft base HttpApplication class and is overridden in the

SpringMvcApplication base class to be responsible for invoking the BuildDependencyResolver and

RegisterDependencyResolver methods. If you choose to override the Application_BeginRequest

implementation of the SpringMvcApplication class in your own implementation, ensure that you

either call base.Application_BeginRequest or explicitly invoke both the BuildDependencyResolver and

RegisterDependencyResolver methods within your override of this method.

25.2.2.2. ConfigureApplicationContext()

This method is invoked by the SpringMvcApplication class after it has been configured with all of its object

definitions and other settings (as detailed in Configuration of a ASP.NET MVC Application) but immediately

prior to its being handed off to the ASP.NET MVC infrastructure for its use. Overridding this method provides

you with your last possible moment to make any additional modifications to the IApplicationContext before it

is put into service for the ASP.NET MVC framework's use. In the SpringMvcApplication base class, this method

is a no-op and thus does nothing. It exists only to provide an extensibility point for developers wishing to interact

with the IApplicationContext at this point in the application startup/context configuration lifecycle.

25.2.2.3. BuildDependencyResolver()

This method is responsible for assembling and returning the Spring.NET-specific implementation of the

ASP.NET MVC framework's IDependencyResolver interface. The provided implementation of this method In

the SpringMvcApplication class returns an instance of the SpringMvcDependencyResolver class wired up to use

the configured IApplicationContext. For fine-grained control of the manner in which the IDependencyResolver

implementation is constructed, this method may be overriddem in a class of your own derived from

SpringMvcApplication.

25.2.2.4. RegisterDependencyResolver(IDependencyResolver resolver)

This method is responsible for registering the SpringDependencyResolver with the ASP.NET MVC framework,

in effect telling ASP.NET MVC "please use this SpringDependencyResolver to create objects when

ASP.NET MVC requests them". This is the manner in which the Spring.NET container is subsequently

invoked to satisfy dependencies on Controllers, ActionFilters, and other object types when they are

instantiated by ASP.NET MVC in response to an Http Request. Generally, there should be little need for

the developer to override this method, but if you do you must ensure that your either invoke the base

implementation of RegisterDependencyResolver from within your implementation or that you explicitly register

the SpringMvcDependencyResolver with the ASP.NET MVC infrastructure yourself from witihin this method

(or elsewhere at the appropriate time).

25.3. Web object scopes

Spring.NET web applications support an additional attribute within object definition elements that allows you to

control the scope of an object:

<object id="myObject" type="MyType, MyAssembly" scope="application | session | request"/>

Possible values for the scope attribute are application, session, and request. Application scope is the default, and

is used for all objects with an undefined scope attribute. This scope creates a single instance of an object for the

duration of the IIS application, so that the objects works exactly like the standard singleton objects in non-web

applications. Session scope defines objects so that an instance is created for each HttpSession. This scope is ideal

for objects such as user profile, shopping cart, and so on that you want bound to a single user.

Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 3.0

Spring Framework (Version 1.3.2) 293

Request scope creates one instance per HTTP request. Unlike calls to prototype objects, calls to

IApplicationContext.GetObject return the same instance of the request-scoped object during a single HTTP

request. This allows you, for example, to inject the same request-scoped object into multiple pages and then use

server-side transfer to move from one page to another. As all the pages are executed within the single HTTP

request in this case, they share the same instance of the injected object.

Objects can only reference other objects that are in the same or broader scope. This means that application-scoped

objects can only reference other application-scoped objects, session-scoped objects can reference both session

and application-scoped objects, and request-scoped objects can reference other request-, session-, or application-

scoped objects. Also, prototype objects (including all ASP.NET web pages defined within Spring.NET context)

can reference singleton objects from any scope, as well as other prototype objects.

Spring Framework (Version 1.3.2) 294

Part IV. Services
This part of the reference documentation covers the Spring Framework's integration with .NET distributed

technologies such as .NET Remoting, Enterprise Services, Web Services. Integration with WCF Services is

forthcoming. Please refer to the introduction chapter for more details.

• Chapter 26, Introduction to Spring Services

• Chapter 27, .NET Remoting

• Chapter 28, .NET Enterprise Services

• Chapter 29, Web Services

• Chapter 30, Windows Communication Foundation (WCF)

Spring Framework (Version 1.3.2) 295

Chapter 26. Introduction to Spring
Services

26.1. Introduction

The goal of Spring's integration with distributed technologies is to adapt plain CLR objects so they can be used

with a specific distributed technology. This integration is designed to be as non-intrusive as possible. If you need

to expose an object to a remote process then you can define an exporter for that object. Similarly, on the client

side you define an corresponding endpoint accessor. Of course, the object's methods still need to be suitable for

remoting, i.e. coarse grained, to avoid making unnecessary and expensive remote calls.

Since these exporters and client side endpoint accessors are defined using meta data for Spring IoC container,

you can easily use dependency injection on them to set initial state and to 'wire up' the presentation tier, such as

web forms, to the service layer. In addition, you may apply AOP aspects to the exported classes and/or service

endpoints to apply behavior such as logging, security, or other custom behavior that may not be provided by

the target distributed technology. The Spring specific terminology for this approach to object distribution is

known as Portable Service Abstractions (PSA). As a result of this approach, you can decide much later in the

development process the technical details of how you will distribute your objects as compared to traditional code

centric approaches. Changing of the implementation is done though configuration of the IoC container and not

by recompilation. Of course, you may choose to not use the IoC container to manage these objects and use the

exporter and service endpoints programatically.

The diagram shown below is a useful way to demonstrate the key abstractions in the Spring tool chest and

their interrelationships. The four key concepts are; plain CLR objects, Dependency Injection, AOP, and Portable

Service Abstractions. At the heart sits the plain CLR object that can be instantiated and configured using

dependency injection. Then, optionally, the plain object can be adapted to a specific distributed technology. Lastly,

additional behavior can be applied to objects. This behavior is typically that which can not be easily address by

traditional OO approaches such as inheritance. In the case of service layer, common requirements such as 'the

service layer must be transactional' are implemented in a manner that naturally expresses that intention in a single

place, as compared to scattered code across the service layer.

Spring implements this exporter functionality by creating a proxy at runtime that meets the implementation

requirements of a specific distributed technology. In the case of .NET Remoting the proxy will inherit from

MarshalByRef, for EnterpriseServices it will inherit from ServicedComponent and for aspx web services,

WebMethod attributes will be added to methods. Client side functionality is often implemented by a thin layer

over the client access mechanism of the underlying distributed technology, though in some cases such as client

Introduction to Spring Services

Spring Framework (Version 1.3.2) 296

side access to web services, you have the option to create a proxy on the fly from the .wsdl definition, much like

you would have done using the command line tools.

The common implementation theme for you as a provider of these service objects is to implement an interface.

This is generally considered a best practice in its own right, you will see most pure WCF examples following this

practice, and also lends itself to a straightforward approach to unit testing business functionality as stub or mock

implementations may be defined for testing purposes.

The assembly Spring.Services.dll contains support for .NET Remoting, Enterprise Services and ASMX Web

Services. Support for WCF services is planned for Spring 1.2 and is currently in the CVS repository if you care

to take an early look.

Spring Framework (Version 1.3.2) 297

Chapter 27. .NET Remoting

27.1. Introduction

Spring's .NET Remoting support allows you to export a 'plain CLR object' as a .NET Remoted object. By

"plain CLR object" we mean classes that do not inherit from a specific infrastructure base class such as

MarshalByRefObject. On the server side, Spring's .NET Remoting exporters will automatically create a proxy that

implements MarshalByRefObject. You register SAO types as either SingleCall or Singleton and also configure

on a per-object basis lifetime and leasing parameters. On the client side you can obtain CAO references to server

proxy objects in a manner that promotes interface based design best practices when developing .NET remoting

applications. The current implementation requires that your plain .NET objects implements a business service

interface. Additionally you can add AOP advice to both SAO and CAO objects.

You can leverage the IoC container to configure the exporter and service endpoints. A remoting specific xml-

schema is provided to simplify the remoting configuration but you can still use the standard reflection-like

property based configuration schema. You may also opt to not use the IoC container to configure the objects and

use Spring's .NET Remoting classes Programatically, as you would with any third party library.

A sample application, often referred to in this documentation, is in the distribution under the directory "examples

\Spring\Spring.Calculator" and may also be found via the start menu by selecting the 'Calculator' item.

27.2. Publishing SAOs on the Server

Exposing a Singleton SAO service can be done in two ways. The first is through programmatic or administrative

type registration that makes calls to RemotingConfiguration.RegisterWellKnownServiceType. This method has

the limitation that you must use a default constructor and you can not easily configure the singleton state at runtime

since it is created on demand. The second way is to publish an object instance using RemotingServices.Marshal.

This method overcomes the limitations of the first method. Example server side code for publishing an SAO

singleton object with a predefined state is shown below

AdvancedMBRCalculator calc = new AdvancedMBRCalculator(217);

RemotingServices.Marshal(calc, "MyRemotedCalculator");

The class AdvancedMBRCalculator used above inherits from MarshalByRefObject.

If your design calls for configuring a singleton SAO, or using a non-default constructor, you can use the Spring

IoC container to create the SAO instance, configure it, and register it with the .NET remoting infrastructure. The

SaoExporter class performs this task and most importantly, will automatically create a proxy class that inherits

from MarshalbyRefObject if your business object does not already do so. The following XML taken from the

Remoting QuickStart demonstrates its usage to an SAO Singleton object

27.2.1. SAO Singleton

<object id="singletonCalculator" type="Spring.Calculator.Services.AdvancedCalculator,

 Spring.Calculator.Services">

 <constructor-arg type="int" value="217"/>

</object>

<!-- Registers the calculator service as a SAO in 'Singleton' mode. -->

<object name="saoSingletonCalculator" type="Spring.Remoting.SaoExporter, Spring.Services">

 <property name="TargetName" value="singletonCalculator" />

 <property name="ServiceName" value="RemotedSaoSingletonCalculator" />

</object>

.NET Remoting

Spring Framework (Version 1.3.2) 298

This XML fragment shows how an existing object "singletonCalculator" defined in the Spring context

is exposed under the url-path name "RemotedSaoSingletonCalculator". (The fully qualified url is tcp://

localhost:8005/RemotedSaoSingleCallCalculator using the standard .NET channel configuration shown further

below.) AdvancedCalculator class implements the business interface IAdvancedCalculator. The current proxy

implementation requires that your business objects implement an interface. The interfaces' methods will be the

ones exposed in the generated .NET remoting proxy. The initial memory of the calculator is set to 217 via

the constructor. The class AdvancedCalculator does not inherit from MarshalByRefObject. Also note that the

exporter sets the lifetime of the SAO Singleton to infinite so that the singleton will not be garbage collected after 5

minutes (the .NET default lease time). If you would like to vary the lifetime properties, they are InitialLeaseTime,

RenewOnCallTime, and SponsorshipTimeout.

A custom schema is provided to make the object declaration even easier and with intellisense support for the

attributes. This is shown below

<objects xmlns="http://www.springframework.net"

 xmlns:r="http://www.springframework.net/remoting">

 <r:saoExporter targetName="singletonCalculator"

 serviceName="RemotedSaoSingletonCalculator" />

 ... other object definitions

</objects>

Refer to the end of this chapter for more information on Spring's .NET custom schema.

27.2.2. SAO SingleCall

The following XML fragment shows how to expose the calculator service in SAO 'SingleCall' mode.

<object id="prototypeCalculator" type="Spring.Calculator.Services.AdvancedCalculator,

 Spring.Calculator.Services"

 singleton="false">

 <constructor-arg type="int" value="217"/>

</object>

<object name="saoSingleCallCalculator" type="Spring.Remoting.SaoExporter, Spring.Services">

 <property name="TargetName" value="prototypeCalculator" />

 <property name="ServiceName" value="RemotedSaoSingleCallCalculator" />

</object>

Note that we change the singleton attribute of the plain CLR object as configured by Spring in the <object>

definition and not an attribute on the SaoExporter. The object referred to in the TargetName parameter can be an

AOP proxy to a business object. For example, if we were to apply some simple logging advice to the singleton

calculator, the following standard AOP configuration is used to create the target for the SaoExporter

<object id="singletonCalculatorWeaved" type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop">

 <property name="target" ref="singletonCalculator"/>

 <property name="interceptorNames">

 <list>

 <value>Log4NetLoggingAroundAdvice</value>

 </list>

 </property>

</object>

<object name="saoSingletonCalculatorWeaved" type="Spring.Remoting.SaoExporter, Spring.Services">

 <property name="TargetName" value="singletonCalculatorWeaved" />

 <property name="ServiceName" value="RemotedSaoSingletonCalculatorWeaved" />

</object>

.NET Remoting

Spring Framework (Version 1.3.2) 299

Note
As generally required with a .NET Remoting application, the arguments to your service methods

should be Serializable.

27.2.1. Console Application Configuration

When using SaoExporter you can still use the standard remoting administration section in the application

configuration file to register the channel. ChannelServices as shown below

<system.runtime.remoting>

 <application>

 <channels>

 <channel ref="tcp" port="8005" />

 </channels>

 </application>

</system.runtime.remoting>

A console application that will host this Remoted object needs to initialize the .NET Remoting infrastructure with

a call to RemotingConfiguration (since we are using the .config file for channel registration) and then start the

Spring application context. This is shown below

RemotingConfiguration.Configure("RemoteApp.exe.config");

IApplicationContext ctx = ContextRegistry.GetContext();

Console.Out.WriteLine("Server listening...");

Console.ReadLine();

You can also put in the configuration file an instance of the object Spring.Remoting.RemotingConfigurer to

make the RemotingConfiguration call show above on your behalf during initialization of the IoC container.

The RemotingConfigurer implements the IObjectFactoryPostProcessor interface, which gets called after all

object definitions have been loaded but before they have been instantiated, (SeeSection 5.9.2, “Customizing

configuration metadata with ObjectFactoryPostProcessors” for more information). The RemotingConfigurer has

two properties you can configure. Filename, that specifies the filename to load the .NET remoting configuration

from (if null the default file name is used) and EnsureSecurity which makes sure the channel in encrypted

(available only on .NET 2.0). As a convenience, the custom Spring remoting schema can be used to define an

instance of this class as shown below, taken from the Remoting QuickStart

<objects xmlns="http://www.springframework.net"

 xmlns:r="http://www.springframework.net/remoting">

 <r:configurer filename="Spring.Calculator.RemoteApp.exe.config" />

</objects>

The ReadLine prevents the console application from exiting. You can refer to the code in RemoteApp in the

Remoting QuickStart to see this code in action.

27.2.3. IIS Application Configuration

If you are deploying a .NET remoting application inside IIS there is a sample project that demonstrates the

necessary configuration using Spring.Web.

Spring.Web ensures the application context is initialized, but if you don't use Spring.Web the idea is to start the

initialization of the Spring IoC container inside the application start method defined in Global.asax, as shown

below

http://forum.springframework.net/showthread.php?t=469

.NET Remoting

Spring Framework (Version 1.3.2) 300

 void Application_Start(object sender, EventArgs e)

 {

 // Code that runs on application startup

 // Ensure Spring has loaded configuration registering context

 Spring.Context.IApplicationContext ctx = new Spring.Context.Support.XmlApplicationContext(

 HttpContext.Current.Server.MapPath("Spring.Config"));

 Spring.Context.Support.ContextRegistry.RegisterContext(ctx);

 }

In this example, the Spring configuration file is named Spring.Config. Inside Web.config you add a standard

<system.runtime.remoting> section. Note that you do not need to specify the port number of your channels as

they will use the port number of your web site. Ambiguous results have been reported if you do specify the port

number. Also, in order for IIS to recognize the remoting request, you should add the suffix '.rem' or '.soap' to the

target name of your exported remote object so that the correct IIS handler can be invoked.

27.3. Accessing a SAO on the Client

Administrative type registration on the client side lets you easily obtain a reference to a SAO object. When a type is

registered on the client, using the new operator or using the reflection API will return a proxy to the remote object

instead of a local reference. Administrative type registration on the client for a SAO object is performed using

the wellknown element in the client configuration section. However, this approach requires that you expose the

implementation of the class on the client side. Practically speaking this would mean linking in the server assembly

to the client application, a generally recognized bad practice. This dependency can be removed by developing

remote services based on a business interface. Aside from remoting considerations, the separation of interface and

implementation is considered a good practice when designing OO systems. In the context of remoting, this means

that the client can obtain a proxy to a specific implementation with only a reference to the interface assembly.

To achieve the decoupling of client and server, a separate assembly containing the interface definitions is created

and shared between the client and server applications.

There is a simple means for following this design when the remote object is a SAO object. A call to

Activator.GetObject will instantiate a SAO proxy on the client. For CAO objects another mechanism is used

and is discussed later. The code to obtain the SAO proxy is shown below

ICalculator calc = (ICalculator)Activator.GetObject (

 typeof (ICalculator),

 "tcp://localhost:8005/MyRemotedCalculator");

To obtain a reference to a SAO proxy within the IoC container, you can use the object factory SaoFactoryObject

in the Spring configuration file. The following XML taken from the Remoting QuickStart demonstrates its usage.

<object id="calculatorService" type="Spring.Remoting.SaoFactoryObject, Spring.Services">

 <property name="ServiceInterface" value="Spring.Calculator.Interfaces.IAdvancedCalculator,

 Spring.Calculator.Contract" />

 <property name="ServiceUrl" value="tcp://localhost:8005/RemotedSaoSingletonCalculator" />

</object>

The ServiceInterface property specifies the type of proxy to create while the ServiceUrl property creates a proxy

bound to the specified server and published object name.

Other objects in the IoC container that depend on an implementation of the interface ICalculator can now

refer to the object "calculatorService", thereby using a remote implementation of this interface. The exposure of

dependencies among objects within the IoC container lets you easily switch the implementation of ICalculator.

By using the IoC container changing the application to use a local instead of remote implementation is a

configuration file change, not a code change. By promoting interface based programing, the ability to switch

implementation makes it easier to unit test the client application, since unit testing can be done with a mock

.NET Remoting

Spring Framework (Version 1.3.2) 301

implementation of the interface. Similarly, development of the client can proceed independent of the server

implementation. This increases productivity when there are separate client and server development teams. The

two teams agree on interfaces before starting development. The client team can quickly create a simple, but

functional implementation and then integrate with the server implementation when it is ready.

27.4. CAO best practices

Creating a client activated object (CAO) is typically done by administrative type registration, either

Programatically or via the standard .NET remoting configuration section. The registration process allows you to

use the 'new' operator to create the remote object and requires that the implementation of the object be distributed

to the client. As mentioned before, this is not a desirable approach to developing distributed systems. The best

practice approach that avoids this problem is to create an SAO based factory class on the server that will return

CAO references to the client. In a manner similar to how Spring's generic object factory can be used as a

replacement creating a factory per class, we can create a generic SAO object factory to return CAO references

to objects defined in Spring's application context. This functionality is encapsulated in Spring's CaoExporter

class. On the client side a reference is obtained using CaoFactoryObject. The client side factory object supports

creation of the CAO object using constructor arguments. In addition to reducing the clutter and tedium around

creating factory classes specific to each object type you wish to expose in this manner, this approach has the

additional benefit of not requiring any type registration on the client or server side. This is because the act of

returning an instance of a class that inherits from MarshalByRefObject across a remoting boundary automatically

returns a CAO object reference. For more information on this best-practice, refer to the last section, Section 27.8,

“Additional Resources”, for some links to additional resources.

27.5. Registering a CAO object on the Server

To expose an object as a CAO on the server you should declare an object in the standard Spring configuration that

is a 'prototype', that is the singleton property is set to false. This results in a new object being created each time

it is retrieved from Spring's IoC container. An implementation of ICaoRemoteFactory is what is exported via a

call to RemotingServices.Marshal. This implementation uses Spring's IoC container to create objects and then

dynamically create a .NET remoting proxy for the retrieved object. Note that the default lifetime of the remote

object is set to infinite (null is returned from the implementation of InitializeLifetimeService()).

This is best shown using an example from the Remoting Quickstart application. Here is the definition of a simple

calculator object,

<object id="prototypeCalculator" type="Spring.Calculator.Services.AdvancedCalculator,

 Spring.Calculator.Services"

 singleton="false">

 <constructor-arg type="int" value="217" />

</object>

To export this as a CAO object we can declare the CaoExporter object directly in the server's XML configuration

file, as shown below

<object id="caoCalculator" type="Spring.Remoting.CaoExporter, Spring.Services">

 <property name="TargetName" value="prototypeCalculator" />

 <property name="Infinite" value="false" />

 <property name="InitialLeaseTime" value="2m" />

 <property name="RenewOnCallTime" value="1m" />

</object>

Note the property 'TargetName' is set to the name, not the reference, of the non-singleton declaration of the

'AdvancedCalculator' class.

.NET Remoting

Spring Framework (Version 1.3.2) 302

Alternatively, you can use the remoting schema and declare the CAO object as shown below

<r:caoExporter targetName="prototypeCalculator" infinite="false">

 <r:lifeTime initialLeaseTime="2m" renewOnCallTime="1m" />

</r:caoExporter>

27.5.1. Applying AOP advice to exported CAO objects

Applying AOP advice to exported CAO objects is done by referencing the adviced object name to the CAO

exporter. Again, taking an example from the Remoting QuickStart, a calculator with logging around advice is

defined as shown below.

<object id="prototypeCalculatorWeaved" type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop">

 <property name="targetSource">

 <object type="Spring.Aop.Target.PrototypeTargetSource, Spring.Aop">

 <property name="TargetObjectName" value="prototypeCalculator" />

 </object>

 </property>

 <property name="interceptorNames">

 <list>

 <value>ConsoleLoggingAroundAdvice</value>

 </list>

 </property>

</object>

If this declaration is unfamiliar to you, please refer to Chapter 13, Aspect Oriented Programming with Spring.NET

for more information. The CAO exporter then references with the name 'prototypeCalculatorWeaved' as shown

below.

<r:caoExporter targetName="prototypeCalculatorWeaved" infinite="false">

 <r:lifeTime initialLeaseTime="2m" renewOnCallTime="1m" />

</r:caoExporter>

27.6. Accessing a CAO on the Client

On the client side a CAO reference is obtained by using the CaoFactoryObject as shown below

<object id="calculatorService" type="Spring.Remoting.CaoFactoryObject, Spring.Services">

 <property name="RemoteTargetName" value="prototypeCalculator" />

 <property name="ServiceUrl" value="tcp://localhost:8005" />

</object>

This definition corresponds to the exported calculator from the previous section. The property

'RemoteTargetName' identifies the object on the server side. Using this approach the client can obtain an reference

though standard DI techniques to a remote object that implements the IAdvancedCalculator interface. (As

always, that doesn't mean the client should treat the object as if it was an in-process object).

Alternatively, you can use the Remoting schema to shorten this definition and provide intellisense code

completion

<r:caoFactory id="calculatorService"

 remoteTargetName="prototypeCalculator"

 serviceUrl="tcp://localhost:8005" />

27.6.1. Applying AOP advice to client side CAO objects.

Applying AOP advice to a client side CAO object is done just like any other object. Simply use the id of the

object created by the CaoFactoryObject as the AOP target, i.e. 'calculatorService' in the previous example.

.NET Remoting

Spring Framework (Version 1.3.2) 303

27.7. XML Schema for configuration

Please install the XSD schemas into VS.NET as described in Chapter 36, Visual Studio.NET Integration. XML

intellisense for the attributes of the saoExporter, caoExporter and caoFactory should be self explanatory as they

mimic the standard property names used to configure .NET remote objects.

27.8. Additional Resources

Two articles that describe the process of creating a standard SAO factory for returning CAO objects are

Implementing Broker with .NET Remoting Using Client-Activated Objects on MSDN and Step by Step guide to

CAO creation through SAO class factories on Glacial Components website.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/ImpBrokerClient.asp
http://www.glacialcomponents.com/ArticleDetail/CAOGuide.aspx
http://www.glacialcomponents.com/ArticleDetail/CAOGuide.aspx

Spring Framework (Version 1.3.2) 304

Chapter 28. .NET Enterprise Services

28.1. Introduction

Spring's .NET Enterprise Services support allows you to export a 'plain CLR object' as a .NET Remoted object.

By "plain CLR object" we mean classes that do not inherit from a specific infrastructure base class such as

ServicedComponent..

You can leverage the IoC container to configure the exporter and service endpoints. You may also opt to not use

the IoC container to configure the objects and use Spring's .NET Enterprise Services classes Programatically, as

you would with any third party library.

28.2. Serviced Components

Services components in .NET are able to use COM+ services such as declarative and distributed transactions,

role based security, object pooling messaging. To access these services your class needs to derive from the class

System.EnterpriseServices.ServicedComponent, adorn your class and assemblies with relevant attributes,

and configure your application by registering your serviced components with the COM+ catalog. The overall

landscape of accessing and using COM+ services within .NET goes by the name .NET Enterprise Services.

Many of these services can be provided without the need to derive from a ServicedComponent though the use

of Spring's Aspect-Oriented Programming functionality. Nevertheless, you may be interested in exporting your

class as a serviced component and having client access that component in a location transparent manner. By using

Spring's ServicedComponentExporter, EnterpriseServicesExporter and ServicedComponentFactory you can

easily create and consume serviced components without having your class inherit from ServicedComponent and

automate the manual deployment process that involves strongly signing your assembly and using the regsvcs

utility.

Note that the following sections do not delve into the details of programming .NET Enterprise Services. An

excellent reference for such information is Christian Nagel's "Enterprise Services with the .NET Framework"

Spring.NET includes an example of using these classes, the 'calculator' example. More information can be found

in the section, .NET Enterprise Services example.

28.3. Server Side

One of the main challenges for the exporting of a serviced component to the host is the need for them to be

contained within a physical assembly on the file system in order to be registered with the COM+ Services. To

make things more complicated, this assembly has to be strongly named before it can be successfully registered.

Spring provides two classes that allow all of this to happen.

• Spring.Enterprise.ServicedComponentExporter is responsible for exporting a single component and

making sure that it derives from ServicedComponent class. It also allows you to specify class-level and method-

level attributes for the component in order to define things such as transactional behavior, queuing, etc.

• Spring.Enterprise.EnterpriseServicesExporter corresponds to a COM+ application, and it allows you to

specify list of components that should be included in the application, as well as the application name and other

assembly-level attributes

Let's say that we have a simple service interface and implementation class, such as these:

.NET Enterprise Services

Spring Framework (Version 1.3.2) 305

namespace MyApp.Services

{

 public interface IUserManager

 {

 User GetUser(int userId);

 void SaveUser(User user);

 }

 public class SimpleUserManager : IUserManager

 {

 private IUserDao userDao;

 public IUserDao UserDao

 {

 get { return userDao; }

 set { userDao = value; }

 }

 public User GetUser(int userId)

 {

 return UserDao.FindUser(userId);

 }

 public void SaveUser(User user)

 {

 if (user.IsValid)

 {

 UserDao.SaveUser(user);

 }

 }

 }

}

And the corresponding object definition for it in the application context config file:

<object id="userManager" type="MyApp.Services.SimpleUserManager">

 <property name="UserDao" ref="userDao"/>

</object>

Let's say that we want to expose user manager as a serviced component so we can leverage its support for

transactions. First we need to export our service using the exporter ServicedComponentExporter as shown below

<object id="MyApp.EnterpriseServices.UserManager" type="Spring.Enterprise.ServicedComponentExporter,

 Spring.Services">

 <property name="TargetName" value="userManager"/>

 <property name="TypeAttributes">

 <list>

 <object type="System.EnterpriseServices.TransactionAttribute, System.EnterpriseServices"/>

 </list>

 </property>

 <property name="MemberAttributes">

 <dictionary>

 <entry key="*">

 <list>

 <object type="System.EnterpriseServices.AutoCompleteAttribute, System.EnterpriseServices"/

>

 </list>

 </entry>

 </dictionary>

 </property>

</object>

The exporter defined above will create a composition proxy for our SimpleUserManager class that extends

ServicedComponent and delegates method calls to SimpleUserManager instance. It will also adorn the proxy

class with a TransactionAtribute and all methods with an AutoCompleteAttribute.

The next thing we need to do is configure an exporter for the COM+ application that will host our new component:

<object id="MyComponentExporter" type="Spring.Enterprise.EnterpriseServicesExporter, Spring.Services">

 <property name="ApplicationName" value="My COM+ Application"/>

.NET Enterprise Services

Spring Framework (Version 1.3.2) 306

 <property name="Description" value="My enterprise services application."/>

 <property name="AccessControl">

 <object type="System.EnterpriseServices.ApplicationAccessControlAttribute, System.EnterpriseServices">

 <property name="AccessChecksLevel" value="ApplicationComponent"/>

 </object>

 </property>

 <property name="Roles">

 <list>

 <value>Admin : Administrator role</value>

 <value>User : User role</value>

 <value>Manager : Administrator role</value>

 </list>

 </property>

 <property name="Components">

 <list>

 <ref object="MyApp.EnterpriseServices.UserManager"/>

 </list>

 </property>

 <property name="Assembly" value="MyComPlusApp"/>

</object>

This exporter will put all proxy classes for the specified list of components into the specified assembly, sign the

assembly, and register it with the specified COM+ application name. If application does not exist it will create it

and configure it using values specified for Description, AccessControl and Roles properties.

28.4. Client Side

Because serviced component classes are dynamically generated and registered, you cannot instantiate them in

your code using the new operator. Instead, you need to use Spring.Enterprise.ServicedComponentFactory

definition, which also allows you to specify the configuration template for the component as well as the name of

the remote server the component is running on, if necessary. An example is shown below

<object id="enterpriseUserManager" type="Spring.Enterprise.ServicedComponentFactory, Spring.Services">

 <property name="Name" value="MyApp.EnterpriseServices.UserManager"/>

 <property name="Template" value="userManager"/>

</object>

You can then inject this instance of the IUserManager into a client class and use it just like you would use original

SimpleUserManager implementation. As you can see, by coding your services as plain CLR objects, against well

defined service interfaces, you gain easy pluggability for your service implementation though this configuration,

while keeping the core business logic in a technology agnostic POCO, i.e. Plain Old CLR Object.

Spring Framework (Version 1.3.2) 307

Chapter 29. Web Services

29.1. Introduction

While the out-of-the-box support for web services in .NET is excellent, there are a few areas that the Spring.NET

thought could use some improvement. Spring adds the ability to perform dependency injection on standard asmx

web services. Spring's .NET Web Services support also allows you to export a 'plain CLR object' as a .NET

web service By "plain CLR object" we mean classes that do not contain infrastructure specific attributes, such as

WebMethod. On the server side, Spring's .NET web service exporters will automatically create a proxy that adds

web service attributes. On the client side you can use Spring IoC container to configure a client side proxy that

you generated with standard command line tools. Additionally, Spring provides the functionality to create the

web service proxy dynamically at runtime (much like running the command line tools but at runtime and without

some of the tools quirks) and use dependency injection to configure the resulting proxy class. On both the server

and client side, you can apply AOP advice to add behavior such as logging, exception handling, etc. that is not

easily encapsulated within an inheritance hierarchy across the application.

29.2. Server-side

One thing that the Spring.NET team didn't like much is that we had to have all these .asmx files lying around

when all said files did was specify which class to instantiate to handle web service requests.

Second, the Spring.NET team also wanted to be able to use the Spring.NET IoC container to inject dependencies

into our web service instances. Typically, a web service will rely on other objects, service objects for example,

so being able to configure which service object implementation to use is very useful.

Last, but not least, the Spring.NET team did not like the fact that creating a web service is an implementation task.

Most (although not all) services are best implemented as normal classes that use coarse-grained service interfaces,

and the decision as to whether a particular service should be exposed as a remote object, web service, or even an

enterprise (COM+) component, should only be a matter of configuration, and not implementation.

An example using the web service exporter can be found in quickstart example named 'calculator'. More

information can be found here 'Web Services example'.

29.2.1. Removing the need for .asmx files

Unlike web pages, which use .aspx files to store presentation code, and code-behind classes for the logic, web

services are completely implemented within the code-behind class. This means that .asmx files serve no useful

purpose, and as such they should neither be necessary nor indeed required at all.

Spring.NET allows application developers to expose existing web services easily by registering a custom

implementation of the WebServiceHandlerFactory class and by creating a standard Spring.NET object definition

for the service.

By way of an example, consider the following web service...

namespace MyComany.MyApp.Services

{

 [WebService(Namespace="http://myCompany/services")]

 public class HelloWorldService

 {

 [WebMethod]

 public string HelloWorld()

Web Services

Spring Framework (Version 1.3.2) 308

 {

 return "Hello World!";

 }

 }

}

This is just a standard class that has methods decorated with the WebMethod attribute and (at the class-level) the

WebService attribute. Application developers can create this web service within Visual Studio just like any other

class.

All that one need to do in order to publish this web service is:

1. Register the Spring.Web.Services.WebServiceFactoryHandler as the HTTP handler for *.asmx requests

within one's web.config file.

<system.web>

 <httpHandlers>

 <add verb="*" path="*.asmx" type="Spring.Web.Services.WebServiceHandlerFactory, Spring.Web"/>

 </httpHandlers>

</system.web>

Of course, one can register any other extension as well, but typically there is no need as Spring.NET's handler

factory will behave exactly the same as a standard handler factory if said handler factory cannot find the object

definition for the specified service name. In that case the handler factory will simply look for an .asmx file.

If you are using IIS7 the following configuration is needed

<system.webServer>

 <validation validateIntegratedModeConfiguration="false"/>

 <handlers>

 <add name="SpringWebServiceSupport" verb="*" path="*.asmx" type="Spring.Web.Services.WebServiceHandlerFactory,

 Spring.Web"/>

 </handlers>

</system.webServer>

2. Create an object definition for one's web service.

<object name="HelloWorld" type="MyComany.MyApp.Services.HelloWorldService, MyAssembly" abstract="true"/>

Note that one is not absolutely required to make the web service object definition abstract (via the

abstract="true" attribute), but this is a recommended best practice in order to avoid creating an unnecessary

instance of the service. Because the .NET infrastructure creates instances of the target service object internally

for each request, all Spring.NET needs to provide is the System.Type of the service class, which can be retrieved

from the object definition even if it is marked as abstract.

That's pretty much it as we can access this web service using the value specified for the name attribute of the

object definition as the service name:

http://localhost/MyWebApp/HelloWorld.asmx

29.2.2. Injecting dependencies into web services

For arguments sake, let's say that we want to change the implementation of the HelloWorld method to make the

returned message configurable.

One way to do it would be to use some kind of message locator to retrieve an appropriate message, but that

locator needs to implemented. Also, it would certainly be an odd architecture that used dependency injection

Web Services

Spring Framework (Version 1.3.2) 309

throughout the application to configure objects, but that resorted to the service locator approach when dealing

with web services.

Ideally, one should be able to define a property for the message within one's web service class and have

Spring.NET inject the message value into it:

namespace MyApp.Services

{

 public interface IHelloWorld

 {

 string HelloWorld();

 }

 [WebService(Namespace="http://myCompany/services")]

 public class HelloWorldService : IHelloWorld

 {

 private string message;

 public string Message

 {

 set { message = value; }

 }

 [WebMethod]

 public string HelloWorld()

 {

 return this.message;

 }

 }

}

The problem with standard Spring.NET DI usage in this case is that Spring.NET does not control the instantiation

of the web service. This happens deep in the internals of the .NET framework, thus making it quite difficult to

plug in the code that will perform the configuration.

The solution is to create a dynamic server-side proxy that will wrap the web service and configure it. That way,

the .NET framework gets a reference to a proxy type from Spring.NET and instantiates it. The proxy then asks a

Spring.NET application context for the actual web service instance that will process requests.

This proxying requires that one export the web service explicitly using the

Spring.Web.Services.WebServiceExporter class; in the specific case of this example, one must also not forget

to configure the Message property for said service:

<object id="HelloWorld" type="MyApp.Services.HelloWorldService, MyApp">

 <property name="Message" value="Hello, World!"/>

</object>

<object id="HelloWorldExporter" type="Spring.Web.Services.WebServiceExporter, Spring.Web">

 <property name="TargetName" value="HelloWorld"/>

</object>

The WebServiceExporter copies the existing web service and method attribute values to the proxy

implementation (if indeed any are defined). Please note however that existing values can be overridden by setting

properties on the WebServiceExporter.

Interface Requirements

In order to support some advanced usage scenarios, such as the ability to expose an AOP proxy as

a web service (allowing the addition of AOP advices to web service methods), Spring.NET requires

those objects that need to be exported as web services to implement a (service) interface.

Web Services

Spring Framework (Version 1.3.2) 310

Only methods that belong to an interface will be exported by the WebServiceExporter.

29.2.3. Exposing POCOs as Web Services

Now that we are generating a server-side proxy for the service, there is really no need for it to have all the attributes

that web services need to have, such as WebMethod. Because .NET infrastructure code never really sees the "real"

service, those attributes are redundant as the proxy needs to have them on its methods, because that's what .NET

deals with, but they are not necessary on the target service's methods.

This means that we can safely remove the WebService and WebMethod attribute declarations from the service

implementation, and what we are left with is a plain old CLR object (a POCO). The example above would still

work, because the proxy generator will automatically add WebMethod attributes to all methods of the exported

interfaces.

However, that is still not the ideal solution. You would lose information that the optional WebService and

WebMethod attributes provide, such as service namespace, description, transaction mode, etc. One way to keep

those values is to leave them within the service class and the proxy generator will simply copy them to the proxy

class instead of creating empty ones, but that really does defeat the purpose.

To add specific attributes to the exported web service, you can set all the necessary values within the definition

of the service exporter, like so...

<object id="HelloWorldExporter" type="Spring.Web.Services.WebServiceExporter, Spring.Web">

 <property name="TargetName" value="HelloWorld"/>

 <property name="Namespace" value="http://myCompany/services"/>

 <property name="Description" value="My exported HelloWorld web service"/>

 <property name="MemberAttributes">

 <dictionary>

 <entry key="HelloWorld">

 <object type="System.Web.Services.WebMethodAttribute, System.Web.Services">

 <property name="Description" value="My Spring-configured HelloWorld method."/>

 <property name="MessageName" value="ZdravoSvete"/>

 </object>

 </entry>

 </dictionary>

 </property>

</object>

// or, once configuration improvements are implemented...

<web:service targetName="HelloWorld" namespace="http://myCompany/services">

 <description>My exported HelloWorld web service.</description>

 <methods>

 <method name="HelloWorld" messageName="ZdravoSvete">

 <description>My Spring-configured HelloWorld method.</description>

 </method>

 </methods>

</web:service>

Based on the configuration above, Spring.NET will generate a web service proxy for all the interfaces

implemented by a target and add attributes as necessary. This accomplishes the same goal while at the same

time moving web service metadata from implementation class to configuration, which allows one to export pretty

much any class as a web service.

The WebServiceExporter also has a TypeAttributes IList property for applying attributes at the type level.

Web Services

Spring Framework (Version 1.3.2) 311

Note

The attribute to confirms to the WSI basic profile 1.1 is not added by default. This will

be added in a future release. In the meantime use the TypeAttributes IList property to add

[WebServiceBinding(ConformsTo=WsiProfiles.BasicProfile1_1)] to the generated proxy.

One can also export only certain interfaces that a service class implements by setting the Interfaces property

of the WebServiceExporter.

Distributed Objects Warning

Distributed Objects Warning

Just because you can export any object as a web service, doesn't mean that you should. Distributed

computing principles still apply and you need to make sure that your services are not chatty and that

arguments and return values are Serializable.

You still need to exercise common sense when deciding whether to use web services (or remoting in

general) at all, or if local service objects are all you need.

29.2.4. Exporting an AOP Proxy as a Web Service

It is often useful to be able to export an AOP proxy as a web service. For example, consider the case where you

have a service that is wrapped with an AOP proxy that you want to access both locally and remotely (as a web

service). The local client would simply obtain a reference to an AOP proxy directly, but any remote client needs

to obtain a reference to an exported web service proxy, that delegates calls to an AOP proxy, that in turn delegates

them to a target object while applying any configured AOP advice.

Effecting this setup is actually fairly straightforward; because an AOP proxy is an object just like any other object,

all you need to do is set the WebServiceExporter's TargetName property to the id (or indeed the name or alias)

of the AOP proxy. The following code snippets show how to do this...

<object id="DebugAdvice" type="MyApp.AOP.DebugAdvice, MyApp"/>

<object id="TimerAdvice" type="MyApp.AOP.TimerAdvice, MyApp"/>

<object id="MyService" type="MyApp.Services.MyService, MyApp"/>

<object id="MyServiceProxy" type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop">

 <property name="TargetName" value="MyService"/>

 <property name="IsSingleton" value="true"/>

 <property name="InterceptorNames">

 <list>

 <value>DebugAdvice</value>

 <value>TimerAdvice</value>

 </list>

 </property>

</object>

<object id="MyServiceExporter" type="Spring.Web.Services.WebServiceExporter, Spring.Web">

 <property name="TargetName" value="MyServiceProxy"/>

 <property name="Name" value="MyService"/>

 <property name="Namespace" value="http://myApp/webservices"/>

 <property name="Description" value="My web service"/>

</object>

That's it as every call to the methods of the exported web service will be intercepted by the target AOP proxy,

which in turn will apply the configured debugging and timing advice to it.

Web Services

Spring Framework (Version 1.3.2) 312

29.3. Client-side

On the client side, the main objection the Spring.NET team has is that client code becomes tied to a proxy class,

and not to a service interface. Unless you make the proxy class implement the service interface manually, as

described by Juval Lowy in his book "Programming .NET Components", application code will be less flexible

and it becomes very difficult to plug in different service implementation in the case when one decides to use a

new and improved web service implementation or a local service instead of a web service.

The goal for Spring.NET's web services support is to enable the easy generation of client-side proxies that

implement a specific service interface.

29.3.1. Using VS.NET generated proxy

The problem with the web-service proxy classes that are generated by VS.NET or the WSDL command line utility

is that they don't implement a service interface. This tightly couples client code with web services and makes it

impossible to change the implementation at a later date without modifying and recompiling the client.

Spring.NET provides a simple IFactoryObject implementation that will generate a "proxy for proxy" (however

obtuse that may sound). Basically, the Spring.Web.Services.WebServiceProxyFactory class will create a proxy

for the VS.NET- / WSDL-generated proxy that implements a specified service interface (thus solving the problem

with the web-service proxy classes mentioned in the preceding paragraph).

At this point, an example may well be more illustrative in conveying what is happening; consider the following

interface definition that we wish to expose as a web service...

namespace MyCompany.Services

{

 public interface IHelloWorld

 {

 string HelloWorld();

 }

}

In order to be able to reference a web service endpoint through this interface, you need to add a definition similar

to the example shown below to your client's application context:

<object id="HelloWorld" type="Spring.Web.Services.WebServiceProxyFactory, Spring.Services">

 <property name="ProxyType" value="MyCompany.WebServices.HelloWorld, MyClientApp"/>

 <property name="ServiceInterface" value="MyCompany.Services.IHelloWorld, MyServices"/>

</object>

What is important to notice is that the underlying implementation class for the web service does not have to

implement the same IHelloWorld service interface... so long as matching methods with compliant signatures

exist (a kind of duck typing), Spring.NET will be able to create a proxy and delegate method calls appropriately.

If a matching method cannot be found, the Spring.NET infrastructure code will throw an exception.

That said, if you control both the client and the server it is probably a good idea to make sure that the web service

class on the server implements the service interface, especially if you plan on exporting it using Spring.NET's

WebServiceExporter, which requires an interface in order to work.

29.3.2. Generating proxies dynamically

The WebServiceProxyFactory can also dynamically generate a web-service proxy. The XML object definition

for this factory object is shown below

Web Services

Spring Framework (Version 1.3.2) 313

 <object id="calculatorService" type="Spring.Web.Services.WebServiceProxyFactory, Spring.Services">

 <property name="ServiceUri" value="http://myServer/Calculator/calculatorService.asmx"/>

 <!--<property name="ServiceUri" value="file://~/calculatorService.wsdl"/>-->

 <property name="ServiceInterface" value="Spring.Calculator.Interfaces.IAdvancedCalculator,

 Spring.Calculator.Contract"/>

 <!-- Dependency injection on Factory's product : the proxy instance of type SoapHttpClientProtocol

 -->

 <property name="ProductTemplate">

 <object>

 <property name="Timeout" value="10000" /> <!-- 10s -->

 </object>

 </property>

 </object>

One use-case where this proxy is very useful is when dealing with typed data sets through a web service. Leaving

the pros and cons of this approach aside, the current behavior of the proxy generator in .NET is to create wrapper

types for the typed dataset. This not only pollutes the solution with extraneous classes but also results in multiple

wrapper types being created, one for each web service that uses the typed dataset. This can quickly get confusing.

The proxy created by Spring allows you to reference you typed datasets directly, avoiding the above mentioned

issues.

29.3.3. Configuring the proxy instance

The WebServiceProxyFactory also implements the interface,

Spring.Objects.Factory.IConfigurableFactoryObject, allowing to specify configuration for the product

that the WebServiceProxyFactory creates. This is done by specifying the ProductTemplate property. This is

particularly useful for securing the web service. An example is shown below.

 <object id="PublicarAltasWebService" type="Spring.Web.Services.WebServiceProxyFactory, Spring.Services">

 <property name="ProxyType" value="My.WebService" />

 <property name="ServiceInterface" value="My.IWebServiceInterface" />

 <property name="ProductTemplate">

 <object>

 <!-- Configure the web service URL -->

 <property name="Url" value="https://localhost/MyApp/webservice.jws" />

 <!-- Configure the Username and password for the web service -->

 <property name="Credentials">

 <object type="System.Net.NetworkCredential, System">

 <property name="UserName" value="user"/>

 <property name="Password" value="password"/>

 </object>

 </property>

 <!-- Configure client certificate for the web service -->

 <property name="ClientCertificates">

 <list>

 <object id="MyCertificate" type="System.Security.Cryptography.X509Certificates.X509Certificate2,

 System">

 <constructor-arg name="fileName" value="Certificate.p12" />

 <constructor-arg name="password" value="notgoingtotellyou" />

 </object>

 </list>

 </property>

 </object>

 </property>

</object>

For an example of how using SOAP headers for authentication using the WebServiceExporter and

WebServiceProxyFactory, refer to this solution on our wiki.

http://opensource.atlassian.com/confluence/spring/download/attachments/708/Spring.Examples.SoapHeader.rar?version=1

Spring Framework (Version 1.3.2) 314

Chapter 30. Windows Communication
Foundation (WCF)

30.1. Introduction

Spring's WCF support allows you to configure your WCF services via dependency injection and add additional

behavior to them using Aspect-Oriented programming (AOP).

For those who would like to get their feet wet right way, check out the WcfQuickStart application in the examples

directory.

30.2. Configuring WCF services via Dependency Injection

The technical approach used to perform dependency injection is based on dynamically creating an implementation

of your service interface (a dynamic proxy) that retrieves a configured instance of your service type from the

Spring container. This dynamic proxy is then the final service type that is hosted.

Note

An alternative implementation approach that uses extensibility points in WCF to delegate to

Spring to create and configure your WCF service was tried but proved to be limited in its range

of applicability. This approach was first taken (afaik) by Oran Dennison on his blog [http://

orand.blogspot.com/2006/10/wcf-service-dependency-injection.html] and several other folks on the

web since then. The issue in using this approach is that if the service is configured to be a singleton,

for example using [ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]

then the invocation of the IInstanceProvider is short-circuited. See the notes

on the MSDN class documentation here [http://msdn.microsoft.com/en-us/library/

system.servicemodel.dispatcher.iinstanceprovider.aspx]. While this would be the preferred approach,

no acceptable work around was found.

30.2.1. Dependency Injection

In this approach you develop your WCF services as you would normally do. For example here is a sample service

type taken from the quickstart example.

 [ServiceContract(Namespace = "http://Spring.WcfQuickStart")]

 public interface ICalculator

 {

 [OperationContract]

 double Add(double n1, double n2);

 [OperationContract]

 double Subtract(double n1, double n2);

 [OperationContract]

 double Multiply(double n1, double n2);

 [OperationContract]

 double Divide(double n1, double n2);

 [OperationContract]

 string GetName();

 }

The implementation for the methods is fairly obvious but an additional property, SleepInSeconds, is present.

This is the property we will configure via dependency injection. Here is a partial listing of the implementation

 public class CalculatorService : ICalculator

http://orand.blogspot.com/2006/10/wcf-service-dependency-injection.html
http://orand.blogspot.com/2006/10/wcf-service-dependency-injection.html
http://orand.blogspot.com/2006/10/wcf-service-dependency-injection.html
http://msdn.microsoft.com/en-us/library/system.servicemodel.dispatcher.iinstanceprovider.aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.dispatcher.iinstanceprovider.aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.dispatcher.iinstanceprovider.aspx

Windows Communication Foundation (WCF)

Spring Framework (Version 1.3.2) 315

 {

 private int sleepInSeconds;

 public int SleepInSeconds

 {

 get { return sleepInSeconds; }

 set { sleepInSeconds = value; }

 }

 public double Add(double n1, double n2)

 {

 Thread.Sleep(sleepInSeconds*1000);

 return n1 + n2;

 }

 // additional implementation not shown for brevity

 }

To configure this object with Spring, provide the XML configuration metadata as shown below as you would

with any Spring managed object.

 <object id="calculator" singleton="false" type="Spring.WcfQuickStart.CalculatorService,

 Spring.WcfQuickStart.ServerApp">

 <property name="SleepInSeconds" value="1"/>

 </object>

Note

The object must be declared as a 'prototype' object, i.e. not a singleton, in order to interact correctly

with WCF instancing.

To host this service type in a standalone application define an instance of a

Spring.ServiceModel.Activation.ServiceHostFactoryObject and set is property TargetName to the id value

of the previously defined service type. ServiceHostFactoryObject is a Spring IFactoryObject implementation.

(See here for more information on IFactoryObjects and their interaction with the container.) The

ServiceHostFactoryObject will create an instance of Spring.ServiceModel.Activation.SpringServiceHost

that will be the ServiceHost instance associated with your service type. This configuration for this step is shown

below.

 <object id="calculatorServiceHost" type="Spring.ServiceModel.Activation.ServiceHostFactoryObject,

 Spring.Services">

 <property name="TargetName" value="calculator" />

 </object>

Additional service configuration can be done declaratively in the standard App.config file as shown below

<system.serviceModel>

 <services>

 <service name="calculator" behaviorConfiguration="DefaultBehavior">

 <host> ... </host>

 <endpoint> ... </endpoint>

 </service>

 ...

 </services>

</system.serviceModel>

Note

It is important that the name of the service in the WCF declarative configuration section match the

name of the Spring object definition

Windows Communication Foundation (WCF)

Spring Framework (Version 1.3.2) 316

Spring.ServiceModel.Activation.SpringServiceHost is where the dynamic proxy for your service type is

generated. This dynamic proxy will implement a single 'WCF' interface, the same on that your service type

implements. The implementation of the service interface methods on the proxy will delegate to a wrapped

'target' object which is the object instance retrieved by name from the Spring container using the Spring API,

ApplicationContext.GetObject(name). Since the object retrieved in this manner is fully configured, your WCF

service is as well.

Outside of a standalone application you can also use the class

Spring.ServiceModel.Activation.ServiceHostFactory (which inherits from

System.ServiceModel.Activation.ServiceHostFactory) to host your services so that they can be configured

via dependency injection. To use the dynamic proxy approached described here you should still refer to the name

of the service as the name of the object definition used to configure the service type in the Spring container.

There are not many disadvantages to this approach other than the need to specify the service name as the name

of the object definition in the Spring container and to ensure that singleton=false is used in the object definition.

You can also use Spring.ServiceModel.Activation.ServiceHostFactory to host your service inside IIS but

should still refer to the service by the name of the object in the Spring container.

30.3. Apply AOP advice to WCF services

In either approach to performing dependency injection you can apply additional AOP advice to your WCF services

in the same way as you have always done in Spring. The following configuration shows how to apply some simple

performance monitoring advice to all services in the Spring.WcfQuickStart namespace and is taken from the

QuickStart example.

 <object id="serviceOperation" type="Spring.Aop.Support.SdkRegularExpressionMethodPointcut, Spring.Aop">

 <property name="pattern" value="Spring.WcfQuickStart.*"/>

 </object>

 <object id="perfAdvice" type="Spring.WcfQuickStart.SimplePerformanceInterceptor,

 Spring.WcfQuickStart.ServerApp">

 <property name="Prefix" value="Service Layer Performance"/>

 </object>

 <aop:config>

 <aop:advisor pointcut-ref="serviceOperation" advice-ref="perfAdvice"/>

 </aop:config>

The aop:config section implicitly uses Spring's autoproxying features to add additional behavior to any objects

defined in the container that match the pointcut criteria.

30.4. Creating client side proxies declaratively

To create a client side proxy based on the use of ChannelFactory<T>, you can use Spring's WCF schema to create

an instance of the interface that will communicate over a WCF channel. See section on the Spring WCF Schema

for more information.

<objects xmlns="http://www.springframework.net"

 xmlns:wcf="http://www.springframework.net/wcf">

 <!-- returns ChannelFactory<ICalculator>("calculatorEndpoint").CreateChannel() -->

 <wcf:channelFactory id="serverAppCalculator"

 channelType="Spring.WcfQuickStart.ICalculator, Spring.WcfQuickStart.Contracts"

 endpointConfigurationName="serverAppCalculatorEndpoint" />

</objects>

Windows Communication Foundation (WCF)

Spring Framework (Version 1.3.2) 317

The value 'serverAppCalculatorEndpoint' refers to the name of an enpoints in the <client> section of the standard

WCF configuration inside of App.config.

30.5. Exporting POCOs as WCF Services

Much like the approach taken for .asmx web services Spring provides an exporter that will add

[ServiceContract] and [OperationContract] attributes by default to all public interface methods on a given

(POCO) class. The exporter class is Spring.ServiceModel.ServiceExporter and has various options to fine-

tune what interfaces are exported and the specific attributes that get applied to each method and on that class.

Here is a simple example

<object id="HelloWorldExporter" type="Spring.ServiceModel.ServiceExporter, Spring.Services">

 <property name="TargetName" value="HelloWorld"/>

 <property name="MemberAttributes">

 <dictionary>

 <entry key="SayHelloWorld">

 <object type="System.ServiceModel.OperationContractAttribute, System.ServiceModel">

 <property name="IsOneWay" value="false"/>

 <!-- configure any other OperationContractAttribute properties here -->

 </object>

 </entry>

 </dictionary>

 </property>

</object>

Spring does not provide any means to add [DataContract] or [DataMember] attributes to method arguments

of your service operations. As such, either you will do that yourself or you may choose to use a serializer other

than DataContractSerializer, for example one that relies on method arguments that implement the ISerializable

interface, having the [Serializable] attribute, or are serializable via the XmlSerializer. Use the latter serializers

is a good way to migrate from an existing RCP based approach, such as using .NET remoting, to WCF in order to

take advantage of the WCF runtime and avoid editing much existing code. You can then incrementally refactor

and/or create new operations that use DataContractSerializer.

Spring Framework (Version 1.3.2) 318

Part V. Integration
This part of the reference documentation covers the Spring Framework's integration with a number of related

enterprise .NET technologies.

• Chapter 31, Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

• Chapter 32, Message Oriented Middleware - TIBCO EMS

• Chapter 33, Message Oriented Middleware - MSMQ

• Chapter 34, Scheduling and Thread Pooling

• Chapter 35, Template Engine Support

Spring Framework (Version 1.3.2) 319

Chapter 31. Message Oriented
Middleware - Apache ActiveMQ and
TIBCO EMS

31.1. Introduction

The goal of Spring's messaging is to increase your productiviity when writing an enterprise strength messaging

middleware applications. Spring achieves these goals in several ways. First it provides several helper classes

that remove from the developer the incidental complexity and resource management issues that arise when using

messaging APIs. Second, the design of these messaging helper classes promote best practices in designing a

messaging application by promoting a clear separation between the messaging middleware specific code and

business processing that is technology agnostic. This is generally referred to a "plain old CLR object" (or POCO)

programming model.

This chapter discusses Spring's messaging support for providers whose API was modeled after the Java Message

Service (JMS) API. Vendors who provide a JMS inspired API include Apache ActiveMQ, TIBCO, IBM, and

Progress Software. If you are using Microsoft's Message Queue, please refer to the specific MSMQ section.

The description of Spring messages features in this chapter apply to all of these JMS vendors. However, the

documentation focuses on showing code examples that use Apache ActiveMQ. For code examples and some

features specific to TIBCO EMS please refer to this chapter.

31.1.1. Multiple Vendor Support

As there is no de facto-standard common API across messaging vendors, Spring provides an implementation

of its helper classes for each of the major messaging middleware vendors. The naming of the classes you will

interact with most frequently will either be identical for each provider, but located in a different namespace, or

have their prefix change to be the three-letter-acronym commonly associated with the message provider. The list

of providers supported by Spring is show below along with their namespace and prefix.

1. Apache ActiveMQ (NMS) in namespace Spring.Messaging.Nms. 'Nms' is used as the class prefix

2. TIBCO EMS in namespace Spring.Messaging.Ems. 'Ems' is used as the class prefix.

3. Websphere MQ in namespace Spring.Messaging.Xms, 'Xms' is used as the class prefix (in a future release)

JMS can be roughly divided into two areas of functionality, namely the production and consumption of messages.

For message production and the synchronous consumption of messages the a template class, named NmsTemplate,

EmsTemplate (etc.) is used. Asynchronous message consumption is performed though a multi-threaded message

listener container, SimpleMessageListenerContainer. This message listener container is used to create Message-

Driven POCOs (MDPs) which refer to a messaging callback class that consists of just 'plain CLR object's and is

devoid of any specific messaging types or other artifacts. The IMessageConverter interface is used by both the

template class and the message listener container to convert between provider message types and POCOs.

The namespace Spring.Messaging.<Vendor>.Core contains the messing template class (e.g. NmsTemplate). The

template class simplifies the use of the messaging APIs by handling the creation and release of resources, much

like the AdoTemplate does for ADO.NET. The JMS inspired APIs are low-level API, much like ADO.NET. As

such, even the simplest of operations requires 10s of lines of code with the bulk of that code related to resource

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 320

management of intermediate API objects Spring's messaging support, both in Java and .NET, addresses the error-

prone boiler plate coding style one needs when using these APIs.

The design principle common to Spring template classes is to provide helper methods to perform common

operations and for more sophisticated usage, delegate the essence of the processing task to user implemented

callback interfaces. The messaging template follows the same design. The message template class offer various

convenience methods for the sending of messages, consuming a message synchronously, and exposing the

message Session and MessageProducer to the user.

The namespace Spring.Messaging.<VendorAcronym>.Support.Converter provides a IMessageConverter

abstraction to convert between .NET objects and messages. The namespace

Spring.Messaging.<VendorAcronym>.Support.Destinations provides various strategies for managing

destinations, such as providing a service locater for destinations stored in a directory service.

Finally, the namespace Spring.Messaging.<VendorAcronym>.Connections provides an implementations of the

ConnectionFactory suitable for use in standalone applications.

The rest of the sections in this chapter discusses each of the major helper classes in detail. Please refer to the

sample application that ships with Spring for additional hands-on usage.

Note

To simplify documenting features that are common across all provider implementations of Spring's

helper classes a specific provider, Apache ActiveMQ, was selected. As such when you see

'NmsTemplate' in the documentation, it also refers to EmsTemplate, XmsTemplate, etc. unless

specifically documented otherwise. The provider specific API classes are typically named after

their JMS counterparts with the possible exception of a leading 'I' in front of interfaces in order

to follow .NET naming conventions. In the documentation these API artifacts are referred to as

'ConnectionFactory', 'Session', 'Message', etc. without the leading 'I'.

Note

To view some of this chapters contents that are based on TIBCO EMS please refer to the TIBCO

EMS chapter.

31.1.2. Separation of Concerns

The use of MessageConverters and a POCO programming model promote messaging best practices by applying

the principal of Separation of Concerns to messaging based architectures. The infrastructure concern of publishing

and consuming messages is separated from the concern of business processing. These two concerns are reflected

in the architecture as two distinct layers, a message processing layer and a business processing layer. The

benefit of this approach is that your business processing is decoupled from the messaging technology, making

it more likely to survive technological changes over time and also easier to test. Spring's MessageConverters

provides support for mapping messaging data types to POCOs. Aside from being the link between the two layers,

MessageConverters provide a pluggable strategy to help support the evolution of a loosely coupled architecture

over time. Message formats will change over time, typically by the addition of new fields. MessageConverters can

be implemented to detect different versions of messages and perform the appropriate mapping logic to POCOs

such so that multiple versions of a message can be supported simultaneously, a common requirement in enterprise

messaging architectures.

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 321

31.1.3. Interoperability and provider portability

Messaging is a traditional area of Interoperability across heterogeneous systems with messaging vendors

providing support on multiple operating systems (Windows, UNIX, Mainframes OS's) as well as multiple

language bindings (C, C++, Java, .NET, Perl, etc.). In 199x the Java Community Process came up with a

specification to provide a common API across messaging providers as well as define some common messaging

functionality. This specification is know as the Java Message Service. From the API perspective, it can roughly be

thought of as the messaging counterpart to the ADO.NET or JDBC APIs that provide portability across different

database providers.

Given this history, when messaging vendors created their .NET APIs, many did so by creating their own JMS

inspired API in .NET. There is no de facto-standard common API across messaging vendors. As such, portability

across vendors using Spring's helper classes is done by changing the configuration schema in your configuration

to a particular vendor and doing a 'search-and-replace' on the code base, changing the namespace and a few class

names. While not ideal ,using Spring will push you in the direction of isolating the messaging specific classes in

its own layer and therefore will reduce the impact of the changes you make to the code when switch providers.

You business logic classes called into via Spring's messaging infrastructure will remain the same.

The NMS project from Apache addresses the lack of a common API across .NET messaging providers by

providing an abstract interface based API for messaging and several implementations for different providers. At

the time of this writing, the project is close to releasing a 1.0 version that supports ApacheMQ, MSMQ, and

TIBCO EMS. There are a few outstanding issues at the moment that prevent one using NMS as a common API

for all messaging providers but hopefully these issues will be resolved. Note, that NMS serves 'double' duty as

the preferred API for messaging with ActiveMQ as well as a providing portability across different messaging

providers.

31.1.4. The role of Messaging API in a 'WCF world'

Windows Communication Foundation (WCF) also supports message oriented middleware. Not surprisingly, a

Microsoft Message Queuing (MSMQ) binding is provided as part of WCF. The WCF programming model is

higher level than the traditional messaging APIs such as JMS and NMS since you are programing to a service

interface and use metadata (either XML or attributes) to configure the messaging behavior. If you prefer to use this

service-oriented, RPC style approach, then look to see if a vendor provides a WCF binding for your messaging

provider. Note that even with the option of using WCF, many people prefer to sit 'closer to the metal' when using

messaging middleware, to access specific features and functionality not available in WCF, or simply because they

are more comfortable with that programming model.

A WCF binding for Apache NMS is being developed as a separate project under the Spring Extensions [http://

www.springframework.org/extensions/faq] umbrella project. Stay tuned for details.

31.2. Using Spring Messaging

31.2.1. Messaging Template overview

Code that uses the messaging template classes (NmsTemplate, EmsTemplate, etc) only needs to implement callback

interfaces giving them a clearly defined contract. The IMessageCreator callback interface creates a message

given a Session provided by the calling code in NmsTemplate. In order to allow for more complex usage of the

provider messaging API, the callback ISessionCallback provides the user with the provider specific messaging

Session and the callback IProducerCallback exposes a provider specific Session and MessageProducer pair. See

Section 31., “Session and Producer Callback”.

http://www.springframework.org/extensions/faq
http://www.springframework.org/extensions/faq
http://www.springframework.org/extensions/faq

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 322

Provider messaging APIs typically expose two types of send methods, one that takes delivery mode, priority, and

time-to-live as quality of service (QOS) parameters and one that takes no QOS parameters which uses default

values. Since there are many higher level send methods in NmsTemplate, the setting of the QOS parameters have

been exposed as properties on the template class to avoid duplication in the number of send methods. Similarly,

the timeout value for synchronous receive calls is set using the property ReceiveTimeout.

Note

Instances of the NmsTemplate class are thread-safe once configured. This is important because it

means that you can configure a single instance of a NmsTemplate and then safely inject this shared

reference into multiple collaborators. To be clear, the NmsTemplate is stateful, in that it maintains a

reference to a ConnectionFactory, but this state is not conversational state.

31.2.2. Connections

The NmsTemplate requires a reference to a ConnectionFactory. The ConnectionFactory serves as the entry point

for working with the provider's messaging API. It is used by the client application as a factory to create connections

to the messaging server and encapsulates various configuration parameters, many of which are vendor specific

such as SSL configuration options.

To create a ActivfeMQ ConnectionFactory define can create an object definition as shown

 <object id="nmsConnectionFactory" type="Apache.NMS.ActiveMQ.ConnectionFactory, Apache.NMS.ActiveMQ">

 <constructor-arg index="0" value="tcp://localhost:61616"/>

 </object>

EmsTemplate also requres a reference to a ConnectionFactory, however, it is

not the 'native' TIBCO.EMS.ConnectionFactory. Instead the connection factory type is

Spring.Messaging.Ems.Common.IConnectionFactory. See the documentation for TIBCO EMS supper for more

information here.

31.2.3. Caching Messaging Resources

The standard API usage of NMS and other JMS inspired APIs involves creating many intermediate objects. To

send a message the following 'API' walk is performed

IConnectionFactory->IConnection->ISession->IMessageProducer->Send

Between the ConnectionFactory and the Send operation there are three intermediate objects that are created and

destroyed. To optimise the resource usage and increase performance two implementations of IConnectionFactory

are provided.

31.2.3.1. SingleConnectionFactory

Spring.Messaging.Nms.Connections.SingleConnectionFactory will return the same connection on all calls

to CreateConnection and ignore calls to Close.

31.2.3.2. CachingConnectionFactory

Spring.Messaging.Nms.Connections.CachingConnectionFactory extends the functionality of

SingleConnectionFactory and adds the caching of Sessions, MessageProducers, and MessageConsumers.

The initial cache size is set to 1, use the property SessionCacheSize to increase the number of cached sessions.

Note that the number of actual cached sessions will be more than that number as sessions are cached based on their

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 323

acknowledgment mode, so there can be up to 4 cached session instances when SessionCacheSize is set to one,

one for each AcknowledgementMode. MessageProducers and MessageConsumers are cached within their owning

session and also take into account the unique properties of the producers and consumers when caching.

MessageProducers are cached based on their destination. MessageConsumers are cached based on a key composed

of the destination, selector, noLocal delivery flag, and the durable subscription name (if creating durable

consumers).

Here is an example configuration

 <object id="connectionFactory" type="Spring.Messaging.Nms.Connections.CachingConnectionFactory,

 Spring.Messaging.Nms">

 <property name="SessionCacheSize" value="10" />

 <property name="TargetConnectionFactory">

 <object type="Apache.NMS.ActiveMQ.ConnectionFactory, Apache.NMS.ActiveMQ">

 <constructor-arg index="0" value="tcp://localhost:61616"/>

 </object>

 </property>

 </object>

31.2.4. Dynamic Destination Management

In Java implementations of JMS, Connections and Destinations are 'administered objects' accessible though

JNDI - a directory service much like ActiveDirectory. In .NET each vendor has selected a different approach to

destination management. Some are JNDI inspired, allowing you to retrieve Connections and Destinations that

were configured administratively. You can use these vendor specific APIs to perform dependency injection on

references to JMS Destination objects in Spring's XML configuration file by creating am implementation of

IObjectFactory or alternatively configuring the specific concrete class implementation for a messaging provider.

However, this approach of administered objects can be quite cumbersome if there are a large number of

destinations in the application or if there are advanced destination management features unique to the messaging

provider. Examples of such advanced destination management would be the creation of dynamic destinations or

support for a hierarchical namespace of destinations. The NmsTemplate delegates the resolution of a destination

name to a destination object by delegating to an implementation of the interface IDestinationResolver.

DynamicDestinationResolver is the default implementation used by NmsTemplate and accommodates resolving

dynamic destinations.

Quite often the destinations used in a messaging application are only known at runtime and therefore cannot be

administratively created when the application is deployed. This is often because there is shared application logic

between interacting system components that create destinations at runtime according to a well-known naming

convention. Even though the creation of dynamic destinations are not part of the original JMS specification,

most vendors have provided this functionality. Dynamic destinations are created with a name defined by the

user which differentiates them from temporary destinations and are often not registered in a directory service.

The API used to create dynamic destinations varies from provider to provider since the properties associated

with the destination are vendor specific. However, a simple implementation choice that is sometimes made by

vendors is to use the TopicSession method CreateTopic(string topicName) or the QueueSession method

CreateQueue(string queueName) to create a new destination with default destination properties. Depending on

the vendor implementation, DynamicDestinationResolver may then also create a physical destination instead

of only resolving one.

The boolean property PubSubDomain is used to configure the NmsTemplate with knowledge of what messaging

'domain' is being used. By default the value of this property is false, indicating that the point-to-point domain,

Queues, will be used. This property is infrequently used as the provider messaging APIs are now largely

agnostic as to which messaging 'domain' is used, referring to 'Destinations' rather than 'Queues' or 'Topics'.

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 324

However, this property does influence the behavior of dynamic destination resolution via implementations of the

IDestinationResolver interface.

You can also configure the NmsTemplate with a default destination via the property DefaultDestination. The

default destination will be used with send and receive operations that do not refer to a specific destination.

31.2.5. Message Listener Containers

One of the most common uses of JMS is to concurrently process messages delivered asynchronously. A message

listener container is used to receive messages from a message queue and drive the IMessageListener that is

injected into it. The listener container is responsible for all threading of message reception and dispatches into

the listener for processing. A message listener container is the intermediary between an Message-Driven POCO

(MDP) and a messaging provider, and takes care of registering to receive messages, resource acquisition and

release, exception conversion and suchlike. This allows you as an application developer to write the (possibly

complex) business logic associated with receiving a message (and possibly responding to it), and delegates

boilerplate messaging infrastructure concerns to the framework.

A subclass of AbstractMessageListenerContainer is used to receive messages from JMS and

drive the Message-Driven POCOs (MDPs) that are injected into it. There are one subclasses of

AbstractMessageListenerContainer packaged with Spring - SimpleMessageListenerContainer. Additional

subclasses, in particular to participate in distributed transactions (if the provider supports it), will be provided

in future releases. SimpleMessageListenerContainer creates a fixed number of JMS sessions at startup and uses

them throughout the lifespan of the container.

Creating and configuring a ActiveMQ MessageListener container is described in this section.

31.2.6. Transaction Management

Spring provides an implementation of the IPlatformTransactionManager interface for managing ActiveMQ

messaging transactions. The class is NmsTransactionManager and it manages transactions for a single

ConnectionFactory. This allows messaging applications to leverage the managed transaction features of Spring

as described in Chapter 17, Transaction management. The NmsTransactionManager performs local resource

transactions, binding a Connection/Session pair from the specified ConnectionFactory to the thread. NmsTemplate

automatically detects such transactional resources and operates on them accordingly.

Using Spring's SingleConnectionFactory will result in a shared Connection, with each transaction having its

own independent Session.

31.3. Sending a Message

The NmsTemplate contains three convenience methods to send a message. The methods are listed below.

• void Send(IDestination destination, IMessageCreator messageCreator)

• void Send(string destinationName, IMessageCreator messageCreator)

• void Send(IMessageCreator messageCreator)

The method differ in how the destination is specified. In first case the JMS Destination object is specified

directly. The second case specifies the destination using a string that is then resolved to a messaging Destination

object using the IDestinationResolver associated with the template. The last method sends the message to the

destination specified by NmsTemplate''s DefaultDestination property.

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 325

All methods take as an argument an instance of IMessageCreator which defines the API contract for you to create

the JMS message. The interface is show below

public interface IMessageCreator {

 IMessage CreateMessage(ISession session);

}

Intermediate Sessions and MessageProducers needed to send the message are managed by NmsTemplate. The

session passed in to the method is never null. There is a similar set methods that use a delegate instead of the

interface, which can be convenient when writing small implementation in .NET 2.0 using anonymous delegates.

Larger, more complex implementations of the method 'CreateMessage' are better suited to an interface based

implementation.

• void SendWithDelegate(IDestination destination, MessageCreatorDelegate

messageCreatorDelegate)

• void SendWithDelegate(string destinationName, MessageCreatorDelegate messageCreatorDelegate)

• void SendWithDelegate(MessageCreatorDelegate messageCreatorDelegate)

The declaration of the delegate is

public delegate IMessage MessageCreatorDelegate(ISession session);

The following class shows how to use the SendWithDelegate method with an anonymous delegate to create a

MapMessage from the supplied Session object. The use of the anonymous delegate allows for very terse syntax

and easy access to local variables. The NmsTemplate is constructed by passing a reference to a ConnectionFactory.

 public class SimplePublisher

 {

 private NmsTemplate template;

 public SimplePublisher()

 {

 template = new NmsTemplate(new ConnectionFactory("tcp://localhost:61616"));

 }

 public void Publish(string ticker, double price)

 {

 template.SendWithDelegate("APP.STOCK.MARKETDATA",

 delegate(ISession session)

 {

 IMapMessage message = session.CreateMapMessage();

 message.Body.SetString("TICKER", ticker);

 message.Body.SetDouble("PRICE", price);

 message.NMSPriority = MsgPriority.Low;

 return message;

 });

 }

 }

A zero argument constructor and ConnectionFactory property are also provided. Alternatively consider deriving

from Spring's NmsGatewaySupport convenience base class which provides a ConnectionFactory property that will

instantiate a NmsTemplate instance that is made available via the property NmsTemplate.

31.3.1. Using MessageConverters

In order to facilitate the sending of domain model objects, the NmsTemplate has various send methods that

take a .NET object as an argument for a message's data content. The overloaded methods ConvertAndSend and

ReceiveAndConvert in NmsTemplate delegate the conversion process to an instance of the IMessageConverter

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 326

interface. This interface defines a simple contract to convert between .NET objects and JMS messages. The

default implementation SimpleMessageConverter supports conversion between String and TextMessage, byte[]

and BytesMesssage, and System.Collections.IDictionary and MapMessage. By using the converter, you and your

application code can focus on the business object that is being sent or received via messaging and not be concerned

with the details of how it is represented as a JMS message. There is also an XmlMessageConverter that converts

objects to an XML string and vice-versa for sending via a TextMessage. Please refer to the API documentation

and example application for more information on configuring an XmlMessageConverter.

The family of ConvertAndSend messages are similar to that of the Send method with the additional argument of

type IMessagePostProcessor. These methods are listed below.

• void ConvertAndSend(object message)

• void ConvertAndSend(object message, IMessagePostProcessor postProcessor)

• void ConvertAndSend(string destinationName, object message)

• void ConvertAndSend(string destinationName, object message, IMessagePostProcessor

postProcessor);

• void ConvertAndSend(Destination destination, object message)

• void ConvertAndSend(Destination destination, object message, IMessagePostProcessor

postProcessor)

The example below uses the default message converter to send a Hashtable as a message to the destination

"APP.STOCK".

public void PublishUsingDict(string ticker, double price)

{

 IDictionary marketData = new Hashtable();

 marketData.Add("TICKER", ticker);

 marketData.Add("PRICE", price);

 template.ConvertAndSend("APP.STOCK.MARKETDATA", marketData);

}

To accommodate the setting of message's properties, headers, and body that can not be generally encapsulated

inside a converter class, the IMessageConverterPostProcessor interface gives you access to the message after

it has been converted but before it is sent. The example below demonstrates how to modify a message header

and a property after a Hashtable is converted to a message using the IMessagePostProcessor. The methods

ConvertAndSendUsingDelegate allow for the use of a delegate to perform message post processing. This family

of methods is listed below

• void ConvertAndSendWithDelegate(object message, MessagePostProcessorDelegate postProcessor)

• void ConvertAndSendWithDelegate(IDestination destination, object message,

MessagePostProcessorDelegate postProcessor)

• void ConvertAndSendWithDelegate(string destinationName, object message,

MessagePostProcessorDelegate postProcessor)

The declaration of the delegate is

public delegate IMessage MessagePostProcessorDelegate(IMessage message);

The following code shows this in action.

public void PublishUsingDict(string ticker, double price)

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 327

{

 IDictionary marketData = new Hashtable();

 marketData.Add("TICKER", ticker);

 marketData.Add("PRICE", price);

 template.ConvertAndSendWithDelegate("APP.STOCK.MARKETDATA", marketData,

 delegate(IMessage message)

 {

 message.NMSPriority = MsgPriority.Low;

 message.NMSCorrelationID = new Guid().ToString();

 return message;

 });

}

31.. Session and Producer Callback

While the send operations cover many common usage scenarios, there are cases when you want to perform

multiple operations on a JMS Session or MessageProducer. The SessionCallback and ProducerCallback expose

the Session and Session / MessageProducer pair respectfully. The Execute() methods on NmsTemplate execute

these callback methods.

• public object Execute(IProducerCallback action)

• public object Execute(ProducerDelegate action)

• public object Execute(ISessionCallback action)

• public object Execute(SessionDelegate action)

Where ISessionCallback and IProducerCallback are

public interface IProducerCallback

{

 object DoInNms(ISession session, IMessageProducer producer);

}

and

public interface ISessionCallback

{

 object DoInNms(ISession session);

}

The delegate signatures are listed below and mirror the interface method signature

public delegate object SessionDelegate(ISession session);

public delegate object ProducerDelegate(ISession session, IMessageProducer producer);

31.5. Receiving a message

31.5.1. Synchronous Reception

While messaging middleware is typically associated with asynchronous processing, it is possible to consume

messages synchronously. The overloaded Receive(..) methods on NmsTemplate provide this functionality.

During a synchronous receive, the calling thread blocks until a message becomes available. This can

be a dangerous operation since the calling thread can potentially be blocked indefinitely. The property

ReceiveTimeout on NmsTemplate specifies how long the receiver should wait before giving up waiting for a

message.

The Receive methods are listed below

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 328

• public Message Receive()

• public Message Receive(Destination destination)

• public Message Receive(string destinationName)

• public Message ReceiveSelected(string messageSelector)

• public Message ReceiveSelected(string destinationName, string messageSelector)

• public Message ReceiveSelected(Destination destination, string messageSelector)

The Receive method without arguments will use the DefaultDestination. The ReceiveSelected methods apply

the provided message selector string to the MessageConsumer that is created.

The ReceiveAndConvert methods apply the template's message converter when receiving a message. The message

converter to use is set using the property MessageConverter and is the SimpleMessageConverter implementation

by default. These methods are listed below.

• public object ReceiveAndConvert()

• public object ReceiveAndConvert(Destination destination)

• public object ReceiveAndConvert(string destinationName)

• public object ReceiveSelectedAndConvert(string messageSelector)

• public object ReceiveSelectedAndConvert(string destinationName, string messageSelector)

• public object ReceiveSelectedAndConvert(Destination destination, string messageSelector)

31.5.2. Asynchronous Reception

Asynchronous reception of messages occurs by the messaging provider invoking a callback function. This is

commonly an interface such as the IMessageListener interface shown below, taken from the TIBCO EMS

provider.

public interface IMessageListener

{

 void OnMessage(Message message);

}

Other vendors may provide a delegate based version of this callback or even both a delegate and interface options.

Apache ActiveMQ supports the use of delegates for message reception callbacks. As a programming convenience

in Spring.Messaging.Nms.Core is an interface IMessageListener that can be used with NMS.

Below is a simple implementation of the IMessageListener interface that processes a message.

using Spring.Messaging.Nms.Core;

using Apache.NMS;

using Common.Logging;

namespace MyApp

{

 public class SimpleMessageListener : IMessageListener

 {

 private static readonly ILog LOG = LogManager.GetLogger(typeof(SimpleMessageListener));

 private int messageCount;

 public int MessageCount

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 329

 {

 get { return messageCount; }

 }

 public void OnMessage(IMessage message)

 {

 messageCount++;

 LOG.Debug("Message listener count = " + messageCount);

 ITextMessage textMessage = message as ITextMessage;

 if (textMessage != null)

 {

 LOG.Info("Message Text = " + textMessage.Text);

 } else

 {

 LOG.Warn("Can not process message of type " message.GetType());

 }

 }

}

Once you've implemented your message listener, it's time to create a message listener container.

You register you listener with a message listener container that specifies various messaging configuration

parameters, such as the ConnectionFactory, and the number of concurrent consumers to create. There

is an abstract base class for message listener containers, AbstractMessageListenerContainer, and one

concrete implementation, SimpleMessageListenerContainer. SimpleMessageListenerContainer creates a

fixed number of JMS Sessions/MessageConsumer pairs as set by the property ConcurrentConsumers. The default

value of ConcurrentConsumers is one. Here is a sample configuration that uses the the custom schema provided

in Spring.NET to more reasily configure MessageListenerContainers.

<objects xmlns="http://www.springframework.net"

 xmlns:nms="http://www.springframework.net/nms">

 <object id="ActiveMqConnectionFactory" type="Apache.NMS.ActiveMQ.ConnectionFactory, Apache.NMS.ActiveMQ">

 <constructor-arg index="0" value="tcp://localhost:61616"/>

 </object>

 <object id="ConnectionFactory" type="Spring.Messaging.Nms.Connections.CachingConnectionFactory,

 Spring.Messaging.Nms">

 <constructor-arg index=0" ref="ActiveMqConnectionFactory"/>

 <property name="SessionCacheSize" value="10"/>

 </object>

 <object id="MyMessageListener" type="MyApp.SimpleMessageListener, MyApp"/>

 <nms:listener-container connection-factory="ConnectionFactory" concurrency="10">

 <nms:listener ref="MyMessageListener" destination="APP.STOCK.REQUEST" />

 </nms:listener-container>

</objects>

The above configuration will create 10 threads that process messages off of the queue named

"APP.STOCK.REQUEST". The threads are those owned by the messaging provider as a result of creating a

MessageConsumer. Other important properties are ClientID, used to set the ClientID of the Connection and

MessageSelector to specify the 'sql-like' message selector string. Durable subscriptions are supported via the

properties SubscriptionDurable and DurableSubscriptionName. You may also register an exception listener using

the property ExceptionListener.

Exceptions that are thrown during message processing can be passed to an implementation of IExceptionHandler

and registered with the container via the property ExceptionListener. The registered IExceptionHandler will

be invoked if the exception is of the type NMSException (or the equivalent root exception type for other providers).

The SimpleMessageListenerContainer will logs the exception at error level and not propagate the exception to

the provider. All handling of acknowledgement and/or transactions is done by the listener container. You can

override the method HandleListenerException to change this behavior.

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 330

Please refer to the Spring SDK documentation for additional description of the features and properties of

SimpleMessageListenerContainer.

31.5.3. The ISessionAwareMessageListener interface

The ISessionAwareMessageListener interface is a Spring-specific interface that provides a similar contract to

the messaging provider's IMessageListener interface or Listener delegate/event, but also provides the message

handling method with access to the Session from which the Message was received.

public interface ISessionAwareMessageListener

{

 void OnMessage(IMessage message, ISession session);

}

You can also choose to implement this interface and register it with the message listener container

31.5.4. MessageListenerAdapater

The MessageListenerAdapter class is the final component in Spring's asynchronous messaging support: in a

nutshell, it allows you to expose almost any class to be invoked as a messaging callback (there are of course

some constraints).

Consider the following interface definition. Notice that although the interface extends neither the

IMessageListener nor ISessionAwareMessageListener interfaces, it can still be used as a Message-Driven

POCOs (MDP) via the use of the MessageListenerAdapter class. Notice also how the various message handling

methods are strongly typed according to the contents of the various Message types that they can receive and

handle.

public interface MessageHandler {

 void HandleMessage(string message);

 void HandleMessage(Hashtable message);

 void HandleMessage(byte[] message);

}

and a class that implements this interface...

public class DefaultMessageHandler : IMessageHandler {

 // stub implementations elided for bevity...

}

In particular, note how the above implementation of the IMessageHandler interface (the above

DefaultMessageHandler class) has no messaging provider API dependencies at all. It truly is a POCO that we

will make into an MDP via the following configuration.

<object id="MessagleHandler" type="MyApp.DefaultMessageHandler, MyApp"/>

<object id="MessageListenerAdapter" type="Spring.Messaging.Nms.Listener.Adapter.MessageListenerAdapter,

 Spring.Messaging.Nms">

 <property name="HandlerObject" ref="MessagleHandler"/>

</object>

<object id="MessageListenerContainer" type="Spring.Messaging.Nms.Listener.SimpleMessageListenerContainer,

 Spring.Messaging.Nms">

 <property name="ConnectionFactory" ref="ConnectionFactory"/>

 <property name="DestinationName" value="APP.REQUEST"/>

 <property name="MessageListener" ref="MessageListenerAdapter"/>

</object>

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 331

The previous examples relies on the fact that the default IMessageConverter implementation of the

MessageListenerAdapter is SimpleMessageConverter that can convert from messages to strings, byte[], and

hashtables and object from a ITextMessage, IBytesMessage, IMapMessage, and IObjectMessage respectfully.

Below is an example of another MDP that can only handle the receiving of NMS ITextMessage messages. Notice

how the message handling method is actually called 'Receive' (the name of the message handling method in a

MessageListenerAdapter defaults to 'HandleMessage'), but it is configurable (as you will see below). Notice also

how the 'Receive(..)' method is strongly typed to receive and respond only to NMS ITextMessage messages.

public interface TextMessageHandler {

 void Receive(ITextMessage message);

}

public class TextMessageHandler implements ITextMessageHandler {

 // implementation elided for clarity...

}

The configuration of the attendant MessageListenerAdapter would look like this

<object id="MessagleHandler" type="MyApp.DefaultMessageHandler, MyApp"/>

<object id="MessageListenerAdapter" type="Spring.Messaging.Nms.Listener.Adapter.MessageListenerAdapter,

 Spring.Messaging.Nms">

 <property name="HandlerObject" ref="TextMessagleHandler"/>

 <property name="DefaultHandlerMethod" value="Receive"/>

 <!-- we don't want automatic message context extraction -->

 <property name="MessageConverter">

 <null/>

 </property>

</object>

Please note that if the above 'MessageListener' receives a Message of a type other than ITextMessage, a

ListenerExecutionFailedException will be thrown (and subsequently handled by the container by logging the

exception).

If your IMessageConverter implementation will return multiple object types, overloading the handler method is

perfectly acceptable, the most specific matching method will be used. A method with an object signature would

be consider a 'catch-all' method of last resort. For example, you can have an handler interface as shown below.

public interface IMyHandler

{

 void DoWork(string text);

 void DoWork(OrderRequest orderRequest);

 void DoWork(InvoiceRequest invoiceRequest);

 void DoWork(object obj);

}

Another of the capabilities of the MessageListenerAdapter class is the ability to automatically send back a

response Message if a handler method returns a non-void value. The adapter's message converter will be

used to convert the methods return value to a message. The resulting message will then be sent to the

Destination defined in the JMS Reply-To property of the original Message (if one exists) , or the default

Destination set on the MessageListenerAdapter (if one has been configured). If no Destination is found then an

InvalidDestinationException will be thrown (and please note that this exception will not be swallowed and

will propagate up the call stack).

An interface that is typical when used with a message converter that supports multiple object types and has return

values is shown below.

public interface IMyHandler

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 332

{

 string DoWork(string text);

 OrderResponse DoWork(OrderRequest orderRequest);

 InvoiceResponse DoWork(InvoiceRequest invoiceRequest);

 void DoWork(object obj);

}

31.5.5. Processing messages within a messaging transaction

Invoking a message listener within a transaction only requires reconfiguration of the listener container. Local

message transactions can be activated by setting the property SessionAcknowledgeMode which for NMS is of the

enum type AcknowledgementMode, to AcknowledgementMode.Transactional. Each message listener invocation

will then operate within an active messaging transaction, with message reception rolled back in case of listener

execution failure.

Sending a response message (via ISessionAwareMessageListener) will be part of the same local transaction, but

any other resource operations (such as database access) will operate independently. This usually requires duplicate

message detection in the listener implementation, covering the case where database processing has committed but

message processing failed to commit. See the discussion on the ActiveMQ web site here for more information

combining local database and messaging transactions.

31.5.6. Messaging Namespace support

To use the NMS namespace elements you will need to reference the NMS schema. When using TIBCO EMS you

should refer to the TIBCO EMS Schema. For information on how to set this up refer to Section B.2.7, “The nms

messaging schema”. The namespace consists of one top level elements: <listener-container/> which can contain

one or more <listener/> child elements. Here is an example of a basic configuration for two listeners.

<nms:listener-container>

 <nms:listener destination="queue.orders" ref="OrderService" method="PlaceOrder"/>

 <nms:listener destination="queue.confirmations" ref="ConfirmationLogger" method="Log"/>

</nms:listener-container>

The example above is equivalent to creating two distinct listener container object definitions and two

distinct MessageListenerAdapter object definitions as demonstrated in the section entitled Section 31.5.4,

“MessageListenerAdapater”. In addition to the attributes shown above, the listener element may contain several

optional ones. The following table describes all available attributes:

Table 31.1. Attributes of the NMS <listener> element

Attribute Description

id A object name for the hosting listener container. If not specified, a object

name will be automatically generated.

destination (required) The destination name for this listener, resolved through the

IDestinationResolver strategy.

ref (required) The object name of the handler object.

method The name of the handler method to invoke. If the ref points to

a IMessageListener or Spring ISessionAwareMessageListener, this

attribute may be omitted.

http://activemq.apache.org/should-i-use-xa.html

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 333

Attribute Description

response-destination The name of the default response destination to send response messages

to. This will be applied in case of a request message that does not carry

a "NMSReplyTo" field. The type of this destination will be determined

by the listener-container's "destination-type" attribute. Note: This only

applies to a listener method with a return value, for which each result

object will be converted into a response message.

subscription The name of the durable subscription, if any.

selector An optional message selector for this listener.

pubsub-domain An optional boolean value. Set to true for the publish-subscribe domain

(Topics) or false (the default) for point-to-point domain (Queues). This is

useful when using the default implementation for destination resolvers.

The <listener-container/> element also accepts several optional attributes. This allows for customization of the

various strategies (for example, DestinationResolver) as well as basic messaging settings and resource references.

Using these attributes, it is possible to define highly-customized listener containers while still benefiting from

the convenience of the namespace.

<nms:listener-container connection-factory="MyConnectionFactory"

 destination-resolver="MyDestinationResolver"

 concurrency="10">

 <nms:listener destination="queue.orders" ref="OrderService" method="PlaceOrder"/>

 <nms:listener destination="queue.confirmations" ref="ConfirmationLogger" method="Log"/>

</nms:listener-container>

The following table describes all available attributes. Consult the class-level SDK documentation of the

AbstractMessageListenerContainer and its subclass SimpleMessageListenerContainer for more detail on the

individual properties.

Table 31.2. Attributes of the NMS <listener-container> element

Attribute Description

connection-factory A reference to the NMS ConnectionFactory object (the default object

name is 'ConnectionFactory').

destination-resolver A reference to the IDestinationResolver strategy for resolving JMS

Destinations.

message-converter A reference to the IMessageConverter strategy for converting

NMS Messages to listener method arguments. Default is a

SimpleMessageConverter.

destination-type The NMS destination type for this listener: queue, topic or

durableTopic. The default is queue.

client-id The NMS client id for this listener container. Needs to be specified when

using durable subscriptions.

acknowledge The native NMS acknowledge mode: auto, client, dups-ok or

transacted. A value of transacted activates a locally transacted

Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

Spring Framework (Version 1.3.2) 334

Attribute Description

Session. As an alternative, specify the transaction-manager attribute

described below. Default is auto.

concurrency The number of concurrent sessions/consumers to start for each listener.

Default is 1; keep concurrency limited to 1 in case of a topic listener or if

queue ordering is important; consider raising it for general queues.

recovery-interval The time interval between connection recovery attempts. The default is 5

seconds. Specify as a TimeSpan value using Spring's TimeSpanConverter

(e.g. 10s, 10m, 3h, etc)

max-recovery-time The maximum time try reconnection attempts. The default is 10 minutes.

Specify as a TimeSpan value using Spring's TimeSpanConverter (e.g. 10s,

10m, 3h, etc)

auto-startup Set whether to automatically start the listeners after initialization. Default

is true, optionally set to false.

error-handler A reference to a IErrorHandler that will handle any uncaught exceptions

other than those of the type NMSException (in the case of ActiveMQ or

EMSException int he case of TIBCO EMS) that may occur during the

execution of the message listener. By default no ErrorHandler is registered

and that error-level logging is the default behavior.

exception-listener A reference to an Spring.Messaging.Nms.Core.IExceptionListener or

TIBCO.EMS.IExceptionListener as appropriate. Is invokved in case of a

NMSException or EMSException.

Spring Framework (Version 1.3.2) 335

Chapter 32. Message Oriented
Middleware - TIBCO EMS

32.1. Introduction

The bulk of the documentation for Spring's JMS support , independent of vendor, is described in the

chapter Chapter 31, Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS. While that

chapter refers to classes that are part of Spring's ActiveMQ integration, those classes have counter parts

as part of Spring's TIBCO EMS integration. For example, Spring.Messaging.Nms.Core.NmsTemplate and

Spring.Messaging.Ems.Core.EmsTemplate. This chapter fills in some of the gaps in taking that approach by

describing Spring.NET features that are specific to its integration with TIBCO EMS and showing some examples

using the TIBCO EMS integration.

Note

A complete sample application using Spring's EMS integration classes is in the distribution under the

directory examples\Spring\Spring.EmsQuickStart. Documentation for the Quickstart is available

here.

32.2. Interface based APIs

The TIBCO EMS APIs are not interface based. What this means is that the class TIBCO.EMS.Session does not

inherit from an ISession interface. The lack of interfaces makes it impossible to apply traditional approahces

to support caching of Connections, Sessions, MessageProducers, and MessageProducers. Also, in some cases

Java like setter methods were used instead of standard .NET properties making it difficult to configure those

classes using dependency injection. (For example, see EmssslSystemStoreInfo.SetCertificateStoreLocation()).

For these reasons it was decided to create a 'mirror' API of the TIBCO EMS API that is interface based.

In the namespace Spring.Messaging.Ems.Common are interfaces such as IConnectionFactory, IConnection,

ISession, IMessageProducer, etc as well as their implementation classes EmsConnectionFactory, EmsConnection,

EmsSession, etc. The interfaces mirror all the operations that are on the standard TIBCO EMS classes so you

should feel right as home when programming against these classes.

Typically users of Spring.NET do not need to programmatically interact with these classes,

instead using methods of EmsTemplate to syncrhonously send and consume messages and a

SimpleMessageListenerContainer to asynchronously consume messages. It will be common to configure

an Spring.Messaging.Ems.Common.ConnectionFactory using dependency injection. The following sections

show some example usage. You can also set or get the underlying 'native' TIBCO EMS object, such

as the TIBCO.EMS.ConnectionFactory using a property 'NativeConnectionFactory' Each class in the

Spring.Messaging.Ems.Common namespace has a similar 'Native' property, for example NativeSession,

NativeMessageProducer if you need access the raw TIBCO EMS class.

Message Oriented Middleware - TIBCO EMS

Spring Framework (Version 1.3.2) 336

32.3. Using Spring's EMS based Messaging

32.3.1. Overivew

In the namespace Spring.Messaging.Ems.Core is the class EmsTemplate. This is the main class you will use to

send messages and to receive messages synchronously. In the namespace Spring.Messaging.Ems.Listener is the

class SimpleMessageListenerContainer. This is the main class you will use to recieve messages asynchronously.

32.3.2. Connections

To create a Spring.Messaging.Ems.Common.ConnectionFactory use the following object definition

 <object id="emsConnectionFactory" type="Spring.Messaging.Ems.Common.EmsConnectionFactory,

 Spring.Messaging.Ems">

 <constructor-arg name="serverUrl" value="tcp://localhost:7222"/>

 <constructor-arg name="clientId" value="SpringEMSClient"/>

 <property name="ConnAttemptCount" value="10" />

 <property name="ConnAttemptDelay" value="100" />

 <property name="ConnAttemptTimeout" value="1000" />

 </object>

Please refer to the API documentation for other properties you way want to set, in particular for those relating

to SSL.

32.3.3. Caching Messaging Resources

While TIBCO EMS provides thread safe access to EMS Sessions (above and beyond what is specified in the JMS

specification), Spring provides two implementations of the IConnectionFactory infrastructure to manage the use

of intermediate objects when following the 'standard' API walk of

IConnectionFactory->IConnection->ISession->IMessageProducer->Send

32.3.3.1. SingleConnectionFactory

Spring.Messaging.Ems.Connections.SingleConnectionFactory will return the same connection on all calls

to CreateConnection and ignore calls to Close.

You can configure a SingleConnectionFactory as you would an EmsConnectionFactory.

32.3.3.2. CachingConnectionFactory

Spring.Messaging.Ems.Connections.CachingConnectionFactory extends the functionality of

SingleConnectionFactory and adds the caching of Sessions, MessageProducers, and MessageConsumers. See the

documentation for ActiveMQ CachingConnectionFactory for some additional information here.

An example configuration is shown below

 <object id="connectionFactory" type="Spring.Messaging.Ems.Connections.CachingConnectionFactory,

 Spring.Messaging.Ems">

 <property name="SessionCacheSize" value="10" />

 <property name="TargetConnectionFactory" ref="emsConnectionFactory" />

 </object>

Notice that the property TargetConnectionFactory refers to 'emsConnectionFactory' defined in the previous

section. This connection factory implementation also set the ReconnectOnException property to true by default

allowing for automatic recovery of the underlying Connection.

Message Oriented Middleware - TIBCO EMS

Spring Framework (Version 1.3.2) 337

Note

The CachingConnectionFactory requires explicit closing of all Sessions obtained from its shared

Connection. This is the usual recommendation for native EMS access code anyway and Spring

EMS code follows this recommendation. However, with the CachingConnectionFactory, its use is

mandatory in order to actually allow for Session reuse.

Note

MessageConsumers obtained from a cached Session won't get closed until the Session will eventually

be removed from the pool. This may lead to semantic side effects in some cases. For a durable

subscriber, the logical Session.Close() call will also close the subscription. Re-registering a durable

consumer for the same subscription on the same Session handle is not supported; close and reobtain

a cached Session first.

To avoid accidentally referring to the ConnectionFactory that does not support caching, (emsConnectionFactory),

you should use an inner object definition as shown below.

 <object id="connectionFactory" type="Spring.Messaging.Ems.Connections.CachingConnectionFactory,

 Spring.Messaging.Ems">

 <property name="SessionCacheSize" value="10" />

 <property name="TargetConnectionFactory">

 <object type="Spring.Messaging.Ems.Common.EmsConnectionFactory, Spring.Messaging.Ems">

 <constructor-arg name="serverUrl" value="tcp://localhost:7222"/>

 <constructor-arg name="clientId" value="SpringEMSClient"/>

 <property name="ConnAttemptCount" value="10" />

 <property name="ConnAttemptDelay" value="100" />

 <property name="ConnAttemptTimeout" value="1000" />

 </object>

 </property>

 </object>

32.3.4. Dynamic Destination Management

The section in the ActiveMQ documentation covers the use of Dynamic Destination mangement for TIBCO as

well.

32.3.5. Accessing Admistrated objects via JNDI

TIBCO provides an implementation of JNDI to retrieve admistrive objects in .NET. You can retrieve TIBCO

Destinations and ConnectionFactories from the JNDI registry. To provide ease of access to these JNDI managed

objects in a Spring application context the class JndiFactoryObject is used. This allows you look configure the

location of the JNDI registry and to retrieve objects by name. The objects are retrieved from JNDI at application

startup.

These retrieved objetcts from JNDI in turn can be dependency injected into other collaborating objects such as

Spring's CachingConnectionFactory (for connections) or EmsTemplate (for destinations). Here is an example to

retrieve a TIBCO ConnectionFactory object from the JNDI registry.

 <object id="jndiEmsConnectionFactory" type="Spring.Messaging.Ems.Jndi.JndiLookupFactoryObject,

 Spring.Messaging.Ems">

 <property name="JndiName" value="TopicConnectionFactory"/>

 <property name="JndiProperties[LookupContext.PROVIDER_URL]" value="tibjmsnaming://localhost:7222"/>

 </object>

JndiLookupFactory object implements the IConfigurableFactoryObject interface, so the type that is associated

with the name 'jndiConnectionFactory' is not JndiLookupFactoryObject, but the type returned from this factory's

Message Oriented Middleware - TIBCO EMS

Spring Framework (Version 1.3.2) 338

'GetType' method, in this case the type of what was retrieved from JNDI. The IConfigurableFactoryObject

interface also allows for the object that was returned to be dependency injected. Please refer to the documentation

on IConfigurableFactoryObject for more information.

Note

The dictionary JndiProperties is set using Spring Expression language syntax for the property name.

This provides a shortcut to the more verbose <dictionary/> element. To enable this functionality

a the TIBCO.EMS.LookupContext was registered under the name 'LookupContext' in Spring's

TypeRegistry.

The use of this object retrieved from JNDI to configure Spring's CachingConnectionFactory set the property

TargetConnectionFactory as shown below

 <object id="cachingJndiConnectionFactory" type="Spring.Messaging.Ems.Connections.CachingConnectionFactory,

 Spring.Messaging.Ems">

 <property name="SessionCacheSize" value="10" />

 <property name="TargetConnectionFactory">

 <object type="Spring.Messaging.Ems.Common.EmsConnectionFactory, Spring.Messaging.Ems">

 <constructor-arg ref="jndiEmsConnectionFactory"/>

 </object>

 </property>

 </object>

Other useful properties and features of JndiLookupFactoryObject are

• JndiContextType : This is an enumeration that can have either the value JMS or LDAP. These

translate to configuring JNDI context with the constants LookupContextFactory.TIBJMS_NAMING_CONT

or LookupContextFactory.LDAP_CONTEXT for use with EMS's own JNDI registry or an LDAP

directory respectively. The default is set use LookupContextFactory.TIBJMS_NAMING_CONT. The type

JndiContextType is also registered in Spring's TypeRegistry so that you can use a SpEL expression to set the

value as shown below.

 <object id="jndiEmsConnectionFactory" type="Spring.Messaging.Ems.Jndi.JndiLookupFactoryObject,

 Spring.Messaging.Ems">

 <property name="JndiName" value="TopicConnectionFactory"/>

 <property name="JndiProperties[LookupContext.PROVIDER_URL]" value="tibjmsnaming://localhost:7222"/>

 <property name="JndiContextType" expression="JndiContextType.JMS"/>

 <property name="ExpectedType" value="TIBCO.EMS.ConnectionFactory"/>

 </object>

Note

The TargetConnectionFactory is of the Spring wrapper type

Spring.Messaging.Ems.Common.IConnectionFactory. You can pass into Spring's implementation

of that interface, Spring.Messaging.Ems.Common.EmsConnectionFactory, the 'raw' TIBCO EMS

type, TIBCO.EMS.ConnectionFactory.

• ExpectedType: This is a property of the type System.Type. You can set the type that the located JNDI object

is supposed to be assignable to, if any. It's use is shown in the previous XML configuraiton listing.

• JndiLookupContext: This is a property of the type TIBCO.EMS.ILookupContext. If you create a custom

implementation of ILookupContext (for example one that performs lazy caching), assign this property instead

of configuring the property JndiContextType.

• DefaultObject: Sets a reference to an instance of an object to fall back to if the JNDI lookup fails. The default

is not to have a fallback object.

Message Oriented Middleware - TIBCO EMS

Spring Framework (Version 1.3.2) 339

32.3.6. MessageListenerContainers

Spring's MessageListenerContainer's are used to process messages asynchronously and concurrently.

MessageListenerContainers are described more in this section.

32.3.7. Transaction Management

Spring provides an implementation of the IPlatformTransactionManager interface for managing TiBCO

messaging transactions. The class is EmsTransactionManager and it manages transactions for a single

ConnectionFactory. Please refer to this section for addtional information on messaging based transaction

managers.

32.3.8. Sending a Message

The class Spring.Messaging.Ems.Core.EmsTemplate contains several convenience methods to send a message.

These methods are identical to those described in the ActiveMQ documentation section aside from the use of type

destination type TIBCO.EMS.Destination instead of Apache.NMS.IDestination and switching of the namespace

from Apache.NMS to Spring.Messaging.Ems.Common.

Shown below is the code example for a SimplePublisher using Spring's TIBCO EMS classes. This does now show

the 'one-liner' send methods but one that gives you direct access to the ISession to create the message however

you wish.

using Spring.Messaging.Ems.Common;

using TIBCO.EMS;

namespace Spring.Messaging.Ems.Core

{

 public class SimplePublisher

 {

 private EmsTemplate emsTemplate;

 public SimplePublisher()

 {

 emsTemplate = new EmsTemplate(new EmsConnectionFactory("tcp://localhost:7222"));

 }

 public void Publish(string ticker, double price)

 {

 emsTemplate.SendWithDelegate("APP.STOCK.MARKETDATA",

 delegate(ISession session)

 {

 MapMessage message = session.CreateMapMessage();

 message.SetString("TICKER", ticker);

 message.SetDouble("PRICE", price);

 message.Priority = 5;

 return message;

 });

 }

 }

}

A more DI friendly implementation would be to expose a EmsTemplate property or to inherit from

Spring's EmsGatewaySupport base class which provides a IConnectionFactory property that will instantiate a

EmsTemplate instance that is made available via the property EmsTemplate.

using Spring.Messaging.Ems.Common;

using TIBCO.EMS;

namespace Spring.Messaging.Ems.Core

{

Message Oriented Middleware - TIBCO EMS

Spring Framework (Version 1.3.2) 340

 public class SimpleGateway : EmsGatewaySupport

 {

 public void Publish(string ticker, double price)

 {

 EmsTemplate.SendWithDelegate("APP.STOCK.MARKETDATA",

 delegate(ISession session)

 {

 MapMessage message = session.CreateMapMessage();

 message.SetString("TICKER", ticker);

 message.SetDouble("PRICE", price);

 message.Priority = 5;

 return message;

 });

 }

 }

}

Where the ConnectionFactory is injected using the configuration.

 <object id="simpleGateway" type="Spring.Messaging.Ems.Core.SimpleGateway,

 Spring.Messaging.Ems.Integration.Tests">

 <property name="ConnectionFactory" ref="connectionFactory" />

 </object>

32.4. Using MessageConverters

In order to facilitate the sending of domain model objects, the EmsTemplate has various send methods that

take a .NET object as an argument for a message's data content. The overloaded methods ConvertAndSend and

ReceiveAndConvert in NmsTemplate delegate the conversion process to an instance of the IMessageConverter

interface. Please refer to this section for more information on MessageConverters.

Example code that uses the EmsTemplate's ConvertAndSendWithDelegate, which allows access to the message

after it has been converted but before it has been sent is shown below. For examples of using other

ConvertAndSend methods see the section referred to in the previous paragraph.

public void PublishUsingDict(string ticker, double price)

{

 IDictionary marketData = new Hashtable();

 marketData.Add("TICKER", ticker);

 marketData.Add("PRICE", price);

 EmsTemplate.ConvertAndSendWithDelegate("APP.STOCK.MARKETDATA", marketData,

 delegate(Message message)

 {

 message.Priority = 5;

 message.CorrelationID = new Guid().ToString();

 return message;

 });

}

32.5. Session and Producer Callback

Please refer to this section for more information on Session and Producer Callbacks.

32.6. Receiving a messages

There are two ways to receive messages, synchronously and asynchronously. To recieve messages synchronously

use EmsTemplate, to recieve asynchronously use a MessageListenerContainer.

32.6.1. Synchronous Reception

Please refer to this section for using EmsTemplate's overloaded Recieve methods.

Message Oriented Middleware - TIBCO EMS

Spring Framework (Version 1.3.2) 341

32.6.2. Asynchronous Reception

Please refer to this section for an introduction to Spring's MessageListenerContainers. The TIBCO EMS

namespace to create an instance of a message listener container is shown below.

using Common.Logging;

using TIBCO.EMS;

namespace Spring.Messaging.Ems.Core

{

 public class SimpleMessageListener : IMessageListener

 {

 private static readonly ILog LOG = LogManager.GetLogger(typeof(SimpleMessageListener));

 private int messageCount;

 public int MessageCount

 {

 get { return messageCount; }

 }

 public void OnMessage(Message message)

 {

 messageCount++;

 LOG.Debug("Message listener count = " + messageCount);

 TextMessage textMessage = message as TextMessage;

 if (textMessage != null)

 {

 LOG.Info("Message Text = " + textMessage.Text);

 } else

 {

 LOG.Warn("Can not process message of type " message.GetType());

 }

 }

 }

}

And the configuration to create 10 threads that process message off the queue named "APP.STOCK.REQUEST".

See this section for more details about the message listener container.

<objects xmlns="http://www.springframework.net"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ems="http://www.springframework.net/ems">

 <object id="connectionFactory" type="Spring.Messaging.Ems.Connections.CachingConnectionFactory,

 Spring.Messaging.Ems">

 <property name="SessionCacheSize" value="10" />

 <property name="TargetConnectionFactory">

 <object type="Spring.Messaging.Ems.Common.EmsConnectionFactory, Spring.Messaging.Ems">

 <constructor-arg name="serverUrl" value="tcp://localhost:7222"/>

 <constructor-arg name="clientId" value="SpringEMSClient"/>

 </object>

 </property>

 </object>

 <object name="simpleMessageListener"

 type="Spring.Messaging.Ems.Core.SimpleMessageListener, Spring.Messaging.Ems.Integration.Tests"/>

 <ems:listener-container connection-factory="connectionFactory" concurrency="10">

 <ems:listener ref="simpleMessageListener" destination="APP.STOCK.REQUEST" />

 </ems:listener-container>

</objects>

32.6.3. The ISessionAwareMessageListener interface

Refer to this section for more information on the use of this interface.

Message Oriented Middleware - TIBCO EMS

Spring Framework (Version 1.3.2) 342

32.6.4. MessageListenerAdapter

Refer to this section for more information on this feature and change code/XML references of 'Nms' to 'Ems'.

32.6.5. Processing messages within a messaging transaction

Refer to this section for more information about this type of message processing.

32.6.6. Messaging Namespace support

To use the EMS namespace you will need to reference the Ems schema. Please refer to this section for more

information on configuring message listener containers. Change references of 'Nms' to 'Ems' in that section.

Spring Framework (Version 1.3.2) 343

Chapter 33. Message Oriented
Middleware - MSMQ

33.1. Introduction

The goals of Spring's MSMQ 3.0 messaging support is to raise the level of abstraction when writing MSMQ

applications. The System.Messaging API is a low-level API that provides the basis for creating a messaging

application. However, 'Out-of-the-box', System.Messaging leaves the act of creating sophisticated multi-threaded

messaging servers and clients as an infrastructure activity for the developer. Spring fills this gap by proving easy

to use helper classes that makes creating an enterprise messaging application easy. These helper classes take into

account the nuances of the System.Messaging API, such as its lack of thread-safety in many cases, the handling

of so-called 'poison messages' (messages that are endlessly redelivered due to an unrecoverable exception during

message processing), and combining database transactions with message transactions. Other goals of Spring's

MSMQ messaging support are to support messaging best practices, in particular encouraging a clean architectural

layering that separates the messaging middleware specifics from the core business processing.

Spring's approach to distributed computing has always been to promote a plain old CLR object approach or a

POCO programming model. In this approach plain CLR objects are those that are devoid of any reference to a

particular middleware technology. Spring provides the 'adapter' classes that converts between the middleware

world, in this case MSMQ, and the oo-world of your business processing. This is done through the use of Spring's

MessageListenerAdapter class and IMessageConverters.

The namespace Spring.Messaging provides the core functionality for messaging. It contains the class

MessageQueueTemplate that simplifies the use of System.Messaging.MessageQueue by handling the lack

of thread-safety in most of System.Messaging.MessageQueue's methods (for example Send). A single

instance of MessageQueueTemplate can be used throughout your application and Spring will ensure that

a different instance of a MessageQueue class is used per thread when using MessageQueueTemplate's

methods. This per-thread instance of a System.Messaging.MessageQueue is also available via its

property MessageQueue. The MessageQueueTemplate class is also aware of the presence of either

an 'ambient' System.Transaction's transaction or a local System.Messaging.MessageQueueTransaction.

As such if you use MessageQueueTemplate's send and receive methods, unlike with plain use of

System.Messaging.MessageQueue, you do not need to keep track of this information yourself and call the correct

overloaded System.Messaging.MessageQueue method for a specific transaction environment. When using a

System.Messaging.MessageQueueTransaction this would usually require you as a developer to come up with

your own mechanism for passing around a MessageQueueTransaction to multiple classes and layers in your

application. MessageQueueTemplate manages this for you, so you don't have to do so yourself. These resource

management and transaction features of MessageQueueTemplate are quite analogous to the transactional features

of Spring's AdoTemplate in case you are already familiar with that functionality.

For asynchronous reception Spring provides several multi-threaded message listener containers. You can pick

and configure the container that matches your message transactional processing needs and configure poison-

message handling policies. The message listener container leverages Spring's support for managing transactions.

Both DTC, local messaging transactions, and local database transactions are supported. In particular, you can

easily coordinate the commit and rollback of a local MessageQueueTransaction and a local database transaction

when they are used together.

From a programming perspective, Spring's MSMQ support involves you configuring message listener containers

and writing a callback function for message processing. On the sending side, it involves you learning

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 344

how to use MessageQueueTemplate. In both cases you will quite likely want to take advantage of using

MessageListenerConverters so you can better structure the translation from the System.Messaging.Message

data structure to your business objects. After the initial learning hurdle, you should find that you will be much

more productive leveraging Spring's helper classes to write enterprise MSMQ applications than rolling your own

infrastructure. Feedback and new feature requests are always welcome.

The Spring.MsmqQuickstart application located in the examples directory of the distribution shows this

functionality in action.

33.2. A quick tour for the impatient

Here is a quick example of how to use Spring's MSMQ support to create a client that sends a message and a

multi-threaded server application that receives the message. (The client code could also be used as-is in a multi-

threaded environment but this is not demonstrated).

On the client side you create an instance of the MessageQueueTemplate class and configure it to use a

MessageQueue. This can be done programmatically but it is common to use dependency injection and Spring's

XML configuration file to configure your client class as shown below.

 <object id='questionTxQueue' type='Spring.Messaging.Support.MessageQueueFactoryObject, Spring.Messaging'>

 <property name='Path' value='.\Private$\questionTxQueue'/>

 <property name='MessageReadPropertyFilterSetAll' value='true'/>

 </object>

 <object id="messageQueueTemplate" type="Spring.Messaging.Core.MessageQueueTemplate, Spring.Messaging">

 <property name="MessageQueueObjectName" value="questionTxQueue"/>

 </object>

 <!-- Class you write -->

 <object id="questionService" type="MyNamespace.QuestionService, MyAssembly">

 <property name="MessageQueueTemplate" ref="messageQueueTemplate"/>

 <object>

The MessageQueue object is created via an instance of MessageQueueFactoryObject and the

MessageQueueTemplate refers to this factory object by name and not by reference. The SimpleSender class looks

like this

public class QuestionService : IQuestionService

{

 private MessageQueueTemplate messageQueueTemplate;

 public MessageQueueTemplate {

 get { return messageQueueTemplate; }

 set { messageQueueTemplate = value; }

 }

 public void SendQuestion(string question)

 {

 MessageQueueTemplate.ConvertAndSend(question);

 }

}

This class can be shared across multiple threads and the MessageQueueTemplate will take care of managing thread

local access to a System.Messaging.MessageQueue as well as any System.Messaging.IMessageFormatter

instances.

Furthermore, since this is a transactional queue (only the name gives it away), the message will be sent using

a single local messaging transaction. The conversion from the string to the underling message is managed by

an instance of the IMessageConverter class. By default an implementation that uses an XmlMessageFormatter

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 345

with a TargetType of System.String is used. You can configure the MessageQueueTemplate to use other

IMessageConveter implementations that do conversions above and beyond what the 'stock' IMessageFormatters

do. See the section on MessageConverters for more details.

On the receiving side we would like to consume the messages transactionally from the queue.

Since no other database operations are being performed in our server side processing, we select the

TransactionMessageListenerContainer and configure it to use the MessageQueueTransactionManager. The

MessageQueueTransactionManager an implementation of Spring's IPlatformTransactionManager abstraction

that provides a uniform API on top of various transaction manager (ADO.NET,NHibernate, MSMQ, etc).

Spring's MessageQueueTransactionManager is responsible for createing, committing, and rolling back a MSMQ

MessageQueueTransaction.

While you can create the message listener container programmatically, we will show the declarative configuration

approach below

 <!-- Queue to receive from -->

 <object id='questionTxQueue' type='Spring.Messaging.Support.MessageQueueFactoryObject, Spring.Messaging'>

 <property name='Path' value='.\Private$\questionTxQueue'/>

 <property name='MessageReadPropertyFilterSetAll' value='true'/>

 </object>

 <!-- MSMQ Transaction Manager -->

 <object id="messageQueueTransactionManager" type="Spring.Messaging.Core.MessageQueueTransactionManager,

 Spring.Messaging"/>

 <!-- Message Listener Container that uses MSMQ transactional for receives -->

 <object id="transactionalMessageListenerContainer" type="Spring.Messaging.Listener.TransactionalMessageListenerContainer,

 Spring.Messaging">

 <property name="MessageQueueObjectName" value="questionTxQueue"/>

 <property name="PlatformTransactionManager" ref="messageQueueTransactionManager"/>

 <property name="MaxConcurrentListeners" value="10"/>

 <property name="MessageListener" ref="messageListenerAdapter"/>

 </object>

 <!-- Adapter to call a POCO as a messaging callback -->

 <object id="messageListenerAdapter" type="Spring.Messaging.Listener.MessageListenerAdapter,

 Spring.Messaging">

 <property name="HandlerObject" ref="questionHandler"/>

 </object>

 <!-- The POCO class that you write -->

 <object id="questionHandler" type="MyNamespace.QuestionHandler, MyAssembly"/>

We have specified the queue to listen, that we want to consume the messages transactionally, process messages

from the queue using 10 threads, and that our plain object that will handle the business processing is of the type

QuestionHandler. The only class you need to write, QuestionHandler, looks like

public class QuestionHandler : IQuestionHandler

{

 public void HandleObject(string question)

 {

 // perform message processing here

 Console.WriteLine("Received question: " + question);

 // use an instance of MessageQueueTemplate and have other MSQM send operations

 // partake in the same local message transaction used to receive

 }

}

That is general idea. You write the sender class using MessageQueueTemplate and the consumer class which does

not refer to any messaging specific class. The rest is configuration of Spring provided helper classes.

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 346

Note that if the HandleObject method has returned a string value a reply message would be sent to a response

queue. The response queue would be taken from the Message's own ResponseQueue property or can be specified

explicitly using MessageListenerAdapter's DefaultResponseQueueName property.

If an exception is thrown inside the QuestionHandler, then the MSMQ transaction is rolled back, putting the

message back on the queue for redelivery. If the exception is not due to a transient error in the system, but a logical

processing exception, then one would get endless redelivery of the message - clearly not a desirable situation.

These messages are so called 'poison messages' and a strategy needs to be developed to deal with them. This is left

as a development task if you when using the System.Messaging APIs but Spring provides a strategy for handling

poison messages, both for DTC based message reception as well as for local messaging transactions.

In the last part this 'quick tour' we will configure the message listener container to handle poison messages. This

is done by creating an instance of SendToQueueExceptionHandler and setting the property MaxRetry to be the

number of exceptions or retry attempts we are willing to tolerate before taking corrective actions. In this case, the

corrective action is to send the message to another queue. We can then create other message listener containers to

read from those queues and handle the messages appropriately or perhaps you will avoid automated processing

of these messages and take manual corrective actions.

 <!-- The 'error' queue to send poison messages -->

 <object id='errorQuestionTxQueue' type='Spring.Messaging.Support.MessageQueueFactoryObject,

 Spring.Messaging'>

 <property name='Path' value='.\Private$\errorQuestionTxQueue'/>

 <property name='MessageReadPropertyFilterSetAll' value='true'/>

 </object>

 <!-- Message Listener Container that uses MSMQ transactional for receives -->

 <object id="transactionalMessageListenerContainer" type="Spring.Messaging.Listener.TransactionalMessageListenerContainer,

 Spring.Messaging">

 <!-- as before but adding -->

 <property name="MessageTransactionExceptionHandler" ref="messageTransactionExceptionHandler"/>

 </object>

 <!-- Poison message handling policy -->

 <object id="messageTransactionExceptionHandler" type="Spring.Messaging.Listener.SendToQueueExceptionHandler,

 Spring.Messaging">

 <property name="MaxRetry" value="5"/>

 <property name="MessageQueueObjectName" value="errorQuestionTxQueue"/>

 </object>

In the event of an exception while processing the message, the message transaction will be rolled back

(putting the message back on the queue questionTxQueue for redelivery). If the same message causes an

exception in processing 5 times ,then it will be sent transactionally to the errorQuestionTxQueue and the

message transaction will commit (removing it from the queue questionTxQueue). You can also specify that

certain exceptions should commit the transaction (remove from the queue) but this is not shown here ,see

below for more informatio non this functionality The SendToQueueExceptionHandler implements the interface

IMessageTransactionExceptionHandler (discussed below) so you can write your own implementations should

the provided ones not meet your needs.

That's the quick tour folks. Hopefully you got a general feel for how things work, what requires configuration,

and what is the code you need to write. The following sections describe each of Spring's helper classes in more

detail. The sample application that ships with Spring is also a good place to get started.

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 347

33.3. Using Spring MSMQ

33.3.1. MessageQueueTemplate

The MessageQueueTemplate is used for synchronously sending and receiving messages. A single instance

can be shared across multiple threads, unlike the standard System.Messaging.MessageQueue class. (One less

resource management issue to worry about!) A thread-local instance of the MessageQueue class is available via

MessageQueueTemplate's property MessageQueue. A MessageQueueTemplate is created by passing a reference

to the name of a MessageQueueFactoryObject, you can think of it as a friendly name for your MessagingQueue

and the recipe of how to create an instance of it. See the following section on MessageQueueFactoryObject for

more information.

The MessageQueueTemplate also provides several convenience methods for sending and receiving messages.

A family of overloaded ConvertAndSend and ReceiveAndConvert methods allow you to send and receive an

object. The default message queue to send and receive from is specified using the MessageQueueTemplate's

property MessageQueueObjectName. The responsibility of converting the object to a Message and vice versa

is given to the template's associated IMessageConverter implementation. This can be set using the property

MessageConverter. The default implementation, XmlMessageConverter, uses an XmlMessageFormatter with its

TargetType set to System.String. Note that System.Messaging.IMessageFormatter classes are also not thread

safe, so MessageQueueTemplate ensures that thread-local instances of IMessageConverter are used (as they

generally wrap IMessageFormatter's that are not thread-safe).

You can use the MessageQueueTemplate to send messages to other MessageQueues by specifying their queue

'object name', the name of the MessageQueueFactoryObject.

The family of overloaded ConvertAndSend and ReceiveAndConvert methods are shown below

void ConvertAndSend(object obj);

void ConvertAndSend(object obj, MessagePostProcessorDelegate messagePostProcessorDelegate);

void ConvertAndSend(string messageQueueObjectName, object message);

void ConvertAndSend(string messageQueueObjectName, object obj, MessagePostProcessorDelegate

 messagePostProcessorDelegate);

object ReceiveAndConvert();

object ReceiveAndConvert(string messageQueueObjectName);

The transactional settings of the underlying overloaded System.Messaging.MessageQueue Send method that are

used are based on the following algorithm.

1. If the message queue is transactional and there is an ambient MessageQueueTransaction in

thread local storage (put there via the use of Spring's MessageQueueTransactionManager or

TransactionalMessageListenerContainer), the message will be sent transactionally using the

MessageQueueTransaction object in thread local storage.

Note

This lets you group together multiple messaging operations within the same transaction without

having to explicitly pass around the MessageQueueTransaction object.

2. f the message queue is transactional but there is no ambient MessageQueueTransaction, then a single message

transaction is created on each messaging operation. (MessageQueueTransactionType = Single).

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 348

3. If there is an ambient System.Transactions transaction then that transaction will be used

(MessageQueueTransactionType = Automatic).

4. If the queue is not transactional, then a non-transactional send (MessageQueueTransactionType = None) is

used.

The delegate MessagePostProcessorDelegate has the following signature

public delegate Message MessagePostProcessorDelegate(Message message);

This lets you modify the message after it has been converted from and object to a message using the

IMessageConverter but before it is sent. This is useful for setting Message properties (e.g. CorrelationId,

AppSpecific, TimeToReachQueue). Using anonymous delegates in .NET 2.0 makes this a very succinct coding

task. If you have elaborate properties that need to be set, perhaps creating a custom IMessageConverter would

be appropriate.

Overloaded Send and Receive operations that use the algorithm listed above to set transactional delivery options

are also available. These are listed below

Message Receive();

Message Receive(string messageQueueObjectName);

void Send(Message message);

void Send(string messageQueueObjectName, Message message);

void Send(MessageQueue messageQueue, Message message);

Note that in the last Send method that takes a MessageQueue instance, it is the callers responsibility to ensure

that this instance is not accessed from multiple threads. This Send method is commonly used when getting the

MessageQueue from the ResponseQueue property of a Message during an asynchronous receive process. The

receive timeout of the Receive operations is set using the ReceiveTimeout property of MessageQueueTemplate.

The default value is MessageQueue.InfiniteTimeout (which is actually ~3 months).

The XML configuration snippit for defining a MessageQueueTemplate is shown in the previous section and also

is located in the MSMQ quickstart application configuraiton file Messaging.xml

33.3.2. MessageQueueFactoryObject

The MessageQueueFactoryObject is responsible for creating MessageQueue instances. You configure the factory

with some basic information, namely the constructor parameters you are familiar with already when creating a

standard MessageQueue instance, and then setting MessageQueue properties, such a Label etc. Some configuration

tasks of a MessageQueue involve calling methods, for example to set which properties of the message to read.

These available as properties to set on the MessageQueueFactoryObject. An example declarative configuration

is shown below

 <object id='testqueue' type='Spring.Messaging.Support.MessageQueueFactoryObject, Spring.Messaging'>

 <!-- propeties passed to the MessageQueue constructor -->

 <property name='Path' value='.\Private$\testqueue'/>

 <property name='DenySharedReceive' value='true'/>

 <property name='AccessMode' value='Receive'/>

 <property name='EnableCache' value='true'/>

 <!-- properties that call configuration methods on the MessageQueue -->

 <property name='MessageReadPropertyFilterSetAll' value='true'/>

 <property name='ProductTemplate'>

 <object>

 <property name='Label' value='MyLabel'/>

 <!-- other MessageQueue properties can be set here -->

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 349

 </object>

 </property>

 </object>

Whenever an object reference is made to 'testqueue' an new instance of the MessageQueue class is created. This

Spring's so-called 'prototype' model, which differs from 'singleton' mode. In the singleton creation mode whenever

an object reference is made to a 'testqueue' the same MessageQueue instance would be used. So that a new

instance can be retrieved based on need, the message listener containers take as an argument the name of the

MessageQueueFactoryObject and not a reference. (i.e. use of 'value' instead of 'ref' in the XML).

Note

The MessageQueueFactoryObject class is an ideal candidate for use of a custom namespace. This

will be provided in the future. This will allow you to use VS.NET IntelliSense to configure this

commonly used object. An example of the potential syntax is shown below

<mq:messageQueue id="testqueue" path=".\Private$

\testqueue" MessageReadPropertyFilterSetAll="true">

 <mq:properties label="MyLabel"/>

</mq:messageQueue>

33.3.3. MessageQueue and IMessageConverter resource management

MessageQueues and IMessageFormatters (commonly used in IMessageConverter implementations) are

not thread-safe. For example, only the following methods on MessageQueue are thread-safe, BeginPeek,

BeginReceive, EndPeek, EndReceive, GetAllMessages, Peek, and Receive.

To isolate the creation logic of these classes, the factory interface IMessageQueueFactory is used. The interface

is shown below

 public interface IMessageQueueFactory

 {

 MessageQueue CreateMessageQueue(string messageQueueObjectName);

 IMessageConverter CreateMessageConverter(string messageConverterObjectName);

 }

A provided implementation, DefaultMessageQueueFactory will create an instance of each class per-

thread. It delegates the creation of the MessageQueue instance to the Spring container. The argument,

messageConverterObjectName, must be the id/name of a MessageQueueFactoryObject defined in the Spring

container.

DefaultMessageQueueFactory leverages Spring's local thread storage support so it will work correctly in stand

alone and web applications.

You can use the DefaultMessageQueueFactory independent of the rest of Spring's MSMQ support should

you need only the functionality it offers. MessageQueueTemplate and the listener containers create an instance

of DefaultMessageQueueFactory by default. Should you want to share the same instance across these two

classes, or provide your own custom implementation, use the property MessageQueueFactory on either

MessageQueueTemplate or the message listener classe.s

33.3.4. Message Listener Containers

One of the most common uses of MSMQ is to concurrently process messages delivered asynchronously. This

support is provided in Spring by message listener containers. A message listener container is the intermediary

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 350

between an IMessageListener and a MessageQueue. (Note, message listener containers are conceptually different

than Spring's Inversion of Control container, though it integrates and leverages the IoC container.) The message

listener container takes care of registering to receive messages, participating in transactions, resource acquisition

and release, exception conversion and suchlike. This allows you as an application developer to write the (possibly

complex) business logic associated with receiving a message (and possibly responding to it), and delegate

boilerplate MSMQ infrastructure concerns to the framework.

A subclass of AbstractMessageListenerContainer is used to receive messages from a MessageQueue. Which

subclass you pick depends on your transaction processing requirements. The following subclasses are available

in the namespace Spring.Messaging.Listener

• NonTransactionalMessageListenerContainer - does not surround the receive operation with a transaction

• TransactionalMessageListenerContainer - surrounds the receive operation with local (non-DTC) based

transaction(s).

• DistributedTxMessageListenerContainer - surrounds the receive operation with a distributed (DTC)

transaction

Each of these containers use an implementation in which is based on Peeking for messages on a MessageQueue.

Peeking is the only resource efficient approach that can be used in order to have MessageQueue receipt in

conjunction with transactions, either local MSMQ transactions, local ADO.NET based transactions, or DTC

transactions. Each container can specify the number of threads that will be created for processing messages after

the Peek occurs via the property MaxConcurrentListeners. Each processing thread will continue to listen for

messages up until the timeout value specified by ListenerTimeLimit or until there are no more messages on

the queue (whichever comes first). The default value of ListenerTimeLimit is TimeSpan.Zero, meaning that

only one attempt to receive a message from the queue will be performed by each listener thread. The current

implementation uses the standard .NET thread pool. Future implementations will use a custom (and pluggable)

thread pool.

33.3.4.1. NonTransactionalMessageListenerContainer

This container performs a Receive operation on the MessageQueue without any transactional settings. As such

messages will not be redelivered if an exception is thrown during message processing. Exceptions during message

processing can be handled via an implementation of the interface IExceptionHandler. This can be set via the

property ExceptionHandler on the listener. The IExceptionHandler interface is shown below

 public interface IExceptionHandler

 {

 void OnException(Exception exception, Message message);

 }

An example of configuring a NonTransactionalMessageListenerContainer with an IExceptionHandler is

shown below

 <!-- Queue to receive from -->

 <object id='msmqTestQueue' type='Spring.Messaging.Support.MessageQueueFactoryObject, Spring.Messaging'>

 <property name='Path' value='.\Private$\testqueue'/>

 <property name='MessageReadPropertyFilterSetAll' value='true'/>

 <property name='ProductTemplate'>

 <object>

 <property name='Label' value='MyTestQueueLabel'/>

 </object>

 </property>

 </object>

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 351

 <!-- Queue to respond to -->

 <object id='msmqTestResponseQueue' type='Spring.Messaging.Support.MessageQueueFactoryObject,

 Spring.Messaging'>

 <property name='Path' value='.\Private$\testresponsequeue'/>

 <property name='MessageReadPropertyFilterSetAll' value='true'/>

 <property name='ProductTemplate'>

 <object>

 <property name='Label' value='MyTestResponseQueueLabel'/>

 </object>

 </property>

 </object>

 <!-- Listener container -->

 <object id="nonTransactionalMessageListenerContainer" type="Spring.Messaging.Listener.NonTransactionalMessageListenerContainer,

 Spring.Messaging">

 <property name="MessageQueueObjectName" value="msmqTestQueue"/>

 <property name="MaxConcurrentListeners" value="2"/>

 <property name="ListenerTimeLimit" value="20s"/> <!-- 20 seconds -->

 <property name="MessageListener" ref="messageListenerAdapter"/>

 <property name="ExceptionHandler" ref="exceptionHandler"/>

 </object>

 <!-- Delegate to plain CLR object for message handling -->

 <object id="messageListenerAdapter" type="Spring.Messaging.Listener.MessageListenerAdapter,

 Spring.Messaging">

 <property name="DefaultResponseQueueName" value="msmqTestResponseQueue"/>

 <property name="HandlerObject" ref="simpleHandler"/>

 </object>

 <!-- Classes you need to write -->

 <object id="simpleHandler" type="MyNamespace.SimpleHandler, MyAssembly"/>

 <object id="exceptionHandler" type="MyNamespace.SimpleExceptionHandler, MyAssembly"/>

The SimpleHandler class would look something like this

public class SimpleHandler : ISimpleHandler

{

 public void HandleObject(string txt)

 {

 // perform message processing...

 Console.WriteLine("Received text: " + txt);

 }

}

33.3.4.2. TransactionalMessageListenerContainer

This message listener container performs receive operations within the context of local transaction. This

class requires an instance of Spring's IPlatformTransactionManager, either AdoPlatformTransactionManager,

HibernateTransactionManager, or MessageQueueTransactionManager.

If you specify a MessageQueueTransactionManager then a MessageQueueTransaction will be started

before receiving the message and used as part of the container's receive operation. As with other

IPlatformTransactionManager implementation's, the transactional resources (in this case an instance of the

MessageQueueTransaction class) is bound to thread local storage. MessageQueueTemplate will look in thread-

local storage and use this 'ambient' transaction if found for its send and receive operations. The message

listener is invoked and if no exception occurs, then the MessageQueueTransactionManager will commit the

MessageQueueTransaction.

The message listener implementation can call into service layer classes that are made transactional using

standard Spring declarative transactional techniques. In case of exceptions in the service layer, the database

operation will be rolled back (nothing new here), and the TransactionalMessageListenerContainer will call it's

IMessageTransactionExceptionHandler implementation to determine if the MessageQueueTransaction should

commit (removing the message from the queue) or rollback (leaving the message on the queue for redelivery).

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 352

Note

The use of a transactional service layer in combination with a MessageQueueTransactionManager is a

powerful combination that can be used to achieve "exactly one" transaction message processing with

database operations. This requires a little extra programming effort and is a more efficient alternative

than using distributed transactions which are commonly associated with this functionality since both

the database and the message transaction commit or rollback together.

The additional programming logic needed to achieve this is to keep track of the Message.Id that

has been processed successfully within the transactional service layer. This is needed as there

may be a system failure (e.g. power goes off) between the 'inner' database commit and the 'outer'

messaging commit, resulting in message redelivery. The transactional service layer needs logic to

detect if incoming message was processed successfully. It can do this by checking the database for

an indication of successful processing, perhaps by recording the Message.Id itself in a status table. If

the transactional service layer determines that the message has already been processed, it can throw a

specific exception for this case. The container's exception handler will recognize this exception type

and vote to commit (remove from the queue) the 'outer' messaging transaction. Spring provides an

exception handler with this functionality, see SendToQueueExceptionHandler described below.

An example of configuring the TransactionalMessageListenerContainer using a

MessageQueueTransactionManager is shown below

 <!-- Queue to receive from -->

 <object id='msmqTestQueue' type='Spring.Messaging.Support.MessageQueueFactoryObject, Spring.Messaging'>

 <property name='Path' value='.\Private$\testqueue'/>

 <property name='MessageReadPropertyFilterSetAll' value='true'/>

 <property name='ProductTemplate'>

 <object>

 <property name='Label' value='MyTestQueueLabel'/>

 </object>

 </property>

 </object>

 <!-- Queue to respond to -->

 <object id='msmqTestResponseQueue' type='Spring.Messaging.Support.MessageQueueFactoryObject,

 Spring.Messaging'>

 <property name='Path' value='.\Private$\testresponsequeue'/>

 <property name='MessageReadPropertyFilterSetAll' value='true'/>

 <property name='ProductTemplate'>

 <object>

 <property name='Label' value='MyTestResponseQueueLabel'/>

 </object>

 </property>

 </object>

 <!-- Transaction Manager for MSMQ Messaging -->

 <object id="messageQueueTransactionManager" type="Spring.Messaging.Core.MessageQueueTransactionManager,

 Spring.Messaging"/>

 <!-- The transaction message listener container -->

 <object id="transactionalMessageListenerContainer" type="Spring.Messaging.Listener.TransactionalMessageListenerContainer,

 Spring.Messaging">

 <property name="MessageQueueObjectName" value="msmqTestQueue"/>

 <property name="PlatformTransactionManager" ref="messageQueueTransactionManager"/>

 <property name="MaxConcurrentListeners" value="5"/>

 <property name="ListenerTimeLimit" value="20s"/>

 <property name="MessageListener" ref="messageListenerAdapter"/>

 <property name="MessageTransactionExceptionHandler" ref="messageTransactionExceptionHandler"/>

 </object>

 <!-- Delegate to plain CLR object for message handling -->

 <object id="messageListenerAdapter" type="Spring.Messaging.Listener.MessageListenerAdapter,

 Spring.Messaging">

 <property name="DefaultResponseQueueName" value="msmqTestResponseQueue"/>

 <property name="HandlerObject" ref="simpleHandler"/>

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 353

 </object>

 <!-- Poison message handling -->

 <object id="messageTransactionExceptionHandler" type="Spring.Messaging.Listener.SendToQueueExceptionHandler,

 Spring.Messaging">

 <property name="MaxRetry" value="5"/>

 <property name="MessageQueueObjectName" value="testTxErrorQueue"/>

 </object>

 <!-- Classes you need to write -->

 <object id="simpleHandler" type="MyNamespace.SimpleHandler, MyAssembly"/>

If you specify either AdoPlatformTransactionManager or HibernateTransactionManager then a local database

transaction will be started before the receiving the message. By default, the container will also start a local

MessageQueueTransaction after the local database transaction has started, but before the receiving the message.

This MessageQueueTransaction will be used to receive the message. By default the MessageQueueTransaction

will be bound to thread local storage so that any MessageQueueTemplate send or receive operations will

participate transparently in the same MessageQueueTransaction. If you do not want this behavior set the property

ExposeContainerManagedMessageQueueTransaction to false.

In case of exceptions during IMessageListener processing when using either

either AdoPlatformTransactionManager or HibernateTransactionManager the container's

IMessageTransactionExceptionHandler will determine if the MessageQueueTransaction should commit

(removing it from the queue) or rollback (placing it back on the queue for redelivery). The listener exception will

always trigger a rollback in the 'outer' database transaction.

Poison message handing, that is, the endless redelivery of a message due to exceptions during processing, can be

detected using implementations of the IMessageTransactionExceptionHandler. This interface is shown below

public interface IMessageTransactionExceptionHandler

{

 TransactionAction OnException(Exception exception, Message message, MessageQueueTransaction

 messageQueueTransaction);

}

The return value is an enumeration with the values Commit and Rollback. A specific implementation is

provided that will move the poison message to another queue after a maximum number of redelivery attempts.

See SendToQueueExceptionHandler described below. You can set a specific implementation to by setting

TransactionalMessageListenerContainer's property MessageTransactionExceptionHandler

The IMessageTransactionExceptionHandler implementation SendToQueueExceptionHandler keeps track

of the Message's Id property in memory with a count of how many times an exception has occurred.

If that count is greater than the handler's MaxRetry count it will be sent to another queue using the

provided MessageQueueTransaction. The queue to send the message to is specified via the property

MessageQueueObjectName.

33.3.4.3. DistributedTxMessageListenerContainer

This message listener container performs receive operations within the context of distributed transaction. A

distributed transaction is started before a message is received. The receive operation participates in this transaction

using by specifying MessageQueueTransactionType = Automatic. The transaction that is started is automatically

promoted to two-phase-commit to avoid the default behavior of transaction promotion since the only reason to

use this container is to use two different resource managers (messaging and database typically).

The commit and rollback semantics are simple, if the message listener does not throw an exception the transaction

is committed, otherwise it is rolled back.

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 354

Exceptions in message listener processing are handled by implementations of the

IDistributedTransactionExceptionHandler interface. This interface is shown below

 public interface IDistributedTransactionExceptionHandler

 {

 bool IsPoisonMessage(Message message);

 void HandlePoisonMessage(Message poisonMessage);

 void OnException(Exception exception, Message message);

 }

the IsPoisonMessage method determines whether the incoming message is a poison message. This

method is called before the IMessageListener is invoked. The container will call HandlePoisonMessage

is IsPoisonMessage returns true and will then commit the distributed transaction (removing the message

from the queue. Typical implementations of HandlePoisonMessage will move the poison message

to another queue (under the same distributed transaction used to receive the message). The class

SendToQueueDistributedTransactionExceptionHandler detects poison messages by tracking the Message Id

property in memory with a count of how many times an exception has occurred. If that count is greater than the

handler's MaxRetry count it will be sent to another queue. The queue to send the message to is specified via the

property MessageQueueObjectName.

33.4. MessageConverters

33.4.1. Using MessageConverters

In order to facilitate the sending of business model objects, the MessageQueueTemplate has various send methods

that take a .NET object as an argument for a message's data content. The overloaded methods ConvertAndSend and

ReceiveAndConvert in MessageQueue delegate the conversion process to an instance of the IMessageConverter

interface. This interface defines a simple contract to convert between .NET objects and JMS messages. The

interface is shown below

 public interface IMessageConverter : ICloneable

 {

 Message ToMessage(object obj);

 object FromMessage(Message message);

 }

There are a standard implementations provided the simply wrap existing IMessageFormatter implementations.

• XmlMessageConverter - uses a XmlMessageFormatter.

• BinaryMessageConverter - uses a BinaryMessageFormatter

• ActiveXMessageConverter - uses a ActiveXMessageFormatter

The default implementation used in MessageQueueTemplate and the message listener containers is an instance

of XmlMessageConverter configured with a TargetType to be System.String. You specify the types that the

XmlMessageConverter can convert though either the array property TargetTypes or TargetTypeNames. Here is

an example taken from the QuickStart application

 <object id="xmlMessageConverter" singleton="false" type="Spring.Messaging.Support.Converters.XmlMessageConverter,

 Spring.Messaging">

 <property name="TargetTypes">

 <list>

 <value>Spring.MsmqQuickStart.Common.Data.TradeRequest, Spring.MsmqQuickStart.Common</value>

 <value>Spring.MsmqQuickStart.Common.Data.TradeResponse, Spring.MsmqQuickStart.Common</value>

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 355

 <value>System.String, mscorlib</value>

 </list>

 </property>

 </object>

You can specify other IMessageConverter implementations using the MessageConverterObjectName property

on the MessageQueueTemplate and MessageListenerAdapter.

Note

The scope of the object definition is set to singleton="false", meaning that a new instance of

the MessageConverter will be created each time you ask the container for an object of the name

'xmlMessageConverter'. This is important to ensure that a new instance will be used for each thread.

If you forget, a warning will be logged and IMessageConverter's Clone() method will be called to

create an indepentend instance.

Other implementations provided are

• XmlDocumentConverter - loads and saves an XmlDocument to the message BodyStream. This lets you

manipulate directly the XML data independent of type serialization issues. This is quite useful if you use XPath

expressions to pick out the relevant information to construct your business objects.

Other potential implementations:

• RawBytesMessageConverter - directly write raw bytes to the message stream, compress

• CompressedMessageConverter - compresses the message payload

• EncryptedMessageConverter - encrypt the message (standard MSMQ encryptiong has several limitations)

• SoapMessageConverter - use soap formatting.

33.5. Interface based message processing

33.5.1.1. MessageListenerAdapater

The MessageListenerAdapter allows methods of a class that does not implement the IMessageListener interface

to be invoked upon message delivery. Lets call this class the 'message handler' class. To achieve this goal

the MessageListenerAdapter implements the standard IMessageListener interface to receive a message and

then delegates the processing to the message handler class. Since the message handler class does not contain

methods that refer to MSMQ artifacts such as Message, the MessageListenerAdapter uses a IMessageConverter

to bridge the MSMQ and 'plain object' worlds. As a reminder, the default XmlMessageConverter used in

MessageQueueTemplate and the message listener containers converts from Message to string. Once the incoming

message is converted to an object (string for example) a method with the name 'HandleMessage' is invoked via

reflection passing in the string as an argument.

Using the default configuration of XmlMessageConverter in the message listeners, a simple string based message

handler would look like this.

public class MyHandler

{

 public void HandleMessage(string text)

 {

 ...

 }

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 356

}

The next example has a similar method signature but the name of the handler method name has been changed to

"DoWork", by setting the adapter's property DefaultHandlerMethod.

public interface IMyHandler

{

 void DoWork(string text);

}

If your IMessageConverter implementation will return multiple object types, overloading the handler method is

perfectly acceptable, the most specific matching method will be used. A method with an object signature would

be consider a 'catch-all' method of last resort.

public interface IMyHandler

{

 void DoWork(string text);

 void DoWork(OrderRequest orderRequest);

 void DoWork(InvoiceRequest invoiceRequest);

 void DoWork(object obj);

}

Another of the capabilities of the MessageListenerAdapter class is the ability to automatically send back a

response Message if a handler method returns a non-void value. Any non-null value that is returned from the

execution of the handler method will (in the default configuration) be converted to a string. The resulting string

will then be sent to the ResponseQueue defined in the Message's ResponseQueue property of the original Message,

or the DefaultResponseQueueName on the MessageListenerAdapter (if one has been configured) will be used. If

not ResponseQueue is found then an Spring MessagingException will be thrown. Please note that this exception

will not be swallowed and will propagate up the call stack.

Here is an example of Handler signatures that have various return types.

public interface IMyHandler

{

 string DoWork(string text);

 OrderResponse DoWork(OrderRequest orderRequest);

 InvoiceResponse DoWork(InvoiceRequest invoiceRequest);

 void DoWork(object obj);

}

The following configuration shows how to hook up the adapter to process incoming MSMQ messages using the

default message converter.

 <!-- Delegate to plain CLR object for message handling -->

 <object id="messageListenerAdapter" type="Spring.Messaging.Listener.MessageListenerAdapter,

 Spring.Messaging">

 <property name="DefaultResponseQueueName" value="msmqTestResponseQueue"/>

 <property name="HandlerObject" ref="myHandler"/>

 </object>

33.6. Comparison with using WCF

The goals of Spring's MSMQ messaging support are quite similar to those of WCF with its MSMQ related

bindings, in as much as a WCF service contract is a POCO (minus the attributes if you really picky about what

you call a POCO). Spring's messaging support can give you the programming convenience of dealing with POCO

contracts for message receiving but does not (at the moment) provide a similar POCO contract for sending,

instead relying on explicit use of the MessageQueueTemplate class. This feature exists - some question whether

it should for messaging - in the Java version of the Spring framework, see JmsInvokerServiceExporter and

JmsInvokerProxyFactoryBean.

Message Oriented Middleware - MSMQ

Spring Framework (Version 1.3.2) 357

The good news is that if and when it comes time to move from a Spring MSMQ solution to WCF, you will

be in a great position as the POCO interface used for business processing when receiving in a Spring based

MSMQ application can easily be adapted to a WCF environment. There may also be some features unique to

MSMQ and/or Spring's MSMQ support that you may find appealing over WCF. Many messaging applications

still need to be 'closer to the metal' and this is not possible using the WCF bindings, for example Peeking and

Label, AppSpecific properties, multicast.. An interesting recent quote by Yoel Arnon (MSMQ guru) "With all

the respect to WCF, System.Messaging is still the major programming model for MSMQ programmers, and is

probably going to remain significant for the foreseeable future. The message-oriented programming model is

different from the service-oriented model of WCF, and many real-world solutions would always prefer it."

Spring Framework (Version 1.3.2) 358

Chapter 34. Scheduling and Thread
Pooling

34.1. Introduction

The Spring Framework features integration classes for scheduling support. Currently, Spring supports the Quartz

Scheduler (http://quartznet.sourceforge.net/). The scheduler is set up using a IFactoryObject with optional

references to Trigger instances, respectively. Furthermore, a convenience class for the Quartz Scheduler is

available that allows you to invoke a method of an existing target object.

Note

There is a Quartz Quickstart application that is shipped with Spring.NET. It is documented here.

34.2. Using the Quartz.NET Scheduler

Quartz uses Trigger, Job and JobDetail objects to realize scheduling of all kinds of jobs. For the basic concepts

behind Quartz, have a look at http://quartznet.sourceforge.net/. For convenience purposes, Spring offers a couple

of classes that simplify the usage of Quartz within Spring-based applications.

34.2.1. Using the JobDetailObject

JobDetail objects contain all information needed to run a job. The Spring Framework provides a

JobDetailObject that makes the JobDetail easier to configure and with sensible defaults. Let's have a look at

an example:

<object name="ExampleJob" type="Spring.Scheduling.Quartz.JobDetailObject, Spring.Scheduling.Quartz">

 <property name="JobType" value="Example.Quartz.ExampleJob, Example.Quartz" />

 <property name="JobDataAsMap">

 <dictionary>

 <entry key="Timeout" value="5" />

 </dictionary>

 </property>

</object>

The job detail object has all information it needs to run the job (ExampleJob). The timeout is specified in the job

data dictionary. The job data dictonary is available through the JobExecutionContext (passed to you at execution

time), but the JobDetailObject also maps the properties from the job data map to properties of the actual job.

So in this case, if the ExampleJob contains a property named Timeout, the JobDetailObject will automatically

apply it:

namespace Example.Quartz;

public class ExampleJob : QuartzJobObject {

 private int timeout;

 /// <summary>

 /// Setter called after the ExampleJob is instantiated

 /// with the value from the JobDetailObject (5)

 /// </summary>

 public int Timeout {

 set { timeout = value; };

 }

http://quartznet.sourceforge.net/
http://quartznet.sourceforge.net/

Scheduling and Thread Pooling

Spring Framework (Version 1.3.2) 359

 protected override void ExecuteInternal(JobExecutionContext context) {

 // do the actual work

 }

}

All additional settings from the job detail object are of course available to you as well.

Note: Using the name and group properties, you can modify the name and the group of the job, respectively.

By default, the name of the job matches the object name of the job detail object (in the example above, this is

ExampleJob).

34.2.2. Using the MethodInvokingJobDetailFactoryObject

Often you just need to invoke a method on a specific object. Using the MethodInvokingJobDetailFactoryObject

you can do exactly this:

<object id="JobDetail" type="Spring.Scheduling.Quartz.MethodInvokingJobDetailFactoryObject,

 Spring.Scheduling.Quartz">

 <property name="TargetObject" ref="ExampleBusinessObject" />

 <property name="TargetMethod" value="DoIt" />

</object>

The above example will result in the doIt method being called on the exampleBusinessObject method (see

below):

public class ExampleBusinessObject {

 // properties and collaborators

 public void DoIt() {

 // do the actual work

 }

}

<object id="ExampleBusinessObject" type="Examples.BusinessObjects.ExampleBusinessObject,

 Examples.BusinessObjects"/>

Using the MethodInvokingJobDetailFactoryObject, you don't need to create one-line jobs that just invoke a

method, and you only need to create the actual business object and wire up the detail object.

By default, Quartz Jobs are stateless, resulting in the possibility of jobs interfering with each other. If you specify

two triggers for the same JobDetail, it might be possible that before the first job has finished, the second one

will start. If JobDetail classes implement the Stateful interface, this won't happen. The second job will not

start before the first one has finished. To make jobs resulting from the MethodInvokingJobDetailFactoryObject

non-concurrent, set the concurrent flag to false.

<object id="JobDetail" type="Spring.Scheduling.Quartz.MethodInvokingJobDetailFactoryObject,

 Spring.Scheduling.Quartz">

 <property name="TargetObject" ref="ExampleBusinessObject" />

 <property name="TargetMethod" value="DoIt" />

 <property name="Concurrent" value="false" />

</object>

Note

By default, jobs will run in a concurrent fashion.

Also note that when using MethodInvokingJobDetailFactoryObject you can't use database

persistence for Jobs. See the class documentation for additional details.

Scheduling and Thread Pooling

Spring Framework (Version 1.3.2) 360

34.2.3. Wiring up jobs using triggers and the SchedulerFactoryObject

We've created job details and jobs. We've also reviewed the convenience class that allows to you invoke a method

on a specific object. Of course, we still need to schedule the jobs themselves. This is done using triggers and

a SchedulerFactoryObject. Several triggers are available within Quartz. Spring offers two subclassed triggers

with convenient defaults: CronTriggerObject and SimpleTriggerObject

Triggers need to be scheduled. Spring offers a SchedulerFactoryObject that exposes triggers to be set as

properties. SchedulerFactoryObject schedules the actual jobs with those triggers.

Find below a couple of examples:

<object id="SimpleTrigger" type="Spring.Scheduling.Quartz.SimpleTriggerObject, Spring.Scheduling.Quartz">

 <!-- see the example of method invoking job above -->

 <property name="JobDetail" ref="ExampleJob" />

 <!-- 10 seconds -->

 <property name="StartDelay" value="10s" />

 <!-- repeat every 50 seconds -->

 <property name="RepeatInterval" value="50s" />

</object>

<object id="CronTrigger" type="Spring.Scheduling.Quartz.CronTriggerObject, Spring.Scheduling.Quartz">

 <property name="JobDetail" ref="ExampleJob" />

 <!-- run every morning at 6 AM -->

 <property name="CronExpressionString" value="0 0 6 * * ?" />

</object>

Now we've set up two triggers, one running every 50 seconds with a starting delay of 10 seconds and one every

morning at 6 AM. To finalize everything, we need to set up the SchedulerFactoryObject:

<object id="quartzSchedulerFactory" type="Spring.Scheduling.Quartz.SchedulerFactoryObject,

 Spring.Scheduling.Quartz">

 <property name="triggers">

 <list>

 <ref object="CronTrigger" />

 <ref object="SimpleTrigger" />

 </list>

 </property>

</object>

More properties are available for the SchedulerFactoryObjecct for you to set, such as the calendars used by

the job details, properties to customize Quartz with, etc. Have a look at the SchedulerFactoryObject SDK docs

for more information.

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/scheduling/quartz/SchedulerFactoryBean.html

Spring Framework (Version 1.3.2) 361

Chapter 35. Template Engine Support

35.1. Introduction

The Spring Framework features integration classes for templating engine support. Spring 1.3 provides support

for the NVelocity templating engine.

35.2. Dependencies

The Spring NVelocity support depends on the Castle project's NVelocity implementation which is located in the

lib directory of the Spring release.

35.3. Configuring a VelocityEngine

The NVelocity template engine is set up using a IFactoryObject with optional configuration parameters to define

where templates reside, define logging and more. For more information on IFactoryObjects see Section 5.9.3,

“Customizing instantiation logic using IFactoryObjects”. A custom namespace parser is provided to simplify

the configuration of a NVelocity template engine. For more information on custom namespace parser see

Section 5.11.1, “Registering custom parsers”.

35.3.1. Simple file based template engine definition

You create a simple definition of the template engine that uses the default resource loader as follows:

<objects xmlns="http://www.springframework.net" xmlns:nv="http://www.springframework.net/nvelocity">

 <!-- Simple no arg file based configuration use's NVeclocity default file resource loader -->

 <nv:engine id="velocityEngine" />

</objects>

The velocity engine could then be used to load and merge a local template using a simple relative path (the default

resource loader path is the current execution directory):

StringWriter stringWriter = new StringWriter();

Hashtable modelTable = new Hashtable();

modelTable.Add("var1", TEST_VALUE);

VelocityContext velocityContext = new VelocityContext(modelTable);

velocityEngine.MergeTemplate("Template/Velocity/MyTemplate.vm", Encoding.UTF8.WebName, velocityContext,

 stringWriter);

string mergedContent = stringWriter.ToString();

To disable the use of NVelocity's file loader that tracks runtime changes, set the element prefer-file-system-

access of <engine/> to false.

35.3.2. Configuration Options

You can define several attributes on the <engine> element to control how the factory is configured:

Table 35.1. Engine Factory Configuration Options

Attribute Description Required Default
Value

config-file A uri of a properties file defining the NVelocity

configuration. This value accepts all spring resource

no N/A

http://www.castleproject.org/others/nvelocity/index.html

Template Engine Support

Spring Framework (Version 1.3.2) 362

Attribute Description Required Default
Value

loader uri (e.g., file://, http://). See Section 35.3.7,

“Using a custom configuration file”

prefer-file-system-access Instructs the NVelocity engine factory to attempt

use NVelocity's file loader. When set to false the

provided SpringResourceLoader will be used (and the

ResourceLoaderPath property must be set)

no true

override-logging Instructs the NVelocity engine factory to use the

provided spring commons logging based logging

system. See Section 35.3.8, “Logging”

no true

35.3.3. Assembly based template loading

When templates are packaged in an assembly, NVelocity's assembly resource loader can be used to define where

templates reside:

<nv:engine id="velocityEngine" >

 <nv:resource-loader>

 <nv:assembly name="MyAssembly" />

 </nv:resource-loader>

</nv:nvelocity>

Using the example above the template would be loaded using a namespace syntax for the template resource:

velocityEngine.MergeTemplate("MyAssembly.MyNamespace.MyTemplate.vm", Encoding.UTF8.WebName, velocityContext,

 stringWriter);

35.3.4. Using Spring's IResourceLoader to load templates

In some cases Spring's IResource abstraction can be beneficial to load templates from a variety of resources. A

Spring IResource loader extension to the NVelocity resource loader implementation is provided for this use case.

The following object definition loads the NVelocity templates from a single path

<nv:engine id="velocityEngine">

 <nv:resource-loader>

 <nv:spring uri="file://Template/Velocity/"/>

 </nv:resource-loader>

</nv:engine>

Or with multiple locations

<nv:engine id="velocityEngine">

 <nv:resource-loader>

 <nv:spring uri="file://Template/Velocity/"/>

 <nv:spring uri="assembly://MyAssembly/MyNameSpace"/>

 </nv:resource-loader>

</nv:engine>

Note

By default spring will attempt to load resources using NVelocity's file based template loading (useful

for detection of template changes at runtime). If this is not desirable you set the prefer-file-system-

access property of the factory object to false which will cause the factory to utilize the supplied

spring resource loader.

Template Engine Support

Spring Framework (Version 1.3.2) 363

Using the example above when resource loader paths are defined templates can be loaded using their name:

string mergedTemplate = VelocityEngineUtils.MergeTemplateIntoString(velocityEngine, "MyFileTemplate.vm",

 Encoding.UTF8.WebName, model); // template loaded from file://Template/Velocity/

string mergedTemplate = VelocityEngineUtils.MergeTemplateIntoString(velocityEngine, "MyAssemblyTemplate.vm",

 Encoding.UTF8.WebName, model); // template loaded from assembly://MyAssembly/MyNameSpace

35.3.5. Defining a custom resource loader

The following defines a custom resource loader (the type is an extension of NVelocity's ResourceLoader class):

<nv:engine id="velocityEngine">

 <nv:resource-loader>

 <nv:custom name="myResourceLoader"

 description="A custom resource loader"

 type="MyNamespace.MyResourceLoader, MyAssembly"

 path="Template/Velocity/"/>

 </nv:resource-loader>

</nv:engine>

35.3.6. Resource Loader configuration options

The <nv:resource-loader> element has additional attributes which define how NVelocity's resource manager and

resource loader behave.

Table 35.2. Resource Loader Configuration Options

Attribute Description Required Default
Value

default-cache-size defines resource manager global cache

size, applies when caching is turned on.

This maps to NVelocity's resource manager

resource.manager.defaultcache.size property

no 89

template-caching Enables template caching for the defined resource

loader. This maps to NVelocity's resource loader

<name>.resource.loader.cache property

no false

modification-check-

interval

The modification check interval value (seconds)

of the resource loader, applies only to resource

loader with change detection capabilities (file or

custom). This maps to NVelocity's resource loader

<name>.resource.loader.modificationCheckInterval

property

no 2

35.3.7. Using a custom configuration file

If so desired one could provide a custom configuration resource to customize the NVelocity configuration:

<nv:engine id="velocityEngine" config-file="file://Template/Velocity/config.properties"/>

You can override specific properties by providing the VelocityProperties property to the NVelocity factory

object (shown above)

<nv:engine id="velocityTemplate" >

 <nv:nvelocity-properties>

 <entry key="input.encoding" value="ISO-8859-1"/>

Template Engine Support

Spring Framework (Version 1.3.2) 364

 <entry key="output.encoding" value="ISO-8859-1"/>

 </nv:nvelocity-properties>

</nv:engine>

35.3.8. Logging

By default Spring will override NVelocity's default ILogSystem implementation with its own

CommonsLoggingLogSystem implementation so that the logging stream of NVelocity will go to the same logging

subsystem that Spring uses. If this is not desirable, you can specify the following property of the NVelocity

factory object:

<template:nvelocity id="velocityEngine" override-logging="false" />

35.4. Merging a template

Spring provides the VelocityEngineUtils utility for merging templates using an engine instance:

string mergedTemplate = VelocityEngineUtils.MergeTemplateIntoString(velocityEngine, "MyTemplate.vm",

 Encoding.UTF8.WebName, model);

35.5. Configuring a VelocityEngine without a custom
namespace

While most users will prefer to use the NVelocity custom namespace to configure a VelocityEngine, you can also

use standard <object/> definition syntax as shown below:

To create a VelocityEngine using the default file resource loader use the definition:

<!-- Simple no arg file based configuration use's NVelocity default file resource loader -->

<object id="velocityEngine" type="Spring.Template.Velocity.VelocityEngineFactoryObject,

 Spring.Template.Velocity" />

For convenience in defining NVelocity engine instances a custom namespace is provided, for example the

resource loader definition could be done this way:

<objects xmlns="http://www.springframework.net" xmlns:nv="http://www.springframework.net/nvelocity">

<nv:nvelocity id="velocityEngine" >

 <nv:resource-loader>

 <nv:file path="Template/Velocity/" />

 </nv:resource-loader>

</nv:nvelocity>

</objects

When templates are packaged in an assembly, NVelocity's assembly resource loader can be used to define where

templates reside:

<!-- Assembly based template loading with NVelocity assembly resource loader -->

<object id="velocityEngine" type="Spring.Template.Velocity.VelocityEngineFactoryObject,

 Spring.Template.Velocity">

 <property name="VelocityProperties">

 <dictionary key-type="string" value-type="object">

 <entry key="resource.loader" value="assembly"/>

 <entry key="assembly.resource.loader.class" value="NVelocity.Runtime.Resource.Loader.AssemblyResourceLoader"/

>

 <entry key="assembly.resource.loader.assembly" value="MyAssembly"/>

 </dictionary>

Template Engine Support

Spring Framework (Version 1.3.2) 365

 </property>

</object>

To load NVelocity templates from a single path use the definition:

<object id="velocityEngine" type="Spring.Template.Velocity.VelocityEngineFactoryObject,

 Spring.Template.Velocity" >

 <property name="ResourceLoaderPath" value="file://MyTemplateFolder/AnotherFolder/" />

</object>

To load NVelocity templates from multiple paths use the definition:

<object id="velocityEngine" type="Spring.Template.Velocity.VelocityEngineFactoryObject,

 Spring.Template.Velocity" >

 <property name="ResourceLoaderPaths" >

 <list>

 <value>file://MyTemplateFolder/</value>

 <value>file://MyOtherTemplateFolder/</value>

 </list>

 </property>

</object>

Note

By default spring will attempt to load resources using NVelocity's file based template loading

(useful for detection of template changes at runtime). If this is not desirable you set the

preferFileSystemAccess property of the factory object to false which will cause the factory to

utilize the supplied spring resource loader.

To refer to a property file based configuration of the TemplateEngine use the definition:

<object id="velocityEngine" type="Spring.Template.Velocity.VelocityEngineFactoryObject,

 Spring.Template.Velocity" >

 <property name="ConfigLocation " value="file://Template/Velocity/config.properties" />

</object>

Note

You can override specific properties by providing the VelocityProperties property.

To not integrate with the Common.Logging subsystem, set the OverrideLogging property to false:

<object id="velocityEngine" type="Spring.Template.Velocity.VelocityEngineFactoryObject,

 Spring.Template.Velocity" >

 <property name="OverrideLogging" value="false" />

</object>

Spring Framework (Version 1.3.2) 366

Part VI. VS.NET Integration
This part of the reference documentation covers the Spring Framework's integration with VS.NET

• Chapter 36, Visual Studio.NET Integration

Spring Framework (Version 1.3.2) 367

Chapter 36. Visual Studio.NET Integration

36.1. XML Editing and Validation

Most of this section is well travelled territory for those familiar with editing XML files in their favorite XML

editor. The XML configuration data that defines the objects that Spring will manage for you are validated

against the Spring.NET XML Schema at runtime. The location of the XML configuration data to create an

IApplicationContext can be any of the resource locations supported by Spring's IResource abstraction. (See

Section 7.1, “Introduction” for more information.) To create an IApplicationContext using a "standalone" XML

configuration file the custom configuration section in the standard .NET application configuration would read:

<spring>

 <context>

 <resource uri="file://objects.xml"/>

 </context>

</spring>

The VS.NET 2005 or later, the XML editor uses the attribute xsi:schemaLocation as a hint to associate the

physical location of a schema file with the XML document being edited. VS.NET 2002/2003 do not recognize

the xsi:schemaLocation element. If you reference the Spring.NET XML schema as shown below, you can get

intellisense and validation support while editing a Spring configuration file in VS.NET 2005/2008/2010. In order

to get this functionality in VS.NET 2002/2003 you will need to register the schema with VS.NET or include the

schema as part of your application project.

<?xml version="1.0" encoding="UTF-8"?>

<objects xmlns="http://www.springframework.net"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.net http://www.springframework.net/xsd/spring-objects.xsd">

 <object id="..." type="...">

 ...

 </object>

 <object id="..." type="...">

 ...

 </object>

 ...

</objects>

It is typically more convenient to install the schema in VS.NET, even for VS.NET 2005/2008/2010, as it makes

the xml a little less verbose and you don't need to keep copying the XSD file for each project you create. The

following table lists the schema directories for each version of VS.NET:

Table 36.1.

Visual Studio Version Directory in which to place Spring .XSD files

VS.NET 2003 C:\Program Files\Microsoft Visual Studio .NET

2003\Common7\Packages\schemas\xml

VS.NET 2005 C:\Program Files\Microsoft Visual Studio 8\Xml

\Schemas

VS.NET 2008 C:\Program Files\Microsoft Visual Studio

9.0\Xml\Schemas

Visual Studio.NET Integration

Spring Framework (Version 1.3.2) 368

Visual Studio Version Directory in which to place Spring .XSD files

VS.NET 2010 C:\Program Files\Microsoft Visual Studio

10.0\Xml\Schemas

Spring's .xsd schemas are located in the directory doc/schema. In that directory is also a NAnt build file to help

copy over the .xsd files to the appropriate VS.NET locations. To execute this script simply type 'nant' in the doc/

schema directory.

Once you have registered the schema with VS.NET you can adding only the namespace declaration to the objects

element,

<?xml version="1.0" encoding="UTF-8"?>

<objects xmlns="http://www.springframework.net">

 <object id="..." type="...">

 ...

 </object>

 <object id="..." type="...">

 ...

 </object>

 ...

</objects>

Once registered, the namespace declaration alone is sufficient to get intellisense and validation of the

configuration file from within VS.NET. Alternatively, you can select the .xsd file to use by setting the

targetSchema property in the Property Sheet for the configuration file.

As shown in the section Section 5.2.3, “Using the container” Spring.NET supports using .NET's application

configuration file as the location to store the object definitions that will be managed by the object factory.

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.ContextHandler, Spring.Core"/>

 <section name="objects" type="Spring.Context.Support.DefaultSectionHandler, Spring.Core" />

 </sectionGroup>

 </configSections>

 <spring>

 <context>

 <resource uri="config://spring/objects"/>

 </context>

 <objects xmlns="http://www.springframework.net">

 ...

 </objects>

 </spring>

</configuration>

In this case VS.NET 2003 will still provide you with intellisense help but you will not be able to fully validate

the document as the entire schema for App.config is not known. To be able to validate this document one would

need to install the .NET Configuration File schema and an additional schema that incorporates the <spring> and

<context> section in addition to the <objects> would need to be created.

Validating schema is a new feature in VS 2005 or later. It is validating all the time while you edit, you will see

any errors that it finds in the Error List window.

http://www.radsoftware.com.au/articles/intellisensewebconfig.aspx

Visual Studio.NET Integration

Spring Framework (Version 1.3.2) 369

Keep these trade offs in mind as you decide where to place the bulk of your configuration information.

Conventional wisdom is do quick prototyping with App.config and use another IResource location, file or

embedded assembly resource, for serious development.

36.2. Enhancing the XML Editing and Validation Experience
using the Spring.NET Visual Studio 2010 Extension

If you are using VS.NET 2010, you are encouraged to install the Spring.NET Visual Studio 2010 Extension.

For more information and to download the latest version of this 100% free tool, visit http://springframework.net/

vsaddin/.

The latest release of the Spring.NET Visual Studio 2010 Extension provides Intellisensetm support in VS.NET

2010 for the following areas of editing Spring XML configuration files:

• Type completion

• Property name completion

• Constructor argument name completion

• Property value completion for property of type 'Type', 'Enum' and 'Boolean'

In addition, this tool also provides for the following enhancements to the Visual Studio 2010 XML Editor

experience:

• Snippets integration (inline or by menu)

• Quickinfo tooltip for properties and types

A brief screencast demonstrating the use of this tool can be viewed here: http://maruxelo.free.fr/spring/

index2.html

36.3. Solution Templates

Solution templates for VS.NET 2008 are provided to get you up and running quickly with a Spring.NET based

application or library. Four templates are provided and there are plans for more. All the templates aside from the

web template have been created using SolutionFactory VS.NET Add-in [http://solutionfactory.codeplex.com/].

The source to creating the templates is not included in the distribution now, so please download the source from

the subversion repository [https://src.springframework.org/svn/spring-net/trunk] if you are interested in making

modifications.

To install the templates

1. Add the registry key [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\AssemblyFolders

\MyAssemblies] and set the value to be the directory <spring.net-install-directory\bin\net\2.0

2. In the directory <spring.net-install-directory>\dev-support\vs.net-2008 run the batch file install-

templates.bat

In VS.NET 2008 when you create a new project you will see the category Spring.NET and the four solution

templates as shown below

http://springframework.net/vsaddin/
http://springframework.net/vsaddin/
http://maruxelo.free.fr/spring/index2.html
http://maruxelo.free.fr/spring/index2.html
http://solutionfactory.codeplex.com/
http://solutionfactory.codeplex.com/
https://src.springframework.org/svn/spring-net/trunk
https://src.springframework.org/svn/spring-net/trunk

Visual Studio.NET Integration

Spring Framework (Version 1.3.2) 370

All of the templates have the required Spring dependencies set and Spring application configuration files are

present and ready for you to add object definitions.

36.3.1. Class Library

The simplest of the solution templates is the Spring Class Library. This creates a solution with two class library

projects, one for you application classes that will be managed by Spring and another testing project. The projects

have starter files to write XML based object definitions and also refer to Spring.NET .dlls as needed. The testing

project refers to Spring.Testing.NUnit which provides integration testing support. A screen shot of the generated

Class Library solution is shown below.

Visual Studio.NET Integration

Spring Framework (Version 1.3.2) 371

36.3.2. ADO.NET based application library

This solution template provides a service layer project, ADO.NET based data access layer and an unit/integration

testing project.

Visual Studio.NET Integration

Spring Framework (Version 1.3.2) 372

36.3.3. NHibernate based application library

This solution template provides a service layer project, NHibernate based data access layer and an unit/integration

testing project.

Visual Studio.NET Integration

Spring Framework (Version 1.3.2) 373

36.3.4. Spring based web application

This solution template provides a Spring based web layer project, service layer project, ADO.NET based data

access layer project and an unit/integration testing project. You will need to set the reference of the App.Web

project to refer to the App.Web.References project manually.

Visual Studio.NET Integration

Spring Framework (Version 1.3.2) 374

36.4. Resharper Type Completion

Resharper supports intellisence completion for the value of the type attribute when editing Spring's XML files.

The key combination is Shift+Alt+Space. This is shown below for the case of specifying the type of a DAO object

in the NHibernate sample application

You start to type the name of the class and will get a filter list. In this case we are typing HibernateOrderDao.

Visual Studio.NET Integration

Spring Framework (Version 1.3.2) 375

Hittingn 'enter' will then insert the fully qualfied type name with the namespace but not the assembly reference. To

add the assembly reference either hit 'CTRL+ENTER" or select the yellow 'light bulb' to and select 'add module

qualification'.

You will need to remove the extraneous 'Verstion' information. This will leave you with the following object

definition.

If you use Spring's autowiring functionality, then you can even avoid having to type the property information

when referring to collaborating objects. See Section 5.3.6, “Autowiring collaborators”. for more information on

autowiring.

36.5. Resharper templates

Resharper offers live templates for assistance while coding as well as file templates. Spring 1.3 provides a few

of each type to help you be more efficient when performing common configuration related tasks. To install the

templates follow the directions in the 'dev-support' directory. One installed the following templates are available

Visual Studio.NET Integration

Spring Framework (Version 1.3.2) 376

For example, to set a property reference for the object definition from the previous chapter, type 'odpr' (Object

Definition Property Reference) and you will be prompted to hit 'tab' to complete the XML fragment.

Hitting tab will generate the XML to use for an object property values

You will need to type the name of the property and name of the reference. Unfortunately, intellisence for property

completion and ref completion is not available. Typing the missing information in then leaves the completed

object definition.

There are similar live templates for object property values (odpv), object constructors (odctor) and object

definitions (odef)

36.6. Versions of XML Schema

The latest version of the schema will always be located under http://www.springframework.net/xsd/ The

filename of the .xsd files contains the first Spring.NET version to which they apply.

36.7. API documentation

Spring provides API documentation that can be integrated within Visual Studio. There are two versions of the

documentation, one for .NET 1.1 and one for .NET 2.0 and later. They differ only in the format applied and the

versions of VS.NET that supported. There is also standalone HTMLHELP format API documentation. You will

need to download the help file seperately from the distribution.

Spring Framework (Version 1.3.2) 377

Part VII. Quickstart applications
This part of the reference documentation covers the quickstart applications included with Spring that demonstrate

features in a code centric manner.

• Chapter 37, IoC Quickstarts

• Chapter 38, AOP QuickStart

• Chapter 39, Portable Service Abstraction Quick Start

• Chapter 40, Web Quickstarts

• Chapter 41, SpringAir - Reference Application

• Chapter 42, ADO.NET Data Access QuickStart

• Chapter 43, Transactions QuickStart

• Chapter 44, NHibernate QuickStart

• Chapter 45, Quartz QuickStart

• Chapter 46, NMS QuickStart

• Chapter 47, TIBCO EMS QuickStart

• Chapter 48, MSMQ QuickStart

• Chapter 49, WCF QuickStart

Spring Framework (Version 1.3.2) 378

Chapter 37. IoC Quickstarts

37.1. Introduction

This chapter includes a grab bag of quickstart examples for using the Spring.NET framework.

37.2. Movie Finder

The source material for this simple demonstration of Spring.NET's IoC features is lifted straight from Martin

Fowler's article that discussed the ideas underpinning the IoC pattern. See Inversion of Control Containers and

the Dependency Injection pattern for more information. The motivation for basing this quickstart example on

said article is because the article is pretty widely known, and most people who are looking at IoC for the first

time typically will have read the article (at the time of writing a simple Google search for 'IoC' yields the article

in the first five results).

Fowler's article used the example of a search facility for movies to illustrate IoC and Dependency Injection

(DI). The article described how a MovieLister object might receive a reference to an implementation of the

IMovieFinder interface (using DI).

The IMovieFinder returns a list of all movies and the MovieLister filters this list to return an array of Movieobjects

that match a specified directors name. This example demonstrates how the Spring.NET IoC container can be used

to supply an appropriate IMovieFinder implementation to an arbitrary MovieLister instance.

The C# code listings for the MovieFinder application can be found in the examples/Spring/

Spring.Examples.MovieFinder directory off the top level directory of the Spring.NET distribution.

37.2.1. Getting Started - Movie Finder

The startup class for the MovieFinder example is the MovieApp class, which is an ordinary .NET class with a

single application entry point...

using System;

namespace Spring.Examples.MovieFinder

{

 public class MovieApp

 {

 public static void Main ()

 {

 }

 }

}

What we want to do is get a reference to an instance of the MovieLister class... since this is a Spring.NET

example we'll get this reference from Spring.NET's IoC container, the IApplicationContext. There are a

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://www.google.co.uk/search?q=ioc

IoC Quickstarts

Spring Framework (Version 1.3.2) 379

number of ways to get a reference to an IApplicationContext instance, but for this example we'll be using an

IApplicationContext that is instantiated from a custom configuration section in a standard .NET application

config file...

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.ContextHandler, Spring.Core"/>

 <section name="objects" type="Spring.Context.Support.DefaultSectionHandler, Spring.Core" />

 </sectionGroup>

 </configSections>

 <spring>

 <context>

 <resource uri="config://spring/objects"/>

 </context>

 <objects xmlns="http://www.springframework.net">

 <description>An example that demonstrates simple IoC features.</description>

 </objects>

 </spring>

</configuration>

The objects that will be used in the example application will be configured as XML <object/> elements nested

inside the <objects/> element.

The body of the Main method in the MovieApp class can now be fleshed out a little further...

using System;

using Spring.Context;

...

 public static void Main ()

 {

 IApplicationContext ctx = ContextRegistry.GetContext();

 }

...

As can be seen in the above C# snippet, a using statement has been added to the MovieApp source. The

Spring.Context namespace gives the application access to the IApplicationContext class that will serve as the

primary means for the application to access the IoC container. The line of code...

IApplicationContext ctx = ContextRegistry.GetContext();

... retrieves a fully configured IApplicationContext implementation that has been configured using the named

<objects/> section from the application config file.

37.2.2. First Object Definition

As yet, no objects have been defined in the application config file, so let's do that now. The very miminal XML

definition for the MovieLister instance that we are going to use in the application can be seen in the following

XML snippet...

<objects xmlns="http://www.springframework.net">

 <object name="MyMovieLister"

 type="Spring.Examples.MovieFinder.MovieLister, Spring.Examples.MovieFinder">

 </object>

 </objects>

Notice that the full, assembly-qualified name of the MovieLister class has been specified in the type attribute of

the object definition, and that the definition has been assigned the (unique) id of MyMovieLister. Using this id,

an instance of the object so defined can be retrieved from the IApplicationContext reference like so...

...

 public static void Main ()

IoC Quickstarts

Spring Framework (Version 1.3.2) 380

 {

 IApplicationContext ctx = ContextRegistry.GetContext();

 MovieLister lister = (MovieLister) ctx.GetObject ("MyMovieLister");

 }

...

The lister instance has not yet had an appropriate implementation of the IMovieFinder interface injected into it.

Attempting to use the MoviesDirectedBy method will most probably result in a nasty NullReferenceException

since the lister instance does not yet have a reference to an IMovieFinder. The XML configuration for the

IMovieFinder implementation that is going to be injected into the lister instance looks like this...

<objects xmlns="http://www.springframework.net">

 <object name="MyMovieFinder"

 type="Spring.Examples.MovieFinder.SimpleMovieFinder, Spring.Examples.MovieFinder"/>

 </object>

</objects>

37.2.3. Setter Injection

What we want to do is inject the IMovieFinder instance identified by the MyMovieFinder id into the MovieLister

instance identified by the MyMovieLister id, which can be accomplished using Setter Injection and the following

XML...

<objects xmlns="http://www.springframework.net">

 <object name="MyMovieLister"

 type="Spring.Examples.MovieFinder.MovieLister, Spring.Examples.MovieFinder">

 <!-- using setter injection... -->

 <property name="movieFinder" ref="MyMovieFinder"/>

 </object>

 <object name="MyMovieFinder"

 type="Spring.Examples.MovieFinder.SimpleMovieFinder, Spring.Examples.MovieFinder"/>

 </object>

</objects>

When the MyMovieLister object is retrieved from (i.e. instantiated by) the IApplicationContext in the

application, the Spring.NET IoC container will inject the reference to the MyMovieFinder object into the

MovieFinder property of the MyMovieLister object. The MovieLister object that is referenced in the application

is then fully configured and ready to be used in the application to do what is does best... list movies by director.

...

 public static void Main ()

 {

 IApplicationContext ctx = ContextRegistry.GetContext();

 MovieLister lister = (MovieLister) ctx.GetObject ("MyMovieLister");

 Movie[] movies = lister.MoviesDirectedBy("Roberto Benigni");

 Console.WriteLine ("\nSearching for movie...\n");

 foreach (Movie movie in movies)

 {

 Console.WriteLine (

 string.Format ("Movie Title = '{0}', Director = '{1}'.",

 movie.Title, movie.Director));

 }

 Console.WriteLine ("\nMovieApp Done.\n\n");

 }

...

To help ensure that the XML configuration of the MovieLister class must specify a value for the MovieFinder

property, you can add the [Required] attribute to the MovieLister's MovieFinder property. The example code

shows uses this attribute. For more information on using and configuring the [Required] attribute, refer to this

section of the reference documentation.

37.2.4. Constructor Injection

Let's define another implementation of the IMovieFinder interface in the application config file...

IoC Quickstarts

Spring Framework (Version 1.3.2) 381

...

 <object name="AnotherMovieFinder"

 type="Spring.Examples.MovieFinder.ColonDelimitedMovieFinder, Spring.Examples.MovieFinder">

 </object>

...

This XML snippet describes an IMovieFinder implementation that uses a colon delimited text file as it's movie

source. The C# source code for this class defines a single constructor that takes a System.IO.FileInfo as it's

single constructor argument. As this object definition currently stands, attempting to get this object out of the

IApplicationContext in the application with a line of code like so...

IMovieFinder finder = (IMovieFinder) ctx.GetObject ("AnotherMovieFinder");

will result in a fatal Spring.Objects.Factory.ObjectCreationException, because the

Spring.Examples.MovieFinder.ColonDelimitedMovieFinder class does not have a default constructor that

takes no arguments. If we want to use this implementation of the IMovieFinder interface, we will have to supply

an appropriate constructor argument...

...

 <object name="AnotherMovieFinder"

 type="Spring.Examples.MovieFinder.ColonDelimitedMovieFinder, Spring.Examples.MovieFinder">

 <constructor-arg index="0" value="movies.txt"/>

 </object>

...

Unsurprisingly, the <constructor-arg/> element is used to supply constructor arguments to the

constructors of managed objects. The Spring.NET IoC container uses the functionality offered

by System.ComponentModel.TypeConverter specializations to convert the movies.txt string into

an instance of the System.IO.FileInfo that is required by the single constructor of the

Spring.Examples.MovieFinder.ColonDelimitedMovieFinder (see Section 6.3, “Type conversion” for a more

in depth treatment concerning the automatic type conversion functionality offered by Spring.NET).

So now we have two implementations of the IMovieFinder interface that have been defined as distinct object

definitions in the config file of the example application; if we wanted to, we could switch the implementation

that the MyMovieLister object uses like so...

...

 <object name="MyMovieLister"

 type="Spring.Examples.MovieFinder.MovieLister, Spring.Examples.MovieFinder">

 <!-- lets use the colon delimited implementation instead -->

 <property name="movieFinder" ref="AnotherMovieFinder"/>

 </object>

 <object name="MyMovieFinder"

 type="Spring.Examples.MovieFinder.SimpleMovieFinder, Spring.Examples.MovieFinder"/>

 </object>

 <object name="AnotherMovieFinder"

 type="Spring.Examples.MovieFinder.ColonDelimitedMovieFinder, Spring.Examples.MovieFinder">

 <constructor-arg index="0" value="movies.txt"/>

 </object>

...

Note that there is no need to recompile the application to effect this change of implementation... simply changing

the application config file and then restarting the application will result in the Spring.NET IoC container injecting

the colon delimited implementation of the IMovieFinder interface into the MyMovieLister object.

37.2.5. Summary

This example application is quite simple, and admittedly it doesn't do a whole lot. It does however demonstrate

the basics of wiring together an object graph using an intuitive XML format. These simple features will get you

through pretty much 80% of your object wiring needs. The remaining 20% of the available configuration options

IoC Quickstarts

Spring Framework (Version 1.3.2) 382

are there to cover corner cases such as factory methods, lazy initialization, and suchlike (all of the configuration

options are described in detail in the Chapter 5, The IoC container).

37.2.6. Logging

Often enough the first use of Spring.NET is also a first introduction to log4net. To kick start your understanding

of log4net this section gives a quick overview. The authoritative place for information on log4net is the

log4net website. Other good online tutorials are Using log4net (OnDotNet article) and Quick and Dirty Guide

to Configuring Log4Net For Web Applications. Spring.NET is using version 1.2.9 whereas most of the

documentation out there is for version 1.2.0. There have been some changes between the two so always double

check at the log4net web site for definitive information. Also note that we are investigating using a "commons"

logging library so that Spring.NET will not be explicity tied to log4net but will be able to use other logging

packages such as NLog and Microsoft enterprise logging application block.

The general usage pattern for log4net is to configure your loggers, (either in App/Web.config or a seperate file),

initialize log4net in your main application, declare some loggers in code, and then log log log. (Sing along...)

We are using App.config to configure the loggers. As such, we declare the log4net configuration section handler

as shown below

<section name="log4net" type="log4net.Config.Log4NetConfigurationSectionHandler,log4net" />

The corresponding configuration section looks like this

<log4net>

 <appender name="ConsoleAppender" type="log4net.Appender.ConsoleAppender">

 <layout type="log4net.Layout.PatternLayout">

 <conversionPattern value="%date [%thread] %-5level %logger - %message%newline" />

 </layout>

 </appender>

 <!-- Set default logging level to DEBUG -->

 <root>

 <level value="DEBUG" />

 <appender-ref ref="ConsoleAppender" />

 </root>

 <!-- Set logging for Spring to INFO. Logger names in Spring correspond to the namespace -->

 <logger name="Spring">

 <level value="INFO" />

 </logger>

</log4net>

The appender is the output sink - in this case the console. There are a large variety of output sinks such as files,

databases, etc. Refer to the log4net Config Examples for more information. Of interest as well is the PatternLayout

which defines exactly the information and format of what gets logged. Usually this is the date, thread, logging

level, logger name, and then finally the log message. Refer to PatternLayout Documentation for information on

how to customize.

The logging name is up to you to decide when you declare the logger in code. In the case of this example we used

the convention of giving the logging name the name of the fully qualified class name.

private static readonly ILog LOG = LogManager.GetLogger(typeof (MovieApp));

Other conventions are to give the same logger name across multiple classes that constitute a logical component

or subsystem within the application, for example a data access layer. One tip in selecting the pattern layout is to

shorten the logging name to only the last 2 parts of the fully qualified name to avoid the message sneaking off

to the right too much (where can't see it) because of all the other information logged that precedes it. Shortening

the logging name is done using the format %logger{2}.

http://logging.apache.org/log4net/
http://www.ondotnet.com/pub/a/dotnet/2003/06/16/log4net.html?page=1
http://haacked.com/archive/2005/03/07/2317.aspx
http://haacked.com/archive/2005/03/07/2317.aspx
http://logging.apache.org/log4net/release/config-examples.html
http://logging.apache.org/log4net/release/sdk/log4net.Layout.PatternLayout.html

IoC Quickstarts

Spring Framework (Version 1.3.2) 383

To initialize the logging system add the following to the start of your application

XmlConfigurator.Configure();

Note that if you are using or reading information on version 1.2.0 this used to be called

DOMConfigurator.Configure();

The logger sections associate logger names with logging levels and appenders. You have great flexibility to mix

and match names, levels, and appenders. In this case we have defined the root logger (using the special tag root)

to be at the debug level and have an console sink. We can then specialize other loggers with different setting. In

this case, loggers that start with "Spring" in their name are logged at the info level and also sent to the console.

Setting the value of this logger from INFO to DEBUG will show you detailed logging information as the Spring

container goes about its job of creating and configuring your objects. Coincidentally, the example code itself uses

Spring in the logger name, so this logger also controls the output level you see from running MainApp. Finally,

you are ready to use the simple logger api to log, i.e.

LOG.Info("Searching for movie...");

Logging exceptions is another common task, which can be done using the error level

try {

 //do work

{

catch (Exception e)

{

 LOG.Error("Movie Finder is broken.", e);

}

37.3. ApplicationContext and IMessageSource

37.3.1. Introduction

The example program Spring.Examples.AppContext shows the use of the application context for text

localization, retrieving objects contained in ResourceSets, and applying the values of embedded resource

properties to an object. The values that are retrieved are displayed in a window.

The application context configuration file contains an object definition with the name messageSource of the

type Spring.Context.Support.ResourceSetMessageSource which implements the interface IMessageSource.

This interface provides various methods for retrieving localized resources such as text and images as described

in Section 5.12.2, “Using IMessageSource”. When creating an instance of IApplicationContext, an object with

the name 'messageSource' is searched for and used as the implementation for the context's IMessageSource

functionality.

The ResourceSetMessageSource takes a list of ResourceManagers to define the collection of culture-specific

resources. The ResourceManager can be contructed in two ways. The first way is to specifying a two part string

consisting of the base resource name and the containing assembly. In this example there is an embedded resource

file, Images.resx in the project. The second way is to use helper factory class ResourceManagerFactoryObject

that takes a resource base name and assembly name as properties. This second way of specifying a

ResourceManager is useful if you would like direct access to the ResourceManager in other parts of your

application. In the example program an embedded resource file, MyResource.resx and a Spanish specific resource

file, MyResources.es.resx are declared in this manner. The corresponding XML fragment is shown below

...

 <object name="messageSource" type="Spring.Context.Support.ResourceSetMessageSource, Spring.Core">

 <property name="resourceManagers">

IoC Quickstarts

Spring Framework (Version 1.3.2) 384

 <list>

 <value>Spring.Examples.AppContext.Images, Spring.Examples.AppContext</value>

 <ref object="myResourceManager"/>

 </list>

 </property>

 </object>

 <object name="myResourceManager" type="Spring.Objects.Factory.Config.ResourceManagerFactoryObject,

 Spring.Core">

 <property name="baseName">

 <value>Spring.Examples.AppContext.MyResource</value>

 </property>

 <property name="assemblyName">

 <value>Spring.Examples.AppContext</value>

 </property>

 </object>

...

The main application creates the application context and then retrieves various resources via their key names. In

the code all the key names are declared as static fields in the class Keys. The resource file Images.resx contains

image data under the key name bubblechamber (aka Keys.BUBBLECHAMBER). The code Image image =

(Image)ctx.GetResourceObject(Keys.BUBBLECHAMBER); is used to retrieve the image from the context. The

resource files MyResource.resx contains a text resource, Hello {0} {1} under the key name HelloMessage (aka

Keys.HELLO_MESSAGE) that can be used for string text formatting purposes. The example code

string msg = ctx.GetMessage(Keys.HELLO_MESSAGE,

 CultureInfo.CurrentCulture,

 "Mr.", "Anderson");

retrieves the text string and replaces the placeholders in the string with the passed argument values resulting in

the text, "Hello Mr. Anderson". The current culture is used to select the resource file MyResource.resx. If instead

the Spanish culture is specified

CultureInfo spanishCultureInfo = new CultureInfo("es");

string esMsg = ctx.GetMessage(Keys.HELLO_MESSAGE,

 spanishCultureInfo,

 "Mr.", "Anderson");

Then the resource file MyResource.es.resx is used instead as in standard .NET localization. Spring is simply

delegating to .NET ResourceManager to select the appropriate localized resource. The Spanish version of the

resource differs from the English one in that the text under the key HelloMessage is Hola {0} {1} resulting in

the text "Hola Mr. Anderson".

As you can see in this example, the title "Mr." should not be used in the case of the spanish localization. The

title can be abstracted out into a key of its own, called FemaleGreeting (aka Keys.FEMALE_GREETING). The

replacement value for the message argument {0} can then be made localization aware by wrapping the key in a

convenience class DefaultMessageResolvable. The code

string[] codes = {Keys.FEMALE_GREETING};

DefaultMessageResolvable dmr = new DefaultMessageResolvable(codes, null);

msg = ctx.GetMessage(Keys.HELLO_MESSAGE,

 CultureInfo.CurrentCulture,

 dmr, "Anderson");

will assign msg the value, Hello Mrs. Anderson, since the value for the key FemaleGreeting in MyResource.resx

is 'Mrs.' Similarly, the code

esMsg = ctx.GetMessage(Keys.HELLO_MESSAGE,

 spanishCultureInfo,

IoC Quickstarts

Spring Framework (Version 1.3.2) 385

 dmr, "Anderson");

will assign esMsg the value, Hola Senora Anderson, since the value for the key FemaleGreeting in

MyResource.es.resx is 'Senora'.

Localization can also apply to objects and not just strings. The .NET 1.1 framework provides the utility class

ComponentResourceManager that can apply multiple resource values to object properties in a performant manner.

(VS.NET 2005 makes heavy use of this class in the code it generates for winform applications.) The example

program has a simple class, Person, that has an integer property Age and a string property Name. The resource

file, Person.resx contains key names that follow the pattern, person.<PropertyName>. In this case it contains

person.Name and person.Age. The code to assign these resource values to an object is shown below

Person p = new Person();

ctx.ApplyResources(p, "person", CultureInfo.CurrentUICulture);

While you could also use the Spring itself to set the properties of these objects, the configuration of

simple properties using Spring will not take into account localization. It may be convenient to combine

approaches and use Spring to configure the Person's object references while using IApplicationContext inside an

AfterPropertiesSet callback (see IInitializingObject) to set the Person's culture aware properties.

37.4. ApplicationContext and IEventRegistry

37.4.1. Introduction

The example program Spring.Examples.EventRegistry shows how to use the application context to wire .NET

events in a loosely coupled manner.

Loosely coupled eventing is normally associated with Message Oriented Middleware (MOM) where a daemon

process acts as a message broker between other independent processes. Processes communicate indirectly with

each other by sending messages though the message broker. The process that initiates the communication is known

as a publisher and the process that receives the message is known as the subscriber. By using an API specific to the

middleware these processes register themselves as either publishers or subscribers with the message broker. The

communication between the publisher and subscriber is considered loosely coupled because neither the publisher

nor subscriber has a direct reference to each other, the messages broker acts as an intermediary between the two

processes. The IEventRegistry is the analogue of the message broker as applied to .NET events. Publishers are

classes that invoke a .NET event, subscribers are the classes that register interest in these events, and the messages

sent between them are instances of System.EventArgs. The implementation of IEventRegistry determines the

exact semantics of the notification style and coupling between subscribers and publishers.

The IApplicationContext interface extends the IEventRegistry interface and implementations

of IApplicationContext delegate the event registry functionality to an instance of

Spring.Objects.Events.Support.EventRegistry. IEventRegistry is a simple inteface with one publish

method and two subscribe methods. Refer to Section 5.12.4, “Loosely coupled events” for a reminder of their

signatures. The Spring.Objects.Events.Support.EventRegistry implementation is essentially a convenience

to decouple the event wiring process between publisher and subscribers. In this implementation, after the event

wiring is finished, publishers are directly coupled to the subscribers via the standard .NET eventing mechanisms.

Alternate implementations could increase the decoupling further by having the event registry subscribe to the

events and be responsible for then notifying the subscribers.

In this example the class MyClientEventArgs is a subclass of System.EventArgs that defines a string

property EventMessage. The class MyEventPublisher defines a public event with the delegate signature

IoC Quickstarts

Spring Framework (Version 1.3.2) 386

void SimpleClientEvent(object sender, MyClientEventArgs args) The method void

ClientMethodThatTriggersEvent1() fires this event. On the subscribing side, the class MyEventSubscriber

contains a method, HandleClientEvents that matches the delegate signature and has a boolean property which

is set to true if this method is called.

The publisher and subscriber classes are defined in an application context configuration file but that is not required

in order to participate with the event registry. The main program, EventRegistryApp creates the application

context and asks it for an instance of MyEventPublisher The publisher is registered with the event registry via

the call, ctx.PublishEvents(publisher). The event registry keeps a reference to this publisher for later use

to register any subscribers that match its event signature. Two subscribers are then created and one of them is

wired to the publisher by calling the method ctx.Subscribe(subscriber, typeof(MyEventPublisher))

Specifying the type indicates that the subscriber should be registered only to events from objects of the type

MyEventPublisher. This acts as a simple filtering mechanism on the subscriber.

The publisher then fires the event using normal .NET eventing semantics and the subscriber is called. The

subscriber prints a message to the console and sets a state variable to indicate it has been called. The program

then simply prints the state variable of the two subscribers, showing that only one of them (the one that registered

with the event registry) was called.

37.5. Pooling example

The idea is to build an executor backed by a pool of QueuedExecutor: this will show how Spring.NET provides

some useful low-level/high-quality reusable threading and pooling abstractions. This executor will provide

parallel executions (in our case grep-like file scans). Note: This example is not in the 1.0.0 release to its use of

classes in the Spring.Threading namespace scheduled for release in Spring 1.1. To access ths example please get

the code from CVS (instructions) or from the download section of the Spring.NET website that contains an .zip

with the full CVS tree.

Some information on QueuedExecutor is helpful to better understand the implementation and to possibly disagree

with it. Keep in mind that the point is to show how to develop your own object-pool.

A QueuedExecutor is an executor where IRunnable instances are run serialy by a worker thread. When you

Execute with a QueuedExecutor, your request is queued; at some point in the future your request will be taken

and executed by the worker thread: in case of error the thread is terminated. However this executor recreates its

worker thread as needed.

Last but not least, this executor can be shut down in a few different ways (please refer to the Spring.NET SDK

documentation). Given its simplicity, it is very powerful.

The example project Spring.Examples.Pool provides an implementation of a pooled executor, backed by n

instances of Spring.Threading.QueuedExecutor: please ignore the fact that Spring.Threading includes already

a very different implementation of a PooledExecutor: here we wanto to use a pool of QueuedExecutors.

This executor will be used to implement a parallel recursive grep-like console executable.

37.5.1. Implementing Spring.Pool.IPoolableObjectFactory

In order to use the SimplePool implementation, the first thing to do is to implement the IPoolableObjectFactory

interface. This interface is intended to be implemented by objects that can create the type of objects that should

be pooled. The SimplePool will call the lifecycle methods on IPoolableObjectFactory interface (MakeObject,

http://opensource.atlassian.com/confluence/spring/display/NET/Project+Structure

IoC Quickstarts

Spring Framework (Version 1.3.2) 387

ActivateObject, ValidateObject, PassivateObject, and DestroyObject) as appropriate when the pool is

created, objects are borrowed and returned to the pool, and when the pool is destroyed.

In our case, as already said, we want to to implement a pool of QueuedExecutor. Ok, here the declaration:

public class QueuedExecutorPoolableFactory : IPoolableObjectFactory

{

the first task a factory should do is to create objects:

object IPoolableObjectFactory.MakeObject()

{

 // to actually make this work as a pooled executor

 // use a bounded queue of capacity 1.

 // If we don't do this one of the queued executors

 // will accept all the queued IRunnables as, by default

 // its queue is unbounded, and the PooledExecutor

 // will happen to always run only one thread ...

 return new QueuedExecutor(new BoundedBuffer(1));

}

and should be also able to destroy them:

void IPoolableObjectFactory.DestroyObject(object o)

{

 // ah, self documenting code:

 // Here you can see that we decided to let the

 // executor process all the currently queued tasks.

 QueuedExecutor executor = o as QueuedExecutor;

 executor.ShutdownAfterProcessingCurrentlyQueuedTasks();

}

When an object is taken from the pool, to satisfy a client request, may be the object should be activated. We can

possibly implement the activation like this:

void IPoolableObjectFactory.ActivateObject(object o)

{

 QueuedExecutor executor = o as QueuedExecutor;

 executor.Restart();

}

even if a QueuedExecutor restarts itself as needed and so a valid implementation could leave this method empty.

After activation, and before the pooled object can be succesfully returned to the client, it is validated (should

the object be invalid, it will be discarded: this can lead to an empty unusable pool 1). Here we check that the

worker thread exists:

bool IPoolableObjectFactory.ValidateObject(object o)

{

 QueuedExecutor executor = o as QueuedExecutor;

 return executor.Thread != null;

}

Passivation, symmetrical to activation, is the process a pooled object is subject to when the object is returned to

the pool. In our case we simply do nothing:

void IPoolableObjectFactory.PassivateObject(object o)

{

}

At this point, creating a pool is simply a matter of creating an SimplePool as in:

1You may think that we can provide a smarter implementation and you are probably right. However, it is not so difficult to create a new pool

in case the old one became unusable. It could not be your preferred choice but surely it leverages simplicity and object immutability

IoC Quickstarts

Spring Framework (Version 1.3.2) 388

pool = new SimplePool(new QueuedExecutorPoolableFactory(), size);

37.5.2. Being smart using pooled objects

Taking advantage of the using keyword seems to be very important in these c# days, so we implement a very

simple helper (PooledObjectHolder) that can allow us to do things like:

using (PooledObjectHolder holder = PooledObjectHolder.UseFrom(pool))

{

 QueuedExecutor executor = (QueuedExecutor) holder.Pooled;

 executor.Execute(runnable);

}

without worrying about obtaining and returning an object from/to the pool.

Here is the implementation:

public class PooledObjectHolder : IDisposable

{

 IObjectPool pool;

 object pooled;

 /// <summary>

 /// Builds a new <see cref="PooledObjectHolder"/>

 /// trying to borrow an object form it

 /// </summary>

 /// <param name="pool"></param>

 private PooledObjectHolder(IObjectPool pool)

 {

 this.pool = pool;

 this.pooled = pool.BorrowObject();

 }

 /// <summary>

 /// Allow to access the borrowed pooled object

 /// </summary>

 public object Pooled

 {

 get

 {

 return pooled;

 }

 }

 /// <summary>

 /// Returns the borrowed object to the pool

 /// </summary>

 public void Dispose()

 {

 pool.ReturnObject(pooled);

 }

 /// <summary>

 /// Creates a new <see cref="PooledObjectHolder"/> for the

 /// given pool.

 /// </summary>

 public static PooledObjectHolder UseFrom(IObjectPool pool)

 {

 return new PooledObjectHolder(pool);

 }

}

Please don't forget to destroy all the pooled istances once you have finished! How? Well using something like

this in PooledQueuedExecutor:

public void Stop ()

{

 // waits for all the grep-task to have been queued ...

 foreach (ISync sync in syncs)

IoC Quickstarts

Spring Framework (Version 1.3.2) 389

 {

 sync.Acquire();

 }

 pool.Close();

}

37.5.3. Using the executor to do a parallel grep

The use of the just built executor is quite straigtforward but a little tricky if we want to really exploit the pool.

private PooledQueuedExecutor executor;

public ParallelGrep(int size)

{

 executor = new PooledQueuedExecutor(size);

}

public void Recurse(string startPath, string filePattern, string regexPattern)

{

 foreach (string file in Directory.GetFiles(startPath, filePattern))

 {

 executor.Execute(new Grep(file, regexPattern));

 }

 foreach (string directory in Directory.GetDirectories(startPath))

 {

 Recurse(directory, filePattern, regexPattern);

 }

}

public void Stop()

{

 executor.Stop();

}

public static void Main(string[] args)

{

 if (args.Length < 3)

 {

 Console.Out.WriteLine("usage: {0} regex directory file-pattern [pool-size]",

 Assembly.GetEntryAssembly().CodeBase);

 Environment.Exit(1);

 }

 string regexPattern = args[0];

 string startPath = args[1];

 string filePattern = args[2];

 int size = 10;

 try

 {

 size = Int32.Parse(args[3]);

 }

 catch

 {

 }

 Console.Out.WriteLine ("pool size {0}", size);

 ParallelGrep grep = new ParallelGrep(size);

 grep.Recurse(startPath, filePattern, regexPattern);

 grep.Stop();

}

37.6. AOP

Refer to Chapter 38, AOP QuickStart.

Spring Framework (Version 1.3.2) 390

Chapter 38. AOP QuickStart

38.1. Introduction

This is an introductory guide to Aspect Oriented Programming (AOP) with Spring.NET.

This guide assumes little to no prior experience of having used Spring.NET AOP on the part of the reader.

However, it does assume a certain familiarity with the terminology of AOP in general. It is probably better if you

have read (or at least have skimmed through) the AOP section of the reference documentation beforehand, so that

you are familiar with a) just what AOP is, b) what problems AOP is addressing, and c) what the AOP concepts of

advice, pointcut, and joinpoint actually mean... this guide spends absolutely zero time defining those terms.

Having said all that, if you are the kind of developer who learns best by example, then by all means follow along...

you can always consult the reference documentation as the need arises (see Section 13.1.1, “AOP concepts”).

The examples in this guide are intentionally simplistic. One of the core aims of this guide is to get you up and

running with Spring.NET's flavor of AOP in as short a time as possible. Having to comprehend even a simple

object model in order to understand the AOP examples would not be conducive to learning Spring.NET AOP. It

is left as an exercise for the reader to take the concepts learned from this guide and apply them to his or her own

code base. Again, having said all of that, this guide concludes with a number of cookbook-style AOP 'recipes'

that illustrate the application of Spring.NET's AOP offering in a real world context; additionally, the Spring.NET

reference application contains a number of Spring.NET AOP aspects particular to it's own domain model (see

Chapter 41, SpringAir - Reference Application).

Note

To follow this AOP QuickStart load the solution file found in the directory <spring-install-dir>

\examples\Spring\Spring.AopQuickStart

38.2. The basics

This initial section introduces the basics of defining and then applying some simple advice.

38.2.1. Applying advice

Lets see (a very basic) example of using Spring.NET AOP. The following example code simply applies advice

that writes the details of an advised method call to the system console. Admittedly, this is not a particularly

compelling or even useful application of AOP, but having worked through the example, you will then hopefully

be able to see how to apply your own custom advice to perform useful work (transaction management, auditing,

security enforcement, thread safety, etc).

Before looking at the AOP code proper lets quickly look at the domain classes that are the target of the advice (in

Spring.NET AOP terminology, an instance of the following class is going to be the advised object.

public interface ICommand

{

 object Execute(object context);

}

public class ServiceCommand : ICommand

{

 public object Execute(object context)

 {

AOP QuickStart

Spring Framework (Version 1.3.2) 391

 Console.Out.WriteLine("Service implementation : [{0}]", context);

 return null;

 }

}

Find below the advice that is going to be applied to the object Execute(object context) method of the

ServiceCommand class. As you can see, this is an example of around advice (see Section 13.3.2, “Advice types”).

 public class ConsoleLoggingAroundAdvice : IMethodInterceptor

 {

 public object Invoke(IMethodInvocation invocation)

 {

 Console.Out.WriteLine("Advice executing; calling the advised method...");

 object returnValue = invocation.Proceed();

 Console.Out.WriteLine("Advice executed; advised method returned " + returnValue);

 return returnValue;

 }

 }

Some simple code that merely prints out the fact that the advice is executing.

The advised method is invoked.

The return value is captured in the returnValue variable.

The value of the captured returnValue is printed out.

The previously captured returnValue is returned.

So thus far we have three artifacts: an interface (ICommand); an implementation of said interface

(ServiceCommand); and some (trivial) advice (encapsulated by the ConsoleLoggingAroundAdvice class). All that

remains is to actually apply the ConsoleLoggingAroundAdvice advice to the invocation of the Execute() method

of the ServiceCommand class. Lets look at how to effect this programmatically...

 ProxyFactory factory = new ProxyFactory(new ServiceCommand());

 factory.AddAdvice(new ConsoleLoggingAroundAdvice());

 ICommand command = (ICommand) factory.GetProxy();

 command.Execute("This is the argument");

The result of executing the above snippet of code will look something like this...

 Advice executing; calling the advised method...

 Service implementation : [This is the argument]

 Advice executed; advised method returned

The output shows that the advice (the Console.Out statements from the ConsoleLoggingAroundAdvice was

applied around the invocation of the advised method.

So what is happening here? The fact that the preceding code used a class called ProxyFactory may have clued you

in. The constructor for the ProxyFactory class took as an argument the object that we wanted to advise (in this

case, an instance of the ServiceCommand class). We then added some advice (a ConsoleLoggingAroundAdvice

instance) using the AddAdvice() method of the ProxyFactory instance. We then called the GetProxy() method

of the ProxyFactory instance which gave us a proxy... an (AOP) proxy that proxied the target object (the

ServiceCommand instance), and called the advice (a single instance of the ConsoleLoggingAroundAdvice in

this case). When we invoked the Execute(object context) method of the proxy, the advice was 'applied'

(executed), as can be seen from the attendant output.

The following image shows a graphical view of the flow of execution through a Spring.NET AOP proxy.

AOP QuickStart

Spring Framework (Version 1.3.2) 392

One thing to note here is that the AOP proxy that was returned from the call to the GetProxy() method of the

ProxyFactory instance was cast to the ICommand interface that the ServiceCommand target object implemented.

This is very important... currently, Spring.NET's AOP implementation mandates the use of an interface for advised

objects. In short, this means that in order for your classes to leverage Spring.NET's AOP support, those classes

that you wish to use with Spring.NET AOP must implement at least one interface. In practice this restriction is

not as onerous as it sounds... in any case, it is generally good practice to program to interfaces anyway (support for

applying advice to classes that do not implement any interfaces is planned for a future point release of Spring.NET

AOP).

The remainder of this guide is concerned with fleshing out some of the finer details of Spring.NET AOP, but

basically speaking, that's about it.

As a first example of fleshing out one of those finer details, find below some Spring.NET XML configuration that

does exactly the same thing as the previous example; it should also be added that this declarative style approach

to Spring.NET AOP is preferred to the programmatic style.

 <object id="consoleLoggingAroundAdvice"

 type="Spring.Examples.AopQuickStart.ConsoleLoggingAroundAdvice"/>

 <object id="myServiceObject" type="Spring.Aop.Framework.ProxyFactoryObject">

 <property name="target">

 <object id="myServiceObjectTarget"

 type="Spring.Examples.AopQuickStart.ServiceCommand"/>

 </property>

 <property name="interceptorNames">

 <list>

 <value>consoleLoggingAroundAdvice</value>

 </list>

 </property>

 </object>

 ICommand command = (ICommand) ctx["myServiceObject"];

 command.Execute();

Some comments are warranted concerning the above XML configuration snippet. Firstly, note that the

ConsoleLoggingAroundAdvice is itself a plain vanilla object, and is eligible for configuration just like any other

AOP QuickStart

Spring Framework (Version 1.3.2) 393

class... if the advice itself needed to be injected with any dependencies, any such dependencies could be injected

as normal.

Secondly, notice that the object definition corresponding to the object that is retrieved from the IoC container is

a ProxyFactoryObject. The ProxyFactoryObject class is an implementation of the IFactoryObject interface;

IFactoryObject implementations are treated specially by the Spring.NET IoC container... in this specific case,

it is not a reference to the ProxyFactoryObject instance itself that is returned, but rather the object that the

ProxyFactoryObject produces. In this case, it will be an advised instance of the ServiceCommand class.

Thirdly, notice that the target of the ProxyFactoryObject is an instance of the ServiceCommand class; this is the

object that is going to be advised (i.e. invocations of its methods are going to be intercepted). This object instance

is defined as an inner object definition... this is the preferred idiom for using the ProxyFactoryObject, as it means

that other objects cannot acquire a reference to the raw object, but rather only the advised object.

Finally, notice that the advice that is to be applied to the target object is referred to by its object name in the

list of the names of interceptors for the ProxyFactoryObject's interceptorNames property. In this particular

case, there is only one instance of advice being applied... the ConsoleLoggingAroundAdvice defined in an object

definition of the same name. The reason for using a list of object names as opposed to references to the advice

objects themselves is explained in the reference documentation...

'... if the ProxyFactoryObject's singleton property is set to false, it must be able to return independent proxy

instances. If any of the advisors is itself a prototype, an independent instance would need to be returned, so it is

necessary to be able to obtain an instance of the prototype from the context; holding a reference isn't sufficient.'

38.2.2. Using Pointcuts - the basics

The advice that was applied in the previous section was rather indiscriminate with regard to which methods on

the advised object were to be advised... the ConsoleLoggingAroundAdvice simply intercepted all methods (that

were part of an interface implementation) on the target object.

This is great for simple examples and suchlike, but not so great when you only want certain methods of an object

to be advised. For example, you may only want those methods beginning with 'Start' to be advised; or you may

only want those methods that are called with specific runtime argument values to be advised; or you may only

want those methods that are decorated with a Lockable attribute to be advised.

The mechanism that Spring.NET AOP uses to discriminate about where advice is applied (i.e. which method

invocations are intercepted) is encapsulated by the IPointcut interface (see Section 13.2, “Pointcut API in

Spring.NET”). Spring.NET provides many out-of-the-box implementations of the IPointcut interface... the

implementation that is used if none is explicitly supplied (as was the case with the first example) is the canonical

TruePointcut : as the name suggests, this pointcut always matches, and hence all methods that can be advised

will be advised.

So let's change the configuration of the advice such that it is only applied to methods that contain the letters 'Do'.

We'll change the ICommand interface (and it's attendant implementation) to accommodate this...

 public interface ICommand

 {

 void Execute();

 void DoExecute();

 }

 public class ServiceCommand : ICommand

 {

 public void Execute()

 {

 Console.Out.WriteLine("Service implementation : Execute()...");

AOP QuickStart

Spring Framework (Version 1.3.2) 394

 }

 public void DoExecute()

 {

 Console.Out.WriteLine("Service implementation : DoExecute()...");

 }

 }

Please note that the advice itself (encapsulated within the ConsoleLoggingAroundAdvice class) does not need to

change; we are changing where this advice is applied, and not the advice itself.

Programmatic configuration of the advice, taking into account the fact that we only want methods that contain

the letters 'Do' to be advised, looks like this...

 ProxyFactory factory = new ProxyFactory(new ServiceCommand());

 factory.AddAdvisor(new DefaultPointcutAdvisor(

 new SdkRegularExpressionMethodPointcut("Do"),

 new ConsoleLoggingAroundAdvice()));

 ICommand command = (ICommand) factory.GetProxy();

 command.DoExecute();

The result of executing the above snippet of code will look something like this...

 Intercepted call : about to invoke next item in chain...

 Service implementation...

 Intercepted call : returned

The output indicates that the advice was applied around the invocation of the advised method, because the name

of the method that was executed contained the letters 'Do'. Try changing the pertinent code snippet to invoke

the Execute() method, like so...

 ProxyFactory factory = new ProxyFactory(new ServiceCommand());

 factory.AddAdvisor(

 new DefaultPointcutAdvisor(

 new SdkRegularExpressionMethodPointcut("Do"),

 new ConsoleLoggingAroundAdvice()));

 ICommand command = (ICommand) factory.GetProxy();

 // note that there is no 'Do' in this method name

 command.Execute();

Run the code snippet again; you will see that the advice will not be applied : the pointcut is not matched (the

method name does not contain the letters 'Do'), resulting in the following (unadvised) output...

Service implementation...

XML configuration that accomplishes exactly the same thing as the previous programmatic configuration example

can be seen below...

 <object id="consoleLoggingAroundAdvice"

 type="Spring.Aop.Support.RegularExpressionMethodPointcutAdvisor">

 <property name="pattern" value="Do"/>

 <property name="advice">

 <object type="Spring.Examples.AopQuickStart.ConsoleLoggingAroundAdvice"/>

 </property>

 </object>

 <object id="myServiceObject"

 type="Spring.Aop.Framework.ProxyFactoryObject">

 <property name="target">

 <object id="myServiceObjectTarget"

 type="Spring.Examples.AopQuickStart.ServiceCommand"/>

 </property>

 <property name="interceptorNames">

 <list>

 <value>consoleLoggingAroundAdvice</value>

 </list>

 </property>

AOP QuickStart

Spring Framework (Version 1.3.2) 395

 </object>

You'll will perhaps have noticed that this treatment of pointcuts introduced the concept of an advisor (see

Section 13.4, “Advisor API in Spring.NET”). An advisor is nothing more the composition of a pointcut (i.e. where

advice is going to be applied), and the advice itself (i.e. what is going to happen at the interception point). The

consoleLoggingAroundAdvice object defines an advisor that will apply the advice to all those methods of the

advised object that match the pattern 'Do' (the pointcut). The pattern to match against is supplied as a simple

string value to the pattern property of the RegularExpressionMethodPointcutAdvisor class.

38.3. Going deeper

The first section should (hopefully) have demonstrated the basics of firstly defining advice, and secondly, of

choosing where to apply that advice using the notion of a pointcut. Of course, there is a great deal more to

Spring.NET AOP than the aforementioned single advice type and pointcut. This section continues the exploration

of Spring.NET AOP, and describes the various advice and pointcuts that are available for you to use (yes, there

is more than one type of advice and pointcut).

38.3.1. Other types of Advice

The advice that was demonstrated and explained in the preceding section is what is termed 'around advice'. The

name 'around advice' is used because the advice is applied around the target method invocation. In the specific

case of the ConsoleLoggingAroundAdvice advice that was defined previously, the target was made available to

the advice as an IMethodInvocation object... a call was made to the Console class before the target was invoked,

and a call was made to the Console class after the target method invocation was invoked. The advice surrounded

the target, one could even say that the advice was totally 'around' the target... hence the name, 'around advice'.

'around advice' provides one with the opportunity to do things both before the target gets a chance to do anything,

and after the target has returned: one even gets a chance to inspect (and possibly even totally change) the return

value.

Sometimes you don't need all that power though. If we stick with the example of the

ConsoleLoggingAroundAdvice advice, what if one just wants to log the fact that a method was called? In that

case one doesn't need to do anything after the target method invocation is to be invoked, nor do you need access

to the return value of the target method invocation. In fact, you only want to do something before the target is

to be invoked (in this case, print out a message to the system Console detailing the name of the method). In

the tradition of good programming that says one should use only what one needs and no more, Spring.NET has

another type of advice that one can use... if one only wants to do something before the target method invocation

is invoked, why bother with having to manually call the Proceed() method? The most expedient solution simply

is to use 'before advice'.

38.3.1.1. Before advice

'before advice' is just that... it is advice that runs before the target method invocation is invoked. One does not

get access to the target method invocation itself, and one cannot return a value... this is a good thing, because it

means that you cannot inadvertently forget to call the Proceed() method on the target, and it also means that you

cannot inadvertently forget to return the return value of the target method invocation. If you don't need to inspect

or change the return value, or even do anything after the successful execution of the target method invocation,

then 'before advice' is just what you need.

'before advice' in Spring.NET is defined by the IMethodBeforeAdvice interface in the Spring.Aop namespace.

Lets just dive in with an example... we'll use the same scenario as before to keep things simple. Let's define the

'before advice' implementation first.

AOP QuickStart

Spring Framework (Version 1.3.2) 396

 public class ConsoleLoggingBeforeAdvice : IMethodBeforeAdvice

 {

 public void Before(MethodInfo method, object[] args, object target)

 {

 Console.Out.WriteLine("Intercepted call to this method : " + method.Name);

 Console.Out.WriteLine(" The target is : " + target);

 Console.Out.WriteLine(" The arguments are : ");

 if(args != null)

 {

 foreach (object arg in args)

 {

 Console.Out.WriteLine("\t: " + arg);

 }

 }

 }

 }

Let's apply a single instance of the ConsoleLoggingBeforeAdvice advice to the invocation of the Execute()

method of the ServiceCommand. What follows is programmatic configuration; as you can see, its pretty much

identical to the previous version... the only difference is that we're using our new 'before advice' (encapsulated

as an instance of the ConsoleLoggingBeforeAdvice class).

 ProxyFactory factory = new ProxyFactory(new ServiceCommand());

 factory.AddAdvice(new ConsoleLoggingBeforeAdvice());

 ICommand command = (ICommand) factory.GetProxy();

 command.Execute();

The result of executing the above snippet of code will look something like this...

 Intercepted call to this method : Execute

 The target is : Spring.Examples.AopQuickStart.ServiceCommand

 The arguments are :

The output clearly indicates that the advice was applied before the invocation of the advised method. Notice that

in contrast to 'around advice', with 'before advice' there is no chance of forgetting to call the Proceed() method

on the target, because one does not have access to the IMethodInvocation (as is the case with 'around advice')...

similarly, you cannot forget to return the return value either.

If you can use 'before advice', then do so. The simpler programming model offered by 'before advice' means that

there is less to remember, and thus potentially less things to get wrong.

Here is the Spring.NET XML configuration for applying our 'before advice' declaratively...

 <object id="beforeAdvice"

 type="Spring.Examples.AopQuickStart.ConsoleLoggingBeforeAdvice"/>

 <object id="myServiceObject"

 type="Spring.Aop.Framework.ProxyFactoryObject">

 <property name="target">

 <object id="myServiceObjectTarget"

 type="Spring.Examples.AopQuickStart.ServiceCommand"/>

 </property>

 <property name="interceptorNames">

 <list>

 <value>beforeAdvice</value>

 </list>

 </property>

 </object>

38.3.1.2. After advice

Just as 'before advice' defines advice that executes before an advised target, 'after advice' is advice that executes

after a target has been executed.

AOP QuickStart

Spring Framework (Version 1.3.2) 397

'after advice' in Spring.NET is defined by the IAfterReturningAdvice interface in the Spring.Aop namespace.

Again, lets just fire on ahead with an example... again, we'll use the same scenario as before to keep things simple.

 public class ConsoleLoggingAfterAdvice : IAfterReturningAdvice

 {

 public void AfterReturning(

 object returnValue, MethodInfo method, object[] args, object target)

 {

 Console.Out.WriteLine("This method call returned successfully : " + method.Name);

 Console.Out.WriteLine(" The target was : " + target);

 Console.Out.WriteLine(" The arguments were : ");

 if(args != null)

 {

 foreach (object arg in args)

 {

 Console.Out.WriteLine("\t: " + arg);

 }

 }

 Console.Out.WriteLine(" The return value is : " + returnValue);

 }

 }

Let's apply a single instance of the ConsoleLoggingAfterAdvice advice to the invocation of the Execute()

method of the ServiceCommand. What follows is programmatic configuration; as you can, its pretty much

identical to the 'before advice' version (which in turn was pretty much identical to the original 'around advice'

version)... the only real difference is that we're using our new 'after advice' (encapsulated as an instance of the

ConsoleLoggingAfterAdvice class).

 ProxyFactory factory = new ProxyFactory(new ServiceCommand());

 factory.AddAdvice(new ConsoleLoggingAfterAdvice());

 ICommand command = (ICommand) factory.GetProxy();

 command.Execute();

The result of executing the above snippet of code will look something like this...

 This method call returned successfully : Execute

 The target was : Spring.Examples.AopQuickStart.ServiceCommand

 The arguments were :

 The return value is : null

The output clearly indicates that the advice was applied after the invocation of the advised method. Again, it

bears repeating that your real world development will actually have an advice implementation that does something

useful after the invocation of an advised method. Notice that in contrast to 'around advice', with 'after advice'

there is no chance of forgetting to call the Proceed() method on the target, because just like 'before advice' you

don't have access to the IMethodInvocation... similarly, although you get access to the return value of the target,

you cannot forget to return the return value either. You can however change the state of the return value, typically

by setting some of its properties, or by calling methods on it.

The best-practice rule for 'after advice' is much the same as it is for 'before advice'; namely that if you can use

'after advice', then do so (in preference to using 'around advice'). The simpler programming model offered by

'after advice' means that there is less to remember, and thus less things to get potentially wrong.

A possible use case for 'after advice' would include performing access control checks on the return value of an

advised method invocation; consider the case of a service that returns a list of document URI's... depending on

the identity of the (Windows) user that is running the program that is calling this service, one could strip out

those URI's that contain sensitive data for which the user does not have sufficient privileges to access. That is

just one (real world) scenario... I'm sure you can think of plenty more that are a whole lot more relevant to your

own development needs.

Here is the Spring.NET XML configuration for applying the 'after advice' declaratively...

AOP QuickStart

Spring Framework (Version 1.3.2) 398

 <object id="afterAdvice"

 type="Spring.Examples.AopQuickStart.ConsoleLoggingAfterAdvice"/>

 <object id="myServiceObject"

 type="Spring.Aop.Framework.ProxyFactoryObject">

 <property name="target">

 <object id="myServiceObjectTarget"

 type="Spring.Examples.AopQuickStart.ServiceCommand"/>

 </property>

 <property name="interceptorNames">

 <list>

 <value>afterAdvice</value>

 </list>

 </property>

 </object>

38.3.1.3. Throws advice

So far we've covered 'around advice', 'before advice', and 'after advice'... these advice types will see you through

most if not all of your AOP needs. However, one of the remaining advice types that Spring.NET has in its locker

is 'throws advice'.

'throws advice' is advice that executes when an advised method invocation throws an exception.. hence the name.

One basically applies the 'throws advice' to a target object in much the same way as any of the previously

mentioned advice types. If during the execution of ones application none of any of the advised methods throws

an exception, then the 'throws advice' will never execute. However, if during the execution of your application

an advised method does throw an exception, then the 'throws advice' will kick in and be executed. You can use

'throws advice' to apply a common exception handling policy across the various objects in your application, or to

perform logging of every exception thown by an advised method, or to alert (perhaps via email) the support team

in the case of particularly of critical exceptions... the list of possible uses cases is of course endless.

The 'throws advice' type in Spring.NET is defined by the IThrowsAdvice interface in the Spring.Aop namespace...

basically, one defines on one's 'throws advice' implementation class what types of exception are going to be

handled. Lets take a quick look at the IThrowsAdvice interface...

 public interface IThrowsAdvice : IAdvice

 {

 }

Yes, that is really it... it is a marker interface that has no methods on it. You may be wondering how Spring.NET

determines which methods to call to effect the running of one's 'throws advice'. An example would perhaps be

illustrative at this point, so here is some simple Spring.NET style 'throws advice'...

 public class ConsoleLoggingThrowsAdvice : IThrowsAdvice

 {

 public void AfterThrowing(Exception ex)

 {

 Console.Out.WriteLine("Advised method threw this exception : " + ex);

 }

 }

Lets also change the implementation of the Execute() method of the ServiceCommand class such that it throws

an exception. This will allow the advice encapsulated by the above ConsoleLoggingThrowsAdvice to kick in.

 public class ServiceCommand : ICommand

 {

 public void Execute()

 {

 throw new UnauthorizedAccessException();

 }

 }

AOP QuickStart

Spring Framework (Version 1.3.2) 399

Let's programmatically apply the 'throws advice' (an instance of our ConsoleLoggingThrowsAdvice) to the

invocation of the Execute() method of the above ServiceCommand class; to wit...

 ProxyFactory factory = new ProxyFactory(new ServiceCommand());

 factory.AddAdvice(new ConsoleLoggingThrowsAdvice());

 ICommand command = (ICommand) factory.GetProxy();

 command.Execute();

The result of executing the above snippet of code will look something like this...

 Advised method threw this exception : System.UnauthorizedAccessException:

 Attempted to perform an unauthorized operation.

As can be seen from the output, the ConsoleLoggingThrowsAdvice kicked in when the advised method invocation

threw an exception. There are a number of things to note about the ConsoleLoggingThrowsAdvice advice class,

so lets take them each in turn.

In Spring.NET, 'throws advice' means that you have to define a class that implements the IThrowsAdvice

interface. Then, for each type of exception that your 'throws advice' is going to handle, you have to define a

method with this signature...

 void AfterThrowing(Exception ex)

Basically, your exception handling method has to be named AfterThrowing. This name is important... your

exception handling method(s) absolutely must be called AfterThrowing. If your handler method is not called

AfterThrowing, then your 'throws advice' will never be called, it's as simple as that. Currently, this naming

restriction is not configurable (although it may well be opened up for configuration in the future).

Your exception handling method must (at the very least) declare a parameter that is an Exception type... this

parameter can be the root Exception class (as in the case of the above example), or it can be an Exception

subclass if you only want to handle certain types of exception. It is good practice to always make your exception

handling methods have an Exception parameter that is the most specialized Exception type possible... i.e. if

you are applying 'throws advice' to a method that could only ever throw ArgumentExceptions, then declare the

parameter of your exception handling method as...

 void AfterThrowing(ArgumentException ex)

Note that your exception handling method can have any return type, but returning any value from a Spring.NET

'throws advice' method would be a waste of time... the Spring.NET AOP infrastructure will simply ignore the

return value, so always define the return type of your exception handling methods to be void.

Finally, here is the Spring.NET XML configuration for applying the 'throws advice' declaratively...

 <object id="throwsAdvice"

 type="Spring.Examples.AopQuickStart.ConsoleLoggingThrowsAdvice"/>

 <object id="myServiceObject"

 type="Spring.Aop.Framework.ProxyFactoryObject">

 <property name="target">

 <object id="myServiceObjectTarget"

 type="Spring.Examples.AopQuickStart.ServiceCommand"/>

 </property>

 <property name="interceptorNames">

 <list>

 <value>throwsAdvice</value>

 </list>

 </property>

 </object>

AOP QuickStart

Spring Framework (Version 1.3.2) 400

One thing that cannot be done using 'throws advice' is exception swallowing. It is not possible to define an

exception handling method in a 'throws advice' implementation that will swallow any exception and prevent said

exception from bubbling up the call stack. The nearest thing that one can do is define an exception handling method

in a 'throws advice' implementation that will wrap the handled exception in another exception; one would then

throw the wrapped exception in the body of one's exception handling method. One can use this to implement some

sort of exception translation or exception scrubbing policy, in which implementation specific exceptions (such

as SqlException or OracleException exceptions being thrown by an advised data access object) get replaced

with a business exception that has meaning to the service objects in one's business layer. A toy example of this

type of 'throws advice' can be seen below.

 public class DataAccessExceptionScrubbingThrowsAdvice : IThrowsAdvice

 {

 public void AfterThrowing (SqlException ex)

 {

 // business objects in higher level service layer need only deal with PersistenceException...

 throw new PersistenceException ("Cannot access persistent storage.", ex.StackTrace);

 }

 }

Spring.NET's data access library already has this kind of functionality (and is a whole lot more sophisticated)...

the above example is merely being used for illustrative purposes.

This treatment of 'throws advice', and of Spring.NET's implementation of it is rather simplistic. 'throws advice'

features that have been omitted include the fact that one can define exception handling methods that permit access

to the original object, method, and method arguments of the advised method invocation that threw the original

exception. This is a quickstart guide though, and is not meant to be exhaustive... do consult the 'throws advice'

section of the reference documentation, which describes how to declare an exception handling method that gives

one access to the above extra objects, and how to declare multiple exception handling methods on the same

IThrowsAdvice implementation class (see Section 13.3.2.3, “Throws advice”).

38.3.1.4. Introductions (mixins)

In a nutshell, introductions are all about adding new state and behaviour to arbitrary objects... transparently and

at runtime. Introductions (also called mixins) allow one to emulate multiple inheritance, typically with an eye

towards applying crosscutting state and operations to a wide swathe of objects in your application that don't share

the same inheritance hierarchy.

38.3.1.5. Layering advice

The examples shown so far have all demonstrated the application of a single advice instance to an advised

object. Spring.NET's flavor of AOP would be pretty poor if one could only apply a single advice instance per

advised object... it is perfectly valid to apply multiple advice to an advised object. For example, one might apply

transactional advice to a service object, and also apply a security access checking advice to that same advised

service object.

In the interests of keeping this section lean and tight, let's simply apply all of the advice types that have been

previously described to a single advised object... in this first instance we'll just use the default pointcut which

means that every possible joinpoint will be advised, and you'll be able to see that the various advice instances

are applied in order.

Please do consult the class definitions for the following previously defined advice types to see exactly what each

advice type implementation does... we're going to be using single instances of the ConsoleLoggingAroundAdvice,

ConsoleLoggingBeforeAdvice, ConsoleLoggingAfterAdvice, and ConsoleLoggingThrowsAdvice advice to

advise a single instance of the ServiceCommand class.

AOP QuickStart

Spring Framework (Version 1.3.2) 401

You can find the following listing and executable application in the AopQuickStart solution in the project

Spring.AopQuickStart.Step1.

 ProxyFactory factory = new ProxyFactory(new ServiceCommand());

 factory.AddAdvice(new ConsoleLoggingBeforeAdvice());

 factory.AddAdvice(new ConsoleLoggingAfterAdvice());

 factory.AddAdvice(new ConsoleLoggingThrowsAdvice());

 factory.AddAdvice(new ConsoleLoggingAroundAdvice());

 ICommand command = (ICommand) factory.GetProxy();

 command.Execute();

Here is the Spring.NET XML configuration for declaratively applying multiple advice.

You can find the following listing and executable application in the AopQuickStart solution in the project

Spring.AopQuickStart.Step2.

 <object id="throwsAdvice"

 type="Spring.Examples.AopQuickStart.ConsoleLoggingThrowsAdvice"/>

 <object id="afterAdvice"

 type="Spring.Examples.AopQuickStart.ConsoleLoggingAfterAdvice"/>

 <object id="beforeAdvice"

 type="Spring.Examples.AopQuickStart.ConsoleLoggingBeforeAdvice"/>

 <object id="aroundAdvice"

 type="Spring.Examples.AopQuickStart.ConsoleLoggingAroundAdvice"/>

 <object id="myServiceObject"

 type="Spring.Aop.Framework.ProxyFactoryObject">

 <property name="target">

 <object id="myServiceObjectTarget"

 type="Spring.Examples.AopQuickStart.ServiceCommand"/>

 </property>

 <property name="interceptorNames">

 <list>

 <value>throwsAdvice</value>

 <value>afterAdvice</value>

 <value>beforeAdvice</value>

 <value>aroundAdvice</value>

 </list>

 </property>

 </object>

38.3.1.6. Configuring advice

In case it is not immediately apparent, remember that advice is just a plain old CLR object (a POCO); advice

can have constructors that can take any number of parameters, and like any other .NET class, advice can have

properties. What this means is that one can leverage the power of the Spring.NET IoC container to apply the IoC

principle to one's advice, and in so doing reap all the benefits of Dependency Injection.

Consider the case of throws advice that needs to report (fatal) exceptions to a first line support centre. The throws

advice could declare a dependency on a reporting service via a .NET property, and the Spring.NET container

could dependency inject the reporting service dependency into the throws advice when it is being created; the

reporting dependency might be a simple Log4NET wrapper, or a Windows EventLog wrapper, or a custom

reporting exception reporting service that sends detailed emails concerning the fatal exception.

Also bear in mind the fact that Spring.NET's AOP implementation is quite independent of Spring.NET's IoC

container. As you have seen, the various examples used in this have illustrated both programmatic and declarative

AOP configuration (the latter being illustrated via Spring.NET's IoC XML configuration mechanism).

38.3.2. Using Attributes to define Pointcuts

AOP QuickStart

Spring Framework (Version 1.3.2) 402

38.4. The Spring.NET AOP Cookbook

The preceding treatment of Spring.NET AOP has (quite intentionally) been decidedly simple. The overarching

aim was to convey the concepts of Spring.NET AOP... this section of the Spring.NET AOP guide contains a

number of real world examples of the application of Spring.NET AOP.

38.4.1. Caching

This example illustrates one of the more common usages of AOP... caching.

Lets consider the scenario where we have some static reference data that needs to be kept around for the duration

of an application. The data will almost never change over the uptime of an application, and it exists only in the

database to satisfy referential integrity amongst the various relations in the database schema. An example of such

static (and typically immutable) reference data would be a collection of Country objects (comprising a country

name and a code). What we would like to do is suck in the collection of Country objects and then pin them in a

cache. This saves us having to hit the back end database again and again every time we need to reference a country

in our application (for example, to populate dropdown controls in a Windows Forms desktop application).

The Data Access Object (DAO) that will load the collection of Country objects is called AdoCountryDao (it is an

implementation of the data-access-technology agnostic DAO interface called ICountryDao). The implementation

of the AdoCountryDao is quite simple, in that every time the FindAllCountries instance method is called, an

instance will query the database for an IDataReader and hydrate zero or more Country objects using the returned

data.

 public class AdoCountryDao : ICountryDao

 {

 public IList FindAllCountries ()

 {

 // implementation elided for clarity...

 return countries;

 }

 }

Ideally, what we would like to have happen is for the results of the first call to the FindAllCountries instance

method to be cached. We would also like to do this in a non-invasive way, because caching is something that we

might want to apply at any number of points across the codebase of our application. So, to address what we have

identified as a cross cutting concern, we can use Spring.NET AOP to implement the caching.

The mechanism that this example is going to use to identify (or pick out) areas in our application that we would

like to apply caching to is a .NET Attribute. Spring.NET ships with a number of useful custom .NET Attribute

implementations, one of which is the cunningly named CacheAttribute. In the specific case of this example, we

are simply going to decorate the definition of the FindAllCountries instance method with the CacheAttribute.

 public class AdoCountryDao : ICountryDao

 {

 [Cache]

 public IList FindAllCountries ()

 {

 // implementation elided for clarity...

 return countries;

 }

 }

The SpringAir reference application that is packaged as part of the Spring.NET distribution comes with a working

example of caching applied using Spring.NET AOP (see Chapter 41, SpringAir - Reference Application).

AOP QuickStart

Spring Framework (Version 1.3.2) 403

38.4.2. Performance Monitoring

This recipe show how easy it is to instrument the classes and objects in an application for performance monitoring.

The performance monitoring implementation uses one of the (many) Windows performance counters to display

and track the performance data.

38.4.3. Retry Rules

This final recipe describes a simple (but really quite useful) aspect... retry logic. Using Spring.NET AOP, it is

quite easy to surround an operation such as a method that opens a connection to a database with a (configurable)

aspect that tries to obtain a database connection any number of times in the event of a failure.

38.5. Spring.NET AOP Best Practices

Spring.NET AOP is an 80% AOP solution, in that it only tries to solve the 80% of those cases where AOP is

a good fit in a typical enterprise application. This final section of the Spring.NET AOP guide describes where

Spring.NET AOP is typically useful (the 80%), as well as where Spring.NET AOP is not a good fit (the 20%).

Spring Framework (Version 1.3.2) 404

Chapter 39. Portable Service Abstraction
Quick Start

39.1. Introduction

This quickstart demonstrates the basic usage of Spring.NET's portable service abstraction functionality. Sections

2-5 demonstrate the use of .NET Remoting, Section 6 shows the use of the ServicedComponentExporter for .NET

Enterprise Services, and Section 7 shows the use of the WebServiceExporter.

Note

To follow this Quarts QuickStart load the solution file found in the directory <spring-install-dir>

\examples\Spring\Spring.Calculator

39.2. .NET Remoting Example

The infrastructure classes are located in the Spring.Services assembly under the Spring.Services.Remoting

namespace. The overall strategy is to export .NET objects on the server side as either CAO or SAO objects using

CaoExporter or SaoExporter and obtain references to these objects on the client side using CaoFactoryObject

and SaoFactoryObject. This quickstart does assume familiarity with .NET Remoting on the part of the reader. If

you are new to .NET remoting you may find the links to introductory remoting material presented at the conclusion

of this quickstart of some help.

As usual with quick start examples in Spring.NET, the classes used in the quickstart are intentionally simple.

In the specific case of this remoting quickstart we are going to make a simple calculator that can be accessed

remotely. The same calculator class will be exported in multiple ways reflecting the variety of .NET remoting

options available (CAO, SAO-SingleCall, SAO-Singleton) and also the use of adding AOP advice to SAO hosted

objects.

The example solution is located in the examples\Spring\Spring.Calculator directory and contains multiple

projects.

The Spring.Calculator.Contract project contains the interface ICalculator that defines the basic

operations of a calculator and another interface IAdvancedCalculator that adds support for memory

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 405

storage for results. (woo hoo - big feature - HP-12C beware!) These interfaces are shown below. The

Spring.Calculator.Services project contains an implementation of the these interfaces, namely the

classes Calculator and AdvancedCalculator. The purpose of the AdvancedCalculator implementation

is to demonstrate the configuration of object state for SAO-singleton objects. Note that the calculator

implementations do not inherit from the MarshalByRefObject class. The Spring.Calculator.ClientApp

project contains the client application and the Spring.Calculator.RemoteApp project contains a console

application that will host a Remoted instance of the AdvancedCalculator class. The Spring.Aspects project

contains some logging advice that will be used to demonstrate the application of aspects to remoted objects.

Spring.Calculator.RegisterComponentServices is related to enterprise service exporters and is not relevant

for this quickstart. Spring.Calculator.Web is related to web services exporters and is not relevant for this

quickstart.

public interface ICalculator

{

 int Add(int n1, int n2);

 int Subtract(int n1, int n2);

 DivisionResult Divide(int n1, int n2);

 int Multiply(int n1, int n2);

}

[Serializable]

public class DivisionResult

{

 private int _quotient = 0;

 private int _rest = 0;

 public int Quotient

 {

 get { return _quotient; }

 set { _quotient = value; }

 }

 public int Rest

 {

 get { return _rest; }

 set { _rest = value; }

 }

}

An extension of this interface that supports having a slot for calculator memory is shown below

public interface IAdvancedCalculator : ICalculator

{

 int GetMemory();

 void SetMemory(int memoryValue);

 void MemoryClear();

 void MemoryAdd(int num);

}

The structure of the VS.NET solution is a consequence of following the best practice of using interfaces to share

type information between a .NET remoting client and server. The benefits of this approach are that the client

does not need a reference to the assembly that contains the implementation class. Having the client reference the

implementation assembly is undesirable for a variety of reasons. One reason being security since an untrusted

client could potentially obtain the source code to the implementation since Intermediate Language (IL) code is

easily reverse engineered. Another, more compelling, reason is to provide a greater decoupling between the client

and server so the server can update its implementation of the interface in a manner that is quite transparent to the

client; i.e. the client code need not change. Independent of .NET remoting best practices, using an interface to

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 406

provide a service contract is just good object-oriented design. This lets the client choose another implementation

unrelated to .NET Remoting, for example a local, test-stub or a web services implementation. One of the major

benefits of using Spring.NET is that it reduces the cost of doing 'interface based programming' to almost nothing.

As such, this best practice approach to .NET remoting fits naturally into the general approach to application

development that Spring.NET encourages you to follow. Ok, with that barrage of OO design ranting finished,

on to the implementation!

39.3. Implementation

The implementation of the calculators contained in the Spring.Calculator.Servies project is quite

straightforward. The only interesting methods are those that deal with the memory storage, which is the state that

we will be configuring explicitly using constructor injection. A subset of the implementation is shown below.

public class Calculator : ICalculator

{

 public int Add(int n1, int n2)

 {

 return n1 + n2;

 }

 public int Substract(int n1, int n2)

 {

 return n1 - n2;

 }

 public DivisionResult Divide(int n1, int n2)

 {

 DivisionResult result = new DivisionResult();

 result.Quotient = n1 / n2;

 result.Rest = n1 % n2;

 return result;

 }

 public int Multiply(int n1, int n2)

 {

 return n1 * n2;

 }

}

public class AdvancedCalculator : Calculator, IAdvancedCalculator

{

 private int memoryStore = 0;

 public AdvancedCalculator()

 {}

 public AdvancedCalculator(int initialMemory)

 {

 memoryStore = initialMemory;

 }

 public int GetMemory()

 {

 return memoryStore;

 }

 // other methods omitted in this listing...

}

The Spring.Calculator.RemotedApp project hosts remoted objects inside a console application. The code is also

quite simple and shown below

public static void Main(string[] args)

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 407

{

 try

 {

 // initialization of Spring.NET's IoC container

 IApplicationContext ctx = ContextRegistry.GetContext();

 Console.Out.WriteLine("Server listening...");

 }

 catch (Exception e)

 {

 Console.Out.WriteLine(e);

 }

 finally

 {

 Console.Out.WriteLine("--- Press <return> to quit ---");

 Console.ReadLine();

 }

}

The configuration of the .NET remoting channels is done using the standard system.runtime.remoting

configuration section inside the .NET configuration file of the application (App.config). In this case we are using

the tcp channel on port 8005.

<system.runtime.remoting>

 <application>

 <channels>

 <channel ref="tcp" port="8005" />

 </channels>

 </application>

</system.runtime.remoting>

The objects created in Spring's application context are shown below. Multiple resource files are used to export

these objects under various remoting configurations. The AOP advice used in this example is a simple Log4Net

based around advice.

 <configSections>

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.ContextHandler, Spring.Core" />

 <section name="objects" type="Spring.Context.Support.DefaultSectionHandler, Spring.Core" />

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core" />

 </sectionGroup>

 <section name="log4net" type="log4net.Config.Log4NetConfigurationSectionHandler,log4net" />

 </configSections>

<spring>

 <parsers>

 <parser type="Spring.Remoting.Config.RemotingNamespaceParser, Spring.Services" />

 </parsers>

 <context>

 <resource uri="config://spring/objects" />

 <resource uri="assembly://RemoteServer/RemoteServer.Config/cao.xml" />

 <resource uri="assembly://RemoteServer/RemoteServer.Config/saoSingleCall.xml" />

 <resource uri="assembly://RemoteServer/RemoteServer.Config/saoSingleCall-aop.xml" />

 <resource uri="assembly://RemoteServer/RemoteServer.Config/saoSingleton.xml" />

 <resource uri="assembly://RemoteServer/RemoteServer.Config/saoSingleton-aop.xml" />

 </context>

 <objects xmlns="http://www.springframework.net">

 <description>Definitions of objects to be exported.</description>

 <object type="Spring.Remoting.RemotingConfigurer, Spring.Services">

 <property name="Filename" value="Spring.Calculator.RemoteApp.exe.config" />

 </object>

 <object id="Log4NetLoggingAroundAdvice" type="Spring.Aspects.Logging.Log4NetLoggingAroundAdvice,

 Spring.Aspects">

 <property name="Level" value="Debug" />

 </object>

 <object id="singletonCalculator" type="Spring.Calculator.Services.AdvancedCalculator,

 Spring.Calculator.Services">

 <constructor-arg type="int" value="217"/>

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 408

 </object>

 <object id="singletonCalculatorWeaved" type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop">

 <property name="target" ref="singletonCalculator"/>

 <property name="interceptorNames">

 <list>

 <value>Log4NetLoggingAroundAdvice</value>

 </list>

 </property>

 </object>

 <object id="prototypeCalculator" type="Spring.Calculator.Services.AdvancedCalculator,

 Spring.Calculator.Services" singleton="false">

 <constructor-arg type="int" value="217"/>

 </object>

 <object id="prototypeCalculatorWeaved" type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop">

 <property name="targetSource">

 <object type="Spring.Aop.Target.PrototypeTargetSource, Spring.Aop">

 <property name="TargetObjectName" value="prototypeCalculator"/>

 </object>

 </property>

 <property name="interceptorNames">

 <list>

 <value>Log4NetLoggingAroundAdvice</value>

 </list>

 </property>

 </object>

 </objects>

</spring>

The declaration of the calculator instance, singletonCalculator for example, and the setting of any

property values and / or object references is done as you would normally do for any object declared in

the Spring.NET configuration file. To expose the calculator objects as .NET remoted objects the exporter

Spring.Remoting.CaoExporter is used for CAO objects and Spring.Remoting.SaoExporter is used for SAO

objects. Both exporters require the setting of a TargetName property that refers to the name of the object in

Spring's IoC container that will be remoted. The semantics of SAO-SingleCall and CAO behavior are achieved by

exporting a target object that is declared as a "prototype" (i.e. singleton=false). For SAO objects, the ServiceName

property defines the name of the service as it will appear in the URL that clients use to locate the remote object.

To set the remoting lifetime of the objects to be infinite, the property Infinite is set to true.

The configuration for the exporting a SAO-Singleton is shown below.

<objects

 xmlns="http://www.springframework.net"

 xmlns:r="http://www.springframework.net/remoting">

 <description>Registers the calculator service as a SAO in 'Singleton' mode.</description>

 <r:saoExporter

 targetName="singletonCalculator"

 serviceName="RemotedSaoSingletonCalculator" />

</objects>

The configuration shown above uses the Spring Remoting schema but you can also choose to use the standard

'generic' XML configuration shown below.

<object name="saoSingletonCalculator" type="Spring.Remoting.SaoExporter, Spring.Services">

 <property name="TargetName" value="singletonCalculator" />

 <property name="ServiceName" value="RemotedSaoSingletonCalculator" />

</object>

This will result in the remote object being identified by the URL tcp://localhost:8005/

RemotedSaoSingletonCalculator. The use of SaoExporter and CaoExporter for other configuration are similar,

look at the configuration files in the Spring.Calculator.RemotedApp project files for more information.

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 409

On the client side, the client application will connect a specific type of remote calculator service, object, ask it for

it's current memory value, which is pre-configured to 217, then perform a simple addition. As in the case of the

server, the channel configuration is done using the standard .NET Remoting configuration section of the .NET

application configuration file (App.config), as can been seen below.

<system.runtime.remoting>

 <application>

 <channels>

 <channel ref="tcp"/>

 </channels>

 </application>

</system.runtime.remoting>

The client implementation code is shown below.

public static void Main(string[] args)

{

 try

 {

 Pause();

 IApplicationContext ctx = ContextRegistry.GetContext();

 Console.Out.WriteLine("Get Calculator...");

 IAdvancedCalculator firstCalc = (IAdvancedCalculator) ctx.GetObject("calculatorService");

 Console.WriteLine("Divide(11, 2) : " + firstCalc.Divide(11, 2));

 Console.Out.WriteLine("Memory = " + firstCalc.GetMemory());

 firstCalc.MemoryAdd(2);

 Console.Out.WriteLine("Memory + 2 = " + firstCalc.GetMemory());

 Console.Out.WriteLine("Get Calculator...");

 IAdvancedCalculator secondCalc = (IAdvancedCalculator) ctx.GetObject("calculatorService");

 Console.Out.WriteLine("Memory = " + secondCalc.GetMemory());

 }

 catch (Exception e)

 {

 Console.Out.WriteLine(e);

 }

 finally

 {

 Pause();

 }

}

Note that the client application code is not aware that it is using a remote object. The Pause() method simply waits

until the Return key is pressed on the console so that the client doesn't make a request to the server before the server

has had a chance to start. The standard configuration and initialization of the .NET remoting infrastructure is done

before the creation of the Spring.NET IoC container. The configuration of the client application is constructed in

such a way that one can easily switch implementations of the calculatorService retrieved from the application

context. In more complex applications the calculator service would be a dependency on another object in your

application, say in a workflow processing layer. The following listing shows a configuration for use of a local

implementation and then several remote implementations. The same Exporter approach can be used to create

Web Services and Serviced Components (Enterprise Services) of the calculator object but are not discussed in

this QuickStart.

<spring>

 <context>

 <resource uri="config://spring/objects" />

 <!-- Only one at a time ! -->

 <!-- ================================== -->

 <!-- In process (local) implementations -->

 <!-- ================================== -->

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 410

 <resource uri="assembly://Spring.Calculator.ClientApp/Spring.Calculator.ClientApp.Config.InProcess/

inProcess.xml" />

 <!-- ======================== -->

 <!-- Remoting implementations -->

 <!-- ======================== -->

 <!-- Make sure 'RemoteApp' console application is running and listening. -->

 <!-- <resource uri="assembly://Spring.Calculator.ClientApp/Spring.Calculator.ClientApp.Config.Remoting/

cao.xml" /> -->

 <!-- <resource uri="assembly://Spring.Calculator.ClientApp/Spring.Calculator.ClientApp.Config.Remoting/

cao-ctor.xml" /> -->

 <!-- <resource uri="assembly://Spring.Calculator.ClientApp/Spring.Calculator.ClientApp.Config.Remoting/

saoSingleton.xml" /> -->

 <!-- <resource uri="assembly://Spring.Calculator.ClientApp/Spring.Calculator.ClientApp.Config.Remoting/

saoSingleton-aop.xml" /> -->

 <!-- <resource uri="assembly://Spring.Calculator.ClientApp/Spring.Calculator.ClientApp.Config.Remoting/

saoSingleCall.xml" /> -->

 <!-- <resource uri="assembly://Spring.Calculator.ClientApp/Spring.Calculator.ClientApp.Config.Remoting/

saoSingleCall-aop.xml" /> -->

 <!-- =========================== -->

 <!-- Web Service implementations -->

 <!-- =========================== -->

 <!-- Make sure 'http://localhost/SpringCalculator/' web application is running -->

 <!-- <resource uri="assembly://Spring.Calculator.ClientApp/Spring.Calculator.ClientApp.Config.WebServices/

webServices.xml" /> -->

 <!-- <resource uri="assembly://Spring.Calculator.ClientApp/Spring.Calculator.ClientApp.Config.WebServices/

webServices-aop.xml" /> -->

 <!-- ================================= -->

 <!-- EnterpriseService implementations -->

 <!-- ================================= -->

 <!-- Make sure you register components with 'RegisterComponentServices' console application. -->

 <!-- <resource uri="assembly://Spring.Calculator.ClientApp/

Spring.Calculator.ClientApp.Config.EnterpriseServices/enterpriseServices.xml" /> -->

 </context>

</spring>

The inProcess.xml configuration file creates an instance of AdvancedCalculator directly

<objects xmlns="http://www.springframework.net">

 <description>inProcess</description>

 <object id="calculatorService" type="Spring.Calculator.Services.AdvancedCalculator,

 Spring.Calculator.Services" />

</objects>

Factory classes are used to create a client side reference to the .NET remoting implementations. For SAO objects

use the SaoFactoryObject class and for CAO objects use the CaoFactoryObject class. The configuration for

obtaining a reference to the previously exported SAO singleton implementation is shown below

<objects xmlns="http://www.springframework.net">

 <description>saoSingleton</description>

 <object id="calculatorService" type="Spring.Remoting.SaoFactoryObject, Spring.Services">

 <property name="ServiceInterface" value="Spring.Calculator.Interfaces.IAdvancedCalculator,

 Spring.Calculator.Contract" />

 <property name="ServiceUrl" value="tcp://localhost:8005/RemotedSaoSingletonCalculator" />

 </object>

</objects>

You must specify the property ServiceInterface as well as the location of the remote object via the ServiceUrl

property. The property replacement facilities of Spring.NET can be leveraged here to make it easy to configure the

URL value based on environment variable settings, a standard .NET configuration section, or an external property

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 411

file. This is useful to easily switch between test, QA, and production (yea baby!) environments. An example of

how this would be expressed is...

<property name="ServiceUrl" value="${protocol}://${host}:${port}/RemotedSaoSingletonCalculator" />

The property values in this example are defined elsewhere; refer to Section 5.9.2.1, “Example: The

PropertyPlaceholderConfigurer” for additional information. As mentioned previously, more important in terms

of configuration flexibility is the fact that now you can swap out different implementations (.NET remoting based

or otherwise) of this interface by making a simple change to the configuration file.

The configuration for obtaining a reference to the previously exported CAO implementation is shown below

<objects xmlns="http://www.springframework.net">

 <description>cao</description>

 <object id="calculatorService" type="Spring.Remoting.CaoFactoryObject, Spring.Services">

 <property name="RemoteTargetName" value="prototypeCalculator" />

 <property name="ServiceUrl" value="tcp://localhost:8005" />

 </object>

</objects>

39.4. Running the application

Now that we have had a walk though of the implementation and configuration it is finally time to run the

application (if you haven't yet pulled the trigger). Be sure to set up VS.NET to run multiple applications on startup

as shown below.

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 412

Running the solution yields the following output in the server and client window

 SERVER WINDOW

Server listening...

--- Press <return> to quit ---

 CLIENT WINDOW

--- Press <return> to continue --- (hit return...)

Get Calculator...

Divide(11, 2) : Quotient: '5'; Rest: '1'

Memory = 0

Memory + 2 = 2

Get Calculator...

Memory = 2

--- Press <return> to continue ---

39.5. Remoting Schema

The spring-remoting.xsd file in the doc directory provides a short syntax to configure Spring.NET remoting

features. To install the schema in the VS.NET environment run the install-schema NAnt script in the doc directory.

Refer to the Chapter on VS.NET integration for more details.

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 413

The various configuration files in the RemoteServer and Client projects show the schema in action. Here is a

condensed listing of those definitions which should give you a good feel for how to use the schema.

<!-- Calculator definitions -->

<object id="singletonCalculator" type="Spring.Calculator.Services.AdvancedCalculator,

 Spring.Calculator.Services">

 <constructor-arg type="int" value="217" />

</object>

<object id="prototypeCalculator" type="Spring.Calculator.Services.AdvancedCalculator,

 Spring.Calculator.Services" singleton="false">

 <constructor-arg type="int" value="217" />

</object>

<!-- CAO object -->

<r:caoExporter targetName="prototypeCalculator" infinite="false">

 <r:lifeTime initialLeaseTime="2m" renewOnCallTime="1m"/>

</r:caoExporter>

<!-- SAO Single Call -->

<r:saoExporter

 targetName="prototypeCalculator"

 serviceName="RemotedSaoSingleCallCalculator"/>

<!-- SAO Singleton -->

<r:saoExporter

 targetName="singletonCalculator"

 serviceName="RemotedSaoSingletonCalculator" />

Note that the singleton nature of the remoted object is based on the Spring object definition. The

"PrototypeCalculator" has its singleton property set to false to that a new one will be created every time a method

on the remoted object is invoked for the SAO case.

39.6. .NET Enterprise Services Example

The .NET Enterprise Services example is located in the project

Spring.Calculator.RegisterComponentServices.2005.csproj or

Spring.Calculator.RegisterComponentServices.2003.csproj, depending on the use of .NET 1.1 or 2.0. The

example uses the previous AdvancedCalculator implementation and then imports the embedded configuration

file 'enterpriseServices.xml' from the namespace Spring.Calculator.RegisterComponentServices.Config. The top

level configuration is shown below

 <spring>

 <context>

 <resource uri="config://spring/objects" />

 <resource uri="assembly://Spring.Calculator.RegisterComponentServices/

Spring.Calculator.RegisterComponentServices.Config/enterpriseServices.xml" />

 </context>

 <objects xmlns="http://www.springframework.net">

 <description>Definitions of objects to be registered.</description>

 <object id="calculatorService" type="Spring.Calculator.Services.AdvancedCalculator,

 Spring.Calculator.Services" />

 </objects>

 </spring>

The exporter that adapts the AdvancedCalculator for use as an Enterprise Service component is defined first in

enterpriseServices.xml. Second is defined an exporter that will host the exported Enterprise Services component

application by signing the assembly, registering it with the specified COM+ application name. If application

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 414

does not exist it will create it and configure it using values specified for Description, AccessControl and Roles

properties. The configuration file for enterpriseServices.xml is shown below

<objects xmlns="http://www.springframework.net">

 <description>enterpriseService</description>

 <object id="calculatorComponent" type="Spring.EnterpriseServices.ServicedComponentExporter, Spring.Services">

 <property name="TargetName" value="calculatorService" />

 <property name="TypeAttributes">

 <list>

 <object type="System.EnterpriseServices.TransactionAttribute, System.EnterpriseServices" />

 </list>

 </property>

 <property name="MemberAttributes">

 <dictionary>

 <entry key="*">

 <list>

 <object type="System.EnterpriseServices.AutoCompleteAttribute, System.EnterpriseServices" />

 </list>

 </entry>

 </dictionary>

 </property>

 </object>

 <object type="Spring.EnterpriseServices.EnterpriseServicesExporter, Spring.Services">

 <property name="ApplicationName">

 <value>Spring Calculator Application</value>

 </property>

 <property name="Description">

 <value>Spring Calculator application.</value>

 </property>

 <property name="AccessControl">

 <object type="System.EnterpriseServices.ApplicationAccessControlAttribute, System.EnterpriseServices">

 <property name="AccessChecksLevel">

 <value>ApplicationComponent</value>

 </property>

 </object>

 </property>

 <property name="Roles">

 <list>

 <value>Admin : Administrator role</value>

 <value>User : User role</value>

 <value>Manager : Administrator role</value>

 </list>

 </property>

 <property name="Components">

 <list>

 <ref object="calculatorComponent" />

 </list>

 </property>

 <property name="Assembly">

 <value>Spring.Calculator.EnterpriseServices</value>

 </property>

 </object>

</objects>

39.7. Web Services Example

The WebServices example shows how to export the AdvancedCalculator as a web service that is an AOP proxy

of AdvancedCalculator that has logging advice applied to it. The main configuration file, Web.config, includes

information from three locations as shown below

 <context>

 <resource uri="config://spring/objects"/>

 <resource uri="~/Config/webServices.xml"/>

 <resource uri="~/Config/webServices-aop.xml"/>

 </context>

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 415

The config section 'spring/objects' in Web.config contains the definition for the 'plain' Advanced calculator,

as well as the definitions to create an AOP proxy of an AdvancedCalculator that adds logging advice. These

definitions are shown below

 <objects xmlns="http://www.springframework.net">

 <!-- Aspect -->

 <object id="CommonLoggingAroundAdvice" type="Spring.Aspects.Logging.CommonLoggingAroundAdvice,

 Spring.Aspects">

 <property name="Level" value="Debug"/>

 </object>

 <!-- Service -->

 <!-- 'plain object' for AdvancedCalculator -->

 <object id="calculator" type="Spring.Calculator.Services.AdvancedCalculator,

 Spring.Calculator.Services"/>

 <!-- AdvancedCalculator object with AOP logging advice applied. -->

 <object id="calculatorWeaved" type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop">

 <property name="target" ref="calculator"/>

 <property name="interceptorNames">

 <list>

 <value>CommonLoggingAroundAdvice</value>

 </list>

 </property>

 </object>

 </objects>

The configuration file webService.xml simply exports the named calculator object

 <object id="calculatorService" type="Spring.Web.Services.WebServiceExporter, Spring.Web">

 <property name="TargetName" value="calculator" />

 <property name="Namespace" value="http://SpringCalculator/WebServices" />

 <property name="Description" value="Spring Calculator Web Services" />

 </object>

Whereas the webService-aop.xml exports the calculator instance that has AOP advice applied to it.

 <object id="calculatorServiceWeaved" type="Spring.Web.Services.WebServiceExporter, Spring.Web">

 <property name="TargetName" value="calculatorWeaved" />

 <property name="Namespace" value="http://SpringCalculator/WebServices" />

 <property name="Description" value="Spring Calculator Web Services" />

 </object>

Setting the solution to run the web project as the startup, you will be presented with a screen as shown below

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 416

Selecting the CalculatorService and CalculatorServiceWeaved links will bring you to the standard user interface

generated for browsing a web service, as shown below

And similarly for the calculator service with AOP applied

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 417

Invoking the Add method for calculatorServiceWeaved shows the screen

Portable Service Abstraction Quick Start

Spring Framework (Version 1.3.2) 418

Invoking add will then show the result '4' in a new browser instance and the log file log.txt will contain the

following entires

2007-10-15 17:59:47,375 [DEBUG] Spring.Aspects.Logging.CommonLoggingAroundAdvice - Intercepted call : about to

 invoke method 'Add'

2007-10-15 17:59:47,421 [DEBUG] Spring.Aspects.Logging.CommonLoggingAroundAdvice - Intercepted call : returned

 '4'

39.8. Additional Resources

Some introductory articles on .NET remoting can be found online at MSDN. Ingo Rammer is also a very good

authority on .NET remoting, and the .NET Remoting FAQ (link below) which is maintained by Ingo is chock

full of useful information.

• An Introduction to Microsoft .NET Remoting Framework

• Microsoft .NET Remoting: A Technical Overview

• Advanced .NET Remoting (authored by Ingo Rammer)

• .NET Remoting FAQ

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/introremoting.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/hawkremoting.asp
http://www.apress.com/book/bookDisplay.html?bID=374
http://www.thinktecture.com/resources/remotingfaq/default.html

Spring Framework (Version 1.3.2) 419

Chapter 40. Web Quickstarts

40.1. Introduction

Spring.NET provides integration with ASP.NET Web Forms and ASP.NET MVC versions 2 and 3. There are

quick start applications for both Web Forms and MVC. You can read more about Web Form integration in

Chapter 22, Spring.NET Web Framework, MVC2 in Chapter 24, Spring.NET ASP.NET MVC Infrastructure for

ASP.NET MVC 2.0 and MVC3 in Chapter 25, Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 3.0.

The ASP.NET Web Form Quickstart solution provides basic 'Hello World' examples for using a wide variety

of Spring.Web features, staring with dependency injection for you pages and user controls. You can use this

solution as a starting point and then move on to the SpringAir application that uses a wider range of Spring.Web

features. (See Chapter 41, SpringAir - Reference Application). The documention inside the ASP.NET Web Form

Quickstart solution and web application will guide you through each feature.

Note

To follow the Web Form QuickStart load the solution file found in the directory <spring-install-

dir>\examples\Spring\Spring.WebQuickStart

The ASP.NET MVC2 and MVC3 examples show how you can configure various MVC components using the

Spring Dependency Injection container.

Note

To follow this MVC2 QuickStart load the solution file found in the directory <spring-install-dir>

\examples\Spring\Spring.MvcQuickStart

To follow this MVC3 QuickStart load the solution file found in the directory <spring-install-dir>

\examples\Spring\Spring.Mvc3QuickStart

Spring Framework (Version 1.3.2) 420

Chapter 41. SpringAir - Reference
Application

41.1. Introduction

The SpringAir sample application demonstrates a selection of Spring.NET's powerful features making a .NET

programmer's life easier. It demonstrates the following features of Spring.Web

• Spring.NET IoC container configuration

• Dependency Injection as applied to ASP.NET pages

• Master Page support

• Web Service support

• Bi-directional data binding

• Declarative validation of domain objects

• Internationalization

• Result mapping to better encapsulate page navigation flows

The application models a flight reservation system where you can browse flights, book a trip and even attach your

own clients by leveraging the web services exposed by the SpringAir application.

All pages within the application are fully Spring managed. Dependencies get injected as configured within a

Spring Application Context. For NET 1.1 it shows how to apply centrally managed layouts to all pages in an

application by using master pages - a well-known feature from NET 2.0.

When selecting your flights, you are already experiencing a fully localized form. Select your preferred language

from the bottom of the form and see, how the new language is immediately applied. As soon as you submit your

desired flight, the submitted values are automatically unbound from the form onto the application's data model

by leveraging Spring.Web's support for Data Binding. With Data Binding you can easily associate properties on

your PONO model with elements on your ASP.NET form.

41.2. Getting Started

The application is located in the installation directory under 'examples/SpringAir. The directory

'SpringAir.Web.2003' contains the .NET 1.1 version of the application and the directory 'SpringAir.Web.2005'

contains the .NET 2.0 version. For .NET 1.1 you will need to create a virtual directory named

'SpringAir.2003' using IIS Administrator and point it to the following directory examples\Spring\SpringAir\src

\SpringAir.Web.2003. The solution file for .NET 1.1 is examples\Spring\SpringAir\SpringAir.2003.sln. For .NET

2.0 simply open the solution examples\Spring\SpringAir\SpringAir.2005.sln. Set your startup project to be

SpringAir.Web and the startpage to .\Web\Home.aspx

41.3. Container configuration

The web project's top level Web.config configures the IoC container that is used within the web application. You

do not need to explicitly instantiate the IoC container. The important parts of that configuration are shown below

SpringAir - Reference Application

Spring Framework (Version 1.3.2) 421

<spring>

 <parsers>

 <parser type="Spring.Data.Config.DatabaseNamespaceParser, Spring.Data" />

 </parsers>

 <context>

 <resource uri="~/Config/Aspects.xml"/>

 <resource uri="~/Config/Web.xml"/>

 <resource uri="~/Config/Services.xml"/>

 <!-- TEST CONFIGURATION -->

 <resource uri="~/Config/Test/Services.xml"/>

 <resource uri="~/Config/Test/Dao.xml"/>

 <!-- PRODUCTION CONFIGURATION -->

 <!--

 <resource uri="~/Config/Production/Services.xml"/>

 <resource uri="~/Config/Production/Dao.xml"/>

 -->

 </context>

</spring>

In this example there are separate configuration files for test and production configuration. The Services.xml file

is in fact the same between the two, and the example will be refactored in future to remove that duplication.

The Dao layer in the test configuration is an in-memory version, faking database access, whereas the production

version uses an ADO.NET based solution.

The pages that comprise the application are located in the directory 'Web/BookTrip'. In that directory is another

Web.config that is responsible for configuring that directory's .aspx pages. There are three main pages in the flow

of the application.

• TripForm - form to enter in airports, times, round-trip or one-way

• Suggested Flights - form to select flights

• ReservationConfirmationPage - your confirmation ID from the booking process.

The XML configuration to configure the TripForm form is shown below

 <object type="TripForm.aspx" parent="standardPage">

 <property name="BookingAgent" ref="bookingAgent" />

 <property name="AirportDao" ref="airportDao" />

 <property name="TripValidator" ref="tripValidator" />

 <property name="Results">

 <dictionary>

 <entry key="displaySuggestedFlights" value="redirect:SuggestedFlights.aspx" />

 </dictionary>

 </property>

 </object>

As you can see the various services it needs are set using standard DI techniques. The Results property externalizes

the page flow, redirecting to the next page in the flow, SuggestedFlights. The 'parent' attribute lets this page inherit

properties from a template. The is located in the top level Web.config file, packaged under the Config directory.

The standardPage sets up properties of Spring's base page class, from which all the pages in this application

inherit from. (Note that to perform only dependency injection on pages you do not need to inherit from Spring's

Page class).

SpringAir - Reference Application

Spring Framework (Version 1.3.2) 422

41.4. Bi-directional data binding

The TripForm page demonstrates the bi-directional data binding features. A Trip object is used to back the

information of the form. The family of methods that are overridden to support the bi-directional data binding

are listed below.

 protected override void InitializeModel()

 {

 trip = new Trip();

 trip.Mode = TripMode.RoundTrip;

 trip.StartingFrom.Date = DateTime.Today;

 trip.ReturningFrom.Date = DateTime.Today.AddDays(1);

 }

 protected override void LoadModel(object savedModel)

 {

 trip = (Trip)savedModel;

 }

 protected override object SaveModel()

 {

 return trip;

 }

 protected override void InitializeDataBindings()

 {

 BindingManager.AddBinding("tripMode.Value", "Trip.Mode");

 BindingManager.AddBinding("leavingFromAirportCode.SelectedValue", "Trip.StartingFrom.AirportCode");

 BindingManager.AddBinding("goingToAirportCode.SelectedValue", "Trip.ReturningFrom.AirportCode");

 BindingManager.AddBinding("leavingFromDate.SelectedDate", "Trip.StartingFrom.Date");

 BindingManager.AddBinding("returningOnDate.SelectedDate", "Trip.ReturningFrom.Date");

 }

This is all you need to set up in order to have values from the Trip object 'marshaled' to and from the web controls.

The InitializeDataBindings method set this up, using the Spring Expression Language to define the UI element

property that is associate with the model (Trip) property.

41.5. Declarative Validation

The method called when the Search button is clicked will perform validation. If validation succeeds as well as

additional business logic checks, the next page in the flow is loaded. This is shown in the code below. Notice how

much cleaner and more business focused the code reads than if you were using standard ASP.NET APIs.

 protected void SearchForFlights(object sender, EventArgs e)

 {

 if (Validate(trip, tripValidator))

 {

 FlightSuggestions suggestions = this.bookingAgent.SuggestFlights(Trip);

 if (suggestions.HasOutboundFlights)

 {

 Session[Constants.SuggestedFlightsKey] = suggestions;

 SetResult(DisplaySuggestedFlights);

 }

 }

 }

The 'Validate' method of the page takes as arguments the object to validate and a IValidator instance. The

TripForm property TripValidator is set via dependency injection (as shown above). The validation logic is defined

declaratively in the XML configuration file and is shown below.

 <v:group id="tripValidator">

 <v:required id="departureAirportValidator" test="StartingFrom.AirportCode">

 <v:message id="error.departureAirport.required" providers="departureAirportErrors, validationSummary"/>

 </v:required>

SpringAir - Reference Application

Spring Framework (Version 1.3.2) 423

 <v:group id="destinationAirportValidator">

 <v:required test="ReturningFrom.AirportCode">

 <v:message id="error.destinationAirport.required" providers="destinationAirportErrors,

 validationSummary"/>

 </v:required>

 <v:condition test="ReturningFrom.AirportCode !=

 StartingFrom.AirportCode" when="ReturningFrom.AirportCode != ''">

 <v:message id="error.destinationAirport.sameAsDeparture" providers="destinationAirportErrors,

 validationSummary"/>

 </v:condition>

 </v:group>

 <v:group id="departureDateValidator">

 <v:required test="StartingFrom.Date">

 <v:message id="error.departureDate.required" providers="departureDateErrors, validationSummary"/>

 </v:required>

 <v:condition test="StartingFrom.Date >= DateTime.Today" when="StartingFrom.Date != DateTime.MinValue">

 <v:message id="error.departureDate.inThePast" providers="departureDateErrors, validationSummary"/>

 </v:condition>

 </v:group>

 <v:group id="returnDateValidator" when="Mode == 'RoundTrip'">

 <v:required test="ReturningFrom.Date">

 <v:message id="error.returnDate.required" providers="returnDateErrors, validationSummary"/>

 </v:required>

 <v:condition test="ReturningFrom.Date >= StartingFrom.Date" when="ReturningFrom.Date !=

 DateTime.MinValue">

 <v:message id="error.returnDate.beforeDeparture" providers="returnDateErrors, validationSummary"/>

 </v:condition>

 </v:group>

 </v:group>

The validation logic has 'when' clauses so that return dates can be ignored if the Mode property of the Trip object

is set to 'RoundTrip'.

41.6. Internationalization

Both image and text based internationalization are supported. You can see this in action by clicking on the English,

Srpski, or ###### links on the bottom of the page.

41.7. Web Services

The class BookingAgent that was used by the TripForm class is a standard .NET class, i.e no WebMethod

attributes are on any of its methods. Spring can expose this object as a web service by declaring the following

XML defined in the top level Config/Services.xml file

 <object id="bookingAgentWebService" type="Spring.Web.Services.WebServiceExporter, Spring.Web">

 <property name="TargetName" value="bookingAgent"/>

 <property name="Name" value="BookingAgent"/>

 <property name="Namespace" value="http://SpringAir/WebServices"/>

 <property name="Description" value="SpringAir Booking Agent Web Service"/>

 <property name="MemberAttributes">

 <dictionary>

 <entry key="SuggestFlights">

 <object type="System.Web.Services.WebMethodAttribute, System.Web.Services">

 <property name="Description" value="Gets those flight suggestions that are applicable for the

 supplied trip."/>

 </object>

 </entry>

 <entry key="Book">

 <object type="System.Web.Services.WebMethodAttribute, System.Web.Services">

 <property name="Description" value="Goes ahead and actually books what up until this point has

 been a transient reservation."/>

 </object>

 </entry>

SpringAir - Reference Application

Spring Framework (Version 1.3.2) 424

 <entry key="GetAirportList">

 <object type="System.Web.Services.WebMethodAttribute, System.Web.Services">

 <property name="Description" value="Return a collection of all those airports that can be used for

 the purposes of booking."/>

 </object>

 </entry>

 </dictionary>

 </property>

 </object>

Spring Framework (Version 1.3.2) 425

Chapter 42. ADO.NET Data Access
QuickStart

42.1. Introduction

The data access quick start demonstrates the API usage of AdoTemplate (both generic and non-generic versions)

as well as the use of the object based data access classes contained in Spring.Data.Objects. It uses the Northwind

database and is located under the directory examples/DataAccessQuickStart.

The quick start contains pseudo DAO objects and a collection of NUnit tests to exercise them rather than a full

blown application. To run the tests from within VS.NET install TestDriven.NET, ReSharper, or an equivalent .

The listing of DAO classes and the parts of Spring.Data that they demonstrate is shown below.

• CommandCallbackDao - Use of the ICommandCallback and CommandCallbackDelegate

• ResultSetExtractorDao - Use of IResultSetExtractor and ResultSetExtractorDelegate

• RowCallbackDao - Use of IRowCallback and RowCallbackDelegate

• RowMapperDao - Use of IRowMapper and RowMapperDelegate

• QueryForObject - Use of QueryForObject method.

• StoredProcDao - Use of Spring.Data.Objects.StoredProcedure

The are simple domain objects in the Spring.DataQuickStart.Domain namespace, collections of which are

generally returned from the DAO methods.

Note

To follow this Data Access QuickStart load the solution file found in the directory <spring-install-

dir>\examples\Spring\Spring.DataQuickStart

42.1.1. Database configuration

To get started running the 'unit test' you should configure the database connection string. The listing in

DataQuickStart.GenericTemplate.ExampleTests.xml is shown below

<objects xmlns="http://www.springframework.net"

 xmlns:db="http://www.springframework.net/database">

 <db:provider id="dbProvider"

 provider="SqlServer-1.1"

 connectionString="Data Source=(local);Database=Northwind;User

 ID=springqa;Password=springqa;Trusted_Connection=False"/>

 <! -- other definitions not shown

</objects>

You should change the value of the provider element to correspond to you database and the connection string as

appropriate. Please refer to the documentation on the DbProvider abstraction for details particular to your database

http://www.testdriven.net/
http://www.jetbrains.com/resharper/

ADO.NET Data Access QuickStart

Spring Framework (Version 1.3.2) 426

configuration. You should also install the Northwind database, which is available for SqlServer 2005 from this

download location. The minimal schema to support other database providers may be supported in the future.

42.1.1.1. AdoTemplate Configuration

The various DAO objects refer to an instance of AdoTemplate which is responsible for performing data access

operations. This is declared in ExampleTest.xml as shown below

 <object id="adoTemplate" type="Spring.Data.Generic.AdoTemplate, Spring.Data">

 <property name="DbProvider" ref="dbProvider"/>

 <property name="DataReaderWrapperType" value="Spring.Data.Support.NullMappingDataReader, Spring.Data"/>

 </object>

The property DbProvider refers to the database configuration you previously defined. Also the property

DataReaderWrapper is set to the NullMappingDataReader that ships with Spring. This provides convenient

default values for null values returned from the database. To read more about AdoTemplate, refer to the chapter,

Data access using ADO.NET.

42.1.2. CommandCallback

The code that exercises the use of a CommandCallback is shown below

 [Test]

 public void CallbackDaoTest()

 {

 CommandCallbackDao commandCallbackDao = ctx["commandCallbackDao"] as CommandCallbackDao;

 int count = commandCallbackDao.FindCountWithPostalCode("1010");

 Assert.AreEqual(3, count);

 }

The configuration of the CommandCallbackDao is shown below

 <object id="commandCallbackDao" type="Spring.DataQuickStart.Dao.GenericTemplate.CommandCallbackDao,

 Spring.DataQuickStart">

 <property name="AdoTemplate" ref="adoTemplate"/>

 </object>

This the minimal configuration required for a DAO object, typically DAO objects in your application will include

other configuraiton information, for example properties to specify the maximum size of the result set returned

etc. The implementation of the FindCountWithPostalCode is shown below

 public virtual int FindCountWithPostalCodeWithDelegate(string postalCode)

 {

 // Using anonymous delegates allows you to easily reference the

 // surrounding parameters for use with the DbCommand processing.

 return AdoTemplate.Execute<int>(delegate(DbCommand command)

 {

 // Do whatever you like with the DbCommand... downcast to get

 // provider specific funtionality if necesary.

 command.CommandText = cmdText;

 DbParameter p = command.CreateParameter();

 p.ParameterName = "@PostalCode";

 p.Value = postalCode;

 command.Parameters.Add(p);

 return (int)command.ExecuteScalar();

 });

 }

http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46a0-8da2-eebc53a68034&DisplayLang=en

ADO.NET Data Access QuickStart

Spring Framework (Version 1.3.2) 427

Anonymous delegates are used to specify the implementation of the callback function that passes in a

DbCommand object. You can then use the DbCommand object as you see fit to access the database. If you are

using Spring's delcarative transaction management features then this DbCommand would have its transaction

and connection properties based on the context of the surrounding transaction. All resource management for the

DbCommand are handled for you by the framework, as well as error reporting on error etc. If you execute the

test, it will pass, assuming you haven't modified any data in the Northwind database from its raw installation.

Spring Framework (Version 1.3.2) 428

Chapter 43. Transactions QuickStart

43.1. Introduction

The Transaction Quickstart demonstrates Spring's transaction management features. The database schema are

two simple tables, credit and debit, which contain an Identifier and an Amount. The quick start shows the use of

declarative transactions using attributes and also the ability to change the transaction manager (local or distributed)

via changes to only the configuration files - no code changes are required. It also demonstrates some techniques

for unit and integration testing an application as well as separating Spring's configuration files so that one is

responsible for describing how the core business classes are configured and others that are responsible for the

database environment and application of AOP.

This quickstart assumes you have installed a way to run NUnit tests within your IDE. Some excellent tools that

let you do this are TestDriven.NET and ReSharper.

Note

To follow this Quarts QuickStart load the solution file found in the directory <spring-install-dir>

\examples\Spring\Spring.TxQuickStart

43.2. Application Overview

The design of the application is very simple and consists of two logical layers, a business service layer in the

namespace Spring.TxQuickStart.Services and a DAO layer in the namespace Spring.TxQuickStart.Dao. As

this is just a toy example the business service layer does nothing more than call two DAO objects. The business

service is to transfer money in a bank account and is blatantly taken from the book Pro ADO.NET by Sahil

Malik. The transfer service is defined by the interface IAccountManager with the implementation AccountManager

located in the namespace Spring.TxQuickStart.Services. The money is recorded in a credit and debit table in

the database. The SQL Server schema for the tables is located in the file CreditsDebitsSchema.sql. Transferring the

money requires an ACID operation on these two tables. The credit operation is defined via a IAccountCreditDao

interface and the debit operation via an IAccountDebitDao interface. Implementations of these interfaces using

AdoTemplate are in the namespace Spring.TxQuickStart.Dao.Ado.

43.2.1. Interfaces

The Manager and DAO interfaces are shown below

 public interface IAccountManager

 {

 void DoTransfer(float creditAmount, float debitAmount);

 }

 public interface IAccountCreditDao

 {

 void CreateCredit(float creditAmount);

 }

 public interface IAccountDebitDao

 {

 void DebitAccount(float debitAmount);

 }

http://www.testdriven.net/
http://www.jetbrains.com/resharper/
http://www.apress.com/book/bookDisplay.html?bID=10002

Transactions QuickStart

Spring Framework (Version 1.3.2) 429

43.3. Implementation

The implementation of the Account Credit DAO is shown below

 public class AccountCreditDao : AdoDaoSupport, IAccountCreditDao

 {

 public void CreateCredit(float creditAmount)

 {

 AdoTemplate.ExecuteNonQuery(CommandType.Text,

 "insert into Credits (CreditAmount) VALUES (@amount)", "amount",

 DbType.Decimal, 0,

 creditAmount);

 }

 }

and for the Debit DAO

 public class AccountDebitDao : AdoDaoSupport, IAccountDebitDao

 {

 public void DebitAccount(float debitAmount)

 {

 AdoTemplate.ExecuteNonQuery(CommandType.Text,

 "insert into dbo.Debits (DebitAmount) VALUES (@amount)", "amount",

 DbType.Decimal, 0,

 debitAmount);

 }

 }

Both of these DAO implementations inherit from Spring's AdoDaoSupport class that provides convenient access

to an AdoTemplate for performing data access operations. With no other properties that can be configured

in these implementations, the only configuration required is setting of AdoDaoSupport's DbProvider property

representing the connection to the database.

The implementation of the service layer interface, IAccountManager, is shown below.

 public class AccountManager : IAccountManager

 {

 private IAccountCreditDao accountCreditDao;

 private IAccountDebitDao accountDebitDao;

 private float maxTransferAmount = 1000000;

 public AccountManager(IAccountCreditDao accountCreditDao, IAccountDebitDao accountDebitDao)

 {

 this.accountCreditDao = accountCreditDao;

 this.accountDebitDao = accountDebitDao;

 }

 public float MaxTransferAmount

 {

 get { return maxTransferAmount; }

 set { maxTransferAmount = value; }

 }

 [Transaction]

 public void DoTransfer(float creditAmount, float debitAmount)

 {

 accountCreditDao.CreateCredit(creditAmount);

 if (creditAmount > maxTransferAmount || debitAmount > maxTransferAmount)

 {

 throw new ArithmeticException("see a teller big spender...");

 }

 accountDebitDao.DebitAccount(debitAmount);

 }

Transactions QuickStart

Spring Framework (Version 1.3.2) 430

 }

The if statement is a poor-mans representation of business logic, namely that there is a policy that does not allow

the use of this service for amounts larger than $1,000,000. If the credit or debit amount is larger than 1,000,000

then and exception will be thrown. We can write a unit test that will test for this business logic and provide

stub implementations of the DAO objects so that our tests are not only independent of the database but will also

execute very quickly.

Note

Notice the Transaction attribute on the DoTransfer method. This attribute can be read by Spring and

used to create a transactional proxy to AccountManager in order to perform declarative transaction

management.

The NUnit unit test for AccountManager is shown below

 public class AccountManagerUnitTests

 {

 private IAccountManager accountManager;

 [SetUp]

 public void Setup()

 {

 IAccountCreditDao stubCreditDao = new StubAccountCreditDao();

 IAccountDebitDao stubDebitDao = new StubAccountDebitDao();

 accountManager = new AccountManager(stubCreditDao, stubDebitDao);

 }

 [Test]

 public void TransferBelowMaxAmount()

 {

 accountManager.DoTransfer(217, 217);

 }

 [Test]

 [ExpectedException(typeof(ArithmeticException))]

 public void TransferAboveMaxAmount()

 {

 accountManager.DoTransfer(2000000, 200000);

 }

 }

Running these tests we exercise both code pathways through the method DoTransfer. Nothing we have done so

far is Spring specific (aside from the presence of the [Transaction] attribute. Now that we know the class works in

isolation, we can now 'wire' up the application for use in production by specifying how the service and DAO layers

are related. This configuration file is shown below and can loosely be referred to as your 'application blueprint'.

This configuration file is named application-config.xml and is an embedded resource inside the 'main' project,

Spring.TxQuickStart.

<objects xmlns='http://www.springframework.net'>

 <!-- DAO Implementations -->

 <object id="accountCreditDao" type="Spring.TxQuickStart.Dao.Ado.AccountCreditDao, Spring.TxQuickStart">

 <property name="DbProvider" ref="CreditDbProvider"/>

 </object>

 <object id="accountDebitDao" type="Spring.TxQuickStart.Dao.Ado.AccountDebitDao, Spring.TxQuickStart">

 <property name="DbProvider" ref="DebitDbProvider"/>

 </object>

 <!-- The service that performs multiple data access operations -->

 <object id="accountManager"

 type="Spring.TxQuickStart.Services.AccountManager, Spring.TxQuickStart">

 <constructor-arg name="accountCreditDao" ref="accountCreditDao"/>

Transactions QuickStart

Spring Framework (Version 1.3.2) 431

 <constructor-arg name="accountDebitDao" ref="accountDebitDao"/>

 </object>

</objects>

This configuration is selecting the real ADO.NET implementations that will insert records into the database. We

can now write a NUnit integration test that will test the service and DAO layers. To do this we add on configuration

information specific to our test environment. This extra configuration information will determine what databases

we speak to and what transaction manager (local or distribute) to use. The code for this integration style NUnit

test is shown below

 [TestFixture]

 public class AccountManagerTests

 {

 private AdoTemplate adoTemplateCredit;

 private AdoTemplate adoTemplateDebit;

 private IAccountManager accountManager;

 [SetUp]

 public void SetUp()

 {

 // Configure Spring programmatically

 NamespaceParserRegistry.RegisterParser(typeof(DatabaseNamespaceParser));

 NamespaceParserRegistry.RegisterParser(typeof(TxNamespaceParser));

 NamespaceParserRegistry.RegisterParser(typeof(AopNamespaceParser));

 IApplicationContext context = new XmlApplicationContext(

 "assembly://Spring.TxQuickStart.Tests/Spring.TxQuickStart/system-test-local-config.xml"

);

 accountManager = context["accountManager"] as IAccountManager;

 CleanDb(context);

 }

 [Test]

 public void TransferBelowMaxAmount()

 {

 accountManager.DoTransfer(217, 217);

 int numCreditRecords = (int)adoTemplateCredit.ExecuteScalar(CommandType.Text, "select count(*)

 from Credits");

 int numDebitRecords = (int)adoTemplateDebit.ExecuteScalar(CommandType.Text, "select count(*) from

 Debits");

 Assert.AreEqual(1, numCreditRecords);

 Assert.AreEqual(1, numDebitRecords);

 }

 [Test]

 [ExpectedException(typeof(ArithmeticException))]

 public void TransferAboveMaxAmount()

 {

 accountManager.DoTransfer(2000000, 200000);

 }

 private void CleanDb(IApplicationContext context)

 {

 IDbProvider dbProvider = (IDbProvider)context["DebitDbProvider"];

 adoTemplateDebit = new AdoTemplate(dbProvider);

 adoTemplateDebit.ExecuteNonQuery(CommandType.Text, "truncate table Debits");

 dbProvider = (IDbProvider)context["CreditDbProvider"];

 adoTemplateCredit = new AdoTemplate(dbProvider);

 adoTemplateCredit.ExecuteNonQuery(CommandType.Text, "truncate table Credits");

 }

 }

The essential element is to create an instance of Spring's application context where the relevant layers of the

application are 'wired' together. The IAccountManager implementation is retrieved from the IoC container and

stored as a field of the test class. The basic logic of the test is the same as in the unit test but in addition there

Transactions QuickStart

Spring Framework (Version 1.3.2) 432

is the verification of actions performed in the database. The set up method puts the database tables into a known

state before running the tests. Other techniques for performing integration testing that can alleviate the need to

do extensive database state management for integration tests is described in the testing section.

43.4. Configuration

The configuration file system-test-local-config.xml shown in the previous program listing includes application-

config.xml and specifies the database to use and the local (not distributed) transaction manager

AdoPlatformTransactionManager. This configuration file is shown below

<objects xmlns="http://www.springframework.net"

 xmlns:db="http://www.springframework.net/database"

 xmlns:tx="http://www.springframework.net/tx">

 <!-- Imports application configuration -->

 <import resource="assembly://Spring.TxQuickStart/Spring.TxQuickStart/application-config.xml"/>

 <!-- Imports additional aspects -->

 <!--

 <import resource="assembly://Spring.TxQuickStart.Tests/Spring.TxQuickStart/aspects-config.xml"/>

 -->

 <!-- Database Providers -->

 <db:provider id="DebitDbProvider"

 provider="System.Data.SqlClient"

 connectionString="Data Source=MARKT60\SQL2005;Initial Catalog=CreditsAndDebits;User

 ID=springqa; Password=springqa"/>

 <db:provider id="CreditDbProvider"

 provider="System.Data.SqlClient"

 connectionString="Data Source=MARKT60\SQL2005;Initial Catalog=CreditsAndDebits;User

 ID=springqa; Password=springqa"/>

 <alias name="DebitDbProvider" alias="CreditDbProvider"/>

 <!-- Transaction Manager if using a single database that contain both credit and debit tables -->

 <object id="transactionManager"

 type="Spring.Data.Core.AdoPlatformTransactionManager, Spring.Data">

 <property name="DbProvider" ref="DebitDbProvider"/>

 </object>

 <!-- Transaction aspect -->

 <tx:attribute-driven/>

</objects>

Moving from top to bottom in the configuration file, the 'application-blueprint' configuration file is included.

Then the database type and connection parameters are specified for the two databases. The names of these

providers must match those specific in application-config.xml. Since the two names point to the same database,

an alias configuration element is used to have them point to the same dbProvider under different names. The

type of transaction manager is then selected, in this case we are showing the use of local transactions with

AdoPlatformTransactionManager. Running the tests will result in 217 being entered into the Credits and Debits

table of each database. You can fire up SQL Server Management Studio or equivalent to verify this.

To switch to a distributed transaction you can refer to the configuration file system-test-dtc-config.xml, which

is shown below

<objects xmlns='http://www.springframework.net'

 xmlns:db="http://www.springframework.net/database"

 xmlns:tx="http://www.springframework.net/tx">

Transactions QuickStart

Spring Framework (Version 1.3.2) 433

 <!-- Imports application configuration -->

 <import resource="assembly://Spring.TxQuickStart/Spring.TxQuickStart/application-config.xml"/>

 <!-- Imports additional aspects -->

 <!--

 <import resource="assembly://Spring.TxQuickStart.Tests/Spring.TxQuickStart/aspects-config.xml"/>

 -->

 <db:provider id="DebitDbProvider"

 provider="System.Data.SqlClient"

 connectionString="Data Source=MARKT60\SQL2005;Initial Catalog=Debits;User ID=springqa;

 Password=springqa"/>

 <db:provider id="CreditDbProvider"

 provider="System.Data.SqlClient"

 connectionString="Data Source=MARKT60\SQL2005;Initial Catalog=Credits;User ID=springqa;

 Password=springqa"/>

 <!-- Transaction Manager if using two databases, one containing the credit table and the other a debit table

 -->

 <object id="transactionManager"

 type="Spring.Data.Core.TxScopeTransactionManager, Spring.Data">

 </object>

 <!-- Transaction aspect -->

 <tx:attribute-driven/>

</objects>

TxScopeTransactionManager uses .NET 2.0 System.Transactions as the implementation, allowing for distributed

transactions between the two different databases listed. In a larger application the different layers would typically

be broken up into individual configuration files and imported into the main configuration file. This allows your

configuration to mirror your architecture.

You can also use the configuration file system-test-dtc-es-config.xml that will use EnterpriseServices to perform

transaction management.

43.4.1. Rollback Rules

Using Rollback rules allows you to specify which exceptions will not cause a rollback and instead only

stop execution flow, committing the work done up to the exception. An alternative implementation of

AccountManager's DoTransfer method (included in the sample code) is shown below.

 [Transaction(NoRollbackFor = new Type[] { typeof(ArithmeticException) })]

 public void DoTransfer(float creditAmount, float debitAmount)

 {

 accountCreditDao.CreateCredit(creditAmount);

 if (creditAmount > maxTransferAmount || debitAmount > maxTransferAmount)

 {

 throw new ArithmeticException("see a teller big spender...");

 }

 accountDebitDao.DebitAccount(debitAmount);

 }

All that has changed is the use of the NoRollbackFor property on the transaction attribute.

The expected behavior is that the credit table will be updated even though the exception is thrown. This is due to

specifying that exceptions of the type ArithmethicException should not rollback the database transaction. Running

the test code below verifies that the exception still propagates out of the method.

Transactions QuickStart

Spring Framework (Version 1.3.2) 434

 [Test]

 public void DeclarativeWithAttributesNoRollbackFor()

 {

 try

 {

 accountManager.DoTransfer(2000000, 2000000);

 Assert.Fail("Should have thrown Arithmetic Exception");

 } catch (ArithmeticException) {

 int numCreditRecords = (int)adoTemplateCredit.ExecuteScalar(CommandType.Text, "select count(*)

 from Credits");

 int numDebitRecords = (int)adoTemplateDebit.ExecuteScalar(CommandType.Text, "select count(*)

 from Debits");

 Assert.AreEqual(1, numCreditRecords);

 Assert.AreEqual(0, numDebitRecords);

 }

 }

43.5. Adding additional Aspects

Transactional advice is just one type of advice that can be applied to the service layer. You can also configure

other pieces of advice to be executed as part of the general advice chain that is associated with methods that

have the Transaction attribute applied. In this example we will add logging of thrown exceptions using Spring's

ExceptionHandlerAdvice as well as logging of the service layer method invocation. No code is required to be

changed in order to have this additional functionality. Instead all you have to do is uncomment the line

 <import resource="assembly://Spring.TxQuickStart.Tests/Spring.TxQuickStart/aspects-config.xml"/>

in either system-test-dtc-config.xml or system-test-local-config.xml The aspect configuration file is shown below

<objects xmlns='http://www.springframework.net'

 xmlns:aop="http://www.springframework.net/aop">

 <object name="exceptionAdvice" type="Spring.Aspects.Exceptions.ExceptionHandlerAdvice, Spring.Aop">

 <property name="exceptionHandlers">

 <list>

 <value>on exception name ArithmeticException log 'Logging an exception thrown from method ' +

 #method.Name </value>

 </list>

 </property>

 </object>

 <object name="loggingAdvice" type="Spring.Aspects.Logging.SimpleLoggingAdvice, Spring.Aop">

 <property name="logUniqueIdentifier" value="true"/>

 <property name="logExecutionTime" value="true"/>

 <property name="logMethodArguments" value="true"/>

 <property name="Separator" value=";"/>

 <property name="HideProxyTypeNames" value="true"/>

 <property name="UseDynamicLogger" value="true"/>

 <property name="LogLevel" value="Info"/>

 </object>

 <object id="txAttributePointcut" type="Spring.Aop.Support.AttributeMatchMethodPointcut, Spring.Aop">

 <property name="Attribute" value="Spring.Transaction.Interceptor.TransactionAttribute, Spring.Data"/>

 </object>

 <aop:config>

 <aop:advisor id="exceptionProcessAdvisor" order="1"

 advice-ref="exceptionAdvice"

 pointcut-ref="txAttributePointcut"/>

 <aop:advisor id="loggingAdvisor" order="2"

 advice-ref="loggingAdvice"

 pointcut-ref="txAttributePointcut"/>

Transactions QuickStart

Spring Framework (Version 1.3.2) 435

 </aop:config>

</objects>

The transaction aspect is now additionally configured with an order value of "10", which will place

it after the execution of the exception aspect, which is configured to use an order value of 1.

The behavior for logging the exception is specified by creating and configuring an instance of

Spring.Aspects.Exceptions.ExceptionHandlerAdvice. The location where that behavior is applied, the

pointcut, is the Transaction attribute. The logging of method arguments and execution time is specified by

configuring an instance of Spring.Aspects.Logging.SimpleLoggingAdvice.

The AOP configuration section on the bottom is what ties together the behavior and where it will take place in the

program flow. Under the covers the transaction configuration, <tx:attribute-driven/> creates similar advice and

pointcut definitions. Running the test TransferBelowMaxAmount will then log the following messages

INFO - Entering DoTransfer;45b6af04-b736-4efa-a489-45462726ddf2;creditAmount=217; debitAmount=217

INFO - Exiting DoTransfer;45b6af04-b736-4efa-a489-45462726ddf2;1328.125 ms;return=

When the test case of the test TransferAboveMaxAmount is run the following messages are logged

INFO - Entering DoTransfer;d94bc81b-a4ff-4ca1-9aaa-f2834f262307;creditAmount=2000000; debitAmount=200000

INFO - Exception thrown in DoTransferDoTransfer;d94bc81b-a4ff-4ca1-9aaa-f2834f262307;1140.625

System.ArithmeticException: see a teller big spender...

 at Spring.TxQuickStart.Services.AccountManager.DoTransfer(Single creditAmount, Single debitAmount) in L:

\projects\Spring.Net\examples\Spring\Spring.TxQuickStart\src\Spring\Spring.TxQuickStart\TxQuickStart\Services

\AccountManager.cs:line 36

 at Spring.DynamicReflection.Method_DoTransfer_ec48557f22b149958fd2243413136600.Invoke(Object target,

 Object[] args)

 at Spring.Reflection.Dynamic.SafeMethod.Invoke(Object target, Object[] arguments) in l:\projects\Spring.Net

\src\Spring\Spring.Core\Reflection\Dynamic\DynamicMethod.cs:line 108

 at Spring.Aop.Framework.DynamicMethodInvocation.InvokeJoinpoint() in l:\projects\Spring.Net\src\Spring

\Spring.Aop\Aop\Framework\DynamicMethodInvocation.cs:line 89

 at Spring.Aop.Framework.AbstractMethodInvocation.Proceed() in l:\projects\Spring.Net\src\Spring\Spring.Aop

\Aop\Framework\AbstractMethodInvocation.cs:line 257

 at Spring.Transaction.Interceptor.TransactionInterceptor.Invoke(IMethodInvocation invocation) in l:

\projects\Spring.Net\src\Spring\Spring.Data\Transaction\Interceptor\TransactionInterceptor.cs:line 80

 at Spring.Aop.Framework.AbstractMethodInvocation.Proceed() in l:\projects\Spring.Net\src\Spring\Spring.Aop

\Aop\Framework\AbstractMethodInvocation.cs:line 282

 at Spring.Aspects.Logging.SimpleLoggingAdvice.InvokeUnderLog(IMethodInvocation invocation, ILog log) in l:

\projects\Spring.Net\src\Spring\Spring.Aop\Aspects\Logging\SimpleLoggingAdvice.cs:line 185

TRACE - Logging an exception thrown from method DoTransfer

Spring Framework (Version 1.3.2) 436

Chapter 44. NHibernate QuickStart

44.1. Introduction

This QuickStart application uses the all too familiar Northwind database and uses NHibernate browse and edit

customers. It It is a very simple application that directly uses the DAO layer in many use-cases, as it is doing

nothing more than table maintenance, but there is also a simple service layer that handles a fullillment process.

The application uses Spring's declarative transaction management features, standard NHibernate API, and Open

Session In View module. See Chapter 21, Object Relational Mapping (ORM) data access for information on

those features.

Note
Even though data access is performed through NHibernate API all Spring.NET provided functionality

is still present when using the standard NHibernate API, as Spring transaction managment is

integrated into NHibernate extension points and exception translation is provided by AOP advice.

44.2. Getting Started

The QuickStart application is located in the directory directory <spring-install-dir>\examples\Spring

\Spring.Data.NHibernate.Northwind. Load the application using the VS.NET 2008 solution file

Spring.Northwind.2008.sln. The application uses the SqlLite database so no additional configuration is needed.

To run the application set the Web application as the project that starts and Default.aspx as the start page.

The application has several layers with each layer represented as one or more VS.NET projects.

Solution Explorer for NHibernate QuickStart Application

The data access layer consists of two projects, Spring.Northwind.Dao and Spring.Northwind.Dao.NHibernate.

The former contains only the DAO (data access object) interfaces and the latter the NHibernate implementation

of those interfaces. The project Spring.Northwind.Service contains a simple service that calls into multiple

DAO objects in order to satisfy a fulliment process. The Web project is a ASP.NET web application and the

Spring.Northwind.IntegrationTests project contains integration tests for the DAO and Service layers.

When you run the application you will see

NHibernate QuickStart

Spring Framework (Version 1.3.2) 437

Following the link to the customer listing pages bring up the following screen

NHibernate QuickStart

Spring Framework (Version 1.3.2) 438

You can click on the Name of the customer or the Orders link to view that customers orders. Selecting "BOTTM"'s

orders brings us to the next page

Notice that the order 11045 has yet to be shipped. If you select 'Process Orders' this will call the Fulliment Service

and the order will be processed and shipped.p

NHibernate QuickStart

Spring Framework (Version 1.3.2) 439

You can then go back to the customer list. If you select the name Elizabeth Lincoln, then you can edit the customer

details.

44.3. Implementation

This section discussed the Spring implementation details for each layer.

44.3.1. The Data Access Layer

The interface IDao is a generic DAO layer that provides basic retrieval methods. They are located in the

Spring.Northwind.Dao project.

 public interface IDao<TEntity, TId>

NHibernate QuickStart

Spring Framework (Version 1.3.2) 440

 {

 TEntity Get(TId id);

 IList<TEntity> GetAll();

 }

The ISupportsSave and ISupportsDeleteDao interfaces provide the rest of the CRUD functionality.

 public interface ISupportsSave<TEntity, TId>

 {

 TId Save(TEntity entity);

 void Update(TEntity entity);

 }

 public interface ISupportsDeleteDao<TEntity>

 {

 void Delete(TEntity entity);

 }

The ICustomerDao interface combines these to manage the persistence of customer objects.

 public interface ICustomerDao : IDao<Customer, string>, ISupportsDeleteDao<Customer>,

 ISupportsSave<Customer, string>

 {

 }

Similar interfaces are defined to manage Order and Products in IOrderDao and IProductDao respectfully.

44.3.2. The domain objects

The POCO domain objects, Customer, Order, OrderDetail and Product are defined in the

Spring.Northwind.Domain namespace within the Spring.Northwind.Dao project.

NHibernate QuickStart

Spring Framework (Version 1.3.2) 441

44.3.3. NHibernate based DAO implementation

The NHibernate based DAO implemenation uses the standard NHibernate APIs, retrieving the current session

from the SessionFactory and using the session to retrieve or store objects to the database. An abstract base class

HibernateDao is used to capture the common ISessionFactory property, provide a convenience property to access

the current session, and define a GetAll Method.p

 public abstract class HibernateDao

 {

 private ISessionFactory sessionFactory;

 /// <summary>

 /// Session factory for sub-classes.

 /// </summary>

 public ISessionFactory SessionFactory

 {

 protected get { return sessionFactory; }

 set { sessionFactory = value; }

 }

 /// <summary>

 /// Get's the current active session. Will retrieve session as managed by the

 /// Open Session In View module if enabled.

 /// </summary>

 protected ISession CurrentSession

 {

NHibernate QuickStart

Spring Framework (Version 1.3.2) 442

 get { return sessionFactory.GetCurrentSession(); }

 }

 protected IList<T> GetAll<T>() where T : class

 {

 ICriteria criteria = CurrentSession.CreateCriteria<T>();

 return criteria.List<T>();

 }

 }

The implementation of ICustomerDao is shown below

 [Repository]

 public class HibernateCustomerDao : HibernateDao, ICustomerDao

 {

 // Note that the transaction demaraction is here only for the case when

 // the DAO object is being used directly, i.e. not as part of a service layer

 // call. This would be commonly only when creating an application that contains

 // no business logic and is essentially a table maintenance application.

 // These applications are affectionaly known as 'CRUD' applications, the acronym

 // refering to Create, Retrieve, Update, And Delete and the only operations

 // performed by the application.

 // If called from a transactional service layer, typically with the transaction

 // propagation setting set to REQUIRED, then any DAO operations will use the

 // same settings as started from the transactional layer.

 [Transaction(ReadOnly = true)]

 public Customer Get(string customerId)

 {

 return CurrentSession.Get<Customer>(customerId);

 }

 [Transaction(ReadOnly = true)]

 public IList<Customer> GetAll()

 {

 return GetAll<Customer>();

 }

 [Transaction(ReadOnly = false)]

 public string Save(Customer customer)

 {

 return (string) CurrentSession.Save(customer);

 }

 [Transaction(ReadOnly = false)]

 public void Update(Customer customer)

 {

 CurrentSession.SaveOrUpdate(customer);

 }

 [Transaction(ReadOnly = false)]

 public void Delete(Customer customer)

 {

 CurrentSession.Delete(customer);

 }

 }

Note

As mentioned in the code comments above, as this application has a distinctly CRUD based

component, Spring's Transaction attribute is used to ensure that that method exeuctes as a unit of

work. Often in more sophisticated applications even the basic of CRUD are handled through a service

layer so as to enforce security, auditing, alterting or enforce business rules.

The Repository attribute is used to indicate that this class plays the role of a Repository or a Data Access Object.

The term repository comes from modeling terminology popularized by Eric Evan's book Domain Driven Design

NHibernate QuickStart

Spring Framework (Version 1.3.2) 443

(DDD). Those familiar with DDD will note that this implementation is very simply and does not expose higher

level persistence functionality to the application, for example FindCustomersWithOpenOrders. How well the role

of Repository applies to this implementation is not relevant, and we will often refer to Repository and DAO

intechangable when describing the data access layer. What is relevant is that the Repository attribute serves as

a marker, a place in the code that can be used to identify methods whose invocation should be intercepted so

that additional behavior can be added. In Aspect-Oriented Programming terminology, the Repository attribute

represents a pointcut. The behavior that we would like to add to this DAO implementation exception translation.

Exception translation from the data access layer to a service layer is important as it shields the service layer from

the implementation details of the data access layer. A NHibernate based DAO will throw different exceptions and

a ADO.NET based implementation and so on. Spring provides a rich technology neutral data-access exception

hierarchy. See Chapter 18, DAO support.

Instead of adding exception translation code in each data access method, AOP offers a simple solution. Using

Spring's IObjectPostProcessor extension point, each DAO object that is managed by Spring will be automatically

wrapped up in a proxy that adds the exception translation behavior. This is done by adding the following object

definition to the Spring application context.

<objects>

 <!-- configure session factory -->

 <!-- Exception translation object post processor -->

 <object type="Spring.Dao.Attributes.PersistenceExceptionTranslationPostProcessor, Spring.Data"/>

 <!-- Configure transaction management strategy -->

 <!-- DAO objects go here -->

</objects>

The Spring managed DAO object definitions are shown below, referring to a SessionFactory that is created via

Spring's LocalSessionFactoryObject. See the file Dao.xml for more details.

<objects xmlns="http://www.springframework.net"

 xmlns:db="http://www.springframework.net/database">

 <!-- Referenced by main application context configuration file -->

 <description>

 The Northwind object definitions for the Data Access Objects.

 </description>

 <!-- Database Configuration -->

 <db:provider id="DbProvider"

 provider="SQLite-1.0.65"

 connectionString="Data Source=|DataDirectory|Northwind.db;Version=3;FailIfMissing=True;"/>

 <!-- NHibernate SessionFactory configuration -->

 <object id="NHibernateSessionFactory" type="Spring.Data.NHibernate.LocalSessionFactoryObject,

 Spring.Data.NHibernate21">

 <property name="DbProvider" ref="DbProvider"/>

 <property name="MappingAssemblies">

 <list>

 <value>Spring.Northwind.Dao.NHibernate</value>

 </list>

 </property>

 <property name="HibernateProperties">

 <dictionary>

 <entry key="hibernate.connection.provider" value="NHibernate.Connection.DriverConnectionProvider"/>

 <entry key="dialect" value="NHibernate.Dialect.SQLiteDialect"/>

 <entry key="connection.driver_class" value="NHibernate.Driver.SQLite20Driver"/>

 </dictionary>

 </property>

 <!-- provides integation with Spring's declarative transaction management features -->

 <property name="ExposeTransactionAwareSessionFactory" value="true" />

NHibernate QuickStart

Spring Framework (Version 1.3.2) 444

 </object>

 <!-- Transaction Management Strategy - local database transactions -->

 <object id="transactionManager"

 type="Spring.Data.NHibernate.HibernateTransactionManager, Spring.Data.NHibernate21">

 <property name="DbProvider" ref="DbProvider"/>

 <property name="SessionFactory" ref="NHibernateSessionFactory"/>

 </object>

 <!-- Exception translation object post processor -->

 <object type="Spring.Dao.Attributes.PersistenceExceptionTranslationPostProcessor, Spring.Data"/>

 <!-- Data Access Objects -->

 <object id="CustomerDao" type="Spring.Northwind.Dao.NHibernate.HibernateCustomerDao,

 Spring.Northwind.Dao.NHibernate">

 <property name="SessionFactory" ref="NHibernateSessionFactory"/>

 </object>

 <object id="OrderDao" type="Spring.Northwind.Dao.NHibernate.HibernateOrderDao,

 Spring.Northwind.Dao.NHibernate">

 <property name="SessionFactory" ref="NHibernateSessionFactory"/>

 </object>

</objects>

Note

It is not required that you use Spring's [Repository] attribute. You can specify an attribute type to the

PersistenceExceptionTranslationPostProcessor via the property RepositoryAttributeType to avoid

coupling your DAO implementation to Spring.

44.3.4. The Service layer

The service layer is located in the Spring.Northwind.Services project. It defines a single service for the fulliment

process

 public interface IFulfillmentService

 {

 void ProcessCustomer(string customerId);

 }

The implementatiion class is shown below

 public class FulfillmentService : IFulfillmentService

 {

 private IProductDao productDao;

 private ICustomerDao customerDao;

 private IOrderDao orderDao;

 private IShippingService shippingService;

 // Properties for the preceding fields omitted for brevity

 [Transaction]

 public void ProcessCustomer(string customerId)

 {

 //Find all orders for customer

 Customer customer = CustomerDao.Get(customerId);

 foreach (Order order in customer.Orders)

 {

 if (order.ShippedDate.HasValue)

NHibernate QuickStart

Spring Framework (Version 1.3.2) 445

 {

 log.Warn("Order with " + order.Id + " has already been shipped, skipping.");

 continue;

 }

 //Validate Order

 Validate(order);

 log.Info("Order " + order.Id + " validated, proceeding with shipping..");

 //Ship with external shipping service

 ShippingService.ShipOrder(order);

 //Update shipping date

 order.ShippedDate = DateTime.Now;

 //Update shipment date

 OrderDao.Update(order);

 //Other operations...Decrease product quantity... etc

 }

 }

 private void Validate(Order order)

 {

 //no-op - throw exception on error.

 }

 }

}

What is important to note about this method is that it uses two DAO objects, CustomerDao and OrderDao as

well as an additional collaborating service, IShippingService. The fact that all of the collaborating objects are

interfaced based means that we can write a unit test for the business functionality of the ProcessCustomer method.

Also, the use of the [Transaction] attribute will enable this business processing to proceed as a single unit-of-

work. Spring's declarative transaction management features make it very easy to mix and match different DAO

objects with a service method without having to worry about propagating the transaction/connection or hibernate

session to each DAO object.

The Fullfillment service layer is configured to refer to its collaborating objects as shown below in the configuration

file Services.xml

 <!-- Property placeholder configurer for database settings -->

 <object id="FulfillmentService" type="Spring.Northwind.Service.FulfillmentService,

 Spring.Northwind.Service">

 <property name="CustomerDao" ref="CustomerDao"/>

 <property name="OrderDao" ref="OrderDao"/>

 <property name="ShippingService" ref="ShippingService"/>

 </object>

 <object id="ShippingService" type="Spring.Northwind.Service.FedExShippingService, Spring.Northwind.Service"/

>

 <tx:attribute-driven/>

44.3.5. Integration testing

Integraiton testing in addition to unit testing can be done before integrating the service and data access layer

into the Web application - where automated testing is much more difficult. While coding to interfaces and using

an IoC container help enable unit testing, unit tests should not have any Spring dependency. Integration tests

however greatly benefit from being able to access the objects that Spring is managing in production. This way the

gap between what you testi in QA and what runs is minimized, ideally with only environment specific settings

being different. In addition to easily obtaining, say a transactionally aware service object from the Spring IoC

container, Spring intergration testing support classes allow you to implicitly start a transaction at the start of test

method and rollback at the end. The isolation guaranteed by the database means that multiple developers can run

NHibernate QuickStart

Spring Framework (Version 1.3.2) 446

integration tests for their data access layers simultaneously and the rollback ensures that the changes made are

not persisted. While in the test method, you have a consistent view of the data and can therefore exercise all the

methods of your DAO object.

The project Spring.Northwind.IntegrationTests shows how this works. As a convenience, an

abstract base class is created that in turn inherits from Spring's integration testing class

AbstractTransactionalDbProviderSpringContextTests

 [TestFixture]

 public abstract class AbstractDaoIntegrationTests : AbstractTransactionalDbProviderSpringContextTests

 {

 protected override string[] ConfigLocations

 {

 get

 {

 return new string[]

 {

 "assembly://Spring.Northwind.Dao.NHibernate/Spring.Northwind.Dao/Dao.xml",

 "assembly://Spring.Northwind.Service/Spring.Northwind.Service/Services.xml"

 };

 }

 }

 }

Note

This unit test is NUnit based but there is similar support available for Microsoft MSTest framework.

The exact same object definition files that will be used in the production application are loaded for the integration

test. To test the data access layer, you inherit from AbstractDaoIntegrationTests and expose public properties for

each DAO implementation you want to test. Within each test method exercise the API of the DAO. This also

tests the NHibernate mappings.

 [TestFixture]

 public class NorthwindIntegrationTests : AbstractDaoIntegrationTests

 {

 private ICustomerDao customerDao;

 private IOrderDao orderDao;

 private ISessionFactory sessionFactory;

 // These properties will be injected based on type

 public ICustomerDao CustomerDao

 {

 set { customerDao = value; }

 }

 public IOrderDao OrderDao

 {

 set { orderDao = value; }

 }

 public ISessionFactory SessionFactory

 {

 set { sessionFactory = value; }

 }

 [Test]

 public void CustomerDaoTests()

 {

 Assert.AreEqual(91, customerDao.GetAll().Count);

 Customer c = new Customer();

 c.Id = "MPOLL";

 c.CompanyName = "Interface21";

 customerDao.Save(c);

NHibernate QuickStart

Spring Framework (Version 1.3.2) 447

 c = customerDao.Get("MPOLL");

 Assert.AreEqual(c.Id, "MPOLL");

 Assert.AreEqual(c.CompanyName, "Interface21");

 //Without flushing, nothing changes in the database:

 int customerCount = (int)AdoTemplate.ExecuteScalar(CommandType.Text, "select count(*) from

 Customers");

 Assert.AreEqual(91, customerCount);

 //Flush the session to execute sql in the db.

 SessionFactoryUtils.GetSession(sessionFactory, true).Flush();

 //Now changes are visible outside the session but within the same database transaction

 customerCount = (int)AdoTemplate.ExecuteScalar(CommandType.Text, "select count(*) from

 Customers");

 Assert.AreEqual(92, customerCount);

 Assert.AreEqual(92, customerDao.GetAll().Count);

 c.CompanyName = "SpringSource";

 customerDao.Update(c);

 c = customerDao.Get("MPOLL");

 Assert.AreEqual(c.Id, "MPOLL");

 Assert.AreEqual(c.CompanyName, "SpringSource");

 customerDao.Delete(c);

 SessionFactoryUtils.GetSession(sessionFactory, true).Flush();

 customerCount = (int)AdoTemplate.ExecuteScalar(CommandType.Text, "select count(*) from

 Customers");

 Assert.AreEqual(92, customerCount);

 try

 {

 c = customerDao.Get("MPOLL");

 Assert.Fail("Should have thrown HibernateObjectRetrievalFailureException when finding customer

 with Id = MPOLL");

 }

 catch (HibernateObjectRetrievalFailureException e)

 {

 Assert.AreEqual("Customer", e.PersistentClassName);

 }

 }

 [Test]

 public void ProductDaoTests()

 {

 // ommited for brevity

 }

 }

This test uses AdoTemplate to access the database using the standard ADO.NET APIs. It is done to demonstrate

that the common configuration of NHibernate is for it not to flush to the database until a commit occurs. If we

did not explicitly flush, then no SQL would be sent down to the database and some potential errors would go

undetected. Since the test method will rollback the transaction, we don't have to worry about 'dirtying' the database

and changing its state.

44.3.6. Web Application

The Web application uses Dependency Injection on the .aspx pages so that they can access the servcies of the

middle tier, for example the FullfillmentService, or in the case of simple table maintenance, the DAO objects

directly.

For example the FullfillmentResult.aspx code behind is shown below

NHibernate QuickStart

Spring Framework (Version 1.3.2) 448

public partial class FullfillmentResult : Page

{

 private IFulfillmentService fulfillmentService;

 private ICustomerEditController customerEditController;

 public IFulfillmentService FulfillmentService

 {

 set { fulfillmentService = value; }

 }

 public ICustomerEditController CustomerEditController

 {

 set { customerEditController = value; }

 }

 protected void Page_Load(object sender, EventArgs e)

 {

 /// code omitted for brevity

 fulfillmentService.ProcessCustomer(customerEditController.CurrentCustomer.Id);

 }

 protected void customerOrders_Click(object sender, EventArgs e)

 {

 SetResult("Back");

 }

The page is configured in Spring as shown below

 <object type="FulfillmentResult.aspx">

 <property name="FulfillmentService" ref="FulfillmentService" />

 <property name="CustomerEditController" ref="CustomerEditController" />

 <property name="Results">

 <dictionary>

 <entry key="Back" value="redirect:CustomerOrders.aspx" />

 </dictionary>

 </property>

 </object>

The page is injected with a reference to the FullfillmentService and also another UI component. While Spring's

ASP.NET framework supports DI for standard ASP.NET pages and user controls, you can also inherit from

Spring's base page class to get added functionality. In this example the use of externalized page flow, or Result

Mapping is shown. The Results property indicates the 'how', 'where' and 'what data' to bring along when moving

between different web pages and associates it with a logical name "Back". This avoid hardcoding server side

transfers or redirects in your code as well as other ASP.NET page references. See the chapter on Spring's ASP.NET

Web Framework for more details.

Spring Framework (Version 1.3.2) 449

Chapter 45. Quartz QuickStart

45.1. Introduction

In many applications the need arises to perform a certain action at a given time without any user interaction,

usually to perform some administrative tasks. These tasks need to be scheduled, say to perform a job in the

early hours of the morning before the start of business. This functionality is provided by using job scheduling

software. Quartz.NET is an excellent open source job scheduler that can be used for these purposes. It provides a

wealth of features, such as persistent jobs and clustering. To find out more about Quartz.NET visit their web site.

Spring integration allows you to use Spring to configure Quartz jobs, triggers, and schedulers and also provides

integration with Spring's transaction management features.

The full details of Quartz are outside the scope of this quickstart but here is 'quick tour for the impatient' of the

main classes and interfaces used in Quartz so you can get your sea legs. A Quartz IJob interface represents the

task you would like to execute. You either directly implement Quartz's IJob interface or a convenience base class.

The Quartz Trigger controls when a job is executed, for example in the wee hours of the morning every weekday .

This would be done using Quartz's CronTrigger implementation. Instances of your job are created every time

the trigger fires. As such, in order to pass information between different job instances you stash data away in

a hashtable that gets passed to the each Job instance upon its creation. Quartz's JobDetail class combines the

IJob and this hashtable of data. Instead of the standard System.Collections.Hashtable the class JobDataMap

is used. Triggers are registered with a Quartz IScheduler implementation that manages the overall execution of

the triggers and jobs. The StdSchedulerFactory implementation is generally used.

Note

To follow this Quarts QuickStart load the solution file found in the directory <spring-install-dir>

\examples\Spring\Spring.Scheduling.Quartz.Example

45.2. Application Overview

The sample application has two types of Jobs. One that inherits from Spring's convenience base class

QuartzJobObject and another which does not inherit from any base class. The latter class is adapted by Spring to

be a Job. Two triggers, one for each of the jobs, are created. These triggers are in turn registered with a scheduler.

In each case the job implementation will write information to the console when it is executed.

45.3. Standard job scheduling

The Spring base class QuartzJobObject implements IJob and allows for your object's properties to be set via

values that are stored inside Quartz's JobDataMap that is passed along each time your job is instantiated due a

trigger firing. This class is shown below

 public class ExampleJob : QuartzJobObject

 {

 private string userName;

 public string UserName

 {

 set { userName = value; }

 }

 protected override void ExecuteInternal(JobExecutionContext context)

 {

http://quartznet.sourceforge.net/

Quartz QuickStart

Spring Framework (Version 1.3.2) 450

 Console.WriteLine("{0}: ExecuteInternal called, user name: {1}, next fire time {2}",

 DateTime.Now, userName, context.NextFireTimeUtc.Value.ToLocalTime());

 }

 }

The method ExecuteInternal is called when the trigger fires and is where you would put your business logic. The

JobExecutionContext passed in lets you access various pieces of information about the current job execution,

such as the JobDataMap or information on when the next time the trigger will fire. The ExampleJob is configured

by creating a JobDetail object as shown below in the following XML snippet taken from spring-objects.xml

 <object name="exampleJob" type="Spring.Scheduling.Quartz.JobDetailObject, Spring.Scheduling.Quartz">

 <property name="JobType" value="Spring.Scheduling.Quartz.Example.ExampleJob,

 Spring.Scheduling.Quartz.Example" />

 <!-- We can inject values through JobDataMap -->

 <property name="JobDataAsMap">

 <dictionary>

 <entry key="UserName" value="Alexandre" />

 </dictionary>

 </property>

 </object>

The dictionary property of the JobDetailObject, JobDataAsMap, is used to set the values of the ExampleJob's

properties. This will result in the ExampleJob being instantiated with it's UserName property value set to

'Alexandre' the first time the trigger fires.

We then will schedule this job to be executed on 20 second increments of every minute as shown below using

Spring's CronTriggerObject which creates a Quartz CronTrigger.

 <object id="cronTrigger" type="Spring.Scheduling.Quartz.CronTriggerObject, Spring.Scheduling.Quartz">

 <property name="jobDetail" ref="exampleJob" />

 <!-- run every 20 second of minute -->

 <property name="cronExpressionString" value="0/20 * * * * ?" />

 </object>

Lastly, we schedule this trigger with the scheduler as shown below

 <object type="Spring.Scheduling.Quartz.SchedulerFactoryObject, Spring.Scheduling.Quartz">

 <property name="triggers">

 <list>

 <ref object="cronTrigger" />

 </list>

 </property>

 </object>

Running this configuration will produce the following output

8/8/2008 1:29:40 PM: ExecuteInternal called, user name: Alexandre, next fire time 8/8/2008 1:30:00 PM

8/8/2008 1:30:00 PM: ExecuteInternal called, user name: Alexandre, next fire time 8/8/2008 1:30:20 PM

8/8/2008 1:30:20 PM: ExecuteInternal called, user name: Alexandre, next fire time 8/8/2008 1:30:40 PM

45.4. Scheduling arbitrary methods as jobs

It is very convenient to schedule the execution of method as a job. The AdminService class in the example

demonstrates this functionality and is listed below.

 public class AdminService

 {

 private string userName;

 public string UserName

 {

 set { userName = value; }

 }

Quartz QuickStart

Spring Framework (Version 1.3.2) 451

 public void DoAdminWork()

 {

 Console.WriteLine("{0}: DoAdminWork called, user name: {1}", DateTime.Now, userName);

 }

 }

Note that it does not inherit from any base class. To instruct Spring to create a JobDetail object for this method

we use Spring's factory object class MethodInvokingJobDetailFactoryObject as shown below

 <object id="adminService" type="Spring.Scheduling.Quartz.Example.AdminService,

 Spring.Scheduling.Quartz.Example">

 <!-- we inject straight to target object -->

 <property name="UserName" value="admin-service" />

 </object>

 <object id="jobDetail" type="Spring.Scheduling.Quartz.MethodInvokingJobDetailFactoryObject,

 Spring.Scheduling.Quartz">

 <!-- We don't actually need to implement IJob as we can use delegation -->

 <property name="TargetObject" ref="adminService" />

 <property name="TargetMethod" value="DoAdminWork" />

 </object>

Note that AdminService object is configured using Spring as you would do normally, without consideration

for Quartz. The trigger associated with the jobDetail object is listed below. Also note that when using

MethodInvokingJobDetailFactoryObject you can't use database persistence for Jobs. See the class documentation

for additional details.

 <object id="simpleTrigger" type="Spring.Scheduling.Quartz.SimpleTriggerObject, Spring.Scheduling.Quartz">

 <!-- see the example of method invoking job above -->

 <property name="jobDetail" ref="jobDetail" />

 <!-- 5 seconds -->

 <property name="startDelay" value="5s" />

 <!-- repeat every 5 seconds -->

 <property name="repeatInterval" value="5s" />

 </object>

This creates an instances of Quartz's SimpleTrigger class (as compared to its CronTrigger class used in the

previous section). StartDelay and RepeatInterval properties are TimeSpan objects than can be set using the

convenient strings such as 10s, 1h, etc, as supported by Spring's custom TypeConverter for TimeSpans.

This trigger can then be added to the scheduler's list of registered triggers as shown below.

 <object type="Spring.Scheduling.Quartz.SchedulerFactoryObject, Spring.Scheduling.Quartz">

 <property name="triggers">

 <list>

 <ref object="cronTrigger" />

 <ref object="simpleTrigger" />

 </list>

 </property>

 </object>

The interleaved output of both these jobs being triggered is shown below.

8/8/2008 1:40:18 PM: DoAdminWork called, user name: Gabriel

8/8/2008 1:40:20 PM: ExecuteInternal called, user name: Alexandre, next fire time 8/8/2008 1:40:40 PM

8/8/2008 1:40:23 PM: DoAdminWork called, user name: Gabriel

8/8/2008 1:40:28 PM: DoAdminWork called, user name: Gabriel

8/8/2008 1:40:33 PM: DoAdminWork called, user name: Gabriel

8/8/2008 1:40:38 PM: DoAdminWork called, user name: Gabriel

8/8/2008 1:40:40 PM: ExecuteInternal called, user name: Alexandre, next fire time 8/8/2008 1:41:00 PM

8/8/2008 1:40:43 PM: DoAdminWork called, user name: Gabriel

8/8/2008 1:40:48 PM: DoAdminWork called, user name: Gabriel

8/8/2008 1:40:53 PM: DoAdminWork called, user name: Gabriel

8/8/2008 1:40:58 PM: DoAdminWork called, user name: Gabriel

8/8/2008 1:41:00 PM: ExecuteInternal called, user name: Alexandre, next fire time 8/8/2008 1:41:20 PM

8/8/2008 1:41:03 PM: DoAdminWork called, user name: Gabriel

Spring Framework (Version 1.3.2) 452

Chapter 46. NMS QuickStart

46.1. Introduction

The NMS quick start application demonstrates how to use asynchronous messaging to implement a system for

purchasing a stock. To purchase a stock, a client application will send a stock request message containing the

information about the stock, i.e. ticker symbol, quantity, etc. The client request message will be received by the

server where it will perform business processing on the request, for example to determine if the user has sufficient

credit to purchase the stock or if the user is even allowed to make the purchase due to existing account restrictions.

These are typically external processes as well. Usually the server application will persist state about the request

and forward it on to an execute venue where the actual execution of the stock request is performed. In addition,

market data for the stock will be sent from the server process to the client. The high level exchange of information

is shown below.

Note

To follow this NMS QuickStart load the solution file found in the directory <spring-install-dir>

\examples\Spring\Spring.NmsQuickStart

46.2. Message Destinations

To implement this flow using messaging the following queues and topics will be used. All requests from the

client to the server will be sent on the queue named APP.STOCK.REQUEST. Responses to the requests will be

sent from the server to the client on a queue unique to each client. In this example the queue name is of the form

APP.STOCK.<UserName>, and more specifically is configured to be APP.STOCK.JOE. Market data does not

need to be delivered to an individual client as many client applications are interested in this shared information.

As such, the server will send market data information on a topic named APP.STOCK.MARKETDATA. The

messaging communication between the server and the execution venue is not included as part of the application.

An local implementation of the service interface that represents the execution venue is used instead of one based

on messaging or another middleware technology. The messaging flow showing the queues and topics used is

shown below.

Queues are shown in red and topics in green.

NMS QuickStart

Spring Framework (Version 1.3.2) 453

46.3. Gateways

Gateways represent the service operation to send a message. The client will send a stock request to the server

based on the contract defined by the IStockService interface .

 public interface IStockService

 {

 void Send(TradeRequest tradeRequest);

 }

The server will send market data to the clients based on the contract defined by the IMarketDataService interface.

 public interface IMarketDataService

 {

 void SendMarketData();

 }

The market data gateway has no method parameters as it is assumed that implementations will manage the data

to send internally. The TradeRequest object is one of the data objects that will be exchanged in the application

and is discussed in the next section.

The use of interfaces allows for multiple implementations to be created. Implementations that use messaging

to communicate will be based on the Spring's NmsGateway class and will be discussed later. stub or mock

implementations can be used for testing purposes.

46.4. Message Data

The TradeRequest object shown above contains all the information required to process a stock order. To promote

the interoperability of this data across different platforms the TradeRequest class is generated from an XML

Schema using Microsoft's Schema Definition Tool (xsd.exe). The schema for trade request is shown below

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

 targetNamespace="http://www.springframework.net/nms/common/2008-08-05">

 <xs:element name="TradeRequest">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Ticker" type="xs:string"/>

 <xs:element name="Quantity" type="xs:long"/>

 <xs:element name="Price" type="xs:decimal"/>

 <xs:element name="OrderType" type="xs:string"/>

 <xs:element name="AccountName" type="xs:string"/>

 <xs:element name="BuyRequest" type="xs:boolean"/>

 <xs:element name="UserName" type="xs:string"/>

 <xs:element name="RequestID" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Running xsd.exe on this schema will result in a class that contains properties for each of the element names. A

partial code listing of the TradeRequest class is shown below

// This code was generated by a tool.

 public partial class TradeRequest {

 public string Ticker {

 get {

 return this.tickerField;

 }

 set {

NMS QuickStart

Spring Framework (Version 1.3.2) 454

 this.tickerField = value;

 }

 }

 public long Quantity {

 get {

 return this.quantityField;

 }

 set {

 this.quantityField = value;

 }

 }

 // Additional properties not shown for brevity.

 }

The schema and the TradeRequest class are located in the project Spring.NmsQuickStart.Common. This common

project will be shared between the server and client for convenience.

When sending a response back to the client the type TradeResponse will be used. The schema for the

TradeResponse is shown below

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

 targetNamespace="http://www.springframework.net/nms/common/2008-08-05">

 <xs:element name="TradeResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Ticker" type="xs:string"/>

 <xs:element name="Quantity" type="xs:integer"/>

 <xs:element name="Price" type="xs:decimal"/>

 <xs:element name="OrderType" type="xs:string"/>

 <xs:element name="Error" type="xs:boolean"/>

 <xs:element name="ErrorMessage" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

The TradeResponse type also generated from a schema using xsd.exe. A partial code listing is shown below

// This code was generated by a tool.

 public partial class TradeResponse {

 public string Ticker {

 get {

 return this.tickerField;

 }

 set {

 this.tickerField = value;

 }

 }

 public long Quantity {

 get {

 return this.quantityField;

 }

 set {

 this.quantityField = value;

 }

 }

 // Additional properties not shown for brevity.

 }

The market data information will be sent using a Hashtable data structure.

NMS QuickStart

Spring Framework (Version 1.3.2) 455

46.5. Message Handlers

When the TradeRequest message is received by the server, it will be handled by the class

Spring.NmsQuickStart.Server.Handlers.StockAppHandler shown below

 public class StockAppHandler

 {

 private IExecutionVenueService executionVenueService;

 private ICreditCheckService creditCheckService;

 private ITradingService tradingService;

 public TradeResponse Handle(TradeRequest tradeRequest)

 {

 TradeResponse tradeResponse;

 IList errors = new ArrayList();

 if (creditCheckService.CanExecute(tradeRequest, errors))

 {

 tradeResponse = executionVenueService.ExecuteTradeRequest(tradeRequest);

 tradingService.ProcessTrade(tradeRequest, tradeResponse);

 }

 else

 {

 tradeResponse = new TradeResponse();

 tradeResponse.Error = true;

 tradeResponse.ErrorMessage = errors[0].ToString();

 }

 return tradeResponse;

 }

 }

The stub implementations of the services, located in the namespace

Spring.NmsQuickStart.Server.Services.Stubs, will result in always sending back a error-free trade response

message. A realistic implementation would likely have the execution venue and trading service be remote services

and the trading service could be implemented as a local transactional service layer that uses spring's declarative

transaction management features.

The client will receive a TradeResponse message as well as a Hashtable of data representing the market data.

The message handle for the client is the class Spring.NmsQuickStart.Client.Handlers.StockAppHandler and is

shown below.

 public class StockAppHandler

 {

 // definition of stockController omitted for brevity.

 public void Handle(Hashtable data)

 {

 // forward to controller to update view

 stockController.UpdateMarketData(data);

 }

 public void Handle(TradeResponse tradeResponse)

 {

 // forward to controller to update view

 stockController.UpdateTrade(tradeResponse);

 }

 }

What is important to note about these handlers is that they contain no messaging API artifacts. As such you can

write unit and integration tests against these classes independent of the middleware. The missing link between the

messaging world and the objects processed by the message handlers are message converters. Spring's messaging

helper classes, i.e. SimpleMessageListenerContainer and NmsTemplate use message converters to pass data to

the handlers and to send data via messaging for gateway implementations

NMS QuickStart

Spring Framework (Version 1.3.2) 456

46.6. Message Converters

The implementation of IMessageConverter used is

Spring.NmsQuickStart.Common.Converters.XmlMessageConverter. This converter adds the ability to marshal

and unmarshal objects to and from XML strings. It also uses Spring's SimpleMessageConverter to convert

Hashtables, strings, and byte arrays. In order to pass information about the serialized type, type information is put

in the message properties. The type information can be either the class name or an integer value identifying the

type. In systems where the client and server are deployed together and are tightly coupled, sharing the class name

is a convenient shortcut. The alternative is to register a type for a given integer value. The XML configuration

used to configure these objects is shown below

 <object name="XmlMessageConverter" type="Spring.NmsQuickStart.Common.Converters.XmlMessageConverter,

 Spring.NmsQuickStart.Common">

 <property name="TypeMapper" ref="TypeMapper"/>

 </object>

 <object name="TypeMapper" type="Spring.NmsQuickStart.Common.Converters.TypeMapper,

 Spring.NmsQuickStart.Common">

 <!-- use simple configuation style -->

 <property name="DefaultNamespace" value="Spring.NmsQuickStart.Common.Data"/>

 <property name="DefaultAssemblyName" value="Spring.NmsQuickStart.Common"/>

 </object>

This configuration is common between the server and the client.

46.7. Messaging Infrastructure

The implementations of the gateway interfaces inherit from Spring's helper class NmsGatewaySupport in order

to get easy access to a NmsTemplate for sending. The implementation of the IStockService interface is shown

below

 public class NmsStockServiceGateway : NmsGatewaySupport, IStockService

 {

 private IDestination defaultReplyToQueue;

 public IDestination DefaultReplyToQueue

 {

 set { defaultReplyToQueue = value; }

 }

 public void Send(TradeRequest tradeRequest)

 { // post process message

 NmsTemplate.ConvertAndSendWithDelegate(tradeRequest, delegate(IMessage message)

 {

 message.NMSReplyTo =

 defaultReplyToQueue;

 message.NMSCorrelationID = new

 Guid().ToString();

 return message;

 });

 }

 }

The Send method is using NmsTemplate's ConvertAndSendWithDelegate(object obj,

MessagePostProcessorDelegate messagePostProcessorDelegate) method. The anonymous delegate allows

you to modify the message properties, such as NMSReplyTo and NMSCorrelationID after the message has been

converted from an object but before it has been sent. The use of an anonymous delegate allows makes it very easy

to apply any post processing logic to the converted message.

The object definition for the NmsStockServiceGateway is shown below along with its dependent object definitions

of NmsTemplate and the ConnectionFactory.

NMS QuickStart

Spring Framework (Version 1.3.2) 457

 <object name="StockServiceGateway" type="Spring.NmsQuickStart.Client.Gateways.NmsStockServiceGateway,

 Spring.NmsQuickStart.Client">

 <property name="NmsTemplate" ref="NmsTemplate"/>

 <property name="DefaultReplyToQueue">

 <object type="Apache.NMS.ActiveMQ.Commands.ActiveMQQueue, Apache.NMS.ActiveMQ">

 <constructor-arg value="APP.STOCK.JOE"/>

 </object>

 </property>

 </object>

 <object name="NmsTemplate" type="Spring.Messaging.Nms.Core.NmsTemplate, Spring.Messaging.Nms">

 <property name="ConnectionFactory" ref="ConnectionFactory"/>

 <property name="DefaultDestinationName" value="APP.STOCK.REQUEST"/>

 <property name="MessageConverter" ref="XmlMessageConverter"/>

 </object>

 <object id="ConnectionFactory" type="Apache.NMS.ActiveMQ.ConnectionFactory, Apache.NMS.ActiveMQ">

 <constructor-arg index="0" value="tcp://localhost:61616"/>

 </object>

In this example the 'raw' Apache.NMS.ActiveMQ.ConnectionFactory connection factory was used. It would be

more efficient resource wise to use Spring's CachingConnectionFactory wrapper class so that connections will

not be open and closed for each message send as well as allowing for the caching of other intermediate NMS API

objects such as sessions and message producers.

A similar configuration is used on the server to configure the class

Spring.NmsQuickStart.Server.Gateways.MarketDataServiceGateway that implements the

IMarketDataService interface.

Since the client is also a consumer of messages, on the topic APP.STOCK.MARKETDATA and the queue

APP.STOCK.JOE (for Trader Joe!), two message listener containers are defined as shown below.

 <nms:listener-container connection-factory="ConnectionFactory">

 <nms:listener ref="MessageListenerAdapter" destination="APP.STOCK.JOE" />

 <nms:listener ref="MessageListenerAdapter" destination="APP.STOCK.MARKETDATA" pubsub-domain="true"/>

 </nms:listener-container>

Refer to the messages reference docs for all the available attributes to configure the container and also the section

on registering the NMS schema with Spring..

On the server we define a message listener container for the queue APP.STOCK.REQUEST but set the

concurrency property to 10 so that 10 threads will be consuming messages from the queue.

 <nms:listener-container connection-factory="ConnectionFactory" concurrency="10">

 <nms:listener ref="MessageListenerAdapter" destination="APP.STOCK.REQUEST" />

 </nms:listener-container>

46.8. Running the application

To run both the client and server make sure that you select 'Multiple Startup Projects' within VS.NET. The GUI

has a button to make a hardcoded trade request and show confirmation in a text box. A text area is used to display

the market data. There is a 'Get Portfolio' button that is not implemented at the moment. A picture of the GUI

after it has been running for a while and trade has been sent and responded to is shown below

NMS QuickStart

Spring Framework (Version 1.3.2) 458

Spring Framework (Version 1.3.2) 459

Chapter 47. TIBCO EMS QuickStart

47.1. Introduction

The TIBCO EMS quick start application demonstrates how to use asynchronous messaging to implement a system

for purchasing a stock. To purchase a stock, a client application will send a stock request message containing

the information about the stock, i.e. ticker symbol, quantity, etc. The client request message will be received

by the server where it will perform business processing on the request, for example to determine if the user has

sufficient credit to purchase the stock or if the user is even allowed to make the purchase due to existing account

restrictions. These are typically external processes as well. Usually the server application will persist state about

the request and forward it on to an execute venue where the actual execution of the stock request is performed.

In addition, market data for the stock will be sent from the server process to the client. The high level exchange

of information is shown below.

Note

To follow this EMS QuickStart load the solution file found in the directory <spring-install-dir>

\examples\Spring\Spring.EmsQuickStart

47.2. Message Destinations

To implement this flow using messaging the following queues and topics will be used. All requests from the

client to the server will be sent on the queue named APP.STOCK.REQUEST. Responses to the requests will be

sent from the server to the client on a queue unique to each client. In this example the queue name is of the form

APP.STOCK.<UserName>, and more specifically is configured to be APP.STOCK.JOE. Market data does not

need to be delivered to an individual client as many client applications are interested in this shared information.

As such, the server will send market data information on a topic named APP.STOCK.MARKETDATA. The

messaging communication between the server and the execution venue is not included as part of the application.

An local implementation of the service interface that represents the execution venue is used instead of one based

on messaging or another middleware technology. The messaging flow showing the queues and topics used is

shown below.

Queues are shown in red and topics in green.

TIBCO EMS QuickStart

Spring Framework (Version 1.3.2) 460

47.3. Messaging Infrastructure

Much of this application mirrors the quickstart that is available with ActiveMQ and you should refer to the NMS

QuickStart for the description on how the application in structured in terms of Gateway, Message Data formats,

Message Handler, and Message Converters. What this section describeds are the specific configuration related

to using TIBCO EMS.

The implementations of the gateway interfaces inherit from Spring's helper class EmsGatewaySupport in order

to get easy access to a EmsTemplate for sending. The implementation of the IStockService interface is shown

below

 public class EmsStockServiceGateway : EmsGatewaySupport, IStockService

 {

 private Destination defaultReplyToQueue;

 public Destination DefaultReplyToQueue

 {

 set { defaultReplyToQueue = value; }

 }

 public void Send(TradeRequest tradeRequest)

 {

 EmsTemplate.ConvertAndSendWithDelegate(tradeRequest, delegate(Message message)

 {

 message.ReplyTo =

 defaultReplyToQueue;

 message.CorrelationID = new

 Guid().ToString();

 return message;

 });

 }

 }

The Send method is using EmsTemplate's ConvertAndSendWithDelegate(object obj,

MessagePostProcessorDelegate messagePostProcessorDelegate) method. The anonymous delegate allows

you to modify the message properties, such as ReplyTo and CorrelationID after the message has been converted

from an object but before it has been sent. The use of an anonymous delegate allows makes it very easy to apply

any post processing logic to the converted message.

The object definition for the EmsStockServiceGateway is shown below along with its dependent object definitions

of EmsTemplate and the ConnectionFactory.

 <object id="ConnectionFactory" type="Spring.Messaging.Ems.Common.EmsConnectionFactory,

 Spring.Messaging.Ems">

 <constructor-arg index="0" value="tcp://localhost:7222"/>

 </object>

 <!-- EMS based implementation of technology neutral IStockServiceGateway -->

 <object name="StockServiceGateway" type="Spring.EmsQuickStart.Client.Gateways.EmsStockServiceGateway,

 Spring.EmsQuickStart.Client">

 <property name="EmsTemplate" ref="EmsTemplate"/>

 <property name="DefaultReplyToQueue">

 <object type="TIBCO.EMS.Queue, TIBCO.EMS">

 <constructor-arg value="APP.STOCK.JOE"/>

 </object>

 </property>

 </object>

 <object name="EmsTemplate" type="Spring.Messaging.Ems.Core.EmsTemplate, Spring.Messaging.Ems">

 <property name="ConnectionFactory" ref="ConnectionFactory"/>

 <property name="DefaultDestinationName" value="APP.STOCK.REQUEST"/>

 <property name="MessageConverter" ref="XmlMessageConverter"/>

 </object>

TIBCO EMS QuickStart

Spring Framework (Version 1.3.2) 461

In this example the Spring.Messaging.Ems.Common.EmsConnectionFactory connection factory was used.

It would be more efficient resource wise to use Spring's CachingConnectionFactory wrapper class so that

connections will not be open and closed for each message send as well as allowing for the caching of other

intermediate EMS API objects such as sessions and message producers.

A similar configuration is used on the server to configure the class

Spring.EmsQuickStart.Server.Gateways.MarketDataServiceGateway that implements the

IMarketDataService interface.

Since the client is also a consumer of messages, on the topic APP.STOCK.MARKETDATA and the queue

APP.STOCK.JOE (for Trader Joe!), two message listener containers are defined as shown below.

 <ems:listener-container connection-factory="ConnectionFactory">

 <ems:listener ref="MessageListenerAdapter" destination="APP.STOCK.JOE" />

 <ems:listener ref="MessageListenerAdapter" destination="APP.STOCK.MARKETDATA" pubsub-domain="true"/>

 </ems:listener-container>

Refer to the messages reference docs for all the available attributes to configure the container and also the section

on registering the EMS schema with Spring..

On the server we define a message listener container for the queue APP.STOCK.REQUEST but set the

concurrency property to 10 so that 10 threads will be consuming messages from the queue.

 <ems:listener-container connection-factory="ConnectionFactory" concurrency="10">

 <ems:listener ref="MessageListenerAdapter" destination="APP.STOCK.REQUEST" />

 </ems:listener-container>

47.4. Running the application

To run both the client and server make sure that you select 'Multiple Startup Projects' within VS.NET. The GUI

has a button to make a hardcoded trade request and show confirmation in a text box. A text area is used to display

the market data. There is a 'Get Portfolio' button that is not implemented at the moment. A picture of the GUI

after it has been running for a while and trade has been sent and responded to is shown below

TIBCO EMS QuickStart

Spring Framework (Version 1.3.2) 462

Spring Framework (Version 1.3.2) 463

Chapter 48. MSMQ QuickStart

48.1. Introduction

The MSMQ quick start application demonstrates how to use asynchronous messaging to implement a system for

purchasing a stock. Is follows the same basic approach as in the NMS QuickStart but is adapted as need for use

with MSMQ. Please read the introduction in that chapter to get an overview of the system.

When there is direct overlap in functionality between the MSMQ and NMS quickstart a reference to the

appropriate section in the NMS QuickStart documentation is given.

Note

To follow this MSMQ QuickStart load the solution file found in the directory <spring-install-

dir>\examples\Spring\Spring.MsmqQuickStart

48.2. Message Destinations

To communicate between th client and server a pair of queues will be used. Messages sent from the client to

the server will use the transactional queue named .\Private$\request.txqueue. Messages sent from the server

to the client will use the transactional queue .\Private$\response.joe.txqueue. The queue for messages that

cannot be processed, so called 'poison messages' will be sent to the queue .\Private$\dead.txqueue. You can

create these queues using the computer management administration console. Private queues are used to simplify

the application setup requirements.

Note

You must create the queues mentioned previously using standard Windows Computer

Management console to manage MSMQ. This article [http://www.worldofasp.net/tut/MSMQ/

Basic_Introduction_about_MSMQ_in_NET_Framework_98.aspx] covers the basics of creating the

queus in the management console.

Since MSMQ does not natively support the publish-subscribe messaging style as in other messaging systems,

Apache MQ, IBM Websphere MQ, TIBCO EMS, the market data information is sent on the same queue as the

responses from the server to the client for trade requests..

48.3. Gateways

The gateway interfaces are the same as those described in the NMS QuickStart here.

48.4. Message Data

TradeRequest and TradeResponse messages are defined using XML Schema and classes are generated from that

schema. This is the same approach as described in more details in the NMS QuickStart here.

An important difference in the types of message data formats supported 'out-of-the-box' with Apache, IBM,

TIBCO as compared to Microsoft MSMQ is the latter support sending a hashtable data structure. As a result, the

hashtable that was used to send market data information from the server to the client was changed to be of type

System.String in the MSMQ example.

http://www.worldofasp.net/tut/MSMQ/Basic_Introduction_about_MSMQ_in_NET_Framework_98.aspx
http://www.worldofasp.net/tut/MSMQ/Basic_Introduction_about_MSMQ_in_NET_Framework_98.aspx
http://www.worldofasp.net/tut/MSMQ/Basic_Introduction_about_MSMQ_in_NET_Framework_98.aspx

MSMQ QuickStart

Spring Framework (Version 1.3.2) 464

48.5. Message Handlers

The message handlers are the same as used in the NMS QuickStart here, aside from the change of the hashtable

data structure to a string. This is an important benefit of enforcing a separation between the messaging specific

classes and the business processing layer.

48.6. MessageConverters

The message converter used is Spring.Messaging.Support.Converters.XmlMessageConverter. It is configured by

specifying the data types that will be send and received. Here is a configuration example for types generated from

the XML Schema and a plain string.

<object id="xmlMessageConverter" type="Spring.Messaging.Support.Converters.XmlMessageConverter,

 Spring.Messaging">

 <property name="TargetTypes">

 <list>

 <value>Spring.MsmqQuickStart.Common.Data.TradeRequest, Spring.MsmqQuickStart.Common</value>

 <value>Spring.MsmqQuickStart.Common.Data.TradeResponse, Spring.MsmqQuickStart.Common</value>

 <value>System.String, mscorlib</value>

 </list>

 </property>

</object>

48.7. Messaging Infrastructure

The implementations of the gateway interfaces inherit from Spring's helper class MessageQueueGatewaySupport

in order to get easy access to a MessageQueueTemplate for sending. The implementation of the IStockService

interface is shown below

public class MsmqStockServiceGateway : MessageQueueGatewaySupport, IStockService

{

 private Random random = new Random();

 private string defaultResponseQueueObjectName;

 public string DefaultResponseQueueObjectName

 {

 set { defaultResponseQueueObjectName = value; }

 }

 public void Send(TradeRequest tradeRequest)

 {

 MessageQueueTemplate.ConvertAndSend(tradeRequest, delegate(Message message)

 {

 message.ResponseQueue = GetResponseQueue();

 message.AppSpecific = random.Next();

 return message;

 });

 }

 private MessageQueue GetResponseQueue()

 {

 return MessageQueueFactory.CreateMessageQueue(defaultResponseQueueObjectName);

 }

}

The Send method is using MessageQueueTemplate's ConvertAndSend(object obj,

MessagePostProcessorDelegate messagePostProcessorDelegate) method. The anonymous delegate allows

you to modify the message properties, such as ResponseQueue and AppSpecific after the message has been

converted from an object but before it has been sent. The use of an anonymous delegate allows makes it very easy

to apply any post processing logic to the converted message.

MSMQ QuickStart

Spring Framework (Version 1.3.2) 465

The configuration for MsmqStockServiceGateway and all its dependencies is shown below, highlighting important

dependency links.

<object name="stockServiceGateway" type="Spring.MsmqQuickStart.Client.Gateways.MsmqStockServiceGateway,

 Spring.MsmqQuickStart.Client">

 <property name="MessageQueueTemplate" ref="messageQueueTemplate"/>

 <property name="DefaultResponseQueueObjectName" value="responseTxQueue"/>

</object>

<object id="messageQueueTemplate" type="Spring.Messaging.Core.MessageQueueTemplate, Spring.Messaging">

 <property name="DefaultMessageQueueObjectName" value="requestTxQueue"/>

 <property name="MessageConverterObjectName" value="xmlMessageConverter"/>

</object>

<object id="xmlMessageConverter" type="Spring.Messaging.Support.Converters.XmlMessageConverter,

 Spring.Messaging">

 <property name="TargetTypes">

 <list>

 <value>Spring.MsmqQuickStart.Common.Data.TradeRequest, Spring.MsmqQuickStart.Common</value>

 <value>Spring.MsmqQuickStart.Common.Data.TradeResponse, Spring.MsmqQuickStart.Common</value>

 <value>System.String, mscorlib</value>

 </list>

 </property>

</object>

<object id="requestTxQueue" type="Spring.Messaging.Support.MessageQueueFactoryObject, Spring.Messaging">

 <property name="Path" value=".\Private$\request.txqueue"/>

 <property name="MessageReadPropertyFilterSetAll" value="true"/>

</object>

<object id="responseTxQueue" type="Spring.Messaging.Support.MessageQueueFactoryObject, Spring.Messaging">

 <property name="Path" value=".\Private$\response.joe.txqueue"/>

 <property name="MessageReadPropertyFilterSetAll" value="true"/>

</object>

Since the client also needs to listen to incoming messages on the responseTxQueue, a

TransactionalMessageListenerContainer is configured. The configuration for the message listener container

and all its dependencies is shown below, highlighting important dependency links.

<!-- MSMQ Transaction Manager -->

<object id="messageQueueTransactionManager" type="Spring.Messaging.Core.MessageQueueTransactionManager,

 Spring.Messaging"/>

<!-- Message Listener Container that uses MSMQ transactional for receives -->

<object id="transactionalMessageListenerContainer" type="Spring.Messaging.Listener.TransactionalMessageListenerContainer,

 Spring.Messaging">

 <property name="MessageQueueObjectName" value="responseTxQueue"/>

 <property name="PlatformTransactionManager" ref="messageQueueTransactionManager"/>

 <property name="MessageListener" ref="messageListenerAdapter"/>

 <property name="MessageTransactionExceptionHandler" ref="sendToQueueExceptionHandler"/>

</object>

<!-- Delegate to plain CLR object for message handling -->

<object id="messageListenerAdapter" type="Spring.Messaging.Listener.MessageListenerAdapter, Spring.Messaging">

 <property name="HandlerObject" ref="stockAppHandler"/>

 <property name="DefaultHandlerMethod" value="Handle"/>

 <property name="MessageConverterObjectName" value="xmlMessageConverter"/>

</object>

<object id="sendToQueueExceptionHandler" type="Spring.Messaging.Listener.SendToQueueExceptionHandler,

 Spring.Messaging">

 <property name="MessageQueueObjectName" value="deadTxQueue"/>

</object>

<object id="deadTxQueue" type="Spring.Messaging.Support.MessageQueueFactoryObject, Spring.Messaging">

 <property name="Path" value=".\Private$\dead.queue"/>

 <property name="MessageReadPropertyFilterSetAll" value="true"/>

</object>

MSMQ QuickStart

Spring Framework (Version 1.3.2) 466

A similar configuration is used on the server to configure the class

Spring.MsmqQuickStart.Server.Gateways.MarketDataServiceGateway that implements the

IMarketDataService interface and a TransactionalMessageListenerContainer to process messages

on the requestTxQueue. You can increase the number of processing thread in the

TransactionalMessageListenerContainer by setting the property MaxConcurrentListeners, the default value

is 1.

48.8. Running the application

To run both the client and server make sure that you select 'Multiple Startup Projects' within VS.NET. The GUI

has a button to make a hard coded trade request and show confirmation in a text box. A text area is used to display

the market data. There is a 'Get Portfolio' button that is not implemented at the moment. A picture of the GUI

after it has been running for a while and trade has been sent and responded to is shown below.

Spring Framework (Version 1.3.2) 467

Chapter 49. WCF QuickStart

49.1. Introduction

The WCF quickstart application shows how to configure your WCF services using dependency injection and how

to to apply AOP advice to your services. It is based on the same interfaces used in the portable service abstractions

quickstart example that demonstrates similar features for .NET Remoting, Enterprise Services, and ASMX web

sevices. The quickstart example is only available as a VS.NET 2008 solution.

There are two server applications in the solution, one is a web application where the WCF service will be hosted,

and the other is a self-hosting console application, Spring.WcfQuickStart.Server.2008. The client application is

located in Sprng.WcfQuickStart.ClientApp.2008. To run the solution make sure that all three projects are set to

startup.

Note

To follow this Quarts QuickStart load the solution file found in the directory <spring-install-dir>

\examples\Spring\Spring.WcfQuickStart

49.2. The server side

The service contract is shown below

 [ServiceContract(Namespace = "http://Spring.WcfQuickStart")]

 public interface ICalculator

 {

 [OperationContract]

 double Add(double n1, double n2);

 [OperationContract]

 double Subtract(double n1, double n2);

 [OperationContract]

 double Multiply(double n1, double n2);

 [OperationContract]

 double Divide(double n1, double n2);

 [OperationContract]

 string GetName();

 }

and the implementation is straightforward, only adding a property that controls how long each method should

sleep. An abbreviated listing of the implementation is shown below

 public class CalculatorService : ICalculator

 {

 private int sleepInSeconds;

 public int SleepInSeconds

 {

 get { return sleepInSeconds; }

 set { sleepInSeconds = value; }

 }

 public double Add(double n1, double n2)

 {

 Thread.Sleep(sleepInSeconds*1000);

 return n1 + n2;

 }

 // other methods omitted for brevity.

WCF QuickStart

Spring Framework (Version 1.3.2) 468

 }

49.2.1. WCF Dependency Injection and AOP in self-hosted application

The approach using dynamic proxies is used in the console application inside the

Spring.WcfQuickStart.Server.2008 project. For more information on this approach refer to this section in the

reference docs. The configuration of your service is done as you would typically do with Spring, including

applying of any AOP advice. The class is hosted inside the console application through the use of Spring's

ServiceHostFactoryObject exporter. The configuration for the server console application is shown below.

 <objects xmlns="http://www.springframework.net"

 xmlns:aop="http://www.springframework.net/aop">

 <!-- Service definition -->

 <object id="calculator" singleton="false"

 type="Spring.WcfQuickStart.CalculatorService, Spring.WcfQuickStart.ServerApp">

 <property name="SleepInSeconds" value="1"/>

 </object>

 <object id="serviceOperation" type="Spring.Aop.Support.SdkRegularExpressionMethodPointcut, Spring.Aop">

 <property name="pattern" value="Spring.WcfQuickStart.*"/>

 </object>

 <object id="perfAdvice" type="Spring.WcfQuickStart.SimplePerformanceInterceptor,

 Spring.WcfQuickStart.ServerApp">

 <property name="Prefix" value="Service Layer Performance"/>

 </object>

 <aop:config>

 <aop:advisor pointcut-ref="serviceOperation" advice-ref="perfAdvice"/>

 </aop:config>

 <!-- host the service object -->

 <object id="calculatorServiceHost" type="Spring.ServiceModel.Activation.ServiceHostFactoryObject,

 Spring.Services">

 <property name="TargetName" value="calculator" />

 </object>

 </objects>

Look at the standard WCF configuration section in App.config for additional configuration details. In that section

you will see that the name of the WCF service corresponds to the name of the service object inside the spring

container.

49.2.2. WCF Dependency Injection and AOP in IIS web application

Much of the configuration ob the objects is the same as before, the .svc file though refers to the name of the

service inside the Spring container as well as using Spring's Spring.ServiceModel.Activation.ServiceHostFactory.

The .svc file is shown below.

<%@ ServiceHost Language="C#" Debug="true" Service="calculator"

 Factory="Spring.ServiceModel.Activation.ServiceHostFactory" %>

49.3. Client access

The project Spring.WcfQuickStart.ClientApp.2008 is a console application that calls the two WCF services. It

creates a client side proxy based on using ChannelFactory<T>.CreateChannel. Running the client application

produces the following output.

--- Press <return> to continue ---

Web Calculator

Add(1, 1) : 2

WCF QuickStart

Spring Framework (Version 1.3.2) 469

Divide(11, 2) : 5.5

Multiply(2, 5) : 10

Subtract(7, 4) : 3

ServerApp Calculator

Add(1, 1) : 2

Divide(11, 2) : 5.5

Multiply(2, 5) : 10

Subtract(7, 4) : 3

--- Press <return> to continue ---

Spring Framework (Version 1.3.2) 470

Part VIII. Spring.NET for Java developers
This part of the reference documentation is for Java developers who would like a quick orientation to what is

different between the Java and .NET versions of the framework.

• Chapter 50, Spring.NET for Java Developers

Spring Framework (Version 1.3.2) 471

Chapter 50. Spring.NET for Java
Developers

50.1. Introduction

This chapter is to help Java developers get their sea legs using Spring.NET. It is not intended to be a comprehensive

comparison between .NET and Java. Rather, it highlights the day-to-day differences you will experience when

you start to use Spring.NET.

50.2. Beans to Objects

There are some simple name changes, basically everywhere you saw the word 'bean' you will now see the word

'object'. A comparison of a simple Spring configuration file highlights these small name changes. Here is the

application.xml file for the sample MovieFinder application in Spring.Java

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id="MyMovieLister" class="MovieFinder.MovieLister">

 <property name="finder" ref="MyMovieFinder"/>

 </bean>

 <bean id="MyMovieFinder" class="MovieFinder.SimpleMovieFinder"/>

</beans>

Here is the corresponding file in Spring.NET

<objects xmlns="http://www.springframework.net"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.net http://www.springframework.net/xsd/spring-

objects-1.1.xsd">

 <object name="MyMovieLister"

 type="Spring.Examples.MovieFinder.MovieLister, Spring.Examples.MovieFinder">

 <property name="movieFinder" ref="MyMovieFinder"/>

 </object>

 <object name="MyMovieFinder"

 type="Spring.Examples.MovieFinder.SimpleMovieFinder, Spring.Examples.MovieFinder"/>

</objects>

As you can easily see the <beans> and <bean> elements are replaced by <objects> and <object> elements. The

class definition in Spring.Java contains the fully qualified class name. The Spring.NET version also contains the

fully qualified classname but in addition specifies the name of the assembly where that type is located. This is

necessary since .NET does not have a 'classpath' concept. Assembly names in .NET can have up to four parts

to describe the exact version.

The other XML Schema elements in Spring.NET are the same as in Spring.Java's DTD except for specifying

string based key value pairs. In Java this is represented by the java.util.Properties class and the xml element is

name <props> as shown below

<property name="people">

 <props>

 <prop key="PennAndTeller">The magic property</prop>

 <prop key="GeorgeCarlin">The funny property</prop>

 </props>

</property>

In .NET the analogous class is System.Collections.Specialized.NameValueCollection and is represented by

the xml element <name-values>. The listing of the elements also follows the .NET convention of application

configuration files using the <add> element with 'key' and 'value' attributes. This is show below

Spring.NET for Java Developers

Spring Framework (Version 1.3.2) 472

<property name="people">

 <name-values>

 <add key="PennAndTeller" value="The magic property"/>

 <add key="GeorgeCarlin" value="The funny property"/>

 </name-values>

</property>

50.3. PropertyEditors to TypeConverters

PropertyEditors from the java.beans package provide the ability to convert from a string to an instance of

a Java class and vice-versa. For example, to set a string array property, a comma delimited string can be

used. The Java class that provides this functionality is the appropriately named StringArrayPropertyEditor.

In .NET, TypeConverters from the System.ComponentModel namespace provide the same functionality. The

type conversion functionality in .NET also allows for TypeConverters to be explicitly registered with a data type.

This allows for transparent setting of complex object properties. However, some classes in the .NET framework

do not support the style of conversion we are used to from Spring.Java, such as setting of a string[] with a comma

delimited string. The type converter, StringArrayConverter in the Spring.Objects.TypeConverters namespace is

therefore explicitly registered with Spring.NET in order to provide this functionality. As in the case of Spring.Java,

Spring.NET allows user defined type converters to be registered. However, if you are creating a custom type

in .NET, using the standard .NET mechanisms for type conversion is the preferred approach.

50.4. ResourceBundle-ResourceManager

50.5. Exceptions

Exceptions in Java can either be checked or unchecked. .NET supports only unchecked exceptions. Spring.Java

prefers the use of unchecked exceptions, frequently making conversions from checked to unchecked exceptions.

In this respect Spring.Java is similar to the default behavior of .NET

50.6. Application Configuration

In Spring.Java it is very common to create an ObjectFactory or ApplicationContext from an external XML

configuration file This functionality is also provided in Spring.NET. However, in .NET the System.Configuration

namespace provides support for managing application configuration information. The functionality in this

namespace depends on the availability of specially named files: Web.config for ASP.NET applications and

<MyExe>.exe.config for WinForms and console applications. <MyExe> is the name of your executable. As part

of the compilation process, if you have a file name App.config in the root of your project, the compiler will rename

the file to <MyExe>.exe.config and place it into the runtime executable folder.

These application configuration files are XML based and contain configuration sections that can be referenced

by name to retrieve custom configuration objects. In order to inform the .NET configuration system how

to create a custom configuration object from one of these sections, an implementation of the interface,

IConfigurationSectionHandler, needs to be registered. Spring.NET provides two implementations, one to create

an IApplicationContext from a <context> section and another to configure the context with object definitions

contained in an <objects> section. The <context> section is very powerful and expressive. It provides full support

for locating all IResource via Uri syntax and hierarchical contexts without coding or using more verbose XML

as would be required in the current version of Spring.Java

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <configSections>

Spring.NET for Java Developers

Spring Framework (Version 1.3.2) 473

 <sectionGroup name="spring">

 <section name="context" type="Spring.Context.Support.ContextHandler, Spring.Core"/>

 <section name="objects" type="Spring.Context.Support.DefaultSectionHandler, Spring.Core" />

 </sectionGroup>

 </configSections>

 <spring>

 <context>

 <resource uri="config://spring/objects"/>

 </context>

 <objects>

 <description>An example that demonstrates simple IoC features.</description>

 <object name="MyMovieLister" type="Spring.Examples.MovieFinder.MovieLister, MovieFinder">

 <property name="movieFinder" ref="AnotherMovieFinder"/>

 </object>

 <object name="MyMovieFinder" type="Spring.Examples.MovieFinder.SimpleMovieFinder, MovieFinder"/>

 <!--

 An IMovieFinder implementation that uses a text file as it's movie source...

 -->

 <object name="AnotherMovieFinder" type="Spring.Examples.MovieFinder.ColonDelimitedMovieFinder,

 MovieFinder">

 <constructor-arg index="0" value="movies.txt"/>

 </object>

 </objects>

 </spring>

</configuration>

The <configSections> and <section> elements are a standard part of the .NET application configuration file.

These elements are used to register an instance of IConfigurationSectionHandler and associate it with another

xml element in the file, in this case the <context> and <objects> elements.

The following code segment is used to retrieve the IApplicationContext from the .NET application configuration

file.

IApplicationContext ctx

 = ConfigurationUtils.GetSection("spring/context") as IApplicationContext;

In order to enforce the usage of the named configuration section spring/context the preferred instantiation

mechanism is via the use of the registry class ContextRegistry as shown below

IApplicationContext ctx = ContextRegistry.GetContext();

50.7. AOP Framework

50.7.1. Cannot specify target name at the end of interceptorNames for
ProxyFactoryObject

When configuring the list of interceptor names on a ProxyFactoryObject instance (or object definition), one

cannot specify the name of the target (i.e. the object being proxied) at the end of the list of interceptor names. This

shortcut is valid in Spring Java, where the ProxyFactoryBean will automatically detect this, and use the last name

in the interceptor names list as the target of the ProxyFactoryBean. The following configuration, which would

be valid in Spring Java (barring the obvious element name changes), is not valid in Spring.NET (so don't do it).

<?xml version="1.0" encoding="utf-8" ?>

 <objects xmlns="http://www.springframework.net">

 <object id="target" type="Spring.Objects.TestObject">

 <property name="name" value="Bingo"/>

 </object>

 <object id="nopInterceptor" type="Spring.Aop.Interceptor.NopInterceptor"/>

Spring.NET for Java Developers

Spring Framework (Version 1.3.2) 474

 <object id="prototypeTarget" type="Spring.Aop.Framework.ProxyFactoryObject">

 <property name="interceptorNames" value="nopInterceptor,target"/> <!-- not valid! -->

 </object>

 </objects>

In Spring.NET, the InterceptorNames property of the ProxyFactoryObject can only be used to specify the

names of interceptors. Use the TargetName property to specify the name of the target object that is to be proxied.

The main reason for not supporting exactly the same style of configuration as Spring Java is because this 'feature'

is regarded as a legacy holdover from Rod Johnson's initial Spring AOP implementation, and is currently only

kept as-is (in Spring Java) for reasons of backward compatibility.

Spring Framework (Version 1.3.2) 475

Part IX. Appendices

Spring Framework (Version 1.3.2) 476

Appendix A. Classic Spring Usage
This appendix discusses some classic Spring usage patterns as a reference for developers maintaining legacy

Spring applications. These usage patterns no longer reflect the recommended way of using these features and the

current recommended usage is covered in the respective sections of the reference manual.

A.1. Classic Hibernate Usage

For the currently recommended usage patterns for NHibernate see Section 21.2, “NHibernate”

A.1.1. The HibernateTemplate

The basic programming model for templating looks as follows for methods that can be part of any custom data

access object or business service. There are no restrictions on the implementation of the surrounding object at

all, it just needs to provide a Hibernate SessionFactory. It can get the latter from anywhere, but preferably as

an object reference from a Spring IoC container - via a simple SessionFactory property setter. The following

snippets show a DAO definition in a Spring container, referencing the above defined SessionFactory, and an

example for a DAO method implementation.

<objects>

 <object id="CustomerDao" type="Spring.Northwind.Dao.NHibernate.HibernateCustomerDao,

 Spring.Northwind.Dao.NHibernate">

 <property name="SessionFactory" ref="MySessionFactory"/>

 </object>

</objects>

public class HibernateCustomerDao : ICustomerDao {

 private HibernateTemplate hibernateTemplate;

 public ISessionFactory SessionFactory

 {

 set { hibernateTemplate = new HibernateTemplate(value); }

 }

 public Customer SaveOrUpdate(Customer customer)

 {

 hibernateTemplate.SaveOrUpdate(customer);

 return customer;

 }

}

The HibernateTemplate class provides many methods that mirror the methods exposed on the Hibernate Session

interface, in addition to a number of convenience methods such as the one shown above. If you need access to

the Session to invoke methods that are not exposed on the HibernateTemplate, you can always drop down to

a callback-based approach like so.

public class HibernateCustomerDao : ICustomerDao {

 private HibernateTemplate hibernateTemplate;

 public ISessionFactory SessionFactory

 {

 set { hibernateTemplate = new HibernateTemplate(value); }

 }

 public Customer SaveOrUpdate(Customer customer)

 {

 return HibernateTemplate.Execute(

Classic Spring Usage

Spring Framework (Version 1.3.2) 477

 delegate(ISession session)

 {

 // do whatever you want with the session....

 session.SaveOrUpdate(customer);

 return customer;

 }) as Customer;

 }

}

Using the anonymous delegate is particularly convenient when you would otherwise be passing various method

parameter calls to the interface based version of this callback. Furthermore, when using generics, you can avoid

the typecast and write code like the following

IList<Supplier> suppliers = HibernateTemplate.ExecuteFind<Supplier>(

 delegate(ISession session)

 {

 return session.CreateQuery("from Supplier s were s.Code = ?")

 .SetParameter(0, code)

 .List<Supplier>();

 });

where code is a variable in the surrounding block, accessible inside the anonymous delegate implementation.

A callback implementation effectively can be used for any Hibernate data access. HibernateTemplate will ensure

that Session instances are properly opened and closed, and automatically participate in transactions. The template

instances are thread-safe and reusable, they can thus be kept as instance variables of the surrounding class. For

simple single step actions like a single Find, Load, SaveOrUpdate, or Delete call, HibernateTemplate offers

alternative convenience methods that can replace such one line callback implementations. Furthermore, Spring

provides a convenient HibernateDaoSupport base class that provides a SessionFactory property for receiving

a SessionFactory and for use by subclasses. In combination, this allows for very simple DAO implementations

for typical requirements:

public class HibernateCustomerDao : HibernateDaoSupport, ICustomerDao

{

 public Customer SaveOrUpdate(Customer customer)

 {

 HibernateTemplate.SaveOrUpdate(customer);

 return customer;

 }

}

A.1.2. Implementing Spring-based DAOs without callbacks

As an alternative to using Spring's HibernateTemplate to implement DAOs, data access code can also be written

in a more traditional fashion, without wrapping the Hibernate access code in a callback, while still respecting and

participating in Spring's generic DataAccessException hierarchy. The HibernateDaoSupport base class offers

methods to access the current transactional Session and to convert exceptions in such a scenario; similar methods

are also available as static helpers on the SessionFactoryUtils class. Note that such code will usually pass 'false'

as the value of the DoGetSession(..) method's 'allowCreate' argument, to enforce running within a transaction

(which avoids the need to close the returned Session, as its lifecycle is managed by the transaction). Asking for the

public class HibernateProductDao : HibernateDaoSupport, IProductDao {

 public Customer SaveOrUpdate(Customer customer)

 {

 ISession session = DoGetSession(false);

 session.SaveOrUpdate(customer);

 return customer;

 }

 }

}

Classic Spring Usage

Spring Framework (Version 1.3.2) 478

This code will not translate the Hibernate exception to a generic DataAccessException.

A.2. Classic Declarative Transaction Configurations

A.2.1. Declarative Transaction Configuration using
DefaultAdvisorAutoProxyCreator

Using the DefaultAdvisorAutoProxyCreator to configure declarative transactions enables you to refer to the

transaction attribute as the pointcut to use for the transactional advice for any object definition defined in the

IoC container. The configuration to create a transactional proxy for the manager class shown in the chapter on

transaction management is shown below.

 <!-- The rest of the config file is common no matter how many objects you add -->

 <!-- that you would like to have declarative tx management applied to -->

 <object id="autoProxyCreator"

 type="Spring.Aop.Framework.AutoProxy.DefaultAdvisorAutoProxyCreator, Spring.Aop">

 </object>

 <object id="transactionAdvisor"

 type="Spring.Transaction.Interceptor.TransactionAttributeSourceAdvisor, Spring.Data">

 <property name="TransactionInterceptor" ref="transactionInterceptor"/>

 </object>

 <!-- Transaction Interceptor -->

 <object id="transactionInterceptor"

 type="Spring.Transaction.Interceptor.TransactionInterceptor, Spring.Data">

 <property name="TransactionManager" ref="transactionManager"/>

 <property name="TransactionAttributeSource" ref="attributeTransactionAttributeSource"/>

 </object>

 <object id="attributeTransactionAttributeSource"

 type="Spring.Transaction.Interceptor.AttributesTransactionAttributeSource, Spring.Data">

 </object>

Granted this is a bit verbose and hard to grok at first sight - however you only need to grok this once as it is 'boiler

plate' XML you can reuse across multiple projects. What these object definitions are doing is to instruct Spring's

to look for all objects within the IoC configuration that have the [Transaction] attribute and then apply the AOP

transaction interceptor to them based on the transaction options contained in the attribute. The attribute serves

both as a pointcut and as the declaration of transactional option information.

Since this XML fragment is not tied to any specific object references it can be included in its own file and

then imported via the <import> element. In examples and test code this XML configuration fragment is named

autoDeclarativeServices.xml See Section 5.2.2.3, “Composing XML-based configuration metadata” for more

information.

The classes and their roles in this configuration fragment are listed below

• TransactionInterceptor is the AOP advice responsible for performing transaction management functionality.

• TransactionAttributeSourceAdvisor is an AOP Advisor that holds the TransactionInterceptor, which is the

advice, and a pointcut (where to apply the advice), in the form of a TransactionAttributeSource.

• AttributesTransactionAttributeSource is an implementation of the ITransactionAttributeSource

interface that defines where to get the transaction metadata defining the transaction

semantics (isolation level, propagation behavior, etc) that should be applied to specific

methods of specific classes. The transaction metadata is specified via implementations

of the ITransactionAttributeSource interface. This example shows the use of the

Classic Spring Usage

Spring Framework (Version 1.3.2) 479

implementation Spring.Transaction.Interceptor.AttributesTransactionAttributeSource to obtain

that information from standard .NET attributes. By the very nature of using standard .NET

attributes, the attribute serves double duty in identifying the methods where the

transaction semantics apply. Alternative implementations of ITransactionAttributeSource

available are MatchAlwaysTransactionAttributeSource, NameMatchTransactionAttributeSource, or

MethodMapTransactionAttributeSource.

• MatchAlwaysTransactionAttributeSource is configured with a ITransactionAttribute instance that is

applied to all methods. The shorthand string representation, i.e. PROPAGATION_REQUIRED can be used

• AttributesTransactionAttributeSource : Use a standard. .NET attributes to specify the transactional

information. See TransactionAttribute class for more information.

• NameMatchTransactionAttributeSource allows ITransactionAttributes to be matched by method name.

The NameMap IDictionary property is used to specify the mapping. For example

<object name="nameMatchTxAttributeSource" type="Spring.Transaction.Interceptor.NameMatchTransactionAttributeSource,

 Spring.Data"

 <property name="NameMap">

 <dictionary>

 <entry key="Execute" value="PROPAGATION_REQUIRES_NEW, -ApplicationException"/>

 <entry key="HandleData" value="PROPAGATION_REQUIRED, -DataHandlerException"/>

 <entry key="Find*" value="ISOLATION_READUNCOMMITTED, -DataHandlerException"/>

 </dictionary>

 </property>

</object>

Key values can be prefixed and/or suffixed with wildcards as well as include the full namespace of the

containing class.

• MethodMapTransactionAttributeSource : Similar to NameMatchTransactionAttributeSource but specifies

that only fully qualified method names (i.e. type.method, assembly) and wildcards can be used at the start

or end of the method name for matching multiple methods.

• DefaultAdvisorAutoProxyCreator: looks for Advisors in the context, and automatically creates proxy objects

which are the transactional wrappers

Refer to the following section for a more convenient way to achieve the same goal of declarative transaction

management using attributes.

A.2.2. Declarative Transactions using TransactionProxyFactoryObject

The TransactionProxyFactoryObject is easier to use than a ProxyFactoryObject for most cases since the

transaction interceptor and transaction attributes are properties of this object. This removes the need to declare

them as separate objects. Also, unlike the case with the ProxyFactoryObject, you do not have to give fully qualified

method names, just the normal 'short' method name. Wild card matching on the method name is also allowed,

which in practice helps to enforce a common naming convention for the methods of your DAOs. The example

from chapter 5 is shown here using a TransactionProxyFactoryObject.

 <object id="testObjectManager"

 type="Spring.Transaction.Interceptor.TransactionProxyFactoryObject, Spring.Data">

 <property name="PlatformTransactionManager" ref="adoTransactionManager"/>

 <property name="Target">

 <object type="Spring.Data.TestObjectManager, Spring.Data.Integration.Tests">

 <property name="TestObjectDao" ref="testObjectDao"/>

 </object>

Classic Spring Usage

Spring Framework (Version 1.3.2) 480

 </property>

 <property name="TransactionAttributes">

 <name-values>

 <add key="Save*" value="PROPAGATION_REQUIRED"/>

 <add key="Delete*" value="PROPAGATION_REQUIRED"/>

 </name-values>

 </property>

 </object>

Note the use of an inner object definition for the target which will make it impossible to obtain an unproxied

reference to the TestObjectManager.

As can be seen in the above definition, the TransactionAttributes property holds a collection of name/value pairs.

The key of each pair is a method or methods (a * wildcard ending is optional) to apply transactional semantics to.

Note that the method name is not qualified with a package name, but rather is considered relative to the class of

the target object being wrapped. The value portion of the name/value pair is the TransactionAttribute itself that

needs to be applied. When specifying it as a string value as in this example, it's in String format as defined by

TransactionAttributeConverter. This format is:

PROPAGATION_NAME,ISOLATION_NAME,readOnly,timeout_NNNN,+Exception1,-Exception2

Note that the only mandatory portion of the string is the propagation setting. The default transactions semantics

which apply are as follows:

• Exception Handling: All exceptions thrown trigger a rollback.

• Transactions are read/write

• Isolation Level: TransactionDefinition.ISOLATION_DEFAULT

• Timeout: TransactionDefinition.TIMEOUT_DEFAULT

Multiple rollback rules can be specified here, comma-separated. A - prefix forces rollback; a + prefix

specifies commit. Under the covers the IDictionary of name value pairs will be converted to an instance of

NameMatchTransactionAttributeSource

The string used for PROPAGATION_NAME are those defined on the

Spring.Transaction.TransactionPropagation enumeration, namely Required, Supports, Mandatory, RequiresNew,

NotSupported, Never, Nested. The string used for ISOLATION_NAME are those defined on the

System.Data.IsolationLevel enumberateion, namely ReadCommitted, ReadUncommitted, RepeatableRead,

Serializable.

The TransactionProxyFactoryObject allows you to set optional "pre" and "post" advice, for additional interception

behavior, using the "PreInterceptors" and "PostInterceptors" properties. Any number of pre and post advices

can be set, and their type may be Advisor (in which case they can contain a pointcut), MethodInterceptor or

any advice type supported by the current Spring configuration (such as ThrowsAdvice, AfterReturningAdvice or

BeforeAdvice, which are supported by default.) These advices must support a shared-instance model. If you need

transactional proxying with advanced AOP features such as stateful mixins, it's normally best to use the generic

ProxyFactoryObject, rather than the TransactionProxyFactoryObject convenience proxy creator.

A.2.3. Concise proxy definitions

Using abstract object definitions in conjunction with a TransactionProxyFactoryObject provides you a more

concise means to reuse common configuration information instead of duplicating it over and over again with a

definition of a TransactionProxyFactoryObject per object. Objects that are to be proxied typically have the same

Classic Spring Usage

Spring Framework (Version 1.3.2) 481

pattern of method names, Save*, Find*, etc. This commonality can be placed in an abstract object definition,

which other object definitions refer to and change only the configuration information that is different. An abstract

object definition is shown below

 <object id="txProxyTemplate" abstract="true"

 type="Spring.Transaction.Interceptor.TransactionProxyFactoryObject, Spring.Data">

 <property name="PlatformTransactionManager" ref="adoTransactionManager"/>

 <property name="TransactionAttributes">

 <name-values>

 <add key="Save*" value="PROPAGATION_REQUIRED"/>

 <add key="Delete*" value="PROPAGATION_REQUIRED"/>

 </name-values>

 </property>

 </object>

Subsequent definitions can refer to this 'base' configuration as shown below

<object id="testObjectManager" parent="txProxyTemplate">

 <property name="Target">

 <object type="Spring.Data.TestObjectManager, Spring.Data.Integration.Tests">

 <property name="TestObjectDao" ref="testObjectDao"/>

 </object>

 </property>

</object>

A.2.4. Declarative Transactions using ProxyFactoryObject

Using the general ProxyFactoryObject to declare transactions gives you a great deal of control over the proxy

created since you can specify additional advice, such as for logging or performance. Based on the example shown

previously a sample configuration using ProxyFactoryObject is shown below

 <object id="testObjectManagerTarget" type="Spring.Data.TestObjectManager, Spring.Data.Integration.Tests">

 <property name="TestObjectDao" ref="testObjectDao"/>

 </object>

 <object id="testObjectManager" type="Spring.Aop.Framework.ProxyFactoryObject, Spring.Aop">

 <property name="Target" ref="testObjectManagerTarget"/>

 <property name="ProxyInterfaces">

 <value>Spring.Data.ITestObjectManager</value>

 </property>

 <property name="InterceptorNames">

 <value>transactionInterceptor</value>

 </property>

 </object>

The ProxyFactoryObject will create a proxy for the Target, i.e. a TestObjectManager instance. An inner object

definition could also have been used such that it would make it impossible to obtain an unproxied object from the

container. The interceptor name refers to the following definition.

 <object id="transactionInterceptor" type="Spring.Transaction.Interceptor.TransactionInterceptor,

 Spring.Data">

 <property name="TransactionManager" ref="adoTransactionManager"/>

 <!-- note do not have converter from string to this property type registered -->

 <property name="TransactionAttributeSource" ref="methodMapTransactionAttributeSource"/>

 </object>

 <object name="methodMapTransactionAttributeSource"

 type="Spring.Transaction.Interceptor.MethodMapTransactionAttributeSource, Spring.Data">

 <property name="MethodMap">

 <dictionary>

 <entry key="Spring.Data.TestObjectManager.SaveTwoTestObjects, Spring.Data.Integration.Tests"

Classic Spring Usage

Spring Framework (Version 1.3.2) 482

 value="PROPAGATION_REQUIRED"/>

 <entry key="Spring.Data.TestObjectManager.DeleteTwoTestObjects, Spring.Data.Integration.Tests"

 value="PROPAGATION_REQUIRED"/>

 </dictionary>

 </property>

 </object>

The transaction options for each method are specified using a dictionary containing the class name + method

name, assembly as the key and the value is of the form

• <Propagation Behavior>, <Isolation Level>, <ReadOnly>, -Exception, +Exception

All but the propagation behavior are optional. The + and - are used in front of the name of an exception. Minus

indicates to rollback if the exception is thrown, the Plus indicates to commit if the exception is thrown.

Spring Framework (Version 1.3.2) 483

Appendix B. XML Schema-based
configuration

B.1. Introduction

This appendix details the use of XML Schema-based configuration in Spring.

The 'classic' <object/>-based schema is good, but its generic-nature comes with a price in terms of

configuration overhead. Creating a custom XML Schema-based configuration makes Spring XML configuration

files substantially clearer to read. In addition, it allows you to express the intent of an object definition.

The key thing to remember is that creating custom schema tags work best for infrastructure or integration objects:

for example, AOP, collections, transactions, integration with 3rd-party frameworks, etc., while the existing object

tags are best suited to application-specific objects, such as DAOs, service layer objects, etc.

Please note the fact that the XML configuration mechanism is totally customisable and extensible. This means

you can write your own domain-specific configuration tags that would better represent your application's domain;

the process involved in doing so is covered in the appendix entitled Appendix C, Extensible XML authoring.

B.2. XML Schema-based configuration

B.2.1. Referencing the schemas

As a reminder, you reference the standard objects schema as shown below

<?xml version="1.0" encoding="UTF-8"?>

<objects xmlns="http://www.springframework.net"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.net http://www.springframework.net/schema/objects/

spring-objects-1.1.xsd">

 <!-- <object/> definitions here -->

</objects>

Note

The 'xsi:schemaLocation' fragment is not actually required, but can be included to reference a

local copy of a schema (which can be useful during development) and assumes the XML editor will

look to that location and load the schema.

The above Spring XML configuration fragment is boilerplate that you can copy and paste (!) and then plug

<object/> definitions into like you have always done. However, the entire point of using custom schema tags

is to make configuration easier.

The rest of this chapter gives an overview of custom XML Schema based configuration that are included with

the release.

XML Schema-based configuration

Spring Framework (Version 1.3.2) 484

Note

As of Spring.NET 1.2.0 it is no longer necessary to explicitly configure the namespace parsers

that come with Spring via a custom section in App.config. You will still need to register custom

namespace parsers if you are writing your own.

B.2.2. The tx (transaction) schema

The tx tags deal with configuring objects in Spring's comprehensive support for transactions. These tags are

covered in the chapter entitled Chapter 17, Transaction management.

Tip

You are strongly encouraged to look at the 'spring-tx-1.1.xsd' file that ships with the Spring

distribution. This file is (of course), the XML Schema for Spring's transaction configuration, and

covers all of the various tags in the tx namespace, including attribute defaults and suchlike. This file

is documented inline, and thus the information is not repeated here in the interests of adhering to the

DRY (Don't Repeat Yourself) principle.

In the interest of completeness, to use the tags in the tx schema, you need to have the following preamble at the

top of your Spring XML configuration file; the emboldened text in the following snippet references the correct

schema so that the tags in the tx namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>

<object xmlns="http://www.springframework.net"

 xmlns:aop="http://www.springframework.net/aop"

 xmlns:tx="http://www.springframework.net/tx">

 <!-- <object/> definitions here -->

 <!-- <tx/> transaction definitions here -->

 <!-- <aop/> AOP definitions here -->

</object>

Note

Often when using the tags in the tx namespace you will also be using the tags from the aop namespace

(since the declarative transaction support in Spring is implemented using AOP). The above XML

snippet contains the relevant lines needed to reference the aop schema so that the tags in the aop

namespace are available to you.

You will also need to configure the AOP and Transaction namespace parsers in the main .NET application

configuration file as shown below

Note

As of Spring.NET 1.2.0 it is no longer necessary to explicitly configure the namespace parsers

that come with Spring via a custom section in App.config. You will still need to register custom

namespace parsers if you are writing your own.

<configuration>

 <configSections>

 <sectionGroup name="spring">

XML Schema-based configuration

Spring Framework (Version 1.3.2) 485

 <!-- other Spring config sections handler like context, typeAliases, etc not shown for brevity -->

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <parsers>

 <parser type="Spring.Aop.Config.AopNamespaceParser, Spring.Aop" />

 <parser type="Spring.Transaction.Config.TxNamespaceParser, Spring.Data" />

 </parsers>

 </spring>

</configuration>

B.2.3. The aop schema

The aop tags deal with configuring all things AOP in Spring. These tags are comprehensively covered in the

chapter entitled Chapter 13, Aspect Oriented Programming with Spring.NET.

In the interest of completeness, to use the tags in the aop schema, you need to have the following preamble at the

top of your Spring XML configuration file; the emboldened text in the following snippet references the correct

schema so that the tags in the aop namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>

<objects xmlns="http://www.springframework.net"

 xmlns:aop="http://www.springframework.net/aop">

 <!-- <object/> definitions here -->

 <!-- <aop/> AOP definitions here -->

</objects>

You will also need to configure the AOP namespace parser in the main .NET application configuration file as

shown below

Note

As of Spring.NET 1.2.0 it is no longer necessary to explicitly configure the namespace parsers

that come with Spring via a custom section in App.config. You will still need to register custom

namespace parsers if you are writing your own.

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <!-- other Spring config sections handler like context, typeAliases, etc not shown for brevity -->

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <parsers>

 <parser type="Spring.Aop.Config.AopNamespaceParser, Spring.Aop" />

 </parsers>

 </spring>

</configuration>

XML Schema-based configuration

Spring Framework (Version 1.3.2) 486

B.2.4. The db schema

The db tags deal with creating IDbProvider instances for a given database client library. The following

snippet references the correct schema so that the tags in the db namespace are available to you. The tags are

comprehensively covered in the chapter entitled Chapter 19, DbProvider.

<?xml version="1.0" encoding="UTF-8"?>

<objects xmlns="http://www.springframework.net"

 xmlns:db="http://www.springframework.net/db">

 <!-- <object/> definitions here -->

 <!-- <db/> database definitions here -->

</objects>

You will also need to configure the Database namespace parser in the main .NET application configuration file

as shown below

Note

As of Spring.NET 1.2.0 it is no longer necessary to explicitly configure the namespace parsers

that come with Spring via a custom section in App.config. You will still need to register custom

namespace parsers if you are writing your own.

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <!-- other Spring config sections handler like context, typeAliases, etc not shown for brevity -->

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <parsers>

 <parser type="Spring.Data.Config.DatabaseNamespaceParser, Spring.Data" />

 </parsers>

 </spring>

</configuration>

B.2.5. The wcf schema

The wcf schema is used when you would like to create a client channel to invoke a WCF service as compared

to generating a proxy using svcutil.exe. The channel factory approach requires that you have a known interface

which describes the service. This approach is quite common to use when you are controlling both the client and

the server code, but is not exclusive to that case. The advantage of coding to the interface is that it can be easily

replaced with another implementation, perhaps for testing purposes to facilitate unit testing.

For example, the following code can be used to create an instance of the ICaclulator interface that invokes the

remote service.

ICalculator calculator = ChannelFactory<ICalculator>("calculatorEndpoint").CreateChannel();

int result = calculator.Add(1,2);

You need to configure the remoting namespace parser in the main .NET application configuration file as shown

below

XML Schema-based configuration

Spring Framework (Version 1.3.2) 487

Note

As of Spring.NET 1.2.0 it is no longer necessary to explicitly configure the namespace parsers

that come with Spring via a custom section in App.config. You will still need to register custom

namespace parsers if you are writing your own.

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <!-- other Spring config sections handler like context, typeAliases, etc not shown for brevity -->

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <parsers>

 <parser type="Spring.ServiceModel.Config.WcfNamespaceParser, Spring.Services" />

 </parsers>

 </spring>

</configuration>

B.2.6. The remoting schema

The remoting tags are for use when you want to export an existing POCO object as a .NET remoted object or

to create a client side .NET remoting proxy. The tags are comprehensively covered in the chapter Chapter 27,

.NET Remoting

<?xml version="1.0" encoding="UTF-8"?>

<objects xmlns="http://www.springframework.net"

 xmlns:r="http://www.springframework.net/remoting">

 <!-- <object/> definitions here -->

 <!-- <r/> remoting definitions here -->

</objects>

You will also need to configure the remoting namespace parser in the main .NET application configuration file

as shown below

Note

As of Spring.NET 1.2.0 it is no longer necessary to explicitly configure the namespace parsers

that come with Spring via a custom section in App.config. You will still need to register custom

namespace parsers if you are writing your own.

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <!-- other Spring config sections handler like context, typeAliases, etc not shown for brevity -->

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <parsers>

 <parser type="Spring.Remoting.Config.RemotingNamespaceParser, Spring.Services" />

 </parsers>

XML Schema-based configuration

Spring Framework (Version 1.3.2) 488

 </spring>

</configuration>

B.2.7. The nms messaging schema

The nms tags are for use when you want to configure Spring's messaging support. The tags are comprehensively

covered in the chapter Chapter 31, Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS

<?xml version="1.0" encoding="UTF-8"?>

<objects xmlns="http://www.springframework.net"

 xmlns:r="http://www.springframework.net/nms">

 <!-- <object/> definitions here -->

 <!-- <nms/> remoting definitions here -->

</objects>

You will also need to configure the remoting namespace parser in the main .NET application configuration file

as shown below

Note

As of Spring.NET 1.2.0 it is no longer necessary to explicitly configure the namespace parsers

that come with Spring via a custom section in App.config. You will still need to register custom

namespace parsers if you are writing your own.

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <!-- other Spring config sections handler like context, typeAliases, etc not shown for brevity -->

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <parsers>

 <parser type="Spring.Messaging.Nms.Config.NmsNamespaceParser, Spring.Messaging.Nms" />

 </parsers>

 </spring>

</configuration>

B.2.8. The validation schema

The validation tags are for use when you want definte IValidator object instances. The tags are

comprehensively covered in the chapter Chapter 12, Validation Framework

<?xml version="1.0" encoding="UTF-8"?>

<objects xmlns="http://www.springframework.net"

 xmlns:v="http://www.springframework.net/validation">

 <!-- <object/> definitions here -->

 <!-- <v/> valdiation definitions here -->

</objects>

You will also need to configure the validation namespace parser in the main .NET application configuration file

as shown below

XML Schema-based configuration

Spring Framework (Version 1.3.2) 489

Note

As of Spring.NET 1.2.0 it is no longer necessary to explicitly configure the namespace parsers

that come with Spring via a custom section in App.config. You will still need to register custom

namespace parsers if you are writing your own.

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <!-- other Spring config sections handler like context, typeAliases, etc not shown for brevity -->

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <parsers>

 <parser type="Spring.Validation.Config.ValidationNamespaceParser, Spring.Core" />

 </parsers>

 </spring>

</configuration>

B.2.9. The objects schema

Last but not least we have the tags in the objects schema. Examples of the various tags in the objects

schema are not shown here because they are quite comprehensively covered in the section entitled Section 5.3.2,

“Dependencies and configuration in detail” (and indeed in that entire chapter).

<?xml version="1.0" encoding="UTF-8"?>

<objects xmlns="http://www.springframework.net"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.net http://www.springframework.net/schema/objects/

spring-objects-1.1.xsd">

 <object id="foo" class="X.Y.Foo, X">

 <property name="name" value="Rick"/>

 </object>

</objects>

B.3. Setting up your IDE

To setup VS.NET to provide intellisence while editing XML file for your custom XML schemas you will need to

copy your XSD files to an appropriate VS.NET directory. Refer to the following chapter for details, Chapter 36,

Visual Studio.NET Integration

For SharpDevelop, follow the directions on the "Editing XML" product documentation.

http://community.sharpdevelop.net/blogs/mattward/articles/FeatureTourEditingXml.aspx

Spring Framework (Version 1.3.2) 490

Appendix C. Extensible XML authoring

C.1. Introduction

Spring supports adding custom schema-based extensions to the basic Spring XML format for defining and

configuring objects. This section is devoted to detailing how you would go about writing your own custom XML

object definition parsers and integrating such parsers into the Spring IoC container.

To facilitate the authoring of configuration files using a schema-aware XML editor, Spring's extensible XML

configuration mechanism is based on XML Schema. If you are not familiar with Spring's current XML

configuration extensions that come with the standard Spring distribution, please first read the appendix entitled

Appendix B, XML Schema-based configuration.

Creating new XML configuration extensions can be done by following these (relatively) simple steps:

1. Authoring an XML schema to describe your custom element(s).

2. Coding a custom INamespaceParser implementation (this is an easy step, don't worry).

3. Coding one or more IObjectDefinitionParser implementations (this is where the real work is done).

4. Registering the above artifacts with Spring (this too is an easy step).

What follows is a description of each of these steps. For the example, we will create an XML extension (a custom

XML element) that allows us to configure objects of the type Regex (from the System.Text.RegularExpressions

namespace) in an easy manner. When we are done, we will be able to define object definitions of type Regex

like this:

<myns:regex id="regex"

 pattern="(^\d{5}$)|(^\d{5}-\d{4}$)"

 options="Compiled"/>

C.2. Authoring the schema

Creating an XML configuration extension for use with Spring's IoC container starts with authoring an XML

Schema to describe the extension. What follows is the schema we'll use to configure Regex objects.

<?xml version="1.0" encoding="utf-8" ?>

<xsd:schema id="myns"

 xmlns="http://www.mycompany.com/schema/myns"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:objects="http://www.springframework.net"

 xmlns:vs="http://schemas.microsoft.com/Visual-Studio-Intellisense"

 targetNamespace="http://www.mycompany.com/schema/myns"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 vs:friendlyname="Spring Regex Configuration" vs:ishtmlschema="false"

 vs:iscasesensitive="true" vs:requireattributequotes="true"

 vs:defaultnamespacequalifier="" vs:defaultnsprefix=""

 >

 <xsd:import namespace="http://www.springframework.net"/>

 <xsd:element name="regex">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base="objects:identifiedType">

 <xsd:attribute name="pattern" type="xsd:string" use="required"/>

 <xsd:attribute name="options" type="xsd:string" use="optional"/>

Extensible XML authoring

Spring Framework (Version 1.3.2) 491

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

The emphasized line contains an extension base for all tags that will be identifiable (meaning they have an id

attribute that will be used as the object identifier in the container). We are able to use this attribute because we

imported the Spring-provided 'objects' namespace. The vs: prefixed elements are for better integration with

intellisense in VS.NET.

The above schema will be used to configure Regex objects, directly in an XML application context file using the

<myns:regex/> element.

<myns:regex id="usZipCodeRegex"

 pattern="(^\d{5}$)|(^\d{5}-\d{4}$)"

 options="Compiled"/>

Note that after we've created the infrastructure classes, the above snippet of XML will essentially be exactly the

same as the following XML snippet. In other words, we're just creating an object in the container, identified by

the name 'usZipCodeRegex' of type Regex, with a couple of constructor arguments set.

 <object id="usZipCodeRegex" type="System.Text.RegularExpressions.Regex, System">

 <constructor-arg name="pattern" value="(^\d{5}$)|(^\d{5}-\d{4}$)"/>

 <constructor-arg name="options" value="Compiled"/>

 </object>

Note

The schema-based approach to creating configuration format allows for tight integration with an IDE

that has a schema-aware XML editor. Using a properly authored schema, you can use intellisense to

have a user choose between several configuration options defined in the enumeration. The schema

for creating IDbProvider instances shows the use of XSD enumerations.

C.3. Coding a INamespaceParser

In addition to the schema, we need an INamespaceParser that will parse all elements of this specific namespace

Spring encounters while parsing configuration files. The INamespaceParser should in our case take care of the

parsing of the myns:regex element.

The INamespaceParser interface is pretty simple in that it features just two methods:

• Init() - allows for initialization of the INamespaceParser and will be called by Spring before the handler

is used

• IObjectDefinition Parse(Element, ParserContext) - called when Spring encounters a top-level element

(not nested inside a object definition or a different namespace). This method can register object definitions

itself and/or return a object definition.

Although it is perfectly possible to code your own INamespaceParser for the entire namespace (and hence provide

code that parses each and every element in the namespace), it is often the case that each top-level XML element in

a Spring XML configuration file results in a single object definition (as in our case, where a single <myns:regex/>

element results in a single Regex object definition). Spring features a number of convenience classes that support

this scenario. In this example, we'll make use the NamespaceParserSupport class:

using Spring.Objects.Factory.Xml;

Extensible XML authoring

Spring Framework (Version 1.3.2) 492

namespace CustomNamespace

{

 [NamespaceParser(

 Namespace = "http://www.mycompany.com/schema/myns",

 SchemaLocationAssemblyHint = typeof(MyNamespaceParser),

 SchemaLocation = "/CustomNamespace/myns.xsd"

)

]

 public class MyNamespaceParser : NamespaceParserSupport

 {

 public override void Init()

 {

 RegisterObjectDefinitionParser("regex", new RegexObjectDefinitionParser());

 }

 }

}

Notice that there isn't actually a whole lot of parsing logic in this class. Indeed... the NamespaceParserSupport

class has a built in notion of delegation. It supports the registration of any number of IObjectDefinitionParser

instances, to which it will delegate to when it needs to parse an element in it's namespace. This clean separation

of concerns allows an INamespaceParser to handle the orchestration of the parsing of all of the custom elements

in it's namespace, while delegating to IObjectDefinitionParsers to do the grunt work of the XML parsing; this

means that each IObjectDefinitionParser will contain just the logic for parsing a single custom element, as

we can see in the next step.

To help in the registration of the parser for this namespace, the NamespaceParser attribute is used to map the

XML namespace string, i.e. http://www.mycompany.com/schema/myns, to the location of the XML Schema file

as an embedded assembly resource.

C.4. Coding an IObjectDefinitionParser

A IObjectDefinitionParser will be used if the INamespaceParser encounters an XML element of the type

that has been mapped to the specific object definition parser (which is 'regex' in this case). In other words, the

IObjectDefinitionParser is responsible for parsing one distinct top-level XML element defined in the schema.

In the parser, we'll have access to the XML element (and thus it's subelements too) so that we can parse our

custom XML content, as can be seen in the following example:

using System;

using System.Text.RegularExpressions;

using System.Xml;

using Spring.Objects.Factory.Support;

using Spring.Objects.Factory.Xml;

using Spring.Util;

namespace CustomNamespace

{

 public class RegexObjectDefinitionParser : AbstractSimpleObjectDefinitionParser {

 protected override Type GetObjectType(XmlElement element)

 {

 return typeof (Regex);

 }

 protected override void DoParse(XmlElement element, ObjectDefinitionBuilder builder)

 {

 // this will never be null since the schema explicitly requires that a value be supplied

 string pattern = element.GetAttribute("pattern");

 builder.AddConstructorArg(pattern);

 // this however is an optional property

 string options = element.GetAttribute("options");

 if (StringUtils.HasText(options))

 {

 RegexOptions regexOptions = (RegexOptions)Enum.Parse(typeof (RegexOptions), options);

Extensible XML authoring

Spring Framework (Version 1.3.2) 493

 builder.AddConstructorArg(regexOptions);

 }

 }

 protected override bool ShouldGenerateIdAsFallback

 {

 get { return true; }

 }

}

We use the Spring-provided AbstractSingleObjectDefinitionParser to handle a lot of the basic grunt

work of creating a single IObjectDefinition.

We supply the AbstractSingleObjectDefinitionParser superclass with the type that our single

IObjectDefinition will represent.

In this simple case, this is all that we need to do. The creation of our single IObjectDefinition is handled by the

AbstractSingleObjectDefinitionParser superclass, as is the extraction and setting of the object definition's

unique identifier. The property ShouldGenerateIdAsFallback will generate a throw-away object id incase one

is not specified, this is useful when nesting object definitions.

C.5. Registering the handler and the schema

The coding is finished! All that remains to be done is to somehow make the Spring XML parsing infrastructure

aware of our custom element; we do this by registering our custom INamespaceParser using a special

configuration section handler. The location of the XML Schema in this example has been directly assoicated with

the parser though the use of the Namespace attribute.

C.5.1. NamespaceParsersSectionHandler

The custom configuration section handler is of the type

Spring.Context.Support.NamespaceParsersSectionHandler and is registered with .NET in the normal

manner. The custom configuration section will simply point to the INamespaceParser implementation that has

the Namespace attribute. For our example, we need to write the following:

<configuration>

 <configSections>

 <sectionGroup name="spring">

 <section name="parsers" type="Spring.Context.Support.NamespaceParsersSectionHandler, Spring.Core"/>

 </sectionGroup>

 </configSections>

 <spring>

 <parsers>

 <parser type="CustomNamespace.MyNamespaceParser, CustomNamespace" />

 </parsers>

 </spring>

</configuration>

C.6. Using a custom extension in your Spring XML
configuration

Using a custom extension that you yourself have implemented is no different from using one of the 'custom'

extensions that Spring provides straight out of the box. Find below an example of using the custom <regex/>

element developed in the previous steps in a Spring XML configuration file.

<?xml version="1.0" encoding="utf-8" ?>

Extensible XML authoring

Spring Framework (Version 1.3.2) 494

<objects xmlns="http://www.springframework.net"

 xmlns:myns="http://www.mycompany.com/schema/myns">

 <!-- as a top level object definition -->

 <myns:regex id="usZipCodeRegex"

 pattern="(^\d{5}$)|(^\d{5}-\d{4}$)"/>

 <object id="jobDetailTemplate" abstract="true">

 <property name="regex">

 <!-- as an inner object definition -->

 <myns:regex pattern="(^\d{5}$)|(^\d{5}-\d{4}$)"

 options="Compiled"/>

 </property>

 </object>

</objects>

C.7. Further Resources

Find below links to further resources concerning XML Schema and the extensible XML support described in

this chapter.

• The XML Schema Part 1: Structures Second Edition

• The XML Schema Part 2: Datatypes Second Edition

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

Spring Framework (Version 1.3.2) 495

Appendix D. Spring.NET's spring-
objects.xsd

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns="http://www.springframework.net" xmlns:xs="http://www.w3.org/2001/

XMLSchema" xmlns:vs="http://schemas.microsoft.com/Visual-Studio-Intellisense" targetNamespace="http://

www.springframework.net" elementFormDefault="qualified" attributeFormDefault="unqualified" vs:friendlyname="Spring.NET

 Configuration" vs:ishtmlschema="false" vs:iscasesensitive="true" vs:requireattributequotes="true" vs:defaultnamespacequalifier="" vs:defaultnsprefix="">

 <xs:annotation>

 <xs:documentation>

 Spring Objects XML Schema Definition

 Based on Spring Beans DTD, authored by Rod Johnson & Juergen Hoeller

 Author: Griffin Caprio

 This defines a simple and consistent way of creating a namespace

 of managed objects configured by a Spring XmlObjectFactory.

 This document type is used by most Spring functionality, including

 web application contexts, which are based on object factories.

 Each object element in this document defines an object.

 Typically the object type (System.Type is specified, along with plain vanilla

 object properties.

 Object instances can be "singletons" (shared instances) or "prototypes"

 (independent instances).

 References among objects are supported, i.e. setting an object property

 to refer to another object in the same factory or an ancestor factory.

 As alternative to object references, "inner object definitions" can be used.

 Singleton flags and names of such "inner object" are always ignored:

 Inner object are anonymous prototypes.

 There is also support for lists, dictionaries, and sets.

 </xs:documentation>

 </xs:annotation>

 <xs:annotation>

 <xs:documentation>Defines a base type for any required string. Defines a string with a minimum length

 of 0</xs:documentation>

 </xs:annotation>

 <xs:simpleType name="nonNullString">

 <xs:restriction base="xs:string">

 <xs:minLength value="0"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:annotation>

 <xs:documentation>

 Element containing informative text describing the purpose of the enclosing

 element. Always optional.

 Used primarily for user documentation of XML object definition documents.

 </xs:documentation>

 </xs:annotation>

 <xs:simpleType name="description">

 <xs:restriction base="nonNullString"/>

 </xs:simpleType>

 <xs:complexType name="valueObject">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="type" type="nonNullString" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:complexType name="expression">

 <xs:sequence>

 <xs:element name="property" type="property" minOccurs="0" maxOccurs="2"/>

 </xs:sequence>

 <xs:attribute name="value" type="nonNullString" use="required"/>

 </xs:complexType>

 <!--

Spring.NET's spring-objects.xsd

Spring Framework (Version 1.3.2) 496

 Defines a reference to another object in this factory or an external

 factory (parent or included factory).

 -->

 <xs:complexType name="objectReference">

 <xs:attribute name="object" type="nonNullString" use="optional"/>

 <xs:attribute name="local" type="xs:IDREF" use="optional"/>

 <xs:attribute name="parent" type="nonNullString" use="optional"/>

 <!--

 References must specify a name of the target object.

 The "object" attribute can reference any name from any object in the context,

 to be checked at runtime.

 Local references, using the "local" attribute, have to use object ids;

 they can be checked by this DTD, thus should be preferred for references

 within the same object factory XML file.

 -->

 </xs:complexType>

 <!-- Defines a reference to another object or a type. -->

 <xs:complexType name="objectOrClassReference">

 <xs:attribute name="object" type="nonNullString" use="optional"/>

 <xs:attribute name="local" type="xs:IDREF" use="optional"/>

 <xs:attribute name="type" type="nonNullString" use="optional"/>

 </xs:complexType>

 <xs:group name="objectList">

 <xs:sequence>

 <xs:element name="description" type="description" minOccurs="0"/>

 <xs:choice>

 <xs:element name="object" type="vanillaObject"/>

 <!--

 Defines a reference to another object in this factory or an external

 factory (parent or included factory).

 -->

 <xs:element name="ref" type="objectReference"/>

 <!--

 Defines a string property value, which must also be the id of another

 object in this factory or an external factory (parent or included factory).

 While a regular 'value' element could instead be used for the same effect,

 using idref in this case allows validation of local object ids by the xml

 parser, and name completion by helper tools.

 -->

 <xs:element name="idref" type="objectReference"/>

 <!--

 A objectList can contain multiple inner object, ref, collection, or value elements.

 Lists are untyped, pending generics support, although references will be

 strongly typed.

 A objectList can also map to an array type. The necessary conversion

 is automatically performed by AbstractObjectFactory.

 -->

 <xs:element name="list">

 <xs:complexType>

 <xs:group ref="objectList" minOccurs="0" maxOccurs="unbounded"/>

 <xs:attribute name="element-type" type="nonNullString" use="optional"/>

 </xs:complexType>

 </xs:element>

 <!--

 A set can contain multiple inner object, ref, collection, or value elements.

 Sets are untyped, pending generics support, although references will be

 strongly typed.

 -->

 <xs:element name="set">

 <xs:complexType>

 <xs:group ref="objectList" minOccurs="0" maxOccurs="unbounded"/>

 </xs:complexType>

 </xs:element>

 <!--

 A Spring map is a mapping from a string key to object (a .NET IDictionary).

 Maps may be empty.

 -->

 <xs:element name="dictionary" type="objectMap"/>

 <!--

 Name-values elements differ from map elements in that values must be strings.

 Name-values may be empty.

 -->

 <xs:element name="name-values" type="objectNameValues"/>

 <!--

 Contains a string representation of a property value.

Spring.NET's spring-objects.xsd

Spring Framework (Version 1.3.2) 497

 The property may be a string, or may be converted to the

 required type using the System.ComponentModel.TypeConverter

 machinery. This makes it possible for application developers

 to write custom TypeConverter implementations that can

 convert strings to objects.

 Note that this is recommended for simple objects only.

 Configure more complex objects by setting properties to references

 to other objects.

 -->

 <xs:element name="value" type="valueObject"/>

 <!--

 Contains a string representation of an expression.

 -->

 <xs:element name="expression" type="expression"/>

 <!--

 Denotes a .NET null value. Necessary because an empty "value" tag

 will resolve to an empty String, which will not be resolved to a

 null value unless a special TypeConverter does so.

 -->

 <xs:element name="null"/>

 </xs:choice>

 </xs:sequence>

 </xs:group>

 <xs:complexType name="objectNameValues">

 <xs:sequence>

 <!--

 The "value" attribute is the string value of the property. The "key"

 attribute is the name of the property.

 -->

 <xs:element name="add" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType mixed="true">

 <xs:attribute name="key" type="nonNullString" use="required"/>

 <xs:attribute name="value" use="required" type="xs:string"/>

 <xs:attribute name="delimiters" use="optional" type="xs:string"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="importElement">

 <xs:attribute name="resource" type="nonNullString" use="required"/>

 </xs:complexType>

 <xs:complexType name="aliasElement">

 <xs:attribute name="name" type="nonNullString" use="required"/>

 <xs:attribute name="alias" type="nonNullString" use="required"/>

 </xs:complexType>

 <xs:complexType name="objectMap">

 <xs:sequence>

 <xs:element type="mapEntryElement" name="entry" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="key-type" type="nonNullString" use="optional"/>

 <xs:attribute name="value-type" type="nonNullString" use="optional"/>

 </xs:complexType>

 <xs:complexType name="mapEntryElement">

 <xs:sequence>

 <xs:element type="mapKeyElement" name="key" minOccurs="0" maxOccurs="1"/>

 <xs:group ref="objectList" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 <xs:attribute name="key" type="nonNullString" use="optional"/>

 <xs:attribute name="value" type="nonNullString" use="optional"/>

 <xs:attribute name="expression" type="nonNullString" use="optional"/>

 <xs:attribute name="key-ref" type="nonNullString" use="optional"/>

 <xs:attribute name="value-ref" type="nonNullString" use="optional"/>

 </xs:complexType>

 <xs:complexType name="mapKeyElement">

 <xs:group ref="objectList" minOccurs="1"/>

 </xs:complexType>

 <xs:annotation>

 <xs:documentation>Defines constructor argument.</xs:documentation>

 </xs:annotation>

 <xs:complexType name="lookupMethod">

 <xs:attribute name="name" type="nonNullString" use="required"/>

 <xs:attribute name="object" type="nonNullString" use="required"/>

 </xs:complexType>

 <xs:complexType name="constructorArgument">

Spring.NET's spring-objects.xsd

Spring Framework (Version 1.3.2) 498

 <xs:group ref="objectList" minOccurs="0"/>

 <!--

 The constructor-arg tag can have an optional named parameter attribute,

 to specify a named parameter in the constructor argument list.

 -->

 <xs:attribute name="name" type="nonNullString" use="optional"/>

 <!--

 The constructor-arg tag can have an optional index attribute,

 to specify the exact index in the constructor argument list. Only needed

 to avoid ambiguities, e.g. in case of 2 arguments of the same type.

 -->

 <xs:attribute name="index" type="nonNullString" use="optional"/>

 <!--

 The constructor-arg tag can have an optional type attribute,

 to specify the exact type of the constructor argument. Only needed

 to avoid ambiguities, e.g. in case of 2 single argument constructors

 that can both be converted from a String.

 -->

 <xs:attribute name="type" type="nonNullString" use="optional"/>

 <xs:attribute name="value" type="nonNullString" use="optional"/>

 <xs:attribute name="expression" type="nonNullString" use="optional"/>

 <xs:attribute name="ref" type="nonNullString" use="optional"/>

 </xs:complexType>

 <xs:annotation>

 <xs:documentation>Defines property.</xs:documentation>

 </xs:annotation>

 <xs:complexType name="property">

 <xs:group ref="objectList" minOccurs="0"/>

 <!-- The property name attribute is the name of the objects property. -->

 <xs:attribute name="name" type="nonNullString" use="required"/>

 <xs:attribute name="value" type="nonNullString" use="optional"/>

 <xs:attribute name="expression" type="nonNullString" use="optional"/>

 <xs:attribute name="ref" type="nonNullString" use="optional"/>

 </xs:complexType>

 <xs:annotation>

 <xs:documentation>Defines a single named object.</xs:documentation>

 </xs:annotation>

 <xs:complexType name="vanillaObject">

 <xs:sequence>

 <xs:element name="description" type="description" minOccurs="0" maxOccurs="1"/>

 <!--

 Object definitions can specify zero or more constructor arguments.

 They correspond to either a specific index of the constructor argument list

 or are supposed to be matched generically by type.

 This is an alternative to "autowire constructor".

 -->

 <xs:element name="constructor-arg" type="constructorArgument" minOccurs="0" maxOccurs="unbounded"/

>

 <!--

 Object definitions can have zero or more properties.

 Spring supports primitives, references to other objects in the same or

 related factories, lists, dictionaries and properties.

 -->

 <xs:element name="property" type="property" minOccurs="0" maxOccurs="unbounded"/>

 <!--

 Object definitions can specify zero or more lookup-methods.

 -->

 <xs:element name="lookup-method" type="lookupMethod" minOccurs="0" maxOccurs="unbounded"/>

 <!-- Object definitions can have zero or more replaced-methods. -->

 <xs:element name="replaced-method" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="arg-type" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="match" type="nonNullString" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="name" type="nonNullString" use="required"/>

 <xs:attribute name="replacer" type="nonNullString" use="required"/>

 </xs:complexType>

 </xs:element>

 <!-- Object definitions can have zero or more subscriptions. -->

 <xs:element name="listener" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

Spring.NET's spring-objects.xsd

Spring Framework (Version 1.3.2) 499

 <xs:sequence>

 <xs:element name="ref" type="objectOrClassReference" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <!-- The event(s) the object is interested in. -->

 <xs:attribute name="event" type="nonNullString" use="optional"/>

 <!-- The name or name pattern of the method that will handle the event(s). -->

 <xs:attribute name="method" type="nonNullString" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <!--

 Objects can be identified by an id, to enable reference checking.

 There are constraints on a valid XML id: if you want to reference your object

 in .NET code using a name that's illegal as an XML id, use the optional

 "name" attribute. If neither given, the object type name is used as id.

 -->

 <xs:attribute name="id" type="xs:ID" use="optional"/>

 <!--

 Optional. Can be used to create one or more aliases illegal in an id.

 Multiple aliases can be separated by any number of spaces or commas.

 -->

 <xs:attribute name="name" type="nonNullString" use="optional"/>

 <!--

 Each object definition must specify the full, assembly qualified of the type,

 or the name of the parent object from which the type can be worked out.

 Note that a child object definition that references a parent will just

 add respectively override property values and be able to change the

 singleton status. It will inherit all of the parent's other parameters

 like lazy initialization or autowire settings.

 -->

 <xs:attribute name="type" type="nonNullString" use="optional"/>

 <xs:attribute name="parent" type="nonNullString" use="optional"/>

 <!--

 Is this object "abstract", i.e. not meant to be instantiated itself but

 rather just serving as parent for concrete child object definitions?

 Default is false. Specify true to tell the object factory to not try to

 instantiate that particular object in any case.

 -->

 <xs:attribute name="abstract" type="xs:boolean" use="optional" default="false"/>

 <!--

 Is this object a "singleton" (one shared instance, which will

 be returned by all calls to GetObject() with the id),

 or a "prototype" (independent instance resulting from each call to

 getObject(). Default is singleton.

 Singletons are most commonly used, and are ideal for multi-threaded

 service objects.

 -->

 <xs:attribute name="singleton" type="xs:boolean" use="optional" default="true"/>

 <!--

 Optional attribute controlling the scope of singleton instances. It is

 only applicable to ASP.Net web applications and it has no effect on prototype

 objects. Applications other than ASP.Net web applications simply ignore this attribute.

 It has 3 possible values:

 1. "application"

 Default object scope. Objects defined with application scope will behave like

 traditional singleton objects. Same instance will be returned from every call

 to IApplicationContext.GetObject()

 2. "session"

 Objects with this scope will be stored within user's HTTP session. Session scope

 is typically used for objects such as shopping cart, user profile, etc.

 3. "request"

 Object with this scope will be initialized for each HTTP request, but unlike with prototype

 objects, same instance will be returned from all calls to IApplicationContext.GetObject()

 within the same HTTP request. For example, if one ASP page forwards request to another using

 Server.Transfer method, they can easily share the state by configuring dependency to the same

 request-scoped object.

 -->

 <xs:attribute name="scope" use="optional" default="application">

 <xs:simpleType>

 <xs:restriction base="xs:string">

Spring.NET's spring-objects.xsd

Spring Framework (Version 1.3.2) 500

 <xs:enumeration value="application"/>

 <xs:enumeration value="session"/>

 <xs:enumeration value="request"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <!--

 Is this object to be lazily initialized?

 If false, it will get instantiated on startup by object factories

 that perform eager initialization of singletons.

 -->

 <xs:attribute name="lazy-init" use="optional" default="default">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="true"/>

 <xs:enumeration value="false"/>

 <xs:enumeration value="default"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <!--

 Optional attribute controlling whether to "autowire" object properties.

 This is an automagical process in which object references don't need to be coded

 explicitly in the XML object definition file, but Spring works out dependencies.

 There are 5 modes:

 1. "no"

 The traditional Spring default. No automagical wiring. Object references

 must be defined in the XML file via the <ref> element. We recommend this

 in most cases as it makes documentation more explicit.

 2. "byName"

 Autowiring by property name. If a object of class Cat exposes a dog property,

 Spring will try to set this to the value of the object "dog" in the current factory.

 3. "byType"

 Autowiring if there is exactly one object of the property type in the object factory.

 If there is more than one, a fatal error is raised, and you can't use byType

 autowiring for that object. If there is none, nothing special happens - use

 dependency-check="objects" to raise an error in that case.

 4. "constructor"

 Analogous to "byType" for constructor arguments. If there isn't exactly one object

 of the constructor argument type in the object factory, a fatal error is raised.

 5. "autodetect"

 Chooses "constructor" or "byType" through introspection of the object class.

 If a default constructor is found, "byType" gets applied.

 The latter two are similar to PicoContainer and make object factories simple to

 configure for small namespaces, but doesn't work as well as standard Spring

 behaviour for bigger applications.

 Note that explicit dependencies, i.e. "property" and "constructor-arg" elements,

 always override autowiring. Autowire behaviour can be combined with dependency

 checking, which will be performed after all autowiring has been completed.

 -->

 <xs:attribute name="autowire" use="optional" default="default">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="no"/>

 <xs:enumeration value="byName"/>

 <xs:enumeration value="byType"/>

 <xs:enumeration value="constructor"/>

 <xs:enumeration value="autodetect"/>

 <xs:enumeration value="default"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <!--

 Optional attribute controlling whether to check whether all this

 objects dependencies, expressed in its properties, are satisfied.

 Default is no dependency checking.

Spring.NET's spring-objects.xsd

Spring Framework (Version 1.3.2) 501

 "simple" type dependency checking includes primitives and String

 "object" includes collaborators (other objects in the factory)

 "all" includes both types of dependency checking

 -->

 <xs:attribute name="dependency-check" use="optional" default="default">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="none"/>

 <xs:enumeration value="objects"/>

 <xs:enumeration value="simple"/>

 <xs:enumeration value="all"/>

 <xs:enumeration value="default"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <!--

 The names of the objects that this object depends on being initialized.

 The object factory will guarantee that these objects get initialized before.

 Note that dependencies are normally expressed through object properties or

 constructor arguments. This property should just be necessary for other kinds

 of dependencies like statics (*ugh*) or database preparation on startup.

 -->

 <xs:attribute name="depends-on" type="nonNullString" use="optional"/>

 <!--

 Optional attribute for the name of the custom initialization method

 to invoke after setting object properties. The method must have no arguments,

 but may throw any exception.

 -->

 <xs:attribute name="init-method" type="nonNullString" use="optional"/>

 <!--

 Optional attribute for the name of the custom destroy method to invoke

 on object factory shutdown. The method must have no arguments,

 but may throw any exception. Note: Only invoked on singleton objects!

 -->

 <xs:attribute name="destroy-method" type="nonNullString" use="optional"/>

 <xs:attribute name="factory-method" type="nonNullString" use="optional"/>

 <xs:attribute name="factory-object" type="nonNullString" use="optional"/>

 </xs:complexType>

 <xs:annotation>

 <xs:documentation>The document root. At least one object definition is required.</xs:documentation>

 </xs:annotation>

 <xs:element name="objects">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="description" type="description" minOccurs="0" maxOccurs="1"/>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="import" type="importElement"/>

 <xs:element name="alias" type="aliasElement"/>

 <xs:element name="object" type="vanillaObject"/>

 <xs:any namespace="##other" processContents="strict"/>

 </xs:choice>

 </xs:sequence>

 <!--

 Default values for all object definitions. Can be overridden at

 the "object" level. See those attribute definitions for details.

 -->

 <xs:attribute name="default-lazy-init" type="xs:boolean" use="optional" default="false"/>

 <xs:attribute name="default-dependency-check" use="optional" default="none">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="none"/>

 <xs:enumeration value="objects"/>

 <xs:enumeration value="simple"/>

 <xs:enumeration value="all"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="default-autowire" use="optional" default="no">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="no"/>

 <xs:enumeration value="byName"/>

 <xs:enumeration value="byType"/>

Spring.NET's spring-objects.xsd

Spring Framework (Version 1.3.2) 502

 <xs:enumeration value="constructor"/>

 <xs:enumeration value="autodetect"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 </xs:element>

</xs:schema>

	The Spring.NET Framework
	Table of Contents
	Chapter 1. Preface
	Chapter 2. Introduction
	2.1. Overview
	2.2. Background
	2.3. Modules
	2.4. Usage Scenarios
	2.5. Quickstart applications
	2.6. Associated Spring.NET Projects
	2.7. License Information
	2.8. Support

	Chapter 3. Background information
	3.1. Inversion of Control

	Chapter 4. Migrating from 1.1 M2
	4.1. Introduction
	4.2. Important Changes
	4.2.1. Namespaces
	4.2.2. Core
	4.2.3. Web
	4.2.4. Data

	4.3. Support for .NET 4

	Part I. Core Technologies
	Chapter 5. The IoC container
	5.1. Introduction
	5.2. Container overview
	5.2.1. Configuration metadata
	5.2.2. Instantiating a container
	5.2.2.1. Loading configuration metadata from non-default resource locations
	5.2.2.2. Declarative configuration of the container in App.config/Web.config
	5.2.2.3. Composing XML-based configuration metadata

	5.2.3. Using the container
	5.2.4. Object definition overview
	5.2.4.1. Naming objects
	5.2.4.1.1. Aliasing an object outside the object definition

	5.2.5. Instantiating objects
	5.2.5.1. Instantiatoin with a constructor
	5.2.5.2. Instantiation with a static factory method
	5.2.5.3. Object creation via an instance factory method

	5.2.6. Object creation of generic types
	5.2.6.1. Object creation of generic types via constructor invocation
	5.2.6.2. Object creation of generic types via static factory method
	5.2.6.3. Object creation of generic types via instance factory method

	5.3. Dependencies
	5.3.1. Dependency injection
	5.3.1.1. Constructor-based dependency injection
	5.3.1.1.1. Constructor argument resolution
	5.3.1.1.1.1. Constructor argument type matching
	5.3.1.1.1.2. Constructor argument Index
	5.3.1.1.1.3. Constructor arguments by name

	5.3.1.2. Setter-based dependency injection
	5.3.1.3. Examples of dependency injection

	5.3.2. Dependencies and configuration in detail
	5.3.2.1. Straight values (primitives, strings, and so on)
	5.3.2.1.1. The idref element
	5.3.2.1.2. Whitespace Handling

	5.3.2.2. References to other objects (collaborators)
	5.3.2.3. Inner objects
	5.3.2.4. Setting collection values
	5.3.2.5. Setting generic collection values
	5.3.2.6. Collection Merging
	5.3.2.7. Null and empty values
	5.3.2.8. Setting indexer properties
	5.3.2.9. Value and ref shortcut forms
	5.3.2.10. Compound property names and Spring expression references

	5.3.3. Declarative Event Listener Registration
	5.3.3.1. Declarative event handlers
	5.3.3.2. Configuring a method to be invoked when an event is fired
	5.3.3.3. Registering a collection of handler methods based on a regular expression
	5.3.3.4. Registering a handler method against an event name that contains a regular expression

	5.3.4. Using depends-on
	5.3.5. Lazily-initialized objects
	5.3.6. Autowiring collaborators
	5.3.7. Checking for dependencies
	5.3.8. Method injection
	5.3.8.1. Lookup Method Injection
	5.3.8.2. Arbitrary method replacement

	5.3.9. Setting a reference using the members of other objects and classes.
	5.3.9.1. Setting a reference to the value of property.
	5.3.9.2. Setting a reference to the value of field.
	5.3.9.3. Setting a property or constructor argument to the return value of a method invocation.

	5.3.10. Provided IFactoryObject implementations
	5.3.10.1. Common logging

	5.4. Object Scopes
	5.4.1. The singleton scope
	5.4.2. The prototype scope
	5.4.3. Singleton objects with prototype-object dependencies
	5.4.4. Request, session and web application scopes

	5.5. Type conversion
	5.5.1. Type Conversion for Enumerations
	5.5.2. Built-in TypeConverters
	5.5.3. Custom Type Conversion
	5.5.3.1. Using CustomConverterConfigurer

	5.6. Customizing the nature of an object
	5.6.1. Lifecycle interfaces
	5.6.1.1. IInitializingObject / init-method
	5.6.1.2. IDisposable / destroy-method

	5.6.2. IApplicationContextAware and IObjectNameAware
	5.6.2.1. IObjectNameAware

	5.7. Object definition inheritance
	5.8. Container extension points
	5.8.1. Obtaining an IFactoryObject, not its product

	5.9. Container extension points
	5.9.1. Customizing objects with IObjectPostProcessors
	5.9.1.1. Example: Hello World, IObjectPostProcessor-style
	5.9.1.2. Example: the RequiredAttributeObjectPostProcessor

	5.9.2. Customizing configuration metadata with ObjectFactoryPostProcessors
	5.9.2.1. Example: The PropertyPlaceholderConfigurer
	5.9.2.1.1. Type, Ref, and Expression substitution
	5.9.2.1.2. Replacement with Environment Variables

	5.9.2.2. Example: The PropertyOverrideConfigurer
	5.9.2.3. IVariableSource

	5.9.3. Customizing instantiation logic using IFactoryObjects
	5.9.3.1. IConfigurableFactoryObject

	5.10. The IApplicationContext
	5.10.1. IObjectFactory or IApplicationContext?

	5.11. Configuration of IApplicationContext
	5.11.1. Registering custom parsers
	5.11.2. Registering custom resource handlers
	5.11.3. Registering Type Aliases
	5.11.4. Registering Type Converters

	5.12. Added functionality of the IApplicationContext
	5.12.1. Context Hierarchies
	5.12.2. Using IMessageSource
	5.12.3. Using resources within Spring.NET
	5.12.4. Loosely coupled events
	5.12.5. Event notification from IApplicationContext

	5.13. Customized behavior in the ApplicationContext
	5.13.1. The IApplicationContextAware marker interface
	5.13.2. The IObjectPostProcessor
	5.13.3. The IObjectFactoryPostProcessor
	5.13.4. The PropertyPlaceholderConfigurer

	5.14. Configuration of ApplicationContext without using XML
	5.15. Service Locator access
	5.16. Stereotype attributes

	Chapter 6. The IObjectWrapper and Type conversion
	6.1. Introduction
	6.2. Manipulating objects using the IObjectWrapper
	6.2.1. Setting and getting basic and nested properties
	6.2.2. Other features worth mentioning

	6.3. Type conversion
	6.3.1. Type Conversion for Enumerations

	6.4. Built-in TypeConverters
	6.4.1. Custom type converters

	Chapter 7. Resources
	7.1. Introduction
	7.2. The IResource interface
	7.3. Built-in IResource implementations
	7.3.1. Registering custom IResource implementations

	7.4. The IResourceLoader
	7.5. The IResourceLoaderAware interface
	7.6. Application contexts and IResource paths

	Chapter 8. Threading and Concurrency Support
	8.1. Introduction
	8.2. Thread Local Storage
	8.3. Synchronization Primitives
	8.3.1. ISync
	8.3.2. SyncHolder
	8.3.3. Latch
	8.3.4. Semaphore

	Chapter 9. Object Pooling
	9.1. Introduction
	9.2. Interfaces and Implementations

	Chapter 10. Spring.NET miscellanea
	10.1. Introduction
	10.2. PathMatcher
	10.2.1. General rules
	10.2.2. Matching filenames
	10.2.3. Matching subdirectories
	10.2.4. Case does matter, slashes don't

	Chapter 11. Expression Evaluation
	11.1. Introduction
	11.2. Evaluating Expressions
	11.3. Language Reference
	11.3.1. Literal expressions
	11.3.2. Properties, Arrays, Lists, Dictionaries, Indexers
	11.3.2.1. Defining Arrays, Lists and Dictionaries Inline

	11.3.3. Methods
	11.3.4. Operators
	11.3.4.1. Relational operators
	11.3.4.2. Logical operators
	11.3.4.3. Bitwise operators
	11.3.4.4. Mathematical operators

	11.3.5. Assignment
	11.3.6. Expression lists
	11.3.7. Types
	11.3.8. Type Registration
	11.3.9. Constructors
	11.3.10. Variables
	11.3.10.1. The '#this' and '#root' variables

	11.3.11. Ternary Operator (If-Then-Else)
	11.3.12. List Projection and Selection
	11.3.13. Collection Processors and Aggregators
	11.3.13.1. Count Aggregator
	11.3.13.2. Sum Aggregator
	11.3.13.3. Average Aggregator
	11.3.13.4. Minimum Aggregator
	11.3.13.5. Maximum Aggregator
	11.3.13.6. Non-null Processor
	11.3.13.7. Distinct Processor
	11.3.13.8. Sort Processor
	11.3.13.9. Type Conversion Processor
	11.3.13.10. Reverse Processor
	11.3.13.11. OrderBy Processor
	11.3.13.12. User Defined Collection Processor

	11.3.14. Spring Object References
	11.3.15. Lambda Expressions
	11.3.16. Delegate Expressions
	11.3.17. Null Context

	11.4. Classes used in the examples

	Chapter 12. Validation Framework
	12.1. Introduction
	12.2. Example Usage
	12.3. Validator Groups
	12.4. Validators
	12.4.1. Condition Validator
	12.4.2. Required Validator
	12.4.3. Regular Expression Validator
	12.4.4. Generic Validator
	12.4.5. Conditional Validator Execution

	12.5. Validator Actions
	12.5.1. Error Message Action
	12.5.2. Exception Action
	12.5.3. Generic Actions

	12.6. Validator References
	12.7. Progammatic usage
	12.8. Usage tips within ASP.NET
	12.8.1. Rendering Validation Errors
	12.8.1.1. Configuring which Error Renderer to use.

	12.8.2. How Validate() and Validation Controls play together

	Chapter 13. Aspect Oriented Programming with Spring.NET
	13.1. Introduction
	13.1.1. AOP concepts
	13.1.2. Spring.NET AOP capabilities
	13.1.3. AOP Proxies in Spring.NET

	13.2. Pointcut API in Spring.NET
	13.2.1. Concepts
	13.2.2. Operations on pointcuts
	13.2.3. Convenience pointcut implementations
	13.2.3.1. Static pointcuts
	13.2.3.1.1. Regular expression pointcuts
	13.2.3.1.2. Attribute pointcuts

	13.2.3.2. Dynamic Pointcuts
	13.2.3.2.1. Control Flow Pointcuts

	13.2.4. Custom pointcuts

	13.3. Advice API in Spring.NET
	13.3.1. Advice Lifecycle
	13.3.2. Advice types
	13.3.2.1. Interception Around Advice
	13.3.2.2. Before advice
	13.3.2.3. Throws advice
	13.3.2.4. After Returning advice
	13.3.2.5. Advice Ordering
	13.3.2.6. Introduction advice

	13.4. Advisor API in Spring.NET
	13.5. Using the ProxyFactoryObject to create AOP proxies
	13.5.1. Basics
	13.5.2. ProxyFactoryObject Properties
	13.5.3. Proxying Interfaces
	13.5.1. Applying advice on a per-proxy basis.
	13.5.4. Proxying Classes
	13.5.5. Concise proxy definitions

	13.6. Proxying mechanisms
	13.6.1. InheritanceBasedAopConfigurer

	13.7. Creating AOP Proxies Programatically with the ProxyFactory
	13.8. Manipulating Advised Objects
	13.9. Using the "autoproxy" facility
	13.9.1. Autoproxy object definitions
	13.9.1.1. ObjectNameAutoProxyCreator
	13.9.1.2. DefaultAdvisorAutoProxyCreator
	13.9.1.3. PointcutFilteringAutoProxyCreator
	13.9.1.4. TypeNameAutoProxyCreator
	13.9.1.5. AttributeAutoProxyCreator
	13.9.1.6. AbstractFilteringAutoProxyCreator
	13.9.1.7. AbstractAutoProxyCreator

	13.9.2. Using attribute-driven auto-proxying

	13.10. Using AOP Namespace
	13.11. Using TargetSources
	13.11.1. Hot swappable target sources
	13.11.2. Pooling target sources
	13.11.3. Prototype target sources
	13.11.4. ThreadLocal target sources

	13.12. Defining new Advice types
	13.13. Further reading and resources

	Chapter 14. Aspect Library
	14.1. Introduction
	14.2. Caching
	14.3. Exception Handling
	14.3.1. Language Reference

	14.4. Logging
	14.5. Retry
	14.5.1. Language Reference

	14.6. Transactions
	14.7. Parameter Validation

	Chapter 15. Common Logging
	15.1. Introduction

	Chapter 16. Testing
	16.1. Introduction
	16.2. Unit testing
	16.3. Integration testing
	16.3.1. Context management and caching
	16.3.2. Dependency Injection of test fixtures
	16.3.2.1. Field level injection

	16.3.3. Transaction management
	16.3.4. Convenience variables

	Part II. Middle Tier Data Access
	Chapter 17. Transaction management
	17.1. Introduction
	17.2. Motivations
	17.3. Key Abstractions
	17.4. Resource synchronization with transactions
	17.4.1. High-level approach
	17.4.2. Low-level approach

	17.5. Declarative transaction management
	17.5.1. Understanding Spring's declarative transaction implementation
	17.5.2. Example of declarative transaction implementation
	17.5.3. Declarative transactions using the transaction namespace
	17.5.4. Transaction attribute settings
	17.5.5. Declarative Transactions using AutoProxy
	17.5.5.1. Creating transactional proxies with ObjectNameAutoProxyCreator
	17.5.5.2. Creating transactional proxies with DefaultAdvisorAutoProxyCreator

	17.6. Programmatic transaction management
	17.6.1. Using the TransactionTemplate
	17.6.1.1. Specifying transaction settings

	17.6.2. Using the PlatformTransactionManager

	17.7. Choosing between programmatic and declarative transaction management
	17.8. Transaction lifecycle and status information

	Chapter 18. DAO support
	18.1. Introduction
	18.2. Consistent exception hierarchy
	18.3. Consistent abstract classes for DAO support

	Chapter 19. DbProvider
	19.1. Introduction
	19.2. IDbProvider and DbProviderFactory
	19.3. XML based configuration
	19.4. Connection String management
	19.5. Additional IDbProvider implementations
	19.5.1. UserCredentialsDbProvider
	19.5.2. MultiDelegatingDbProvider

	Chapter 20. Data access using ADO.NET
	20.1. Introduction
	20.2. Motivations
	20.3. Provider Abstraction
	20.3.1. Creating an instance of IDbProvider

	20.4. Namespaces
	20.5. Approaches to Data Access
	20.6. Introduction to AdoTemplate
	20.6.1. Execute Callback
	20.6.2. Execute Callback in .NET 2.0
	20.6.3. Execute Callback in .NET 1.1
	20.6.4. Quick Guide to AdoTemplate Methods
	20.6.5. Quick Guide to AdoTemplate Properties

	20.7. Transaction Management
	20.8. Exception Translation
	20.9. Parameter Management
	20.9.1. IDbParametersBuilder
	20.9.2. IDbParameters
	20.9.3. Parameter names in SQL text

	20.10. Custom IDataReader implementations
	20.11. Basic data access operations
	20.11.1. ExecuteNonQuery
	20.11.2. ExecuteScalar

	20.12. Queries and Lightweight Object Mapping
	20.12.1. ResultSetExtractor
	20.12.2. RowCallback
	20.12.3. RowMapper
	20.12.4. Query for a single object
	20.12.5. Query using a CommandCreator

	20.13. DataTable and DataSet
	20.13.1. DataTables
	20.13.2. DataSets

	20.14. TableAdapters and participation in transactional context
	20.15. Database operations as Objects
	20.15.1. AdoQuery
	20.15.2. MappingAdoQuery
	20.15.3. AdoNonQuery
	20.15.4. Stored Procedure

	Chapter 21. Object Relational Mapping (ORM) data access
	21.1. Introduction
	21.2. NHibernate
	21.2.1. Resource management
	21.2.2. Transaction Management
	21.2.3. SessionFactory set up in a Spring container
	21.2.3.1. Creating a new SessionFactory per Connection String with DelegatingLocalSessionFactory Object
	21.2.3.2. Using FluentNHibernate to configure mappings with LocalSessionFactoryObject
	21.2.3.3. Spring's IByteCodeProvider implementation

	21.2.4. Implementing DAOs based on plain Hibernate 1.2/2.x API
	21.2.4.1. Exception Translation

	21.2.5. Declarative transaction demarcation
	21.2.6. Programmatic transaction demarcation
	21.2.7. Transaction management strategies
	21.2.8. Web Session Management
	21.2.9. Session Scope
	21.2.10. Integration Testing

	Part III. The Web
	Chapter 22. Spring.NET Web Framework
	22.1. Introduction to Spring.NET Web Framework
	22.2. Comparing Spring.NET and ASP.NET
	22.3. Automatic context loading and hierarchical contexts
	22.3.1. Configuration of a web application
	22.3.1.1. Configuration for IIS 7.0 on Windows Server 2008 and Windows Vista

	22.3.2. Context hierarchy

	22.4. Dependency injection for ASP.NET pages
	22.4.1. Injecting dependencies into controls
	22.4.2. Injecting dependencies into custom HTTP modules
	22.4.3. Injecting dependencies into HTTP handlers and handler factories
	22.4.4. Injecting dependencies in custom ASP.NET providers
	22.4.5. Customizing control dependency injection

	22.5. Web object scopes
	22.6. Support for ASP.NET 1.1 master pages in Spring.Web
	22.6.1. Linking child pages to their master page file

	22.7. Bidirectional data binding and data model management
	22.7.1. Data binding under the hood
	22.7.1.1. Binding direction
	22.7.1.2. formatter argument
	22.7.1.3. Type conversion
	22.7.1.4. Data binding events
	22.7.1.5. Rendering binding errors
	22.7.1.6. HttpRequestListBindingContainer

	22.7.2. Using DataBindingPanel
	22.7.3. Customizing model persistence

	22.8. Localization and message sources
	22.8.1. Working with localizers
	22.8.2. Automatic localization with localizers ("push" localization)
	22.8.3. Global message sources
	22.8.4. Applying resources manually ("pull" localization)
	22.8.5. Localizing images within a web application
	22.8.6. User culture management
	22.8.6.1. DefaultWebCultureResolver
	22.8.6.2. RequestCultureResolver
	22.8.6.3. SessionCultureResolver
	22.8.6.4. CookieCultureResolver

	22.8.7. Changing cultures

	22.9. Result mapping
	22.9.1. Registering user defined transfer modes

	22.10. Client-side scripting
	22.10.1. Registering scripts within the head HTML section
	22.10.2. Adding CSS definitions to the head section
	22.10.3. Well-known directories

	22.11. Spring user controls
	22.11.1. Validation controls
	22.11.2. Databinding controls
	22.11.3. Calendar control
	22.11.4. Panel control

	Chapter 23. ASP.NET AJAX
	23.1. Introduction
	23.2. Web Services
	23.2.1. Exposing Web Services
	23.2.2. Calling Web Services by using JavaScript

	Chapter 24. Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 2.0
	24.1. Introduction to Spring.NET ASP.NET MVC Infrastructure
	24.2. Automatic context loading and hierarchical contexts
	24.2.1. Configuration of a ASP.NET MVC Application
	24.2.2. Customizing the Behavior of the ASP.NET MVC Application Class
	24.2.2.1. Application_Start(object sender, EventArgs e)
	24.2.2.2. ConfigureApplicationContext()
	24.2.2.3. RegisterSpringControllerFactory()
	24.2.2.4. RegisterRoutes(RouteCollection routes)
	24.2.2.5. RegisterAreas()

	24.3. Web object scopes

	Chapter 25. Spring.NET ASP.NET MVC Infrastructure for ASP.NET MVC 3.0
	25.1. Introduction to Spring.NET ASP.NET MVC Infrastructure
	25.2. Automatic context loading and hierarchical contexts
	25.2.1. Configuration of a ASP.NET MVC Application
	25.2.2. Customizing the Behavior of the ASP.NET MVC Application Class
	25.2.2.1. Application_BeginRequest(object sender, EventArgs e)
	25.2.2.2. ConfigureApplicationContext()
	25.2.2.3. BuildDependencyResolver()
	25.2.2.4. RegisterDependencyResolver(IDependencyResolver resolver)

	25.3. Web object scopes

	Part IV. Services
	Chapter 26. Introduction to Spring Services
	26.1. Introduction

	Chapter 27. .NET Remoting
	27.1. Introduction
	27.2. Publishing SAOs on the Server
	27.2.1. SAO Singleton
	27.2.2. SAO SingleCall
	27.2.1. Console Application Configuration
	27.2.3. IIS Application Configuration

	27.3. Accessing a SAO on the Client
	27.4. CAO best practices
	27.5. Registering a CAO object on the Server
	27.5.1. Applying AOP advice to exported CAO objects

	27.6. Accessing a CAO on the Client
	27.6.1. Applying AOP advice to client side CAO objects.

	27.7. XML Schema for configuration
	27.8. Additional Resources

	Chapter 28. .NET Enterprise Services
	28.1. Introduction
	28.2. Serviced Components
	28.3. Server Side
	28.4. Client Side

	Chapter 29. Web Services
	29.1. Introduction
	29.2. Server-side
	29.2.1. Removing the need for .asmx files
	29.2.2. Injecting dependencies into web services
	29.2.3. Exposing POCOs as Web Services
	29.2.4. Exporting an AOP Proxy as a Web Service

	29.3. Client-side
	29.3.1. Using VS.NET generated proxy
	29.3.2. Generating proxies dynamically
	29.3.3. Configuring the proxy instance

	Chapter 30. Windows Communication Foundation (WCF)
	30.1. Introduction
	30.2. Configuring WCF services via Dependency Injection
	30.2.1. Dependency Injection

	30.3. Apply AOP advice to WCF services
	30.4. Creating client side proxies declaratively
	30.5. Exporting POCOs as WCF Services

	Part V. Integration
	Chapter 31. Message Oriented Middleware - Apache ActiveMQ and TIBCO EMS
	31.1. Introduction
	31.1.1. Multiple Vendor Support
	31.1.2. Separation of Concerns
	31.1.3. Interoperability and provider portability
	31.1.4. The role of Messaging API in a 'WCF world'

	31.2. Using Spring Messaging
	31.2.1. Messaging Template overview
	31.2.2. Connections
	31.2.3. Caching Messaging Resources
	31.2.3.1. SingleConnectionFactory
	31.2.3.2. CachingConnectionFactory

	31.2.4. Dynamic Destination Management
	31.2.5. Message Listener Containers
	31.2.6. Transaction Management

	31.3. Sending a Message
	31.3.1. Using MessageConverters

	31.. Session and Producer Callback
	31.5. Receiving a message
	31.5.1. Synchronous Reception
	31.5.2. Asynchronous Reception
	31.5.3. The ISessionAwareMessageListener interface
	31.5.4. MessageListenerAdapater
	31.5.5. Processing messages within a messaging transaction
	31.5.6. Messaging Namespace support

	Chapter 32. Message Oriented Middleware - TIBCO EMS
	32.1. Introduction
	32.2. Interface based APIs
	32.3. Using Spring's EMS based Messaging
	32.3.1. Overivew
	32.3.2. Connections
	32.3.3. Caching Messaging Resources
	32.3.3.1. SingleConnectionFactory
	32.3.3.2. CachingConnectionFactory

	32.3.4. Dynamic Destination Management
	32.3.5. Accessing Admistrated objects via JNDI
	32.3.6. MessageListenerContainers
	32.3.7. Transaction Management
	32.3.8. Sending a Message

	32.4. Using MessageConverters
	32.5. Session and Producer Callback
	32.6. Receiving a messages
	32.6.1. Synchronous Reception
	32.6.2. Asynchronous Reception
	32.6.3. The ISessionAwareMessageListener interface
	32.6.4. MessageListenerAdapter
	32.6.5. Processing messages within a messaging transaction
	32.6.6. Messaging Namespace support

	Chapter 33. Message Oriented Middleware - MSMQ
	33.1. Introduction
	33.2. A quick tour for the impatient
	33.3. Using Spring MSMQ
	33.3.1. MessageQueueTemplate
	33.3.2. MessageQueueFactoryObject
	33.3.3. MessageQueue and IMessageConverter resource management
	33.3.4. Message Listener Containers
	33.3.4.1. NonTransactionalMessageListenerContainer
	33.3.4.2. TransactionalMessageListenerContainer
	33.3.4.3. DistributedTxMessageListenerContainer

	33.4. MessageConverters
	33.4.1. Using MessageConverters

	33.5. Interface based message processing
	33.5.1.
	33.5.1.1. MessageListenerAdapater

	33.6. Comparison with using WCF

	Chapter 34. Scheduling and Thread Pooling
	34.1. Introduction
	34.2. Using the Quartz.NET Scheduler
	34.2.1. Using the JobDetailObject
	34.2.2. Using the MethodInvokingJobDetailFactoryObject
	34.2.3. Wiring up jobs using triggers and the SchedulerFactoryObject

	Chapter 35. Template Engine Support
	35.1. Introduction
	35.2. Dependencies
	35.3. Configuring a VelocityEngine
	35.3.1. Simple file based template engine definition
	35.3.2. Configuration Options
	35.3.3. Assembly based template loading
	35.3.4. Using Spring's IResourceLoader to load templates
	35.3.5. Defining a custom resource loader
	35.3.6. Resource Loader configuration options
	35.3.7. Using a custom configuration file
	35.3.8. Logging

	35.4. Merging a template
	35.5. Configuring a VelocityEngine without a custom namespace

	Part VI. VS.NET Integration
	Chapter 36. Visual Studio.NET Integration
	36.1. XML Editing and Validation
	36.2. Enhancing the XML Editing and Validation Experience using the Spring.NET Visual Studio 2010 Extension
	36.3. Solution Templates
	36.3.1. Class Library
	36.3.2. ADO.NET based application library
	36.3.3. NHibernate based application library
	36.3.4. Spring based web application

	36.4. Resharper Type Completion
	36.5. Resharper templates
	36.6. Versions of XML Schema
	36.7. API documentation

	Part VII. Quickstart applications
	Chapter 37. IoC Quickstarts
	37.1. Introduction
	37.2. Movie Finder
	37.2.1. Getting Started - Movie Finder
	37.2.2. First Object Definition
	37.2.3. Setter Injection
	37.2.4. Constructor Injection
	37.2.5. Summary
	37.2.6. Logging

	37.3. ApplicationContext and IMessageSource
	37.3.1. Introduction

	37.4. ApplicationContext and IEventRegistry
	37.4.1. Introduction

	37.5. Pooling example
	37.5.1. Implementing Spring.Pool.IPoolableObjectFactory
	37.5.2. Being smart using pooled objects
	37.5.3. Using the executor to do a parallel grep

	37.6. AOP

	Chapter 38. AOP QuickStart
	38.1. Introduction
	38.2. The basics
	38.2.1. Applying advice
	38.2.2. Using Pointcuts - the basics

	38.3. Going deeper
	38.3.1. Other types of Advice
	38.3.1.1. Before advice
	38.3.1.2. After advice
	38.3.1.3. Throws advice
	38.3.1.4. Introductions (mixins)
	38.3.1.5. Layering advice
	38.3.1.6. Configuring advice

	38.3.2. Using Attributes to define Pointcuts

	38.4. The Spring.NET AOP Cookbook
	38.4.1. Caching
	38.4.2. Performance Monitoring
	38.4.3. Retry Rules

	38.5. Spring.NET AOP Best Practices

	Chapter 39. Portable Service Abstraction Quick Start
	39.1. Introduction
	39.2. .NET Remoting Example
	39.3. Implementation
	39.4. Running the application
	39.5. Remoting Schema
	39.6. .NET Enterprise Services Example
	39.7. Web Services Example
	39.8. Additional Resources

	Chapter 40. Web Quickstarts
	40.1. Introduction

	Chapter 41. SpringAir - Reference Application
	41.1. Introduction
	41.2. Getting Started
	41.3. Container configuration
	41.4. Bi-directional data binding
	41.5. Declarative Validation
	41.6. Internationalization
	41.7. Web Services

	Chapter 42. ADO.NET Data Access QuickStart
	42.1. Introduction
	42.1.1. Database configuration
	42.1.1.1. AdoTemplate Configuration

	42.1.2. CommandCallback

	Chapter 43. Transactions QuickStart
	43.1. Introduction
	43.2. Application Overview
	43.2.1. Interfaces

	43.3. Implementation
	43.4. Configuration
	43.4.1. Rollback Rules

	43.5. Adding additional Aspects

	Chapter 44. NHibernate QuickStart
	44.1. Introduction
	44.2. Getting Started
	44.3. Implementation
	44.3.1. The Data Access Layer
	44.3.2. The domain objects
	44.3.3. NHibernate based DAO implementation
	44.3.4. The Service layer
	44.3.5. Integration testing
	44.3.6. Web Application

	Chapter 45. Quartz QuickStart
	45.1. Introduction
	45.2. Application Overview
	45.3. Standard job scheduling
	45.4. Scheduling arbitrary methods as jobs

	Chapter 46. NMS QuickStart
	46.1. Introduction
	46.2. Message Destinations
	46.3. Gateways
	46.4. Message Data
	46.5. Message Handlers
	46.6. Message Converters
	46.7. Messaging Infrastructure
	46.8. Running the application

	Chapter 47. TIBCO EMS QuickStart
	47.1. Introduction
	47.2. Message Destinations
	47.3. Messaging Infrastructure
	47.4. Running the application

	Chapter 48. MSMQ QuickStart
	48.1. Introduction
	48.2. Message Destinations
	48.3. Gateways
	48.4. Message Data
	48.5. Message Handlers
	48.6. MessageConverters
	48.7. Messaging Infrastructure
	48.8. Running the application

	Chapter 49. WCF QuickStart
	49.1. Introduction
	49.2. The server side
	49.2.1. WCF Dependency Injection and AOP in self-hosted application
	49.2.2. WCF Dependency Injection and AOP in IIS web application

	49.3. Client access

	Part VIII. Spring.NET for Java developers
	Chapter 50. Spring.NET for Java Developers
	50.1. Introduction
	50.2. Beans to Objects
	50.3. PropertyEditors to TypeConverters
	50.4. ResourceBundle-ResourceManager
	50.5. Exceptions
	50.6. Application Configuration
	50.7. AOP Framework
	50.7.1. Cannot specify target name at the end of interceptorNames for ProxyFactoryObject

	Part IX. Appendices
	Appendix A. Classic Spring Usage
	A.1. Classic Hibernate Usage
	A.1.1. The HibernateTemplate
	A.1.2. Implementing Spring-based DAOs without callbacks

	A.2. Classic Declarative Transaction Configurations
	A.2.1. Declarative Transaction Configuration using DefaultAdvisorAutoProxyCreator
	A.2.2. Declarative Transactions using TransactionProxyFactoryObject
	A.2.3. Concise proxy definitions
	A.2.4. Declarative Transactions using ProxyFactoryObject

	Appendix B. XML Schema-based configuration
	B.1. Introduction
	B.2. XML Schema-based configuration
	B.2.1. Referencing the schemas
	B.2.2. The tx (transaction) schema
	B.2.3. The aop schema
	B.2.4. The db schema
	B.2.5. The wcf schema
	B.2.6. The remoting schema
	B.2.7. The nms messaging schema
	B.2.8. The validation schema
	B.2.9. The objects schema

	B.3. Setting up your IDE

	Appendix C. Extensible XML authoring
	C.1. Introduction
	C.2. Authoring the schema
	C.3. Coding a INamespaceParser
	C.4. Coding an IObjectDefinitionParser
	C.5. Registering the handler and the schema
	C.5.1. NamespaceParsersSectionHandler

	C.6. Using a custom extension in your Spring XML configuration
	C.7. Further Resources

	Appendix D. Spring.NET's spring-objects.xsd

