
1. Xcode 4 Template Documentation . 2
1.1 Introduction to Xcode 4 Templates . 3

1.1.1 Introducing File Templates . 4
1.1.2 Introducing Project Templates . 6

1.2 Xcode 4 Template Tutorials . 8
1.2.1 Basic File Template Tutorial . 8
1.2.2 Advanced File Template Tutorial . 11
1.2.3 Minimal Project Template Tutorial . 15
1.2.4 Basic Project Template Tutorial . 20

1.2.4.1 Your Cocoa Application Project Template . 20
1.2.4.2 Your Cocoa Touch Application Project Template 24

1.3 Xcode 4 Templates Reference . 29
1.3.1 Contents of TemplateInfo.plist . 29

1.3.1.1 AllowedTypes . 31
1.3.1.2 Ancestors . 32
1.3.1.3 Concrete . 34
1.3.1.4 DefaultCompletionName . 34
1.3.1.5 Definitions . 34
1.3.1.6 Description . 40
1.3.1.7 Identifier . 41
1.3.1.8 Kind . 41
1.3.1.9 MainTemplateFile . 42
1.3.1.10 Nodes . 43
1.3.1.11 Options . 44
1.3.1.12 Platforms . 48
1.3.1.13 Project . 49
1.3.1.14 SortOrder . 50
1.3.1.15 Targets . 51

1.3.2 Template Folder Locations . 54
1.3.3 Placeholder Reference . 56
1.3.4 Variable Placeholders . 58

1.4 Related Information . 62
1.4.1 Change your Organization Name . 62
1.4.2 Property List Editors . 63
1.4.3 Icon Composer . 65

1.5 Frequently Asked Questions (FAQ) . 66

Xcode 4 Template Documentation

Synopsis

This document explains how to create File and Project Templates for Xcode 4. Xcode 4 uses a
template format significantly different from the one used in Xcode 3, which renders all previous
information on Template creation useless. The new format is also much more complex and
allows for greater flexibility, for example a template can now consist of multiple inherited
templates.

This Xcode 4 Template documentation first gives you a quick overview what File and Project
. show you how to create your own File and Projecttemplates are Step-by-step tutorials

Templates. In the the format of the TemplateInfo.plist and related files arereference section
meticulously documented. Finally there's the section withFrequently Asked Questions (FAQ)
answers to common questions. The documentation is fully hyperlinked so that you can quickly
look up keywords in the reference section.

Several example files for File and Project Templates help you get started and can be used as the
basis for your own templates.

Disclaimers

Please note that this documentation is not complete. This is owed to the fact that a lot of
experimentation was involved in creating this documentation. There are still many unknowns to
be discovered - you will find annotations regarding these throughout the document.
Nevertheless, this document contains substantially more information than what is currently
available on the Internet.

The document has not been reviewed by a professional nor . I'm sorry forcopy editor proofread
any grammatical and syntactical errors that will show up here and there because I'm not a native
english speaker.

THE DOCUMENTATION IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE DOCUMENTATION OR THE USE OR OTHER DEALINGS IN THE
DOCUMENTATION.

License

Quality documentation takes a lot of time and effort to produce. This document is only available
for a nominal fee.

http://en.wikipedia.org/wiki/Copy_editing
http://en.wikipedia.org/wiki/Proofreading

Provided that you paid the nominal fee, you (as an individual) are entitled to read this document
as many times as you want. You may also print it as many times as you want. You can even
delete the electronic file from your computer or burn the printed pages.

You may not: distribute, forward, share, publish, host, upload, quote or otherwise make publicly
available this document or copies of it in any form (printed or electronic) without prior written
permission by Steffen Itterheim. You may not rent, lease, sublicense or otherwise transfer your
usage rights of this document to another individual, institution or company.

The information you learned from reading this documentation is free. It means you can use
everything in this documentation and whatever you learn from reading this documentation in any
way you want, . Exempt from that areas long as you depict it in your own words and images
technical keywords and identifiers which must be depicted unchanged in order to convey their
meaning.

You may use the example template files in any way you want.

This document does not use any form of DRM or copy protection. It means I trust you not to
share it illegally. Please do not violate that trust, thank you!

Copyright

Copyright © 2011 Steffen Itterheim. All Rights Reserved.
iPhone, iPad, iPod touch, Xcode, Mac, and Mac OS are registered trademarks of Apple Inc.
Steffen Itterheim has not been authorized, sponsored, or otherwise approved by Apple Inc.

Acknowledgements

I have found little information on the web about the new Xcode 4 template format. The little I
found helped me getting started. The following list contains all the articles that helped me getting
started with this document:

Minimal Project Template with example:
http://blog.boreal-kiss.net/2011/03/11/a-minimal-project-template-for-xcode-4/
List of replacement placeholder strings:
http://gallantgames.com/post/3771670972/xcode-4-templates
Solution on how to place files in subgroups:
http://stackoverflow.com/questions/5445640/creating-sub-groups-in-xcode-4-templates

In addition I would like to thank and for reviewing thisMohammad Azam Nate Weiss
documentation.

Introduction to Xcode 4 Templates

Let's begin with a quick overview and a few screenshots of existing templates, just to wet your
appetite and show you what's possible. At the end I will guide you through prerequisites that are

http://blog.boreal-kiss.net/2011/03/11/a-minimal-project-template-for-xcode-4/
http://gallantgames.com/post/3771670972/xcode-4-templates
http://stackoverflow.com/questions/5445640/creating-sub-groups-in-xcode-4-templates
http://highoncoding.com/
http://www.iphonegamekit.com

helpful to know when creating your own custom templates.

Introducing File Templates

Whenever you choose File -> New -> New File ... from the Xcode menu, you'll be presented with
a dialog showing a selection of file templates. Depending on the type of the file template, one or
more files are created and prefilled with default text depending on the file template. The File
Template can also contain placeholders which will be replaced during creation, for example the
date and time might be filled in or the user's name and company may be added to a copyright
header.

The following images show how to create an Objective-C class template.

You will get the option to pick the subclass of the newly created class. The available subclasses
are configurable just like the entire options screen is.

Creating files from a template also allows you to specify the name of the file and where to put it.
In your file templates you can specify, among other things, the default file name and the group
where the new file should be placed.

Finally the resulting MyClass class was created. Notice that actually two files were created, a .h
and a .m file. In the screenshot below, the MyClass is properly subclassed from NSObject, the
comment shows that it was created by me and the date I created it.

Introducing Project Templates

Project Templates are presented to you by Xcode whenever you choose File -> New -> New
Project... from Xcode's menu. Below is an overview of the iOS Application project templates.
There are countless more, you might want to try them all out and at least click on the Next button
once to see which configuration options they have to offer.

In the case of the Window-based Application project template, you'll have several options that
you can fill out to customize the new project. This "choose options" dialog can bemodified to ask
users for various options before proceeding with the creation of a new Xcode project.

If you click on Next in this step after filling in all options, you'll be asked where to save the new
project. Following that, Xcode will create the project for you and you can start working.

Xcode 4 Template Tutorials

This section contains Tutorials for creating File Templates and Project Templates.

Basic File Template Tutorial

In this tutorial you will learn how to create your own File Template. Compared to Project
Templates, File Templates are considerably easier to create and you will benefit from using them
throughout the lifetime of your project, as opposed to just being the starting point of the project.
You can automate a lot of tedious typing by making use of File Templates, as a result they're
generally very popular among Xcode developers.

File Template Folder

The first step for creating both File and Project Templates is to setup the folders where you can
create custom Templates. By default, the folder doesn't exist on your system, so you'll have to
create it. It is not recommended to modify existing templates from Apple nor should you create

your own custom templates in the same location as Apple's templates, since that folder might be
erased when you update Xcode / the iOS SDK.

In the above screenshot you'll see the full path to custom File Templates, which is:
~/Library/Developer/Xcode/Templates/File Templates/...

You will have to create the and folder if it does notTemplates File Templates
exist. And if you want your templates to be in a category other than "File Templates"
simply create another subfolder with the desired category name, for example "My
Templates" and then add the .xctemplate folders into that subfolder.

The ~/ part of the path is shorthand for the /Users/yourusername/ folder.

I've already created another subfolder which is highlighted in the above image. The folder is
named and contains a TemplateInfo.plist file which I'llFileTemplateExample.xctemplate
get to next. For now just keep in mind that to create a file template, you should create a subfolder
unter and while you can name the folder any way you want, it to end withFile Templates has

, otherwise Xcode won't recognize it as a Template..xctemplate

Refer to in the reference section to learn more about template folderTemplate Folder Locations
locations.

Minimal TemplateInfo.plist

If you open the TemplateInfo.plist by double-clicking it, Xcode will launch and show you the
contents of the property list file. This minimal example contains only three keys: , Description Kind
and .MainTemplateFile

Description is just that, a description that explains what kind of file will be created.

Kind is absolutely necessary for the Template to work, without this key the Template won't show
up in Xcode. All File Templates have their Kind key set to

 with one exception: file templatesXcode.IDEKit.TextSubstitutionFileTemplateKind
that create a class for an NSManagedObject data model use the Kind

.Xcode.IDECoreDataModeler.ManagedObjectTemplateKind

MainTemplateFile specifies which (default) icon should be used to display the File Template,
which is based on the file's extension. It also specifies which of the files in the file template folder
should be opened for viewing in Xcode after the files have been created.

File Names

In most cases the filenames of your file template carry a special name like
 so that the file name will take on the name specified by the user. There___FILEBASENAME___

are various placeholders that you can use both in filenames and the file's contents. You can find
a complete list of placeholders in the and in the Basic File TemplatePlaceholder Reference
Example template files.

Xcode always copies all files in the .xctemplate folder of a File Template and adds
them to the project, except for the TemplateInfo.plist file. However, this is not the
case with Project Templates. Project Templates (unfortunately) only copy files that
are specified in the TemplateInfo.plist section.Definitions

Try it!

In Xcode, go to File -> New ... -> New File and you should see the .xctemplate folder being listed
as a category on the left side. If you select that category the FileTemplate Example template
should show up.

If you create a file based on this template, it will actually create three files whose filename is
based on your input and with the extensions .h, .m and .txt. Also, all the placeholder strings have
been replaced with actual date, filename, project name, identifiers and so on.

Advanced File Template Tutorial

The Advanced File Template Tutorial builds on the and explainsBasic File Template Tutorial
how to add user input options and other settings.

Adding User Options

 allow templates to ask the user for input. The simplest option asks the user for text input,Options
the necessary addition to the TemplateInfo.plist file to create a text input box is shown above.

Not all options described in the reference are available in File Templates. InOptions
fact, only the text and static options work flawlessly with File Templates.Types

Text Input

If you create a new file based on the advanced template, you will be presented with the new
"Choose options ..." step before proceeding with the dialog where you specify the filename and
location.

Using Option Identifiers for variable placeholders

You can use the key to create a Variable Placeholder which will be replaced by the textIdentifier
the user entered into an option textbox. This is done with the special placeholder

 where identifier is the Identifier of an option. In this case the___VARIABLE_identifier___
identifier would have to be named and___VARIABLE_optionIdentifierForTextBox___
you can then use this placeholder in any file, or even as the file name in case you want to allow
the user to specify filenames of specific template files.

More fun with variable placeholders

You can even use the variable placeholders within themselves. In the above image theOptions
TemplateInfo.plist now contains an additional static label with DefaultText set to the variable
placeholder for the text box.

The result is a static label that is updated as you enter text. While this example is pretty
pointless, it does allow you to construct more complex strings and show them to the user to verify
their correctness before proceeding. Apple uses this technique to construct and verify reverse
domain name notation for the default bundle identifier which consists of the product name and
your company name.

The identifier part can also be followed by a colon and a special modifier keyword. For example
using will modify the___VARIABLE_optionIdentifierForTextBox:identifier___
string so that it will be a legal C-style variable name. Refer to the sectionVariable Placeholders
for more information on modifiers.

Sorting Templates

By default, all templates in a category are sorted alphabetically. You can change that by adding a
SortOrder key to each template. Templates are sorted from highest SortOrder number to lowest,
which may be confusing at first. Refer to the reference section for more information.SortOrder

Allowing only specific file extensions

Nothing would stop the user from specifying an invalid file extension when creating a new file
from a File Template. You can limit the allowed file extensions by using the key. InAllowedTypes
the above image only the legal extensions for Objective-C source files will be allowed, which are
.m and .mm - if the user tries to enter a different file extension, then .m will forcibly be appended
to the filename by Xcode.

See the reference section for more information and a list of Uniform TypeAllowedTypes
Identifiers.

Making a Template Platform-Specific

This is merely a cosmetic issue. If your template works only for either iOS or Mac OS, you can
have the template show up only in the platform specific categories by adding the Platforms key
as seen in the above image. You can find the available values in the reference.Platforms

The Platforms key does not automatically change any build settings that are needed
to build code for a certain platform. To do that, you will have to use the
Configurations and SharedSettings dictionaries found under the and Project Targets
root keys.

Adding a custom Icon

If you don't like the default Icon, you only have to add a file named to theTemplateIcon.icns
.xctemplate folder. You can learn how to create your own icons with the Icon Composer app
(installed with Xcode) in the section.Icon Composer

Minimal Project Template Tutorial

Since Project Templates are much more complex than File Templates it helps to start with a
simple tutorial that shows you the absolute minimum that is necessary to create an empty project
from a template without any files or modified settings. This tutorial also contains the basic
information that applies to all Project Templates.

This tutorial teaches you how to create a working project template. However it will not
create a working project since there are simply too many settings to create and
configure which is beyond the scope of this tutorial. See also the first question in the

 section and refer to the Frequently Asked Questions (FAQ) Basic Project Template
 for a working project.Tutorial

Project Templates Folder Location

As with File Templates, you first have to navigate to the Project Templates folder and create it if
necessary.

In the above screenshot you'll see the full path to custom Project Templates, which is:
~/Library/Developer/Xcode/Templates/Project Templates/...

The ~/ part of the path is shorthand for the /Users/yourusername/ folder.

You will have to create the and folder if it doesTemplates Project Templates
not exist. And if you want your templates to be in a category other than "Project
Templates" simply create another subfolder with the desired category name, for
example "My Templates" and then add the .xctemplate folders into that subfolder.

I've already created several project template folders which are highlighted in the above image.
Each template is for a different target platform, the differences are merely the used inAncestors
each template. Each folder contains a TemplateInfo.plist and the TemplateIcon.icns for the
template's icons. As with File Templates any folder containing project template files to endhas
with , otherwise Xcode won't recognize it as a Template..xctemplate

Refer to in the reference section to learn more about template folderTemplate Folder Locations
locations.

Minimal TemplateInfo.plist

The above image shows what goes into a minimal Project Template. From top to bottom, here's
an explanation what these settings do.

Key Description

Ancestors With Ancestors you can include - or in OOP terms: inherit from - other
TemplateInfo.plist by specifying their . This is most useful if you haveIdentifier
multiple project templates which all have common TemplateInfo.plist information
that you want to create and maintain in a single template rather than in each
project template individually. In this example, two commonly used base project
templates for creating Mac OS X applications written in Objective-C are included.
You can get a list of available base templates by looking at the Ancestors
reference section.

Concrete Concrete must be set to YES in order for the Project Template to appear in the
New Project dialog. Concrete project templates are never included by other project
templates, ie they are the last template in the hierarchy. The project templates that
are included via the key above do not have a Concrete key or it is set toAncestors
NO because non-concrete project templates are meant to be included by other
project templates.

Description A string that describes what this Project Template does. It is shown in the New
Project dialog when the template is selected.

Identifier A unique identifier string, usually using reverse domain notation. With the Identifier
it is possible to refer to other Project Templates via . The key isAncestors Identifier
mandatory for all project templates and it must be unique. If the Identifier is
missing Xcode will crash when trying to open the New Project dialog, and if it's not
unique the project template might not work or won't show up in the New Project
dialog.

Kind Kind is a special keyword that tells Xcode the type of template. All
TemplateInfo.plist files to be used with Project Templates must use the

 keyword. If Kind is set incorrectlyXcode.Xcode3.ProjectTemplateUnitKind
or omitted, the Project Template will not work.

Create the minimal project

Let's see what we get from creating this minimal project template:

Enter necessary options

Then click the Next button and save the project.

New Minimal Project

The project contains several files which were created by the used in this minimalAncestors
project template example. This may seem like magic because you did not add these files.
Moreover you won't find all of these files in the file system, not even in Apple's template folders,
because the most common files are actually created and filled with content entirely via
TemplateInfo.plist settings.

They are however not complete, for example the main.m file is missing the void main(int

 function. This is just one reason why this minimal project template willargc, char** argv)
not create a working project. We will fix this situation in the byBasic Project Template Tutorial
starting a new project template based on one of the existing project templates.

Basic Project Template Tutorial

Since you'll rarely, if ever, be starting your own project templates from scratch we'll take a look at
existing templates provided by Apple and discuss how they work. These templates are frequently
used as starting points for writing your own project templates.

The project templates in this Basic Project Template Tutorial are not part of the
Xcode 4 Template Documentation download. I'm not a lawyer but I assume that it
might not be legal to re-distribute Xcode files, even if slightly modified, so I chose not
to bundle them. Of course if you follow these tutorials you'll create these project
templates anyway. Besides that, learning by doing always works best.

Your Cocoa Application Project Template

As basis for Mac OS X project templates the Cocoa Application template is the ideal starting
point for creating your own customized project template. It's also not as complex as the project
templates for iOS, so we'll start with the Cocoa Application template.

Copy existing project template

The Cocoa Application project template can be found at the following location:

/Developer/Library/Xcode/Templates/Project
Templates/Mac/Application/Core Data Spotlight Application.xctemplate

Copy the entire folder to the folder:Core Data Spotlight Application.xctemplate
~/Library/Developer/Xcode/Templates/Project Templates

Parts of this path may not exist, in which case you'll have to create the
 folders..../Templates/Project Templates

In the above screenshot the folder is named . This isDeveloper Developer4
because I installed Xcode 4 into a seperate folder to be able to use both Xcode 3
(residing in) and Xcode 4 at the same time. If you changed theDeveloper
installation directory of Xcode from the default folder you'll have to keepDeveloper
that in mind when navigating to a folder.Developer

Why Core Data Spotlight Application?

You'll notice that we're not copying the folder. It mustCocoa Application.xctemplate
seem like the obvious choice but in fact it's only one part of the Cocoa Application template. The
Core Data Spotlight Application template is the template that includes the Cocoa Application
template via .Ancestors

Here's the inheritance tree that shows you which templates the Core Data Spotlight Application
includes:

Core Data Spotlight Application
Core Data Application

Cocoa Document-based Application
Cocoa Application

Mac Base
Objective-C Application

Bundle Base
Base

That means Core Data Spotlight Application offers all the functionality of the above templates.
You should use the Core Data Spotlight Application template as basis even if you don't need, for
example, core data or a document-based application. The other templates are missing a few
crucial settings without which they won't work, so basing a project template only on the Cocoa
Data Application template will require additional steps to make it work.

Make it unique!

1.
2.

After copying the folder you doCore Data Spotlight Application.xctemplate must
the following in order to create a working copy of the Cocoa Application project template:

rename the folder
change the in TemplateInfo.plistIdentifier

For #1 you can name the folder orMy Core Data Spotlight Application.xctemplate
something like that but make sure you preserve the folder extension without.xctemplate
which the template won't show up in the New Project dialog.

For #2 you should open (double-click) the TemplateInfo.plist file and change the keyIdentifier
from to anything else - I'm going with com.apple.dt.unit.coreDataApplication

 because the Identifier doesn't really need to be inMyCoreDataSpotlightApplication
reverse domain name notation.

These changes are necessary to make sure that the new project is considered a unique, new
project template by Xcode 4 and will show up in the New Project dialog. Of course you might also
want to modify the Name and Description values to complete the change and have them reflect
the purpose of your customized template.

Et voilà!

Here's the "My Cocoa Application" template showing up under the "Project Templates" category.
If you select it and create a project based on this template you'll end up with exactly the same

project as with the original Cocoa Application template. You can now begin with customizing the
project template.

Full Control?

You may have noticed that the Core Data Spotlight Application template does not contain any
files other than the TemplateInfo.plist file. What if you need to change or remove any of the files
the project template will always create?

In this case you want full control over the entire project template. To gain full control over the
Cocoa Application template you will have to make copies of all the included project templates
listed under each template's , or at least those that you might need to modify. ThenAncestors
you'll change the of each copied template while also changing any occurance of thatIdentifier
Identifier in all of the arrays.Ancestors

To be specific, in order to gain full control over the "Cocoa Application" project template you
would make a copy of each of these project templates which combined become the "Cocoa
Application" project template:

Core Data Spotlight Application
Core Data Application

Cocoa Document-based Application
Cocoa Application

You'll start by changing the of the Core Data Application template to, say,Identifier
"MyCoreDataApplication" and you'll also have to change the value in the Core DataAncestors
Spotlight Application template which includes the Core Data Application template so that its value
now also reads "MyCoreDataApplication" - this keeps the link between the two project templates
intact. You'll then continue on doing the same with the Cocoa Document-based Application and
the Cocoa Application template. When you're done you'll have a full copy of the "Cocoa
Application" template.

You could do the same with the Mac Base and Objective-C application and possibly
even including the Bundle Base and Base templates - but that is likely overkill since
these project templates contain both crucial and common settings which you'll rarely
need to modify.

Your Cocoa Touch Application Project Template

The most versatile starting point for Cocoa Touch applications is the Window-based Application
project template. So let's make a copy of that template.

Copy the project template

The Window-based Application project template can be found at the following location:

/Developer/Platforms/iPhoneOS.platform/Developer/Library/Xcode/Templates/Project
Templates/Application/Window-based Application.xctemplate

Notice the difference in location for iOS project templates. Instead of in the /Library/.. folder the
templates for iOS are located unter /Platforms/iPhoneOS.platform/..

Copy the entire folder to the folder:Window-based Application.xctemplate
~/Library/Developer/Xcode/Templates/Project Templates

You do not need to use the /Platforms/iPhoneOS.platform/.. path in the custom templates folder
location. Both Mac OS X and iOS templates can reside side-by-side in the same folder.

Parts of this path may not exist, in which case you'll have to create the
 folders..../Templates/Project Templates

In the above screenshot the folder is named . This isDeveloper Developer4
because I installed Xcode 4 into a seperate folder to be able to use both Xcode 3
(residing in) and Xcode 4 at the same time. If you changed theDeveloper
installation directory of Xcode from the default folder you'll have to keepDeveloper
that in mind when navigating to a folder.Developer

Why Window-based Application?

The Window-based Application project template provides is the most generic and versatile
project templates. It allows you to use Core Data and by default enables the user to also create a
universal application. Depending on your project template needs you might want to choose any
of the other Cocoa Touch project templates, which are:

Navigation-based Application
OpenGL ES Application
Split View-based Application
Tab Bar Application
Utility Application
View-based Application

The Window-based Application project template includes via both the Core DataAncestors
Cocoa Touch Application project template, giving it the Core Data options, and the Cocoa Touch
Universal Application project template, which provides the option to create either a universal, or
an iPad or iPhone specific application.

The inheritance tree for the Window-based Application project template is as follows:

Window-based Application
Core Data Cocoa Touch Application

1.
2.

Cocoa Touch Universal Application
Cocoa Touch Application

iPhone Base
Objective-C Application

Bundle Base
Base

Make it unique!

After copying the folder you do theWindow-based Application.xctemplate must
following in order to create a working copy of the Window-based Application project template:

rename the folder
change the in TemplateInfo.plistIdentifier

For #1 you can name the folder orMy Window-based Application.xctemplate
something like that but make sure you preserve the folder extension without.xctemplate
which the template won't show up in the New Project dialog.

For #2 you should open (double-click) the TemplateInfo.plist file and change the keyIdentifier
from to anything else - I'm going withcom.apple.dt.unit.navigationBasedApplication

 because the Identifier doesn't really need to be in reverseMyNavigationBasedApplication
domain name notation.

You might also want to modify the Name and Description values.

Et voilà!

Your copy of the Window-based Application project template appears in the New Project dialog.
It works as normal and is ready for tweaking.

Full Control?

As with the you can gain full control over theYour Cocoa Application Project Template
Window-based Application project template by making copies of all the templates listed under
each template's . Then change the of each copied template while alsoAncestors Identifier
changing any occurance of that Identifier in any of the arrays.Ancestors

To be specific, in order to gain full control you would make a copy of each of these project
templates:

Window-based Application
Core Data Cocoa Touch Application
Cocoa Touch Universal Application

Cocoa Touch Application

If you have made a copy of a different project template, chances are that it includes
the Cocoa Touch Familied Application project template instead of Core Data Cocoa
Touch Application and Coco Touch Universal Application.

You'll start by changing the of the Core Data Cocoa Touch Application project templateIdentifier
to, say, "MyCoreDataCocoaTouchApplication" and you'll also have to change the Ancestors

value in the Window-based Application project template which includes the Core Data Cocoa
Touch Application project template so that its value now also reads
"MyCoreDataCocoaTouchApplication" - this keeps the link between the two project templates
intact. You'll then continue on doing the same with the Cocoa Touch Universal Application and
the Cocoa Touch Application project template. When you're done you'll have a full copy of the
Window-based Application template.

If you wanted to you could do the same all the way up from iPhone Base respectively
iPad Base and Objective-C application to Bundle Base and Base project templates -
but that is likely overkill since these project templates contain both crucial and
common settings which you'll rarely need to modify.

Xcode 4 Templates Reference

This section contains technical references for the contents of the files and folders involved in
creating Xcode Project and File templates.

Contents of TemplateInfo.plist

The following key-value entries are found at the root level of a TemplateInfo.plist file. The tables
differentiate between keys which can appear in both Project and File Templates, followed by
keys only seen in either Project or File templates. While you can try using Project Template keys
in File Templates and vice versa, keep in mind that they will likely not work or not provide all
options. For example, while you can use in File Templates you can not use all of the UIOptions
elements like popup or combo boxes with File Templates.

Table entries are sorted alphabetically by key. Each key is described shortly, and most keys are
hyperlinked to sections that contain more information on that particular key. If a key is not
hyperlinked, it is either self-explanatory or it has no use or immediate effect and thus remained
undocumented.

Items used by both Project and File Templates

Key Value Description Value
Type

Description Description text for the template. In Project Templates the Description
need only be used in TemplateInfo.plist which have the flag set.Concrete

string

Kind Describes the type of Xcode template. This is a required key and must
not be omitted.

string

Options List of options for user input. This configures the "Choose options for
your new project" page and usually gives you options to enter the
Product Name and Company Identifier.

array

Platforms Determines in which platform category (iOS or Mac OS X) the template
shows up. If not used, the template will show up for both platforms by
default.

array

SortOrder Used to override the default alphabetical sort order of templates in the
New File and New Project dialogs.

number

Items Specific to File Templates

Key Value Description Value
Type

AllowedTypes Specifies the default and all allowed file extension(s) for the
file.

array

DefaultCompletionName The filename (without extension) that Xcode initially suggests. string

Icon Used only by User Interface XIB templates - is always
"TemplateIcon.tiff".

string

MainTemplateFile Which of the template files Xcode should open and display
after creating the file(s).

string

Summary Does not seem to be used by Xcode, could be (reserved for)
a tooltip. Usually identical to the except that theDescription
sentence doesn't end with a punctuation character. In a few
cases it's an abbreviated .Description

string

Title Used only by User Interface XIB templates - does not seem
to be utilized.

string

Items Specific to Project Templates

Key Value Description Value
Type

Ancestors A list of items with the value part being the ofIdentifier
another TemplateInfo.plist file. Via ancestors you can include
other project templates and take over their settings, or
override them. Works similar to inheritance in .OOP

array

Concrete Marks the Project Template as the one to be listed in the
New Project dialog. If not set, the TemplateInfo.plist will be
assumed to be included as ancestor by another
TemplateInfo.plist and it will not be shown in the New Project
dialog.

boolean

Definitions Defines the content of the entry with the same nameNodes
(eg if a Definitions key equals a Nodes value). Normally it is
used to indicate where a file is (Path) but can also specify
the actual text content of the file.

dictionary

http://en.wikipedia.org/wiki/Object-oriented_programming

Executables Only used by the Quartz Composer Plug-In template.
Specifies the path to the Quartz Composer.app which
indicates that you can somehow specify the dependency to
an external app. The effect of this setting is unclear. For
reference:

array

Identifier Unique Identifier for this template, using reverse domain
notation (com.yourcompany.thistemplatefilename).

string

Name The name of the project template as shown in the New
Project dialog. If omitted the project template will assume the
name of the .xctemplate folder.

string

Nodes Lists all the files in the project. Can also contain names of
placeholders or functions to add to a file.

array

NSSupportsSuddenTermination Only used by the Quartz Composer Plug-In template, where
it is unchecked. Effect unclear.

boolean

Project Configure Project-Wide Build Configuration settings. dictionary

ProjectOnly Indicates that this template should only be listed in the New
Project dialog, but not when adding a new target. Used only
by the "Empty" project template.

boolean

TargetOnly Indicates that this template should only be listed in the Add
Target dialog, but not when creating a New Project. Used for
example by the "Aggregate" target template.

boolean

Targets Allows you to add targets to the project and configure
Target-specific settings.

array

AllowedTypes

Value Type: array

Can be used in: File Templates Project Templates

A list of allowed s (UTI) for a file template's . The valueUniformTypeIdentifier MainTemplateFile
determines the default file extension that is appended by Xcode.

For example, the Objective-C class template specifies these allowed types:
 and . Thispublic.objective-c-source public.objective-c-plus-plus-source

means the source file can either be Objective-C (.m extension) or Objective-C++ (.mm
extension), with .m being the default (first item in the list). If the user enters a file name with a file
extension that is not an Objective-C file extension, for example if the user enters "MyFile.cpp" as
filename, the resulting file will be named "MyFile.cpp.m". If multiple UTIs are used but none of

http://en.wikipedia.org/wiki/Uniform_Type_Identifier

the allowed file extensions are used, the extension of the first UTI in the AllowedTypes array will
be appended.

The Following table lists some commonly used UTIs by File Templates. If you want the complete
list, refer to .Apple's Uniform Type Identifiers Reference

UniformTypeIdentifier Description

public.c-header C header file (.h)

public.c-source C source file (.c)

public.c-plus-plus-source C++ source file (.cpp)

public.objective-c-source Objective-C source file (.m)

public.objective-c-plus-plus-source Objective-C++ source file (.mm)

... ...

Ancestors

Value Type: array

Can be used in: File Templates Project Templates

The Ancestors array allows you to "subclass" other Project Templates by specifying the Identifier
of one or more TemplateInfo.plist in the Value part of each Item. See the following screenshot:

The information provided by the Ancestor templates will be included in the current template,
unless a specific setting is already specified here. In this case the ancestor's setting will be
ignored (overridden).

Some keys, like can not be inherited and have to be specified in everyKind
TemplateInfo.plist file.

In general Ancestors are used to define commonly used settings in template files that are then
included by all templates which use the same settings. The higher up in the Ancestor hierarchy a
template is (up to the template which has the flag set) the more specific the settingsConcrete
usually get. For example, you'll usually only find the of a template in the templateDescription
which also has the flag set.Concrete

Useful Ancestors

Below is an incomplete list of existing Ancestors provided by Xcode which should be used in your

http://developer.apple.com/library/mac/#documentation/Miscellaneous/Reference/UTIRef/Articles/System-DeclaredUniformTypeIdentifiers.html

own Project Templates because they provide crucial default settings and options.

Type of Application

Include either one of these Ancestors if your project is either an Objective-C application, or an
Objective-C unit test bundle. These options are mutually exclusive and should not be used
together.

Ancestor Template
Identifier

Description

com.apple.dt.unit.

objectiveCApplication

Adds default settings and options for Objective-C applications.
Inherits from the and com.apple.dt.unit.bundleBase

 templates. Should be used for allcom.apple.dt.unit.base
project templates that interface with Objective-C even if all code is
written in C or C++ due to the fact that working with Apple's
libraries will always make it an Objective-C application.

com.apple.dt.unit.

cocoaTouchApplication

Adds default settings and options for Cocoa Touch applications.
Inherits from the

 and com.apple.dt.unit.objectiveCApplication
 templates.com.apple.dt.unit.iPhoneBase

com.apple.dt.unit.

cocoaTouchFamiliedApplication

Adds the device family popup option with which the user can
select from creating an iPhone or iPad application when creating a
new project. Inherits from the

 template.com.apple.dt.unit.cocoaTouchApplication

com.apple.dt.unit.

cocoaTouchUniversalApplication

Overrides the device family popup option with which the user can
select from iPhone, iPad or Universal when creating a new project.
Inherits from the
com.apple.dt.unit.cocoaTouchFamiliedApplication
template.

Including the Objective-C application template
 either directly or indirectly iscom.apple.dt.unit.objectiveCApplication

formally required because it adds important settings without which project templates
won't work.

Target Platform

Depending on the desired Target Platform you should included one of these project templates in
your custom project template which for the most part modify build settings for the desired target
platform. These options are mutually exclusive and should not be used together.

Ancestor Template
Identifier

Description

com.apple.dt.unit.macBase Include this template if the target platform for the resulting
project is a Mac OS X application.

com.apple.dt.unit.iPhoneBase Include this template if the target platform for the resulting
project is a iPhone/iPod Touch application (non universal). You
can always add iPad support via Xcode at a later time.

com.apple.dt.unit.iPadBase Include this template if the target platform for the resulting
project should be a universal application with iPad support. This
template inherits from the

 above and changes thecom.apple.dt.unit.iPhoneBase
TARGETED_DEVICE_FAMILY build setting to 2 and sets the
ARCHS build setting to $(ARCHS_UNIVERSAL_IPHONE_OS).

Concrete

Value Type: boolean

Can be used in: File Templates Project Templates

This flag is set in TemplateInfo.plist which should be listed in the New Project dialog. It marks the
last TemplateInfo.plist in the hierarchy. Project Templates without the Concrete flag orAncestors
with Concrete set to NO will not be listed in the New Project dialog.

DefaultCompletionName

Value Type: string

Can be used in: File Templates Project Templates

Specifies the default filename (without extension) that Xcode suggests when the file is created.
It's the highlighted part in the following screenshot showing the part of the "save as" dialog that
pops up as the final step of creating a file template:

Definitions

Value Type: array

Can be used in: File Templates Project Templates

Definitions can fulfill several purposes depending on their use. With Definitions you can:

define beginning/end placeholder strings and indentation of replacement strings
replacement strings for specific variables or wildcards
define the location of existing files and the group they should reside in in the Groups & Files

pane
copy contents of entire folders

Each Definition key is the name of a string (value). If there is no corresponding Nodes Nodes
entry for a particular key, that key will be ignored.

Definitions Parameters

The default for a Definitions key/value pair is that the value data type is a string. In this case, the
string will be added to the file specified by the key. The Definition in this case is merely holding
the string to be added to the file. In the common case that the key is a dictionary, there will be the
same key specifying the string to add to the file, but it'll be inside the dictionary.

The following dictionary keys can be used:

Key Description Value
Type

Beginning The string added at the beginning of a placeholder. string

End The string added at the end of a placeholder. string

Indent The indentation level (in "tabs") of strings added in between the
Beginning and End section. Eg. this determines the indentation
level of placeholder strings.

string

Group The name (and path) of the Xcode Group the file should be added
to.

string

Group If Group is an array, you can specify subgroups by creating an
array item for each group. For example, to put a file into the group
path you would add in the same/Classes/MyCode/Tests/
order three array items: , and without theClasses MyCode Tests
slashes.

array

TargetIndices You can specify which target the file should be added to. Targets
are numbered sequentially beginning with 0. By default each file
will be added to each target in the project. Specifying an empty
TargetIndices array prevents the file from being added to all
targets. This is done for all files which are not supposed to be
listed in the "Compile Sources" Build Phase, for example all
header files should have an empty TargetIndices array.

array

SubstituteMacros Effect unknown. boolean

Path The path to an existing file, relative to the .xctemplate folder of the
 TemplateInfo.plist file.Concrete

string

PathType Affects the files' Location property in Xcode, which by default is
"Relative to Group". Must only be used together with the Path key,
otherwise Xcode will crash when creating the template. Valid
values are:

Absolute (Location: Absolute Path)
DeveloperDir (Location: Relative to Developer Directory)
Group (default) (Location: Relative to Group)
Project (Location: Relative to SDK)

Whether other PathType values are supported is
unknown. The usual suspects like BuiltProducts,
BuiltProductsDir, BuildProducts, etc. have been
tested and did not work.

string

With Definitions, you can also create new variables. Refer to the sectionVariable Placeholders
for more information.

Example Entries

Empty File

Key Value Data Type

MyFile.m // This is an empty file string

This will create a new file named MyFile.m and the the file will have a single line reading //This
. is an empty file

Despite the fact that the Property List editors only give you a single line to edit strings in you can
actually create and use multi-line strings.

Adding strings to a File

Key Value Data Type

MyFile.m:anything // Anything goes string

MyFile.m:something // This is quite something string

In this case, the strings and will be// This is quite something // Anything goes
added to MyFile.m in the order in which they are defined in the section. If the NodesNodes
section specifies MyFile.m:something before (item number is smaller) the entry MyFile:anything
then the final MyFile.m contents will be:

// This is quite something
// Anything goes

Add Beginning/End sections with indented content

Key Value Data Type

MyFile.m dictionary

Beginning // This is the beginning string

End // This is the end string

Indent 2 number

If this definition is specified along with the above, then the resulting MyFile.m contents will be:

// This is the beginning
// This is quite something
// Anything goes
// This is the end

The Beginning and End keys specify the start and end of the MyFile.m which could also be a
particular section of MyFile.m. For example you can also create additional Beginning/End/Indent
sections for MyFile.m:something and MyFile.m:anything.

Everything in between Beginning and End is indented by the number of tabs specified by the
Indent key. In this case the text in between is indented two times.

Placing files into groups

Key Value Data Type

MyFolder/SomeFile.m dictionary

Path MyFolder/SomeFile.m string

Group MyGroup/SomeFile.m string

The above allows you to specify the location of an existing file as indicated by the Path key. The
Group key determines the Group location where the file should be placed in Xcode's Groups &
Files pane.

Placing files into subgroups

Key Value Data Type

MyFolder/SomeFile.m dictionary

Path MyFolder/SomeFile.m string

Group .. array

Item 0 parentGroup string

Item 1 subGroup1 string

Item 2 subGroup2 string

Example:

To put a file into subgroups, you'll have to change the Data Type of Group to array and add each
part of the path as seperate items. This will place the file into the Group path

./parentGroup/subGroup1/subGroup2/

Copy Entire Folder

Copying folders works, but …
… there are two significant flaws:

files in the folder and subfolders will be added to the Copy Bundle Resources
phase, not to the Compile Sources phase
the name of the last file in the folder will become a folder reference in Xcode,
listing again all the files & folders

Thus far all attempts at fixing or working around this behavior has remained futile.
Please let me know if you have been able to figure out if this is possible, and how.
Some developers' projects contain hundreds of files which makes creating project
templates a tedious and error-prone task.

My suspicion is that if there's a solution it might be connected to a particular but
currently unknown PathType. But it could as well be a dead-end.

Key Value Data Type

MyFolder/ dictionary

Path ./MyFolder string

PathType Group string

Example:

In this example I used as the Path. But you can specify the path in a./MyFolder/
number of ways all of which are legal and give the same results:

./MyFolder/ (preferred style, it makes the clearest indication that Path refers
to a folder and not a file)
MyFolder/
./MyFolder
MyFolder

The latter two examples assume that there is no file named as theseMyFolder
Paths could refer to either a file or a folder.

Project Template files & folders:

Result:

This will copy all the files in the project template subfolder to the new project andMyFolder/
add the files to the group .MyGroup/MyFolder

I've provided an example template named "Copy Folder Template Example" that you
might want to check out if you're interested in investigating the copy-folder behavior.

Description

Value Type: string

Can be used in: File Templates Project Templates

In Project Templates, the Description only needs to be specified in concrete
templates. Meaning those TemplateInfo.plist which have the flag set.Concrete

The description of a template is highlighted in the above screenshot.

Identifier

Value Type: string

Can be used in: File Templates Project Templates

The Identifier is used to refer to a specific TemplateInfo.plist file by reference, usually to subclass
from it using the array. The Identifier must be unique and is written in reverse domainAncestors
notation. For example: com.yourcompany.yourtemplate.templatename

Identifier is also used to identify where reverse domain notation is notOptions
normally used. As long as the Identifier string is unique it does not matter what that
string is.

Identifier is mandatory!
Every TemplateInfo.plist for Project Templates must have a unique Identifier key,
otherwise Xcode might crash when trying to open the New Project dialog.

Kind

Value Type: string

Can be used in: File Templates Project Templates

Kind is a required key, it must be in every TemplateInfo.plist file. It is not inherited by including
other TemplateInfo.plist files via the key. In fact, omitting the Kind key or setting itAncestors
incorrectly can lead to Project Templates not showing up in the New Project dialog or crashes
when creating a Project Template with a missing or incorrect Kind key in any of its
TemplateInfo.plist files, including Ancestors.

Possible Values Description

Xcode.Xcode3.ProjectTemplateUnitKind Template is a Project Template

Xcode.IDEKit.TextSubstitutionFileTemplateKind Template is a File Template

Xcode.IDECoreDataModeler.ManagedObjectTemplateKind Template is a File Template for an
NSManagedObject data model.
The main difference is that you will
be presented with a "Select the
data models with entities you
would like to manage" screen.
Used by the CoreData
NSManagedObject subclass File
Template.

If Kind is missing in just one of the TemplateInfo.plist files of a template (it is not
inherited!) the template will not be listed in the New File / New Project dialog!

All Xcode 4 Project Templates use the
 key despite its reference to XcodeXcode.Xcode3.ProjectTemplateUnitKind

3. This is not a typo.

MainTemplateFile

Value Type: string

Can be used in: File Templates Project Templates

With MainTemplateFile you specify the file which should be opened in Xcode after a File has
been created from a template, since a template can have more than one file. The
MainTemplateFile key can also change the icon that is used to display the File Template in the
New File dialog. For example, if the MainTemplateFile points to a header file with the .h
extension, an icon with a red "h" will be used as the File Template's icon.

The MainTemplateFile key is optional and without it Xcode will still copy, rename and add all the
files in the .xctemplate folder to the project.

The MainTemplateFile specifies the filename of a file in the template's .xctemplate folder. For

example, for the C File template the MainTemplateFile is ___FILEBASENAME___.c

Nodes

Value Type: array

Can be used in: File Templates Project Templates

In the Nodes array you define filenames and placeholders for content section of files. The
 section then determines where to place the files in the new project and what contentDefinitions

should be added to or replaced in the file. Both go hand in hand. Without a Definitions
counterpart, the Nodes entries will only create empty files.

Copying entire folders
You can also copy the contents of entire folders instead of just single files. This
seems to work reasonably well with bundle resource files, but not with source code.
Refer to for more information.Definitions#CopyFolder

Nodes values

Usually a Nodes value will be a filename. The filename can include the relative path to the file if
the file is in a subfolder or should be created in a subfolder.

Placeholders are specified by appending a colon (:) followed by the name of the placeholder.
Multiple placeholders can be used in a single Nodes entry. This is usually done to create
variables for placeholders. Refer to the section for more information.Variable Placeholders

Example Entries

Key Value

Item 0 MyFile.m

The value will be used in as a key in order to specify various parametersMyFile.m Definitions
for that particular file, including location, group and file contents.

Key Value

Item 0 MyFile.m:something

A node that has a colon (:) following the filename indicates the use of placeholders. The

1.

 section will then define the content for the placeholder . This is usuallyDefinitions something
used to add content to newly created files.

Multiple colons can be used to define multiple placeholders.

Options

Value Type: array

Can be used in: File Templates Project Templates

Options determine the various options the user can configure in the first step of creating a new
File or Project from a template. Common options include an input field for the Project or File
name.

If no Options are specified, the "Choose Options for ..." step will not be presented to
the user.

Below is an example screenshot of various options (six in this case) that can be presented to the
user:

1.
2.
3.

4.
5.
6.

An editable text box.
An editable text box with default text.
A static label for information. The label's text is dynamically composed of the Product Name
and Company Identifier using the syntax.Variable Placeholders
A popup selection. Combo boxes which also allow arbitrary text input are also possible.
A checkbox.
A text box with default text which is currently not editable (grayed out). It is connected to
the checkbox above and only editable if the checkbox is checked.

Each item in the Options array is a dictionary. Below is an example Options array defining three
options:

The dictionary keys for each item are described next.

Options used by both File and Project Templates

Key Value Description Value
Type

Default The default selection or text. In case of a checkbox type use either "true"
or "false". In case of a static label type it's the uneditable text that is
displayed. The default value can also specify other options using the

 syntax.Variable Placeholders

string

Description Describes what this option does. The text is displayed as tooltip when
the mouse hovers over the option.

string

Identifier Identifiers are used to uniquely identify options, for example to use them
for other options or referencing the option's content in variables.

string

Name The text displayed left to the control. string

Required If checked, this option is required and must be filled in by the user. As
long as a Required option does not have a valid value the Next button on
the "Choose Options …" dialog will be grayed out.

boolean

SortOrder The SortOrder for this option. Can be used to rearrange the order in
which options are presented to the user. By default they appear in the
same order as their position in the Options array.

number

Type The type of edit control used, eg text box or combo box. string

Options Specific to File Templates

Key Value Description Value Type

Values The selectable options for a combo box or popup control. See also .Type array

Options Specific to Project Templates

Key Value Description Value
Type

EmptyReplacement The string with which an editable text box is prefilled (ie the
default text). Does not always do its job for some reason. In
case of combo or popup boxes it should match one of the

 strings.Values

string

NotPersisted Unknown, no effect? Used with ProductName option. boolean

Placeholder Used only in one of Apple's Project Templates, effect
unknown.

string

RequiredOptions Can be used to specify that a seperate, boolean option must
be true or false before the regular in thisOptions
TemplateInfo.plist can be changed, otherwise they will be
greyed out. The key specifies an Identifier of an option while
the key's value is either true or false, indicating that the option
is only editable if the required option is set to the
corresponding truth value.

dictionary

SpecialType Effect unknown, only use was to provide the string
LSApplicationCategoryType

string

Units Each Units key has the same name as the of a popupValues
or combo box and can contain any settings that would normally
be in the root of the TemplateInfo.plist. Depending on the
active popup selection, the specific Units branch is assumed to
be active and the others are ignored. This allows you to use
only specific based on a userTemplateInfo.plist settings
choice.

dictionary

Project Templates require an option with the Identifier 'productName'
All Project Templates require one particular option: a text field with Identifier set to

. Otherwise the Project Template might fail to save, or irreversiblyproductName
delete all files in the target folder or from the user's desktop!

The option is provided by including in the productName Ancestors
 Template or one of the templates including it, forcom.apple.dt.unit.base

example the often used basecom.apple.dt.unit.objectiveCApplication
template for Objective-C applications. Rather than adding the optionproductName
yourself you should rely on using Apple's base templates.

Options keys

Type

Valid
Types

Description

checkbox A checkbox. Example:

text An editable text box. Example:

static A static label to display information. Example:

combo Creates a drop-down combo box with an editable text field. The user can pick one of
the preconfigured items from the list, or enter a custom string. TheValues
screenshot shows the combo box used by the Objective-C class template:

popup Creates a popup selection control. The user can only pick from the preconfigured
items from the list. Values

Not all options described in the reference are available in File Templates. InOptions
fact, only the text and static options work flawlessly with File Templates.Types

Units

Allows you to specify different TemplateInfo.plist items depending on a user selection.

In the example screenshot below there are two popup named iPad and iPhone.Values
Assuming the user has selected the iPad setting, the contents of the iPad dictionary can be
assumed to be added to the root of the TemplateInfo.plist thus adding two new entriesDefinitions
which essentially modify the filename of two files to reflect the iPad setting.

You are not limited to using in Units, you can actually add any of the available Definitions
 to each individual Units' selection dictionary (iPad and iPhone in thisTemplateInfo.plist settings

case).

Values

A list of strings with which a combo box or popup will be filled (see). The Values strings willType
be selectable by the user. The values can be used as keys for the Units dictionary to specify
settings that are used when that particular setting is selected by the user.

Here is an example Values array used by the Objective-C class template. It gives the user the
option to subclass his new Objective-C class from the following preconfigured classes:

Platforms

Value Type: array

Can be used in: File Templates Project Templates

If Platforms is not specified in the TemplateInfo.plist, the template will appear for all platforms by
default. Since there are currently only two platforms, the Platforms usually specifies only one
platform in order to exclude the template from showing up for the other platform.

Possible Values Description

com.apple.platform.iphoneos Template is listed in the iOS platform categories

com.apple.platform.macosx Template is listed in the Mac OS X platform categories

The Platforms key does not automatically change any build settings that are needed
to build code for a certain platform. To do that, you will have to use the
Configurations and SharedSettings dictionaries found under the and Project Targets
root keys.

For Project Templates you can also use the existing, platform-specific templates that
Apple provides. To do so, add an item to the and specify one of these Ancestors

 for Mac, iPhone and iPad specific platforms:Identifiers

com.apple.dt.unit.macBase
com.apple.dt.unit.iPhoneBase
com.apple.dt.unit.iPadBase

Including the above templates will also change build settings and other options so
that your project template conforms to the standard template for that particular
platform.

Project

Value Type: dictionary

Can be used in: File Templates Project Templates

Project allows you to specify build settings for the project. There are a few predefined keys,
which allow you to specify XCConfig files (BasedOn), create build configurations and specify any
build settings for each particular build configuration (Configurations), and finally you can specify
build settings which should be applied to all build configurations (SharedSettings). The special
SDK key allows you to specify which Base SDK should be used.

You might want to check out Apple's for aXcode/GCC Build Settings Reference
complete list of build settings.

Key Description Value
Type

http://developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/XcodeBuildSettingRef/1-Build_Setting_Reference/build_setting_ref.html

SDK The name of the Base SDK used by this project. Can be either
 or for iOS respectively Mac OS X projects.iphoneos macosx

string

BasedOn Allows you to specify any .xcconfig files in your template. XCConfig
files contain Build Settings and you can specify one file for each
build Configuration (and by default). Example: Debug Release

dictionary

Configurations Allows you to specify the Build Configurations in your project. Most
projects have a and build configuration, but youDebug Release
can add more. Each build configuration is also a dictionary, in
which you can specify build settings. The key is the GCC setting
and the value the value for that particular setting. For example, in
this screenshot the Debug build configuration will have the DEBUG
preprocessor configuration set while the Release build
configuration specifies in "Other Linker Flags" the proper setting for
blocking assertions:

dictionary

SharedSettings Much like Configurations, except that you don't specify a build
configuration (eg or) since the shared buildDebug Release
settings naturally will be used by all build configurations. Here is an
example:

dictionary

SortOrder

Value Type: number

Can be used in: File Templates Project Templates

The above screenshot illustrates how the SortOrder item works. Items are sorted in decending
order of the SortOrder. Items without a SortOrder are sorted alphabetically and listed after any
items with a SortOrder.

For example, to add a new template so it is listed as the first item, even before the "Application"
template, you would have to give it a SortOrder of 5.

If you would add another template titled "Application enhanced" without a SortOrder, it would be
listed before the "Empty" template because templates without a SortOrder are sorted
alphabetically.

Keep in mind that the SortOrder is reversed, eg. the sort order goes from highest
SortOrder number to lowest which may be confusing initially. If you notice that
templates are sorted incorrectly, make sure the SortOrder is from highest to lowest,
not vice versa.

Targets

Value Type: array

Can be used in: File Templates Project Templates

Key Description Value
Type

BasedOn For each build configuration you can specify which
XCConfig file the target's build configuration is based on.
See the same setting in .Project

dictionary

BuildPhases List of build phases, the order of the items in the array
determines the order of the Build Phases. Each item is a
dictionary in which you can configure build phase settings.

array

BuildToolArgsString Used only by External Build System template to specify
build tool arguments.

string

BuildToolPath Used only by External Build System template to specify the
build tool path from the user options.

string

Configurations Target-specific build settings for particular build
configurations. See the same setting in .Project

dictionary

Dependencies An array of numbers. Most likely specifies a Targets entry
by its index.

array

Frameworks Names of frameworks (without the .framework extension)
which will be added to the "Link Binary With Libraries" build
phase of this target.

array

Name The name of the target, the default setting is the
placeholder ___PACKAGENAME___

string

OtherFrameworks Same as Frameworks, but the frameworks are not added to
the "Link Binary With Libraries" build phase of the target. In
the Groups & Files pane these frameworks will be placed in
the group./Frameworks/Other Frameworks

array

ProductDependencies An array of numbers. Most likely specifies a Targets entry
by its index.

array

ProductType Specifies the type of resulting product, these are the
available options which should be self-explanatory:
com.apple.product-type.application
com.apple.product-type.bundle
com.apple.product-type.framework
com.apple.product-type.kernel-extension
com.apple.product-type.library.dynamic
com.apple.product-type.library.static
com.apple.product-type.tool

string

SharedSettings Target-specific build settings for all build configurations.
See the same setting in .Project

dictionary

TargetType Used only by Aggregate target and External Build System
templates. Possible values:

Aggregate
Legacy

string

Dependencies
What Dependencies and ProductDependencies specify is unclear. Whenever they
were used, there was only one item in the array with the value being 0. They're used
in unit test templates, so this might indicate a dependency on the project to be
tested.

BuildPhases

Possible Build Phase Keys Description Value
Type

Class Possible values for Class:

CopyFiles
Frameworks
Headers
Resources
Rez
ShellScript
Sources

Rez is the "Build Carbon
Resources" build phase. All
other build phases should
be self-explanatory.

string

DstPath If Class is CopyFiles, specifies the
destination path of the copy files build phase.

string

DstSubfolderSpec Used if Class is CopyFiles. Unclear what it
does, only used in Command Line tool
project template, value is 0. Might be used to
change the value in the Destination popup
box of the Copy Files build phase, but using
values other than 0 did not change anything.

number

RunOnlyForDeploymentPostprocessing If Class is CopyFiles, specifies that this build
phase is only run for deployment
postprocessing. The value is either YES or
NO.

string

ShellPath If Class is ShellScript, specifies the path to
the shell script interpreter, for example
/bin/sh

string

ShellScript If Class is ShellScript, this setting is the shell
script that will be run.

string

Template Folder Locations

Templates are found in two distinct locations on your hard drive.

Location of Apple Templates

The official Xcode templates that are installed with Xcode reside in two locations:

Mac OS X / General Templates folder:

/Developer/Library/Xcode/Templates/

iOS Specific Templates folder:

/Developer/Platforms/iPhoneOS.platform/Developer/Library/Xcode/Templates/

/Developer (at the beginning of the path) is the default installation location of Xcode. If you
have installed Xcode to a different folder, replace with whatever path you installed/Developer
Xcode.

In the iOS tree, in the folder you will also find several "File Templates"../Xcode/
and other "xxx Templates" folders. They seem to be remnants of Xcode 3 as they
contain templates from Xcode 3. Please ignore these folders and make sure you are
inside the folder and none other - it's easy to get confused../Xcode/Templates/
when you're navigating the iOS templates. You'll notice when you're dealing with
Xcode 3 templates if they contain TemplateChooser.plist files and the folder names
don't end with ..xctemplate

Location for User Templates

To prevent a new Xcode installation from overwriting your own templates, there's a custom
template folder for each user. It is generally recommended to store all modified or personally
customized templates in the User Templates folder.

Custom User Templates folder:

~/Library/Developer/Xcode/Templates/

You may have to create the folder as well as the andTemplates File Templates
�� subfolders if they do not exist. This is usually the case,Project Templates
unless some other development software has created these folders for you.

Despite the official Mac OS X and iOS templates being located at very different
folders you can have both Mac OS X and iOS templates in the same custom user
template folder.

Subfolders & Categories

In each Templates folder are two main subfolders and File Templates Project
 differentiating between file and project templates. It is not strictly necessary to makeTemplates

this distinction, these two folders are indeed optional. But it is highly recommended to stick to the
convention in case this is somehow important to how templates behave and generally to avoid
confusion.

In both and folders are further subfolders without theFile Templates Project Templates
.xctemplate extension but containing .xctemplate folders. Such folders define the categories on
the left hand side of the New File and New Project dialogs, as seen in the screenshot below.
Each subfolder containing .xctemplate folders is listed as a category in the New File / New
Project dialog on the left hand side of the dialog.

The platform categories iOS and Mac OS X are provided by Xcode. They are likely
hardcoded and can't be changed.

You'll notice that the same categories can exist for both platforms. You'll also see that a platform
can add its specific category which only appears for one platform, in this case "Code Signing"
only exists for iOS templates because this folder only contains project templates for iOS. To
specify which platform a project template supports you would use the key.Platforms

Placeholder Reference

This is a reference of all predefined placeholder strings which Xcode will replace with actual
content when a template is created. These placeholder strings can be used in any file that a
template creates and adds to the project, mostly in source code files but XML and text-based
resource files will also have the placeholder strings replaced.

Note that placeholders can also be used in filenames of files in file and project templates.

Placeholder Description

___DATE___ The current date. Uses the NSCalendarData format
string "%x".

___YEAR___ The current year, in 4 digits.

 ___TIME___ The current time. Uses the NSCalendarData format
string "%X".

 ___ORGANIZATIONNAME___ The name of your Organization as set by you. Refer
to for more info.Change your Organization Name

___FILENAME___ The file name with extension.

___FILEBASENAME___ The file name without extension.

___FILEBASENAMEASIDENTIFIER___ The file name without extension. Any character that
is illegal in C variable names (eg # + etc.) is
replaced with an underscore.

___FILEEXTENSION___ The file's extension without the dot.

___USERNAME___ The login (short) user name of the currently logged
in user.

___FULLUSERNAME___ The full (not: login) user name of the currently
logged in user.

___PROJECTNAME___ The name of the current project.

___PROJECTNAMEASIDENTIFIER___ The name of the current project. Any character that
is illegal in C variable names (eg # + etc.) is
replaced with an underscore.

___PROJECTNAMEASXML___ The name of the current project. Special characters
are properly escaped to create a valid XML string,
eg < and > are replaced with < and &rt; respectively.

___PACKAGENAME___ The name of the current package. Usually identical
to project name.

___PACKAGENAMEASIDENTIFIER___ The name of the current package. Usually identical
to project name. Any character that is illegal in C
variable names (eg # + etc.) is replaced with an
underscore.

___PACKAGENAMEASXML___ The name of the current package. Usually identical
to project name. Special characters are properly
escaped to create a valid XML string, eg < and > are
replaced with < and &rt; respectively.

___UUID___ A (UUID).universally unique identifier

___UUIDASIDENTIFIER___ A (UUID). Any characteruniversally unique identifier
that is illegal in C variable names (eg # + etc.) is
replaced with an underscore.

http://de.wikipedia.org/wiki/Universally_Unique_Identifier
http://de.wikipedia.org/wiki/Universally_Unique_Identifier

___VARIABLE_identifier___ Replaced with a custom string defined by the
corresponding identifier of a entry or anDefinitions
Option. The identifier can be followed by a colon and
a special keyword to modify the string. See Variable

 for more information.Placeholders

Variable Placeholders

This section explains how you can create custom placeholders to be used with the
___VARIABLE_identifier___ placeholder as well as the specific ___*___ placeholder.Definitions

Options Variables

Options variables are placeholders following the syntax ___VARIABLE_identifier___ whereas
 is the identifier used by a particular entry. A typical example is an optionidentifier Options

that allows the user to specify the name of the subclass of an Objective-C class file template:

The identifier of this option is so you can use the placeholdercategoryClass
___VARIABLE_categoryClass___ in your files in order to replace it with the user's input or
selection of the categoryClass option.

The identifier part of an Options placeholder variable can be appended by special
keywords to further modify it. Currently there are only three known modifiers

, and :identifier bundleIdentifier RFC1034Identifier

___VARIABLE_identifier:identifier___
ensures that a legal C-style variable name is created, eg replaces illegal
characters with underscore

___VARIABLE_identifier:bundleIdentifier___
ensures that a legal bundle identifier is created

___VARIABLE_identifier:RFC1034Identifier___
ensures a legal RFC1034 aka domain name identifier is created

Definitions Variables

Similarly, you can specify variable placeholders in a entry by using the ___*___Definitions
syntax:

The key is which means it applies to any file that is followed by the variable *:import:*
 which in turn is followed by another variable (in this example: after that.import somefile.h

The second star (asterisk) becomes the actual variable that can be used in the definition's value
as a placeholder with the ___*___ syntax. That means ___*___ will be replaced with the string
following . This can be used in the section as follows:import Nodes

You'll see that the file is and that it is followed by the variable already defined inmain.c import
the section. Following that is the string which will result in the followingDefinitions somefile.h
line being added to main.c when the template is created:

The ___*___ syntax only works within the Definition section of a TemplateInfo.plist. It
can not be used as a regular placeholder in files.

Variables can be nested multiple times. For example, you can redefine the variable
(key) as and in the section you then have to write it*:import:special:* Nodes
as to achieve the same effect. This kindmain.c:import:special:somefile.h
of is helpful to group related variables together.namespace

Commonly Used Definitions Variables

The default Xcode templates define some commonly used variables which you might want to use
for your own project. They also serve as great examples for how the variable placeholders work
and what you can do with them.

Definition key Definition Value

:import:
import
"___*___"

Example Node Result

http://en.wikipedia.org/wiki/Namespace_%28computer_science%29

main.c:import:somefile.h
import
"somefile.h"

Definition key Definition Value

*:comments
//
// ___FILENAME___
// ___PACKAGENAME___
//
// Created by ___FULLUSERNAME___ on ___DATE___.
// Copyright ___YEAR___ ___ORGANIZATIONNAME___. All
rights reserved.
//

Example Node Result

main.c:comments
//
// main.c
// cmdtool
//
// Created by Steffen Itterheim on 01.04.11.
// Copyright 2011 __MyCompanyName__. All rights
reserved.
//

Definition key Definition Value

::importFoundation
#import
<Foundation/Foundation.h>

Example Node Result

MyClass.h:anything:importFoundation
#import
<Foundation/Foundation.h>

Definition key Definition Value

:class:
@class
___*___;

Example Node Result

MyClass.h:class:MyClass
@class
MyClass;

Definition key Definition Value

:dealloc:
[___*___ release];

Example Node Result

MyClass.m:dealloc and
MyClass.m:dealloc:myViewController - (void)dealloc

{
 [myViewController release];
 [dealloc];super
}

Definition key Definition Value

*:init Beginning:

- (id)init
{
 self =
[super
init];
 if
(self) {

End:

}
 return
self;
}

Example Node Result

MyClass.m:init
- (id)init
{
 self =
[super
init];
 if
(self) {
 }
 return
self;
}

Definition key Definition Value

:synthesize:
@synthesize ___*___;

Example Node Result

MyClass.h:synthesize:myVariable=myVariable_
@synthesize
myVariable=myVariable_

Related Information

Change your Organization Name

Many File Templates contain a placeholder that reads ___MyCompanyName___ even after the
file was created. It is supposed to be replaced by the name of your organization, but only if the
organization name is set. By default the organization name is empty.

In Xcode 4 you can change your organization name for each project. To do so, in the Project
Navigator list click on the Project itself (first item, blue icon).

With the File Inspector open, you can enter your organization name in the appropriately named
field. Now whenever you create a new file in this project, the ___MyCompanyName___ string will
be replaced with your organization name.

If the File Navigator panel on the right does not show up, in the Xcode menu go to
View -> Utilities -> File Inspector to show the File Inspector panel.

An alternative way to globally set your Organization Name is to open the Address
Book app, select your own Card and edit the card. You can then enter your company
name which will be used by Xcode from then on.

Changing the organization name will automatically change your organizationnot
name in already existing files. You'll have to do this manually using search & replace.
It is recommended to change your organization name at the start of a project.

Property List Editors

If you're not familiar with Property Lists (.plist files) it helps to understand the different kinds of
data types that can be stored using the key/value pairs used by Property Lists. You can find a

 on Wikipedia.Property List data types overview

http://en.wikipedia.org/wiki/Property_list#Mac_OS_X

For Xcode 4 Templates the basic data types are boolean, number and string. It should be fairly
obvious how they behave. The more interesting data types are arrays and dictionary. In a
Property List these data types allow you to create deeply nested collections of data. Each array
and dictionary can contain any other data type, including arrays and dictionaries.

In dictionaries, you can and usually have to edit the name of the key whereas in arrays the keys
can not be edited and will always be displayed as "Item x" with x being a sequential number,
starting with "Item 0".

Property List Editors

Until Xcode 4 the default Property List editor was the aptly named "Property List Editor.app"
found in the folder. You can still use that, but the/Developer/Applications/Utilities/
preferred editor is actually Xcode 4 itself. If you have Xcode 4 installed, double-clicking any .plist
file should open Xcode and a window showing the contents of the Property List file. The Xcode 4
editor is slightly more comfortable to work with.

Wikipedia lists two noteworthy Property List editor alternatives. One is which enablesPledit
Windows users to edit property list files. on the other hand is for Mac users. IPlistEdit Pro
haven't tried either of the two alternatives.

The built-in Property List Editor of Xcode 4 as well as the separate Property List
Editor app only display the first line of multi-line text. To find out whether a certain
string actually consists of multiple lines, you can double-click the value to edit it and
use the cursor keys to scroll up and down to change lines.

If you want to edit a multiline text you should temporarily select the entire text
(Cmd+A) and copy the selected text (Cmd+C). This allows you to edit the entire text
in a seperate text editor. To paste the text back into the value, double-click the value
and select the entire text again (Cmd+A) to overwrite the entire existing text, and
then paste your edited text (Cmd+V).

http://iphone.cazisoft.com/?p=569
http://www.fatcatsoftware.com/plisteditpro/

You could use a regular text editor to edit the plist but this is not advisable. You'll
often write text containing characters that need to be escaped properly in order to
retain the format of an XML file.

For example in XML you can't just write < or > in a regular string without breaking the
entire XML format. Instead you would need to write

<

and

&rt;

respectively. It's better to leave this error-prone job to the Property List editors or at
the very least a generic XML editor.

Property List Programming Guide

If you are interested in a programmatic interface to Property Lists, for example if you want to
create your own Property List editor or maybe a tool that makes creating Xcode Templates
easier, you should have a look at Apple's .Property List Programming Guide

Icon Composer

Each File and Project Template is usually accompanied with a file. ThisTemplateIcon.icns
file contains the icons for the template.

Icon Composer

You can create .icns files using Apple's Icon Composer.app which you can find in the
 folder of your Xcode installation. You can drag an/Developer/Applications/Utilities/

image file onto Icon Composer to one of the predefined image size boxes (512, 256, 128, 32,
16). Once you have an image in Icon Composer, you can drag the image from within Icon
Composer to another predefined image box. It is advisable to start with the largest image (512)
and drag the image to subsequently smaller image boxes.

You can not drag .JPG and .GIF files onto Icon Composer. It does accept .PNG files,
and it may accept other file formats but I haven't tried others.

http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html

TemplateIcon.icns

When you are satisfied with your new icon file, you'll have to save it into your template folder and
name it . Xcode will then use it as the icon of your Template.TemplateIcon.icns

Frequently Asked Questions (FAQ)

Can I create new project templates from scratch?
Xcode reports an error or crashes when creating a new Template. What's wrong?
Xcode crashes when trying to open the New Project dialog. How do I fix this?
Do I have to restart Xcode for template changes to show up?
Do template folders have to have the .xctemplate extension?
What are the TemplateChooser.plist files used for?
I have lots of files in my project template, can I copy them all at once?
Can I place files in a project template into a subgroup hierarchy in Xcode?
Can I use subfolders in the File Templates or Project Templates folder?
In the New File/Project dialog (left side) is it possible to have subfolders?
My folder does not show up as category, what's wrong?
My template does not show up, what's wrong?
Can I modify the New File / New Project dialog?
Can I add a .xcodeproj as referenced project to my project template?

Can I create new project templates from scratch?

Yes.

However there are so many variables and required template settings to configure that it is hardly
the best way to create your own custom templates entirely from scratch. Instead, it is highly
recommended to use the Apple project template that best fits your project's needs, then copy it to
your custom folder location and start tweaking it beginning with renaming the project templates

. Please refer to the s which explain how to make a copyIdentifier Basic Project Template Tutorial
of an existing Project Template.

At the very least you should rely on the which contain settings forcommonly used Ancestors
Objective-C projects and the desired target platform (Mac OS X respectively iPhone, iPad,
Universal).

Xcode reports an error or crashes when creating a new Template. What's wrong?

There are various combinations of settings that can not be used together, resulting in errors,
crashes and in same cases even data loss (please see). IOptions#ProductNameRequired
encountered several issues. There's too many to document all of these combinations, and it's
unlikely that I can help you with a particular crash, but I can give you some advice on how to find
and fix these issues:

Retrace the changes you've made since the last time the template worked, and undo these
changes.
Check the documentation - are you using parameters together which are or seem
unrelated? If you are using parameters that are only supported by File Templates in a
Project Template or vice versa there should be alarm bells ringing.
If the "logic" approach doesn't help, (temporarily) slim down your template step by step to
narrow down the root issue. Test after each change. If the crash disappears, it must be
caused by whatever you have removed last. Try re-adding that part step-by-step and by
doing so you'll be able to pin down the issue.
As a general rule of thumb: test early and often! You should test your templates frequently,
and definitely before and after each major change or addition. This includes building the
code because some issues (eg missing files) won't crop up until you actually build the
project.

Xcode crashes when trying to open the New Project dialog. How do I fix this?

Malformed TemplateInfo.plist can cause Xcode to crash when it is supposed to bring up the New
Project dialog. One common cause is to not have a unique key in the TemplateInfo.plistIdentifier
and all other templates it includes via . You might also have created a circularAncestors
reference via with two Templates including each other.Ancestors

One way to fix this is to remove all custom templates from the andTemplate Folder Locations
adding them back in one by one to find out which one is causing the crash. Always check all the
Ancestors beginning with the Template to verify that the inherited templates are alsoConcrete
well-formed and valid.

Do I have to restart Xcode for template changes to show up?

No. But you do have to close the New File or New Project dialog, then re-open it, for Xcode to
recognize your changes.

Xcode 4 will scan the user template folder whenever the New File, New Project or New Target
dialog is opened. You might want to memorize the keyboard shortcuts CMD+N and
SHIFT+CMD+N for opening the New File and New Project dialog respectively.

Do template folders have to have the .xctemplate extension?

Yes.

Xcode 4 will only recognize templates in folders using the .xctemplate extension. Xcode 3
templates did not have this requirement, which makes them easy to tell apart from Xcode 4
templates.

Merely appending the .xctemplate extension to Xcode 3 template folders will not
make them work in Xcode 4.

What are the TemplateChooser.plist files used for?

They're only used by Xcode 3 templates. Xcode 4 doesn't use TemplateChooser.plist files
anymore. If you see that file in a template's folder it's an indicator that this is actually a Xcode 3
template which won't work with Xcode 4.

I have lots of files in my project template, can I copy them all at once?

Yes and no.

You can point to a folder instead of each individual file with and . Xcode willNodes Definitions
then copy the contents of the entire folder (including subfolders) and add all files in that folder to
the newly created project. However, these files will only be added to the Copy Bundle Resources
build phase, in other words they won't be compiled so this is generally only useful for resource
files.

Please refer to for more information.Definitions#CopyFolder

Can I place files in a project template into a subgroup hierarchy in Xcode?

Yes. You can create a hierarchy of groups using project templates.

Please refer to for an example.Definitions#Subgroups

Can I use subfolders in the File Templates or Project Templates folder?

Yes.

But only the folder containing a folder with the .xctemplate extension will show up in the category
list. Meaning, you can't have a treeview of categories in the New File / New Project dialog.

In the New File/Project dialog (left side) is it possible to have subfolders?

No. See above.

My folder does not show up as category, what's wrong?

One common reason is that it does not contain a subfolder with the .xctemplate extension, or
none of the .xctemplate extension folders contain a (valid) TemplateInfo.plist file. For example,
the TemplateInfo.plist and all ancestors must have a correctly configured key.Kind

If your file system is formatted to be case sensitive, you may have to consider the
possibility that Xcode may only look for TemplateInfo.plist files but not
templateinfo.plist.

My template does not show up, what's wrong?

Verify that you have stored the template files and folders in the correct location for User
.Templates

Check that the template folder ends in because without this folder extension the.xctemplate
templates won't be recognized by Xcode. Make sure all TemplateInfo.plist files that your project
template includes (via Ancestors) are also in folders which end in ..xctemplate

Check that all the TemplateInfo.plist files that your template includes (via Ancestors) contains the
 item. Verify that exists and that it is of the correct type (check for spelling errors, too).Kind Kind

Check that the of the template and all templates it includes via Ancestors is unique. IfIdentifier
any of them isn't unique the template might not show up.

Can I modify the New File / New Project dialog?

Only with what's possible using template . You can determine the various optionsOptions
available to the user and depending on these settings create different versions of your template.
But you can't add your own code or user interface to the process.

Can I add a .xcodeproj as referenced project to my project template?

Not really.

Adding the referenced project itself is no problem. The problem is that the files used by that
external project aren't copied automatically when the template is created. If you don't mind

copying those yourself or having your user copy them manually, you'll be ok.

If you specify the other project's files in the / sections of the template, they willNodes Definitions
be added to the new project, but that is not what you want. The files are used by the other
project, they should not be added to the newly created project. At best you can get these files
copied this way but you'd have to remove them from the newly created project, because they're
also used by the referenced project.

In general the Xcode 4 project template system was never meant to support referenced Xcode
projects. I wasn't able to find a satisfying solution after many hours of trial and error.

	Xcode 4 Template Documentation
	Introduction to Xcode 4 Templates
	Introducing File Templates
	Introducing Project Templates

	Xcode 4 Template Tutorials
	Basic File Template Tutorial
	Advanced File Template Tutorial
	Minimal Project Template Tutorial
	Basic Project Template Tutorial
	Your Cocoa Application Project Template
	Your Cocoa Touch Application Project Template

	Xcode 4 Templates Reference
	Contents of TemplateInfo.plist
	AllowedTypes
	Ancestors
	Concrete
	DefaultCompletionName
	Definitions
	Description
	Identifier
	Kind
	MainTemplateFile
	Nodes
	Options
	Platforms
	Project
	SortOrder
	Targets

	Template Folder Locations
	Placeholder Reference
	Variable Placeholders

	Related Information
	Change your Organization Name
	Property List Editors
	Icon Composer

	Frequently Asked Questions (FAQ)

