
DESIGN & IMPLEMENTATION OF A RELIABLE MULTICAST PROTOCOL
FOR DISTRIBUTED VIRTUAL ENVIRONMENTS WRITTEN IN JAVA

Gunther Stuer
Frans Arickx

Jan Broeckhove
University of Antwerp

Department of Mathematics and Computer Sciences
Groenenborgerlaan 171, 2020 Antwerp, Belgium

gstuer@ruca.ua.ac.be

KEYWORDS
Reliable Multicast, Java, Distributed Virtual Reality

ABSTRACT
The goal of this paper is to present the full design and
implementation scheme regarding the construction of a
reliable multicast protocol suitable for distributed virtual
environments written in JAVA. Several techniques that
are used to reduce system resource usage and to improve
performance will be highlighted.

INTRODUCTION
First, let us put this paper in a broader perspective by
describing its relevance in the development of a highly
dynamical distributed virtual environment.

One of the main bottlenecks in virtual environments has
always been the availability of sufficient network
bandwidth to allow the participating objects to
communicate with each other [1]. With the introduction
of multicasting this problem was partly solved, but
traditional multicast protocols have two drawbacks. The
first problem is that they are based on best effort
approaches, i.e. message delivery is not guaranteed. In
order to achieve this guarantee, reliable multicast
protocols were introduced [15]. Although there are
already many such protocols, none is optimised for
distributed virtual environments [2]. Also, to our
knowledge, an implementation in Java has not yet been
attempted. The second problem is that multicast groups
are statically allocated [16]. With virtual environments
one usually considers spatial criteria to divide the world
in partitions, where each partition transmits its data on
one multicast group. However, with dynamic
environments this is not sufficient anymore. Participants
have a tendency to flock together and this leads to
situations where some groups are very heavily used, while
others are completely idle. Allocating multicast groups in
a dynamical way can solve this problem [3]. Techniques
that can be used for this include probing [4] and fuzzy
clustering [5]. With these methods we can determine at
runtime which participants should be put together in the
same multicast groups.

DESIGN GOALS
We have built our reliable multicast protocol taking into
account a number of design goals:

1. The protocol will be used in distributed virtual reality
systems. From previous work [6] we know that this has
some interesting implications. (a) The typical message
size used in virtual reality applications is rather small (<
1kB) because once the viewers know what an object looks
like and where it is positioned, one only needs to transmit
the changes with respect to that information. (b) Because
a frame rate of 30 Hz is considered acceptable, there is no
point in sending more than 30 update messages per
second. (c) When dead reckoning algorithms – i.e.
determination of the current position on the basis of
previous positions – are applied, an update rate of once
per second will often suffice. (d) When a message does
not arrive during the first few seconds after is has been
sent, it has completely lost its relevance to the virtual
world.

Based on the average message size and the maximum
number of message sent per second, we can make a
realistic prediction about buffer sizes and timeout
windows that are key parameters in implementing the
reliability in the protocols. It can also improve
performance because we do not need to resize our buffers
while in full action. Because we know the average and the
maximum throughput, we can apply the Usage Parameter
Control (UPC) algorithm a.k.a. leaky bucket algorithm.
This algorithm can be used to control bandwidth usage.
An example of this is its use in ATM networks [18]. And
most importantly, we can relax the reliability criteria.
Having the sender buffer messages, for possible
retransmissions, only for a certain amount of time and
then discarding them is appropriate for our problem. The
amount of time may vary depending on the type of
message. This way we can assign each message an
importance factor. Important messages should be kept
longer in the buffer.

2. The reliable multicast protocol has to be implemented
in JAVA. The main motivation is that the virtual reality
system that is being designed will be implemented in
Java. We chose Java because it has features that we want

to use, such as multithreading, loading classes across the
network and the write-once-run-everywhere strategy.

3.Since we do not need high throughput, we decided to let
good design prevail over performance. This way, the code
is more maintainable and can also be used for educational
purposes. One example of this is that we kept the
interface as simple as possible.

4.The primary design goal for our VR system is that it has
to be distributed. The termination of a node should only
have minimal impact on the whole. As a consequence of
this, the reliable multicast architecture used also has to be
completely distributed. This means that every
participating node should be independent of all others to
make the multicast reliable.

BACKGROUND INFORMATION
In the classification of reliable multicast protocols [7,8]
the approach that we use is most closely related to the
Transport Protocol for Reliable Multicast. When one
classifies on the basis of data buffering mechanisms [9], it
is a receiver-initiated approach. This means that no
acknowledgements (ACKs) of receipt are used. Instead,
the receiver transmits a negative acknowledgement
(NACK) if retransmission is needed, because of an error
in the message, because a skip in sequence numbers
indicated a missing message or because a timeout has
elapsed.

With this approach, two problems can arise: (1) a NACK
implosion due to the detection of a missing packet by
many receivers, and (2) buffer size limitations at the
sender side. Indeed, in principle, the sender needs to keep
all messages available for retransmission because a
NACK may arrive at any time. One never known whether
a message has been successfully received by all interested
parties. This leads to the fact that buffers should in theory
be infinite.

Waiting a pseudo-random time interval before sending a
NACK solves the first problem. When a client is waiting
to send a NACK and in the mean time it receives a
NACK-request from another client for the same missing
packets, it can drop his own request. The second problem
is solved heuristically by assuming that messages are of
no further interest after a configurable amount of time as
indicated above.

IMPLEMENTATION
In this paper we consider the implementation in Java of
our reliable multicast protocol, suitable for distributed
virtual reality applications. Details of some of the
algorithms and a proof of concept implementation were
discussed in [10]. The full implementation, considered
here, is characterized by improvements in the overall
design, by the introduction of design patterns [12], by
increased stability and by significant performance
enhancements. In our prototype implementation the use of
multithreading was pushed to the limit. Each message was

handled in its own thread, both at the sender and the
receiver side. Tests indicated that thread creation was a
bottleneck. Hence the design was modified to include a
thread pool and the recycling of used threads to handle
messages. This resulted in a speedup of approximately
200%. But because thread scheduling in Java depends
upon the multithreading library of the underlying
operating system, important differences, which lead to
instabilities, were seen between e.g. Windows and Solaris
based hosts. This is why we abandoned the thread pool
principle and wrote our own scheduler. Now, each
message can register itself with this scheduler and request
to be awoken at a certain time.

ALGORITHMS
In this section we will describe the most important
algorithms at work in our multicast library. Each
algorithm is characterized by one or more parameters.
The initial values are set on the basis of empirical data. To
discuss the algorithms we describe each parameter and
indicate its effect on them.

packetSize: This parameter determines the size of one
packet. Packets are the atomic units sent across the
Internet. A message is split up into a sequence of packets.
Too small values will create an overhead on the
algorithms, and an unrealistic header/data ratio. Too large
values on the other hand will lead to redundant bytes in
final message packets. This parameter defaults to 1024.
We chose this value for two reasons. We know from
experience that the size of a typical VR message is less
than one kilobyte. Secondly, because multicast uses UDP,
we must take care not to exceed its limits [17].

sendTimeOut: After a message has been sent, it has to be
kept available for a sufficient long time to handle
incoming NACK requests. This time interval is
configured using the sendTimeOut parameter. By default
it is set to thirty seconds because after this, it is of no
further interest to the virtual environment and the message
can be discarded. This value can be overridden for
individual messages. The default is only an initial value.
Our multicast system uses an adaptive algorithm to
determine the optimal value for the timeout. In figure 1
we show its effect on the sending algorithm.

All packets have been sent

timeOut

remove msg

incoming NACK-request

waiting

resent missing packets

reset timer

Increase timeout

Figure 1: timeout effect when sending

maxSending: To prevent flooding, we introduced the
maxSending parameter. It indicates the maximal amount
of messages that can be sent per second. By default it is
set to thirty because of the characteristics of VR
applications.

maxNacks: The amount of NACKs sent consecutively for
a particular message is limited by this parameter.
Whenever a response to one of the NACKs is received,
the counter is reset to zero. This limitation is important to
account for senders disconnected in the midst of sending a
message. By default it is set to ten retries.

recvTimeOut: Indicates the time interval the receiving
side waits between two incoming packets of one message
before sending a NACK containing the list of missing
packets for that particular message. If set too large the
system will idle for too long on defective messages and
responsiveness will drop. If set too small unnecessary
NACKs for well-sent and not yet received packets will be
transmitted, leading to redundant duplicate packets. The
value defaults to 150 milliseconds. This parameter is also
updated using an adaptive algorithm. Whenever a NACK
is transmitted, the connection is understood less reliable
than expected, and the timeout is increased by 40%.
Whenever a message is received without having to issue a
NACK the connection is expected to be better than
presumed, and the timeout is decreased by 10%. This way
one can cope with changes in the network and will always
find an optimal setting. This is done on a per sender base.
Its context is shown in fig. 2.

packet receivedtimeOut

all packets received missing packets

maxNACKs

Msg Created

waiting

add packet

reset timer

transfer msg
to OutQueue Remove Msg

resent missing
packets

Figure 2: Receiving a message

nackTimeOut: This is the time interval between sends of
two consecutive NACKs. If no response on a NACK after
this time interval was received, one can assume it was
lost, and a new NACK has to be sent. If the value is too
large, too much idle time will be spent on defective
messages and responsiveness will drop; if too small
unnecessary NACKs will be sent. The same adaptive
algorithm is applied as for recvTimeOut.
socketNr: The socket number the protocol will use. By
default it is 6789.

THE DESIGN
We present an overview of the design of our reliable
multicast protocol using the diagrams of the UML
notation [11]. When appropriate, the applied design
pattern [12] will be indicated.

User-View
This part describes the users and what they can do. The
reliable multicast protocol is implemented as a library
with two users, being the network and an application with
the need to reliably multicast a message (see fig. 3).

multicast

UsingApp Network

Figure 3: Context Diagram

User network can only transmit and receive individual
packets. The library is designed as a singleton pattern
[12]. This means that there can only be one instance
active. Once the using application has obtained the
singleton-instance it can perform the following tasks (see
fig. 4):

When the application want to receive messages coming
from group X, it can join this group using the joinGroup
(InetAddress X) method call.

When the application is no longer interested in messages
coming from group X, it can instruct the library to stop
listening using the leaveGroup (InetAddress X) method
call.

Sending a message is performed in two steps. First one
needs to acquire an output stream to write the data to. A
call to getPacketOutputStream () allow for this. Once an
output stream is obtained and filled up, a sendMessage
(PacketOutputStream, InetAddress) is issued to send the
data to the supplied multicast group. Note that it is
possible to send the same data to different groups.

All incoming messages are queued until the user picks
them up through the recvMsg () method. If the queue is
empty, this method will block. To prevent this, a call to
recvMsgAvailable () will return the amount of received
messages available in the queue.

«uses»
UsingApp

ManageGroups

SendMessage

RecvMessage

Network

SendPacket

RecvPacket

FillMessage

can be:
leave a group
join a group

is blocking!
check #msg first!

Figure 4: Use-Cases

Data Flow
Secondly, the dataflow through the multicast system is
considered. This describes the type of buffers an outgoing
or incoming message must pass through and discusses the
choice of data structures [13]. There are two major data
flows in the library. When sending a message there is a
flow from the application to the network. When receiving
a message there is a flow from the network to the
application.

Let us start by describing the dataflow when sending a
message (fig. 5). When sendMessage() is called, the
message is appended to a queue, which is used as an input
buffer temporarily storing messages to be sent. The
draining rate of the buffer is governed by maxSending.
After this, the message is transferred to a hash map [13],
where it is split up in a sequence of packets, which are
added to a priority queue from where they are
individually sent across the network. The message is
discarded from the hash map whenever a sendTimeOut
timeout occurs. If a NACK is received, the concerned
message should be localized as quickly as possible. As
each message has a unique id, and the NACK contains it,
a hash map is the best choice for optimal localization.

message message packets packetsApp. Queue HashMap PriorityQueue network

Figure 5: Data Flow - Send

Next, we describe the dataflow that occurs upon reception
of a message (see fig. 6). Messages typically consist of
multiple packets. An incoming packet from the network is
inserted in a queue with the sole purpose to decouple the
network from the library. When packets arrive too quickly
to be handled in real-time this is where they are
temporarily stored. From here they are transferred one by
one to the hash map of
(id, message) pairs. The packet is then appended to the
corresponding message. When the message is complete it
is transferred to another queue where it waits for the user.

network Queue HashMap Queue Apppacket packet message message

Figure 6: Data Flow - Receive

Components
Finally the individual components are presented in some
more detail to describe their action and implementation.

SettingsParser
This component reads all parameters, described above,
from an XML [14] file. It is implemented as a singleton
[12]. The file is parsed and stored in a hash map. The user
can call the getValueAsString (path) or getValueAsInt
(path) methods. They will search for the specified path
and return the corresponding value if found. A path has
the following syntax: “[tagName/]*[tagName]”.

Timer
The timer component notifies interested parties that a
certain amount of time has elapsed. It consists of several

classes (Timer, TimerEvent and LessTimerEvent) and one
interface (ITimer) (see fig. 7).

New notifications have to be scheduled. A TimerEvent
object that has to be created with two values, the object to
notify and a timeout in milliseconds implements the
notifications. A timeout can be set in three distinct ways:
as an absolute value in milliseconds, a relative value w.r.t.
the current time in milliseconds, or a Calendar object.

All objects that want to be notified must implement the
Itimer interface. It contains one method, wakeup
(TimerEvent), which is called by the scheduler when the
specified amount of time has elapsed. Because an object
can wait for more than one event, the TimerEvent that has
generated the notification is returned.

The Timer class implements the scheduling algorithm. It
has an OrderedSet [13] of TimerEvents. LessTimerEvent,
a binary predicate, determines the order. The TimerEvent
that comes first will also be the first in the list, and so on.
The timer-mechanism is implemented as a scheduler to
allow for a single thread that we experienced to be faster
and more stable than allocating individual threads to each
timer event. We chose an OrderedSet as a data structure
because (1) it is ordered and (2) it is fast in finding a
TimerEvent.

1

-manager -event
manages

java.lang.Thread

Timer TimerEvent

LessTimerEvent

com.jgl.BinaryPredicate

ITimer
«interface»

*

Figure 7: Timer - class diagram

Multicast
The Multicast class is the only one a user of the library
needs to know about. It is an implementation of the
façade [12] design pattern. It collects all the methods the
user needs to access. (See user-view).

Input/Output
All data enters or leaves the library in a stream. When the
user wants to send a message, a PacketOutputStream is
returned. As far as the user is concerned this is just an
ordinary output stream with all the operations one can
expect. Internally however the data are organized in a
singly linked list of Packets. Each packet contains a
parameterised amount of data. Packets are added as
needed. When the message is to be sent across the
network, this can be done with minimal overhead because
it is already chopped up in a sequence of packets.

For incoming packets, we use the same reasoning. The
user only accesses an input stream with the usual

operations. Internally, the data is organized as a linked-list
of packets. As above this ensures a minimal overhead.

Packet
In the Packet component three classes appear, the abstract
super class Packet and two derived classes MsgPacket
and NackPacket. Every packet contains a configurable
amount of bytes. The first eight bytes always contain the
common header information; the rest contains specific
header information and user data depending on the packet
type. Each packet shares its buffer with one
DatagramPacket. This eliminates the need to copy the
packet buffer to the datagram buffer when it has to be
transmitted. MsgPackets are used, as the name suggests,
for sending and receiving messages. Bytes 9 through 19
are used for storing the specific header information. The
streams mentioned earlier start at byte 20. A NackPacket
is used to transmit and receive NACKs. Every NackMsg
consists of exactly one NackPacket.

SerialNrManager.
Because every message needs to be uniquely identified in
the multicast system we introduce a component to
specifically manage this. The SerialNrManager contains a
hash map containing the last known serial message ids
received from a certain host via a certain multicast group.

When a packet is received, its host id and the group it
came from are extracted. Using this information the hash
map is checked for the last serial message id received. In
this way gaps in serial message ids can be detected.

When a new message is to be sent to a certain group a
new message id must be provided. It is obtained from the
SerialNrManager that returns the last active message id,
on this group for the local host, incremented by one.

PacketFactory
The PacketFactory, based on the factory pattern [12], has
two responsibilities. The first is receiving packets from
the network. All incoming packets are inserted into a
queue to decouple the network from the multicast library.
The second one is to keep track of all multicast groups
one should listen to. It is important to note that all NACK
replies will be transmitted on the same multicast group
that the original message was received from. This implies
that the group on which the message is sent has to be
listened to until the message has timed out and left the
system.

Messages.
This component represents the most important concept of
our multicast system. It collects all the messages to be
transmitted across the network. The component contains
an abstract super class Msg and three derived classes
NackMsg, SendMsg and RecvMsg (see fig. 8). When
constructed, every message registers itself on the
scheduler so that it will be notified when its timeout (resp.
SendTimeOut, or RecvTimeOut) period has elapsed. When
a new message is to be sent, a SendMsg object is created.
This class of messages is responsible for constructing the

message header for every packet it consists of, to handle
incoming NACK requests for this message, and to pass
the individual packets to the PacketDispatcher where they
can be transmitted. When a new message is received, a
RecvMsg object is created. It contains the logic to add
incoming packets to its data structure and to check
whether all packets have arrived. If not, and the
maxNackRequest has not been reached, a NACK is
issued. A NackMsg is constructed when a NACK has to
be sent. It contains the id of the targeted message and a
list of all missing packets. It is transmitted on the same
group the original message was received from.

NackPacket

Packet

1

1

consists of

1

1

has

1..*

1

consists of

Msg

ITimer
«interface»

NackMsgSendMsg RecvMsg

IDispatchable
«interface»

PacketOutputStream PacketInputStream

1 1
is used by

Figure 8: Msg class diagram

MsgContainer
If one component should be identified as the core
component of the reliable multicast system this would be
it. It contains all incoming and outgoing messages for
which the timeout has not yet expired. It is implemented
as a hash map to enable very fast location of individual
messages upon reception of NACK requests as explained
extensively above. Fig. 8 shows the processing of
incoming packets in the MsgContainer.

Dispatcher
The dispatcher is the component responsible for the
transmission of packets. The PacketDispatcher is
implemented as a priority queue of DispatchObjects. Each
one holds a message to dispatch and a priority. We
differentiate between three priorities. From high to low
we have: NACK-requests, NACK-responses and
messages. The dispatching algorithm is non pre-emptive.
When a message is transmitted, no matter what type, all
packets will be transmitted in sequence without
interruption. This is important to make sure that no
recvTimeOut would be triggered at the receiver.

Messages have the lowest priority because no entity is
waiting on a message not yet sent. NACKs on the other
hand have to be handled as fast as possible because of the
strict timeout values.

Packet retrieved
from queue

determine key
(=hostID + serialNr)

search key in
MsgContainer

deliver packet
to correct msg

SendMsg timed out
-> drop packet

create new RecvMsg for
keys with serialNr : oldSerial

--> new Serial-1

oldSerial is the last received serialNumber from this host on this group
newSerial is the serial number from this packet
==> hashmap of (host, group)

each participating host has a unique (random) hostID
each message it transmits has a unique sequential number

found not found

packet is NackRequest packet contains data

Add packet to hash

Update last serialNr

Lookup last serialNr
from this (host, group)

first packet from
 this (host,group)

other packets received
from this (host,group)

Create new RecvMsg

The queue where PacketFactory places its
packets in contains packets

Figure 8: Processing incoming packets

FUTURE WORK
This reliable multicast protocol is an important element in
a much bigger project: the creation of a highly dynamical
distributed virtual environment.

The next step will be the design and implementation of
the probe classes [4], which will strongly decrease the
total amount of messages sent when new objects enter the
virtual world. This technique is based upon the idea of
sending chunks of code to the participants instead of data.
This code will be able to negotiate whether the two
objects are interested in each other, or not. If they are, the
multicast groups on which they transmit their data will be
exchanged.

As a next step, we will implement the fuzzy clustering
algorithm [5] to dynamically allocate a fixed set of
multicast groups to all participating objects. The most
challenging task will be to define the criteria, which will
determine which objects should be grouped together at a
certain moment in time. To make this mechanism as
flexible as possible, the criteria will be described in XML
[14].

CONCLUSIONS
We think that we can safely conclude that the current
version of the reliable multicast protocol for distributed
virtual environment written in Java meets its design goals.
Performance analyses, which will be presented in two
forthcoming papers, prove that the performance is more
than adequate. The only limiting factor is the amount of
messages a node can handle per second, which is
currently about 350.

REFERENCES
1. Michael J. Zyda, “Networking Large-Scale

Virtual Environments”, Naval Postgraduate
School, Monterey, California, USA.

2. Kenneth P. Birman, “A Review of experiences
with reliable multicast”, Software – Practice and
Experience 29(9), 741-774 (1999)

3. Chris Greenhalgh, “Spatial Scope and Multicast
in Large Virtual Environments”, Technical
Report NOTTCS-TR-96-7 University of
Nottingham, UK, 1996

4. Gunther Stuer, Jan Broeckhove, Frans Arickx,
“A message oriented reliable multicast protocol
for a distributed virtual environment”, ICSE’99
(CS-163)

5. C. Looney, “Fuzzy Clustering: A new
algorithm”, ICSE’99 (CS-115)

6. Kris Demuynck, Jan Broeckhove, Frans Arickx,
“The VEplatform system: a system for
distributed virtual reality”, Future Generation
Computer Systems 14 (1998), pp. 193-198.

7. Katia Obraczka, “Multicast Transport Protocols:
A survey and taxonomy”, IEEE Communications
Magazine, January 1998, pp. 94-102.

8. B. Sabata, M.J. Brown, B.A. Denny, “Transport
Protocol for Reliable Multicast: TRM”, Proc.
IASTED International conference Networks,
January 1996, pp. 143-145.

9. Brian Neil Levine, J.J. Garcia-Luna-Aceves, “A
comparison of reliable multicast protocols”,
Multimedia Systems 6 (1998), pp. 334-348

10. Gunther Stuer, Frans Arickx, Jan Broeckhove,
“A message oriented reliable multicast protocol
for J.I.V.E.”, Parco99, Parallel Computing –
Fundamentals & Applications, pp. 681-688.

11. Grady Booch, James Rumbaugh, Ivar Jacobson,
”The Unified Modeling Language User Guide”,
Addison-Wesley.

12. Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides, “Design Patterns”, Addison-
Wesley.

13. Mark Allen Weiss, “Data Structures & Problem
Solving using Java”, Addison-Wesley.

14. St. Laurent, “Building XML Applications”,
Osborn McGraw-Hill.

15. Kara Ann Hall, “The implementation and
evaluation of reliable IP multicast”, University
of Tennessee, Knoxville, USA, 1994.

16. Chris Greenhalgh, “Dynamic, embodied
multicast groups in MASSIVE-2”, Technical
Report NOTTCS-TR-96-8, University of
Nottingham, UK, 1996.

17. W. Richard Stevens, “TCP/IP Illustrated, Vol 1:
The protocols”, ISBN 0201633469

18. William Stallings, “Data & Computer
Communications, 6th edition”, ISBN
0130843709, pp 405

