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ABSTRACT 
The goal of this paper is to present the full design and 
implementation scheme regarding the construction of a 
reliable multicast protocol suitable for distributed virtual 
environments written in JAVA. Several techniques that 
are used to reduce system resource usage and to improve 
performance will be highlighted. 

INTRODUCTION 
First, let us put this paper in a broader perspective by 
describing its relevance in the development of a highly 
dynamical distributed virtual environment.  

One of the main bottlenecks in virtual environments has 
always been the availability of sufficient network 
bandwidth to allow the participating objects to 
communicate with each other [1]. With the introduction 
of multicasting this problem was partly solved, but 
traditional multicast protocols have two drawbacks. The 
first problem is that they are based on best effort 
approaches, i.e. message delivery is not guaranteed. In 
order to achieve this guarantee, reliable multicast 
protocols were introduced [15]. Although there are 
already many such protocols, none is optimised for 
distributed virtual environments [2]. Also, to our 
knowledge, an implementation in Java has not yet been 
attempted. The second problem is that multicast groups 
are statically allocated [16]. With virtual environments 
one usually considers spatial criteria to divide the world 
in partitions, where each partition transmits its data on 
one multicast group. However, with dynamic 
environments this is not sufficient anymore. Participants 
have a tendency to flock together and this leads to 
situations where some groups are very heavily used, while 
others are completely idle. Allocating multicast groups in 
a dynamical way can solve this problem [3]. Techniques 
that can be used for this include probing [4] and fuzzy 
clustering [5]. With these methods we can determine at 
runtime which participants should be put together in the 
same multicast groups. 

DESIGN GOALS 
We have built our reliable multicast protocol taking into 
account a number of design goals:  

1. The protocol will be used in distributed virtual reality 
systems. From previous work [6] we know that this has 
some interesting implications. (a) The typical message 
size used in virtual reality applications is rather small (< 
1kB) because once the viewers know what an object looks 
like and where it is positioned, one only needs to transmit 
the changes with respect to that information. (b) Because 
a frame rate of 30 Hz is considered acceptable, there is no 
point in sending more than 30 update messages per 
second. (c) When dead reckoning algorithms – i.e. 
determination of the current position on the basis of 
previous positions – are applied, an update rate of once 
per second will often suffice.  (d) When a message does 
not arrive during the first few seconds after is has been 
sent, it has completely lost its relevance to the virtual 
world.  

Based on the average message size and the maximum 
number of message sent per second, we can make a 
realistic prediction about buffer sizes and timeout 
windows that are key parameters in implementing the 
reliability in the protocols. It can also improve 
performance because we do not need to resize our buffers 
while in full action. Because we know the average and the 
maximum throughput, we can apply the Usage Parameter 
Control (UPC) algorithm a.k.a. leaky bucket algorithm. 
This algorithm can be used to control bandwidth usage. 
An example of this is its use in ATM networks [18]. And 
most importantly, we can relax the reliability criteria. 
Having the sender buffer messages, for possible 
retransmissions, only for a certain amount of time and 
then discarding them is appropriate for our problem. The 
amount of time may vary depending on the type of 
message. This way we can assign each message an 
importance factor. Important messages should be kept 
longer in the buffer. 

2. The reliable multicast protocol has to be implemented 
in JAVA. The main motivation is that the virtual reality 
system that is being designed will be implemented in 
Java. We chose Java because it has features that we want 



to use, such as multithreading, loading classes across the 
network and the write-once-run-everywhere strategy.  

3.Since we do not need high throughput, we decided to let 
good design prevail over performance. This way, the code 
is more maintainable and can also be used for educational 
purposes. One example of this is that we kept the 
interface as simple as possible. 

4.The primary design goal for our VR system is that it has 
to be distributed. The termination of a node should only 
have minimal impact on the whole. As a consequence of 
this, the reliable multicast architecture used also has to be 
completely distributed. This means that every 
participating node should be independent of all others to 
make the multicast reliable.  

BACKGROUND INFORMATION 
In the classification of reliable multicast protocols [7,8] 
the approach that we use is most closely related to the 
Transport Protocol for Reliable Multicast. When one 
classifies on the basis of data buffering mechanisms [9], it 
is a receiver-initiated approach. This means that no 
acknowledgements (ACKs) of receipt are used. Instead, 
the receiver transmits a negative acknowledgement 
(NACK) if retransmission is needed, because of an error 
in the message, because a skip in sequence numbers 
indicated a missing message or because a timeout has 
elapsed. 

With this approach, two problems can arise: (1) a NACK 
implosion due to the detection of a missing packet by 
many receivers, and (2) buffer size limitations at the 
sender side. Indeed, in principle, the sender needs to keep 
all messages available for retransmission because a 
NACK may arrive at any time. One never known whether 
a message has been successfully received by all interested 
parties. This leads to the fact that buffers should in theory 
be infinite.  

Waiting a pseudo-random time interval before sending a 
NACK solves the first problem. When a client is waiting 
to send a NACK and in the mean time it receives a 
NACK-request from another client for the same missing 
packets, it can drop his own request. The second problem 
is solved heuristically by assuming that messages are of 
no further interest after a configurable amount of time as 
indicated above. 

IMPLEMENTATION 
In this paper we consider the implementation in Java of 
our reliable multicast protocol, suitable for distributed 
virtual reality applications. Details of some of the 
algorithms and a proof of concept implementation were 
discussed in [10]. The full implementation, considered 
here, is characterized by improvements in the overall 
design, by the introduction of design patterns [12], by 
increased stability and by significant performance 
enhancements. In our prototype implementation the use of 
multithreading was pushed to the limit. Each message was 

handled in its own thread, both at the sender and the 
receiver side. Tests indicated that thread creation was a 
bottleneck. Hence the design was modified to include a 
thread pool and the recycling of used threads to handle 
messages. This resulted in a speedup of approximately 
200%. But because thread scheduling in Java depends 
upon the multithreading library of the underlying 
operating system, important differences, which lead to 
instabilities, were seen between e.g. Windows and Solaris 
based hosts. This is why we abandoned the thread pool 
principle and wrote our own scheduler. Now, each 
message can register itself with this scheduler and request 
to be awoken at a certain time. 

ALGORITHMS 
In this section we will describe the most important 
algorithms at work in our multicast library. Each 
algorithm is characterized by one or more parameters. 
The initial values are set on the basis of empirical data. To 
discuss the algorithms we describe each parameter and 
indicate its effect on them. 

packetSize: This parameter determines the size of one 
packet. Packets are the atomic units sent across the 
Internet. A message is split up into a sequence of packets. 
Too small values will create an overhead on the 
algorithms, and an unrealistic header/data ratio. Too large 
values on the other hand will lead to redundant bytes in 
final message packets. This parameter defaults to 1024. 
We chose this value for two reasons. We know from 
experience that the size of a typical VR message is less 
than one kilobyte. Secondly, because multicast uses UDP, 
we must take care not to exceed its limits [17]. 

sendTimeOut: After a message has been sent, it has to be 
kept available for a sufficient long time to handle 
incoming NACK requests. This time interval is 
configured using the sendTimeOut parameter. By default 
it is set to thirty seconds because after this, it is of no 
further interest to the virtual environment and the message 
can be discarded. This value can be overridden for 
individual messages. The default is only an initial value. 
Our multicast system uses an adaptive algorithm to 
determine the optimal value for the timeout. In figure 1 
we show its effect on the sending algorithm. 

All packets have been sent
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Figure 1: timeout effect when sending 



maxSending: To prevent flooding, we introduced the 
maxSending parameter. It indicates the maximal amount 
of messages that can be sent per second. By default it is 
set to thirty because of the characteristics of VR 
applications.  

maxNacks: The amount of NACKs sent consecutively for 
a particular message is limited by this parameter. 
Whenever a response to one of the NACKs is received, 
the counter is reset to zero. This limitation is important to 
account for senders disconnected in the midst of sending a 
message. By default it is set to ten retries. 

recvTimeOut: Indicates the time interval the receiving 
side waits between two incoming packets of one message 
before sending a NACK containing the list of missing 
packets for that particular message. If set too large the 
system will idle for too long on defective messages and 
responsiveness will drop. If set too small unnecessary 
NACKs for well-sent and not yet received packets will be 
transmitted, leading to redundant duplicate packets. The 
value defaults to 150 milliseconds. This parameter is also 
updated using an adaptive algorithm. Whenever a NACK 
is transmitted, the connection is understood less reliable 
than expected, and the timeout is increased by 40%. 
Whenever a message is received without having to issue a 
NACK the connection is expected to be better than 
presumed, and the timeout is decreased by 10%. This way 
one can cope with changes in the network and will always 
find an optimal setting. This is done on a per sender base. 
Its context is shown in fig. 2. 
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Figure 2: Receiving a message 

nackTimeOut: This is the time interval between sends of 
two consecutive NACKs. If no response on a NACK after 
this time interval was received, one can assume it was 
lost, and a new NACK has to be sent. If the value is too 
large, too much idle time will be spent on defective 
messages and responsiveness will drop; if too small 
unnecessary NACKs will be sent. The same adaptive 
algorithm is applied as for recvTimeOut. 
socketNr: The socket number the protocol will use. By 
default it is 6789. 

THE DESIGN 
We present an overview of the design of our reliable 
multicast protocol using the diagrams of the UML 
notation [11]. When appropriate, the applied design 
pattern [12] will be indicated.  

User-View  
This part describes the users and what they can do. The 
reliable multicast protocol is implemented as a library 
with two users, being the network and an application with 
the need to reliably multicast a message (see fig. 3). 

multicast

UsingApp Network 

Figure 3: Context Diagram 

User network can only transmit and receive individual 
packets. The library is designed as a singleton pattern 
[12]. This means that there can only be one instance 
active. Once the using application has obtained the 
singleton-instance it can perform the following tasks (see 
fig. 4): 

When the application want to receive messages coming 
from group X, it can join this group using the joinGroup 
(InetAddress X) method call. 

When the application is no longer interested in messages 
coming from group X, it can instruct the library to stop 
listening using the leaveGroup (InetAddress X) method 
call. 

Sending a message is performed in two steps. First one 
needs to acquire an output stream to write the data to. A 
call to getPacketOutputStream () allow for this. Once an 
output stream is obtained and filled up, a sendMessage 
(PacketOutputStream, InetAddress) is issued to send the 
data to the supplied multicast group. Note that it is 
possible to send the same data to different groups. 

All incoming messages are queued until the user picks 
them up through the recvMsg () method. If the queue is 
empty, this method will block. To prevent this, a call to 
recvMsgAvailable () will return the amount of received 
messages available in the queue. 

«uses»
UsingApp

ManageGroups

SendMessage

RecvMessage

Network

SendPacket

RecvPacket

FillMessage

can be:
leave a group
join a group

is blocking!
check #msg first!  

Figure 4: Use-Cases 

 



Data Flow 
Secondly, the dataflow through the multicast system is 
considered. This describes the type of buffers an outgoing 
or incoming message must pass through and discusses the 
choice of data structures [13]. There are two major data 
flows in the library. When sending a message there is a 
flow from the application to the network. When receiving 
a message there is a flow from the network to the 
application. 

Let us start by describing the dataflow when sending a 
message (fig. 5). When sendMessage() is called, the 
message is appended to a queue, which is used as an input 
buffer temporarily storing messages to be sent. The 
draining rate of the buffer is governed by maxSending. 
After this, the message is transferred to a hash map [13], 
where it is split up in a sequence of packets, which are 
added to a priority queue from where they are 
individually sent across the network. The message is 
discarded from the hash map whenever a sendTimeOut 
timeout occurs. If a NACK is received, the concerned 
message should be localized as quickly as possible. As 
each message has a unique id, and the NACK contains it, 
a hash map is the best choice for optimal localization. 

message message packets packetsApp. Queue HashMap PriorityQueue network 

Figure 5: Data Flow - Send 

Next, we describe the dataflow that occurs upon reception 
of a message (see fig. 6). Messages typically consist of 
multiple packets. An incoming packet from the network is 
inserted in a queue with the sole purpose to decouple the 
network from the library. When packets arrive too quickly 
to be handled in real-time this is where they are 
temporarily stored. From here they are transferred one by 
one to the hash map of  
(id, message) pairs. The packet is then appended to the 
corresponding message. When the message is complete it 
is transferred to another queue where it waits for the user. 

network Queue HashMap Queue Apppacket packet message message  

Figure 6: Data Flow - Receive 

Components 
Finally the individual components are presented in some 
more detail to describe their action and implementation. 

SettingsParser  
This component reads all parameters, described above, 
from an XML [14] file. It is implemented as a singleton 
[12]. The file is parsed and stored in a hash map. The user 
can call the getValueAsString (path) or getValueAsInt 
(path) methods. They will search for the specified path 
and return the corresponding value if found. A path has 
the following syntax: “[tagName/]*[tagName]”. 

Timer 
The timer component notifies interested parties that a 
certain amount of time has elapsed. It consists of several 

classes (Timer, TimerEvent and LessTimerEvent) and one 
interface (ITimer) (see fig. 7).  

New notifications have to be scheduled. A TimerEvent 
object that has to be created with two values, the object to 
notify and a timeout in milliseconds implements the 
notifications. A timeout can be set in three distinct ways: 
as an absolute value in milliseconds, a relative value w.r.t. 
the current time in milliseconds, or a Calendar object.  

All objects that want to be notified must implement the 
Itimer interface. It contains one method, wakeup 
(TimerEvent), which is called by the scheduler when the 
specified amount of time has elapsed. Because an object 
can wait for more than one event, the TimerEvent that has 
generated the notification is returned. 

The Timer class implements the scheduling algorithm. It 
has an OrderedSet [13] of TimerEvents. LessTimerEvent, 
a binary predicate, determines the order. The TimerEvent 
that comes first will also be the first in the list, and so on. 
The timer-mechanism is implemented as a scheduler to 
allow for a single thread that we experienced to be faster 
and more stable than allocating individual threads to each 
timer event. We chose an OrderedSet as a data structure 
because (1) it is ordered and (2) it is fast in finding a 
TimerEvent. 

1

-manager -event
manages

java.lang.Thread

Timer TimerEvent

LessTimerEvent

com.jgl.BinaryPredicate

ITimer
«interface»
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Figure 7: Timer - class diagram 

Multicast 
The Multicast class is the only one a user of the library 
needs to know about. It is an implementation of the 
façade [12] design pattern. It collects all the methods the 
user needs to access. (See user-view).  

Input/Output  
All data enters or leaves the library in a stream. When the 
user wants to send a message, a PacketOutputStream is 
returned. As far as the user is concerned this is just an 
ordinary output stream with all the operations one can 
expect. Internally however the data are organized in a 
singly linked list of Packets. Each packet contains a 
parameterised amount of data. Packets are added as 
needed. When the message is to be sent across the 
network, this can be done with minimal overhead because 
it is already chopped up in a sequence of packets.  

For incoming packets, we use the same reasoning. The 
user only accesses an input stream with the usual 



operations. Internally, the data is organized as a linked-list 
of packets. As above this ensures a minimal overhead. 

Packet 
In the Packet component three classes appear, the abstract 
super class Packet and two derived classes MsgPacket 
and NackPacket. Every packet contains a configurable 
amount of bytes. The first eight bytes always contain the 
common header information; the rest contains specific 
header information and user data depending on the packet 
type. Each packet shares its buffer with one 
DatagramPacket. This eliminates the need to copy the 
packet buffer to the datagram buffer when it has to be 
transmitted. MsgPackets are used, as the name suggests, 
for sending and receiving messages. Bytes 9 through 19 
are used for storing the specific header information. The 
streams mentioned earlier start at byte 20. A NackPacket 
is used to transmit and receive NACKs. Every NackMsg 
consists of exactly one NackPacket. 

SerialNrManager. 
Because every message needs to be uniquely identified in 
the multicast system we introduce a component to 
specifically manage this. The SerialNrManager contains a 
hash map containing the last known serial message ids 
received from a certain host via a certain multicast group.  

When a packet is received, its host id and the group it 
came from are extracted. Using this information the hash 
map is checked for the last serial message id received. In 
this way gaps in serial message ids can be detected. 

When a new message is to be sent to a certain group a 
new message id must be provided. It is obtained from the 
SerialNrManager that returns the last active message id, 
on this group for the local host, incremented by one. 

PacketFactory 
The PacketFactory, based on the factory pattern [12], has 
two responsibilities. The first is receiving packets from 
the network. All incoming packets are inserted into a 
queue to decouple the network from the multicast library. 
The second one is to keep track of all multicast groups 
one should listen to. It is important to note that all NACK 
replies will be transmitted on the same multicast group 
that the original message was received from. This implies 
that the group on which the message is sent has to be 
listened to until the message has timed out and left the 
system. 

Messages. 
This component represents the most important concept of 
our multicast system. It collects all the messages to be 
transmitted across the network. The component contains 
an abstract super class Msg and three derived classes 
NackMsg, SendMsg and RecvMsg (see fig. 8). When 
constructed, every message registers itself on the 
scheduler so that it will be notified when its timeout (resp. 
SendTimeOut, or RecvTimeOut) period has elapsed. When 
a new message is to be sent, a SendMsg object is created. 
This class of messages is responsible for constructing the 

message header for every packet it consists of, to handle 
incoming NACK requests for this message, and to pass 
the individual packets to the PacketDispatcher where they 
can be transmitted. When a new message is received, a 
RecvMsg object is created. It contains the logic to add 
incoming packets to its data structure and to check 
whether all packets have arrived. If not, and the 
maxNackRequest has not been reached, a NACK is 
issued. A NackMsg is constructed when a NACK has to 
be sent. It contains the id of the targeted message and a 
list of all missing packets. It is transmitted on the same 
group the original message was received from. 

NackPacket

Packet
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1

1
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Msg

ITimer
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is used by

 

Figure 8: Msg class diagram 

MsgContainer 
If one component should be identified as the core 
component of the reliable multicast system this would be 
it. It contains all incoming and outgoing messages for 
which the timeout has not yet expired. It is implemented 
as a hash map to enable very fast location of individual 
messages upon reception of NACK requests as explained 
extensively above. Fig. 8 shows the processing of 
incoming packets in the MsgContainer. 

Dispatcher 
The dispatcher is the component responsible for the 
transmission of packets. The PacketDispatcher is 
implemented as a priority queue of DispatchObjects. Each 
one holds a message to dispatch and a priority. We 
differentiate between three priorities. From high to low 
we have: NACK-requests, NACK-responses and 
messages. The dispatching algorithm is non pre-emptive. 
When a message is transmitted, no matter what type, all 
packets will be transmitted in sequence without 
interruption. This is important to make sure that no 
recvTimeOut would be triggered at the receiver.  

Messages have the lowest priority because no entity is 
waiting on a message not yet sent. NACKs on the other 
hand have to be handled as fast as possible because of the 
strict timeout values. 
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Figure 8: Processing incoming packets 

FUTURE WORK 
This reliable multicast protocol is an important element in 
a much bigger project: the creation of a highly dynamical 
distributed virtual environment.  

The next step will be the design and implementation of 
the probe classes [4], which will strongly decrease the 
total amount of messages sent when new objects enter the 
virtual world. This technique is based upon the idea of 
sending chunks of code to the participants instead of data. 
This code will be able to negotiate whether the two 
objects are interested in each other, or not. If they are, the 
multicast groups on which they transmit their data will be 
exchanged. 

As a next step, we will implement the fuzzy clustering 
algorithm [5] to dynamically allocate a fixed set of 
multicast groups to all participating objects. The most 
challenging task will be to define the criteria, which will 
determine which objects should be grouped together at a 
certain moment in time. To make this mechanism as 
flexible as possible, the criteria will be described in XML 
[14]. 

CONCLUSIONS 
We think that we can safely conclude that the current 
version of the reliable multicast protocol for distributed 
virtual environment written in Java meets its design goals. 
Performance analyses, which will be presented in two 
forthcoming papers, prove that the performance is more 
than adequate.  The only limiting factor is the amount of 
messages a node can handle per second, which is 
currently about 350.  
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