
© March 2009 Altera Corporation

NII51007-9.0.0
9. PIO Core
Core Overview
The parallel input/output (PIO) core with Avalon® interface provides a
memory-mapped interface between an Avalon® Memory-Mapped (Avalon-MM)
slave port and general-purpose I/O ports. The I/O ports connect either to on-chip
user logic, or to I/O pins that connect to devices external to the FPGA.

The PIO core provides easy I/O access to user logic or external devices in situations
where a “bit banging” approach is sufficient. Some example uses are:

■ Controlling LEDs

■ Acquiring data from switches

■ Controlling display devices

■ Configuring and communicating with off-chip devices, such as
application-specific standard products (ASSP)

The PIO core interrupt request (IRQ) output can assert an interrupt based on input
signals. The PIO core is SOPC Builder ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”

■ “Example Configurations” on page 9–3

■ “Instantiating the PIO Core in SOPC Builder” on page 9–4

■ “Device Support” on page 9–5

■ “Software Programming Model” on page 9–5

Functional Description
Each PIO core can provide up to 32 I/O ports. An intelligent host such as a
microprocessor controls the PIO ports by reading and writing the register-mapped
Avalon-MM interface. Under control of the host, the PIO core captures data on its
inputs and drives data to its outputs. When the PIO ports are connected directly to
I/O pins, the host can tristate the pins by writing control registers in the PIO core.
Figure 9–1 shows an example of a processor-based system that uses multiple PIO
cores to drive LEDs, capture edges from on-chip reset-request control logic, and
control an off-chip LCD display.
Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals

9–2 Chapter 9: PIO Core
Functional Description
When integrated into an SOPC Builder-generated system, the PIO core has two
user-visible features:

■ A memory-mapped register space with four registers: data, direction,
interruptmask, and edgecapture

■ 1 to 32 I/O ports

The I/O ports can be connected to logic inside the FPGA, or to device pins that
connect to off-chip devices. The registers provide an interface to the I/O ports via the
Avalon-MM interface. See Table 9–2 on page 9–6 for a description of the registers.

Data Input and Output
The PIO core I/O ports can connect to either on-chip or off-chip logic. The core can be
configured with inputs only, outputs only, or both inputs and outputs. If the core is
used to control bidirectional I/O pins on the device, the core provides a bidirectional
mode with tristate control.

The hardware logic is separate for reading and writing the data register. Reading the
data register returns the value present on the input ports (if present). Writing data
affects the value driven to the output ports (if present). These ports are independent;
reading the data register does not return previously-written data.

Edge Capture
The PIO core can be configured to capture edges on its input ports. It can capture
low-to-high transitions, high-to-low transitions, or both. Whenever an input detects
an edge, the condition is indicated in the edgecapture register. The types of edges
detected is specified at system generation time, and cannot be changed via the
registers.

Figure 9–1. An Example System Using Multiple PIO Cores

S
ystem

 Interconnect Fabric

CPU

PIO core
(output only)

Program
 and Data
Memory PIO

core
 (bidirectional)

IRQ

 LEDs

Edge
Capture

PIO
core

(input
only)

Reset
request

logic

Altera FPGA

4

11 LCD
 display
Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals © March 2009 Altera Corporation

Chapter 9: PIO Core 9–3
Example Configurations
IRQ Generation
The PIO core can be configured to generate an IRQ on certain input conditions. The
IRQ conditions can be either:

■ Level-sensitive—The PIO core hardware can detect a high level. A NOT gate can be
inserted external to the core to provide negative sensitivity.

■ Edge-sensitive—The core’s edge capture configuration determines which type of
edge causes an IRQ

Interrupts are individually maskable for each input port. The interrupt mask
determines which input port can generate interrupts.

Example Configurations
Figure 9–2 shows a block diagram of the PIO core configured with input and output
ports, as well as support for IRQs.

Figure 9–3 shows a block diagram of the PIO core configured in bidirectional mode,
without support for IRQs.

Avalon-MM Interface
The PIO core’s Avalon-MM interface consists of a single Avalon-MM slave port. The
slave port is capable of fundamental Avalon-MM read and write transfers. The
Avalon-MM slave port provides an IRQ output so that the core can assert interrupts.

Figure 9–2. PIO Core with Input Ports, Output Ports, and IRQ Support

Figure 9–3. PIO Core with Bidirectional Ports

data
in

out

address

data

control

IRQ

 32

interruptmask

edgecapture

Avalon-MM
interface

to on-chip
logic

direction

data
in

out

address

data

control

 32
Avalon-MM

interface
to on-chip

logic
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals

9–4 Chapter 9: PIO Core
Instantiating the PIO Core in SOPC Builder
Instantiating the PIO Core in SOPC Builder
Use the MegaWizard™ interface for the PIO core in SOPC Builder to configure the
core. The following sections describe the available options.

Basic Settings
The Basic Settings page allows you to specify the width, direction and reset value of
the I/O ports.

Width
The width of the I/O ports can be set to any integer value between 1 and 32.

Direction
You can set the port direction to one of the options shown in Table 9–1.

Output Port Reset Value
You can specify the reset value of the output ports. The range of legal values depends
on the port width.

Output Register
The option Enable individual bit set/clear output register allows you to set or clear
individual bits of the output port. When this option is turned on, two additional
registers—outset and outclear—are implemented. You can use these registers to
specify the output bit to set and clear.

Input Options
The Input Options page allows you to specify edge-capture and IRQ generation
settings. The Input Options page is not available when Output ports only is selected
on the Basic Settings page.

Edge Capture Register
Turn on Synchronously capture to include the edge capture register, edgecapture,
in the core. The edge capture register allows the core to detect and generate an
optional interrupt when an edge of the specified type occurs on an input port. The
user must further specify the following features:

Table 9–1. Direction Settings

Setting Description

Bidirectional (tristate) ports In this mode, each PIO bit shares one device pin for driving and
capturing data. The direction of each pin is individually selectable. To
tristate an FPGA I/O pin, set the direction to input.

Input ports only In this mode the PIO ports can capture input only.

Output ports only In this mode the PIO ports can drive output only.

Both input and output ports In this mode, the input and output ports buses are separate,
unidirectional buses of n bits wide.
Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals © March 2009 Altera Corporation

Chapter 9: PIO Core 9–5
Device Support
■ Select the type of edge to detect:

■ Rising Edge

■ Falling Edge

■ Either Edge

■ Turn on Enable bit-clearing for edge capture register to clear individual bit in the
edge capture register. To clear a given bit, write 1 to the bit in the edge capture
register.

Interrupt
Turn on Generate IRQ to assert an IRQ output when a specified event occurs on
input ports. The user must further specify the cause of an IRQ event:

■ Level—The core generates an IRQ whenever a specific input is high and interrupts
are enabled for that input in the interruptmask register.

■ Edge—The core generates an IRQ whenever a specific bit in the edge capture
register is high and interrupts are enabled for that bit in the interruptmask
register.

When Generate IRQ is off, the interruptmask register does not exist.

Simulation
The Simulation page allows you to specify the value of the input ports during
simulation. Turn on Hardwire PIO inputs in test bench to set the PIO input ports to a
certain value in the testbench, and specify the value in Drive inputs to field.

Device Support
The PIO core supports all Altera® device families.

Software Programming Model
This section describes the software programming model for the PIO core, including
the register map and software constructs used to access the hardware. For Nios® II
processor users, Altera provides the HAL system library header file that defines the
PIO core registers. The PIO core does not match the generic device model categories
supported by the HAL, so it cannot be accessed via the HAL API or the ANSI C
standard library.

The Nios II Embedded Design Suite (EDS) provides several example designs that
demonstrate usage of the PIO core. In particular, the count_binary.c example uses the
PIO core to drive LEDs, and detect button presses using PIO edge-detect interrupts.

Software Files
The PIO core is accompanied by one software file, altera_avalon_pio_regs.h. This file
defines the core’s register map, providing symbolic constants to access the low-level
hardware.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals

9–6 Chapter 9: PIO Core
Software Programming Model
Register Map
An Avalon-MM master peripheral, such as a CPU, controls and communicates with
the PIO core via the four 32-bit registers, shown in Table 9–2. The table assumes that
the PIO core’s I/O ports are configured to a width of n bits.

data Register
Reading from data returns the value present at the input ports. If the PIO core
hardware is configured in output-only mode, reading from data returns an
undefined value.

Writing to data stores the value to a register that drives the output ports. If the PIO
core hardware is configured in input-only mode, writing to data has no effect. If the
PIO core hardware is in bidirectional mode, the registered value appears on an output
port only when the corresponding bit in the direction register is set to 1 (output).

direction Register
The direction register controls the data direction for each PIO port, assuming the
port is bidirectional. When bit n in direction is set to 1, port n drives out the value
in the corresponding bit of the data register.

The direction register only exists when the PIO core hardware is configured in
bidirectional mode. The mode (input, output, or bidirectional) is specified at system
generation time, and cannot be changed at runtime. In input-only or output-only
mode, the direction register does not exist. In this case, reading direction
returns an undefined value, writing direction has no effect.

After reset, all bits of direction are 0, so that all bidirectional I/O ports are configured
as inputs. If those PIO ports are connected to device pins, the pins are held in a
high-impedance state. In bi-directional mode, to change the direction of the PIO port,
reprogram the direction register.

Table 9–2. Register Map for the PIO Core

Offset Register Name R/W (n-1) ... 2 1 0

0 data read access R Data value currently on PIO inputs

write access W New value to drive on PIO outputs

1 direction (1) R/W Individual direction control for each I/O port. A value of
0 sets the direction to input; 1 sets the direction to
output.

2 interruptmask (1) R/W IRQ enable/disable for each input port. Setting a bit to 1
enables interrupts for the corresponding port.

3 edgecapture (1), (2) R/W Edge detection for each input port.

4 outset W Specifies which bit of the output port to set.

5 outclear W Specifies which output bit to clear.

Notes to Table 9–2:

(1) This register may not exist, depending on the hardware configuration. If a register is not present, reading the register returns an undefined
value, and writing the register has no effect.

(2) Writing any value to edgecapture clears all bits to 0.
Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals © March 2009 Altera Corporation

Chapter 9: PIO Core 9–7
Software Programming Model
interruptmask Register
Setting a bit in the interruptmask register to 1 enables interrupts for the
corresponding PIO input port. Interrupt behavior depends on the hardware
configuration of the PIO core. See “Interrupt Behavior” on page 9–7.

The interruptmask register only exists when the hardware is configured to
generate IRQs. If the core cannot generate IRQs, reading interruptmask returns an
undefined value, and writing to interruptmask has no effect.

After reset, all bits of interruptmask are zero, so that interrupts are disabled for all
PIO ports.

edgecapture Register
Bit n in the edgecapture register is set to 1 whenever an edge is detected on input
port n. An Avalon-MM master peripheral can read the edgecapture register to
determine if an edge has occurred on any of the PIO input ports. If the option Enable
bit-clearing for edge capture register is turned off, writing any value to the
edgecapture register clears all bits in the register. Otherwise, writing a 1 to a
particular bit in the register clears only that bit.

The type of edge(s) to detect is fixed in hardware at system generation time. The
edgecapture register only exists when the hardware is configured to capture edges.
If the core is not configured to capture edges, reading from edgecapture returns an
undefined value, and writing to edgecapture has no effect.

outset and outclear Registers
You can use the outset and outclear registers to set and clear individual bits of
the output port. For example, to set bit 6 of the output port, write 0x40 to the outset
register. Writing 0x08 to the outclear register clears bit 3 of the output port.

These registers are only present when the option Enable individual bit set/clear
output register is turned on.

Interrupt Behavior
The PIO core outputs a single IRQ signal that can connect to any master peripheral in
the system. The master can read either the data register or the edgecapture register
to determine which input port caused the interrupt.

When the hardware is configured for level-sensitive interrupts, the IRQ is asserted
whenever corresponding bits in the data and interruptmask registers are 1. When
the hardware is configured for edge-sensitive interrupts, the IRQ is asserted
whenever corresponding bits in the edgecapture and interruptmask registers
are 1. The IRQ remains asserted until explicitly acknowledged by disabling the
appropriate bit(s) in interruptmask, or by writing to edgecapture.

Software Files
The PIO core is accompanied by the following software file. This file provide
low-level access to the hardware. Application developers should not modify the file.

■ altera_avalon_pio_regs.h—This file defines the core’s register map, providing
symbolic constants to access the low-level hardware. The symbols in this file are
used by device driver functions.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals

9–8 Chapter 9: PIO Core
Document Revision History
Document Revision History
Table 9–3 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 9–3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

March 2009

v9.0.0

Added a section on new registers, outset and outclear. —

November 2008

v8.1.0

Changed to 8-1/2 x 11 page size. Added the description for Output
Port Reset Value and Simulation parameters.

—

May 2008

v8.0.0

No change from previous release. —
Quartus II Handbook Version 9.0 Volume 5: Embedded Peripherals © March 2009 Altera Corporation

http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

	9. PIO Core
	Core Overview
	Functional Description
	Data Input and Output
	Edge Capture
	IRQ Generation

	Example Configurations
	Avalon-MM Interface

	Instantiating the PIO Core in SOPC Builder
	Basic Settings
	Width
	Direction
	Output Port Reset Value
	Output Register

	Input Options
	Edge Capture Register
	Interrupt

	Simulation

	Device Support
	Software Programming Model
	Software Files
	Register Map
	data Register
	direction Register
	interruptmask Register
	edgecapture Register
	outset and outclear Registers

	Interrupt Behavior
	Software Files

	Document Revision History

