The VLDB Journal (2005) 14: 257-277 / Digital Object Identifier (DOI) 10.1007/s00778-004-0140-6

Concurrency control and recovery for balanced B-link trees

Ibrahim Jaluta!, Seppo Sippu?, Eljas Soisalon-Soininen'

! Department of Computer Science and Engineering, Helsinki University of Technology, P.O. Box 5400, 02015 HUT, Finland

(e-mail: {ijaluta, ess} @cs.hut.fi)

2 Department of Computer Science, University of Helsinki, P.O. Box 68 (Gustaf Hallstromin katu 2b), 00014 University of Helsinki, Finland

(e-mail: sippu@cs.helsinki.fi)

Edited by B. Seeger. Received: October 8, 2003 / Accepted: February 19, 2004

Published online: September 14, 2004 — (©) Springer-Verlag 2004

Abstract. In this paper we present new concurrent and re-
coverable B-link-tree algorithms. Unlike previous algorithms,
ours maintain the balance of the B-link tree at all times, so that
a logarithmic time bound for a search or an update operation
is guaranteed under arbitrary sequences of record insertions
and deletions. A database transaction can contain any number
of operations of the form “fetch the first (or next) matching
record”, “insert arecord”, or “delete arecord”’, where database
records are identified by their primary keys. Repeatable-read-
level isolation for transactions is guaranteed by key-range
locking. The algorithms apply the write-ahead logging (WAL)
protocol and the steal and no-force buffering policies for in-
dex and data pages. Record inserts and deletes on leaf pages
of a B-link tree are logged using physiological redo-undo log
records. Each structure modification such as a page split or
merge is made an atomic action by keeping the pages involved
in the modification latched for the (short) duration of the mod-
ification and the logging of that modification; at most two B-
link-tree pages are kept X-latched at a time. Each structure
modification brings the B-link tree into a structurally con-
sistent and balanced state whenever the tree was structurally
consistent and balanced initially. Each structure modification
is logged using a single physiological redo-only log record.
Thus, a structure modification will never be undone even if
the transaction that gave rise to it eventually aborts. In restart
recovery, the redo pass of our ARIES-based recovery protocol
will always produce a structurally consistent and balanced B-
link tree, on which the database updates by backward-rolling
transactions can always be undone logically, when a physical
(page-oriented) undo is no longer possible.

Keywords: B-link tree — Transaction — Concurrency control
— Tree-structure modifications — Recovery

1 Introduction

The B-link-tree structure was introduced by Lehman and Yao
[14]. A B-link tree is a BXtree in which the nodes on each level
of the tree are linked from left to right. Each node of the B-link
tree stores a high-key value that serves as an upper bound for

the key values stored in the subtree rooted at that node. In the
B-link-tree algorithms in [14], a search operation does not lock
any nodes during the tree traversal, while an insert operation
S-locks one node at a time. An insert operation releases its
lock on a parent node before acquiring a lock on the node’s
child during tree traversal. When a leaf node is reached, the
insert operation X -locks that node. In these algorithms, a split
operation is executed in two phases: a half split followed by
a complete split. The advantage of the link technique is that a
search operation is compensated for a missed split of a node
by following the right link of that node. The major problem
with the B-link algorithms in [14] is that no provision is made
for handling underflown nodes. The authors proposed that the
B-link tree be rebalanced offline.

Sagiv [26] showed how to implement the B-link algorithms
in [14] in such a way that search and insert operations lock
only one node at a time. That is, a lock on a node is released
before acquiring a lock on the node’s child. The main contri-
bution of the B-link algorithms in [26] is the introduction of an
independent compression process. This process can run con-
currently with search and insert operations, and it restructures
the B-link tree by merging the underflown nodes. However,
the algorithms in [26] suffer from the following drawbacks.
First, it is not clear how often such a compression process
should be run. The B-link tree may get out of balance and its
performance may deteriorate before the compression process
is run the next time. Second, a search process may end up
in a wrong node because underflown nodes are merged in a
nonuniform manner: entries are sometimes moved to the right,
sometimes to the left. Also, inserters may end up trying to up-
date a node far to the right. Third, merging of an underflown
node by the compression process involves X-locking three
nodes simultaneously on two adjacent levels of the tree.

Lanin and Shasha [13] presented B-link-tree algorithms
that treat deletions symmetrically with insertions. These al-
gorithms use the same locking protocol for search and in-
sert operations as those in [26]. The merge operation in
[13] is performed in two phases: a half-merge followed by
a complete-merge. A half-merge X-locks two nodes at the
same level of the tree simultaneously, while a complete-merge
X-locks one node at a time. Due to the early-lock-releasing
strategy followed in these algorithms, the complete-split and

258 I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

complete-merge operations may encounter “inconsistent” sit-
uations when they try to update a parent node at a higher level
of the tree. That is, a complete-split operation may find that
the key value it is trying to insert into the parent node is al-
ready (still) there, and a complete-merge operation may find
that a key to be deleted from the parent node does not exist
there (yet) [29]. These algorithms have the drawback that a
complete-split or a complete-merge may have to be restated
repeatedly by traversing the tree from the root whenever such
an operation reaches an inconsistent situation. Moreover, a
node in the B-link tree may have a long chain of right sibling
nodes that are not linked to their parent node. As a result, the
tree balance may be lost and the search time may no longer
be logarithmic in the number of database records stored in the
tree.

The improvements to Sagiv’s compression process pre-
sented in [3,5] guarantee a filling factor of at least 50% for
B-link-tree nodes and avoid a search operation from reach-
ing a wrong node. The periodic tree-restructuring process in
[3] merges underflown nodes and performs node splits above
the leaf-node level of the tree. An insert operation may split
a node at the leaf-node level only. The periodic restructuring
process in [3] cannot be run concurrently with search, insert,
and delete operations. It is run asynchronously, and thus tree
balance cannot be guaranteed at all times.

In [4], concurrent algorithms for doubly-linked B+trees
(i.e., the tree nodes on each level are linked from left to right
and from right to left) are presented. A search operation does
not lock any nodes during the tree traversal, while updaters
lock one at a time. A split operation X-locks two nodes at
a time and never X -locks the newly allocated node, while a
merge operation X -locks four nodes at most simultaneously.
In these algorithms, the maintenance (tree balancing, garbage
collection) is done by the insert and delete operations them-
selves. Many unrealistic assumptions, such as that the B-link-
tree height never increases or decreases, are made in these
algorithms.

Despite the enormous amount of work done in the area of
concurrency control of B-trees in centralized systems [1-7,
11-14,16,17,19,23,24,26,27], only a few studies have con-
sidered recovery. In [2,6,7] recovery protocols for B=trees in
centralized systems are sketched. Mohan and Levine [21] were
the first to present detailed B=£-tree concurrency-control and
recovery protocols for centralized systems. The recovery pro-
tocol is based on ARIES [22]. Concurrency and recovery for
B-link trees in centralized systems are considered by Lomet
and Salzberg [16,17] and for generalized search trees by Kor-
nacker et al. [11]. However, in the algorithms in [7,11,16,17,
21], a tree-structure modification interrupted by a transaction
abort or a system failure always has to be rolled back (undone).

We summarize the main problems associated with the
B-link algorithms in [3-5,13,14,26] as follows.

1. Variable-length keys cannot be dealt with.

2. When deleting the rightmost child of a parent node P in a
B-link tree, the updating of the high-key value in P may
propagate up the tree.

3. A split operation X-locks just the (full) node to be split
and never X-locks the newly allocated node. This is not
safe when a transaction contains key-range-scan opera-
tions (see [18]).

4. Tree-structure modifications (node splits or merges) are
part of the transaction that triggered such a structure mod-
ification, which limits the degree of concurrency.

5. The concurrency control is at the node (page) level, and
thus the degree of concurrency is very limited.

6. The transaction considered usually consists only of a single
operation, and no key-range scans are included.

7. Empty nodes in the B-link tree cannot be deallocated im-
mediately, and a node in the tree can have a long chain
of right sibling nodes that are not linked to their parent
node. Hence, the B-link tree may get out of balance, and
its performance may deteriorate.

8. No recovery protocols to deal with transaction aborts or
system failures are described.

9. No formal correctness proofs and no worst-case analyses
are included.

The early-lock-releasing strategy followed in the B-link-
tree algorithms in [13,14,26] can provide a high degree of
concurrency. But the B-link tree can get out of balance due to
the presence of many empty nodes and long chains of parent-
less nodes, and hence the tree performance may deteriorate
over time. Moreover, designing recovery protocols for B-link
trees to deal with transaction aborts and system failure could
be quite complex and could constrain the degree of concur-
rency. Therefore, many studies [16,17,28-30] have proposed
the use of lock coupling in B-link-tree algorithms to avoid the
problems associated with the early-lock-releasing strategy. In
[28,29], it is suggested that updaters hold an IS lock on a
newly split or merged node of the B-link tree while acquiring
an X lock on the appropriate parent node, i.e., lock coupling
on the way up. In [30], updaters use lock coupling to propa-
gate node splitting or merging up the B-link tree. In a study on
real-time databases [8], lock-coupling algorithms were found
to perform better than early-lock-releasing (link) algorithms
[13,14,26].

Lomet and Salzberg’s algorithms [17] are the most closely
related to our paper. In the algorithms presented in [16,17],
a tree-structure modification involving several levels of the
tree is divided into smaller structure modifications (atomic
actions). All structure modifications on levels of the tree above
the leaf level are independent of database transactions and are
of short duration. Lomet and Salzberg proposed that a tree-
structure modification such as a node split or merge could be
implemented as an atomic action using a separate database
transaction, a special transaction, or as a “nested top action”
(for nested top actions see [19-22]). Each atomic structure
modification is logged using redo-undo log records. Searchers
and updaters in [16, 17] employ a latch-coupling protocol with
S and U latches, respectively, where a U latch is compatible
with an S latch but incompatible with an X latch and a U latch.
When a page needs to be updated, the U latch on that page is
upgraded to an X latch. The algorithms in [17] avoid many of
the problems found in earlier B-link-tree algorithms. However,
these algorithms still suffer from the following problems.

1. No key-range scans are included.

2. It is assumed that splitting index nodes requires only the
node being split to be X -latched, but this is not safe when a
transaction contains key-range-scan operations (see [18]).

3. Node merging or redistributing still needs three nodes to
be X-latched on two adjacent levels of the tree.

I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees 259

4. A node split done on a single level of the tree is decoupled
from the linking (posting) of the new child to its parent
(i.e., the posting is never made unless a transaction follows
a side pointer). Due to the decoupling, it is possible that
arbitrarily long chains of sibling nodes are created that are
not directly linked to their parents, and hence tree balance
is not guaranteed. That is, no logarithmic bound for B-
link-tree traversal is guaranteed.

5. Interrupted structure modifications always have to be
rolled back (undone). This is inefficient because undoing a
structure modification is expensive in terms of time, effort,
and concurrency.

6. The proposed restart recovery protocol [15] is slow be-
cause two passes over the log have to be made during the
undo phase of the restart recovery. In the first pass, all in-
terrupted structure modifications are undone, and in the
second pass, all aborted transactions are rolled back.

In this paper, we present new B-link-tree algorithms
that improve concurrency, simplify recovery, and reduce the
amount of logging. Our algorithms avoid all the problems in
the previously published B-tree algorithms. In our algorithms,
deletions are handled uniformly with insertions. A B-link-tree
structure modification involving several levels of the tree is
divided into smaller structure modifications (atomic actions).
We present a new technique to implement a small structure
modification such as a page split or a page merge as an atomic
action, so that interrupted structure modifications are never
rolled back (undone). Each structure modification X -latches
and updates at most two pages on a single level of a B-link tree
at a time for a short duration and is logged using a single redo-
only log record. Hence, each successfully completed structure
modification is regarded as a committed “nested top action”
[19-22] and will not be undone even if the transaction that
gave rise to it eventually aborts. Structure modifications can
run concurrently with other structure modifications, whether
on the same path or not. Each successfully completed struc-
ture modification brings the B-link tree into a structurally con-
sistent and balanced state whenever the tree was structurally
consistent and balanced initially.

The balance conditions of our B-link tree include that no
level of the tree may contain two successive pages that are not
both linked to their parents. This guarantees (in the worst case)
that the search path of any database record is at most twice the
height of the B-link tree. Record inserts and deletes on leaf
pages of a B-link tree are logged using physiological redo-
undo log records as in [7,17,19-22]. Our recovery protocol
supports page-oriented redo, page-oriented undo (when pos-
sible), and logical undo. Recoverability from system failures
of both the tree structure and the logical database is guaran-
teed because the redo pass of our ARIES-based [22] recovery
protocol [9] will now produce a structurally consistent and
balanced tree, thereby making possible the logical undo of
record inserts and deletes. In our algorithms, structure mod-
ifications are never undone, which simplifies recovery and
increases concurrency. Our algorithms work with the steal-
and-no-force buffering policy for index and data pages and
are deadlock free.

The paper is organized as follows. In Sect. 2 we present
our database and transaction model. In Sect. 3 we introduce
the definition of our balanced B-link tree. In Sect. 4 we in-

troduce some basic concepts used in the paper. In Sect. 5
we present our new single-level structure-modification oper-
ations and logging in balanced B-link trees. In Sect. 6 we
present our read-mode and update-mode traversal algorithms
for the B-link tree. In Sect. 7 we present the fetch, insert,
and delete algorithms. In Sect. 8 we describe page-oriented
redo, page-oriented undo, and logical undo, and we present
our undo-insert and undo-delete algorithms. In Sect. 9 we de-
scribe transaction execution and give general results that show
the deadlock freedom of our algorithms and the maintenance
of the structural consistency and balance of the B-link tree
under concurrent transactions. In Sect. 10 we describe our
ARIES-based restart recovery protocol [9] and show a recov-
erability result. In Sect. 11 conclusions are drawn.

2 Database and transaction model

We assume that our logical database D consists of database
records of the form (k, x), where k is the key value of the record
and x is the data value (the values of other attributes) of the
record. The key values are unique, and there is a total order, <,
among the key values. The least possible key value is denoted
by —oo, and the greatest possible key value is denoted by oco.
We assume that the database always contains the special record
(oo, null) which is never inserted or deleted. The database
operations are as follows.

(1) Fetch[k, 6 u, x]: Fetch the first matching record (k, x).
Given a key value u < oo, find the least key value k£ and the
associated data value x such that k satisfies £0u and the record
(k,) is in the database. Here @ is one of the comparison oper-
ators “>"" or “>". To simulate the fetch-next operation [19-21]
on a key range [u, k], the fetch operation is used as follows.
To fetch the first record in the key range, a transaction 7" is-
sues Fetch[k1, > w,z1].To fetch the second record in the key
range, T issues Fetch[ks, > ki,x2].To fetch the third record
in the key range, 1" issues Fetch[ks, > ko9,2z3], and so on. The
fetch operation Fetch[k, Ou, x] scans the key range [u, k] (if 0
is “>") or (u, k| (if 0 is “>").

(2) Insert[k, x]: Insert a new record (k, z). Given a key
value k and a data value z, insert the record (k,x) into the
database if £ is not the key value of any record in the database.
Otherwise, return with the exception “uniqueness violation”.

(3) Delete[k, x]: Delete the record with the key value k.
Given a key value k, delete the record, (k, x), with key value &k
from the database if k& appears in the database. If the database
does not contain a record with key value k, then return with
the exception “record not found”.

In normal transaction processing, a database transaction
can be in one of the following four states: forward rolling, com-
mitted, backward rolling, or rolled back. A forward-rolling
transaction is a string of the form Ba, where B denotes the
begin operation and « is a string of fetch, insert, and delete op-
erations. A committed transaction is of the form BaC, where
Ba is a forward-rolling transaction and C' denotes the com-
mit operation. A backward-rolling transaction is of the form
BaBApB~', where Ba/3is aforward-rolling transaction, A de-
notes the abort operation, and 3~ is the inverse of 3 (defined
below). The string o3 is called the forward-rolling phase, and
the string 8! the backward-rolling phase, of the transaction.

260 I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

The inverse 3~ of an operation string 3 is defined induc-
tively as follows. For the empty operation string, €, the inverse
€1 is defined as €. The inverse (30) ' of a nonempty op-
eration string (o, where o is a single operation, is defined as
ot 16} —1 Here 01! is the inverse of o, also denoted by undo-o.
The inverses of our set of database operations are defined as
follows.

(1) Undo-fetch[k, Ou, x] = €.

(2) Undo-insert[k, x] = Delete[k, x].

(3) Undo-delete[k, x] = Insert[k, x].

A backward-rolling transaction Ba3AB~! thus denotes a
transaction that has undone a suffix, (3, of its forward-rolling
phase, while the prefix, «, is still not undone. A transaction of
the form Ba.Aa~—! R, where R denotes the rollback-completed
operation, is a rolled-back transaction. A forward-rolling or a
backward-rolling transaction (that is, a transaction that does
not contain the operation C' or R) is called an active transac-
tion, while a committed or rolled-back transaction is called a
terminated transaction. A transaction is an aborted transac-
tion if it is backward rolling or rolled back.

A history for a set of database transactions is a string H in
the shuffle of those transactions. Each transaction in H can be
forward rolling, committed, backward rolling, or rolled back.
Each transaction in H can contain any number of fetch, insert,
and delete operations. The shuffle [25] of two or more strings is
the set of all strings that have the given strings as subsequences
and contain no other element. H is a complete history if all its
transactions are committed or rolled back.

For a forward-rolling transaction B, the string Aa~'Ris
the completion string and BaAa™' R the completed transac-
tion. For a backward-rolling transaction Ba3A3~!, the string
a~ 1 Ris the completion string and BaSAB~ a1 R the com-
pleted transaction. A completion string ~ for an incomplete
history H is any string in the shuffle of the completion strings
of all the active transactions in H; the complete history H+y is
a completed history for H.

3 Balanced B-link trees

Our B-link tree has a structure similar to a B-link tree [14] in
that the pages on each level are linked from left to right and the
link of the rightmost page at each level is set to null. That is,
each interior page stores the Page-id of its successor page (on
the same level) in its Page-link field. These links are called
sideways links. We use our B-link tree as a sparse database
index to the database so that the leaf pages store the database
records. In addition, we assume the B-link tree is a unique
index and that the key values are of variable length [10]. To
handle variable-length key values, we assume that a database
or an index record with the largest possible key value never
occupies more than one sixth of the space in a data or index
page.

Formally, a B-link tree is an array B[0,...,n] of disk
pages B[P] indexed by unique page identifiers (Page-ids)
P =0,...,n.The page B[P] with Page-id P is called page P
for short. A page (other than page 0) is marked as allocated if
that page is currently part of the B-link tree. Otherwise, it is
marked as unallocated. Page M = 0 is assumed to contain a
storage map (a bit vector) that indicates which pages are al-

located and which are unallocated. Page 1, the root, is always
allocated. The allocated pages form a tree rooted at 1.

An allocated page is an index page or a data page. An index
page P is anonleaf page and contains a list of index records of
the form (k1, P1), (ko, P2), ..., (kn, Py), where k1, ko, ...,
k, arekey valuesand P, Ps, ..., P, are page identifiers. Each
index record (child link) is associated exactly with one child
page. The key value k; in the index record (k;, P;) is always
greater than or equal to the highest key value in the page P;.
A data page P is a leaf page and contains a list of database
records (k1,x1), (ko, 22), ..., (kn,), where k1, ko, ..., kyp
are the key values of the database records and z1, zo, ...,
x,, denote the data values of the records. Each data page also
stores its high-key record. The high-key record of a data page
is of the form (high-key value, page link), where the high-
key value is the highest key value that can appear in that data
page and page link denotes the Page-id of the successor (right
sibling) leaf page. The high-key record in the last leaf page of
the B-link tree is (0o, null). The set of database records in the
data pages of a B-link tree B is called the database represented
by B and denoted by db(B).

A child page () of a page P is a direct child of P if P
contains a child link to (). Otherwise, () is an indirect child
of P. The eldest (or leftmost) child is always a direct child.
Indirect children of P can be accessed by first accessing some
elder direct child of P and then following sideways links. The
page R next to page () is the right sibling of (), and () is the
left sibling of R, if @ and R have the same parent. We even
allow the root to have a right sibling page sideways linked to
1t.

In our B-link tree, each leaf page stores its high-key value
so that for each leaf page it can be deduced whether or not
that page has a right sibling that is an indirect child of its
parent. The interior pages of the B-link tree do not store their
high-key values because the current highest key value of an
interior page can tell whether or not that page has aright sibling
that is an indirect child of its parent (as a result of performing
the structure modifications top-down in our approach). Hence,
there is no need for an interior page to store its high-key value.
For presentation consistency, we will use the term “high-key
value” for an interior page P to mean the highest key value
currently in P.

An example of such a B-link tree is shown in Fig. 1, where
the data values of the database records in leaf pages are not
shown. In this case, the root page P1 has no right sibling and
each nonroot page is a direct child of its parent, except the leaf
page P8, which is an indirect child of its parent P3.

A B-link tree is structurally consistent if it satisfies the
basic definition of the B-link tree, so that each page can be
accessed by following a child link to the eldest child and then
following the sideways links, level by level. A structurally con-
sistent B-link tree can contain underflown pages and chains
of successive sibling pages that are indirect children of their
parent. We say that a structurally consistent B-link tree is bal-
anced if (1) none of its nonroot pages is underflown and (2)
no indirect child page has a right sibling page that is also an
indirect child.

We assume that each B-link-tree page can hold a maximum
of My > 8 database records (excluding the high-key record)
and a maximum of Ms > 8 index records. Let mq,2 < my <
M;/2 and mg,2 < mg < Ms/2 be the chosen minimum

I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

261

6 112 | j 200= &
P4 P5 P6 ¢ P7 P8
2406 |6 || | 8]12]12], 18[20] 20|, 24/30 |30 | 3840«:'/
[4 | ¥ | I X C— & _

Fig. 2. Page P and its direct child @

load factors for a nonroot leaf page and a nonroot index page,
respectively. Choosing the loading factors m; and ms as above
lets us avoid the problems associated with merge-at-half [9].

We say that a B-link-tree page P is about to underflow if
(1) P is the root page and contains only one child link, (2) P
is a nonroot leaf page and contains only m; database records,
or (3) P is a nonroot index page and contains only mg child
links. A B-link-tree page P is about to overflow if there is no
room in it for the insertion of a record with maximum-length
key.

We say that a B-link-tree page P is safe if one of the
following conditions holds: (1) P is the only allocated page
in the tree; (2) P is not about to underflow and not about to
overflow, so that one record with a maximum-length key value
can be inserted into P without causing P to overflow or one
record can be deleted from P without causing P to underflow;
or (3) P is not about to underflow (so that one record can be
deleted), and both P and its right sibling (if one exists) are
direct children of P’s parent (so that P can be split if it cannot
accommodate the insertion of a record).

As we shall see, the balance of a B-link tree will be
maintained under updates by requiring that each update-mode
traversal, when encountering an unsafe child page in the search
path, turn it into a safe one. Doing this may cause the parent
page to become unsafe, but the balance conditions of the B-
link tree are still guaranteed to hold.

Let @ be a direct child of P and (v, @) the index record in
P associated with @ (Fig. 2). has aright sibling R that is an
indirect child of P if and only if the highest key value w in @
is less than v. Here w is the key value associated with the last
child link in @ if @ is a nonleaf page and the high-key value
in @ if) is a leaf page. This important property of our B-link
tree is used in the update-mode traversal algorithm and in the
repair-page-underflow algorithm (Sects. 5 and 6).

4 Latches, locks, logging, and buffering

In a centralized database system, locks are typically used to
guarantee the logical consistency of the database under a con-
current history of transactions, while latches [7,19-22] are
used to guarantee the physical consistency of a database page
under a single operation. A latch is implemented by a low-level
primitive (semaphore) that provides a cheap synchronization
mechanism with S (shared), U (update), and X (exclusive)
modes, but with no deadlock detection [7,17,19-22]. A U
latch, or an update-mode latch [16,17], is compatible with an
S latch but incompatible with another U latch or an X latch. A
U latch can be upgraded to an X latch, while an S latch can-
not be upgraded. A latch operation typically involves fewer
instructions than a lock operation because the latch-control
information is always in virtual memory in a fixed place and
directly addressable. On the other hand, storage for locks is
dynamically managed and hence more instructions need to be
executed to acquire and release locks and to detect deadlocks.

Lock requests may be made with the conditional or the un-
conditional option [19-22]. A conditional request means that
the requestor (transaction) is not willing to wait if the lock can-
not be granted immediately. An unconditional request means
that the requestor is willing to wait until the lock is granted. If
a requested conditional lock cannot be granted immediately,
then the requesting transaction is not made to wait; instead,
the lock request returns with the exception “the lock cannot be
granted”, after which the requesting transaction continues its
normal processing. Moreover, a lock may be held for different
durations. A short-duration lock is released after the comple-
tion of an operation and before the transaction that performed
this operation commits. A commit-duration lock is released
only at the time of termination of the transaction, i.e., after the
commiit or rollback is completed.

We use physiological logging [7,19-22] as a compromise
between physical logging and logical logging. We assume that
the buffer manager employs the steal and no-force buffering
policies [7,22], which do not put any restrictions on the buffer
manager.

The important fields that may be present in different types
of log records are:

Transaction ID: The identifier of a transaction, if any, that
wrote the log record.

Type: Indicates the type of the log record: “begin”, “abort”,
“commit” or “rollback completed” (transaction-control log
records), “insert” or “delete” (redo-undo log records for up-

262 I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

dates in the forward-rolling phase), “undo-insert” or “undo-
delete” (redo-only compensation log records for inverse op-
erations in the backward-rolling phase), or “split”, “link”,
“unlink”, “merge”, “redistribute”, “increase-tree-height” or
“decrease-tree-height” (redo-only log records for structure

modifications).

Page-id(s): The identifier(s) of the page(s) to which updates of
this log record were applied; present in redo-only, redo-undo,
and CLRs.

LSN: The log sequence number of the log record (a monoton-
ically increasing value).

Prev-LSN: The LSN of the preceding log record written by
the same transaction.

Undo-Next-LSN: This field appears only in a CLR generated
for abackward-rolling transaction. The Undo-Next-LSN is the
LSN of the log record for the next update to be undone by the
transaction.

Data: The record(s) inserted to or deleted from the page(s)
and any additional information such as high-key value(s) and
apage link that might be needed to redo or undo the log record.

A redo-only log record only contains redo information,
while a redo-undo log record contains both redo and undo
information. Therefore, any update logged by a redo-only or
redo-undo log record is redoable, and any update logged by a
redo-undo log record is undoable. However, when the update
logged using a redo-undo log record is undone, then the undo
action is logged using a compensation log record (CLR). The
Undo-Next-LSN of the generated CLR is set to the Prev-LSN
of the log record being undone [7,19-22]. A CLR is generated
as aredo-only log record, and hence an undo operation is never
undone. Therefore, during the rollback of an aborted transac-
tion the Undo-Next-LSN field of the most recently written
CLR keeps track of the progress of the rollback so that the
rollback can proceed from the point where it left off should a
crash occur during the rollback (example 2, Sect. 10).

Each B-link-tree page contains a Page-LSN field, which is
used to store the LSN of the log record for the latest update on
the page. The LSN concept lets us avoid attempting to redo an
operation when the operation’s effect is already present in the
page. The recovery manager uses the Page-LSN field to keep
track of the page’s state. To guarantee a correct recovery, the
write-ahead-logging (WAL) protocol [7,22] is applied. That
is, an index page or a data page with Page-LSN n may be
flushed onto the disk only after flushing first all log records
with LSNs less than or equal to n.

Let r = (k,x) be a database record. The redo-undo log
records generated for the database operation insert[k,] and
delete[k, x] by transaction 7" in its forward-rolling phase are
denoted by

n:< T, insert, P, (k,z), m >,

n:< T, delete, P, (k,z), m >,
respectively, where n is the LSN of the log record, P is the
Page-id of the data page on which the update operation was
performed, and m is the Prev-LSN of the log record. The LSN-
value n is assigned to the Page-LSN field of page P.

The redo-only CLR generated for the inverse operations
undo-insert[k, x] and undo-delete[k, =] by a backward-rolling
transaction 7' in its backward-rolling phase are denoted by

n :< T, undo-insert, P, k, m > ,

n :< T,undo-delete, P, (k,z), m >,
respectively, where n is the LSN of the log record, P is the
Page-id of the data page on which the inverse operation was
performed, and m is the Undo-Next-LSN of the log record.
The LSN-value n is assigned to the Page-LSN field of page
P. Note that to redo an undo-insert it is sufficient to record
only the key value k of the database record (k, x) in the CLR.

In the next section we will define seven structure-

modification operations that modify the structure of the B-link
tree. Each of these operations is logged using a single redo-
only log record that contains the Page-ids of the B-link-tree
pages modified in the operation and the set of records moved
from one page to another. The exact form of the log record
for each operation is given in the algorithm for that operation
in Sect. 5. For example, the operation split(Q)), which splits a
full page @ by allocating a new page Q" and moving half of
the records from page @ to page @', is logged as

n:<split, Q, Q', M, V >,

where M is the Page-id of the storage-map page and V is
the set of records moved from @ to Q’. The LSN value n is
assigned to the Page-LSN fields of pages @, ', and M.

To keep track of active transactions and modified buffer
pages, two main memory tables are used. The active-
transaction table contains an entry for each active transaction.
Each entry in the transaction table consists of four fields: (1)
the transaction ID, (2) the state of the transaction (forward-
rolling, backward-rolling), (3) the Lasz-LSN field, which con-
tains the LSN of the latest log record written by the transac-
tion, and, in the case of a backward-rolling transaction, (4) the
Undo-Next-LSN field, which contains the LSN of the next log
record to be processed during the rollback. The modified-page
table is used to store information about modified pages in the
buffer pool. Each entry in this table consists of two fields: the
Page-id and Rec-LSN (recovery LSN). Both tables are updated
during normal processing. When a transaction modifies a page
P, then a new entry is created in the modified-page table if
there is no such entry for P. That is, the Page-id of P and the
log-record address are inserted into the Page-id and Rec-LSN
fields, respectively, in the modified-page table. When a mod-
ified page is written to stable storage, then the corresponding
entry in the modified-page table is removed. The value of Rec-
LSN indicates from what point in the log there may be updates
that possibly are not yet in the stable-storage version of the
page. The minimum Rec-LSN value in the modified-page table
determines the starting point for the redo pass during restart
recovery.

To reduce the amount of recovery work that would be
needed when the system crashes, the system takes check-
points [1,7,22] periodically during normal processing. When
acheckpoint is taken, a checkpoint log record is generated that
includes copies of the contents of the transaction and modified-
page tables. Taking a checkpoint involves no flushing of pages.

5 Single-level structure-modification operations
and logging in the B-link tree

We handle B-link-tree structure modifications using an ap-
proach similar to that of [16,17], but we go further by making

I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees 263

a structure modification to involve only a single level of the
tree and X -latching two pages at most on that level for short
duration. Each structure modification is logged using a sin-
gle redo-only log record, and hence, in the event of a system
crash, either the log on disk contains no trace of the structure
modification (and, accordingly, no trace of it in the database
page on disk either), or the entire redo-only log record is found
on disk. In the later case, the redo-only log record may have
to be replayed during the redo pass of the restart recovery.
Thus, each successfully completed structure modification is
regarded as a committed “nested top action” [19-22] and will
not be undone even if the transaction that gave rise to it eventu-
ally aborts. Also, an interrupted structure modification is never
rolled back because it has no effects on the stable database, and
hence recovery is simplified and concurrency increased. This
in contrast to the algorithms in [7,11,16,17,20,21] in which
an interrupted structure modification always has to be rolled
back.

In our approach, each successfully completed structure
modification brings the tree into a structurally consistent and
balanced state whenever the tree was structurally consistent
and balanced initially. Structure modifications can run con-
currently with other structure modifications without the need
for special tree latches. The execution of non-leaf-level struc-
ture modifications is separated from the execution of leaf-level
updates that give rise to the structure modifications. For ex-
ample, when a transaction 7' wants to insert (resp. to delete) a
record r with key value k, T traverses the tree in update mode
using the latch-coupling protocol [16,17] with U latches to
reach the target leaf page () and performs structure modifi-
cations along its search path, if there is a need for them (see
the update-mode-traverse() algorithm in Sect. 6). To insert a
record r into a full leaf page), T splits () by moving the upper
half of the records into a new leaf page Q' and then inserts r
into the proper leaf page (Q or Q). The action of linking @’
to its parent will be executed by the next transaction 7" that
traverses the same path in update mode and runs into ().

The structure of a B-link tree can be modified by one of our
seven structure-modification operations — split, link, unlink,
merge, redistribute, increase-tree-height, and decrease-tree-
height. Each operation when applied to a structurally consis-
tent and balanced B-link tree performs a single update involv-
ing one or two pages on a single level of the tree, generates a
single redo-only log record, and produces a structurally con-
sistent and balanced B-link tree as a result.

To simplify the presentation of our algorithms, we use the
following notations.

S-latch(P): Fix page P and acquire an S latch on P.
U-latch(P): Fix page P and acquire a U latch on P.
X-latch(P): Fix page P and acquire an X latch on P.
unlatch(P): Release the latch on page P and unfix P.
S-lock(r): Acquire an unconditional .S lock on record 7.
X-lock(r): Acquire an unconditional X lock on record 7.
unlock(r): Release the acquired lock on record r.
upgrade-latch(P): Upgrade the U latch on page P to an X
latch.

downgrade-latch(P): Downgrade the X latch on page P to
a U latch.

allocate(P): Find some page P marked as unallocated in the
storage-map page M and mark P as allocated in M.

>

Fig. 3. Page () is full

Q Q

Fig. 4. Page Q is split at key value v’ into Q and Q’

format(P): Format P as an empty B-link-tree page.
deallocate(P): Mark page P as unallocated in the storage-
map page M.

log(n, R): Generate the log record R, place it in the log buffer,
and return the LSN n of the log record.

The operation split(Q)) is used to split a full page () when
@ is safe, that is, both @) and its right sibling (if one exists)
are direct children of their parent (Fig. 3). It is assumed that
Q is U-latched. The operation allocates a new page Q’, moves
the upper half of the records from Q) to ', and makes Q' a
right sibling of (). At the end of the operation, the parameter
Q denotes the page (Q or Q') that covers the current search
key value; this page remains U-latched while the latch on the
other page is released (Fig. 4).

Split(Q) {

upgrade-latch(Q); X -latch(M);

allocate(Q"); X-latch(Q"); format(Q");

u’= the key value that splits Q) evenly;

let V be the set of all records in Q with key values > u’;

move the records in V' from Q to Q’;

if (Q is a leaf page) high-record(Q) = (uv/,Q");

else Page-link(Q) = @Q;

log(n, <split, Q, Q', M, V>); Page-LSN(M) = n;

Page-LSN(Q) = n; Page-LSN(Q') = n; unlatch(M);

if (@ covers the current search key value) {
downgrade-latch(Q); unlatch(Q’);

}else {
downgrade-latch(Q"); unlatch(Q); Q = Q’;

}
}

The operation link(P, (), R) is used to link the right sibling
page R of page @ to the parent page P when () is a direct
child and R an indirect child of P (Fig. 5). The pages P and
@ are assumed to be U-latched. It is assumed that page P can
accommodate the insertion of the index record (v, R) and the
change of the index record (v, Q) to (u,Q), where u is the
high-key value of @) and v is the high-key value of R. At the
end of the operation, P and) remain U-latched (Fig. 6).

Link(P,Q,R) {
upgrade-latch(P);
insert the index record (v, R) into P and change the index
record (v, Q) to (u, @) in P;
log(n, <link, P, (u,Q), (v, R)>);
Page-LSN(P)= n; downgrade-latch(P);

264 I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

u<v

g

:

A

Fig. 5. Page () has a right sibling R that is an indirect child of its
parent P

N o
u!_r...v!_r

g

Fig. 7. Page R (Fig. 5) has been merged into its left sibling page @

The operation unlink(P,), R) is used to unlink the right
sibling page R of page () from the parent page P when P is
not about to underflow and the right sibling of R (if one exists)
is not an indirect child (Fig. 6). The purpose of this operation
is to make possible the merging or redistributing of) and R.
Pages P, (), and R are assumed to be U-latched. The U latches
on () and R are needed to prevent another transaction from
simultaneously splitting, merging (or redistributing) () or R.
At the end of the operation, the latch on P is released while
the U latches on pages () and R are retained (Fig. 5).

Unlink(P,Q,R) {
upgrade-latch(P);
delete the index record (v, R) from P;
change the index record (u, Q) to (v, Q) in P;
log(n, <unlink, P, (u, @), (v, R)>);
Page-LSN(P) = n; unlatch(P);

The operation merge(Q, R) is used to merge page R into
its left sibling page () when R is an indirect child of the parent
page and the contents of R and @ fit in a single page (Fig. 5).
The pages and R are assumed to be U-latched. At the end
of the operation,) remains U-latched while the latch on R is
released and R is deallocated (Fig. 7).

P

vi<v

Q

g
v’ !_l_y v !_l.y

Fig. 8. Records in Q and R (Fig. 5) have been redistributed

Merge(Q,R) {
upgrade-latch(Q); upgrade-latch(R); X -latch(M);
if (@ is a leaf page) delete high-record(Q);
else delete Page-link(Q);
let V' be the set of all records in R;
move the records in V' from R to Q); deallocate(R);
log(n, <merge, Q, R, M, V>);
Page-LSN(M) = n; Page-LSN(Q) = n;
Page-LSN(R) = n;
unlatch(M); unlatch(R); downgrade-latch(Q);

The operation redistribute(QQ, R) is used to redistribute the
contents of page () and its right sibling page R when R is an
indirect child of the parent page but () and R cannot be merged
(Fig. 5). Pages () and R are assumed to be U-latched. At the
end of the operation, the U-latch on the page (Q) or R) that
covers the current search key value is retained while the latch
on the other page is released, and the parameter () is set to the
page (QQ or R) that covers the current search key value (Fig. 8).

Redistribute(Q,R) {
upgrade-latch(Q); upgrade-latch(R);
v’ = the key value that redistributes records in @) and R;
u = high-key(Q);
if (Q is a leaf page) delete high-record(Q);
else delete Page-link(Q);
if(> uw){Y=@Q;
move all records with key values <= v’ from R to Q;
telse {Y = R;
move all records with key values > v’ from Q) to R;
}
let V be the set of records moved;
if (Q is a leaf page) high-record(Q) = (v/, R);
else Page-link(Q)) = R;
log(n, <redistribute, @, R, V, Y>);
Page-LSN(Q) = n; Page-LSN(R) = n;
if (@ covers the current search key value) {
downgrade-latch(Q@); unlatch(R);
}else {
downgrade-latch(R); unlatch(Q); Q = R;

}
}

The operation increase-tree-height(P, P') is used to increase
the height of the tree when the root page P has a right sibling
page P’ (Fig. 9). The pages P and P’ are assumed to be U-
latched. A new page P” is allocated. P remains the root of the
tree and is made the parent of P’ and P’. At the end of the
operation, the latch on P is released, the U latch on the child

I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees 265

P P’

u oo

ZREhl:

Fig. 9. Root page P has a right sibling P’

P
- | &

1]
=
=,

ZIh:

Fig. 10. Tree height is increased by one and P remains the root of
the tree

u
|
P”f//

u

Q

e

|
=

)

Fig. 11. Root page P has no right sibling and P has only one child
Q

page of P (i.e., P’ or P") that covers the current search key
value is retained, the latch on the other child page is released,
and parameter P is set to the page (P’ or P"') that covers the
current search key value (Fig. 10).

Increase-tree-height(P, P’) {
upgrade-latch(P); X -latch(M); allocate(P”);
X-latch(P"); format(P");
let V' be the set of all records in P;
move the records in V' from P to P";
insert index records (u, P") and (oo, P’) into P;
Page-link(P) = null;
log(n,<increase-tree-height, P, P, P', M, (u, P"),
(00, P'), V' >);
Page-LSN(M) = n; Page-LSN(P) = n;
Page-LSN(P”) = n; unlatch(M); unlatch(P);
if (P” covers the current search key value) {
downgrade-latch(P"); unlatch(P’); P = P”;
} else {
unlatch(P"); P = P/;
}
}

The operation decrease-tree-height(P, () is used to de-
crease the height of the tree when the root page P has only
one child page, @ (Fig. 11). It is assumed that P and @ are
U-latched and that P has no right sibling. At the end of the
operation, P remains as the root of the tree, the U latch on P
is retained, and the latch on @) is released and () is deallocated
(Fig. 12).

P

oo

|
—

Fig. 12. Tree height is decreased by one and P remains the root of
the tree

Decrease-tree-height(P,Q) {
upgrade-latch(P); upgrade-latch(Q); X -latch(M);
delete the index record (0o, @) from P;
let V be the set of all records in Q;
move the records in V' from @ to P; deallocate(Q);
log(n, <decrease-tree-height, P, Q, M, (c0,Q), V>);
Page-LSN(M) = n; Page-LSN(P) = n;
Page-LSN(Q) = n;
unlatch(M); unlatch(Q); downgrade-latch(P);

}

Lemma 1. Let B be a structurally consistent and balanced
B-link tree. Then any of the structure-modification operations

link(P,Q, R), unlink(P,Q,R), split(Q), merge(Q,R),
redistribute(Q, R), increase-tree-height(P, P’), and
decrease-tree-height(P, Q)), whenever the preconditions

for the operation hold, produce a structurally consistent and
balanced B-link tree when run on B.

Proof. From the algorithms for the operations we see immedi-
ately that, if the preconditions for the operation are satisfied,
then the operations indeed can be run on B and retain the
structural consistency and balance of B. For link(P, @, R) the
preconditions state that the child page R is an indirect child
of its parent P and that P has room for the child link (v, R)
to be added, so that the operation can indeed be run on B. For
unlink(P, @, R), the structural consistency and balance of the
resulting tree follows from the preconditions stating that P
will not underflow if the child link (v, R) is deleted and that
the right sibling of R (if any) is not an indirect child, so that the
unlinking will not produce a chain of two successive indirect
child pages. For split(Q)), the preconditions state that () is full
and safe. As Q) is full, the safety of) implies that () is not an in-
direct child and that the right sibling of @ (if any) is neither an
indirect child nor a sibling of the root. Thus the splitting of @)
will not create a chain of two indirect child pages. As @ is full,
the two sibling pages created by the split are both guaranteed
to be not about to underflow and not about to overflow, that is,
both pages are safe. For merge(®, R) and redistribute(Q, R),
the preconditions state that R is a right sibling of) and an
indirect child of ()’s parent. Thus the structural consistency of
the tree clearly cannot be violated when () and R are merged
or redistributed. For increase-tree-height(P, P’), the precon-
ditions state that P is the root of the tree and that P’ is its right
sibling. Since the contents of P are just moved to a new page
P’ and the pages P"” and P’ are linked as the only children
of P, the result is a structurally consistent and balanced tree.
For decrease-tree-height(P,), the preconditions state that)
is the only child of P. The contents of P are replaced by those
of @, thus producing a structurally consistent and balanced
tree.

In a context of concurrent operations triggered by differ-
ent transactions, the structural consistency and balance of the

266 I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

resulting tree is guaranteed by the fact that the process per-
forming a structure-modification operation keeps X -latched
all the pages modified by the operation and keeps U-latched
any additional page involved. During the modification of the
parent page P in link(P, Q, R), P is kept X-latched and
the direct child @ is kept U-latched. The right sibling R of
Q need not be latched. Thus a simultaneous link(R, Q’, R')
or unlink(R, Q’, R") may occur. However, the latch on Q
prevents a simultaneous merge(, R) or redistribute(Q, R),
which need both Q) and R to be X -latched. The preconditions
of split prevent a simultaneous split(R), and the balance con-
ditions prevent the occurrence of a simultaneous merge(R, .S)
or redistribute(R, S).

During the modification of the parent page P in
unlink(P, @, R), P is kept X-latched and both direct child
pages () and R are kept U-latched. The latching of R is needed
to prevent a simultaneous split(R), which would result in a
chain of two indirect child pages.

The operation increase-tree-height(P, P’) keeps P and the
new page P” X-latched and P’ U-latched. The operation
decrease-tree-height(P, () keeps both P and @ X-latched.
The storage-map page is kept X-latched during the opera-
tions split(Q), merge(Q, R), increase-tree-height(P, P’), and
decrease-tree-height(P, (), thus guaranteeing the consistency
of storage allocation and deallocation. a

When a transaction T traversing a B-link tree in update
mode encounters an about-to-underflow child page () of parent
P, T executes the repair-page-underflow(P, Q) algorithm in
order to merge or redistribute () with its sibling. Pages P and
(@ are assumed to be U-latched, and P is assumed to be safe.
Page () can be either a rightmost or a nonrightmost child of P,
and hence there are two cases to consider. When () is not the
rightmost child of P, then there are three subcases to consider
depending on the current state of the right sibling page R of
@, that is, whether (1) R is an indirect child of P, (2) R is
a direct child of P and has a right sibling page S that is an
indirect child of P, or (3) R is a direct child of P and has a
right sibling page S that is a direct child of P. When () is the
rightmost child of its parent P, then there are two subcases
depending on the state of the left sibling page of @, that is,
whether (4) the left sibling page of @ is a direct child of P or
(5) the left sibling page of () is an indirect child of P.

At the end of the algorithm, the latch on the parent page P
is released, the U latch on the child page (Q or its sibling) that
covers the current search key value is retained and the latch
on the other page is released, and the parameter () is set to the
page (@ or its sibling) that covers the search key value. Page
Q is now safe.

Repair-page-underflow(P,Q) {
if (high-key(Q) < high-key(P)) {

/* @ is not the rightmost child of its parent P */

let (v, Q) be the index record associated with @ in P;

R = the Page-id of the right sibling of Q;

U-latch(R); u = high-key(Q);

if (u < v) {/* Ris an indirect child of P */
/* Case 1, Fig. 13 */

unlatch(P);
if (Q and R can be merged) merge(Q, R);
else redistribute(Q, R);

return;
}else { /* R is a direct child of P */
/* Case 2 or Case 3 */
let (w, R) be the index record associated with R in P;
S = Page-id of the right sibling of R; v = high-key(R);
if (v <w) { /*Case 2, Fig. 14%/
if (P cannot accommodate the insertion of
(w, S) or the change of (w, R) to (v, R)) {
split(P);
if (R is not a child of P anymore) {
unlatch(R); restart the algorithm;

¥
link(P, R, S); unlink(P, Q, R); /*Fig. 16*/
if (@ and R can be merged) merge(Q, R);
else redistribute(Q, R); return;
} else { /* Case 3, Fig. 15%/
unlink(P, Q, R); /* Fig. 13 */
if (Q and R can be merged) merge(Q, R);
else redistribute((Q, R); return;

}

}
}else { /* high-key(Q) = = high-key(P); hence Q */
/* is the rightmost child of its parent P; */
/* Fig. 17 or Fig. 19 */
let (v, L) be the index record immediately preceding
(w, Q) in P; unlatch(Q); U-latch(L);
U-latch(the right-sibling page of L);
if (high-key(L) == v) { /* Case 4, Fig. 17 */
/* the right sibling of L is @ */
if (@ is no longer about to underflow) {
unlatch(P); unlatch(L); return;
telse {
unlink(P, L, Q); /* Fig. 18 */
if (L and @) can be merged) merge(L, Q);
else redistribute(L, Q);
Q = L;return;

}
} else { /* high-key(L) < v, Case 5, Fig. 19 */
/* the right sibling of L is N */
if (P cannot accommodate the insertion of
(v, N) or the change of (v, L) to (u, L)) {
split(P);

}

link(P, L, N); unlatch(L); U-latch(Q);

if (Q is no longer about to underflow) {
unlatch(P); unlatch(V); return;

}else {
unlink(P, N, Q);
if (/V and @ can be merged) merge(lV, Q);
else redistribute(\V, Q); Q = N,

}

}
¥
}

Lemma 2. Let B be a structurally consistent and balanced B-
link tree and let P and Q) be pages of B such that P is safe, QQ is
about to underflow, Q is a direct child of P, P covers key value
k, Q is the next page in the search path of k, and both P and
Q are U-latched by the process that generates transaction T.

I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees 267

P

u<v<w U Y \:v Lr
% <

Fig. 13. The right sibling page R of an about-to-underflow page @
is an indirect child of its parent P

]

P

e fufwl o
u<v<w - {_r
Q ‘KJRH S

ar

Fig. 14. The right sibling page R of an about-to-underflow page @
has a right sibling .S, which is an indirect child of its parent P

P

mp=
DT

Fig. 15. The right sibling page R of an about-to-underflow page)
has a right sibling S, which is a direct child of its parent P

Q

P

VTLF
R% S
u!_l.y v!_l....w!_l.

Fig. 16. Page S has been linked to its parent P and page R has been
unlinked

Q

u<v<w \V
|

P

v,_JL% Q

Fig. 17. The about-to-underflow page @ is the rightmost child of its
parent page P and has a left sibling page L, which is a direct child
of parent P

U\V w

Then the repair-page-underflow(P, Q) algorithm, when run on
B onbehalf of T in search of key value k, generates a sequence
of structure-modification operations such that, at the end of the
algorithm, the resulting B-link tree is structurally consistent
and balanced, the page denoted by the parameter P covers k,

P

u<v<w o u Iw

Hea
f—LJvJ Q

Fig. 18. The about-to-underflow rightmost child @ of P is unlinked
from its parent

u<v<w J & 'I

~

Fig. 19. The about-to-underflow page () is the rightmost child of its
parent page P and has a left sibling page N, which is an indirect
child of parent P

and the page denoted by parameter Q) is a safe direct child of
P and is the next page on the search path for k.

Proof. The sequences of structure-modification operations
generated by the repair-page-underflow(P,) algorithm in
each of the five cases are given below, where R denotes the
right sibling of) (if any). We first assume that 7" runs the al-
gorithm in isolation without any other transaction in progress.

(1) R is an indirect child of P (Fig. 13): merge or
redistribute(Q, R). Page P is not modified and page @ is still
on the search path for k£ because records are moved from R to
() and not vice versa.

(2) R is a direct child of P and has a right sibling page S
that is an indirect child of P (Fig. 14): split(P) (if P is full),
possibly followed by link(P, R, S); unlink(P, (), R); merge or
redistribute(Q, R). As P is assumed to be safe, it may be split
into pages P and P, if it does not have enough room for the
child link (w, S). Split(P) returns the one of pages P and P’
that covers k. In any case, P remains safe after the opera-
tion link(P, R, S). Thus the tree is also guaranteed to remain
structurally consistent and balanced after the unlink(P, @, R)
operation. The case thus reduces to case 1.

(3) R is a direct child of P and has a right sibling page
S that is also a direct child of P (Fig. 15): unlink(P, Q, R);
merge or redistribute(Q), R). As P is safe, it will not underflow
when the child link (v, R) is deleted from P. The case reduces
to case 1.

(4) @ is the rightmost child of P and the left sibling L of
@ is a direct child of P (Fig. 17): unlink(P, L,)); merge or
redistribute(L, Q). As P is safe, it will not underflow when
the child link (v, L) is deleted from P. At the end of the algo-
rithm, the parameter () is set to L, which is on the search path,
as required. However, as () is unlatched and latched again
after latching L, it may happen that () is no longer about to
underflow. In that case the algorithm performs no structure
modifications, and the parameter () will stay as it is.

(5) @ is the rightmost child of P, the left sibling N of
@ is an indirect child of P, and L (which then must be a

268 I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

direct child of P) denotes the left sibling of N (Fig. 19):
split(P) (if P is full); link(P, L, N); unlink(P, N, Q)); merge
or redistribute(/V, Q). The reasoning proceeds as in case 2. We
note that at the end of the operation, the parameter () is set to
N.However, as () is unlatched and latched again after latching
N, it may happen that @ is no longer about to underflow. In
that case the algorithm does not perform the unlink(P, IV, @)
and merge or redistribute(/V, Q) operations, and parameter ()
will stay as is.

Next we note that the above reasoning also holds in the
context of concurrent operations by other transactions. This
follows from the fact that the involved pages are all kept U-
latched over the entire sequence of structure modifications.
Case 1 is clear by Lemma 1 since it consists of only a sin-
gle structure modification. In case 2, pages P, (), and R are
latched. Note that, if P is split, then the split(P) call leaves
the page that covers k (P or its right sibling) U-latched. In
case 3, pages P, (), and R are latched. In case 4, pages
P, L, and @ are latched when performing unlink(P, L, Q))
followed by merge or redistribute(L, Q). In case 5, pages
P, L, and N are latched while performing the possible
split(P) followed by link(P, L, N), and pages P, N, and @ are
latched while performing unlink(P, N, Q) followed by merge
or redistribute(V, Q).

To prevent a deadlock and to decrease the number of
page latches held simultaneously by the process that gener-
ates transaction 7, the U latch held on) (when the repair-
page-underflow algorithm is entered) is released in cases 4
and 5, and () is relatched after first latching its sibling L or
siblings L and N. Because page P, which contains the child
link to @, is kept constantly latched, no other transaction can
simultaneously deallocate () or unlink it from its parent. After
relatching @, itis checked if @ is still about to underflow, and if
not, the unlinking and merging/redistributing of () is not done.
Actually, this checking is unnecessary when the repair-page-
underflow algorithm is only used in the update-mode traversal
and when all transactions use the same update-mode traver-
sal algorithm: it can be shown that other transactions cannot
modify @ while @ is temporarily unlatched. a

6 B-link-tree traversals

To perform a Fetch[k, Qu,] operation, a transaction T takes
as input a key value u and uses the read-mode-traverse(u, P)
algorithm to find the target leaf page P that covers the database
record with key value u. The algorithm traverses the tree us-
ing the latch-coupling protocol with .S latches and returns the
Page-id P of the S-latched leaf page that covers u. If during
the traversal 7" runs into a page that does not cover the search
key value u, then T" follows the sideways link to the next page
on the same level.

Read-mode-traverse(u,P) {
P = the Page-id of the root page of the tree; S-latch(P);
do {
v = high-key(P);
if (u>v){
P’ = the Page-id of the right sibling page of P;
S-latch(P"); unlatch(P); P = P’;

}

if (P is not a leaf page) {
search P for the child page) covering u;
S-latch(Q@); unlatch(P); P = @Q;

} while (P is not a leaf page);
¥

To perform a Insert[k, x] or Delete[k, x] operation, a trans-
action T takes as input the key value k and uses the update-
mode-traverse(k, P) algorithm to find the target leaf page P
that covers the database record with key value k. The algo-
rithm traverses the tree using the latch-coupling protocol with
U latches and returns the Page-id P of the U-latched leaf page
that covers k. All unsafe pages on the search path are turned
into safe ones.

Update-mode-traverse(k,P) {
P = the Page-id of the root page of the tree; U-latch(P);
if (P has a right sibling) {
P’ = the Page-id of the right sibling of P;
U-latch(P"); increase-tree-height(P, P’);

if (P is a leaf page) return;

search P for the child page @ covering k; U-latch(Q);

if (@ is the only child of P and @ has no right sibling) {
decrease-tree-height(P, Q);

while (P is not a leaf page) {

search P for the child page Q covering k;

U-latch(Q);

if (Q is about to underflow) {
repair-page-underflow(P, Q); P = Q;

}else {
let (v, @) be the index record associated with)
in P; u = high-key(Q);

if (u<w){
/* @ has a right sibling page R which is an */
/* indirect child of P, Fig. 5 */

if (P cannot accommodate the insertion of (v, R)
or the change of (v, Q) to (u, Q)) {
split(P);

link(P, @, R);

}

if (Q covers k) {
unlatch(P); P = @Q;

} else {
R = the Page-id of the right sibling of Q;
unlatch(P); U-latch(R); unlatch(Q); P = R;

}

}
¥
}

Lemma 3. Let B be a structurally consistent and balanced
B-link tree. Assume that a transaction T performs an update-
mode traversal on B. Then the tree produced is structurally
consistent and balanced, and the leaf page covering the search
key value is safe.

I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees 269

Proof. The claim follows from Lemmas 1 and 2 by induction on
the height of B because the update-mode traversal algorithm,
when advancing from one page to the next on the search path,
always turns an unsafe child page into a safe one, possibly
thereby causing the parent to become unsafe but never leav-
ing behind a page that would violate the balance conditions.
First, at the top level of the tree, the increase-tree-height(P, P’)
structure modification is performed if the root page has a right
sibling, or the decrease-tree-height(P, Q) structure modifica-
tion is performed if the root page has only one child and no
right sibling. Whenever the traversal proceeds from a page
P to a direct child page @ that is about to underflow, the
repair-page-underflow(P, Q) algorithm is called. Whenever
the traversal proceeds from a page P to a direct child page
@ that is not about to underflow but has a right sibling R
that is an indirect child of P, the split(P) (if needed) and
link(P, @, R) structure modifications are called. At each step,
we may assume as an induction hypothesis that page P on
the previous level on the search path is safe, thus satisfying a
required precondition of the structure modifications. a

Lemma 4. Let B be a structurally consistent and balanced B-
link tree of height h. Any read-mode traversal on B on behalf
of transaction T accesses at most 2h pages of B and keeps at
most two of those pages S-latched at a time. Any update-mode
traversal on B on behalf of T accesses at most 4h pages of B
and keeps at most two of those pages X -latched and at most
two U-latched at a time. In addition, the storage-map page
may be accessed and X -latched h times during an update-
mode traversal.

Proof. The result for a read-mode traversal follows immedi-
ately from the definition of a structurally consistent and bal-
anced B-link tree and from the latch-coupling protocol that
uses S latches. The worst case of accessing 2h pages occurs
when at each level the sideways link to an indirect child page
has to be followed.

The number of pages accessed by an update-mode traver-
sal follows from the fact that in the worst case the number
of pages accessed at one level of the tree is four. This hap-
pens in the repair-page-underflow(P, Q) algorithm (case 5)
when the U latch on the rightmost child page @ of the parent
P is released temporarily and the two sibling pages (L and
N) of @ are U-latched and () is relatched. In the increase-
tree-height(P, P’) operation the number of pages accessed is
three, including the new page P”. The storage-map page is ac-
cessed when a new page needs to be allocated in the split(Q))
and increase-tree-height(P, P") operations and when a page
needs to be deallocated in the merge(P, R) and decrease-tree-
height(P, Q) operations.

The number of U and X latches held simultaneously in
each of the structure modifications is evident from the algo-
rithms (also see the proof of Lemma 2). The link(P, @, R) op-
eration X -latches the parent page P while keeping the child
page @ U-latched simultaneously. The unlink(P, @, R) op-
eration X -latches the parent page P while keeping both the
@ and R child pages U-latched simultaneously. The split(Q)
operation X -latches Q and the new (right sibling) page Q’.
The merge(Q, R) and redistribute(Q), R) operations X -latch
the sibling pages @@ and R. The increase-tree-height(P, P’)
operation X -latches the root page P and the new page P” and
keeps U-latched the right sibling page P’. The decrease-tree-

height(P, Q) operation X -latches the root page P and its child
page Q.

The repair-page-underflow(P, Q) algorithm at any phase
of its execution keeps at most two pages X -latched and two
pages U-latched simultaneously. The worst case occurs in
case 5 when the parent page P is split. In fact we could easily
do with fewer latches here if we release the latches on the child
pages for the duration of the split(P) operation and, after that
is done, we reacquire the latches on the child pages. O

Lemma 5. Read-mode traversals and update-mode traversals
are deadlock free.

Proof. A transaction performing a read-mode traversal ac-
quires S latches on the search path in a top-down, left-to-right
order, so that a nonroot page is latched only after latching
either the parent or left sibling page first. A transaction per-
forming an update-mode traversal acquires U latches on the
search path, and on all the adjoining pages that need a struc-
ture modification, in a top-down, left-to-right order. Note that
to achieve this property in the repair-page-underflow(P, Q) al-
gorithm it is necessary to release the U latch on) when)
is the rightmost child of its parent P and the left sibling of @
must be latched. As only U latches are ever upgraded to X
latches, we may thus conclude that our page-latching protocol
is deadlock free. O

7 B-link-tree fetch, insert, and delete

When the concurrency control is performed at the record level,
transactions rely on record locking. However, S-locking only
the found record and X -locking only the inserted (or deleted)
record for commit duration does not guarantee repeatable
reads when key-range fetch operations are present. A fetch
operation by a transaction 7" in a history H is an unrepeatable
read if some other transaction 7" updates (inserts or deletes) a
record whose key belongs to the key range read by the fetch op-
eration, before 7' commits or completes its rollback. To avoid
unrepeatable reads, we use the key-range locking protocol [7,
19-21].

In the key-range locking protocol, transactions acquire in
their forward-rolling phase commit-duration X locks on in-
serted records and on the next records of deleted records, short-
duration X locks on deleted records and on the next records
of inserted records, and commit-duration S locks on fetched
records. Short-duration locks are held only for the time the
operation is being performed. Commit-duration X locks are
released after the transaction has committed or completed its
rollback. Commit-duration S locks can be released after the
transaction has committed or completed its rollback.

No additional record locks are acquired for operations
done in the backward-rolling phase of an aborted transaction.
To undo an insertion of record r, an aborted transaction 7" just
deletes r under the protection of the X lock acquired during
the forward-rolling phase on r. To undo a deletion of record
r, T just inserts under the protection of the X lock acquired
during the forward-rolling phase on the next record r’.

There is one troublesome point in using the key-range lock-
ing protocol, namely, if a transaction must wait for a lock on
the next record r’, then, when the lock is granted, the record 7’

270 I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

may no longer be the right record to lock. This is because an-
other transaction may have deleted ' or inserted a new record
just before . Therefore, if a transaction T" waits for a lock on
the next record, then 7" must revalidate the next record when
the lock is granted. If the next record has changed during the
lock wait due to a page update, then 7" should release the lock
on the old next record and request a lock on the current next
record.

The Fetch(T, k,fu,z) algorithm implements the
Fetch[k, Ou,x] database operation. Given a key value
u < 00, the operation fetches the database record r = (k,)
with the least key value & satisfying k6u. The fetched record
r is S-locked for transaction 7" for commit duration.

Fetch(T,k, 0 u,x){
if (the Page-id P of a leaf page has been saved as a
result of a previous call to Fetch()) {
/* guess that the record to be fetched resides in the */
/* same page as the previously fetched record */
S-latch(P);
if (P is not a leaf page of the B-link tree any more
or u is less than the least key value in P or v is
greater than the greatest key value in P) {

unlatch(P);
¥
}else {
L1: read-mode-traverse(u, P);
}
Q = null;
L2: let v be the greatest key value in P;
if(u >voru == wvandf ==">"){

/* the record to be fetched resides in P/, */
/* the page next to P */

P’= the Page-id of the page next to P;
S-latch(P"); Q = P; P = P/,

save Page-LSN(Q); unlatch(Q);

L3:;
/* now P contains the record to be fetched */
determine the record r in P with the least key value &
satisfying k6 u;
request a conditional S lock on r;
if (the S lock is granted right away) {

save Page-id(P); unlatch(P); return with r;

if (r is the lowest record in P and) ! = null) goto L5;
save Page-LSN(P); unlatch(P);
/* request an unconditional .S lock on 7 */
S-lock(r); S-latch(P);
L4:;
if (Page-LSN(P) has not changed) {
save Page-id(P); unlatch(P); return with r;

if (P does not cover 7 or P is not a leaf page or
P is not part of the B-link tree any more) {
unlatch(P); unlock(r); goto L1;

if (r is present in P and the key value k of is still the
least key value in P satisfying k6 u) {
save Page-id(P); unlatch(P); return with r;

}else {
unlock(r); goto L2;

L5:;
/* the record r to be fetched is the lowest record in P, */
/*and r was found by entering P from its left sibling Q*/
save Page-LSN(P); unlatch(P); S-lock(r);
S-latch(Q); S-latch(P);
if (Page-LSN(Q) has not changed) {

unlatch(Q); goto L4;

if (@ does not cover u or (Q is not a leaf page or)
is no longer part of the B-link tree) {
unlatch(Q); unlatch(P); unlock(r); goto L1;

/* Page-LSN(Q) has changed but Q) still covers u */
let v be the greatest key value in Q;
if(u ==wvand ==">="){

unlatch(Q); unlatch(P);

P = Q); save Page-id(P);

return with the record with key value v;

if(u ==wandd ==">"{
unlatch(Q); goto L4,

Fnowu < vinQ */
unlatch(P); unlock(r); P = @Q); goto L3;
}

The Insert(T, k,x) algorithm implements the Insert[k,x]
database operation in the forward-rolling phase of transaction
T. The given record r = (k, x) is inserted into the database.
The insertion is redo-undo-logged for transaction 7', and the
inserted record r is X -locked for T" for commit duration.

Insert(T,k,x) {

update-mode-traverse(k, P);

if (P is full) split(P);

upgrade-latch(P);

P’ = the Page-id of the page that holds the record 7’ with
the least key value greater than k;

/* thus P’ is P (when r’ is found in P) or */

/* the page next to P (otherwise) */

X-latch(P"); lock-records(T’, P,r, P',r');

if (the exception ‘‘locks cannot be granted” is returned) {
restart the insert operation;

search P for the position of insertion;
if (a record with key value & is found) {
terminate the insert operation; release the latches;
return with the exception ‘‘uniqueness violation™;
} else {
insert r into P;
log(n, <T, insert, P, (k, x), Last-LSN(T")>);
Page-LSN(P)=n; Last-LSN(T")=n;
unlatch(P); unlatch(P’); unlock(r’);
hold the X lock on r for commit duration;

The Delete(T, k, x) algorithm implements the Delete[k, x]
database operation in the forward-rolling phase of transaction

I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees 271

T. Given a key value k, the algorithm deletes the record (k, z)
with key value k from the database. The deletion is redo-undo-
logged for transaction 7', and the record next to the deleted
record is X -locked for 7" for commit duration.

Delete(T,k,x) {

update-mode-traverse(k, P); upgrade-latch(P);

P’ = the Page-id of the page that holds the record r’ with
the least key value greater than k;

/* thus P’ is P (when r’ is found in P) or */

/* the page next to P (otherwise) */

X-latch(P’); lock-records(T’, P, r, P’,r');

if (the exception ‘‘locks cannot be granted™ is returned) {
restart the delete operation;

search P for a record with key value k;
if (no record with key value k was found in P) {
terminate the delete operation; release the latches;
return with the exception ‘‘record not found”’;
}else {
delete r from P;
log(n, <T, delete, P, (k, x), Last-LSN(T")>);
Page-LSN(P)=n; Last-LSN(T)=n;
unlatch(P); unlatch(P’); unlock(r);
hold the X lock on 7’ for commit duration;

The Lock-records(T, P,r, P’,r’) algorithm is used by
transaction 7T to acquire X locks on record r and the record r’
next to r when inserting or deleting r. Given are the Page-id P
of an X -latched leaf page P covering record r and the Page-id
P’ of an X -latched leaf page P’ containing the record r’ next
to r (in ascending key order). The algorithm acquires X locks
on r and r’ for T, if possible. Otherwise, it unlatches pages
P and P’ and returns with the exception “the locks cannot be
granted”.

Lock-records (T,P,r,P’,r’) {

k = the key value of r; request conditional X

locks on the records 7 in P and r’ in P’;

if (the X locks are granted right away) return;

save Page-LSN(P) and Page-LSN(P’);

unlatch(P); unlatch(P’);

/* try again by requesting unconditional X locks */

X-lock(r); X-lock(r"); X-latch(P); X-latch(P’);

if (Page-LSN(P) and Page-LSN(P’) have not changed) {
return,

if (Page-LSN(P) has changed) {
if (P does not cover r or P is not a leaf page or P
is no longer part of the B-link tree) {
goto out;

}

/* now P still covers r */
search P for a record r”” with the least key value > k;
if (no such record is found in P) {

if (P == P’) goto out;
else P"" = the Page-id of the page next to P;
} else { /* now P contains " */
if(P == P{
if (the key values of 7/ and r' are equal) {
/*the record ' next to r did not change*/
return;
}else {
unlock(r); unlock(r’); r' = r'/;
restart the algorithm from the beginning;

}

}else {
unlatch(P’); unlock(r); unlock(r’); P! = P;r' =r";
restart the algorithm from the beginning;

¥
if (P” == P’ and the key value of 7’ is equal to the
key value of the first record in P’) {
return;
}
out: ;

unlatch(P); unlatch(P’); unlock(r); unlock(r’);
return with exception ‘‘the locks cannot be granted’’;

Example 1. Let 7'1 and T2 be two transactions where 7'1
wants to delete a database record with key value 35 while
T2 wants to insert a database record with key value 40 into
the database represented by the B-link tree shown in Fig. 20.
Assume that 7T'1 starts first and U-latches the root page P of
the B-link tree and traverses the tree to reach the leaf page P4.

Now the high-key value in P4 is less than the key value
of the associated index record (oo, P4) in the parent page
P. Hence, T'1 must execute the link operation in order to
make P5 a direct child of its parent. For that purpose, the
root page P, which is full, must first be split. The split(P) and
link(P’, P4, P5) operations result in the B-link tree shown in
Fig. 21.

T'1 now upgrades its U latch on P4 to an X latch and
acquires X locks on the record to be deleted and the next
record in P4, that is, on the records with key values 35 and
46. Then T'1 deletes the record with key value 35 from P4,
releases the X latch on P4 and the X lock on the deleted
record, and holds the X lock on the record with key value 46
for commit duration.

When T2 starts and U-latches the root page P of the B-
link tree of Fig. 21, it finds that the Page-link(P) !=null (i.e.,
P has a right sibling). Hence, T2 executes the increase-tree-
height(P, P’) operation and traverses down the tree to P4. T'2
upgrades its U latch on P4 to an X latch and acquires X locks
on the record to be inserted and the next record in P4, that is,
on the records with key values 40 and 46. When the record
locks are granted, 7'2 inserts the record with key value 40 into
P4, releases the X latch on P4 and the X lock on the (next)
record with key value 46, and holds the X lock on the inserted
record for commit duration. This results in the B-link-tree of
Fig. 22.

272 I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

8 Page-oriented redo and undo and logical undo

Page-oriented redo (or physical redo) means that, when a page
update needs to be redone at recovery time, the Page-id fields
of the log record are used to determine uniquely the affected
pages. That is, no other page needs to be accessed or exam-
ined. Similarly, page-oriented undo (or physical undo) means
that, when a page update needs to be undone during trans-
action rollback, the Page-id fields of the log record are used
to determine the affected pages. The pages are accessed and
the update is undone on these pages. Page-oriented redo and
page-oriented undo provide faster recovery because only the
pages mentioned in the log record are accessed.

The operations in the backward-rolling phase of an aborted
transaction are implemented by the algorithms below. The al-
gorithms are used during normal processing to roll back a
transaction as well as during the undo pass of restart recovery
to roll back all active transactions. An undo operation in the
backward-rolling phase of an aborted transaction 7" is logged
by writing a compensation log record (CLR) [22] that con-
tains, besides the arguments needed to replay the undo opera-
tion, the LSN of the log record for the next database operation
by T to be undone. Such a CLR is a redo-only log record.

Uncommitted updates by a transaction 7" may move to a
different leaf page due to structure modifications triggered by
other concurrent transactions. Thus, during recovery time a
page-oriented undo can fail because an update to be undone
may no longer be covered by the page mentioned in the log
record. When a page-oriented undo fails, a logical undo [20,
21]1is used: the backward-rolling transaction retraverses the B-
link tree from the root page down to the leaf page that currently
covers the update to be undone, and then that update is undone
on that page. Naturally, the undo of such an update may trigger
a tree-structure modification, which is executed and logged
using redo-only log records. Logical undo provides a higher
level of concurrency than would be possible if the system only
allowed for page-oriented undo.

The Undo-insert(T', P, k, m) algorithm implements the
Undo-insert[k,] inverse operation in the backward-rolling
phase of an aborted transaction T'. Given is the Page-id P of
the leaf page on which the record r = (k,x) was inserted
during the forward-rolling phase of T, the key value k of r,
and the Prev-LSN m of the log record generated by 7" for the
insertion. The algorithm deletes r from P if r is still there.
Otherwise, the insertion of r is undone logically. That is, T’
retraverses the B-link tree in update mode to reach the leaf
page @ that currently covers k£ and deletes r from there. The
undone insertion is redo-only-logged for 7T'.

Undo-insert(T,P,k,m) {

X-latch(P);

if (P still contains r and will not underflow if 7 is deleted) {
Q= Pp;

}else {
unlatch(P); update-mode-traverse(k, Q));
upgrade-latch(Q);

delete r from Q);
log(n, <T', undo-insert, Q, k, m>);
Page-LSN(Q) = n; Undo-Next-LSN(T") = m; unlatch(Q);

The algorithm Undo-delete(T’, P, (k, z), m) implements
the inverse operation Undo-delete[k,z] in the backward-
rolling phase of an aborted transaction 7'. Given is the Page-id
P of the leaf page from which the record r = (k,z) was
deleted during the forward-rolling phase of 7', the record r,
and the Prev-LSN m of the log record generated by 7" for the
deletion. The algorithm reinserts r into P if P still covers k.
Otherwise, the deletion is undone logically. That is, 7 retra-
verses the B-link tree in update mode to reach the leaf page
@ that currently covers k£ and inserts r into). The undone
deletion is redo-only-logged for T'.

Undo-delete(T,P,(k,x),m) {
X-latch(P);
if (P still covers r and there is a room for r in P) {
Q=P
}else {
unlatch(P); update-mode-traverse(k, Q);
if (@ is full) split(Q);
upgrade-latch(Q);

insert 7 into Q;
log(n, <T', undo-delete, Q, (k, x), m>);
Page-LSN(Q) = n; Undo-Next-LSN(T") = m; unlatch(Q);

Lemma 6. Let B be a structurally consistent and balanced
B-link tree of height h and let T be a transaction. Any
Fetch[k, Ou, x] operation by T on B accesses at most 2h + 1
pages of B and keeps at most two of those pages S-latched for
T at a time. Any Insertlk, x| or Deletelk, x| operation in the
forward-rolling phase of T and any logically implemented in-
verse operation Undo-insert[k, x] or Undo-deletelk, x| in the
backward-rolling phase of T accesses at most 4h pages of
B, keeps at most two of those pages X -latched and at most
two U-latched for T at a time, and produces a structurally
consistent and balanced B-link tree. Any page-oriented in-
verse operation Undo-insert(k, x| or Undo-delete(k, x| in the
backward-rolling phase of 'T' accesses at most one page of B
and produces a structurally consistent and balanced B-link
tree.

Proof. The claim for Fetch[k, fu, z] follows immediately from
Lemma 4 and the algorithm for the Fetch operation. The worst
case of 2h + 1 pages occurs when at each level the side-
ways link to an indirect child page has to be followed and
when reaching the leaf level an extra step in the sideways-
link chain is needed to locate the least key k satisfying kfu.
The claims for Insert[k, x], Delete[k,], Undo-insert[k, x|, and
Undo-delete[k, x] follow from Lemma 4 and the algorithms
for the operations. By Lemma 3, the leaf page reached by an
update-mode traversal is safe. Thus it can be split, if needed,
into Insert[k,] and a logical Undo-delete[k, x|, and it will not
underflow in Delete[k,] or in a logical Undo-insert[k, x]. A
page-oriented Undo-insert[k, 2] always checks that the page
will not underflow from the deletion of (k,x), and a page-
oriented Undo-delete[k,] always checks that the page has
room for (k, z). a

I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

273

P
8 120 |30 oo
[|) Il
=
Pl v/fpz_’/ P3 \\v P4 Ps
215 |8 8| 9120 20| 253030| 354646| 5256oo|/
L % L & L & | IS X =
Fig. 20. An initial B-link tree, where leaf page P5 is an indirect child of its parent P
P P’
8 (20 oo
— L J 30146 '_L%
P1 % P2 P3 P4ﬂt———\' P5
2588I 920 20I 253030I 354646| 5256oo|
[& | I L4 | Y =

Fig. 21. The linking of indirect child P5 to its parent caused the split of root page P into P and P’

8 |20 3046 | o /
!) l J’ ! !) __l_/
¢« Pl %‘ P2 P3¢ 1>4\v P5
21518 |8 | 9 {20 |20 | 25(30130 | 40]46 |46 | 52156 [eo |/
L% | I L & [& e

Fig. 22. The height of the B-link tree is increased by one

9 Transaction execution

Using the algorithms given in the previous sections, a trans-
action is executed as follows:

Execute-transaction() {

begin(T);

rollforward(7T);

if (T is to be committed) {
commit(1");

}else {
abort(T);
rollback(T’, Undo-Next-LSN(T"));
rollback-completed(7);

}
}

The call begin(7") generates a new transaction ID T, gener-
ates the log record <7T', begin>, and inserts 7" into the active-
transaction table as a forward-rolling transaction with Last-
LSN=the LSN of < T, begin>. The call commit(7") gener-
ates the log record < T, commit>>, flushes the log, releases all
locks held by T, and removes 7" from the active-transaction
table. The call abort(7") changes 7' to a backward-rolling
transaction in the active-transaction table with Undo-Next-
LSN(T)=Last-LSN(T") and generates the log record < T,
abort>. The call rollback-completed(7’) generates the log
record <7, rollback-completed>>, flushes the log, releases all
locks held by 7', and removes 7" from the active-transaction

table. The actions contained in rollforward(7’) represent the
forward-rolling phase of transaction 7" and are determined
by the application process that is generating 7. The forward-
rolling phase contains zero or more calls of the algorithms
Fetch(), Insert(), and Delete(), with different arguments. The
call rollback(7", n) performs the backward-rolling phase of T',
when n = Undo-Next-LSN(T"):

Rollback(T,n) {
get the log record r with LSN = n;
while (r is not <T, begin>) {
if (r is <T, insert, P, (k, z), m>) {
Undo-insert(T', P, k, m);
} else if (r is <T, delete, P, (k,x), m>) {
Undo-delete(T, P, (k,x), m),

get the log record r with LSN = m;

In Lemma 5, we have shown that read-mode traversals and
update-mode traversals are deadlock free. Thus we conclude
that no deadlocks can occur between page latches. No dead-
locks can occur between record locks, either, between single
executions of the algorithms Fetch(), Insert(), Delete(), Undo-
insert(), and Undo-delete(). Note that S locks on records are
never upgraded and that a Fetch() call locks only one record,
an Insert() call or a Delete() call locks two records in ascend-
ing key order, and the calls Undo-insert() and Undo-delete()

274 I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

do not acquire record locks at all. No deadlock can be caused
by the interaction of record locks and page latches because no
transaction is made to wait for a lock on a record while hold-
ing a latch on some page. For transactions containing multi-
ple fetch, insert, or delete operations in their forward-rolling
phase, a deadlock can occur only if two transactions operate
on two records in reverse key orders. We have:

Theorem 7. Assume that each transaction in its forward-
rolling phase accesses records in ascending key order. Then
no deadlocks can occur when the concurrent transactions
are executed using the Execute-transaction() algorithm given
above. a

Let H be a history of forward-rolling, committed,
backward-rolling, and rolled-back transactions that can be run
on database D1 and let B1 be a structurally consistent and
balanced B-link tree with db(B1) = D1. Let H' be a string
of record-fetch, record-update, page-read, page-modification,
and transaction-control actions executed on B1 by a set of con-
current processes generating transactions using the Execute-
transaction() algorithm given above. Here a record-fetch ac-
tion consists of reading a database record from an S-latched
data page, a record-update action consists of inserting or delet-
ing a database record in an X -latched data page or undoing the
insertion or deletion of a database record in an X -latched data
page, a page-read action consists of inspecting the contents of
a latched page, a page-modification action consists of modify-
ing the contents of an X -latched page in a structure modifica-
tion, and a transaction-control action consists of writing a log
record of type begin, commit, abort, or rollback-completed
into the log buffer. We say that H' is an implementation of
H on B1 if the sequence of record-fetch, record-update, and
transaction-control actions in H’ represents H.

Theorem 8. Let H be a history of forward-rolling, committed,
backward-rolling, and rolled-back transactions that can be
run on database D. Further, let B be a structurally consistent
and balanced B-link tree with db(B) = D, and let H' be an
implementation of H on B. Then H' produces a structurally
consistent and balanced B-link tree. O

Proof. A formal proof would use induction on the num-
ber of actions in H'. For the purpose of the proof we may
regard each sequence of page-modification actions gener-
ated by one of the structure-modification operations split(),
link(), unlink(), merge(), redistribute(), increase-tree-height(),
or decrease-tree-height() as an atomic action. This is because
all the pages modified in a structure modification are kept si-
multaneously X -latched during the modification and the log-
ging of that modification. Also, the action of inserting a record
(k,x) into a leaf page P, or the action of deleting a record
(k, z) from a leaf page, or the undoing of such an insertion or
a deletion is an atomic action because the leaf page in ques-
tion is kept X-latched during the update and the logging of
that update. The structural consistency and balance of the tree
produced by H’ thus follows from Lemmas 1 and 6. ad

Theorem 9. Let H be a history of forward-rolling, commit-
ted, backward-rolling, and rolled-back transactions that can
be run on database D under the key-range locking protocol.
Further, let B be a structurally consistent and balanced B-
link tree with db(B) = D. Then there exists an action string

H' that implements H on B. Moreover, the implementation of
each action in H' includes at most one traversal of B.

Proof. In one such H’, the implementations of individual
operations Fetch[k, Ou, x|, Insert[k,], Delete[k, z], Undo-
insert[k, z], and Undo-delete[k, 2] by different transactions
are run serially, so that the implementations of different oper-
ations are not interleaved. The worst case, when the greatest
number of tree traversals is needed, occurs when each inverse
operation in the backward-rolling phase of any aborted trans-
action is implemented logically in H’; this includes a single
traversal of the tree from the root down to the leaf page that
currently covers the record insertion or deletion being undone.
No latch waits can occur during the traversals at any level of
the tree because all U and X latches on pages are only held
for the time of the record-update or page-modification action
in question and because any S latch on a page is released
as soon as the next page in the search path has been latched
(when latch-coupling down the tree) or as soon as a record has
been fetched from the page (when performing a record-fetch
action on a leaf page). As H can be run on D under the key-
range locking protocol, no record-lock waits can occur in H'
either. ad

10 Restart recovery

We use a redo and undo recovery protocol for handling the
system failures. Our restart recovery protocol supports page-
oriented redo, page-oriented undo (when possible), logical
undo, concurrency control at the record level, and the steal-
and-no-force policies for buffer management. The restart re-
covery protocol is based on ARIES [22] and consists of three
passes: an analysis pass, a redo pass, and an undo pass. But
because the redo pass of our restart recovery always produces
a structurally consistent and balanced B-link tree, new trans-
actions could be admitted to the system as soon as the redo
pass has been completed and the needed X locks on records
have been reacquired (from the log) for the backward-rolling
transactions. (However, to make possible the reacquisition of
the X lock on the record r’ of a deleted record 7, the lock
name (a hash value computed from the key) of 7’ should also
be included in the log record generated for Delete[r].)

In the analysis pass, the log is scanned forward start-
ing from the start-checkpoint log record of the last complete
checkpoint up to the end of the log. The modified-page table of
pages that were potentially more up to date in the buffer than in
stable storage and the active-transaction table of transactions
that were active (i.e., forward-rolling or backward-rolling) at
the time of the crash are reconstructed using the information in
the checkpointlog record and the encountered log records. The
analysis pass also determines the Redo-LSN, i.e., the LSN of
the earliest log record that needs to be redone. The Redo-LSN
is the minimum Rec-LSN in the reconstructed modified-page
table. In other words, the analysis pass determines the starting
point of the redo pass in the log and the list of the transac-
tions that need to be rolled back or whose rollback needs to
be completed.

The redo pass begins at the log record whose LSN equals
to Redo-LSN and then proceeds forward to the end of the
log. If the modified-page table is empty, then the redo pass is

I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees 275

skipped. Otherwise, for each redoable log record, the follow-
ing operation is performed. If the page P mentioned in the
log record is not in the modified-page table or P is there and
the Rec-LSN(P) is greater than the log record’s LSN, then
the logged update does not require redo. Otherwise, page P
mentioned in the log record is X -latched and Page-LSN(P) is
compared with the log record’s LSN in order to check whether
or not page P already contains the update, that is, whether or
not the updated page P was written to the disk before the sys-
tem failure. If Page-LSN(P) is less than the log record’s LSN,
then the logged update is redone, that is, applied physically
(in a page-oriented fashion) to page P and Page-LSN(P) is
set to the log record’s LSN (without performing any logging).
Otherwise, Rec-LSN(P) in the modified-page table is set to
Page-LSN(P) + 1 (i.e., page P was written to disk after the
checkpoint but before the system failure). Then, the X latch
on P is released. By the end of the redo pass, the B-link tree
will be structurally consistent and balanced.

The redo pass of our restart recovery uses the Redo-record-
update() algorithm for redoing a record insert, delete, undo-
insert, or undo-delete operation o[v] and the Redo-structure-
modification() algorithm for redoing a structure-modification
operation o[P1, ..., Pn, V].

Redo-record-update(n,o0,P,v) {
if (P is in the modified-page table and
Rec-LSN(P) <= n) {
X-latch(P);
if (Page-LSN(P) <n) {
perform the operation o[v] on P;
Page-LSN(P) = n;

unlatch(P);

}
}

For example, to redo an undo-delete logged as n:<T,
undo-delete, P, (k,x), m >, the call Redo-record-update(n,
undo-delete, P, (k, z)) is issued.

Redo-structure-modification(n,0,P1,...,Pn,V) {
for¢ =1, ..., n){

if (P; is in the modified-page table and

Rec-LSN(R) <=n) {

X-latch(R);

if (Page-LSN(R) <n) {
install the effect of the operation o[P1, ..., Pn, V]
on P2 ; Page-LSN(P) = n;

unlatch(R);
}

}
}

For example, to redo a split logged as n :<split, Q, Q’,
M, V >, the call Redo-structure-modification(n, split, Q, Q’,
M, V) is issued, where M is the storage-map page and V is
the set of records moved from page Q to page Q.

In the undo pass, all forward-rolling transactions are
aborted and rolled back and the rollback of all backward-
rolling transactions is completed. The log is scanned backward

from the end of the log until all updates of such transactions
are undone.

Undo-pass() {
for (each forward-rolling transaction T") {
abort(7T);

while (active-transaction table is not empty) {
n = max{Undo-Next-LSN(T) | T is in the active-
transaction table};
get the log record r with LSN n;
switch () {
case “‘<T, insert, P, (k,z), m>"":
Undo-insert(T', P, k, m);
case “‘<T, delete, P, (k,x), m>":
Undo-delete(T, P, (k,x), m),
case ‘<7, begin>:
rollback-completed(7");

The following example shows how the aborted transac-
tions are rolled back during restart recovery and how the restart
recovery is resumed in case the system fails during the restart
recovery.

Example 2. Assume that during the normal processing the
stable log contains the following log records.

10: <T1, begin>

20: <T1, delete, Q, (k1,21), 10>
30: <T2, begin>

40: <T1, insert, Q,(ks, z2), 20>
50: <T2, insert, R, (k3,3), 30>
60: <split, Q, Q', M,V >

70: <T2, delete, R, (k4, x4), 50>
80: <T1, insert, Q’, (ks, x5), 40>

Assume that after installing the log record with LSN=801n
the stable log the system fails. When the system is up again, all
forward-rolling transactions are aborted and rolled back and
the rollback of all backward-rolling transactions is completed.
The following log records are generated in the undo pass:

90: <T1, abort>

100: <T2, abort>

110: <T1, undo-insert, QQ’, ks, 40 >

120: <T2, undo-delete, R, (k4,x4),50 >
130: <T2, undo-insert, R, k3, 30 >

140: <T1, undo-insert,), ko, 20 >

150: <T2, rollback-completed >

160: <T1, undo-delete, Q, (k1,21),10 >
170: <T1, rollback-completed >

Theorem 10. Let H be a history of forward-rolling, commit-
ted, backward-rolling, and rolled-back transactions that can
be run on database D1 and let B1 be a structurally consis-
tent and balanced B-link tree with db(B1) = D1. Further,
let H' be an implementation of H on Bl and let L be the
sequence of log records generated by the operations in H'.
Given the prefix L1 of L stored in the stable log and the (pos-
sibly structurally inconsistent) disk version B2 of the B-link

276 I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

tree at the time H' has been run on B1, the redo pass of the
ARIES algorithm will produce a structurally consistent and
balanced B-link tree B3, where db(B3) is the database pro-
duced by running on D1 a prefix H1 of H that contains all the
database operations logged in L1. Moreover, the undo pass
of ARIES will generate a string of operations that implements
some completion string for H1.

Proof. The way in which update and structure-modification
operations are performed guarantees that the log records gen-
erated by each transaction 7" are written to the log in the order
in which the corresponding operations appear in 7'. As leaf-
page updates and structure modifications are protected by X
latches, the log records for the updates and modifications on
each page P appear in the log in the order in which the corre-
sponding operations appear in H. Thus, given any prefix L1
of the log L, the redo pass of the ARIES algorithm will pro-
duce the B-link tree that is the result of running some prefix
of H' on B1. By Theorem 8, B1 is structurally consistent and
balanced. The rest of the theorem follows from Theorem 9.

O

11 Conclusion

In the previously published B-link-tree algorithms, tree-
structure modifications remain a challenge to concurrency
control, recovery, and tree balancing. In [16,17], a B-link-tree
structure modification involving several levels of the tree is
divided into smaller structure modifications (atomic actions)
in which a page split done on a single level of the tree is decou-
pled from the linking of the new child to its parent. Thus, tree
balance is not guaranteed because it is possible that arbitrary
long chains of sibling pages are created that are not directly
linked to their parent. Moreover, the proposed restart recovery
protocol is not efficient because a second pass over the log has
to be made during the undo pass of restart recovery in order
to roll back interrupted structure modifications.

In our new B-link-tree algorithms, the recoverability and
concurrency problems were solved by defining each struc-
ture modification as a small atomic action. Each atomic ac-
tion X -latches and updates at most two pages on a single level
of the B-link-tree at a time for a short duration. Each action
retains the structural consistency and balance of the tree and
is logged using a single redo-only log record. Thus, in restart
recovery, the redo pass of the ARIES algorithm [22] will al-
ways produce a structurally consistent and balanced tree on
which the database updates by aborted transactions can be un-
done logically. In our algorithms, structure modifications can
run concurrently with other structure modifications and leaf-
page updates. Also, in our algorithms, tree-structure modifica-
tions interrupted by a system failure are never rolled back dur-
ing restart recovery, and hence concurrency is increased and
recovery simplified. This is in contrast to the algorithms in
[7,11,16,17,20,21] in which an interrupted tree-structure
modification always have to be rolled back during restart re-
covery.

In our algorithms, record deletions are handled uniformly
with record insertions using a structure modification that
merges two sibling pages or redistributes records between two
sibling pages. The balance conditions of the B-link tree in-
clude that at no level of the tree must there be two successive

pages that are both indirect children of their parent. This guar-
antees that the search path of any database record is at most
twice the height of the tree. To maintain the balance condi-
tions under record updates and tree-structure modifications,
we defined the concept of a “safe page” and required that each
transaction doing an update-mode traversal must always turn
each encountered unsafe page into a safe one by performing
a suitable structure modification. A full page is safe if is not
an indirect child of its parent and if it does not have a right
sibling page that is an indirect child. Using the safety concept
we gave a rigorous proof that the balance of the B-link tree
is indeed maintained under all circumstances. Our algorithms
improve concurrency, simplify recovery, reduce the amount
of logging, and are deadlock free.

Acknowledgements. The authors would like to thank the reviewers
and the associate editor for their valuable comments, which helped
to improve the paper.

References

1. Bernstein P, Hadzilacos V, Goodman N (1987) Concurrency
control and recovery in database systems. Addison-Wesley,
Reading, MA

2. Biliris A (1987) Operation specific locking in B-trees. In: Proc.
1987 ACM international conference on principles of database
systems, pp 159-169

3. Chen I, Hassan S (1995) Performance analysis of a periodic data
reorganization algorithm for concurrent B-link trees in database
systems. In: Proc. 1995 ACM symposium on applied computing,
pp 4045

4. Cosmadakis S, Ioannidou K, Stergiou S (2001) View serializable
updates of concurrent index structures. In: Proc. 2001 DBPL
international workshop on database programming languages,
pp 247-262

5. De Jonge W, Schijf A (1990) Concurrent access to B-trees. In:
Proc. 1990 PARBASE international conference on databases,
parallel architectures and their applications, pp 312-320

6. Fu A, Kameda T (1989) Concurrency control for nested trans-
actions accessing B-trees. In: Proc. ACM SIGACT-SIGMOD-
SIGART international conference on management of data,
pp 270-285

7. Gray J, Reuter A (1993) Transaction processing: concepts and
techniques. Morgan Kaufmann, San Francisco

8. Goyal B, Haritsa J, Seshadri S, Srinivasan V (1995) Index con-
currency control in firm real-time DBMS. In: Proc. 21st VLDB
conference, pp 146-157

9. Jaluta I (2002) B-tree concurrency control and recovery
in a client-server database management system. Ph.D. the-
sis and report TKO-A37/02, Department of Computer Sci-
ence and Engineering, Helsinki University of Technology.
http://lib.hut.fi/Diss/2002/isbn9512257068/

10. Keller AM, Wiederhold G (1988) Concurrent use of B-trees with
variable-length entries. SIGMOD Rec 17(2):89-90

11. Kornacker M, Mohan C, Hellerstein J (1997) Concurrency and
recovery in generalized search trees. In: Proc. ACM SIGMOD
international conference on management of data, pp 62-72

12. Kwong Y, Wood D (1982) A new method for concurrency in
B-trees. IEEE Trans Softw Eng 8:211-222

13. Lanin V, Shasha D (1986) A symmetric concurrent B-tree algo-
rithm. In: Proc. fall joint computer conference, pp 380-389

I. Jaluta et al.: Concurrency control and recovery for balanced B-link trees

14

15.

16.

17.

19.

20.

21.

Lehman P, Yao S (1981) Efficient locking for concurrent oper-
ations on B-trees. ACM Trans Database Sys 6:650-670

Lomet D (1992) MLR: a recovery method for multi-level sys-
tems. In: Proc. ACM SIGMOD international conference on
management of data, pp 185-194

Lomet D, Salzberg B (1992)) Access method concurrency with
recovery. In: Proc. ACM SIGMOD international conference on
management of data, pp 351-360

Lomet D, Salzberg B (1997) Concurrency and recovery for in-
dex trees. VLDB J 6:224-240

. Mohan C (1989) ARIES/KVL.: a key-value locking method for

concurrency control of multi-action transactions operation on
B-tree indexes. IBM Research Report RJ7008, IBM Almaden
Research Center

Mohan C (1990) ARIES/KVL: a key-value locking method for
concurrency control of multi-action transactions operation on
B-tree indexes. In: Proc. 16th VLDB conference, pp 392-405
Mohan C (1996) Concurrency control and recovery methods
for BLtree indexes: ARIES/KVL and ARIES/IM. In: Kumar V
(ed) Performance of concurrency control mechanisms in cen-
tralized database systems. Prentice-Hall, Upper Saddle River
NJ, pp 248-306

Mohan C, Levine F (1992) ARIES/IM: an efficient and high con-
currency index management method using write-ahead logging.
In: Proc. ACM SIGMOD international conference on manage-
ment of data, pp 371-380

22.

23.

24.

25.

26.

217.

28.

29.

30.

2717

Mohan C, Haderle D, Lindsay B, Pirahesh H, Schwarz P
(1992) ARIES: a transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead log-
ging. ACM Trans Database Sys 17:94-162

MondY, RazY (1985) Concurrency control in B£tree databases
using preparatory operations. In: Proc. 11th VLDB conference,
pp 331-334

Nurmi O, Soisalon-Soininen E, Wood D (1987) Concurrency
control in database structures with relaxed balance. In: Proc.
ACM international conference on principles of database sys-
tems, pp 170-176

Papadimitriou C (1986) The theory of database concurrency
control. Computer Science Press, Rockville, MD

Sagiv'Y (1986) Concurrent operations on B*-trees with over-
taking. J Comput Sys Sci 33:275-296

Setzer V, Zisman A (1994) New concurrency control algorithms
for accessing and compacting B-trees. In: Proc. 20th VLDB
conference, pp 238-248

Srinivasan V, Carey M (1991)) Performance of B=-tree concur-
rency control algorithms. In: Proc. ACM SIGMOD international
conference on management of data, pp 416-425

Srinivasan V, Carey M (1993) Performance of B=tree concur-
rency control algorithms. VLDB J 2:361-406

Sullivan M, Olson M (1992) An index implementation support-
ing fast recovery for the POSTGRES storage system. In: Proc.
8th IEEE data engineering conference, pp 293-300

