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Fixing Twitter
... and Finding your own Fail Whale
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Operations
• Small team, growing rapidly.

• What do we do?

• Software Performance (back-end)

• Availability

• Capacity Planning (metrics-driven)

• Configuration Management

• We don’t deal with the physical plant.



Managed Services

• Dedicated team (NTTA)

• 24/7 Hands on remote support

• No clouds.   We tried that! 

• Need raw processing power, latency too 
high in existing cloud offerings

• Frees us to deal with real, intellectual, 
computer science problems.



752% 
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That was only the beginning...

previous 
graph!



Uniques

Not slowing down, despite what outsiders say.
Hard for outsiders to measure API usage!



Growth = Pain
+ an appreciation for Institutionalized Fear
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Mantra!

Find Weakest 
Point

Metrics + 
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Take Corrective 
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Weakest Point

Process Repeatability



Find the Weakest Point

• Metrics + Graphs

• Individual metrics are irrelevant

• Logs

• SCIENCE!

• Find out what the actionable items are.



Instrument Everything

(cc) seenoevil@flickr



Monitoring

• Graph and report critical metrics in as near 
real time as possible

• You already have the tools.

• RRD

• Ganglia + custom gMetric scripts

• MRTG



• “Criticals” view

• Smokeping/MRTG

• Google Analytics

• Not just for 
HTTP 200s/SEO

• XML Feeds from 
managed services

• Data Porn!

Dashboards



Analyze

• Turn data into information

• Where is the code base going?

• Are things worse than they were?

• Understand the impact of the last 
software deploy

• Run check scripts during and after 
deploys

• Capacity Planning, not Fire Fighting!



Forecasting

signed int (32 bit)
Twitpocolypse

unsigned int (32 bit)
Twitpocolypse

status_id

r2=0.99

Curve-fitting for capacity planning
(R, fityk, Mathematica, CurveFit)



Deploys

• Graph time-of-deploy along side server 
CPU and Latency 

• Display time-of-last-deploy on dashboard

last deploy times



Whale-Watcher
• Simple shell script, 

• MASSIVE WIN. 

• Whale = HTTP 503 (timeout)

• Robot = HTTP 500 (error)

• Examines last 100,000 lines of aggregated 
daemon / www logs

• “Whales per Second” > Wthreshold 

• Thar be whales! Call in ops.



Take Action !



Feature “Darkmode”

• Specific site controls to enable and 
disable computationally or IO-Heavy site 
function

• The “Emergency Stop” button

• Changes logged and reported to all teams

• Around 60 switches we can throw

• Static / Read-only mode



Configuration 
Management

• Start automated configuration management 
EARLY in your company. 

• Don’t wait until it’s too late.

• Twitter started within the first few months.



• Complex Environment

• Multiple Admins

• Unknown Interactions

• Solution: 2nd set of eyes.

Configuration 
Management



Process through Reviews



Reviewboard

• SVN pre-commit hook causes a failure if 
the log message doesn’t include 
‘reviewed’

• SVN post-commit hook informs people 
what changed via email

• Watches the entire SVN tree

www.review-board.org

http://www.review-board.org
http://www.review-board.org


Improve 
Communication

Campfire



Subsystems



Apache
MPM Model
MaxClients

TCP Listen queue depth

Rails
(mongrel)

2:1 oversubscribed
to cores

Varnish (search)
# threads

Many limiting factors in the request pipeline

Memcached
# connections

MySQL
# db connections



Make an attack plan.
Symptom Bottleneck Vector Solution

Bandwidth Network HTTP 
Latency

Servers++

Timeline Database Update Delay Better 
algorithm

Search Database Delays DBs++
Code

Updates Algorithm Latency Algorithms



CPU: More with Less
• Reduction in 40% of CPU by replacing dual 

and quad core machines with 8 core

• Switching from AMD to Intel Xeon = 30% 
gain

• Saved data center space, power, cost per 
month.

• Not the best option if you own machines. 
Capital expenditure = hard to realize new 
technology gains. 



Rails
• Stop blaming Rails.  

• Analysis found:

• Caching + Cache invalidation problems

• Bad queries generated by ActiveRecord, 
resulting in slow queries against the db

• Queue Latency

• Memcache / Page Cache Corruption

• Replication Lag



Disk is the new Tape.

• Social Networking application profile has 
many O(ny) operations.

• Page requests have to happen in < 500mS 
or users start to notice. Goal: 250-300mS

• Web 2.0 isn’t possible without lots of RAM

• What to do?



Caching
• We’re the real-time web, but lots of caching 

opportunity

• Most caching strategies rely on long TTLs 
(>60 s)

• Separate memcache pools for different data 
types to prevent eviction

• Optimize Ruby Gem to libmemcached + 
FNV Hash instead of Ruby + MD5

• Twitter now largest contributor to 
libmemcached



Caching 50% decrease in load with Native C 
gem + libmemcached



Cache Money!

• Active Record Plugin

• Cache when reading from the DB

• Cache when writing to the DB

• Transparently provides caching

• Removes need for set/get cache code

• Open Source!



Caching

• “Cache Everything!” not the best policy

• Invalidating caches at the right time is 
difficult.

• Cold Cache problem

• Network Memory Bus != Infinite



Memcached
• memcached isn’t perfect.

• Memcached SEGVs hurt us early on.

• Evictions make the cache unreliable for 
important configuration data
(loss of darkmode flags, for example)

• Data and Hash Corruption (even in 1.2.6)

• Exposed corruption issue with specific 
inputs causing SEGV and unexpected 
behavior



API + Caching (search)

• Cache and control abusive clients

• Varnish between two Apache Virtual Hosts 
(failover to another backend if  Varnish 
dies)

• Remove Cache busting query strings before 
applying hash algorithm

• Using ESI to cache jQuery requests when 
specifying a callback= parameter - big win.



Relational Databases 
not a Panacea
• Good for:

• Users, Relational Data, Transactions

• Bad:

• Queues. Polling operations. Caching.

• You don’t need ACID for everything.

• Enter the message queue...



Queues
• Many message queue solutions on the 

market

• At high loads, most perform poorly when 
used in ‘durable’ mode. 

• Erlang based queues work well 
(RabbitMQ), but you need in house Erlang 
experience. 

• We wrote our own.

• Kestrel to the rescue!



Kestrel
 Falco tinnunculus

• Works like memcache (same protocol)

• SET = enqueue   |   GET = dequeue

• No strict ordering of jobs

• No shared state between servers

• Written in Scala.



Asynchronous 
Requests

• Inbound traffic consumes a mongrel

• Outbound traffic consumes a mongrel

• The request pipeline should not be used to 
handle 3rd party communications or 
back-end work.

• Daemons, Daemons, Daemons.



Don’t make services 
dependent

• Move operations out of the synchronous 
request cycle

• Email

• Complex object generation (timelines)

• 3rd party services (bit.ly, sms, etc.) 



Daemons

• Many different types at Twitter.

• # of daemons have to match the workload

• Early Kestrel would crash if queues filled

• “Seppaku” patch 

• Kill daemons after n requests

• Long-running daemons = low memory



MySQL Challenges
• Replication Delay

• Single threaded. Slow. 

• Social Networking not good for RDBMS

• N x N relationships and social graph / 
tree traversal

• Sharding importance

• Disk issues (FS Choice, noatime, 
scheduling algorithm)



MySQL

• Replication delay and cache eviction 
produce inconsistent results to the end 
user.  

• Locks create resource contention for 
popular data



Database Replication
• Major issues around users and statuses 

tables

• Multiple functional masters (FRP, FWP)

• Make sure your code reads and writes to 
the write DBs. Reading from master = slow 
death

• Monitor the DB. Find slow / poorly 
designed queries

• Kill long running queries before they kill 
you (mkill)



status.twitter.com

• Keep users in the loop, or suffer.

• Hosted on different service (Tumblr)

• No matter how little information you have 
available.



Key Points

• Databases not always the best store.

• Instrument everything.

• Use metrics to make decisions, not guesses.

• Don’t make services dependent

• Process asynchronously when possible



Thanks! 
Twitter Open Source (Apache License):

- CacheMoney Gem (Write through Caching)
http://github.com/nkallen/cache-money/tree/master

- Libmemcached
http://tangent.org/552/libmemcached.html

- Kestrel (Memcache-like message queue)
http://github.com/robey/kestrel

- mod_memcache_block (Apache 2.x Limiter/blocker)
http://github.com/netik/mod_memcache_block

http://tangent.org/552/libmemcached.html
http://tangent.org/552/libmemcached.html
http://github.com/robey/kestrel
http://github.com/robey/kestrel
http://github.com/netik/mod_memcache_block
http://github.com/netik/mod_memcache_block

