
John Adams
Twitter Operations
<jna@twitter.com>

Fixing Twitter
... and Finding your own Fail Whale

mailto:jna@twitter.com
mailto:jna@twitter.com

Operations
• Small team, growing rapidly.

• What do we do?

• Software Performance (back-end)

• Availability

• Capacity Planning (metrics-driven)

• Configuration Management

• We don’t deal with the physical plant.

Managed Services

• Dedicated team (NTTA)

• 24/7 Hands on remote support

• No clouds. We tried that!

• Need raw processing power, latency too
high in existing cloud offerings

• Frees us to deal with real, intellectual,
computer science problems.

752%
2008 Growth

0

1.25

2.5

3.75

5

Dec 07 Feb 08 Apr 08 Jun 08 Aug 08 Oct 08 Dec 08

Unique Visitors (in Millions)

That was only the beginning...

previous
graph!

Uniques

Not slowing down, despite what outsiders say.
Hard for outsiders to measure API usage!

Growth = Pain
+ an appreciation for Institutionalized Fear

Mantra!

Find Weakest
Point

Metrics +
Logs + Science =

Analysis

Mantra!

Find Weakest
Point

Metrics +
Logs + Science =

Analysis

Take Corrective
Action

Process

Mantra!

Find Weakest
Point

Metrics +
Logs + Science =

Analysis

Take Corrective
Action

Move to Next
Weakest Point

Process Repeatability

Find the Weakest Point

• Metrics + Graphs

• Individual metrics are irrelevant

• Logs

• SCIENCE!

• Find out what the actionable items are.

Instrument Everything

(cc) seenoevil@flickr

Monitoring

• Graph and report critical metrics in as near
real time as possible

• You already have the tools.

• RRD

• Ganglia + custom gMetric scripts

• MRTG

• “Criticals” view

• Smokeping/MRTG

• Google Analytics

• Not just for
HTTP 200s/SEO

• XML Feeds from
managed services

• Data Porn!

Dashboards

Analyze

• Turn data into information

• Where is the code base going?

• Are things worse than they were?

• Understand the impact of the last
software deploy

• Run check scripts during and after
deploys

• Capacity Planning, not Fire Fighting!

Forecasting

signed int (32 bit)
Twitpocolypse

unsigned int (32 bit)
Twitpocolypse

status_id

r2=0.99

Curve-fitting for capacity planning
(R, fityk, Mathematica, CurveFit)

Deploys

• Graph time-of-deploy along side server
CPU and Latency

• Display time-of-last-deploy on dashboard

last deploy times

Whale-Watcher
• Simple shell script,

• MASSIVE WIN.

• Whale = HTTP 503 (timeout)

• Robot = HTTP 500 (error)

• Examines last 100,000 lines of aggregated
daemon / www logs

• “Whales per Second” > Wthreshold

• Thar be whales! Call in ops.

Take Action !

Feature “Darkmode”

• Specific site controls to enable and
disable computationally or IO-Heavy site
function

• The “Emergency Stop” button

• Changes logged and reported to all teams

• Around 60 switches we can throw

• Static / Read-only mode

Configuration
Management

• Start automated configuration management
EARLY in your company.

• Don’t wait until it’s too late.

• Twitter started within the first few months.

• Complex Environment

• Multiple Admins

• Unknown Interactions

• Solution: 2nd set of eyes.

Configuration
Management

Process through Reviews

Reviewboard

• SVN pre-commit hook causes a failure if
the log message doesn’t include
‘reviewed’

• SVN post-commit hook informs people
what changed via email

• Watches the entire SVN tree

www.review-board.org

http://www.review-board.org
http://www.review-board.org

Improve
Communication

Campfire

Subsystems

Apache
MPM Model
MaxClients

TCP Listen queue depth

Rails
(mongrel)

2:1 oversubscribed
to cores

Varnish (search)
threads

Many limiting factors in the request pipeline

Memcached
connections

MySQL
db connections

Make an attack plan.
Symptom Bottleneck Vector Solution

Bandwidth Network HTTP
Latency

Servers++

Timeline Database Update Delay Better
algorithm

Search Database Delays DBs++
Code

Updates Algorithm Latency Algorithms

CPU: More with Less
• Reduction in 40% of CPU by replacing dual

and quad core machines with 8 core

• Switching from AMD to Intel Xeon = 30%
gain

• Saved data center space, power, cost per
month.

• Not the best option if you own machines.
Capital expenditure = hard to realize new
technology gains.

Rails
• Stop blaming Rails.

• Analysis found:

• Caching + Cache invalidation problems

• Bad queries generated by ActiveRecord,
resulting in slow queries against the db

• Queue Latency

• Memcache / Page Cache Corruption

• Replication Lag

Disk is the new Tape.

• Social Networking application profile has
many O(ny) operations.

• Page requests have to happen in < 500mS
or users start to notice. Goal: 250-300mS

• Web 2.0 isn’t possible without lots of RAM

• What to do?

Caching
• We’re the real-time web, but lots of caching

opportunity

• Most caching strategies rely on long TTLs
(>60 s)

• Separate memcache pools for different data
types to prevent eviction

• Optimize Ruby Gem to libmemcached +
FNV Hash instead of Ruby + MD5

• Twitter now largest contributor to
libmemcached

Caching 50% decrease in load with Native C
gem + libmemcached

Cache Money!

• Active Record Plugin

• Cache when reading from the DB

• Cache when writing to the DB

• Transparently provides caching

• Removes need for set/get cache code

• Open Source!

Caching

• “Cache Everything!” not the best policy

• Invalidating caches at the right time is
difficult.

• Cold Cache problem

• Network Memory Bus != Infinite

Memcached
• memcached isn’t perfect.

• Memcached SEGVs hurt us early on.

• Evictions make the cache unreliable for
important configuration data
(loss of darkmode flags, for example)

• Data and Hash Corruption (even in 1.2.6)

• Exposed corruption issue with specific
inputs causing SEGV and unexpected
behavior

API + Caching (search)

• Cache and control abusive clients

• Varnish between two Apache Virtual Hosts
(failover to another backend if Varnish
dies)

• Remove Cache busting query strings before
applying hash algorithm

• Using ESI to cache jQuery requests when
specifying a callback= parameter - big win.

Relational Databases
not a Panacea
• Good for:

• Users, Relational Data, Transactions

• Bad:

• Queues. Polling operations. Caching.

• You don’t need ACID for everything.

• Enter the message queue...

Queues
• Many message queue solutions on the

market

• At high loads, most perform poorly when
used in ‘durable’ mode.

• Erlang based queues work well
(RabbitMQ), but you need in house Erlang
experience.

• We wrote our own.

• Kestrel to the rescue!

Kestrel
 Falco tinnunculus

• Works like memcache (same protocol)

• SET = enqueue | GET = dequeue

• No strict ordering of jobs

• No shared state between servers

• Written in Scala.

Asynchronous
Requests

• Inbound traffic consumes a mongrel

• Outbound traffic consumes a mongrel

• The request pipeline should not be used to
handle 3rd party communications or
back-end work.

• Daemons, Daemons, Daemons.

Don’t make services
dependent

• Move operations out of the synchronous
request cycle

• Email

• Complex object generation (timelines)

• 3rd party services (bit.ly, sms, etc.)

Daemons

• Many different types at Twitter.

• # of daemons have to match the workload

• Early Kestrel would crash if queues filled

• “Seppaku” patch

• Kill daemons after n requests

• Long-running daemons = low memory

MySQL Challenges
• Replication Delay

• Single threaded. Slow.

• Social Networking not good for RDBMS

• N x N relationships and social graph /
tree traversal

• Sharding importance

• Disk issues (FS Choice, noatime,
scheduling algorithm)

MySQL

• Replication delay and cache eviction
produce inconsistent results to the end
user.

• Locks create resource contention for
popular data

Database Replication
• Major issues around users and statuses

tables

• Multiple functional masters (FRP, FWP)

• Make sure your code reads and writes to
the write DBs. Reading from master = slow
death

• Monitor the DB. Find slow / poorly
designed queries

• Kill long running queries before they kill
you (mkill)

status.twitter.com

• Keep users in the loop, or suffer.

• Hosted on different service (Tumblr)

• No matter how little information you have
available.

Key Points

• Databases not always the best store.

• Instrument everything.

• Use metrics to make decisions, not guesses.

• Don’t make services dependent

• Process asynchronously when possible

Thanks!
Twitter Open Source (Apache License):

- CacheMoney Gem (Write through Caching)
http://github.com/nkallen/cache-money/tree/master

- Libmemcached
http://tangent.org/552/libmemcached.html

- Kestrel (Memcache-like message queue)
http://github.com/robey/kestrel

- mod_memcache_block (Apache 2.x Limiter/blocker)
http://github.com/netik/mod_memcache_block

http://tangent.org/552/libmemcached.html
http://tangent.org/552/libmemcached.html
http://github.com/robey/kestrel
http://github.com/robey/kestrel
http://github.com/netik/mod_memcache_block
http://github.com/netik/mod_memcache_block

