
GPU-Accelerated Point Cloud Interpolation
Bo Zhou

Introduction
In natural science, there are many problems which are all could be merged as solving linear system,
such as building engineering simulation, heat energy diffusion. Point cloud interpolation should be a
very useful tool for solving PCA(Principal Component Analysis) problems, such as volume data
interpolation, picture color reconstruction. Origin method, includes linear interpolation. We extend
the method which was published in [1], use GPGPU to accelerate the basic linear algebra operation.

Solution
Assume there is a triangle T R1,R2,R3 , with a scalar value q x i , y i , i=1,2,3 on each vertex.
And we want to get interpolated value q ij on a point x ij , y ij in the convex hull. This forms a
linear interpolation function,

q in x , y=q11x , y q22 x , yq33x , y .

The i x , y =Ai /A is the area ratio, A1 is the area of triangle X R2 R3 . It's very clear that
there are also 3 condition,

1x , y 2x , y 3x , y =1
x11x , y x22x , y x33x , y =x
y11x , y y22x , y y33x , y = y

.

We re-write it as matrix form below,

 1 1 1
x1 x2 x3

y1 y2 y3
1

2

3
=1

x
y .

The quadratic error basis function is

f x , y=a12b23c31 .

Let S j∈V , j=1,⋯,m be the next m donor mesh points that are closest to X . Let
i j represent the value of i at the data point S j . Define a matrix

B= 1121 2131 3111
1222 2232 3212

⋮ ⋮ ⋮
1m2m 2m3m 3m1m .

To get the coefficients we invert a 3×3 system,

BT Ba=BTw
where a=a ,b ,cT and

mailto:bo.schwarzstein@gmail.com?subject=About%20%22GPU-Accelerated%20Point%20Cloud%20Interpolation%22

 w= q1−qlin 1q2−qlin 2
⋮

qm−qlin m .

It's very easy to get solutions in 3D case,

q x , y , z=qlin x , y , z f x , y , z
and

q linx , y , z =∑i=1

4
qii x , y , z ,

inverse this matrix would get the i ,i=1,⋯ ,4 ,

 1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4
1

2
3
4
=1

x
y
z .

The quadratic error is
f x , y , z =a12b13c14d 23e24 f 34 .

The X is in a terahedron T , not planar triangle. Similar the (7) we can get 3D version of this
linear system,

C TCa=C Tw

C= 1121 2 131 3111 2131 2 141 3141
1222 2232 3212 2131 2 141 3141

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1m2m 2m3m 3m1m 2131 2 141 3141

after inverse the CTC we can easily obain the a . Third order and fourth order requires
inverse 16×16 and 32×32 linear system.

Half Implementation
Current NVIDIA CUDA CUBLAS library has complete linear algebra support from BLAS1 to
BLAS3. It's high efficient to operate matrix and vector in parallel on GPU now, so nearly the all
work could be mapped onto GPU. There are maturity linear algebra operator LU released by some
researchers from U.C. Berkeley and UNC. Use K-nearest to get some points near the interested
position, then apply the above linear system to get the value.

Conclusion
Maybe you will think of that it's not valuable, simple linear interpolation is enough for grid data, to
obtain the gradient. To achieve higher accuracy in engineering analysis, it's necessary to get
interpolated point data not only in XYZ dimensions but any position. This idea is inspired by a
paper about MAE and processing Houdini's fluid grid.

	GPU-Accelerated Point Cloud Interpolation
	Introduction
	Solution
	Half Implementation
	Conclusion

