
W
H

IT
E

 P
A

P
E

R

Types of MSI Custom Actions

by Robert Dickau
Principal Technical Training Writer, Acresso Software

Types of MSI Custom Actions
Introduct ion
This white paper describes some of the types of custom act ions
supported by Windows Installer (MSI). These types include:

	 •		Launching	executables
	 •		Calling	DLL	or	script	funct ions
	 •		Sett ing	Property-table	propert ies	and	Directory-

table propert ies
	 •		Error	act ions

It	also	highlights	how	InstallShield® from Acresso Software
assists	you	in	working	with	custom	act ions.	

Using the InstallShield Environment
This white paper frequent ly refers to the InstallShield
development environment. It is assumed you are familiar with
the	general	layout	of	the	InstallShield	interface,	which	contains	
a list of views with which you can modify different port ions of
your installat ion project.

For	example,	the	General	Informat ion	view	is	where	you	set	
general	product	and	project	propert ies;	the	Setup	Design	view	
enables	you	to	edit	the	features,	components,	and	component	
data	used	by	your	project;	the	Registry	view	enables	you	to	
modify	the	registry	data	installed	by	your	installat ion	program;	
and	the	Direct	Editor	view	gives	you	access	to	the	raw	MSI	
database tables.

It is also assumed you are familiar with some of the wizards
available	with	InstallShield,	such	as	the	Release	Wizard	and	
Component	Wizard.

	 •		The	Release	Wizard,	available	under	the	Build	menu	
and	also	from	the	Releases	view,	lets	you	describe	the	
propert ies—media	type,	compression	sett ings,	and	so	
forth—of	a	release,	and	then	builds	the	specified	
release	image.

	 •		The	Component	Wizard,	available	by	right-clicking	a	
feature	in	the	Setup	Design	view,	lets	you	create	special	
types	of	components,	such	as	components	for	COM	
servers,	fonts,	and	Windows	services.

The	InstallShield	Help	Library	contains	informat ion	about	using	
every view and wizard in the InstallShield environment. The
InstallShield	Help	Library	is	available	when	you	press	F1	with	
any	view	selected;	you	can	also	select	Contents	from	the	Help	
menu to view the help library.

In	addit ion	to	the	graphical	environment,	InstallShield	provides	
several	tools	for	modifying	and	building	projects	from	the	
command	line	or	an	external	script.	For	example,	to	build	a	
project	from	the	command	line,	batch	file,	or	other	automated	
process,	you	can	use	the	executable	IsCmdBld.exe.	The	
IsCmdBld	executable	is	located	in	the	System	subdirectory	of	
the InstallShield distribut ion directory.

To	rebuild	a	project,	you	pass	IsCmdBld	the	project	file	path,	
the	product	configurat ion	name,	and	the	release	name	that	
you want to rebuild. A sample command appears as follows:

	 	iscmdbld	-p	C:\ProductName.ism	-a	BuildConfig	-r	
ReleaseName

In	addit ion,	InstallShield	provides	an	Automat ion	interface,	with	
which	you	can	modify	the	contents	of	a	project	file	without	
using	the	graphical	environment.

2 Acresso Software:	InstallShield	White	Paper	Series

Types	of	MSI	Custom	Act ions

3Acresso Software:	InstallShield	White	Paper	Series

Custom Act ion Basics
There are two steps involved for each custom act ion you want
to use:

	 1.		Define	the	act ion:	Specify what the act ion does (launch
an	executable,	call	a	DLL	funct ion,	set	a	property,	and	
so forth) and its other behavior (whether to test the return
value,	and	so	forth).

 2. Schedule the act ion: Specify where the act ion runs
relat ive	to	other	act ions,	which	installat ion	phase	
(immediate	execut ion,	deferred	execut ion,	and	so	forth)	
the	act ion	uses,	and	under	what	condit ions	the	
act ion runs.

A	general	principle	is	that	you	should	not	use	a	custom	act ion	
when	a	standard	act ion	performs	the	desired	task.	One	reason	
is that the effects of custom act ions are not automat ically
removed when your applicat ion is uninstalled or rolled back.

For	each	custom	act ion	that	performs	system	changes,	you	
should	create	corresponding	uninstall	and	rollback	act ions.

Executable Custom Act ions
One	of	the	most	commonly	used	types	of	custom	act ions	is	
an	act ion	that	launches	an	executable.	This	type	of	act ion	is	
commonly used to open documents installed by the current
installat ion,	or	to	launch	system	executables	to	perform	system	
changes	that	Windows	Installer	does	not	direct ly	support.	
The	executable	that	you	launch	with	this	type	of	custom	act ion	
can	be	installed	by	the	current	installat ion,	already	located	on	
the	target	system,	or	streamed	into	the	Binary	table	of	the	
MSI database.

For	example,	suppose	you	want	to	launch	the	copy	of	
Notepad	from	the	target	system’s	Windows	directory.	You	
begin	by	opening	the	Custom	Act ions	and	Sequences	view,	
right-clicking	the	Custom	Act ions	icon,	and	select ing	
New EXE > Path referencing a directory.

In the Working Directory	sett ing,	enter	WindowsFolder,	the	
Directory	property	represent ing	the	locat ion	of	the	executable.	
In the Filename & Command line	sett ing,	enter	the	executable	
name notepad.exe.

If	the	executable	being	launched	is	in	a	directory	on	the	target	
system,	the	custom	act ion	must	be	placed	after	the	standard	
CostFinalize	act ion.	The	CostFinalize	act ion	sets	the	values	of	
Directory	propert ies,	and	an	attempt	to	reference	a	Directory	
property (such as WindowsFolder or SystemFolder) will cause
run-t ime	error	2732,	which	is	described	in	the	Windows	
Installer	Help	Library	as	“Directory	Manager	not	init ialized”.

In	this	case,	because	Notepad.exe	is	present	on	the	target	
system,	this	custom	act ion	can	be	placed	in	either	the	User	
Interface	sequence	or	Execute	sequence	(or	both),	after	the	
CostFinalize	act ion.	It	is	not	necessary	to	specify	deferred	
execut ion,	or	for	the	InstallFiles	act ion	to	have	run	first.

An	executable	custom	act ion	does	not	have	access	to	
installat ion	propert ies,	other	than	those	passed	as	command-
line	arguments.	A	typical	use	of	a	command-line	argument	
is	to	pass	the	path	to	a	document	to	the	executable	being	
launched.	For	example,	suppose	you	want	to	launch	a	Readme	
file	with	Notepad.exe	after	data	transfer	takes	place.	In	this	
case,	the	Filename & Command line	sett ing	for	the	custom	
act ion	might	read:

 notepad.exe “[INSTALLDIR]Readme.txt”

The	quotat ion	marks	around	the	argument	are	required	by	most	
executables	in	case	the	file	path	contains	any	spaces.

An	act ion	that	launches	an	executable	being	installed,	or	one	
that	opens	a	document	being	installed,	must	be	scheduled	for	
deferred	execut ion	after	the	standard	InstallFiles	act ion.	During	
immediate	mode,	data	transfer	has	not	yet	begun;	and	in	
deferred	mode	before	InstallFiles,	documents	and	executables	
will	not	have	been	placed	on	the	target	system.	

The condit ion Not Installed	ensures	the	act ion	runs—that	is,	the	
Readme	file	is	displayed—only	during	a	first-t ime	installat ion,	
and	not	during	maintenance	mode	or	uninstallat ion.

To	ensure	the	act ion	runs	only	during	a	first-t ime,	full-UI	
installat ion,	you	could	use	the	condit ion	(Not Installed) and
(UILevel=5).	A	further	possible	refinement	is	to	associate	the	
act ion	with	the	component	containing	the	Readme	file,	using	a	
component-act ion	condit ion	($ComponentName=3).

Learn More about InstallShield
If you wish to learn more about the capabilit ies of
InstallShield, please visit the Acresso Web site at
www.acresso.com/installshield.

http://www.acresso.com/installshield

Types	of	MSI	Custom	Act ions

Acresso Software:	InstallShield	White	Paper	Series4

DLL and Script Custom Act ions
In	addition	to	running	executables,	Windows	Installer	enables	
you	to	extend	your	installation	by	calling	code	in	DLLs	and	scripts,	
where	the	DLL	or	script	can	be	embedded	in	the	installation	or	
installed with the other component data. This section introduces
the	concepts	related	to	calling	DLL	and	script	code.

The	Windows	Installer	engine	can	direct ly	call	funct ions	from	
a	“Windows	Installer	DLL”,	or	“MSI	DLL”.	An	MSI	DLL	providing	
custom	act ions	exports	at	least	one	funct ion	with	the	
following	signature:

 UINT __stdcall Funct ionName(MSIHANDLE hInstall) { ... }

A	funct ion	you	intend	to	call	from	an	MSI	DLL	custom	act ion	
must	use	this	signature,	with	the	only	variat ion	allowed	being	
the funct ion name. The return value is used to determine if
the	funct ion	succeeds	or	fails,	and	therefore	whether	the	
installat ion	should	exit	as	a	result	of	the	custom	act ion;	and	the	
MSIHANDLE	argument	passed	to	the	funct ion	is	a	handle	to	
the	running	installat ion,	used	as	an	argument	to	
MSI	API	funct ions	such	as	MsiGetProperty	that	query	the	
running	installat ion.

Windows	Installer	requires	that	a	DLL	used	in	this	type	of	
custom	act ion	must	be	a	callable	DLL,	and	not	a	Visual	Basic	
DLL	or	.NET	DLL.	The	DLL	funct ion	cannot	accept	arguments,	but	
instead	must	pass	informat ion	back	and	forth	using	Windows	
Installer	propert ies.	The	MsiSetProperty	funct ion	sets	the	
value	of	a	property,	and	MsiGetProperty	reads	the	value	of	
a property.

NOTE: The InstallShield environment supports a special type
of	DLL	custom	act ion	called	a	“Standard	DLL”	act ion,	which	
enables	you	to	call	DLL	funct ions	with	signatures	different	from	
the	MSI	DLL	funct ion	presented	earlier.	When	you	create	a	
Standard	DLL	custom	act ion,	you	will	be	prompted	for	the	DLL	
name,	the	funct ion	name,	and	for	constants	or	propert ies	used	
to	provide	the	funct ion	arguments	and	return	values.	Recent	
InstallShield	versions	also	support	“managed	code”	custom	
act ions,	such	as	C#	and	VB.NET	DLL	methods.	

Code	for	a	simple	MSI	DLL	custom	act ion	might	appear	
as follows:

#pragma	comment(lib,	“msi.lib”)
#include	<windows.h>
#include	<msi.h>
#include	<msiquery.h>
// an MSI DLL custom act ion funct ion must use this signature
UINT	__stdcall	CustomAct ionFunct ion(MSIHANDLE	hInstall)
{
				MessageBox(
								GetForegroundWindow(),
								TEXT(“Running	MSI	DLL	act ion...”),
								TEXT(“MSI	DLL”),
								MB_OK	|	MB_ICONINFORMATION);

				return	ERROR_SUCCESS;	// return success to MSI
}

Assuming	this	code	has	been	compiled	into	a	DLL	called	
MsiDllCustomAct ion.dll,	and	that	the	funct ion	name	
CustomAct ionFunct ion	is	correct ly	exported	from	the	DLL	(using	
a	.def	file,	for	example),	the	propert ies	of	a	custom	act ion	that	
calls	the	DLL	might	appear	similar	to	the	following	figure.	In	the	
Funct ion Name	sett ing,	you	specify	only	the	funct ion	name	
because	the	return	value	and	arguments	are	predefined	for	an	
MSI	DLL.

Similarly,	a	VBScript	custom	act ion	typically	defines	a	funct ion	
similar	to	the	following:

 Funct ion Funct ionName()
 ‘ do something
 End Funct ion

The	except ion	is	the	sett ing	VBScript > Stored in custom
act ion,	which	can	store	short	scripts	direct ly	in	the	
CustomAct ion	table,	and	for	which	you	do	not	specify	a	
funct ion name.

Like	MSI	DLL	custom	act ion	funct ions,	VBScript	custom	
act ion	funct ions	do	not	accept	arguments,	but	instead	must	
also	communicate	with	the	running	installer	engine	using	
propert ies.	In	VBScript	custom	act ions,	the	Session	object	
represents	the	running	installat ion,	and	the	expression	Session.
Property(“PROPNAME”)	enables	you	to	get	and	set	the	value	
of a property.

Sett ing Propert ies
A	set-a-property	custom	act ion	either	sets	or	creates	a	property.	
If	the	property	exists	in	the	Property	table,	the	custom	act ion	
will	overwrite	its	value,	and	if	the	property	does	not	exist	in	the	
Property	table,	the	custom	act ion	will	create	it.	As	described	
previously,	however,	the	values	of	private	propert ies	are	
reset	to	their	defaults	when	execut ion	switches	from	the	User	
Interface	sequence	to	the	Execute	sequence.

An	advantage	to	using	set-a-property	custom	act ions	over	
defining	propert ies	in	the	Property	table	is	that	the	act ion	can	
resolve	Formatted	expressions,	while	entries	in	the	Property	
table	do	not	resolve	Formatted	expressions.	For	example,	you	
can	create	a	custom	act ion	that	sets	TIMESTAMP	to	the	value	
“[Date]	at	[Time]”,	and	the	values	of	the	embedded	propert ies	
Date	and	Time	will	be	expanded	at	run	t ime.	You	can	then	
use	the	Formatted	expression	[TIMESTAMP]	in,	for	example,	a	
registry	value,	and	the	value	will	be	expanded	at	run	t ime.

Types	of	MSI	Custom	Act ions

5Acresso Software:	InstallShield	White	Paper	Series

An	example	of	this	type	of	custom	act ion	that	exists	in	each	
new	InstallShield	project	is	called	SetARPINSTALLLOCATION,	
which	sets	the	predefined	property	ARPINSTALLLOCATION	
to	[INSTALLDIR].	The	value	of	ARPINSTALLLOCATION	is	
automat ically	written	to	the	target	system’s	registry	by	the	
Windows	Installer	engine,	enabling	a	custom	act ion	or	
external	program	to	read	the	main	install	directory	for	an	
exist ing	product	using	the	MsiGetProductInfo	funct ion	or	
Installer.ProductInfo	method.	Because	propert ies	cannot	be	set	
during	deferred	execut ion,	the	In-Script	Execut ion	sett ing	for	a	
set-a-property	custom	act ion	cannot	be	changed	from	
Immediate	Execut ion.

Sett ing Directory Propert ies
You	can	also	use	set-a-directory	custom	act ions	to	set	the	values	
of	Directory	propert ies.	Directory	propert ies	are	those	that	
refer	to	the	locat ions	of	directories	on	the	target	system;	
built-in	examples	are	ProgramFilesFolder,	DesktopFolder,	
and SystemFolder. If you want to modify the locat ion
that	a	Directory	property	points	to,	you	can	use	a	
set-a-directory	act ion.

Directory	propert ies	are	set	by	the	disk-cost ing	process,	and	
therefore	set-a-directory	custom	act ions	must	be	scheduled	after	
the	standard	CostFinalize	act ion.

NOTE: Windows Installer ensures that the value of each
Directory	property	ends	with	a	backslash.	If	your	installer	
writes	a	Directory	property	to	the	registry	using	the	format	
[INSTALLDIR],	for	example,	a	typical	value	is	C:\Program Files\
Our Company\Our Applicat ion\. If the value is to be read
later	from	within	your	applicat ion,	your	applicat ion	code	must	
account	for	the	trailing	backslash.

For	example,	suppose	you	have	a	component	that	you	want	
to install to a directory located by a custom act ion. In this
case,	assume	the	custom	act ion	populates	a	property	called	
FOUND_DIR.	One	opt ion	is	to	define	the	component	to	use	
a	custom	property	with	an	arbitrary	init ial	value,	and	then	use	
a	set-a-directory	custom	act ion	to	set	the	placeholder	property	
value	to	[FOUND_DIR].

In	the	following	figure,	a	component	has	been	given	
a	dest inat ion	directory	represented	by	the	Directory	
property	name	SETTINGS_DIR,	with	a	default	value	of	
[ProgramFilesFolder]Sett ings.

To install this component to the directory located by the custom
act ion,	create	a	set-a-directory	custom	act ion	with	source	
SETTINGS_DIR	and	target	[FOUND_DIR],	scheduling	the	
act ion	after	the	CostFinalize	act ion	in	both	the	User	Interface	
and	Execute	sequences.

(Note	that	the	act ion	uses	the	condit ion	FOUND_DIR,	which	
ensures	SETTINGS_DIR	is	changed	from	its	default	value	only	if	
custom act ion found the desired directory.)

At	installat ion	t ime,	the	component’s	files	will	be	installed	to	the	
directory discovered by the custom act ion.

Error Custom Act ions
Error	custom	act ions	display	an	error	message	to	the	end	
user,	and	then	exit	the	installat ion	when	the	user	dismisses	the	
error	dialog.	Because	an	error	custom	act ion	always	exits	the	
installat ion,	you	should	attach	a	condit ion	to	an	error	act ion	to	
ensure it runs only when appropriate.

When	you	create	an	error	act ion	in	the	Custom	Act ions	and	
Sequences	view,	you	can	use	the	Error	Message	sett ing	to	
specify	the	error	message	that	should	be	displayed	when	
the	act ion’s	condit ions	are	met	at	run	t ime.	Suppose	that	you	
schedule	the	act ion	immediately	after	the	LaunchCondit ions	
act ion	in	the	Execute	sequence.	When	you	rebuild	and	run	the	
project,	the	effect	of	the	custom	act ion	is	to	display	an	error	
dialog	box	similar	to	the	following:

After	the	end	user	dismisses	the	error	dialog	box,	the	
installat ion	exits.	(For	a	silent	installat ion,	the	error	message	is	
by	default	written	to	an	MSI	log	file,	and	also	to	the	system’s	
applicat ion	event	log.)

The	Error	Message	sett ing	for	an	error	custom	act ion	uses	
the	Formatted	data	type,	so	you	can	expand	the	values	of	
propert ies	using	the	syntax	[PropertyName].

Types	of	MSI	Custom	Act ions

Acresso Software:	InstallShield	White	Paper	Series6

In	addit ion,	the	Error	Message	sett ing	for	an	error	custom	
act ion	can	contain	the	number	of	a	record	in	the	Error	table.	
The	Error	table	is	also	exposed	in	the	Direct	Editor	view.	As	
described	in	the	Windows	Installer	Help	Library	topic	“Error	
Table”,	the	error	codes	numbered	from	25000	to	30000	
are	reserved	for	custom	act ions,	and	therefore	you	can	
use	numbers	in	this	range	for	your	custom	messages.	The	
advantage	to	using	an	entry	in	the	Error	table,	instead	of	
using	a	hard-coded	message	in	the	Error	Message	sett ing,	
is	that	Error-table	messages	are	automat ically	added	to	the	
InstallShield	string	table,	and	therefore	you	can	provide	
localized	error	messages	for	mult i-language	installat ions.

In	the	Direct	Editor	view,	you	create	a	record	in	the	Error	table	
the	same	way	you	do	for	any	other	table.	The	fields	used	in	
the	Error	table	are	the	Error	field,	which	must	be	an	integer	
error	number,	and	the	Message	field,	containing	the	message	
to	display.	When	you	add	a	record	to	the	Error	table,	the	
InstallShield environment automat ically adds an entry to the
string	table;	for	each	language	your	project	supports,	you	edit	
the	string	value	in	the	String	Tables	view,	available	inside	your	
project’s	General	Informat ion	view.

For	an	example	of	using	an	error	custom	act ion,	suppose	you	
have	created	a	major	upgrade	of	an	exist ing	project,	and	
want to allow the installat ion to cont inue only if an earlier
product	version	is	detected.	You	can	detect	if	a	major	upgrade	
is	taking	place	by	test ing	if	the	“act ion	property”	defined	in	an	
Upgrade-table	record	contains	any	value.

First,	you	create	the	error	act ion	in	the	Custom	Act ions	
and	Sequences	view.	You	can	schedule	the	custom	
act ion	in	both	the	User	Interface	and	Execute	sequences	
after	the	FindRelatedProducts	act ion	with	condit ion	Not	
ISACTIONPROP1.	The	act ion’s	propert ies	might	be	as	follows:

Next,	use	the	Direct	Editor	view	to	create	the	message	in	the	
Error	table:

Error: 29000
Message: You	must	have	a	previous	version	of	[ProductName]	
installed.	Setup	will	now	exit.

When	you	run	the	installat ion,	because	no	earlier	version	of	
the	product	is	detected,	the	following	error	message	
is displayed.

Summary
This white paper discusses some of the types of custom act ions
supported	by	Windows	Installer	(MSI).	It	also	highlights	how	
InstallShield	from	Acresso	Software	assists	you	in	working	with	
custom act ions.

Begin a Free Evaluat ion of InstallShield
You	can	download	a	free	trial	version	of	InstallShield	
from the Acresso Software Web site at:
www.acresso.com/installshield/eval

Want to learn more best pract ices for building quality
installat ions?	Join	an	InstallShield	training	class	–	visit	
www.acresso.com/training for available classes.

http://www.acresso.com/installshield/eval
http://www.acresso.com/training

Acresso Software Inc.
900	National	Parkway,	Suite	125
Schaumburg,	IL	60173
USA

Schaumburg	(Global	Headquarters),
Santa	Clara,	CA:
+1	800-809-5659	

United	Kingdom	(Europe,	
Middle	East	Headquarters):
+44	870-871-1111
+44	870-873-6300

Japan	(Asia,	Pacific	Headquarters):
+81	3-5774-6253

www.acresso.com

©	2008	Acresso	Software	Inc.	and/or	InstallShield	Co.	Inc.	All	other	brand	and	product	names	ment ioned	herein	may	be	the	trademarks	and	registered	trademarks	of	their	respect ive	owners.	
	 	 	 	 	 	 	 	 	 	 	 	 				IS_WP_MSIAct ionTypes_Oct08

