
W
H

IT
E

 P
A

P
E

R

Types of MSI Custom Actions

by Robert Dickau
Principal Technical Training Writer, Acresso Software



Types of MSI Custom Actions
Introduct ion
This white paper describes some of the types of custom act ions 
supported by Windows Installer (MSI). These types include:

	 • �Launching executables
	 • �Calling DLL or script funct ions
	 • �Sett ing Property-table propert ies and Directory- 

table propert ies
	 • �Error act ions

It also highlights how InstallShield® from Acresso Software 
assists you in working with custom act ions. 

Using the InstallShield Environment
This white paper frequent ly refers to the InstallShield 
development environment. It is assumed you are familiar with 
the general layout of the InstallShield interface, which contains 
a list of views with which you can modify different port ions of 
your installat ion project.

 

For example, the General Informat ion view is where you set 
general product and project propert ies; the Setup Design view 
enables you to edit the features, components, and component 
data used by your project; the Registry view enables you to 
modify the registry data installed by your installat ion program; 
and the Direct Editor view gives you access to the raw MSI 
database tables.

It is also assumed you are familiar with some of the wizards 
available with InstallShield, such as the Release Wizard and 
Component Wizard.

	 • �The Release Wizard, available under the Build menu 
and also from the Releases view, lets you describe the 
propert ies—media type, compression sett ings, and so 
forth—of a release, and then builds the specified  
release image.

	 • �The Component Wizard, available by right-clicking a 
feature in the Setup Design view, lets you create special 
types of components, such as components for COM 
servers, fonts, and Windows services.

The InstallShield Help Library contains informat ion about using 
every view and wizard in the InstallShield environment. The 
InstallShield Help Library is available when you press F1 with 
any view selected; you can also select Contents from the Help 
menu to view the help library.

In addit ion to the graphical environment, InstallShield provides 
several tools for modifying and building projects from the 
command line or an external script. For example, to build a 
project from the command line, batch file, or other automated 
process, you can use the executable IsCmdBld.exe. The 
IsCmdBld executable is located in the System subdirectory of 
the InstallShield distribut ion directory.

To rebuild a project, you pass IsCmdBld the project file path, 
the product configurat ion name, and the release name that 
you want to rebuild. A sample command appears as follows:

	 �iscmdbld -p C:\ProductName.ism -a BuildConfig -r 
ReleaseName

In addit ion, InstallShield provides an Automat ion interface, with 
which you can modify the contents of a project file without 
using the graphical environment. 

2 Acresso Software: InstallShield White Paper Series



Types of MSI Custom Act ions

3Acresso Software: InstallShield White Paper Series

Custom Act ion Basics
There are two steps involved for each custom act ion you want 
to use:

	 1. �Define the act ion: Specify what the act ion does (launch 
an executable, call a DLL funct ion, set a property, and 
so forth) and its other behavior (whether to test the return 
value, and so forth).

	 2. �Schedule the act ion: Specify where the act ion runs 
relat ive to other act ions, which installat ion phase 
(immediate execut ion, deferred execut ion, and so forth) 
the act ion uses, and under what condit ions the  
act ion runs.

A general principle is that you should not use a custom act ion 
when a standard act ion performs the desired task. One reason 
is that the effects of custom act ions are not automat ically 
removed when your applicat ion is uninstalled or rolled back. 

For each custom act ion that performs system changes, you 
should create corresponding uninstall and rollback act ions.

Executable Custom Act ions
One of the most commonly used types of custom act ions is 
an act ion that launches an executable. This type of act ion is 
commonly used to open documents installed by the current 
installat ion, or to launch system executables to perform system 
changes that Windows Installer does not direct ly support.  
The executable that you launch with this type of custom act ion 
can be installed by the current installat ion, already located on 
the target system, or streamed into the Binary table of the  
MSI database.

For example, suppose you want to launch the copy of 
Notepad from the target system’s Windows directory. You 
begin by opening the Custom Act ions and Sequences view, 
right-clicking the Custom Act ions icon, and select ing  
New EXE > Path referencing a directory.

In the Working Directory sett ing, enter WindowsFolder, the 
Directory property represent ing the locat ion of the executable. 
In the Filename & Command line sett ing, enter the executable 
name notepad.exe.

If the executable being launched is in a directory on the target 
system, the custom act ion must be placed after the standard 
CostFinalize act ion. The CostFinalize act ion sets the values of 
Directory propert ies, and an attempt to reference a Directory 
property (such as WindowsFolder or SystemFolder) will cause 
run-t ime error 2732, which is described in the Windows 
Installer Help Library as “Directory Manager not init ialized”.

In this case, because Notepad.exe is present on the target 
system, this custom act ion can be placed in either the User 
Interface sequence or Execute sequence (or both), after the 
CostFinalize act ion. It is not necessary to specify deferred 
execut ion, or for the InstallFiles act ion to have run first.

An executable custom act ion does not have access to 
installat ion propert ies, other than those passed as command-
line arguments. A typical use of a command-line argument 
is to pass the path to a document to the executable being 
launched. For example, suppose you want to launch a Readme 
file with Notepad.exe after data transfer takes place. In this 
case, the Filename & Command line sett ing for the custom 
act ion might read:

	 notepad.exe “[INSTALLDIR]Readme.txt”

The quotat ion marks around the argument are required by most 
executables in case the file path contains any spaces.

An act ion that launches an executable being installed, or one 
that opens a document being installed, must be scheduled for 
deferred execut ion after the standard InstallFiles act ion. During 
immediate mode, data transfer has not yet begun; and in 
deferred mode before InstallFiles, documents and executables 
will not have been placed on the target system. 

The condit ion Not Installed ensures the act ion runs—that is, the 
Readme file is displayed—only during a first-t ime installat ion, 
and not during maintenance mode or uninstallat ion.

To ensure the act ion runs only during a first-t ime, full-UI 
installat ion, you could use the condit ion (Not Installed) and 
(UILevel=5). A further possible refinement is to associate the 
act ion with the component containing the Readme file, using a 
component-act ion condit ion ($ComponentName=3).

Learn More about InstallShield
If you wish to learn more about the capabilit ies of  
InstallShield, please visit the Acresso Web site at  
www.acresso.com/installshield. 

http://www.acresso.com/installshield


Types of MSI Custom Act ions

Acresso Software: InstallShield White Paper Series4

DLL and Script Custom Act ions
In addition to running executables, Windows Installer enables 
you to extend your installation by calling code in DLLs and scripts, 
where the DLL or script can be embedded in the installation or 
installed with the other component data. This section introduces 
the concepts related to calling DLL and script code.

The Windows Installer engine can direct ly call funct ions from 
a “Windows Installer DLL”, or “MSI DLL”. An MSI DLL providing 
custom act ions exports at least one funct ion with the  
following signature:

	 UINT __stdcall Funct ionName(MSIHANDLE hInstall) { ... }

A funct ion you intend to call from an MSI DLL custom act ion 
must use this signature, with the only variat ion allowed being 
the funct ion name. The return value is used to determine if 
the funct ion succeeds or fails, and therefore whether the 
installat ion should exit as a result of the custom act ion; and the 
MSIHANDLE argument passed to the funct ion is a handle to 
the running installat ion, used as an argument to  
MSI API funct ions such as MsiGetProperty that query the 
running installat ion.

Windows Installer requires that a DLL used in this type of 
custom act ion must be a callable DLL, and not a Visual Basic 
DLL or .NET DLL. The DLL funct ion cannot accept arguments, but 
instead must pass informat ion back and forth using Windows 
Installer propert ies. The MsiSetProperty funct ion sets the  
value of a property, and MsiGetProperty reads the value of  
a property.

NOTE: The InstallShield environment supports a special type 
of DLL custom act ion called a “Standard DLL” act ion, which 
enables you to call DLL funct ions with signatures different from 
the MSI DLL funct ion presented earlier. When you create a 
Standard DLL custom act ion, you will be prompted for the DLL 
name, the funct ion name, and for constants or propert ies used 
to provide the funct ion arguments and return values. Recent 
InstallShield versions also support “managed code” custom 
act ions, such as C# and VB.NET DLL methods. 

Code for a simple MSI DLL custom act ion might appear  
as follows:

#pragma comment(lib, “msi.lib”)
#include <windows.h>
#include <msi.h>
#include <msiquery.h>
// an MSI DLL custom act ion funct ion must use this signature
UINT __stdcall CustomAct ionFunct ion(MSIHANDLE hInstall)
{
    MessageBox(
        GetForegroundWindow( ),
        TEXT(“Running MSI DLL act ion...”),
        TEXT(“MSI DLL”),
        MB_OK | MB_ICONINFORMATION);

    return ERROR_SUCCESS; // return success to MSI
}

Assuming this code has been compiled into a DLL called 
MsiDllCustomAct ion.dll, and that the funct ion name 
CustomAct ionFunct ion is correct ly exported from the DLL (using 
a .def file, for example), the propert ies of a custom act ion that 
calls the DLL might appear similar to the following figure. In the 
Funct ion Name sett ing, you specify only the funct ion name 
because the return value and arguments are predefined for an 
MSI DLL.

Similarly, a VBScript custom act ion typically defines a funct ion 
similar to the following:

	 Funct ion Funct ionName( )
	 ‘ do something
	 End Funct ion

The except ion is the sett ing VBScript > Stored in custom 
act ion, which can store short scripts direct ly in the 
CustomAct ion table, and for which you do not specify a 
funct ion name.

Like MSI DLL custom act ion funct ions, VBScript custom 
act ion funct ions do not accept arguments, but instead must 
also communicate with the running installer engine using 
propert ies. In VBScript custom act ions, the Session object 
represents the running installat ion, and the expression Session.
Property(“PROPNAME”) enables you to get and set the value 
of a property.

Sett ing Propert ies
A set-a-property custom act ion either sets or creates a property. 
If the property exists in the Property table, the custom act ion 
will overwrite its value, and if the property does not exist in the 
Property table, the custom act ion will create it. As described 
previously, however, the values of private propert ies are 
reset to their defaults when execut ion switches from the User 
Interface sequence to the Execute sequence.

An advantage to using set-a-property custom act ions over 
defining propert ies in the Property table is that the act ion can 
resolve Formatted expressions, while entries in the Property 
table do not resolve Formatted expressions. For example, you 
can create a custom act ion that sets TIMESTAMP to the value 
“[Date] at [Time]”, and the values of the embedded propert ies 
Date and Time will be expanded at run t ime. You can then 
use the Formatted expression [TIMESTAMP] in, for example, a 
registry value, and the value will be expanded at run t ime.



Types of MSI Custom Act ions

5Acresso Software: InstallShield White Paper Series

An example of this type of custom act ion that exists in each 
new InstallShield project is called SetARPINSTALLLOCATION, 
which sets the predefined property ARPINSTALLLOCATION 
to [INSTALLDIR]. The value of ARPINSTALLLOCATION is 
automat ically written to the target system’s registry by the 
Windows Installer engine, enabling a custom act ion or  
external program to read the main install directory for an 
exist ing product using the MsiGetProductInfo funct ion or  
Installer.ProductInfo method. Because propert ies cannot be set 
during deferred execut ion, the In-Script Execut ion sett ing for a  
set-a-property custom act ion cannot be changed from 
Immediate Execut ion.

Sett ing Directory Propert ies
You can also use set-a-directory custom act ions to set the values 
of Directory propert ies. Directory propert ies are those that  
refer to the locat ions of directories on the target system;  
built-in examples are ProgramFilesFolder, DesktopFolder,  
and SystemFolder. If you want to modify the locat ion  
that a Directory property points to, you can use a  
set-a-directory act ion.

Directory propert ies are set by the disk-cost ing process, and 
therefore set-a-directory custom act ions must be scheduled after 
the standard CostFinalize act ion.

NOTE: Windows Installer ensures that the value of each 
Directory property ends with a backslash. If your installer 
writes a Directory property to the registry using the format 
[INSTALLDIR], for example, a typical value is C:\Program Files\
Our Company\Our Applicat ion\. If the value is to be read 
later from within your applicat ion, your applicat ion code must 
account for the trailing backslash.

For example, suppose you have a component that you want 
to install to a directory located by a custom act ion. In this 
case, assume the custom act ion populates a property called 
FOUND_DIR. One opt ion is to define the component to use 
a custom property with an arbitrary init ial value, and then use 
a set-a-directory custom act ion to set the placeholder property 
value to [FOUND_DIR].

In the following figure, a component has been given 
a dest inat ion directory represented by the Directory 
property name SETTINGS_DIR, with a default value of 
[ProgramFilesFolder]Sett ings.

To install this component to the directory located by the custom 
act ion, create a set-a-directory custom act ion with source 
SETTINGS_DIR and target [FOUND_DIR], scheduling the 
act ion after the CostFinalize act ion in both the User Interface 
and Execute sequences.

(Note that the act ion uses the condit ion FOUND_DIR, which 
ensures SETTINGS_DIR is changed from its default value only if 
custom act ion found the desired directory.)

At installat ion t ime, the component’s files will be installed to the 
directory discovered by the custom act ion.

Error Custom Act ions
Error custom act ions display an error message to the end 
user, and then exit the installat ion when the user dismisses the 
error dialog. Because an error custom act ion always exits the 
installat ion, you should attach a condit ion to an error act ion to 
ensure it runs only when appropriate.

When you create an error act ion in the Custom Act ions and 
Sequences view, you can use the Error Message sett ing to 
specify the error message that should be displayed when 
the act ion’s condit ions are met at run t ime. Suppose that you 
schedule the act ion immediately after the LaunchCondit ions 
act ion in the Execute sequence. When you rebuild and run the 
project, the effect of the custom act ion is to display an error 
dialog box similar to the following:

After the end user dismisses the error dialog box, the 
installat ion exits. (For a silent installat ion, the error message is 
by default written to an MSI log file, and also to the system’s 
applicat ion event log.)

The Error Message sett ing for an error custom act ion uses 
the Formatted data type, so you can expand the values of 
propert ies using the syntax [PropertyName].



Types of MSI Custom Act ions

Acresso Software: InstallShield White Paper Series6

In addit ion, the Error Message sett ing for an error custom 
act ion can contain the number of a record in the Error table. 
The Error table is also exposed in the Direct Editor view. As 
described in the Windows Installer Help Library topic “Error 
Table”, the error codes numbered from 25000 to 30000 
are reserved for custom act ions, and therefore you can 
use numbers in this range for your custom messages. The 
advantage to using an entry in the Error table, instead of 
using a hard-coded message in the Error Message sett ing, 
is that Error-table messages are automat ically added to the 
InstallShield string table, and therefore you can provide 
localized error messages for mult i-language installat ions.

In the Direct Editor view, you create a record in the Error table 
the same way you do for any other table. The fields used in 
the Error table are the Error field, which must be an integer 
error number, and the Message field, containing the message 
to display. When you add a record to the Error table, the 
InstallShield environment automat ically adds an entry to the 
string table; for each language your project supports, you edit 
the string value in the String Tables view, available inside your 
project’s General Informat ion view.

For an example of using an error custom act ion, suppose you 
have created a major upgrade of an exist ing project, and 
want to allow the installat ion to cont inue only if an earlier 
product version is detected. You can detect if a major upgrade 
is taking place by test ing if the “act ion property” defined in an 
Upgrade-table record contains any value.

First, you create the error act ion in the Custom Act ions 
and Sequences view. You can schedule the custom 
act ion in both the User Interface and Execute sequences 
after the FindRelatedProducts act ion with condit ion Not 
ISACTIONPROP1. The act ion’s propert ies might be as follows:

Next, use the Direct Editor view to create the message in the 
Error table:

Error: 29000
Message: You must have a previous version of [ProductName] 
installed. Setup will now exit.

When you run the installat ion, because no earlier version of 
the product is detected, the following error message  
is displayed.

Summary
This white paper discusses some of the types of custom act ions 
supported by Windows Installer (MSI). It also highlights how 
InstallShield from Acresso Software assists you in working with 
custom act ions.

Begin a Free Evaluat ion of InstallShield
You can download a free trial version of InstallShield 
from the Acresso Software Web site at:  
www.acresso.com/installshield/eval

Want to learn more best pract ices for building quality 
installat ions? Join an InstallShield training class – visit 
www.acresso.com/training for available classes.

http://www.acresso.com/installshield/eval
http://www.acresso.com/training


Acresso Software Inc.
900 National Parkway, Suite 125
Schaumburg, IL 60173
USA

Schaumburg (Global Headquarters),
Santa Clara, CA:
+1 800-809-5659 

United Kingdom (Europe,  
Middle East Headquarters):
+44 870-871-1111
+44 870-873-6300

Japan (Asia, Pacific Headquarters):
+81 3-5774-6253

www.acresso.com

© 2008 Acresso Software Inc. and/or InstallShield Co. Inc. All other brand and product names ment ioned herein may be the trademarks and registered trademarks of their respect ive owners. 
	 	 	 	 	 	 	 	 	 	 	 	     IS_WP_MSIAct ionTypes_Oct08




