InstallShield

Types of MSI Custom Actions

(a4
L
o
<
o
L
=
I
=

by Robert Dickau
Principal Technical Training Writer, Acresso Software




Types of MSI Custom Actions

Introduction

This white paper describes some of the types of custom actions

supported by Windows Installer (MSI). These types include:

® Launching executables

e Calling DLL or script functions

e Sefting Property-table properties and Directory-
fable properties

e Error actions

It also highlights how InstallShield® from Acresso Software
assists you in working with cusfom actions.

Using the InstallShield Environment

This white paper frequently refers to the InstallShield
development environment. It is assumed you are familiar with
the general layout of the InstallShield interface, which contains
a list of views with which you can modify different portions of
your insfallation project.

IS4 Sample 2pp 3000 - InstallShicld [Basic MS! Project]
Eile Edit Wiew Go Project Euild Tools Window Help
OoWH v OO +4e= |4 |DE
SartPage Project Assistant

= £ Installaton Informaticn
(7] Ganeral Information
§ Updste Notfications

(Ul Triskwars

[=e]REs

BAL! Sl
Installation Designer

Organization Ga
Organization |

Organize your setup to make development easier, and to allow your
users to custamize which parts of your application thay install.

= stem Configurati
@ Srstem ks sl s Setup Design
Shart Craats faatures and components to hold your setup data,
et 8 globa picture of your setup duts

|
1
" NI File Charges
-]
6 Create features to organize your setuy
70u allow your users £ custemize ther focttos on, my will
¥ () Behavior and Logic see the features you create, -
0 User Inkerface
() Media
£ (2 Addtional Tools

Read more about Festures

2 Components
1~ 13) Dependency Scanners L] Create companents to arganize your setup data.
53 MS1Debugger Components are used by the setup engines ta manage your
Edtor setup.
B orect Read more about Companents

Ready

For example, the General Information view is where you set
general product and project properties; the Setup Design view
enables you to edit the features, components, and component
data used by your project; the Regisiry view enables you to
modify the registry data installed by your installation program:;
and the Direct Editor view gives you access to the raw MS
database tables.

It is also assumed you are familiar with some of the wizards
available with InstallShield, such as the Release Wizard and
Component Wizard.

e The Release Wizard, available under the Build menu
and also from the Releases view, lets you describe the
properties—media fype, compression seftings, and so
forth—of a release, and then builds the specified
release image.

e The Component Wizard, available by rightclicking a
feature in the Setup Design view, lefs you create special
fypes of components, such as components for COM
servers, fonts, and Windows services.

The InstallShield Help Library contains information about using
every view and wizard in the InstallShield environment. The
InstallShield Help Library is available when you press F1 with
any view selected; you can also select Contents from the Help
menu fo view the help library.

In addition to the graphical environment, InstallShield provides
several tools for modifying and building projects from the
command line or an external script. For exomp\e, to build a
project from the command line, batch file, or other automated
process, you can use the executable IsCmdBld.exe. The
IsCmdBld executable is located in the System subdirectory of
the InstallShield distribution directory.

To rebuild a project, you pass IsCmdBId the project file path,
the product configuration name, and the release name that
you want to rebuild. A sample command appears as follows:

iscmdbld -p C:\ProductName.ism -a BuildConfig -r
ReleaseName
In addition, InstallShield provides an Automation interface, with

which you can modify the contents of a project file without
using the graphical environment.

Acresso Software: InstallShield White Paper Series



Learn More about InstallShield
If you wish to learn more about the capabilities of

InstallShield, please visit the Acresso Web site at

www.acresso.com/installshield.

Custom Action Basics
There are two steps involved for each custom action you want
to use:

1. Define the action: Specify what the action does (launch
an executable, call a DLL function, set a property, and
so forth) and its other behavior [whether o test the return
value, and so forth.

2. Schedule the action: Specify where the action runs
relative to other actions, which insfallation phase
(immediate execution, deferred execution, and so forth)
the action uses, and under what conditions the
acfion runs.

A general principle is that you should not use a custom action
when a standard action performs the desired task. One reason
is that the effects of custfom actions are not automatically
removed when your application is uninstalled or rolled back.

For each custom action that performs system changes, you
should create corresponding uninstall and rollback actions.

Executable Custom Actions

One of the most commonly used types of custom actions is

an action that launches an executable. This type of action is
commonly used to open documents installed by the current
installation, or to launch system executables to perform system
changes that Windows Insfaller does not directly support.

The executable that you launch with this type of custom action
can be installed by the current installation, already located on
the target system, or streamed info the Binary table of the

MSI database.

For example, suppose you want fo launch the copy of
Notepad from the farget system’s Windows directory. You
begin by opening the Cusfom Actions and Sequences view,
right-clicking the Custom Actions icon, and selecting

New EXE > Path referencing a directory.

In the Working Directory sefting, enter WindowsFolder, the
Directory property representing the location of the executable.
In the Filename & Command line setting, enter the executable
name notepad.exe.

Types of MSI Custom Actions

If the executable being launched is in a directory on the target
system, the custom action must be placed after the standard
CostFinalize action. The CostFinalize action sefs the values of
Directory properties, and an aftempt fo reference a Directory
property (such as VWindowsFolder or SystemFolder) will couse
runtime error 2732, which is described in the Windows
Installer Help Library as “Directory Manager not initialized".

In this case, because Notepad.exe is present on the farget
sysfem, this cusfom action can be placed in either the User
Inferface sequence or Execute sequence (or both), affer the
CosfFinalize action. It is not necessary fo specify deferred
execution, or for the InstallFiles action to have run first.

An execufable cusfom action does not have access to
installation properties, other than those passed as command-
line arguments. A typical use of a command-ine argument

is fo pass the path to a document to the executable being
launched. For example, suppose you want to launch a Readme
file with Notepad.exe after data transfer takes place. In this
case, the Filename & Command line setting for the custom
action might read:

notepad.exe “[INSTALLDIR|Readme. txt”

The quotation marks around the argument are required by most
executables in case the file path confains any spaces.

An action that launches an executable being installed, or one
that opens a document being installed, must be scheduled for
deferred execution after the standard InstallFiles action. During
immediate mode, data transfer has not yet begun; and in
deferred mode before InstallFiles, documents and executables
will not have been placed on the fargef system.

=} % Custom Actions
-] launchhatepad
=3
=] :!L Sequences Working Directory
=) Installati . o
* S wertefece | |Fiename & Commandine [noleaad eve TNSTALLDIF Resdme i _
I a Execute Retum Processing onous [Chack exit code)
I o . In-Script Execution Deferred Execution
'j‘ C Advertisement £ xeculic Alwaps execule
Use 64B i No
& £ Administration Install Ul Sequence <Abzent fiom sequence>
Install Ul Condition
2] User Interf:
|;| % E::;ute ace Install Exec Sequence Alter InstallFiles
Install Exec Condition Not Installed
Acheertice Fver Sequence  cibcent o ceai e

[ sample App 3000 - InstallShield [Basic MSI Project]
Elle Edit Yiew Go Project Build Iools Window Help

==

Dod|ve | D0/ tées | |dc@XL!' s
StutPege | FrojectAsasant | Instalation Designer Custom Actions and Sequences =
® 3 Instalation Information g1 Custom Actions ‘Common
# Organization ] iochiictenad)
#-23 Applcation Data -5} Sequences
% () Swstem Configuration & £3) Instaliation w“"“‘:‘z"‘“ . W'"’::“F"“" =
{2 Server Configuration £ User Interfaca dencne & Commendne | notepad eve
o b e O s Retuan Processing Synchicnous (Chack ext code]
@ InstaltSerict ) Advertissment IirSciipt Execition Immediale Execution
=] Custom Actions and Sequenc 4 User Interface 5‘:‘*:‘: 5";"“:"9 s steciky
;:r::f‘h . g,::::'m Instel Ul Secumrce Al CosfFingice
Inst=8 Ul Condition
J:,:l;;';;t:;'w’ i gt’:r’f” Instsl Evsc Sequercs  <Absent fom ssquence>
stall Exec Condiion
i L Advetiss Exec Sequence | <Abtent from seauence> =l

Acresso Software: InstallShield White Paper Series

The condition Not Installed ensures the action runs—that is, the
Readme file is displayed —only during a firsttime installation,
and not during maintenance mode or uninstallation.

To ensure the action runs only during a firsttime, full-Ul
installation, you could use the condition (Not Installed) and
(UlLevel=5). A further possible refinement is to associate the
action with the component containing the Readme file, using a
component-action condifion ($ComponentName=3).


http://www.acresso.com/installshield

Types of MSI Custom Actions

DLL and Script Custom Actions

In addition 1o running executables, VWindows Insfaller enables
you fo extend your insfallation by calling code in DLLs and scripts,
where the DLL or script can be embedded in the installation or
installed with the other component data. This section infroduces
the concepts related to calling DLL and script code.

The Windows Installer engine can directly call functions from
a "“Windows Installer DL, or “MSI DL". An MSI DLL providing
cusfom actions exports af least one function with the
following signature:

UINT __stdcall FunctionName(MSIHANDLE hinstall) { ... }

A function you intend to call from an MSI DLL custom action
must use this signature, with the only variation allowed being
the function name. The return value is used to determine if

the function succeeds or fails, and therefore whether the
installation should exit as a result of the custom action: and the
MSIHANDLE argument passed to the function is a handle to
the running installation, used as an argument to

MSI AP functions such as MsiGetProperty that query the

running installation.

Windows Installer requires that a DLL used in this type of
custom action must be a callable DLL, and not a Visual Basic
DLL or .NET DLL. The DLL function cannot accept arguments, but
instead must pass information back and forth using Windows
Installer properties. The MsiSetProperty function sets the

value of a property, and MsiGetProperty reads the value of

a property.

NOTE: The InstallShield environment supports a special type
of DLL custom action called a “Standard DL action, which
enables you to call DLL functions with signatures different from
the MSI DLL function presented earlier. When you create a
Standard DLL cusfom action, you will be prompted for the DLL
name, the function name, and for constants or properties used
fo provide the function arguments and retun values. Recent
InstallShield versions also support “managed code” cusfom
actions, such as C# and VB.NET DLL methods.

Code for a simple MSI DLL custom action might appear
as follows:

#pragma commentllib, “msi.lib")
#include <windows.h>
#include <msi.h>
#include <msiquery.h>
// an MSI DLl custom action function must use this signature
UINT __stdcall CustomActionFunction(MSIHANDLE hinstall)
{
MessageBox|
CetForegroundWindow( ),
TEXT("Running MSI DLL action...”),
TEXT("MSI DLL"),
MB_OK | MB_ICONINFORMATIONI;

return ERROR_SUCCESS; // return success to MSI

Assuming this code has been compiled into a DLL called
MsiDIICustomAction.dll, and that the function name
CustomActionFunction is correctly exported from the DLL (using
a .def file, for example), the properties of a custom action that
calls the DLL might appear similar to the following figure. In the
Function Name setting, you specify only the function name
because the refurn value and arguments are predefined for an

MSI DLL.

-4 Custom Actions
= g callCLstomActionFunction | ey T,
54 Sequences . 3
12 Tnstallation DLL Filename <PATH_TO_RELEASE_FILE $>\MsiDIICustoméction.dl
T ® 0 User Interface Function Name CustomActionFunction
| @ o Execute Return Processing Synchionous [Check ewt code)
d lil Advertisement In-Script Execution Immediate Execution
I & a User Interface Execution Scheduling Always execule
@09 Execute Use B4Bi Scripling No
- Install Ul Sequence Alter Setuplniializaton
(=1 Administration Z
B8 User Interface Install Ul Condition
0% Execute Install Exec Sequence <Absent from sequence>
Irstall Exec Condiion
Advertise Exec Sequence  <Absent from sequence>

Similarly, a VBScript custom action typically defines a function
similar to the following:

Function FunctionName( )
" do something
End Function

The exception is the setting VBScript > Stored in custom
action, which can store short scripts directly in the
CustomAction fable, and for which you do not specify a
function name.

Like MSI DLL cusfom action functions, VBScript custom

action functions do not accept arguments, but instead must
also communicate with the running installer engine using
properties. In VBScript custom actions, the Session object
represents the running installation, and the expression Session.
Property(“PROPNAME") enables you to get and set the value

of a property.

Setting Properties

A seta-property cusfom action either sets or creates a property.
If the property exists in the Property table, the custom action
will overwrite its value, and if the property does not exist in the
Property fable, the custom action will create it. As described
previously, however, the values of private properties are

reset fo their defaults when execution switches from the User
Inferface sequence fo the Execute sequence.

An advantage to using seta-property custom actions over
defining properties in the Property table is that the action can
resolve Formatted expressions, while entries in the Property
table do not resolve Formatted expressions. For example, you
can create a custom action that sets TIMESTAMP to the value
"[Date] at [Time]", and the values of the embedded properties
Date and Time will be expanded af run time. You can then
use the Formatted expression [TIMESTAMP] in, for example, a
registry value, and the value will be expanded at run time.

Acresso Software: InstallShield White Paper Series



& E Custom Actions Common

QU el TIMESTANP SetTIMESTAMP  Custom Ack
Custorn Actio

Elgl Se ces e ustom ACtion

Property Name TIMESTAMP

- Installation

%-E8 User Interfacs Pmpert_l,;\."due [Date] at [I'lmel
-0 Exeate Fetumn Pracessing Synchronous [Check exit code)
= In-Script Execution Immediate Execution

=15 Advertisement
[ 3 User Interface
-3 Execute
[=-{C2) Administration

& User Interface
® Execute

Execution Scheduling Execute only once
Use 64Bit Scripting Mo

Install Ul Sequence After LaunchConditions
Install I Condition
Install Exec Sequence
Install Exec Condition

After LaunchConditions

Advestise Fuee: Seauence  c(Ahaent from seauenees

An example of this type of custom action that exists in each
new InstallShield project is called SetARPINSTALLLOCATION,
which sefs the predefined property ARPINSTALLLOCATION

fo [INSTALLDIR]. The value of ARPINSTALLLOCATION is
automatically written to the target system’s registry by the
Windows Installer engine, enabling a custom action or
external program to read the main install diredor\/ for an
existing product using the MsiGetProductinfo function or
Installer. Productinfo method. Because properties cannot be set
during deferred execution, the In-Script Execution sefting for a
set-a-property custom action cannot be changed from
Immediate Execution.

Setting Directory Properties

You can also use seta-directory custom actions to sef the values
of Direcfory properties. Directory properties are those that

refer fo the locations of directories on the target system;

builkin examples are ProgramFilesFolder, DesktopFolder,

and SystemFolder. If you want to modify the location

that a Directory property points fo, you can use a
seta-directory action.

Directory properties are set by the disk-costing process, and
therefore seta-directory custom actions must be scheduled after
the standard CostFinalize action.

NOTE: Windows Installer ensures that the value of each
Directory property ends with a backslash. If your installer

writes a Directory property fo the registry using the format
[INSTALLDIR], for example, a typical value is C:\Program Files\
Our Company\Our Application\. If the value is to be read
later from within your application, your application code must
account for the trailing backslash.

For example, suppose you have a component that you want
to install to a directory located by a custom action. In this
case, assume the custom action populates a property called
FOUND_DIR. One option is to define the component o use
a cusfom property with an arbitrary initial volue, and then use
a seta-directory custom action to set the placeholder property

value to [FOUND_DIR].

In the following figure, a component has been given
a destination directory represented by the Directory
property name SETTINGS_DIR, with a default value of
[ProgramFilesFolder]Settings.

=4 Setup Design
=@ Custom_ction_Examples | Destination {SETTINGS_DIR} [ProgramFilesFolder]Settings
O« Destination Peimissions 0 Permission(s) defined
Component Code {5B047DDF-2C5F-48BE-AS59-BBF 1B 7SEG44F)

Acresso Software: InstallShield White Paper Series

Types of MSI Custom Actions

To install this component to the directory located by the custom
action, create a seta-directory custfom action with source
SETTINGS_DIR and target [FOUND_DIR], scheduling the
action after the CosiFinalize action in both the User Interface
and Execute sequences.

= a Custom Actions Common
] () $etsETTINGS_DIR
=2} Sequences
=0 Installation
[+-E8 User Interface
-5 Execute
=15y Advertisement
(-8 User Interface

setSETTINGS DIR ¢
Directory Name
Directory Value

Fetumn Processing
In-Scipt Execution

E vecution Scheduling
Use B4Bit Scripting Mo

iSETTINGS DIR

[FOUND_DIR]

Synchronous [Check exit code)
Immediate Execution

Execute only once

—@ - u I.-:x.ecu“." Install Ul Sequence After CostFinalize
(=15 Administration —
: Install Ul Condition FOUND_DIR
= User Interface o
-4 Execute Install Exec Sequence After CostFinalize
Install Exec Condition FOUND_DIR

Sduattice Fvec Saauian Ahsant fiom sequence:

(Note that the action uses the condition FOUND_DIR, which
ensures SETTINGS_DIR is changed from its default value only if
custom action found the desired directory.)

At installation time, the component’s files will be installed to the
directory discovered by the custom action.

Error Custom Actions

Error custom actions display an error message fo the end

user, and then exit the installation when the user dismisses the
error dialog. Because an error custom action always exits the
installation, you should attach a condition to an error action to
ensure it runs only when appropriate.

When you create an error action in the Custom Actions and
Sequences view, you can use the Error Message sefting fo
specify the error message that should be displayed when

the action’s conditions are met at run time. Suppose that you
schedule the action immediately after the LaunchConditions
action in the Execute sequence. When you rebuild and run the
project, the effect of the custom action is to display an error
dialog box similar to the following:

X

& Type 19 Test Project Installer Information

i!} Exiting installation with an error action...
I

After the end user dismisses the error dialog box, the
insfallation exits. (For a silent installation, the error message is
by default written to an MSI log file, and also to the system's
opp|icotion event log.)

The Error Message setting for an error custom action uses
the Formatted data type, so you can expand the values of
properties using the synfax [PropertyName].



In addition, the Error Message setting for an error custom
action can contain the number of a record in the Error fable.
The Error table is also exposed in the Direct Editor view. As
described in the Windows Installer Help Library topic “Error
Table" the error codes numbered from 25000 to 30000
are reserved for custom actions, and therefore you can

use numbers in this range for your custom messages. The
advantage fo using an entry in the Error table, instead of
using a hard-coded message in the Error Message setting,
is that Errortable messages are automatically added fo the
InstallShield string table, and therefore you can provide
localized error messages for multilanguage installations.

In the Direct Editor view, you create a record in the Error fable
the same way you do for any other fable. The fields used in
the Error table are the Error field, which must be an integer
error number, and the Message field, containing the message
fo display. When you add a record to the Error table, the
InstallShield environment automatically adds an entry fo the
string fable; for each language your project supports, you edit
the string value in the String Tables view, available inside your
project’s General Information view.

For an example of using an error custom action, suppose you
have created a major upgrade of an existing project, and
want fo allow the installation to continue only if an earlier
product version is detected. You can detect if a major upgrade
is faking place by festing if the “action property” defined in an
Upgrade-able record contains any value.

First, you create the error action in the Custom Actions

and Sequences view. You can schedule the cusfom

action in both the User Interface and Execute sequences

after the FindRelatedProducts action with condition Not
ISACTIONPROP1. The action'’s properties might be as follows:

-7 Custom Actions Cormon |
A :. 0 exitIfNewInstall
= :!i Secpmnons Error Message
- Installati =
B I b= Retum Processing Synchionous [Check exit code)
)[4 User Interface - -
i eExeDd.‘e InScript Execution Immediate Execution
- Execution Scheduling Execute only once
i L;'r_; e e || 52 5481 Scrping Ne
I ; a Execute Install Ul Sequance After FindRelatedProducts
B 5 Administration Install U1 Condition Nat ISACTIONPROP1
2 5l User Interface Install Exec Sequence After FindRelatedProducts
kx ﬂExeMe Install Exec Condition Net ISACTIONPROP1

Adveitise Exec Sequence  <Absent from sequence>

Advertise Exec Condition
Admin Ul Sequence
Admin U Condition
Admin Exec Sequence
Admin Exec Condition

MSI Type Numbe 275

Comments Display eror message for a firsttime installation.

<Absent from sequence>

<Absent from sequence’

Next, use the Direct Editor view fo create the message in the
Error table:

Error: 29000
Message: You must have a previous version of [ProduciName]
installed. Setup will now exit.

When you run the installation, because no earlier version of
the product is detected, the following error message
is displayed.

i Type 19 Test Project Installer Information

3

,ﬂ' You must have a previous version of Type 19 Test

1 Project installed. Setup will now exit.

Summary

This white paper discusses some of the types of custom actions
supported by Windows Installer (MSI). It also highlights how
InstallShield from Acresso Software assists you in working with
custom actions.

Begin a Free Evaluation of InstallShield
You can download a free trial version of InstallShield
from the Acresso Software Web site at:

www.acresso.com/installshield /eval

Want to learn more best practices for building quality
installations? Join an InstallShield training class — visit

www.acresso.com/training for available classes.

Acresso Software: InstallShield White Paper Series


http://www.acresso.com/installshield/eval
http://www.acresso.com/training

Acresso

Powering the business of software

Acresso Software Inc. Schaumburg (Global Headquarters), United Kingdom (Europe, Japan (Asia, Pacific Headquarters):
Q00 National Parkway, Suite 125 Santa Clara, CA: Middle East Headquarters): +81 3-5774-6253

Schaumburg, IL 60173 +1 800-809-5659 +44 870-871-1111

USA +44 870-873-6300 WWww.acresso.com

© 2008 Acresso Software Inc. and/or InstallShield Co. Inc. All other brand and product names mentioned herein may be the trademarks and registered frademarks of their respective owners
IS_ZWP_MSI|ActionTypes_OctO8





