
W
H

IT
E

 P
A

P
E

R

Building MSI Updates  
and Patches
by Robert Dickau
Principal Technical Training Writer, Acresso Software



Building MSI Updates and Patches
Introduct ion
This white paper describes the changes you make to a Windows 
Installer (MSI) installat ion package for it to behave as the desired 
type of update or patch. It begins by discussing informat ion about 
sett ings to change in the MSI database. It also highlights the tools 
in InstallShield® by Acresso™ Software that simplify the process. 

Also, if you haven’t read the white paper, “Designing an  
Update-Friendly MSI Installat ion,” it has valuable t ips on how  
to build your init ial install. You can download it at  
www.acresso.com/whitepapers.

Using the InstallShield Environment
This white paper frequent ly refers to the InstallShield development 
environment. It is assumed you are familiar with the general layout 
of the InstallShield interface, which contains a list of views with 
which you can modify different port ions of your installat ion project.

 

For example, the General Information view is where you set general 
product and project properties; the Setup Design view enables you 
to edit the features, components, and component data used by your 
project; the Registry view enables you to modify the registry data 
installed by your installation program; and the Direct Editor view gives 
you access to the raw MSI database tables.

It is also assumed you are familiar with some of the wizards 
available with InstallShield, such as the Release Wizard and 
Component Wizard.

	 •		The Release Wizard, available under the Build menu and also 
from the Releases view, lets you describe the propert ies—
media type, compression sett ings, and so forth—of a release, 
and	then	builds	the	specified	release	image.

	 •		The Component Wizard, available by right-clicking a feature 
in the Setup Design view, lets you create special types of 
components, such as components for COM servers, fonts, and 
Windows services.

The InstallShield Help Library contains informat ion about using every 
view and wizard in the InstallShield environment. The InstallShield 
Help Library is available when you press F1 with any view  
selected; you can also select Contents from the Help menu to view 
the help library.

In addit ion to the graphical environment, InstallShield provides 
several tools for modifying and building projects from the command 
line or an external script. For example, to build a project from the 
command	line,	batch	file,	or	other	automated	process,	you	can	use	
the executable IsCmdBld.exe. The IsCmdBld executable is located 
in the System subdirectory of the InstallShield distribut ion directory.

To	rebuild	a	project,	you	pass	IsCmdBld	the	project	file	path,	the	
product	configurat ion	name,	and	the	release	name	that	you	want	to	
rebuild. A sample command appears as follows:

	 	iscmdbld	-p	C:\ProductName.ism	-a	BuildConfig	-r	
ReleaseName

In addit ion, InstallShield provides an Automat ion interface, with 
which	you	can	modify	the	contents	of	a	project	file	without	using	
the graphical environment.

2 Acresso Software: InstallShield White Paper Series



Building MSI Updates and Patches

3Acresso Software: InstallShield White Paper Series

Review of Upgrade Types
Windows Installer supports three types of product upgrades: small 
updates, minor upgrades, and major upgrades. The three types of 
upgrades	are	defined	as	follows.

	 •		A small update consists of product changes, such as hot 
fixes,	so	small	that	no	change	to	the	product	version	is	
necessary or desired. (A drawback to small updates is that 
external programs, including installers for later versions of 
your product, will not be able to dist inguish a product with 
the small update applied from one without the small update.)  

	 •		A minor upgrade is a change to the product large enough 
to merit a change to the product version, such as updat ing 
version	1.1	to	1.2,	but	in	which	there	have	been	no	significant	
changes to the setup organizat ion between versions. The 
install-t ime behavior of a minor upgrade is to install over the 
exist ing product.

	 •	 A major upgrade includes substant ial product changes, 
such as updat ing version 1.2 to 2.0. A major upgrade can 
contain	significant	changes	to	the	setup	architecture;	later.	The	
install-t ime behavior of a major upgrade can be to uninstall the 
earlier version and install the new one, or to install over the 
earlier version and then remove any leftover data.

NOTE: For an earlier product version that was installed with a 
legacy (non–Windows Installer) setup, a custom act ion will normally 
be required to uninstall or modify the exist ing product installat ion.

MSI Codes and Updates
Every MSI database contains a handful of codes that ident ify the 
product being installed.

	 •		Package Code: part of the Summary Informat ion Stream, the 
package	code	ident ifies	a	part icular	database.	Any	two	MSI	
databases with ident ical package codes must have ident ical 
contents, and therefore you should change the package code 
for each build. 

	 •		ProductVersion: MSI property storing the product 
version.	Note	that	MSI	uses	only	the	first	three	fields	of	
t he ProductVersion property for version comparisons: in 
a.b.c.d,	the	field	d is ignored. (Note that this is true just 
for	comparisons	of	ProductVersion	values,	and	not	for	file	
versions.	File-version	comparisons	can	use	all	four	fields	of	a	
file’s	version.)

	 •		ProductCode: MSI property containing the GUID for the 
current product. MSI treats two products with different 
ProductCode GUIDs as unrelated, even if ProductName is the 
same. (As you will see, the major-upgrade process instructs 
MSI to treat two products with different GUIDs as related.)

	 •		UpgradeCode: MSI property containing a GUID represent ing 
the current product “family”; in the major-upgrade process, 
if two products have different ProductCode values but the 
same UpgradeCode value, MSI knows that the products are 
related, and are therefore candidates for the major-upgrade 
process. In general, the upgrade code value never changes.

When you design different types of upgrades, you must change 
different combinat ions of these codes. The following table 
summarizes the required changes.

Inside InstallShield, the package code is exposed in the Summary 
Informat ion Stream view, under General Informat ion.

In this view, you can select the Package Code sett ing and click the 
Generate GUID button (not pictured).

Because the package code should change for every new release, 
the default behavior of InstallShield is to generate a new package 
code each t ime you perform a build. You can modify this behavior 
by	select ing	a	product	configurat ion	icon	in	the	Releases	view,	 
and sett ing Generate Package Code to No, though doing so is 
strongly discouraged.

Note that you can also use this view to specify a product version, 
product code, and other propert ies for the current product-build 
configuration.	If	you	enter	a	specific	value	here,	it	automatically	
overrides the value in the Product Propert ies view.

Learn More about InstallShield:
If you wish to learn more about the capabilit ies of  
InstallShield, please visit the Acresso Web site at  
http://www.acresso.com/installshield 

Package 
code (SIS)

Product
Version

Product
Code

Upgrade
Code

Small 
update X

Minor 
upgrade X X

Major 
upgrade X X (usually) X



Building MSI Updates and Patches

Acresso Software: InstallShield White Paper Series4

The other sett ings—Version, Product Code, and Upgrade Code—
are exposed in the Product Propert ies view, also under General 
Informat ion.

To change the Version sett ing, simply type in the updated value. 
To change Product Code (for a major upgrade), you can select the 
property and then click the Generate GUID button (not pictured). 
These sett ings are also available in the Property Manager, in the 
Behavior and Logic view group.

TIP: An advanced technique is to modify a project’s version 
and GUIDs using the InstallShield Automat ion interface, which 
provides a GenerateGUID method. For more informat ion, see the 
InstallShield Help Library.

Creat ing Update Packages
This sect ion describes the database changes required for different 
types of updates, and describes how to use the tools provided in 
InstallShield to simplify the update-development process.

Minor Upgrades
As	listed	in	the	table	above,	in	addit ion	to	the	new	files	and	other	
data in your update package, to create a minor upgrade you must 
change the package code and product version of your installer.

NOTE: By default, when you run an installat ion from the 
InstallShield environment by clicking the Run toolbar button, 
InstallShield will quiet ly uninstall any previous version of your 
product present on the development machine. To change this 
sett ing so that deploying an installat ion from the environment will 
use the default MSI behavior, pull down the Tools menu, select 
Opt ions, select the Preferences tab, and clear the check box 
labeled “Uninstall before installing”.

To deploy the minor upgrade, a typical command line is  
the following:
  msiexec /i product.msi REINSTALLMODE=voums REINSTALL=ALL

If the update contains features that you do not want to update, you 
should set REINSTALL to a comma-separated list of the features that 
you do want to update, as in the following command (names you 
use in the REINSTALL property are  
case-sensit ive):

  msiexec /i product.msi REINSTALLMODE=voums 
REINSTALL=F1,F3,F5

The important sett ing for deploying a minor upgrade is the 
REINSTALLMODE	flag	“v”,	which	indicates	to	run	the	installer	using	
the updated MSI database and to re-cache the package based on 
the	new	database.	Without	the	“v”	flag,	Windows	Installer	runs	 
the installer based on the cached version of the exist ing earlier 
product version. 

NOTE: You must take care not to set REINSTALL=ALL for a first-t ime 
installat ion. Later you will see how InstallShield can create a setup 
launcher that sets REINSTALL dependent on whether an earlier 
version of the product is present on the target system.

Major Upgrades
For a major upgrade, as indicated in the earlier table, you must 
change the package code (in the Summary Informat ion Stream); 
you will usually change the product version (in the ProductVersion 
property in the Property table); and now must also change the 
product code (the ProductCode property in the Property table).

When you change the product code, Windows Installer treats your 
latest and previous product versions as unrelated, even though the 
ProductName values are likely the same. If you want both versions 
of your product to be installable on the same system, you can 
simply change the product code and the main installat ion directory 
(often INSTALLDIR). (Naturally, the applicat ion must have been 
developed to support mult iple simultaneous instances by separat ing 
each	instance’s	configurat ion	sett ings	and	data	files.)

If instead you want your latest product version to supersede an 
earlier installed version, you will populate records in the Upgrade 
table.	A	record	in	the	Upgrade	table	contains	the	following	fields:

	 •		The	UpgradeCode	value	of	the	product(s)	you	want	 
to update.

	 •	 A range of versions of products to update.
	 •		Opt ional	language	informat ion	for	the	product	to	update.
	 •		An	opt ional	list	of	features	to	remove.
	 •		A	public	property	(called	an	“act ion	property”)	associated	with	

any products to update.

A sample record in the Upgrade table might appear  
as follows.

The	bit	flags	used	in	the	Attributes	field	are	described	in	the	MSI	
Help Library page “Upgrade Table”. The value 1025 used here 
means that all languages should be detected (1024) and that 
feature states should be migrated (1) from the installed product to 
the latest product.

UpgradeCode {11111111-2222-3333-4444-555555555555}

VersionMin 1.0.0

VersionMax 2.0.0

Language

Attributes 1025

Remove

Act ionProperty OLDPRODUCTS



Building MSI Updates and Patches

5Acresso Software: InstallShield White Paper Series

In addit ion to adding records to the Upgrade table, some further 
authoring steps required are to:

	 •		Add	the	act ion	property	name	to	the	value	of	the	
SecureCustomPropert ies property.

	 •		Ensure	the	value	of	ALLUSERS	is	the	same	in	the	before	and	
after versions, through a custom act ion or from the  
command line.

TIP: Because the packages involved in a major upgrade have 
different product codes, you cannot use the MSI property “Installed” 
to determine if the earlier version of your product is present on the 
target system. Instead, the older product version can determine 
if it is being removed because of a major upgrade using the 
UPGRADINGPRODUCTCODE property; the newer version can use 
the	act ion	property	(say,	OLDPRODUCTS)	that	you	defined	in	the	
Upgrade table.

At run t ime, the standard MSI act ion FindRelatedProducts reads the 
records in the Upgrade table, and, if a related product is found, 
the product code for that product is added to the act ion property. 
FindRelatedProducts is by default placed early in both the User 
Interface and Execute sequences.

The MigrateFeatureStates act ion (if appropriate) attempts to migrate 
the feature-select ion states from an installed product version to 
the newer version. Finally, the standard RemoveExist ingProducts 
act ion reads the product codes stored in the Upgrade table act ion 
property, and in effect performs silent nested-uninstallat ion act ions 
on those products.

The RemoveExist ingProducts act ion can be placed in different 
locat ions	to	define	different	types	of	upgrade	behavior.	In	
short, placing RemoveExist ingProducts early in the Execute 
sequence instructs Windows Installer to completely remove the 
exist ing product data before installing the new product. Placing 
RemoveExist ingProducts late in the Execute sequence causes the 
upgrade to install the new product data, and then remove old data.

TIP: The	Attributes	field	of	the	Upgrade	table	also	supports	a	
detect-only bit (value 2). If an Upgrade record has the detect-only 
bit	set,	the	act ion	property	defined	in	that	record	will	be	populated	
with the product codes of corresponding product versions, but the 
RemoveExist ingProducts act ion will not remove those products. The 
detect-only bit is useful, for example, when creat ing a custom act ion 
that prevents an older version of the product from installing over 
a newer version. Recent InstallShield versions automat ically create 
such an Upgrade-table record and custom act ion for new Basic MSI 
projects. For more informat ion about creat ing such a custom act ion, 
see the MSI Help Library page “How do I prevent an old package 
from installing over a newer version?”

TIP: If you use the same UpgradeCode value for every release of 
your product, an external program or custom act ion can determine 
the product codes of any installed copies of your product using the 
MSI API MsiEnumRelatedProducts, or the RelatedProducts property of 
the MSI Automat ion interface.

When	you	define	a	major	upgrade,	it	can	be	useful	to	run	MSI	
validat ion on your upgrade package. The rules ICE61, ICE63, 
and ICE74 can detect package-authoring errors related to major 
upgrade packages. By default, InstallShield performs upgrade 
validat ion	during	the	build	process	to	flag	common	authoring	
problems with the different types of upgrades.

To deploy a major upgrade package, the user can simply launch 
the MSI database or setup launcher, without needing to set any 
special values for REINSTALLMODE or REINSTALL.

InstallShield Upgrades View
To simplify the process of creat ing minor and major upgrades, 
InstallShield provides the Upgrades view, in which you specify your 
latest product version and the earlier packages you want it  
to update.

In	the	Upgrades	view,	you	can	define	a	“minor	upgrade	item”	or	a	
“major upgrade item”. (There is also an “automat ic upgrade item”, 
which determines which type of upgrade to create based on the 
earlier and later packages you specify. Automat ic upgrade items 
will not be discussed here.) The two types of upgrade items are 
described in the following sect ions.

For more informat ion about the different types of upgrades, you can 
select the appropriate help icon under the Addit ional Informat ion 
icon,	pictured	in	the	figure	above.

Creat ing Minor Upgrades with InstallShield
When you create a minor upgrade item, a general sett ing you can 
modify is how a setup launcher should behave if an earlier product 
version is present. You can modify this sett ing by select ing the 
Upgrade Windows Installer Setup icon and reviewing the Small/
Minor Upgrade Sett ings sect ion of the IDE, as pictured in the 
following	figure.



Building MSI Updates and Patches

Acresso Software: InstallShield White Paper Series6

As you have seen, a minor upgrade package requires the 
REINSTALLMODE and REINSTALL propert ies to be set during 
deployment.	If	your	build	configurat ion	included	a	Setup.exe	setup	
launcher, you can select one of the following sett ings:

	 •		Disable: this sett ing causes Setup.exe not to set 
REINSTALLMODE and REINSTALL if the launcher discovers 
an earlier version of the product on the target system. With 
this sett ing, you must manually set REINSTALLMODE and 
REINSTALL through other means.

	 •		Don’t prompt the user, just install the upgrade: this sett ing 
causes Setup.exe to set REINSTALLMODE to “voums” and 
REINSTALL to “ALL” if an earlier product version is detected, and 
otherwise	just	behaves	as	a	first-t ime	installat ion.

	 •	 Prompt: this sett ing (the default) causes Setup.exe to display 
a message to the user if an earlier version exists, prompt ing 
whether to update the setup. If the user agrees, Setup.exe sets 
REINSTALLMODE and REINSTALL as in the previous sett ing. If 
no earlier version exists, no prompt is displayed, and the setup 
behaves	as	a	first-t ime	installat ion.

To create a minor upgrade item, right-click the Upgrade Windows 
Installer Setup icon and select Add Minor Upgrade Item. If desired, 
you can rename the new icon to represent the earlier version of 
your	product,	as	in	“Version100”.	In	the	“Setup	to	Upgrade”	field,	
browse for the MSI database for the earlier product version that 
you want to update.

If you are creat ing an upgrade that can update more than one 
previous version, you can right-click the Upgrade Windows Installer 
Setup icon and create addit ional minor-upgrade items. 

After having created one or more minor-upgrade items, whenever 
you build a media set, by default InstallShield will perform 
validat ion on the latest and earlier product versions, alert ing you to 
possible errors in the upgrade sett ings.
 
If you built your updated version to include Setup.exe, and set the 
minor upgrade sett ings to prompt the user whether to update a 
product, the user will see the following prompt, 
if appropriate.

Creat ing Major Upgrades with InstallShield
When you create a major upgrade item, a general sett ing you can 
modify is where to schedule the RemoveExist ingProducts act ion. You 
can modify this sett ing by select ing the Upgrade Windows Installer 
Setup icon and reviewing the Major Upgrade Sett ings sect ion of 
the	IDE,	as	pictured	in	the	following	figure.

To create a major-upgrade item, right-click the Upgrade Windows 
Installer Setup icon and select Add Major Upgrade Item. You can 
rename the icon to describe the latest version of your setup, as  
in “V200”.

The propert ies for your major-upgrade item are a more user-friendly 
view of the Upgrade table sett ings. In the Common tab for a major-
upgrade item (pictured below), you specify the Upgrade Code 
value of the products you want to update, as well as the versions of 
product you want to update.

Designing an Update-Friendly Installat ion
(The exist ing item ISPreventDowngrade is provided by InstallShield 
to prevent an older version of a product from being installed over a 
newer version.)

In the Advanced tab for a major-upgrade item, you can specify 
other sett ings to be written to the Upgrade table, such as the name 
of the act ion property (by default “ISACTIONPROP1”), whether to 
remove only certain features, and so forth.



Building MSI Updates and Patches

7Acresso Software: InstallShield White Paper Series

At build t ime, InstallShield by default includes an ISSetAllUsers 
custom act ion to manage sett ing ALLUSERS correct ly during a major 
upgrade. (In addit ion, ISSetAllUsers sets the custom property IS_
MAJOR_UPGRADE if a major upgrade is taking place.) To control 
whether to include the ISSetAllUsers act ion, pull down the Tools 
menu, select Opt ions, and act ivate the General tab. You can clear 
or select the “Automat ically create ISSetAllUsers act ion” check box. 

To	deploy	a	major	upgrade,	a	user	can	simply	launch	the	MSI	file	
or setup launcher. No special command-line sett ings are required. If 
a related earlier product version is detected, it will be removed;  
if no earlier version is detected, the setup will behave as a  
first-t ime	installat ion.

Creat ing Patches
A patch is a packaging mechanism for an upgrade. After you have 
created an upgrade—usually a minor upgrade—as described 
above, you can build a patch for it. The earlier product databases 
for which you want to build a patch are commonly called the  
target databases, and the latest version is commonly called the 
upgraded package.

PCP Files
InstallShield	uses	Patch	Creat ion	Property	(PCP)	files	to	store	 
sett ings for a patch to be created. These sett ings include, among 
many others:

	 •		A	GUID	for	the	patch
	 •	ProductCode	values	for	products	the	patch	will	update
	 •	A	list	of	patches	that	the	current	patch	supersedes
	 •		Locat ions	of	uncompressed	source	and	target	 

MSI packages

A	PCP	file	uses	the	MSI	format,	and	can	be	edited	direct ly	with	
InstallShield	or	Orca;	the	standard	tables	and	fields	of	a	PCP	file	
are described in the MSI Help Library.

The	four	required	tables	in	a	PCP	file	are	the	following:

	 •		Propert ies:	contains	global	sett ings	for	the	patch,	such	as	the	
patch GUID, the path to the patch-creat ion output directory, 
whether	to	include	only	ent ire	files,	and	so	forth.

	 •		ImageFamilies:	contains	an	ident ifier	for	a	group	of	related	
target and updated images.

	 •		TargetImages:	describes	the	target	MSI	packages	involved	in	
the patch.

	 •		UpgradedImages:	describes	the	upgraded	packages	involved	
in the patch.

TIP: Given a product’s ProductCode value, you can determine which 
patches have been applied to it by using the MSI API funct ion 
MsiEnumPatches, or the MSI Automat ion interface property Patches.

You run a patch using a command line similar to the following:

  msiexec /p patch.msp REINSTALLMODE=oums REINSTALL=ALL

It is not necessary to specify the product to which the patch applies; 
if the user does not have an appropriate target product version 
installed, the following error dialog box will be displayed.

QuickPatch® Projects
A QuickPatch project enables you to quickly create a patch for 
an	exist ing	MSI	package,	where	the	patch	contains	only	file	and	
registry changes. In a QuickPatch project, you can add, modify, 
or	remove	files	and	registry	data;	if	you	need	the	patch	to	include	
addit ional changes, you should use the Patch Design view, 
described in the following sect ion.

To create a new QuickPatch project in InstallShield, you can pull 
down the File menu, select New, and then select QuickPatch 
Project,	entering	the	name	of	the	InstallShield	project	(ISM)	file	 
to create.

In the QuickPatch Project Base panel, you are prompted to base  
the patch on an exist ing MSI package or on an exist ing  
QuickPatch project.

You will then be prompted for the original database or project, 
creat ing an uncompressed image of your installat ion package  
if necessary.



Building MSI Updates and Patches

Acresso Software: InstallShield White Paper Series8

In the IDE for a QuickPatch project, the Patch Sett ings view group 
contains	views	in	which	you	can	edit	the	general	informat ion,	files,	
and registry data to be included in the patch.

In the General Informat ion view, the Product Propert ies sect ion 
is where you can view and modify the locat ion of the Windows 
Installer package for which the patch is being generated, the patch 
version informat ion, and opt ional Update Service informat ion.

In the Build Sett ings view (not pictured), you specify such  
sett ings as:

	 •		Where	to	place	the	build	output	(the	MSP	file,	and	 
so forth).

	 •		Whether	to	build	an	Update.exe	launcher,	which	launches	
the	patch	file	with	the	appropriate	REINSTALLMODE	and	
REINSTALL values.

	 •		Whether	to	include	the	MSI,	InstallScript,	or	.NET	
redistributables with your patch launcher.

	 •		Where	to	obtain	any	redistributables	you	selected:	either	built	
into Update.exe or downloaded from a URL.

In the History and Custom Act ions views (not pictured), you can 
view and modify the base and intermediate projects that your 
current patch applies to, and specify if any of your custom act ions 
should be set up not to run while your patch is  
being applied.

In the Files view, you see a tree of the dest inat ion folders used 
by	your	project,	and	the	files	in	them.	Select ing	a	file	icon	in	the	
Original	Setup	Files	tree	displays	the	file’s	dest inat ion	and	version	
informat ion,	as	pictured	in	the	following	figure.

In	this	view,	you	can	change,	add,	and	remove	files.	To	update	a	
file,	drag	its	icon	from	the	Original	Setup	Files	tree	to	the	Files	to	
Patch	tree.	When	you	select	the	file	icon	in	the	Files	to	Patch	tree,	 
in the Update File area you then browse for the newer version of 
the	file.

Note	that	a	file	installed	by	a	patch	by	default	obeys	the	 
file-overwrite	rules.	If	you	want,	you	can	select	the	Overwrite	Any	
Exist ing	File	check	box	to	include	the	ent ire	updated	file	in	the	
patch (as opposed to just the byte-level binary differences). This 
sett ing	causes	your	file	to	overwrite	any	earlier	version	of	the	file	on	
the	target	system	in	the	case	of	a	versioned	file,	or	overwrite	any	
exist ing	file	in	the	case	of	an	unversioned	file.

You	can	also	delete	the	file	from	the	setup	using	your	patch	by	
select ing	the	“delete	this	file”	check	box	at	the	bottom	of	the	file-
informat ion view.

To	add	a	new	file	to	the	product	using	your	patch,	right-click	the	
Files to Patch icon and select Insert New File. You will be prompted 
to	browse	for	the	new	file;	afterward,	you	can	specify	the	file’s	
dest inat ion	and	the	features	with	which	the	new	file	is	associated.

Use of the Registry view (not pictured) follows similarly. In the 
Registry view, you see a tree of registry data contained in the earlier 
product version, as well as a tree represent ing the registry data on 
the development system. You can then add, remove, and modify 
registry keys and values relat ive to the original package, and the 
patch will include the appropriate changes.



Building MSI Updates and Patches

9Acresso Software: InstallShield White Paper Series

To build the patch, simply click the Build toolbar button. By default, 
recent versions of InstallShield will perform upgrade and patch 
validat ion. When the build is complete, you can open the folder 
containing the build output by clicking the Open Release Folder 
toolbar	button.	The	output	directory	includes	the	patch	(MSP	file)	or	
Update.exe, the build log, and so forth.

Using the Patch Design View
The InstallShield Patch Design view provides a more sophist icated 
environment for creat ing patches. Unlike QuickPatch projects, which 
are a separate project type, the Patch Design view is associated 
with an exist ing project. In the Patch Design view, it is assumed  
you have already built the projects for your earlier and later  
product versions.

NOTE: When running the Release Wizard for your new product 
version, you will want to use patch opt imizat ion, especially if  
any of your components have used dynamic file linking that  
includes subfolders.

To create a patch, you begin by right-clicking the Patch Design icon 
and	select ing	Add	New	Patch	Configurat ion.	A	patch	configurat ion	
consists of one “Latest Setup” and one or more “Previous Setups”. 
Before you specify the latest and previous setups, you can specify 
overall patch propert ies, such as where to store the built patch 
data, whether to create a patch launcher Update.exe, and so forth.

In	the	Advanced	tab	for	a	patch	configuration	(not	pictured),	you	
can	specify	addit ional	sett ings	to	write	to	the	PCP	file,	such	as	a	
fixed	patch	GUID,	whether	to	include	only	ent ire	files,	and	so	forth.	
In	addit ion,	the	Identification,	Digital	Signature,	and	Sequence	tabs	
enable you to take advantage of uninstallable patches and patch 
sequences, introduced in recent versions of Windows Installer.

To specify the latest version (the updated image) of your package, 
right-click	the	patch	configuration	icon	and	select	Add	New	Latest	
Setup. InstallShield automatically provides one latest setup project, 
which you can rename if desired.

In	the	Latest	Setup	Path	field,	you	can	use	the	variable	
<ISLatestRelease> for InstallShield always to use the latest build of 
your setup as the upgraded image. Alternat ively, you can browse 
for	a	specific	latest	version’s	MSI	database	or	Setup.exe	launcher.	
The release you select here should be an uncompressed release, 
ideally created with an administrat ive installat ion if the previous 
product versions were compressed.

In addit ion, you can use the Include Whole Files sect ion to specify 
part icular	files	to	include	as	whole	files;	the	default	behavior	is	to	
include	the	byte-level	file	differences,	where	possible.	Including	
some	files	as	whole	files	can	suppress	certain	prompts	for	the	
original installat ion source while the patch is being applied.

Under the latest-setup icon are folders labeled Previous Setups and 
Addit ional External Files. In the Previous Setups folder, you add the 
target images for the current patch. You can begin by right-clicking 
the Previous Setups icon and select ing Add New Previous Setup, if 
desired renaming the new icon. InstallShield automat ically provides 
one icon for a previous setup.

In	the	Previous	Setup	Path	field,	you	browse	for	the	earlier	version’s	
MSI database or Setup.exe launcher. Because the patch-creat ion 
process requires an uncompressed release, you will be prompted for 
a locat ion to decompress the previous version, if necessary.

In the Advanced tab for a previous version (not pictured), you can 
specify sett ings such as the version relat ionship required between 
the	latest	and	previous	versions,	and	which	product-version	fields	to	
check to determine if a patch is appropriate for a part icular product 
version on the target system. Recent InstallShield versions support 
streamlining a QuickPatch package, which removes subfeatures and 
custom act ions that are unnecessary for simple QuickPatch projects.



Building MSI Updates and Patches

Acresso Software: InstallShield White Paper Series10

In	the	Addit ional	External	Files	folder,	you	can	specify	files	that	you	
want to patch, but which were not installed by your previous setups. 
The data you enter here is written to the opt ional ExternalFiles table 
of	your	PCP	file.

Finally,	to	build	the	patch,	select	the	patch-configurat ion	icon	and	
click the Build the Patch button. The build will return an error and 
exit if your latest setup version was built compressed. By default, 
InstallShield will also perform upgrade and  
patch validat ion.

Moreover, recent versions of IsCmdBld support a -patch_config 
switch for building patches from the command line.

TIP: In	Windows,	you	can	right-click	a	built	.msp	patch	file	and	
select Edit with InstallShield to launch the Open MSP Wizard, with 
which you can view and edit the package changes contained in a 
patch	file.

NOTE: Deploying an effect ive minor upgrade—either as a full 
installat ion package or as a patch—requires the REINSTALL and 
REINSTALLMODE propert ies to be set. You have seen how these 
propert ies can be set at the command line, and how InstallShield 
can create a setup launcher that populates the propert ies. In 
addit ion, the propert ies can be set by custom act ions or control 
events inside the running installat ion. The one except ion is that 
the “v” flag for REINSTALLMODE, which indicates to re-cache the 
updated MSI database during a minor upgrade packaged as a full 
installat ion database, must be set outside the installat ion program, 
and cannot be changed from within a running installat ion.

Summary
This white paper discusses how to create minor and major 
upgrades, and how to package updates as full installat ion 
databases or as patches. 

Begin a Free Evaluat ion of InstallShield:
You can download a free trial version of InstallShield from the 
Acresso Software Web site at:  
www.acresso.com/installshield/eval

Want to learn more best pract ices for building quality 
installat ions? Join an InstallShield training class – visit www.
acresso.com/training for available classes.



Acresso Software Inc.
Schaumburg, IL 60173
USA

Schaumburg (Global Headquarters),
Santa Clara, CA:
+1 800-809-5659 

United Kingdom (Europe,  
Middle East Headquarters):
+44 870-871-1111
+44 870-873-6300

Japan	(Asia,	Pacific	Headquarters):
+81 3-5774-6253

www.acresso.com

© 2008 Acresso Software Inc. and/or InstallShield Co. Inc. All other brand and product names ment ioned herein may be the trademarks and registered trademarks of their respect ive owners. 
                  IS_WP_BuildPatchUpdate_Nov08




