
W
H

IT
E

 P
A

P
E

R

Designing an Update-Friendly
MSI Installat ion
by Robert Dickau
Principal Technical Training Writer, Acresso Software

Designing an Update-Friendly
MSI Installat ion
Introduct ion
Creat ing and deploying software updates is standard
procedure for virtually every software company in the world.
Knowing strategies for how to create an update-friendly
Windows Installer (MSI) installat ion goes a long way to
ensuring a smooth, error-free update experience for your end
users down the road.

In this white paper, you will learn about designing your original
Windows Installer setup project to best prepare it for future
upgrades, and how to design upgrade packages to install later
versions of your products. It will also provide an introduct ion to
the different types of updates supported by Windows Installer.
Finally, at t imes throughout the white paper it will explain
how InstallShield® from Acresso Software can assist with the
installat ion and update authoring process.

Types of Upgrades
Windows Installer supports three types of product upgrades:
small updates, minor upgrades, and major upgrades. The three
types of upgrades are defined as follows.

 • A small update consists of product changes, such as
hot fixes, so small that no change to the product version
is necessary or desired. (A drawback to small updates
is that external programs, including installers for later
versions of your product, will not be able to dist inguish a
product with the small update applied from one without
the small update.)

 • A minor upgrade is a change to the product large
enough to merit a change to the product version, such
as updat ing version 1.1 to 1.2, but in which there have
been no significant changes to the setup organizat ion
between versions. The install-t ime behavior of a minor
upgrade is to install over the exist ing product.

 • A major upgrade includes substant ial product changes,
such as updat ing version 1.2 to 2.0. A major upgrade
can contain significant changes to the setup architecture.
The install-t ime behavior of a major upgrade can be to
uninstall the earlier version and install the new one, or
to install over the earlier version and then remove any
leftover data.

NOTE: For an earlier product version that was installed with
a legacy (non-MSI) setup, a custom act ion will normally be
required to uninstall or modify the exist ing product installat ion.

Packaging and Deploying Upgrades
Windows Installer provides different methods for packaging
upgrades, and the different opt ions affect the way the upgrade
is applied to a target system.

Packaging Options
An upgrade can be packaged for deployment to the target
system as a full installat ion (MSI package). An upgrade
packaged as a full installat ion can be authored (using custom
act ions, command-line switches, or a setup launcher) to
upgrade an exist ing product if one is present, or otherwise to
behave as a first-t ime installat ion.

An upgrade can also be packaged as a Windows Installer
patch file (a file with the MSP extension). A Windows
Installer patch contains changes between the files (and other
data) and MSI tables in the earlier and later versions. The
file differences stored in a patch can be binary, byte-level
differences, possibly result ing in a much smaller deliverable
than an update packaged as a full installat ion package. An
update that you package as a patch file can be used only to
upgrade an exist ing, installed product, and cannot be used
as a first-t ime installat ion.

Small updates and minor upgrades are commonly packaged
as patches, while major upgrades are usually packaged as full
installat ion packages.

2 Acresso Software: InstallShield White Paper Series

Designing an Update-Friendly MSI Installat ion

3Acresso Software: InstallShield White Paper Series

NOTE: A common misapprehension is that patches are
a separate type of upgrade, as opposed to a packaging
mechanism. In fact, the patch-development process involves first
designing a minor or major upgrade, and then packaging it as
a patch. Before creat ing a patch, it is recommended you test
the update as a full installat ion package.

Deploying Upgrades and Patches
When you run an MSI installat ion package for the first t ime on
a given system, Windows Installer caches the MSI database in
the “super-hidden” directory %WINDIR%\Installer. By default,
when you run the same package a second or later t ime on
the same system, Windows Installer runs the package in
maintenance mode, using the cached database. (A package is
typically authored to show a different series of dialog boxes for
first-t ime installat ions and maintenance-mode installat ions, using
condit ions such as “Not Installed”.)

During the init ial installat ion, the MSI database is cached
on the user’s system, but the product’s data files are not. If a
maintenance operat ion results in a file having to be installed,
MSI will require access to the original installat ion source,
prompt ing the user to locate the source if it cannot be found
(for example, if the installat ion was performed from a CD-ROM
that is no longer in the drive). For this reason, you should either
build a release with the MSI database external to a setup
launcher, or create a setup launcher that caches the installat ion
on the local machine.

When you deploy a major upgrade package, no special
command-line switches or property values are required.
When deploying a minor upgrade package, however,
you will generally need to set appropriate values for the
REINSTALLMODE and REINSTALL propert ies, as described in
the following sect ion.

About REINSTALLMODE and REINSTALL
To avoid maintenance mode for a small update or minor
upgrade installer, the MSI property REINSTALLMODE must
be set at the command line, either by the user or by a setup
launcher. The REINSTALLMODE property defines what types of
data should be reinstalled: the value is a string of characters,
where each character indicates a part icular type of data to
reinstall. (A major upgrade typically does not need any special
propert ies set at the command line.)

The default REINSTALLMODE value is “omus”, where the
characters stand for the following:

 • o: reinstall a file only if it is missing from the target system,
or if the exist ing file on the target system is older.

 • m: reinstall machine-wide registry data.
 • u: reinstall user-specific registry data.
 • s: reinstall shortcuts.

When deploying a small update or minor upgrade,
the key is to re-cache the cached MSI database by
including the letter “v” in the REINSTALLMODE value, as in
REINSTALLMODE=voums. (The order of characters in the
REINSTALLMODE value is unimportant.)

NOTE: The “v” opt ion for REINSTALLMODE must be set
at the command line when the minor upgrade installat ion
is launched; the other REINSTALLMODE sett ings can be
act ivated within a running installat ion. InstallShield can help
you create a setup launcher for a minor upgrade that detects if
an earlier version of a product is installed on a system, and sets
REINSTALLMODE and REINSTALL appropriately. Moreover, MSI
validat ion rule ICE40 posts a warning if REINSTALLMODE is
set in the Property table.

For an update installer, the REINSTALL property should also
typically be set. The REINSTALL property should be set to a
comma-separated list of features to reinstall (using the internal
feature names, and not the localized display names), or
to the special value “ALL”. Sett ing REINSTALL to ALL causes
only the features already installed by an earlier installat ion
to be reinstalled. For this reason, sett ing REINSTALL to ALL is
inappropriate for a first-t ime installat ion: during a first-t ime
installat ion, no features have yet been installed.

When running a minor upgrade packaged as a full MSI
package, a typical command line is the following:
msiexec /i ProductName.msi REINSTALLMODE=voums
REINSTALL=ALL

A patch can be distributed using the MSP file, or by creat ing
an Update.exe file that wraps the MSP and passes the
appropriate REINSTALLMODE and REINSTALL property values
to the Windows Installer engine.

To deploy a patch, a typical command line is the following:
msiexec /p patch.msp REINSTALLMODE=oums
REINSTALL=ALL

Because a patch does not modify the exist ing cached MSI
database, including the “v” sett ing for REINSTALLMODE
is unnecessary.

At run t ime, a patch transforms the cached MSI database,
and then runs it in maintenance mode. A patch file is also
cached on a target system, in the same locat ion as cached
MSI databases.

Designing an Update-Friendly MSI Installat ion

Acresso Software: InstallShield White Paper Series4

Designing an Update-Friendly Installat ion
The design of your installat ion projects—the organizat ion of a
product’s features, components, and key paths—has an impact
on the effect iveness of future updates. The effect iveness of an
upgrade or patch is gauged by the following:

 • The new package updates the appropriate installed
product: the package installs new and updated product
data, and does not remove any required data.

 • An update packaged as a full installat ion should behave
correct ly as a first-t ime installat ion if no earlier version
exists on the target system. (An update packaged as a
patch cannot act as a first-t ime installat ion.)

 • The product informat ion registered on the system should
display informat ion only for the newest product version.
There should not, for example, be more than one
entry for your product present in the Add or Remove
Programs panel.

For patch packages, there are addit ional considerat ions:

 • The patch package should be as small as possible, when
appropriate containing byte-level differences between the
files in your earlier and later installat ion packages.

 • The patch should avoid unnecessary prompts for the
source media.

This white paper provides some general guidelines for creat ing
update-friendly projects, both for the original installat ion and
for update installat ions.

Organizing the Original Project
The design of the first release of your original installat ion
project can have a significant effect on the success of
later updates applied to it. This sect ion offers some t ips for
organizing your init ial MSI installat ion project, and where
appropriate describes the applicable Windows Installer
behavior or best-pract ices guidelines that mot ivate these t ips.

NOTE: These t ips apply largely to minor upgrades. In general,
the uninstall-then-reinstall nature of major upgrades makes them
less suscept ible to problems related to the organizat ion of an
installat ion project.

Tip 1. Whenever possible, use versioned key files.
As described later in this white paper, part of Windows
Installer’s contribut ion to system stability is the enforcement of
strict file-versioning rules. However, MSI ordinarily performs
version comparison only on the key file of a component when
deciding whether to install a component during a reinstallat ion
or update installat ion. A simple way to ensure that a
component will be updated in your new product version is to
give your key file a newer version than the corresponding file
on the target system.

This t ip is related to the MSI best-pract ice rule of putt ing at
most one portable executable file—EXE, DLL, OCX, and the
like—in a component, and marking that file as the key file of its
component. In addit ion to giving you the most effect ive repair

mode for your installat ion, having more components leads to
more desirable default behavior if only some of your files are
updated in your new product version.

Tip 2. Part it ion your product into discrete sets of features.
The primary use of features is to provide user-selectable pieces
of your product’s funct ionality. An early part of the design
of your installat ion program is to define the features (and
subfeatures, and so forth) that you want the user to be able to
see and configure.

Most installers provide a custom setup type, which displays to
the user a panel similar to the following, where the user can
select which product features to install.

This end-user view of your installer is the foundat ion of the
other features you need to configure.

There is no fixed list of rules for dividing an applicat ion into
features. In some cases, the architecture of your applicat ion will
suggest divisions into features (Program Files, Help Files, Tools,
Examples, and so forth). In other cases, it will be necessary to
define art ificial boundaries within your applicat ion to create
features of a manageable size.

After you part it ion your product into user-selectable features,
you can further divide these features into subfeatures. For each
of these subfeatures, you can set the Display attribute to Not
Visible, set the Remote Installat ion attribute to Favor Parent, and
set the Required attribute to Yes. In this case, the user will see
and interact with only the visible features, but the installat ion
will behave as if all the applicat ion resources in the subfeatures
are part of the main feature. Note that marking a subfeature
as Required will cause the subfeature to be installed only if its
parent feature is installed.

The more features your project has, the more flexibility you have
in reinstallat ion behavior. The REINSTALL property, which should
be set during a minor upgrade installat ion, accepts a list of
features to reinstall. When applying a minor upgrade (especially
as a patch), you should not use the sett ing REINSTALL=ALL, but
instead explicit ly specify the features that you want to reinstall.

Designing an Update-Friendly MSI Installat ion

5Acresso Software: InstallShield White Paper Series

A related common pract ice is to create a top-level “product”
feature, as in the figure above.

Tip 3. Put user-configurable registry data in its own feature.
When a minor upgrade is applied, all of the registry data in
all the features being reinstalled will also be reinstalled; this
will occur even if the component containing the registry data
is not being updated. This means that any registry sett ings that
have been modified from their original values will revert to their
default values. In some cases this is acceptable behavior, but
usually you will not want to replace the user’s configurat ion
sett ings with the original factory sett ings.

If you place user-configurable registry data in its own feature,
as described in the previous t ip, that feature will not be
reinstalled unless it is listed in the value of the REINSTALL
property being set during the update.

If you want not to reinstall any registry data, you can also
omit the “m” and “u” flags from the REINSTALLMODE value.
However, this sett ing applies to the ent ire installat ion, and can
have undesirable effects during the applicat ion of a patch.

Tip 4. MSI property values are not automatically saved during
the init ial installat ion.
With a few except ions, the values of MSI propert ies that are
set during the init ial installat ion will not be available during
maintenance mode or an update scenario. If you believe
you will need a property’s value to be available to a later
maintenance or update installat ion, one common pract ice is
to write the property’s value to the registry during the init ial
installat ion, and read the data back during the
later installat ion.

To write a property’s value to the registry, you can take
advantage of the fact that the Value field of the Registry table
uses the MSI data type Formatted. MSI database fields that
use the Formatted data type will expand expressions of the
form [PropertyName] into the value of the specified property at
run t ime. For example, to write the account name of the user
running the installat ion into the registry, you can create a value
with data “[LogonUser]”.

To read back registry data during a later installat ion, you can
populate the AppSearch and RegLocator tables, or use the
InstallShield System Search Wizard to populate the tables for
you. Of course, you can instead create a custom act ion script
or DLL to read the registry data for you. (You can attach the
condit ion “Not Installed” to an act ion you want to run only for
a first-t ime installat ion, and use the condit ion “Installed” for an
act ion that should run only during a maintenance operat ion.)

The except ions ment ioned earlier are the values of the MSI
propert ies USERNAME, COMPANYNAME, and ProductID,
which are available using the MsiGetUserInfo API funct ion; and
the values of ProductVersion and most Add or Remove Programs
sett ings, available with the MsiGetProductInfo API funct ion.
A common requirement is to save the value of the main

product installat ion directory, often stored in the INSTALLDIR
property, so that the value is available during a maintenance
or update operat ion. The value of the built-in property
ARPINSTALLLOCATION is automat ically written to the target
system’s registry, and is available using the MsiGetProductInfo
funct ion. To set ARPINSTALLLOCATION to the value of
INSTALLDIR, you can create a set-a-property (Type-51) custom
act ion with source ARPINSTALLLOCATION and target
[INSTALLDIR], scheduling it in the Execute sequence after the
standard CostFinalize act ion. If you use InstallShield to create a
project, such a custom act ion is automat ically included.

Organizing the Update Project
This sect ion describes techniques involved in authoring
common update scenarios. Again, these guidelines are the
most relevant for minor upgrades: the uninstall-then-install
behavior of a major update reduces your exposure to problems
with the design of the original project. If your earlier MSI
project has already been deployed, you can often create
a major upgrade package to improve the setup design for
future updates.

Deciding Which Type of Update Package to Use
Previously, some of the differences between how minor
upgrades and major upgrades are packaged and deployed
were described. There are some situat ions in which a minor
upgrade cannot be used, and a major upgrade is required.
Some of the cases in which a major upgrade is required are
the following:

 • If the file name of the MSI database has changed,
a major upgrade is required. Therefore, if your
organizat ion’s build pract ices include using the product
version in the MSI file name (as in SampleApp-1.2.3.msi),
you will need to use major upgrades to update
your product.

 • If a component has been removed from an exist ing
feature, or if a component code of an exist ing component
has changed, a major upgrade is required. (Note that this
rule applies equally to components in merge modules.)

 • Similarly, if an exist ing feature has been moved to
become a subfeature of another feature, or if a subfeature
has been removed from an exist ing feature, a major
upgrade is required.

Even if you intend to package your update project as a patch,
you must usually create a minor or major upgrade package
before creat ing the patch. (An except ion is the InstallShield
QuickPatch project type.) Recall that an update packaged as
a full MSI package can behave as a first-t ime installat ion if a
part icular user does not have an earlier version of your product
installed, while a patch package cannot.

If you intend to use patches, it is recommended you create
minor upgrades.

Designing an Update-Friendly MSI Installat ion

Acresso Software: InstallShield White Paper Series6

Tip 5. New subfeatures should be marked as “required” and
“follow parent”.
A minor upgrade can contain new components in an exist ing
feature. (Very early MSI versions required new components in
an update package to be placed in new features, and also
required special command-line handling.)

A minor upgrade generally should not take a new top-level
feature. However, new subfeatures of exist ing features are
allowed, and should be given the “required” and “follow
parent” flags in the Attributes field of the Feature table. In
the InstallShield Setup Design view or Features view, set the
subfeature’s Required property to Yes, and set the Remote
Installat ion property to Favor Parent.

The user interface of a minor upgrade does not usually show
the feature tree. Maintenance mode for the updated installat ion
will typically expose the feature tree (in a “Modify” opt ion),
and for that reason you might want to mark the new subfeature
as hidden. To mark a feature as hidden in the Feature table,
enter 0 in the feature’s Display field; in InstallShield, set the
feature’s Display property to Not Visible.

Tip 6. If your minor upgrade removes data (files, registry
sett ings, and so forth) from a component, populate the
corresponding “Remove” data.
In your minor-upgrade project, removing a file that existed in
the earlier product version will not cause the file to be removed
when the update is applied. To address this, Windows Installer
provides a RemoveFile table, in which you can specify files to
remove during installat ion or uninstallat ion of the current
MSI package.

The fields contained in a RemoveFile record are the following:

 • FileKey: a unique, arbitrary primary key for this record
(such as “Remove1”).

 • Component_: reference to a component in the current
database; the removal will take place during the
installat ion or uninstallat ion of this component.

 • FileName: the name of the file to remove; you can use
wildcard expressions to remove mult iple files.

 • DirProperty: a property or directory ident ifier containing
the path to the file(s).

 • InstallMode: numeric flag indicat ing when to remove the
file(s). Valid values are 1 to remove files when component
is installed; 2 to remove files when component is
uninstalled; 3 to remove files when component is installed
or uninstalled.

In InstallShield, the RemoveFile table is exposed in the Direct
Editor view, in the Addit ional Tools view group. To create a
record, click the cell labeled “Click here to add a new item”,
and then populate the fields with the desired data.

Similarly, if you remove registry data from a component
in a minor upgrade, you should create a record in the
RemoveRegistry table. Records in the RemoveRegistry table
describe the registry key and value to remove when the
associated component is installed. Unlike the RemoveFile table,
the RemoveRegistry table does not accept an opt ion to remove
the specified registry data when the associated component is
uninstalled. Instead, you can author a registry value with the
“uninstall ent ire key” flag: if your component contains a registry
value with a hyphen (-) in the Name field and an empty Value
field, the specified registry key and all its contents will be
removed when the component is removed.

For other types of data, there is usually either an uninstallat ion
flag available in the MSI table or a corresponding
uninstallat ion table. To remove INI data, for example, there is
a RemoveIniFile table; for environment-variable data, there is a
corresponding uninstallat ion flag; and so forth.

NOTE: This t ip applies only if the component with removed
data is private to your product. For components shared with
other products, you should change the component code
when removing resources. Furthermore, as described above,
changing an exist ing component’s component code requires
a major upgrade. For more informat ion, see the Windows
Installer help library pages “Changing the Component Code”
and “What happens if the component rules are broken?”

InstallShield validates your update packages for appropriate
“Remove” data.

Tip 7. Change the MSI product version for each new release.
There are some numeric codes that need to be changed in
your project for different types of updates. One of these is
the MSI product version, stored in the required ProductVersion
property. Especially if you intend to package your update as
a patch, you will generally want to be able to dist inguish an
updated version of your package from the original version.

Designing an Update-Friendly MSI Installat ion

7Acresso Software: InstallShield White Paper Series

Tip 8. When building your update package, use Patch
Optimizat ion in your build sett ings.
To make the smallest possible patches, file keys in the File table
should be ident ical in the earlier and later MSI databases. The
patch-creat ion process uses the File-table keys to determine
if two files are the “same” file. (The actual file names cannot
reliably be used, since a package might contain more than one
file with the same name, installed under different condit ions.)

To use patch opt imizat ion in InstallShield, in the last panel of
the Release Wizard you can browse for the earlier version of
your MSI database.

During the build, InstallShield will ensure the File-table keys are
ident ical for ident ical files.

Tip 9. When generat ing a patch for a compressed installat ion,
use an administrat ive image.
The patch-generat ion process requires uncompressed images
of your older and newer installat ion packages. If your original
installat ion package was built with files compressed, you
should generate an uncompressed image by running an
administrat ive installat ion. An administrat ive installat ion is
not a true installat ion, in the sense that it does not register
any product data on the target system, create shortcuts, write
registry data, or register COM servers or file extensions.
Instead, an administrat ive installat ion simply creates an
uncompressed image of an installat ion.

To run an administrat ive installat ion, you can launch the MSI
engine executable with the /a switch, as in the following:
msiexec /a ProductName.msi

If your project uses a Setup.exe setup launcher, you
can typically also use this command to create an
administrat ive image:
setup /a

The main idea is that you should not create a separate
uncompressed build configurat ion for the sake of patch
generat ion: doing so will compromise the integrity of
the File and Media tables between the versions of
your installat ion. Instead, you should always create an

administrat ive image if you need an uncompressed package.
InstallShield will automat ically create an administrat ive image
for you when you add your installat ion to a patch configurat ion
in the Patch Design view.

Tip 10. When generat ing a patch, both versions should have
the same media layout.
When generat ing a patch, the earlier and latest versions of
your project should both have been built to use compressed
files, or both to use uncompressed files. In the case of
compressed packages, you should use administrat ive images
to generate the patch, as described in the previous t ip.

To understand why this is important, consider a situat ion
where the earlier package was installed using a compressed
image. If you create a patch for this installat ion where the
latest version is uncompressed, the patch will transform the
cached MSI database on the target system to use references to
uncompressed source files. If the patched installat ion requires
the original installat ion source (for example, because an
installed file was accidentally deleted), Windows Installer will
make a request for an uncompressed file; and because the
original source was compressed, MSI will be unable to find the
file to repair it.

Even worse, there are some situat ions where having
mismatched media layouts can cause MSI to delete a good
file in an update situat ion.

For compressed images that span mult iple cabinet (CAB) files,
then, you should ensure exist ing files are located in the same
CAB file for both the earlier and latest versions. New files can
be placed in a new CAB file.

For uncompressed images, files must reside in the same
locat ion in the directory structures for the earlier and
later versions.

Tip 11. For a patch, do not set REINSTALL=ALL.
The REINSTALL property, which should be set during the
applicat ion of a minor upgrade, can contain a comma-
separated list of features to be reinstalled or the special value
ALL. However, using the value ALL can cause unwanted
prompts for the installat ion source.

Moreover, the special value ALL reinstalls only those features
already installed by an earlier version of the product. During a
first-t ime installat ion, no features will have been installed, and
therefore no features will be installed.

For a minor upgrade, if you have a batch file or setup launcher
that sets REINSTALL to ALL, you should include a custom act ion
to clear the REINSTALL property for a first-t ime installat ion.
Another opt ion, handled by InstallShield, is to create an
Update.exe setup launcher that tests whether an earlier version
of the product has been installed, and sets REINSTALL only
when appropriate.

Designing an Update-Friendly MSI Installat ion

Acresso Software: InstallShield White Paper Series8

Tip 12. Updates can contain new dialog boxes and
custom act ions.
If you need to handle exist ing or new data in a special way
during an upgrade installat ion, you can insert new act ions and
dialog boxes in an update package. The following sect ion
describes condit ions you can use if you want to run an act ion
only during an upgrade.

Propert ies Used in Updates and Patches
In addit ion to being able to update project files, registry
sett ings, and other data in an update package, you can
modify and add dialog boxes and custom act ions used in
an update package. An update package will run using the
sequences defined in the new package.

In some cases, of course, you will want to show certain dialog
boxes or perform certain act ions only if an update is taking
place, and not if the package is a first-t ime installat ion. This
sect ion describes the various MSI propert ies used to determine
the type of installat ion taking place. A standard example is
the user interface displayed by an installat ion. By default, a
first-t ime installat ion displays one sequence of dialog boxes
(start ing with InstallWelcome); a maintenance mode installat ion
displays another (start ing with MaintenanceWelcome); a minor
upgrade displays another (SetupResume); and a patch install
displays yet another (PatchWelcome).

In the raw MSI database tables (for example, using the Direct
Editor view), you can view the “entry point” of a part icular
series of dialog boxes in the InstallUISequence table. In
InstallShield, you can use the Custom Act ions and Sequences
view, inside the Behavior and Logic view group.

In the InstallUISequence table, only the first dialog box in
a series is explicit ly listed; subsequent dialog boxes do not
appear in the sequence tables, but are instead handled by
control events attached to the Back and Next buttons on each
dialog box. The Sequences view combines the informat ion
represented by the InstallUISequence table and the NewDialog
control events attached to Next and Back buttons to display
dialog boxes in a tree view.

The key concept is that the same sequence table is used
for first-t ime installat ions, maintenance mode installat ions,
uninstallat ion, and so forth: there is no “Uninstall” sequence.
The difference when running these different installat ion modes
is that various MSI propert ies have different values, which
indicate what type of installat ion is appropriate.

In the InstallUISequence table or the Custom Act ions and
Sequences view, you can review the condit ions attached to
the entry point of each series of dialog boxes:

 • InstallWelcome: Not Installed And (Not PATCH Or IS_
MAJOR_UPGRADE).

 • MaintenanceWelcome: Installed And Not RESUME And
Not Preselected And Not PATCH.

 • SetupResume: Installed And (RESUME Or Preselected) And
Not PATCH.

 • PatchWelcome: PATCH And Not IS_MAJOR_UPGRADE.

The propert ies involved are:

 • Installed: set if a product exists on a target system;
thus the condit ion “Not Installed” succeeds for a
first-t ime installat ion.

 • PATCH: set if the current installat ion is packaged as
a patch.

 • RESUME: set if a suspended installat ion is being resumed,
as an installer launched after a reboot caused by the
ForceReboot act ion.

 • Preselected: set if REINSTALL, ADDLOCAL, or a related
property has been set at the command line, indicat ing
a minor upgrade.

 • IS_MAJOR_UPGRADE: set by InstallShield for a major
upgrade (this is not a standard MSI property).

TIP: There are some addit ional propert ies you can use to
determine if a major upgrade is taking place. Moreover,
the Windows Installer API funct ion MsiGetProductInfo (and
the equivalent MSI Automat ion method ProductInfo) can
programmatically return informat ion about an installed version
of your product, such as its version informat ion, install locat ion,
and Add or Remove Programs sett ings.

File-Overwrite Rules
A widespread problem with legacy, non-MSI installat ion
programs was that poorly written installers would
indiscriminately overwrite exist ing files on a target system; if an
installer replaced a newer version of a file with an older one,
exist ing applicat ions on the target system could fail. To address
this problem, Windows Installer enforces strict file-overwrite
rules, based on the relat ionship between the version or
modificat ion-date informat ion of the file in the installer and the
file on the target system.

In addit ion to the file-overwrite rules described here, keep
in mind that the key file of a component is tested when
determining whether to reinstall a component. The simplest
file-overwrite rule is that a file with a newer version will replace
an exist ing file with an older version. At installat ion t ime, MSI
compares the version informat ion in the appropriate File table
record to the version of the exist ing file; if your file has the
greater version number, it will be installed. (A special case is
that a versioned file will always replace an unversioned file.
Moreover, if the versions of the two files are equivalent, MSI
performs an addit ional comparison based on the languages
supported by each copy of the file, installing or preserving the
file that supports more languages.)

The file-overwrite rules for unversioned files are somewhat more
complicated. By default, MSI will not overwrite an unversioned
file that has been modified since installat ion; that is, a file
whose creat ion and modificat ion t imestamps are different.

Designing an Update-Friendly MSI Installat ion

9Acresso Software: InstallShield White Paper Series

In addit ion, to prevent unnecessary file-copy operat ions,
Windows Installer will test file hashes, if present, for
unversioned files. A file hash is a shorthand numeric
representat ion of a file’s contents; if two files’ hash values are
ident ical, the files’ contents are ident ical. If an unversioned file
in an installer has the same hash value as a file on the target
system, MSI will not attempt to transfer the file. This behavior
is especially useful for patches, where it limits unnecessary
prompts for the original installat ion source.

By default, InstallShield computes file hashes for unversioned
files, populat ing the MsiFileHash table of the MSI database.
If you are populat ing the MsiFileHash table by hand, you will
use the MsiGetFileHash API funct ion, or the FileHash method
of the MSI Automat ion interface, to compute the values to enter
in your project’s MsiFileHash records.

TIP: Another special case involves the relat ionship between
files called companion files. Companion files are files that
should be installed together: in a companion-file relat ionship,
one file is called the parent, and the other is called the child,
and the child is installed whenever the parent is installed. The
way you set up the companion-file relat ionship is to enter, in
the Version field of the child’s File-table record, the file key of
the parent file. In InstallShield, you can set up a companion file
relat ionship by right-clicking the child’s file icon in one of the
file views, select ing Propert ies, and entering the primary key of
the parent’s File record. Note that the child of a companion-file
relat ionship cannot be the key file of its component.

Changing File-Overwrite Behavior with REINSTALLMODE
The rules described above are the default file-overwrite rules,
which apply when the property REINSTALLMODE uses the “o”
sett ing to install over older files on the target system. (Recall
that the default value of REINSTALLMODE is “omus”.) To
change this behavior, you can replace the “o” opt ion with one
of the following values:

 • p: reinstall only if there is no equivalent file on the
target system.

 • e: reinstall if the file is missing or of an older or
equal version.

 • d: reinstall if file is missing or different.
 • a: reinstall all files, regardless of version.

Keep in mind, however, that the sett ing for REINSTALLMODE
applies to all the features being installed, and cannot be set for
an individual feature. In addit ion, sett ing REINSTALLMODE to
include “a” will likely cause prompts for the original installat ion
source during the applicat ion of a patch.

Summary
In this white paper, you have learned some guidelines for
creat ing init ial and updated versions of your installat ion
project, as well as informat ion about the file-overwrite behavior
that affects the effect iveness of update installat ions. You
have also read about how InstallShield can help simplify and
streamline the installat ion and update creat ion process.

Begin a Free Evaluat ion of InstallShield
You can download a free trial version of InstallShield
from the Acresso Software Web site at:
www.acresso.com/installshield/eval

Want to learn more best pract ices for building quality
installat ions? Join an InstallShield training class – visit
www.acresso.com/training for available classes.

http://www.acresso.com/installshield/eval
http://www.acresso.com/services/education.htm

Acresso Software Inc.
900 National Parkway, Suite 125
Schaumburg, IL 60173
USA

Schaumburg (Global Headquarters),
Santa Clara, CA:
+1 800-809-5659

United Kingdom (Europe,
Middle East Headquarters):
+44 870-871-1111
+44 870-873-6300

Japan (Asia, Pacific Headquarters):
+81 3-5774-6253

www.acresso.com

©2008 Acresso Software Inc. and/or InstallShield Co. Inc. All other brand and product names ment ioned herein may be the trademarks and registered trademarks of their respect ive owners.
 IS_WP_Patching_Sept08

