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We consider the regularity criterion for the 3D MHD equations. It is proved that if the horizontal components of the velocity and
magnetic fields satisfy ũ, ̃b ∈ 𝐿

2/(1−𝑟)
(0, 𝑇;

̇

𝑀

2,3/𝑟
) with 0 < 𝑟 < 1, then the solution smooth. This improves the result given by Gala

(2012).

1. Introduction

In this paper, we consider the following three-dimensional
(3D) magnetohydrodynamic (MHD) equations:

u
𝑡
+ (u ⋅ ∇)u − (b ⋅ ∇) b − Δu + ∇𝜋 = 0,

b
𝑡
+ (u ⋅ ∇) b − (b ⋅ ∇)u − Δb = 0,

∇ ⋅ u = 0,

∇ ⋅ b = 0,

u (0) = u
0
, b (0) = b

0
,

(1)

where u = (𝑢

1
, 𝑢

2
, 𝑢

3
) is the fluid velocity field, b =

(𝑏

1
, 𝑏

2
, 𝑏

3
) is the magnetic field, 𝜋 is a scalar pressure, and

(u
0
, b
0
) are the prescribed initial data satisfying ∇ ⋅ u

0
=

∇ ⋅ b
0

= 0 in the distributional sense. Physically, (1)
governs the dynamics of the velocity and magnetic fields in
electrically conducting fluids, such as plasmas, liquid metals,
and salt water. Moreover, (1)

1
reflects the conservation of

momentum, (1)
2
is the induction equation, and (1)

3
specifies

the conservation of mass.
Besides its physical applications, the MHD system (1)

is also mathematically significant. Duvaut and Lions [1]
constructed a global weak solution to (1) for initial data with
finite energy. However, the issue of regularity and uniqueness
of such a given weak solution remains a challenging open

problem. Many sufficient conditions (see, e.g., [2–14] and the
references therein) were derived to guarantee the regularity
of the weak solution. Among these results, we are interested
in regularity criteria involving only partial components of the
velocity u, the magnetic field b, the pressure gradient∇𝜋, and
so forth.

Cao andWu [2] proved the following regularity criterion:

𝜕

3
u ∈ 𝐿

𝑝
(0, 𝑇; 𝐿

𝑞
(R
3
)) ,

2

𝑝

+

3

𝑞

= 1, 3 ≤ 𝑞 ≤ ∞. (2)

Jia and Zhou showed that if

𝜕

3
u ∈ 𝐿

𝑝
(0, 𝑇; 𝐿

𝑞
(R
3
)) ,

2

𝑝

+

3

𝑞

=

3

4

+

2

2𝑞

, 𝑞 > 2, (3)

then the solution is regular. These results were improved by
Zhang [15] to be

𝜕

3
u ∈ 𝐿

𝑝
(0, 𝑇; 𝐿

𝑞
(R
3
)) ,

2

𝑝

+

3

𝑞

= 1 +

1

𝑞

, 𝑞 > 2. (4)

Once only partial components of the velocity field are
concerned, we have combinatoric regularity criterion involv-
ing partial components of the magnetic field also. This is
due partially to the strong coupling of the velocity and
magnetic fields. Let us list some recent progress. Gala and
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Lemarié-Rieusset [6] established the following two regularity
conditions:

(𝑢

1
, 𝑢

2
) ∈ 𝐿

𝑝
(0, 𝑇; 𝐿

𝑞
(R
3
)) with 2

𝑝

+

3

𝑞

= 1,

3 < 𝑞 ≤ ∞,

(𝑏

1
, 𝑏

2
) ∈ 𝐿

𝑟
(0, 𝑇; 𝐿

𝑠
(R
3
)) , with 2

𝑟

+

3

𝑠

= 1,

3 < 𝑠 ≤ ∞,

(𝑢

1
, 𝑢

2
) ∈ 𝐿

𝑝
(0, 𝑇; 𝐿

𝑞
(R
3
)) , 𝑏

3
∈ 𝐿

𝑟
(0, 𝑇; 𝐿

𝑠
(R
3
)) ,

with(

2

𝑝

+

3

𝑞

) + (

2

𝑟

+

3

𝑠

) ≤ 2,

2

𝑝

+

3

𝑞

≤ 1, 3 < 𝑞 ≤ ∞.

(5)

Recently, Ni et al. in [10] showed that each of the following
three conditions

∇

ℎ
u ∈ 𝐿

𝑝
(0, 𝑇; 𝐿

𝑞
(R
3
)) , with 2

𝑝

+

3

𝑞

= 2,

3

2

< 𝑞 ≤ ∞,

𝜕

3
b ∈ 𝐿

𝑟
(0, 𝑇; 𝐿

𝑠
(R
3
)) , with 2

𝑟

+

3

𝑠

= 2,

3

2

< 𝑠 ≤ ∞;

(6)

or

∇

ℎ
u ∈ 𝐿

𝑝
(0, 𝑇; 𝐿

𝑞
(R
3
)) , with 2

𝑝

+

3

𝑞

= 2,

3

2

< 𝑞 ≤ ∞,

∇

ℎ
b ∈ 𝐿

𝑟
(0, 𝑇; 𝐿

𝑠
(R
3
)) , with 2

𝑟

+

3

𝑠

= 2,

3

2

< 𝑠 ≤ ∞;

(7)

or

𝑢

3
∈ 𝐿

𝑝
1
(0, 𝑇; 𝐿

𝑞
1
(R
3
)) , with 2

𝑝

1

+

3

𝑞

1

= 1, 3 < 𝑞 ≤ ∞,

𝜕

3
u ∈ 𝐿

𝑝
2
(0, 𝑇; 𝐿

𝑞
2
(R
3
)) , with 2

𝑝

2

+

3

𝑞

2

= 2,

3

2

< 𝑞 ≤ ∞,

b ∈ 𝐿

𝑝
3
(0, 𝑇; 𝐿

𝑞
3
(R
3
)) , with 2

𝑝

3

+

3

𝑞

3

= 1, 3 < 𝑞 ≤ ∞,

𝜕

3
b ∈ 𝐿

𝑝
4
(0, 𝑇; 𝐿

𝑞
4
(R
3
)) , with 2

𝑝

4

+

3

𝑞

4

= 2,

3

2

< 𝑞 ≤ ∞,

(8)

ensures the smoothness of the solution. Here, ∇
ℎ
= (𝜕

1
, 𝜕

2
) is

the horizontal gradient operator.
The motivation of this paper is to give another contribu-

tion in this direction.Motivated by [8], we would like to show
the following regularity condition for (1):

ũ, ̃b ∈ 𝐿

2/(1−𝑟)
(0, 𝑇;

̇

𝑀

2,3/𝑟
) with 0 < 𝑟 < 1. (9)

Here, and in what follows, we denote by

ũ = (𝑢

1
, 𝑢

2
, 0) ,

̃b = (𝑏

1
, 𝑏

2
, 0) (10)

the horizontal components of the velocity and magnetic
fields, respectively, and by

̃

∇ = (𝜕

1
, 𝜕

2
, 0) with 𝜕

𝑖
=

𝜕

𝜕𝑥

𝑖

(11)

the horizontal gradient operator.
Before stating the precise result, let us recall the weak

formulation of the MHD equations (1).

Definition 1. Let (u
0
, b
0
) ∈ 𝐿

2
(R3) with ∇ ⋅ u

0
= ∇ ⋅ b

0
= 0

and 𝑇 > 0. A measurable R3-valued pair (u, b) is called a
weak solution to (1) with initial data (u

0
, b
0
), provided that

the following three conditions hold:

(1) u ∈ 𝐿

∞
(0, 𝑇; 𝐿

2
(R3)) ∩ 𝐿

2
(0, 𝑇;𝐻

1
(R3)), b ∈

𝐿

∞
(0, 𝑇; 𝐿

2
(R3)) ∩ 𝐿

2
(0, 𝑇;𝐻

1
(R3));

(2) (1)
1,2,3,4

are satisfied in the distributional sense;
(3) the energy inequality

‖(u, b)‖2
𝐿
2 (𝑡) + 2∫

𝑡

0

‖∇ (u, b)‖2
𝐿
2 (𝑠) d𝑠 ≤









(u
0
, b
0
)









2

𝐿
2 . (12)

Now, our main result reads as follows.

Theorem 2. Let (u
0
, b
0
) ∈ 𝐻

1
(R3) with ∇ ⋅ u

0
= ∇ ⋅ b

0
= 0

and 𝑇 > 0. Assume that (u, b) is a given weak solution pair of
the MHD system (1) with initial data (u

0
, b
0
) on (0, 𝑇). If

ũ, ̃b ∈ 𝐿

2/(1−𝑟)
(0, 𝑇;

̇

𝑀

2,3/𝑟
) with 0 < 𝑟 < 1, (13)

then the solution is smooth on (0, 𝑇).

Here, ̇

𝑀

𝑝,𝑞
is theMorrey-Campanato space, whichwill be

introduced in Section 2. And Section 3 is devoted to the proof
of Theorem 2.

Remark 3. Noticing that ̇

𝑋

𝑟
⊂

̇

𝑀

2,3/𝑟
for 0 < 𝑟 < 1 (see (19)),

we indeed improve the result of [16].

2. Preliminaries

In this section, we will introduce the definition of Morrey-
Campanato space ̇

𝑀

𝑝,𝑞
and recall its fundamental properties.

The space plays an important role in studying the regularity
of solutions to partial differential equations (see [11, 17, 18],
e.g.).

Definition 4. For 1 < 𝑝 ≤ 𝑞 ≤ +∞, the Morrey-Campanato
space ̇

𝑀

𝑝,𝑞
is defined as

̇

𝑀

𝑝,𝑞
= {𝑓 ∈ 𝐿

𝑝

loc (R
3
) ;









𝑓







�̇�
𝑝,𝑞

= sup
𝑥∈R3,𝑅>0

1

𝑅

(3/𝑝)−(3/𝑞)

× (∫

𝐵(𝑥,𝑅)

|𝑓(𝑦)|

𝑝 d𝑦)
1/𝑝

< +∞} ,

(14)

where 𝐵(𝑥, 𝑅) ⊂ R3 is the ball with center 𝑥 and radius 𝑅.



Journal of Difference Equations 3

One sees readily that ̇

𝑀

𝑝,𝑞
is a Banach space under the

norm ‖ ⋅ ‖

�̇�
𝑝,𝑞

and contains the classical Lebesgue space as a
subspace:

𝐿

𝑞
=

̇

𝑀

𝑞,𝑞
⊂

̇

𝑀

𝑝,𝑞
. (15)

Moreover, the following scaling property holds:









𝑓(𝜆⋅)







�̇�
𝑝,𝑞

=

1

𝜆

(3/𝑞)









𝑓







�̇�
𝑝,𝑞

, for 𝜆 > 0. (16)

Due to the following characterization in [19].

Lemma 5. For 0 ≤ 𝑟 < 3/2, the space ̇

𝑍

𝑟
is defined as the space

of all functions 𝑓 ∈ 𝐿

2

loc(R
3
) such that









𝑓







�̇�
𝑟

= sup
‖
𝑔
‖

�̇�
𝑟

2,1

≤1









𝑓𝑔







𝐿
2 < +∞.

(17)

Then, 𝑓 ∈

̇

𝑀

2,3/𝑟
if and only if 𝑓 ∈

̇

𝑍

𝑟
with equivalent norm.

And, with the fact that

𝐿

2
∩

̇

𝐻

𝑟
⊂

̇

𝐵

𝑟

2,1
⊂

̇

𝐻

𝑟 for 0 < 𝑟 < 1, (18)

we have

̇

𝑋

𝑟
⊂

̇

𝑀

2,3/𝑟
. (19)

Here, ̇

𝐵

𝑟

2,1
is the Besov space, which is intermediate between

𝐿

2 and ̇

𝐻

1 (see [20]):








𝑓







�̇�
𝑟

2,1

≤ 𝐶









𝑓









1−𝑟

𝐿
2









∇𝑓









𝑟

𝐿
2 , for 0 < 𝑟 < 1. (20)

3. Proof of Theorem 2

In this section, we will prove Theorem 2.
It is well known (see [21], e.g.) that, for u

0
∈ 𝐻

1
(R3) with

∇ ⋅ u
0
= 0, (1) possesses a local strong solution

(u, b) ∈ 𝐿

∞
(0, Γ

∗
; 𝐻

1
(R
3
)) ∩ 𝐿

2
(0, Γ

∗
; 𝐻

2
(R
3
)) , (21)

where Γ

∗ is the maximal existence of the strong solution.
Moreover, this strong solution is smooth and unique in the
class of weak solutions. Thus, if Γ

∗
≥ 𝑇, we have nothing

to prove. Otherwise, we will show that the 𝐻

1 norm of this
strong solution remains bounded as 𝑡 ∈ [0, Γ

∗
). The standard

continuation argument then yields that Γ∗ could not be the
maximal existence of the strong solution. This contradiction
concludes that Γ∗ ≥ 𝑇, and we complete the proof.

Taking the inner product of (1)
1
with −Δu, (1)

2
with −Δb

in 𝐿

2
(R3), respectively, and adding the resulting equations

together, we obtain

1

2

d
d𝑡

‖∇(u, b)‖2
𝐿
2 + ‖Δ(u, b)‖2

𝐿
2

= ∫

R3
[(u ⋅ ∇)u] ⋅ Δu d𝑥 − ∫

R3
[(b ⋅ ∇) u] ⋅ Δu d𝑥

+ ∫

R3
[(u ⋅ ∇) b] ⋅ Δb d𝑥 − ∫

R3
[(b ⋅ ∇)u] ⋅ Δb d𝑥

= −

3

∑

𝑘=1

∫

R3
[(𝜕

𝑘
u ⋅ ∇)u] ⋅ 𝜕

𝑘
u d𝑥

+

3

∑

𝑘=1

∫

R3
[(𝜕

𝑘
b ⋅ ∇) b] ⋅ 𝜕

𝑘
u d𝑥

−

3

∑

𝑘=1

∫

R3
[(𝜕

𝑘
u ⋅ ∇) b] ⋅ 𝜕

𝑘
b d𝑥

+

3

∑

𝑘=1

∫

R3
[(𝜕

𝑘
b ⋅ ∇) u] ⋅ 𝜕

𝑘
b d𝑥

≡ 𝐼

1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
,

(22)

where we use integration by parts formula, the fact that

∇ ⋅ u = ∇ ⋅ b = 0 (23)

and its consequence

∫

R3
[(b ⋅ ∇) 𝜕

𝑘
b] ⋅ 𝜕
𝑘
u + [(b ⋅ ∇) 𝜕

𝑘
u] ⋅ 𝜕
𝑘
b d𝑥 = 0. (24)

For 𝐼
1
,

𝐼

1
= −

3

∑

𝑘=1

∫

R3
[(𝜕

𝑘
ũ ⋅

̃

∇) u] ⋅ 𝜕

𝑘
u d𝑥

−

3

∑

𝑘=1

∫

R3
𝜕

𝑘
𝑢

3
𝜕

3
ũ ⋅ 𝜕

𝑘
ũ d𝑥

−

3

∑

𝑘=1

∫

R3
𝜕

𝑘
𝑢

3
𝜕

3
𝑢

3
𝜕

𝑘
𝑢

3
d𝑥.

(25)

Integrating by parts and noticing that 𝜕
3
𝑢

3
= −𝜕

1
𝑢

1
− 𝜕

2
𝑢

2
,

we get

𝐼

1
≤ 𝐶∫

R3
|ũ| ⋅ |∇u| ⋅ 





∇

2u




d𝑥. (26)

The remaining terms 𝐼

2
, 𝐼

3
, 𝐼

4
can be similarly decomposed

and bounded so that

𝐼

2
, 𝐼

3
, 𝐼

4
≤ 𝐶∫

R3











(ũ, ̃b)




⋅ |∇ (u, b)| ⋅ 




∇

2
(u, b)





d𝑥. (27)

Plugging (26) and (27) into (22), we gather

1

2

d
d𝑡

‖∇(u, b)‖2
𝐿
2 + ‖Δ(u, b)‖2

𝐿
2

≤ 𝐶∫

R3











(ũ, ̃b)




⋅ |∇ (u, b)| ⋅ 




∇

2
(u, b)





d𝑥

≤ 𝐶





















(ũ, ̃b)




⋅ |∇(u, b)| 


𝐿
2











∇

2
(u, b)



𝐿
2

≤ 𝐶











(ũ, ̃b)


�̇�
2,3/𝑟

‖∇(u, b)‖
�̇�
𝑟

2,1

‖Δ(u, b)‖𝐿2 (by Lemma 5)

≤ 𝐶











(ũ, ̃b)


�̇�
2,3/𝑟

‖∇(u, b)‖1−𝑟
𝐿
2 ‖Δ(u, b)‖1+𝑟

𝐿
2 (by (20))

≤ 𝐶











(ũ, ̃b)




2/(1−𝑟)

�̇�
2,3/𝑟

‖∇(u, b)‖2
𝐿
2 +

1

2

‖Δ(u, b)‖2
𝐿
2 .

(28)
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Consequently,

d
d𝑡

‖∇(u, b)‖2
𝐿
2 + ‖Δ(u, b)‖2

𝐿
2 ≤ 𝐶











(ũ, ̃b)




2/(1−𝑟)

�̇�
2,3/𝑟

‖∇(u, b)‖2
𝐿
2 .

(29)

Applying Gronwall inequality, we deduce that

‖∇(u, b)‖2
𝐿
2 (𝑡)

≤









∇(u
0
, b
0
)









2

𝐿
2 ⋅ exp{𝐶∫

𝑇

0











(ũ, ̃b)




2/(1−𝑟)

�̇�
2,3/𝑟

(𝑠) d𝑠} < +∞.

(30)

As soon as the estimates of ‖∇(u, b)‖
𝐿
2 are obtained, we

can invoke the standard energy method to bootstrap the
solution to be in 𝑊

𝑘,2
(R3) for all 𝑘 ∈ Z+. The Sobolev

imbedding theorem then implies that the solution is smooth.
The proof of Theorem 2 is completed.
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