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1. Introduction

We consider the magneto-microploar fluid (MMF) equations in R3:

u+u-Vu— (U+ ) Au—b-Vb+V(p+b*) -1V x 0 =0,

9w — YAw — kVdivw + 2w +u- Vo — YV xu =0,

dtb—VAb+u-Vb—b-Vu=0, (1.1)
V-u=V.b=0,

u(x,0) =up(x), (0,x) =wo(x), b(0,x)=bo(x).

Here u = u(x, t) represents the velocity field, b = b(x, t) represents the magnetic field, w = w(x, t) represents the micro-rota-
tional velocity; p denotes the hydrodynamic pressure; x> 0 is the kinematic viscosity, ¥ > 0 is the vortex viscosity, K > 0
and y > 0 are spin viscosities, 1/v (with v > 0) is the magnetic Reynold; while uy, by, @, are the corresponding initial data
WlthVuO:VbO:O

System (1.1) was first proposed by Galdi and Rionero [5]. The existence of global (in time) weak solutions were estab-
lished by Rojas-Medar and Boldrini [12], while the local strong solutions and global strong solutions for the small initial data
were considered, respectively, by Rojas-Medar [11] and Ortega-Torres and Rojas-Medar [13]. However, whether the weak
solution is regular or the unique strong solution can exist globally is unknown. Thus there are a lot of literatures devoted
to find sufficient conditions to ensure smoothness, see [2,8,9,14,18] for the Navier-Stokes equations (w = b =0 in (1.1)),
and [6,19] for the MHD equations (w = 0 in (1.1)).

Very recently, Gala [4] and Zhang et al. [17] considered system (1.1) and showed that if u or Vu belongs to some critical
Besov space, then the solution is actually regular. Our motivation is then to lower the regularity of u to ensure smoothness
also, but as a compensation, we need w and b have some (also rough) regularity. Our result seems to be more helpful in the
regularity theory of system (1.1) since the smoothness of u, w and b are always the same.

The main result now reads:
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Theorem 1.1. Let ug, g, by € H' (R?) with V - ug = V - by = 0, and the triple (u, ®, b) be the strong solution on (0, T) of system
(1.1) with initial data (ug, wo, bo). If additionally,

u,o,bel(0,T;B,), 0O<a<l, (12)
then the solution (u, w, b) can be extended smoothly beyond t=T.
Remark 1.1. Checking the proof of Bernstein Lemma (see [3]), it follows that the Riesz transform R;(1 < j < 3) is bounded in
B,, foralls € R, 1<p, q < oc. Thus by Theorem 1.1, we have the condition

Vxu, Vxo, Vxbel™(0,T;Bl"), 0<a<l
is enough to ensure the smoothness. This is a Beal-Kato-Majda type criteria (see [1,10]).
Remark 1.2. Our result covers the one in [7] for the Navier-Stokes equations. We would also like to mention that the result
in [16] is an immediate corollary of the one in [7] in view of the boundedness of R; in B} ,.

Let us now introduce the function spaces appeared in Theorem 1.1. Take € S(R®) be a radial function supported in
{¢ € R3 3/4 < | < 8/3} with

S ezl =1, VvieR {0}
J
Let h = F 1y, then we have the formal Littlewood-Paley decomposition

[ = YA = Y@ D) = 327 [ h@y)te-pdy.

jez jez jez
Fors e R, 1 <p, q < oo, the homogeneous Besov space is defined as
Byo = {f € S®); Iflgy, < oo},
where
iy, = {2181,
It is proved in [16] that

fels,, < C(Ifllsz, Ils,, + Wlls, I8, ): (13)

P44

jez Vi

ifs,7,6 >0,1<p,q; py,q1; Py, 4, < oo satisfying
1 1 1 1 1 1 1 1 1 1
—=— b —=—t—, —=——=—f—.
P P P, P3s Py 4 G 42 Q3 Q4
Also, it is well known that

s _ps

B,=H, VseR.

For more detailed properties of Besov spaces, see [15].
Through the proof in the next section, we shall frequently use the Young inequality

ab < ea? +Cb?, Ve>0,1<p,q<oo with %+%:1 (1.4)
and its generalization
abc < €a? +€b? +Cc", Ve>0, 1<p,q,r<oco with :—j+%+%:1. (1.5)

2. Proof of Theorem 1.1

As in [4], applying 9; to both sides of (1.1), and then multiplying both sides by d;u, 9;w, 9;b, respectively, integration over
R3, after suitable integration by parts, we have
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1d 2 2 2112 2 2 21012 2 : 2
3 S0, a0, o)1 + Y[+ Dl + 1030l + vIgbl:] +271awlE + Kl Vdivo

j=1
< ‘<8ill -Vu, 8,-u>| + |<8,b . Vb7 0,‘”)‘ + |<0le . Vb7(9,b>‘ + |<8,b . Vu,a,»b)| + |<(9,‘ll . Va),a,»w)| + ZXHV X 8,»u,8,~w)\
2V x 0, 0iw)| + [0y (Ujtte), Oitie) | + [(03(bibr), Oiwt)| + {1(9 (Ui ), 9ibk)| + 9(bjttk), 9ibi}| + [(9y (ujttk), i)

5
=1, 2.1
=1

where we use the following facts:
V-u=V-b=0,
<b : (91'Vb, aﬂl) + <b -Voju, &b) =0,
(V x o, 0;0) = (V x 9;m, diu).

Using Young inequality, I; is easily estimated as

n<’t Ul + 2 2 22

1< 5 IV x oz + 2x|IVol|j2. (2.2)
For the second term I, invoking (1.3) and Young inequality, it follows that

,, P 1- P 1- 1
Iy = [{A” Oy (t), A* D)) < [ g s < C Nl e ) (b uae ) = € (g ™ ) ull?
= 2 2
< Colullg% ullfy + ellul. (23)

Here and thereafter, € > 0 is to be determined later. Utilizing (1.5) with exponents

(1%%2) (2.4)

the third term I5 is dominated as
1- 1-
I < 1D & bllg el s < CUBIgo 1Dl ) (i Nz ) = (Wblge, ™) ul eIl
= 2 2 2
< CIbllS lullin + €llullze + €lbllz - (2.5)
For I4, using Young inequality with exponents (2/(1 — «),2/(1 + «)) and (1.5) with exponents as in (2.4), we have

2

o - 2 2
= C (Il b1 ) 1B + (1Da 1BIE™ ) NbEe Nl < Ul + IBIE ) IDIGs -+ €lblFe + €lulfe. (2.6)

la < 2[[u® b|g+ bl < C(HUHB;szbHHz + ||b||B;g_X||UHH2)||b||flﬁa|‘b||g2
< .
B
The last term I, is treated the same way as the third, leading to
= 2 2 2
Is < Cllul lolif + elolf + elul. (27)
Gathering (2.2) and (2.3), Egs. (2.5)-(2.7), and substituting into (2.1), taking € > 0 sufficiently small, we have

(Vu, Vo, Vb)|% < [, @, b)[[L% [|(Vu, Ve, Vb) 2.

d
al
Gronwall inequality then implies the fact
u,w,b € L*(0,T;HY),
which ensures the continuation of strong solutions beyond t = T. The proof is complete. O
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