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We consider the Cauchy problem of the magneto-micropolar fluid equations in three space
dimensions. It is proved that if the velocity, magnetic field and the micro-rotational veloc-
ity belong to some critical Besov space with negative indices, then the solution is in fact
smooth.
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1. Introduction

We consider the magneto-microploar fluid (MMF) equations in R3:
@tuþ u � ru� ðlþ vÞDu� b � rbþrðpþ b2Þ � vr�x ¼ 0;
@tx� cDx� jrdivxþ 2vxþ u � rx� vr� u ¼ 0;
@tb� mDbþ u � rb� b � ru ¼ 0;
r � u ¼ r � b ¼ 0;
uðx;0Þ ¼ u0ðxÞ; xð0; xÞ ¼ x0ðxÞ; bð0; xÞ ¼ b0ðxÞ:

8>>>>>><
>>>>>>:

ð1:1Þ
Here u ¼ uðx; tÞ represents the velocity field, b ¼ bðx; tÞ represents the magnetic field, x ¼ xðx; tÞ represents the micro-rota-
tional velocity; p denotes the hydrodynamic pressure; l > 0 is the kinematic viscosity, v > 0 is the vortex viscosity, j > 0
and c > 0 are spin viscosities, 1=m (with m > 0Þ is the magnetic Reynold; while u0; b0;x0 are the corresponding initial data
with r � u0 ¼ r � b0 ¼ 0.

System (1.1) was first proposed by Galdi and Rionero [5]. The existence of global (in time) weak solutions were estab-
lished by Rojas-Medar and Boldrini [12], while the local strong solutions and global strong solutions for the small initial data
were considered, respectively, by Rojas-Medar [11] and Ortega-Torres and Rojas-Medar [13]. However, whether the weak
solution is regular or the unique strong solution can exist globally is unknown. Thus there are a lot of literatures devoted
to find sufficient conditions to ensure smoothness, see [2,8,9,14,18] for the Navier–Stokes equations (x ¼ b ¼ 0 in (1.1)),
and [6,19] for the MHD equations (x ¼ 0 in (1.1)).

Very recently, Gala [4] and Zhang et al. [17] considered system (1.1) and showed that if u or ru belongs to some critical
Besov space, then the solution is actually regular. Our motivation is then to lower the regularity of u to ensure smoothness
also, but as a compensation, we need x and b have some (also rough) regularity. Our result seems to be more helpful in the
regularity theory of system (1.1) since the smoothness of u;x and b are always the same.

The main result now reads:
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Theorem 1.1. Let u0;x0; b0 2 _H1ðR3Þ with r � u0 ¼ r � b0 ¼ 0, and the triple ðu;x; bÞ be the strong solution on ð0; TÞ of system
(1.1) with initial data ðu0;x0; b0Þ. If additionally,
u;x; b 2 L
2

1�að0; T; _B�a
1;1Þ; 0 < a < 1; ð1:2Þ
then the solution ðu;x; bÞ can be extended smoothly beyond t = T.
Remark 1.1. Checking the proof of Bernstein Lemma (see [3]), it follows that the Riesz transform Rjð1 6 j 6 3Þ is bounded in
_Bs

p;q for all s 2 R; 1 6 p; q 61. Thus by Theorem 1.1, we have the condition
r� u; r�x; r� b 2 L
2

1�að0; T; _B�1�a
1;1 Þ; 0 < a < 1
is enough to ensure the smoothness. This is a Beal–Kato–Majda type criteria (see [1,10]).
Remark 1.2. Our result covers the one in [7] for the Navier–Stokes equations. We would also like to mention that the result
in [16] is an immediate corollary of the one in [7] in view of the boundedness of Rj in _Bs

p;q.
Let us now introduce the function spaces appeared in Theorem 1.1. Take w 2 SðR3Þ be a radial function supported in

fn 2 R3; 3=4 6 jnj 6 8=3g with
X
j

2 Zwð2�jnÞ ¼ 1; 8n 2 R3 � f0g:
Let h ¼ F�1w, then we have the formal Littlewood–Paley decomposition
f ¼
X
j2Z

Djf ¼
X
j2Z

wð2�jDÞf ¼
X
j2Z

23j
Z

R3
hð23jyÞf ðx� yÞdy:
For s 2 R; 1 6 p; q 61, the homogeneous Besov space is defined as
_Bs
p;q ¼ f 2 S0ðR3Þ; kfk _Bs

p;q
<1

n o
;

where
kfk _Bs
p;q
¼ 2jskDjf jjp

n o
j2Z

����
����
‘q
:

It is proved in [16] that
kfgk _Bs
p;q
6 C kfk _Bsþc

p1 ;q1
kgk _B�c

p2 ;q2
þ kfk _B�d

p3 ;q3
kgk _Bsþd

p4 ;q4

� �
; ð1:3Þ
if s; c; d > 0;1 6 p; q; p1; q1; p2; q2 61 satisfying
1
p
¼ 1

p1
þ 1

p2
¼ 1

p3
þ 1

p4
;

1
q
¼ 1

q1
þ 1

q2
¼ 1

q3
þ 1

q4
:

Also, it is well known that
_Fs
1;1 ¼ _Bs

1;1;
_B2

2;2 ¼ _Hs; 8s 2 R:
For more detailed properties of Besov spaces, see [15].
Through the proof in the next section, we shall frequently use the Young inequality
ab 6 �ap þ C�b
q
; 8� > 0; 1 < p; q <1 with

1
p
þ 1

q
¼ 1 ð1:4Þ
and its generalization
abc 6 �ap þ �bq þ C�cr; 8� > 0; 1 < p; q; r <1 with
1
p
þ 1

q
þ 1

r
¼ 1: ð1:5Þ
2. Proof of Theorem 1.1

As in [4], applying @ i to both sides of (1.1), and then multiplying both sides by @ iu; @ ix; @ ib, respectively, integration over
R3, after suitable integration by parts, we have
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1
2

d
dt
kð@ iu; @ix; @ibÞk2

L2 þ
X3

j¼1

ðlþ vÞk@2
ijuk

2
L2 þ ck@2

ijxk
2
L2 þ mk@2

ijbk
2
L2

h i
þ 2vk@ixk2

L2 þ jkrdivxk2
L2

6 jh@iu � ru; @iuij þ jh@ib � rb; @iuij þ jh@iu � rb; @ibij þ jh@ib � ru; @ibij þ jh@iu � rx; @ixij þ 2vjhr � @iu; @ixij
¼ 2vjhr � @iu; @ixij þ jh@ijðujukÞ; @iukij þ jh@ijðbjbkÞ; @iukij þ fjh@ijðujbkÞ; @ibkij þ j@ijðbjukÞ; @ibkgj þ jh@ ijðujukÞ; @ixkij

¼:
X5

l¼1

Il; ð2:1Þ
where we use the following facts:
r � u ¼ r � b ¼ 0;
hb � @irb; @iui þ hb � r@iu; @ibi ¼ 0;
hr � @iu; @ixi ¼ hr � @ix; @iui:
Using Young inequality, I1 is easily estimated as
I1 6
v
2
kr � @iuk2

L2 þ 2vkrxk2
L2 : ð2:2Þ
For the second term I2, invoking (1.3) and Young inequality, it follows that
I2 ¼ jhK�a@ijðujukÞ;Ka@iukij 6 ku� uk _B2�a
2;2
kuk _H1þa 6 C kuk _B�a

1;1
kuk _H2

� �
kuk1�a

_H1 kuka_H2

� �
¼ C kuk _B�a

1;1
kuk1�a

_H1

� �
kuk1þa

_H2

6 C�kuk
2

1�a
_B�a
1;1
kuk2

_H1 þ �kuk2
_H2 : ð2:3Þ
Here and thereafter, � > 0 is to be determined later. Utilizing (1.5) with exponents
2
1� a

;
2
a
;2

� �
; ð2:4Þ
the third term I3 is dominated as
I3 6 kb� bk _B2�a
2;2
kuk _H1þa 6 C kbk _B�a

1;1
kbk _H2

� �
kuk1�a

_H1 kuka_H2

� �
¼ kbk _B�a

1;1
kuk1�a

_H1

� �
kuka_H2kbk _H2

6 Ckbk
2

1�a
_B�a
1;1
kuk2

_H1 þ �kuk2
_H2 þ �kbk2

_H1 : ð2:5Þ
For I4, using Young inequality with exponents ð2=ð1� aÞ;2=ð1þ aÞÞ and (1.5) with exponents as in (2.4), we have
I4 6 2ku� bk _B2�a
2;2
kbk _H1þa 6 C kuk _B�a

1;1
kbk _H2 þ kbk _B�a

1;1
kuk _H2

� �
kbk1�a

_H1 kbka_H2

¼ C kuk _B�a
1;1
kbk1�a

_H1

� �
kbka_H2 þ kb _B�a

1;1
kbk1�a

_H1

� �
kbka_H2kuk _H2 6 C kuk

2
1�a
_B�a
1;1
þ kbk

2
1�a
_B�a
1;1

� �
kbk2

_H1 þ �kbk2
_H2 þ �kuk2

_H2 : ð2:6Þ
The last term I5, is treated the same way as the third, leading to
I5 6 Ckuk
2

1�a
_B�a
1;1
kxk2

_H1 þ �kxk2
_H2 þ �kuk2

_H1 : ð2:7Þ
Gathering (2.2) and (2.3), Eqs. (2.5)–(2.7), and substituting into (2.1), taking � > 0 sufficiently small, we have
d
dt
kðru;rx;rbÞk2

L2 6 kðu;x; bÞk
2

1�a
_B�a
1;1
kðru;rx;rbÞk2

L2 :
Gronwall inequality then implies the fact
u;x; b 2 L1ð0; T; H1Þ;
which ensures the continuation of strong solutions beyond t ¼ T . The proof is complete. h
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