

OLTP 系统简介 设计技巧及最佳实践 性能优化 客户案例

Alicrosoft Virtualization | 🧏 Windows HPC Server 2001 | 🏄 SQE Server 2003 | 👫 Visual Studio 2

Agenda

Overview

- What are the characteristics of OLTP?
- What are the goals of OLTP?

Design, Techniques and Best practices

- Transactions
- Concurrency
- Database design
 - Normalization, Denormalization,
 - Index maintenance issues

Identifying Performance issues

- Resource utilization
- Optimization
 - Estimation and query plan selection
 - Plan re-use & Recompilation
- Useful counters
- **OLTP Performance Blueprint**

课程编号:DAT351

OLTP 系统简介

- OLTP在线交易系统特性
- OLTP在线交易系统目的

Microsoft Virtualization | 💑 Windows HPC Server 2008 | 🔭 SQL Server 2008 | 🌮 Visual Studio 2008

OLTP 在线交易系统特性

大量短而重复的事务/交易

- 处理的数据量较小
- 较大的并发量
- 可预计的数据使用状态 Predictable access patterns
- OLTP 系统设计的考虑因素
 - 事务/交易的设计 Transactional design
 - 数据库的设计 Database design
 - 性能的目标 Performance objectives

数据库管理人员的关注

- 锁 Locking/Blocking
- 随机的 I/O Random IO
- 大量的并发 High number of concurrent sessions

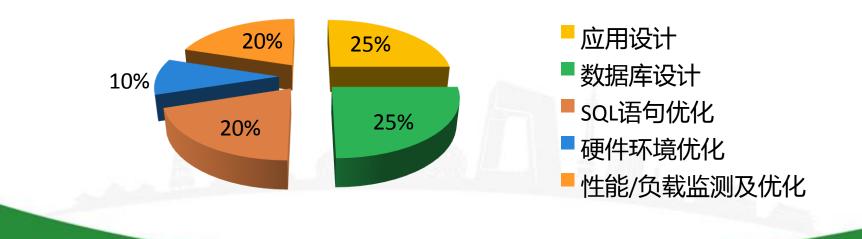
OLTP 系统设计性能目标

OLTP performance objectives

- ●快速的事物处理 Fast transactions
 - Set operations preferable over Cursors
 - Indexes allow granular data access and locking
- 优化CPU资源 Maximizing CPU resources
 - High plan re-use
 - Low re-compilation
- 优化I/O资源 Maximizing IO resources
 - Minimize joins
 - Fast transaction log (writelog)
 - Small IOs for Data (io_completion)
 - See SEAS06PT (Performance Tuning) deck

设计技巧及最佳实践

- 事物设计
- 并发
- 数据库设计


Microsoft Virtualization | 💑 Windows HPC Server 2008 | 🔭 SQL Server 2008 | 🌮 Visual Studio 2008

设计、调优及最佳实践 对系统性能的影响

应用、数据库的设计和T-SQL语法对系统性能产生主要的影响

典型的系统性能优化影响并不很大 性能监测可以帮助在整个系统应用中找到性能瓶颈/优化的 重点

Design, Techniques, Best Practices Impact on Performance

Application & Database Design and T-SQL have major impact on performance

- 'Typical' performance tuning plays smaller role
- Performance monitoring can point out some deficiencies (or opportunities for improvement!)

App Design	DB Design	ion life (SQL	Hardware tuning	Performance Monitoring workload changes
25%	25%	20%	10%	20%

OLTP workload is a mix of selects, inserts, updates, deletes

Consistency and Concurrency

- Locks ensure data consistency
- Incompatible locks can cause blocking
- Short transactions are key for high concurrency in OLTP
- New row versioning isolation levels reduce read / write blocking
- Some OLTP environments include reporting requirements which typically cause blocking
 - Big transactions e.g. shared locks can be segregated from OLTP using database snapshots or row versioning

Design: Transactions tech∙eo

- OLTP workload is a mix of selects, inserts, updates, deletes
- Consistency and Concurrency

Microsoft[®]

- Locks ensure data consistency、微软技术大会 Incompatible locks can cause blocking ned 2008
- Short transactions are key for high concurrency in OLTP
- New row versioning isolation levels reduce read / write blocking
- Some OLTP environments include reporting requirements which typically cause blocking

 Big transactions e.g. shared locks can be segregated from **OLTP** using database snapshots or row versioning Microsoft Virtualization 👫 Windows HPC Server 2008 🎽 SQL Server 2008 🥙 Visual Studio 2008 SEAS06 - SQL Server 2005 OLTP Best Practices

数据库设计之一

数据库设计技巧

- 数据库设计中逐渐减少数据冗余的规则Process of applying increasingly restrictive design rules
- 5种不同的规范,通常使用第三规范(3rd Normal Form)
- Use ORM when designing 4th and 5th NF
- Eliminates redundant data, shrinks row sizes, more tables
- 优势
 - 因为数据行窄,搜索、排序、建立索引更加快速,单一数 据页可以储存更多行数据记录

理论上结构更清晰,容易危害,更改数据较为直接明了
 少势

需要更多表联接

Design: Database 2

Denormalization

Selective relaxation of normalization rules

- based on thorough knowledge of the application
- only if performance issues indicate that it is needed Benefits
 - Minimizing the need for joins
 - Reducing the number of foreign keys on tables
 - Reducing the number of indexes, saving storage space, and reducing data modification time
 - Pre-computing aggregate values at data modification time rather than at select time. Compare update cost vs. select cost
 - Reducing the number of tables (in some cases)

Disadvantages

- It usually speeds retrieval but can slow data modification
- application-specific, should be reevaluated if the application changes
- It can increase the size of tables
- In some instances, it simplifies coding; in others, it makes coding more complexAs06 SQL Server 2005 OLTP Best Prapatices

Design: Database 3

Normalization vs. denormalization tradeoffs

Highly normalized models require multi-table joins

- Joins create work tables, tempdb activity
- High concurrency performance objective: reduce joins
- Question?
 - Do we always join 6 tables to get the most trivial information? Maybe too normalized.

Tradeoffs

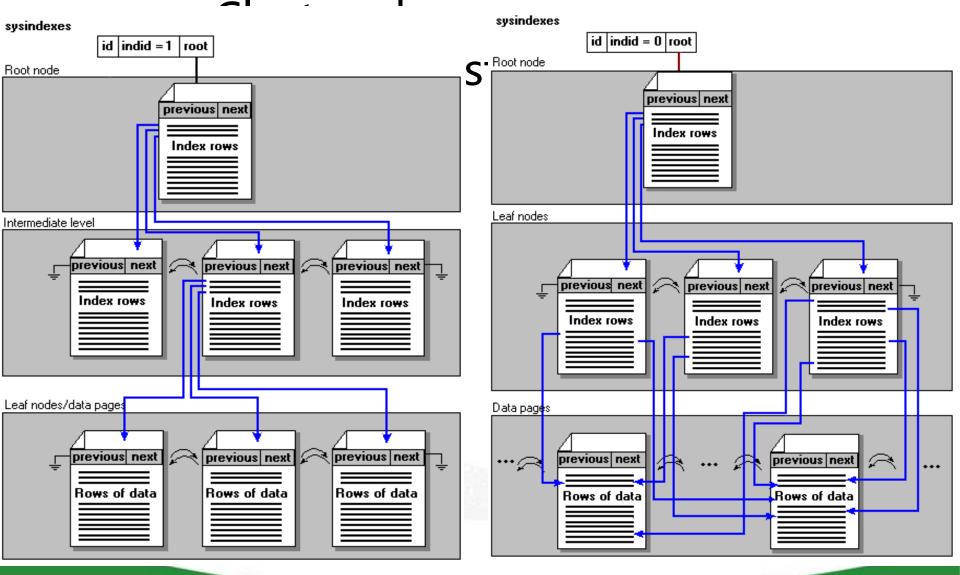
- Flexibility vs. performance
- Balancing denormalization issues
 - Tradeoff of update cost vs. select cost
 - Few updates (I,U,D) vs. Many selects: favors denormalization
 - Many updates (I,U,D) vs. Few selects: favors normalization

The most common denormalization techniques are:

- 1. Adding redundant or derived columns
- 2. Adding indexed views
- 3. Collapsing tables

www.Splitting tables (rarely Agge of Qof grygn 3005 Ohr 2 Bestal bars with

Design: Indexes 1


Overview

Index issues

- Indexes provide alternatives to table scans
- OLTP typically has fewer indexes than DSS / reporting
 - Trade off of index usage vs maintenance costs
 - OLTP Indexes should be designed for the predictable, repetitive nature of this workload
- It is preferable to have a clustered index on large tables
- Which index should be clustered?

Indexes

Alicrosoft Virtualization | Swindows HPC Server 2005 OLTP Best Practices

Design: Indexes 2 index types

- Nonclustered
 - Order imposed on index, not on data rows
- order imposed on data rows_{Leaf} contains locater to data
- Leaf is data row

Clustered

row

- PKey if clustered index present
- RID if no clustered index
- Row length includes data row nonclustered index columns and row locater
- Non-dense Dense
 First row on data page recorded in intermediate pages at leaf

– Covering Index
Advantage of moving data to other file groups if needed

query without going to data rows, this

Alexander Virtualization Windows HPC Server 2005 @LTP BEST Server 2005 @LTP BEST Proposition SEASO6 - SQL Server 2005 @LTP BEST Proposition

Design: Indexes 3

tech-ed

maintenance and performance

- IO story alternatives to table scans
- Maintenance cost vs. benefit
 - On delete, insert, update maintenance
 - Clustered indexes
 - Page splits
 - Nonclustered indexes
 - Heap tables and forwarded records
- Randomization
 - Indexes can "randomize" insert/update/delete activity (examples: Name or PhoneNum)
 - Avoids hot spot (blocking) but can cause page splits
 - Will need more frequent index reorgs / rebuilds
 - Especially useful with table partitioning to spread IO over multiple partitions.
- Ascending keys

Can cause hot spots (e.g. blocking)

More Virtualization | Windows Row level ocking Basing Basi

Design: Indexes 4 Recommendations

Avoid long (or wide) clustered index key if table has nonclustered (N/C) indexes

- Leaf of Nonclustered index uses the clustered index key (primary key) to locate the data row
 - Since a wide clustered index key increases size of N/C, (covered) nonclustered range scans results in <u>more</u> IO

Avoid high volume Clustered index seeks & RID lookups (N/C)

Clustered index benefits

- high volume lookups (avoids RID lookups)
 - Range scans access to entire data row

SEASO6 - SQL Server 2005 OLTP Best Practices

Index DMVs & DMFs

See details in SEAS06PT: SQL 2005 Perf Tuning

Missing indexes

- Sys.dm_db_missing_index_group_stats
- Sys.dm_db_missing_index_groups
- Sys.dm_db_missing_index_details
- Sys.dm_exec_query_plan(plan_handle) Look for <MissingIndexes>

Unused indexes

Sys.dm_db_index_usage_stats

Index Access, Blocks, Contention e.g. waits

- Sys.dm_db_index_operational_stats()
- Sys.dm_db_index_physical_stats()

rtualization | 🌯 Windows HPC Server 2001 | 🖉 SQL Server 2001 | 🍕 Visual Studio 2001 🛛 SEA

Transactions Concurrency Database design

What are the characteristics of OLTP?

Design, Techniques and Best practices

- Database design
 - Normalization, Denormalization,
 - Index maintenance issues

What are the goals of OLTP?

Identifying Performance issues

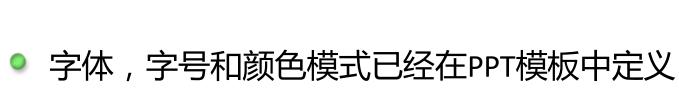
- Resource utilization
- Optimization
 - Estimation and query plan selection
 - Plan re-use & Recompilation
- Useful counters
 - **OLTP Performance Blueprint**

SEAS06 - SQL Server 2005 OLTP Best Practices

Agenda

Overview

点击此处修改二级标题


- 将幻灯片标题设置为 "Title Case"
- 标题字号为 40分或类似尺寸,并尽可能不换行
- 将二级标题设置为 "sentence case"
- 二级标题的字体颜色已经在PPT模板中定义

• 代码字体和字号

请用次版面展示软件代码 请用展示字体为Courier New 这一单一空间字体

- 请使用下面展示的颜色模式
- 更多指示请参见下页

模板颜色

超文本衔接颜色:<u>www.microsoft.com</u>

Alicrosoft Virtualization Windows HPC Server 2005 OLTP Best Practices

Agenda

Overview

- What are the characteristics of OLTP?
- What are the goals of OLTP?

Design, Techniques and Best practices

- Transactions
- Concurrency
- Database design
 - Normalization, Denormalization,
 - Index maintenance issues

Performance issues

- Resource utilization
- Optimization
 - Estimation and query plan selection
 - Plan re-use & Recompilation
- Useful counters

Performance issues

What hinders Performance?

Queuing Multiple types of queues (memory, CPU, IO) **Resource limitations Bad configuration** Hardware & Software Bad Queries & Design Badly written, poorly designed **Poor indexing** Not relevant to workload or lack of propriate optimizer plans

Microsoft Virt-----ation & Windows HPC Server 2005 OLTP Best Practices

Performance issues

Shared Resources, Scalability Limits

Database shared resources

- Database performance is limited by maximum Transaction Log throughput, only ONE possible transaction log per database!
- Can be resolved by
 - adding multiple spindles
 - Increasing number of databases to provide multiple transaction logs

Server shared resources

- TEMPDB
 - Tempdb in memory vs. less memory for buffer cache
- Memory (64-bit) flat (see SEAS06 SQLOS & VLDB)
- Memory (32-bit)
 - Only data cache can live in 32-bit AWE
 - Proc cache, locks, user connections, sorting restricted to lower 2-3GB of address space

Can be resolved by partitioning over multiple instances

Marchille Colores Colores Colorer 2005 OLTP Best Praggices

Performance Issues Scalability Rules

Database scalability is limited by the maximum throughput of the transaction log Disk I/O

- Instance scalability is limited by shared "process" level resources
 - Memory
- Server scalability is limited by shared "server" /" machine" level resources • CPU (incl. L1 & L2 cache)
 - Network bandwidth

Performance Issues

Determine I/O pattern

- Writes
 - Transaction Log (~100% sequential)
 - Lazy Writer (random)
- Read

Random vs. Sequential

Establish disk I/O baseline or SLA outside SQL Server, using:

SQLIO or IOMeter (Intel, public domain)

Special cases:

- Transaction log
- 1 Tempdb file for each cpu
- Max Parallel BCP load = 1 BCP / CPU

Into SQL Server 2005 partitioned tables

Performance Issues I/O Bottlenecks 1

I/O bottlenecks are typically easy to find Be very careful with the transaction log

- Beyond 12 to 15 spindles doesn' t buy much
- Keep on separate physical disks for recovery
- Make RAID 10
- Beware of write cost on RAID5:
 - In RAID 5 each write has to logically read old data + old parity (to compute parity) and write new data and new parity
 - Each RAID5 write = 2 READS + 2 WRITES !

However: Disk guys work real hard to optimize this

More Virtualization www.Record offstorn it was for a SEASOF SQL Server 4005 CONTO Best Practices

Performance Issues I/O Bottlenecks 2

Disk subsystem based on I/O throughput required, not size of DB

- E.g. 1TB data / 72GB per drive = 14 drives.
 - Will 14 drives provide sufficient IO throughput?
 - Recommend more smaller drives
 - Random (OLTP) vs. sequential (Reporting) IO/sec

SEASOG - SO Server 2005 OLTP Best Prætices

Cache on controller – tuned for % read or write

Consider all workloads

Alicrosoft Virt. Alice Wine Horizon Stevens Valva

- OLTP (typically random IOs)
- Batch (could be random or sequential depending on the type of work done)

Performance Issues

Optimizing for the log

Profile the log disk

How many writes / second can your disk sustain?

Keep the log disk purely for the log

Keeps the disk heads writing sequentially minimizing seeks

Beware of unprotected write back caches

- If power fails, you could lose the entire database – not just the last couple of transactions!
- Check with your SAN / Disk controller vendor

Performance Issues Blocking

Blocking between sessions can occur due to a combination of incompatible locks and waits on resources

Tools

- Use Profiler block process report and other tools to find blocking processes
- DMVs

New blocking solutions

Snapshot Isolation - Row Versioning See SEAS06PT for locking discussion

Performance Issues

How to Evaluate Blocking

DMF sys.dm_db_index_operational_stats() identifies the contention points

- Row locks counts
- Row lock waits counts
- Total wait time for blocks
- Compute blocking percentage and average wait times
- See SEAS06PT Indexes & Row Lock Waits.sql

Finding Resource Bottlenecks Identifying Blocking &

Concurrency issues Sp_block_info – lists real time blocks

Trace – for historical analysis

- Capture long blocks using the Trace Event "Block Process Report"
 - ✓ Sp_configure "blocked process threshold",15 (seconds)

✓ This is covered in SEAS06PT

✓ If blocking is still an issue, Consider row versioning to minimize read / write contention

Performance Issues

row versioning: new blocking solutions

Row versioning-based isolation levels

- Always read a committed value (as compared with dirty reads)
- Reads do not acquire shared (S) locks
- improve concurrency by eliminating blocks for read / write operations.
- Tempdb overhead
 - Stores versions of previously committed row data
- RCSI
 - Advantage: NO APPLICATION CHANGES !
 - Transaction Isolation Level Read Committed & Read_Committed_Snapshot ON database option
 - Statement level read consistency

remain Virtualization were ransaction Iso aff ASAG - SQLS ENGER 2005 QLTP Best Practices

Performance & Resources

TempDB Usage

Tempdb usage is much more common in SS2005

Tempdb management must be a configuration DBCC CHECKDB, small change DFIORITY for DBAS Internal objects: work file (hash join, SORT_IN_TEMPDB) - CTEs

- 1
- 2
- Eteral point invork table for specific mall on SS2005 Large object (LOB) variables
- 5 Service Broker
- Temporary objects: global/local temp table, table variables 6
- Temporary objects: SPs and cursors small changes 7
- 8 Version store: General
- 9 Version store: MARS
- 10 Version store: Online index
- Version store: Row version based isolation levels 11
- 12 Version store: Triggers
- XML 13

TempDB capacity planning

On line index:

2x-3x size of index – Sort size, temp index and rollback

Versioning:

- [Size of Version Store] = 2 *
 [Version store data generated per minute] *
 [Longest running time (minutes) of your transaction] * number of concurrent transactions/users
- Note: Version store data generated per minute and version store size are now perfmon

parameters

intualization | Severan | Source FIPC Serveran | Source Fire Source I Severan | Severan SEASO6 - SQL Server 2005 OLTP Best Pragging ices

Tempdb – Trace Flag 1118

Reduces sgam contention Still needed in 2005 if you have DDL statements for Create Table and Create Index in stored procedures that are called many times (high volume).

Alicrosoft Virtualization | Swindows HPC Server 2005 OLTP Best Practices

Performance & Resources Tempdb – Space Used

select sum(user_object_reserved_page_count)*8 as user_objects_kb, sum(internal_object_reserved_page_count)*8
as internal_objects_kb, sum(version_store_reserved_page_count)*8 as version store kb, sum(unallocated_extent_page_count)*8 as freespace kb from sys.dm_db_file_space_usage where database id = 2

Performance & Resources Tempdb usage: by sql_handle & plan_handle

SELECT t1.session id, (t1.internal_objects_alloc_page_count + task_alloc) as allocated, (t1.internal_objects_dealloc_page_count + task_dealloc) as deallocated , t3.sql_handle, t3.statement_start_offset , t3.statement_end_offset, t3.plan_handle from sys.dm_db_session_space_usage as t1, sys.dm_exec_requests t3, (select session id, sum(internal_objects_alloc_page_count) as task_alloc, sum (internal_objects_dealloc_page_count) as task_dealloc from sys.dm_db_task_space_usage group by session_id) as t2 where t1.session id = t2.session id and t1.session id >50 and t1.database id = 2 --- tempdb is database id=2 and t1.session id = t3.session id order by allocated DESC

Performance & Resources Database Snapshot

- Database snapshots do consume resources on your server.
 - Example: Buffer Pool

nacted

- Tested TPC-C workload had 15% performance loss with single Database snapshot
- The more database snapshots, the more performance will be

Microsoft Virtualization | Swindows HPC Server 2005 OLTP Best Practices

3rd Party Performance Tools

Veritas (formerly Precise) InDepth for SQL Server

Excellent tool for identifying

- Resource bottlenecks
- Resources consumed by statement
- Waits by statement
- Performance history

Quest Software

- Great tools for monitoring
- Partition management
 - Backup with compression (Litespeed)

Language vs. RPC Events

Server has two distinct and optimized code paths

Goal is to utilize the correct code path!

Language event

- Every statement not being a (stored) procedure
- extra parsing required to figure out what is in the string
- Adhoc query plans for string (in addition to Stored Proc plans)
- Generic code which executes procedures via a language event, for example OSQL, Query Analyzer etc.

RPC event

Stored procedure invocations using {call} syntax

API - Benchmark lessons

OLTP Benchmark lessons

- Big performance gains from best practices
 - Use efficient row length and data types
 - Every byte counts, use correct types
 - Match packet size and batch size
 - Perf of 'Bind' on client proportional to batch size
 - For large batches, avoid ODBC Parameter binding with ?
 - ODBC {Call Proc} better than execute proc syntax
 - \$ {call dbo.qi ('M01', 'M01.040704000000002')}
 - exec dbo.qi @v1='M01', @v2='M01.040704000000002' –adds ADHOC query plans due to SQL string parsing
 - Net gain using above 7x

Performance Issues Results Handling / Round trips

You always fetch all results and all result sets! Un-fetched results and result sets can cause concurrency issues on the server

Un-fetched results and result sets will cause an attention signal to be send to the server to cancel the pending stream

SET NOCOUNT ON

 Avoid unnecessary round trips of sending empty result sets for INSERT, UPDATE and DELETE statements

Cached Objects & plan re-use

Master..Sys.dm_exec_cached_plans

- Procedure or batch name
- Set options for plans
- Ref counts, Use counts
- Compiled plan
 - Single copy (serial and parallel)
 - Re-entrant and re-usable
 - Statement level recompilation
- Executable plan
 - Data structure for user context, not re-entrant
 - Look for plan reuse: usecounts > 1

Plan re-use of

Procs, Triggers, Views

Cached Objects & plan re-use

SQL Batch requests/sec

Compare to initial SQL Compilations/sec

SQL Compilations/sec

- Includes initial compiles AND re-compiles
- Eliminate re-compilations to get initial compiles
- Look for identical SQL statements with low usecounts in Sys.dm_exec_cached_plans
 - See SEAS06PT: Worst plan re-use by statement.sql

SQL Re-compilations/sec

- Statement Level Recompiles
- Sys.dm_exec_query_stats (plan_generation_num)
 when incremented indicates recompilation
- Check profiler for sp:recompile event to identify SQL statement.

Performance & Resources

Waiting to run

- Runnable queue pure CPU waits
- CPU pressure measured by signal waits

Plan compilation & requests

- Perfmon: SQLServer:SQL Statistics
 - Batch requests / sec { >1000' s/sec server is busy}
 - SQL Compilations / sec {>10s/sec could be problem}
 - SQL Recompilations / sec {OLTP should avoid high recomps}
- Ratio of compiles / requests is important
 - Compiles recompiles = initial compiles
 - Plan re-use = (Batch requests initial compiles) / Batch requests
 - (compared with batch requests, low initial compiles indicates plan re-use)
 - Recompile reasons:

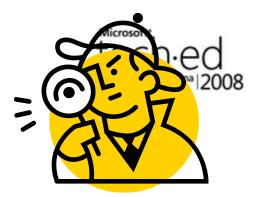
Change in schema state – schema altered, etc.

Automate Virtualization | & Windows Precs Previously parallelized by an deschool and the set of the

Plan re-use vs. CPU usage

CPU used for plan determination

- OLTP characterized by high numbers of identical small transactions
 - Plan re-use desirable
 - See usecounts in Sys.dm_exec_cached_plans
- Stored procedure estimates are based on initial parameter values
 - Re-use is generally good for OLTP,
 - re-use can be bad when when results sets can significantly vary in size.


Plan estimation & re-use issues

- Plan selection is based on estimates *Profile on* Shows estimates vs. actuals
- Shows estimates vs. actuals
 Overestimation Look for huge differences (examples)
 - FavorsofixerEstimates are 1% actuals
 - Extreme cases can improve
 - with LOOP JOIN hint
 - Execute P1 with recompile
- Underestimation

– Favors variable cost (e.g.

nested loops) strategy Visual State Strategy

Performance Issues Profiler events

Plan re-use (or lack of)

Compare batch requests to SQL compiles/sec
 IO

Reads and writes

Recompilation

Cache hit, insert, miss, remove Index usage (or lack of) Object access

P Best Practices

Profiler events for query plans

The Profiler events that track cache management include:

- SP:CacheMiss (event ID 34 in Profiler)
- SP:CacheInsert (event ID 35 in Profiler)
- SP:CacheRemove (event ID 36 in Profiler)
- SP:Recompile (event ID 37 in Profiler)
- SP:CacheHit (event ID 38 in Profiler)

SP:Starting lists stored procedure execution SP:StmtStarting will show corresponding SQL statement

- Example: sequence is
 - SP:StmtStarting
 - SP:CacheMiss (no plan found)
 - SP:CacheInsert (plan created)

Watch out: Heavy profiler use will affect performance ! Eventsubclass data column to display

icrosoft | Virtualization | 🌯 Windows HPC Server 2001 | 🖉 SQL Server 2001 | 🏶 Visual Studio 200

CPU: Recompilation

Plan determination is CPU Intensive

- Recomp good if benefit of new plan > CPU cost
- Profiler
 - Lists recomp events and statements
 - Data column for reason: EventSubClass
- locks on system tables
 - Re-compiling stored procedure plans serialize other users during high concurrency
 - places lock on single compile plan
- **Re-compilation based on**
 - Rows changed thresholds (rowmodctr)
 - DDL placement, schema changes

Accessed Virtualization | & W. down HECS Corocle practice seaster 1900 to 200 (POLT 88 eP2) astaices

EventSubClass	Description			
1	Schema changed.			
2	Statistics changed.			
3	Deferred compile.			
4	SET option changed.			
5	Temporary table changed.			
6	Remote rowset changed.			
7	FOR BROWSE permission changed.			
8	Query notification environment changed.			
9	Partitioned view changed.			
10	Cursor options changed.			
11	OPTION (RECOMPILE) requested.			

Microsoft Virtualization Statistics Server 2005 OLTP Best Practices

Useful Performance Counters

Memory: Page faults/sec Memory: pages/sec Physical Disk: Avg. Disk Queue Length Physical Disk: Avg. Disk sec/Transfer Physical Disk: Avg. Disk sec/Read Physical Disk: Avg. Disk sec/Write Physical Disk: Current Disk Queue Length Processor: %Processor Time SS Access Methods: Forwarded Records/sec SS Access Methods: Full Scans/sec SS Access Methods: Index Searches/sec SS Access Methods: Page Splits/sec SS Access Methods: Range Scans/sec SS Access Methods: Table Lock escalations/sec SS Buffer Manager: Checkpoint pages/sec SS Buffer Manager: Lazy writes/sec SS Buffer Manager: Page Life expectancy SS Buffer Node:Foreign Pages SS Buffer Node:Page Life expectancy SS Buffer Node:Stolen Pages

- SS Databases: Log Flush Wait time
- SS Databases: Log Flush Waits/sec
- SS General Statistics: User Connections
- SS Latches: Average Latch Wait Time(ms)
- SS Latches: Latch Waits/sec
- SS Latches: Total Latch Wait Time (ms)
- SS Locks: Average Wait Time(ms)
- SS Locks: Lock requests/sec
- SS Locks: Lock Wait Time (ms)
- SS Locks: Lock Waits/sec
- SS Memory Manager: Memory grants pending
- SS SQL Statistics: Auto-Params attempts/sec
- SS SQL Statistics: Batch requests/sec
- SS SQL Statistics: Safe Auto-Params/sec
- SS SQL Statistics: SQL Compilations/sec
- SS SQL Statistics: SQL Re-Compilations/sec System: Processor Queue Length

Alicrosoft | Virtunization | 🍓 Windows HPC Server zon | 🖉 SQL Server zon | 🐗 Visual Studio zon

SEASO6 - SQL Server 2005 OLTP Best Practices

Agenda

· ·

- Overview
 - What are the characteristics of OLTP?
 - What are the goals of OLTP?

Design, Techniques and Best practices

- Transactions
- Concurrency
- Database design
 - Normalization, Denormalization,
 - Index maintenance issues

Identifying Performance issues

- Resource utilization
- Optimization
 - Estimation and query plan selection
 - Plan re-use & Recompilation
- Useful counters
 - **Performance Blueprint**

OLTP Performance Blueprint tech-ed

DB Design (values can be debated)

Resource Issue	Rule	Description	Value	Source	Problem Description
DB Design	1	High Frequency queries having # table joins	>4	Sys.dm_exec_sql_text Sys.dm_exec_cached_plans	High Frequency queries with lots of joins may be too normalized for high OLTP scalability
	2	Frequently updated tables having # indexes	>3	Sys.indexes sys.dm_db_operational_in dex_stats	Excessive index maintenance for OLTP
	3	Big IOs range scans table scans	>1	Perfmon object • SQL Server Access Methods Sys.dm_exec_query_stats	Missing index, flushes cache
	4	Unused Indexes	index not in*	* Sys.dm_db_index_usage_ stats	Index maintenance for unused indexes

OLTP Performance

IOAvg Disk seconds / write> 10 msPerfmon object • Physical DiskWrites (sequential) can be as fast as 1m for transaction log.IO3Big IOs range scans table scans>1Perfmon object • SQL Server Access MethodsMissing index, flushes cache4If Top 2 values for Wait stats includes:Top 2Sys.dm_os_wait_statsIf top 2 wait_stats			•			
Image: Seconds / read10 msPhysical Disktake 4-8ms with NO IO pressure2Avg Disk seconds / write> 10 msPerfmon object • Physical DiskWrites (sequential) can be as fast as 1m for transaction log.IO3Big IOs range scans table scans>1 • Perfmon object • SQL Server Access MethodsMissing index, flushes cache4If Top 2 values for Wait stats includes:Top 2 2Sys.dm_os_wait_statsIf top 2 wait_stats			Description		Source	
IOSeconds / write10 msPhysical Disk(sequential) can be as fast as 1m for transaction log.IO3Big IOs range scans table scans>1Perfmon object · SQL Server Access MethodsMissing index, flushes cache4If Top 2 values for Wait stats includes:Top 2Sys.dm_os_wait_statsIf top 2 wait_stats		1		10		Reads should take 4-8ms with NO IO pressure
IO range scans table scans SQL Server Access Methods flushes cache 4 If Top 2 values for Wait stats includes: Top Sys.dm_os_wait_stats If top 2 wait_stats		2		10	· · · · · · · · · · · · · · · · · · ·	(sequential) can be as fast as 1ms for transaction
Wait stats includes: 2 wait_stats	ΙΟ	3	range scans	>1	• SQL Server Access	
ASYNCH_IO_COMPLETION IO_COMPLETION LOGMGR WRITELOG PAGEIOLATCH_X		4	Wait stats includes: ASYNCH_IO_COMPLETION IO_COMPLETION LOGMGR WRITELOG	-	Sys.dm_os_wait_stats	wait_stats values include IO, there is an

Microsoft Virtualization 📲 Windows HPC Server 2001 🖉 SQL Server 2001 🦓 Visual Studio 2001

SEAS06 - SQL Server 2005 OLTP Best Practices

OLTP Performance Blueprint

Description Source **Problem Description Frequency** of Block >2 Sys.dm_db_index_ope 1 rational stats blocks % percentage 30 **Block process** 2 • Sp_configure Report of long "blocked process blocks e.g. sec report threshold" statements eprofiler "blocked Blocking process report" 3 Avg Row Lock Sys.dm_db_index_ope **Duration of blocks** > rational_stats 100 Waits ms Sys.dm_os_wait_stats 4 If Top 2 values for Тор If top 2 wait_stats values include 2 wait stats are any locking, there is a of the following: blocking bottleneck 1. LCK_x

Alicrosoft Virtualization Windows HPC Server 2005 OLTP Best Practices

OLTP Performance Blueprint

Resource Issue	Rule	Description	Value	Source	Problem Description
	1	Signal Waits	> 25%	Sys.dm_os_wait_stats	Time in runnable queue is pure CPU wait.
CPU	2	Plan Re-use	< 90%	Sys.dm_os_wait_stats Perfmon object SQL Server Statistics	OLTP identical transactions should ideally have >95% plan re-use
	3	Parallelism: CXPACKET waits	> 5%	Sys.dm_os_wait_stats	Parallelism reduces OLTP throughput

Microsoft Virtualization Windows HPC Server 2005 OLTP Best Practices

OLTP Performance

Resource Issue	Rul e	Description	Valu e	Source	Problem Description
Memory	1	Average Page Life Expectancy	< 300 sec	 Perfmon object SQL Server Buffer Mgr SQL Server Buffer Nodes 	 Cache flush,due to big read Possible missing index
	2	Average Page Life Expectancy	Drops by 50%	 Perfmon object SQL Server Buffer Mgr SQL Server Buffer Nodes 	 Cache flush,due to big read Possible missing index
	3	Memory Grants Pending	> 1	Perfmon object © SQL Server Memory Manager	Current number of processes waiting for a workspace memory grant

Microsoft Virtualization | Swindows HPC Server 2005 OLTP Best Practices

🖬 Virtualization | 🌯 Windows HPC Server2001 | 🖉 SQL Server2001 | 🍀 Visual Studio 2001 🛛 🛛 SE

SEAS06 - SQL Server 2005 OLTP Best Practices

Agenda

Overview

- What are the characteristics of OLTP?
- What are the goals of OLTP?

Design, Techniques and Best practices

- Transactions
- Concurrency
- Database design
 - Normalization, Denormalization,
 - Index maintenance issues

Identifying Performance issues

- Resource utilization
- Optimization
 - Estimation and query plan selection
 - Plan re-use & Recompilation
- Useful counters
- **OLTP Performance Blueprint**

OLTP Summary

Lessons learned

Challenge: Scheduling a mix workload evenly across Schedulers Database Log to handle 60,000+ database tx/sec Real time reporting and loading data Indexes are both good and bad **OLTP** general goal: limit recompiles Multiple database logs for scalability Read-only queries: consider another database via replication, log shipping or Shared Scalable Database

OLTP Summary

Gotchas

Database design driven by workload requirements

- Indexes
- Denormalization decisions
- Transactions

Maximizing resources

- Plan re-use normally desirable for OLTP
- Recompilation generally try to avoid with OLTP
- Set based operations more efficient than cursors
- Reduce parallel queries to improve concurrency

Sp_configure "max degree of parallelism",1 -- turns SEAS06 - SQL Server 2005 OLTP Best Practices

OLTP Summary

OLTP applications require appropriate

- database design
 - Index usage
- Transaction usage
 - High concurrency must minimize blocking
- Application design
 - Use code coding techniques for plan re-use, minimize recompiles
- API
 - Maximize performance with most efficient calls
- Access methods
 - Efficient query plans for OLTP

Alicrosoft Virtualization Windows HPC Server 2005 OLTP Best Prace in SEASO6 - SQL Server 2005 OLTP Best Prace ices

Other Resources

SQL Server 2005 Batch Compilation, Recompilation, and Plan Caching Issues http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx

SQL Customer Advisory Team internal site <u>http://sqlserver/sites/sqlcat</u>

SQL Customer Advisory Team blog <u>http://blogs.msdn.com/sqlcat</u>

SQL Server Webcasts

http://www.microsoft.com/technet/prodtechnol/ sql/webcasts/default.mspx SEAS06 - SQL Server 2005 OLTP Best Prachices

© 2003 Microsoft Corporation. All rights reserved. In this presentation is for informational purposes only, MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

SEAS06 - SQL Server 2005 OLTP Best Practices

tech-ed

Appendix

SS2005 Technical Learnings

- Upgrade
- Management DMV(s), Profiler, Perfmon, DQ tracing
- TempDB
- Database Mirroring, DB Snapshot
- Development MARS, CLR, UDTcur
- Security, Catalog

Upgrading to SS2005

Most customer testing: 300-400 customer applications worldwide with Application Compatibility labs

Upgrade Advisory is a must

- Get the latest version http://microsoft.com/sql
- Go back and run it against your SS2K database systems

Upgrading to SS2005 the biggest findings

SS2K statistics invalid after upgrade

- Update statistic will kick in automatically upon first execution of queries using sample data
- Default update statistics sampling could be very small for very large tables, possibly <1%</p>
- Recommendation: manually update statistics after upgrade. Full if possible, suggest: 10% for Very Large tables.
 - Example: Update statistics sales.salesorder with sample 10 percent;

Recommendation: Remember to run surface area configuration manager

May not recognize an important component is off by default: named pipes, Service Broker, CLR, ETS, Dedicated Administration Gonnection; etc.

Upgrading to SS2005 the biggest findings

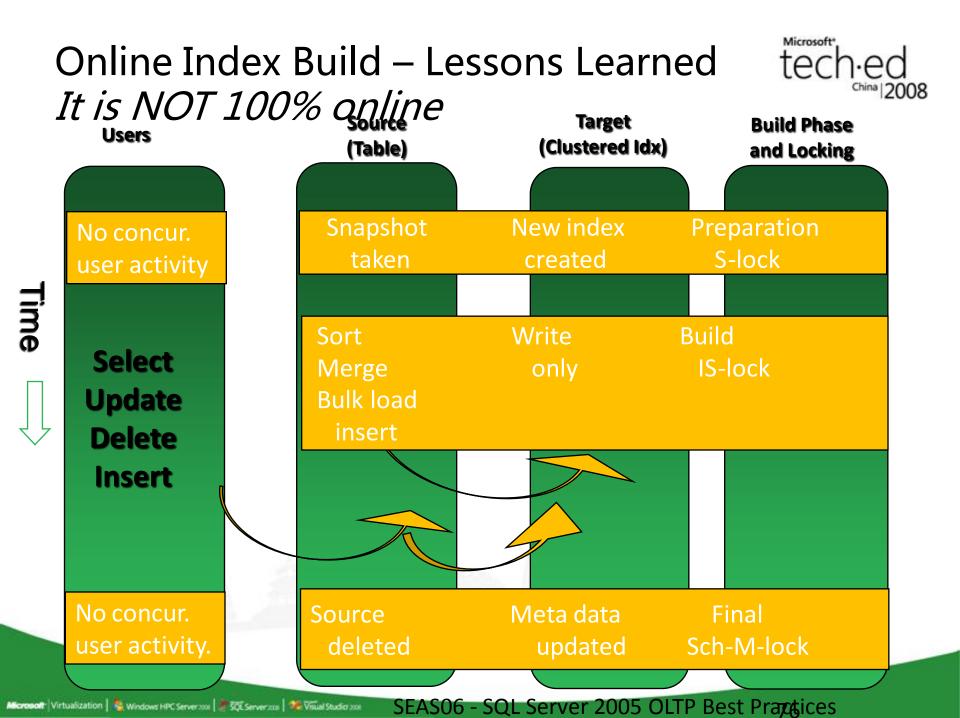
Recommendation: Specify the WITH keyword when using table hints

- Optional in SS2K / and SS2005. May be mandatory with next version.
- Using WITH is ANSI SQL Compliant
- Example: UPDATE Production.Product WITH (TABLOCK) SET ListPrice = ListPrice * 1.10 WHERE ProductNumber LIKE 'BK-%'

Recommendation: Remove references to undocumented system tables

Using Integrated Security and have Windows

Engine – Lessons Learned cont


- User Mode Scheduler CPU management
- Memory management
- IO Completion port

In SS2K a connection was assigned to a UMS and stayed there and in SS2005, a thread within a connection is what is assigned to a UMS

See example next slide

Dirty reads can bypass schema locks. Will be fixed in future SP

Virtualization | Windows HPC Server 2005 OLTP Best Practices

Index Operations Lessons Learned cont...

Online index build logs the entire contents of the target index pages. Hence log space requirements increase significantly.

- You can specify to use TempDB to avoid log sizing and contention.
- Recommendation: specify sort_in_tempdb option for online index build and tune temp_db to avoid excessive log activity
- Online index not available on a per-partition basis for partitioned tables.
- ALTER INDEX ... REBUILD of a corrupted non-clustered index may use another index (and that may be theoretically corrupted as well).
 - Recommendation: Therefore use DBCC repair rather than alter index...rebuild

Index Operations Lessons Learned cont...

CREATE INDEX operations for Standard Edition are single threaded (were potentially multithreaded in SQL Server 2000)

DBCC CHECK* operations use database snapshot technology and tempdb

 Recommendation: Make sure you configure Tempdb in SS2005 for performance. Separate fast set of drives.

Backup / Restore

An online restore requires an exclusive lock on the database at the beginning of the restore.

- Once the first data transfer of the first restore begins, the database can be opened up to other users
- Restoring offline filegroups taken at different times must occur serially, making a full piecemeal restore much longer than a parallel monolithic restore.

 Recommendation: If you have several filegroup restores you should consider full database restore it could end up being faster

Dedicated Admin Connection

High priority connection that listens on its own TCP/IP port and has a dedicated scheduler

- Great to fix a problem when a perceived system hang. In SS2K this would happen when all worker threads were allocated by locks.
 - Reboot SS2K
 - Logon DAC (ADMIN:<instance_name>) in SS2005 and fix problem

Potential Concern:

- Worried about DBAs logging on DAC by default to get higher priority and dedicated thread.
- Who fixes the problem if DAC causes it?

Recommendation: Highly discourage DBAs from doing this

Database Mirroring

Database Mirroring is not dropped or cut or abandoned, etc.

- Being released with SP1
- Performance looking pretty good
- Failover is fast

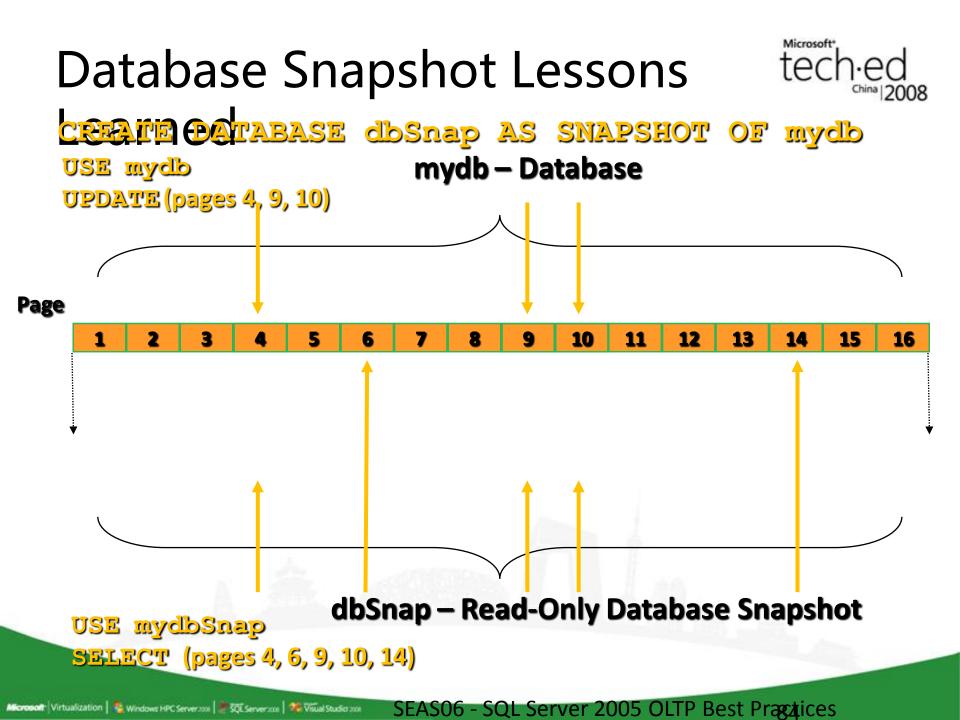
This HA feature is far too important not to be 100% confident with quality

Database Mirroring lessons learned: Not so transparent

fail over y=full (Sync), you need to connect to the mirrored database if you want automatic redirection to work, since the primary and mirror are communicated back to the client on connection where it is cached as part of the login acknowledgement

- This means your connect string needs to contain the user database, like FAILOVER_SERVER=myMirrorServerName;
- If you do not have an established connection, your primary and mirror are not cached on your client, you can not failover automatically.

With Safety = off (ASync), you need to manage the failover within your application.


Database Mirroring: Lessons Learned cont....

If you have multiple databases linked together and they need to fail over together you will need to failover within your application Database Mirroring depends on the network for information about the health of the other servers. How the network sends errors back to the server affects how mirroring works. Failover time may not be consistent. Monitoring the REDO QUEUE perf counter correlates directly with the expected failover

time.

Mirroring a database consumes 1 global worker thread and 2 worker threads per database on the principal. On the mirror

TP Best Practices

Snapshot Isolation Lessons Learned Example CREATE TABLE t1 (c1 int unique, c2 int) INSERT INTO t1 VALUES (1, 5) Transaction 1 Transaction 2 (Snapshot Isolation) Transaction 3 (RCSI) BEGIN TRAN SET TRANSACTION ISOLATION LEVEL UPDATE t1 **SNAPSHOT** SET $c_2 = 9$ WHERE c1 = 1BEGIN TRAN BEGIN TRAN SELECT c2 FROM t1 SELECT c2 FROM t1 COMMIT TRAN WHERE c1 = 1WHERE c1 = 1-- SQL Server returns 5 -- SQL Server returns 5 SELECT c2 FROM t1 SELECT c2 FROM t1 WHERE c1 = 1WHERE c1 = 1-- SQL Server returns 9 -- SQL Server returns 5 COMMIT TRAN COMMIT TRAN SELECT c2 FROM t1 SELECT c2 FROM t1 WHERE c1 = 1WHERE c1 = 1-- SQL Server returns 9 -- SQL Server returns 9

Microsoft

Microsoft Virtualization Windows HPC Server2001 SQL Server2001 Studio 2000 SEASO6 - SQL Server 2005 OLTP Best Pragetices

Snapshot Isolation lessons learned cont....

You can only enable RCSI on database before it is set for mirroring. This restriction is not there for Snapshot Isolation.
You cannot run DTC on Snapshot Isolation, but you can use RCSI in a DTC
To enable a database for RCSI, there should only be one active session in the database.
Optimized bulkload operation blocks RCSI and SI queries and vice-versa

Alicrosoft Virtualization | Swindows HPC Server2001 | SQL Server2001 | SQL Server2001 | SQL Server2005 OLTP Best Practices

Misc. Lessons Learned – MARS, CLR, UDTs, etc.

MARS is not a replacement for cursors. There are some scenarios where cursors can be replaced by MARS, but it needs analysis of usage pattern to decide if it is suitable solution or not.

UDTs are meant for small scalar types. They should not be used for modeling complex business objects (i.e. no Object Relational). UDAggs have a size limitation of 8K for the final instance value. Many customers wanted to do string concatenation, but this only

Misc. Lessons Learned cont...

CLR Positioning

- In SS
 - Functions, User Defined Types/Aggregates
 - Replacement for XP' s
 - Run mid-tier data access logic in server
 - Long non-data centric TSQL code (Example: Parsing)
 - Large data results that can be manipulated and aggregated on the server vs mid-tier
- In Middle tier
 - Scale out middle tier
 - Database diagnostic
 - Advanced logic but simple data manipulation with small results sets

Scrosoft Virtualization Standows HPC Server 2005 OLTP Best Praggices

Catalog security – you can no longer see all system tables

- Security features they' re much more granular now, more flexible, but there are **lots** of concepts to learn.
 - master keys, db keys, certs, roles, fine grained permissions, run as

Security Lessons Learned cont.

Encryption – cannot index an encrypted column

- Example: An encrypted Social Security Number cannot be indexed because encryption of a value doesn't always yield the same guid.
- WORKAROUND: is to create a hash of the value, based on encryption key, and store in a separate column. This can be indexed and searched by hash of a query predicate, but slightly increases risk.

Surface Area Configuration - SAC

Many components off by default Recommendation: Absolutely run configuration manager after installation and/or upgrade

- A couple of surprises
 - Components
 - AS, FTS, RS, SSIS, NS

Features

- DQ, CLR, DAC, DB Mail, XML Web Services, OLE Automation SPs, Service Broker, XP
- Networking
 - Server: Named Pipes, etc.
 - SNAC: TCP/IP, Named Pipes, etc.

Threats and vulnerabilities

100% of projects are still vulnerable

- SQL Injection adding a valid sql command at the end of an input value on a screen
- XSS Cross Side script replacing a screen value with a script that can run on the client side after next retrieval

//team/sites/aceteam
Alias: AceSEC

These features from earlier versions are not supported teched in SQL Server 2005.

Category	Discontinued feature	Replacement
Command prompt utilities	isql utility	Use sqlcmd
Configuration options	'allow updates' option of sp_configure .	Option is present but direct updates to system tables are not supported
Configuration options	'open objects' option of sp_configure .	The 'open objects' option has been left in sp_configure to ensure backward compatibility with existing scripts.
Configuration options	'set working set size' option of sp_configure	Option is present but its functionality has been deactivated.
Database creation	DISK INIT DISK RESIZE	Legacy behavior from SQL Server 6.x
Database creation	FOR LOAD option of CREATE DATABASE	RESTORE operations can create a database
DBCC	DBCC DBREPAIR	Use DROP DATABASE to remove a damaged database.

Microsoft Virtualization Windows HPC Server 2008 SQL Server 2008 SEASO6 - SQL Server 2005 OLTP Best Practices

These features from earlier versions are not supported in SQL tech-ed Server 2005.

Category	Discontinued feature	Replacement
DBCC	DBCC NEWALLOC	DBCC CHECKALLOC
DBCC	DBCC PINTABLE, DBCC UNPINTABLE	None.
DBCC	DBCC ROWLOCK	Row-level locking is automatic.
DBCC	DBCC TEXTALL DBCC TEXTALLOC	DBCC CHECKDB DBCC CHECKTABLE
Extended store procedure programming	Use of SRV_PWD field in the SRV_PFIELD structure when there has been an impersonation context switch from the original login.	None.
Network protocols	The following protocols: NWLink IPX/SPX, AppleTalk, Banyan Vines, Multiprotocol.	TCP/IP sockets, named pipes, VIA, or shared memory.
Rebuild master	Rebuildm.exe	Use Setup.exe
Sample databases	Northwind and pubs	Use AdventureWorks ; however, Northwind and pubs are available as downloads, or can be copied from a previous installation of SQL Server.
Transact-SQL	*= and =* outer join operators	Use the JOIN syntax of the FROM clause.
Virtual tables	syslocks	sys.dm_tran_locks

疑问和解答

tech

Microsoft Virtualization | 🎇 Windows HPC Server 2008 | 🔭 SQL Server 2008 | 🏶 Visual Studio 2008

您的意见与建议对我们非常重要。

请您填写反馈表。

Microsoft Virtualization | 🎇 Windows HPC Server 2008 | 🔭 SQL Server 2008 | 🏶 Visual Studio 2008

© 2008 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Microsoft Virtualization | 🐉 Windows HPC Server 2008 | 🔭 SQL Server 2008 | 🏶 Visual Studio 2008