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Abstract:  NTsort is an external sort on WindowsNT 5.0.  It has minimal functionality but excellent price 
performance.  In particular, running on mail-order hardware it can sort 1.5 GB for a penny.  NT5.0 is not 
yet available.  For commercially available sorts, Postman Sort from Robert Ramey Software Development 
has elapsed time performance comparable to NTsort, while using less processor time.  It can sort 1.27 GB 
for a penny  (12.7 million records.) These sorts set new price-performance records.   This paper documents 
this and proposes that the PennySort benchmark be revised to Performance/Price sort: a simple GB/$ sort 
metric based on a two-pass external sort.  
 
Why does anyone care about sorting and sort performance?   The prosaic reason is that sorting is a 
common task -- it is frequently used in database systems, data analysis, and data mining.   Another 
important reason is that sorting is a simple balanced workload, involving memory access, IO, and cpu.  It 
evaluates a computer system's overall performance.  Being simple, sorting is easily ported from one system 
to another, easily scaled to large SMP systems, and to computer clusters.    
 
The first public sort benchmark was defined in A Measure of Transaction Processing Performance, 
Datamation, April 1, 1985 [1]. That article defined DatamationSort to measure how fast can you sort a 
million records.   The records are 100 bytes, with 10-byte keys in random order.  The sort is external (disk-
to-disk.) The time includes starting the program, creating the target file, and doing the sort.   Prices are list 
prices depreciated over 3 years. (see  http://research.microsoft.com/barc/SortBenchmark/  for the rules). 
 
Since then, there has been steady improvement in 
sort performance: sort speeds have 
approximately doubled each year, and price 
performance has approximately doubled each 
year -- improving a thousand-fold every decade. 
In part, this has been due to Moore's law, things 
get faster every year: but that is only 40% of the 
story.  The other 60% came from better 
algorithms and from parallelism. The current 
champion, NOWsort, used 95 UltrasSPARCs to 
sort 8.4 GB in a minute. 
 
DatamationSort times were getting tiny (a few 
seconds) and so it seemed better to have a fixed-
time benchmark rather than a fixed-size sort. 
MinuteSort, how much can you sort in a minute, 
replaced DatamationSort in 1994. MinuteSort is 
a  "biggest bang"  (price is no object) test.  
PennySort is a "bang-for-the-buck" measure, 
how many 100-byte records you can sort for a 
penny, if the system cost is depreciated over 
three years.    Inexpensive systems are allowed to run for a long time while expensive systems must run the 
sort quickly. 
 
Several MinuteSort benchmark results have been reported, but until now, there have been no PennySort 
results.  In fact, the PennySort Benchmark was originally the DollarSort benchmark.  It was changed to 
PennySort when someone pointed out that a DollarSort would run for 50,000 seconds on a 2,000$ system.  

Figure 1: The top graph shows sort speed over the last 15 
years.  The bottom graph shows GB sorted per dollar.  The 
large diamond and triangle show the NTsort results.  Given 
the focus on price/performance, NTsort is 5x above the price 
trend line.   NTsort uses 95x fewer processors and disks -- 
that's why it is 82x slower than NOWsort. 
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PennySort brought this time down to 500 seconds.  However, that was the wrong answer.    If innovation 
and Moore's Law continue, in a less than a decade PennySort will be back up to the 50,000 seconds.   
 
Consequently, this paper both reports the first PennySort result and proposes to redefine the benchmark 
into a Performance/Price sort: the $/GB cost of a two-pass external sort. 

1998 Daytona  & Indy PennySort 
 
Three commercial sorts are running on Windows NT 4.0.3 at our lab:  
(1) NT Sort included in NT 5.0 but not yet commercially available,  
(2)  NitroSort v 1.0A  from Opnek Research, Hackettstown, NJ   

(299$ from http://www.nitrosort.com/nitrsort.html) and, 
(3) Postman's Sort v 3.21. . from Robert Ramey Software Development, Santa Barbara, CA   

( 149$ from http://www.silcom.com:81/~ramey/) 
Other commercial sorts include Syncsort (http://www.syncsort.com/infosnt.htm) and CoSort 
(http://www.iri.com/98new/win32.html).   These sorts are as expensive as the PennySort machine, and so 
are more appropriate for MinuteSort benchmarks. 
 
All three sorts are single-threaded, so they run best on uni-processors. We originally estimated that a 2k$ 
system should be able to sort 700MB for a penny.  The system would have the fastest CPU and memory 
that 1.4k$ can buy, a 2 GB data source and target disk, and a 1 GB scratch disk.   It would have 64 MB of 
DRAM (to produce 25 25MB data runs on the scratch disk using 256KB writes) and then merge them into 
the target (using 256KB reads and writes). 500$ was budgeted for NT Workstation and the sort software. 
 
We were aware of the substantial price differential between SCSI and IDE disk drives.  Traditionally, the 
SCSI price was justified because IDE did Programmed Input-Output (PIO) rather than Direct Memory 
Access (DMA).  PIO moves each byte through the CPU registers rather than having the host-bus adapter 
stream the data over the bus directly to memory via DMA.  Recently, IDE drives adopted UltraDMA IDE -
- the IDE adapter does not interrupt the processor during a disk transfer.   Consequently, the cpu overhead 
for an IO goes from 6 instructions per byte transferred under PIO to 0.2 instructions per byte transferred 
under DMA.  This is a dramatic saving, without DMA the system has 80% processor utilization when 
transferring 8 MBps.  With DMA, the utilization drops to 2%.  Therefore, UltraDMA IDE drives compete 
with SCSI for small disk arrays. SCSI is still advantageous for strings of disks: IDE does not allow multiple 
outstanding commands on one string. 
 
Shopping the web found an mail-order house that would sell us the system described in Table 1. These are 
OEM prices.  These items are not individually available at this price (for example, the best individual price 
of NT Workstation is 140$).   The prices are here to show the cost breakdown in the pie chart at right.  
 

Table 1: Price breakdown of PennySort Machine. www.pricewatch.com 
quantity part price 

1 Assembly 25 
1 ASUS P2L97Motherboard + Intel P2-266 MHz + fan  

+ 1 Year Warranty 
495 

1 64MB SDRAM (10ns) 94 
1 Mini Tower Case w/235W Power Supply & fan 47 
1 floppy drive 18 
2 Fujitsu MPS3032UA 3.1 GB U/ATA 10ms 128k 5400rpm 278 
1 INTEL 8465 EtherExpress PCI Pro/100  48 
1 Virage 3D Graphics card w/2MB EDO 33 
1 NT Workstation 4.0.3 Software 69 
1 Shipping (3 day) 35 

Total: 1142 
 

PennySort Machine (1142$ )
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The key properties of this system are Intel 
Pentium II 266 MHz processor, Asus 
mother board, 64 MB of Synchronous 10 ns 
SDRAM, dual 3.5GB Fujitsu UltraDMA 
IDE drives, and NT Workstation, all for 
$1,142.  Given this price, the time allowed 
for a PennySort, computed by Table 2, is 
828 seconds.  The prices keep dropping.  Today (the end of April 1998) http://www.pricewatch.com/ 
reports that component prices have dropped 10% this month. 
 

We first benchmarked the UtraIDE disks without installing the DMA 
software (the PiiXide driver, called that because it runs on the Pentium II).  
The non-DMA system ran 80% CPU saturated when reading or writing 
the disks at 8 MBps.  With the PiiXide driver installed, the CPU 
utilization dropped 40x to 2%.  The disk transfer rate is limited by the rate 
at which bytes move past the disk read/write heads.   The disks are 
banded: outer bands transfer at almost 9 MBps, inner bands transfer at 6 
MBps.  The average rate across the surfaces is 7.8MBps. 
 
Both disks had a small (400MB) FAT partition to store NT programs 
(they came from the supplier that way).  We added a (3GB) NTFS 
partition to store the input and output data, and the sort temporary file.  
The data flow is as shown in Figure 2. The data moves to or from disk 4 
times in a 2-pass sort.   During both phases, both the input and output can 
be overlapped.  Therefore, in theory, the sort can fully utilize the 
bandwidth of both disks.  Doing a simple copy (using fast-unbuffered 
copy from the MSDN VC++ examples) showed that the IO time for the 
data flows of  Figure 3 moving 1.45 GB is 421 seconds elapsed, 9.6 
seconds of cpu time, and .4 seconds of user time.  So, the sort will be IO 
bound if it uses less than 411 seconds of CPU time. 
 
An August 1, 1997, PC Week article by John Shumate, reviewed several 
sort programs: 4 Programs Make NT 'Sort' of Fast [18]. He observed that 
NTsort produced no output and no error if the file was larger than 
memory.   He also pointed out that NTsort's other shortcomings: no GUI, 

no API, and extremely limited function.  Consequently, he recommended the other sort programs, notably 
CoSort, Optec, Nitro, and Postman.   
 
We repaired NTsort to be a simple two-pass sort.  If the 
input fits in available memory, NTsort does one pass.  If 
not, NTsort allocates memory appropriate for a two-pass 
sort: essentially the square-root of the input file size times 
the transfer size -- 20 MB in the case of a 1 GB sort. Sort 
then reads a block of data, quick-sorts it, and writes out 
the sorted run to a temporary file.   After the input is 
converted to sorted runs, NTsort uses a tournament tree to 
merge the runs.    NT sort does not overlap or pipeline the 
phase-one IO.   If the input or output is a file, NTsort uses 
unbuffered IO. 
 
The complete documentation for NTsort is given in the 
text box below.    Minimal is one word that comes to 
mind.  Anyone wanting a full function sort should look elsewhere. Both PostmanSort and NitroSort are 
inexpensive, well documented, and have a full-function API and command interface.  NitroSort has a very 
nice GUI as well.  Nevertheless, NTsort can run the PennySort benchmark and measure NT's IO 
performance. 

Table2: Computing the time budget for  PennySort: 
                       SystemCost/seconds_per_3_Years 
seconds/3 years 94,608,000 
PennySort HW+SW cost $1,142 
seconds/penny on PennySort 828 
 

64 MB dram

in
out

software

temp

software

 
Figure 3: Data flow of a two-pass 
sort: (1) input is sorted into runs stored 
on the temporary file.  Then (2) runs 
are merged to form the sorted output 
file. 

 
Figure 2. The PenySort 
Machine: what 1.4K$ buys 
in May 1998: a 266 Mhz 
Intel Pentium II, 64MB 
10ns SDRAM, 2 
UltraDMA IDE drives, 
Windows NT Workstation, 
100 Mbps Ethernet, 
assembly and 1 year 
guarantee, 2nd day 
shipping from mail-order 
house.  Display, mouse, 
and keyboard are sold 
separately ?.   
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We generated a 15 M record (1.45 GB) file using the SortGen program [23]. We sorted the result using NT 
Sort (with "C" locale), Postman Sort, and NitroSort.  We then normalized the results within the time-budget 
computed by dividing the system price by the 3-year depreciation.  The results are shown in Table 3.   
NitroSort 1.0.a limits itself to 4 MB by default.  For a 1.5GB sort, that implies a 3-pass sort and much 
longer run times.   So, we gave NitroSort a hint: telling it to use 21 MB of memory.  It then ran in 
reasonable time.  Both  PostmanSort and NitroSort use the NT File system buffered IO (rather than direct 
IO).  That explains why they have much larger kernel times.    On the other hand, they use much less user 
time, so they use 2x to 4x less cpu time than NTsort, showing that they have much better sort algorithms.   
Since sort is IO bound, this better cpu performance is not reflected in the elapsed time. Subsequently, Jay 
Cole of Openk Research gave us access to NitroSort 1.5.  It improved cpu and elapsed times 
 

Table 3. 1997 PennySort times. 
Product Time Budget Kernel User Total cpu time Sorted MB GB/$ Category 

NTsort 828 7 402 409 1,445 141 Indy 
PostmanSort 733 61 151 212 1,277 125 Daytona 
NitroSort (no hint) 656 22 27 49 355 35 Daytona 
NitroSort hint 656 40 60 99 727 71 Daytona 
NitroSort 1.5 Beta 656 53 60 113 980 96 Post April 1 
 
NTsort and PostmanSort have comparable running times. The extra cost of Postman Sort (149$) reduces its 
time budget and so it can sort less per penny than NTsort even though PostmanSort is just as fast and uses 
much less cpu time.    Still, Postman sort is a commercial product so it is the winner of the Daytona 
category (commercially available sort programs).  NTsort wins in the Indy category (since it has slightly 
better price performance but is not commercially available). 
 
All these sorts are IO bound.  If they aggressively overlapped IO and computation, they would run in about 
411 seconds -- more than twice as fast.   At that speed, PostmanSort and NitroSort would still use only 50% 
of the processor.  To match the cpu speed, the PennySort machine needs disks that are 2x faster or 2-disk 
file striping.  NTsort is not overlapping computation and IO, the other sorts are counting on the NT file 
system to do the overlap.  This costs them about 50 seconds of cpu time (in memcpy()) and gives sub-
optimal in IO performance. 
 
The point of this exercise was to show how inexpensive commodity hardware can perform IO intensive 
tasks.   The obvious next steps to improve the performance of  these sorts are (1)  fix the IO design  to 

SORT [/R] [/+n] [/M kilobytes] [/L locale] [/RE recordbytes]  
     [[drive1:][path1]filename1] [/T [drive2:][path2]] [/O [drive3:][path3]filename3]  
  /+n   Specifies the character number, n, to begin each comparison.   

/+3 indicates that each comparison should begin at the 3rd  
Lines with fewer than n characters collate before other lines. 

  /L[OCALE] locale Overrides the system default locale with the specified one.   
The "C" locale is the fastest collating sequence.  
It is currently the only alternative.   
The sort is always case insensitive. 

  /M[EMORY] kilobytes Specifies amount of main memory to use for the sort, in kilobytes. 
  /REC[ORD_MAXIMUM] characters Specifies the maximum number of characters in a record  

(default 4096, maximum 65535). 
  /R[EVERSE]        Reverses the sort order; that is, sorts Z to A, then 9 to 0. 
  [drive1:][path1]filename1   Specifies the file to be sorted.  If not specified, the standard input is sorted. 

Specifying the input file is faster than redirecting the same file as standard input. 
  /T[EMPORARY] [drive2:][path2]           Specifies the path of the directory to hold  the sort's working storage, 

in case the data does not fit in main memory.   
The default is to use the system temporary directory. 

  /O[UTPUT][drive3:][path3]filename3   Specifies the file where the sorted input is to be stored.   
If not specified, the data is written to the standard output.    
Specifying the output file is faster than redirecting standard output to the same file. 
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overlap computation and IO, (2) use multi-threading to exploit SMPs when the disk bandwidth is beyond 
the power of a single processor (about 20MBps),  and (3) port to a cluster and replicate the NOWsort work 
(they sorted 8.4GB on 95 nodes in 60 seconds).  A cluster of 32 PennySort machines using an 100Mbps 
Ethernet switch would cost about 25x less than the NOW cluster and should be able to sort about 10GB in a 
minute (about 313 MB for each node). 

Datamation Sort Results 
We did a DatamationSort (one million records) with the three sorting programs.  We added 64 MB to the 
PennySort machine to allow a one-pass sort of 100 MB.  Postman Sort had the fastest sorting time at about 
26 seconds. It performed equally well with a memory hint and without.  NTSort came in second at about 35 
seconds.  NTSort is too conservative with its default memory allocation; on the 128 MB PennySort 
machine, NTSort does not default to allocate the 105 MB it needs for a one-pass sort.  However, when 
NTSort is given a memory hint, it performs adequately.  NitroSort 1.5 Beta came in third at about 55 
seconds. We were unable to coax NitroSort into performing a single pass sort, even with a memory hint.  
The ratio between CPU and IO wait is similar to the two-pass experiments for all three sorts.    
 

Datamation
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40
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Figure 4: DatamationSort results.  NitroSort 1.5 Beta averaged 
55 seconds, Postman Sort averaged 26 seconds and NTSort 
averaged 35 seconds. 
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Performance/Price Sort 
PennySort is a poor benchmark definition.   The idea of a fixed-price benchmark is not workable when 
price-performance doubles every year.   You can do 1,000 times more a decade later for the same price.  In 
particular, the PennySort of the year 2008 is likely to sort 1.5 TB and run for 800,000 seconds (over two 
days) on a one-dollar computer! 
 
The goal is to have a simple and portable I/O benchmark that measures the system's performance/price.  A 
simple way out of this is to use the two-pass minute-sort benchmark, but just aim for minimum price 
measured in GB/$ sorted. To be specific: 
(1) Sort the largest file you can in a minute. 
(2) Compute the system price per second (3-year depreciation => system price/9.5e-7 ). 
(3) Compute the GB/$ sorted by dividing item 1 by item 2. 
As with the current sort, there should be two categories: Daytona (commercially available general-purpose 
product and Indy (research hacks allowed, not necessarily a product). 
 
The virtue of picking a minute is that it gives direct comparability with MinuteSort performance and price 
performance. 
 
The current Performance/Price results are shown in Table 4: 
 

Table 4: Historical Performance/Price results. 
year MB/sec GB/$ System [reference] Sys price (M$) CPUs  
1985 0.02 0.05 M6800  Bitton et al [7,8] 0.03 1 Datamation 
1986 0.03 0.01 Tandem  Tsukerman [19,20] 0.3 3 Datamation 
1987 3.85 0.05 Cray YMP, Weinberger [21] 7.0 1 Datamation 
1991 14.29 0.54 IBM 3090, DFsort/Saber 2.5 1 Datamation 
1990 0.31 0.15 Kitsuregawa [12] 0.2 1 Datamation 
1993 1.20 0.11 Sequent, Graefe [11] 1.0 32 Datamation 
1994 1.72 0.16 IPSC/Wisc  DeWitt [10] 1.0 32 Datamation 
1994 11.11 5.25 Alpha, Nyberg [7] 0.2 1 Datamation 
1995 28.57 2.70 SGI/Ordinal, Nyberg [16] 1.0 16 Minute/Daytona 
1995 19.61 37.10 IBM, Agarwal [2] 0.05 1 Minute/Indy 
1996 100.00 15.76 NOW, Arpaci-Dusseau [3] 0.6 32 Minute/Indy 
1997 140.17 8.41 Now 95 , Arpaci-Dusseau [3] 2.0 95 Minute/Indy 
1997 86.21 6.27 SGI/Ordinal, Nyberg [17] 1.3 14 Minute/Datona 
1998 1.74 125.00 PostmanSort 0.0013 1 Penny/Datona 
1998 1.74 144.00 NTsort 0.0012 1 Penny/Indy 
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