Foreword by David Campbell

Microsoft Technical Fellow

Microsoft

SOL Server
2008 Internals

Kalen Delaney

Paul S. Randal, Kimberly L. Tripp,
Conor Cunningham, Adam Machanic, and Ben Nevarez

SQLTunefs.
THE DATABASE EXPERTS



PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2009 by Kalen Delaney

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008940524

Printed and bound in the United States of America.

123456789 QWT 432109

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, Active Directory, Excel, MS, MSDN, Outlook, SQL Server, Visual SourceSafe, Win32,
Windows, and Windows Server are either registered trademarks or trademarks of the Microsoft group of companies. Other
product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones

Developmental Editor: Sally Stickney

Project Editor: Lynn Finnel

Editorial Production: S4Carlisle Publishing Services

Technical Reviewer: Benjamin Nevarez; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-32079



For Dan, forever....

—Kalen






Contents at a Glance

O 00 N o U1 A W N R

e
= o

SQL Server 2008 Architecture and Configuration ............. 1
Change Tracking, Tracing, and Extended Events ............. 75
Databases and Database Files............................ 125
Loggingand Recovery...........ciiuiiiiiniinennennnn. 181
Tables . ... e 211
Indexes: Internals and Management ...................... 299
Special Storage . ... .. 375
The Query Optimizer ....... ... ..ot 443
Plan Caching and Recompilation ......................... 525
Transactions and Concurrency ..............ccovuvennen... 587
DBCClinternals. ....... ... i 663







Table of Contents

Foreword . ... ..o e XiX
Introduction . ... ... e XXi
1 SQL Server 2008 Architecture and Configuration ............. 1
SQL Server Editions . . ..ot 1
SQLServer Metadata. ... 2
Compatibility Views. . ... 3

Catalog VIeWS. . . . 4
OtherMetadata............. i 6
Components of the SQL Server Engine ..., 8
Observing Engine Behavior ......... ..o i 9

Protocols . ... 11

The Relational Engine . ... 12

The Storage Engine . . ... 14

The SQLOS. . . 18
NUMA Architecture. .. ... oo e 19

The Scheduler. .. ... 20

SQL Server Workers. . ... 21

Binding Schedulersto CPUS. .. ... 24

The Dedicated Administrator Connection (DAC). ................... 27

M MOy . o 29

The Buffer Pool and the Data Cache ............... ... . .ot 29

Access to In-Memory DataPages. ........... ... .. il 30

Managing Pagesinthe DataCache........... ... ... ... ... ....... 30

The Free Buffer List and the Lazywriter............................ 31
Checkpoints .. ... 32

Managing Memory in Other Caches .............. ... ... ... ...... 34

SIZING MEMOIY . . oo 35

Sizing the Buffer Pool . ... 36

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii



viii Table of Contents

SQL Server Resource GOVEINOK . . ..ottt e 42
Resource Governor OVerview .............ueiiiiiiiieeeeaennnnn.. 42
Resource Governor Controls ... 51
Resource GovernorMetadata ............. ... it 52

SQL Server 2008 Configuration. . ... 54
Using SQL Server Configuration Manager. . ........................ 54
Configuring Network Protocols. ...................... ... ... .... 54
Default Network Configuration. ............ ... ... o .. 55
Managing Services. . .. ...t 55

SQL Server System Configuration . ............... ... i 57
Operating System Configuration ............. ... ... i, 57
Trace Flags. . . ..o 60

SQL Server Configuration Settings .. ... 60
The Default Trace. .. ..ot 71

Final Words . . ..o 73

2 Change Tracking, Tracing, and Extended Events ............. 75

The Basics: Triggers and Event Notifications.......................... ... 75
Run-Time Trigger Behavior. . ........ ... i 76

Change Tracking ... ...t 76
Change Tracking Configuration. .............. ..., 77
Change Tracking Run-Time Behavior. ............................. 82

Tracing and Profiling .. ... 86
SQL Trace Architecture and Terminology . ......................... 86
Security and Permissions .. ........... .. i 88
Getting Started: Profiler .......... ... 89
Server-Side Tracing and Collection................................ 97

Extended Events. .. ... 108
Components of the XE Infrastructure............................. 108
Event Sessions. .. ... 118
Extended Events DDLand Querying ...........ccooveveeeaiiin... 121

SUMMAIY .« et e e e e e e e e 124

3 Databases and Database Files............................ 125

System Databases. . . ... 126
MASEEE .« . oo 126
model . . ... 126
tempdb. . . ... 126
The Resource Database. . ........ ..., 127



Table of Contents

Sample Databases . ... 128
AdventureWorks .. . ... 128
DUDS 129
Northwind .. ... 129
Database Files. . ... 130
Creatinga Database. . ... 132
A CREATE DATABASE Example. . ...t 134
Expanding or Shrinkinga Database . ............ ... ...l 135
Automatic File EXpansion . ... 135
Manual File EXpansion ... 136
Fast File Initialization. ...... ... .. i 136
Automatic Shrinkage. . ...... ... 136
Manual Shrinkage . ... ... 137
Using Database Filegroups. .. ...t 138
The Default Filegroup . ... 139
A FILEGROUP CREATION Example .. ... 140
Filestream Filegroups . ...... ... 141
AlteringaDatabase. . ... i 142
ALTER DATABASE Examples . .. ..o 143
Databases Underthe Hood ........ ... ... i i 144
Space Allocation. . ... 145
Setting Database Options. .. ... 148
State OptioNs . ... 151
CUISOr OPLIONS . . .\t e 155
AULO OPLIONS oottt 155
SQL OPLIONS . .o 156
Database Recovery Options. . ... 158
Other Database Options. ...t 159
Database Snapshots. . . ... 159
Creating a Database Snapshot. .. ..., 160
Space Used by Database Snapshots. ............................. 162
Managing Your Snapshots . . ... 164
Thetempdb Database ......... ... i 164
Objectsintempdb . ........ .. 165
Optimizationsintempdb ........ ... ... ... . . . . .. 166
Best Practices . ... 168
tempdb Space Monitoring . ............ . 169
Database SeCUNtY. .. ... 170
Database ACCESS. . ..ot 170

Managing Database Security. ...t 172




X Table of Contents

Databasesvs.Schemas ......... ... ... i 173
Principals and Schemas. . ... 173
Default Schemas. . ...... . ... 174
Moving or Copying a Database. ......... ... ... . i 175
Detaching and Reattaching a Database. . ......................... 175
Backing Up and Restoring a Database. ........................... 177
Moving System Databases........... ... 177
Moving the master Database ............. ... ... .. i 179
Compeatibility Levels. . ... 179
SUMMIAIY .« .ottt e e e e e e e e 180
4 Lloggingand Recovery...........c.ooiiiiiiiniiiiiinannnn 181
Transaction Log Basics. . . ... ..ot 181
Phases Of RECOVErY . ... o it 184
Readingthe Log. ... 186
Changesin Log Size. ... ... 187
Virtual Log Files . . ... 187
Observing Virtual Log Files .......... ... .., 188
Automatic Truncation of Virtual Log Files......................... 192
Maintaining a Recoverable Log. ...............o i i i i i 193
Automatic Shrinking ofthelog ........... ... ... ... ... ..., 196

Log File Size .. ..o 196
Backing Up and Restoring a Database.............. ... ................ 197
Types of Backups . . ..o 197
Recovery Models . ... ..o oo 198
Choosing aBackup Type. .. ...t 203
RestoringaDatabase ......... ... .. i 203
SUMMIAIY .« .t 209
5 Tables ... e 211
Creating Tables. .. ..o 211
Naming Tables and Columns. ........ ... ... .. 212
Reserved Keywords . . ... 213
Delimited Identifiers . ....... ... 214
Naming Conventions. . . ...ttt 215

Data TYPeS. . o oottt 215

Much Ado About NULL. . ... .. 241




Table of Contents xi

User-Defined Data TYPesS . ... .vvee it 244
IDENTITY Property. ...ttt e e e e e e 245
Internal Storage . ... ... 249
The sys.indexes Catalog View. . ..., 250
Data Storage Metadata. ... 251
Data Pages . ... .o 254
Examining Data Pages. . ....... ... 256
The Structure of DataRows .. ........ ... i, 260
Finding a Physical Page. ...... ... .. i 262
Storage of Fixed-Length Rows. .................... ... ... ... 265
Storage of Variable-Length Rows . ........... ... ... .. it 267
Storage of Dateand Time Data. ... .. 272
Storage of sqlvariantData .......... ... ... i 275
CONSEraINES. . . oot 279
Constraint Names and Catalog View Information.................. 280
Constraint Failures in Transactions and Multiple-Row
Data Modifications ........ ... .. o 281
Alteringa Table. . ... 282
ChangingaData Type. ...t 283
AddingaNew Column ... ... 284
Adding, Dropping, Disabling, or Enabling a Constraint ............. 284
Dropping a Column. ... ... o 285
Enabling or Disablinga Trigger. ........... ..., 286
Internals of Altering Tables. . ............. i 286
Heap Modification Internals. . ........ ... ... ... . . . . 289
Allocation Structures. . ... .. 289
Inserting ROWS . .. ..o i 290
Deleting ROWS. . . ..ottt 291
Updating ROWS. .. ..o 294
SUMIMIAIY ettt e e e 297
6 Indexes: Internals and Management ...................... 299
OVEIVIBW . . o 299
SQL Server Index B-trees .............c. i 300
Tools for Analyzing Indexes .. ... 304
Using the dm_db_index_physical_stats DMV....................... 304

Using DBCCIND. . ... e 308




xii

Table of Contents

Understanding Index Structures . ........ ... oo i i 310
The Dependency on the ClusteringKey .......................... 311
Nonclustered Indexes . ........ ..o 314
Constraintsand Indexes . . . ... 315

Index Creation Options. . . ...t 316
IGNORE_DUP_KEY . ..ot e 316
STATISTICS_NORECOMPUTE .. ...t 317
MAXDOP . . 317
Index Placement. . ... 317
Constraintsand Indexes . . ............ i 318

Physical Index Structures. . . ... 318
Index Row Formats . ....... .. . 318
Clustered Index Structures. ... i, 319
The Non-Leaf Level(s) of a Clustered Index. . ...................... 320
Analyzing a Clustered Index Structure............................ 321
Nonclustered Index Structures .......... .. ... i, 326

Special Index Structures . ... . 337
Indexes on Computed Columns and Indexed Views................ 337
Full-Text Indexes. . . ..o 345
Spatial Indexes . .. ... 346
XML INAEXES . o oo 346

Data Modification Internals . ........ ... ... . . . . 347
INSerting ROWS . .. ..ot 347
Splitting Pages . . ... 348
Deleting ROWS. . . ..ottt 352
Updating ROWS . . . ..o 358
Table-Level vs. Index-Level Data Modification..................... 362
LOggiNg . .o 363
LOCKING .« . 363
Fragmentation ........ ... ... . . 363

Managing Index Structures ...........c i 364
Dropping INdexes. . . ... ..ot 365
ALTER INDEX. . . . o o e 365
Detecting Fragmentation......... ... ... ... i 368
Removing Fragmentation........... . ... ... . . 369
Rebuildingan Index. ... 371

SUMMIATIY .« . et e e e e e e e 374



Table of Contents xiii

7 SpecialStorage ... 375
Large Object Storage. . . ...t 375
Restricted-Length Large Object Data (Row-Overflow Data) ......... 376
Unrestricted-Length Large ObjectData .......................... 380
Storage of MAX-LengthData ... .. 386
Filestream Data. . .......cooi 388
Enabling Filestream Data for SQL Server.............. ... ......... 389
Creating a Filestream-Enabled Database....................... ... 390
Creating a Table to Hold Filestream Data ......................... 390
Manipulating Filestream Data . ............ ..., 392
Metadata for Filestream Data . ..., 397
Performance Considerations for Filestream Data. .................. 399
Sparse ColUMNS . ... 400
Management of Sparse Columns .......... ... ... ... . 400
Column Sets and Sparse Column Manipulation ................... 403
Physical Storage . . ... o 405
Metadata. . ... 409
Storage Savings with Sparse Columns . ............ ... ... ... ... 409

Data COmMPIresSioN . . ...ttt e e 412
Vardecimal .. ... 413

ROW COMPIesSION . ..o 414

Page Compression. ... ... 423
Table and Index Partitioning ............... i 434
Partition Functions and Partition Schemes........................ 434
Metadata for Partitioning. .............. .. ... 436

The Sliding Window Benefits of Partitioning ...................... 439
SUMIMIAIY ettt e e e e e e 442
8 TheQueryOptimizer............coiiiiiiiiniiniinenn.n. 443
OVEIVIBW . . .ttt e e 443
TreeFormat. ... ... 444
What Is Optimization?. . ... e 445
How the Query Optimizer Explores Query Plans........................ 446
RUIES. L 446
Properties . ... ..o 447
Storage of Alternatives—The “Memo”. ........................... 449

Operators ... ... 450




xiv Table of Contents

Optimizer Architecture . .......... 456
Before Optimization ........ ... .. 456
Simplification . ... ... 457
Trivial Plan/Auto-Parameterization............................... 457
Limitations. . ... ... 459
The Memo—Exploring Multiple Plans Efficiently................... 459

Statistics, Cardinality Estimation, and Costing. . ......................... 462
Statistics DesigN . . ... 463
Density/Frequency Information ........ ... ... ... . . 466
Filtered Statistics ........... o i 468
String Statistics . . ... 469
Cardinality Estimation Details ...................... .. ... 470
Limitations. .. ... 474
COStiNG. .« oo 475

Index Selection ... ... . 477
Filtered Indexes ... ..o 480
Indexed Views. . .. ... 482

Partitioned Tables. .. ... .. 486
Partition-Aligned Index Views. . ... i 490

Data Warehousing . ........ouuiiiii 490

Updates . . ..o 491
Halloween Protection ........ ... .. i 494
Split/Sort/Collapse. . . ... oo 495
MErge. .o 497
Wide Update Plans . ... 499
Sparse Column Updates. ... 502
Partitioned Updates. ........ ... ... 502
LOCKING . 505

Distributed QUery ... .. 507

Extended IndeXes. .. ... 510
Full-Text Indexes. . .. ..ot 510
XML INEXES . . o oo 510
Spatial Indexes . .. ... o 510

Plan Hinting. . ... ..o oo 511
Debugging Plan Issues . ........ .. 513
{HASH | ORDER} GROUP. . ... 514
{MERGE | HASH | CONCAT }UNION. . ... ..o 515

FORCE ORDER, {LOOP | MERGE | HASH}JOIN..................... 516




Table of Contents XV

INDEX=<indexname> | <indexid> .......... ... ..., 516
FORCESEEK . ...\t e 517

FAST <number_rows> . . ... i e 517
MAXDOP <N> .o 518
OPTIMIZE FOR . ..o e 518
PARAMETERIZATION {SIMPLE | FORCED} ..........coviiieinn... 520
NOEXPAND. . ...ttt 521

USE PLAN oo 521
SUMIMIATY e 523
9 Plan Caching and Recompilation ......................... 525
The Plan Cache. . ... e 525
Plan Cache Metadata .......... ... i 525
Clearing Plan Cache. . ... e 526
Caching Mechanisms. . ... . 527
Adhoc Query Caching. ... 528
Optimizing for Adhoc Workloads................................ 530
Simple Parameterization......... ... ... ... . 533
Prepared QUeries. ... ... 538
Compiled Objects . ... 540
Causes of Recompilation .............. i 543

Plan Cache Internals. . ... ... .. . 553
Cache StOresS . . ... 553
Compiled Plans. .. ... 555
Execution Contexts ... 555

Plan Cache Metadata .......... ... i 556
Handles ... ..o 556
SYS.Am_exec_Sqltext ... ... 557
sys.dm_exec_query plan . .............. . 558
sys.dm_exec_text_query plan......... ... ... . ... . . . ... 558
sys.dm_exec_cached_plans . ............. ... 559
sys.dm_exec_cached_plan_dependent objects. ..................... 559
SYS.AM_EXEC_reqUESES ... .. 560
Sys.dm_exec_query Stats. .. .............eiiiiiai 560
Cache Size Management .............. .. i 561
Costing of Cache Entries. .......... o 564
Objects in Plan Cache: The Big Picture. . .......... ... i, 565

Multiple Plansin Cache. ... ... . 567




xvi Table of Contents

When to Use Stored Procedures and Other Caching Mechanisms......... 568
Troubleshooting Plan Cache lssues. ................ i, 569
Wait Statistics Indicating Plan Cache Problems .................... 569
Other Caching ISSUES. . .. ..ot 571
Handling Problems with Compilation and Recompilation........... 572

Plan Guides and Optimization Hints. . . ....... ... ... ... .. ... ... 573
SUMMATY .« .o e e e 585
10 Transactionsand Concurrency ............c.coveueeennenn.. 587
Concurrency Models . ... ..o 587
Pessimistic CONCUITENCY ... ..ottt e e 587
Optimistic CONCUIMTENCY .. ..o vttt ittt e 588
Transaction Processing . .........ooiii 588
ACID Properties . . ... 589
Transaction Dependencies. . ... 590
[solation Levels. ... 592
LOCKING. . oo 596
Locking BasiCs. . . ..o oottt 596
SPINIOCKS . . e 597

Lock Types forUserData .........c.ovvuiiineniiiiieann.. 597

Lock Modes. . ... 598

Lock Granularity. ... 601

Lock Duration. . ... 608

Lock Ownership . ... 609
Viewing LOCKS. . ..o 609
Locking Examples. . . ... ..o o 612

Lock Compatibility....... ..o 618
Internal Locking Architecture. ....... ... .. 620
Lock Partitioning . .......... o i 622

Lock Blocks . ..o 623

Lock Owner BIocks. . ..o 624
syslockinfo Table. . ... ... . 624
Row-Level Locking vs. Page-Level Locking ............................. 627
Lock Escalation........ ... o 629
Deadlocks .. ... 630

ROW VErSIONING. . . ..o 635
Overview of Row Versioning . ..., 635

Row Versioning Details. ....... ... i 636
Snapshot-Based Isolation Levels . . ........... . ... . ... .. ... 637

Choosing a Concurrency Model . ..., 655



Table of Contents xvii

Controlling Locking . . ..o 657
Lock Hints .o oo 657
SUMMATY .. 661
11 DBCClinternals..........c.oiiuiiiiiiii it 663
Getting a Consistent View of the Database. ............................ 664
Obtaining a Consistent View . . ........... .. ... 665
Processing the Database Efficiently ........... ... ... ... 668
Fact Generation ... ... . 668
Using the Query Processor. . ... 670
Batches. . ..o 673
Reading the Pages to Process ..., 674
Parallelism .. ... 675
Primitive System Catalog Consistency Checks .......................... 677
Allocation Consistency Checks. ...........o i 679
Collecting Allocation Facts. . ........... i 679
Checking Allocation Facts ......... ... i 681
Per-Table Logical Consistency Checks ........... ... ..., .. 683
Metadata Consistency Checks. ........... .. i .. 684

Page Audit. . ... 685

Data and Index Page Processing. . ............ouuuiiiiiiiiinnn. 687
Column ProCessing ... ...ttt 689

Text Page Processing. .. ... 693
Cross-Page Consistency Checks .......... ..., 694
Cross-Table Consistency Checks .......... .o i i i 705
Service Broker Consistency Checks. . ...t 706
Cross-Catalog Consistency Checks. ...t 707
Indexed-View Consistency Checks ......... ... ... .. i 707
XML-Index Consistency Checks. ..., 708
Spatial-Index Consistency Checks. ................... oo i ... 709
DBCC CHECKDB OUEPUL . . . . e ettt et e et 709
Regular OUtpuUt. . . ..o 710

SQL Server Error Log Output. ... 712
Application Event Log Output. ... 713
Progress Reporting Qutput . ... 714
DBCC CHECKDB OptioNns . . ..o ottt 715
NOINDEX. .« ettt e 715
Repair OptioNns . . ... ot 716
ALL_ERRORMSGS . . .. 716

EXTENDED_LOGICAL_CHECKS. . ... 717




xviii Table of Contents

NOL_INFOMSGS. . . .ot 717
TABLOCK . . e 717
ESTIMATEONLY. . o e 717
PHYSICAL_ONLY. . .ot 718
DATA PURITY 719
Database Repairs . ... ... 719
Repair Mechanisms .. ... .. 720
Emergency Mode Repair ...... ... 721
What Data Was Deleted by Repair? ............. . ... ... 722
Consistency-Checking Commands Other Than DBCC CHECKDB . . .. ...... 723
DBCC CHECKALLOC . ..o 724
DBCC CHECKTABLE . . . ..o 725
DBCC CHECKFILEGROUP . .. .. 725
DBCC CHECKCATALOG. .. oo e 726
DBCC CHECKIDENT . . . ..o 726
DBCC CHECKCONSTRAINTS . . oo 727
SUMMIAIY .« .ottt e e e e 727
INdEX .o e 729

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/




Foreword

The developers who create products such as Microsoft SQL Server typically become experts
in one area of the technology, such as access methods or query execution. They live and
experience the product inside out and often know their component so deeply they acquire a
“curse of knowledge”: they possess so much detail about their particular domain, they find it
difficult to describe their work in a way that helps customers get the most out of the product.

Technical writers who create product-focused books, on the other hand, experience a
product outside in. Most of these authors acquire a broad, but somewhat shallow, surface
knowledge of the products they write about and produce valuable books, usually filled with
many screenshots, which help new and intermediate users quickly learn how to get things
done with the product.

When the curse of knowledge meets surface knowledge, it leaves a gap where many of

the great capabilities created by product developers don't get communicated in a way

that allows customers, particularly intermediate to advanced users, to use a product to

its full potential. This is where Microsoft SQL Server 2008 Internals comes in. This book,

like those in the earlier “Inside SQL Server” series, is the definitive reference for how SQL
Server really works. Kalen Delaney has been working with the SQL Server product team for
over a decade, spending countless hours with developers breaking through the curse of
knowledge and then capturing the result in an incredibly clear form that allows intermediate
to advanced users to wring the most from the capabilities of SQL Server. In Microsoft SQL
Server 2008 Internals, Kalen is joined by four SQL Server experts who also share the gift

of breaking the curse. Conor Cunningham and Paul Randal have years of experience as

SQL Server product developers, and each of them is both a deep technical expert and a
gifted communicator. Kimberly Tripp and Adam Machanic both combine a passion to really
understand how things work and to then effectively share it with others. Kimberly and Adam
are both standing-room-only speakers at SQL Server events. This team has captured and
incorporated the details of key architectural changes for SQL Server 2008, resulting in a new,
comprehensive internals reference for SQL Server.

There is a litmus test you can use to determine if a technical product title deserves a
“definitive reference” classification. It's a relatively easy test but a hard one for everybody to
conduct. The test, quite simply, is to look at how many of the developers who created the
product in question have a copy of the book on their shelves—and reference it. | can assure
you that each version of Inside Microsoft SQL Server that Kalen has produced has met this
test. Microsoft SQL Server 2008 Internals will, too.

Dave Campbell

Technical Fellow
Microsoft SQL Server

Xix






Introduction

The book you are now holding is the evolutionary successor to the Inside SQL Server series,
which included Inside SQL Server 6.5, Inside SQL Server 7, Inside SQL Server 2000, and Inside
SQL Server 2005 (in four volumes). The Inside series was becoming too unfocused, and the
name “Inside” had been usurped by other authors and even other publishers. | needed a title
that was much more indicative of what this book is really about.

SQL Server 2008 Internals tells you how SQL Server, Microsoft's flagship relational database
product, works. Along with that, | explain how you can use the knowledge of how it works
to help you get better performance from the product, but that is a side effect, not the goal.
There are dozens of other books on the market that describe tuning and best practices for
SQL Server. This one helps you understand why certain tuning practices work the way they
do, and it helps you determine your own best practices as you continue to work with SQL
Server as a developer, data architect, or DBA.

Who This Book Is For

This book is intended to be read by anyone who wants a deeper understanding of what
SQL Server does behind the scenes. The focus of this book is on the core SQL Server
engine—in particular, the query processor and the storage engine. | expect that you have
some experience with both the SQL Server engine and with the T-SQL language. You don't
have to be an expert in either, but it helps if you aspire to become an expert and would like
to find out all you can about what SQL Server is actually doing when you submit a query
for execution.

This series doesn't discuss client programming interfaces, heterogeneous queries, business
intelligence, or replication. In fact, most of the high-availability features are not covered, but
a few, such as mirroring, are mentioned at a high level when we discuss database property
settings. | don't drill into the details of some internal operations, such as security, because
that's such a big topic it deserves a whole volume of its own.

My hope is that you'll look at the cup as half full instead of half empty and appreciate this
book for what it does include. As for the topics that aren’t included, | hope you'll find the
information you need in other sources.

xxi



xxii Introduction

What This Book Is About

SQL Server Internals provides detailed information on the way that SQL Server processes
your queries and manages your data. It starts with an overview of the architecture of the SQL
Server relational database system and then continues looking at aspects of query processing
and data storage in 10 additional chapters, as follows:

B Chapter 1 SQL Server 2008 Architecture and Configuration

B Chapter 2 Change Tracking, Tracing, and Extended Events

B Chapter 3 Databases and Database Files

® Chapter4 Logging and Recovery

® Chapter5 Tables

B Chapter 6 Indexes: Internals and Management

B Chapter 7 Special Storage

B Chapter 8 The Query Optimizer

B Chapter 9 Plan Caching and Recompilation

B Chapter 10 Transactions and Concurrency

B Chapter 11 DBCC Internals
A twelfth chapter covering the details of reading query plans is available in the companion
content (which is described in the next section). This chapter, called "Query Execution,” was
part of my previous book, Inside SQL Server 2005: Query Tuning and Optimization. Because

99 percent of the chapter is still valid for SQL Server 2008, we have included it “as is” for your
additional reference.

Companion Content

This book features a companion Web site that makes available to you all the code used

in the book, organized by chapter. The companion content also includes an extra chapter
from my previous book, as well as the “History of SQL Server” chapter from my book

SQL Server 2000. The site also provides extra scripts and tools to enhance your experience
and understanding of SQL Server internals. As errors are found and reported, they will also
be posted online. You can access this content from the companion site at this address:
http://www.SQLServerinternals.com/companion.

System Requirements

To use the code samples, you'll need Internet access and a system capable of running SQL
Server 2008 Enterprise or Developer edition. To get system requirements for SQL Server 2008
and to obtain a trial version, go to http.//www.microsoft.com/downloads.



Introduction xxiii

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the
companion Web site. As corrections or changes are collected, they will be added to a
Microsoft Knowledge Base article.

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books/

Questions and Comments

If you have comments, questions, or ideas regarding the book, or questions that are
not answered by visiting the sites above, please send them to Microsoft Press via e-mail to

mspinput@microsoft.com
Or via postal mail to

Microsoft Press

Attn: Microsoft SQL Server 2008 Internals Editor
One Microsoft Way

Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above addresses.

Acknowledgments

As always, a work like this is not an individual effort, and for this current volume, it

is truer than ever. | was honored to have four other SQL Server experts join me in writing
SQL Server 2008 Internals, and | truly could not have written this book alone. | am grateful to
Adam Machanic, Paul Randal, Conor Cunningham, and Kimberly Tripp for helping to make
this book a reality. In addition to my brilliant co-authors, this book could never have seen the
light of day with help and encouragement from many other people.

First on my list is you, the readers. Thank you to all of you for reading what | have written.
Thank you to those who have taken the time to write to me about what you thought of the
book and what else you want to learn about SQL Server. | wish | could answer every question
in detail. | appreciate all your input, even when I'm unable to send you a complete reply. One
particular reader of one of my previous books, Inside SQL Server 2005: The Storage Engine,
deserves particular thanks. | came to know Ben Nevarez as a very astute reader who found
some uncaught errors and subtle inconsistencies and politely and succinctly reported them
to me through my Web site. After a few dozen e-mails, | started to look forward to Ben'’s
e-mails and was delighted when | finally got the chance to meet him. Ben is now my most
valued technical reviewer, and | am deeply indebted to him for his extremely careful reading
of every one of the chapters.



XXiv

Introduction

As usual, the SQL Server team at Microsoft has been awesome. Although Lubor Kollar and Sunil
Agarwal were not directly involved in much of the research for this book, | always knew they
were there in spirit, and both of them always had an encouraging word whenever | saw them.

Boris Baryshnikov, Kevin Farlee, Marcel van der Holst, Peter Byrne, Sangeetha Shekar, Robin
Dhamankar, Artem Oks, Srini Acharya, and Ryan Stonecipher met with me and responded
to my (sometimes seemingly endless) e-mails. Jerome Halmans, Joanna Omel, Nikunj Koolar,
Tres London, Mike Purtell, Lin Chan, and Dipti Sangani also offered valuable technical
insights and information when responding to my e-mails. | hope they all know how much

| appreciated every piece of information | received.

| am also indebted to Bob Ward, Bob Dorr, and Keith EImore of the SQL Server Product
Support team, not just for answering occasional questions but for making so much
information about SQL Server available through white papers, conference presentations,
and Knowledge Base articles. | am grateful to Alan Brewer and Gail Erickson for the great
job they and their User Education team did putting together the SQL Server documentation
in SQL Server Books Online.

And, of course, Buck Woody deserves my gratitude many times over. First from his job in the User
Education group, then as a member of the SQL Server development team, he was always there
when | had an unanswered question. His presentations and blog posts are always educational as
well as entertaining, and his generosity and unflagging good spirits are a true inspiration.

| would also like to thank Leona Lowry and Cheryl Walter for finding me office space in the same
building as most of the SQL Server team. The welcome they gave me was much appreciated.

| would like to extend my heartfelt thanks to all of the SQL Server MVPs, but most especially
Erland Sommarskog. Erland wrote the section in Chapter 5 on collations just because he
thought it was needed, and that someone who has to deal with only the 26 letters of the
English alphabet could never do it justice. Also deserving of special mention are Tibor Karaszi
and Roy Harvey, for all the personal support and encouragement they gave me. Other MVPs
who inspired me during the writing of this volume are Tony Rogerson, John Paul Cook, Steve
Kass, Paul Nielsen, Hugo Kornelis, Tom Moreau, and Linchi Shea. Being a part of the SQL Server
MVP team continues to be one of the greatest honors and privileges of my professional life.

| am deeply indebted to my students in my “SQL Server Internals” classes, not only for their
enthusiasm for the SQL Server product and for what | have to teach and share with them,
but for all they have to share with me. Much of what | have learned has been inspired by
questions from my curious students. Some of my students, such as Cindy Gross and Lara
Rubbelke, have become friends (in addition to becoming Microsoft employees) and continue
to provide ongoing inspiration.

Most important of all, my family continues to provide the rock-solid foundation | need to
do the work that | do. My husband, Dan, continues to be the guiding light of my life after
24 years of marriage. My daughter, Melissa, and my three sons, Brendan, Rickey, and Connor,



Introduction XXV

are now for the most part all grown, and are all generous, loving, and compassionate people.
| feel truly blessed to have them in my life.

Kalen Delaney

Paul Randal

I've been itching to write a complete description of what DBCC CHECKDB does for many
years now—not least to get it all out of my head and make room for something else! When
Kalen asked me to write the “Consistency Checking” chapter for this book, | jumped at the
chance, and for that my sincere thanks go to Kalen. I'd like to give special thanks to two
people from Microsoft, among the many great folks | worked with there (and in many cases
still do). The first is Ryan Stonecipher, who | hired away from being an Escalation Engineer
in SQL Product Support in late 2003 to work with me on DBCC, and who was suddenly
thrust into complete ownership of 100,000+ lines of DBCC code when | become the team
manager two months later. | couldn’t have asked for more capable hands to take over my
precious DBCC.... The second is Bob Ward, who heads up the SQL Product Support team
and has been a great friend since my early days at Microsoft. We must have collaborated
on hundreds of cases of corruption over the years, and I've yet to meet someone with more
drive for solving customer problems and improving Microsoft SQL Server. Thanks must also
go to Steve Lindell, the author of the original online consistency checking code for SQL
Server 2000, who spent many hours patiently explaining how it worked in 1999. Finally, I'd
like to thank my wife, Kimberly, who is, along with Katelyn and Kiera, the other passions in
my life apart from SQL Server.

Kimberly Tripp

First, | want to thank my good friend Kalen, for inviting me to participate in this title. After
working together in various capacities—even having formed a company together back

in 1996—it’s great to finally have our ideas and content together in a book as deep and
technical as this. In terms of performance tuning, indexes are critical; there's no better way
to improve a system than by creating the right indexes. However, knowing what'’s right takes
multiple components, some of which is only known after experience, after testing, and
after seeing something in action. For this, | want to thank many of you—readers, students,
conference attendees, customers—those of you who have asked the questions, shown me
interesting scenarios, and stayed late to “play” and/or just figure it out. It's the deep desire
to know why something is working the way that it is that keeps this product interesting to
me and has always made me want to dive deeper and deeper into understanding what's
really going on. For that, | thank the SQL team in general—the folks that I've met and
worked with over the years have been inspiring, intelligent, and insightful. Specifically,

| want to thank a few folks on the SQL team who have patiently, quickly, and thoroughly
responded to questions about what's really going on and often, why: Conor Cunningham,



XXVi

Introduction

Cesar Galindo-Legaria, and from my early days with SQL Server, Dave Campbell, Nigel Ellis,
and Rande Blackman. Gert E. R. Drapers requires special mention due to the many hours
spent together over the years where we talked, argued, and figured it out. And, to Paul, my
best friend and husband, who before that was also a good source of SQL information. We
just don't talk about it anymore ... at home. OK, maybe a little.

Conor Cunningham

I'd like to thank Bob Beauchemin and Milind Joshi for their efforts to review my chapter,

“The Query Optimizer,” in this book for technical correctness. I'd also like to thank Kimberly
Tripp and Paul Randal for their encouragement and support while | wrote this chapter. Finally,
I'd like to thank all the members of the SQL Server Query Processor team who answered
many technical questions for me.

Adam Machanic

| would like to, first and foremost, extend my thanks to Kalen Delaney for leading the effort
of this book from conception through reality. Kalen did a great job of keeping us focused
and on task, as well as helping to find those hidden nuggets of information that make a

book like this one great. A few Microsoft SQL Server team members dedicated their time to
helping review my work: Jerome Halmans and Fabricio Voznika from the Extended Events
team, and Mark Scurrell from the Change Tracking team. | would like to thank each of you for
keeping me honest, answering my questions, and improving the quality of my chapter.
Finally, | would like to thank Kate and Aura, my wife and daughter, who always understand
when | disappear into the office for a day or two around deadline time.



Chapter 1

SQL Server 2008 Architecture
and Configuration

Kalen Delaney

Microsoft SQL Server is Microsoft's premiere database management system, and

SQL Server 2008 is the most powerful and feature-rich version yet. In addition to the core
database engine, which allows you to store and retrieve large volumes of relational data,
and the world-class Query Optimizer, which determines the fastest way to process your
queries and access your data, dozens of other components increase the usability of your
data and make your data and applications more available and more scalable. As you can
imagine, no single book could cover all these features in depth. This book, SQL Server 2008
Internals, covers the main features of the core database engine.

Throughout this book, we'll delve into the details of specific features of the SQL Server Database
Engine. In this first chapter, you'll get a high-level view of the components of that engine

and how they work together. My goal is to help you understand how the topics covered in
subsequent chapters fit into the overall operations of the engine.

In this chapter, however, we'll dig deeper into one big area of the SQL Server Database Engine
that isn’t covered later: the SQL operating system (SQLOS) and, in particular, the components
related to memory management and scheduling. We'll also look at the metadata that SQL
Server makes available to allow you to observe the engine behavior and data organization.

SQL Server Editions

Each version of SQL Server comes in various editions, which you can think of as a subset of the
product features, with its own specific pricing and licensing requirements. Although we won't
be discussing pricing and licensing in this book, some of the information about editions is
important, because of the features that are available with each edition. The editions available
and the feature list that each supports is described in detail in SQL Server Books Online, but
here we will list the main editions. You can verify what edition you are running with the
following query:

SELECT SERVERPROPERTY('Edition');

There is also a server property called EngineEdition that you can inspect, as follows:

SELECT SERVERPROPERTY('EngineEdition');



2 Microsoft SQL Server 2008 Internals

The EngineEdition property returns a value of 2, 3, or 4 (1 is not a possible value), and this value
determines what features are available. A value of 3 indicates that your SQL Server edition is
either Enterprise, Enterprise Evaluation, or Developer. These three editions have exactly the
same features and functionality. If your EngineEdition value is 2, your edition is either Standard
or Workgroup, and fewer features are available. The features and behaviors discussed in this
book will be the ones available in one of these two engine editions. The features in Enterprise
edition (as well as in Developer edition and Enterprise Evaluation edition) that are not in
Standard edition generally relate to scalability and high-availability features, but there are
other Enterprise-only features as well. When we discuss such features that are considered
Enterprise-only, we'll let you know. For full details on what is in each edition, see the SQL Server
Books Online topic “Features Supported by the Editions of SQL Server 2008." (A value of 4 for
EngineEdition indicates that your SQL Server edition is an Express edition, which includes SQL
Server Express, SQL Server Express with Advanced Services, or Windows Embedded SQL. None
of these versions will be discussed specifically.) There is also a SERVERPROPERTY property
called EditionID, which allows you to differentiate between the specific editions within each

of the different EngineEdition values (that is, it allows you to differentiate between Enterprise,
Enterprise Evaluation, and Developer editions).

SQL Server Metadata

SQL Server maintains a set of tables that store information about all the objects, data types,
constraints, configuration options, and resources available to SQL Server. In SQL Server 2008,
these tables are called the system base tables. Some of the system base tables exist only in
the master database and contain system-wide information, and others exist in every database
(including master) and contain information about the objects and resources belonging to that
particular database. Beginning with SQL Server 2005, the system base tables are not always
visible by default, in master or any other database. You won't see them when you expand
the tables node in the Object Explorer in SQL Server Management Studio, and unless you are
a system administrator, you won't see them when you execute the sp_help system procedure.
If you log in as a system administrator and select from the catalog view (discussed shortly)
called sys.objects, you can see the names of all the system tables. For example, the following
query returns 58 rows of output on my SQL Server 2008 instance:

USE master;
SELECT name FROM sys.objects
WHERE type_desc = 'SYSTEM_TABLE';

But even as a system administrator, if you try to select data from one of the tables whose
names are returned by the preceding query, you get a 208 error, indicating that the object
name is invalid. The only way to see the data in the system base tables is to make a connection
using the dedicated administrator connection (DAC), which we'll tell you about in the section
entitled “The Scheduler,” later in this chapter. Keep in mind that the system base tables



Chapter 1 SQL Server 2008 Architecture and Configuration 3

are used for internal purposes only within the Database Engine and are not intended for
general use. They are subject to change, and compatibility is not guaranteed. In SQL Server
2008, there are three types of system metadata objects. One type is Dynamic Management
Objects, which we'll talk about later in this chapter when we discuss SQL Server scheduling
and memory management. These Dynamic Management Objects don't really correspond to
physical tables—they contain information gathered from internal structures to allow you to
observe the current state of your SQL Server instance. The other two types of system objects
are actually views built on top of the system base tables.

Compatibility Views

Although you were allowed to see data in the system tables in versions of SQL Server before
2005, you weren't encouraged to do this. Nevertheless, many people used system tables for
developing their own troubleshooting and reporting tools and techniques, providing result
sets that aren’t available using the supplied system procedures. You might assume that due
to the inaccessibility of the system base tables, you would have to use the DAC to utilize
your homegrown tools when using SQL Server 2005 or 2008. However, you still might be
disappointed. Many of the names and much of the content of the SQL Server 2000 system
tables have changed, so any code that used them is completely unusable even with the DAC.
The DAC is intended only for emergency access, and no support is provided for any other use
of it. To save you from this grief, SQL Server 2005 and 2008 offer a set of compatibility views
that allow you to continue to access a subset of the SQL Server 2000 system tables. These
views are accessible from any database, although they are created in the hidden resource
database.

Some of the compatibility views have names that might be quite familiar to you, such as
sysobjects, sysindexes, sysusers, and sysdatabases. Others, like sysmembers and sysmessages,
might be less familiar. For compatibility reasons, the views in SQL Server 2008 have the same
names as their SQL Server 2000 counterparts, as well as the same column names, which means
that any code that uses the SQL Server 2000 system tables won't break. However, when you
select from these views, you are not guaranteed to get exactly the same results that you get
from the corresponding tables in SQL Server 2000. In addition, the compatibility views do
not contain any metadata related to new SQL Server 2005 or 2008 features, such as partitioning
or the Resource Governor. You should consider the compatibility views to be for backward
compatibility only; going forward, you should consider using other metadata mechanisms,
such as the catalog view discussed in the next section. All these compatibility views will be
removed in a future version of SQL Server.

@I More Info You can find a complete list of names and the columns in these views in SQL Server
Books Online.



Microsoft SQL Server 2008 Internals

SQL Server 2005 and 2008 also provide compatibility views for the SQL Server 2000
pseudotables, such as sysprocesses and syscacheobjects. Pseudotables are tables that are
not based on data stored on disk but are built as needed from internal structures and can
be queried exactly as if they are tables. SQL Server 2005 replaced these pseudotables with
Dynamic Management Objects. Note that there is not always a one-to-one correspondence
between the SQL Server 2000 pseudotables and the SQL Server 2005 and SQL Server

2008 Dynamic Management Objects. For example, for SQL Server 2008 to retrieve all

the information available in sysprocesses, you must access three Dynamic Management
Objects: sys.dm_exec_connections, sys.dm_exec_sessions, and sys.dm_exec_requests.

Catalog Views

SQL Server 2005 introduced a set of catalog views as a general interface to the persisted
system metadata. All the catalog views (as well as the Dynamic Management Objects and
compatibility views) are in the sys schema, and you must reference the schema name when
you access the objects. Some of the names are easy to remember because they are similar to
the SQL Server 2000 system table names. For example, there is a catalog view called objects
in the sys schema, so to reference the view, the following can be executed:

SELECT * FROM sys.objects;

Similarly, there are catalog views called sys.indexes and sys.databases, but the columns
displayed for these catalog views are very different from the columns in the compatibility
views. Because the output from these types of queries is too wide to reproduce, let me just
suggest that you run these two queries yourself and observe the difference:

SELECT * FROM sys.databases;
SELECT * FROM sysdatabases;

The sysdatabases compatibility view is in the sys schema, so you can reference it as sys.sysdatabases.
You can also reference it using dbo.sysdatabases. But again, for compatibility reasons, the schema
name is not required, as it is for the catalog views. (That is, you cannot simply select from a view
called databases; you must use the schema sys as a prefix,)

When you compare the output from the two preceding queries, you might notice that
there are a lot more columns in the sys.databases catalog view. Instead of a bitmap

status field that needs to be decoded, each possible database property has its own column
in sys.databases. With SQL Server 2000, running the system procedure sp_helpdb decodes
all these database options, but because sp_helpdb is a procedure, it is difficult to filter the
results. As a view, sys.databases can be queried and filtered. For example, if you want to
know which databases are in simple recovery mode, you can run the following:

SELECT name FROM sys.databases
WHERE recovery_model_desc = 'SIMPLE';



Chapter 1 SQL Server 2008 Architecture and Configuration 5

The catalog views are built on an inheritance model, so sets of attributes common to many
objects don't have to be redefined internally. For example, sys.objects contains all the columns
for attributes common to all types of objects, and the views sys.tables and sys.views contain
all the same columns as sys.objects, as well as some additional columns that are relevant only
to the particular type of objects. If you select from sys.objects, you get 12 columns, and if you
then select from sys.tables, you get exactly the same 12 columns in the same order, plus 15
additional columns that aren't applicable to all types of objects but are meaningful for tables.
In addition, although the base view sys.objects contains a subset of columns compared to the
derived views such as sys.tables, it contains a superset of rows compared to a derived view.
For example, the sys.objects view shows metadata for procedures and views in addition to
that for tables, whereas the sys.tables view shows only rows for tables. So | can summarize the
relationship between the base view and the derived views as follows: “The base views contain
a subset of columns and a superset of rows, and the derived views contain a superset of
columns and a subset of rows.”

Just as in SQL Server 2000, some of the metadata appears only in the master database, and
it keeps track of system-wide data, such as databases and logins. Other metadata is available in
every database, such as objects and permissions. The SQL Server Books Online topic "Mapping
System Tables to System Views" categorizes its objects into two lists—those appearing only

in master and those appearing in all databases. Note that metadata appearing only in the
msdb database is not available through catalog views but is still available in system tables,
in the schema dbo. This includes metadata for backup and restore, replication, Database
Maintenance Plans, Integration Services, log shipping, and SQL Server Agent.

As views, these metadata objects are based on an underlying Transact-SQL (T-SQL) definition.

The most straightforward way to see the definition of these views is by using the object_definition
function. (You can also see the definition of these system views by using sp_helptext or by selecting
from the catalog view sys.system_sql_modules.) So to see the definition of sys.tables, you can
execute the following:

SELECT object_definition (object_id('sys.tables'));

If you execute the preceding SELECT statement, you'll see that the definition of sys.tables
references several completely undocumented system objects. On the other hand, some system
object definitions refer only to objects that are documented. For example, the definition of
the compatibility view syscacheobjects refers only to three Dynamic Management Objects
(one view, sys.dm_exec_cached_plans, and two functions, sys.dm_exec_sql_text and
sys.dm_exec_plan_attributes) that are fully documented.

1

The metadata with names starting with ‘sys.dm_’, such as the just-mentioned sys.dm_exec_
cached_plans, are considered Dynamic Management Objects, and we'll be discussing them in
the next section when we discuss the SQL Server Database Engine's behavior.



Microsoft SQL Server 2008 Internals

Other Metadata

Although the catalog views are the recommended interface for accessing the SQL Server
2008 catalog, other tools are available as well.

Information Schema Views

Information schema views, introduced in SQL Server 7.0, were the original system table—
independent view of the SQL Server metadata. The information schema views included

in SQL Server 2008 comply with the SQL-92 standard and all these views are in a schema
called INFORMATION_SCHEMA. Some of the information available through the catalog

views is available through the information schema views, and if you need to write a portable
application that accesses the metadata, you should consider using these objects. However, the
information schema views only show objects that are compatible with the SQL-92 standard.
This means there is no information schema view for certain features, such as indexes, which are
not defined in the standard. (Indexes are an implementation detail.) If your code does not need
to be strictly portable, or if you need metadata about nonstandard features such as indexes,
filegroups, the CLR, and SQL Server Service Broker, we suggest using the Microsoft-supplied
catalog views. Most of the examples in the documentation, as well as in this and other
reference books, are based on the catalog view interface.

System Functions

Most SQL Server system functions are property functions, which were introduced in SQL
Server 7.0 and greatly enhanced in SQL Server 2000. SQL Server 2005 and 2008 have enhanced
these functions still further. Property functions give us individual values for many SQL Server
objects and also for SQL Server databases and the SQL Server instance itself. The values
returned by the property functions are scalar as opposed to tabular, so they can be used as values
returned by SELECT statements and as values to populate columns in tables. Here is the list of
property functions available in SQL Server 2008:

®  SERVERPROPERTY

® COLUMNPROPERTY

m DATABASEPROPERTY

B DATABASEPROPERTYEX

®  INDEXPROPERTY

®  INDEXKEY_PROPERTY

B OBJECTPROPERTY

B OBJECTPROPERTYEX

B SQL_VARIANT_PROPERTY
B FILEPROPERTY



Chapter 1 SQL Server 2008 Architecture and Configuration 7
B FILEGROUPPROPERTY
B TYPEPROPERTY
m CONNECTIONPROPERTY
B ASSEMBLYPROPERTY

The only way to find out what the possible property values are for the various functions is to
check SQL Server Books Online.

Some of the information returned by the property functions can also be seen using the catalog
views. For example, the DATABASEPROPERTYEX function has a property called Recovery that
returns the recovery model of a database. To view the recovery model of a single database,
you can use the property function as follows:

SELECT DATABASEPROPERTYEX('msdb', 'Recovery');
To view the recovery models of all our databases, you can use the sys.databases view:

SELECT name, recovery_model, recovery_model_desc
FROM sys.databases;

Note Columns with names ending in _desc are the so-called friendly name columns, and they
are always paired with another column that is much more compact, but cryptic. In this case, the
recovery_model column is a tinyint with a value of 1, 2, or 3. Both columns are available in the
view because different consumers have different needs. For example, internally at Microsoft, the
teams building the internal interfaces wanted to bind to more compact columns, whereas DBAs
running adhoc queries might prefer the friendly names.

In addition to the property functions, the system functions include functions that are

merely shortcuts for catalog view access. For example, to find out the database ID for the
AdventureWorks2008 database, you can either query the sys.databases catalog view or use the
DB_ID() function. Both of the following SELECT statements should return the same result:

SELECT database_id
FROM sys.databases
WHERE name = 'AdventureWorks2008';

SELECT DB_ID('AdventureWorks2008"');

System Stored Procedures

System stored procedures are the original metadata access tool, in addition to the system
tables themselves. Most of the system stored procedures introduced in the very first version
of SQL Server are still available. However, catalog views are a big improvement over these
procedures: you have control over how much of the metadata you see because you can
query the views as if they were tables. With the system stored procedures, you basically
have to accept the data that it returns. Some of the procedures allow parameters, but they
are very limited. So for the sp_helpdb procedure, you can pass a parameter to see just one



8 Microsoft SQL Server 2008 Internals

database’s information or not pass a parameter and see information for all databases.
However, if you want to see only databases that the login sue owns, or just see databases
that are in a lower compatibility level, you cannot do it using the supplied stored procedure.
Using the catalog views, these queries are straightforward:

SELECT name FROM sys.databases
WHERE suser_sname(owner_sid) ='sue';

SELECT name FROM sys.databases
WHERE compatibility_level < 90;

Metadata Wrap-Up

Figure 1-1 shows the multiple layers of metadata available in SQL Server 2008, with the lowest
layer being the system base tables (the actual catalog). Any interface that accesses the
information contained in the system base tables is subject to the metadata security policies.
For SQL Server 2008, that means that no users can see any metadata that they don't need to
see or to which they haven't specifically been granted permissions. (There are a few exceptions,
but they are very minor) The “other metadata” refers to system information not contained in
system tables, such as the internal information provided by the Dynamic Management Objects.
Remember that the preferred interfaces to the system metadata are the catalog views and
system functions. Although not all the compatibility views, INFORMATION_SCHEMA views,
and system procedures are actually defined in terms of the catalog views, conceptually it is
useful to think of them as another layer on top of the catalog view interface.

Backward Compatible Views
INFORMATION_SCHEMA Views

Catalog Views
Built-in Functions

Metadata Security Layer

Other

SQL Server 2008 Catalog — Persisted State Metadata

FIGURE 1-1 Layers of metadata in SQL Server 2008

Components of the SQL Server Engine

Figure 1-2 shows the general architecture of SQL Server, which has four major components.
Three of those components, along with their subcomponents are shown in the figure: the
relational engine (also called the query processor), the storage engine, and the SQLOS.



Chapter 1 SQL Server 2008 Architecture and Configuration 9

(The fourth component is the protocol layer, which is not shown.) Every batch submitted

to SQL Server for execution, from any client application, must interact with these four
components. (For simplicity, I've made some minor omissions and simplifications and ignored
certain "helper” modules among the subcomponents.)

The protocol layer receives the request and translates it into a form that the relational
engine can work with, and it also takes the final results of any queries, status messages, or
error messages and translates them into a form the client can understand before sending
them back to the client. The relational engine layer accepts T-SQL batches and determines
what to do with them. For T-SQL queries and programming constructs, it parses, compiles,
and optimizes the request and oversees the process of executing the batch. As the batch

is executed, if data is needed, a request for that data is passed to the storage engine. The
storage engine manages all data access, both through transaction-based commands and
bulk operations such as backup, bulk insert, and certain DBCC commands. The SQLOS layer
handles activities that are normally considered to be operating system responsibilities, such
as thread management (scheduling), synchronization primitives, deadlock detection, and
memory management, including the buffer pool.

Language Processing
(Parse/Bind, Statement/Batch Execution)

Storage Engine (Access Methods, Database Page
Cache, Locking, Transactions, ...)

£

g § Query Optimization Query Execution

(d

A2

23 (PIaAn Genergti_on, Vievy (Query Operators, - c

2 < Matching, Statistics, Costing) Memory Grants, Parallelism) =
o =

ga 2

32

g g

o w

=

" dDg 'a103s89y/dmydeg ‘DD4q)

(

SQLOS (Schedulers, Buffer Pool, Memory
Management, Synchronization Primitives, ...)

FIGURE 1-2 The major components of the SQL Server Database Engine

Observing Engine Behavior

SQL Server 2008 includes a suite of system objects that allow developers and database
administrators to observe much of the internals of SQL Server. These metadata objects,
introduced in SQL Server 2005, are called Dynamic Management Objects. These objects
include both views and functions, but the vast majority are views. (Dynamic Management
Objects are frequently referred to as Dynamic Management Views (DMVs) to reflect the
fact that most of the objects are views.) You can access these metadata objects as if they
reside in the sys schema, which exists in every SQL Server 2008 database, but they are
not real tables that are stored on disk. They are similar to the pseudotables used in SQL
Server 2000 for observing the active processes (sysprocesses) or the contents of the plan



10

Microsoft SQL Server 2008 Internals

cache (syscacheobjects). However, the pseudotables in SQL Server 2000 do not provide any
tracking of detailed resource usage and are not always directly usable to detect resource
problems or state changes. Some of the DMVs allow tracking of detailed resource history,
and there are more than 100 such objects that you can directly query and join with SQL
SELECT statements, although not all of these objects are documented. The DMVs expose
changing server state information that might span multiple sessions, multiple transactions,
and multiple user requests. These objects can be used for diagnostics, memory and process
tuning, and monitoring across all sessions in the server. They also provide much of the data
available through the Management Data Warehouse's performance reports, which is a new
feature in SQL Server 2008. (Note that sysprocesses and syscacheobjects are still available as
compatibility views, which we mentioned in the section “SQL Server Metadata,” earlier in
this chapter.)

The DMVs aren’t based on real tables stored in database files but are based on internal server
structures, some of which we'll discuss in this chapter. We'll discuss further details about the
DMVs in various places in this book, where the contents of one or more of the objects can
illuminate the topics being discussed. The objects are separated into several categories based
on the functional area of the information they expose. They are all in the sys schema and
have a name that starts with dm_, followed by a code indicating the area of the server with
which the object deals. The main categories we'll address are the following:

dm_exec_*
Contains information directly or indirectly related to the execution of user code
and associated connections. For example, sys.dm_exec_sessions returns one row per
authenticated session on SQL Server. This object contains much of the same information
that sysprocesses contains but has even more information about the operating
environment of each session.

dm_os_*
Contains low-level system information such as memory, locking, and scheduling.
For example, sys.dm_os_schedulers is a DMV that returns one row per scheduler. It is
primarily used to monitor the condition of a scheduler or to identify runaway tasks.

dm_tran_*
Contains details about current transactions. For example, sys.dm_tran_locks returns
information about currently active lock resources. Each row represents a currently
active request to the lock management component for a lock that has been granted
or is waiting to be granted.

dm_io_*
Keeps track of 1/0 activity on networks and disks. For example, the function
sys.dm_io_virtual_file_stats returns 1/O statistics for data and log files.

dm_db_*
Contains details about databases and database objects such as indexes. For example,
sys.dm_db_index_physical_stats is a function that returns size and fragmentation
information for the data and indexes of the specified table or view.



Chapter 1  SQL Server 2008 Architecture and Configuration 11

SQL Server 2008 also has Dynamic Management Objects for many of its functional
components; these include objects for monitoring full-text search catalogs, change data
capture (CDC) information, service broker, replication, and the CLR.

Now let's look at the major components of the SQL Server Database Engine.

Protocols

When an application communicates with the Database Engine, the application programming
interfaces (APIs) exposed by the protocol layer formats the communication using a
Microsoft-defined format called a tabular data stream (TDS) packet. The SQL Server Network
Interface (SNI) protocol layer on both the server and client computers encapsulates the TDS
packet inside a standard communication protocol, such as TCP/IP or Named Pipes. On the
server side of the communication, the network libraries are part of the Database Engine. On
the client side, the network libraries are part of the SQL Native Client. The configuration of
the client and the instance of SQL Server determine which protocol is used.

SQL Server can be configured to support multiple protocols simultaneously, coming from
different clients. Each client connects to SQL Server with a single protocol. If the client
program does not know which protocols SQL Server is listening on, you can configure
the client to attempt multiple protocols sequentially. The following protocols are
available:

Shared Memory The simplest protocol to use, with no configurable settings. Clients using
the Shared Memory protocol can connect only to a SQL Server instance running
on the same computer, so this protocol is not useful for most database activity.
Use this protocol for troubleshooting when you suspect that the other protocols
are configured incorrectly. Clients using MDAC 2.8 or earlier cannot use the Shared
Memory protocol. If such a connection is attempted, the client is switched to the
Named Pipes protocol.

Named Pipes A protocol developed for local area networks (LANs). A portion of memory is
used by one process to pass information to another process, so that the output of one
is the input of the other. The second process can be local (on the same computer as the
first) or remote (on a networked computer).

TCP/IP The most widely used protocol over the Internet. TCP/IP can communicate across
interconnected networks of computers with diverse hardware architectures and operating
systems. It includes standards for routing network traffic and offers advanced security
features. Enabling SQL Server to use TCP/IP requires the most configuration effort, but
most networked computers are already properly configured.

Virtual Interface Adapter (VIA) A protocol that works with VIA hardware. This is a specialized
protocol; configuration details are available from your hardware vendor.



12

Microsoft SQL Server 2008 Internals

Tabular Data Stream Endpoints

SQL Server 2008 also allows you to create a TDS endpoint, so that SQL Server listens on an
additional TCP port. During setup, SQL Server automatically creates an endpoint for each

of the four protocols supported by SQL Server, and if the protocol is enabled, all users have
access to it. For disabled protocols, the endpoint still exists but cannot be used. An additional
endpoint is created for the DAC, which can be used only by members of the sysadmin fixed
server role. (We'll discuss the DAC in more detail shortly.)

The Relational Engine

As mentioned earlier, the relational engine is also called the query processor. It includes the
components of SQL Server that determine exactly what your query needs to do and the
best way to do it. In Figure 1-2, the relational engine is shown as two primary components:
Query Optimization and Query Execution. By far the most complex component of the query
processor, and maybe even of the entire SQL Server product, is the Query Optimizer, which
determines the best execution plan for the queries in the batch. The Query Optimizer is
discussed in great detail in Chapter 8, “The Query Optimizer”; in this section, we'll give you
just a high-level overview of the Query Optimizer as well as of the other components of the
query processor.

The relational engine also manages the execution of queries as it requests data from the
storage engine and processes the results returned. Communication between the relational
engine and the storage engine is generally in terms of OLE DB row sets. (Row set is the
OLE DB term for a result set) The storage engine comprises the components needed to
actually access and modify data on disk.

The Command Parser

The command parser handles T-SQL language events sent to SQL Server. It checks for proper
syntax and translates T-SQL commands into an internal format that can be operated on. This
internal format is known as a query tree. If the parser doesn't recognize the syntax, a syntax
error is immediately raised that identifies where the error occurred. However, nonsyntax
error messages cannot be explicit about the exact source line that caused the error. Because
only the command parser can access the source of the statement, the statement is no longer
available in source format when the command is actually executed.

The Query Optimizer

The Query Optimizer takes the query tree from the command parser and prepares it for
execution. Statements that can’t be optimized, such as flow-of-control and Data Definition
Language (DDL) commands, are compiled into an internal form. The statements that are



Chapter 1  SQL Server 2008 Architecture and Configuration 13

optimizable are marked as such and then passed to the Query Optimizer. The Query Optimizer
is mainly concerned with the Data Manipulation Language (DML) statements SELECT, INSERT,
UPDATE, and DELETE, which can be processed in more than one way, and it is the Query
Optimizer's job to determine which of the many possible ways is the best. It compiles an

entire command batch, optimizes queries that are optimizable, and checks security. The query
optimization and compilation result in an execution plan.

The first step in producing such a plan is to normalize each query, which potentially breaks
down a single query into multiple, fine-grained queries. After the Query Optimizer normalizes
a query, it optimizes it, which means that it determines a plan for executing that query. Query
optimization is cost-based; the Query Optimizer chooses the plan that it determines would
cost the least based on internal metrics that include estimated memory requirements, CPU
utilization, and number of required I/Os. The Query Optimizer considers the type of statement
requested, checks the amount of data in the various tables affected, looks at the indexes
available for each table, and then looks at a sampling of the data values kept for each index or
column referenced in the query. The sampling of the data values is called distribution statistics.
(Statistics will be discussed in detail in Chapter 8.) Based on the available information, the
Query Optimizer considers the various access methods and processing strategies that it could
use to resolve a query and chooses the most cost-effective plan.

The Query Optimizer also uses pruning heuristics to ensure that optimizing a query doesn’t
take longer than it would take to simply choose a plan and execute it. The Query Optimizer
doesn't necessarily perform exhaustive optimization. Some products consider every

possible plan and then choose the most cost-effective one. The advantage of this exhaustive
optimization is that the syntax chosen for a query theoretically never causes a performance
difference, no matter what syntax the user employed. But with a complex query, it could take
much longer to estimate the cost of every conceivable plan than it would to accept a good
plan, even if it is not the best one, and execute it.

After normalization and optimization are completed, the normalized tree produced by those
processes is compiled into the execution plan, which is actually a data structure. Each command
included in it specifies exactly which table will be affected, which indexes will be used (if any),
which security checks must be made, and which criteria (such as equality to a specified value)
must evaluate to TRUE for selection. This execution plan might be considerably more complex
than is immediately apparent. In addition to the actual commands, the execution plan includes
all the steps necessary to ensure that constraints are checked. Steps for calling a trigger are
slightly different from those for verifying constraints. If a trigger is included for the action
being taken, a call to the procedure that comprises the trigger is appended. If the trigger is an
instead-of trigger, the call to the trigger’s plan replaces the actual data modification command.
For after triggers, the trigger's plan is branched to right after the plan for the modification
statement that fired the trigger, before that modification is committed. The specific steps for
the trigger are not compiled into the execution plan, unlike those for constraint verification.



14

Microsoft SQL Server 2008 Internals

A simple request to insert one row into a table with multiple constraints can result in an
execution plan that requires many other tables to be accessed or expressions to be evaluated
as well. In addition, the existence of a trigger can cause many more steps to be executed.
The step that carries out the actual INSERT statement might be just a small part of the total
execution plan necessary to ensure that all actions and constraints associated with adding a
row are carried out.

The Query Executor

The query executor runs the execution plan that the Query Optimizer produced, acting as
a dispatcher for all the commands in the execution plan. This module steps through each
command of the execution plan until the batch is complete. Most of the commands require
interaction with the storage engine to modify or retrieve data and to manage transactions
and locking. More information on query execution, and execution plans, is available on the
companion Web site, http://www.SQLServerInternals.com/companion.

The Storage Engine

The SQL Server storage engine includes all the components involved with the accessing and
managing of data in your database. In SQL Server 2008, the storage engine is composed of
three main areas: access methods, locking and transaction services, and utility commands.

Access Methods

When SQL Server needs to locate data, it calls the access methods code. The access methods
code sets up and requests scans of data pages and index pages and prepares the OLE DB

row sets to return to the relational engine. Similarly, when data is to be inserted, the access
methods code can receive an OLE DB row set from the client. The access methods code contains
components to open a table, retrieve qualified data, and update data. The access methods
code doesn't actually retrieve the pages; it makes the request to the buffer manager, which
ultimately serves up the page in its cache or reads it to cache from disk. When the scan starts, a
look-ahead mechanism qualifies the rows or index entries on a page. The retrieving of rows that
meet specified criteria is known as a qualified retrieval. The access methods code is employed
not only for SELECT statements but also for qualified UPDATE and DELETE statements (for
example, UPDATE with a WHERE clause) and for any data modification operations that need to
modify index entries. Some types of access methods are listed below.

Row and Index Operations You can consider row and index operations to be components
of the access methods code because they carry out the actual method of access. Each
component is responsible for manipulating and maintaining its respective on-disk data
structures—namely, rows of data or B-tree indexes, respectively. They understand and
manipulate information on data and index pages.



Chapter 1  SQL Server 2008 Architecture and Configuration 15

The row operations code retrieves, modifies, and performs operations on individual rows.

It performs an operation within a row, such as “retrieve column 2" or "write this value to
column 3.” As a result of the work performed by the access methods code, as well as by the
lock and transaction management components (discussed shortly), the row is found and
appropriately locked as part of a transaction. After formatting or modifying a row in memory,
the row operations code inserts or deletes a row. There are special operations that the row
operations code needs to handle if the data is a Large Object (LOB) data type—text, image,
or ntext—or if the row is too large to fit on a single page and needs to be stored as overflow
data. We'll look at the different types of data storage structures in Chapters 5, “Tables,” 6,
“Indexes: Internals and Management,” and 7, “Special Storage.”

The index operations code maintains and supports searches on B-trees, which are used for

SQL Server indexes. An index is structured as a tree, with a root page and intermediate-level

and lower-level pages. (If the tree is very small, there might not be intermediate-level pages.)

A B-tree groups records that have similar index keys, thereby allowing fast access to data

by searching on a key value. The B-tree’s core feature is its ability to balance the index tree.

(B stands for balanced.) Branches of the index tree are spliced together or split apart as necessary
so that the search for any given record always traverses the same number of levels and therefore
requires the same number of page accesses.

Page Allocation Operations The allocation operations code manages a collection of pages
for each database and keeps track of which pages in a database have already been used, for
what purpose they have been used, and how much space is available on each page. Each
database is a collection of 8-KB disk pages that are spread across one or more physical files.
(In Chapter 3, “Databases and Database Files,” you'll find more details about the physical
organization of databases.)

SQL Server uses 13 types of disk pages. The ones we'll be discussing in this book are data
pages, two types of LOB pages, row-overflow pages, index pages, Page Free Space (PFS)
pages, Global Allocation Map and Shared Global Allocation Map (GAM and SGAM) pages,
Index Allocation Map (IAM) pages, Bulk Changed Map (BCM) pages, and Differential Changed
Map (DCM) pages.

All user data is stored on data or LOB pages, and all index rows are stored on index pages. PFS
pages keep track of which pages in a database are available to hold new data. Allocation pages
(GAMs, SGAMs, and |AMs) keep track of the other pages. They contain no database rows and
are used only internally. BCM and DCM pages are used to make backup and recovery more
efficient. We'll explain these types of pages in Chapters 3 and 4, “Logging and Recovery.”

Versioning Operations Another type of data access, which was added to the product in SQL
Server 2005, is access through the version store. Row versioning allows SQL Server to maintain
older versions of changed rows. The row versioning technology in SQL Server supports
Snapshot isolation as well as other features of SQL Server 2008, including online index builds
and triggers, and it is the versioning operations code that maintains row versions for whatever
purpose they are needed.



16

Microsoft SQL Server 2008 Internals

Chapters 3, 5, 6, and 7 deal extensively with the internal details of the structures that the
access methods code works with: databases, tables, and indexes.

Transaction Services

A core feature of SQL Server is its ability to ensure that transactions are atomic—that is, all or
nothing. In addition, transactions must be durable, which means that if a transaction has been
committed, it must be recoverable by SQL Server no matter what—even if a total system failure
occurs one millisecond after the commit was acknowledged. There are actually four properties
that transactions must adhere to: atomicity, consistency, isolation, and durability, called the ACID
properties. we'll discuss all four of these properties in Chapter 10, “Transactions and Concurrency,”
when we discuss transaction management and concurrency issues.

In SQL Server, if work is in progress and a system failure occurs before the transaction is
committed, all the work is rolled back to the state that existed before the transaction began.
Write-ahead logging makes it possible to always roll back work in progress or roll forward
committed work that has not yet been applied to the data pages. Write-ahead logging
ensures that the record of each transaction’s changes is captured on disk in the transaction
log before a transaction is acknowledged as committed, and that the log records are always
written to disk before the data pages where the changes were actually made are written.
Writes to the transaction log are always synchronous—that is, SQL Server must wait for
them to complete. Writes to the data pages can be asynchronous because all the effects
can be reconstructed from the log if necessary. The transaction management component
coordinates logging, recovery, and buffer management. These topics are discussed later in
this book; at this point, we'll just look briefly at transactions themselves.

The transaction management component delineates the boundaries of statements that must
be grouped together to form an operation. It handles transactions that cross databases
within the same SQL Server instance, and it allows nested transaction sequences. (However,
nested transactions simply execute in the context of the first-level transaction; no special
action occurs when they are committed. And a rollback specified in a lower level of a nested
transaction undoes the entire transaction.) For a distributed transaction to another SQL
Server instance (or to any other resource manager), the transaction management component
coordinates with the Microsoft Distributed Transaction Coordinator (MS DTC) service using
operating system remote procedure calls. The transaction management component marks
save points—points you designate within a transaction at which work can be partially rolled
back or undone.

The transaction management component also coordinates with the locking code regarding
when locks can be released, based on the isolation level in effect. It also coordinates with the
versioning code to determine when old versions are no longer needed and can be removed
from the version store. The isolation level in which your transaction runs determines how
sensitive your application is to changes made by others and consequently how long your
transaction must hold locks or maintain versioned data to protect against those changes.



Chapter 1  SQL Server 2008 Architecture and Configuration 17

SQL Server 2008 supports two concurrency models for guaranteeing the ACID properties of
transactions: optimistic concurrency and pessimistic concurrency. Pessimistic concurrency
guarantees correctness and consistency by locking data so that it cannot be changed; this

is the concurrency model that every version of SQL Server prior to SQL Server 2005 used
exclusively, and it is the default in both SQL Server 2005 and SQL Server 2008. SQL Server
2005 introduced optimistic concurrency, which provides consistent data by keeping older
versions of rows with committed values in an area of tempdb called the version store. With
optimistic concurrency, readers do not block writers and writers do not block readers, but
writers still block writers. The cost of these nonblocking reads and writes must be considered.
To support optimistic concurrency, SQL Server needs to spend more time managing the
version store. In addition, administrators have to pay close attention to the tempdb database
and plan for the extra maintenance it requires.

Five isolation-level semantics are available in SQL Server 2008. Three of them support
only pessimistic concurrency: Read Uncommitted, Repeatable Read, and Serializable.
Snapshot isolation level supports optimistic concurrency. The default isolation level, Read
Committed, can support either optimistic or pessimistic concurrency, depending on a
database setting.

The behavior of your transactions depends on the isolation level and the concurrency
model you are working with. A complete understanding of isolation levels also requires an
understanding of locking because the topics are so closely related. The next section gives
an overview of locking; you'll find more detailed information on isolation, transactions, and
concurrency management in Chapter 10.

Locking Operations Locking is a crucial function of a multiuser database system such as
SQL Server, even if you are operating primarily in the Snapshot isolation level with optimistic
concurrency. SQL Server lets you manage multiple users simultaneously and ensures that the
transactions observe the properties of the chosen isolation level. Even though readers do not
block writers and writers do not block readers in Snapshot isolation, writers do acquire locks
and can still block other writers, and if two writers try to change the same data concurrently,
a conflict occurs that must be resolved. The locking code acquires and releases various types
of locks, such as share locks for reading, exclusive locks for writing, intent locks taken at a
higher granularity to signal a potential “plan” to perform some operation, and extent locks
for space allocation. It manages compatibility between the lock types, resolves deadlocks,
and escalates locks if needed. The locking code controls table, page, and row locks as well as
system data locks.

Note Concurrency, with locks or row versions, is an important aspect of SQL Server. Many
developers are keenly interested in it because of its potential effect on application performance.
Chapter 10 is devoted to the subject, so we won't go into it further here.



18 Microsoft SQL Server 2008 Internals

Other Operations

Also included in the storage engine are components for controlling utilities such as bulk-load,
DBCC commands, full-text index population and management, and backup and restore
operations. DBCC is discussed in detail in Chapter 11, “DBCC Internals.” The log manager
makes sure that log records are written in a manner to guarantee transaction durability and
recoverability; we'll go into detail about the transaction log and its role in backup and restore
operations in Chapter 4.

The SQLOS

The SQLOS is a separate application layer at the lowest level of the SQL Server Database
Engine, that both SQL Server and SQL Reporting Services run atop. Earlier versions of SQL
Server have a thin layer of interfaces between the storage engine and the actual operating
system through which SQL Server makes calls to the operating system for memory allocation,
scheduler resources, thread and worker management, and synchronization objects. However,
the services in SQL Server that needed to access these interfaces can be in any part of the
engine. SQL Server requirements for managing memory, schedulers, synchronization objects,
and so forth have become more complex. Rather than each part of the engine growing to
support the increased functionality, a single application layer has been designed to manage
all operating system resources that are specific to SQL Server.

The two main functions of SQLOS are scheduling and memory management, both of which
we'll talk about in detail later in this section. Other functions of SQLOS include the following:

Synchronization Synchronization objects include spinlocks, mutexes, and special reader/
writer locks on system resources.

Memory Brokers Memory brokers distribute memory allocation between various
components within SQL Server, but do not perform any allocations, which are handled
by the Memory Manager.

SQL Server Exception Handling Exception handling involves dealing with user errors as
well as system-generated errors.

Deadlock Detection The deadlock detection mechanism doesn't just involve locks, but
checks for any tasks holding onto resources, that are mutually blocking each other.
We'll talk about deadlocks involving locks (by far the most common kind) in
Chapter 10.

Extended Events Tracking extended events is similar to the SQL Trace capability, but is
much more efficient because the tracking runs at a much lower level than SQL Trace.
In addition, because the extended event layer is so low and deep, there are many more
types of events that can be tracked. The SQL Server 2008 Resource Governor manages



Chapter 1  SQL Server 2008 Architecture and Configuration 19

resource usage using extended events. We'll talk about extended events in Chapter 2,
“Change Tracking, Tracing, and Extended Events.” (In a future version, all tracing will be
handled at this level by extended events.)

Asynchronous IO The difference between asynchronous and synchronous is what part of
the system is actually waiting for an unavailable resource. When SQL Server requests a
synchronous /O, if the resource is not available the Windows kernel will put the thread
on a wait queue until the resource becomes available. For asynchronous 1/0, SQL Server
requests that Windows initiate an I/O. Windows starts the |I/O operation and doesn’t
stop the thread from running. SQL Server will then place the server session in an /O
wait queue until it gets the signal from Windows that the resource is available.

NUMA Architecture

SQL Server 2008 is NUMA-aware, and both scheduling and memory management can take
advantage of NUMA hardware by default. You can use some special configurations when
you work with NUMA, so we'll provide some general background here before discussing
scheduling and memory.

The main benefit of NUMA is scalability, which has definite limits when you use symmetric
multiprocessing (SMP) architecture. With SMP, all memory access is posted to the same shared
memory bus. This works fine for a relatively small number of CPUs, but problems appear
when you have many CPUs competing for access to the shared memory bus. The trend in
hardware has been to have more than one system bus, each serving a small set of processors.
NUMA limits the number of CPUs on any one memory bus. Each group of processors has

its own memory and possibly its own /O channels. However, each CPU can access memory
associated with other groups in a coherent way, and we'll discuss this a bit more later in

the chapter. Each group is called a NUMA node, and the nodes are linked to each other by

a high-speed interconnection. The number of CPUs within a NUMA node depends on the
hardware vendor. It is faster to access local memory than the memory associated with other
NUMA nodes. This is the reason for the name Non-Uniform Memory Access. Figure 1-3 shows
a NUMA node with four CPUs.

SQL Server 2008 allows you to subdivide one or more physical NUMA nodes into smaller
NUMA nodes, referred to as software NUMA or soft-NUMA. You typically use soft-NUMA
when you have many CPUs and do not have hardware NUMA because soft-NUMA allows
only for the subdividing of CPUs but not memory. You can also use soft-NUMA to subdivide
hardware NUMA nodes into groups of fewer CPUs than is provided by the hardware NUMA.
Your soft-NUMA nodes can also be configured to listen on their own ports.

Only the SQL Server scheduler and SNI are soft-NUMA-aware. Memory nodes are created
based on hardware NUMA and are therefore not affected by soft-NUMA.



20

Microsoft SQL Server 2008 Internals

CPU CPU MEM
| [ Memory Resource
l l controller Monitor
CPU CPU 1/0 Lazywriter
System
Interconnect

FIGURE 1-3 A NUMA node with four CPUs

TCP/IP, VIA, Named Pipes, and shared memory can take advantage of NUMA round-robin
scheduling, but only TCP and VIA can affinitize to a specific set of NUMA nodes. See SQL
Server Books Online for how to use the SQL Server Configuration Manager to set a TCP/IP
address and port to single or multiple nodes.

The Scheduler

Prior to SQL Server 7.0, scheduling depended entirely on the underlying Microsoft Windows
operating system. Although this meant that SQL Server could take advantage of the hard
work done by Windows engineers to enhance scalability and efficient processor use, there
were definite limits. The Windows scheduler knew nothing about the needs of a relational
database system, so it treated SQL Server worker threads the same as any other process
running on the operating system. However, a high-performance system such as SQL

Server functions best when the scheduler can meet its special needs. SQL Server 7.0 and

all subsequent versions are designed to handle their own scheduling to gain a number of
advantages, including the following:

B A private scheduler can support SQL Server tasks using fibers as easily as it supports
using threads.

B Context switching and switching into kernel mode can be avoided as much as possible.

Note The scheduler in SQL Server 7.0 and SQL Server 2000 was called the User Mode Scheduler
(UMS) to reflect the fact that it ran primarily in user mode, as opposed to kernel mode. SQL
Server 2005 and 2008 call the scheduler the SOS Scheduler and improve on UMS even more.

One major difference between the SOS scheduler and the Windows scheduler is that the SQL
Server scheduler runs as a cooperative rather than a preemptive scheduler. This means that
it relies on the workers, threads, or fibers to yield voluntarily often enough so one process

or thread doesn't have exclusive control of the system. The SQL Server product team has to



Chapter 1  SQL Server 2008 Architecture and Configuration 21

make sure that its code runs efficiently and voluntarily yields the scheduler in appropriate
places; the reward for this is much greater control and scalability than is possible with the
Windows scheduler.

Even though the scheduler is not preemptive, the SQL Server scheduler still adheres to a
concept of a quantum. Instead of SQL Server tasks being forced to give up the CPU by the
operating system, SQL Server tasks can request to be put on a wait queue periodically, and
if they have exceeded the internally defined quantum, and they are not in the middle of an
operation that cannot be stopped, they will voluntarily relinquish the CPU.

SQL Server Workers

You can think of the SQL Server scheduler as a logical CPU used by SQL Server workers.

A worker can be either a thread or a fiber that is bound to a logical scheduler. If the Affinity
Mask Configuration option is set, each scheduler is affinitized to a particular CPU. (We'll talk
about configuration later in this chapter.) Thus, each worker is also associated with a single
CPU. Each scheduler is assigned a worker limit based on the configured Max Worker Threads
and the number of schedulers, and each scheduler is responsible for creating or destroying
workers as needed. A worker cannot move from one scheduler to another, but as workers are
destroyed and created, it can appear as if workers are moving between schedulers.

Workers are created when the scheduler receives a request (a task to execute) and there are
no idle workers. A worker can be destroyed if it has been idle for at least 15 minutes, or if SQL
Server is under memory pressure. Each worker can use at least half a megabyte of memory
on a 32-bit system and at least 2 MB on a 64-bit system, so destroying multiple workers and
freeing their memory can yield an immediate performance improvement on memory-starved
systems. SQL Server actually handles the worker pool very efficiently, and you might be
surprised to know that even on very large systems with hundreds or even thousands of

users, the actual number of SQL Server workers might be much lower than the configured
value for Max Worker Threads. Later in this section, we'll tell you about some of the Dynamic
Management Objects that let you see how many workers you actually have, as well as
scheduler and task information (discussed in the next section).

SQL Server Schedulers

In SQL Server 2008, each actual CPU (whether hyperthreaded or physical) has a scheduler
created for it when SQL Server starts. This is true even if the affinity mask option has been
configured so that SQL Server is set to not use all the available physical CPUs. In SQL Server
2008, each scheduler is set to either ONLINE or OFFLINE based on the affinity mask settings,
and the default is that all schedulers are ONLINE. Changing the affinity mask value can
change the status of one or more schedulers to OFFLINE, and you can do this without having
to restart your SQL Server. Note that when a scheduler is switched from ONLINE to OFFLINE
due to a configuration change, any work already assigned to the scheduler is first completed
and no new work is assigned.



22

Microsoft SQL Server 2008 Internals

SQL Server Tasks

The unit of work for a SQL Server worker is a request, or a task, which you can think of as being
equivalent to a single batch sent from the client to the server. Once a request is received by SQL
Server, it is bound to a worker, and that worker processes the entire request before handling
any other request. This holds true even if the request is blocked for some reason, such as while it
waits for a lock or for 1/0 to complete. The particular worker does not handle any new requests
but waits until the blocking condition is resolved and the request can be completed. Keep in
mind that a session ID (SPID) is not the same as a task. A SPID is a connection or channel over
which requests can be sent, but there is not always an active request on any particular SPID.

In SQL Server 2008, a SPID is not bound to a particular scheduler. Each SPID has a
preferred scheduler, which is the scheduler that most recently processed a request from
the SPID. The SPID is initially assigned to the scheduler with the lowest load. (You can get
some insight into the load on each scheduler by looking at the load_factor column in the
DMV sys.dm_os_schedulers.) However, when subsequent requests are sent from the same
SPID, if another scheduler has a load factor that is less than a certain percentage of the
average of the scheduler’s entire load factor, the new task is given to the scheduler with
the smallest load factor. There is a restriction that all tasks for one SPID must be processed
by schedulers on the same NUMA node. The exception to this restriction is when a query
is being executed as a parallel query across multiple CPUs. The optimizer can decide to
use more CPUs that are available on the NUMA node processing the query, so other CPUs
(and other schedulers) can be used.

Threads vs. Fibers

As mentioned earlier, the UMS was designed to work with workers running on either threads

or fibers. Windows fibers have less overhead associated with them than threads do, and
multiple fibers can run on a single thread. You can configure SQL Server to run in fiber mode by
setting the Lightweight Pooling option to 1. Although using less overhead and a “lightweight”
mechanism sounds like a good idea, you should evaluate the use of fibers carefully.

Certain components of SQL Server don’t work, or don't work well, when SQL Server runs in
fiber mode. These components include SQLMail and SQLXML. Other components, such as
heterogeneous and CLR queries, are not supported at all in fiber mode because they need
certain thread-specific facilities provided by Windows. Although it is possible for SQL Server to
switch to thread mode to process requests that need it, the overhead might be greater than
the overhead of using threads exclusively. Fiber mode was actually intended just for special
niche situations in which SQL Server reaches a limit in scalability due to spending too much
time switching between thread contexts or switching between user mode and kernel mode. In
most environments, the performance benefit gained by fibers is quite small compared to the
benefits you can get by tuning in other areas. If you're certain you have a situation that could
benefit from fibers, be sure to test thoroughly before you set the option on a production
server. In addition, you might even want to contact Microsoft Customer Support Services
(http.//support.microsoft.com/ph/2855) just to be certain.



Chapter 1  SQL Server 2008 Architecture and Configuration 23

NUMA and Schedulers

With a NUMA configuration, every node has some subset of the machine’s processors and
the same number of schedulers. If the machine is configured for hardware NUMA, the
number of processors on each node will be preset, but for soft-NUMA that you configure
yourself, you can decide how many processors are assigned to each node. There is still
the same number of schedulers as processors, however. When SPIDs are first created, they
are assigned to nodes on a round-robin basis. The Scheduler Monitor then assigns the
SPID to the least loaded scheduler on that node. As mentioned earlier, if the SPID is moved
to another scheduler, it stays on the same node. A single processor or SMP machine

will be treated as a machine with a single NUMA node. Just like on an SMP machine,
there is no hard mapping between schedulers and a CPU with NUMA, so any scheduler
on an individual node can run on any CPU on that node. However, if you have set the
Affinity Mask Configuration option, each scheduler on each node will be fixed to run on a
particular CPU.

Every NUMA node has its own lazywriter (which we'll talk about in the section entitled
“Memory,” later in this chapter) as well as its own 1/O Completion Port (IOCP), which is

the network listener. Every node also has its own Resource Monitor, which is managed

by a hidden scheduler. You can see the hidden schedulers in sys.dm_os_schedulers. Each
Resource Monitor has its own SPID, which you can see by querying the sys.dm_exec_requests
and sys.dm_os_workers DMVs, as shown here:

SELECT session_id,
CONVERT (varchar(10), tl.status) AS status,
CONVERT (varchar(20), tl.command) AS command,
CONVERT (varchar(15), t2.state) AS worker_state
FROM sys.dm_exec_requests AS tl JOIN sys.dm_os_workers AS t2
ON t2.task_address = tl.task_address
WHERE command = '"RESOURCE MONITOR';

Every node has its own Scheduler Monitor, which can run on any SPID and runs in a preemptive
mode. The Scheduler Monitor is a thread that wakes up periodically and checks each scheduler
to see if it has yielded since the last time the Scheduler Monitor woke up (unless the scheduler
is idle). The Scheduler Monitor raises an error (17883) if a nonidle thread has not yielded. The
17883 error can occur when an application other than SQL Server is monopolizing the CPU. The
Scheduler Monitor knows only that the CPU is not yielding; it can’t ascertain what kind of task
is using it. The Scheduler Monitor is also responsible for sending messages to the schedulers to
help them balance their workload.

Dynamic Affinity

In SQL Server 2008 (in all editions except SQL Server Express), processor affinity can be
controlled dynamically. When SQL Server starts up, all scheduler tasks are started on server
startup, so there is one scheduler per CPU. If the affinity mask has been set, some of the
schedulers are then marked as offline and no tasks are assigned to them.



24

Microsoft SQL Server 2008 Internals

When the affinity mask is changed to include additional CPUs, the new CPU is brought
online. The Scheduler Monitor then notices an imbalance in the workload and starts picking
workers to move to the new CPU. When a CPU is brought offline by changing the affinity
mask, the scheduler for that CPU continues to run active workers, but the scheduler itself

is moved to one of the other CPUs that are still online. No new workers are given to this
scheduler, which is now offline, and when all active workers have finished their tasks, the
scheduler stops.

Binding Schedulers to CPUs

Remember that normally, schedulers are not bound to CPUs in a strict one-to-one relationship,
even though there is the same number of schedulers as CPUs. A scheduler is bound to a CPU
only when the affinity mask is set. This is true even if you specify that the affinity mask use all
the CPUs, which is the default setting. For example, the default Affinity Mask Configuration
value is 0, which means to use all CPUs, with no hard binding of scheduler to CPU. In fact, in
some cases when there is a heavy load on the machine, Windows can run two schedulers on
one CPU.

For an eight-processor machine, an affinity mask value of 3 (bit string 00000011) means
that only CPUs 0 and 1 are used and two schedulers are bound to the two CPUs. If you
set the affinity mask to 255 (bit string 11111111), all the CPUs are used, just as with

the default. However, with the affinity mask set, the eight CPUs will be bound to the eight
schedulers.

In some situations, you might want to limit the number of CPUs available but not bind

a particular scheduler to a single CPU—for example, if you are using a multiple-CPU
machine for server consolidation. Suppose that you have a 64-processor machine on which
you are running eight SQL Server instances and you want each instance to use eight of
the processors. Each instance has a different affinity mask that specifies a different subset
of the 64 processors, so you might have affinity mask values 255 (OxFF), 65280 (0xFF00),
16711680 (0xFFO000), and 4278190080 (0xFFO00000). Because the affinity mask is set,
each instance has hard binding of scheduler to CPU. If you want to limit the number of
CPUs but still not constrain a particular scheduler to running on a specific CPU, you can
start SQL Server with trace flag 8002. This lets you have CPUs mapped to an instance, but
within the instance, schedulers are not bound to CPUs.

Observing Scheduler Internals

SQL Server 2008 has several Dynamic Management Objects that provide information about
schedulers, workers, and tasks. These are primarily intended for use by Microsoft Customer
Support Services, but you can use them to gain a greater appreciation for the information
that SQL Server monitors.



Chapter 1  SQL Server 2008 Architecture and Configuration 25

Note All these objects (as well as most of the other Dynamic Management Objects) require

a permission called View Server State. By default, only a SQL Server administrator has that
permission, but it can be granted to others. For each of the objects, we will list some of the
more useful or interesting columns and provide the description of each column taken from SQL
Server 2008 Books Online. For the full list of columns, most of which are useful only to support
personnel, you can refer to SQL Server Books Online, but even then, you'll find that some of the
columns are listed as “for internal use only.”

These Dynamic Management Objects are as follows:

sys.dm_os_schedulers This view returns one row per scheduler in SQL Server. Each
scheduler is mapped to an individual processor in SQL Server. You can use this view to
monitor the condition of a scheduler or to identify runaway tasks. Interesting columns
include the following:

parent_node_id The ID of the node that the scheduler belongs to, also known as the
parent node. This represents a NUMA node.

scheduler_id The ID of the scheduler. All schedulers that are used to run regular
queries have IDs of less than 255. Those with IDs greater than or equal to 255,
such as the dedicated administrator connection scheduler, are used internally by
SQL Server.

cpu_id The ID of the CPU with which this scheduler is associated. If SQL Server is
configured to run with affinity, the value is the ID of the CPU on which the scheduler
is supposed to run. If the affinity mask has not been specified, the cpu_id will be 255.

is_online If SQL Server is configured to use only some of the available processors on
the server, this can mean that some schedulers are mapped to processors that are
not in the affinity mask. If that is the case, this column returns 0. This means the
scheduler is not being used to process queries or batches.

current_tasks_count The number of current tasks associated with this scheduler,
including the following. (When a task is completed, this count is decremented.)

0 Tasks that are waiting on a resource to be acquired before proceeding
0 Tasks that are currently running or that are runnable and waiting to be executed
runnable_tasks_count The number of tasks waiting to run on the scheduler.

current_workers_count The number of workers associated with this scheduler,
including workers that are not assigned any task.

active_workers_count The number of workers that have been assigned a task.

work_queue_count The number of tasks waiting for a worker. If current_workers_count
is greater than active_workers_count, this work queue count should be 0 and the
work queue should not grow.



26 Microsoft SQL Server 2008 Internals

pending_disk_io_count The number of pending I/Os. Each scheduler has a list of
pending I/Os that are checked every time there is a context switch to determine
whether they have been completed. The count is incremented when the request
is inserted. It is decremented when the request is completed. This number does
not indicate the state of the |/Os.

load_factor The internal value that indicates the perceived load on this scheduler. This
value is used to determine whether a new task should be put on this scheduler or
another scheduler. It is useful for debugging purposes when schedulers appear
not to be evenly loaded. In SQL Server 2000, a task is routed to a particular
scheduler. In SQL Server 2008, the routing decision is based on the load on the
scheduler. SQL Server 2008 also uses a load factor of nodes and schedulers to
help determine the best location to acquire resources. When a task is added to
the queue, the load factor increases. When a task is completed, the load factor
decreases. Using load factors helps the SQLOS balance the work load better.

sys.dm_os_workers This view returns a row for every worker in the system. Interesting
columns include the following:

is_preemptive A value of 1 means that the worker is running with preemptive
scheduling. Any worker running external code is run under preemptive
scheduling.

is_fiber A value of 1 means that the worker is running with lightweight pooling.

sys.dm_os_threads This view returns a list of all SQLOS threads that are running under the
SQL Server process. Interesting columns include the following:

started_by sqlserver Indicates the thread initiator. A 1 means that SQL Server started
the thread and 0 means that another component, such as an extended procedure
from within SQL Server, started the thread.

creation_time The time when this thread was created.
stack_bytes_used The number of bytes that are actively being used on the thread.

affinity  The CPU mask on which this thread is supposed to be running. This depends
on the value in the sp_configure “affinity mask.”

locale The cached locale LCID for the thread.

sys.dm_os_tasks This view returns one row for each task that is active in the instance of SQL
Server. Interesting columns include the following:

task_state The state of the task. The value can be one of the following:
0 PENDING: Waiting for a worker thread
0 RUNNABLE: Runnable but waiting to receive a quantum

0 RUNNING: Currently running on the scheduler



Chapter 1  SQL Server 2008 Architecture and Configuration 27
0 SUSPENDED: Has a worker but is waiting for an event
0 DONE: Completed
0 SPINLOOP: Processing a spinlock, as when waiting for a signal

context_switches_count The number of scheduler context switches that this task has
completed.

pending_io_count The number of physical I/Os performed by this task.
pending_io_byte_count The total byte count of I/Os performed by this task.
pending_io_byte_average The average byte count of I/Os performed by this task.

scheduler_id The ID of the parent scheduler. This is a handle to the scheduler
information for this task.

session_id The ID of the session associated with the task.

sys.dm_os_waiting_tasks This view returns information about the queue of tasks that are
waiting on some resource. Interesting columns include the following:

session_id The ID of the session associated with the task.
exec_context_id The ID of the execution context associated with the task.

wait_duration_ms The total wait time for this wait type, in milliseconds. This time is
inclusive of signal_wait_time.

wait_type The name of the wait type.

resource_address The address of the resource for which the task is waiting.
blocking_task_address The task that is currently holding this resource.
blocking_session_id The ID of the session of the blocking task.
blocking_exec_context_id The ID of the execution context of the blocking task.

resource_description The description of the resource that is being consumed.

The Dedicated Administrator Connection (DAC)

Under extreme conditions such as a complete lack of available resources, it is possible for
SQL Server to enter an abnormal state in which no further connections can be made to the
SQL Server instance. Prior to SQL Server 2005, this situation meant that an administrator
could not get in to kill any troublesome connections or even begin to diagnose the possible
cause of the problem. SQL Server 2005 introduced a special connection called the DAC that
was designed to be accessible even when no other access can be made.

Access via the DAC must be specially requested. You can connect to the DAC using the
command-line tool SQLCMD, and specifying the -A (or /A) flag. This method of connection
is recommended because it uses fewer resources than the graphical user interface (GUI).



28

Microsoft SQL Server 2008 Internals

Through Management Studio, you can specify that you want to connect using DAC
by preceding the name of your SQL Server with ADMIN: in the Connection dialog box.

For example, to connect to the default SQL Server instance on my machine, TENAR, we
would enter ADMIN:TENAR. To connect to a named instance called SQL2008 on the same
machine, we would enter ADMIN:TENAR\SQL2008.

The DAC is a special-purpose connection designed for diagnosing problems in SQL Server
and possibly resolving them. It is not meant to be used as a regular user connection. Any
attempt to connect using the DAC when there is already an active DAC connection results

in an error. The message returned to the client says only that the connection was rejected;

it does not state explicitly that it was because there already was an active DAC. However,

a message is written to the error log indicating the attempt (and failure) to get a second DAC
connection. You can check whether a DAC is in use by running the following query. If there is
an active DAC, the query will return the SPID for the DAC; otherwise, it will return no rows.

SELECT s.session_id

FROM sys.tcp_endpoints as e JOIN sys.dm_exec_sessions as s
ON e.endpoint_id = s.endpoint_id

WHERE e.name='Dedicated Admin Connection';

You should keep the following points in mind about using the DAC:

B By default, the DAC is available only locally. However, an administrator can configure
SQL Server to allow remote connection by using the configuration option called
Remote Admin Connections.

B The user logon to connect via the DAC must be a member of the sysadmin server role.

B There are only a few restrictions on the SQL statements that can be executed on the
DAC. (For example, you cannot run BACKUP or RESTORE using the DAC.) However,
it is recommended that you do not run any resource-intensive queries that might
exacerbate the problem that led you to use the DAC. The DAC connection is created
primarily for troubleshooting and diagnostic purposes. In general, you'll use the DAC
for running queries against the Dynamic Management Objects, some of which you've
seen already and many more of which we'll discuss later in this book.

B A special thread is assigned to the DAC that allows it to execute the diagnostic functions
or queries on a separate scheduler. This thread cannot be terminated. You can kill only
the DAC session, if needed. The DAC scheduler always uses the scheduler_id value of 255,
and this thread has the highest priority. There is no lazywriter thread for the DAC, but
the DAC does have its own |IOCP, a worker thread, and an idle thread.

You might not always be able to accomplish your intended tasks using the DAC. Suppose
you have an idle connection that is holding on to a lock. If the connection has no active
task, there is no thread associated with it, only a connection ID. Suppose further that many
other processes are trying to get access to the locked resource, and that they are blocked.
Those connections still have an incomplete task, so they do not release their worker. If 255
such processes (the default number of worker threads) try to get the same lock, all available



Chapter 1  SQL Server 2008 Architecture and Configuration 29

workers might get used up and no more connections can be made to SQL Server. Because

the DAC has its own scheduler, you can start it, and the expected solution would be to kill the
connection that is holding the lock but not do any further processing to release the lock. But if
you try to use the DAC to kill the process holding the lock, the attempt fails. SQL Server would
need to give a worker to the task to kill it, and no workers are available. The only solution is to kill
several of the (blameless) blocked processes that still have workers associated with them.

Note To conserve resources, SQL Server 2008 Express edition does not support a DAC
connection unless started with a trace flag 7806.

The DAC is not guaranteed to always be usable, but because it reserves memory and a private
scheduler and is implemented as a separate node, a connection probably is possible when
you cannot connect in any other way.

Memory

Memory management is a huge topic, and to cover every detail of it would require a whole
book in itself. My goal in this section is twofold: first, to provide enough information about
how SQL Server uses its memory resources so you can determine whether memory is being
managed well on your system; and second, to describe the aspects of memory management
that you have control over so you can understand when to exert that control.

By default, SQL Server 2008 manages its memory resources almost completely dynamically.
When allocating memory, SQL Server must communicate constantly with the operating
system, which is one of the reasons the SQLOS layer of the engine is so important.

The Buffer Pool and the Data Cache

The main memory component in SQL Server is the buffer pool. All memory not used by
another memory component remains in the buffer pool to be used as a data cache for pages
read in from the database files on disk. The buffer manager manages disk 1/0O functions

for bringing data and index pages into the data cache so data can be shared among users.
When other components require memory, they can request a buffer from the buffer pool.

A buffer is a page in memory that's the same size as a data or index page. You can think of it
as a page frame that can hold one page from a database. Most of the buffers taken from the
buffer pool for other memory components go to other kinds of memory caches, the largest
of which is typically the cache for procedure and query plans, which is usually called the

plan cache.

Occasionally, SQL Server must request contiguous memory in larger blocks than the 8-KB
pages that the buffer pool can provide, so memory must be allocated from outside the
buffer pool. Use of large memory blocks is typically kept to a minimum, so direct calls to the
operating system account for a small fraction of SQL Server memory usage.



30

Microsoft SQL Server 2008 Internals

Access to In-Memory Data Pages

Access to pages in the data cache must be fast. Even with real memory, it would be ridiculously
inefficient to scan the whole data cache for a page when you have gigabytes of data. Pages

in the data cache are therefore hashed for fast access. Hashing is a technique that uniformly
maps a key via a hash function across a set of hash buckets. A hash table is a structure in
memory that contains an array of pointers (implemented as a linked list) to the buffer pages.

If all the pointers to buffer pages do not fit on a single hash page, a linked list chains to
additional hash pages.

Given a dbid-fileno-pageno identifier (a combination of the database ID, file number, and page
number), the hash function converts that key to the hash bucket that should be checked; in
essence, the hash bucket serves as an index to the specific page needed. By using hashing,
even when large amounts of memory are present, SQL Server can find a specific data page

in cache with only a few memory reads. Similarly, it takes only a few memory reads for SQL
Server to determine that a desired page is not in cache and that it must be read in from disk.

Note Finding a data page might require that multiple buffers be accessed via the hash buckets
chain (linked list). The hash function attempts to uniformly distribute the dbid-fileno-pageno
values throughout the available hash buckets. The number of hash buckets is set internally by
SQL Server and depends on the total size of the buffer pool.

Managing Pages in the Data Cache

You can use a data page or an index page only if it exists in memory. Therefore, a buffer in
the data cache must be available for the page to be read into. Keeping a supply of buffers
available for immediate use is an important performance optimization. If a buffer isn't readily
available, many memory pages might have to be searched simply to locate a buffer to free
up for use as a workspace.

In SQL Server 2008, a single mechanism is responsible both for writing changed pages to
disk and for marking as free those pages that have not been referenced for some time. SQL
Server maintains a linked list of the addresses of free pages, and any worker needing a buffer
page uses the first page of this list.

Every buffer in the data cache has a header that contains information about the last two
times the page was referenced and some status information, including whether the page

is dirty (that is, it has been changed since it was read into disk). The reference information

is used to implement the page replacement policy for the data cache pages, which uses an
algorithm called LRU-K, which was introduced by Elizabeth O'Neil, Patrick O'Neil, and Gerhard
Weikum (in the Proceedings of the ACM SIGMOD Conference, May 1993). This algorithm is a
great improvement over a strict Least Recently Used (LRU) replacement policy, which has no
knowledge of how recently a page was used. It is also an improvement over a Least Frequently
Used (LFU) policy involving reference counters because it requires far fewer adjustments by



Chapter 1  SQL Server 2008 Architecture and Configuration 31

the engine and much less bookkeeping overhead. An LRU-K algorithm keeps track of the
last K times a page was referenced and can differentiate between types of pages, such as
index and data pages, with different levels of frequency. It can actually simulate the effect of
assigning pages to different buffer pools of specifically tuned sizes. SQL Server 2008 uses a
K value of 2, so it keeps track of the two most recent accesses of each buffer page.

The data cache is periodically scanned from the start to the end. Because the buffer cache is
all in memory, these scans are quick and require no I/O. During the scan, a value is associated
with each buffer based on its usage history. When the value gets low enough, the dirty page
indicator is checked. If the page is dirty, a write is scheduled to write the modifications to disk.
Instances of SQL Server use a write-ahead log so the write of the dirty data page is blocked
while the log page recording the modification is first written to disk. (We'll discuss logging in
much more detail in Chapter 4.) After the modified page has been flushed to disk, or if the
page was not dirty to start with, the page is freed. The association between the buffer page
and the data page that it contains is removed by deleting information about the buffer from
the hash table, and the buffer is put on the free list.

Using this algorithm, buffers holding pages that are considered more valuable remain in the
active buffer pool whereas buffers holding pages not referenced often enough eventually
return to the free buffer list. The instance of SQL Server determines internally the size of the
free buffer list, based on the size of the buffer cache. The size cannot be configured.

The Free Buffer List and the Lazywriter

The work of scanning the buffer pool, writing dirty pages, and populating the free buffer list
is primarily performed by the individual workers after they have scheduled an asynchronous
read and before the read is completed. The worker gets the address of a section of the buffer
pool containing 64 buffers from a central data structure in the SQL Server Database Engine.
Once the read has been initiated, the worker checks to see whether the free list is too small.
(Note that this process has consumed one or more pages of the list for its own read.) If so,
the worker searches for buffers to free up, examining all 64 buffers, regardless of how many
it actually finds to free up in that group of 64. If a write must be performed for a dirty buffer
in the scanned section, the write is also scheduled.

Each instance of SQL Server also has a thread called lazywriter for each NUMA node (and every
instance has at least one) that scans through the buffer cache associated with that node. The
lazywriter thread sleeps for a specific interval of time, and when it wakes up, it examines the
size of the free buffer list. If the list is below a certain threshold, which depends on the total
size of the buffer pool, the lazywriter thread scans the buffer pool to repopulate the free list.
As buffers are added to the free list, they are also written to disk if they are dirty.

When SQL Server uses memory dynamically, it must constantly be aware of the amount of
free memory. The lazywriter for each node queries the system periodically to determine the
amount of free physical memory available. The lazywriter expands or shrinks the data cache to
keep the operating system'’s free physical memory at 5 MB (plus or minus 200 KB) to prevent



32

Microsoft SQL Server 2008 Internals

paging. If the operating system has less than 5 MB free, the lazywriter releases memory to the
operating system instead of adding it to the free list. If more than 5 MB of physical memory

is free, the lazywriter recommits memory to the buffer pool by adding it to the free list. The
lazywriter recommits memory to the buffer pool only when it repopulates the free list; a
server at rest does not grow its buffer pool.

SQL Server also releases memory to the operating system if it detects that too much paging

is taking place. You can tell when SQL Server increases or decreases its total memory use by
using one of SQL Server’s tracing mechanisms to monitor Server Memory Change events

(in the Server Event category). An event is generated whenever memory in SQL Server
increases or decreases by 1 MB or 5 percent of the maximum server memory, whichever is
greater. You can look at the value of the data element, called Event Sub Class, to see whether
the change was an increase or a decrease. An Event Sub Class value of 1 means a memory
increase; a value of 2 means a memory decrease. Tracing will be covered in detail in Chapter 2.

Checkpoints

The checkpoint process also scans the buffer cache periodically and writes any dirty data
pages for a particular database to disk. The difference between the checkpoint process and
the lazywriter (or the worker threads’ management of pages) is that the checkpoint process
never puts buffers on the free list. The only purpose of the checkpoint process is to ensure
that pages written before a certain time are written to disk, so that the number of dirty pages
in memory is always kept to a minimum, which in turn ensures that the length of time SQL
Server requires for recovery of a database after a failure is kept to a minimum. In some cases,
checkpoints may find few dirty pages to write to disk if most of the dirty pages have been
written to disk by the workers or the lazywriters in the period between two checkpoints.

When a checkpoint occurs, SQL Server writes a checkpoint record to the transaction log,
which lists all the transactions that are active. This allows the recovery process to build a table
containing a list of all the potentially dirty pages. Checkpoints occur automatically at regular
intervals but can also be requested manually.

Checkpoints are triggered when any of the following occurs:

B A database owner (or backup operator) explicitly issues a CHECKPOINT command
to perform a checkpoint in that database. In SQL Server 2008, you can run multiple
checkpoints (in different databases) concurrently by using the CHECKPOINT command.

B The log is getting full (more than 70 percent of capacity) and the database is
in autotruncate mode. (We'll tell you about autotruncate mode in Chapter 4.)
A checkpoint is triggered to truncate the transaction log and free up space. However,
if no space can be freed up, perhaps because of a long-running transaction, no
checkpoint occurs.

B A long recovery time is estimated. When recovery time is predicted to be longer than
the Recovery Interval configuration option, a checkpoint is triggered. SQL Server 2008



Chapter 1  SQL Server 2008 Architecture and Configuration 33

uses a simple metric to predict recovery time because it can recover, or redo, in less
time than it took the original operations to run. Thus, if checkpoints are taken about
as often as the recovery interval frequency, recovery completes within the interval.
A recovery interval setting of 1 means that checkpoints occur about every minute
so long as transactions are being processed in the database. A minimum amount of
work must be done for the automatic checkpoint to fire; this is currently 10 MB of
logs per minute. In this way, SQL Server doesn’t waste time taking checkpoints on
idle databases. A default recovery interval of 0 means that SQL Server chooses an
appropriate value; for the current version, this is one minute.

B An orderly shutdown of SQL Server is requested, without the NOWAIT option.
A checkpoint operation is then run in each database on the instance. An orderly
shutdown occurs when you explicitly shut down SQL Server, unless you do so by using
the SHUTDOWN WITH NOWAIT command. An orderly shutdown also occurs when
the SQL Server service is stopped through Service Control Manager or the net stop
command from an operating system prompt.

You can also use the sp_configure Recovery Interval option to influence checkpointing
frequency, balancing the time to recover vs. any impact on run-time performance. If you're
interested in tracing when checkpoints actually occur, you can use the SQL Server extended
events sqlserver.checkpoint_begin and sqlserver.checkpoint_end to monitor checkpoint activity.
(Details on extended events can be found in Chapter 2.)

The checkpoint process goes through the buffer pool, scanning the pages in a nonsequential
order, and when it finds a dirty page, it looks to see whether any physically contiguous (on

the disk) pages are also dirty so that it can do a large block write. But this means that it might,
for example, write buffers 14, 200, 260, and 1,000 when it sees that buffer 14 is dirty. (Those
pages might have contiguous disk locations even though they're far apart in the buffer pool.
In this case, the noncontiguous pages in the buffer pool can be written as a single operation
called a gather-write.) The process continues to scan the buffer pool until it gets to page 1,000.
In some cases, an already written page could potentially be dirty again, and it might need to
be written out to disk a second time.

The larger the buffer pool, the greater the chance that a buffer that has already been written
will be dirty again before the checkpoint is done. To avoid this, SQL Server uses a bit associated
with each buffer called a generation number. At the beginning of a checkpoint, all the bits are
toggled to the same value, either all 0’'s or all 1's. As a checkpoint checks a page, it toggles the
generation bit to the opposite value. When the checkpoint comes across a page whose bit

has already been toggled, it doesn’t write that page. Also, any new pages brought into cache
during the checkpoint process get the new generation number so they won't be written during
that checkpoint cycle. Any pages already written because they're in proximity to other pages
(and are written together in a gather write) aren't written a second time.

In some cases checkpoints may issue a substantial amount of /O, causing the 1/0 subsystem to
get inundated with write requests which can severely impact read performance. On the other
hand, there may be periods of relatively low 1/0 activity that could be utilized. SQL Server 2008



34

Microsoft SQL Server 2008 Internals

includes a command-line option that allows throttling of checkpoint I/0s. You can use the

SQL Server Configuration Manager, and add the —k parameter, followed by a decimal number,
to the list of startup parameters for the SQL Server service. The value specified indicates the
number of megabytes per second that the checkpoint process can write. By using this —k
option, the I/O overhead of checkpoints can be spread out and have a more measured impact.
Remember that by default, the checkpoint process makes sure that SQL Server can recover
databases within the recovery interval that you specify. If you enable this option, the default
behavior changes, resulting in a long recovery time if you specify a very low value for the
parameter. Backups may take a slightly longer time to finish because a checkpoint process that
a backup initiates is also delayed. Before enabling this option on a production system, you
should make sure that you have enough hardware to sustain the 1/0 requests that are posted
by SQL Server and that you have thoroughly tested your applications on the system.

Managing Memory in Other Caches

Buffer pool memory that isn't used for the data cache is used for other types of caches, primarily
the plan cache. The page replacement policy, as well as the mechanism by which freeable pages
are searched for, are quite a bit different than for the data cache.

SQL Server 2008 uses a common caching framework that is used by all caches except the
data cache. The framework consists of a set of stores and the Resource Monitor. There are
three types of stores: cache stores, user stores (which don't actually have anything to do

with users), and object stores. The plan cache is the main example of a cache store, and the
metadata cache is the prime example of a user store. Both cache stores and user stores use
the same LRU mechanism and the same costing algorithm to determine which pages can stay
and which can be freed. Object stores, on the other hand, are just pools of memory blocks
and don't require LRU or costing. One example of the use of an object store is the SNI, which
uses the object store for pooling network buffers. For the rest of this section, my discussion
of stores refers only to cache stores and user stores.

The LRU mechanism used by the stores is a straightforward variation of the clock algorithm.
Imagine a clock hand sweeping through the store, looking at every entry; as it touches each
entry, it decreases the cost. Once the cost of an entry reaches 0, the entry can be removed
from the cache. The cost is reset whenever an entry is reused.

Memory management in the stores takes into account both global and local memory
management policies. Global policies consider the total memory on the system and enable the
running of the clock algorithm across all the caches. Local policies involve looking at one store
or cache in isolation and making sure it is not using a disproportionate amount of memory.

To satisfy global and local policies, the SQL Server stores implement two hands: external and
internal. Each store has two clock hands, and you can observe these by examining the DMV
sys.dm_os_memory_cache_clock_hands. This view contains one internal and one external
clock hand for each cache store or user store. The external clock hands implement the global
policy, and the internal clock hands implement the local policy. The Resource Monitor is in



Chapter 1  SQL Server 2008 Architecture and Configuration 35

charge of moving the external hands whenever it notices memory pressure. There are many
types of memory pressure, and it is beyond the scope of this book to go into all the details
of detecting and troubleshooting memory problems. However, if you take a look at the DMV
sys.dm_os_memory_cache_clock_hands, specifically at the removed_last_round_count column,
you can look for a value that is very large compared to other values. If you notice that value
increasing dramatically, that is a strong indication of memory pressure. The companion

Web site for this book contains a comprehensive white paper called “Troubleshooting
Performance Problems in SQL Server 2008,” which includes many details on tracking down
and dealing with memory problems.

The internal clock moves whenever an individual cache needs to be trimmed. SQL Server
attempts to keep each cache reasonably sized compared to other caches. The internal clock
hands move only in response to activity. If a worker running a task that accesses a cache
notices a high number of entries in the cache or notices that the size of the cache is greater
than a certain percentage of memory, the internal clock hand for that cache starts to free up
memory for that cache.

The Memory Broker

Because memory is needed by so many components in SQL Server, and to make sure each
component uses memory efficiently, SQL Server uses a Memory Broker, whose job is to analyze
the behavior of SQL Server with respect to memory consumption and to improve dynamic
memory distribution. The Memory Broker is a centralized mechanism that dynamically distributes
memory between the buffer pool, the query executor, the Query Optimizer, and all the various
caches, and it attempts to adapt its distribution algorithm for different types of workloads.

You can think of the Memory Broker as a control mechanism with a feedback loop. It monitors
memory demand and consumption by component, and it uses the information that it gathers
to calculate the optimal memory distribution across all components. It can broadcast this
information to the component, which then uses the information to adapt its memory usage. You
can monitor Memory Broker behavior by querying the Memory Broker ring buffer as follows:

SELECT * FROM sys.dm_os_ring_buffers
WHERE ring_buffer_type =
'RING_BUFFER_MEMORY_BROKER" ;

The ring buffer for the Memory Broker is updated only when the Memory Broker wants the
behavior of a given component to change—that is, to grow, shrink, or remain stable (if it has
previously been growing or shrinking).

Sizing Memory

When we talk about SQL Server memory, we are actually talking about more than just the
buffer pool. SQL Server memory is actually organized into three sections, and the buffer
pool is usually the largest and most frequently used. The buffer pool is used as a set of 8-KB
buffers, so any memory that is needed in chunks larger than 8 KB is managed separately.



36

Microsoft SQL Server 2008 Internals

The DMV called sys.dm_os_memory_clerks has a column called multi_pages_kb that shows
how much space is used by a memory component outside the buffer pool:

SELECT type, sum(multi_pages_kb)
FROM sys.dm_os_memory_clerks
WHERE multi_pages_kb != 0

GROUP BY type;

If your SQL Server instance is configured to use Address Windowing Extensions (AWE)
memory, that can be considered a third memory area. AWE is an API that allows a 32-bit
application to access physical memory beyond the 32-bit address limit. Although AWE
memory is measured as part of the buffer pool, it must be kept track of separately because
only data cache pages can use AWE memory. None of the other memory components, such
as the plan cache, can use AWE memory.

Note If AWE is enabled, the only way to get information about the actual memory consumption
of SQL Server is by using SQL Server—specific counters or DMVs inside the server; you won't get
this information from operating system—level performance counters.

Sizing the Buffer Pool

When SQL Server starts, it computes the size of the virtual address space (VAS) of the SQL
Server process. Each process running on Windows has its own VAS. The set of all virtual
addresses available for process use constitutes the size of the VAS. The size of the VAS
depends on the architecture (32- or 64-bit) and the operating system. VAS is just the set of
all possible addresses; it might be much greater than the physical memory on the machine.

A 32-bit machine can directly address only 4 GB of memory and, by default, Windows

itself reserves the top 2 GB of address space for its own use, which leaves only 2 GB as the
maximum size of the VAS for any application, such as SQL Server. You can increase this by
enabling a /3GB flag in the system’s Boot.ini file, which allows applications to have a VAS of
up to 3 GB. If your system has more than 3 GB of RAM, the only way a 32-bit machine can
get to it is by enabling AWE. One benefit of using AWE in SQL Server 2008 is that memory
pages allocated through the AWE mechanism are considered locked pages and can never
be swapped out.

On a 64-bit platform, the AWE Enabled configuration option is present, but its setting is
ignored. However, the Windows policy option Lock Pages in Memory is available, although
it is disabled by default. This policy determines which accounts can make use of a Windows
feature to keep data in physical memory, preventing the system from paging the data to
virtual memory on disk. It is recommended that you enable this policy on a 64-bit system.

On 32-bit operating systems, you have to enable the Lock Pages in Memory option when
using AWE. It is recommended that you don’t enable the Lock Pages in Memory option if



Chapter 1  SQL Server 2008 Architecture and Configuration 37

you are not using AWE. Although SQL Server ignores this option when AWE is not enabled,
other processes on the system may be affected.

Note Memory management is much more straightforward on a 64-bit machine, both for

SQL Server, which has so much more VAS to work with, and for an administrator, who doesn’t
have to worry about special operating system flags or even whether to enable AWE. Unless you
are working only with very small databases and do not expect to need more than a couple of
gigabytes of RAM, you should definitely consider running a 64-bit edition of SQL Server 2008.

Table 1-1 shows the possible memory configurations for various editions of SQL Server 2008.

TABLE 1-1 SQL Server 2008 Memory Configurations

Maximum AWE/Locked
Configuration VAS Physical Memory Pages Support
Native 32-bit on 32-bit operating 2 GB 64 GB AWE
system with /3GB boot parameter 3GB 16 GB AWE
32-bit on x64 operating system 4GB 64 GB AWE
(Windows on Windows)
Native 64-bit on x64 operating 8 terabyte 1 terabyte Locked Pages
system
Native 64-bit on IA64 operating 7 terabyte 1 terabyte Locked Pages
system

In addition to the VAS size, SQL Server also calculates a value called Target Memory, which is
the number of 8-KB pages that it expects to be able to allocate. If the configuration option
Max Server Memory has been set, Target Memory is the lesser of these two values. Target
Memory is recomputed periodically, particularly when it gets a memory notification from
Windows. A decrease in the number of target pages on a normally loaded server might
indicate a response to external physical memory pressure. You can see the number of target
pages by using the Performance Monitor—examine the Target Server Pages counter in the
SQL Server: Memory Manager object. There is also a DMV called sys.dm_os_sys_info that
contains one row of general-purpose SQL Server configuration information, including the
following columns:

physical_memory_in_bytes The amount of physical memory available.

virtual_memory_in_bytes The amount of virtual memory available to the process in user
mode. You can use this value to determine whether SQL Server was started by using a
3-GB switch.

bpool_commited The total number of buffers with pages that have associated memory. This
does not include virtual memory.

bpool_commit_target The optimum number of buffers in the buffer pool.



38

Microsoft SQL Server 2008 Internals

bpool_visible The number of 8-KB buffers in the buffer pool that are directly accessible
in the process virtual address space. When not using AWE, when the buffer pool has
obtained its memory target (bpool_committed = bpool_commit_target), the value of
bpool_visible equals the value of bpool_committed. When using AWE on a 32-bit version
of SQL Server, bpool_visible represents the size of the AWE mapping window used to
access physical memory allocated by the buffer pool. The size of this mapping window
is bound by the process address space and, therefore, the visible amount will be smaller
than the committed amount and can be reduced further by internal components
consuming memory for purposes other than database pages. If the value of bpool_visible
is too low, you might receive out-of-memory errors.

Although the VAS is reserved, the physical memory up to the target amount is committed

only when that memory is required for the current workload that the SQL Server instance

is handling. The instance continues to acquire physical memory as needed to support the
workload, based on the users connecting and the requests being processed. The SQL Server
instance can continue to commit physical memory until it reaches its target or the operating
system indicates that there is no more free memory. If SQL Server is notified by the operating
system that there is a shortage of free memory, it frees up memory if it has more memory than
the configured value for Min Server Memory. Note that SQL Server does not commit memory
equal to Min Server Memory initially. It commits only what it needs and what the operating
system can afford. The value for Min Server Memory comes into play only after the buffer pool
size goes above that amount, and then SQL Server does not let memory go below that setting.

As other applications are started on a computer running an instance of SQL Server, they
consume memory, and SQL Server might need to adjust its target memory. Normally, this
should be the only situation in which target memory is less than commit memory, and it should
stay that way only until memory can be released. The instance of SQL Server adjusts its memory
consumption, if possible. If another application is stopped and more memory becomes available,
the instance of SQL Server increases the value of its target memory, allowing the memory
allocation to grow when needed. SQL Server adjusts its target and releases physical memory
only when there is pressure to do so. Thus, a server that is busy for a while can commit large
amounts of memory that will not necessarily be released if the system becomes quiescent.

Note There is no special handling of multiple SQL Server instances on the same machine;
there is no attempt to balance memory across all instances. They all compete for the same
physical memory, so to make sure none of the instances becomes starved for physical memory,
you should use the Min and Max Server Memory option on all SQL Server instances on a
multiple-instance machine.

Observing Memory Internals

SQL Server 2008 includes several Dynamic Management Objects that provide information
about memory and the various caches. Like the Dynamic Management Objects containing
information about the schedulers, these objects are intended primarily for use by Customer



Chapter 1  SQL Server 2008 Architecture and Configuration 39

Support Services to see what SQL Server is doing, but you can use them for the same
purpose. To select from these objects, you must have the View Server State permission. Once
again, we will list some of the more useful or interesting columns for each object; most of
these descriptions are taken from SQL Server Books Online:

sys.dm_os_memory_clerks This view returns one row per memory clerk that is currently
active in the instance of SQL Server. You can think of a clerk as an accounting unit. Each
store described earlier is a clerk, but some clerks are not stores, such as those for the
CLR and for full-text search. The following query returns a list of all the types of clerks:

SELECT DISTINCT type FROM sys.dm_os_memory_clerks;
Interesting columns include the following:

single_pages_kb The amount of single-page memory allocated, in kilobytes. This is
the amount of memory allocated by using the single-page allocator of a memory
node. This single-page allocator steals pages directly from the buffer pool.

multi_pages_kb The amount of multiple-page memory allocated, in kilobytes. This
is the amount of memory allocated by using the multiple-page allocator of the
memory nodes. This memory is allocated outside the buffer pool and takes
advantage of the virtual allocator of the memory nodes.

virtual_memory_reserved_kb The amount of virtual memory reserved by a memory
clerk. This is the amount of memory reserved directly by the component that uses
this clerk. In most situations, only the buffer pool reserves VAS directly by using
its memory clerk.

virtual_memory_committed_kb The amount of memory committed by the clerk.
The amount of committed memory should always be less than the amount of
Reserved Memory.

awe_allocated_kb The amount of memory allocated by the memory clerk by using
AWE. In SQL Server, only buffer pool clerks (MEMORYCLERK_SQLBUFFERPOOL)
use this mechanism, and only when AWE is enabled.

sys.dm_os_memory_cache_counters This view returns a snapshot of the health of each
cache of type userstore and cachestore. It provides run-time information about the cache
entries allocated, their use, and the source of memory for the cache entries. Interesting
columns include the following:

single_pages_kb The amount of single-page memory allocated, in kilobytes. This is
the amount of memory allocated by using the single-page allocator. This refers to
the 8-KB pages that are taken directly from the buffer pool for this cache.

multi_pages_kb The amount of multiple-page memory allocated, in kilobytes. This
is the amount of memory allocated by using the multiple-page allocator of
the memory node. This memory is allocated outside the buffer pool and takes
advantage of the virtual allocator of the memory nodes.



40 Microsoft SQL Server 2008 Internals

multi_pages_in_use_kb The amount of multiple-page memory being used, in
kilobytes.

single_pages_in_use_kb The amount of single-page memory being used, in kilobytes.
entries_count The number of entries in the cache.
entries_in_use_count The number of entries in use in the cache.

sys.dm_os_memory_cache_hash_tables This view returns a row for each active cache in the
instance of SQL Server. This view can be joined to sys.dm_os_memory_cache_counters
on the cache_address column. Interesting columns include the following:

buckets_count The number of buckets in the hash table.
buckets_in_use_count The number of buckets currently being used.
buckets_min_length The minimum number of cache entries in a bucket.
buckets_max_length The maximum number of cache entries in a bucket.

buckets_avg_length The average number of cache entries in each bucket. If this
number gets very large, it might indicate that the hashing algorithm is not ideal.

buckets_avg_scan_hit_length The average number of examined entries in a bucket
before the searched-for item was found. As above, a big number might indicate a
less-than-optimal cache. You might consider running DBCC FREESYSTEMCACHE
to remove all unused entries in the cache stores. You can get more details on this
command in SQL Server Books Online.

sys.dm_os_memory_cache_clock_hands This DMV, discussed earlier, can be joined to the
other cache DMVs using the cache_address column. Interesting columns include the
following:
clock_hand The type of clock hand, either external or internal. Remember that there
are two clock hands for every store.

clock_status The status of the clock hand: suspended or running. A clock hand runs
when a corresponding policy kicks in.

rounds_count The number of rounds the clock hand has made. All the external clock
hands should have the same (or close to the same) value in this column.

removed_all_rounds_count The number of entries removed by the clock hand in all
rounds.

NUMA and Memory

As mentioned earlier, one major reason for implementing NUMA is to handle large amounts
of memory efficiently. As clock speed and the number of processors increase, it becomes
increasingly difficult to reduce the memory latency required to use this additional processing



Chapter 1  SQL Server 2008 Architecture and Configuration 41

power. Large L3 caches can help alleviate part of the problem, but this is only a limited
solution. NUMA is the scalable solution of choice. SQL Server 2008 has been designed to
take advantage of NUMA-based computers without requiring any application changes.

Keep in mind that the NUMA memory nodes depend completely on the hardware NUMA
configuration. If you define your own soft-NUMA, as discussed earlier, you will not affect

the number of NUMA memory nodes. So, for example, if you have an SMP computer with
eight CPUs and you create four soft-NUMA nodes with two CPUs each, you have only one
MEMORY node serving all four NUMA nodes. Soft-NUMA does not provide memory to CPU
affinity. However, there is a network 1/O thread and a lazywriter thread for each NUMA node,
either hard or soft.

The principal reason for using soft-NUMA is to reduce 1/O and lazywriter bottlenecks on
computers with many CPUs and no hardware NUMA. For instance, on a computer with eight
CPUs and no hardware NUMA, you have one |/O thread and one lazywriter thread that could
be a bottleneck. Configuring four soft-NUMA nodes provides four I/O threads and four
lazywriter threads, which could definitely help performance.

If you have multiple NUMA memory nodes, SQL Server divides the total target memory
evenly among all the nodes. So if you have 10 GB of physical memory and four NUMA nodes
and SQL Server determines a 10-GB target memory value, all nodes eventually allocate and
use 2.5 GB of memory as if it were their own. In fact, if one of the nodes has less memory
than another, it must use memory from another one to reach its 2.5-GB allocation. This
memory is called foreign memory. Foreign memory is considered local, so if SQL Server has
readjusted its target memory and each node needs to release some, no attempt will be made
to free up foreign pages first. In addition, if SQL Server has been configured to run on a
subset of the available NUMA nodes, the target memory will not be limited automatically to
the memory on those nodes. You must set the Max Server Memory value to limit the amount
of memory.

In general, the NUMA nodes function largely independently of each other, but that is not
always the case. For example, if a worker running on a node NI needs to access a database
page that is already in node N2's memory, it does so by accessing N2's memory, which is
called nonlocal memory. Note that nonlocal is not the same as foreign memory.

Read-Ahead

SQL Server supports a mechanism called read-ahead, whereby the need for data and index
pages can be anticipated and pages can be brought into the buffer pool before they're actually
needed. This performance optimization allows large amounts of data to be processed effectively.
Read-ahead is managed completely internally, and no configuration adjustments are necessary.

There are two kinds of read-ahead: one for table scans on heaps and one for index ranges.
For table scans, the table's allocation structures are consulted to read the table in disk



42

Microsoft SQL Server 2008 Internals

order. Up to 32 extents (32 * 8 pages/extent * 8,192 bytes/page = 2 MB) of read-ahead may
be outstanding at a time. Four extents (32 pages) at a time are read with a single 256-KB
scatter read. If the table is spread across multiple files in a file group, SQL Server attempts to
distribute the read-ahead activity across the files evenly.

For index ranges, the scan uses level 1 of the index structure (the level immediately above
the leaf) to determine which pages to read ahead. When the index scan starts, read-ahead
is invoked on the initial descent of the index to minimize the number of reads performed.
For instance, for a scan of WHERE state = 'WA'’, read-ahead searches the index for

key = ‘WA’, and it can tell from the level-1 nodes how many pages must be examined to
satisfy the scan. If the anticipated number of pages is small, all the pages are requested by
the initial read-ahead; if the pages are noncontiguous, they're fetched in scatter reads. If the
range contains a large number of pages, the initial read-ahead is performed and thereafter,
every time another 16 pages are consumed by the scan, the index is consulted to read in
another 16 pages. This has several interesting effects:

B Small ranges can be processed in a single read at the data page level whenever the
index is contiguous.

B The scan range (for example, state = ‘'WA’) can be used to prevent reading ahead of
pages that won't be used because this information is available in the index.

B Read-ahead is not slowed by having to follow page linkages at the data page level.
(Read-ahead can be done on both clustered indexes and nonclustered indexes.)

As you can see, memory management in SQL Server is a huge topic, and I've provided you
with only a basic understanding of how SQL Server uses memory. This information should
give you a start in interpreting the wealth of information available through the DMVs and
troubleshooting. The companion Web site includes a white paper that offers many more
troubleshooting ideas and scenarios.

SQL Server Resource Governor

Having sufficient memory and scheduler resources available is of paramount importance

in having a system that runs well. Although SQL Server and the SQLOS have many built-in
algorithms to distribute these resources equitably, you often understand your resource needs
better than the SQL Server Database Engine does.

Resource Governor Overview

SQL Server 2008 Enterprise Edition provides you with an interface for assigning scheduler
and memory resources to groups of processes based on your determination of their needs.
This interface is called the Resource Governor, which has the following goals:



Chapter 1  SQL Server 2008 Architecture and Configuration 43

®  Allow monitoring of resource consumption per workload, where a workload can be
defined as a group of requests.

B Enable workloads to be prioritized.

B Provide a means to specify resource boundaries between workloads to allow predictable
execution of those workloads where there might otherwise be resource contention

B Prevent or reduce the probability of runaway queries.

The Resource Governor’s functionality is based on the concepts of workloads and resource
pools, which are set up by the DBA. Using just a few basic DDL commands, you can define
a set of workload groups, create a classifier function to determine which user sessions

are members of which groups, and set up pools of resources to allow each workload group
to have minimum and maximum settings for the amount of memory and the percentage of
CPU resources that they can use.

Figure 1-4 illustrates a sample relationship between the classifier function applied to
each session, workload groups, and resource pools. More details about groups and pools
are provided throughout this section, but you can see in the figure that each new session
is placed in a workload group based on the result of the classifier function. Also notice
that there is a many-to-one relationship between groups and pools. Many workload
groups can be assigned to the same pool, but each workload group only belongs on

one pool.

Enabling the Resource Governor

The Resource Governor is enabled using the DDL statement ALTER RESOURCE GOVERNOR.
Using this statement, you can specify a classifier function to be used to assign sessions to

a workload, enable or disable the Resource Governor, or reset the statistics being kept on the
Resource Governor.

Classifier Function

Once a classifier function has been defined and the Resource Governor enabled, the
function is applied to each new session to determine the name of the workload group to
which the session will be assigned. The session stays in the same group until its termination,
unless it is assigned explicitly to a different group. There can only be a maximum of one
classifier function active at any given time, and if no classifier function has been defined, all
new sessions are assigned to a default group. The classifier function is typically based on
properties of a connection, and determines the workload group based on system functions
such as SUSER_NAME(), SUSER_SNAME(), IS_SRVROLEMEMBER(), and IS_MEMBER(), and on
property functions like LOGINPROPERTY and CONNECTIONPROPERTY.



44 Microsoft SQL Server 2008 Internals

Session 1 of n

User-defined classifier
function

Classification

e l N\ l N\ f_l_\
Internal Group 1 Default
group group
& J & J ~——
4 N\ )\ )
Internal Pool 1 Default
pool pool
& J & J \. J
Group 2 ( Group 3 ) Group 4
Application Application Application
1 2 3
\ J
)
Pool 2
———

FIGURE 1-4 Resource Governor components

Workload Groups

A workload group is just a name defined by a DBA to allow multiple connections to share the
same resources. There are two predefined workload groups in every SQL Server instance:

B Internal group This group is used for the internal activities of SQL Server. Users are
not able to add sessions to the internal group or affect its resource usage. However, the
internal group can be monitored.

B Default group All sessions are classified into this group when no other classifier rules
could be applied. This includes situations where the classifier function resulted in a
nonexistent group or when there was a failure of the classifier function.



Chapter 1  SQL Server 2008 Architecture and Configuration 45

Many sessions can be assigned to the same workload group, and each session can start multiple
sequential tasks (or batches). Each batch can be composed of multiple statements, and some

of those statements, such as stored procedure calls, can be broken down further. Figure 1-5
illustrates this relationship between workload groups, sessions, batches, and statements.

Workload Group

Session

Task or Batch

DECLARE @sales int;
DECLARE @custid int;
SET @customer = 555;
SELECT @sales = sales FROM T WHERE customer = @custid;
IF @sales > 100

EXEC sp_givebonus @custid, 1000;

UPDATE T1 SET checked = 1 WHERE custid = @custid;

GO

CREATE PROC sp_givebonus@custid int, @bonus int AS BEGIN
UPDATE T2 SET bonus = @bonus WHERE custid = @custid;

UPDATE T3 SET total = total + @bonus WHERE promo = 100;
END;

II Statement II

—>| UPDATE T3 SET total = total + @bonus WHERE promo = 100;

Session2

FIGURE 1-5 Workload groups, sessions, batches, and statements

When you create a workload group, you give it a name and then supply values for up to six
specific properties of the group. For any properties that aren't specified, there is a default
value. In addition to the properties of the group, the group is assigned to a resource pool;
and if no pool is specified, the default group is assumed. The six properties that can be
specified are the following:

1. IMPORTANCE Each workload group can have an importance of low, medium, or high
within their resource pool. Medium is the default. This value determines the relative ratio
of CPU bandwidth available to the group in a preset proportion (which is subject to change
in future versions or services packs). Currently the weighting is low = 1, medium =3, and
high = 9. This means that a scheduler tries to execute runnable sessions from high-priority



46

Microsoft SQL Server 2008 Internals

workload groups three times more often than sessions from groups with medium
importance, and nine times more often than sessions from groups with low importance.
It's up to the DBA to make sure not to have too many sessions in the groups with high
importance, or not to assign a high importance to too many groups. If you have nine
times as many sessions from groups with high importance than from groups with low
importance, the end result will be that all the sessions will get equal time on the scheduler.

. REQUEST_MAX_MEMORY_GRANT_PERCENT This value specifies the maximum amount

of memory that a single task from this group can take from the resource pool. This is

the percent relative to the pool size specified by the pool's MAX_MEMORY_PERCENT
value, not the actual amount of memory being used. This amount refers only to memory
granted for query execution, and not for data buffers or cached plans, which can be
shared by many requests. The default value is 25 percent, which means a single request
can consume one-fourth of the pool's memory.

. REQUEST_MAX_CPU_TIME_SEC This value is the maximum amount of CPU time in

seconds that can be consumed by any one request in the workload group. The default
setting is 0, which means there is no limit on the CPU time.

. REQUEST_MEMORY_GRANT_TIMEOUT_SEC This value is the maximum time in

seconds that a query waits for a resource to become available. If the resource does not
become available, it may fail with a timeout error. (In some cases, the query may not
fail, but it may run with substantially reduced resources.) The default value is 0, which
means the server will calculate the timeout based on the query cost.

. MAX_DOP This value specifies the maximum degree of parallelism (DOP) for a

parallel query, and the value takes precedence over the max degree of parallelism
configuration option and any query hints. The actual run-time DOP is also bound by
number of schedulers and availability of parallel threads. This MAX_DOP setting is a
maximum limit only, meaning that the server is allowed to run the query using fewer
processors than specified. The default setting is 0, meaning that the server handles the
value globally. You should be aware of the following details about working with the
MAX_DOP value:

o MAXDORP as query hint is honored so long as it does not exceed the workload
group MAX_DOP value.

a  MAXDORP as query hint always overrides the Max Degree of Parallelism
configuration option.

0 If the query is marked as serial at compile time, it cannot be changed back to
parallel at run time regardless of workload group or configuration setting.

0 Once the degree of parallelism is decided, it can be lowered only when memory
pressure occurs. Workload group reconfiguration will not be seen for tasks
waiting in the grant memory queue.



Chapter 1  SQL Server 2008 Architecture and Configuration 47

6. GROUP_MAX_REQUESTS This value is the maximum number of requests allowed
to be simultaneously executing in the workload group. The default is 0, which means
unlimited requests.

Any of the properties of a workload group can be changed by using ALTER WORKLOAD
GROUP.

Resource Pools

A resource pool is a subset of the physical resources of the server. Each pool has two parts.
One part does not overlap with other pools, which enables you to set a minimum value
for the resource. The other part of the pool is shared with other pools, and this allows you
to define the maximum possible resource consumption. The pool resources are set by
specifying one of the following for each resource:

m MIN or MAX for CPU

B MIN or MAX for memory percentage

MIN represents the minimum guaranteed resource availability for CPU or memory and MAX
represents the maximum size of the pool for CPU or memory.

The shared part of the pool is used to indicate where available resources can go if resources
are available. However, when resources are consumed, they go to the specified pool and are
not shared. This may improve resource utilization in cases where there are no requests in a
given pool and the resources configured to the pool can be freed up for other pools.

Here are more details about the four values that can be specified for each resource pool:

1. MIN_CPU_PERCENT This is a guaranteed average CPU bandwidth for all requests
in the pool when there is CPU contention. SQL Server attempts to distribute CPU
bandwidth between individual requests as fairly as possible and takes the IMPORTANCE
property for each workload group into account. The default value is 0, which means
there is no minimum value.

2. MAX_CPU_PERCENT This is the maximum CPU bandwidth that all requests in
the pool receive when there is CPU contention. The default value is 100, which means
there is no maximum value. If there is no contention for CPU resources, a pool can
consume up to 100 percent of CPU bandwidth.

3. MIN_MEMORY_PERCENT This value specifies the amount of memory reserved for
this pool that cannot be shared with other pools. If there are no requests in the pool but
the pool has a minimum memory value set, this memory cannot be used for requests in
other pools and is wasted. Within a pool, distribution of memory between requests is on
a first-come-first-served basis. Memory for a request can also be affected by properties
of the workload group, such as REQUEST_MAX_MEMORY_GRANT_PERCENT. The default
value of 0 means that there is no minimum memory reserved.



48

Microsoft SQL Server 2008 Internals

4. MAX_MEMORY_PERCENT This value specifies the percent of total server memory
that can be used by all requests in the specified pool. This amount can go up to
100 percent, but the actual amount is reduced by memory already reserved by the
MIN_MEMORY_PERCENT value specified by other pools. MAX_MEMORY_PERCENT
is always greater than or equal to MIN_MEMORY_PERCENT. The amount of memory
for an individual request will be affected by workload group policy, for example,
REQUEST_MAX_MEMORY_GRANT_PERCENT. The default setting of 100 means that all
the server memory can be used for one pool. This setting cannot be exceeded, even if
it means that the server will be underutilized.

Some extreme cases of pool configuration are the following:
B All pools define minimums that add up to 100 percent of the server resources. This is

equivalent to dividing the server resources into nonoverlapping pieces regardless of
the resources consumed inside any given pool.

®  All pools have no minimums. All the pools compete for available resources, and their
final sizes are based on resource consumption in each pool.

Resource Governor has two predefined resource pools for each SQL Server instance:

Internal pool This pool represents the resources consumed by the SQL Server itself. This
pool always contains only the internal workload group and is not alterable in any way.
There are no restrictions on the resources used by the internal pool. You are not able to
affect the resource usage of the internal pool or add workload groups to it. However,
you are able to monitor the resources used by the internal group.

Default pool Initially, the default pool contains only the default workload group. This pool
cannot be dropped, but it can be altered and other workload groups can be added to
it. Note that the default group cannot be moved out of the default pool.

Pool Sizing

Table 1-2, taken from SQL Server 2008 Books Online, illustrates the relationships between the
MIN and MAX values in several pools and how the effective MAX values are computed. The
table shows the settings for the internal pool, the default pool, and two user-defined pools.
The following formulas are used for calculating the effective MAX % and the shared %:

B Min(X)Y) means the smaller value of X and Y.

B Sum(X) means the sum of value X across all pools.
®  Total shared % = 100 — sum(MIN %).

m  Effective MAX % = min(X)Y).

B Shared % = Effective MAX % — MIN %.



Pool
Name

internal

default

Pool 1

Pool 2

MIN %
Setting

0

20

50

MAX %
Setting

100

100

100

70

Chapter 1  SQL Server 2008 Architecture and Configuration 49
TABLE 1-2 MIN and MAX Values for Workload Groups

Calculated
Effective MAX %

100

30

50

70

Calculated
Shared %

0

30

30

20

Comment

Effective MAX % and shared %
are not applicable to the
internal pool.

The effective MAX value is
calculated as min(100,100—
(20+50)) = 30. The calculated
shared % is effective

MAX - MIN = 30.

The effective MAX value is
calculated as min(100,100-50)
= 50. The calculated shared % is
effective MAX — MIN = 30.

The effective MAX value is
calculated as min(70,100-20) =
70. The calculated shared % is
effective MAX — MIN = 20.

Table 1-3, also taken from SQL Server Books Online, shows how the values above can change
when a new pool is created. This new pool is Pool 3 and has a MIN % setting of 5.

TABLE 1-3 MIN and MAX Values for Resource Pools

Pool
Name

internal

default

Pool 1

Pool 2

Pool 3

MIN %
Setting

0

20

50

MAX %
Setting

100

100

100

70

100

Calculated

Effective MAX %

100

25

45

70

30

Calculated
Shared %

0

30

25

20

25

Comment

Effective MAX % and shared %
are not applicable to the
internal pool.

The effective MAX value is
calculated as min(100,100-
(20+50+5)) = 25. The
calculated shared % is effective
MAX - MIN = 25.

The effective MAX value is
calculated as min(100,100-55)
= 45, The calculated shared %
is effective MAX — MIN = 30.

The effective MAX value is
calculated as min(70,100-25)
= 70. The calculated shared %
is effective MAX — MIN = 20.

The effective MAX value is
calculated as min(100,100-70)
= 30. The calculated shared %
is effective MAX — MIN = 25.



50

Microsoft SQL Server 2008 Internals

Example

This section includes a few syntax examples of the Resource Governor DDL commands, to
give a further idea of how all these concepts work together. This is not a complete discussion
of all the possible DDL command options; for that, you need to refer to SQL Server Books
Online.

--- Create a resource pool for production processing
--- and set limits.
USE master;
GO
CREATE RESOURCE POOL pProductionProcessing
WITH
(
MAX_CPU_PERCENT 100,
MIN_CPU_PERCENT = 50

);
GO
--- Create a workload group for production processing
--- and configure the relative importance.
CREATE WORKLOAD GROUP gProductionProcessing
WITH
(
IMPORTANCE = MEDIUM
)
--- Assign the workload group to the production processing
--- resource pool.
USING pProductionProcessing;
GO
--- Create a resource pool for off-hours processing
--- and set limits.
CREATE RESOURCE POOL pOffHoursProcessing
WITH
(
MAX_CPU_PERCENT 50,
MIN_CPU_PERCENT = 0

);
GO
--- Create a workload group for off-hours processing
--- and configure the relative importance.
CREATE WORKLOAD GROUP gOffHoursProcessing
WITH
(
IMPORTANCE = LOW
)
--- Assign the workload group to the off-hours processing
--- resource pool.
USING pOffHoursProcessing;
GO
--- Any changes to workload groups or resource pools require that the
--- resource governor be reconfigured.
ALTER RESOURCE GOVERNOR RECONFIGURE;
GO
USE master;



Chapter 1  SQL Server 2008 Architecture and Configuration 51

GO

CREATE TABLE tb1ClassifierTimeTable (
strGroupName sysname not null,
tStartTime time not null,
tEndTime time not null

);

GO

--- Add time values that the classifier will use to
--- determine the workload group for a session.
INSERT 1into tb1ClassifierTimeTable
VALUES('gProductionProcessing', '6:35 AM', '6:15 PM');
GO
--- Create the classifier function
CREATE FUNCTION fnTimeClassifier()
RETURNS sysname
WITH SCHEMABINDING
AS
BEGIN
DECLARE @strGroup sysname
DECLARE @loginTime time
SET @loginTime = CONVERT(time,GETDATE())
SELECT TOP 1 @strGroup = strGroupName
FROM dbo.tb1ClassifierTimeTable
WHERE tStartTime <= @loginTime and tEndTime >= @loginTime
IF(@strGroup is not null)
BEGIN
RETURN @strGroup
END
--- Use the default workload group if there is no match
--- on the Tookup.
RETURN N'gOffHoursProcessing'
END;
GO
--- Reconfigure the Resource Governor to use the new function
ALTER RESOURCE GOVERNOR with (CLASSIFIER_FUNCTION = dbo.fnTimeClassifier);
ALTER RESOURCE GOVERNOR RECONFIGURE;
GO

Resource Governor Controls

The actual limitations of resources are controlled by your pool settings. In SQL Server 2008,
you can control memory and CPU resources, but not I/O. It's possible that in a future version,
more resource controls will become available. There is an important difference between the
way that memory and CPU resources limits are applied.

You can think of the memory specifications for a pool as hard limits, and no pool will ever
use more than its maximum memory setting. In addition, SQL Server always reserves the
minimum memory for each pool, so that if no sessions in workload groups are assigned to a
pool, its minimum memory reservation is unusable by other sessions.

However, CPU limits are soft limits, and unused scheduler bandwidth can be used by other
sessions. The maximum values are also not always fixed upper limits. For example, if there are
two pools, one with a maximum of 25 percent and the other with a maximum of 50 percent,



52

Microsoft SQL Server 2008 Internals

as soon as the first pool has used its 25 percent of the scheduler, sessions from groups in

the other pool can use all the remaining CPU resources. As soft limits, they can make CPU
usage not quite as predictable as memory usage. Each session is assigned to a scheduler, as
described in the previous section, with no regard to the workload group that the session is in.
Assume a minimal situation with only two sessions running on a dual CPU instance. Each will
most likely be assigned to a different scheduler, and the two sessions may be in two different
workload groups in two different resource pools.

Assume that the session on CPU1 is from a workload group in the first pool that has a maximum
CPU setting of 80 percent, and that the second session, on CPU2, is from a group in the second
pool with a maximum CPU setting of 20 percent. Because these are only two sessions, they each
use 100 percent of their scheduler or 50 percent of the total CPU resources on the instance. If
CPUL is then assigned another task from a workload group from the 20 percent pool, the situation
changes. Tasks using the 20 percent pool have 20 percent of CPUL but still have 100 percent of
CPU2, and tasks using the 80 percent pool still have only 80 percent of CPUL. This means tasks
running from the 20 percent pool have 60 percent of the total CPU resources, and the one task
from the 80 percent pool has only 40 percent of the total CPU resources. Of course, as more and
more tasks are assigned to the schedulers, this anomaly may work itself out, but because of the
way that scheduler resources are managed across multiple CPUs, there is much less explicit control.

For testing and troubleshooting purposes, there may be times you want to be able to turn
off all Resource Governor functionality easily. You can disable the Resource Governor with
the command ALTER RESOURCE GOVERNOR DISABLE. You can then re-enable the Resource
Governor with the command ALTER RESOURCE GOVERNOR RECONFIGURE. If you want to
make sure the Resource Governor stays disabled, you can start your SQL Server instance with
trace flag 8040 in this situation. When this trace flag is used, Resource Governor stays in the
OFF state at all times and all attempts to reconfigure it fails. The same behavior results if you
start your SQL Server instance in single-user mode using the -m and —f flags. If the Resource
Governor is disabled, you should notice the following behaviors:

B Only the internal workload group and resource pool exist.
B Resource Governor configuration metadata are not loaded into memory.
B Your classifier function is never executed automatically.

B The Resource Governor metadata is visible and can be manipulated.

Resource Governor Metadata

There are three specific catalog views that you'll want to take a look at when working with
the Resource Governor.

B sys.resource_governor_configuration This view returns the stored Resource Governor
state.

B sys.resource_governor_resource_pools This view returns the stored resource pool
configuration. Each row of the view determines the configuration of an individual pool.



Chapter 1  SQL Server 2008 Architecture and Configuration 53

B sys.resource_governor workload_groups This view returns the stored workload group
configuration.

There are also three DMVs devoted to the Resource Governor:

B sys.dm_resource_governor workload_groups This view returns workload group
statistics and the current in-memory configuration of the workload group.

B sys.dm_resource_governor_resource_pools This view returns information about the
current resource pool state, the current configuration of resource pools, and resource
pool statistics.

B sys.dm_resource_governor_configuration This view returns a row that contains the
current in-memory configuration state for the Resource Governor.

Finally, six other DMVs contain information related to the Resource Governor:

B sys.dm_exec_query_memory_grants This view returns information about the queries
that have acquired a memory grant or that still require a memory grant to execute.
Queries that do not have to wait for a memory grant do not appear in this view. The
following columns are added for the Resource Governor: group_id, pool_id, is_small,
ideal_memory_kb.

B sys.dm_exec_query_resource_semaphores This view returns the information about
the current query-resource semaphore status. It provides general query-execution
memory status information and allows you to determine whether the system can access
enough memory. The pool_id column has been added for the Resource Governor.

B sys.dm_exec_sessions This view returns one row per authenticated session on SQL
Server. The group_id column has been added for the Resource Governor.

B sys.dm_exec_requests This view returns information about each request that
is executing within SQL Server. The group_id column is added for the Resource
Governor.

B sys.dm_exec_cached_plans This view returns a row for each query plan that is cached
by SQL Server for faster query execution. The pool_id column is added for the Resource
Governor.

B sys.dm_os_memory _brokers This view returns information about allocations that
are internal to SQL Server, which use the SQL Server memory manager. The following
columns are added for the Resource Governor: pool_id, allocations_db_per_sec,
predicated_allocations_kb, overall_limit_kb.

Although at first glance it may seem like the setup of the Resource Governor is unnecessarily
complex, hopefully you'll find that being able to specify properties for both workload groups
and resource pools provides you with the maximum control and flexibility. You can think of
the workload groups as tools that give control to your developers, and the resource pools as
administrator tools for limiting what the developers can do.



54

Microsoft SQL Server 2008 Internals

SQL Server 2008 Configuration

In the second part of this chapter, we'll look at the options for controlling how SQL Server
2008 behaves. One main method of controlling the behavior of the Database Engine is to
adjust configuration option settings, but you can configure behavior in a few other ways as
well. We'll first look at using SQL Server Configuration Manager to control network protocols
and SQL Server—related services. We'll then look at other machine settings that can affect
the behavior of SQL Server. Finally, we'll examine some specific configuration options for
controlling server-wide settings in SQL Server.

Using SQL Server Configuration Manager

Configuration Manager is a tool for managing the services associated with SQL

Server, configuring the network protocols used by SQL Server, and managing the
network connectivity configuration from client computers connecting to SQL Server. It
is installed as part of SQL Server. Configuration Manager is available by right-clicking
the registered server in Management Studio, or you can add it to any other Microsoft
Management Console (MMC) display.

Configuring Network Protocols

A specific protocol must be enabled on both the client and the server for the client to connect
and communicate with the server. SQL Server can listen for requests on all enabled protocols
at once. The underlying operating system network protocols (such as TCP/IP) should already
be installed on the client and the server. Network protocols are typically installed during
Windows setup; they are not part of SQL Server setup. A SQL Server network library does not
work unless its corresponding network protocol is installed on both the client and the server.

On the client computer, the SQL Native Client must be installed and configured to use a
network protocol enabled on the server; this is usually done during Client Tools Connectivity
setup. The SQL Native Client is a standalone data access API used for both OLE DB and
ODBC. If the SQL Native Client is available, any network protocol can be configured for

use with a particular client connecting to SQL Server. You can use SQL Server Configuration
Manager to enable a single protocol or to enable multiple protocols and specify an order

in which they should be attempted. If the Shared Memory protocol setting is enabled,

that protocol is always tried first, but, as mentioned earlier in this chapter, it is available for
communication only when the client and the server are on the same machine.

The following query returns the protocol used for the current connection, using the DMV
sys.dm_exec_connections:

SELECT net_transport
FROM sys.dm_exec_connections
WHERE session_id = @@SPID;



Chapter 1  SQL Server 2008 Architecture and Configuration 55

Default Network Configuration

The network protocols that can be used to communicate with SQL Server 2008 from another
computer are not all enabled for SQL Server during installation. To connect from a particular
client computer, you might need to enable the desired protocol. The Shared Memory protocol
is enabled by default on all installations, but because it can be used to connect to the Database
Engine only from a client application on the same computer, its usefulness is limited.

TCP/IP connectivity to SQL Server 2008 is disabled for new installations of the Developer,
Evaluation, and SQL Express editions. OLE DB applications connecting with MDAC 2.8 cannot
connect to the default instance on a local server using “", “(local)”, or (<blank>) as the server
name. To resolve this, supply the server name or enable TCP/IP on the server. Connections

to local named instances are not affected, nor are connections using the SQL Native Client.

Installations in which a previous installation of SQL Server is present might not be affected.

Table 1-4 describes the default network configuration settings.

TABLE 1-4 SQL Server 2008 Default Network Configuration Settings

SQL Server  Type of Shared

Edition Installation ~ Memory TCP/IP Named Pipes VIA

Enterprise New Enabled Enabled Disabled (available Disabled
only locally)

Enterprise New Enabled Enabled Enabled Disabled

(clustered)

Developer New Enabled Disabled Disabled (available  Disabled
only locally)

Standard New Enabled Enabled Disabled (available Disabled
only locally)

Workgroup New Enabled Enabled Disabled (available Disabled
only locally)

Evaluation New Enabled Disabled Disabled (available Disabled
only locally)

Web New Enabled Enabled Disabled (available Disabled
only locally)

SQL Server New Enabled Disabled Disabled (available Disabled

Express only locally)

All editions Upgrade or Enabled Settings preserved Settings preserved Disabled

side-by-side from the previous from the previous
installation installation installation

Managing Services

You can use Configuration Manager to start, pause, resume, or stop SQL Server—related
services. The services available depend on the specific components of SQL Server you



56

Microsoft SQL Server 2008 Internals

have installed, but you should always have the SQL Server service itself and the SQL Server
Agent service. Other services might include the SQL Server Full-Text Search service and

SQL Server Integration Services (SSIS). You can also use Configuration Manager to view the
current properties of the services, such as whether the service is set to start automatically.
Configuration Manager is the preferred tool for changing service properties rather than using
Windows service management tools. When you use a SQL Server tool such as Configuration
Manager to change the account used by either the SQL Server or SQL Server Agent service,
the SQL Server tool automatically makes additional configurations, such as setting permissions
in the Windows Registry so that the new account can read the SQL Server settings. Password
changes using Configuration Manager take effect immediately without requiring you to
restart the service.

SQL Server Browser

One other related service that deserves special attention is the SQL Server Browser service.
This service is particularly important if you have named instances of SQL Server running on a
machine. SQL Server Browser listens for requests to access SQL Server resources and provides
information about the various SQL Server instances installed on the computer where the
Browser service is running.

Prior to SQL Server 2000, only one installation of SQL Server could be on a machine at
one time, and there really was no concept of an “instance.” SQL Server always listened
for incoming requests on port 1433, but any port can be used by only one connection at
a time. When SQL Server 2000 introduced support for multiple instances of SQL Server,
a new protocol called SQL Server Resolution Protocol (SSRP) was developed to listen on
UDP port 1434. This listener could reply to clients with the names of installed SQL Server
instances, along with the port numbers or named pipes used by the instance. SQL
Server 2005 replaced SSRP with the SQL Server Browser service, which is still used in SQL
Server 2008.

If the SQL Server Browser service is not running on a computer, you cannot connect to SQL
Server on that machine unless you provide the correct port number. However, if the SQL
Server Browser service is not running, the following connections will not work:

B Connecting to a named instance without providing the port number or pipe

B Using the DAC to connect to a named instance or the default instance if it us not using
TCP/IP port 1433

B Enumerating servers in Management Studio, Enterprise Manager, or Query Analyzer

It is recommended that the Browser Service be set to start automatically on any machine on
which SQL Server will be accessed using a network connection.

Download at Wow! eBook


v@v
Text Box
Download at Wow! eBook


Chapter 1  SQL Server 2008 Architecture and Configuration 57

SQL Server System Configuration

You can configure the machine that SQL Server runs on, as well as the Database Engine
itself, in several ways and through a variety of interfaces. We'll first look at some operating
system—level settings that can affect the behavior of SQL Server. Next, we'll see some

SQL Server options that can affect behavior that aren't especially considered to be
configuration options. Finally, we'll examine the configuration options for controlling the
behavior of SQL Server 2008, which are set primarily using a stored procedure interface
called sp_configure.

Operating System Configuration

For your SQL Server to run well, it must be running on a tuned operating system, on a
machine that has been properly configured to run SQL Server. Although it is beyond the
scope of this book to discuss operating system and hardware configuration and tuning,
there are a few issues that are very straightforward but can have a major impact on the
performance of SQL Server, and we will describe them here.

Task Management

As you saw in the first part of this chapter, the operating system schedules all threads in the
system for execution. Each thread of every process has a priority, and Windows executes the
next available thread with the highest priority. By default, the operating system gives active
applications a higher priority, but this priority setting may not be appropriate for a server
application running in the background, such as SQL Server 2008. To remedy this situation,
the SQL Server installation program modifies the priority setting to eliminate the favoring of
foreground applications.

It's not a bad idea to double-check this priority setting periodically in case someone has set
it back. You'll need to open the Advanced tab of the Performance Options dialog box.

If you're using Windows XP or Windows Server 2003, click the Start menu, right-click
My Computer, and choose Properties. The System Properties dialog box opens. On
the Advanced tab, click the Settings button in the Performance area. Again, select the
Advanced tab.

If you're using Windows Server 2008, click the Start menu, right-click Computer, and choose
Properties. The System information screen opens. Select Advanced System Settings from
the list on the left to open the System Properties dialog box. Just as for Windows XP and
Windows Server 2003, on the Advanced tab, click the Settings button in the Performance
area. Again, select the Advanced tab. You should see the Performance Options dialog box,
shown in Figure 1-6.



58 Microsoft SQL Server 2008 Internals

.Computer Mame | Hardware Advanced |Remote |

You must be logged an as an Administrator to make most of these changes

Performance
Visual effects, processor scheduling, memory usage, and virtual memony

Settings
x
User Profiles X

Desktop settings related to your logor  Visual Effects  Advanced | Data Execution Prevention |

Processor scheduling
Choose how to allocate processor resources.

Startup and Recaovery
System startup. system failure, and de

Adjust for best performance of:

" Programs ¥ Background services

Virtual memory

A paging file is an area on the hard disk that Windows uses as
if it were RAM,

Total paging file size for all drives: 4385 MB

Change...

oK Cancel |

FIGURE 1-6 Configuration of priority for background services

The first set of options is for specifying how to allocate processor resources, and you

can adjust for the best performance of either programs or background services. Select
Background Services so that all programs (both background and foreground) receive equal
processor resources. If you plan to connect to SQL Server 2008 from a local client (that is,
a client running on the same computer as the server), you can improve processing time by
using this setting.

System Paging File Location

If possible, you should place the operating system paging file on a different drive than

the files used by SQL Server. This is vital if your system will be paging. However, a better
approach is to add memory or change the SQL Server memory configuration to effectively
eliminate paging. In general, SQL Server is designed to minimize paging, so if your memory
configuration values are appropriate for the amount of physical memory on the system,
such a small amount of page-file activity will occur that the file's location is irrelevant.



Chapter 1  SQL Server 2008 Architecture and Configuration 59

Nonessential Services

You should disable any services that you don’t need. In Windows Server 2003, you can
right-click My Computer and choose Manage. Expand the Services And Applications

node in the Computer Management tool, and click Services. In the right-hand pane, you

see a list of all the services available on the operating system. You can change a service's
startup property by right-clicking its name and choosing Properties. Unnecessary services
add overhead to the system and use resources that could otherwise go to SQL Server. No
unnecessary services should be marked for automatic startup. Avoid using a server that's
running SQL Server as a domain controller, the group's file or print server, the Web server, or
the Dynamic Host Configuration Protocol (DHCP) server. You should also consider disabling
the Alerter, ClipBook, Computer Browser, Messenger, Network Dynamic Data Exchange
(DDE), and Task Scheduler services, which are enabled by default but are not needed by SQL
Server.

Connectivity

You should run only the network protocols that you actually need for connectivity. You can
use the SQL Server Configuration Manager to disable unneeded protocols, as described
earlier in this chapter.

Firewall Setting

Improper firewall settings are another system configuration issue that can inhibit SQL
Server connectivity across your network. Firewall systems help prevent unauthorized access
to computer resources and are usually desirable, but to access an instance of SQL Server
through a firewall, you'll need to configure the firewall on the computer running SQL
Server to allow access. Many firewall systems are available, and you'll need to check the
documentation for your system for the exact details of how to configure it. In general, you'll
need to carry out the following steps:

1. Configure the SQL Server instance to use a specific TCP/IP port. Your default SQL Server
uses port 1433 by default, but that can be changed. Named instances use dynamic
ports by default, but that can also be changed using the SQL Server Configuration
Manager.

2. Configure your firewall to allow access to the specific port for authorized users or
computers.

3. As an alternative to configuring SQL Server to listen on a specific port and then
opening that port, you can list the SQL Server executable (Sqlservr.exe) and the SQL
Browser executable (Sqlbrowser.exe) when requiring a connection to named instances,
as exceptions to the blocked programs. You can use this method when you want to
continue to use dynamic ports.



60

Microsoft SQL Server 2008 Internals

Trace Flags

SQL Server Books Online lists only about a dozen trace flags that are fully supported. You can
think of trace flags as special switches that you can turn on or off to change the behavior of
SQL Server. There are actually many dozens, if not hundreds, of trace flags. However, most
were created for the SQL Server development team's internal testing of the product and were
never intended for use by anybody outside Microsoft.

You can set trace flags on or off by using the DBCC TRACEON or DBCC TRACEOFF command
or by specifying them on the command line when you start SQL Server using Sqlservr.exe.
You can also use the SQL Server Configuration Manager to enable one or more trace flags
every time the SQL Server service is started. (You can read about how to do that in SQL
Server Books Online.) Trace flags enabled with DBCC TRACEON are valid only for a single
connection unless you specified an additional parameter of -1, in which case they are active
for all connections, even ones opened before you ran DBCC TRACEON. Trace flags enabled as
part of starting the SQL Server service are enabled for all sessions.

A few of the trace flags are particularly relevant to topics covered in this book, and we will
discuss particular ones when we describe topics that they are related to. For example, we
already mentioned trace flag 8040 in conjunction with the Resource Governor.

Caution Because trace flags change the way SQL Server behaves, they can actually cause
trouble if used inappropriately. Trace flags are not harmless features that you can experiment
with just to see what happens, especially not on a production system. Using them effectively
requires a thorough understanding of SQL Server default behavior (so that you know exactly
what you'll be changing) and extensive testing to determine that your system really will benefit
from the use of the trace flag.

SQL Server Configuration Settings

If you choose to have SQL Server automatically configure your system, it dynamically adjusts
the most important configuration options for you. It's best to accept the default configuration
values unless you have a good reason to change them. A poorly configured system can
destroy performance. For example, a system with an incorrectly configured memory setting
can break an application.

In certain cases, tweaking the settings rather than letting SQL Server dynamically adjust them
might lead to a tiny performance improvement, but your time is probably better spent on
application and database designing, indexing, query tuning, and other such activities, which
we'll talk about later in this book. You might see only a 5 percent improvement in performance
by moving from a reasonable configuration to an ideal configuration, but a badly configured
system can kill your application’s performance.

SQL Server 2008 has 68 server configuration options that you can query using the catalog
view sys.configurations.



Chapter 1  SQL Server 2008 Architecture and Configuration 61

You should change configuration options only when you have a clear reason for doing so,
and you should closely monitor the effects of each change to determine whether the change
improved or degraded performance. Always make and monitor changes one at a time. The
server-wide options discussed here can be changed in several ways. All of them can be set
via the sp_configure system stored procedure. However, of the 68 options, all but 16 are
considered advanced options and are not manageable by default using sp_configure. You'll
first need to change the Show Advanced Options option to be 1, as shown here:

EXEC sp_configure 'show advanced options', 1;
GO

RECONFIGURE;

GO

To see which options are advanced, you can again query the sys.configurations view and
examine a column called is_advanced, which lets you see which options are considered
advanced:

SELECT * FROM sys.configurations
WHERE 1is_advanced = 1;
GO

Many of the configuration options can also be set from the Server Properties dialog box in
the Object Explorer window of Management Studio, but there is no single dialog box from
which all configuration settings can be seen or changed. Most of the options that you can
change from the Server Properties dialog box are controlled from one of the property pages
that you reach by right-clicking the name of your SQL Server instance from Management
Studio. You can see the list of property pages in Figure 1-7.

) (=] 5]
L5 Seipt - Y Help
2 General
S Memony
5 Processorg Server suthentication
4 Securit
o Ewai,‘m " Windows Authenticalion made

=¥ Dalahase Settings 501 Server and Windows Authentication mode
7 acdvanced

1 Pemissions P
" Mane
+ Failed loging anly
" Successful logins only

' Both failed and successtul logins

Server proxy account

™ Enable server proxp account

=
_—

Server, e

TENAR ™ Enable Common Criteria compliance
Cannection: ™ Enable C2 audit tracing
TENARNAdministrator

) h ! [~ Cross databass ownership chaining
43 View connection properties

Fieady

aK [t |
(o ] o |

A

FIGURE 1-7 List of server property pages in Management Studio



62

Microsoft SQL Server 2008 Internals

If you use the sp_configure stored procedure, no changes take effect until the RECONFIGURE
command runs. In some cases, you might have to specify RECONFIGURE WITH OVERRIDE if
you are changing an option to a value outside the recommended range. Dynamic changes
take effect immediately upon reconfiguration, but others do not take effect until the server is
restarted. If after running RECONFIGURE, an option’s run_value and config_value as displayed
by sp_configure are different, or if the value and value_in_use in sys.configurations are different,
you must restart the SQL Server service for the new value to take effect. You can use the
sys.configurations view to determine which options are dynamic:

SELECT * FROM sys.configurations
WHERE 1is_dynamic = 1;
GO

We won't look at every configuration option here—only the most interesting ones or ones
that are related to SQL Server performance. In most cases, I'll discuss options that you should
not change. Some of these are resource settings that relate to performance only in that they
consume memory (for example, Locks). But if they are configured too high, they can rob

a system of memory and degrade performance. We'll group the configuration settings by
functionality. Keep in mind that SQL Server sets almost all these options automatically, and
your applications work well without you ever looking at them.

Memory Options

In the preceding section, you saw how SQL Server uses memory, including how it allocates
memory for different uses and when it reads data from or writes data to disk. However,
we did not discuss how to control how much memory SQL Server actually uses for these
purposes.

Min Server Memory and Max Server Memory By default, SQL Server adjusts the total
amount of the memory resources it will use. However, you can use the Min Server Memory
and Max Server Memory configuration options to take manual control. The default setting for
Min Server Memory is 0 MB, and the default setting for Max Server Memory is 2147483647. If
you use the sp_configure stored procedure to change both of these options to the same value,
you basically take full control and tell SQL Server to use a fixed memory size. The absolute
maximum of 2147483647 MB is actually the largest value that can be stored in the integer
field of the underlying system table. It is not related to the actual resources of your system.
The Min Server Memory option does not force SQL Server to acquire a minimum amount

of memory at startup. Memory is allocated on demand based on the database workload.
However, once the Min Server Memory threshold is reached, SQL Server does not release
memory if it would be left with less than that amount. To ensure that each instance has
allocated memory at least equal to the Min Server Memory value, therefore, we recommend
that you execute a database server load shortly after startup. During normal server activity,
the memory available per instance varies, but there is never less than the Min Server Memory
value available for each instance.



Chapter 1  SQL Server 2008 Architecture and Configuration 63

Set Working Set Size The configuration option Set Working Set Size is a setting from earlier
versions, and it has been deprecated. This setting is ignored in SQL Server 2008, even though
you do not receive an error message when you try to use this value.

AWE Enabled This option enables the use of the AWE API to support large memory sizes on
32-bit systems. With AWE enabled, SQL Server 2008 can use as much memory as the Enterprise,
Developer, or Standard editions allow. When running on Windows Server 2003 or Windows
Server 2008, SQL Server reserves only a small portion of AWE-mapped memory when it starts.
As additional AWE-mapped memory is required, the operating system dynamically allocates

it to SQL Server. Similarly, if fewer resources are required, SQL Server can return AWE-mapped
memory to the operating system for use by other processes or applications.

Use of AWE, in either Windows Server 2003 or Windows Server 2008, locks the pages

in memory so that they cannot be written to the paging file. Windows has to swap out

other applications if additional physical memory is needed, so the performance of those
applications might suffer. You should therefore set a value for Max Server Memory when you
have also enabled AWE.

If you are running multiple instances of SQL Server on the same computer, and each instance
uses AWE-mapped memory, you should ensure that the instances perform as expected. Each
instance should have a Min Server Memory setting. Because AWE-mapped memory cannot
be swapped out to the page file, the sum of the Min Server Memory values for all instances
should be less than the total physical memory on the computer.

If your SQL Server is set up for failover clustering and is configured to use AWE memory, you
must ensure that the sum of the Max Server Memory settings for all the instances is less than
the least physical memory available on any of the servers in the cluster. If the failover node
has less physical memory than the original node, the instances of SQL Server may fail to
start.

User Connections SQL Server 2008 dynamically adjusts the number of simultaneous
connections to the server if the User Connections configuration setting is left at its default
of 0. Even if you set this value to a different number, SQL Server does not actually allocate
the full amount of memory needed for each user connection until a user actually connects.
When SQL Server starts, it allocates an array of pointers with as many entries as the
configured value for User Connections. If you must use this option, do not set the value too
high because each connection takes approximately 28 KB of overhead regardless of whether
the connection is being used. However, you also don't want to set it too low because if you
exceed the maximum number of user connections, you receive an error message and cannot
connect until another connection becomes available. (The exception is the DAC connection,
which can be used.) Keep in mind that the User Connections value is not the same as the
number of users; one user, through one application, can open multiple connections to

SQL Server. Ideally, you should let SQL Server dynamically adjust the value of the User
Connections option.



64

Microsoft SQL Server 2008 Internals

Important The Locks configuration option is a setting from earlier versions, and it has been
deprecated. This setting is ignored in SQL Server 2008, even though you do not receive an error
message when you try to use this value.

Scheduling Options

As described previously, SQL Server 2008 has a special algorithm for scheduling user processes
using the SQLOS, which manages one scheduler per logical processor and makes sure that only
one process can run on a scheduler at any given time. The SQLOS manages the assignment

of user connections to workers to keep the number of users per CPU as balanced as possible.
Five configuration options affect the behavior of the scheduler: Lightweight Pooling, Affinity
Mask, Affinity64 Mask, Priority Boost, and Max Worker Threads.

Affinity Mask and Affinity64 Mask From an operating system point of view, the ability
of Windows to move process threads among different processors is efficient, but this
activity can reduce SQL Server performance because each processor cache is reloaded with
data repeatedly. By setting the Affinity Mask option, you can allow SQL Server to assign
processors to specific threads and thus improve performance under heavy load conditions
by eliminating processor reloads and reducing thread migration and context switching
across processors. Setting an affinity mask to a non-0 value not only controls the binding
of schedulers to processors, but it also allows you to limit which processors are used for
executing SQL Server requests.

The value of an affinity mask is a 4-byte integer, and each bit controls one processor. If you
set a bit representing a processor to 1, that processor is mapped to a specific scheduler. The
4-byte affinity mask can support up to 32 processors. For example, to configure SQL Server to
use processors 0 through 5 on an eight-way box, you would set the affinity mask to 63, which
is equivalent to a bit string of 00111111. To enable processors 8 through 11 on a 16-way box,
you would set the affinity mask to 3840, or 0000111100000000. You might want to do this
on a machine supporting multiple instances, for example. You would set the affinity mask of
each instance to use a different set of processors on the computer.

To cover more than 32 CPUs, you configure a 4-byte affinity mask for the first 32 CPUs and
up to a 4-byte Affinity64 mask for the remaining CPUs. Note that affinity support for servers
with 33 to 64 processors is available only on 64-bit operating systems.

You can configure the affinity mask to use all the available CPUs. For an eight-way machine,
an Affinity Mask setting of 255 means that all CPUs will be enabled. This is not exactly the
same as a setting of 0 because with the nonzero value, the schedulers are bound to a specific
CPU, and with the 0 value, they are not.

Lightweight Pooling By default, SQL Server operates in thread mode, which means
that the workers processing SQL Server requests are threads. As we described earlier, SQL



Chapter 1  SQL Server 2008 Architecture and Configuration 65

Server also lets user connections run in fiber mode. Fibers are less expensive to manage

than threads. The Lightweight Pooling option can have a value of 0 or 1; 1 means that SQL
Server should run in fiber mode. Using fibers may yield a minor performance advantage,
particularly when you have eight or more CPUs and all of the available CPUs are operating

at or near 100 percent. However, the trade-off is that certain operations, such as running
queries on linked servers or executing extended stored procedures, must run in thread mode
and therefore need to switch from fiber to thread. The cost of switching from fiber to thread
mode for those connections can be noticeable and in some cases offsets any benefit of
operating in fiber mode.

If you're running in an environment using a high percentage of total CPU resources, and if
System Monitor shows a lot of context switching, setting Lightweight Pooling to 1 might
yield some performance benefit.

Priority Boost If the Priority Boost setting is enabled, SQL Server runs at a higher scheduling
priority. The result is that the priority of every thread in the server process is set to a priority
of 13 in Windows 2000 and Windows Server 2003. Most processes run at the normal priority,
which is 7. The net effect is that if the server is running a very resource-intensive workload
and is getting close to maxing out the CPU, these normal priority processes are effectively
starved.

The default Priority Boost setting is 0, which means that SQL Server runs at normal priority
whether or not you're running it on a single-processor machine. There are probably very

few sites or applications for which setting this option makes much difference, but if your
machine is totally dedicated to running SQL Server, you might want to enable this option
(setting it to 1) to see for yourself. It can potentially offer a performance advantage on a
heavily loaded, dedicated system. As with most of the configuration options, you should use
it with care. Raising the priority too high might affect the core operating system and network
operations, resulting in problems shutting down SQL Server or running other operating
system tasks on the server.

Max Worker Threads SQL Server uses the operating system’s thread services by keeping a
pool of workers (threads or fibers) that take requests from the queue. It attempts to divide the
worker threads evenly among the SQLOS schedulers so that the number of threads available
to each scheduler is the Max Worker Threads setting divided by the number of CPUs. With 100
or fewer users, there are usually as many worker threads as active users (not just connected
users who are idle). With more users, it often makes sense to have fewer worker threads

than active users. Although some user requests have to wait for a worker thread to become
available, total throughput increases because less context switching occurs.

The Max Worker Threads default value of 0 means that the number of workers is
configured by SQL Server, based on the number of processors and machine architec-
ture. For example, for a four-way 32-bit machine running SQL Server, the default is 256
workers. This does not mean that 256 workers are created on startup. It means that if a



66

Microsoft SQL Server 2008 Internals

connection is waiting to be serviced and no worker is available, a new worker is created if
the total is currently below 256. If this setting is configured to 256 and the highest number
of simultaneously executing commands is, say, 125, the actual number of workers will not
exceed 125. It might be even smaller than that because SQL Server destroys and trims away
workers that are no longer being used. You should probably leave this setting alone if your
system is handling 100 or fewer simultaneous connections. In that case, the worker thread
pool will not be greater than 100.

Table 1-5 lists the default number of workers given your machine architecture and number
of processors. (Note that Microsoft recommends 1024 as the maximum for 32-bit operating
systems.)

TABLE 1-5 Default Settings for Max Worker Threads

CPU 32-Bit Computer 64-Bit Computer
Up to 4 processors 256 512
8 processors 288 576
16 processors 352 704
32 processors 480 960

Even systems that handle 4,000 or more connected users run fine with the default setting.
When thousands of users are simultaneously connected, the actual worker pool is usually
well below the Max Worker Threads value set by SQL Server because from the perspective
of the database, most connections are idle even if the user is doing plenty of work on the
client.

Disk 1/0 Options

No options are available for controlling the disk read behavior of SQL Server. All the tuning
options to control read-ahead in previous versions of SQL Server are now handled completely
internally. One option is available to control disk write behavior. This option controls how
frequently the checkpoint process writes to disk.

Recovery Interval The Recovery Interval option can be configured automatically.

SQL Server setup sets it to 0, which means autoconfiguration. In SQL Server 2008, this
means that the recovery time should be less than one minute. This option lets the database
administrator control the checkpoint frequency by specifying the maximum number of
minutes that recovery should take, per database. SQL Server estimates how many data
modifications it can roll forward in that recovery time interval. SQL Server then inspects the
log of each database (every minute, if the recovery interval is set to the default of 0) and
issues a checkpoint for each database that has made at least that many data modification
operations since the last checkpoint. For databases with relatively small transaction logs,
SQL Server issues a checkpoint when the log becomes 70 percent full, if that is less than the
estimated number.



Chapter 1  SQL Server 2008 Architecture and Configuration 67

The Recovery Interval option does not affect the time it takes to undo long-running transactions.
For example, if a long-running transaction takes two hours to perform updates before the server
becomes disabled, the actual recovery takes considerably longer than the Recovery Interval value.

The frequency of checkpoints in each database depends on the amount of data modifications
made, not on a time-based measure. So a database that is used primarily for read operations
will not have many checkpoints issued. To avoid excessive checkpoints, SQL Server tries to
make sure that the value set for the recovery interval is the minimum amount of time between
successive checkpoints.

As discussed previously, most writing to disk doesn’t actually happen during checkpoint
operations. Checkpoints are just a way to guarantee that all dirty pages not written by other
mechanisms are still written to the disk in a timely manner. For this reason, you should keep
the Recovery Interval value set at O (self-configuring).

Affinity 1/0 Mask and Affinity64 I/0O Mask These two options control the affinity of a
processor for /0 operations and work in much the same way as the two options for controlling
processing affinity for workers. Setting a bit for a processor in either of these bit masks means
that the corresponding processor is used only for /O operations. You probably never need

to set this option. However, if you do decide to use it, perhaps just for testing purposes, you
should use it in conjunction with the Affinity Mask or Affinity64 Mask option and make sure
the bits set do not overlap. You should thus have one of the following combinations of settings:
0 for both Affinity I/O Mask and Affinity Mask for a CPU, 1 for the Affinity /O Mask option and
0 for Affinity Mask, or O for Affinity I/O Mask and 1 for Affinity Mask.

Backup Compression Default Backup Compression is a new feature in SQL Server 2008,
and for backward compatibility, the default value for backup compression is 0, meaning

that backups are not compressed. Although only Enterprise edition instances can create a
compressed backup, any edition of SQL Server 2008 can restore a compressed backup. When
Backup Compression is enabled, the compression is performed on the server prior to writing,
so it can greatly reduce the size of the backups and the I/O required to write the backups to
the external device. The amount of space reduction depends on many factors, including the
following:

B The type of data in the backup For example, character data compresses more than
other types of data.

B Whether the data is encrypted Encrypted data compresses significantly less than
equivalent unencrypted data. If transparent data encryption is used to encrypt an
entire database, compressing backups might not reduce their size by much, if at all.

After the backup has been performed, you can inspect the backupset table in the msdb
database to determine the compression ratio, using a statement like the following:

SELECT backup_size/compressed_backup_size FROM msdb..backupset;



68

Microsoft SQL Server 2008 Internals

Although compressed backups can use significantly fewer /O resources, it can significantly
increase CPU usage when performing the compression. This additional load can affect other
operations occurring concurrently. To minimize this impact, you can consider using the
Resource Governor to create a workload group for sessions performing backups and assign
the group to a resource pool with a limit on its maximum CPU utilization.

The configured value is the instance-wide default for Backup Compression, but it can be
overridden for a particular backup operation, by specifying WITH COMPRESSION or WITH
NO_COMPRESSION. Compression can be used for any type of backup: full, log, differential or
partial (file or filegroup).

Note The algorithm used for compressing backups is very different than the database
compression algorithms. Backup Compression uses an algorithm very similar to zip, where it is
just looking for patterns in the data. Data compression will be discussed in Chapter 7.

Filestream Access Level Filestream integrates the Database Engine with your NTFS file
system by storing BLOB data as files on the file system and allowing you to access this data
either using T-SQL or Win32 file system interfaces to provide streaming access to the data.
Filestream uses the Windows system cache for caching file data to help reduce any effect
that filestream data might have on SQL Server performance. The SQL Server buffer pool is
not used so that filestream does not reduce the memory available for query processing.

Prior to setting this configuration option to indicate the access level for filestream data, you
must enable FILESTREAM externally using the SQL Server Configuration Manager (if you
haven't enabled FILESTREAM during SQL Server setup). Using the SQL Server Configuration
Manager, you can right-click the name of the SQL Server service and choose properties. The
dialog box has a separate tab for FILESTREAM options. You must check the top box to enable
FILESTREAM for T-SQL access, and then you can choose to enable FILESTREAM for file I/O
streaming if you want.

After enabling FILESTREAM for your SQL Server instance, you then set the configuration
value. The following values are allowed:

B 0 Disables FILESTREAM support for this instance
B 1 Enables FILESTREAM for T-SQL access
B 2 Enables FILESTREAM for T-SQL and Win32 streaming access

Databases that store filestream data must have a special filestream filegroup. We'll
discuss filegroups in Chapter 3. More details about filestream storage will be covered in
Chapter 7.



Chapter 1  SQL Server 2008 Architecture and Configuration 69

Query Processing Options

SQL Server has several options for controlling the resources available for processing queries.
As with all the other tuning options, your best bet is to leave the default values unless
thorough testing indicates that a change might help.

Min Memory Per Query When a query requires additional memory resources, the number
of pages that it gets is determined partly by the Min Memory Per Query option. This option
is relevant for sort operations that you specifically request using an ORDER BY clause, and

it also applies to internal memory needed by merge-join operations and by hash-join and
hash-grouping operations. This configuration option allows you to specify a minimum
amount of memory (in kilobytes) that any of these operations should be granted before they
are executed. Sort, merge, and hash operations receive memory in a very dynamic fashion,
so you rarely need to adjust this value. In fact, on larger machines, your sort and hash queries
typically get much more than the Min Memory Per Query setting, so you shouldn't restrict
yourself unnecessarily. If you need to do a lot of hashing or sorting, however, and you have
few users or a lot of available memory, you might improve performance by adjusting this
value. On smaller machines, setting this value too high can cause virtual memory to page,
which hurts server performance.

Query Wait The Query Wait option controls how long a query that needs additional
memory waits if that memory is not available. A setting of -1 means that the query waits
25 times the estimated execution time of the query, but it always waits at least 25 seconds
with this setting. A value of 0 or more specifies the number of seconds that a query waits.
If the wait time is exceeded, SQL Server generates error 8645:

Server: Msg 8645, Level 17, State 1, Line 1
A time out occurred while waiting for memory resources to execute the query. Re-run the

query.

Even though memory is allocated dynamically, SQL Server can still run out of memory if the
memory resources on the machine are exhausted. If your queries time out with error 8645,
you can try increasing the paging file size or even adding more physical memory. You can also
try tuning the query by creating more useful indexes so that hash or merge operations aren’t
needed. Keep in mind that this option affects only queries that have to wait for memory
needed by hash and merge operations. Queries that have to wait for other reasons are not
affected.

Blocked Process Threshold This option allows an administrator to request a notification
when a user task has been blocked for more than the configured number of seconds. When
Blocked Process Threshold is set to 0, no notification is given. You can set any value up to
86,400 seconds. When the deadlock monitor detects a task that has been waiting longer
than the configured value, an internal event is generated. You can choose to be notified of
this event in one of two ways. You can use SQL Trace to create a trace and capture event

of type Blocked process report, which you can find in the Errors and Warnings category



70

Microsoft SQL Server 2008 Internals

on the Events Select screen in SQL Server Profiler. So long as a resource stays blocked on a
deadlock-detectable resource, the event is raised every time the deadlock monitor checks
for a deadlock. An Extensible Markup Language (XML) string is captured in the Text Data
column of the trace that describes the blocked resource and the resource being waited on.
More information about deadlock detection is in Chapter 10.

Alternatively, you can use event notifications to send information about events to a service
broker service. Event notifications can provide a programming alternative to defining a trace,
and they can be used to respond to many of the same events that SQL Trace can capture.
Event notifications, which execute asynchronously, can be used to perform an action inside
an instance of SQL Server 2008 in response to events with very little consumption of memory
resources. Because event notifications execute asynchronously, these actions do not consume
any resources defined by the immediate transaction.

Index Create Memory The Min Memory Per Query option applies only to sorting and
hashing used during query execution; it does not apply to the sorting that takes place during
index creation. Another option, Index Create Memory, lets you allocate a specific amount of
memory for index creation. Its value is specified in kilobytes.

Query Governor Cost Limit  You can use the Query Governor Cost Limit option to specify
the maximum number of seconds that a query can run. If you specify a nonzero, non-negative
value, SQL Server disallows execution of any query that has an estimated cost exceeding that
value. Specifying 0 (the default) for this option turns off the query governor, and all queries
are allowed to run without any time limit.

Max Degree Of Parallelism and Cost Threshold For Parallelism SQL Server 2008 lets you
run certain kinds of complex queries simultaneously on two or more processors. The queries
must lend themselves to being executed in sections. Here's an example:

SELECT AVG(charge_amt), category
FROM charge
GROUP BY category

If the charge table has 1,000,000 rows and there are 10 different values for category, SQL
Server can split the rows into groups and have only a subset of the groups processed on each
processor. For example, with a four-CPU machine, categories 1 through 3 can be averaged
on the first processor, categories 4 through 6 can be averaged on the second processor,
categories 7 and 8 can be averaged on the third, and categories 9 and 10 can be averaged
on the fourth. Each processor can come up with averages for only its groups, and the
separate averages are brought together for the final result.

During optimization, the Query Optimizer always finds the cheapest possible serial plan
before considering parallelism. If this serial plan costs less than the configured value for
the Cost Threshold For Parallelism option, no parallel plan is generated. Cost Threshold For
Parallelism refers to the cost of the query in seconds; the default value is 5. If the cheapest



Chapter 1  SQL Server 2008 Architecture and Configuration 71

serial plan costs more than this configured threshold, a parallel plan is produced based on
assumptions about how many processors and how much memory will actually be available at
runtime. This parallel plan cost is compared with the serial plan cost, and the cheaper one is
chosen. The other plan is discarded.

A parallel query execution plan can use more than one thread; a serial execution plan, which
is used by a nonparallel query, uses only a single thread. The actual number of threads used
by a parallel query is determined at query plan execution initialization and is the DOP. The
decision is based on many factors, including the Affinity Mask setting, the Max Degree Of
Parallelism setting, and the available threads when the query starts executing.

You can observe when SQL Server is executing a query in parallel by querying the DMV
sys.dm_os_tasks. A query that is running on multiple CPUs has one row for each thread, as
follows:

SELECT
task_address,
task_state,
context_switches_count,
pending_io_count,
pending_io_byte_count,
pending_io_byte_average,
scheduler_id,
session_id,
exec_context_id,
request_id,
worker_address,
host_address

FROM sys.dm_os_tasks

ORDER BY session_id, request_id;

Be careful when you use the Max Degree Of Parallelism and Cost Threshold For Parallelism
options—they have server-wide impact.

There are other configuration options that we will not mention, most of which deal with
aspects of SQL Server that are beyond the scope of this book. These include options for
configuring remote queries, replication, SQL Agent, C2 auditing, and full-text search. There is
a Boolean option to disallow use of the CLR in programming SQL Server objects; it is off (0)
by default. The Allow Updates option still exists but has no effect in SQL Server 2008. A few
of the configuration options deal with programming issues, and you can get more details

in Inside SQL Server 2008: TSQL Programming. These options include ones for dealing with
recursive and nested triggers, cursors, and accessing objects across databases.

The Default Trace

One final option that doesn’t seem to fit into any of the other categories is called Default
Trace Enabled. We mention it because the default value is 1, which means that as soon as SQL



72

Microsoft SQL Server 2008 Internals

Server starts, it runs a server-side trace, capturing a predetermined set of information into
a predetermined location. None of the properties of this default trace can be changed; the
only thing you can do is turn it off.

You can compare the default trace to the blackbox trace which has been available since
SQL Server 7 (and is still available in SQL Server 2008), but the blackbox trace takes a few
steps to create, and it takes even more steps to have it start automatically when your SQL
Server starts. This default trace is so lightweight that you might find little reason to disable
it. If you're not familiar with SQL Server tracing, you'll probably need to spend some time
reading about tracing in Chapter 2.

The default trace output file is stored in the same directory in which you installed SQL

Server, in the \Log subdirectory. So if you've installed SQL Server in the default location, the
captured trace information for a default instance will be in the file C:\Program Files\Microsoft
SQL Server\MSSQL10.MSSQLSSERVER\MSSQL\LOG\Log.trc. Every time you stop and restart
SQL Server, or reach the maximum file size of 20 MB, a new trace file is created with a
sequential numerical suffix, so the second trace file would be Log_01.trc, followed by Log_02.
trc, and so on. If all the trace log files are removed or renamed, the next trace file starts at
log.trc again. SQL Server will keep no more than five trace files per instance, so when the
sixth file is created, the earliest one is deleted.

You can open the trace files created through the default trace mechanism by using the SQL
Server Profiler, just as you can any other trace file, or you can copy to a table by using the
system function fn_trace_gettable and view the current contents of the trace while the trace
is still running. As with any server-side trace that writes to a file, the writing is done in 128-KB
blocks. Thus, on a very low-use SQL Server instance, it might look like nothing is being
written to the file for quite some time. You need 128 KB of data for any writes to the physical
file to occur. In addition, when the SQL Server service is stopped, whatever events have
accumulated for this trace will be written out to the file.

Unlike the blackbox trace, which captures every single batch completely and can get huge
quickly, the default trace in SQL Server 2008 captures only a small set of events that were
deemed likely to cause stability problems or performance degradation of SQL Server. The
events include database file size change operations, error and warning conditions, full-text
crawl operations, object CREATE, ALTER, and DROP operations, changes to permissions or
object ownership, and memory change events.

Not only can you not change anything about the files saved or their locations, you can't

add or remove events, the data captured along with the events, or the filters that might be
applied to the events. If you want something slightly different than the default trace, you
can disable the predefined trace and create your own with whatever events, data, and filters
you choose. Of course, you must then make sure the trace starts automatically. This is not
impossible to do, but we suggest that you leave the default trace on, in addition to whatever
other traces you need, so that you know that at least some information about the activities
taking place on your SQL Server is being captured.



Chapter 1  SQL Server 2008 Architecture and Configuration 73
Final Words

In this chapter, I've looked at the general workings of the SQL Server engine, including
the key components and functional areas that make up the engine. I've also looked at
the interaction between SQL Server and the operating system. By necessity, I've made
some simplifications throughout the chapter, but the information should provide some
insight into the roles and responsibilities of the major components in SQL Server and the
interrelationships among components.

This chapter also covered the primary tools for changing the behavior of SQL Server. The
primary means of changing the behavior is by using configuration options, so we looked

at the options that can have the biggest impact on SQL Server behavior, especially its
performance. To really know when changing the behavior is a good idea, it's important that
you understand how and why SQL Server works the way it does. My hope is that this chapter
has laid the groundwork for you to make informed decisions about configuration changes.






Chapter 2
Change Tracking, Tracing,
and Extended Events

Adam Machanic

As the Microsoft SQL Server engine processes user requests, a variety of actions can occur:
data structures are interrogated; files are read from or written to; memory is allocated,
deallocated, or accessed; data is read or modified; an error may be raised; and so on.
Classified as a group, these actions can be referred to as the collection of run-time events
that can occur within SQL Server.

From the point of view of a user—a DBA or database developer working with SQL Server—the
fact that certain events are occurring may be interesting in the context of supporting debugging,
auditing, and general server maintenance tasks. For example, it may be useful to track when a
specific error is raised, every time a certain column is updated, or how much CPU time various
stored procedures are consuming.

To support these kinds of user scenarios, the SQL Server engine is instrumented with a variety
of infrastructures designed to support event consumption. These range from relatively simple
systems such as triggers—which call user code in response to data modifications or other
events—to the complex and extremely flexible Extended Events Engine, which is new in SQL
Server 2008.

This chapter covers the key areas of each of the common event systems that you might
encounter as a SQL Server DBA or database developer: triggers, event notifications, Change
Tracking, SQL Trace, and extended events. Each of these has a similar basic goal—to react or
report when something happens—but each works somewhat differently.

The Basics: Triggers and Event Notifications

Although the majority of this chapter is concerned with larger and more complex eventing
infrastructures, the basics of how SQL Server internally deals with events can be learned more
easily through an investigation of triggers and event notifications; therefore, they are a good
place to begin.

Triggers come in a couple of basic varieties. Data Manipulation Language (DML) triggers can
be defined to fire on operations like inserts and updates, and Data Definition Language (DDL)
triggers can be defined to fire on either server-level or database-level actions such as creating
a login or dropping a table. DML triggers can fire instead of the triggering event, or after the

75



76

Microsoft SQL Server 2008 Internals

event has completed but before the transaction is committed. DDL triggers can be configured to
fire only after the event has completed, but again, before the transaction has committed. Event
notifications are really nothing more than special-case DDL triggers that send a message to a
SQL Service Broker queue rather than invoking user code. The most important difference is that
they do not require a transaction and as a result support many non-transactional events—for
example, a user disconnecting from the SQL Server instance—that standard DDL triggers do not.

Run-Time Trigger Behavior

DML triggers and DDL triggers have slightly different run-time behaviors owing to their
different modes of operation and the nature of the required data within the trigger. Because
DDL triggers are associated with metadata operations, they require much less data than their
DML counterparts.

DML triggers are resolved during DML compilation. After the query has been parsed, each
table involved is checked via an internal function for the presence of a trigger. If triggers are
found, they are compiled and checked for tables that have triggers, and the process recursively
continues. During the actual DML operation, the triggers are fired and the rows in the inserted
and deleted virtual tables are populated in tempdb, using the version store infrastructure.

DDL triggers and event notifications follow similar paths, which are slightly different from that
of DML triggers. In both cases, the triggers themselves are resolved via a check only after the
DDL change to which they are bound has been applied. DDL triggers and event notifications
are fired after the DDL operation has occurred, as a post-operation step rather than during
the operation as with DML triggers. The only major difference between DDL triggers and
event notifications is that DDL triggers run user-defined code, whereas event notifications
send a message to a Service Broker queue.

Change Tracking

Change Tracking is a feature designed to help eliminate the need for many of the custom
synchronization schemes that developers must often create from scratch during an
application’s lifetime. An example of this kind of system is when an application pulls data
from the database into a local cache and occasionally asks the database whether any of the
data has been updated, so that the data in the local store can be brought up to date. Most
of these systems are implemented using triggers or timestamps, and they are often riddled
with performance issues or subtle logic flaws. For example, schemes using timestamps often
break down if the timestamp column is populated at insert time rather than at commit time.
This can cause a problem if a large insert happens simultaneously with many smaller inserts,
and the large insert commits later than smaller inserts that started afterward, thereby ruining
the ascending nature of the timestamp. Triggers can remedy this particular problem, but they
cause their own problems—namely, they can introduce blocking issues because they increase
the amount of time needed for transactions to commit.



Chapter 2 Change Tracking, Tracing, and Extended Events 77

Unlike custom systems, Change Tracking is deeply integrated into the SQL Server relational
engine and designed from the ground up with performance and scalability in mind. The
system is designed to track data changes in one or more tables in a database and is designed
to let the user easily determine the order in which changes occurred, as a means by which to
support multitable synchronization. Changes are tracked synchronously as part of the
transaction in which the change is made, meaning that the list of changed rows is always up
to date and consistent with the actual data in the table.

Change Tracking is based on the idea of working forward from a baseline. The data
consumer first requests the current state of all the rows in the tracked tables and is given

a version number with each row. The baseline version number—effectively, the maximum
version number that the system currently knows about—is also queried at that time and is
recorded until the next synchronization request. When the request is made, the baseline
version number is sent back to the Change Tracking system, and the system determines
which rows have been modified since the first request. This way, the consumer needs to
concern itself only with deltas; there is generally no reason to reacquire rows that have not
changed. In addition to sending a list of rows that have changed, the system identifies the
nature of the change since the baseline—a new row, an update to an existing row, or a
deleted row. The maximum row version returned when requesting an update becomes the
new baseline.

SQL Server 2008 includes two similar technologies that can be used to support synchronization:
Change Tracking and Change Data Capture (the details of which are outside the scope of this
book because it is not an engine feature per se—it uses an external log reader to do its work).
It is worth spending a moment to discuss where and when Change Tracking should be used.
Change Tracking is designed to support offline applications, occasionally connected applications,
and other applications that don't need real-time notification as data is updated. The Change
Tracking system sends back only the current versions of any rows requested after the
baseline—incremental row states are not preserved—so the ideal Change Tracking application
does not require the full history of a given row. As compared with Change Data Capture, which
records the entire modification history of each row, Change Tracking is lighter weight and less
applicable to auditing and data warehouse extract, transform, and load (ETL) scenarios.

Change Tracking Configuration

Although Change Tracking is designed to track changes on a table-by-table basis, it is actually
configured at two levels: the database in which the tables reside and the tables themselves.

A table cannot be enabled for Change Tracking until the feature has been enabled in the
containing database.

Database-Level Configuration

SQL Server 2008 extends the ALTER DATABASE command to support enabling and disabling
Change Tracking, as well as configuring options that define whether and how often the history



78

Microsoft SQL Server 2008 Internals

of changes that have been made to participating tables is purged. To enable Change Tracking
for a database with the default options, the following ALTER DATABASE syntax is used:

ALTER DATABASE AdventureWorks2008
SET CHANGE_TRACKING = ON;

Running this statement enables a configuration change to metadata that allows two related
changes to occur once table-level configuration is enabled: First, a hidden system table will
begin getting populated in the target database, should qualifying transactions occur (see
the next section). Second, a cleanup task will begin eliminating old rows found in the internal
table and related tables.

Commit Table

The hidden table, known as the Commit Table, maintains one row for every transaction in
the database that modifies at least one row in a table that participates in Change Tracking.
At transaction commit time, each qualifying transaction is assigned a unique, ascending
identifier called a Commit Sequence Number (CSN). The CSN is then inserted—along with
the transaction identifier, log sequence information, begin time, and other data—into the
Commit Table. This table is central to the Change Tracking process and is used to help
determine which changes need to be synchronized when a consumer requests an update, by
maintaining a sequence of committed transactions.

Although the Commit Table is an internal table and users can't access it directly, except
administrators, via the dedicated administrator connection (DAC), it is still possible to view
its columns and indexes by starting with the sys.all_columns catalog view. The physical name
for the table is sys.syscommitab, and the following query returns six rows, as described in
Table 2-1:

SELECT *

FROM sys.all_columns

WHERE object_id = OBJECT_ID('sys.syscommittab');

TABLE 2-1 Columns in the sys.syscommittab System Table

Column Name Type Description

commit_ts BIGINT The ascending CSN for the transaction

xdes_id BIGINT The internal identifier for the transaction

commit_Ibn BIGINT The log block number for the transaction

commit_csn BIGINT The instance-wide sequence number for the transaction
commit_time DATETIME The time the transaction was committed

dbfragid INT Reserved for future use

The sys.syscommitab table has two indexes (which are visible via the sys.indexes catalog view):
a unique clustered index on the commit_ts and xdes_id columns and a unique nonclustered



Chapter 2 Change Tracking, Tracing, and Extended Events 79

index on the xdes_id column that includes the dbfragid column. None of the columns are nul-
lable, so the per-row data size is 44 bytes for the clustered index and 20 bytes for the non-
clustered index.

Note that this table records information about transactions, but none about which rows

were actually modified. That related data is stored in separate system tables, created when
Change Tracking is enabled on a user table. Because one transaction can span many different
tables and many rows within each table, storing the transaction-specific data in a single
central table saves a considerable number of bytes that need to be written during a large
transaction.

All the columns in the sys.syscommitab table except dbfragid are visible via the new
sys.dm_tran_commit_table DMV. This view is described by SQL Server Books Online as being
included for "supportability purposes,” but it can be interesting to look at for the purpose
of learning how Change Tracking behaves internally, as well as to watch the cleanup task,
discussed in the next section, in action.

Internal Cleanup Task

Once Change Tracking is enabled and the Commit Table and related hidden tables fill with rows,
they can begin taking up a considerable amount of space in the database. Consumers—that

is, synchronizing databases and applications—may not need a change record beyond a certain
point of time, and so keeping it around may be a waste. To eliminate this overhead, Change
Tracking includes functionality to enable an internal task that removes change history on a
regular basis.

When enabling Change Tracking using the syntax listed previously, the default setting,
Remove History Older Than Two Days, is used. This setting can be specified when enabling
Change Tracking using optional parameters to the ALTER DATABASE syntax:

ALTER DATABASE AdventureWorks2008
SET CHANGE_TRACKING = ON
(AUTO_CLEANUP=ON, CHANGE_RETENTION=1 hours);

The AUTO_CLEANUP option can be used to disable the internal cleanup task completely,
and the CHANGE_RETENTION option can be used to specify the interval after which history
should be removed, in an interval that can be defined by a number of minutes, hours, or days.

If enabled, the internal task runs once every 30 minutes and evaluates which transactions
need to be removed by subtracting the retention interval from the current time and then
using an interface into the Commit Table to find a list of transaction IDs older than that
period. These transactions are then purged from both the Commit Table and other hidden
Change Tracking tables.

The current cleanup and retention settings for each database can be queried from the
sys.change_tracking_databases catalog view.



80

Microsoft SQL Server 2008 Internals

Note When setting the cleanup retention interval, it is important to err on the side of being too
long, to ensure that data consumers do not end up with a broken change sequence. If this does
become a concern, applications can use the CHANGE_TRACKING_MIN_VALID_VERSION function
to find the current minimum version number stored in the database. If the minimum version
number is higher than the application’s current baseline, the application has to resynchronize all
data and take a new baseline.

Table-Level Configuration

Once Change Tracking is enabled at the database level, specific tables must be configured
to participate. By default, no tables are enlisted in Change Tracking as a result of the feature
being enabled at the database level.

The ALTER TABLE command has been modified to facilitate enabling of Change Tracking at
the table level. To turn on the feature, use the new ENABLE CHANGE_TRACKING option, as
shown in the following example:

ALTER TABLE HumanResources.Employee
ENABLE CHANGE_TRACKING;

If Change Tracking has been enabled at the database level, running this statement causes two
changes to occur. First, a new internal table is created in the database to track changes made
to rows in the target table. Second, a hidden column is added to the target table to enable
tracking of changes to specific rows by transaction ID. An optional feature called Column
Tracking can also be enabled; this is covered in the section entitled “Column Tracking,” later in
this chapter.

Internal Change Table

The internal table created by enabling Change Tracking at the table level is named
sys.change_tracking_[object id], where [object id] is the database object ID for the target
table. The table can be seen by querying the sys.all_objects catalog view and filtering on
the parent_object_id column based on the object ID of the table you're interested in, or by
looking at the sys.internal_tables view for tables with an internal_type of 209.

The internal table has five static columns, plus at least one additional column depending on
how many columns participate in the target table’s primary key, as shown in Table 2-2.

TABLE 2-2 Columns in the Internal Change Tracking Table

Column Name Type Description

sys_change_xdes_id BIGINT NOT NULL Transaction ID of the transaction that
modified the row.

sys_change_xdes_id_seq BIGINT NOT NULL (IDENTITY)  Sequence identifier for the operation
within the transaction.



Chapter 2 Change Tracking, Tracing, and Extended Events 81

TABLE 2-2 Columns in the Internal Change Tracking Table

Column Name Type Description

sys_change_operation NCHAR(1) NULL Type of operation that affected the
row: insert, update, or delete.

sys_change_columns VARBINARY(4100) NULL List of which columns were modified

(used for updates, only if column
tracking is enabled).

sys_change_context VARBINARY(128) NULL Application-specific context
information provided during the DML
operation using the WITH CHANGE_
TRACKING_CONTEXT option.

k_[name]_[ord] [type] NOT NULL Primary key column(s) from the target
table. [name] is the name of the
primary key column, [ord] is the ordinal
position in the key, and [type] is the
data type of the column.

Calculating the per-row overhead of the internal table is a bit trickier than for the Commit
Table, as several factors can influence overall row size. The fixed cost includes 18 bytes

for the transaction ID, CSN, and operation type, plus the size of the primary key from the
target table. If the operation is an update and column tracking is enabled (as described

in the section entitled “Column Tracking,” later in this chapter), up to 4,100 additional
bytes per row may be consumed by the sys_change_columns column. In addition, context
information—such as the name of the application or user doing the modification—can be
provided using the new WITH CHANGE_TRACKING_CONTEXT DML option (see the section
entitled “Query Processing and DML Operations,” later in this chapter), and this adds a
maximum of another 128 bytes to each row.

The internal table has a unique clustered index on the transaction ID and transaction sequence
identifier and no nonclustered indexes.

Change Tracking Hidden Columns

In addition to the internal table created when Change Tracking is enabled for a table, a hidden
8-byte column is added to the table to record the transaction ID of the transaction that

last modified each row. This column is not visible in any relational engine metadata (that is,
catalog views and the like), but can be seen referenced in query plans as $sys_change_xdes_id.
In addition, you may notice the data size of tables increasing accordingly after Change
Tracking is updated. This column is removed, along with the internal table, if Change Tracking
is disabled for a table.

Note The hidden column'’s value can be seen by connecting via the DAC and explicitly referencing
the column name. It never shows up in the results of a SELECT * query.



82

Microsoft SQL Server 2008 Internals

Change Tracking Run-Time Behavior

The various hidden and internal objects covered to this point each have a specific purpose
when Change Tracking interfaces with the query processor at run time. Enabling Change
Tracking for a table modifies the behavior of every subsequent DML operation against the
table, in addition to enabling use of the CHANGETABLE function that allows a data consumer
to find out which rows have changed and need to be synchronized.

Query Processing and DML Operations

Once Change Tracking has been enabled for a given table, all existing query plans for the
table that involve row modification are marked for recompilation. New plans that involve
modifications to the rows in the table include an insert into the internal change table, as
shown in Figure 2-1. Because the internal table represents all operations—inserts, updates,
and deletes—Dby inserting new rows, the subtree added to each of the new query plans is
virtually identical.

B | = |
Cclustered Index Insert v _!’
. Compute Scalar Compute Hcalar
[change tracking 53575229
- - Cost: 0 % Cost: 0 %

Cost: 50 %

FIGURE 2-1 Query plan subtree involving an insert into the internal change table

In addition to the insert into the internal table, the query processor begins processing a
new DML option thanks to Change Tracking: the WITH CHANGE_TRACKING_CONTEXT
function. This function allows the storage of up to 128 bytes of binary data, alongside
other information about the change, in the internal table’s sys_change_context column. This
column can be used by developers to persist information about which application or user
made a given change, using the Change Tracking system as a metadata repository with
regard to row changes.

The syntax for this option is similar to a Common Table Expression and is applied at the
beginning of the DML query, as in the following example:

DECLARE @context VARBINARY(128) =
CONVERT (VARBINARY (128), SUSER_SNAME());

WITH CHANGE_TRACKING_CONTEXT (@context)
UPDATE AdventureWorks2008.HumanResources.Employee
SET
JobTitle = 'Production Engineer'
WHERE
JobTitle = 'Design Engineer';

Note This syntax is perfectly valid for tables that do not have Change Tracking enabled. However,
in those cases, the query processor simply ignores the call to the CHANGE_TRACKING_CONTEXT
function.



Chapter 2 Change Tracking, Tracing, and Extended Events 83

In addition to the insert into the internal table that occurs synchronously at the end of
the transaction, an insert into the Commit Table also occurs at commit time. The inserted
row contains the same transaction ID that is used both in the internal table and in the
hidden column on the target table. A CSN is also assigned for the transaction at this time;
this number can, therefore, be thought of as the version number that applies to all rows
modified by the transaction.

Column Tracking

When working with tables that have a large number of columns or tables with one or more
extremely wide columns, the synchronization process can be optimized by not reacquiring
the data from those columns that were not updated. To support this kind of optimization,
Change Tracking includes a feature called Column Tracking, which works by recording, in the
internal table and only in the case of an update operation, which columns were updated.

The column list is persisted within the internal table in the sys_change_columns column. Each
column is stored as an integer, and a column list including as many as 1,024 columns can be
stored. If more than 1,024 columns are modified in a transaction, the column list is not stored
and the application must reacquire the entire row.

To enable Column Tracking, a switch called TRACK_COLUMNS_UPDATED is applied to the
ALTER TABLE statement, as in the following example:

ALTER TABLE HumanResources.Employee
ENABLE CHANGE_TRACKING
WITH (TRACK_COLUMNS_UPDATED = ON);

Once enabled, the changed columns list is returned with the output of the
CHANGETABLE(CHANGES) function, which is described in the next section. The bitmap can
be evaluated for the presence of a particular column by using the CHANGE_TRACKING_IS_
COLUMN_IN_MASK function.

Caution Be careful when enabling Column Tracking for active tables. Although this feature

may help to optimize the synchronization process by resulting in fewer bytes being sent out at
synchronization time, it also increases the number of bytes that must be written with each update
against the target table. This may result in a net decrease in overall performance if the columns
are not sufficiently large enough to balance the additional byte requirements of the bitmap.

CHANGETABLE Function

The primary API that users can use to leverage the Change Tracking system is the
CHANGETABLE function. This function has the dual purpose of returning the baseline version
for all rows in the target table and returning a set containing only updated versions and
related change information. The function accomplishes each of these tasks with the help of
the various internal and hidden structures created and populated when Change Tracking is
enabled for a given table or set of tables in a database.



84

Microsoft SQL Server 2008 Internals

CHANGETABLE is a system table-valued function, but unlike other table-valued functions,
its result shape changes at run time based on input parameters. In VERSION mode, used for
acquiring the baseline values of each row in the table, the function returns only a primary
key, version number, and context information for each row. In CHANGES mode, used for
getting a list of updated rows, the function also returns the operation that affected the
change and the column list.

Because the VERSION mode for CHANGETABLE is designed to help callers get a baseline, calling
the function in this mode requires a join to the target table, as in the following example:

SELECT
c.SYS_CHANGE_VERSION,
C.SYS_CHANGE_CONTEXT,
e.*

FROM AdventureWorks2008.HumanResources.Employee e

CROSS APPLY CHANGETABLE

(
VERSION AdventureWorks2008.HumanResources.Employee,
(BusinessEntityId),
(e.BusinessEntityId)

) ¢

A quick walk-through of this example is called for here. In VERSION mode, the first parameter
to the function is the target table. The second parameter is a comma-delimited list of the
primary key columns on the target table. The third parameter is a comma-delimited list, in
the same order, of the associated primary key columns from the target table as used in the
query. The columns are internally correlated in this order to support the joins necessary to
get the baseline versions of each row.

When this query is executed, the query processor scans the target table, visiting each row
and getting the values for every column, along with the value of the hidden column (the
last transaction ID that modified the row). This transaction ID is used as a key to join to
the Commit Table to pick up the associated CSN and to populate the sys_change_version
column. The transaction ID and primary key are also used to join to the internal tracking
table in order to populate the sys_change_context column.

Once a baseline has been acquired, it is up to the data consumer to call the CHANGE_
TRACKING_CURRENT_VERSION function, which returns the maximum Change Tracking
version number currently stored in the database. This number becomes the baseline version
number that the application can use for future synchronization requests. This number is
passed into the CHANGETABLE function in CHANGES mode to get subsequent versions of
the rows in the table, as in the following example:

DECLARE @last_version BIGINT = 8;

SELECT

*

c.*



Chapter 2 Change Tracking, Tracing, and Extended Events 85

FROM CHANGETABLE

(
CHANGES AdventureWorks2008.HumanResources.Employee,
@last_version

) ¢;

This query returns a list of all changed rows since version 8, along with what operation
caused each row to be modified. Note that the output reflects only the most recent version
of the row as of the time that the query is run. For example, if a row existed as of version 8
and was subsequently updated three times and then deleted, this query shows only one
change for the row: a delete. This query includes in its output the primary keys that changed,
so it is possible to join to the target table to get the most recent version of each row that
changed. Care must be taken to use an OUTER JOIN in that case, as shown in the following
example, as a row may no longer exist if it was deleted:

DECLARE @last_version BIGINT = 8;

SELECT
c.SYS_CHANGE_VERSION,
c.SYS_CHANGE_OPERATION,
C.SYS_CHANGE_CONTEXT,
e.*
FROM CHANGETABLE
(
CHANGES AdventureWorks2008.HumanResources.Employee,
@last_version
) C
LEFT OUTER JOIN AdventureWorks2008.HumanResources.Employee e ON
e.BusinessEntityID = c.BusinessEntityID;

When CHANGETABLE is run in CHANGES mode, the various internal structures are used
slightly differently than in the VERSION example. The first step of the process is to query the
Commit Table for all transaction IDs associated with CSNs greater than the one passed in to
the function. This list of transaction IDs is next used to query the internal tracking table for
the primary keys associated with changes rendered by the transactions. The rows that result
from this phase must be aggregated based on the primary key and transaction sequence
identifier from the internal table to find the most recent row for each primary key. No join
to the target table is necessary in this case unless the consumer would like to retrieve all
associated row values.

Because rows may be changing all the time—including while the application is requesting
a list of changes—it is important to keep consistency in mind when working with Change
Tracking. The best way to ensure consistent results is to either make use of SNAPSHOT
isolation if the application retrieves a list of changed keys and then subsequently requests
the row value, or READ COMMITTED SNAPSHOT isolation if the values are retrieved using
a JOIN. SNAPSHOT isolation and READ COMMITTED SNAPSHOT isolation are discussed in
Chapter 10.



86

Microsoft SQL Server 2008 Internals

Tracing and Profiling

Query tuning, optimization, and general troubleshooting are all made possible through
visibility into what’s going on within SQL Server; it would be impossible to fix problems
without being able to identify what caused them. SQL Trace is one of the more powerful
tools provided by SQL Server to give you a real-time or near-real-time look at exactly what
the database engine is doing, at a very granular level.

Included in the tracing toolset are 180 events that you can monitor, filter, and manipulate

to get a look at anything from a broad overview of user logins down to such fine-grained
information as the lock activity done by a specific session id (SPID). This data is all made
available via SQL Server Profiler, as well as a series of server-side stored procedures and .NET
classes, giving you the flexibility to roll a custom solution when a problem calls for one.

SQL Trace Architecture and Terminology

SQL Trace is a SQL Server database engine technology, and it is important to understand
that the client-side Profiler tool is really nothing more than a wrapper over the server-side
functionality. When tracing, we monitor for specific events that are generated when
various actions occur in the database engine. For example, a user logging onto the server
or executing a query are each actions that cause events to fire. These events are fired by
instrumentation of the database engine code; in other words, special code has been added
to these and other execution paths that cause the events to fire when hit.

Each event has an associated collection of “columns,” which are attributes that contain data
collected when the event fires. For instance, in the case of a query, we can collect data about
when the query started, how long it took, and how much CPU time it used. Finally, each trace
can specify filters, which limit the results returned based on a set of criteria. One could, for
example, specify that only events that took longer than 50 milliseconds should be returned.

With 180 events and 66 columns to choose from, the number of data points that can be
collected is quite large. Not every column can be used with every event, but the complete
set of allowed combinations is over 4,000. Thinking about memory utilization to hold all this
data and the processor time needed to create it, you might be interested in how SQL Server
manages to run efficiently while generating so much information. The answer is that SQL
Server doesn't actually collect any data until someone asks for it—instead, the model is to
selectively enable collection only as necessary.

Internal Trace Components

The central component of the SQL Trace architecture is the trace controller, which is a
shared resource that manages all traces created by any consumer. Throughout the database
engine are various event producers; for example, they are found in the query processor, lock
manager, and cache manager. Each of these producers is responsible for generating events



Chapter 2 Change Tracking, Tracing, and Extended Events 87

that pertain to certain categories of server activity, but each of the producers is disabled by
default and therefore generates no data. When a user requests that a trace be started for a
certain event, a global bitmap in the trace controller is updated, letting the event producer
know that at least one trace is listening, and causing the event to begin firing. Managed
along with this bitmap is a secondary list of which traces are monitoring which events.

Once an event fires, its data is routed into a global event sink, which queues the event data
for distribution to each trace that is actively listening. The trace controller routes the data to
each listening trace based on its internal list of traces and watched events. In addition to the
trace controller's own lists, each individual trace keeps track of which events it is monitoring,
along with which columns are actually being used, as well as what filters are in place. The
event data returned by the trace controller to each trace is filtered, and the data columns are
trimmed down as necessary, before the data is routed to an I/O provider.

Trace 1/0O Providers

The trace I/O providers are what actually send the data along to its final destination. The
available output formats for trace data are either a file on the database server (or a network
share) or a rowset to a client. Both providers use internal buffers to ensure that if the data is
not consumed quickly enough (that is, written to disk or read from the rowset) that it will be
queued. However, there is a big difference in how the providers handle a situation in which
the queue grows beyond a manageable size.

The file provider is designed with a guarantee that no event data will be lost. To make this
work even if an 1/0 slowdown or stall occurs, the internal buffers begin to fill if disk writes
are not occurring quickly enough. Once the buffers fill up, threads sending event data to the
trace begin waiting for buffer space to free up. To avoid threads waiting on trace buffers,

it is imperative to ensure that tracing is performed using a sufficiently fast disk system.

To monitor for these waits, watch the SQLTRACE_LOCK and IO_COMPLETION wait types.

The rowset provider, on the other hand, is not designed to make any data loss guarantees.

If data is not being consumed quickly enough and its internal buffers fill, it waits up to

20 seconds before it begins jettisoning events to free buffers and get things moving. The SQL
Server Profiler client tool sends a special error message if events are getting dropped, but
you can also find out if you're headed in that direction by monitoring the TRACEWRITE wait
type in SQL Server, which is incremented as threads are waiting for buffers to free up.

A background trace management thread is also started whenever at least one trace is active
on the server. This background thread is responsible for flushing file provider buffers (which
is done every four seconds), in addition to closing rowset-based traces that are considered
to be expired (this occurs if a trace has been dropping events for more than 10 minutes). By
flushing the file provider buffers only occasionally rather than writing the data to disk every
time an event is collected, SQL Server can take advantage of large block writes, dramatically
reducing the overhead of tracing, especially on extremely active servers.



88

Microsoft SQL Server 2008 Internals

A common question asked by DBAs new to SQL Server is why no provider exists that can
write trace data directly to a table. The reason for this limitation is the amount of overhead
that would be required for such activity. Because a table does not support large block writes,
SQL Server would have to write the event data row by row. The performance degradation
caused by event consumption would require either dropping a lot of events or, if a lossless
guarantee were enforced, causing a lot of blocking to occur. Neither scenario is especially
palatable, so SQL Server simply does not provide this ability. However, as we will see later in
the chapter, it is easy enough to load the data into a table either during or after tracing, so
this is not much of a limitation.

Security and Permissions

Tracing can expose a lot of information about not only the state of the server, but also

the data sent to and returned from the database engine by users. The ability to monitor
individual queries down to the batch or even query plan level is at once both powerful and
worrisome; even exposure of stored procedure input arguments can give an attacker a lot of
information about the data in your database.

To protect SQL Trace from users that should not be able to view the data it exposes, versions
of SQL Server prior to SQL Server 2005 allowed only administrative users (members of the
sysadmin fixed server role) access to start traces. That restriction proved a bit too inflexible
for many development teams, and as a result, it has been loosened.

ALTER TRACE Permission

Starting with SQL Server 2005, a new permission exists, called ALTER TRACE. This is a server-level
permission (granted to a login principal), and allows access to start, stop, or modify a trace, in
addition to providing the ability to generate user-defined events.

Tip Keep in mind that the ALTER TRACE permission is granted at the server level, and access is

at the server level; if a user can start a trace, he or she can retrieve event data no matter what
database the event was generated in. The inclusion of this permission in SQL Server is a great
step in the right direction for handling situations in which developers might need to run traces on
production systems to debug application issues, but it's important not to grant this permission
too lightly. It's still a potential security threat, even if it's not nearly as severe as giving someone
full sysadmin access.

To grant ALTER TRACE permission to a login, use the GRANT statement as follows (in this
example, the permission is granted to a server principal called “Jane”):

GRANT ALTER TRACE TO Jane;



Chapter 2 Change Tracking, Tracing, and Extended Events 89

Protecting Sensitive Event Data

In addition to being locked down so that only certain users can use SQL Trace, the tracing
engine itself has a couple of built-in security features to keep unwanted eyes—including
those with access to trace—from viewing private information. SQL Trace automatically omits
data if an event contains a call to a password-related stored procedure or statement. For
example, a call to CREATE LOGIN that includes the WITH PASSWORD option is blanked out by
SQL Trace.

Note In versions of SQL Server before SQL Server 2005, SQL Trace automatically blanked out a
query event if the string sp_password was found anywhere in the text of the query. This feature
has been removed in SQL Server 2005 and SQL Server 2008, and you should not depend on it to
protect your intellectual capital.

Another security feature of SQL Trace is knowledge of encrypted modules. SQL Trace does
not return statement text or query plans generated within an encrypted stored procedure,
user-defined function, or view. Again, this helps to safeguard especially sensitive data even
from users who should have access to see traces.

Getting Started: Profiler

SQL Server 2008 ships with Profiler, a powerful user interface tool that can be used to create,
manipulate, and manage traces. This tool is the primary starting point for most tracing
activity, and thanks to the ease with which it can help you get traces up and running, it is
perhaps the most important SQL Server component available for quickly troubleshooting
database issues. Profiler also adds a few features to the toolset that are not made possible
by SQL Trace itself. This section discusses those features in addition to the base tracing
capabilities.

Profiler Basics

The Profiler tool can be found in the Performance Tools subfolder of the SQL Server 2008
Start Menu folder (which you get to by clicking Start and selecting All Programs, SQL

Server 2008, Performance Tools, SQL Server Profiler). Once the tool is started, you see a blank
screen. Click File, New Trace... and connect to a SQL Server instance. You are shown a Trace
Properties dialog box with two tabs, General and Events Selection.

The General tab, shown in Figure 2-2, allows you to control how the trace is processed by
the consumer. The default setting is to use the rowset provider, displaying the events in real
time in the SQL Server Profiler window. Also available are options to save the events to a file
(on either the server or the client), or to a table. However, we generally recommend that you
avoid these options on a busy server.



90 Microsoft SQL Server 2008 Internals

x|
General 1 Events Selection |
Trace rame [Uniied - 1
Trace provider name: |[Im:a|]
Trace providsr bype: |Miclosoft SOL Server 2003 wersian: 10.0.1800
Use the template: | Standard (defaul] =l
[~ Savetofike | J
=
r
™ Savetatable J
r [ 7
™ Enable trace stop time; | J | —_
Run Cancel Help

FIGURE 2-2 Choosing the I/0 provider for the trace

When you ask Profiler to save the events to a server-side file (by selecting the Server
Processes Trace Data option), it actually starts two equivalent traces, one using the rowset
provider and the other using the file provider. Having two traces means twice as much
overhead, and that is generally not a good idea. See the section entitled “Server-Side Tracing
and Collection,” later in this chapter for information, on how to set up a trace using the file
provider, which allows you to save to a server-side file efficiently. Saving to a client-side file
does not use the file provider at all. Rather, the data is routed to the Profiler tool via the
rowset provider and then saved from there to a file. This is more efficient than using Profiler
to write to a server-side file, but you do incur network bandwidth because of using the
rowset provider, and you also do not get the benefit of the lossless guarantee that the file
provider offers.

Note Seeing the Save To Table option, you might wonder why we stated earlier in this chapter
that tracing directly to a table is not possible in SQL Trace. The fact is that SQL Trace exposes
no table output provider. Instead, when you use this option, the Profiler tool uses the rowset
provider and routes the data back into a table. If the table you save to is on the same server
you're tracing, you can create quite a large amount of server overhead and bandwidth utilization,
so if you must use this option we recommend saving the data to a table on a different server.
Profiler also provides an option to save the data to a table after you're done tracing, and this is a
much more scalable choice in most scenarios.

The Events Selection tab, shown in Figure 2-3, is where you'll spend most of your time
configuring traces in Profiler. This tab allows you to select events that you'd like to trace,



Chapter 2 Change Tracking, Tracing, and Extended Events 91

along with associated data columns. The default options, shown in Figure 2-3, collect data
about any connections that exist when the trace starts (the ExistingConnection event) when
a login or logout occurs (the Audit Login and Audit Logout events), when remote procedure
calls complete (the RPC:Completed event), and when T-SQL batches start or complete (the
SQL:BatchCompleted and SQL:BatchStarting events). By default, the complete list of both
events and available data columns is hidden. Selecting the Show All Events and Show Al
Columns check boxes brings the available selections into the UI.

x|
General Events Selection
Review selected events and event columns to race. To see a complete list, select the "Show all events" and "Show all columns" options.
Events | TestData | Applicationt ame ‘ MNTUserMame | LoginM ame ‘ CPU | Reads ‘ Writes ‘ [Dhuration ‘ ClientProcess
= Security Audit
[ Audit Login v v fw v v
v Audi Logout v i~ v v v 2 I i~
= Sessions
[#  EuistingConnection i i I [ W
= Stored Procedures
¥ RPC:Completed I [ W [ v v v W ¥
= T5aL
[v SUL:BatchCompleted W W = v v v v W =
¥ S0OL:BatchStarting v v i~ v 2
4 | o]
RPC:Completed
Oceurs when & remote procedure call hag been completed, [ Show all events
I™ Shaw all calurins
ApplicationMarme [1 filker[] applied]
Mame of the client application that created the connection to SOL Server. Thiz column i populsted with the values passed Calumn Filters... |
by the application rather than the dizplaped name of the program.
Organize Columns.. |
Run Cancel | Help ‘

FIGURE 2-3 Choosing event/column combinations for the trace

These default selections are a great starting point and can be used as the basis for a lot

of commonly required traces. The simplest questions that DBAs generally answer using

SQL Trace are based around query cost and/or duration. What are the longest queries, or
the queries that are using the most resources? The default selections can help you answer
those types of questions, but on an active server, a huge amount of data would have to be
collected, which not only means more work for you to be able to answer your question, but
also more work for the server to collect and distribute that much data.

To narrow your scope and help ensure that tracing does not cause performance issues, SQL
Trace offers the ability to filter the events based on various criteria. Filtration is exposed in
SQL Profiler via the Column Filters... button in the Events Selection tab. Click this button to
bring up an Edit Filter dialog box similar to the one shown in Figure 2-4. In this example,
we want to see only events with a duration greater than or equal to 200 milliseconds. This
is just an arbitrary number; an optimal choice should be discovered iteratively as you build
up your knowledge of the tracing requirements for your particular application. Keep raising



92

Microsoft SQL Server 2008 Internals

this number until you mostly receive only the desired events (in this case, those with long
durations) from your trace. By working this way, you can isolate the slowest queries in your
system easily and quickly.

Tip The list of data columns made available by SQL Profiler for you to use as a filter is the same
list of columns available in the outer Events Selection user interface. Make sure to select the
Show All Columns check box to ensure that you see a complete list.

X
- Durakion
Applicationtlame
r .pp Amount of time taken by the event,
BinaryData Although the server measures duration in
ClientProcessID mickaseconds, S0L Server Profiler can
CPU display the value in miliseconds, depending
F Duration on the setting in the Tools =Options dialog,
EndTime
LoginfMarme
MTUserMarme +- Equals -~
Reads +- Mok equal ko
SPID - Greater than or equal
SkartTime 200
TextData +|- Less than or equal ﬂ
\Writes
[ Exclude rows that do not contain values
Ok | Cancel |

FIGURE 2-4 Defining a filter for events greater than 200 milliseconds

Once events are selected and filters are defined, the trace can be started. In the Trace
Properties dialog box, click Run. Because Profiler uses the rowset provider, data begins
streaming back immediately. If you find that data is coming in too quickly for you to be able
to read it, consider disabling auto scrolling using the Auto Scroll Window button on the SQL
Profiler toolbar.

An important note on filters is that, by default, events that do not produce data for a
specific column are not filtered if a trace defines a filter for that column. For example, the
SQL:BatchStarting event does not produce duration data—the batch is considered to start
more or less instantly the moment it is submitted to the server. Figure 2-5 shows a trace that
we ran with a filter on the Duration column for values greater than 200 milliseconds. Notice
that both the ExistingConnection and SQL:BatchStarting events are still returned even though
they lack the Duration output column. To modify this behavior, select the Exclude Rows That
Do Not Contain Values check box in the Edit Filter dialog box for the column for which you
want to change the setting.



Chapter 2 Change Tracking, Tracing, and Extended Events 93

= =
| EventClass TextData | Diuration | CFU ‘ Reads | rites |
Trace Start
ExistingConnection -— network protocol: LPC set guote...
Existinglonnection -- network protocol: LPC  set guote...
SOL:Batchstarting WAITFOR DELAY '00:00:10';
soL:Batchcompleted WAITFOR DELAY '00:00:10'; 10000 0 4] 4]
Trace stap i
. s
-
|
[l | +[]
Trace is stopped. Lné, Coll | Rows: 6

FIGURE 2-5 By default, trace filters treat empty values as valid for the sake of the filter.

Saving and Replaying Traces

The functionality covered up through this point in the chapter has all been made possible
by Profiler merely acting as a wrapper over what SQL Trace provides. In the section entitled
“Server-Side Tracing and Collection,” later in this chapter, we show you the mechanisms by
which Profiler does its work. But first we'll get into the features offered by Profiler that make
it more than a simple Ul wrapper over the SQL Trace features.

When we discussed the General tab of the Trace Properties window earlier, we glossed over
how the default events are actually set: They are included in the standard events template
that ships with the product. A template is a collection of event and column selections, filters,
and other settings that you can save to create reusable trace definitions. This feature can

be extremely useful if you do a lot of tracing; reconfiguring the options each time you need
them is generally not a good use of your time.

In addition to the ability to save your own templates, Profiler ships with nine predefined
templates. Aside from the standard template that we already explored, one of the most
important of these is the TSQL_Replay template, which is selected in Figure 2-6. This
template selects a variety of columns for 15 different events, each of which are required for
Profiler to be able to play back (or replay) a collected trace at a later time. By starting a trace
using this template and then saving the trace data once collection is complete, you can do
things such as use a trace as a test harness for reproducing a specific problem that might
occur when certain stored procedures are called in the correct order.

To illustrate this functionality, we started a new trace using the TSQL_Replay template and
sent two batches from each of two connections, as shown in Figure 2-7. The first SPID (53, in
this case) selected 1, and then the second SPID (54) selected 2. Back to SPID 53, which



94

Microsoft SQL Server 2008 Internals

Trace Properties E

General | Events Selection |

Trace name [Untived -1

Trace provider name: I[Im:al]

Trace providsr bype: IMiclosoft SOL Server 2003 wersian: 10.0.1800

Use the template: Standard (defaul) |
Standard [default] -
TsOL

™ Savetofil TS0L_Duratior
T50L_Grouped
TSOL Locks
TSOL_5Ps ]
Tuning 2

I™ Save totable I

™ 5t magimum rows (i thousands): 1

I~ Enable trace stop time: [1ramma <] [amzziew =

Run Cancel Help

FIGURE 2-6 Selecting the TSQL_Replay template

selected 3, and then finally back to SPID 54, which selected 4. The most interesting thing to
note in the figure is the second column, EventSequence. This column can be thought of almost
like the IDENTITY property for a table. Its value is incremented globally, as events are recorded
by the trace controller, to create a single representation of the order in which events occurred
in the server. This avoids problems that might occur when ordering by StartTime/EndTime
(also in the trace, but not shown in Figure 2-7), as there will be no ties—the EventSequence is
unique for every trace. The number is a 64-bit integer, and it is reset whenever the server

is restarted, so it is unlikely that you can ever trace enough to run it beyond its range.

EventClass EventSequence TexiData SFID Applicationtar
Trace Start
ExistingConnection 500 -- network protocol: LPC  set guote... 51 Microsofi
Existinglonnection 501 -- network protocol: LPC set guote. .. 52 Microsofi
ExistingZonnection 502 -- network protocol: LPC set guote. .. 53 Microsofi
soL:Batchstarting 506 SELECT 1; 52 Microsofi
SoLBatchcompleted 507  SELECT 1: 52 Microsofi
soLiBatchstarting 508 SELECT 23 53 Microsofi
SOl :BatchCompleted 509 SELECT 23 53 Microsoft
SOL:Batchstarting 510 SELECT 33 52 Microsoft
SOL:BatchCompleted 511 SELECT 3; 52 Microsoft
SOL:Batchstarting 512 SELECT 4; 53 mMicrosofi
soL:Batchcompleted 513 SELECT 4; 53 Microsofi
Trace stap i
4 | -
-
o | 2
Trace is stopped. Ln 13, <ol 1 ‘Raws: 13 g

FIGURE 2-7 Two SPIDs sending interleaved batches



Chapter 2 Change Tracking, Tracing, and Extended Events 95

Once the trace data has been collected, it must be saved and then reopened before a replay
can begin. Profiler offers the following options for saving trace data, which are available from
the File menu:

B The Trace File option is used to save the data to a file formatted using a proprietary
binary format. This is generally the fastest way to save the data, and it is also the
smallest in terms of bytes on disk.

B The Trace Table option is used to save the data to a new or previously created table in a
database of your choosing. This option is useful if you need to manipulate or report on
the data using T-SQL.

B The Trace XML File option saves the data to a text file formatted as XML.

B The Trace XML File For Replay option also saves the data to an XML text file, but only
those events and columns needed for replay functionality are saved.

Any of these formats can be used as a basis from which to replay a trace, so long as you've
collected all the required events and columns needed to do a replay (guaranteed when you
use the TSQL_Replay template). We generally recommend using the binary file format as a
starting point and saving to a table if manipulation using T-SQL is necessary. For instance,
you might want to create a complex query that finds the top queries that use certain tables;
something like that would be beyond the abilities of Profiler. With regard to the XML file
formats, so far | have not found much use for them. But as more third-party tools hit the
market that can use trace data, we may see more use cases.

Once the data has been saved to a file or table, the original trace window can be closed and
the file or table reopened via the File menu in the Profiler tool. Once a trace is reopened in
this way, a Replay menu appears on the Profiler toolbar, allowing you to start replaying the
trace, stop the replay, or set a breakpoint—which is useful when you want to test only a small
portion of a larger trace.

After clicking Start in Profiler, you are asked to connect to a server—either the server from
which you did the collection, or another server if you want to replay the same trace somewhere
else. After connecting, the Replay Configuration dialog box shown in Figure 2-8 is presented.
The Basic Replay Options tab allows you to save results of the trace in addition to modifying
how the trace is played back.

During the course of the replay, the same events used to produce the trace being replayed
are traced from the server on which you replay. The Save To File and Save To Table options
are used for a client-side save. No server-side option exists for saving playback results.

The Replay Options pane of the Replay Configurations dialog box is a bit confusing as worded.
No matter which option you select, the trace is replayed on multiple threads, corresponding to
at most the number you selected in the Number Of Replay Threads drop-down list. However,
selecting the Replay Events In The Order They Were Traced option ensures that all events are
played back in exactly the order in which they occurred, as based upon the EventSequence
column. Multiple threads are still used to simulate multiple SPIDs. Selecting the Replay Events



96 Microsoft SQL Server 2008 Internals

Replay Configuration E

Basic Replay Options | Advanced Replay Options |

Select the destination server and replay options.

Fieplay server: I[Incal] Change...

[~ Save tofile: I
™ Save totable I

Fieplay options
Murmber of replay threads: 4 3:

(* Replay events in the order they were traced. This option enables debugging

Fieplay events using multiple threads. This option optimizes performance and
dizables debugging.

W Display replay results

I Display execution time

oK. I Cancel | Help

FIGURE 2-8 The Replay Configuration dialog box

Using Multiple Threads option, on the other hand, allows Profiler to rearrange the order in
which each SPID starts to execute events, in order to enhance playback performance. Within a
given SPID, however, the order of events remains consistent with the EventSequence.

To illustrate this difference, we replayed the trace shown in Figure 2-7 twice, each using a
different replay option. Figure 2-9 shows the result of the Replay In Order option, whereas
Figure 2-10 shows the result of the Multiple Threads option. In Figure 2-9, the results show
that the batches were started and completed in exactly the same order in which they were
originally traced, whereas in Figure 2-10 the two participating SPIDs have had all their events
grouped together rather than interleaved.

inistrator'Desktopsql_server_internals.trc

EventClass EventSequence TextData SPID DatshaseMName &

ExistingConnection 1314 -- network protocol: LPC St guote... 54 master

soL:Batchstarting 1317 SELECT 1; 53 master

SoL:BatchCompleted 1318 SELECT 1 53 master

soL:Batchstarting 1319 SELECT 2 54 master

SoL:BatchCompleted 1320 SELECT 2; 54 master

soL:Batchstarting 1321 SELECT 3 53 master

SQL:BatchCompleted 1322 SELECT 3 53 master [—

sqlL:Batchstarting 1323  SELECT 4; 54 master =
« | _l‘I
| EventClass | TertData | SPID | IntegerData Datsbasehlame -

Replay Settings Ewvent replay server: (local) Sserver huil...

ExistingConnection -- network protocol: LPC  set guote... 51 54 master

ExistingConnection -- network protocol: LPC  set guote... 53 55 master

ExistingConnection —- network protocol: LPC SeT quote... 54 56 master

soL:Batchstarting SELECT 1; 53 55 master

Replay Result Set Ewvent 53 55 master

Replay Result Row Event 1 53 55 master

soL:Batchstarting SELECT 2; 54 56 master

Replay Result Set Ewvent 54 56 master

Replay Result Row Event 2 54 56 master

sqlL:Batchstarting SELECT 3; 53 55 master

Replay Result Set Event 53 55 master [

Replay Result Row Event 3 53 55 master

sqlL:Batchstarting SELECT 4; 54 56 master =
g - | _l‘I
< | » i
Ready. [Rows:1

FIGURE 2-9 Replay using the Replay In Order option



Chapter 2 Change Tracking, Tracing, and Extended Events 97

= =[0]x]
| EventClass EventSequence | TextData ‘ SPID | D atahazeh ame j
ExistingConnection 1314 —- network protocol: LPC set guote... 54 master
SoL:Batchstarting 1317 SELECT 1; 53 master
SalL :BatchCompleted 1318 SELECT 1; 53 master
SgL:Batchstarting 1319 SELECT 2; 54 master
soL:Batchcompleted 1320 SELECT 2% 54 master
SoL:BatchStarting 1321 SELECT 3; 53 master
soL:Batchcompleted 1322 SELECT 3 53 master o
SaL:Batchstarting 1323 SELECT 4; 54 master -
o \ |
| EventClass | TextData ‘ SFID ‘ IntegerData ‘ Databaseklame =
replay Settings Event replay server: Clocal) Server buil...
existingconnection -- network protocol: LPC set guote... 51 54 master
ExistingConnection —-- network protocol: LPC  set guote... 54 55 master
oL :Batchstarting SELECT 2; 54 55 master
replay Result Set Ewent 54 55 master
replay Result Row Ewent 2 54 55 master
soL:Batchstarting SELECT 4 54 55 master
replay Result Set Ewent 54 53 master
replay Result ROw Ewent 4 54 55 master
ExistingConnection —-- network protocol: LPC  set guote... 53 56 master
SgL:Batchstarting SELECT 1; 53 56 master
replay Result Set Ewent 53 56 master [
replay Result Row Ewent 1 53 56 master
soL:Batchstarting SELECT 3 53 56 master =
—— ol
Ready, Rows: 1

FIGURE 2-10 Replay using the Multiple Threads option

The Multiple Threads option can be useful if you need to replay a lot of trace data where each
SPID has no dependency upon other SPIDs. For example, this might be done to simulate, on a
test server, a workload captured from a production system. On the other hand, the Replay In
Order option is useful if you need to ensure that you can duplicate the specific conditions that
occurred during the trace. For example, this might apply when debugging a deadlock or blocking
condition that results from specific interactions of multiple threads accessing the same data.

Profiler is a full-featured tool that provides extensive support for both tracing and doing
simple work with trace data, but if you need to do advanced queries against your collected
data or run traces against extremely active production systems, Profiler falls short of the
requirements. Again, Profiler is essentially nothing more than a wrapper over functionality
provided within the database engine, and instead of using it for all stages of the trace
lifestyle, we can exploit the tool directly to increase flexibility in some cases. In the following
section, you learn how Profiler works with the database engine to start, stop, and manage
traces, and how you can harness the same tools for your needs.

Server-Side Tracing and Collection

Behind its nice user interface, Profiler is nothing more than a fairly lightweight wrapper over
a handful of system stored procedures that expose the true functionality of SQL Trace. In this
section, we explore which stored procedures are used and how to harness SQL Server Profiler
as a scripting tool rather than a tracing interface.



98 Microsoft SQL Server 2008 Internals

The following system stored procedures are used to define and manage traces:

B sp trace_create is used to define a trace and specify an output file location as well
as other options that I'll cover in the coming pages. This stored procedure returns a
handle to the created trace, in the form of an integer trace ID.

B sp_trace_setevent is used to add event/column combinations to traces based on the
trace ID, as well as to remove them, if necessary, from traces in which they have already
been defined.

B sp trace_setfilter is used to define event filters based on trace columns.

B sp trace_setstatus is called to turn on a trace, to stop a trace, and to delete a trace
definition once you're done with it. Traces can be started and stopped multiple times
over their lifespan.

Scripting Server-Side Traces

Rather than delve directly into the syntax specifications for each of the stored procedures—
all which are documented in detail in SQL Server Books Online—it is a bit more interesting
to observe them in action. To begin, open up SQL Server Profiler, start a new trace with

the default template, and clear all the events except for SQL:BatchCompleted, as shown in

Figure 2-11.
3
General  Events Selection
Review selected events and event columns to race. To see a complete list, selzct the "Show all events” and “Show all columns" options.
Events I TentData | ApplicationMame | NTUserName ] Loginh ame J CPU | Reads | Wwiites J Duration J CligntProcess
= Securty dudit
™ Audit Login - - | (I [
I~ Audit Logout 1 r r O - r r |
= Sessions
I~ ExistingConnection r r r - O
= Stored Procedures
™ RPC:Completed O — | - O r O r |
= TSQL
1»7 SOL:BatchCompleted W W I3 72 ¥ i ¥ 17 17
I SOL:BatchStarting ™ ™ r I r
4 | |
RPLC:Completed
Ocours when a remate procedure call has been completed I Show all events
I Show all columns
MTUzerk ame [no filters applied)-
Windows user name. Colurnin Filkers... ]
Organize Columing.. I
Run Cancel Help ‘

FIGURE 2-11 Trace events with only SQL:BatchCompleted selected

Next, remove the default filter on the ApplicationName column (set to not pick up SQL Server
Profiler events), and add a filter on Duration for greater than or equal to 10 milliseconds, as
shown in Figure 2-12.



Applicationhanz
BinaryData
ClientProcessID
CPU

I Duration

EndTime
LoginMarne
MNTUserMarme
Reads

SPID
SkarkTime
TextData
Writes

Chapter 2 Change Tracking, Tracing, and Extended Events

Durakion

X

Amounk of kime taken by the event,
Although the server measures duration in
microseconds, SOL Server Profiler can
display the value in miliseconds, depending
on the setting in the Tools =Oplions dialog,

+1- Equals
+]- Mat equal to

- Greater than or equal

10
+]- Less than or equal

|

[ Exclude rows that do not contain values

Ok,

| Cancel |

FIGURE 2-12 Filter on Duration set to greater than or equal to 10 milliseconds

Once you're finished, click Run to start the trace, then immediately click Stop. Because of
the workflow required by the SQL Profiler user interface, you must actually start a trace

929

before you can script it. On the File menu, select Export, Script Trace Definition, and For SQL
Server 2005 - 2008. This will produce a script similar to the following (edited for brevity and
readability):

declare @rc 1int

declare @TracelID int
declare @maxfilesize bigint
set @maxfilesize = 5

exec @rc = sp_trace_create

@TraceID output,
0,
N'InsertFileNameHere',
@maxfilesize,
NULL

if (@rc != 0) goto finish

-- Set the events
declare @on bit
set @n =1

exec
exec
exec
exec
exec
exec
exec
exec
exec
exec
exec
exec

sp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Ssp_trace_setevent
sp_trace_setevent
Sp_trace_setevent
Sp_trace_setevent
sp_trace_setevent
sp_trace_setevent
Ssp_trace_setevent
sp_trace_setevent
sp_trace_setevent

@TracelID, 12, 15,
@TracelD, 12, 16,

@on
@on

@TraceID, 12, 1, @on
@TraceID, 12, 9, @on

@TracelD, 12, 17,

@on

@TraceID, 12, 6, @on

@TracelID, 12, 10,
@TraceID, 12, 14,
@TraceID, 12, 18,
@TracelID, 12, 11,
@TracelD, 12, 12,
@TracelID, 12, 13,

@on
@on
@on
@on
@on
@on



100

Microsoft SQL Server 2008 Internals

-- Set the Filters
declare @bigintfilter bigint

set @bigintfilter = 10000
exec sp_trace_setfilter @TraceID, 13, 0, 4, @bigintfilter

-- Set the trace status to start
exec sp_trace_setstatus @TraceID, 1

-- display trace id for future references
select TraceID=@TraceID

finish:
go

Note An option also exists to script the trace definition for SQL Server 2000. The SQL Trace
stored procedures did not change much between SQL Server 2000 and SQL Server 2005—and
it did not change at all between SQL Server 2005 and SQL Server 2008—but several new events
and columns were added to the product. Scripting for SQL Server 2000 simply drops from the
script any events that are not backward-compatible.

This script is an extremely simple yet complete definition of a trace that uses the file provider.
A couple of placeholder values need to be modified, but for the most part, it is totally
functional. Given the complexity of working directly with the SQL Trace stored procedures,
we generally define a trace using SQL Profiler’s user interface, and then script it and work
from there. This way, you get the best of both worlds: ease of use combined with the
efficiency of server-side traces using the file provider.

This script does a few different things, so we will walk through each stage:

1. The script defines a few variables to be used in the process. The @rc variable is used
to get a return code from sp_trace_create. The @TracelD variable holds the handle to
the newly created trace. Finally, the @maxfilesize variable defines the maximum size
(in megabytes) per trace file. When running server-side traces, the file provider can be
configured to create rollover files automatically as the primary trace file fills up. This can
be useful if you're working on a drive with limited space, as you can move previously
filled files to another device. In addition, smaller files can make it easier to manipulate
subsets of the collected data. Finally, rollover files also have their utility in high-load
scenarios. However, most of the time these are not necessary, and a value of 5 is a bit
small for the majority of scenarios.

2. The script calls the sp_trace_create stored procedure, which initializes—but does not
start—the trace. The parameters specified here are the output parameter for the trace
ID of the newly created trace; O for the options parameter—meaning that rollover files
should not be used; a placeholder for a server-side file path, which should be changed
before using this script; the maximum file size as defined by the @maxfilesize variable;
and NULL for the stop date—this trace only stops when it is told to. Note that there is also



Chapter 2 Change Tracking, Tracing, and Extended Events 101

a final parameter in sp_trace_create, which allows the user to set the maximum number of
rollover files. This parameter, called @filecount in the sp_trace_create documentation, was
added in SQL Server 2005 and is not added automatically to the trace definition scripts
created with the Script Trace Definition option. The @filecount parameter doesn't apply
here because the options parameter was set to 0 and no rollover files are created, but

it can be useful in many other cases. Note that because rollover files are disabled, if the
maximum file size is reached, the trace automatically stops and closes.

Note The file extension .trc is appended to the file path specified for the output trace file
automatically. If you use the .trc extension in your file name (for example, C:\mytrace.trc),
the file on disk is C:\mytrace.trc.trc.

. Sp_trace_setevent is used to define the event/column combinations used for the trace.

In this case, to keep things simple, only event 12—SQL:BatchCompleted—is used. One
call to sp_trace_setevent is required for each event/column combination used in the
trace. As an aside, note that the @on parameter must be a bit. Because numeric literals
in SQL Server 2005 and earlier are cast as integers implicitly by default, the local

@on variable is needed to force the value to be treated appropriately by the stored
procedure in those versions.

. Once events are set, filters are defined. In this case, column 13 (Duration) is filtered using

the and logical operator (the third parameter, with a value of 0) and the greater than or
equal to comparison operator (the fourth parameter, with a value of 4). The actual value
is passed in as the final parameter. Note that it is shown in the script in microseconds;
SQL Trace uses microseconds for its durations, although the default standard of time in
SQL Profiler is milliseconds. To change the SQL Profiler default, click Tools, Options, and
then select the Show Values In Duration Column In Microseconds check box (note that
microsecond durations are available in SQL Server 2005 and SQL Server 2008 only).

Note SQL Trace offers both and and or logical operators that can be combined if multiple
filters are used. However, there is no way to indicate parentheses or other grouping
constructs, meaning that the order of operations is limited to left-to-right evaluation.
This means that an expression such as A and B or C and D is logically evaluated by SQL
Trace as ((A and B) or C) and D). However, SQL Trace internally breaks the filters into
groups based on columns being filtered. So the expression Columni=10 or Column1=20
and Column3=15 or Column3=25 is actually evaluated as (Column1=10 or Column1=20)
and (Column3=15 or Column3=25). Not only is this somewhat confusing, but it can make
certain conditions difficult or impossible to express. Keep in mind that in some cases, you
may have to break up your filter criteria and create multiple traces to capture everything
the way you intend to.

5. The trace has now been created, event and column combinations set, and filters

defined. The final thing to do is actually start tracing. This is done via the call to
sp_trace_setstatus, with a value of 1 for the second parameter.



102

Microsoft SQL Server 2008 Internals

Querying Server-Side Trace Metadata

After modifying the file name placeholder appropriately and running the test script on my server,
| received a value of 2 for the trace ID. Using a trace ID, you can retrieve a variety of metadata
about the trace from the sys.traces catalog view, such as is done by the following query:

SELECT
status,
path,
max_size,
buffer_count,
buffer_size,
event_count,
dropped_event_count
FROM sys.traces
WHERE id = 2;

This query returns the trace status, which is 1 (started) or O (stopped); the server-side path

to the trace file (or NULL if the trace is using the rowset provider); the maximum file size (or
again, NULL in the case of the rowset provider); information about how many buffers of what
size are in use for processing the I/O; the number of events captured; and the number of
dropped events (in this case, NULL if your trace is using the file provider).

Note For readers migrating from SQL Server 2000, note that the sys.traces view replaces
the older fn_trace_getinfo function. This older function returns only a small subset of the data
returned by the sys.traces view, so it's definitely better to use the view going forward.

In addition to the sys.traces catalog view, SQL Server ships with a few other views and functions
to help derive information about traces running on the server. They are described in the
upcoming sections.

fn_trace_geteventinfo This function returns the numeric combinations of events and
columns selected for the trace, in a tabular format. The following T-SQL code returns this
data for trace ID 2:

SELECT *
FROM fn_trace_geteventinfo(2);

The output from running this query on the trace created in the preceding script follows:

eventid columnid
12 1

12 6

12 9

12 10

12 11



Chapter 2 Change Tracking, Tracing, and Extended Events 103

eventid columnid
12 12
12 13
12 14
12 15
12 16
12 17
12 18

sys.trace_events and sys.trace_columns The numeric representations of trace events and
columns are not especially interesting on their own. To be able to query this data properly,

a textual representation is necessary. The sys.trace_events and sys.trace_columns contain not
only text describing the events and columns, respectively, but also other information such as
data types for the columns and whether they are filterable. Combining these views with the
previous query against the fn_trace_geteventinfo function, we can get a version of the same
output that is much easier to read:

SELECT
e.name AS Event_Name,
c.name AS Column_Name
FROM fn_trace_geteventinfo(2) ei
JOIN sys.trace_events e ON ei.eventid = e.trace_event_id
JOIN sys.trace_columns c ON ei.columnid = c.trace_column_id;

The output from this query follows:

Event_Name Column_Name
SQL:BatchCompleted TextData
SQL:BatchCompleted NTUserName
SQL:BatchCompleted ClientProcessID
SQL:BatchCompleted ApplicationName
SQL:BatchCompleted LoginName
SQL:BatchCompleted SPID
SQL:BatchCompleted Duration
SQL:BatchCompleted StartTime
SQL:BatchCompleted EndTime
SQL:BatchCompleted Reads
SQL:BatchCompleted Writes
SQL:BatchCompleted CPU

fn_trace_getfilterinfo To get information about which filter values were set for a trace,
the fn_trace_getfilterinfo function can be used. This function returns the column ID being



104

Microsoft SQL Server 2008 Internals

filtered (which can be joined to the sys.trace_columns view for more information), the logical
operator, comparison operator, and the value of the filter. The following code shows an
example of its use:

SELECT
columnid,
logical_operator
comparison_operator,
value
FROM fn_trace_getfilterinfo(2);

Retrieving Data from Server-Side Traces

Once a trace is started, the obvious next move is to actually read the collected data. This is
done using the fn_trace_gettable function. This function takes two parameters: The name of the
first file from which to read the data, and the maximum number of rollover files to read from
(should any exist). The following T-SQL reads the trace file located at C:\sql_server_internals.trc:

SELECT *
FROM fn_trace_gettable('c:\sql_server_internals.trc', 1);

A trace file can be read at any time, even while a trace is actively writing data to it. Note that

this is probably not a great idea in most scenarios because it increases disk contention, thereby
decreasing the speed with which events can be written to the table and increasing the possibility
of blocking. However, in situations in which you're collecting data infrequently—such as when
you've filtered for a very specific stored procedure pattern that isn't called often—this is an easy
way to find out what you've collected so far.

Because fn_trace_gettable is a table-valued function, its uses within T-SQL are virtually limitless.
It can be used to formulate queries, or it can be inserted into a table so that indexes can be
created. In the latter case, it's probably a good idea to use SELECT INTO to take advantage of
minimal logging:

SELECT *
INTO sql_server_internals
FROM fn_trace_gettable('c:\sql_server_internals.trc', 1);

Once the data has been loaded into a table, it can be manipulated any number of ways to
troubleshoot or answer questions.

Stopping and Closing Traces

When a trace is first created, it has the status of 0, stopped (or not yet started, in that case).
A trace can be brought back to that state at any time using sp_trace_setstatus. To set trace
ID 2 to a status of stopped, the following T-SQL code is used:

EXEC sp_trace_setstatus 2, 0;



Chapter 2 Change Tracking, Tracing, and Extended Events 105

Aside from the obvious benefit that the trace no longer collects data, there is another perk to
doing this: Once the trace is in a stopped state, you can modify the event/column selections
and filters using the appropriate stored procedures without re-creating the trace. This can be
extremely useful if you need to make only a minor adjustment.

If you are actually finished tracing and do not wish to continue at a later time, you can remove
the trace definition from the system altogether by setting its status to 2:

EXEC sp_trace_setstatus 2, 2;

Tip Trace definitions are removed automatically in the case of a SQL Server service restart, so if
you need to run the same trace again later, either save it as a Profiler template or save the script
used to start it.

Investigating the Rowset Provider

Most of this section has dealt with how to work with the file provider using server-side traces,
but some readers are undoubtedly asking themselves how SQL Server Profiler interfaces with
the rowset provider. The rowset provider and its interfaces are completely undocumented.
However, because Profiler is doing nothing more than calling stored procedures under the
covers, it is not too difficult to find out what's going on. As a matter of fact, you can use a
somewhat recursive process: use Profiler to trace activity generated by itself.

A given trace session cannot capture all its own events (the trace won't be running yet
when some of them occur), so to see how Profiler works, we need to set up two traces:

an initial trace configured to watch for Profiler activity, and a second trace to produce the
activity for the first trace to capture. To begin with, open SQL Profiler and create a new
trace using the default template. In the Edit Filter dialog box, remove the default Not Like
filter on ApplicationName and replace it with a Like filter on ApplicationName for the string
SQL Server Profiler%. This filter captures all activity that is produced by any SQL Server
Profiler session.

Start that trace, then load up another trace using the default template and start it. The first trace
window now fills with calls to the various sp_trace stored procedures, fired via RPC:Completed
events. The first hint that something different happens when using the rowset provider is the
call made to sp_trace_create:

declare @pl int;
exec sp_trace_create @pl output,l,NULL,NULL,NULL;
select @pl;

The second parameter, used for options, is set to 1, a value not documented in SQL Server
Books Online. This is the value that turns on the rowset provider. And the remainder of the
parameters, which deal with file output, are populated with NULLs.



106

¥

Microsoft SQL Server 2008 Internals

Tip The sp_trace_create options parameter is actually a bit mask—multiple options can be set
simultaneously. To do that, simply add up the values for each of the options you want. With only
three documented values and one undocumented value, there aren’t a whole lot of possible
combinations, but it's still something to keep in mind.

Much of the rest of the captured activity looks familiar at this point; you see normal-looking
calls to sp_trace_setevent, sp_trace_setfilter, and sp_trace_setstatus. However, to see the
complete picture, you must stop the second trace (the one actually generating the trace
activity being captured). As soon as the second trace stops, the first trace captures the
following RPC:Completed event:

exec sp_executesql N'exec sp_trace_getdata @1, 0',N'@P1 int',3;

In this case, 3 is the trace ID for the second trace on our system. Given this set of input
parameters, the sp_trace_getdata stored procedure streams event data back to the caller in a
tabular format and does not return until the trace is stopped.

Unfortunately, the tabular format produced by sp_trace_getdata is far from recognizable and
is not in the standard trace table format. By modifying the previous file-based trace, we can
produce a rowset-based trace using the following T-SQL code:

declare @rc int
declare @TracelID int

exec @rc = sp_trace_create
@TraceID output,
1,
NULL,
NULL,
NULL
if (@rc != 0) goto finish

-- Set the events

declare @on bit

set @n =1

exec sp_trace_setevent @TraceID, 12, 15, @on
exec sp_trace_setevent @TraceID, 12, 16, @on
exec sp_trace_setevent @TraceID, 12, 1, @on
exec sp_trace_setevent @TraceID, 12, 9, @on
exec sp_trace_setevent @TraceID, 12, 17, @on
exec sp_trace_setevent @TraceID, 12, 6, @on
exec sp_trace_setevent @TraceID, 12, 10, @on
exec sp_trace_setevent @TraceID, 12, 14, @on
exec sp_trace_setevent @TraceID, 12, 18, @on
exec sp_trace_setevent @TraceID, 12, 11, @on
exec sp_trace_setevent @TraceID, 12, 12, @on
exec sp_trace_setevent @TraceID, 12, 13, @on

-- Set the Filters
declare @bigintfilter bigint



Chapter 2 Change Tracking, Tracing, and Extended Events 107

set @bigintfilter = 10000
exec sp_trace_setfilter @TraceID, 13, 0, 4, @bigintfilter

-- Set the trace status to start
exec sp_trace_setstatus @TraceID, 1

-- display trace id for future references
select TraceID=@TraceID

exec sp_executesql
N'exec sp_trace_getdata @P1l, 0',
N'@P1l int',
@TraceID

finish:
go

Running this code, then issuing a WAITFOR DELAY ‘00:00:10" in another window, produces
the following output (truncated and edited for brevity):

Columnld Length Data

65526 6 OxFEFF63000000

14 16 0xD707050002001D001 ...
65533 31 0x01010000000300000 ...
65532 26 0x0C000100060009000 ...
65531 14 0x0D000004080010270 ...
65526 6 OxFAFFO0000000

65526 6 0x0CO00E010000

1 48 0x57004100490054004 ...
6 8 0x4100640061006D00

9 4 0xC8130000

10 92 0x4D006900630072006 ...

Each of the values in the columnid column corresponds to a trace data column ID. The length
and data columns are relatively self-explanatory—data is a binary-encoded value that
corresponds to the collected column, and length is the number of bytes used by the data
column. Each row of the output coincides with one column of one event. SQL Server Profiler
pulls these events from the rowset provider via a call to sp_trace_getdata and performs a
pivot to produce the human-readable output that we're used to seeing. This is yet another
reason that the rowset provider can be less efficient than the file provider—sending so many
rows can produce a huge amount of network traffic.

If you do require rowset provider—like behavior for your monitoring needs, luckily you do
not need to figure out how to manipulate this data. SQL Server 2008 ships with a series of
managed classes in the Microsoft.SqlServer.Management.Trace namespace, designed to help



108

Microsoft SQL Server 2008 Internals

with setting up and consuming rowset traces. The use of these classes is beyond the scope of
this chapter, but they are well documented in the SQL Server TechCenter and readers should
have no trouble figuring out how to exploit what they offer.

Extended Events

As useful as SQL Trace can be for DBAs and developers who need to debug complex
scenarios within SQL Server, the fact is that it has some key limitations. First, its
column-based architecture makes it difficult to add new events that don't fit nicely into
the existing set of output columns. Second, large traces can have a greater impact on
system performance than many DBAs prefer. Finally, SQL Trace is a tracing infrastructure
only; it cannot be extended into other areas that a general-purpose eventing system can
be used for.

The solution to all these problems is Extended Events (XE, XEvents, or X/Events for short,
depending on which article or book you happen to be reading—we'll use the XE shorthand
for the remainder of this chapter). Unlike SQL Trace, XE is designed as a general eventing
system that can be used to fulfill tracing requirements but that also can be used for a variety
of other purposes—both internal to the engine and external. Events in XE are not bound to
a general set of output columns as are SQL Trace events. Instead, each XE event publishes its
data using its own unique schema, making the system as flexible as possible. XE also answers
some of the performance problems associated with SQL Trace. The system was engineered
from the ground up with performance in mind, and so in most cases, events have minimal
impact on overall system performance.

Due to its general nature, XE is much bigger and more complex than SQL Trace, and learning
the system requires that DBAs understand a number of new concepts. In addition, because
the system is new for SQL Server 2008, there is not yet Ul support in the form of a Profiler

or similar tool. Given the steep learning curve, many DBAs may be less than excited about
diving in. However, as you will see in the remainder of this chapter, XE is a powerful tool and
certainly worth learning today. The next several versions of SQL Server will see XE extended
and utilized in a variety of ways, so understanding its foundations today is a good investment
for the future.

Components of the XE Infrastructure

The majority of the XE system lives in an overarching layer of SQL Server that is architecturally
similar to the role of the SQL operating system (SQLOS). As a general-purpose eventing

and tracing system, it must be able to interact with all levels of the SQL Server host process,
from the query processing APIs all the way down into the storage engine. To accomplish its
goals, XE exposes several types of components that work together to form the complete
system.



Chapter 2 Change Tracking, Tracing, and Extended Events 109

Packages

Packages are the basic unit within which all other XE objects ship. Each package is a collection of
types, predicates, targets, actions, maps, and events—the actual user-configurable components of
XE that you work with as you interact with the system. SQL Server 2008 ships with four packages,
which can be queried from the sys.dm_xe_packages DMV, as in the following example:

SELECT *
FROM sys.dm_xe_packages;

Packages can interact with one another to avoid having to ship the same code in multiple
contexts. For example, if one package exposes a certain action that can be bound to an
event, any number of other events in other packages can use it. As a means by which to use
this flexibility, Microsoft ships a package called package0 with SQL Server 2008. This package
can be considered the base; it contains objects designed to be used by all the other packages
currently shipping with SQL Server, as well as those that might ship in the future.

In addition to package0, SQL Server ships with three other packages. The sglos package
contains objects designed to help the user interact with the SQLOS system. The sqglserver
package, on the other hand, contains objects specific to the rest of the SQL Server system. The
SecAudit package is a bit different; it contains objects designed for the use of SQL Audit, which
is an auditing technology built on top of Extended Events. Querying the sys.dm_xe_packages
DMV, you can see that this package is marked as private in the capabilities_desc column. This
means that non-system consumers can't directly use the objects that it contains.

To see a list of all the objects exposed by the system, query the sys.dm_xe_objects DMV:

SELECT *
FROM sys.dm_xe_objects;

This DMV exposes a couple of key columns important for someone interested in exploring
the objects. The package_guid column is populated with the same GUIDs that can be found
in the guid column of the sys.dm_xe_packages DMV. The object_type column can be used
to filter on specific types of objects. And just like sys.dm_xe_packages, sys.dm_xe_objects
exposes a capabilities_desc column that is sometimes set to private for certain objects that
are not available for use by external consumers. There is also a column called description,
which purports to contain human-readable text describing each object, but this is a work in
progress as of SQL Server 2008 RTM, and many of the descriptions are incomplete.

In the following sections, we explore, in detail, each of the object types found in
sys.dm_xe_objects.

Events

Much like SQL Trace, XE exposes a number of events that fire at various expected times as SQL
Server goes about its duties. Also, just like with SQL Trace, various code paths throughout the
product have been instrumented with calls that cause the events to fire when appropriate. New



110

Microsoft SQL Server 2008 Internals

users of XE will find almost all the same events that SQL Trace exposes, plus many more. SQL
Trace ships with 180 events in SQL Server 2008; XE ships with 254. This number increases for
XE because many of the XE events are at a much deeper level than the SQL Trace events. For
example, XE includes an event that fires each time a page split occurs. This allows a user to track
splits at the query level, something that was impossible to do in previous versions of SQL Server.

The most important differentiator of XE events, compared with those exposed by SQL Trace,
is that each event exposes its own output schema. These schemas are exposed in the
sys.dm_xe_object_columns DMV, which can be queried for a list of output columns as in the
following example:

SELECT *
FROM sys.dm_xe_object_columns
WHERE

object_name = 'page_split';

In addition to a list of column names and column ordinal positions, this query also returns a
list of data types associated with each column. These data types, just like every other object
defined within the XE system, are contained within packages and each has its own entry in
the sys.dm_xe_objects DMV. Columns can be marked readonly (per the column_type column),
in which case they have a value defined in the column_value column, or they can be marked
as data, which means that their values will be populated at run time. The readonly columns
are metadata, used to store various information including a unique identifier for the type of
event that fired and a version number so that different versions of the schema for each event
can be independently tracked and used.

One of the handful of readonly attributes that is associated with each event is the CHANNEL
for the event. This is a reflection of one of the XE design goals, to align with the Event Tracing
for Windows (ETW) system. Events in SQL Server 2008 are categorized as Admin, Analytic,
Debug, or Operational. The following is a description of each of these event channels:

B Admin events are those that are expected to be of most use to systems administrators,
and this channel includes events such as error reports and deprecation announcements.

B Analytic events are those that fire on a regular basis—potentially thousands of times
per second on a busy system—and are designed to be aggregated to support analysis
about system performance and health. These include events around topics such as lock
acquisition and SQL statements starting and completing.

B Debug events are those expected to be used by DBAs and support engineers to help
diagnose and solve engine-related problems. This channel includes events that fire
when threads and processes start and stop, various times throughout a scheduler’s
lifecycle, and for other similar themes.

B Operational events are those expected to be of most use to operational DBAs for
managing the SQL Server service and databases. This channel’s events relate to
databases being attached, detached, started, and stopped, as well as issues such as
the detection of database page corruption.



Chapter 2 Change Tracking, Tracing, and Extended Events 111

Providing such a flexible event payload system ensures that any consumer can use any exposed
event, so long as the consumer knows how to read the schema. Events are designed such that
the output of each instance of the event always includes the same attributes, exposed in the
exact order defined by the schema, to minimize the amount of work required for consumers

to processes bound events. Event consumers can also use this ordering guarantee to more
easily ignore data that they are not interested in. For example, if a consumer knows that the
first 16 bytes of a given event contains an identifier that is not pertinent to the consumer’s
requirements, these bytes can simply be disregarded rather than needlessly processed.

Although the schema of each event is predetermined before run time, the actual size of each
instance of the event is not. Event payloads can include both fixed and variable-length data
elements, in addition to non-schematized elements populated by actions (see the section
entitled “Actions” later in this chapter, for more information). To reduce the probability of events
overusing memory and other resources, the system sets a hard 32-MB upper limit on the data
size of variable-length elements.

One thing you might notice about the list of columns returned for each event is that it is small
compared with the number of columns available for each event in SQL Trace. For example, the
XE sql_statement_completed event exposes only seven columns: source_database_id, object _id,
object_type, cpu, duration, reads, and writes. SQL Trace users might be wondering where all the
other common attributes are—session ID, login name, perhaps the actual SQL text that caused
the event to fire. These are all available by binding to “actions” (described in the section entitled
“Actions,” later in this chapter) and are not populated by default by the event’s schema. This
design further adds to the flexibility of the XE architecture and keeps events themselves as
small as possible, thereby improving overall system performance.

As with SQL Trace events, XE events are disabled by default and have virtually no overhead
until they are enabled in an event session (the XE equivalent of a trace, covered later in this
chapter). Also like SQL Trace events, XE events can be filtered and can be routed to various
post-event providers for collection. The terminology here is also a bit different; filters in XE
are called predicates, and the post-event providers are referred to as targets, covered in the
sections entitled “Predicates” and “Targets,” respectively, later in this chapter.

Types and Maps

In the previous section, we saw that each event exposes its own schema, including column
names and type information. Also mentioned was that each of the types included in these
schemas is also defined within an XE package.

Two kinds of data types can be defined: scalar types and maps. A scalar type is a single
value; something like an integer, a single Unicode character, or a binary large object. A map,
on the other hand, is very similar to an enumeration in most object-oriented systems. The
idea for a map is that many events have greater value if they can convey to the consumer
some human-readable text about what occurred, rather than just a set of machine-readable
values. Much of this text can be predefined—for example, the list of wait types supported by



112

Microsoft SQL Server 2008 Internals

SQL Server—and can be stored in a table indexed by an integer. At the time an event fires,
rather than collecting the actual text, the event can simply store the integer, thereby saving
large amounts of memory and processing resources.

Types and maps, like events, are visible in the sys.dm_xe_objects DMV. To see a list of both
types and maps supported by the system, use the following query:

SELECT *
FROM sys.dm_xe_objects
WHERE
object_type IN ('TYPE', 'MAP');

Although types are more or less self-describing, maps must expose their associated values

so that consumers can display the human-readable text when appropriate. This information
is available in a DMV called sys.dm_xe_map_values. The following query returns all the wait
types exposed by the SQL Server engine, along with the map keys (the integer representation
of the type) used within XE events that describe waits:

SELECT *
FROM sys.dm_xe_map_values
WHERE

name = 'wait_types';

As of SQL Server 2008 RTM, virtually all the types are exposed via the package0 package,
whereas each of the four packages contain many of their own map values. This makes sense,
given that a scalar type such as an integer does not need to be redefined again and again,
whereas maps are more aligned to specific purposes.

It is also worth noting, from an architectural point of view, that some thought has been put
into optimizing the type system by including pass-by-value and pass-by-reference semantics
depending on the size of the object. Any object of 8 bytes or smaller is passed by value as
the data flows through the system, whereas larger objects are passed by reference using a
special XE-specific 8-byte pointer type.

Predicates

As with SQL Trace events, XE events can be filtered so that only interesting events are recorded.
You may wish to record, for example, only events that occur in a specific database, or which
fired for a specific session ID. In keeping with the design goal of providing the most flexible
experience possible, XE predicates are assigned on a per-event basis, rather than to the entire
session. This is quite a departure from SQL Trace, where filters are defined at the granularity

of the entire trace, and so every event used within the trace must abide by the overarching
filter set. In XE, if it makes sense to only filter some events and to leave other events totally
unfiltered—or filtered using a different set of criteria—that is a perfectly acceptable option.

From a metadata standpoint, predicates are represented in sys.dm_xe_objects as two different
object types: pred_compare and pred_source. The pred_compare objects are comparison



Chapter 2 Change Tracking, Tracing, and Extended Events 113

functions, each designed to compare instances of a specific data type, whereas the pred_source
objects are extended attributes that can be used within predicates.

First, we'll take a look at the pred_compare objects. The following query against the
sys.dm_xe_objects DMV returns all >= comparison functions that are available, by filtering
on the pred_compare object type:

SELECT *
FROM sys.dm_xe_objects
WHERE
object_type = 'pred_compare'

AND name LIKE 'greater_than_equal%';

Running this query, you can see comparison functions defined for a number of base data
types—integers, floating-point numbers, and various string types. Each of these functions can
be used explicitly by an XE user, but the DDL for creating event sessions has been overloaded
with common operators, so that this is unnecessary in the vast majority of cases. For example,
if you use the >= operator to define a predicate based on two integers, the XE engine
automatically maps the call to the greater_than_equal_int64 predicate that you can see in the
DMV. There is currently only one predicate that is not overloaded with an operator, a modulus
operator that tests whether one input equally divides by the other. See the section entitled
“Extended Events DDL and Querying,” later in this chapter, for more information on how to
use the comparison functions.

The other predicate object type—pred_source—requires a bit of background explanation. In
the XE system, event predicates can filter on one of two types of attribute: a column exposed
by the event itself—such as source_database_id for the sql_statement_completed event—or any
of the external attributes (predicate sources) defined as pred_source in the sys.dm_xe_objects
DMV. The available sources are returned by the following query:

SELECT *
FROM sys.dm_xe_objects
WHERE
object_type = 'pred_source';

Each of these attributes—29 as of SQL Server 2008 RTM—can be bound to any event in the
XE system and can be used anytime you need to filter on an attribute that is not carried by
the event’s own schematized payload. This lets you ask for events that fired for a specific
session ID, for a certain user name, or—if you want to debug at a deeper level—on a specific
thread or worker address. The important thing to remember is that these predicate sources
are not carried by any of the events by default, and using them forces the XE engine to
acquire the data in an extra step during event processing. For most of the predicates, the
acquisition cost is quite small, but if you are using several of them, this cost can add up.

We explore when and how predicates fire in the section entitled “Lifecycle of an Event,” later
in this chapter.



114

Microsoft SQL Server 2008 Internals

Actions

One quality of an eventing system is that as events fire, it may be prudent to exercise some
external code. For example, consider DML triggers, which are events that fire in response
to a DML action and exercise code in the form of the body of the trigger. Aside from

doing some sort of work, external code can also retrieve additional information that might
be important to the event; for example, a trigger can select data from another table in

the system.

In XE, a type of object called an action takes on these dual purposes. Actions, if bound to an
event, are synchronously invoked after the predicate evaluates to true and can both exercise
code and write data back into the event's payload, thereby adding additional attributes. As
mentioned in the section entitled “"Events,” earlier in this chapter, XE events are designed to
be as lean as possible, including only a few attributes each by default. When dealing with
predicates, the lack of a complete set of attributes can be solved using predicate sources, but
these are only enabled for filtration. Using a predicate source does not cause its value to be
stored along with the rest of the event data. The most common use of actions is to collect
additional attributes not present by default on a given event.

It should by this point come as no surprise that to see a list of the available actions, a user
should query sys.dm_xe_objects, as in the following example:

SELECT *
FROM sys.dm_xe_objects
WHERE

object_type = 'action';

As of SQL Server 2008 RTM, XE ships with 37 actions, which include attributes that map to
virtually every predicate source, should you wish to filter on a given source as well as include
the actual value in your event's output. The list also includes a variety of other attributes, as
well as a handful of actions that exercise only code and do not return any data to the event's
payload.

Actions fire synchronously on an event immediately after the predicates are evaluated, but
before control is returned to the code that caused the event to fire (for more information, see
the section entitled “Lifecycle of an Event,” later in this chapter). This is done to ensure that
actions will be able to collect information as it happens and before the server state changes,
which might be a potential problem were they fired asynchronously.

As a result of their synchronous design, actions bear some performance cost. The majority
of them—such as those that mirror the available predicates—are relatively inexpensive to
retrieve, but others can be costly. For example, an especially interesting action useful for
debugging purposes is the tsql_stack action, which returns the entire nested stack of stored
procedure and/or function calls that resulted in the event firing. Although very useful, this
information is not available in the engine without briefly stopping execution of the current
thread and walking the stack, so this action bears a heavier performance cost than, for
example, retrieving the current session ID.



Chapter 2 Change Tracking, Tracing, and Extended Events 115

To see a list of those actions that do not return any data but rather only execute external
code, filter on the type_name column of sys.dm_xe_objects for a "null” return value, as in the
following query:

SELECT *
FROM sys.dm_xe_objects
WHERE
object_type = 'action'
and type_name = 'null';

Note that “null” in this example is actually a string and is not the same as a SQL NULL; null

is the name of a type defined in package0O and shows up in the list of objects of type type.
There are three actions that do not return additional data: two of them perform mini-dumps
and the other causes a debugger breakpoint to fire. All these are best used only when
instructed to by product support—especially the debug break event, which stops the active
thread upon which the breakpoint is hit, potentially blocking the entire SQL Server process
depending on where the breakpoint is hit.

Much like predicates, actions are bound on an event-by-event basis rather than at the event
session level, so a consumer can choose to invoke actions only when specific events fire
within a larger session. Certain actions may not apply to every event in the system, and these
will fail to bind with an error at session creation time, if a user attempts to bind them with an
incompatible event.

From a performance point of view, aside from the synchronous nature of these actions, it is
important to remember that actions that write data back to the event increase the size of each
instance of the event. This means that not only do events take longer to fire and return control
to the caller—because actions are synchronously executed—but once fired, the event also
consumes more memory and requires more processing time to write to the target. The key, as is
often the case with performance-related issues, is to maintain a balance between the data needs
of the consumer and the performance needs of the server as a whole. Keeping in mind that
actions are not free helps you to create XE sessions that have less of an impact on the host server.

Targets

So far, we have seen events that fire when an instrumented code path is encountered, predicates
that filter events so that only interesting data is collected, and actions that can add additional
data to an event's payload. Once all this has taken place, the final package of event data needs
to go somewhere to be collected. This destination for event data is one or more targets, which
are the means by which XE events are consumed.

Targets are the final object type that has metadata exposed within sys.dm_xe_objects, and
the list of available targets can be seen by running the following query:

SELECT *
FROM sys.dm_xe_objects
WHERE

object_type = 'target';



116

Microsoft SQL Server 2008 Internals

SQL Server 2008 RTM ships with 13 targets—7 public and 6 private, for use only by SQL
Audit. Of the 7 public targets, 3 are marked synchronous in the capabilities_desc column.
These targets collect event data synchronously—much like actions—before control is
returned to the code that caused the event to fire. The other five events, in comparison, are
asynchronous, meaning that the data is buffered before being collected by the target at
some point after the event fires. Buffering results in better performance for the code that
caused the event to fire, but it also introduces latency into the process because the target
may not collect the event for some time.

XE targets come in a variety of types that are both similar to and somewhat different from
the I/O providers exposed by SQL Trace. Similar to the SQL Trace file provider is the XE
asynchronous_file_target, which buffers data before writing it out to a proprietary binary file
format. Another file-based option is the etw_classic_sync_target, which synchronously writes
data to a file format suitable for consumption by any number of ETW-enabled readers. There
is no XE equivalent for the SQL Trace streaming rowset provider.

The remaining five targets are quite different than what is offered by SQL Trace, and all store
consumed data in memory rather than persisting it to a file. The most straightforward of these
is the ring_buffer target, which stores data in a ring buffer with a user-configurable size. A ring
buffer loops back to the start of the buffer when it fills and begins overwriting data collected
earlier. This means that the buffer can consume an endless quantity of data without using all
available system memory, but only the newest data is available at any given time.

Another target type is the synchronous_event_counter target, which synchronously counts the
number of times events have fired. Along these same lines are two bucketizer targets—one
synchronous and the other asynchronous—which create buckets based on a user-defined
column, and count the number of times that events occur within each bucket. For example, a
user could “bucketize” based on session ID, and the targets would count the number of events
that fired for each SPID.

The final target type is called the pair_matching target, and it is designed to help find
instances where a pair of events is expected to occur, but one or the other is not firing due to
a bug or some other problem. The pair_matching target works by asynchronously collecting
events defined by the user as begin events, and matching them to events defined by the user
as end events. When a pair of successfully matched events is found, both events are dropped,
leaving only those events that did not have a match. For an example of where this would

be useful, consider lock acquisition in the storage engine. Each lock is acquired and—we
hope—released within a relatively short period to avoid blocking. If blocking problems are
occurring, it is possible that they are due to locks being acquired and held for longer than
necessary. By using the pair_matching target in conjunction with the lock acquired and lock
released events, it is easy to identify those locks that have been taken but not yet released.

Targets can often be used in conjunction with one another, and it is therefore possible to bind
multiple targets to a single session, rather than having to create many sessions to collect the



Chapter 2 Change Tracking, Tracing, and Extended Events 117

same data. For example, a user can create multiple bucketizing targets to simultaneously keep
metadata counts based on different bucket criteria, while recording all the unaggregated
data to a file for later evaluation.

As with the SQL Trace providers, some action must occur when more data enters the system
than can be processed in a reasonable amount of time. When working with the synchronous
targets, things are simple; the calling code waits until the target returns control, and the target
waits until its event data has been fully consumed. With asynchronous targets, on the other
hand, there are a number of configuration options that dictate how to handle the situation.

When event data buffers begin to fill up, the engine can take one of three possible actions
depending on how the session was configured by the user. These actions are the following:

B Block, waiting for buffer space to become available (no event loss) This is the same
behavior characterized by the SQL Trace file provider, and can cause performance
degradation.

B Drop the waiting event (allow single event loss) In this case, the system drops only a
single event at a time while waiting for more buffer space to free up. This is the default
mode.

®  Drop a full buffer (allow multiple event loss) Each buffer can contain many events,
and the number of events lost depends upon the size of the events in addition to the
size of the buffers (which we will describe shortly).

The various options are listed here in decreasing order of their impact on overall system
performance should buffers begin filling up, and in increasing order of the number of events
that may be lost while waiting for buffers to become free. It is important to choose an option
that reflects the amount of acceptable data loss while keeping in mind that blocking will
occur should too restrictive an option be used. Liberal use of predicates, careful attention

to the number of actions bound to each event, and attention to other configuration options
all help users avoid having to worry about buffers filling up and whether the choice of these
options is a major issue.

Along with the ability to specify what should happen when buffers fill up, a user can specify
how much memory is allocated, how the memory is allocated across CPU or NUMA node
boundaries, and how often buffers are cleared.

By default, one central set of buffers, consuming a maximum of 4 MB of memory, is
created for each XE session (as described in the next section). The central set of buffers
always contains three buffers, each consuming one-third of the maximum amount of
memory specified. A user can override these defaults, creating one set of buffers per CPU
or one set per NUMA node, and increasing or decreasing the amount of memory that

each set of buffers consumes. In addition, a user can specify that events larger than the
maximum allocated buffer memory should be allowed to fire. In that case, those events are
stored in special large memory buffers.



118

Microsoft SQL Server 2008 Internals

Another default option is that buffers are cleared every 30 seconds or when they fill up. This
option can be overridden by a user and a maximum latency set. This causes the buffers to
be checked and cleared both at a specific time interval (specified as a number of seconds), in
addition to when they fill up.

It is important to note that each of these settings applies not on a per-target basis, but rather
to any number of targets that are bound to a session. We explore how this works in the next
section.

Event Sessions

We have now gone through each of the elements that make up the core XE infrastructure.
Bringing each of these together into a cohesive unit at run time are sessions. These are the
XE equivalent of a trace in SQL Trace parlance. A session describes the events that the user is
interested in collecting, predicates against which the events should be filtered, actions that
should fire in conjunction with the events, and finally targets that should be used for data
collection at the end of the cycle.

Any number of sessions can be created by users with adequate server-level permission, and
sessions are for the most part independent of one another, just as with SQL Trace. The main
thread that links any number of sessions is a central bitmap that indicates whether a given
event is enabled or disabled. An event can be enabled simultaneously in any number of
sessions, but the global bitmap is used to avoid having to check each of those sessions at run
time. Beyond this level, sessions are completely separate from one another, and each uses its
own memory and has its own set of defined objects.

Session-Scoped Catalog Metadata

Along with defining a set of events, predicates, actions, and targets, various XE configuration
options are scoped at the session level. As with the objects that define the basis for XE, a
number of views have been added to the metadata repository of SQL Server to support
metadata queries about sessions.

The sys.server_event_sessions catalog view is the central metadata store for information
about XE sessions. The view exposes one row per session defined on the SQL Server instance.
Like traces in SQL Trace, XE sessions can be started and stopped at will. But unlike traces, XE
sessions are persistent with regard to service restarts, and so querying the view before and
after a restart show the same results unless a session has been explicitly dropped. A session
can be configured to start itself automatically when the SQL Server instance starts; this
setting can be seen via the startup_state column of the view.

Along with the central sys.server_event_sessions views are a number of other views describing
details of how the session was configured. The sys.server_event_session_events view exposes

one row per event bound to each session, and includes a predicate column that contains the
definition of the predicate used to filter the event, if one has been set. There are similar views



Chapter 2 Change Tracking, Tracing, and Extended Events 119

for actions and targets, namely: sys.server_event_session_actions and sys.server_event_session_
targets. A final view, sys.server_event_session_fields, contains information about settings that
can be customized for a given event or target. For example, the ring buffer target’'s memory
consumption can be set to a specific amount by a user; if the target is used, the memory
setting appears in this view.

Session-Scoped Configuration Options

As mentioned in the section entitled “Targets,” earlier in this chapter, a number of settings
are set globally for a session and, in turn, influence the run-time behavior of the objects that
make up the session.

The first set of session-scoped options includes those that we have already discussed: options
that determine how asynchronous target buffers are configured, both from a memory and
latency standpoint. These settings influence a process called the dispatcher, which is responsible
for periodically collecting data from the buffers and sending it to each of the asynchronous
targets bound to the session. The frequency with which the dispatcher is activated depends on
how the memory and latency settings are configured. If a latency value of infinite is specified,
the dispatcher does not collect data except when the buffers are full. Otherwise, the dispatcher
collects data at the interval determined by the setting—as often as once a second.

The sys.dm_xe_sessions DMV can be used to monitor whether there are any problems
dispatching asynchronous buffers. This DMV exposes one row per XE session that has been
started and exposes a number of columns that can give a user insight into how buffers are
being handled. The most important columns are the following:

B regular_buffer_size and total_regular_buffers. These columns expose the number of
buffers created—based on the maximum memory and memory partitioning
settings—as well as the size of each buffer. Knowing these numbers and estimating the
approximate size for each event tells you how many events you might lose in case of a
full buffer situation, should you make use of the allow multiple event loss option.

B dropped_event_count and dropped_buffer_count. These columns expose the number
of events and/or buffers that have been dropped due to there not being enough free
buffer space to accommodate incoming event data.

B blocked_event _fire_time. This column exposes the amount of time that blocking
occurred, if the no event loss option was used.

Another session-scoped option that can be enabled is called causality tracking. This option
enables users to use a SQL Server engine feature to help correlate events either when there are
parent-child relationships between tasks on the same thread or when one thread causes activity
to occur on another thread. In the engine code, these relationships are tracked by each task
defining a GUID, known as an activity ID. When a child task is called, the ID is passed along and
continues down the stack as subsequent tasks are called. If activity needs to pass to another
thread, the ID is passed in a structure called a transfer block, and the same logic continues.



120

Microsoft SQL Server 2008 Internals

These identifiers are exposed via two XE actions: packageO.attach_activity_id and packageO.
attach_activity_id_xfer. However, these actions cannot be attached to an event by a user
creating a session. Instead, a user must enable the causality tracking option at the session level,
which automatically binds the actions to every event defined for the session. Once the actions
are enabled, both the activity ID and activity transfer ID are added to each event’s payload.

Lifecycle of an Event

The firing of an event means, at its core, that a potentially “interesting” point in the SQL
Server code has been encountered. This point in the code calls a central function that handles
the event logic, and several things happen, as described in this section and as illustrated in
Figure 2-13.

“Interesting” code Is the event Yes Event fires;
—>|
encountered enabled? payload collected
No : Once per
1 subscribing
1 session

A4
Does the event | Yes | Event data copied to

1 satisfy predicates? qualifying sessions

1 1

1 No for all 1 Oncﬁfp'er .

1 sessions ; qualifying session
1

1 Fire actions, if
--=1 applicable

: Once per
1 qualifying session

¥
Copy data to any

synchronous
targets
1
) ) 1 Once per
Once all sessions’ actions, synchronous 1 qualifying session
targets, and asynchronous buffers are
Code execution finished Buffer data, if
continues applicable
T
Dispatch datato [ _ _ _Sometime later.. !

asynchronous targets

FIGURE 2-13 The lifecycle of an extended event

Once an event has been defined within at least one session, a global bitmap is set to indicate
that the event should fire when code that references it is encountered. Whether or not an
event is enabled, the code must always perform this check; for events that are not enabled, the
check involves a single code branch and adds virtually no overhead to the SQL Server process.
If the event is not enabled, this is the end of the process and the code continues its normal
execution path. Only if an event is enabled in one or more sessions must the event-specific
code continue processing.



Chapter 2 Change Tracking, Tracing, and Extended Events 121

At this point, if enabled, the event fires and all the data elements associated with its schema
are collected and packaged. The XE engine next finds each session that has the event
enabled and synchronously (one session at a time) takes the following steps:

1. Check whether the event satisfies predicates defined for the event within the session.
If not, the engine moves on to the next session without taking any further action.

2. If the predicates are satisfied, the engine copies the event data into the session’s
context. Any actions defined for the event within the session are then fired, followed by
copying the event data to any synchronous targets.

3. Finally, the event data is buffered, if necessary, for any asynchronous targets used by
the session.

Once each of these steps has been performed for each session, code execution resumes.
It is important to stress that this all happens synchronously, while code execution blocks.
Although each of these steps, and the entire system, has been designed for performance,
users can still create problems by defining too many sessions, with too many actions or
synchronous targets, for extremely active events such as those in the analytic channel.
Care should be taken to avoid overusing the synchronous features, lest run-time blocking
becomes an issue.

At some point after being buffered—depending on the event latency and memory settings
for the session(s)—the event data is passed once more, to any asynchronous targets. At this
point, the event data is removed from the buffer to make room for new incoming data.

To help track down problems with targets taking too long to consume the data and
therefore causing waiting issues, the sys.dm_xe_session_targets DMV can be used. This DMV
exposes one row per target defined by each active XE session, and includes a column called
execution_duration_ms. This column indicates the amount of time that the target took to
process the most recent event or buffer (depending on the target). If you see this number
begin to climb, waiting issues are almost certainly occurring in SQL Server code paths.

Extended Events DDL and Querying

To complete the overview of XE, we will take a quick tour of the session creation DDL and see
how all the objects apply to what you can control when creating actual sessions. We will also
look at an example of how to query some of the data collected by an XE session.

Creating an Event Session

The primary DDL hook for XE is the CREATE EVENT SESSION statement. This statement
allows users to create sessions and map all the various XE objects. An ALTER EVENT SESSION
statement also exists, allowing a user to modify a session that has already been created. To
modify an existing session, it must not be active.



122

Microsoft SQL Server 2008 Internals

The following T-SQL statement creates a session and shows how to configure all the XE
features and options we have reviewed in the chapter:

CREATE EVENT SESSION [statement_completed]
ON SERVER
ADD EVENT
sqlserver.sp_statement_completed,
ADD EVENT
sqlserver.sql_statement_completed
(
ACTION
(
sqlserver.sql_text
)
WHERE
(
sqlserver.session_id = 53
)
)
ADD TARGET
package0.ring_buffer
(
SET
max_memory=4096

WITH

MAX_MEMORY = 4096KB,

EVENT_RETENTION_MODE = ALLOW_SINGLE_EVENT_LOSS,
MAX_DISPATCH_LATENCY = 1 SECONDS,
MEMORY_PARTITION_MODE = NONE,

TRACK_CAUSALITY = OFF,

STARTUP_STATE = OFF

)

The session is called statement_completed, and two events are bound: sp_statement_completed
and sql_statement_completed, both exposed by the sqlserver package. The sp_statement_
completed event has no actions or predicates defined, so it publishes to the session’s target with
its default set of attributes every time the event fires instance-wide. The sq/_statement_completed
event, on the other hand, has a predicate configured (the WHERE option) so that it publishes
only for session ID 53. Note that the predicate uses the equality operator (=) rather than calling
the pred_compare function for comparing two integers. The standard comparison operators are
all defined; currently the only reason to call a function directly is for using the divides_by_uint64
function, which determines whether one integer exactly divides by another (useful when working
with the counter predicate source). Note also that the WHERE clause supports AND, OR, and
parentheses—you can create complex predicates that combine many different conditions

if needed.

When the sql_statement_completed event fires for session ID 53, the event session invokes the
sql_text action. This action collects the text of the SQL statement that caused the event to fire
and adds it to the event's data. After the event data has been collected, it is pushed to the
ring_buffer target, which is configured to use a maximum of 4,096 KB of memory.



Chapter 2 Change Tracking, Tracing, and Extended Events 123

We have also configured some session-level options. The session's asynchronous buffers

cannot consume more than 4,096 KB of memory, and should they fill up, we allow events to
be dropped. That is probably not likely to happen, though, because we have configured the
dispatcher to clear the buffers every second. Memory is not partitioned across CPUs—so we
end up with three buffers—and we are not using causality tracking. Finally, after the session
is created, it exists only as metadata; it does not start until we issue the following statement:

ALTER EVENT SESSION [statement_completed]
ON SERVER
STATE=START;

Querying Event Data

Once the session is started, the ring buffer target is updated with new events (assuming there
are any) every second. Each of the in-memory targets—the ring buffer, bucketizers, and
event count targets—exposes its data in XML format in the target_data column of the
sys.dm_xe_session_targets DMV. Given the fact that the data is in XML format, many DBAs
who have not yet delved into XQuery may want to try it; we highly recommend learning how
to query the data, given the richness of the information that can be retrieved using XE.

Consuming the XML in a tabular format requires knowledge of which nodes are present. In the
case of the ring buffer target, a root node called RingBufferTarget includes one event node for
each event that fires. The event node contains one data node for each attribute contained within
the event data, and one “action” node for actions bound to the event. These data and action nodes
contain three nodes each: one node called type, which indicates the data type; one called value,
which includes the value in most cases; and one called text which is there for longer text values.

Explaining how to query every possible event and target is beyond the scope of this book,
but a quick sample query based on the statement_completed session follows; you can use
this query as a base from which to work up queries against other events and actions when
working with the ring buffer target:

SELECT
theNodes.event_data.value(' (data/value)[1]', 'bigint') AS source_database_id,
theNodes.event_data.value('(data/value)[2]', 'bigint') AS object_id,
theNodes.event_data.value(' (data/value)[3]', 'bigint') AS object_type,
theNodes.event_data.value(' (data/value)[4]', 'bigint') AS cpu,

theNodes.event_data.value(' (data/value)[5]', 'bigint') AS duration,
theNodes.event_data.value(' (data/value)[6]', 'bigint') AS reads,
theNodes.event_data.value(' (data/value)[7]', 'bigint') AS writes,
theNodes.event_data.value(' (action/value)[1]', 'nvarchar(max)') AS sql_text
FROM
(
SELECT

CONVERT(XML, st.target_data) AS ring_buffer
FROM sys.dm_xe_sessions s
JOIN sys.dm_xe_session_targets st ON
s.address = st.event_session_address
WHERE
s.name = 'statement_completed'
) AS theData
CROSS APPLY theData.ring_buffer.nodes('//RingBufferTarget/event') theNodes (event_data);



124

Microsoft SQL Server 2008 Internals

This query converts the ring buffer data to an XML instance and then uses the nodes XML
function to create one row per event node found. It then uses the ordinal positions of the
various data elements within the event nodes to map the data to output columns. Of course,
more advanced sessions require more advanced XQuery to determine the type of each event
and do some case logic if the events involved in the session have different schemas—which,
thankfully, the two in this example do not. Once you've gotten to this point, the data is

just that—standard tabular data, which can be aggregated, joined, inserted into a table, or
whatever else you want to do with it.

You can also read from the asynchronous file target via T-SQL, using the sys.fn_xe_file_target_
read_file table-valued function. This function returns one row per event, but you still have to
get comfortable with XML; the event’s data, exposed in a column called event_data, is in an
XML format similar to data in the ring buffer target. Eventually we can expect a user interface
to bear some of the XML burden for us, but just as with SQL Trace, even the most powerful
user interfaces aren’t enough when complex analysis is required. Therefore, XML is here to
stay for those DBAs who wish to be XE power users.

Stopping and Removing the Event Session

Once you have finished reading data from the event session, it can be stopped using the
following code:

ALTER EVENT SESSION [statement_completed]
ON SERVER
STATE=STOP;

Stopping the event session does not remove the metadata; to eliminate the session from the
server completely, you must drop it using the following statement:

ALTER EVENT SESSION [statement_completed]
ON SERVER;

Summary

SQL Server has many eventing systems that range from the simple—like triggers and event
notifications—to the intricate—like XE. Each of these systems is designed to help both users
and SQL Server itself work better by enabling arbitrary code execution or data collection
when specific actions occur in the database engine. In this chapter, we explored the various
hidden and internal objects used by Change Tracking to help support synchronization
applications, the inner workings of the ubiquitous SQL Trace infrastructure, and the complex
architecture of XE, the future of eventing within SQL Server. Events within SQL Server are
extremely powerful, and we hope that this chapter has provided you with enough internal
knowledge of these systems to understand how to better use the many eventing features

in your day-to-day activities.



Chapter 3
Databases and Database Files

Kalen Delaney

Simply put, a Microsoft SQL Server database is a collection of objects that hold and
manipulate data. A typical SQL Server instance has only a handful of databases, but it's not
unusual for a single instance to contain several dozen databases. The technical limit for one
SQL Server instance is 32,767 databases. But practically speaking, this limit would never

be reached.

To elaborate a bit, you can think of a SQL Server database as having the following properties
and features:

It is a collection of many objects, such as tables, views, stored procedures, and
constraints. The technical limit is 231-1 (more than 2 billion) objects. The number of
objects typically ranges from hundreds to tens of thousands.

It is owned by a single SQL Server login account.
It maintains its own set of user accounts, roles, schemas, and security.
It has its own set of system tables to hold the database catalog.

It is the primary unit of recovery and maintains logical consistency among objects
within it. (For example, primary and foreign key relationships always refer to other
tables within the same database, not in other databases.)

It has its own transaction log and manages its own transactions.

It can span multiple disk drives and operating system files.

It can range in size from 2 MB to a technical limit of 524,272 terabytes.
It can grow and shrink, either automatically or manually.

It can have objects joined in queries with objects from other databases in the same
SQL Server instance or on linked servers.

It can have specific properties enabled or disabled. (For example, you can set a
database to be read-only or to be a source of published data in replication.)

And here is what a SQL Server database is not:

It is not synonymous with an entire SQL Server instance.
It is not a single SQL Server table.

It is not a specific operating system file.

125



126

Microsoft SQL Server 2008 Internals

Although a database isn't the same thing as an operating system file, it always exists in two
or more such files. These files are known as SQL Server database files and are specified either
at the time the database is created, using the CREATE DATABASE command, or afterward,
using the ALTER DATABASE command.

System Databases

A new SQL Server 2008 installation always includes four databases: master, model, tempdb,
and msdb. It also contains a fifth, "hidden” database that you never see using any of the
normal SQL commands that list all your databases. This database is referred to as the
resource database, but its actual name is mssqlsystemresource.

master

The master database is composed of system tables that keep track of the server installation
as a whole and all other databases that are subsequently created. Although every database
has a set of system catalogs that maintain information about objects that the database
contains, the master database has system catalogs that keep information about disk space,
file allocations and usage, system-wide configuration settings, endpoints, login accounts,
databases on the current instance, and the existence of other servers running SQL Server
(for distributed operations).

The master database is critical to your system, so always keep a current backup copy of it.
Operations such as creating another database, changing configuration values, and modifying
login accounts all make modifications to master, so you should always back up master after
performing such actions.

model

The model database is simply a template database. Every time you create a new database,
SQL Server makes a copy of model to form the basis of the new database. If you'd like every
new database to start out with certain objects or permissions, you can put them in model,
and all new databases inherit them. You can also change most properties of the model
database by using the ALTER DATABASE command, and those property values then are used
by any new database you create.

tempdb

The tempdb database is used as a workspace. It is unique among SQL Server databases because
it's re-created—not recovered—every time SQL Server is restarted. It's used for temporary tables
explicitly created by users, for worktables that hold intermediate results created internally by
SQL Server during query processing and sorting, for maintaining row versions used in snapshot



Chapter 3 Databases and Database Files 127

isolation and certain other operations, and for materializing static cursors and the keys of
keyset cursors. Because the tempdb database is re-created, any objects or permissions that you
create in the database are lost the next time you start your SQL Server instance. An alternative
is to create the object in the model database, from which tempdb is copied. (Keep in mind that
any objects that you create in the model database also are added to any new databases you
create subsequently. If you want objects to exist only in tempdb, you can create a startup stored
procedure that creates the objects every time your SQL Server instance starts.)

The tempdb database sizing and configuration is critical for optimal functioning and
performance of SQL Server, so I'll discuss tempdb in more detail in its own section later in
this chapter.

The Resource Database

As mentioned, the mssqlsystemresource database is a hidden database and is usually

referred to as the resource database. Executable system objects, such as system stored
procedures and functions, are stored here. Microsoft created this database to allow very fast
and safe upgrades. If no one can get to this database, no one can change it, and you can
upgrade to a new service pack that introduces new system objects by simply replacing the
resource database with a new one. Keep in mind that you can't see this database using any of
the normal means for viewing databases, such as selecting from sys.databases or executing
sp_helpdb. It also won't show up in the system databases tree in the Object Explorer pane of
SQL Server Management Studio, and it does not appear in the drop-down list of databases
accessible from your query windows. However, this database still needs disk space.

You can see the files in your default binn directory by using Microsoft Windows Explorer.

My data directory is at C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\
MSSQL\Binn; | can see a file called mssqlsystemresource.mdf, which is 60.2 MB in size, and
mssqlsystemresource.ldf, which is 0.5 MB. The created and modified date for both of these files
is the date that the code for the current build was frozen. It should be the same date that you
see when you run SELECT @@version. For SQL Server 2008, the RTM build, this is 10.0.1600.22.

If you have a burning need to “see” the contents of mssqlsystemresource, a couple of
methods are available. The easiest, if you just want to see what's there, is to stop SQL Server,
make copies of the two files for the resource database, restart SQL Server, and then attach
the copied files to create a database with a new name. You can do this by using Object
Explorer in Management Studio or by using the CREATE DATABASE FOR ATTACH syntax to
create a clone database, as shown here:

CREATE DATABASE resource_COPY
ON (NAME = data, FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\binn
\mssqlsystemresource_COPY.mdf"'),
(NAME = Tog, FILENAME =
'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\binn\mssqlsystemresource_COPY.1df")
FOR ATTACH;



128

Microsoft SQL Server 2008 Internals

SQL Server treats this new resource_ COPY database like any other user database, and it

does not treat the objects in it as special in any way. If you want to change anything in the
resource database, such as the text of a supplied system stored procedure, changing it in
resource_COPY obviously does not affect anything else on your instance. However, if you
start your SQL Server instance in single-user mode, you can make a single connection to
your SQL Server, and that connection can use the mssqlsystemresource database. Starting an
instance in single-user mode is not the same thing as setting a database to single-user mode.
For details on how to start SQL Server in single-user mode, see the SQL Server Books Online
entry for the sqlservr.exe application. In Chapter 6, “Indexes: Internals and Management,”
when | discuss database objects, I'll discuss some of the objects in the resource database.

msdb

The msdb database is used by the SQL Server Agent service and other companion services,
which perform scheduled activities such as backups and replication tasks, and the Service
Broker, which provides queuing and reliable messaging for SQL Server. In addition to backups,
objects in msdb support jobs, alerts, log shipping, policies, database mail, and recovery of
damaged pages. When you are not actively performing these activities on this database,

you can generally ignore msdb. (But you might take a peek at the backup history and other
information kept there.) All the information in msdb is accessible from Object Explorer in
Management Studio, so you usually don’t need to access the tables in this database directly.
You can think of the msdb tables as another form of system table: Just as you can never directly
modify system tables, you shouldn't directly add data to or delete data from tables in msdb
unless you really know what you're doing or are instructed to do so by a SQL Server technical
support engineer. Prior to SQL Server 2005, it was actually possible to drop the msdb database;
your SQL Server instance was still usable, but you couldn’t maintain any backup history, and
you weren't able to define tasks, alerts, or jobs or set up replication. There is an undocumented
traceflag that allows you to drop the msdb database, but because the default msdb database is
so small, | recommend leaving it alone even if you think you might never need it.

Sample Databases

Prior to SQL Server 2005, the installation program automatically installed sample databases
so you would have some actual data for exploring SQL Server functionality. As part of
Microsoft’s efforts to tighten security, SQL Server 2008 does not automatically install any
sample databases. However, several sample databases are widely available.

AdventureWorks

AdventureWorks actually comprises a family of sample databases that was created by the
Microsoft User Education group as an example of what a “real” database might look like. The
family includes: AdventureWorks2008, AdventureWorksDW2008, and AdventureWorksLT2008,



Chapter 3 Databases and Database Files 129

as well as their counterparts created for SQL Server 2005: AdventureWorks, AdventureWorksDW,
and AdventureWorksLT. You can download these databases from the Microsoft codeplex

site at http.//www.codeplex.com/SqlServerSamples. The database was designed to showcase
SQL Server features, including the organization of objects into different schemas. These
databases are based on data needed by the fictitious Adventure Works Cycles company.

The AdventureWorks and AdventureWorks2008 databases are designed to support OLTP
applications and AdventureWorksDW and AdventureWorksDW2008 are designed to support the
business intelligence features of SQL Server and are based on a completely different database
architecture. Both designs are highly normalized. Although normalized data and many separate
schemas might map closely to a real production database’s design, they can make it quite
difficult to write and test simple queries and to learn basic SQL.

Database design is not a major focus of this book, so most of my examples use simple tables that

| create; if more than a few rows of data are needed, I'll sometimes copy data from one or more
AdventureWorks2008 tables into tables of my own. It's a good idea to become familiar with the
design of the AdventureWorks family of databases because many of the examples in SQL Server
Books Online and in white papers published on the Microsoft Web site (http.//www.microsoft.com/
sqlserver/2008/en/us/white-papers.aspx) use data from these databases.

Note that it is also possible to install an AdventureWorksLT2008 (or AdventureWorksLT)
database, which is a highly simplified and somewhat denormalized version of the
AdventureWorks OLTP database and focuses on a simple sales scenario with a single schema.

pubs

The pubs database is a sample database that was used extensively in earlier versions of SQL
Server. Many older publications with SQL Server examples assume that you have this database
because it was installed automatically on versions of SQL Server prior to SQL Server 2005. You can
download a script for building this database from Microsoft’'s Web site, and | have also included
the script with this book’s companion content at http.//www.SQLServerInternals.com/companion.

The pubs database is admittedly simple, but that's a feature, not a drawback. It provides good
examples without a lot of peripheral issues to obscure the central points. You shouldn't worry
about making modifications in the pubs database as you experiment with SQL Server features.
You can rebuild the pubs database from scratch by running the supplied script. In a query
window, open the file named Instpubs.sql and execute it. Make sure there are no current
connections to pubs because the current pubs database is dropped before the new one is created.

Northwind

The Northwind database is a sample database that was originally developed for use with
Microsoft Office Access. Much of the pre-SQL Server 2005 documentation dealing with
application programming uses Northwind. Northwind is a bit more complex than pubs,
and, at almost 4 MB, it is slightly larger. As with pubs, you can download a script from the



130

Microsoft SQL Server 2008 Internals

Microsoft Web site to build it, or you can use the script provided with the companion
content. The file is called Instnwnd.sql. In addition, some of the sample scripts for this book
use a modified copy of Northwind called Northwind?2.

Database Files

A database file is nothing more than an operating system file. (In addition to database files,
SQL Server also has backup devices, which are logical devices that map to operating system
files or to physical devices such as tape drives. In this chapter, | won't be discussing files that
are used to store backups.) A database spans at least two, and possibly several, database files,
and these files are specified when a database is created or altered. Every database must span
at least two files, one for the data (as well as indexes and allocation pages) and one for the
transaction log.

SQL Server 2008 allows the following three types of database files:

B Primary data files Every database has one primary data file that keeps track of all the
rest of the files in the database, in addition to storing data. By convention, a primary
data file has the extension .mdf.

B Secondary data files A database can have zero or more secondary data files. By
convention, a secondary data file has the extension .ndf.

B logfiles Every database has at least one log file that contains the information necessary
to recover all transactions in a database. By convention, a log file has the extension .Idf.

In addition, SQL Server 2008 databases can have filestream data files and full-text data files.
Filestream data files will be discussed in the section “Filestream Filegroups,” later in this
chapter, and in Chapter 7, “Special Storage.” Full-text data files are created and managed
completely, separately from your other database files and are beyond the scope of this book.

Each database file has five properties that can be specified when you create the file: a logical
filename, a physical filename, an initial size, a maximum size, and a growth increment.
(Filestream data files have only the logical and physical name properties.) The value of these
properties, along with other information about each file, can be seen through the metadata
view sys.database_files, which contains one row for each file used by a database. Most of the
columns shown in sys.database_files are listed in Table 3-1. The columns not mentioned here
contain information dealing with transaction log backups relevant to the particular file, and
I'll discuss the transaction log in Chapter 4, “Logging and Recovery.”

TABLE 3-1 The sys.database_files Catalog View

Column Description
fileid The file identification number (unique for each database).
file_guid GUID for the file.

NULL = Database was upgraded from an earlier version of SQL Server.



Chapter 3 Databases and Database Files

TABLE 3-1 The sys.database_files Catalog View

Column
type

type_desc

data_space_id

name
physical_name

state

state_desc

size

Description
File type:

0 = Rows (includes full-text catalogs upgraded to or created in
SQL Server 2008)

1=Log

2 = FILESTREAM

3 = Reserved for future use

4 = Full-text (includes full-text catalogs from versions earlier than
SQL Server 2008)

Description of the file type:

ROWS

LOG

FILESTREAM

FULLTEXT

ID of the data space to which this file belongs. Data space is a

filegroup.

0 = Log file.

The logical name of the file.

Operating-system file name.

File state:
0 = ONLINE
1 = RESTORING

2 = RECOVERING

3 = RECOVERY_PENDING

4 = SUSPECT

5 = Reserved for future use
6 = OFFLINE

7 = DEFUNCT

Description of the file state:
ONLINE

RESTORING

RECOVERING
RECOVERY_PENDING
SUSPECT

OFFLINE

DEFUNCT

Current size of the file, in 8-KB pages.
0 = Not applicable

131

For a database snapshot, size reflects the maximum space that the snapshot

can ever use for the file.



132 Microsoft SQL Server 2008 Internals

TABLE 3-1 The sys.database_files Catalog View

Column Description
max_size Maximum file size, in 8-KB pages:
0 = No growth is allowed.
-1 = File will grow until the disk is full.
268435456 = Log file will grow to a maximum size of 2 terabytes.

growth 0 = File is a fixed size and will not grow.
>0 = File will grow automatically.

If is_percent_growth = 0, growth increment is in units of 8-KB pages,
rounded to the nearest 64 KB.

If is_percent_growth = 1, growth increment is expressed as a whole number
percentage.

is_media_read_only 1 = File is on read-only media.
0 = File is on read/write media.
is_read_only 1 = File is marked read-only.
0 = File is marked read/write.
is_sparse 1 = File is a sparse file.
0 = File is not a sparse file.
(Sparse files are used with database snapshots, discussed later in this

chapter.)
is_percent_growth See description for growth column, above.
is_name_reserved 1 = Dropped file name (name or physical_name) is reusable only after the

next log backup. When files are dropped from a database, the logical names
stay in a reserved state until the next log backup. This column is relevant
only under the full recovery model and the bulk-logged recovery model.

Creating a Database

The easiest way to create a database is to use Object Explorer in Management Studio, which
provides a graphical front end to the T-SQL commands that actually create the database
and set its properties. Figure 3-1 shows the New Database dialog box, which represents

the T-SQL CREATE DATABASE command for creating a new user database. Only someone
with the appropriate permissions can create a database, either through Object Explorer

or by using the CREATE DATABASE command. This includes anyone in the sysadmin role,
anyone who has been granted CONTROL or ALTER permission on the server, and any user
who has been granted CREATE DATABASE permission by someone with the sysadmin or
dbcreator role.

When you create a new database, SQL Server copies the model database. If you have an object
that you want created in every subsequent user database, you should create that object in
model first. You can also use model to set default database options in all subsequently created



Chapter 3 Databases and Database Files 133

databases. The model database includes 53 objects—45 system tables, 6 objects used for SQL
Server Query Notifications and Service Broker, 1 table used for helping to manage filestream
data, and 1 table for helping to manage change tracking. You can see these objects by
selecting from the system table called sys.objects. However, if you run the procedure sp_help
in the model database, it will list 1,978 objects. It turns out that most of these objects are not
really stored in the model database but are accessible through it. In Chapter 5, "Tables,” I'll

tell you what the other kinds of objects are and how you can tell whether an object is really
stored in a particular database. Most of the objects you see in model will show up when you
run sp_help in any database, but your user databases will probably have more objects added
to this list. The contents of model are just the starting point.

il
5 Seript + L7 Help
& General
' Optiong
-1 Fiﬁegroups Database name: |SalesDB
B Dwner: |<defau\t>
o
D atabase files:
Laogical Mame | File Type | Filegroup Initial Size [ME] | Autagrawth
SalezDB Rows PRIMARY 2.000 By 100 KB, unrestricted growth
SalesDE_log Log Mot &pplicabls  5.001 By 50 percent, unrestricted growth
Server
TEN&R
Connection:
TENAR Adrminiztrator
37 View connection properties
Feady 1 ﬂ
Add | |
’Tl Cancel |
Z

FIGURE 3-1 The New Database dialog box, where you can create a new database

A new user database must be 3 MB or larger (including the transaction log), and the primary
data file size must be at least as large as the primary data file of the model database.

(The model database only has one file and cannot be altered to add more. So the size of

the primary data file and the size of the database are basically the same for model.) Almost
all the possible arguments to the CREATE DATABASE command have default values, so it's
possible to create a database using a simple form of CREATE DATABASE, such as this:

CREATE DATABASE newdb;



134

Microsoft SQL Server 2008 Internals

This command creates the newdb database, with a default size, on two files whose

logical names—newdb and newdb_log—are derived from the name of the database.

The corresponding physical files, newdb.mdf and newdb_|log.|df, are created in the default
data directory, which is usually determined at the time SQL Server is installed.

The SQL Server login account that created the database is known as the database owner, and
that information is stored with the information about the database properties in the master
database. A database can have only one actual owner, who always corresponds to a login
name. Any login that uses any database has a user name in that database, which might be
the same name as the login name but doesn't have to be. The login that is the owner of a
database always has the special user name dbo when using the database it owns. I'll discuss
database users later in this chapter when | tell you about the basics of database security. The
default size of the data file is the size of the primary data file of the model database (which

is 2 MB by default), and the default size of the log file is 0.5 MB. Whether the database
name, newdb, is case-sensitive depends on the sort order that you chose during setup. If you
accepted the default, the name is case-insensitive. (Note that the actual command CREATE
DATABASE is case-insensitive, regardless of the case sensitivity chosen for data.)

Other default property values apply to the new database and its files. For example, if the LOG
ON clause is not specified but data files are specified, SQL Server creates a log file with a size
that is 25 percent of the sum of the sizes of all data files.

If the MAXSIZE clause isn't specified for the files, the file grows until the disk is full. (In other
words, the file size is considered unlimited.) You can specify the values for SIZE, MAXSIZE, and
FILEGROWTH in units of terabytes, GB, and MB (the default), or KB. You can also specify the
FILEGROWTH property as a percentage. A value of 0 for FILEGROWTH indicates no growth. If
no FILEGROWTH value is specified, the default growth increment for data files is 1 MB. The log
file FILEGROWTH default is specified as 10 percent.

A CREATE DATABASE Example

The following is a complete example of the CREATE DATABASE command, specifying three
files and all the properties of each file:

CREATE DATABASE Archive
ON
PRIMARY
( NAME = Archl,
FILENAME =
'c:\program files\microsoft sql server\mssql.l\mssql\data\archdatl.mdf"',
SIZE = 100MB,
MAXSIZE = 200MB,
FILEGROWTH = 20MB),
( NAME = Arch2,
FILENAME =
'c:\program files\microsoft sql server\mssql.l\mssql\data\archdat2.ndf"',



Chapter 3 Databases and Database Files 135

SIZE = 10GB,
MAXSIZE = 50GB,
FILEGROWTH = 250MB)
LOG ON
( NAME = Archlogl,
FILENAME =
'c:\program files\microsoft sql server\mssql.l\mssql\data\archlogl.ldf",
SIZE = 2GB,
MAXSIZE = 10GB,
FILEGROWTH = 100MB);

Expanding or Shrinking a Database

®

Databases can be expanded and shrunk automatically or manually. The mechanism for
automatic expansion is completely different from the mechanism for automatic shrinkage.
Manual expansion is also handled differently from manual shrinkage. Log files have their own
rules for growing and shrinking; I'll discuss changes in log file size in Chapter 4.

Warning Shrinking a database or any data file is an extremely resource-intensive operation,
and the only reason to do it is if you absolutely must reclaim disk space. Shrinking a data file can
also lead to excessive logical fragmentation within your database. We'll discuss fragmentation in
Chapter 6 and shrinking in Chapter 11, "DBCC Internals.”

Automatic File Expansion

Expansion can happen automatically to any one of the database’s files when that particular file
becomes full. The file property FILEGROWTH determines how that automatic expansion happens.
The FILEGROWTH property that is specified when the file is first defined can be qualified using
the suffix 7B, GB, MB, KB, or %, and it is always rounded up to the nearest 64 KB. If the value is
specified as a percentage, the growth increment is the specified percentage of the size of the file
when the expansion occurs. The file property MAXSIZE sets an upper limit on the size.

Allowing SQL Server to grow your data files automatically is no substitute for good capacity
planning before you build or populate any tables. Enabling autogrow might prevent some
failures due to unexpected increases in data volume, but it can also cause problems. If a

data file is full and your autogrow percentage is set to grow by 10 percent, if an application
attempts to insert a single row and there is no space, the database might start to grow by a
large amount (10 percent of 10,000 MB is 1,000 MB). This in itself can take a lot of time if fast
file initialization (discussed in the next section) is not being used. The growth might take so
long that the client application’s timeout value is exceeded, which means the insert query fails.
The query would have failed anyway if autogrow weren't set, but with autogrow enabled, SQL
Server spends a lot of time trying to grow the file, and you won't be informed of the problem
immediately. In addition, file growth can result in physical fragmentation on the disk.



136

Microsoft SQL Server 2008 Internals

With autogrow enabled, your database files still cannot grow the database size beyond the
limits of the available disk space on the drives on which files are defined, or beyond the size
specified in the MAXSIZE file property. So if you rely on the autogrow functionality to size your
databases, you must still independently check your available hard disk space or the total file
size. (The undocumented extended procedure xp_fixeddrives returns a list of the amount of free
disk space on each of your local volumes.) To reduce the possibility of running out of space, you
can watch the Performance Monitor counter SQL Server: Databases Object: Data File Size and
set up a performance alert to fire when the database file reaches a certain size.

Manual File Expansion

You can expand a database file manually by using the ALTER DATABASE command with the
MODIFY FILE option to change the SIZE property of one or more of the files. When you alter
a database, the new size of a file must be larger than the current size. To decrease the size of
a file, you use the DBCC SHRINKFILE command, which I'll tell you about shortly.

Fast File Initialization

SQL Server 2008 data files (but not log files) can be initialized instantaneously. This allows
for fast execution of the file creation and growth. Instant file initialization adds space to the
data file without filling the newly added space with zeros. Instead, the actual disk content

is overwritten only as new data is written to the files. Until the data is overwritten, there is
always the chance that a hacker using an external file reader tool can see the data that was
previously on the disk. Although the SQL Server 2008 documentation describes the instant
file initialization feature as an "option,” it is not really an option within SQL Server. It is
actually controlled through a Windows security setting called SE_MANAGE_VOLUME_NAME,
which is granted to Windows administrators by default. (This right can be granted to other
Windows users by adding them to the Perform Volume Maintenance Tasks security policy.) If
your SQL Server service account is in the Windows Administrator role and your SQL Server is
running on a Windows XP, Windows Server 2003, or Windows Server 2008 filesystem, instant
file initialization is used. If you want to make sure your database files are zeroed out as they
are created and expanded, you can use traceflag 1806 or deny SE_MANAGE_VOLUME_NAME
rights to the account under which your SQL Server service is running.

Automatic Shrinkage

The database property autoshrink allows a database to shrink automatically. The effect is the
same as doing a DBCC SHRINKDATABASE (dbname, 25). This option leaves 25 percent free space
in a database after the shrink, and any free space beyond that is returned to the operating
system. The thread that performs autoshrink shrinks databases at very frequent intervals, in
some cases as often as every 30 minutes. Shrinking data files is so resource-intensive that it
should be done only when there is no other way to reclaim needed disk space.



WV

Chapter 3 Databases and Database Files 137

Important Automatic shrinking is never recommended. In fact, Microsoft has announced that
the autoshrink option will be removed in a future version of SQL Server and you should avoid
using it.

Manual Shrinkage

You can shrink a database manually using one of the following DBCC commands:

DBCC SHRINKFILE ( {file_name | file_id }
[, target_size]l[, {EMPTYFILE | NOTRUNCATE | TRUNCATEONLY} 1 )

DBCC SHRINKDATABASE (database_name [, target_percent]
[, {NOTRUNCATE | TRUNCATEONLY} 1 )

DBCC SHRINKFILE

DBCC SHRINKFILE allows you to shrink files in the current database. When you specify target_size,
DBCC SHRINKFILE attempts to shrink the specified file to the specified size in megabytes. Used
pages in the part of the file to be freed are relocated to available free space in the part of the

file that is retained. For example, for a 15-MB data file, a DBCC SHRINKFILE with a target_size of
12 causes all used pages in the last 3 MB of the file to be reallocated into any free slots in the

first 12 MB of the file. DBCC SHRINKFILE doesn't shrink a file past the size needed to store the
data. For example, if 70 percent of the pages in a 10-MB data file are used, a DBCC SHRINKFILE
command with a target_size of 5 shrinks the file to only 7 MB, not 5 MB.

DBCC SHRINKDATABASE

DBCC SHRINKDATABASE shrinks all files in a database but does not allow any file to be
shrunk smaller than its minimum size. The minimum size of a database file is the initial size
of the file (specified when the database was created) or the size to which the file has been
explicitly extended or reduced, using either the ALTER DATABASE or DBCC SHRINKFILE
command. If you need to shrink a database smaller than its minimum size, you should use
the DBCC SHRINKFILE command to shrink individual database files to a specific size. The size
to which a file is shrunk becomes the new minimum size.

The numeric target_percent argument passed to the DBCC SHRINKDATABASE command is

a percentage of free space to leave in each file of the database. For example, if you've used
60 MB of a 100-MB database file, you can specify a shrink percentage of 25 percent. SQL
Server then shrinks the file to a size of 80 MB, and you have 20 MB of free space in addition
to the original 60 MB of data. In other words, the 80-MB file has 25 percent of its space free.
If, on the other hand, you've used 80 MB or more of a 100-MB database file, there is no way
that SQL Server can shrink this file to leave 25 percent free space. In that case, the file size
remains unchanged.



138

Microsoft SQL Server 2008 Internals

Because DBCC SHRINKDATABASE shrinks the database on a file-by-file basis, the mechanism
used to perform the actual shrinking of data files is the same as that used with DBCC
SHRINKFILE (when a data file is specified). SQL Server first moves pages to the front of files to
free up space at the end, and then it releases the appropriate number of freed pages to the
operating system. The actual internal details of how data files are shrunk will be discussed in
Chapter 11.

Note Shrinking a log file is very different from shrinking a data file, and understanding

how much you can shrink a log file and what exactly happens when you shrink it requires an
understanding of how the log is used. For this reason, | will postpone the discussion of shrinking
log files until Chapter 4.

As the warning at the beginning of this section indicated, shrinking a database or any data
files is a resource-intensive operation. If you absolutely need to recover disk space from the
database, you should plan the shrink operation carefully and perform it when it has the least
impact on the rest of the system. You should never enable the AUTOSHRINK option, which will
shrink all the data files at regular intervals and wreak havoc with system performance. Because
shrinking data files can move data all around a file, it can also introduce fragmentation, which
you then might want to remove. Defragmenting your data files can then have its own impact
on productivity because it uses system resources. Fragmentation and defragmentation will be
discussed in Chapter 6.

It is possible for shrink operations to be blocked by a transaction that has been enabled for
either of the snapshot-based isolation levels. When this happens, DBCC SHRINKFILE and
DBCC SHRINKDATABASE print out an informational message to the error log every five
minutes in the first hour and then every hour after that. SQL Server also provides progress
reporting for the SHRINK commands, available through the sys.dm_exec_requests view.
Progress reporting will be discussed in Chapter 11.

Using Database Filegroups

You can group data files for a database into filegroups for allocation and administration
purposes. In some cases, you can improve performance by controlling the placement of data
and indexes into specific filegroups on specific drives or volumes. The filegroup containing
the primary data file is called the primary filegroup. There is only one primary filegroup, and
if you don't ask specifically to place files in other filegroups when you create your database,
all of your data files are in the primary filegroup.

In addition to the primary filegroup, a database can have one or more user-defined
filegroups. You can create user-defined filegroups by using the FILEGROUP keyword in the
CREATE DATABASE or ALTER DATABASE command.



Chapter 3 Databases and Database Files 139

Don't confuse the primary filegroup and the primary file. Here are the differences:

B The primary file is always the first file listed when you create a database, and it typically
has the file extension .mdf. The one special feature of the primary file is that it has pointers
into a table in the master database (which you can access through the catalog view
sys.database_files) that contains information about all the files belonging to the database.

B The primary filegroup is always the filegroup that contains the primary file. This filegroup
contains the primary data file and any files not put into another specific filegroup. All
pages from system tables are always allocated from files in the primary filegroup.

The Default Filegroup

One filegroup always has the property of DEFAULT. Note that DEFAULT is a property of

a filegroup, not a name. Only one filegroup in each database can be the default filegroup.
By default, the primary filegroup is also the default filegroup. A database owner can change
which filegroup is the default by using the ALTER DATABASE command. When creating

a table or index, it is created in the default filegroup if no specific filegroup is specified.

Most SQL Server databases have a single data file in one (default) filegroup. In fact, most
users probably never know enough about how SQL Server works to know what a filegroup
is. As a user acquires greater database sophistication, she might decide to use multiple
devices to spread out the I/O for a database. The easiest way to do this is to create a
database file on a RAID device. Still, there would be no need to use filegroups. At the next
level of sophistication and complexity, the user might decide that she really wants multiple
files—perhaps to create a database that uses more space than is available on a single drive.
In this case, she still doesn’t need filegroups—she can accomplish her goals using CREATE
DATABASE with a list of files on separate drives.

More sophisticated database administrators might decide to have different tables assigned
to different drives or to use the table and index partitioning feature in SQL Server 2008. Only
then will they need to use filegroups. They can then use Object Explorer in Management
Studio to create the database on multiple filegroups. Then they can right-click the database
name in Object Explorer and create a script of the CREATE DATABASE command that includes
all the files in their appropriate filegroups. They can save and reuse this script when they
need to re-create the database or build a similar database.

Why Use Multiple Files?

You might wonder why you would want to create a database on multiple files located
on one physical drive. There's usually no performance benefit in doing so, but it gives
you added flexibility in two important ways.

First, if you need to restore a database from a backup because of a disk crash, the new
database must contain the same number of files as the original. For example, if your
original database consisted of one large 120-GB file, you would need to restore it to



140 Microsoft SQL Server 2008 Internals

a database with one file of that size. If you don't have another 120-GB drive immediately
available, you cannot restore the database. If, however, you originally created the database
on several smaller files, you have added flexibility during a restoration. You might be more
likely to have several 40-GB drives available than one large 120-GB drive.

Second, spreading the database onto multiple files, even on the same drive, gives you
the flexibility of easily moving the database onto separate drives if you modify your
hardware configuration in the future. (Please refer to the section “Moving or Copying a
Database,” later in this chapter, for details.)

Objects that have space allocated to them, namely tables and indexes, are created on a
particular filegroup. (They can also be created on a partition scheme, which is a collection

of filegroups. I'll discuss partitioning and partition schemes in Chapter 7)) If the filegroup

(or partition scheme) is not specified, objects are created on the default filegroup. When you
add space to objects stored in a particular filegroup, the data is stored in a proportional fill
manner, which means that if you have one file in a filegroup with twice as much free space
as another, the first file has two extents (or units of space) allocated from it for each extent
allocated from the second file. (I'll discuss extents in more detail in the section entitled
“Space Allocation,” later in this chapter.) It's recommended that you create all of your files to
be the same size to avoid the issues of proportional fill.

You can also use filegroups to allow backups of parts of the database. Because a table is created
on a single filegroup, you can choose to back up just a certain set of critical tables by backing
up the filegroups in which you placed those tables. You can also restore individual files or
filegroups in two ways. First, you can do a partial restore of a database and restore only a subset
of filegroups, which must always include the primary filegroup. The database will be online

as soon as the primary filegroup has been restored, but only objects created on the restored
filegroups will be available. Partial restore of just a subset of filegroups can be a solution to allow
very large databases to be available within a mandated time window. Alternatively, if you have

a failure of a subset of the disks on which you created your database, you can restore backups
of the filegroups on those disks on top of the existing database. This method of restoring also
requires that you have log backups, so I'll discuss this topic in more detail in Chapter 4.

A FILEGROUP CREATION Example

This example creates a database named sales with three filegroups:

B The primary filegroup, with the files salesPrimary1 and salesPrimary2. The FILEGROWTH
increment for both of these files is specified as 100 MB.

B A filegroup named SalesGroupl, with the files salesGrplFilel and salesGrplFile2.
B A filegroup named SalesGroup2, with the files salesGrp2Filel and salesGrp2File2.



Chapter 3 Databases and Database Files 141

CREATE DATABASE Sales
ON PRIMARY
( NAME = salesPrimaryl,
FILENAME =
'c:\program files\microsoft sql server\mssql.l\mssql\data\salesPrimaryl.mdf',
SIZE = 100,
MAXSIZE = 500,
FILEGROWTH = 100 ),
( NAME = salesPrimary2,
FILENAME =
'c:\program files\microsoft sql server\mssql.l\mssql\data\salesPrimary2.ndf"',
SIZE = 100,
MAXSIZE = 500,
FILEGROWTH = 100 ),
FILEGROUP SalesGroupl
( NAME = salesGrplFilel,
FILENAME =
'c:\program files\microsoft sql server\mssql.l\mssql\data\salesGrplFilel.ndf',
SIZE = 500,
MAXSIZE = 3000,
FILEGROWTH = 500 ),
( NAME = salesGrplFile2,
FILENAME =
'c:\program files\microsoft sql server\mssql.l\mssql\data\salesGrplFile2.ndf"',
SIZE = 500,
MAXSIZE = 3000,
FILEGROWTH = 500 ),
FILEGROUP SalesGroup2
( NAME = salesGrp2Filel,
FILENAME =
'c:\program files\microsoft sql server\mssql.l\mssql\data\salesGrp2Filel.ndf',
SIZE = 100,
MAXSIZE = 5000,
FILEGROWTH = 500 ),
( NAME = salesGrp2File2,
FILENAME =
'c:\program files\microsoft sql server\mssql.l\mssql\data\salesGrp2File2.ndf",
SIZE = 100,
MAXSIZE = 5000,
FILEGROWTH = 500 )
LOG ON
( NAME = 'Sales_log"',
FILENAME =
'c:\program files\microsoft sql server\mssql.l\mssql\data\saleslog.ldf",
SIZE = 5MB,
MAXSIZE = 25MB,
FILEGROWTH = 5MB );

Filestream Filegroups

| briefly mentioned filestream storage in Chapter 1, “SQL Server 2008 Architecture and
Configuration,” when | talked about configuration options. Filestream filegroups can be
created when you create a database, just like regular filegroups can be, but you must specify



142

Microsoft SQL Server 2008 Internals

that the filegroup is for filestream data by using the phrase CONTAINS FILESTREAM. Unlike
regular filegroups, each filestream filegroup can contain only one file reference, and that file
is specified as an operating system folder, not a specific file. The path up to the last folder
must exist, and the last folder must not exist. So in my example, the path C:\Data must

exist, but the Reviews_FS subfolder cannot exist when you execute the CREATE DATABASE
command. Also unlike regular filegroups, there is no space preallocated to the filegroup and
you do not specify size or growth information for the file within the filegroup. The file and
filegroup will grow as data is added to tables that have been created with

filestream columns:

CREATE DATABASE MyMovieReviews
ON
PRIMARY
( NAME = Reviews_data,
FILENAME = 'c:\data\Reviews_data.mdf'),
FILEGROUP MovieReviewsFSGroupl CONTAINS FILESTREAM
( NAME = Reviews_FS,
FILENAME = 'c:\data\Reviews_FS"')
LOG ON ( NAME = Reviews_log,
FILENAME = 'c:\data\Reviews_log.1df"');
GO

If you run the previous code, you should see a Filestream.hdr file and an $FSLOG folder in
the C:\Data\Reviews_FS folder. The Filestream.hdr file is a FILESTREAM container header file.
This file should not be modified or removed. For existing databases, you can add a filestream
filegroup using ALTER DATABASE, which I'll cover in the next section. All data in all columns
placed in the MovieReviewsFSGroupl is maintained and managed with individual files created
in the Reviews_FS folder. I'll tell you more about the file organization within this folder in
Chapter 7, when | talk about special storage formats.

Altering a Database

You can use the ALTER DATABASE command to change a database’s definition in one of the
following ways:

B Change the name of the database.

B Add one or more new data files to the database. If you want, you can put these files in
a user-defined filegroup. All files added in a single ALTER DATABASE command must go
in the same filegroup.

B Add one or more new log files to the database.

B Remove a file or a filegroup from the database. You can do this only if the file or
filegroup is completely empty. Removing a filegroup removes all the files in it.



Chapter 3 Databases and Database Files 143

B Add a new filegroup to a database. (Adding files to those filegroups must be done
in a separate ALTER DATABASE command.) Modify an existing file in one of the
following ways:

Q Increase the value of the SIZE property.
@ Change the MAXSIZE or FILEGROWTH property.

0 Change the logical name of a file by specifying a NEWNAME property. The value of
NEWNAME is then used as the NAME property for all future references to this file.

0 Change the FILENAME property for files, which can effectively move the files to a new
location. The new name or location doesn't take effect until you restart SQL Server.
For tempdb, SQL Server automatically creates the files with the new name in the new
location; for other databases, you must move the file manually after stopping your
SQL Server instance. SQL Server then finds the new file when it restarts.

B Mark the file as OFFLINE. You should set a file to OFFLINE when the physical file has
become corrupted and the file backup is available to use for restoring. (There is also
an option to mark the whole database as OFFLINE, which I'll discuss shortly when | talk
about database properties.) Marking a file as OFFLINE allows you to indicate that you
don't want SQL Server to recover that particular file when it is restarted. Modify an
existing filegroup in one of the following ways:

0 Mark the filegroup as READONLY so that updates to objects in the filegroup
aren't allowed. The primary filegroup cannot be made READONLY.

o Mark the filegroup as READWRITE, which reverses the READONLY property.
o Mark the filegroup as the default filegroup for the database.
a  Change the name of the filegroup.
B Change one or more database options. (I'll discuss database options later in the chapter.)

The ALTER DATABASE command can make only one of the changes described each time it is
executed. Note that you cannot move a file from one filegroup to another.

ALTER DATABASE Examples

The following examples demonstrate some of the changes that you can make using the
ALTER DATABASE command.

This example increases the size of a database file:

USE master

GO

ALTER DATABASE Testl
MODIFY FILE

( NAME = 'testldat3',
SIZE = 2000MB);



144

Microsoft SQL Server 2008 Internals

The following example creates a new filegroup in a database, adds two 500-MB files to
the filegroup, and makes the new filegroup the default filegroup. You need three ALTER
DATABASE statements:

ALTER DATABASE Testl
ADD FILEGROUP TestlFG1;
GO
ALTER DATABASE Testl
ADD FILE
( NAME = 'testldat4',
FILENAME =
'c:\program files\microsoft sql server\mssql.l\mssql\data\tldat4.ndf"',
SIZE = 500MB,
MAXSIZE = 1000MB,
FILEGROWTH = 50MB),
( NAME = 'testldat5',
FILENAME =
'c:\program files\microsoft sql server\mssql.l\mssql\data\tldat5.ndf",
SIZE = 500MB,
MAXSIZE = 1000MB,
FILEGROWTH = 50MB)
TO FILEGROUP TestlFG1;
GO
ALTER DATABASE Testl
MODIFY FILEGROUP TestlFG1l DEFAULT;
GO

Databases Under the Hood

A database consists of user-defined space for the permanent storage of user objects such as
tables and indexes. This space is allocated in one or more operating system files.

Databases are divided into logical pages (of 8 KB each), and within each file the pages are
numbered contiguously from 0 to x, with the value x being defined by the size of the file.
You can refer to any page by specifying a database ID, a file ID, and a page number. When
you use the ALTER DATABASE command to enlarge a file, the new space is added to the end
of the file. That is, the first page of the newly allocated space is page x + 1 on the file you're
enlarging. When you shrink a database by using the DBCC SHRINKDATABASE or DBCC
SHRINKFILE command, pages are removed starting at the highest-numbered page in the
database (at the end) and moving toward lower-numbered pages. This ensures that page
numbers within a file are always contiguous.

When you create a new database using the CREATE DATABASE command, it is given a unique
database ID, and you can see a row for the new database in the sys.databases view. The rows
returned in sys.databases include basic information about each database, such as its name,
database_id, and creation date, as well as the value for each database option that can be

set with the ALTER DATABASE command. I'll discuss database options in more detail later in
the chapter.



Chapter 3 Databases and Database Files 145

Space Allocation

The space in a database is used for storing tables and indexes. The space is managed in units
called extents. An extent is made up of eight logically contiguous pages (or 64 KB of space).
To make space allocation more efficient, SQL Server 2008 doesn't allocate entire extents to
tables with small amounts of data. SQL Server 2008 has two types of extents:

® Uniform extents These are owned by a single object; all eight pages in the extent can
be used only by the owning object.

B  Mixed extents These are shared by up to eight objects.

SQL Server allocates pages for a new table or index from mixed extents. When the table or
index grows to eight pages, all future allocations use uniform extents.

When a table or index needs more space, SQL Server needs to find space that's available to
be allocated. If the table or index is still less than eight pages total, SQL Server must find a
mixed extent with space available. If the table or index is eight pages or larger, SQL Server
must find a free uniform extent.

SQL Server uses two special types of pages to record which extents have been allocated and
which type of use (mixed or uniform) the extent is available for:

B Global Allocation Map (GAM) pages These pages record which extents have been
allocated for any type of use. A GAM has a bit for each extent in the interval it covers.
If the bit is 0, the corresponding extent is in use; if the bit is 1, the extent is free. After
the header and other overhead are accounted for, there are 8,000 bytes, or 64,000 bits,
available on the page, so each GAM can cover about 64,000 extents, or almost 4 GB of
data. This means that one GAM page exists in a file for every 4 GB of file size.

B Shared Global Allocation Map (SGAM) pages These pages record which extents are
currently used as mixed extents and have at least one unused page. Just like a GAM,
each SGAM covers about 64,000 extents, or almost 4 GB of data. The SGAM has a bit
for each extent in the interval it covers. If the bit is 1, the extent being used is a mixed
extent and has free pages; if the bit is 0, the extent isn't being used as a mixed extent,
or it's a mixed extent whose pages are all in use.

Table 3-2 shows the bit patterns that each extent has set in the GAM and SGAM pages, based
on its current use.

TABLE 3-2 Bit Settings in GAM and SGAM Pages

Current Use of Extent GAM Bit Setting SGAM Bit Setting
Free, not in use 1 0
Uniform extent or full mixed extent 0 0

Mixed extent with free pages 0 1



146

Microsoft SQL Server 2008 Internals

There are several tools available for actually examining the bits in the GAMs and SGAMs.
Chapter 5 discusses the DBCC PAGE command which allows you to view the contents of a
SQL Server database page using a query window. Because the page numbers of the GAMs
and SGAMs are known, we can just look at pages 2 or 3. If we use format 3, which gives the
most details, we can see that output displays which extents are allocated and which are not.
Figure 3-2 shows the last section of the output using DBCC PAGE with format 3 for the first
GAM page of my AdventureWorks2008 database.

(1:0) - (1:24256) = ALLOCATED
(1:24264) - = NOT ALLOCATED
(1:24272) - (1:29752) = ALLOCATED
(1:29760) - (1:30168) = NOT ALLOCATED
(1:30176) - (1:30240) = ALLOCATED
(1:30248) - (1:30256) = NOT ALLOCATED
(1:30264) - (1:32080) = ALLOCATED
(1:32088) - (1:32304) = NOT ALLOCATED

FIGURE 3-2 GAM page contents indicating allocation status of extents in a file

This output indicates that all the extents up through the one that starts on page 24,256 are
allocated. This corresponds to the first 189 MB of the file. The extent starting at 24,264 is not
allocated, but the next 5,480 pages are allocated.

We can also use a graphical tool called SQL Internals Viewer to look at which extents have been
allocated. SQL Internals Viewer is a free tool available from http.//www.SQLInternalsViewer.com,
and is also available on this book’s companion Web site. Figure 3-3 shows the main allocation
page for my master database. GAMs and SGAMs have been combined in one display and
indicate the status of every page, not just every extent. The green squares indicate that the
SGAM is being used but the extent is not used, so there are pages available for single-page
allocations. The blue blocks indicate that both the GAM bit and the SGAM bit are set, so the
corresponding extent is completely unavailable. The gray blocks indicate that the extent is free.

M=
Server Page  Wiew  History  Help
] Refresh sl Allocations PFS  Buffer Pool | Small - (Go to page:
Connect | Refresh J
= | | TEMAR [10.0.1600.22 - TENARAdt
# [ Databases

Unavailable - [Uniform extentull mix..

Partially Unavailable - [Mixed extent ...

Ayailable - [Unuzed)

[

{1:155)

FIGURE 3-3 SQL Internals Viewer indicating the allocation status of each page



Chapter 3 Databases and Database Files 147

If SQL Server needs to find a new, completely unused extent, it can use any extent with a
corresponding bit value of 1 in the GAM page. If it needs to find a mixed extent with available
space (one or more free pages), it finds an extent with a value in the SGAM of 1 (which always
has a value in the GAM of 0). If there are no mixed extents with available space, it uses the
GAM page to find a whole new extent to allocate as a mixed extent, and uses one page from
that. If there are no free extents at all, the file is full.

SQL Server can locate the GAMs in a file quickly because a GAM is always the third page in
any database file (that is, page 2). An SGAM is the fourth page (that is, page 3). Another GAM
appears every 511,230 pages after the first GAM on page 2, and another SGAM appears
every 511,230 pages after the first SGAM on page 3. Page 0 in any file is the File Header
page, and only one exists per file. Page 1 is a Page Free Space (PFS) page. In Chapter 5, I'll
say more about how individual pages within a table look and tell you about the details of PFS
pages. For now, because I'm talking about space allocation, I'll examine how to keep track of
which pages belong to which tables.

IAM pages keep track of the extents in a 4-GB section of a database file used by an allocation
unit. An allocation unit is a set of pages belonging to a single partition in a table or index

and comprises pages of one of three storage types: pages holding regular in-row data, pages
holding Large Object (LOB) data, or pages holding row-overflow data. I'll discuss these regular
in-row storage in Chapter 5, and LOB, row-overflow storage, and partitions in Chapter 7.

For example, a table on four partitions that has all three types of data (in-row, LOB, and
row-overflow) has at least 12 IAM pages. Again, a single IAM page covers only a 4-GB section
of a single file, so if the partition spans files, there will be multiple IAM pages, and if the file is
more than 4 GB in size and the partition uses pages in more than one 4-GB section, there will
be additional IAM pages.

An IAM page contains a 96-byte page header, like all other pages followed by an IAM page
header, which contains eight page-pointer slots. Finally, an IAM page contains a set of bits
that map a range of extents onto a file, which doesn’t necessarily have to be the same file
that the IAM page is in. The header has the address of the first extent in the range mapped
by the IAM. The eight page-pointer slots might contain pointers to pages belonging to the
relevant object contained in mixed extents; only the first IAM for an object has values in
these pointers. Once an object takes up more than eight pages, all of its additional extents
are uniform extents—which means that an object never needs more than eight pointers to
pages in mixed extents. If rows have been deleted from a table, the table can actually use
fewer than eight of these pointers. Each bit of the bitmap represents an extent in the range,
regardless of whether the extent is allocated to the object owning the IAM. If a bit is on,
the relative extent in the range is allocated to the object owning the IAM; if a bit is off, the
relative extent isn't allocated to the object owning the IAM.



148

Microsoft SQL Server 2008 Internals

For example, if the bit pattern in the first byte of the IAM is 1100 0000, the first and second
extents in the range covered by the IAM are allocated to the object owning the IAM and
extents 3 through 8 aren't allocated to the object owning the IAM.

IAM pages are allocated as needed for each object and are located randomly in the database
file. Each IAM covers a possible range of about 512,000 pages.

The internal system view called sys.system_internals_allocation_units has a column called
first_iam_page that points to the first IAM page for an allocation unit. All the IAM pages for
that allocation unit are linked in a chain, with each |AM page containing a pointer to the next
in the chain. You can find out more about IAMs and allocation units in Chapters 5, 6, and 7
when | discuss object and index storage.

In addition to GAMs, SGAMs, and |IAMs, a database file has three other types of special
allocation pages. PFS pages keep track of how each particular page in a file is used. The second
page (page 1) of a file is a PFS page, as is every 8,088th page thereafter. I'll talk about them
more in Chapter 5. The seventh page (page 6) is called a Differential Changed Map (DCM)
page. It keeps track of which extents in a file have been modified since the last full database
backup. The eighth page (page 7) is called a Bulk Changed Map (BCM) page and is used when
an extent in the file is used in a minimally or bulk-logged operation. I'll tell you more about
these two kinds of pages when | talk about the internals of backup and restore operations in
Chapter 4. Like GAM and SGAM pages, DCM and BCM pages have 1 bit for each extent in the
section of the file they represent. They occur at regular intervals—every 511,230 pages.

You can see the details of IAMs and PFS pages, as well as DCM and BCM pages, using either
DBCC PAGE or the SQL Internals Viewer. I'll show you more examples of the output of DBCC
PAGE in later chapters as we cover more details of the different types of allocation pages.

Setting Database Options

You can set several dozen options, or properties, for a database to control certain behavior
within that database. Some options must be set to ON or OFF, some must be set to one of

a list of possible values, and others are enabled by just specifying their name. By default,

all the options that require ON or OFF have an initial value of OFF unless the option was

set to ON in the model database. All databases created after an option is changed in model/
have the same values as model. You can easily change the value of some of these options by
using Management Studio. You can set all of them directly by using the ALTER DATABASE
command. (You can also use the sp_dboption system stored procedure to set some of the
options, but that procedure is provided for backward compatibility only and is scheduled to
be removed in the next version of SQL Server.)

Examining the sys.databases catalog view can show you the current values of all the options.
The view also contains other useful information, such as database ID, creation date, and the
Security ID (SID) of the database owner. The following query retrieves some of the most



Chapter 3 Databases and Database Files 149

important columns from sys.databases for the four databases that exist on a new default
installation of SQL Server:

SELECT name, database_id, suser_sname(owner_sid) as owner,
create_date, user_access_desc, state_desc

FROM sys.databases

WHERE database_id <= 4;

The query produces this output, although the created dates may vary:

name database_id owner create_date user_access_desc state_desc
master 1 sa 2003-04-08 09:13:36.390 MULTI_USER ONLINE
tempdb 2 sa 2008-04-19 12:02:35.327 MULTI_USER ONLINE
model 3 sa 2003-04-08 09:13:36.390 MULTI_USER ONLINE
msdb 4 sa 2008-03-21 01:54:05.240 MULTI_USER ONLINE

The sys.databases view actually contains both a number and a name for the user_access

and state information. Selecting all the columns from sys.databases would show you that

the user_access_desc value of MULTI_USER has a corresponding user_access value of 0, and
the state_desc value of ONLINE has a state value of 0. SQL Server Books Online shows the
complete list of number and name relationships for the columns in sys.databases. These are
just two of the database options displayed in the sys.databases view. The complete list of
database options is divided into seven main categories: state options, cursor options, auto
options, parameterization options, SQL options, database recovery options, and external
access options. There are also options for specific technologies that SQL Server can use,
including database mirroring, Service Broker activities, change tracking, database encryption,
and snapshot isolation. Some of the options, particularly the SQL options, have corresponding
SET options that you can turn on or off for a particular connection. Be aware that the ODBC or
OLE DB drivers turn on a number of these SET options by default, so applications act as if the
corresponding database option has already been set.

Here is a list of the options, by category. Options listed on a single line and values separated
by vertical bars (|) are mutually exclusive.

State options

1. SINGLE_USER | RESTRICTED_USER | MULTI_USER
2. OFFLINE | ONLINE | EMERGENCY

3. READ_ONLY | READ_WRITE

Cursor options

1. CURSOR_CLOSE_ON_COMMIT { ON | OFF }
2. CURSOR_DEFAULT { LOCAL | GLOBAL}



150 Microsoft SQL Server 2008 Internals

Auto options

. AUTO_CLOSE { ON | OFF }
AUTO_CREATE_STATISTICS { ON | OFF }
AUTO_SHRINK { ON | OFF }
AUTO_UPDATE_STATISTICS { ON | OFF }
AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }

i & w bbb H

Parameterization options

1. DATE_CORRELATION_OPTIMIZATION { ON | OFF }
2. PARAMETERIZATION { SIMPLE | FORCED }

SQL options

1. ANSI_NULL_DEFAULT { ON | OFF }
ANSI_NULLS { ON | OFF }

ANSI_PADDING { ON | OFF }
ANSI_WARNINGS { ON | OFF }
ARITHABORT { ON | OFF }
CONCAT_NULL_YIELDS_NULL { ON | OFF }
NUMERIC_ROUNDABORT { ON | OFF }
QUOTED_IDENTIFIER { ON | OFF }
RECURSIVE_TRIGGERS { ON | OFF }

© ® N o v A W N

Database recovery options

1. RECOVERY { FULL | BULK_LOGGED | SIMPLE }

2. TORN_PAGE_DETECTION { ON | OFF }

3. PAGE_VERIFY { CHECKSUM | TORN_PAGE_DETECTION | NONE }

External access options

1. DB_CHAINING { ON | OFF }
2. TRUSTWORTHY { ON | OFF }

Database mirroring options

1. PARTNER { = 'partner_server’}
2. | FAILOVER



Chapter 3 Databases and Database Files 151

| TIMEOUT integer

3. | FORCE_SERVICE_ALLOW_DATA_LOSS
4. | OFF

5. | RESUME

6. | SAFETY { FULL | OFF }

7. | SUSPEND

8.

9.

}
10. WITNESS { = ‘witness_server' }| OFF }

Service Broker options

1. ENABLE_BROKER | DISABLE_BROKER
2. NEW_BROKER

3. ERROR_BROKER_CONVERSATIONS

Change Tracking options
1. CHANGE_TRACKING {= ON [ <change_tracking_settings> | = OFF}

Database Encryption options

1. ENCRYPTION {ON | OFF}

Snapshot Isolation options

1. ALLOW_SNAPSHOT_ISOLATION {ON | OFF }
2. READ_COMMITTED_SNAPSHOT {ON | OFF } [ WITH <termination> ]

State Options

The state options control who can use the database and for what operations. There are three
aspects to usability: The user access state determines which users can use the database;

the status state determines whether the database is available to anybody for use; and the
updateability state determines what operations can be performed on the database. You
control each of these aspects by using the ALTER DATABASE command to enable an option
for the database. None of the state options uses the keywords ON and OFF to control the
state value.

SINGLE_USER | RESTRICTED_USER | MULTI_USER

The three options SINGLE_USER, RESTRICTED_USER, and MULTI_USER describe the user
access property of a database. They are mutually exclusive; setting any one of them unsets



152

Microsoft SQL Server 2008 Internals

the others. To set one of these options for your database, you just use the option name. For
example, to set the AdventureWorks2008 database to single-user mode, use the following code:

ALTER DATABASE AdventureWorks2008 SET SINGLE_USER;

A database in SINGLE_USER mode can have only one connection at a time. A database

in RESTRICTED_USER mode can have connections only from users who are considered
“qualified"—those who are members of the dbcreator or sysadmin server role or the db_owner
role for that database. The default for a database is MULTI_USER mode, which means anyone
with a valid user name in the database can connect to it. If you attempt to change a database’s
state to a mode that is incompatible with the current conditions—for example, if you try to
change the database to SINGLE_USER mode when other connections exist—the behavior of
SQL Server is determined by the TERMINATION option you specify. I'll discuss termination
options shortly.

To determine which user access value is set for a database, you can examine the sys.databases
catalog view, as shown here:

SELECT USER_ACCESS_DESC FROM sys.databases
WHERE name = '<name of database>';

This query will return one of MULTI_USER, SINGLE_USER, or RESTRICTED_USER.

OFFLINE | ONLINE | EMERGENCY

You use the OFFLINE, ONLINE, and EMERGENCY options to describe the status of a database.
They are mutually exclusive. The default for a database is ONLINE. As with the user access
options, when you use ALTER DATABASE to put the database in one of these modes, you
don't specify a value of ON or OFF—you just use the name of the option. When a database
is set to OFFLINE, it is closed and shut down cleanly and marked as offline. The database
cannot be modified while the database is offline. A database cannot be put into OFFLINE
mode if there are any connections in the database. Whether SQL Server waits for the other
connections to terminate or generates an error message is determined by the TERMINATION
option specified.

The following code examples show how to set a database’s status value to OFFLINE and how
to determine the status of a database:

ALTER DATABASE AdventureWorks2008 SET OFFLINE;
SELECT state_desc from sys.databases
WHERE name = 'AdventureWorks2008';

A database can be explicitly set to EMERGENCY mode, and that option will be discussed in
Chapter 11, in conjunction with DBCC commands.

As shown in the preceding query, you can determine the current status of a database by
examining the state_desc column of the sys.databases view. This column can return status



Chapter 3 Databases and Database Files 153

values other than OFFLINE, ONLINE, and EMERGENCY, but those values are not directly
settable using ALTER DATABASE. A database can have the status value RESTORING while it

is in the process of being restored from a backup. It can have the status value RECOVERING
during a restart of SQL Server. The recovery process is performed on one database at a

time, and until SQL Server has finished recovering a database, the database has a status of
RECOVERING. If the recovery process cannot be completed for some reason (most likely
because one or more of the log files for the database is unavailable or unreadable), SQL
Server gives the database the status of RECOVERY_PENDING. Your databases can also be put
into RECOVERY_PENDING mode if SQL Server runs out of either log or data space during
rollback recovery, or if SQL Server runs out of locks or memory during any part of the startup
process. I'll go into more detail about the difference between rollback recovery and startup
recovery in Chapter 4.

If all the needed resources, including the log files, are available, but corruption is detected
during recovery, the database may be put in the SUSPECT state. You can determine the state
value by looking at the state_desc column in the sys.databases view. A database is completely
unavailable if it's in the SUSPECT state, and you will not even see the database listed if you
run sp_helpdb. However, you can still see the status of a suspect database in the sys.databases
view. In many cases, you can make a suspect database available for read-only operations by
setting its status to EMERGENCY mode. If you really have lost one or more of the log files

for a database, EMERGENCY mode allows you to access the data while you copy it to a new
location. When you move from RECOVERY_ PENDING to EMERGENCY, SQL Server shuts down
the database and then restarts it with a special flag that allows it to skip the recovery process.
Skipping recovery can mean you have logically or physically inconsistent data—missing index
rows, broken page links, or incorrect metadata pointers. By specifically putting your database
in EMERGENCY mode, you are acknowledging that the data might be inconsistent but that
you want access to it anyway.

READ_ONLY | READ_WRITE

These options describe the updatability of a database. They are mutually exclusive. The default
for a database is READ_WRITE. As with the user access options, when you use ALTER DATABASE
to put the database in one of these modes, you don't specify a value of ON or OFF, you just
use the name of the option. When the database is in READ_WRITE mode, any user with the
appropriate permissions can carry out data modification operations. In READ_ONLY mode, no
INSERT, UPDATE, or DELETE operations can be executed. In addition, because no modifications
are done when a database is in READ_ONLY mode, automatic recovery is not run on this
database when SQL Server is restarted, and no locks need to be acquired during any SELECT
operations. Shrinking a database in READ_ONLY mode is not possible.

A database cannot be put into READ_ONLY mode if there are any connections to the
database. Whether SQL Server waits for the other connections to terminate or generates an
error message is determined by the TERMINATION option specified.



154

Microsoft SQL Server 2008 Internals

The following code shows how to set a database’s updatability value to READ_ONLY and how
to determine the updatability of a database:

ALTER DATABASE AdventureWorks2008 SET READ_ONLY;
SELECT name, is_read_only FROM sys.databases
WHERE name = 'AdventureWorks2008';

When READ_ONLY is enabled for database, the is_read_only column returns 1; otherwise, for
a READ_WRITE database, it returns 0.

Termination Options

As | just mentioned, several of the state options cannot be set when a database is in use or
when it is in use by an unqualified user. You can specify how SQL Server should handle this
situation by indicating a termination option in the ALTER DATABASE command. You can have
SQL Server wait for the situation to change, generate an error message, or terminate the
connections of unqualified users. The termination option determines the behavior of SQL
Server in the following situations:

B When you attempt to change a database to SINGLE_USER and it has more than one
current connection

B When you attempt to change a database to RESTRICTED_USER and unqualified users
are currently connected to it

B When you attempt to change a database to OFFLINE and there are current connections
to it

B When you attempt to change a database to READ_ONLY and there are current
connections to it

The default behavior of SQL Server in any of these situations is to wait indefinitely. The following
TERMINATION options change this behavior:

B ROLLBACK AFTER integer [SECONDS] This option causes SQL Server to wait for the
specified number of seconds and then break unqualified connections. Incomplete
transactions are rolled back. When the transition is to SINGLE_USER mode, all
connections are unqualified except the one issuing the ALTER DATABASE command.
When the transition is to RESTRICTED_USER mode, unqualified connections are those
of users who are not members of the db_owner fixed database role or the dbcreator
and sysadmin fixed server roles.

B ROLLBACK IMMEDIATE This option breaks unqualified connections immediately. All
incomplete transactions are rolled back. Keep in mind that although the connection
may be broken immediately, the rollback might take some time to complete. All work
done by the transaction must be undone, so for certain operations, such as a batch
update of millions of rows or a large index rebuild, you could be in for a long wait.
Unqualified connections are the same as those described previously.



Chapter 3 Databases and Database Files 155

B NO_WAIT This option causes SQL Server to check for connections before attempting
to change the database state and causes the ALTER DATABASE command to fail if
certain connections exist. If the database is being set to SINGLE_USER mode, the
ALTER DATABASE command fails if any other connections exist. If the transition is
to RESTRICTED_USER mode, the ALTER DATABASE command fails if any unqualified
connections exist.

The following command changes the user access option of the AdventureWorks2008 database
to SINGLE_USER and generates an error if any other connections to the AdventureWorks2008
database exist:

ALTER DATABASE AdventureWorks2008 SET SINGLE_USER WITH NO_WAIT;

Cursor Options

The cursor options control the behavior of server-side cursors that were defined using one
of the following T-SQL commands for defining and manipulating cursors: DECLARE, OPEN,
FETCH, CLOSE, and DEALLOCATE.

B CURSOR_CLOSE_ON_COMMIT {ON | OFF} When this option is set to ON, any open
cursors are closed (in compliance with SQL-92) when a transaction is committed or
rolled back. If OFF (the default) is specified, cursors remain open after a transaction
is committed. Rolling back a transaction closes any cursors except those defined as
INSENSITIVE or STATIC.

B CURSOR_DEFAULT {LOCAL | GLOBAL} When this option is set to LOCAL and cursors
aren't specified as GLOBAL when they are created, the scope of any cursor is local to
the batch, stored procedure, or trigger in which it was created. The cursor name is
valid only within this scope. The cursor can be referenced by local cursor variables in
the batch, stored procedure, or trigger, or by a stored procedure output parameter.
When this option is set to GLOBAL and cursors aren’t specified as LOCAL when they are
created, the scope of the cursor is global to the connection. The cursor name can be
referenced in any stored procedure or batch executed by the connection.

Auto Options

The auto options affect actions that SQL Server might take automatically. All these options
are Boolean options, with a value of ON or OFF.

B AUTO_CLOSE When this option is set to ON, the database is closed and shut down
cleanly when the last user of the database exits, thereby freeing any resources. All file
handles are closed, and all in-memory structures are removed so that the database is
not using any memory. When a user tries to use the database again, it reopens. If the
database was shut down cleanly, the database isn't initialized (reopened) until a user



156

Microsoft SQL Server 2008 Internals

tries to use the database the next time SQL Server is restarted. The AUTO_CLOSE option
is handy for personal SQL Server databases because it allows you to manage database
files as normal files. You can move them, copy them to make backups, or even e-mail
them to other users. However, you shouldn't use this option for databases accessed

by an application that repeatedly makes and breaks connections to SQL Server. The
overhead of closing and reopening the database between each connection will

hurt performance.

AUTO_SHRINK When this option is set to ON, all of a database’s files are candidates
for periodic shrinking. Both data files and log files can be automatically shrunk by
SQL Server. The only way to free space in the log files so that they can be shrunk

is to back up the transaction log or set the recovery model to SIMPLE. The log

files shrink at the point that the log is backed up or truncated. This option is never
recommended.

AUTO_CREATE_STATISTICS When this option is set to ON (the default), the SQL
Server Query Optimizer creates statistics on columns referenced in a query's WHERE
or ON clause. Adding statistics improves query performance because the SQL Server
Query Optimizer can better determine how to evaluate a query.

AUTO_UPDATE_STATISTICS When this option is set to ON (the default), existing
statistics are updated if the data in the tables has changed. SQL Server keeps a
counter of the modifications made to a table and uses it to determine when statistics
are outdated. When this option is set to OFF, existing statistics are not automatically
updated. (They can be updated manually.) Statistics will be discussed in more detail in
Chapter 6 and Chapter 8, “The Query Optimizer.”"

SQL Options

The SQL options control how various SQL statements are interpreted. They are all Boolean
options. The default for all these options is OFF for SQL Server, but many tools, such as the
Management Studio, and many programming interfaces, such as ODBC, enable certain
session-level options that override the database options and make it appear as if the ON
behavior is the default.

ANSI_NULL_DEFAULT When this option is set to ON, columns comply with the ANSI
SQL-92 rules for column nullability. That is, if you don't specifically indicate whether a
column in a table allows NULL values, NULLs are allowed. When this option is set to
OFF, newly created columns do not allow NULLs if no nullability constraint is specified.

ANSI_NULLS When this option is set to ON, any comparisons with a NULL value
result in UNKNOWN, as specified by the ANSI-92 standard. If this option is set to OFF,
comparisons of non-Unicode values to NULL result in a value of TRUE if both values
being compared are NULL.



Chapter 3 Databases and Database Files 157

ANSI_PADDING When this option is set to ON, strings being compared with each
other are set to the same length before the comparison takes place. When this option
is OFF, no padding takes place.

ANSI_WARNINGS When this option is set to ON, errors or warnings are issued when
conditions such as division by zero or arithmetic overflow occur.

ARITHABORT When this option is set to ON, a query is terminated when an
arithmetic overflow or division-by-zero error is encountered during the execution of a
query. When this option is OFF, the query returns NULL as the result of the operation.

CONCAT_NULL_YIELDS_NULL When this option is set to ON, concatenating two
strings results in a NULL string if either of the strings is NULL. When this option is set
to OFF, a NULL string is treated as an empty (zero-length) string for the purposes of
concatenation.

NUMERIC_ROUNDABORT When this option is set to ON, an error is generated

if an expression will result in loss of precision. When this option is OFF, the result is
simply rounded. The setting of ARITHABORT determines the severity of the error.

If ARITHABORT is OFF, only a warning is issued and the expression returns a NULL. If
ARITHABORT is ON, an error is generated and no result is returned.

QUOTED_IDENTIFIER When this option is set to ON, identifiers such as table and
column names can be delimited by double quotation marks, and literals must then

be delimited by single quotation marks. All strings delimited by double quotation
marks are interpreted as object identifiers. Quoted identifiers don't have to follow the
T-SQL rules for identifiers when QUOTED_IDENTIFIER is ON. They can be keywords
and can include characters not normally allowed in T-SQL identifiers, such as spaces
and dashes. You can't use double quotation marks to delimit literal string expressions;
you must use single quotation marks. If a single quotation mark is part of the literal
string, it can be represented by two single quotation marks ("). This option must be
set to ON if reserved keywords are used for object names in the database. When

it is OFF, identifiers can't be in quotation marks and must follow all T-SQL rules

for identifiers.

RECURSIVE_TRIGGERS When this option is set to ON, triggers can fire recursively,
either directly or indirectly. Indirect recursion occurs when a trigger fires and performs
an action that causes a trigger on another table to fire, thereby causing an update to
occur on the original table, which causes the original trigger to fire again. For example,
an application updates table T1, which causes trigger Trig1 to fire. Trigl updates table T2,
which causes trigger Trig2 to fire. Trig2 in turn updates table T1, which causes Trigl

to fire again. Direct recursion occurs when a trigger fires and performs an action that
causes the same trigger to fire again. For example, an application updates table T3,
which causes trigger Trig3 to fire. Trig3 updates table T3 again, which causes trigger Trig3
to fire again. When this option is OFF (the default), triggers can't be fired recursively.



158

Microsoft SQL Server 2008 Internals

Database Recovery Options

The database option RECOVERY (FULL, BULK_LOGGED or SIMPLE) determines how much
recovery can be done on a SQL Server database. It also controls how much information is

logged and how much of the log is available for backups. I'll cover this option in more detail

in Chapter 4.

Two other options also apply to work done when a database is recovered. Setting the

TORN_PAGE_DETECTION option to ON or OFF is possible in SQL Server 2008, but that particular
option will go away in a future version. The recommended alternative is to set the PAGE_VERIFY

option to a value of TORN_PAGE_DETECTION or CHECKSUM. (So TORN_PAGE_DETECTION
should now be considered a value, rather the name of an option.)

The PAGE_VERIFY options discover damaged database pages caused by disk I/O path errors,

which can cause database corruption problems. The 1/O errors themselves are generally
caused by power failures or disk failures that occur when a page is being written to disk.

B CHECKSUM When the PAGE_VERIFY option is set to CHECKSUM, SQL Server

calculates a checksum over the contents of each page and stores the value in the page
header when a page is written to disk. When the page is read from disk, a checksum is
recomputed and compared with the value stored in the page header. If the values do
not match, error message 824 (indicating a checksum failure) is reported.

TORN_PAGE_DETECTION When the PAGE_VERIFY option is set to TORN_PAGE_
DETECTION, it causes a bit to be flipped for each 512-byte sector in a database page
(8 KB) whenever the page is written to disk. It allows SQL Server to detect incomplete
I/O operations caused by power failures or other system outages. If a bit is in the
wrong state when the page is later read by SQL Server, it means that the page was
written incorrectly. (A torn page has been detected.) Although SQL Server database
pages are 8 KB, disks perform 1/O operations using 512-byte sectors. Therefore,

16 sectors are written per database page. A torn page can occur if the system crashes
(for example, because of power failure) between the time the operating system writes
the first 512-byte sector to disk and the completion of the 8-KB /O operation. When
the page is read from disk, the torn bits stored in the page header are compared
with the actual page sector information. Unmatched values indicate that only part of
the page was written to disk. In this situation, error message 824 (indicating a torn
page error) is reported. Torn pages are typically detected by database recovery if it is
truly an incomplete write of a page. However, other |/O path failures can cause a torn
page at any time.

NONE (No Page Verify Option) You can specify that that neither the CHECKSUM nor
the TORN_PAGE_DETCTION value will be generated when a page is written, and these
values will not be verified when a page is read.

Both checksum and torn page errors generate error message 824, which is written to
both the SQL Server error log and the Windows event log. For any page that generates an



Chapter 3 Databases and Database Files 159

824 error when read, SQL Server inserts a row into the system table suspect_pages in the
msdb database. (SQL Server Books Online has more information on “Understanding and
Managing the suspect _pages Table.")

SQL Server retries any read that fails with a checksum, torn page, or other 1/O error four
times. If the read is successful in any one of those attempts, a message is written to the error
log and the command that triggered the read continues. If the attempts fail, the command
fails with error message 824.

You can “fix" the error by restoring the data or potentially rebuilding the index if the failure
is limited to index pages. If you encounter a checksum failure, you can run DBCC CHECKDB
to determine the type of database page or pages affected. You should also determine the
root cause of the error and correct the problem as soon as possible to prevent additional or
ongoing errors. Finding the root cause requires investigating the hardware, firmware drivers,
BIOS, filter drivers (such as virus software), and other 1/0 path components.

In SQL Server 2008 and SQL Server 2005, the default is CHECKSUM. In SQL Server 2000,
TORN_PAGE_ DETECTION was the default, and CHECKSUM was not available. If you upgrade

a database from SQL Server 2000, the PAGE_VERIFY value will be NONE or TORN_PAGE_
DETECTION. You should always consider using CHECKSUM. Although TORN_PAGE_DETECTION
uses fewer resources, it provides less protection than CHECKSUM. Keep in mind that if you
enable CHECKSUM on a database upgraded from SQL Server 2000, that a checksum value is
computed only on pages that are modified.

Note Prior to SQL Server 2008, neither CHECKSUM nor TORN_PAGE_DETECTION was available
in the tempdb database.

Other Database Options

Of the other categories of database options, two more will be covered in later chapters. The
snapshot isolation options will be discussed in Chapter 10, “Transactions and Concurrency.”
and the change tracking options were covered in Chapter 2. The others are beyond the scope
of this book.

Database Snapshots

An interesting feature added to the product in SQL Server 2005 Enterprise Edition is
database snapshots, which allow you to create a point-in-time, read-only copy of any
database. In fact, you can create multiple snapshots of the same source database at different
points in time. The actual space needed for each snapshot is typically much less than the
space required for the original database because the snapshot stores only pages that have
changed, as will be discussed shortly.



160

Microsoft SQL Server 2008 Internals

Database snapshots allow you to do the following:

B Turn a database mirror into a reporting server. (You cannot read from a database
mirror, but you can create a snapshot of the mirror and read from that.)

B Generate reports without blocking or being blocked by production operations.

B Protect against administrative or user errors.

You'll probably think of more ways to use snapshots as you gain experience working with them.

Creating a Database Snapshot

The mechanics of snapshot creation are straightforward—you simply specify an option for
the CREATE DATABASE command. There is no graphical interface for creating a database
snapshot through Object Explorer, so you must use the T-SQL syntax. When you create a
snapshot, you must include each data file from the source database in the CREATE DATABASE
command, with the original logical name and a new physical name and path. No other
properties of the files can be specified, and no log file is used.

Here is the syntax to create a snapshot of the AdventureWorks2008 database, putting the
snapshot files in the SQL Server 2008 default data directory:

CREATE DATABASE AdventureWorks_snapshot ON

( NAME = N'AdventureWorks_Data',
FILENAME =

N'C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\
Data\AW_data_snapshot.mdf")

AS SNAPSHOT OF AdventureWorks2008;

Each file in the snapshot is created as a sparse file, which is a feature of the NTFS file system.
(Don't confuse sparse files with sparse columns available in SQL Server 2008.) Initially, a
sparse file contains no user data, and disk space for user data has not been allocated to it.
As data is written to the sparse file, NTFS allocates disk space gradually. A sparse file can
potentially grow very large. Sparse files grow in 64-KB increments; thus, the size of a sparse
file on disk is always a multiple of 64 KB.

The snapshot files contain only the data that has changed from the source. For every file, SQL
Server creates a bitmap that is kept in cache, with a bit for each page of the file, indicating
whether that page has been copied to the snapshot. Every time a page in the source is updated,
SQL Server checks the bitmap for the file to see if the page has already been copied, and if it
hasn't, it is copied at that time. This operation is called a copy-on-write operation. Figure 3-4 shows
a database with a snapshot that contains 10 percent of the data (one page) from the source.

When a process reads from the snapshot, it first accesses the bitmap to see whether the page
it wants is in the snapshot file or is still the source. Figure 3-5 shows read operations from the
same database as in Figure 3-4. Nine of the pages are accessed from the source database,
and one is accessed from the snapshot because it has been updated on the source. When a
process reads from a snapshot database, no locks are taken no matter what isolation level



Chapter 3 Databases and Database Files 161

Percent copied 10%

Source database Snapshot
Page Page

S | I |

[ unallocated
[/ original page
[ Updated page

o —— Copy-on-write
operation

FIGURE 3-4 A database snapshot that contains one page of data from the source database

Percent copied 10%

Source database Snapshot
Page Page

I
Read operation
on the snapshot

[ Unallocated
[ Original page
[ Updated page

FIGURE 3-5 Read operations from a database snapshot, reading changed pages from the snapshot and
unchanged pages from the source database




162

Microsoft SQL Server 2008 Internals

you are in. This is true whether the page is read from the sparse file or from the source
database. This is one of the big advantages of using database snapshots.

As mentioned earlier, the bitmap is stored in cache, not with the file itself, so it is always readily
available. When SQL Server shuts down or the database is closed, the bitmaps are lost and need
to be reconstructed at database startup. SQL Server determines whether each page is in the
sparse file as it is accessed, and then it records that information in the bitmap for future use.

The snapshot reflects the point in time when the CREATE DATABASE command is
issued—that is, when the creation operation commences. SQL Server checkpoints the
source database and records a synchronization Log Sequence Number (LSN) in the source
database’s transaction log. As you'll see in Chapter 4, when | talk about the transaction log,
the LSN is a way to determine a specific point in time in a database. SQL Server then runs
recovery on the source database so that any uncommitted transactions are rolled back in
the snapshot. So although the sparse file for the snapshot starts out empty, it might not
stay that way for long. If transactions are in progress at the time the snapshot is created,
the recovery process has to undo uncommitted transactions before the snapshot database
can be usable, so the snapshot contains the original versions of any page in the source that
contains modified data.

Snapshots can be created only on NTFS volumes because they are the only volumes that
support the sparse file technology. If you try to create a snapshot on a FAT or FAT32 volume,
you'll get an error like one of the following:

Msg 1823, Level 16, State 2, Line 1
A database snapshot cannot be created because it failed to start.

Msg 5119, Level 16, State 1, Line 1
Cannot make the file "E:\AW_snapshot.MDF" a sparse file. Make sure the file system supports
sparse files.

The first error is basically the generic failure message, and the second message provides
more details about why the operation failed.

Space Used by Database Snapshots

You can find out the number of bytes that each sparse file of the snapshot is currently using
on disk by looking at the Dynamic Management Function sys.dm_io_virtual_file_stats, which
returns the current number of bytes in a file in the size_on_disk_bytes column. This function
takes database_id and file_id as parameters. The database ID of the snapshot database

and the file IDs of each of its sparse files are displayed in the sys.master _files catalog view.
You can also view the size in Windows Explorer by right-clicking the file name and looking at
the properties, as shown in Figure 3-6. The Size value is the maximum size, and the size on
disk should be the same value that you see using sys.dm_io_virtual_file_stats. The maximum
size should be about the same size the source database was when the snapshot was created.



Chapter 3 Databases and Database Files 163

AW_data_snapshot.mdf Prop 2

General ] Security ]

JJ ‘AW_data_snapshot.mdf

Typeof file:  SEL Server Database Primary Data File

Opens with:  Unknown application LChange...

Location: C:AProgram FilessMicrosaft SOL ServersMSSOL10.

Size: 306 MEB [321.650 653 bytes]
Size on disk: 275 ME (2,883 584 bytes]

Created: ‘wednesday, Movember 05, 2008, 4:06:37 &M
todified Today, Movember 28, 2008, 4.03:42 P
Aocessed: Today, Movember 28, 2008, 4:03:42 P

_l,f [ Hidden Advanced...

Attributes:

0k Cancel
| | |

FIGURE 3-6 The snapshot file's Properties dialog box in Windows Explorer showing the current size of the
sparse file as the size on disk

Because it is possible to have multiple snapshots for the same database, you need to make
sure you have enough disk space available. The snapshots start out relatively small, but as
the source database is updated, each snapshot grows. Allocations to sparse files are made
in fragments called regions, in units of 64 KB. When a region is allocated, all the pages

are zeroed out except the one page that has changed. There is then space for seven more
changed pages in the same region, and a new region is not allocated until those seven
pages are used.

It is possible to overcommit your storage. This means that under normal circumstances,
you can have many times more snapshots than you have physical storage for, but if the
snapshots grow, the physical volume might run out of space. (Note that this can happen
when running online DBCC CHECKDB, and related commands, which use a hidden
snapshot during processing. You have no control of the placement of the hidden snapshot
that the commands use—they're placed on the same volume that the files of the parent
database reside on. If this happens, the DBCC uses the source database and acquires table
locks. You can read lots more details of the internals of the DBCC commands in Chapter 11.)
Once the physical volume runs out of space, the write operations to the source cannot
copy the Before image of the page to the sparse file. The snapshots that cannot write their
pages out are marked as suspect and are unusable, but the source database continues
operating normally. There is no way to “fix" a suspect snapshot; you must drop the
snapshot database.



164 Microsoft SQL Server 2008 Internals

Managing Your Snapshots

If any snapshots exist on a source database, the source database cannot be dropped,
detached, or restored. In addition, you can basically replace the source database with one of
its snapshots by reverting the source database to the way it was when a snapshot was made.
You do this by using the RESTORE command:

RESTORE DATABASE AdventureWorks2008
FROM DATABASE_SNAPSHOT = 'AdventureWorks_snapshot';

During the revert operation, both the snapshot and the source database are unavailable and
are marked as “In restore.” If an error occurs during the revert operation, the operation tries
to finish reverting when the database starts again. You cannot revert to a snapshot if multiple
snapshots exist, so you should first drop all snapshots except the one you want to revert to.
Dropping a snapshot is like using any other DROP DATABASE operation. When the snapshot
is deleted, all the NTFS sparse files are also deleted.

Keep in mind these additional considerations regarding database snapshots:

B Snapshots cannot be created for the model, master, or tempdb database. (Internally,
snapshots can be created to run the online DBCC checks on the master database, but
they cannot be created explicitly.)

B A snapshot inherits the security constraints of its source database, and because it is
read-only, you cannot change the permissions.

B If you drop a user from the source database, the user is still in the snapshot.

B Snapshots cannot be backed up or restored, but backing up the source database works
normally; it is unaffected by database snapshots.

B Snapshots cannot be attached or detached.

B Full-text indexing is not supported on database snapshots, and full-text catalogs are
not propagated from the source database.

The tempdb Database

In some ways, the tempdb database is just like any other database, but it has some unique
behaviors. Not all of them are relevant to the topic of this chapter, so | will provide some
references to other chapters where you can find additional information.

As mentioned previously, the biggest difference between tempdb and all the other databases
in your SQL Server instance is that tempdb is re-created—not recovered—every time SQL
Server is restarted. You can think of tempdb as a workspace for temporary user objects and
internal objects explicitly created by SQL Server itself.

Every time tempdb is re-created, it inherits most database options from the model database.
However, the recovery model is not copied because tempdb always uses simple recovery,



Chapter 3 Databases and Database Files 165

which will be discussed in detail in Chapter 4. Certain database options cannot be set for
tempdb, such as OFFLINE and READONLY. You also cannot drop the tempdb database.

In the SIMPLE recovery model, the tempdb database'’s log is constantly being truncated, and
it can never be backed up. No recovery information is needed because every time SQL Server
is started, tempdb is completely re-created; any previous user-created temporary objects
(that is, all your tables and data) disappear.

Logging for tempdb is also different than for other databases. (Normal logging will be
discussed in Chapter 4.) Many people assume that there is no logging in tempdb, but this is
not true. Operations within tempdb are logged so that transactions on temporary objects
can be rolled back, but the records in the log contain only enough information to roll back
a transaction, not to recover (or redo) it.

As | mentioned previously, recovery is run on a database as one of the first steps in creating

a snapshot. We can't recover tempdb, so we cannot create a snapshot of it, and this means

we can't run DBCC CHECKDB using a snapshot (or, in fact, most of the DBCC validation
commands). Another difference with running DBCC in tempdb is that SQL Server skips all
allocation and catalog checks. Running DBCC CHECKDB (or CHECKTABLE) in tempdb acquires
a Shared Table lock on each table as it is checked. (Locking will be discussed in Chapter 10.)

Objects in tempdb

Three types of objects are stored in tempdb: user objects, internal objects, and the version
store, used primarily for snapshot isolation.

User Objects

All users have the privileges to create and use local and global temporary tables that reside

in tempdb. (Local and global table names have the # or ## prefix, respectively. However, by
default, users don't have the privileges to use tempdb and then create a table there, unless the
table name is prefaced with # or ##) But you can easily grant the privileges in an autostart
procedure that runs each time SQL Server is restarted.

Other user objects that need space in tempdb include table variables and table-valued functions.
The user objects that are created in tempdb are in many ways treated just like user objects in any
other database. Space must be allocated for them when they are populated, and the metadata
needs to be managed. You can see user objects by examining the system catalog views, such as
sys.objects, and information in the sys.partitions and sys.allocation_units views will allow you to
see how much space is taken up by user objects. I'll discuss these views in Chapters 5 and 7.

Internal Objects

Internal objects in tempdb are not visible using the normal tools, but they still take up space
from the database. They are not listed in the catalog views because their metadata is stored only
in memory. The three basic types of internal objects are work tables, work files, and sort units.



166 Microsoft SQL Server 2008 Internals

Work tables are created by SQL Server during the following operations:

B Spooling, to hold intermediate results during a large query
B Running DBCC CHECKDB or DBCC CHECKTABLE

B Working with XML or varchar(MAX) variables

B Processing SQL Service Broker objects

B Working with static or keyset cursors

Work files are used when SQL Server is processing a query that uses a hash operator, either
for joining or aggregating data.

Sort units are created when a sort operation takes place, and this occurs in many situations

in addition to a query containing an ORDER BY clause. SQL Server uses sorting to build an
index, and it might use sorting to process queries involving grouping. Certain types of joins
might require that SQL Server sort the data before performing the join. Sort units are created
in tempdb to hold the data as it is being sorted. SQL Server can also create sort units in user
databases in addition to tempdb, in particular when creating indexes. As you'll see in Chapter 6,
when you create an index, you have the option to do the sort in the current user database or
in tempdb.

Version Store

The version store supports technology for row-level versioning of data. Older versions of
updated rows are kept in tempdb in the following situations:

B When an AFTER trigger is fired

B When a Data Modification Language (DML) command is executed in a database that
allows snapshot transactions

B When multiple active result sets (MARS) are invoked from a client application

B During online index builds or rebuilds when there is concurrent DML on the index

Versioning and snapshot transactions are discussed in detail in Chapter 10.

Optimizations in tempdb

Because tempdb is used for many internal operations in SQL Server 2008 than in previous
versions, you have to take care in monitoring and managing it. The next section presents
some best practices and monitoring suggestions. In this section, | tell you about some

of the internal optimizations in SQL Server that allow tempdb to manage objects much more
efficiently.

Download at Wow! eBook


v@v
Text Box
Download at Wow! eBook


Chapter 3 Databases and Database Files 167
Logging Optimizations
As you know, every operation that affects your user database in any way is logged. In tempdb,
however, this is not entirely true. For example, with logging update operations, only the
original data (the “"before” image) is logged, not the new values (the after image). In addition,

the commit operations and committed log records are not flushed to disk synchronously in
tempdb, as they are in other databases.

Allocation and Caching Optimizations

Many of the allocation optimizations are used in all databases, not just tempdb. However,
tempdb is most likely the database in which the greatest number of new objects are created
and dropped during production operations, so the impact on tempdb is greater than on user
databases. In SQL Server 2008, allocation pages are accessed very efficiently to determine
where free extents are available; you should see far less contention on the allocation pages
than in previous versions. SQL Server 2008 also has a very efficient search algorithm for
finding an available single page from mixed extents. When a database has multiple files, SQL
Server 2008 has a very efficient proportional fill algorithm that allocates space to multiple
data files, proportional to the amount of free space available in each file.

Another optimization specific to tempdb prevents you from having to allocate any new space
for some objects. If a work table is dropped, one IAM page and one extent are saved (for a
total of nine pages), so there is no need to deallocate and then reallocate the space if the same
work table needs to be created again. This dropped work table cache is not very big and

has room for only 64 objects. If a work table is truncated internally and the query plan that
uses that worktable is still in the plan cache, again the first IAM page and the first extent are
saved. For these truncated tables, there is no specific limitation on the number of objects that
can be cached; it depends only on the available memory space.

User objects in tempdb can also have some of their space cached if they are dropped. For a
small table of less than 8 MB, dropping a user object in tempdb causes one IAM page and
one extent to be saved. However, if the table has had any additional DDL performed, such
as creating indexes or constraints, or if the table was created using dynamic SQL, no caching
is done.

For a large table, the entire drop is performed as a deferred operation. Deferred drop
operations are in fact used in every database as a way to improve overall throughput
because a thread does not need to wait for the drop to complete before proceeding with

its next task. Like the other allocation optimizations that are available in all databases, the
deferred drop probably provides the most benefit in tempdb, which is where tables are

most likely to be dropped during production operations. A background thread eventually
cleans up the space allocated for dropped tables, but until then, the allocated space remains.
You can detect this space by looking at the sys.allocation_units system view for rows with a
type value of 0, which indicates a dropped object; you will also see that the column called



168

Microsoft SQL Server 2008 Internals

container_id is 0, which indicates that the allocated space does not really belong to any
object. I'll look at sys.allocation_units and the other system views that keep track of space
usage in Chapter 5.

Best Practices

By default, your tempdb database is created on only one data file. You will probably find that
multiple files give you better 1/0 performance and less contention on the global allocation
structures (the GAM, SGAM, and PFS pages). An initial recommendation is that you have one file
per CPU, but your own testing based on your data and usage patterns might indicate more or
less than that. For the greatest efficiency with the proportional fill algorithm, the files should be
the same size. The downside of multiple files is that every object will have multiple IAM pages
and there will be more switching costs as objects are accessed. It will also take more effort just
to manage the files. No matter how many files you have, they should be on the fastest disks you
can afford. One log file should be sufficient, and that should also be on a fast disk.

To determine the optimum size of your tempdb, you must test your own applications with
your data volumes, but knowing when and how tempdb is used can help you make preliminary
estimates. Keep in mind that there is only one tempdb for each SQL Server instance, so one
badly behaving application can affect all other users in all other applications. In Chapter 10,
I'll explain how to determine the size of the version store. All these factors affect the space
needed for your tempdb. Finally, in Chapter 11, I'll look at how the DBCC consistency
checking commands use tempdb and how to determine the tempdb space requirements.

Database options for tempdb should rarely be changed, and some options are not applicable
to tempdb. In particular, the autoshrink option is ignored in tempdb. In any case, shrinking
tempdb is not recommended unless your workload patterns have changed significantly. If
you do need to shrink your tempdb, you're probably better off shrinking each file individually.
Keep in mind that the files might not be able to shrink if any internal objects or version store
pages need to be moved. The best way to shrink tempdb is to ALTER the database, change
the files’ sizes, and then stop and restart SQL Server so tempdb is rebuilt to the desired size.
You should allow your tempdb files to autogrow only as a last resort and only to prevent
errors due to running out of room. You should not rely on autogrow to manage the size

of your tempdb files. Autogrow causes a delay in processing when you can probably least
afford it, although the impact is somewhat less if you use instant file initialization. You should
determine the size of tempdb through testing and planning so that tempdb can start with as
much space as it needs and won't have to grow while your applications are running.

Here are some tips for making optimum use of your tempdb. Later chapters will elaborate on
why these suggestions are considered best practices:

B Take advantage of tempdb object caching.

B Keep your transactions short, especially those that use snapshot isolation, MARS,
or triggers.



Chapter 3 Databases and Database Files 169
If you expect a lot of allocation page contention, force a query plan that uses tempdb less.

Avoid page allocation and deallocation by keeping columns that are to be updated at
a fixed size rather than a variable size (which can implement the UPDATE as a DELETE
followed by an INSERT).

Do not mix long and short transactions from different databases (in the same instance)
if versioning is being used.

tempdb Space Monitoring

Quite a few tools, stored procedures, and system views report on object space usage, as
discussed in Chapters 5 and 7. However, one set of system views reports information only for
tempdb. The simplest view is sys.dm_db_file_space_usage, which returns one row for each data
file in tempdb. It returns the following columns:

database_id (even though the DBID 2 is the only one used)
file_id

unallocated_extent_page_count
version_store_reserved_page_count
user_object_reserved_page_count
internal_object_reserved_page_count

mixed_extent_page_count

These columns can show you how the space in tempdb is being used for the three types of
storage: user objects, internals objects, and version store.

Two other system views are similar to each other:

sys.dm_db_task_space_usage This view returns one row for each active task and
shows the space allocated and deallocated by the task for user objects and internal
objects. If no tasks are being run by a session, this view still gives you one row for the
session, with all the space values showing 0. No version store information is reported
because that space is not associated with any particular task or session. Every running
task starts with zeros for all the space allocation and deallocation values.

sys.dm_db_session_space_usage This view returns one row for each session, with the
cumulative values for space allocated and deallocated by the session for user objects
and internal objects, for all tasks that have been completed. In general, the space
allocated values should be the same as the space deallocated values, but if there are
deferred drop operations, allocated values will be greater than the deallocated values.
Keep in mind that this information is not available to all users; a special permission
called VIEW SERVER STATE is needed to select from this view.



170

Microsoft SQL Server 2008 Internals

Database Security

Security is a huge topic that affects almost every action of every SQL Server user, including
administrators and developers, and it deserves an entire book of its own. However, some
areas of the SQL Server security framework are crucial to understanding how to work with a
database or with any objects in a SQL Server database, so | can’t leave the topic completely
untouched in this book.

SQL Server manages a hierarchical collection of entities. The most prominent of these entities
are the server and databases in the server. Underneath the database level are objects. Each
of these entities below the server level is owned by individuals or groups of individuals. The
SQL Server security framework controls access to the entities within a SQL Server instance.
Like any resource manager, the SQL Server security model has two parts: authentication and
authorization.

Authentication is the process by which the SQL Server validates and establishes the identity
of an individual who wants to access a resource. Authorization is the process by which SQL
Server decides whether a given identity is allowed to access a resource.

In this section, I'll discuss the basic issues of database access and then describe the metadata
where information on database access is stored. I'll also tell you about the concept of
schemas and describe how they are used to access objects.

The following two terms now form the foundation for describing security control in SQL
Server 2008:

B Securable A securable is an entity on which permissions can be granted. Securables
include databases, schemas, and objects.

B Principal A principal is an entity that can access securables. A primary principal
represents a single user (such as a SQL Server login or a Windows login); a secondary
principal represents multiple users (such as a role or a Windows group).

Database Access

Authentication is performed at two different levels in SQL Server. First, anyone who wants to
access any SQL Server resource must be authenticated at the server level. SQL Server 2008
security provides two basic methods for authenticating logins: Windows Authentication

and SQL Server Authentication. In Windows Authentication, SQL Server login security is
integrated directly with Windows security, allowing the operating system to authenticate
SQL Server users. In SQL Server Authentication, an administrator creates SQL Server login
accounts within SQL Server, and any user connecting to SQL Server must supply a valid SQL
Server login name and password.



Chapter 3 Databases and Database Files 171

Windows Authentication uses trusted connections, which rely on the impersonation feature

of Windows. Through impersonation, SQL Server can take on the security context of the
Windows user account initiating the connection and test whether the SID has a valid privilege
level. Windows impersonation and trusted connections are supported by any of the available
network libraries when connecting to SQL Server.

Under Windows Server 2003 and Windows Server 2008, SQL Server can use Kerberos to
support mutual authentication between the client and the server, as well as to pass a client’s
security credentials between computers so that work on a remote server can proceed using
the credentials of the impersonated client. With Windows Server 2003 and Windows Server
2008, SQL Server uses Kerberos and delegation to support Windows authentication as well as
SQL Server authentication.

The authentication method (or methods) used by SQL Server is determined by its security mode.
SQL Server can run in one of two security modes: Windows Authentication mode (which uses
only Windows authentication) and Mixed mode (which can use either Windows authentication
or SQL Server authentication, as chosen by the client). When you connect to an instance of SQL
Server configured for Windows Authentication mode, you cannot supply a SQL Server login
name, and your Windows user name determines your level of access to SQL Server.

One advantage of Windows authentication has always been that it allows SQL Server to take
advantage of the security features of the operating system, such as password encryption,
password aging, and minimum and maximum length restrictions on passwords. When running
on Windows Server 2003 or Windows Server 2008, SQL Server authentication can also take
advantage of Windows password policies. Take a look at the ALTER LOGIN command in SQL
Server Books Online for the full details. Also note that if you choose Windows Authentication
during setup, the default SQL Server sa login is disabled. If you switch to Mixed mode after
setup, you can enable the sa login using the ALTER LOGIN command. You can change the
authentication mode in Management Studio by right-clicking on the server name, choosing
Properties, and then selecting the Security page. Under Server authentication, select the new
server authentication mode, as shown in Figure 3-7.

Under Mixed mode, Windows-based clients can connect using Windows authentication,

and connections that don't come from Windows clients or that come across the Internet can
connect using SQL Server authentication. In addition, when a user connects to an instance of
SQL Server that has been installed in Mixed mode, the connection can always supply a SQL
Server login name explicitly. This allows a connection to be made using a login name distinct
from the user name in Windows.

All login names, whether from Windows or SQL Server authentication, can be seen in the
sys.server_principals catalog view, which also contains a SID for each server principal. If the
principal is a Windows login, the SID is the same one that Windows uses to validate the user’s
access to Windows resources. The view contains rows for server roles, Windows groups, and
logins mapped to certificates and asymmetric keys, but | will not discuss those principals here.



172

Microsoft SQL Server 2008 Internals

i

=;'§ Scipt - é_j Help

& General
= Memory
= Processars Server authentication
E=gf 5 =Lty
2 Connections " windows Authentication made
= Datahase Selings % SOL Server and Windows Authentication mode
5 Advanced
5 Permissions -
Lagin auditing
" None

{+ Failed logins anly
" Successhul laging only
" Both taled and successhul lagin:

Server prosy account

[™ Enahle server proxy account

Server Ot
TEN&R ™ Enable Common Criteria compliance
Connectian: ™ Enable C2 audit acing
TENAR Administrator
- . . I” Cross database ownership chaining
3¢ Yiew connection properties

Feady

oK Cancel |

4

FIGURE 3-7 Choosing an authentication mode for your SQL Server instance in the
Server Properties dialog box

Managing Database Security

Login names can be the owners of databases, as seen in the sys.databases view, which has a
column for the SID of the login that owns the database. Databases are the only resource owned
by login names. As you'll see, all objects within a database are owned by database principals.

The SID used by a principal determines which databases that principal has access to. Each
database has a sys.database_principals catalog view, which you can think of as a mapping
table that maps login names to users in that particular database. Although a login name and
a user name can have the same value, they are separate things. The following query shows
the mapping of users in the AdventureWorks2008 database to login names, and it also shows
the default schema (which | will discuss shortly) for each database user:

SELECT s.name as [Login Name], d.name as [User Name],
default_schema_name as [Default Schema]
FROM sys.server_principals s
JOIN sys.database_principals d
ON d.sid = s.sid;



Chapter 3 Databases and Database Files 173

In my AdventureWorks2008 database, these are the results | receive:

Login Name User Name Default Schema

Note that the login sue has the same value for the user name in this database. There is no
guarantee that other databases that sue has access to will use the same user name. The login
name sa has the user name dbo. This name is a special login that is used by the sa login, by
all logins in the sysadmin role, and by whatever login is listed in sys.databases as the owner
of the database. Within a database, it is users, not logins, who own objects, and users, not
logins, to whom permissions are granted.

The preceding results also indicate the default schema for each user in my AdventureWorks2008
database. In this case, the default schema is the same as the user name, but that doesn't have
to be the case, as you'll see in the next section.

Databases vs. Schemas

In the ANSI SQL-92 standard, a schema is defined as a collection of database objects that are
owned by a single user and form a single namespace. A namespace is a set of objects that
cannot have duplicate names. For example, two tables can have the same name only if they
are in separate schemas, so no two tables in the same schema can have the same name. You
can think of a schema as a container of objects. (In the context of database tools, a schema
also refers to the catalog information that describes the objects in a schema or database.

In SQL Server Analysis Services, a schema is a description of multidimensional objects such as
cubes and dimensions.)

Principals and Schemas

Prior to SQL Server 2005, there was a CREATE SCHEMA command, but it effectively did
nothing because there was an implicit relationship between users and schemas that could be
changed or removed. In fact, the relationship was so close that many users of these earlier
versions of SQL Server were unaware that users and schemas are different things. Every user
was the owner of a schema that has the same name as the user. If you created a user sue, for
example, SQL Server 2000 created a schema called sue, which was sue's default schema.

In SQL Server 2005 and SQL Server 2008, users and schemas are two separate things.
To understand the difference between users and schemas, think of the following: Permissions
are granted to users, but objects are placed in schemas.

The command GRANT CREATE TABLE TO sue refers to the user sue. Let’s say sue then creates
a table, as follows:

CREATE TABLE mytable (coll varchar(20));



174

Microsoft SQL Server 2008 Internals

This table is placed in sue's default schema, which may be the schema sue. If another user
wants to retrieve data from this table, he can issue this statement:

SELECT coll FROM sue.mytable;
In this statement, sue refers to the schema that contains the table.

Schemas can be owned by either primary or secondary principals. Although every object in a
SQL Server 2008 database is owned by a user, you never reference an object by its owner; you
reference it by the schema in which it is contained. In most cases, the owner of the schema

is the same as the owner of all objects within the schema. The metadata view sys.objects
contains a column called principal_id, which contains the user_id of an object's owner if it

is not the same as the owner of the object’s schema. In addition, a user is never added to a
schema; schemas contain objects, not users. For backward compatibility, if you execute the
sp_adduser or sp_grantdbaccess procedure to add a user to a database, SQL Server 2008
creates both a user and a schema of the same name, and it makes the schema the default
schema for the new user. However, you should get used to using the new DDL CREATE USER
and CREATE SCHEMA commands because sp_adduser and sp_grantdbaccess have been
deprecated. When you create a user, you can specify a default schema if you want, but the
default for the default schema is the dbo schema.

Default Schemas

When you create a new database in SQL Server 2008, several schemas are included in it.
These include dbo, INFORMATION_SCHEMA, and guest. In addition, every database has a
schema called sys, which provides a way to access all the system tables and views. Finally,
every fixed database role except public has a schema of the same name in SQL Server 2008.

Users can be assigned a default schema that might or might not exist when the user is
created. A user can have at most one default schema at any time. As mentioned earlier, if no
default schema is specified for a user, the default schema for the user is dbo. A user’s default
schema is used for name resolution during object creation or object reference. This can be
both good news and bad news for backward compatibility. The good news is that if you've
upgraded a database from SQL Server 2000, which has many objects in the dbo schema, your
code can continue to reference those objects without having to specify the schema explicitly.
The bad news is that for object creation, SQL Server tries to create the object in the dbo
schema rather than in a schema owned by the user creating the table. The user might not
have permission to create objects in the dbo schema, even if that is the user's default schema.
To avoid confusion, in SQL Server 2008 you should always specify the schema name for all
object access as well as object management.

Note When a login in the sysadmin role creates an object with a single part name, the schema
is always dbo. However, a sysadmin can explicitly specify an alternate schema in which to create
an object.



Chapter 3 Databases and Database Files 175

To create an object in a schema, you must satisfy the following conditions:

B The schema must exist.

B The user creating the object must have permission to create the object (through
CREATE TABLE, CREATE VIEW, CREATE PROCEDURE, and so on), either directly or
through role membership.

B The user creating the object must be the owner of the schema or a member of the role
that owns the schema, or the user must have ALTER rights on the schema or have the
ALTER ANY SCHEMA permission in the database.

Moving or Copying a Database

You might need to move a database before performing maintenance on your system, after

a hardware failure, or when you replace your hardware with a newer, faster system. Copying
a database is a common way to create a secondary development or testing environment. You
can move or copy a database by using a technique called detach and attach or by backing up
the database and restoring it in the new location.

Detaching and Reattaching a Database

You can detach a database from a server by using a simple stored procedure. Detaching

a database requires that no one is using the database. If you find existing connections that
you can't terminate, you can use the ALTER DATABASE command and set the database to
SINGLE_USER mode using one of the termination options that breaks existing connections.
Detaching a database ensures that no incomplete transactions are in the database and that
there are no dirty pages for this database in memory. If these conditions cannot be met, the
detach operation fails. Once the database is detached, the entry for it is removed from the
sys.databases catalog view and from the underlying system tables.

Here is the command to detach a database:

EXEC sp_detach_db <name of database>;

Once the database has been detached, from the perspective of SQL Server, it's as if you

had dropped the database. No metadata for the database remains within the SQL Server
instance, and the only time there might be a trace of it is when your msdb database contains
backup and restore history for the database that has not yet been deleted. But the history of
when backups and restores were done would provide no information about the structure or
content of the database. If you are planning to reattach the database later, it's a good idea to
record the properties of all the files that were part of the database.



176

Microsoft SQL Server 2008 Internals

Note The DROP DATABASE command also removes all traces of the database from your
instance, but dropping a database is more severe than detaching. SQL Server makes sure that no
one is connected to the database before dropping it, but it doesn’t check for dirty pages or open
transactions. Dropping a database also removes the physical files from the operating system, so
unless you have a backup, the database is really gone.

To attach a database, you can use the CREATE DATABASE command with the FOR

ATTACH option. (There is a stored procedure, sp_attach_db, but it is deprecated and not
recommended in SQL Server 2008.) The CREATE DATABASE command gives you control over
all the files and their placement and is not limited to only 16 files like sp_attach_db is. CREATE
DATABASE has no such limit—in fact, you can specify up to 32,767 files and 32,767 file groups
for each database. The syntax summary for the CREATE DATABASE command showing the
attach options is shown here:

CREATE DATABASE database_name
ON <filespec> [ ,...n ]
FOR { ATTACH

| ATTACH_REBUILD_LOG }

Note that only the primary file is required to have a <filespec> entry because the primary file
contains information about the location of all the other files. If you'll be attaching existing
files with a different path than when the database was first created or last attached, you must
have additional <filespec> entries. In any event, all the data files for the database must be
available, whether or not they are specified in the CREATE DATABASE command. If there are
multiple log files, they must all be available.

However, if a read/write database has a single log file that is currently unavailable and if the
database was shut down with no users or open transactions before the attach operation,
FOR ATTACH rebuilds the log file and updates information about the log in the primary file.
If the database is read-only, the primary file cannot be updated, so the log cannot be rebuilt.
Therefore, when you attach a read-only database, you must specify the log file or files in the
FOR ATTACH clause.

Alternatively, you can use the FOR ATTACH_REBUILD_LOG option, which specifies that the
database will be created by attaching an existing set of operating system files. This option
is limited to read/write databases. If one or more transaction log files are missing, the log is
rebuilt. There must be a <filespec> entry specifying the primary file. In addition, if the log
files are available, SQL Server uses those files instead of rebuilding the log files, so the FOR
ATTACH_REBUILD_LOG will function as if you used FOR ATTACH.

If your transaction log is rebuilt by attaching the database, using the FOR ATTACH_REBUILD_
LOG breaks the log backup chain. You should consider making a full backup after performing
this operation.



Chapter 3 Databases and Database Files 177

You typically use FOR ATTACH_REBUILD_LOG when you copy a read/write database with
a large log to another server where the copy will be used mostly or exclusively for read
operations and therefore require less log space than the original database.

Although the documentation says that you should use CREATE DATABASE FOR ATTACH only
on databases that were previously detached using sp_detach_db, sometimes following this
recommendation isn't necessary. If you shut down the SQL Server instance, the files are closed,
just as if you had detached the database. However, you are not guaranteed that all dirty pages
from the database were written to disk before the shutdown. This should not cause a problem
when you attach such a database if the log file is available. The log file has a record of all
completed transactions, and a full recovery is performed when the database is attached to
make sure the database is consistent. One benefit of using the sp_detach_db procedure is that
SQL Server records the fact that the database was shut down cleanly, and the log file does not
have to be available to attach the database. SQL Server builds a new log file for you. This can be
a quick way to shrink a log file that has become much larger than you would like, because the
new log file that sp_attach_db creates for you would be the minimum size—less than 1 MB.

Backing Up and Restoring a Database

You can also use backup and restore to move a database to a new location, as an alternative

to detach and attach. One benefit of this method is that the database does not need to come
offline at all because backup is a completely online operation. Because this book is not a how-to
book for database administrators, you should refer to the bibliography in the companion
content for several excellent book recommendations about the mechanics of backing up and
restoring a database and to learn best practices for setting up a backup-and-restore plan for
your organization. Nevertheless, some issues relating to backup-and-restore processes can help
you understand why one backup plan might be better suited to your needs than another, so |
will discuss backup and restore briefly in Chapter 4. Most of these issues involve the role of the
transaction log in backup-and-restore operations.

Moving System Databases

You might need to move system databases as part of a planned relocation or scheduled
maintenance operation. If you move a system database and later rebuild the master
database, you must move the system database again because the rebuild operation installs
all system databases to their default location. The steps for moving tempdb, model, and msdb
are slightly different than for moving the master database.

Note In SQL Server 2008, the mssqlsystemresource database cannot be moved. If you move the
files for this database, you will not be able to restart your SQL Server service. This is incorrectly
documented in the RTM edition of SQL Server 2008 Books Online, which indicates that the
mssqlsystemresource database can be moved, but this misinformation may be corrected in a
later refresh.



178 Microsoft SQL Server 2008 Internals

Here are the steps for moving an undamaged system database (that is, not the master
database):

1.

s W N

.

For each file in the database to be moved, use the ALTER DATABASE command with the
MODIFY FILE option to specify the new physical location.

Stop the SQL Server instance.
Physically move the files.
Restart the SQL Server instance.

Verify the change by running the following query:

SELECT name, physical_name AS CurrentlLocation, state_desc
FROM sys.master_files
WHERE database_id = DB_ID(N'<database_name>');

If the system database needs to be moved because of a hardware failure, the solution is a

bit more problematical because you might not have access to the server to run the ALTER

DATABASE command. Here are the steps to move a damaged system database (other than
the master database or the resource database):

1.
2.

N o u bk

Stop the instance of SQL Server if it has been started.

Start the instance of SQL Server in master-only recovery mode (by specifying traceflag
3608) by entering one of the following commands at the command prompt:

-- If the instance is the default instance:
NET START MSSQLSERVER /f /T3608

-- For a named instance:
NET START MSSQL$instancename /f /T3608

For each file in the database to be moved, use the ALTER DATABASE command with
the MODIFY FILE option to specify the new physical location. You can use either
Management Studio or the SQLCMD utility.

Exit Management Studio or the SQLCMD utility.
Stop the instance of SQL Server.
Physically move the file or files to the new location.

Restart the instance of SQL Server without traceflag 3608. For example, run NET START
MSSQLSERVER.

Verify the change by running the following query:

SELECT name, physical_name AS CurrentlLocation, state_desc
FROM sys.master_files
WHERE database_id = DB_ID(N'<database_name>');



Chapter 3 Databases and Database Files 179

Moving the master Database

Full details on moving the master database can be found in SQL Server Books Online, but | will
summarize the steps here. The biggest difference between moving this database and moving
other system databases is that you must go through the SQL Server Configuration Manager.

To move the master database, follow these steps.

1. Open the SQL Server Configuration Manager. Right-click the desired instance of SQL
Server, choose Properties, and then click the Advanced tab.

2. Edit the Startup Parameters values to point to the new directory location for the master
database data and log files. If you want, you can also move the SQL Server error log
files. The parameter value for the data file must follow the —d parameter, the value for
the log file must follow the —/ parameter, and the value for the error log must follow
the —e parameter, as shown here:

-dE:\SQLData\master.mdf;
-TE:\SQLData\mastlog. 1df;
-eE:\ SQLData\LOG\ERRORLOG

3. Stop the instance of SQL Server and physically move the files for to the new location.
4. Restart the instance of SQL Server.

5. Verify the file change for the master database by running the following query:

SELECT name, physical_name AS CurrentlLocation, state_desc
FROM sys.master_files
WHERE database_id = DB_ID('master');

Compatibility Levels

Each new version of SQL Server includes a large number of new features, many of which require
new keywords and also change certain behaviors that existed in earlier versions. To provide
maximum backward compatibility, Microsoft allows you to set the compatibility level of a
database running on a SQL Server 2008 instance to one of the following modes: 100, 90, or 80.
All newly created databases in SQL Server 2008 have a compatibility level of 100 unless you
change the level for the model database. A database that has been upgraded or attached from an
older version has its compatibility level set to the version from which the database was upgraded.

All the examples and explanations in this book assume that you're using a database in
100 compatibility mode, unless otherwise noted. If you find that your SQL statements
behave differently than the ones in the book, you should first verify that your database is
in 100 compatibility mode by executing this command:

SELECT compatibility_level FROM sys.databases
WHERE name = '<database name>';



180 Microsoft SQL Server 2008 Internals

To change to a different compatibility level, use the ALTER DATABASE command:

ALTER DATABASE <database name>
SET COMPATIBILITY_LEVEL = <compatibility-level>;

Note The compatibility-level options are intended to provide a transition period while you're
upgrading a database or an application to SQL Server 2008. | strongly suggest that you try
to change your applications so that compatibility options are not needed. Microsoft doesn’t
guarantee that these options will continue to work in future versions of SQL Server.

Not all changes in behavior from older versions of SQL Server can be duplicated by changing
the compatibility level. For the most part, the differences have to do with whether new
reserved keywords and new syntax are recognized, and they do not affect how your queries
are processed internally. For example, if you change to compatibility level 80, you don't make
the system tables viewable or do away with schemas. But because the word MERGE is a new
reserved keyword in SQL Server 2008 (compatibility level 100), by setting your compatibility
level to 80 or 90, you can create a table called MERGE without using any special delimiters—or
a table that you already have in a SQL Server 2005 database continues to be accessible if the
database stays in the 90 compatibility level.

For a complete list of the behavioral differences between the compatibility levels and the
new reserved keywords, see the documentation for ALTER DATABASE Compatibility Level in
SQL Server Books Online.

Summary

A database is a collection of objects such as tables, views, and stored procedures. Although

a typical SQL Server installation has many databases, it always includes the following three:
master, model, and tempdb. An installation usually also includes msdb, but that database can
be removed. (To remove msdb requires a special traceflag and is rarely recommended.) A SQL
Server instance also includes the mssqlsystemresource database that cannot be seen using
the normal tools. Every database has its own transaction log; integrity constraints among
objects keep a database logically consistent.

Databases are stored in operating system files in a one-to-many relationship. Each database
has at least one file for data and one file for the transaction log. You can increase and
decrease the size of databases and their files easily, either manually or automatically.



Chapter 4

Logging and Recovery

Kalen Delaney

In Chapter 3, “Databases and Database Files,” | told you about the data files that are created
to hold information in a Microsoft SQL Server database. Every database also has at least one
file that stores its transaction log. | referred to SQL Server transaction logs and log files in
Chapter 3, but | did not really go into detail about how a log file is different from a data file
and exactly how SQL Server uses its log files. In this chapter, | tell you about the structure

of SQL Server log files and how they're managed when transaction information is logged.

| explain how SQL Server log files grow and when and how a log file can be reduced in size.
Finally, | look at how log files are used during SQL Server backup and restore operations and
how they are affected by your database’s recovery model.

Transaction Log Basics

The transaction log records changes made to the database and stores enough information to
allow SQL Server to recover the database. The recovery process takes place every time a SQL
Server instance is started, and it can take place every time SQL Server restores a database or a
log from backup. Recovery is the process of reconciling the data files and the log. Any changes
to the data that the log indicates have been committed must appear in the data files, and any
changes that are not marked as committed must not appear in the data files. The log also
stores information needed to roll back an operation if SQL Server receives a request to roll
back a transaction from the client (using the ROLLBACK TRAN command) or if an error, such
as a deadlock, generates an internal ROLLBACK.

Physically, the transaction log is one or more files associated with a database at the time
the database is created or altered. Operations that perform database modifications write
records in the transaction log that describe the changes made (including the page numbers
of the data pages modified by the operation), the data values that were added or removed,
information about the transaction that the modification was part of, and the date and time of
the beginning and end of the transaction. SQL Server also writes log records when certain
internal events happen, such as checkpoints. Each log record is labeled with a Log Sequence
Number (LSN) that is guaranteed to be unique. All log entries that are part of the same
transaction are linked so that all parts of a transaction can be located easily for both undo
activities (as with a rollback) and redo activities (during system recovery).

The Buffer Manager guarantees that the transaction log will be written before the changes
to the database are written. (This is called write-ahead logging.) This guarantee is possible

181



182

Microsoft SQL Server 2008 Internals

because SQL Server keeps track of its current position in the log by means of the LSN. Every
time a page is changed, the LSN corresponding to the log entry for that change is written
into the header of the data page. Dirty pages can be written to the disk only when the LSN
on the page is less than or equal to the LSN for the last record written to the log. The Buffer
Manager also guarantees that log pages are written in a specific order, making it clear
which log blocks must be processed after a system failure, regardless of when the failure
occurred.

The log records for a transaction are written to disk before the commit acknowledgement is
sent to the client process, but the actual changed data might not have been physically written
out to the data pages. Although the writes to the log are asynchronous, at commit time the
thread must wait for the writes to complete to the point of writing the commit record in the
log for the transaction. (SQL Server must wait for the commit record to be written so that it
knows the relevant log records are safely on the disk.) Writes to data pages are completely
asynchronous. That is, writes to data pages need only be posted to the operating system, and
SQL Server can check later to see that they were completed. They don't have to be completed
immediately because the log contains all the information needed to redo the work, even in
the event of a power failure or system crash before the write completes. The system would be
much slower if it had to wait for every I/O request to complete before proceeding.

Logging involves demarcating the beginning and end of each transaction (and savepoints,

if a transaction uses them). Between the beginning and ending demarcations is information
about the changes made to the data. This information can take the form of the actual "before
and after” data, or it can refer to the operation that was performed so that those values can
be derived. The end of a typical transaction is marked with a Commit record, which indicates
that the transaction must be reflected in the database’s data files or redone if necessary.

A transaction aborted during normal runtime (not system restart) due to an explicit rollback
or something like a resource error (for example, an out-of-memory error) actually undoes

the operation by applying changes that undo the original data modifications. The records of
these changes are written to the log and marked as “compensation log records.”

As mentioned previously, there are two types of recovery, both of which have the goal of
making sure the log and the data agree. A restart recovery runs every time SQL Server is
started. The process runs on each database because each database has its own transaction
log. Your SQL Server error log reports the progress of restart recovery, and for each
database, the error log tells you how many transactions were rolled forward and how many
were rolled back. This type of recovery is sometimes referred to as crash recovery because

a crash, or unexpected stopping of the SQL Server service, requires the recovery process

to be run when the service is restarted. If the service was shut down cleanly with no open
transactions in any database, only minimal recovery is necessary upon system restart. In SQL
Server 2008, restart recovery can be run on multiple databases in parallel, each handled by a
different thread.



Chapter 4 Logging and Recovery 183

The other type of recovery, restore recovery (or media recovery), is run by request when a
restore operation is executed. This process makes sure that all the committed transactions in
the backup of the transaction log are reflected in the data and that any transactions that did
not complete do not show up in the data. I'll talk more about restore recovery later in the
chapter.

Both types of recovery must deal with two situations: when transactions are recorded as
committed in the log but not yet written to the data files, and when changes to the data

files don't correspond to committed transactions. These two situations can occur because
committed log records are written to the log files on disk every time a transaction commits.
Changed data pages are written to the data files on disk completely asynchronously, every time
a checkpoint occurs in a database. As | mentioned in Chapter 1, “SQL Server 2008 Architecture
and Configuration,” data pages can also be written to disk at other times, but the regularly
occurring checkpoint operations give SQL Server a point at which all changed (or dirty) pages
are known to have been written to disk. Checkpoint operations also write log records from
transactions in progress to disk because the cached log records are also considered to be dirty.

If the SQL Server service stops after a transaction commits but before the data is written out
to the data pages, when SQL Server starts and runs recovery, the transaction must be rolled
forward. SQL Server essentially redoes the transaction by reapplying the changes indicated
in the transaction log. All the transactions that need to be redone are processed first (even
though some of them might need to be undone later during the next phase). This is called
the redo phase of recovery.

If a checkpoint occurs before a transaction is committed, it writes the uncommitted changes
out to disk. If the SQL Server service then stops before the commit occurs, the recovery
process finds the changes for the uncommitted transactions in the data files, and it has to roll
back the transaction by undoing the changes reflected in the transaction log. Rolling back all
the incomplete transactions is called the undo phase of recovery.

Note I'll continue to refer to recovery as a system startup function, which is its most common
role by far. However, remember that recovery is also run during the final step of restoring a
database from backup or attaching a database, and can also be forced manually. In addition,
recovery is run when creating a database snapshot, during database mirroring, or when failing
over to a database mirror.

Later in this chapter, I'll cover some special issues related to recovery during a database
restore. These include the three recovery models that you can set using the ALTER DATABASE
statement and the ability to place a named marker in the log to indicate a specific point to
recover to. The discussion that follows deals with recovery in general, whether it's performed
when the SQL Server service restarts or when a database is being restored from a backup.



184

Microsoft SQL Server 2008 Internals

Phases of Recovery

During recovery, only changes that occurred or were in progress since the last checkpoint are
evaluated to determine if they need to be redone or undone. Any transactions that completed
prior to the last checkpoint, either by being committed or rolled back, are accurately reflected
in the data pages, and no additional work needs to be done for them during recovery.

The recovery algorithm has three phases, which center around the last checkpoint record in
the transaction log. The three phases are illustrated in Figure 4-1.

Phase 1: Analysis The first phase is a forward pass starting at the last checkpoint record
in the transaction log. This pass determines and constructs a dirty page table (DPT)
consisting of pages that might have been dirty at the time SQL Server stopped.
An active transaction table is also built that consists of uncommitted transactions at the
time SQL Server stops.

Phase 2: Redo This phase returns the database to the state it was in at the time the SQL
Server service stopped. The starting point for this forward pass is the start of the oldest
uncommitted transaction. The minimum LSN in the DPT is the first time SQL Server
expects to have to redo an operation on a page, but it needs to redo the logged
operations starting all the way back at the start of the oldest open transaction so that
the necessary locks can be acquired. (Prior to SQL Server 2005, it was just allocation
locks that needed to be reacquired. In SQL 2005 and later, all locks for those open
transactions need to be reacquired.)

Phase 3: Undo This phase uses the list of active transactions (uncommitted at the time
SQL Server came down) which were found in Phase 1 (Analysis). It rolls each of these
active transactions back individually. SQL Server follows the links between entries in
the transaction log for each transaction. Any transaction that was not committed at the
time SQL Server stopped is undone so that none of the changes are actually reflected
in the database.

Analysis
Phase _____________ Re—do>
(acquire active transaction locks)
Undo
Log Oldest Checkpoint ~ Minimum Crash
start transaction recovery
LSN
Log/Time

FIGURE 4-1 The three phases of the SQL Server recovery process



Chapter 4 Logging and Recovery 185

SQL Server uses the log to keep track of the data modifications that were made, as well as

any locks that were applied to the objects being modified. This allows SQL Server to support

a feature called fast recovery when SQL Server is restarted (in the Enterprise and Developer
editions only). With fast recovery, the database is available as soon as the redo phase is finished.
The same locks that were acquired during the original modification can be reacquired to keep
other processes from accessing the data that needs to have its changes undone; all other data

in the database remains available. Fast recovery cannot be done during media recovery, but it is
used by database mirroring recovery, which uses a hybrid of media recovery and restart recovery.

In addition, SQL Server uses multiple threads to process the recovery operations on the different
databases simultaneously, so databases with higher ID numbers don't have to wait for all databases
with lower ID numbers to be completely recovered before their own recovery process starts.

Page LSNs and Recovery

Every database page has an LSN in the page header that reflects the location in the transaction
log of the last log entry that modified a row on this page. Each log record for changes to a
data page has two LSNs associated with it. In addition to the LSN for the actual log record, it
also keeps track of the LSN, which was on the data page before the change recorded by this
log record. During a redo operation of transactions, the LSNs on each log record are compared
to the page LSN of the data page that the log entry modified. If the page LSN is equal to the
previous page LSN in the log record, the operation indicated in the log entry is redone. If the
LSN on the page is equal to or higher than the actual LSN for this log record, SQL Server skips
the REDO operation. These two possibilities are illustrated in Figure 4-2. The LSN on the page
cannot be between the previous and current values for the log record.

D

D

D

D

Page 1:25 Op: Update...
Page 1:25 .
Data page Row: 4 Transaction log
LSN: 2:200:7 LSN: 2:210:6
Prev LSN 2:200:7

The log record at LSN 2:210:6 refers to page 1:25, which
has an LSN value of 2:200:7, which is less than the log LSN.
Thus, the update indicated in the log record must be redone.

Page 1:42 Op: Update...
Page 1:42 X
Data page Row: 10 Transaction log
LSN: 2:300:10 LSN: 2:290:6
Prev LSN 2:260:3

The log record at LSN 2:290:6 refers to page 1:42, which has an
LSN value of 2:300:10. The page LSN is greater than the log LSN.
Therefore, this page was written to disk after the indicated transaction
occurred, and the transaction does not need to be redone.

FIGURE 4-2 Comparing LSNs to decide whether to process the log entry during recovery




186

Microsoft SQL Server 2008 Internals

Because recovery finds the last checkpoint record in the log (plus transactions that were

still active at the time of the checkpoint) and proceeds from there, recovery time is short,

and all changes committed before the checkpoint can be purged from the log or archived.
Otherwise, recovery could take a long time and transaction logs could become unreasonably
large. A transaction log cannot be truncated prior to the point of the earliest transaction that
is still open, no matter how many checkpoints have occurred since the transaction started
and no matter how many other transactions have started or completed. If a transaction
remains open, the log must be preserved because it’s still not clear whether the transaction is
done or ever will be done. The transaction might ultimately need to be rolled back or rolled
forward.

Note Truncating of the transaction log is a logical operation and merely marks parts of the
log as no longer needed, so the space can be reused. Truncation is not a physical operation and
does not reduce the size of the transaction log files on disk. To reduce the physical size, a shrink
operation must be performed.

Some SQL Server administrators have noted that the transaction log seems unable to be
truncated, even after the log has been backed up. This problem often results from a user
opening a transaction and then forgetting about it. For this reason, from an application
development standpoint, you should ensure that transactions are kept short. Another
possible reason for an inability to truncate the log relates to a table being replicated using
transactional replication when the replication log reader hasn't processed all the relevant log
records yet. This situation is less common, however, because typically a latency of only a few
seconds occurs while the log reader does its work. You can use DBCC OPENTRAN to look for
the earliest open transaction or the oldest replicated transaction not yet processed and then
take corrective measures (such as killing the offending process or running the sp_repldone
stored procedure to allow the replicated transactions to be purged). I'll discuss problems
with transaction management and some possible solutions in Chapter 10, “Transactions and
Concurrency.” I'll discuss shrinking of the log in the next section.

Reading the Log

Although the log contains a record of every change made to a database, it is not intended
to be used as an auditing tool. The transaction log is used to enable SQL Server to guarantee
recoverability in case of statement or system failure and to allow a system administrator to
take backups of the changes to a SQL Server database. If you want to keep a readable record
of changes to a database, you have to do your own auditing. You can do this by creating a
trace of SQL Server activities, using SQL Server Profiler or one of the tracing mechanisms in
SQL Server, as discussed in Chapter 2, “Change Tracking, Tracing, and Extended Events.”



Chapter 4 Logging and Recovery 187

Note You might be aware that some third-party tools can read the transaction log and show
you all the operations that have taken place in a database and can allow you to roll back any
of those operations. The developers of these tools spent tens of thousands of hours looking at
byte-level dumps of the transaction log files and correlating that information with the output
of an undocumented DBCC LOG command. Once they had a product on the market, Microsoft
started working with them, which made their lives a bit easier in subsequent releases. However,
no such tools are available for SQL Server 2008.

Although you might assume that reading the transaction log directly would be interesting or
even useful, it's usually just too much information. If you know in advance that you want to
keep track of what your server running SQL Server is doing, you're much better off defining a
trace with the appropriate filter to capture just the information that is useful to you.

Changes in Log Size

No matter how many physical files have been defined for the transaction log, SQL

Server always treats the log as one contiguous stream. For example, when the DBCC
SHRINKDATABASE command (discussed in Chapter 3) determines how much the log can be
shrunk, it does not consider the log files separately but instead determines the shrinkable size
based on the entire log.

Virtual Log Files

The transaction log for any database is managed as a set of virtual log files (VLFs) whose size is
determined internally by SQL Server based on the total size of all the log files and the growth
increment used when enlarging the log. When a log file is first created, it always has between
2 and 16 VLFs. If the file size is 1 MB or less, SQL Server divides the size of the log file by the
minimum VLF size [31 * 8 KB] to determine the number of VLFs. If the log file size is between

1 and 64 MB, SQL Server splits the log into 4 VLFs. If the log file is greater than 64 MB but

less than or equal to 1 GB, 8 VLFs are created. If the size is more than 1 GB, there will be

16 VLFs. When the log grows, the same formula is used to determine how many new VLFs

to add. A log always grows in units of entire VLFs and can be shrunk only to a VLF boundary.
(Figure 4-3 illustrates a physical log file, along with several VLFs.)

A VLF can be in one of four states:

Active The active portion of the log begins at the minimum LSN representing an active
(uncommitted) transaction. The active portion of the log ends at the last LSN written.
Any VLFs that contain any part of the active log are considered active VLFs. (Unused
space in the physical log is not part of any VLF.) Figure 4-3 contains two active VLFs.

Recoverable The portion of the log preceding the oldest active transaction is needed only
to maintain a sequence of log backups for restoring the database to a former state.



188 Microsoft SQL Server 2008 Internals

Reusable If transaction log backups are not being maintained or if you have already backed

up the log, VLFs before the oldest active transaction are not needed and can be reused.
Truncating or backing up the transaction log changes recoverable VLFs into reusable
VLFs. For the purpose of determining which VLFs are reusable, active transactions include
more than just open transactions. The earliest active transaction may be a transaction
marked for replication that has not yet been processed, the beginning of a log backup
operation, or the beginning of an internal diagnostic scan that SQL Server performs
periodically.

Unused One or more VLFs at the physical end of the log files might not have been used yet

if not enough logged activity has taken place or if earlier VLFs have been marked as
reusable and then reused.

VLF #1 VLF #2 VLF #3 VLF #4
Physical Unused
log file space
Truncated I l l
Minimum Last End of
LSN checkpoint |logical log
Start of Current log
logical log position
(first active VLF)

FIGURE 4-3 Multiple VLFs that make up a physical log file

Observing Virtual Log Files

You can observe the same key properties of virtual log files by executing the undocumented
command DBCC LOGINFO. This command takes no parameters, so it must be run in the
database for which you want information. It returns one row for each VLF. When | run this
command in my AdventureWorks2008 database, | get the following eight rows returned (not
all columns are shown):

FileId FileSize StartOffset FSeqNo Status CreateLSN

2 458752 8192 42 2 0

2 458752 466944 41 0 0

2 458752 925696 43 2 0

2 712704 1384448 44 2 0

2 4194304 2097152 47 2 44000000085601161
2 4194304 6291456 46 2 44000000085601161
2 4194304 10485760 40 2 44000000085601161
2 4194304 14680064 0 0 44000000085601161



Chapter 4 Logging and Recovery 189

The number of rows tells me how many VLFs are in my database. The FilelD column indicates
which of the log’s physical files contains the VLF; for my AdventureWorks2008 database, there
is only one physical log file. FileSize and StartOffset are indicated in bytes, so you can see that
the first VLF starts after 8192 bytes, which is the number of bytes in a page. The first physical
page of a log file contains header information, not log records, so the VLF is considered to
start on the second page. The FileSize column is actually redundant for most rows because
the size value can be computed by subtracting the StartOffset values for two successive VLFs.
The rows are listed in physical order, but that is not always the order in which the VLFs have
been used. The use order (logical order) is reflected in the column called FSeqgNo (which
stands for File Sequence Number).

In the output shown previously, you can see that the rows are listed in physical order according
to the StartOffset, but the logical order does not match. The FSeqgNo values indicate that

the seventh VLF is actually the first one in use (logical) order; the last one in use order is the
fifth VLF in physical order. The Status column indicates whether the VLF is reusable. A status

of 2 means that it is either active or recoverable; a status of 0 indicates that it is reusable or
completely unused. (A completely unused VLF has a FSegNo value of 0, as in the eighth row of
my output.) As | mentioned previously, truncating or backing up the transaction log changes
recoverable VLFs into reusable VLFs, so a status of 2 changes to a status of 0 for all VLFs that
don't include active log records. In fact, that's one way to tell which VLFs are active: the VLFs
that still have a status of 2 after a log backup or truncation must contain records from active
transactions. VLFs with a status of 0 can be reused for new log records, and the log does not
need to grow to keep track of the activity in the database. On the other hand, if all the VLFs

in the log have a status of 2, SQL Server needs to add new VLFs to the log to record new
transaction activity. One last column shown in the DBCC LOG output shown previously is called
CreatelSN. That column contains an LSN value; in fact, it is the current LSN at the time the VLF
was added to the transaction log. If the CreateLSN value is O, it means the VLF was part of the
original log file created when the database was created. You can also tell how many VLFs were
added in any one operation by noticing which VLFs have the same value for CreateLSN. In my
output, the CreateLSN values indicate that my log file only grew once, and four new VLFs were
added at the same time.

Multiple Log Files

I mentioned previously that SQL Server treats multiple physical log files as if they were one
sequential stream. This means that all the VLFs in one physical file are used before any VLFs
in the second file are used. If you have a well-managed log that is regularly backed up or
truncated, you might never use any log files other than the first one. If none of the VLFs in
multiple physical log files is available for reuse when a new VLF is needed, SQL Server adds
new VLFs to each physical log file in a round-robin fashion.

You can actually see the order of usage of different physical files by examining the output
of DBCC LOGINFO. The first column is the file_id of the physical file. If we can capture the
output of DBCC LOGINFO into a table, we can then sort it in a way that is useful to us. The



190

Microsoft SQL Server 2008 Internals

following code creates a table called sp_loginfo that can hold the output of DBCC LOGINFO.
Because the table is created in the master database and starts with the three characters ‘sp_,
it can be accessed and modified in any database:

USE master
GO

IF EXISTS (SELECT 1 FROM sys.tables

WHERE name = 'sp_LOGINFO')
DROP TABLE sp_loginfo;

GO
CREATE TABLE sp_LOGINFO

(Fileld tinyint,

FileSize bigint,

StartOffset bigint,

FSegNo int,

Status tinyint,

Parity tinyint,

CreateLSN numeric(25,0) );
GO

The following code creates a new database called TWO_LOGS and then copies a large table
from the AdventureWorks2008 sample database into TWO_LOGS, causing the log to grow:

USE Master
GO
IF EXISTS (SELECT * FROM sys.databases
WHERE name = 'TWO_LOGS')
DROP DATABASE TWO_LOGS;

GO
CREATE DATABASE TWO_LOGS
ON PRIMARY
(NAME = Data ,
FILENAME =
'C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\TWO_LOGS.mdf"'
, SIZE = 100 MB)
LOG ON
(NAME = TWO_LOGS1,
FILENAME =
'C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\TWO_LOGS1.1df"
, SIZE = 5 MB

, MAXSIZE = 2 GB),
(NAME = TWO_LOGS2,

FILENAME =
'C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\TWO_LOGS2.1df"'
, SIZE = 5 MB);

GO

If you run DBCC LOGINFO, you'll notice that it returns VLFs sorted by FilelD, and initially, the
file sequential number values (FSegNo) are also in order:

USE TWO_LOGS
GO
DBCC LOGINFO;
GO



Chapter 4 Logging and Recovery 191

Now we can insert some rows into the database, by copying from another table:

SELECT * INTO Orders
FROM AdventureWorks2008.Sales.SalesOrderDetail;
GO

If you run DBCC LOGINFO again, you see that after the SELECT INTO operation, even though
there are many more rows for each FilelD, the output is still sorted by FilelD, and FSeqgNo values
are not related at all. Instead, we can save the output of DBCC LOGINFO in the sp_loginfo table,
and sort by FSeqNo:

TRUNCATE TABLE sp_LOGINFO;
INSERT INTO sp_LOGINFO
EXEC ('DBCC LOGINFO");
GO
-- Unused VLFs have a Status of 0, so the CASE forces those to the end
SELECT * FROM sp_LOGINFO
ORDER BY CASE FSegqNo WHEN O THEN 9999999 ELSE FSeqNo END;
GO

The output of the SELECT is shown here:

Fileld StartOffset FSeqNo Status CreatelSN

2 8192 43 0 0

2 1253376 44 0 0

2 2498560 45 0 0

2 3743744 46 0 0

3 8192 47 0 0

3 1253376 48 0 0

3 2498560 49 0 0

3 3743744 50 0 0

2 5242880 51 0 50000000247200092
2 5496832 52 0 50000000247200092
3 5242880 53 0 51000000035600288
3 5496832 54 0 51000000035600288
2 5767168 55 0 53000000037600316
2 6021120 56 0 53000000037600316
3 5767168 57 0 56000000010400488
3 6021120 58 0 56000000010400488
2 6356992 59 0 58000000007200407
2 6610944 60 0 58000000007200407
3 6356992 61 0 60000000025600218
3 6610944 62 0 60000000025600218
2 7012352 63 0 62000000023900246
2 7266304 64 0 62000000023900246
3 7012352 65 0 64000000037100225
3 7266304 66 0 64000000037100225
2 7733248 67 0 66000000037600259
2 7987200 68 0 66000000037600259
2 8241152 69 0 66000000037600259
3 7733248 70 0 68000000035500288
3 7987200 71 0 68000000035500288



192

Microsoft SQL Server 2008 Internals

3 8241152 72 0 68000000035500288
2 8519680 73 0 71000000037300145
2 8773632 74 0 71000000037300145
2 9027584 75 0 71000000037300145
3 8519680 76 0 75000000018700013
3 8773632 77 2 75000000018700013
3 9027584 0 0 75000000018700013

Now you can notice that after the first eight initial VLFs are used (the ones with a CreateL SN
value of 0), the VLFs alternate between the physical files. Because of the amount of log
growth each time, several new VLFs are created, first from File/D 2 and then from FilelD 3.
The last VLF added to FilelD 3 has not been used yet.

So there is really no reason to use multiple physical log files if you have done thorough
testing and have determined the optimal size of your database’s transaction log. However,
if you find that the log needs to grow more than expected and if the volume containing the
log does not have sufficient free space to allow the log to grow enough, you might need to
create a second log file on another volume.

Automatic Truncation of Virtual Log Files

SQL Server assumes you're not maintaining a sequence of log backups if any of the following
is true:

B You have configured the database to truncate the log on a regular basis by setting the
recovery model to SIMPLE.

B You have never taken a full database backup.

Under any of these circumstances, SQL Server truncates the database'’s transaction log every
time it gets “full enough.” (I'll explain this in a moment.) The database is considered to be in
autotruncate mode.

Remember that truncation means that all log records prior to the oldest active transaction
are invalidated and all VLFs not containing any part of the active log are marked as reusable.
It does not imply shrinking of the physical log file. In addition, if your database is a publisher
in a replication scenario, the oldest open transaction could be a transaction marked for
replication that has not yet been replicated.

“Full enough” means that there are more log records than can be redone during system startup
in a reasonable amount of time—the recovery interval. You can change the recovery interval
manually by using the sp_configure stored procedure or by using SQL Server Management
Studio, as discussed in Chapter 1. However, it is best to let SQL Server autotune this value. In
most cases, this recovery interval value is set to one minute. By default, sp_configure shows zero
minutes, meaning SQL Server autotunes the value. SQL Server bases its recovery interval on the
estimate that 10 MB worth of transactions can be recovered in one minute.



Chapter 4 Logging and Recovery 193

The actual log truncation is invoked by the checkpoint process, which is usually sleeping and
is awakened only on demand. Each time a user thread calls the log manager, the log manager
checks the size of the log. If the size exceeds the amount of work that can be recovered during
the recovery interval, the checkpoint thread is woken up. The checkpoint thread checkpoints
the database and then truncates the inactive portion of the log.

In addition, if the log ever gets to 70 percent full while the database is in autotruncate mode,
the log manager wakes the checkpoint thread to force a checkpoint. Growing the log is much
more expensive than truncating it, so SQL Server truncates the log whenever it can.

Note If the log manager is never needed, the checkpoint process won't be invoked and the
truncation never happens. If you have a database in autotruncate mode, for which the transaction
log has VLFs with a status of 2, you do not see the status change to 0 until some logging activity
is required in the database.

If the log is regularly truncated, SQL Server can reuse space in the physical file by cycling

back to an earlier VLF when it reaches the end of the physical log file. In effect, SQL Server
recycles the space in the log file that is no longer needed for recovery or backup purposes. My
AdventureWorks2008 database is in this state because | have never made a full database backup.

Maintaining a Recoverable Log

If a log backup sequence is being maintained, the part of the log before the minimum LSN
cannot be overwritten until those log records have actually been backed up. The VLF status stays
at 2 until the log backup occurs. After the log backup, the status changes to 0 and SQL Server
can cycle back to the beginning of the file. Figure 4-4 depicts this cycle in a simplified fashion.
As you can see from the FSegNo values in the earlier output from the AdventureWorks2008
database, SQL Server does not always reuse the log files in their physical sequence.

VLF #1 VLF #2 VLF #3 VLF #4

—_—t————
Physical
log file

[

Minimum Last
LSN  checkpoint

Current log End of Start of
position logical log logical log

FIGURE 4-4 The active portion of the log cycling back to the beginning of the physical log file



194

Microsoft SQL Server 2008 Internals

Note If a database is not in autotruncate mode and you are not performing regular log backups,
your transaction log is never truncated. If you are doing only full database backups, you must
truncate the log manually to keep it at a manageable size.

The easiest way to tell whether a database is in autotruncate mode is by using the catalog
view called sys.database_recovery_status and looking in the column called last_log_backup_Isn.
If that column value is null, the database is in autotruncate mode.

You can actually observe the difference between a database that is in autotruncate mode and
a database that isn't by running a simple script in the pubs database, which is shown at the
end of this paragraph. This script works so long as you have never made a full backup of the
pubs database. If you have never made any modifications to pubs, and you installed it using
the Instpubs.sql script, the size of its transaction log file is just about 0.75 MB, which is the

size at creation. The following script creates a new table in the pubs database, inserts three
records, and then updates those records 1,000 times. Each update is an individual transaction,
and each one is written to the transaction log. However, you should note that the log does
not grow at all, and the number of VLFs does not increase even after 3,000 update records
are written. (If you've already taken a backup of pubs, you might want to re-create the
database before trying this example. You can do that by running the script Instpubs.sql again,
which you can download from the companion Web site, http.//www.SQLServerinternals.com/
companion.) However, even though the number of VLFs does not change, you see that the
FSeqNo values change. Log records are being generated, and as each VLF is reused, it gets a
new FSeqNo value:

USE pubs;
-- First look at the VLFs for the pubs database
DBCC LOGINFO;
-- Now verify that pubs is in auto truncate mode
SELECT last_log_backup_Tsn
FROM master.sys.database_recovery_status
WHERE database_id = db_id('pubs');
GO
CREATE TABLE newtable (a int);
GO
INSERT INTO newtable VALUES (10);
INSERT INTO newtable VALUES (20);
INSERT INTO newtable VALUES (30);
GO
SET NOCOUNT ON
DECLARE @counter 1int;
SET @counter =1 ;
WHILE @counter < 1000 BEGIN
UPDATE newtable SET a = a + 1;
SET @counter = @counter + 1;
END;

Now make a backup of the pubs database after making sure that the database is not in the
SIMPLE recovery model. I'll discuss recovery models later in this chapter, but for now, you



Chapter 4 Logging and Recovery 195

can just make sure that pubs is in the appropriate recovery model by executing the following
command:

ALTER DATABASE pubs SET RECOVERY FULL;

You can use the following statement to make the backup, substituting the path shown with
the path to your SQL Server installation, or the path to any backup location:

BACKUP DATABASE pubs to disk =
'c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\backup\pubs.bak";

As soon as you make the full backup, you can verify that the database is not in autotruncate
mode, again by looking at the database_recovery_status view:

SELECT last_log_backup_Tsn
FROM master.sys.database_recovery_status
WHERE database_id = db_id('pubs');

This time, you should get a non-null value for last_log_backup_Isn to indicate that log backups
are expected. Next, run the update script again, starting with the DECLARE statement. You
should see that the physical log file has grown to accommodate the log records added and
that there are more VLFs. The initial space in the log could not be reused because SQL Server
assumed that you were saving that information for transaction log backups.

Now you can try to shrink the log back down again. The first thing that you need to do is
truncate the log, which you can do by setting the recovery model to SIMPLE as follows:

ALTER DATABASE pubs SET RECOVERY SIMPLE;

If you then issue the following command, or if you issue the DBCC SHRINKDATABASE
command for the pubs database, SQL Server shrinks the log file:

DBCC SHRINKFILE (2);

At this point, you should notice that the physical size of the log file has been reduced. If a log
is truncated without any shrink command issued, SQL Server marks the space used by the
truncated records as available for reuse but does not change the size of the physical file.

In SQL Server 7.0, where this log architecture was first introduced, running the preceding
commands exactly as specified did not always shrink the physical log file. When the log file
did not shrink, it was because the active part of the log was located at the end of the physical
file. Physical shrinking can take place only from the end of the log, and the active portion is
never shrinkable. To remedy this situation, you had to enter some dummy transactions after
truncating the log to force the active part of the log to move around to the beginning of the
file. In versions later than SQL Server 7.0, this process is unnecessary. If a shrink command has
already been issued, truncating the log internally generates a series of NO-OP (or dummy)
log records that force the active log to move from the physical end of the file. Shrinking
happens as soon as the log is no longer needed.



196

Microsoft SQL Server 2008 Internals

Automatic Shrinking of the Log

Remember that truncating is not shrinking. A database should be truncated so that it is most
shrinkable, and if the log is in autotruncate mode and the autoshrink option is set, the log is
physically shrunk at regular intervals.

If a database has the autoshrink option on, an autoshrink process kicks in every 30 minutes (as
discussed in Chapter 3) and determines the size to which the log should be shrunk. The log
manager accumulates statistics on the maximum amount of log space used in the 30-minute
interval between autoshrink processes. The autoshrink process marks the shrinkpoint of the
log as 125 percent of the maximum log space actually used or the minimum size of the log,
whichever is larger. (Minimum size is the creation size of the log or the size to which it has
been manually increased or decreased.) The log then shrinks to that size whenever it gets the
chance, which is when it gets truncated or backed up. It's possible to have autoshrink without
having the database in autotruncate mode, although you cannot guarantee that the log
actually shrinks. For example, if the log is never backed up, none of the VLFs are marked as
reusable, so no shrinking can take place.

As a final note, you need to be aware that just because a database is in autotruncate mode,
you cannot guarantee that the log won't grow. (It is the converse that you can be sure of—
that if a database is not in autotruncate mode, the log will grow.) Autotruncate means only
that VLFs that are considered recoverable are marked as reusable at regular intervals. But VLFs
in an active state are not affected. If you have a long-running transaction (which might be a
transaction that someone forgot to commit), all the VLFs that contain any log records since
that long-running transaction started are considered active and can never be reused. One
uncommitted transaction can mean the difference between a very manageable transaction
log size and a log that uses more disk space than the database itself and continues to grow.

Log File Size

You can see the current size of the log file for all databases, as well as the percentage of the log
file space that has been used, by running the command DBCC SQLPERF(‘logspace’). However,
because it is a DBCC command, it's hard to filter the rows to get just the rows for a single
database. Instead, you can use the dynamic management view sys.dm_os_performance_counters
and retrieve the percentage full for each database’s log:

SELECT dinstance_name as [Database],
cntr_value as "LogFullPct"
FROM sys.dm_os_performance_counters
WHERE counter_name LIKE 'Percent Log Used%'
AND instance_name not in ('_Total', ‘mssqglsystemresource')
AND cntr_value > 0;

The final condition is needed to filter out databases that have no log file size reported. This
includes any database that is unavailable because it has not been recovered or is in a suspect
state, as well as any database snapshots, which have no transaction log.



Chapter 4 Logging and Recovery 197

Backing Up and Restoring a Database

As you probably know by now, this book is not intended to be a how-to book for database
administrators. The bibliography in the companion content lists several excellent books that
can teach you the mechanics of making database backups and restoring and can offer best
practices for setting up a backup-and-restore plan for your organization. Nevertheless, some
important issues relating to backup and restore processes can help you understand why one
backup plan might be better suited to your needs than another. Most of these issues involve
the role the transaction log plays in backup and restore operations, so I'll discuss the main
ones in this section.

Types of Backups

No matter how much fault tolerance you have implemented on your database system, it is no
replacement for regular backups. Backups can provide a solution to accidental or malicious

data modifications, programming errors, and natural disasters (if you store backups in a remote
location). If you opt for the fastest possible speed for data file access at the cost of fault tolerance,
backups provide insurance in case your data files are damaged. In addition, backups are also the
preferred way to manage copying of databases to other machines or other instances.

If you're using a backup to restore lost data, the amount of data that is potentially recoverable
depends on the type of backup. SQL Server 2008 has four main types of backups (and a couple
of variations on those types):

Full backup A full database backup basically copies all the pages from a database onto a
backup device, which can be a local or network disk file, or a local tape drive.

Differential backup A differential backup copies only the extents that were changed since
the last full backup was made. The extents are copied onto a specified backup device.
SQL Server can tell quickly which extents need to be backed up by examining the bits on
the Differential Changed Map (DCM) pages for each data file in the database. DCM pages
are big bitmaps, with one bit representing an extent in a file, just like the Global Allocation
Map (GAM) and Shared Global Allocation Map (SGAM) pages that | discussed in Chapter 3.
Each time a full backup is made, all the bits in the DCM are cleared to 0. When any page in
an extent is changed, its corresponding bit in the DCM page is changed to 1.

Log backup In most cases, a log backup copies all the log records that have been written
to the transaction log since the last full or log backup was made. However, the exact
behavior of the BACKUP LOG command depends on your database’s recovery mode
setting. I'll discuss recovery modes shortly.

File and filegroup backup File and filegroup backups are intended to increase flexibility in
scheduling and media handling compared to full backups, in particular for very large
databases. File and filegroup backups are also useful for large databases that contain
data with varying update characteristics, meaning some filegroups allow both read and
write operations and some are read-only.



198

Microsoft SQL Server 2008 Internals

More Info For full details on the mechanics of defining backup devices, making backups, and
scheduling backups to occur at regular intervals, consult SQL Server Books Online or one of the
SQL Server administration books listed in the bibliography in the online companion content.

A full backup can be made while your database is in use. This is considered a “fuzzy” backup—
that is, it is not an exact image of the state of the database at any particular point in time.

The backup threads just copy extents, and if other processes need to make changes to those
extents while the backup is in progress, they can do so.

To maintain consistency for either full, differential, or file backups, SQL Server records the
current log sequence number (LSN) at the time the backup starts and again at the time

the backup ends. This allows the backup to capture the relevant parts of the log as well. The
relevant part starts with the oldest active transaction at the time of the first recorded LSN
and ends with the second recorded LSN.

As | mentioned previously, what gets recorded with a log backup depends on the recovery
model that you are using. So before | talk about log backup in detail, I'll tell you about
recovery models.

Recovery Models

As | said in Chapter 3 when | discussed database options, the RECOVERY option has three
possible values: FULL, BULK_LOGGED, or SIMPLE. The value that you choose determines the
size of your transaction log, the speed and size of your transaction log backups (or whether
you can make log backups at all), as well as the degree to which you are at risk of losing
committed transactions in case of media failure.

FULL Recovery Model

The FULL recovery model provides the least risk of losing work in the case of a damaged
data file. If a database is in this mode, all operations are fully logged. This means that in
addition to logging every row added with the INSERT operation, removed with the DELETE
operation, or changed with the UPDATE operation, SQL Server also writes to the transaction
log in its entirety every row inserted using a bcp or BULK INSERT operation. If you experience
a media failure for a database file and need to recover a database that was in FULL recovery
mode and you've been making regular transaction log backups preceded by a full database
backup, you can restore to any specified point in time up to the time of the last log backup.
In addition, if your log file is available after the failure of a data file, you can restore up to the
last transaction committed before the failure. SQL Server 2008 also supports a feature called
log marks, which allows you to place reference points in the transaction log. If your database
is in FULL recovery mode, you can choose to recover to one of these log marks.



Chapter 4 Logging and Recovery 199

In FULL recovery mode, SQL Server also fully logs CREATE INDEX operations. When you
restore from a transaction log backup that includes index creations, the recovery operation
is much faster because the index does not have to be rebuilt—all the index pages have been
captured as part of the database backup. Prior to SQL Server 2000, SQL Server logged only
the fact that an index had been built, so when you restored from a log backup, the entire
index would have to be built all over again.

So FULL recovery mode sounds great, right? As always, there are trade-offs. The biggest
trade-off is that the size of your transaction log files can be enormous, so it can take much
longer to make log backups than with releases prior to SQL Server 2000.

BULK_LOGGED Recovery Model

The BULK_LOGGED recovery model allows you to restore a database completely in case of
media failure and also gives you the best performance and least log space usage for certain bulk
operations. In FULL recovery mode, these operations are fully logged, but in BULK_LOGGED
recovery mode, they are logged only minimally. This can be much more efficient than normal
logging because in general, when you write data to a user database, you must write it to disk
twice: once to the log and once to the database itself. This is because the database system uses
an undo/redo log so it can roll back or redo transactions when needed. Minimal logging consists
of logging only the information that is required to roll back the transaction without supporting
point-in-time recovery. These bulk operations include:

m SELECTINTO

0 This command always creates a new table in the default filegroup.
®  Bulk import operations, including the following:

0 The BULK INSERT command

QO The bcp executable

B The INSERT INTO ... SELECT command, when data is selected using the
OPENROWSET(BULK. . .) function.

B The INSERT INTO ... SELECT command, when more than an extent’s worth of data is
being inserted into a table without nonclustered indexes and the TABLOCK hint is used.
If the destination table is empty, it can have a clustered index. If the destination table
is already populated, it cannot. (This option can be useful to create a new table in a
nondefault filegroup with minimal logging. The SELECT INTO command does not allow
specifying a filegroup.)

B Partial updates to columns having a large value data type (which will be discussed in
Chapter 7, “Special Storage”).

B Using the WRITE clause in the UPDATE statement when inserting or appending new
data.



200 Microsoft SQL Server 2008 Internals

B WRITETEXT and UPDATETEXT statements when inserting or appending new data into
LOB data columns (text, ntext, or image).

@ Minimal logging is not used in these cases when existing data is updated.
B Index operations

Q  CREATE INDEX, including indexes on views

0 ALTER INDEX REBUILD or DBCC DBREINDEX

@  DROP INDEX. The creation of the new heap is minimally logged, but the page
deallocation is always fully logged.

When you execute one of these bulk operations, SQL Server logs only the fact that the operation
occurred and information about space allocations. Every data file in a SQL Server 2008 database
has at least one special page called a Bulk Changed Map (BCM) page, or also called a Minimally
Logged Map (ML Map) page, which is managed much like the GAM and SGAM pages that

| discussed in Chapter 3 and the DCM pages that | mentioned previously. Each bit on a BCM
page represents an extent, and if the bit is 1, it means that this extent has been changed by a
minimally logged bulk operation since the last transaction log backup. A BCM page is located
on the eighth page of every data file and every 511,230 pages thereafter. All the bits on a BCM
page are reset to 0 every time a log backup occurs.

Because of the ability to minimally log bulk operations, the operations themselves can
potentially be carried out much faster than in FULL recovery mode. However, the speed
improvement is not guaranteed. The only guarantee with minimally logged operations is that
the log itself is smaller. Minimal logging might actually be slower than fully logged operations
in certain cases. Although there are not as many log records to write, with minimal logging
SQL Server forces the data pages to be flushed to disk before the transaction commits. This
forced flushing of the data pages can be very expensive, especially when the I/O for these
pages is random. You can contrast this to full logging, which is always sequential I/O. If you
don't have a fast I/O subsystem, it can become very noticeable that minimal logging is slower
than full logging.

In general, minimal logging does not mean no logging, and it doesn’t minimize logging

for all operations. It is a feature that minimizes the amount of logging for the operations
described previously, and if you have a high-performance 1/O subsystem, performance likely
improves as well. But on lower-end machines, minimally logged operations are slower than
fully logged operations.

If your database is in BULK_LOGGED mode and you have not actually performed any bulk
operations, you can restore your database to any point in time or to a named log mark
because the log contains a full sequential record of all changes to your database.

The trade-off to having a smaller log comes during the backing up of the log. In addition to
copying the contents of the transaction log to the backup media, SQL Server scans the BCM



Chapter 4 Logging and Recovery 201

pages and backs up all the modified extents along with the transaction log itself. The log
file itself stays small, but the backup of the log can be many times larger. So the log backup
takes more time and might take up a lot more space than in FULL recovery mode. The time
it takes to restore a log backup made in BULK_LOGGED recovery mode is similar to the time
it takes to restore a log backup made in FULL recovery mode. The operations don't have to
be redone; all the information necessary to recover all data and index structures is available
in the log backup.

SIMPLE Recovery Model

The SIMPLE recovery model offers the simplest backup-and-restore strategy. Your transaction
log is truncated whenever a checkpoint occurs, which happens at regular, frequent intervals.
Therefore, the only types of backups that can be made are those that don't require log
backups. These types of backups are full database backups, differential backups, partial full
and differential backups, and filegroup backups for read-only filegroups. You get an error if
you try to back up the log while in SIMPLE recovery mode. Because the log is not needed for
backup purposes, sections of it can be reused as soon as all the transactions that it contains
are committed or rolled back, and the transactions are no longer needed for recovery from
server or transaction failure. In fact, as soon as you change your database to SIMPLE recovery
model, the log is truncated.

Keep in mind that SIMPLE logging does not mean no logging. What's “simple” is your backup
strategy, because you never need to worry about log backups. However, all operations are
logged in SIMPLE mode, even though some operations may have fewer log records in that
mode than in FULL mode. A log for a database in SIMPLE mode might not grow as much as a
database in FULL mode because the bulk operations discussed earlier in this chapter also are
minimally logged in SIMPLE mode. This does not mean you don't have to worry about the
size of the log in SIMPLE mode. As in any recovery mode, log records for active transactions
cannot be truncated, and neither can log records for any transaction that started after the
oldest open transaction. So if you have large or long-running transactions, you still might
need lots of log space.

Compatibility with Database Options

Microsoft introduced these recovery models in SQL Server 2000 and intended them to
replace the select into/bulkcopy and trunc. log on chkpt. database options. SQL Server 7.0

and earlier versions required that the select into/bulkcopy option be set for you to perform a
SELECT INTO or bulk copy operation. The trunc. log on chkpt. option forced your transaction
log to be truncated every time a checkpoint occurred in the database. This option was
recommended only for test or development systems, not for production servers. You can still
set these options by using the sp_dboption procedure, but not by using the ALTER DATABASE
command. However, with versions later than SQL Server 7.0, changing either of these options
using sp_dboption also changes your recovery model, and changing your recovery model



202

Microsoft SQL Server 2008 Internals

changes the value of one or both of these options, as you'll see here. The recommended
method for changing your database recovery mode is to use the ALTER DATABASE command:

ALTER DATABASE <database_name>
SET RECOVERY [FULL | BULK_LOGGED | SIMPLE]

To see what mode your database is in, you can inspect the sys.databases view. For example,
this query returns the recovery mode and the state of the AdventureWorks2008 database:

SELECT name, database_id, suser_sname(owner_sid) as owner ,
state_desc, recovery_model_desc

FROM sys.databases

WHERE name = 'AdventureWorks2008'

As | just mentioned, you can change the recovery mode by changing the database options. For
example, if your database is in FULL recovery mode and you change the select into/bulkcopy
option to true, your database recovery mode changes to BULK_LOGGED. Conversely, if you
force the database back into FULL mode by using ALTER DATABASE, the value of the select into/
bulkcopy option changes. If you're using SQL Server 2008 Standard or Enterprise edition, the
model database starts in FULL recovery mode, so all your new databases will also be in FULL
mode. You can change the mode of the model database or any other user database by using
the ALTER DATABASE command.

To make best use of your transaction log, you can switch between FULL and BULK_LOGGED mode
without worrying about your backup scripts failing. Prior to SQL Server 2000, once you performed
a SELECT INTO command or a bulk copy, you could no longer back up your transaction log. So

if you had automatic log backup scripts scheduled to run at regular intervals, they would break
and generate an error. This can no longer happen. You can run SELECT INTO or bulk copy in any
recovery mode, and you can back up the log in either FULL or BULK_LOGGED mode. You might
want to switch between FULL and BULK_LOGGED modes if you usually operate in FULL mode but
occasionally need to perform a bulk operation quickly. You can change to BULK_LOGGED and pay
the price later when you back up the log; the backup simply takes longer and is larger.

You can't easily switch to and from SIMPLE mode if you're trying to maintain a sequence of
log backups. Switching into SIMPLE mode is no problem, but when you switch back to FULL
or BULK_LOGGED, you need to plan your backup strategy and be aware that there are no log
backups up to that point. So when you use the ALTER DATABASE command to change from
SIMPLE to FULL or BULK_LOGGED, you should first make a complete database backup in
order for the change in behavior to be complete. Remember that in SIMPLE recovery mode,
your transaction log is truncated at regular intervals. This recovery mode isn't recommended
for production databases, where you need maximum transaction recoverability. The only
time that SIMPLE mode is really useful is in test and development situations or for small
databases that are primarily read-only. | suggest that you use FULL or BULK_LOGGED for
your production databases and switch between those modes whenever you need to.



Chapter 4 Logging and Recovery 203

Choosing a Backup Type

If you're responsible for creating the backup plan for your data, you need to choose not only
a recovery model but also the kind of backup to make. | mentioned the three main types:
full, differential, and log. In fact, you can use all three types together. To accomplish any type
of full restore of a database, you must make a full database backup occasionally, to use as a
starting point for other types of backups. In addition, you may choose among a differential
backup, a log backup, or a combination of both. Here are the characteristics of these last two
types, which can help you decide between them.

A differential backup

B s faster if your environment includes a lot of changes to the same data. It backs up
only the most recent change, whereas a log backup captures every individual update.

B Captures the entire B-tree structures for new indexes, whereas a log backup captures
each individual step in building the index.

B |s cumulative. When you recover from a media failure, only the most recent differential
backup needs to be restored because it contains all the changes since the last full
database backup.

A log backup

B Allows you to restore to any point in time because it is a sequential record of all
changes.

B Can be made after the database media fails, so long as the log is available. This allows
you to recover right up to the point of the failure. The last log backup (called the tail of
the log) must specify the WITH NO_TRUNCATE option in the BACKUP LOG command if
the database itself is unavailable.

B s sequential and discrete. Each log backup contains completely different log records.
When you use a log backup to restore a database after a media failure, all log backups
must be applied in the order that they were made.

Remember that backups can be created as compressed backups, as briefly discussed in
Chapter 1. This can greatly reduce the amount of time and space required to actually create
the backup (full, differential, or log) on the backup device. The algorithm for compressing
backups is very different than the algorithms used for row or page data compression.

| elaborate on the differences in Chapter 7.

Restoring a Database

How often you make each type of backup determines two things: how fast you can restore
a database and how much control you have over which transactions are restored. Consider



204

Microsoft SQL Server 2008 Internals

the schedule in Figure 4-5, which shows a database fully backed up on Sundays. The log is
backed up daily, and a differential backup is made on Tuesdays and Thursdays. A drive failure
occurs on a Friday. If the failure does not include the log files, or if you have mirrored them
using RAID 1, you should back up the tail of the log with the NO_TRUNCATE option.

Warning If you are operating in BULK_LOGGED recovery mode, backing up the log also backs
up any data that was changed with a BULK_LOGGED operation, so you might need to have more
than just the log file available to back up the tail of the log. You also need to have available any
filegroups containing data inserted by a minimally logged operation.

Log
backups
!
Sunday Monday Tuesday Wednesday | Thursday Fridav Saturday

D0
T | |

Full Differential Differential
database database database
backup backup backup

FIGURE 4-5 The combined use of log and differential backups, which reduces total restore time

To restore this database after a failure, you must start by restoring the full backup made on
Sunday. This does two things: it copies all the data and index extents, as well as all the log
blocks, from the backup media to the database files, and it applies all the transactions in the
log. You must determine whether incomplete transactions are rolled back. You can opt to
recover the database by using the WITH RECOVERY option of the RESTORE command. This
rolls back any incomplete transactions and opens the database for use. No further restoring
can be done. If you choose not to roll back incomplete transactions by specifying the WITH
NORECOVERY option, the database is left in an inconsistent state and is not usable.

If you choose WITH NORECOVERY, you can then apply the next backup. In the scenario
depicted in Figure 4-5, you would restore the differential backup made on Thursday, which
would copy all the changed extents back into the data files. The differential backup also
contains the log records spanning the time the differential backup was being made, so you
have to decide whether to recover the database. Complete transactions are always rolled
forward, but you determine whether incomplete transactions are rolled back.



Chapter 4 Logging and Recovery 205

After the differential backup is restored, you must restore, in sequence, all the log backups
made after the differential backup was made. This includes the tail of the log backed up after
the failure if you were able to make this last backup.

Note Restore recovery (media recovery) is similar to restart recovery, which | described
previously in this chapter, but it is a REDO-only operation. It includes an analysis pass to
determine how much work might need to be done, and then a roll-forward pass to redo
completed transactions and return the database to the state it was in when the backup was
complete. Unlike restart restore recovery, you have control over when the rollback pass is done.
It should not be done until all the rolling forward from all the backups has been applied. Once
a RESTORE WITH RECOVERY is specified, after the redo pass, the database is restarted and SQL
Server runs a restart recovery to undo incomplete transactions. In addition, SQL Server might
need to make some adjustments to metadata after the recovery is complete, so no access to the
database is allowed until all phases of recovery are finished. In other words, you don't have the
option to use “fast” recovery as part of a RESTORE.

Backing Up and Restoring Files and Filegroups

SQL Server 2008 allows you to back up individual files or filegroups. This can be useful in
environments with extremely large databases. You can choose to back up just one file or
filegroup each day, so the entire database does not have to be backed up as often. This also
can be useful when you have an isolated media failure on a single drive and you think that
restoring the entire database would take too long.

Here are some details to keep in mind about backing up and restoring files and filegroups:

B |ndividual files and filegroups with the read-write property can be backed up only when
your database is in FULL or BULK_LOGGED recovery mode because you must apply log
backups after you restore a file or filegroup, and you can't make log backups in SIMPLE
mode. Read-only filegroups and the files in them can be backed up in SIMPLE mode.

B You can restore individual file or filegroup backups from a full database backup.

B |Immediately before restoring an individual file or filegroup, you must back up the
transaction log. You must have an unbroken chain of log backups from the time the file
or filegroup backup was made.

B After restoring a file or filegroup backup, you must restore all the transaction logs
made between the time you backed up the file or filegroup and the time you restored
it. This guarantees that the restored files are in sync with the rest of the database.

For example, suppose that you back up filegroup FGI at 10 a.M. on Monday. The database is
still in use, and changes happen to data in FGI and transactions are processed that change
data in both FGI and other filegroups. You back up the log at 4 p.m. More transactions are
processed that change data in both FGI and other filegroups. At 6 p.m., a media failure occurs
and you lose one or more of the files that make up FGI.



206

Microsoft SQL Server 2008 Internals

To restore, you must first back up the tail of the log containing all changes that occurred
between 4 p.m. and 6 p.m. The tail of the log is backed up using the special WITH NO_TRUNCATE
option, but you can also use the NORECOVERY option. When backing up the tail of the log

WITH NORECOVERY, the database is put into the RESTORING state and can prevent an accidental
background change from interfering with the restore sequence.

You can then restore FGI using the RESTORE DATABASE command, specifying just filegroup
FG1. Your database is not in a consistent state because the restored FGI has changes only
through 10 a.m., and the rest of the database has changes through 6 r.m. However, SQL Server
knows when the last change was made to the database because each page in a database stores
the LSN of the last log record that changed that page. When restoring a filegroup, SQL Server
makes a note of the maximum LSN in the database. You must restore log backups until the log
reaches at least the maximum LSN in the database, and you do not reach that point until you
apply the 6 r.m. log backup.

Partial Backups

A partial backup can be based either on a full or a differential backup, but a partial backup
does not contain all the filegroups. Partial backups contain all the data in the primary
filegroup and all the read-write filegroups. In addition, you can specify that any read-only
files also be backed up. If the entire database is marked as read-only, a partial backup
contains only the primary filegroup. Partial backups are particularly useful for very large
databases (VLDBs) using the SIMPLE recovery model because they allow you to back up only
specific filegroups, even without having log backups.

Page Restore

SQL Server 2008 also allows you to restore individual pages. When SQL Server detects a damaged
page, it marks it as suspect and stores information about the page in the suspect_pages table in
the msdb database.

Damaged pages can be detected when activities such as the following take place:

B A query needs to read a page.

B DBCC CHECKDB or DBCC CHECKTABLE is being run.

B BACKUP or RESTORE is being run.

B You are trying to repair a database with DBCC DBREPAIR.

Several types of errors can require a page to be marked as suspect and entered into the
suspect_pages table. These can include checksum and torn page errors, as well as internal
consistency problems, such as a bad page ID in the page header. The column event_type in
the suspect_pages table indicates the reason for the status of the page, which usually reflects



Chapter 4 Logging and Recovery 207

the reason the page has been entered into the suspect_pages table. SQL Server Books Online
lists the following possible values for the event_type column:

event_type value Description

1 823 error caused by an operating system CDC error or 824 errors other than a
bad checksum or a torn page (for example, a bad page ID).

Bad checksum.

Torn page.

Restored. (The page was restored after it was marked as bad.)
Repaired. (DBCC repaired the page.)

Deallocated by DBCC.

N oo b owoN

Some of the errors recorded in the suspect_pages table might be transient errors, such as

an 1/O error that occurs because a cable has been disconnected. Rows can be deleted from
the suspect_pages table by someone with the appropriate permissions, such as someone in
the sysadmin server role. In addition, not all errors that cause a page to be inserted in the
suspect_pages table require that the page be restored. A problem that occurs in cached data,
such as in a nonclustered index, might be resolved by rebuilding the index. If a sysadmin
drops a nonclustered index and rebuilds it, the corrupt data, although fixed, is not indicated
as fixed in the suspect_pages table.

Page restore is specifically intended to replace pages that have been marked as suspect
because of an invalid checksum or a torn write. Although multiple database pages can be
restored at once, you aren't expected to be replacing a large number of individual pages.

If you do have many damaged pages, you should probably consider a full file or database
restore. In addition, you should probably try to determine the cause of the errors; if you
discover a pending device failure, you should do your full file or database restore to a new
location. Log restores must be done after the page restores to bring the new pages up to
date with the rest of the database. Just as with file restore, the log backups are applied to the
database files containing a page that is being recovered.

In an online page restore, the database is online for the duration of the restore, and only
the data being restored is offline. Note that not all damaged pages can be restored with the
database online.

Note Online page restore is allowed only in SQL Server 2008 Enterprise Edition.

SQL Server Books Online lists the following basic steps for a page restore:

1. Obtain the page IDs of the damaged pages to be restored. A checksum or torn write
error returns the page ID, which is the information needed for specifying the pages.
You can also get page IDs from the suspect_pages table.



208

Microsoft SQL Server 2008 Internals

2. Start a page restore with a full, file, or filegroup backup that contains the page or pages
to be restored. In the RESTORE DATABASE statement, use the PAGE clause to list the
page IDs of all the pages to be restored. The maximum number of pages that can be
restored in a single file is 1,000.

3. Apply any available differentials required for the pages being restored.
4. Apply the subsequent log backups.

5. Create a new log backup of the database that includes the final LSN of the restored
pages—that is, the point at which the last restored page was taken offline. The final
LSN, which is set as part of the first restore in the sequence, is the redo target LSN.
Online roll-forward of the file containing the page can stop at the redo target LSN.
To learn the current redo target LSN of a file, see the redo_target_Isn column of
sys.master files.

6. Restore the new log backup. Once this new log backup is applied, the page restore is
complete and the pages are usable. All the pages that were bad are affected by the
log restore. All other pages have a more recent LSN in their page header, and there is
nothing to redo. In addition, no UNDO phase is needed for page-level restore.

Partial Restore

SQL Server 2008 lets you do a partial restore of a database in emergency situations.
Although the description and the syntax look similar to file and filegroup backup and restore,
there is a big difference. With file and filegroup restore, you start with a complete database
and replace one or more files or filegroups with previously backed up versions. With a partial
database restore, you don't start with a full database. You restore individual filegroups, which
must include the primary filegroup containing all the system tables, to a new location. Any
filegroups that you don’t restore are treated as offline when you attempt to refer to data
stored on them. You can then restore log backups or differential backups to bring the data

in those filegroups to a later point in time. This allows you the option of recovering the data
from a subset of tables after an accidental deletion or modification of table data. You can use
the partially restored database to extract the data from the lost tables and copy it back into
your original database.

Restoring with Standby

In normal recovery operations, you have the choice of either running recovery to roll back
incomplete transactions or not running recovery at all. If you run recovery, no further log
backups can be restored and the database is fully usable. If you don't run recovery, the
database is inconsistent and SQL Server won't let you use it at all. You have to choose one or
the other because of the way log backups are made.

For example, in SQL Server 2008, log backups do not overlap—each log backup starts where
the previous one ended. Consider a transaction that makes hundreds of updates to a single



Chapter 4 Logging and Recovery 209

table. If you back up the log during the update and then after it, the first log backup has

the beginning of the transaction and some of the updates, and the second log backup has
the remainder of the updates and the commit. Suppose that you then need to restore these
log backups after restoring the full database. If you run recovery after restoring the first log
backup, the first part of the transaction is rolled back. If you then try to restore the second log
backup, it starts in the middle of a transaction, and SQL Server won't have information about
what the beginning of the transaction was. You certainly can't recover transactions from this
point because their operations might depend on this update that you've partially lost. SQL
Server, therefore, does not allow any more restoring to be done. The alternative is not to

run recovery to roll back the first part of the transaction and instead to leave the transaction
incomplete. SQL Server takes into account that the database is inconsistent and does not
allow any users into the database until you finally run recovery on it.

What if you want to combine the two approaches? It would be nice to be able to restore one
log backup and look at the data before restoring more log backups, particularly if you're
trying to do a point-in-time recovery, but you won't know what the right point is. SQL Server
provides an option called STANDBY that allows you to recover the database and still restore
more log backups. If you restore a log backup and specify WITH STANDBY = ‘<some filename>",
SQL Server rolls back incomplete transactions but keeps track of the rolled-back work in the
specified file, which is known as a standby file. The next restore operation reads the contents of
the standby file and redoes the operations that were rolled back, and then it restores the next
log. If that restore also specifies WITH STANDBY, incomplete transactions again are rolled back,
but a record of those rolled-back transactions is saved. Keep in mind that you can't modify any
data if you've restored WITH STANDBY (SQL Server generates an error message if you try), but
you can read the data and continue to restore more logs. The final log must be restored WITH
RECOVERY (and no standby file is kept) to make the database fully usable.

Summary

In addition to one or more data files, every database in a SQL Server instance has one or more
log files that keep track of changes to that database. (Remember that database snapshots do
not have log files because no changes are ever made directly to a snapshot.) SQL Server uses
the transaction log to guarantee consistency of your data, at both a logical and a physical
level. In addition, an administrator can make backups of the transaction log to make restoring
a database more efficient. An administrator or database owner can also set a database’s
recovery mode to determine the level of detail stored in the transaction log.






Chapter 5

Tables

Kalen Delaney

In this chapter, we'll start with a basic introduction to tables and continue into some very
detailed examinations of their internal structures. Simply put, a table is a collection of data
about a specific entity (a person, place, or thing) that has a discrete number of named
attributes (for example, quantity or type). Tables are at the heart of Microsoft SQL Server and
the relational model in general. In SQL Server, a table is often referred to as a base table to
emphasize where data is stored. Calling it a base table also distinguishes it from a view—a
virtual table that's an internal query referencing one or more base tables or other views.

Attributes of a table’s data (such as color, size, quantity, order date, and supplier’'s name)
take the form of named columns in the table. Each instance of data in a table is represented
as a single entry, or row (formally called a tuple). In a true relational database, each row in a
table is unique and has a unique identifier called a primary key. (SQL Server, in accordance
with the ANSI SQL standard, doesn't require you to make a row unique or declare a primary
key. However, because both of these concepts are central to the relational model, |
recommend that you always implement them.)

Most tables have some relationship to other tables. For example, in a typical order-entry
system, the orders table has a customer number column for keeping track of the customer
number for an order, and customer_number also appears in the customer table. Assuming that
customer_ number is a unique identifier, or primary key, of the customer table, a foreign key
relationship is established by which orders and customer tables can subsequently be joined.

So much for the 30-second database design primer. You can find plenty of books that discuss
logical database and table design, but this isn't one of them. I'll assume that you understand
basic database theory and design and that you generally know what your tables will look like.
The rest of this chapter discusses the internals of tables in SQL Server 2008.

Creating Tables

To create a table, SQL Server uses the ANSI SQL standard CREATE TABLE syntax. SQL Server
Management Studio provides a front-end, fill-in-the-blank table designer that can sometimes
make your job easier. Ultimately, the SQL syntax is always sent to SQL Server to create a table,

no matter what interface you use. In this chapter, I'll emphasize direct use of the Data Definition
Language (DDL) rather than discuss the GUI tools. You should keep all DDL commands in a
script so you can run them easily at a later time to re-create the table. (Even if you use one of the
friendly front-end tools, it's critical that you are able to re-create the table later) Management

211



212

Microsoft SQL Server 2008 Internals

Studio and other front-end tools can create and save operating system files using the SQL DDL
commands necessary to create any object. This DDL is essentially source code, and you should

treat it as such. Keep a backup copy. You should also consider keeping these files under version
control using a source control product such as Microsoft Visual SourceSafe.

At the basic level, creating a table requires little more than knowing what you want to name
it, what columns it contains, and what range of values (domain) each column can store. Here's
the basic syntax for creating the customer table in the dbo schema, with three fixed-length
character (char) columns. (Note that this table definition isn't necessarily the most efficient
way to store data because it always requires 46 bytes per entry for data plus a few bytes of
overhead, regardless of the actual length of the data.)

CREATE TABLE dbo.customer

(

name char(30),
phone char(12),
emp_id char(4)
);

This example shows each column on a separate line for readability. As far as the SQL Server
parser is concerned, white spaces created by tabs, carriage returns, and the spacebar are
identical. From the system’s standpoint, the following CREATE TABLE example is identical to
the preceding one, but it's harder to read from a user’s standpoint:

CREATE TABLE customer (name char(30), phone char(12), emp_id char(4));

Naming Tables and Columns

A table is always created within one schema of one database. Tables also have owners, but
unlike in versions of SQL Server prior to 2005, the table owner is not used to access the table.
The schema is used for all object access. Normally, a table is created in the default schema of the
user who is creating it, but the CREATE TABLE statement can specify the schema in which the
object is to be created. A user can create a table only in a schema for which the user has ALTER
permissions. Any user in the sysadmin, db_ddladmin, or db_owner roles can create a table in any
schema. A database can contain multiple tables with the same name, so long as the tables are in
different schemas. The full name of a table has three parts, in the following form:

database_name.schema_name.table_name

The first two parts of the three-part name specification have default values. The default for the
name of the database is whatever database context in which you're currently working. The
schema_name actually has two possible defaults when querying. If no schema name is specified
when you reference an object, SQL Server first checks for an object in your default schema.

If there is no such table in your default schema, SQL Server then checks to see if there is an
object of the specified name in the dbo schema.



Chapter 5 Tables 213

Note To access a table or other object in a schema other than your default schema or the dbo
schema, you must include the schema name along with the table name. In fact, you should get in
the habit of always including the schema name when referring to any object in SQL Server 2008.
Not only does this remove any possible confusion about which schema you are interested in, but
it can lead to some performance benefits.

The sys schema is a special case. For compatibility views, such as sysobjects, SQL Server accesses
the object in the sys schema prior to any object you might have created with the same name.
Obviously, it is not a good idea to create an object of your own called sysobjects, as you will
never be able to access it. Compatibility views can also be accessed through the dbo schema,
so the objects sys.sysobjects and dbo.sysobjects are the same. For catalog views and Dynamic
Management Objects, you must specify the sys schema to access the object.

You should make column names descriptive, and because you'll use them repeatedly, you
should avoid wordiness. The name of the column (or any object in SQL Server, such as a
table or a view) can be whatever you choose, so long as it conforms to the SQL Server rule
for regular identifiers: it must consist of a combination of 1 through 128 letters, digits, or the
symbols # §, @, or _.

More Info Alternatively, you can use a delimited identifier that includes any characters you like.
For more about identifier rules, see “Identifiers” in SQL Server Books Online. The discussion there
applies to all SQL Server object names, not just column names.

In some cases, you can access a table using a four-part name, in which the first part is the
name of the SQL Server instance. However, you can refer to a table using a four-part name
only if the SQL Server instance has been defined as a linked server. You can read more about
linked servers in SQL Server Books Online; | won't discuss them further here.

Reserved Keywords

Certain reserved keywords, such as TABLE, CREATE, SELECT, and UPDATE, have special meaning
to the SQL Server parser, and collectively they make up the SQL language implementation. You
should avoid using reserved keywords for your object names. In addition to the SQL Server
reserved keywords, the SQL-92 standard has its own list of reserved keywords. In some cases,
this list is more restrictive than the SQL Server list; in other cases, it's less restrictive. SQL Server
Books Online includes both lists.

Watch out for the SQL-92 reserved keywords. Some of the words aren't reserved keywords in
SQL Server yet, but they might become reserved keywords in a future SQL Server version. If
you use a SQL-92 reserved keyword, you might end up having to alter your application before
upgrading it if the word becomes a SQL Server reserved keyword.



214

Microsoft SQL Server 2008 Internals
Delimited Identifiers

You can't use keywords in your object names unless you use a delimited identifier. In fact, if
you use a delimited identifier, not only can you use keywords as identifiers, but you can also
use any other string as an object name—whether or not it follows the rules for identifiers.
This includes spaces and other nonalphanumeric characters that are normally not allowed.
Two types of delimited identifiers exist:

B Bracketed identifiers, which are delimited by square brackets ([object name])

B Quoted identifiers, which are delimited by double quotation marks (“object name")

You can use bracketed identifiers in any environment, but to use quoted identifiers, you
must enable a special option using SET QUOTED_IDENTIFIER ON. If you turn on QUOTED_
IDENTIFIER, double quotes are interpreted as referencing an object. To delimit string or date
constants, you must use single quotes.

Let's look at some examples. Because column is a reserved keyword, the first statement
that follows is illegal in all circumstances. The second statement is illegal unless QUOTED_
IDENTIFIER is on. The third statement is legal in any circumstance:

CREATE TABLE dbo.customer(name char(30), column char(12), emp_id char(4));
CREATE TABLE dbo.customer(name char(30), "column" char(12), emp_id char(4));
CREATE TABLE dbo.customer(name char(30), [column] char(12), emp_id char(4));

The SQL Native Client ODBC driver and SQL Native Client OLE DB Provider for SQL Server
automatically set QUOTED_IDENTIFIER to ON when connecting. You can configure this in
ODBC data sources, ODBC connection attributes, or OLE DB connection properties. You can
determine whether this option is on or off for your session by executing the following query:

SELECT quoted_identifier
FROM sys.dm_exec_sessions
WHERE session_id = @@spid;

A result value of 1 indicates that QUOTED_IDENTIFIER is ON. If you're using Management
Studio, you can check the setting by running the preceding command in a query window
or by choosing Options from the Tools menu and then expanding the Query Execution/SQL
Server node and examining the ANSI properties information, as shown in Figure 5-1.

Tip Technically, you can use delimited identifiers with all object and column names, so you never
have to worry about reserved keywords. However, | don't recommend this. Many third-party
tools for SQL Server don't handle quoted identifiers well, and they can make your code difficult
to read. Using quoted identifiers might also make upgrading to future versions of SQL Server
more difficult.



Chapter 5 Tables 215

options ___________ 21|
" Ervironment These settings collectively specify some of the SQL-92 standard query execution
(- Text Editor behaviar,
[ Query Execution
| = 50L Server [~ SET ANSI_DEFAULTS

-~ General V¥ SET QUOTED_IDENTIFIER IV SET ANSI_PADDING
-Advanced

NS ¥ SET ANSI_MULL_DFLT_ON [¥ SET ANSL_WARNINGS
Analysis Server I~ SET IMPLICIT_TRANSACTIONS [¥ SET ANSI_NULLS
Query Results I~ SET CURSOR_CLOSE_ON_COMMIT

SGL Server Object Explarer
[+ Designers
[#- Source Contral

|

FIGURE 5-1 Examining the ANSI properties for a connection in Management Studio

Rather than using delimited identifiers to protect against reserved keyword problems,

you should simply adopt some simple naming conventions. For example, you can precede
column names with the first few letters of the table name and an underscore. This naming
style makes the column or object name more readable and also greatly reduces your chances
of encountering a keyword or reserved word conflict.

Naming Conventions

Many organizations and multiuser development projects adopt standard naming
conventions. This is generally a good practice. For example, assigning a standard moniker of
cust_id to represent a customer number in every table clearly shows that all the tables share
common data. If an organization instead uses several monikers in the tables to represent a
customer number, such as cust_id, cust_num, customer_number, and customer_#, it won't be
as obvious that these monikers represent common data.

One naming convention is the Hungarian-style notation for column names. Hungarian-style
notation is a widely used practice in C programming, whereby variable names include
information about their data types. This notation uses names such as sint_nn_custnum to
indicate that the custnum column is a small integer (smallint of 2 bytes) and is NOT NULL
(doesn't allow nulls). Although this practice makes good sense in C programming, it defeats the
data type independence that SQL Server provides; therefore, | recommend against using it.

Data Types

SQL Server provides many data types, most of which are straightforward. Choosing the
appropriate data type is simply a matter of mapping the domain of values you need to
store to the corresponding data type. In choosing data types, you want to avoid wasting
storage space while allowing enough space for a sufficient range of possible values over the



216

Microsoft SQL Server 2008 Internals

life of your application. Discussing the details about all the possible considerations when
programming with the various data types is beyond the scope of this book. For the most
part, I'll just cover some of the basic issues related to dealing with the various data types.

Choosing a Data Type

The decision about what data type to use for each column depends primarily on the nature
of the data the column holds and the operations you want to perform on the data. The five
basic data type categories in SQL Server 2008 are numeric, character, date and time, Large
Object (LOB), and miscellaneous. SQL Server 2008 also supports a variant data type called
sql_variant. Values stored in a sql_variant column can be of almost any data type. I'll discuss
LOB columns in Chapter 7, “Special Storage,” because their storage format is different than
that of other data types discussed in this chapter. In this section, I'll examine some of the
issues related to storing data of different data types.

Numeric Data Types

You should use numeric data types for data on which you want to perform numeric comparisons
or arithmetic operations. Your main decisions are the maximum range of possible values you
want to be able to store and the accuracy you need. The tradeoff is that data types that can
store a greater range of values take up more space.

Numeric data types can also be classified as either exact or approximate. Exact numeric values are
guaranteed to store exact representations of your numbers. Approximate numeric values have a
far greater range of values, but the values are not guaranteed to be stored precisely. The greatest
range of values that exact numeric values can store data is -10738 + 1 to 10738 —1. Unless you
need numbers with greater magnitude, | recommend that you not use the approximate numeric
data types.

The exact numeric data types can be divided into two groups: integers and decimals. Integer
types range in size from 1 to 8 bytes, with a corresponding increase in the range of possible
values. The money and smallmoney data types are included frequently among the integer
types because internally they are stored in the same way. For the money and smallmoney
data types, it is understood that the rightmost four digits are after the decimal point. For the
other integer types, no digits come after the decimal point. Table 5-1 lists the integer data
types along with their storage size and range of values.

The decimal and numeric data types allow a high degree of accuracy and a large range of values.
For those two synonymous data types, you can specify a precision (the total number of digits
stored) and a scale (the maximum number of digits to the right of the decimal point). The maximum
number of digits that can be stored to the left of the decimal point is precision — scale (that is,
subtract the scale from precision to get the number of digits). Two different decimal values can have
the same precision and very different ranges. For example, a column defined as decimal (8,4)
can store values from —9,999.9999 to 9,999.9999, and a column defined as decimal (8,0) can
store values from —99,999,999 to 99,999,999.



Chapter 5 Tables 217

TABLE 5-1 Range and Storage Requirements for Integer Data Types

Data Type Range Storage (Bytes)
bigint 263 to 2631 8
int =231 to 2311 4
Smallint -215 10 215-1 2
Tinyint 0to 255 1
Money -922,337,203,685,477.5808 to 8

922,337,203,685,477.5807, with accuracy of one
ten-thousandth of a monetary unit

Smallmoney —214,748.3648 to 214,748.3647, with accuracy 4
of one ten-thousandth of a monetary unit

Table 5-2 shows the storage space required for decimal and numeric data based on the
defined precision.

TABLE 5-2 Storage Requirements for Decimal and Numeric Data Types

Precision Storage (Bytes)
1to9 5

10to 19 9

20to 28 13

29to 38 17

Note SQL Server 2005 SP2 added a feature to allow decimal data to be stored in a variable
amount of space. This can be useful when you have some values that need a high degree

of precision, but most of the values in the column need only a few bytes, or are 0 or NULL.
Vardecimal, unlike varchar, is not a data type, but rather a property of a table which is set
by using the sp_tableoption procedure, and in SQL Server 2005, it must also be enabled for
the database. In SQL Server 2008, all databases except the master, model, tempdb, and msdb
databases always allow tables to have the vardecimal storage format property enabled.

Although the vardecimal storage format can reduce the storage size of the data, it comes at the
cost of adding additional CPU overhead. Once the vardecimal property is enabled for a table, all
decimal data in the table is stored as variable-length data. This includes all indexes on decimal
data and all log records that include decimal data.

Changing the value of the vardecimal storage format property of a table is an offline operation
and SQL Server exclusively locks the table that is being modified until all the decimal data is
converted to the new format. The vardecimal storage format has been deprecated, so | will not
be describing the details of the internal storage for vardecimal data. For new development, it

is recommended that you use SQL Server's compression capabilities to minimize your storage
requirement for data that requires a variable number of bytes. | will discuss data compression
in Chapter 7.



218

Microsoft SQL Server 2008 Internals

Date and Time Data Types

SQL Server 2008 supports six data types for storing date and time information: datetime
and smalldatetime have been available since the very first version and four new types were
added in SQL Server 2008: date, time, datetime2, and datetimeoffset. The difference between
these types is the range of possible dates, the number of bytes needed for storage, whether
both date and time are stored (or just the date or just the time), and whether time zone
information is incorporated into the stored value. Table 5-3, taken from SQL Server 2008
Books Online, shows the range and storage requirements for each of the date and time

data types.

TABLE 5-3 SQL Server Date and Time Data Types Range and Storage Requirements

Type
time

date

smalldatetime

datetime

datetime2

datetimeoffset

Format

hh:mm:ss
[.nnnnnnn]

YYYY-
MM-DD

YYYY-
MM-DD
hh:mm:ss

YYYY-
MM-DD
hh:mm:ss
[.nnn]

YYYY-
MM-DD
hh:mm:ss
[.nnnnnnn]

YYYY-
MM-DD
hh:mm:ss
[.nnnnnnn]
[+|-]Thh:-mm

Range

00:00:00.0000000
through
23:59:59.9999999

0001-01-01 through
9999-12-31

1900-01-01 through
2079-06-06

1753-01-01 through
9999-12-31

0001-01-01
00:00:00.0000000
through 9999-12-31
23:59:59.9999999

0001-01-01
00:00:00.0000000
through 9999-12-31
23:59:59.9999999

(in UTC)

Accuracy
100
nanoseconds

1 day

1 minute

0.00333
second

100
nanoseconds

100
nanoseconds

Storage
Size
(bytes)
3to5

6to8

8to 10
(2 bytes
for time
zone
data)

User-Defined
Fractional
Second
Precision

Yes

No

No

No

Yes

Yes

If no date is supplied, the default of January 1, 1900, is assumed; if no time is supplied, the
default of 00:00:00.000 (midnight) is assumed.



Chapter 5 Tables 219

Note If you're new to SQL Server date and time data, you might be surprised that for the
original datetime data type, the earliest possible date that can be stored is January 1, 1753.

This was done for historical reasons, and started with the original Sybase specification for the
datetime data type. In what we sometimes refer to as the Western world, there have been two
calendars in modern time: the Julian and the Gregorian calendars. These calendars were a
number of days apart (depending on which century you look at), so when a culture that used

the Julian calendar moved to the Gregorian calendar, they dropped between 10 to 13 days from
the calendar. Great Britain made this shift in 1752, and in that year, September 2 was followed by
September 14. Sybase decided not to store dates earlier than 1753 because the date arithmetic
functions would be ambiguous. However, other countries made the change at other times, and in
Turkey, the calendar was not shifted until 1927.

Internally, values for all the date and time data types are stored completely differently from
how you enter them or how they are displayed. Dates and times are always stored as two
separate components: a date component and a time component.

For the original datetime data types, datetime and smalldatetime, the data is stored internally

as two separate components. For datetime values, the data is stored as two 4-byte values, the
first (for the date) being the number of days before or after the base date of January 1, 1900,
and the second (for the time) being the number of clock ticks after midnight, with each tick
representing 3.33 milliseconds, or 1/300 of a second. You can actually see these two parts if you
convert a datetime value to a binary string of 8 hexadecimal bytes. For smalldatetime values,
each component is stored in 2 bytes. The date is stored as the number of days after January 1,
1900, and the time is stored as the number of minutes after midnight.

The following example shows how to see the component parts of the current date and time,
stored in a variable of type datetime, retrieved using the parameterless system function
CURRENT_TIMESTAMP. The first CONVERT operation shows the full hexadecimal byte string
that stores the datetime value. The second CONVERT displays the first four bytes converted
to an integer and the third CONVERT displays the second four bytes converted to an integer.
Because we're storing current date and time in a local variable, we can be sure we're using
the same value for all the CONVERT operations:

DECLARE @today datetime

SELECT @today = CURRENT_TIMESTAMP

SELECT @today AS [CURRENT TIMESTAMP];

SELECT CONVERT (varbinary(8), @today) AS [INTERNAL FORMAT];

SELECT CONVERT (int, SUBSTRING (CONVERT (varbinary(8), @today), 1, 4))
AS [DAYS AFTER 1/1/1900];

SELECT CONVERT (int, SUBSTRING (CONVERT (varbinary(8), @today), 5, 4))
AS [TICKS AFTER MIDNIGHT];

These are the results when the code runs on July 10, 2008:

CURRENT TIMESTAMP

2008-07-10 17:29:11.967



220

Microsoft SQL Server 2008 Internals

INTERNAL FORMAT

0x00009AD501202BD6

DAYS AFTER 1/1/1900

18885590

Microsoft used the opportunity when adding new date and time data types in SQL Server 2008
to change the internal representation of dates and times completely. Dates are now stored

as a three-byte positive number, representing the number of days after January 1, 0001. For

the datetimeoffset type, an additional two bytes are used to store a time offset, in hours and
minutes, from UTC. Note that although internally, the base date for the new date and data types
is January 1, 0001, when SQL Server is interpreting a date value where the actual date is not
specified, January 1, 1900, is the default. For example, if you try to insert the string '01:15:00’
into a datetime2 column, SQL Server interprets this as a time of 1:15 on January 1, 1900.

All the new types that contain time information (time, datetime2, and datetimeoffset) allow
you to specify the precision of the time component by following the data type name with a
number between 1 and 7 indicating the desired scale. The default, if no scale is specified, is
to assume a scale of 7. Table 5-4 shows what each of the possible scale values means in terms
of the precision and storage requirement of the stored data values.

TABLE 5-4 Scale Values for Time Data with Storage Requirements and Precision

Result Column Length Fractional Seconds

Specified Scale (precision, scale) (bytes) (precision)
none (16,7) 5 7

) (8,0) 3 0-2

1) (10,1) 3 0-2

) (11,2) 3 0-2

(3) (12,3) 4 3-4

4) (13,4) 4 3-4

(5) (14,5) 5 5-7

(6) (15,6) 5 5-7

(7) (16,7) 5 5-7

For a quick look at what the information in Table 5-4 means, you can run the following three
conversions:

SELECT CAST(CURRENT_TIMESTAMP AS time);
SELECT CAST(CURRENT_TIMESTAMP AS time(2));
SELECT CAST(CURRENT_TIMESTAMP AS time(7));



Chapter 5 Tables 221

| got the following results. Note that the scale value determines the number of decimal digits
and that the value for time is identical to time(7):

17:39:43.0830000
17:39:43.08
17:39:43.0830000

Internally, the time is computed using the following formula, assuming H is hours, M is
minutes, S is seconds, F is fractional sections, and D is scale (number of decimal digits):

(((H *60) + M) * 60 +S) * 10° + F
For example, the value 17:39:43.08, with time(2) format, would be stored internally as

(C(17 * 60) + 39) * 60 + 43) * 102 + 083, or 6358383
The same time, stored as time(7) would be

(17 * 60) + 39) * 60 + 43) * 107 + 083, or 635830000083

In the section entitled “Internal Storage,” later in this chapter, we'll see what this data looks
like when stored in a data row.

SQL Server 2008 provides dozens of functions for working with date and time data, as well

as dozens of different formats that can be used for interpreting and displaying date and
time values. It is beyond the scope of this book to cover date and time data in that level of
detail. However, the most important thing to understand about these types is that what you
see is not what is actually stored on disk. The on-disk format, whether you're using the old
datetime and smalldatetime types or any of the new types, is completely unambiguous, but it
is not very user-friendly. You need to make sure that you provide input data in a format that
is also unambiguous. For example, the value '3/4/48" is not unambiguous. Does it represent
March 4 or April 3, and is the year 1948, 2048, or perhaps 48 (almost 2,000 years ago)? The
ISO 8601 format is an international standard with unambiguous specification. In addition this
format is not affected by your session’s SET DATEFORMAT or SET LANGUAGE settings. Using
this format, March 4, 1948, could be represented as 19480304 or 1948-03-04.

Character Data Types

Character data types come in four varieties. They can be fixed-length or variable-length
strings of single-byte characters (char and varchar) or fixed-length or variable-length strings
of Unicode characters (nchar and nvarchar). Unicode character strings need two bytes for
each stored character; use them when you need to represent characters that can’t be stored in
the single-byte characters that are sufficient for storing most of the characters in the English
and European alphabets. Single-byte character strings can store up to 8,000 characters, and
Unicode character strings can store up to 4,000 characters. You should know the type of

data that you are dealing with to decide between single-byte and double-byte character



222

Microsoft SQL Server 2008 Internals

strings. Keep in mind that the catalog view sys.types reports the length in number of bytes,
not in number of characters. In SQL Server 2005 and SQL Server 2008, you can also define

a variable-length character string with a MAX length. Columns defined as varchar(max) are
treated as normal variable-length columns when the actual length is less than or equal to
8,000 bytes, and they are treated as a large object value (mentioned later in this section and
covered in detail in Chapter 7) when the actual length is greater than 8,000 bytes.

Deciding whether to use a variable-length or a fixed-length data type is a more difficult
decision, and it isn't always straightforward or obvious. As a general rule, variable-length
data types are most appropriate when you expect significant variation in the size of the data
for a column and when the data in the column won’t be changed frequently.

Using variable-length data types can yield important storage savings. It can sometimes result
in a minor performance loss, and at other times it can result in improved performance. A row
with variable-length columns requires special offset entries to be internally maintained. These
entries keep track of the actual length of the column. Calculating and maintaining the offsets
requires slightly more overhead than does a pure fixed-length row, which needs no such
offsets. This task requires a few addition and subtraction operations to maintain the offset
value. However, the extra overhead of maintaining these offsets is generally inconsequential,
and this alone would not make a significant difference on most, if any, systems.

Another potential performance issue with variable-length fields is the cost of increasing the
size of a row on a page that is almost full. If a row with variable-length columns uses only
part of its maximum length and is later updated to a longer length, the enlarged row might
no longer fit on the same page. If the table has a clustered index, the row must stay in the
same position relative to the other rows, so the solution is to split the page and move some
of the rows from the page with the enlarged row onto a newly linked page. This can be an
expensive operation. Chapter 6, “Indexes: Internals and Management,” describes the details
of page splitting and moving rows. If the table has no clustered index, the row can move to a
new location and leave a forwarding pointer in the original location. I'll talk about forwarding
pointers later in this chapter.

On the other hand, using variable-length columns can sometimes improve performance
because it can allow more rows to fit on a page. But the efficiency results from more than
simply requiring less disk space. A data page for SQL Server is 8 KB (8,192 bytes), of which
8,096 bytes are available to store data. (The rest is for internal use to keep track of structural
information about the page and the object to which it belongs.) One I/O operation brings
back the entire page. If you can fit 80 rows on a page, a single /O operation brings back 80
rows. But if you can fit 160 rows on a page, one I/O operation is essentially twice as efficient.
In operations that scan for data and return lots of adjacent rows, this can amount to a
significant performance improvement. The more rows you can fit per page, the better your
I/0 and cache-hit efficiency is.

For example, consider a simple customer table. Suppose that you could define it in two ways:
fixed-length and variable-length, as shown in Figures 5-2 and 5-3.



Chapter 5 Tables 223

Columns that contain addresses, names, or URLs all have data that varies significantly in
length. Let's look at the differences between choosing fixed-length columns and choosing
variable-length columns. In Figure 5-2, which uses all fixed-length columns, every row uses
384 bytes for data regardless of the number of characters actually inserted in the row. SQL
Server also needs an additional 10 bytes of overhead for every row in this table, so each

row needs a total of 394 bytes for storage. But let's say that even though the table must
accommodate addresses and names up to the specified size, the average row is only half the
maximum size.

USE testdb

GO

CREATE TABLE customer_fixed

(

cust_id smallint NULL,
cust_name char(50) NULL,
cust_addrl char(50) NULL,
cust_addr2 char(50) NULL,
cust_city char(50) NULL,
cust_state char(2) NULL,
cust_postal_code char(10) NULL,
cust_phone char(20) NULL,
cust_fax char(20) NULL,
cust_email char(30) NULL,
cust_web_url char(100) NULL,
)

FIGURE 5-2 A customer table with all fixed-length columns

USE testdb

GO

CREATE TABLE customer_var

(

cust_id smallint NULL,
cust_name varchar(50) NULL,
cust_addrl varchar(50) NULL,
cust_addr2 varchar(50) NULL,
cust_city varchar(50) NULL,
cust_state char(2) NULL,
cust_postal_code varchar(10) NULL,
cust_phone varchar(20) NULL,
cust_fax varchar(20) NULL,
cust_email varchar(30) NULL,
cust_web_url varchar(100) NULL
)

FIGURE 5-3 A customer table with variable-length columns

In Figure 5-3, assume that for all the variable-length (varchar) columns the average entry

is actually only about half the maximum. Instead of a row length of 394 bytes, the average
length is 224 bytes. This length is computed as follows: The smallint and char(2) columns total
4 bytes. The varchar columns’ maximum total length is 380, half of which is 190 bytes. And

a 2-byte overhead exists for each of nine varchar columns, for 18 bytes. Add 2 more bytes



224

Microsoft SQL Server 2008 Internals

for any row that has one or more variable-length columns. In addition, these rows require
the same 10 bytes of overhead that the fixed-length rows from Figure 5-2 require, regardless
of the presence of variable-length fields. So the total is 4 + 190 + 18 + 2 + 10, or 224. (I'll
discuss the actual meaning of each of these bytes of overhead later in this chapter.)

In the fixed-length example in Figure 5-2, you always fit 20 rows on a data page (8,096/394,
discarding the remainder). In the variable-length example in Figure 5-3, you can fit an average
of 36 rows per page (8,096/224). The table using variable-length columns will consume about
half as many pages in storage, a single I/O operation retrieves almost twice as many rows, and
a page cached in memory is twice as likely to contain the row you want.

More Info You need additional overhead bytes for each row if you are using snapshot isolation.
I'll discuss this concurrency option, as well as the extra row overhead needed to support it, in
Chapter 10, “Transactions and Concurrency.”

When you choose lengths for columns, don’t be wasteful—but don’t be cheap, either. Allow
for future needs, and realize that if the additional length doesn't change how many rows fit on
a page, the additional size is free anyway. Consider again the examples in Figures 5-2 and 5-3.
The cust_id is declared as a smallint, meaning that its maximum positive value is 32,767
(unfortunately, SQL Server doesn't provide any unsigned int or unsigned smallint data types),
and it consumes 2 bytes of storage. Although 32,767 customers might seem like a lot to a new
company, the company might be surprised by its own success and find in a couple of years
that 32,767 is too limited.

The database designers might regret that they tried to save 2 bytes and didn't simply make
the data type an int, using 4 bytes but with a maximum positive value of 2,147,483,647. They'll
be especially disappointed if they realize they didn't really save any space. If you compute the
rows-per-page calculations just discussed, increasing the row size by 2 bytes, you'll see that
the same number of rows still fit on a page. The additional 2 bytes are free—they were simply
wasted space before. They never cause fewer rows per page in the fixed-length example, and
they'll rarely cause fewer rows per page even in the variable-length case.

So which strategy wins? Potentially better update performance? Or more rows per page?
Like most questions of this nature, no one answer is right. It depends on your application. If
you understand the tradeoffs, you can make the best choice. Now that you know the issues,
this general rule merits repeating: Variable-length data types are most appropriate when
you expect significant variation in the size of the data for that column and when the column
won't be updated frequently.

Character Data Collation

For many data types, the rules to compare and sort are straightforward. No matter whom
you ask, 12 is always greater than 11, and even if people may write dates in different ways,
August 20, 2008, is never the same as August 21, 2007. But for character data, this principle



Chapter 5 Tables 225

doesn't apply. Most people would sort csak before cukor, but in an Hungarian dictionary,
they come in the opposite order. And is STREET equal to Street or not? Also, how are
characters with diacritic marks, such as accents or umlauts, sorted?

Because different users have different preferences and needs, character data in SQL Server
are always associated with a collation. A collation is a set of rules that defines how character
data are sorted and compared, and how language-dependent functions such as UPPER and
LOWER work. The collation also determines the character repertoire for the single-byte data
types, char, varchar, and text. Metadata in SQL Server (that is, names of tables, variables, etc.)
are also subject to collation rules.

Determining Which Collation to Use You can define which collation to use at several
levels in SQL Server. When you create a table, you can define the collation for each character
column. If you don't supply a collation, the database collation is used.

The database collation also determines the collation for the metadata in the database. So

in a database with a case-insensitive collation, you can use MyTable or MYTABLE to refer to

a table which was created with the name mytable, but in a database with a case-sensitive
collation, you must refer to it as mytable. The database collation also determines the collation
for string literals and for data in character variables.

You can specify the database collation when you create a database. If you do not, the server
collation is used. Under some fairly restricted circumstances, the ALTER DATABASE statement
permits you to change the database collation. (Basically, if you have any CHECK constraints in
the database, you cannot change the collation.) This will rebuild the system tables to reflect
the new collation rules in the metadata. However, columns in user tables are left unchanged,
and you need to change these yourself. For details on all restrictions, please see the ALTER
DATABASE topic in SQL Server Books Online.

The server collation is used by the system databases master, model, tempdb, and msdb. (The
resource database, on the other hand, always has the same collation, Latin1_General_CI_Al.) The
server collation is also the collation for variable names, so on a server with a case-insensitive
collation, @a and @A are the same variable, but they are two different ones if the server
collation is case-sensitive. You select the server collation at setup.

Finally, you can use the COLLATE clause to force the collation in an expression. One situation
where you need to do this is when the same expression includes two columns with different
collations. This results in a collation conflict, and SQL Server requires you to resolve it with the
COLLATE clause.

Available Collations To see the available collations, you can run the query
SELECT * FROM fn_helpcollations();

When running this query on a SQL Server 2008 instance, the result contains 2,397 collations.
There are another 112 collations that are deprecated and not listed by fn_helpcollations.



226

Microsoft SQL Server 2008 Internals

Collations fall into two main groups: Windows collations and SQL Server collations.

SQL Server collations are mainly former collations retained for compatibility reasons.
Nevertheless, the collation SQL_Latin1_General_CP1_CI_AS is one of the most commonly
used ones because it is the default collation when you install SQL Server on a machine with
English (United States) as the system locale.

Windows Collations Windows collations take their definition from Microsoft Windows. SQL
Server does not go out and query Windows for collation rules; rather, the SQL Server team has
copied the collation definitions into SQL Server. The collations in Windows typically are modified
with new releases of Windows to adapt to changes in the Unicode standard, and because
collations determine in which order data appear in indexes, SQL Server cannot accept that the
definition of a collation changes because you move a database to a different Windows version.

The Anatomy of a Collation Name Windows collations come in families, with 18 collations
in each family. All collations in the same family start with the same collation designator, which
indicates which language or group of languages the collation family supports.

The collation designator is followed by tokens that indicate the nature of the collation. The
collation can be a binary collation, in which case the token is BIN or BIN2. For the other

16 collations, the tokens are CI/CS to indicate case sensitivity/insensitivity, Al/AS to indicate accent
sensitivity/insensitivity, KS to indicate kanatype sensitivity, and WS to indicate width sensitivity.

If Cl is part of the collation name, the strings smith and SMITH are equal, but they are different
if CS is in the name. Likewise, if the collation is Al, cote, coté, cbte, and cété are all equal,

but in an AS collation, they are different. Kanatype relates to Japanese text only, and in a
kanatype-sensitive collation, katakana and hiragana counterparts are considered different.
Width sensitivity refers to East Asian languages for which there exists both half-width and
full-width forms of some characters. Kl and WI tokens do not exist, but kanatype and width
insensitivity are implied if KS and WS are absent.

The following are some examples of collation names:

® Latinl_General CI_AS A case-insensitive, accent-sensitive collation for Western
European languages such as English, German, and Italian

B Finnish_Swedish_CS_AS A case-sensitive and accent-sensitive collation for Finnish
and Swedish

B Japanese_CI_AI_KS_WS A collation that is insensitive to case and accent and sensitive
to kanatype and width differences

®  Turkish_BIN2 A binary collation for Turkish

Different Versions of the Same Collation A collation designator may include a version
number that indicates in which version of SQL Server the collation was added. The lack of a
version number means that the collation was one of the original collations in SQL Server 2000;
90 indicates that the collation was added in SQL Server 2005; and 100 means that it was added
in SQL Server 2008.



Chapter 5 Tables 227

SQL Server 2008 added new collations for languages and language groups for which a
collation already existed. So there is now both Latin1_General and Latin1_General_100,
Finnish_Swedish and Finnish_Swedish_100, and other collation pairs.

These additions reflect the changes in Windows. The old collations are based on the collations
in Windows 2000, and the new _100 collations are based on the collations in Windows 2008.

Caution If you plan to access your SQL Server 2008 instance as a linked server from SQL Server
2005, you should avoid using the new _100 collations because if you try to access such a column
from SQL Server 2005, you get the error message, “An invalid tabular data stream (TDS) collation
was encountered.”

The Single-Byte Character Types The single-byte character data types, char, varchar, and
text, can represent only 255 possible characters, and the code page of the collation determines
which 255 characters are available. In most code pages, the characters from 32 to 127 are
always the same, taken from the ASCII standard, and remaining characters are selected to fit a
certain language area. For instance, CP1252, also known as Latin-1, supports Western European
languages such as English, French, Swedish, and others. CP1250 is for the Cyrillic script, CP1251
is for Eastern European languages, and so on.

When it comes to other operations—sorting, comparing, lower/upper, and so on—in a
Windows collation, the rules are exactly the same for the single-byte data types and the
double-byte Unicode data types. There is one exception to this: in a binary collation, sorting is
done by character codes, and the order in the single-byte code page can be different from the
order in Unicode. For instance, in a Polish collation, char(209) prints N (a capital N with an acute
accent), whereas unicode(N’l\'l’) prints 323, which is the code point in Unicode for this character.
(The code points in Unicode agree with the code points in Latin-1, but that applies only to the
range 160-255.) Microsoft has added some extra characters to their version of Latin-1. One
example of this is the Euro(€) character, which is char(128) in a collation based on CP1252, but
in Unicode, code point 128 is a nonprinting character, and unicode(N‘€’) prints 8364.

There are some collations that do not map to a single-byte code page. You can use these
collations only with Unicode data types. For instance, if you run the code

CREATE TABLE NepaleseTest
(abc char(5) COLLATE Nepali_100_CI_AS NOT NULL);

you get the following error message:
Msg 459, Level 16, State 2, Line 1
Collation 'Nepali_100_CI_AS' is supported on Unicode data types only and cannot be applied

to char, varchar or text data types.

To view the code page for a collation, you can use the collationproperty function, as in this
example:

SELECT collationproperty('Latinl_General_CS_AS', 'CodePage');



228

Microsoft SQL Server 2008 Internals

This returns 1252. For a collation that supports Unicode only, you get 0 in return. (If you get
NULL back, you have misspelled the collation name or the word CodePage.)

You cannot use Unicode-only collations as the server collation.

Sort Order The collation determines the sort order. When a Windows collation is insensitive
(such as case or accents), this also applies to the sort order. For instance, in a case-insensitive
collation, differences in case do not affect how the data is sorted. In a sensitive collation,
case, accent, kanatype, and width affect the sorting, but only with a secondary weight. That
is, these properties affect the sorting only when no other differences exist.

To illustrate this, consider this table:

CREATE TABLE #words (word nvarchar(20) NOT NULL,
wordno tinyint PRIMARY KEY CLUSTERED);
INSERT #words
VALUES(N'cloud', 1), (N'CSAK', 6), (N'cukor', 11),
(N'Oblige', 2), (N'Opera', 7), (N'O1', 12),
(N'résumé', 3), (N'RESUME', 8), (N'RESUME', 13),
(N'resume', 4), (N'resumes', 9), (N'résumés', 14),
(N'GIL', 5), (N'eil’, 10);

To examine how a collation works, we use the query shown here. We start by looking at the
commonly used collation Latinl_General_CI_AS:

WITH collatedwords (collatedword, wordno) AS (
SELECT word COLLATE Latinl_General_CI_AS, wordno
FROM  #words
)
SELECT collatedword, rank = dense_rank() OVER(ORDER BY collatedword),
wordno
FROM  colTlatedwords
ORDER BY collatedword;

When | ran the query, | got this result:

collatedword rank  wordno

cloud 1 1
CSAK 2 6
cukor 3 11
Oblige 4 2
EIL 5 5
@il 5 10
01 6 12
Opera 7 7
RESUME 8 8
resume 8 4
résumé 9 3
RESUME 9 13
resumes 10 9
résumés 11 14



Chapter 5 Tables 229

The rank column gives the ranking in the sort order. We can see that for the words that
differ only in case, the ranking is the same. We can also see from the output that sometimes
the uppercase version comes first, and sometimes the lowercase version comes first. This is
something that is entirely arbitrary, and it's perfectly possible that you will see a different
order for these pairs if you run the query yourself.

If we change the collation to Latinl_General_CS_AS, we get this result:

collatedword rank  wordno

cloud 1 1
CSAK 2 6
cukor 3 11
Oblige 4 2
@il 5 10
EIL 6 5
01 7 12
Opera 8 7
resume 9 4
RESUME 10 8
résumé 11 3
RESUME 12 13
resumes 13 9
résumés 14 14

All entries now have a different ranking. The lowercase forms come before the uppercase
forms when no other difference exists because in Windows collations, lowercase always has
a lower secondary weight than uppercase.

Let’s now see what happens with a different language. Here's a test for the collation
Hungarian_CI_Al:

collatedword rank  wordno

cloud 1 1
cukor 2 11
CSAK 3 6
Ob1ige 4 2
EIL 5 5
@il 5 10
Opera 6 7
01 7 12
RESUME 8 13
RESUME 8 8
résumé 8 3
resume 8 4
resumes 9 9
résumés 9 14

The words CSAK and 6/ now sort after cukor and Opera. This is because in the Hungarian
alphabet, CS and O are letters on their own. You can also see that in this CI_Al collation, all
four forms of résumé have the same rank.



230

Microsoft SQL Server 2008 Internals

In these examples, the data type for the column was nvarchar, but if you change the table to
use varchar and rerun the examples, you get the same results.

Character Ranges and Collations The sort order applies not only to ORDER BY clauses,
but also to operators such as > and ranges in LIKE expressions. For instance, note the
following code:

SELECT * FROM #words
WHERE word COLLATE Latinl_General_CI_AS > 'opera';
SELECT * FROM #words
WHERE word COLLATE Latinl_General_CS_AS > 'opera';

The first SELECT lists six words, whereas the second lists seven (because in a case-sensitive
collation, Opera is > opera).

If you are used to character ranges from regular expressions in other languages, you may fall
into the following trap when trying to select the words that start with an uppercase letter:

SELECT * FROM #words WHERE word LIKE '[A-Z]%';

But even with a case-sensitive collation, this code usually lists all 14 words. (In some languages,
O sorts as a separate letter after Z, so it does not fall into the specified range.) The range A-Z
is also subject to the collation rules. This also has another consequence: change cloud to aloud
in the list. Using a case-sensitive collation, SELECT now returns only 13 rows. Because a sorts
before A, the range A-Z does not include a.

As you can see, this can be a bit confusing. My advice is that you be very careful when using
ranges with character data. If you need to do it, make sure that you really test the edge cases
to ensure that you don't exclude any data inadvertently.

Binary Collations In a binary collation, no secondary weights exist, and characters sort by
their code points in the character set. So with Latin1_General_BIN2 in the previous example,
we get

collatedword rank  wordno

CSAK 1 6
Oblige 2 2
Opera 3 7
RESUME 4 8
RESUME 5 13
cloud 6 1
cukor 7 11
resume 8 4
resumes 9 9
résumé 10 3
résumés 11 14
01 12 12
EIL 13 5
@il 14 10



Chapter 5 Tables 231

Now the words with the uppercase first letters C, O, and R come before those with the
lowercase ¢, o, and r, as they do in the ASCII standard. O/ and the two forms of ceil have code
points beyond the first 127 ASCIl codes and therefore come at the end of the list.

Because binary collations are based on the code points and they may be different in the
single-byte code page and in Unicode, the order can be different for single-byte and
Unicode data types. For instance, if you change the data type in #words to varchar and run
the example with Latinl_General_BIN2 again, you find that O/ now comes last.

As you recall from the previous discussion, two types of binary collations exist, BIN and BIN2.
Of these, the BIN collations are earlier collations, and if you need to use a binary collation in
new development, you should use a BIN2 collation. To understand the difference between the
two, we need to look at a Unicode string in its binary representation. For instance, consider

SELECT convert(varbinary, N'ABC');

This code returns 0x410042004300. The ASCII code for A is 65, or 41 in hexadecimal. And in
Unicode, A is U+0041. (Unicode characters are often written as U+XXXX, where XXXX is the
code point in hexadecimal notation.) But converted to varbinary, it appears as 4100. This is
because PC architecture is little endian, which means that the least significant byte is stored
first. (The reason for this is beyond the scope of this book to explain.)

Therefore, to sort nvarchar data by their code points properly, SQL Server should not just look
at the byte string but swap each word to get the correct code points. And this is exactly what
the BIN2 collations do. The older BIN collations perform this swap only for the first character,
and then perform a byte-per-byte comparison for remaining characters. To illustrate the
difference between the two types of binary collations and also true byte-sort, here is an
example where we use the characters Z (U+005A) and N (N with grave accent; U+0143):

SELECT n, str, convert(binary(6), str) AS bytestr,
row_number() OVER(ORDER BY convert(varbinary, str))
AS bytesort,
row_number() OVER(ORDER BY str COLLATE Latinl_General_BIN)
AS collate_BIN,
row_number() OVER(ORDER BY str COLLATE Latinl_General_BIN2)
AS collate_BIN2
FROM (VALUES(1, N'zzZ'), (2, N'ZNN"), (3, N'NzZ'), (4, N'NNN'))
AS T(n, str)
ORDER BY n;

Here is the result:

n str bytestr bytesort collate_BIN collate_BIN2
1 777 0x5A005A005A00 4
2 ZNN 0x5A0043014301 3
3 NZZ 0x43015A005A00 2
4 NNN 0x430143014301 1



232

Microsoft SQL Server 2008 Internals

You can see that in the collate_BINZ2 column, the rows are numbered according to their code
points in Unicode. In the bytesort column, on the other hand, they are numbered in reverse
order because the least significant byte in the character code takes precedence. Finally, in the
collate_BIN column, the two entries that start with Z are sorted first, but in reverse order with
regards to collate_BINZ.

SQL Server Collations The SQL Server collations (known as SQL collations for short) is a
much smaller group than the Windows collations. In total, there are 76 SQL collations, of
which 1 is deprecated.

A SQL collation uses two different rule sets. One is for single-byte data types, and the other
is for Unicode data types. The rules for single-byte data types are defined by SQL Server
itself, and derive from the days when SQL Server did not support Unicode. When you work
with Unicode data, a SQL collation uses the same rules as the matching Windows collation.
To see which Windows collation a certain SQL collation matches, you can view the description
column in the output from fn_helpcollations().

The name of a SQL collation always starts with SQL_ followed by a language indicator, similar to
the name of a Windows collation. Likewise, names for SQL collations include CI/CS and Al/AS to
indicate case and accent sensitivity. Some binary SQL collations also exist. In contrast to names
for Windows collations, SQL collations always include the code page for single-byte characters
in the name. For some reason, though, CP1252, Windows Latin-1, appears as CP1 in the names.

Many SQL collations relate to American National Standards Institute (ANSI) code pages, that
is, code pages used by non-Unicode Windows applications. But there are also SQL collations
for the OEM code pages CP437 and CP850; that is, code pages used in the command-line
window. There are even a few SQL collations for EBCDIC.

Sort Orders With a SQL collation, you can get different results depending on the data type.
For instance, in the example with the 14 words, if we run it with word as nvarchar and with the
commonly used SQL collation SQL_Latin1_General_CP1_CI_AS, the result is the same as when
we used Latinl_General_CI_AS. But if you change word to be varchar, you get this result:

collatedword rank  wordno

EIL 1 5
@il 2 10
cloud 3 1
CSAK 4 6
cukor 5 11
Oblige 6 2
01 7 12
Opera 8 7
RESUME 9 8
resume 9 4
résumé 10 3
RESUME 10 13
resumes 11 9
résumés 12 14



Chapter 5 Tables 233

Now the two forms of ceil come first and they have different ranks, despite the collation
being case insensitive. In this collation, a few accented letters sort as if they were punctuation
characters. (The others are S, ¥, and Z) Other differences in SQL_Latinl_General_CP1_CI_AS
between the single-byte and Unicode data types include how punctuation characters are
sorted. However, so long as your data mainly consist of the digits 0-9 and the English letters
A-Z, these differences likely will not be significant to you.

Tertiary Collations Just like Windows collations, SQL collations have primary and secondary
weights, but it does not stop there. A total of 32 of the SQL collations also have tertiary
weights. With one exception, the tertiary collations are all case insensitive. The purpose of
the tertiary weight is to give preference to uppercase, so when everything else is equal in
the entire ORDER BY clause, uppercase words sort first. In some tertiary collations, this is
indicated by Pref appearing in the name, whereas in other tertiary collations, this is implicit.
You find the full list of tertiary collations in SQL Server Books Online in the topic for the
built-in function TERTIARY_WEIGHTS.

To study the tertiary collations, we use a different table with different words as follows:

CREATE TABLE #prefwords
(word char(3) COLLATE SQL_Latinl_General_Pref_CP1_CI_AS
NOT NULL,
wordno int NOT NULL PRIMARY KEY NONCLUSTERED,
tert AS tertiary_weights(word));
CREATE CLUSTERED INDEX word_ix ON #prefwords (word);
--CREATE INDEX tert_ix on #prefwords(word, tert)
go
INSERT #prefwords (word, wordno)
VALUES ('abc', 1), ('abC', 4), ('aBc', 7),
('aBC', 2), ('Abc', 5), ('ABc', 8),
('"AbC', 3), ('ABC', 6);
go
SELECT word, wordno, rank = dense_rank() OVER(ORDER BY word),
rowno = row_number() OVER (ORDER BY word)
FROM  #prefwords
ORDER BY word--, wordno;

The output from this query is

word wordno rank rowno

ABC 6 1 8
ABc 8 1 6
AbC 3 1 7
Abc 5 1 5
aBC 2 1 4
aBc 7 1 3
abC 4 1 2

1 1 1

You can see that all words have the same rank; nevertheless, uppercase letters consistently
come before lowercase. And in the rowno column, rows are numbered in opposite order,



234

Microsoft SQL Server 2008 Internals

which is likely to be by chance. That is, the tertiary weight affects only the ORDER BY at the
end of the query, but not the ORDER BY for the dense_rank and row_number functions.

Now, if you look at the query plan for this query, you find a Sort operator, which is surprising,
given there is a clustered index on word. If you go one step back in the plan, you find

a Compute Scalar operator, and if you press F4, you can see that this operator defines
[Exprl005] = Scalar Operator(tertiary_weights([tempdb].[dbo].[#prefwords].[word])), and if
you look at the Sort operator, you see that it sorts by word and Exprl005. That is, the tertiary
weight is not stored in the index, but computed at run time.

This is where the function TERTIARY WEIGHTS comes in. This function accepts parameters of
the types char, varchar, and text and returns a non-NULL value if the input value is not from

a tertiary collation. SQL Server Books Online suggests that you can add a computed column
with this function and then add an index on the character column and the computed column,
like the tert_ix in the previous script. If you uncomment the creation of tert_ix in the previous
script and also comment out the rank and rowno columns from the SELECT statement, you
see a plan without any Sort operator. Thus the function TERTIARY WEIGHTS can help to
improve performance with tertiary collations.

Now see what happens if we uncomment wordno from the ORDER BY clause, so that the
guery now reads:

SELECT word, wordno

FROM  #prefwords

ORDER BY word, wordno;

This is the output:

abc 1
aBC 2
AbC 3
abC 4
Abc 5
ABC 6
aBc 7

8

That is, the tertiary weight only matters when there is no other difference in the entire
ORDER BY clause. Needless to say, the query plan again includes the Sort operator.

Collations Defined During SQL Server Setup When you install SQL Server, you need
to select a server collation. This is an important choice, because if you make an incorrect
selection, you cannot easily change this later. You will essentially have to reinstall SQL Server.

The SQL Server Setup provides a default collation, and this will always be a CI_AS collation—
that is, a collation that is sensitive to accents but insensitive to case, kanatype, and width.



Chapter 5 Tables 235

Setup selects the collation designator for the default collation from the system locale—that
is, the locale that applies on the system level, which may be different from the regional
settings for your own Windows user. The default is always a Windows collation, except in one
very notable case: if your system locale is English (United States), the default is SQL_Latin1_
General_CP1_CI_AS. The reason for this seemingly odd default is backward compatibility.

When different versions of the same language exist, the default depends on whether your
system locale existed in previous versions of Windows or was added in Windows 2008. So, for
instance, for English (United Kingdom) and German (Germany) the default is Latin1_General_
CI_AS, whereas for English (Singapore) and Swahili (Kenya), the default is Latin1_General_100_
CI_AS. Again, the reason for this variation is backward compatibility. For the full list of default
collations, see the topic “Collation Settings in Setup” in SQL Server Books Online.

Although Setup suggests a default collation, it is far from certain that this default is the best
for your server. You should make a conscious, deliberate decision. If you install a server to
run a third-party product, you should consult the vendor’s documentation to see if it has any
recommendations or requirements for the application. If you plan to migrate databases from
an earlier version of SQL Server, you should probably select the same collation for the new
server as for your existing server. As | noted earlier, if you plan to access the server as a linked
server from SQL Server 2005, you should avoid the new _100 collations.

Another thing to beware of is that your Windows administrator may have installed a U.S.
English version of Windows, leaving the system locale as English (United States) even if

the local language is something else. If this is the case on your server, and you do not pay
attention when you install SQL Server, you may end up with a collation that does not fit well
with the language in your country.

Some languages have multiple appropriate choices. For instance, for German, the default
is Latin1_General_CI_AS, but you can also use any of the German_Phonebook collations (in
which d, 6, and U sort as ae, oe, and ue).

Running the Installation Wizard When you run the Installation Wizard for SQL Server 2008,
you need to be observant because the collation selection is not on a page of its own but
appears on a second tab on the Server Configuration page. You'll have to watch carefully
because the collation tab is not displayed when you get to the Server Configuration screen.
You'll see a screen asking for information about the service accounts to use. When you select
the collation tab on that screen, you see something like Figure 5-4.

This screenshot was taken on a machine with the system locale set to Swedish, and thus the
default collation is Finnish_Swedish_CI_AS. (As you can see, you can also set the collation for
Analysis Services on this tab, but that is beyond the scope of this book.)



236 Microsoft SQL Server 2008 Internals

=181 x]
Server Configuration

Specify the configuration.

Setup Support Rules Service Accounts  Collation

Feature Seleckion

Instance Configuration Databiase Engine:

Disk Space Requirements Finnish_Swedish_CI_AS Custornize. ..

Server Configuration Firnish-Swedish, case-insensitive, accent-sensitive, kanabype-insensitive, width-
Database Engine Configuration insensitive

Anal S Confi i
nalysis Services Configuration el Sy
Error and Usage Reporting

Installation Rules Finmish_Swedish_CI_AS
Ready to Instal Finnish-Swedish, case-insensitive, accent-sensitive, kanatype-insensitive, width-
insensitive

Installation Progress

Complete

< Back Mexk = Cancel Help

FIGURE 5-4 Setting the server configuration
Figure 5-5 shows you what you see when you press Customize.

Customize the SQL Server 2008 Database Engine Collation

Select the collation you would like to use:

+ indows collation designator and sart order

Collation designatar: IFinnish_Swedish j
r Binary r Binary-code poink
r Case-sensitive r Kana-sensitive

¥ Accent-sensitive I width-sensitive

5oL collation, used For backwards compatibility:

SQL_AltDiction_CPAS0_CT_AT
SQL_AltDiction _CPES0_CI_AS
5QL_AltDiction_CPE50_CS_AS
5GL_AltDiction_Pref_CPESO_CI_AS x|

Collation description:

Latini-General, case-insensitive, accent-sensitive, kanatype-insensitive, width-insensitive Far
Unicode Data, QL Server Sort Order 49 on Code Page 850 for non-Unicode Data

|

FIGURE 5-5 Customize the collation properties

You can use an option button to select whether to use a Windows collation or a SQL collation.
If you select a Windows collation, there is a drop-down list where you can select the Collation
designator. Below that are check boxes to select case sensitivity and other features. The choice



Chapter 5 Tables 237

Binary gives you a BIN collation, whereas Binary-code point gives you a BIN2 collation. If you
select to use a SQL collation, there is a single list box that lists all SQL collations.

Performance Considerations Does the choice of collation affect performance? Yes, but in
many cases only marginally, and your most important criteria should be to choose the collation
that best meet your users’ needs. However, there are a few situations where the collation can
have quite drastic effects.

Generally, binary collations give you the best performance, but in most applications, they do
not give a very good user experience.

So long as you work with varchar data, the SQL collations perform almost equally well. The SQL
collations include rules only for the 255 characters in the code page covered by the collation.

A Windows collation always works with the full rules of Unicode internally, even for single-byte
data. Thus, the internal routines for SQL collations are far less complex than those for Unicode.

The Windows collations have some differences between collation families where some are
faster than others. A special case is the case-insensitive Latinl_General and Latin1_General_100
collations, which appear to perform better than any other collation family when you work with
Unicode data. Contrary to what you may expect, case-sensitive collations do not give better
performance; rather, their rate is a few percentage points slower in many operations. But, again,
this is not something that you should pay too much attention to. If your users expect to see data
sorted according to, say, the Danish alphabet, there is no reason to select Latinl_General_CI_AS
just because it operates a little faster. What's the point of a faster operation that doesn’t do what
your users need? Also, keep in mind that a typical query includes so many other components
that the effect of the collation is likely to be lost in the noise.

A Trap with SQL Server Collations The collation really does matter in a few situations,
though. Consider the following:

SELECT col FROM tb1 WHERE indexedcol = @value;

For this query, the collation does not have much impact so long as the column and @value
has the same data type. Neither is there an issue, if the column has a Unicode data type and
@value is char or varchar. But if the column is single-byte and @value is Unicode, there is an
issue because the data-type precedence rules in SQL Server. The char and varchar data types
have lower precedence than nchar and nvarchar, so the column is converted to the type of
the value, and this has ramifications for how the index can be used.

If the column has a Windows collation, SQL Server can still seek the index, albeit with a more
complex filter, so compared to a query without conversion, you can expect the execution time
to double or triple. But it is when the column has a SQL collation that this query becomes
really problematic. The index does not serve any purpose after the conversion because in a
SQL collation, the rules are entirely different for single-byte and Unicode data. SQL Server can
at best scan the index. In a big table, performance can be drastically affected, with execution



238

Microsoft SQL Server 2008 Internals

times that are 100 or 1,000 times more than for a properly written query. Thus, if you opt to
use a SQL collation, you need to watch that you don't mix varchar and nvarchar casually.

Another case where the collation can make a huge difference is when SQL Server has to look
at almost all characters in the strings. For instance, look at the following:

SELECT COUNT(*) FROM tb1 WHERE Tongcol LIKE '%abc%';

This may execute 10 times faster or more with a binary collation than a nonbinary Windows
collation. And with varchar data, this executes up to seven or eight times faster with a SQL
collation than with a Windows collation. If you have a varchar column, you can speed this up
by forcing the collation as follows:

SELECT COUNT(*) FROM tb1
WHERE Tongcol COLLATE SQL_Latinl_General_CP_CI_AS LIKE '%abc%';

If your column is nvarchar, you have to force a binary collation instead, but that would only
be possible if users can accept a case-sensitive search.

The same considerations apply to the functions CHARINDEX and PATINDEX.

Special Data Types

I'll end this section on data types by showing you a few additional data types that you might
find useful.

Binary Data Types These data types are binary and varbinary. They are used to store strings
of bits, and the values are entered and displayed using their hexadecimal (hex) representation,
which is indicated by a prefix of Ox. So a hex value of 0x270F corresponds to a decimal value of
9,999 and a bit string of 0010011100001111. In hex, each two displayed characters represent

a byte, so the value of 0x270F represents 2 bytes. You need to decide whether you want your
data to be fixed or variable length, and you can use some of the same considerations discussed
previously for deciding between char and varchar to make your decision. The maximum length
of binary or varbinary data is 8,000 bytes.

bit Data Type The bit data type can store a 0 or a 1 and can consume only a single bit of
storage space. However, if there is only one bit column in a table, it will take up a whole byte.
Up to eight-bit columns are stored in a single byte.

LOB Data Types SQL Server 2008 allows you to define columns with the MAX attribute:
varchar(MAX), nvarchar(MAX), and varbinary(MAX). If the number of bytes actually inserted into
these columns exceeds the maximum of 8,000, these columns are stored using a special storage
format for LOB data. The special storage format is the same one as used for the data types text,
ntext, and image, but because those types will be discontinued in a future version of SQL Server,
it is recommend that you use the variable-length data types with the MAX specifier for all new
development. The varchar(MAX) (or text) data type can store up to 2231 — 1 non-Unicode



Chapter 5 Tables 239

characters, nvarchar(MAX) (or ntext) can store up to 230 — 1 (half as many) Unicode characters,
and varbinary(MAX) (or image) can store up to 2731 — 1 bytes of binary data. In addition,
varbinary(MAX) data can be stored as filestream data. We'll cover filestream data in more detail
in Chapter 7, as well as look at the storage structures for LOB data.

cursor Data Type The cursor data type can hold a reference to a cursor. Although you

can't declare a column in a table to be of type cursor, this data type can be used for output
parameters and local variables. I've included the cursor data type in this list for completeness,
but I won't be talking more about it.

rowversion Data Type The rowversion data type is a synonym for what was formerly called
a timestamp. When using the timestamp data type name, many people might assume that
the data has something to do with dates or times, but it doesn't. A column of type rowversion
holds an internal sequence number that SQL Server automatically updates every time the row
is modified. The value of any rowversion column is actually unique within an entire database,
and a table can have only one column of type rowversion. Any operation that modifies any
rowversion column in the database generates the next sequential value. The actual value
stored in a rowversion column is seldom important by itself. The column is used to detect
whether a row has been modified since the last time it was accessed by determining whether
the rowversion value has changed.

sql_variant Data Type The sql_variant data type allows a column to hold values of any data
type except text, ntext, image, XML, user-defined data types, variable-length data types with
the MAX specifier, or rowversion (timestamp). I'll describe the internal storage of sql_variant
data later in this chapter.

Spatial Data Type SQL Server 2008 provides two data types for storing spatial data. The
geometry data type supports planar, or Euclidean (flat-earth), data. The geometry data type
conforms to the Open Geospatial Consortium (OGC) Simple Features for SQL Specification
version 1.1.0. The geography data type stores ellipsoidal (round-earth) data, such as Global
Positioning Satellite (GPS) latitude and longitude coordinates. These data types have

their own methods for accessing and manipulating the data, as well as their own special
extended index structures, which are different than the normal SQL Server indexes. Any
further discussion of the access methods and storage of spatial data is beyond the scope of
this book.

table Data Type The table data type can be used to store the result of a function and can
be used as the data type of local variables. Columns in tables cannot be of type table.

xml Data Type The xm/ data type lets you store XML documents and fragments in a SQL
Server database. You can use the xm/ data type as a column type when you create a table, or
as the data type for variables, parameters, and the return value of a function. XML data has
its own methods for retrieval and manipulation. | will not be covering details of working with
xml data in this book.



240

Microsoft SQL Server 2008 Internals

uniqueidentifier Data Type The uniqueidentifier data type is sometimes referred to as a
globally unique identifier (GUID) or universal unique identifier (UUID). A GUID or UUID is

a 128-bit (16-byte) value generated in a way that, for all practical purposes, guarantees
uniqueness among every networked computer in the world. It is becoming an important way
to identify data, objects, software applications, and applets in distributed systems. Because
there are some very interesting aspects to the way the uniqueidentifier data type is generated
and manipulated, I'll give you a bit more detail about it.

The T-SQL language supports the system functions NEWID and NEWSEQUENTIALID,
which you can use to generate uniqueidentifier values. A column or variable of data type
uniqueidentifier can be initialized to a value in one of the following two ways:

B Using the system-supplied function NEWID or NEWSEQUENTIALID as a default value.

B Using a string constant in the following form (32 hexadecimal digits separated by
hyphens): Xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. (Each x is a hexadecimal digit in the
range 0 through 9 or a through f)

This data type can be quite cumbersome to work with, and the only operations that are
allowed against a uniqueidentifier value are comparisons (=, <>, <, >, <=, >=) and checking
for NULL. However, using this data type internally can offer several advantages.

One reason to use the uniqueidentifier data type is that the values generated by NEWID or
NEWSEQUENTIALID are guaranteed to be globally unique for any machine on a network
because the last six bytes of a uniqueidentifier value make up the node number for the
machine. When the SQL Server machine does not have an Ethernet/Token Ring (IEEE 802.x)
address, there is no node number and the generated GUID is guaranteed to be unique
among all GUIDs generated on that computer. However, the possibility exists that another
computer without an Ethernet/Token Ring address will generate the identical GUID. The
GUIDs generated on computers with network addresses are guaranteed to be globally
unique.

The primary reason that SQL Server needed a way to generate a GUID was for use in merge
replication, in which identifier values for the same table could be generated on any one of
many different SQL Server machines. There needed to be a way to determine whether two
rows really were the same row and there had to be no way that two rows not referring to the
same entity would have the same identifier. Using GUID values provides that functionality.
Two rows with the same GUID value must indicate that they really are the same row.

The difference between the NEWSEQUENTIALID and the NEWID functions is that
NEWSEQUENTIALID creates a GUID that is greater than any GUID previously generated by
this function on a specified computer and can be used to introduce a sequence to your GUID
values. This turns out to increase greatly the scalability of systems using merge replication.

If the ungiueidentifer values are being used as the clustered key for the replicated tables,



Chapter 5 Tables 241

the new rows are then inserted in random disk pages. (You'll see the details in Chapter 6,
when clustered indexes are discussed in detail.) If the machines involved are performing a
large amount of 1/0 operations, the nonsequential GUID generated by the NEWID function
results in lots of random B-tree lookups and inefficient insert operations. The new function,
NEWSEQUENTIALID, which is a wrapper around the Windows function UuidCreateSequential,
does some byte scrambling and creates an ordering to the generated UUID values.

The list of uniqueidentifier values can't be exhausted. This is not the case with other data
types frequently used as unique identifiers. In fact, SQL Server uses this data type internally
for row-level merge replication. A uniqueidentifier column can have a special property called
ROWGUIDCOL; at most, one uniqueidentifier column can have this property per table. The
ROWGUIDCOL property can be specified as part of the column definition in CREATE TABLE
and ALTER TABLE ADD column, or it can be added or dropped for an existing column using
ALTER TABLE ALTER COLUMN.

You can reference a uniqueidentifier column with the ROWGUIDCOL property using the
keyword ROWGUIDCOL in a query. This is similar to referencing an identity column using

the IDENTITYCOL keyword. The ROWGUIDCOL property does not imply any automatic value
generation, and if automatic value generation is needed, the NEWID function should be
defined as the default value of the column. You can have multiple uniqueidentifier columns
per table, but only one of them can have the ROWGUIDCOL property. You can use the
uniqueidentifier data type for whatever reason you come up with, but if you're using one to
identify the current row, an application must have a generic way to ask for it without needing
to know the column name. That's what the ROWGUIDCOL property does.

Much Ado About NULL

The issue of whether to allow NULL has become a heated debate for many in the industry,
and the discussion here may outrage a few people. However, my intention isn't to engage
in a philosophical debate. Pragmatically, dealing with NULL brings added complexity to the
storage engine because SQL Server keeps a special bitmap in every row to indicate which
nullable columns actually are NULL. If NULLs are allowed, SQL Server must decode this
bitmap for every row accessed. Allowing NULL also adds complexity in application code,
which can often lead to bugs. You must always add special logic to account for the case

of NULL.

As the database designer, you might understand the nuances of NULL and three-valued
logic in aggregate functions when you do joins and when you search by values. In addition,
you must also consider whether your development staff really understands how to work
with NULLs. | recommend, if possible, that you use all NOT NULL columns and define default
values for missing or unknown entries (and possibly make such character columns varchar if
the default value is significantly different in size from the typical entered value).



242

Microsoft SQL Server 2008 Internals

In any case, it's good practice to declare NOT NULL or NULL explicitly when you create a
table. If no such declaration exists, SQL Server assumes NOT NULL. (In other words, no NULLs
are allowed.) This might surprise many people who assume that the default for SQL Server is
to allow NULLs. The reason for this misconception is that most of the tools and interfaces for
working with SQL Server enable a session setting that makes it the default to allow NULLs.
However, you can set the default to allow NULLs by using a session setting or a database
option, which, as | just mentioned, is what most tools and interfaces already do. If you script
your DDL and then run it against another server that has a different default setting, you get
different results if you don't declare NULL or NOT NULL explicitly in the column definition.

Several database options and session settings can control the behavior of SQL Server
regarding NULL values. You can set database options using the ALTER DATABASE command,
as | showed you in Chapter 3, “Databases and Database Files.” And you can enable session
settings for one connection at a time using the SET command.

Note The database option ANS/ null default corresponds to the two session settings ANSI_
NULL_DFLT_ON and ANSI_NULL_DFLT_OFF. When the ANSI null default database option is false
(the default setting for SQL Server), new columns created with the ALTER TABLE and CREATE
TABLE commands are, by default, NOT NULL if the nullability status of the column isn't explicitly
specified. SET ANSI_NULL_DFLT_OFF and SET ANSI_NULL_DFLT_ON are mutually exclusive
options that indicate whether the database option should be overridden. When on, each option
forces the opposite option off. Neither option, when off, turns the opposite option on—it only
discontinues the current on setting.

You use the function GETANSINULL to determine the default nullability for your current
session. This function returns 1 when new columns allow null values and the column or data
type nullability wasn't defined explicitly when the table was created or altered. | strongly
recommend declaring NULL or NOT NULL explicitly when you create a column. This removes
all ambiguity and ensures that you're in control of how the table is built, regardless of the
default nullability setting.

The database option concat null yields null corresponds to the session setting SET CONCAT_
NULL_YIELDS_NULL. When CONCAT_NULL_YIELDS_NULL is on, concatenating a NULL value
with a string yields a NULL result. For example, SELECT ‘abc’ + NULL yields NULL. When

SET CONCAT_NULL_YIELDS_NULL is off, concatenating a NULL value with a string yields
the string itself. In other words, the NULL value is treated as an empty string. For example,
SELECT ‘abc’ + NULL yields abc. If the session-level setting isn't specified, the value of the
database option concat null yields null applies.

The database option ANS/ nulls corresponds to the session setting SET ANSI_NULLS. When
this option is set to ON, all comparisons to a NULL value evaluate to UNKNOWN. When it is
set to OFF, comparisons of values to a NULL value evaluate to TRUE if both values are NULL.
In addition, when this option is set to ON, your code must use the condition IS NULL to



Chapter 5 Tables 243

determine whether a column has a NULL value. When this option is set to OFF, SQL Server
allows = NULL as a synonym for IS NULL and <> NULL as a synonym for IS NOT NULL.

A fourth session setting is ANSI_DEFAULTS. Setting this to ON is a shortcut for enabling both
ANSI_NULLS and ANSI_NULL_DFLT_ON, as well as other session settings not related to NULL
handling. The SQL Server ODBC driver and the SQL Server OLE DB provider automatically
set ANSI_DEFAULTS to ON. You can change the ANSI_NULLS setting when you define your
data source name (DSN). You should be aware that the tool you are using to connect to SQL
Server might set certain options ON or OFF.

The following query shows the values for all the SET options in your current session, and if
you have VIEW SERVER STATE permission, you can change or remove the WHERE clause to
return information about other sessions as follows:

SELECT * FROM sys.dm_exec_sessions
WHERE session_id = @@spid;

As you can see, you can configure and control the treatment and behavior of NULL values in
several ways, and you might think it would be impossible to keep track of all the variations.
If you try to control every aspect of NULL handling separately within each individual session,
you can cause immeasurable confusion and even grief. However, most of the issues become
moot if you follow a few basic recommendations:

B Never allow NULL values in your tables.
B Include a specific NOT NULL qualification in your table definitions.

B Don't rely on database properties to control the behavior of NULL values.

If you must use NULLs in some cases, you can minimize problems by always following the
same rules, and the easiest rules to follow are the ones that ANSI already specifies.

In addition, certain database designs allow for NULL values in a large number of columns and
in a large number of rows. SQL Server 2008 introduces the concept of sparse columns. Sparse
columns reduce the space requirements for NULL values at the cost of more overhead to
retrieve NOT NULL values. So the biggest benefit from sparse columns is found when a large
percentage of your data is NULL. I'll discuss sparse column storage in Chapter 7.

There are a couple of other storage considerations to be aware of when allowing your
columns to be NULL. For fixed-length columns (that are not defined to be sparse), the column
always uses the full defined length, even when storing NULL. For example, a column defined
as char(200) always uses 200 bytes whether it is NULL or not. Variable-length columns are
different and do not take up any space for the actual data storage of NULLs. That doesn’t
mean there is no space requirement at all, as we'll see later in this chapter when | describe the
internal storage mechanisms.



244

Microsoft SQL Server 2008 Internals

User-Defined Data Types

A user-defined data type (UDT) provides a convenient way for you to guarantee consistent
use of underlying native data types for columns known to have the same domain of possible
values. For example, perhaps your database stores various phone numbers in many tables.
Although no single, definitive way exists to store phone numbers, consistency is important in
this database. You can create a phone_number UDT and use it consistently for any column in
any table that keeps track of phone numbers to ensure that they all use the same data type.
Here's how to create this UDT:

CREATE TYPE phone_number FROM varchar(20) NOT NULL;

And here’s how to use the new UDT when you create a table:

CREATE TABLE customer

(

cust_id smallint NOT NULL,
cust_name varchar(50) NOT NULL,
cust_addrl varchar(50) NOT NULL,
cust_addr2 varchar(50) NOT NULL,
cust_city varchar(50) NOT NULL,
cust_state char(2) NOT NULL,
cust_postal_code varchar(10) NOT NULL,
cust_phone phone_number NOT NULL,
cust_fax varchar(20) NOT NULL,
cust_email varchar(30) NOT NULL,
cust_web_url varchar(100) NOT NULL
DN

When the table is created, internally the cust_phone data type is known to be varchar(20).
Notice that both cust_phone and cust_fax are varchar(20), although cust_phone has that
declaration through its definition as a UDT.

Information about the columns in your tables is available through the catalog view sys.
columns, which we'll look at in more detail in the section entitled “Internal Storage,” later in
this chapter. For now, we'll just look at a basic query to show us two columns in sys.columns,
one containing a number representing the underlying system data type and one containing
a number representing the data type used when creating the table. The following query
selects all the rows from sys.columns and displays the column_id, the column name, the data
type values, and the maximum length, and then displays the results:

SELECT column_id, name, system_type_id, user_type_id,
type_name(user_type_id) as user_type_name, max_length

FROM sys.columns

WHERE object_id=object_id('customer');

column_id  type_name system_type_id user_type_id user_type_name max_length
cust_id 52 52 smallint 2
2 cust_name 167 167 varchar 50

3 cust_addrl 167 167 varchar 50



Chapter 5 Tables 245

4 cust_addr2 167 167 varchar 50
5 cust_city 167 167 varchar 50

6 cust_state 175 175 char 2

7 cust_postal_code 167 167 varchar 10

8 cust_phone 167 257 phone_number 20

9 cust_fax 167 167 varchar 20
10 cust_email 167 167 varchar 30
11 cust_web_url 167 167 varchar 100

You can see that both the cust_phone and cust_fax columns have the same system_type_id
value, although the cust_phone column shows that the user type_id is a UDT (user_type_id

= 257). The type is resolved when the table is created, and the UDT can’t be dropped or
changed so long as a table is currently using it. Once declared, a UDT is static and immutable,
so no inherent performance penalty occurs in using a UDT instead of the native data type.

The use of UDTs can make your database more consistent and clear. SQL Server implicitly
converts between compatible columns of different types (either native types or UDTs of
different types).

Currently, UDTs don't support the notion of subtyping or inheritance, nor do they allow a
DEFAULT value or a CHECK constraint to be declared as part of the UDT itself. These powerful
object-oriented concepts will likely make their way into future versions of SQL Server. These
limitations notwithstanding, UDT functionality is a dynamic and often underused feature of
SQL Server.

IDENTITY Property

It is common to provide simple counter-type values for tables that don't have a natural or
efficient primary key. Columns such as cust_id are usually simple counter fields. The IDENTITY
property makes generating unique numeric values easy. IDENTITY isn't a data type; it's a
column property that you can declare on a whole number data type such as tinyint, smallint,
int, bigint, or numeric/decimal (with which only a scale of zero makes any sense). Each table
can have only one column with the IDENTITY property. The table’s creator can specify the
starting number (seed) and the amount that this value increments or decrements. If not
otherwise specified, the seed value starts at 1 and increments by 1, as shown in this example:

CREATE TABLE customer

(
cust_id smallint IDENTITY NOT NULL,
cust_name varchar(50) NOT NULL

)H

To find out which seed and increment values were defined for a table, you can use the
IDENT_SEED(tablename) and IDENT_INCR(tablename) functions. Take a look at this statement:

SELECT IDENT_SEED('customer'), IDENT_INCR('customer')



246

Microsoft SQL Server 2008 Internals

It produces the following result for the customer table because values weren't declared
explicitly and the default values were used.

1 1

This next example explicitly starts the numbering at 100 (seed) and increments the value by 20:

CREATE TABLE customer

(

cust_id smallint IDENTITY(100, 20) NOT NULL,
cust_name varchar(50) NOT NULL

);

The value automatically produced with the IDENTITY property is normally unique, but that
isn't guaranteed by the IDENTITY property itself, nor are the IDENTITY values guaranteed

to be consecutive. (I will expand on the issues of nonunique and nonconsecutive IDENTITY
values later in this section.) For efficiency, a value is considered used as soon as it is presented
to a client doing an INSERT operation. If that client doesn’t ultimately commit the INSERT, the
value never appears, so a break occurs in the consecutive numbers. An unacceptable level of
serialization would exist if the next number couldn’t be parceled out until the previous one
was actually committed or rolled back. (And even then, as soon as a row was deleted, the
values would no longer be consecutive. Gaps are inevitable.)

Note If you need exact sequential values without gaps, IDENTITY isn't the appropriate feature
to use. Instead, you should implement a next_number-type table in which you can make the
operation of bumping the number contained within it part of the larger transaction (and
incur the serialization of queuing for this value).

To temporarily disable the automatic generation of values in an identity column, you use

the SET IDENTITY_INSERT tablename ON option. In addition to filling in gaps in the identity
sequence, this option is useful for tasks such as bulk-loading data in which the previous values
already exist. For example, perhaps you're loading a new database with customer data from
your previous system. You might want to preserve the previous customer numbers but have
new ones automatically assigned using IDENTITY. The SET option was created exactly for cases
like this.

Because the SET option allows you to determine your own values for an IDENTITY column,
the IDENTITY property alone doesn’t enforce uniqueness of a value within the table.
Although IDENTITY generates a unique number if IDENTITY_INSERT has never been enabled,
the uniqueness is not guaranteed once you have used the SET option. To enforce uniqueness
(which you'll almost always want to do when using IDENTITY), you should also declare a
UNIQUE or PRIMARY KEY constraint on the column. If you insert your own values for an
identity column (using SET IDENTITY_INSERT), when automatic generation resumes, the next
value is the next incremented value (or decremented value) of the highest value that exists in
the table, whether it was generated previously or explicitly inserted.



Chapter 5 Tables 247

Tip If you use the bep utility for bulk-loading data, be aware of the -E (uppercase) parameter if
your data already has assigned values that you want to keep for a column that has the IDENTITY
property. You can also use the T-SQL BULK INSERT command with the KEEPIDENTITY option.
For more information, see the SQL Server documentation for bcp and BULK INSERT.

The keyword IDENTITYCOL automatically refers to the specific column in a table that has the
IDENTITY property, whatever its name. If that column is cust_id, you can refer to the column as
IDENTITYCOL without knowing or using the column name, or you can refer to it explicitly as
cust_id. For example, the following two statements work identically and return the same data:

SELECT IDENTITYCOL FROM customer;
SELECT cust_id FROM customer;

The column name returned to the caller is cust_id, not IDENTITYCOL, in both cases.

When inserting rows, you must omit an identity column from the column list and VALUES
section. (The only exception is when the IDENTITY_INSERT option is on.) If you do supply a
column list, you must omit the column for which the value will be supplied automatically.
Here are two valid INSERT statements for the customer table shown previously:

INSERT customer VALUES ('ACME Widgets');
INSERT customer (cust_name) VALUES ('AAA Gadgets');

Selecting these two rows produces this output:

cust_id cust_name

ACME Widgets
2 AAA Gadgets

In applications, it's sometimes desirable to know immediately the value produced by
IDENTITY for subsequent use. For example, a transaction might first add a new customer and
then add an order for that customer. To add the order, you probably need to use the cust_id.
Rather than selecting the value from the customer table, you can simply select the special
system function @@/DENTITY, which contains the last identity value used by that connection.
It doesn't necessarily provide the last value inserted in the table, however, because another
user might have subsequently inserted data. If multiple INSERT statements are carried out in
a batch on the same or different tables, the variable has the value for the last statement only.
In addition, if an INSERT trigger fires after you insert the new row, and if that trigger inserts
rows into a table with an identity column, @ @/DENTITY does not have the value inserted by
the original INSERT statement. To you, it might look like you're inserting and then immedi-
ately checking the value, as follows:

INSERT customer (cust_name) VALUES ('AAA Gadgets');
SELECT @@IDENTITY;



248

Microsoft SQL Server 2008 Internals

However, if a trigger were fired for the INSERT, the value of @@/DENTITY might have changed.

You might find two other functions useful when working with identity columns: SCOPE_IDENTITY
and IDENT_CURRENT. SCOPE_IDENTITY returns the last identity value inserted into a table in the
same scope, which could be a stored procedure, trigger, or batch. So if we replace @@IDENTITY
with the SCOPE_IDENTITY function in the preceding code snippet, we can see the identity value
inserted into the customer table. If an INSERT trigger also inserted a row that contained an
identity column, it would be in a different scope, like this:

INSERT customer (cust_name) VALUES ('AAA Gadgets');
SELECT SCOPE_IDENTITYQ);

In other cases, you might want to know the last identity value inserted in a specific table
from any application or user. You can get this value using the IDENT_CURRENT function,
which takes a table name as an argument:

SELECT IDENT_CURRENT('customer');

This doesn’t always guarantee that you can predict the next identity value to be inserted
because another process could insert a row between the time you check the value of
IDENT_CURRENT and the time you execute your INSERT statement.

You can't define the IDENTITY property as part of a UDT, but you can declare the IDENTITY
property on a column that uses a UDT. A column that has the IDENTITY property must always
be declared NOT NULL (either explicitly or implicitly); otherwise, error number 8147 results
from the CREATE TABLE statement and CREATE won't succeed. Likewise, you can’t declare the
IDENTITY property and a DEFAULT on the same column. To check that the current identity
value is valid based on the current maximum values in the table, and to reset it if an invalid
value is found (which should never be the case), use the DBCC CHECKIDENT(tablename)
statement.

Identity values are fully recoverable. If a system outage occurs while an insert activity is
taking place with tables that have identity columns, the correct value is recovered when SQL
Server restarts. SQL Server does this during the checkpoint processing by flushing the current
identity value for all tables. For activity beyond the last checkpoint, subsequent values are
reconstructed from the transaction log during the standard database recovery process. Any
inserts into a table that have the IDENTITY property are known to have changed the value,
and the current value is retrieved from the last INSERT statement (post-checkpoint) for each
table in the transaction log. The net result is that when the database is recovered, the correct
current identity value is also recovered.

In rare cases, the identity value can get out of sync. If this happens, you can use the DBCC
CHECKIDENT command to reset the identity value to the appropriate number. In addition,
the RESEED option to this command allows you to set a new starting value for the identity
sequence. See the online documentation for complete details.



Chapter 5 Tables 249

Internal Storage

This section describes how SQL Server actually stores table data. In addition, it explores
the basic system metadata that keeps track of data storage information. Although you can
use SQL Server effectively without understanding the internals of data storage, a detailed
knowledge of how SQL Server stores data helps you develop efficient applications.

When you create a table, one or more rows are inserted into a number of system tables to
manage that table and SQL Server provides catalog views built on top of the system tables
that allow you to explore their contents. At minimum, you can see metadata for your new
table in the sys.tables, sys.indexes, and sys.columns catalog views. When you define the new
table with one or more constraints, you also can see information in the sys.check_constraints,
sys.default_constraints, sys.key_constraints, or sys.foreign_keys view. For every table created, a
single row that contains the name, object ID, and ID of the schema containing the new table
(among other items) is available through the sys.tables view. Remember that the sys.tables
view inherits all the columns from sys.objects (which shows information relevant to all types of
objects) and then includes additional columns pertaining only to tables. The sys.columns view
shows you one row for each column in the new table, and each row contains information such
as the column name, data type, and length. Each column receives a column ID, which initially
corresponds to the order in which you specified the columns when you created the table—
that is, the first column listed in the CREATE TABLE statement has a column ID of 1, the second
column has a column ID of 2, and so on. Figure 5-6 shows the rows returned by the sys.tables
and sys.columns views when you create a table. (Not all columns are shown for each view.)

CREATE TABLE dbo.employee (
emp_Tname varchar(15) NOT NULL,
emp_fname varchar(10) NOT NULL,
address varchar(30) NOT NULL,
phone char(12) NOT NULL,
job_level smallint NOT NULL
D)
sys.tables object_id name schema_id  type_desc
917578307 employee 1 USER_TABLE
sys.columns object_id column_id name system_type_id max_length
917578307 1 emp_lname 167 15
917578307 2 emp_fname 167 10
917578307 3 address 167 30
917578307 4 phone 175 12
917578307 5 job_level 52 2

FIGURE 5-6 Basic catalog information stored after a table is created



250

Microsoft SQL Server 2008 Internals

Note There can be gaps in the column ID sequence if the table is altered to drop columns.
However, the information schema view (INFORMATION_SCHEMA.COLUMNS) gives you a value
called ORDINAL_POSITION because that is what the ANSI SQL standard demands. The ordinal
position is the order the column will be listed when you SELECT * on the table. So the column_id
is not necessarily the ordinal position of that column.

The sys.indexes Catalog View

In addition to sys.columns and sys.tables, the sys.indexes view returns at least one row for each
table. In versions of SQL Server prior to SQL Server 2005, the sysindexes table contains all the
physical storage information for both tables and indexes, which are the only objects that actually
use storage space. The sysindexes table has columns to keep track of the space used by all tables
and indexes, the physical location of each index root page, and the first page of each table and
index. (In Chapter 6, you'll see more about root pages and what the “first” page actually means.)
In SQL Server 2008, the compatibility view sys.sysindexes contains much of the same information,
but it is incomplete because of changes in the storage organization introduced in SQL Server
2005. The sys.indexes catalog view contains only basic property information about indexes, such
as whether the index is clustered or nonclustered, unique or nonunique, and other properties,
which are discussed in Chapter 6. To get all the storage information in SQL Server 2005 or SQL
Server 2008 that previous versions provided in the sysindexes table, we have to look at two other
catalog views in addition to sys.indexes: sys.partitions and sys.allocation_units (or alternatively,
the undocumented sys.system_internals_allocation_units). I'll discuss the basic contents of these
views shortly, but first let’s focus on sys.indexes.

You might be aware that if a table has a clustered index, the table's data is actually considered
part of the index, so the data rows are actually index rows. For a table with a clustered index, SQL
Server has a row in sys.indexes with an index_id value of 1 and the name column in sys.indexes
contains the name of the index. The name of the table that is associated with the index can be
determined from the object_id column in sys.indexes. If a table has no clustered index, there is

no organization to the data itself, and we call such a table a heap. A heap in sys.indexes table has
an index_id value of 0, and the name column contains NULL. Every additional index has a row

in sys.indexes with an index_id value between 2 and 250 or between 256 and 1,005. (The values
251 — 255 are reserved.) Because as many as 999 nonclustered indexes can be on a single table
and there is one row for the heap or clustered index, every table has between 1 and 1,000 rows
in the sys.indexes view for relational indexes. A table can have additional rows in sys.indexes for
XML indexes. Metadata for XML indexes is available in the sys.xml_indexes catalog view, which
inherits columns from the sys.indexes view. Two main features in SQL Server 2008 make it most
efficient to use more than one catalog view to keep track of storage information. First, SQL
Server has the ability to store a table or index on multiple partitions, so the space used by each
partition, as well as the partition’s location, must be kept track of separately. Second, table and
index data can be stored in three different formats, which are regular row data, row-overflow
data, and LOB data. Both row-overflow data and LOB data can be part of an index, so each index



Chapter 5 Tables 251

has to keep track of its special format data separately. So each table can have multiple indexes,
and each table and index can be stored on multiple partitions, and each partition needs to keep
track of data in up to three formats. I'll discuss indexes in Chapter 6, and I'll discuss the storage of
row-overflow data and LOB data, as well as partitioned tables and indexes, in Chapter 7.

Data Storage Metadata

Each heap and index has a row in sys.indexes, and each table and index in a SQL Server 2008
database can be stored on multiple partitions. The sys.partitions view contains one row for
each partition of each heap or index. Every heap or index has at least one partition, even

if you haven't specifically partitioned the structure, but one table or index can have up to

1,000 partitions. So there is a one-to-many relationship between sys.indexes and sys.partitions.
The sys.partitions view contains a column called partition_id as well as the object_id and index_id,
SO we can join sys.indexes to sys.partitions on the object_id and index_id columns to retrieve

all the partition ID values for a particular table or index. The term used in SQL Server 2008 to
describe a subset of a table or index on a single partition is hobt, which stands for Heap Or
B-Tree and is pronounced (you guessed it) “hobbit.” (A B-tree is the storage structure used for
indexes.) The sys.partitions view includes a column called hobt_id, and in SQL Server 2008, there
is always a one-to-one relationship between partition_id and hobt_id. In fact, you can see that
these two columns in the sys.partitions table always have the same value.

Each partition (whether for a heap or an index) can have three types of rows, each stored on
its own set of pages. These types are called in-row data pages (for our “regular” data or index
information), row-overflow data pages, and LOB data pages. A set of pages of one particular
type for one particular partition is called an allocation unit, so the final catalog view | need to
tell you about is sys.allocation_units. The sys.allocation_units view contains one, two, or three
rows per partition because each heap or index on each partition can have as many as three
allocation units. There is always an allocation unit for regular in-row pages, but there might
also be an allocation unit for LOB data and one for row-overflow data. Figure 5-7 shows the
relationship between sys.indexes, sys.partitions, and sys.allocation_units.

Table/Index sys.indexes
I 1
N (1 -1000)
Partition Partition —— sys.partitions
o 1
Heap Or B-Tree (hobt) Heap Or B-Tree (hobt)
N(@1-3)
Allocation Unit (IAM) Allocation Unit (IAM) — sys.allocation_units
row. | ROW_
IN_ROW [ LOB [ &yerriow IN_ROW [ LOB  &yerriow

FIGURE 5-7 The relationship between sys.indexes, sys.partitions, and sys.allocation_units



252

Microsoft SQL Server 2008 Internals

Querying the Catalog Views

Let's look at a specific example now to see information in these three catalog views. Let’s first
create the table shown earlier in Figure 5-6. You can create it in any database, but | suggest
either using tempdb, so the table is dropped automatically the next time you restart your SQL
Server instance, or creating a new database just for testing. Many of my examples assume a
database called test:

CREATE TABLE dbo.empTloyee(
emp_Tname varchar(15) NOT NULL,
emp_fname varchar(10) NOT NULL,
address varchar(30) NOT NULL,
phone char(12) NOT NULL,
job_level smallint NOT NULL
);

This table has one row in sys.indexes and one in sys.partitions, as we can see when we run the
following queries. | am including only a few of the columns from sys.indexes, but sys.partitions
only has six columns, so | have retrieved them all:

SELECT object_id, name, index_id, type_desc
FROM sys.indexes
WHERE object_id=object_id('dbo.employee');

SELECT *
FROM sys.partitions
WHERE object_id=object_id('dbo.empTloyee');

Here are my results (yours might vary slightly because your ID values are probably
different):

object_id name index_id type_desc

ss75058 WL 0 HEAP

partition_id object_id index_id partition_number hobt_id rows
72057504036779904 5575058 0 r 72057504038779904 0

Each row in the sys.allocation_units view has a unique allocation_unit_id value. Each row also
has a value in the column called container_id that can be joined with partition_id in sys.partitions,
as shown in this query:

SELECT object_name(object_id) AS name,
partition_id, partition_number AS pnum, rows,
allocation_unit_id AS au_id, type_desc as page_type_desc,
total_pages AS pages
FROM sys.partitions p JOIN sys.allocation_units a
ON p.partition_id = a.container_id
WHERE object_id=object_id('dbo.employee');



Chapter 5 Tables 253

Again, for this simple table, | get only one row because there is only one partition, no
nonclustered indexes, and only one type of data (IN_ROW_DATA). Here is the result:

name partition_id pnum rows au_id page_type_desc pages

employee 72057594038779904 1 0 72057594043301888 IN_ROW_DATA 0

Now let’s add some new columns to the table that need to be stored on other types of
pages. Varchar data can be stored on row-overflow pages if the total row size exceeds the
maximum of 8,060 bytes. By default, text data is stored on text pages. For varchar data that
is stored on row-overflow pages, and for text data, there is additional overhead in the row
itself to store a pointer to the off-row data. We'll look at the details of row-overflow and text
data storage later in this section, and we'll look at ALTER TABLE at the end of this chapter, but
now | just want to look at the additional rows in sys.allocation_units:

ALTER TABLE dbo.employee ADD resume_short varchar(8000);
ALTER TABLE dbo.employee ADD resume_long text;

If we run the preceding query that joins sys.partitions and sys.allocation_units, we get the
following three rows:

name partition_id pnum rows au_id page_type_desc pages
employee 72057594038779904 1 0 72057594043301888 IN_ROW_DATA 0
employee 72057594038779904 1 0 72057594043367424 ROW_OVERFLOW_DATA 0
employee 72057594038779904 1 0 72057594043432960  LOB_DATA 0

You might also want to add an index or two and check the contents of these catalog views
again. You should notice that just adding a clustered index does not change the number of
rows in sys.allocation_units, but it does change the partition_id numbers because the entire
table is rebuilt internally when you create a clustered index. Adding a nonclustered index adds
at least one more row to sys.allocation_units to keep track of the pages for that index. The
following query joins all three views—sys.indexes, sys.partitions, and sys.allocation_units—to
show you the table name, index name and type, page type, and space usage information for
the dbo.employee table:

SELECT convert(char(8),object_name(i.object_id)) AS table_name,
i.name AS index_name, 1i.index_id, i.type_desc as index_type,
partition_id, partition_number AS pnum, rows,
allocation_unit_id AS au_id, a.type_desc as page_type_desc,
total_pages AS pages

FROM sys.indexes i JOIN sys.partitions p

ON 1i.object_id = p.object_id AND 1i.index_id = p.index_id
JOIN sys.allocation_units a
ON p.partition_id = a.container_id
WHERE 1i.object_id=object_id('dbo.employee');

Because | have not inserted any data into this table, you should notice that the values for rows
and pages are all 0. When | discuss actual page structures, we'll insert data into our tables so



254

Microsoft SQL Server 2008 Internals

we can look at the internal storage of the data at that time. The queries I've run so far do not
provide us with any information about the location of pages in the various allocation units.

In SQL Server 2000, the sysindexes table contains three columns that indicate where data is
located; these columns are called first, root, and firsttAM. These columns are still available in
SQL Server 2008 (with slightly different names: first_page, root_page, and first_iam_page), but
they can be seen only in an undocumented view called sys.system_internals_allocation_units.
This view is identical to sys.allocation_units except for the addition of these three additional
columns, so you can replace sys.allocation_units with sys.system_internals_allocation_units in the
preceding allocation query and add these three extra columns to the select list. Keep in mind
that as an undocumented object, this view is for internal use only and is subject to change (as
are other views starting with system_internals). Forward compatibility is not guaranteed.

Data Pages

Data pages are the structures that contain user data that has been added to a database’s
tables. As we saw earlier, there are three varieties of data pages, each of which stores data in
a different format. There are pages for in-row data, pages for row-overflow data, and pages
for LOB data. As with all other types of pages in SQL Server, data pages have a fixed size of
8 KB, or 8,192 bytes. They consist of three major components: the page header, data rows,
and the row offset array, as shown in Figure 5-8.

+— Page header
96 bytes

+«— Data rows

| | | | | | <+— Row offset array

FIGURE 5-8 The structure of a data page

Page Header

As you can see in Figure 5-8, the page header occupies the first 96 bytes of each data page
(leaving 8,096 bytes for data, row overhead, and row offsets). Table 5-5 shows some of the
information shown when we examine the page header.



Chapter 5 Tables 255

TABLE 5-5 Information Available by Examining the Page Header

Field Meaning

pagelD The file number and page number of this page in the database

nextPage The file number and page number of the next page if this page is in a page
chain

prevPage The file number and page number of the previous page if this page is in a
page chain

Metadata: Objectld The ID of the object to which this page belongs

Metadata: Partitionld The ID of the partition that this page is part of
Metadata: AllocUnitld ~ The ID of the allocation unit that contains this page

LSN The Log Sequence Number (LSN) corresponding to the last log entry that
changed this page

slotCnt The total number of slots (rows) used on this page

Level The level of this page in an index (which always is 0 for leaf pages)

indexld The index ID of this page (always 0 for data pages)

freeData The byte offset of the first free space on this page

Pminlen The number of bytes in fixed-length portion of rows

freeCnt The number of free bytes on the page

reservedCnt The number of bytes reserved by all transactions

xactreserved The number of bytes reserved by the most recently started transaction

tornBits A bit string containing 1 bit per sector for detecting torn page writes (or

checksum information if torn_page_detection is not on)

flagBits A 2-byte bitmap that contains additional information about the page

Data Rows for In-Row Data

Following the page header is the area in which the table’s actual data rows are stored.

The maximum size of a single data row is 8,060 bytes of in-row data. Rows can also have
row-overflow and LOB data stored on separate pages. The number of rows stored on a given
page varies depending on the structure of the table and on the data being stored. A table
that has all fixed-length columns is always able to store the same number of rows per page;
variable-length rows can store as many rows that fit based on the actual length of the data
entered. Keeping the row length shorter allows more rows to fit on a page, thus reducing 1/0
and improving the cache-hit ratio.

Row Offset Array

The row offset array is a block of 2-byte entries, each indicating the offset on the page at which
the corresponding data row begins. Every row has a 2-byte entry in this array (as discussed
earlier, when | mentioned the 10 overhead bytes needed by every row). Although these bytes
aren't stored in the row with the data, they do affect the number of rows that fit on a page.



256

Microsoft SQL Server 2008 Internals

The row offset array indicates the logical order of rows on a page. For example, if a table
has a clustered index, SQL Server stores the rows in the order of the clustered index key. This
doesn't mean the rows are physically stored on the page in the order of the clustered index
key. Rather, slot 0 in the offset array refers to the first row in the clustered index key order,
slot 1 refers to the second row, and so forth. As we'll see shortly when we examine an actual
page, the physical location of these rows can be anywhere on the page.

Examining Data Pages

You can view the contents of a data page by using the DBCC PAGE command, which allows
you to view the page header, data rows, and row offset table for any given page in a
database. Only a system administrator can use DBCC PAGE. But because you typically won't
need to view the contents of a data page, you won't find information about DBCC PAGE in
the SQL Server documentation. Nevertheless, in case you want to use it, here’s the syntax:

DBCC PAGE ({dbid | dbname}, filenum, pagenum[, printopt])

The DBCC PAGE command includes the parameters shown in Table 5-6. The code and results
following Table 5-6 show sample output from DBCC PAGE with a printopt value of 1. Note that
DBCC TRACEON(3604) instructs SQL Server to return the results to the client. Without this
traceflag, no output is returned for the DBCC PAGE command.

TABLE 5-6 Parameters of the DBCC Page Command

Parameter Description

Dbid The ID of the database containing the page
Dbname The name of the database containing the page
Filenum The file number containing the page

Pagenum The page number within the file

Printopt An optional print option; takes one of these values:

m 0 Default; prints the buffer header and page header

m 1 Prints the buffer header, page header, each row separately, and
the row offset table

® 2 Prints the buffer and page headers, the page as a whole, and the
offset table

® 3 Prints the buffer header, page header, each row separately, and
the row offset table; each row is followed by each of its column values
listed separately

DBCC TRACEON(3604);

GO

DBCC PAGE (pubs, 1, 157, 1);
Go



Chapter 5 Tables 257

PAGE: (1:157)

BUFFER:

BUF @0x038E697C

bpage = 0x0C3AA000 bhash = 0x00000000 bpageno = (1:157)
bdbid = 11 breferences = 0 bUsel = 60722
bstat = 0xc00009 blog = 0x3212159 bnext = 0x00000000

PAGE HEADER:
Page @0x0C3AA000

m_pageld = (1:157) m_headerVersion = 1 m_type = 1
m_typeFlagBits = 0x4 m_level = 0 m_flagBits = 0x200
m_objId (AllocUnitId.idObj) = 27 m_indexId (AllocUnitId.idInd) = 256

Metadata: AllocUnitId = 72057594039697408

Metadata: PartitionId = 72057594038779904 Metadata: IndexId = 1
Metadata: ObjectId = 2105058535 m_prevPage = (0:0) m_nextPage = (0:0)
pminlen = 24 m_slotCnt = 23 m_freeCnt = 6010
m_freeData = 2136 m_reservedCnt = 0 m_lsn = (18:350:2)
m_xactReserved = 0 m_xdesId = (0:0) m_ghostRecCnt = 0

m_tornBits = 1967525613

Allocation Status

GAM (1:2) = ALLOCATED SGAM (1:3) = NOT ALLOCATED

PFS (1:1) = O0x60 MIXED_EXT ALLOCATED 0_PCT_FULL DIFF (1:6) = CHANGED
ML (1:7) = NOT MIN_LOGGED

DATA:
Slot 0, Offset 0x631, Length 88, DumpStyle BYTE
Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS

Record Size = 88

Memory Dump @0x6292C631

00000000: 30001800 34303820 3439362d 37323233 10...408 496-7223
00000010: 43413934 303235ff 09000000 05003300 tCA94025y ..... 3.
00000020: 3800300 4e005800 3137322d 33322d31 18.7.N.X.172-32-1
00000030: 31373657 68697465 4a6f686e 736f6e31 t176WhiteJohnsonl
00000040: 30393332 20426967 67652052 642e4d65 10932 Bigge Rd.Me
00000050: 6e6c6f20 5061726b tttttttttttttttttttnlo Park

Slot 1, Offset 0xb8, Length 88, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 88

Memory Dump @0x6292COB8

00000000: 30001800 34313520 3938362d 37303230 10...415 986-7020



258 Microsoft SQL Server 2008 Internals

00000010: 43413934 363138ff 09000000 05003300 tCA94618y ..... 3.
00000020: 38004000 51005800 3231332d 34362d38 18.@.Q.X.213-46-8
00000030: 39313547 7265656e 4d61726a 6726965 t915GreenMarjorie
00000040: 33303920 36337264 2053742e 20233431 1309 63rd St. #41
00000050: 314f616b 6c616e64 tttttttttttttt1++++10akland

Slot 2, Offset 0x110, Length 85, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 85

Memory Dump @0x6292C110

00000000: 30001800 34313520 3534382d 37373233 10...415 548-7723

00000010: 43413934 373035ff 09000000 05003300 tCA94705y ..... 3.

00000020: 3900300 4d005500 3233382d 39352d37 19.7.M.U.238-95-7

00000030: 37363643 6172736f 6e436865 72796c35 1766CarsonCheryl5

00000040: 38392044 61727769 6e204c6e 2e426572 189 Darwin Ln.Ber

00000050: 6b656c65 79ttttttittittttttttttttitttikeley

/* Data for slots 3 through 20 not shown */

Slot 21, Offset Ox1cO, Length 89, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 89

Memory Dump @0x6292C1CO

00000000: 30001800 38303120 3832362d 30373532 10...801 826-0752

00000010: 55543834 313532ff 09000000 05003300 tUT84152y ..... 3.

00000020: 39003d00 4b005900 3839392d 34362d32 19.=.K.Y.899-46-2

00000030: 30333552 696e6765 72416e6e 65363720 t035RingerAnne67

00000040: 53657665 6e746820 41762e53 616c7420 1Seventh Av.Salt

00000050: 4c616b65 20436974 79tttttttttttttttttLake City

Slot 22, Offset 0x165, Length 91, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 91

Memory Dump @0x6292C165

00000000: 30001800 38303120 3832362d 30373532 10...801 826-0752

00000010: 55543834 313532ff 09000000 05003300 tUT84152y ..... 3.

00000020: 39003f00 4d005b00 3939382d 37322d33 19.7.M.[.998-72-3

00000030: 35363752 6966765 72416c62 65727436 t567RingerAlbert6

00000040: 37205365 76656e74 68204176 2e53616c 17 Seventh Av.Sal

00000050: 74204c61 6b652043 697479tt+ttttt1tt1tt Lake City



Chapter 5 Tables 259

OFFSET TABLE:

Row - Offset

22 (0x16) - 357 (0x165)
21 (0x15) - 448 (0x1c0)
20 (0x14) - 711 (0x2c7)
19 (0x13) - 1767 (0x6e7)
18 (0x12) - 619 (0x26b)
17 (0x11) - 970 (Ox3ca)
16 (0x10) - 1055 (0x41f)
15 (0xf) - 796 (0x31lc)
14 (Oxe) - 537 (0x219)
13 (Oxd) - 1673 (0x689)
12 (0xc) - 1226 (Ox4ca)
11 (0xb) - 1949 (0x79d)

10 (0Oxa) - 1488 (0x5d0)
9 (0x9) - 1854 (0x73e)
8 (0x8) - 1407 (0Ox57f)
7 (0x7) - 1144 (0x478)
6 (0x6) - 96 (0x60)

5 (0x5) - 2047 (Ox7ff)
4 (0x4) - 884 (0x374)
3 (0x3) - 1314 (0x522)
2 (0x2) - 272 (0x110)
1 (0x1) - 184 (0xb8)
0 (0x0) - 1585 (0x631)

DBCC execution completed. If DBCC printed error messages, contact your system administrator

As you can see, the output from DBCC PAGE is divided into four main sections: BUFFER,
PAGE HEADER, DATA, and OFFSET TABLE (really the offset array). The BUFFER section shows
information about the buffer for the given page. A buffer in this context is the in-memory
structure that manages a page, and the information in this section is relevant only when the
page is in memory.

The PAGE HEADER section in the output from DBCC PAGE displays the data for all the header
fields on the page. (Table 5-5 shows the meaning of most of these fields.) The DATA section
contains information for each row. When DBCC PAGE is used with a printopt value of 1 or 3,
DBCC PAGE indicates the slot position of each row, the offset of the row on the page, and
the length of the row. The row data is divided into three parts. The left column indicates the
byte position within the row where the displayed data occurs. The next section contains the
actual data stored on the page, displayed in four columns of eight hexadecimal digits each.
The right column contains an ASCII character representation of the data. Only character data
is readable in this column, although some of the other data might be displayed.



260

Microsoft SQL Server 2008 Internals

The OFFSET TABLE section shows the contents of the row offset array at the end of the page.
In the output from DBCC PAGE, you can see that this page contains 23 rows, with the first
row (indicated by slot 0) beginning at offset 1585 (0x631). The first row physically stored on
the page is actually row 6, with an offset in the row offset array of 96. DBCC PAGE with a
printopt value of 1 displays the rows in slot number order, even though, as you can see by
the offset of each of the slots, that it isn't the order in which the rows physically exist on the
page. If you use DBCC PAGE with a printopt value of 2, you see a dump of all 8,096 bytes of
the page (after the header) in the order they are stored on the page.

The Structure of Data Rows

A table’s data rows have the general structure shown in Figure 5-9 (so long as the data is
stored in uncompressed form). We call this format the FixedVar format, because the data for
all fixed-length columns is stored first, followed by the data for all variable-length columns.
Table 5-7 shows the information stored in each FixedVar row. (In Chapter 7, we'll see the
format of rows stored in a different format, used when the data on the page is compressed.)

Status Bits A contains a bitmap indicating properties of the row. The bits have the following
meanings:

B Bit0 Versioning information. In SQL Server 2008, this is always 0.

B Bits 1 through 3 Taken as a three-bit value, 0 indicates a primary record, 1 indicates a
forwarded record, 2 indicates a forwarding stub, 3 indicates an index record, 4 indicates a
blob fragment or row-overflow data, 5 indicates a ghost index record, 6 indicates a ghost
data record, and 7 indicates a ghost version record. (I'll discuss forwarded records in the
section entitled “Moving Rows,” later in this chapter, and ghost records in Chapter 6.)

B Bit4 Indicates that a NULL bitmap exists. In SQL Server 2008, a NULL bitmap is always
present, even if no NULLs are allowed in any column.

B Bit5 Indicates that variable-length columns exist in the row.
B Bit 6 Indicates that the row contains versioning information.

® Bit7 Notused in SQL Server 2008.

Only one bit is used in the Status Bits B field, indicating that the record is a ghost forwarded
record.

You can see in both Figure 5-9 and Table 5-7 that the third and fourth bytes indicate the length
of the fixed-length portion of the row. As Figure 5-9 explains, it is the length excluding the

2 bytes for the number of columns, and the NULL bitmap, which is variable length depending
on the total number of columns in the table. Another way to interpret the data in these bits is

as the location in the row where the number of columns can be found. For example, if the third
and fourth bytes (bytes 2-3) contain the value 0x0016, which is decimal 22, it means not only
that there are 22 bytes in the row before the value for number of columns, but that the value for
the number of columns can be found at byte 22. In some of the figures in this chapter and later
ones, bytes 2-3 may be identified as the position to find the number of columns.



Chapter 5 Tables 261

| 1 byte | 1 byte | 2 bytes | n bytes | 2 bytes |(Cf!2,”38) by‘esl 2 bytes |§§|ﬁr‘r’]f"s'e"9‘h| n bytes |

I

Data for variable-
length columns

Column offset array
Number of variable-
length columns

NULL bitmap
1 bit for each column

Number of columns

Fixed-length data

Length of fixed-length portion of row, not including the
2 bytes for the number of columns and the NULL bitmap

Status Bits B

Status Bits A

FIGURE 5-9 The structure of data rows

TABLE 5-7 Information Stored in a Table’s Data Rows

Information Mnemonic Size

Status Bits A TagA 1 byte

Status Bits B TagB 1 byte
Fixed-length size Fsize 2 bytes
Fixed-length data Fdata Fsize — 4
Number of columns Ncol 2 bytes

NULL bitmap (1 bit for each column Nullbits Ceiling (Ncol / 8)

in the table; a 1 indicates that the
corresponding column is NULL or that
the bit is unused.)

Number of variable-length columns VarCount 2 bytes

stored in row

Variable column offset array VarOffset 2 * VarCount

Variable-length data VarData VarOff[VarCount] - (Fsize + 4 +

Ceiling (Ncol / 8) + 2 * VarCount)

Within each block of fixed-length or variable-length data, the data is stored in the column
order in which the table was created. For example, suppose a table is created with the
following statement:

CREATE TABLE Testl

(

Coll int NOT NULL,
Col12 char(25) NOT NULL,



262

Microsoft SQL Server 2008 Internals

Col13 varchar(60) NULL,
Co14 money NOT NULL,
Col15 varchar(20) NOT NULL
);

The fixed-length data portion of this row contains the data for ColI, followed by the data for
Col2, followed by the data for Col4. The variable-length data portion contains the data for Col3,
followed by the data for Col5. For rows that contain only fixed-length data, the following is true:

B The first hexadecimal digit of the first byte of the data row is 1, indicating that no
variable-length columns exist. (The first hexadecimal digit comprises bits 4 through 7;
bits 6 and 7 are always 0, and if there are no variable-length columns, bit 5 is also 0.
Bit 4 is always 1, so the value of the four bits is displayed as 1.)

B The data row ends after the NULL bitmap, which follows the fixed-length data (that is,
the shaded portion shown in Figure 5-9 won't exist in rows with only fixed-length data).

B The total length of every data row is the same.

A data row that has any variable-length columns has a column offset array in the data row with
a 2-byte entry for each non-NULL variable-length column, indicating the position within the row
where the column ends. (The terms offset and position aren't exactly interchangeable. Offset is
0-based, and position is 1-based. A byte at an offset of 7 is in the eighth byte position in the row.)
There are some special issues storing variable-length columns with a NULL value, and I'll discuss
this issue in the section entitled “NULLs and Variable-Length Columns,” later in this chapter.

Finding a Physical Page

Before we examine specific data, we need to digress a bit. The examples that follow use

the DBCC PAGE command to examine the physical database pages. To run this command,

| need to know what page numbers are used to store rows for a table. | mentioned previously
that a value for first_page was stored in an undocumented view called sys.system_internals_
allocation_units, which is almost identical to the sys.allocation_units view. First, let me create
a table (that will be used in the following section) and insert a single row into it:

USE tempdb;

CREATE TABLE Fixed

(

Coll char(5) NOT NULL,
Col2 int NOT NULL,
Col13 char(3) NULL,
Col4 char(6) NOT NULL
);

INSERT Fixed VALUES ('ABCDE', 123, NULL, 'CCCC');
The following query gives me the value for first_page in the Fixed table:
SELECT object_name(object_id) AS name,

rows, type_desc as page_type_desc,
total_pages AS pages, first_page



®

Chapter 5 Tables 263

FROM sys.partitions p JOIN sys.system_internals_allocation_units a
ON p.partition_id = a.container_id
WHERE object_id=object_id('dbo.Fixed');

RESULTS:
name rows page_type_desc pages first_page
Fixed 1 IN_ROW_DATA 2 0xCF0400000100

| can then take the value of first_page from the preceding sys.system_internals_allocation_
units output (0xCF0400000100) and convert it to a file and page address. (The value that you
get for first_page most likely will be different than the one | got.) In hexadecimal notation,
each set of two hexadecimal digits represents a byte. | first had to swap the bytes to get

00 01 00 00 04 CF. The first two groups represent the 2-byte file number; the last four
groups represent the page number. So the file is 0x0001, which is 1, and the page number is
0x000004CF, which is 1231 in decimal.

Unless you particularly enjoy playing with hexadecimal conversions, you might want to use
one of three other options for determining the actual page numbers associated with your SQL
Server tables. First you can create the function shown here to convert a 6-byte hexadecimal
page number value (such as 0xCF0400000100) to a file_number.page_number format:

CREATE FUNCTION convert_page_nums (@page_num binary(6))
RETURNS varchar(11l)
AS
BEGIN
RETURN(convert(varchar(2), (convert(int, substring(@yage_num, 6, 1))
* power(2, 8)) +
(convert(int, substring(@page_num, 5, 1)))) + ':' +
convert(varchar(1l),
(convert(int, substring(@page_num, 4, 1)) * power(2, 24)) +
(convert(int, substring(@page_num, 3, 1)) * power(2, 16)) +
(convert(int, substring(@age_num, 2, 1)) * power(2, 8)) +
(convert(int, substring(@age_num, 1, 1)))) )
END;

You can then execute this SELECT to call the function:

SELECT dbo.convert_page_nums (0xCF0400000100) ;

You should get back the result 1:1231.

Warning SQL Server does not guarantee that the first_page column in sys.system_internals_
allocation_units always indicates the first page of a table. (The view is undocumented, after
all.) I've found that first_page is reliable until you begin to perform deletes and updates on
the data in the table.

The second option for determining the actual page numbers is to use another undocumented
command called DBCC IND. Because most of the information returned is relevant only to



264

Microsoft SQL Server 2008 Internals

indexes, | won't discuss this command in detail until Chapter 6. However, for a sneak preview,
you can run the following command and note the values in the first two columns of output
(labeled PageFID and PagePID) in the row where PageType = 1, which indicates that the page
is a data page:

DBCC IND(tempdb, Fixed, -1);

If you weren't in tempdb, you would replace tempdb with the name of whatever database you
were in when you created this table. The values for PageFID and PagePID should be the same
value you used when you converted the hexadecimal string for the first_page value. In my
case, | see that PageFID value is 1 and the PagePID value is 1231. So those are the values | use
when calling DBCC PAGE.

The third method for obtaining file and page number information involves using an
undocumented function, sys.fn_PhysLocFormatter, in conjunction with an undocumented
value, %%physloc%%, to return the physical row location in your result rows along with data
values from a table. This can be useful if you want to find which page in a table contains a
particular value. DBCC IND can be used to find all the pages in a table but not specifically
the pages containing a particular row. However, sys.fn_PhysLocFormatter can show you only
data pages for the data that is returned in a SELECT statement. We can use this function to
get the pages used by our data in the table Fixed, as follows:

SELECT sys.fn_PhysLocFormatter (%%physloc%%) AS RID, * FROM Fixed;
GO

Here are my results:

RID Coll Col2 Col3 Col4

(1:1231:1) ABCDE 123 NULL  CCCC

Once you have the FilelD and PagelD values, you can use DBCC PAGE. For a larger table, we
could use sys.fn_PhysLocFormatter to get the the pages only for the specific rows that were
returned by the conditions in our WHERE clause.

Caution The %%physloc%% value is not understood by the relational engine, which means
that if you use %%physloc%% in a WHERE clause, SQL Server has to examine every row to see
which ones are on the page indicated by %%physloc%%. It is not able to use %%physloc%% to
find the row. Another way of looking at this is that %%physloc%% can be returned as output

to report on a physical row location, but cannot be used as input to find a particular location

in a table. The %%physloc%% value was introduced as a debugging feature by the SQL Server
product development team and is not intended to be used (and is not supported) in production
applications.

The two examples that follow illustrate how fixed-length and variable-length data rows are
stored.



Chapter 5 Tables 265

Storage of Fixed-Length Rows

First, let's look at the simpler case of an all fixed-length row using the table | just built in the
preceding section:

CREATE TABLE Fixed

(

Col1l char(5) NOT NULL,
Col2 int NOT NULL,
Col13 char(3) NULL,
Col14 char(6) NOT NULL
)

When this table is created, you should be able to execute the following queries against the
sys.indexes and sys.columns views to receive the information similar to the results shown:

SELECT object_id, type_desc,
indexproperty(object_id, name, 'minlen') as min_row_Tlen
FROM sys.indexes where object_id=object_id('Fixed');

SELECT column_id, name, system_type_id, max_length as max_col_len
FROM sys.columns
WHERE object_id=object_id('Fixed');

RESULTS:

object_id type_desc minlen

53575229 HEAP 22

column_id name system_type_id max_length
1 Coll 175 5

2 Col2 56 4

3 Col3 175 3

4 Col4 175 6

Note The sysindexes compatibility view contains columns called minlen and xmaxlen, which
store the minimum and maximum length of a row. In SQL Server 2008, these values are not
available in any of the catalog views, but you can get them by using undocumented parameters
to the indexproperty function. As with all undocumented features, keep in mind that they are not
supported by Microsoft and future compatibility is not guaranteed.

For tables containing only fixed-length columns, the value returned for minlen by the
indexproperty function equals the sum of the column lengths (from sys.columns.max_length)
plus 4 bytes. It doesn't include the 2 bytes for the number of columns, or the bytes for the NULL
bitmap.

To look at a specific data row in this table, you must first insert a new row. If you didn’t insert
this row in the preceeding section, insert it now:

INSERT Fixed VALUES ('ABCDE', 123, NULL, 'CCCC");



266

Microsoft SQL Server 2008 Internals

Figure 5-10 shows this row's actual contents on the data page.

DATA:
Slot 0, Offset 0x60, Length 25, DumpStyle BYTE

Record Type = PRIMARY_RECORD
Record Attributes = NULL_BITMAP
Memory Dump @0x61B4C060

00000000: 1000|lGOO 41424344 457b0000 00000000 t....ABCDE{......

00000010: 43434343 20200400 f4 +CCCC ...
Row Offsets:
9 13 16 22 24
0 0 1 00 41 434445 7b000 00 000000 4843434320120 0400 f4
t t t t
Data in Data in Data in Data in NULL
Col 1 Col 2 Col 3 Col 4 bitmap
('ABCDE) (123) (NULL) (ccce )
Offset to find Number
number of columns of columns
Status Bits B

Status Bits A

FIGURE 5-10 A data row containing all fixed-length columns

| was able to get the page contents by running the DBCC PAGE command, using the file and
page number obtained using one of the methods that | described previously:

DBCC PAGE(tempdb, 1, 1231, 1);

Reading the output of DBCC PAGE takes a bit of practice. First, note that the output shows
the data rows in groups of 4 bytes at a time. The shaded area in Figure 5-10 has been
expanded to show the bytes in an expanded form.

The first byte is Status Bits A, and its value (0x10) indicates that only bit 4 is on, and because
bit 5 is not on, we know the row has no variable-length columns. The second byte in the

row (Status Bits B) is unused. The third and fourth bytes (1600) indicate the length of

the fixed-length fields, which is also the column offset in which the Ncol value can be found.
(As a multibyte numeric value, this information is stored in a byte-swapped form, so the
value is really 0x0016, which translates to 22.) To know where in the row between offsets

4 and 22 each column actually is located, we need to know the offset of each column. In SQL
Server 2000, the syscolumns system table has a column indicating the offset within the row.
Although you can still select from the compatibility view called syscolumns in SQL Server
2005, the results you get back are not reliable. The offsets can be found in an undocumented
view called sys.system_internals_partition_columns that we can then join to sys.partitions

to get the information about the referenced objects and join to sys.columns to get other
information about each column.



Chapter 5 Tables 267

Here is a query to return basic column information, including the offset within the row for
each column. | will use the same query for other tables later in this chapter, and | will refer to
it as the “column detail query.”

SELECT c.name AS column_name, column_id, max_inrow_length,
pc.system_type_id, leaf_offset
FROM sys.system_internals_partition_columns pc
JOIN sys.partitions p
ON p.partition_id = pc.partition_id
JOIN sys.columns c
ON column_id = partition_column_id
AND c.object_id = p.object_id
WHERE p.object_id=object_id('Fixed');

RESULTS:

column_name column_id max_inrow_length system_type_id Teaf_offset
Coll 1 5 175 4

Col2 2 4 56 9

Co13 3 3 175 13

Col4 4 6 175 16

So now we can find the data in the row for each column simply by using the offset value in
the preceding results: the data for column Col1 begins at offset 4, the data for column Col2
begins at offset 9, and so on. As an int, the data in Col2 (7b000000) must be byte-swapped
to give the value 0x0000007b, which is equivalent to 123 in decimal.

Note that the 3 bytes of data for Col3 are all zeros, representing an actual NULL in the column.
Because the row has no variable-length columns, the row ends 3 bytes after the data for
column Col4. The 2 bytes starting right after the fixed-length data at offset 22 (0400, which

is byte-swapped to yield 0x0004) indicate that four columns are in the row. The last byte

is the NULL bitmap. The value of 0xf4 is 11110100 in binary, and bits are shown from high
order to low order. The low-order four bits represent the four columns in the table, 0100,
which indicates that only the third column actually IS NULL. The high-order four bits are 1111
because those bits are unused. The NULL bitmap must have a multiple of eight bits, and if the
number of columns is not a multiple of 8, some bits are unused.

Storage of Variable-Length Rows

Now let’s look at the somewhat more complex case of a table with variable-length data. Each
row has three varchar columns and two fixed-length columns:

CREATE TABLE Variable

(

Coll char(3) NOT NULL,
Col12 varchar(250) NOT NULL,
Co13 varchar(5) NULL,
Col4 varchar(20) NOT NULL,
Col5 smallint NULL

);



268

Microsoft SQL Server 2008 Internals

When this table is created, you should be able to execute the following queries against the
sys.indexes, sys.partitions, sys.system_internals_partition_columns, and sys.columns views to
receive the information similar to the results shown here:

SELECT object_id, type_desc,
indexproperty(object_id, name, 'minlen') as minlen
FROM sys.indexes where object_id=object_id('Variable');

SELECT name, column_id, max_inrow_length, pc.system_type_id, leaf_offset
FROM sys.system_internals_partition_columns pc
JOIN sys.partitions p
ON p.partition_id = pc.partition_id
JOIN sys.columns c
ON column_id = partition_column_id AND c.object_id = p.object_id
WHERE p.object_id=object_id('Variable');

RESULTS:
object_id type_desc minlen

69575286 HEAP 9

column_name column_id max_inrow_length system_type_id Teaf_offset
Coll 1 3 175 4

Col2 2 250 167 -1

Co13 3 5 167 -2

Col4 4 20 167 -3

Co15 5 52 7

Now you can insert a row into the table as follows:

INSERT Variable VALUES
('"AAA', REPLICATE('X', 250), NULL, 'ABC', 123);

The REPLICATE function is used here to simplify populating a column; this function builds a
string of 250 Xs to be inserted into Col2.

You can see the details of this row as stored on the page in the DBCC PAGE output in

Figure 5-11. The location of the fixed-length columns can be found by using the leaf_offset
value in sys.system_internals_partition_columns, in the preceding query results. In this table,
Col1 begins at offset 4 and Col5 begins at offset 7. Variable-length columns are not shown
in the query output with a specific byte offset because the offset can be different in each
row. Instead, the row itself holds the ending position of each variable-length column within
that row in a part of the row called the Column Offset Array. The query output shows that
Col2 has an leaf_offset value of -1, which means that Col2 is the first variable-length column;
an offset for Col3 of =2 means that Col3 is the second variable-length column, and an offset
of -3 for Col4 means that Col4 is the third variable-length column.

To find the variable-length columns in the data row itself, you first locate the column offset
array in the row. Right after the 2-byte field indicating the total number of columns (0x0500)



Chapter 5 Tables 269

and the NULL bitmap with the value Oxe4, a 2-byte field exists with the value 0x0300 (or 3,
decimal) indicating that three variable-length fields exist. Next comes the column offset array.
Three 2-byte values indicate the ending position of each of the three variable-length columns:
0x0e01 is byte-swapped to 0x010e, so the first variable byte column ends at position 270. The
next 2-byte offset is also 0x0e01, so that column has no length and has nothing stored in the
variable data area. Unlike with fixed-length fields, if a variable-length field has a NULL value, it
takes no room in the data row. SQL Server distinguishes between a varchar containing NULL
and an empty string by determining whether the bit for the field is 0 or 1 in the NULL bitmap.
The third 2-byte offset is 0x1101, which, when byte-swapped, gives us 0x0111. This means the
row ends at position 273 (and is 273 bytes long).

DATA:
Slot 0, offset 0x60, Length 273, DumpStyle BYTE
Record Type = PRIMARY_RECORD

Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Memory Dump @0x61C4C060

00000000: 30000900 4141417b 000500e4 03000e01|10...AAA{........
00000010: 0e011101 58585858 58585858 58585858 1. . . . XXXXXXXXXXXX
00000020: 58585858 58585858 58585858 58585858 T XXXXXXXXXXXXXXXX
00000030: 58585858 58585858 58585858 58585858 T XXXXXXXXXXXXXXXX

000000F0:  [58585858 58585858 58585858 58585858| +Xxxx000000XXKXXXX
00000100: 58585858 58585858 58585858 58584142 1 XXXXXXXXXXXXXXAB
00000110: |43 tc

Row Offsets:

0 1 2 4 7 9 11 12 14 16 18 20 270
|3o|00|0900|414141|7b00|0500|e4|o3oo|0e01|0e01|1101|585858 .58585858]414243]
t t t
Data in Data in NULL Data in Data in
Col.1 Col.5 bitmap Col. 2 Col. 4
Offset to find Pos. where 3rd ('ABC’)
number of columns var. len. col. ends
Status Bits B Ny Pos.lwhere|2ndd
Status Bits A of columns var. fen. col. ends
Pos. where 1st
var. len. col. ends

Number of variable-
length columns

FIGURE 5-11 A data row with variable-length columns

The total storage space needed for a row depends on a number of factors. Variable-length
columns add more overhead to a row, and their actual size is probably unpredictable. Even
for fixed-length columns, the number of bytes of overhead can change depending on the
number of columns in the table. In the example illustrated earlier in this chapter in Figure 5-2,
| mentioned that 10 bytes of overhead exist if a row contains all fixed-length columns. For
that table 10 is the correct number. The size of the NULL bitmap needs to be long enough to
store a bit for every column in the row. In the Figure 5-2 example, the table has 11 columns,



270

Microsoft SQL Server 2008 Internals

so the NULL bitmap needs to be 2 bytes. In the examples illustrated by Figures 5-10 and 5-11,
the tables have fewer than eight columns, so the NULL bitmaps need only a single byte. Don't
forget that the total row overhead must also include the 2 bytes for each row in the row offset
table at the bottom of the page.

NULLS and Variable-Length Columns

As mentioned previously, fixed-length columns are always the same length, even if the column
contains NULL. For variable-length columns, NULLs don't take any space in the variable-length
data part of the row. However, as we saw in Figure 5-11, there is still a 2-byte column offset
entry for each variable-length column, so we can't say that they take no space at all. However,
if a zero-length value is stored at the end of the list of variable-length data columns, SQL
Server does not store any information about it and does not include the 2 bytes in the column
offset array. Let's look at an example.

The following table allows NULLs in each of its character columns, and they are all variable
length. The only fixed-length column is the integer identity column:

CREATE TABLE dbo.null_varchar
(
id INT PRIMARY KEY IDENTITY(1,1),
coll VARCHAR(10) NULL,
co12 VARCHAR(10) NULL,
co13 VARCHAR(10) NULL,
col4 VARCHAR(10) NULL,
col5 VARCHAR(10) NULL,
co16 VARCHAR(10) NULL,
co17 VARCHAR(10) NULL,
co18 VARCHAR(10) NULL,
co19 VARCHAR(10) NULL,
co110 VARCHAR(10) NULL
)3
GO

I'll insert four rows into this table. The first has a single character in the last varchar column,
and NULLs in all the others. The second has a single character in the first varchar column, and
NULLs in all the others. The third has a single character in the last varchar column, and empty

strings in all the others. The fourth has a single character in the first varchar column, and
empty strings in all the others:

SET NOCOUNT ON
INSERT INTO null_varchar(co110)

SELECT 'a';
INSERT INTO null_varchar(coll)

SELECT 'b';
INSERT INTO null_varchar

SELECT "', '',"r,rryrrprrprr v ity
INSERT INTO null_varchar

SELECT ‘'d',"','"',"",rryrryrry

GO



Chapter 5 Tables 271

Now | can use DBCC IND and DBCC PAGE (as shown previously) to look at the page containing
these four rows.

Here is the first row (with the column offset array shaded):

STot 0, Offset 0x60, Length 35, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 35

Memory Dump @0x66B4C060

00000000: 30000800 01000000 Ob0Ofe03 0a002200 10......... p...".

00000010: 22002200 22002200 22002200 22002200 +".".".".". """,

00000020: 230061tttttttttttttttttttttttttitttti#.a

There are nine entries in the column offset array with the value (after byte-swapping) of
hex 22, or decimal 18, and one entry with the decimal value 19. The value of 18 for the

first nine positions indicates that data ends in the same position as the column offset array
ends, and SQL Server determines that this means those nine columns are empty. But empty
could mean either NULL or an empty string. By looking at the NULL bitmap, in positions

11 and 12, we see fe03, which is hex 03fe after byte-swapping. Looking at this in binary we
see 0000001111111110. The column positions are shown from right to left. This table has
only 11 columns, so the last five bits in the NULL bitmap are ignored. The rest of the string
indicates the first and last columns are not NULL, but all the other columns are NULL.

The 10th value in the column offset array is hex 23, or decimal 19, which means that data
ends at offset 19, which contains the ASCIl code 61, representing a.

Here is the second row (with the column offset array shaded):

STot 1, Offset 0x83, Length 17, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 17

Memory Dump @0x66B4C083

00000000: 30000800 02000000 Ob00fc07 01001100 t0......... [V

00000010: 62tttttttttttttttttttttttttttttttttttb

There are several important differences to note, between this row and the preceding one. First,
the column offset array contains only a single value, which is the ending position for the first
variable-length column. The 1100 bytes are byte-swapped to 0011, and converted to 17 decimal,
which is the offset where the ASCII code for b (that is, 62) is located. Immediately preceding the
column offset array is the 2-byte value indicating the number of variable-length columns. The
first row had a hex value of 000a here, indicating 10 variable-length columns. The second row
has 0001, which means only one of the variable-length columns is actually stored in the row. We
just saw that zero-length columns prior to columns containing data do use the column offset
array, but in this case, because all the zero-length columns are after the non-NULL, only the
non-NULL column is represented here. If you look at the NULL bitmap, you'll see fc07, which is
hex 07fc after byte-swapping. Looking at this in binary, we see 0000011111111100, indicating
that the first two columns are not NULL, but all the rest are.



272

Microsoft SQL Server 2008 Internals

If you look at the rows containing empty strings instead of NULLs, the output should be
exactly the same, except for the NULL bitmap. Here is the third row (slot 2) and the fourth
row (slot 3), with the NULL bitmaps shaded:

Slot 2, Offset 0x94, Length 35, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 35

Memory Dump @0x66B4C094

00000000: 30000800 03000000 0b000000 0a002200 10............. ",

00000010: 22002200 22002200 22002200 22002200 t".".™.".".".".".

00000020: 230063 tttttttttttttttttttttttttittttt#.c

Slot 3, Offset O0xb7, Length 17, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 17

Memory Dump @0x66B4COB7

00000000: 30000800 04000000 0b000000 01001100 +0......covvunn..

00000010: 63tttttttttttttttttttttttttttttitttttd

For both the third and fourth rows, the NULL bitmap is all zeros, indicating that none of the

columns are NULL. The first and third rows differ only in the actual character value stored
and in the NULL bitmap. The second and fourth rows differ in the same way.

If we insert a row with all NULLs in the varchar columns, the row storage changes a bit more.
Here is what it would look like:

STot 4, Offset Oxc8, Length 12, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP
Record Size = 12

Memory Dump @0x66B4C0C8

00000000: 10000800 05000000 0b000000 tt+ttttttt.......

This row looks just like an all fixed-length row and ends right after the NULL bitmap. Bit 5
in the first byte (Status Bits A) has been set to 0 to indicate that there are no variable-length
columns stored in this row.

Storage of Date and Time Data

| described the storage of date and time data types earlier in this chapter, and now that we've
had some practice looking at the actual on-disk storage, let’s look at some date and time
data. The following table stores all the different data and time data types in a single row, and
all of the different possible scales for time data. (Remember that datetime2 and datetimeoffset
can also indicate a scale for the time component, but the time values look no different than
the time values stored with the simple time data type.) The table also includes single-column
character values, which | use just so | can find the other values easily in the single row of hex
data that DBCC PAGE gives me:

CREATE TABLE times (
a char(l),
dtl datetime,



GO

Now I'll insert one one-row data, with the same time value provided for each date or

b char(l),

sd smalldatetime,
c char(1),

dt2 datetime2,
d char(1),

dt date,

e char(l),

dto datetimeoffset,
f char(1),

t time,

g char(1),

t0 time(0),

h char(1),

tl time(1),

i char(1l),

t2 time(2),

j char(1),

t3 time(3),

k char(1),

t4 time(4),

1 char(l),

t5 time(5),

m char(1),

t6 time(6),

n char(1),

t7 time(7));

Chapter 5 Tables

time column. The data types that need a date component assume a default date of

January

1, 1900:

INSERT INTO times

SELECT
'a',
b,

c,
g
e
fr
‘9",
e

|m|’
'I’\',

'01:02:03.123",
'01:02:03.123",
'01:02:03.123",
'01:02:03.123",
'01:02:03.123",
'01:02:03.123",
'01:02:03.123",
'01:02:03.123",
'01:02:03.123",
'01:02:03.123",
'01:02:03.123",
'01:02:03.123",
'01:02:03.123",
'01:02:03.123";

273

Here is the DBCC PAGE output for this row. | have shaded the single-character column data

tousea

00000000:
00000010:

s dividers:

10005800 61090b11 00000000 00623e00 t..X.a
00006330 7c27ab08 5b950a64 5b950a65 t..cO|'".[?.d[?.e



274

Microsoft SQL Server 2008 Internals

00000020: 307c27ab 085b950a 00006630 7c27ab08 10|'".[?...f0["".
00000030: 678b0e00 68679100 6958ae05 6a73cf38 tg?..ho?.iX®.jsi8
00000040: 006b7ela 38026cec 08311600 6d3859ea t.k~.8.11.1..m8Yé
00000050: dd006€30 7c27ab08 1c000000 0000t+ttttY.n0|'".......

Table 5-8 shows the translation into decimal format for each of these values. Here are some
points to notice:

B For the datetime and smalldatetime data types, the date value is stored as 0, meaning
that the date is the base of January 1, 1900". For the other types that store a date, the
date value is stored as 693595, which represents the number of days after the new
internal base date of January 1, 0001. To compute the corresponding date, you can use
the dateadd function:

SELECT DATEADD(dd, 693595, CAST('0001/1/1' AS datetime2));

®  This will return the value '1900-01-01' 00:00:00.00’, which is the default when no date is
specified.

B The fractional seconds component is the last N digits of the time component, where
N is the scale of the time data, as listed in the table definition. So for the time(7) value,
the fractional seconds are .1230000; for the time(4), the fractional seconds are .1230;
for the time(1) value, the fractional seconds are .1; and for the time(0) value, there are
no fractional sections.

B Whatever remains in the time portion after the appropriate number of digits are
removed for the fractional seconds is the hours, minutes, and seconds value. Because
the same time value was used for all the columns in the table, the time values all start
with the same four digits: 3723. Previously, | showed you the formula for converting a
time value to an integer; here, I'll do the reverse, using the modulo operator (%) and
integer division. SQL Server uses the following conversions to determine the hours,
minutes, and seconds from 3723:

SELECT hours = (3723 / 60) / 60;
SELECT minutes = (3723 / 60) % 60;
SELECT seconds = 3723 % 60;

RESULT:
hours

B The column storing datetimeoffset data has 2 extra bytes to store the timezone offset.
Two bytes are needed because the offset is stored as the number of hours and minutes
(1 byte for each) from Coordinated Universal Time (UTC).



TABLE 5-8 Translation of Various Date and Time Values

Column
Name
dtl

sd

dt2

dt
dto

to
t1
t2
t3

t4

t5

t6

t7

Data Type

and Bytes
Used

Datetime -8-

Small

datetime -4-

datetime?2 -8-

date -3-
datetime
offset -10-
time -5-

time(0) -3-
time(1) -3-
time(2) -3-
time(3) -4-

time(4) -4-

time(5) -5-

time(6) -5-

time(7) -5-

Value
Stored
in Row

090b110000
000000

3e000000

307c27ab0
85b950a

5b950a

307c27ab08
5b950a00 00
307c27ab08

8b0e00
6f9100
58ae05
73cf3800

7e1a3802

ec08311600

3859eadd00

307c27ab08

Byte-Swapped

Date
00000000

0000

0a 95 5b

0a 95 5b
0a 95 5b

(none)

(none)
(none)
(none)

(none)

(none)

(none)

(none)

(none)

Storage of sql_variant Data

Time
0011
Ob 09

00 3e

08 ab 27
7c 30

(none)

08 ab 27
7c 30

08 ab 27
7¢ 30

00 Oe 8b
00 91 6f
05 ae 58

00 38
cf73

02 38
la7e

001631
08 ec

00 dd ea
59 38

08 ab 27
7¢ 30

Chapter 5 Tables

Decimal Values
Date

0

693595

693595
693595

(none)

(none)
(none)
(none)

(none)

(none)

(none)

(none)

(none)

275

Time
1116937

62

37231230000

(none)
37231230000

37231230000

3723
37231
372312
3723123

37231230

372312300

3723123000

37231230000

The sql_variant data type provides support for columns that contain any or all of the SQL
Server base data types except LOBs and variable-length columns with the MAX qualifier,
rowversion (timestamp), XML, and the types that can't be defined for a column in a table,
namely cursor and table. For instance, a column can contain a smallint value in some rows,
a float value in others, and a char value in the remainder.

This feature was designed to support what appears to be semistructured data in products
sitting above SQL Server. This semistructured data exists in conceptual tables that have a

fixed number of columns of known data types and one or more optional columns whose
type might not be known in advance. An example is e-mail messages in Microsoft Office
Outlook and Microsoft Exchange. With the sgl_variant data type, you can pivot a conceptual



276

Microsoft SQL Server 2008 Internals

table into a real, more compact table with sets of property-value pairs. Here is a graphical
example: the conceptual table shown in Table 5-9 has three rows of data. The fixed columns
are the ones that exist in every row. Each row can also have values for one or more of the
three different properties, which have different data types.

TABLE 5-9 A Conceptual Table with an Arbitrary Number of Columns and Data Types

Row Fixed Columns Property 1 Property 2 Property 3
row -1 XXXXXX value-11 value -13
row -2 YYYYYY value-22

row -3 777777 value-31 value-32

This can be pivoted into Table 5-10, where the fixed columns are repeated for each different
property that appears with those columns. The column called value can be represented by
sql_variant data and be a different data type for each different property.

TABLE 5-10 Semistructured Data Stored Using the sql_variant Data Type

Fixed Columns Property Value

XXXXXX property-1 value-11
XXXXXX property-3 value-13
YYYYYY property-2 value-22
777777 property-1 value-31
777777 property-2 value-32

Internally, columns of type sql_variant are always considered variable length. Their storage
structure depends on the type of data, but the first byte of every sql_variant field always
indicates the actual data type being used in that row.

I'll create a simple table with a sgl_variant column and insert a few rows into it so we can
observe the structure of the sqgl_variant storage.

USE testdb;

GO

CREATE TABLE variant (a int, b sql_variant);

GO

INSERT INTO variant VALUES (1, 3);

INSERT INTO variant VALUES (2, 3000000000);
INSERT INTO variant VALUES (3, 'abc');

INSERT INTO variant VALUES (4, current_timestamp);

SQL Server decides what data type to use in each row based on the data supplied. For
example, the 3 in the first INSERT is assumed to be an integer. In the second INSERT, the
3000000000 is larger than the biggest possible integer, so SQL Server assumes a decimal
with a precision of 10 and a scale of 0. (It could have used a bigint, but that would need more



Chapter 5 Tables 277

storage space.) We can now use DBCC IND to find the first page of the table and use DBCC
PAGE to see its contents as follows:

DBCC IND (testdb, variant, -1);

-- (I got a value of file 1, page 2508 for the data page in this table)
GO

DBCC TRACEON (3604);

DBCC PAGE (testdb, 1, 2508, 1);

Figure 5-12 shows the contents of the four rows. | won't go into the details of every single
byte because most are the same as what we've already examined.

The difference between the three rows starts at bytes 13 to 14, which indicate the position
where the first variable-length column ends. Because there is only one variable-length column,
this is also the length of the row. The sql_variant data begins at byte 15. Byte 15 is the code for
the data type. You can find the codes in the system_type_id column of the sys.types catalog
view. I've reproduced the relevant part of that view here:

system_type_id  name

34 image

35 text

36 uniqueidentifier
40 date

41 time

42 datetime2
43 datetimeoffset
48 tinyint

52 smallint

56 int

58 smalldatetime
59 real

60 money

61 datetime

62 float

98 sql_variant
99 ntext

104 bit

106 decimal

108 numeric

122 smallmoney
127 bigint

165 varbinary
167 varchar

173 binary

175 char

189 timestamp
231 nvarchar
231 sysname

239 nchar

240 hierarchyid
240 geometry
240 geography

241 xm1



278

Microsoft SQL Server 2008 Internals

DATA:

Slot 0, offset 0x60, Length 21, DumpStyle BYTE
Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 21

Memory Dump @0x62B7C060
00000000: 30000800 01000000 02000001 00150038 t0.......cuvuu.. 8
00000010: 01030000 00ttttttttttttttitttttttttt.....

STot 1, offset 0x75, Length 24, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 24

Memory Dump @0x62B7C075

00000000: 30000800 02000000 02000001 0018006cC t0.............. 1
00000010: 010a0001 005edOb2 ttttt+tttttttttttttt..... AD?

Slot 2, offset 0x8d, Length 26, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 26

Memory Dump @0x62B7CO8D

00000000: 30000800 03000000 02000001 001a00a7 f0.............. §
00000010: 01401f08 d0003461 6263tttttttttttt+tt.@..p.4abc

Slot 3, offset Oxa7, Length 25, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP VARIABLE_COLUMNS
Record Size = 25
Memory Dump @0x62B7COA7

00000000: 30000800 04000000 02000001 0019003d f0.............. =
00000010: 0183del4 01299b00 00ttttttttttttttttt..p..)...

OFFSET TABLE:

Row - Offset

3 (0x3) - 167 (0xa?7)
2 (0x2) - 141 (0x8d)
1 (0x1) - 117 (0x75)
0 (0x0) - 96 (0x60)

FIGURE 5-12 Rows containing sql_variant data

In our table, we have the data types 38 hex (which is 56 decimal and int), 6C hex (which is 108
decimal, which is numeric), A7 hex (which is 167 decimal and varchar), and 3D hex (which is
61 decimal and datetime). Following the byte for data type is a byte representing the version
of the sql_variant format, and that is always 1 in SQL Server 2008. Following the version,
there can be one of the following four sets of bytes:

B For numeric and decimal: 1 byte for the precision and 1 byte for the scale

B For strings: 2 bytes for the maximum length and 4 bytes for the collation ID



Chapter 5 Tables 279
B For binary and varbinary: 2 bytes for the maximum length

B For all other types: no extra bytes

These bytes are then followed by the actual data in the sgl_variant column.

Constraints

Constraints provide a powerful yet easy way to enforce the data integrity in your database.
Data integrity comes in three forms:

Entity integrity Ensures that a table has a primary key. In SQL Server 2008, you can guarantee
entity integrity by defining PRIMARY KEY or UNIQUE constraints or by building unique
indexes. Alternatively, you can write a trigger to enforce entity integrity, but this is usually
far less efficient.

Domain integrity Ensures that data values meet certain criteria. In SQL Server 2008, domain
integrity can be guaranteed in several ways. Choosing appropriate data types can ensure
that a data value meets certain conditions—for example, that the data represents a valid
date. Other approaches include defining CHECK constraints or FOREIGN KEY constraints,
or writing a trigger. You might also consider DEFAULT constraints as an aspect of
enforcing domain integrity.

Referential integrity Enforces relationships between two tables, a referenced table, and a
referencing table. SQL Server allows you to define FOREIGN KEY constraints to enforce
referential integrity, and you can also write triggers for enforcement. It's crucial to note
that there are always two sides to referential integrity enforcement. If data is updated
or deleted from the referenced table, referential integrity ensures that any data in the
referencing table that refers to the changed or deleted data is handled in some way.
On the other side, if data is updated or inserted into the referencing table, referential
integrity ensures that the new data matches a value in the referenced table.

In this section, I'll briefly describe some of the internal aspects of managing constraints.
Constraints are also called declarative data integrity because they are part of the actual table
definition. This is in contrast to programmatic data integrity, which uses stored procedures or
triggers.

Here are the five types of constraints:

®  PRIMARY KEY
® UNIQUE

m FOREIGN KEY
m CHECK

m DEFAULT



280

Microsoft SQL Server 2008 Internals

You might also sometimes see the IDENTITY property and the nullability of a column
described as constraints. | typically don’t consider these attributes to be constraints; instead,

| think of them as properties of a column, for two reasons. First, each constraint has its own
row in the sys.objects catalog view, but IDENTITY and nullability information is not available
in sys.objects, only in sys.columns and sys.identity_columns. This makes me think that these
properties are more like data types, which are also viewable through sys.columns. Second,
when you use the SELECT INTO command to make a copy of a table, all column names and
data types are copied, as well as IDENTITY information and column nullability, but constraints
are not copied to the new table. This makes me think that IDENTITY and nullability are more
a part of the actual table structure than the constraints are.

Constraint Names and Catalog View Information

The following simple CREATE TABLE statement, which includes a primary key on the table,
creates a PRIMARY KEY constraint along with the table, and the constraint has a very
cryptic-looking name:

CREATE TABLE customer

(

cust_id int IDENTITY NOT NULL PRIMARY KEY,
cust_name varchar(30) NOT NULL

s

If you don't supply a constraint name in the CREATE TABLE or ALTER TABLE statement that
defines the constraint, SQL Server comes up with a name for you.

The constraint produced from the preceding simple statement has a name very similar to the
nonintuitive name PK__customer _3BD0198E35BCFEOA. (The hexadecimal number at the end
of the name most likely will be different for a customer table that you create.) All types of
single-column constraints use this naming scheme, which I'll explain shortly. The advantage
of explicitly naming your constraint rather than using the system-generated name is greater
clarity. The constraint name is used in the error message for any constraint violation, so
creating a name such as CUSTOMER_PK probably makes more sense to users than a name
such as PK__customer__0856260D. You should choose your own constraint names if such
error messages are visible to your users. The first two characters (PK) show the constraint
type—PK for PRIMARY KEY, UQ for UNIQUE, FK for FOREIGN KEY, CK for CHECK, and DF

for DEFAULT. Next are two underscore characters, which are used as a separator.

Tip You might be tempted to use one underscore to conserve characters and to avoid having
to truncate as much. However, it's common to use a single underscore in a table name or a
column name, both of which appear in the constraint name. Using two underscore characters
distinguishes the kind of a name it is and where the separation occurs.



Chapter 5 Tables 281

Note Constraint names are schema-scoped, which means they all share the same namespace
and hence must be unique within a schema. Within a schema, you cannot have two tables with
the same name for any of their constraints.

Next comes the table name (customer), which is limited to 116 characters for a PRIMARY KEY
constraint and slightly fewer characters for all other constraint names. For all constraints other
than PRIMARY KEY and UNIQUE, there are two more underscore characters for separation,
followed by the next sequence of characters, which is the column name. The column name

is truncated to five characters if necessary. If the column name has fewer than five characters,
the length of the table name portion can be slightly longer.

Finally, the hexadecimal representation of the object ID for the constraint comes after another
separator. This value is used in the object_id column of the sys.objects catalog view. Object
names are limited to 128 characters in SQL Server 2008, so the total length of all the portions
of the constraint name must also be less than or equal to 128.

Several catalog views contain constraint information. They all inherit the columns from the
sys.objects view and include additional columns specific to the type of constraint. These
views are

B sys.key_constraints

B sys.check_constraints

sys.default_constraints
B sys.foreign_keys

The parent_object_id column, which indicates which object contains the constraint, is actually
part of the base sys.objects view, but for objects that have no “parent,” this column is 0.

Constraint Failures in Transactions and Multiple-Row
Data Modifications

Many bugs occur in application code because developers don't understand how the failure
of a constraint affects a multiple-statement transaction declared by the user. The biggest
misconception is that any error, such as a constraint failure, automatically aborts and rolls
back the entire transaction. On the contrary, after an error is raised, it's up to the transaction
to proceed and ultimately commit or to roll back. This feature provides the developer with
the flexibility to decide how to handle errors. (The semantics are also in accordance with the
ANSI SQL-92 standard for COMMIT behavior.)

Because many developers have handled transaction errors incorrectly and because it can be
tedious to add an error check after every command, SQL Server includes a SET option called
XACT_ABORT that causes SQL Server to abort a transaction if it encounters any error during
the transaction. The default setting is OFF, which is consistent with ANSI-standard behavior.



282

Microsoft SQL Server 2008 Internals

A final comment about constraint errors and transactions: a single data modification
statement (such as an UPDATE statement) that affects multiple rows is automatically an
atomic operation, even if it's not part of an explicit transaction. If such an UPDATE statement
finds 100 rows that meet the criteria of the WHERE clause but one row fails because of a
constraint violation, no rows will be updated. | discuss implicit and explicit transactions a bit
more in Chapter 10.

The Order of Integrity Checks

The modification of a given row fails if any constraint is violated or if a trigger rolls back the
operation. As soon as a failure in a constraint occurs, the operation is aborted, subsequent
checks for that row aren't performed, and no triggers fire for the row. Hence, the order of
these checks can be important, as the following list shows:

1. Defaults are applied as appropriate.

NOT NULL violations are raised.

CHECK constraints are evaluated.

FOREIGN KEY checks of referencing tables are applied.

FOREIGN KEY checks of referenced tables are applied.

The UNIQUE and PRIMARY KEY constraints are checked for correctness.

N o un h~ w N

Tri fire.
riggers fire Download at Wow! eBook

Altering a Table

SQL Server 2008 allows existing tables to be modified in several ways. Using the ALTER TABLE
command, you can make the following types of changes to an existing table:

B Change the data type or the NULL property of a single column.

B Add one or more new columns, with or without defining constraints for those columns.
B Add one or more constraints.

B Drop one or more constraints.

B Drop one or more columns.

B Enable or disable one or more constraints (applies only to CHECK and FOREIGN KEY
constraints).

B Enable or disable one or more triggers.

B Rebuild a table or a partition to change the compression settings or remove fragmentation.
(Fragmentation is discussed in Chapter 6, and compression is discussed in Chapter 7.)

B Change the lock escalation behavior of a table. (Locks and lock escalation are discussed
in Chapter 10.)


v@v
Text Box
Download at Wow! eBook


Chapter 5 Tables 283

Changing a Data Type

By using the ALTER COLUMN clause of ALTER TABLE, you can modify the data type or the
NULL property of an existing column. But be aware of the following restrictions:

The modified column can’t be a text, image, ntext, or rowversion (timestamp) column.

If the modified column is the ROWGUIDCOL for the table, only DROP ROWGUIDCOL
is allowed; no data type changes are allowed.

The modified column can’t be a computed or replicated column.

The modified column can’t have a PRIMARY KEY or FOREIGN KEY constraint defined
on it.

The modified column can't be referenced in a computed column.
The modified column can’t have the type changed to timestamp.

If the modified column participates in an index, the only type changes that are allowed
are increasing the length of a variable-length type (for example, varchar(10) to
varchar(20)), changing nullability of the column, or both.

If the modified column has a UNIQUE or CHECK constraint defined on it, the only change
allowed is altering the length of a variable-length column. For a UNIQUE constraint, the
new length must be greater than the old length.

If the modified column has a default defined on it, the only changes that are allowed
are increasing or decreasing the length of a variable-length type, changing nullability,
or changing the precision or scale.

The old type of the column should have an allowed implicit conversion to the new type.

The new type always has ANSI_PADDING semantics if applicable, regardless of the
current setting.

If conversion of an old type to a new type causes an overflow (arithmetic or size), the
ALTER TABLE statement is aborted.

Here's the syntax and an example of using the ALTER COLUMN clause of the ALTER TABLE
statement:

SYNTAX:

ALTER TABLE table-name ALTER COLUMN column-name

{ type_name [ ( prec [, scale] ) ] [COLLATE <collation name> ]
[ NULL | NOT NULL 1]
| {ADD | DROP} {ROWGUIDCOL | PERSISTED} 1}

EXAMPLE :

/* Change the Tlength of the emp_Tname column in the employee
table from varchar(15) to varchar(30) */

ALTER TABLE empTloyee
ALTER COLUMN emp_name varchar(30);



284

Microsoft SQL Server 2008 Internals

Adding a New Column

You can add a new column, with or without specifying column-level constraints. If the new
column doesn't allow NULLs, isn't an identity column, and isn't a rowversion (or timestamp
column), the new column must have a default constraint defined (unless no data is in the
table yet). SQL Server populates the new column in every row with a NULL, the appropriate
identity or rowversion value, or the specified default. If the newly added column is nullable
and has a default constraint, the existing rows of the table are not filled with the default
value, but rather with NULL values. You can override this restriction by using the WITH
VALUES clause so that the existing rows of the table are filled with the specified default value.

Adding, Dropping, Disabling, or Enabling a Constraint

You can use ALTER TABLE to add, drop, enable, or disable a constraint. The trickiest part of
using ALTER TABLE to manipulate constraints is that the word CHECK can be used in three
different ways:

B To specify a CHECK constraint.

B To defer the checking of a newly added constraint. In the following example, we're
adding a constraint to validate that cust_id in orders matches a cust_id in customer, but
we don't want the constraint applied to existing data:

ALTER TABLE orders
WITH NOCHECK
ADD FOREIGN KEY (cust_id) REFERENCES customer (cust_id);

Note Instead of using WITH NOCHECK, | could use WITH CHECK to force the constraint

to be applied to existing data, but that's unnecessary because it's the default behavior.

B To enable or disable a constraint. In this example, we enable all the constraints on the
employee table:

ALTER TABLE employee
CHECK CONSTRAINT ALL;

The only types of constraints that can be disabled are CHECK constraints and FOREIGN KEY
constraints, and disabling tells SQL Server not to validate new data as it is added or updated.
You should use caution when disabling and re-enabling constraints. If a constraint was part of
the table when the table was created or was added to the table using the WITH CHECK option,
SQL Server knows that the data conforms to the data integrity requirements of the constraint.
The SQL Server Query Optimizer can then take advantage of this knowledge in some cases.
For example, if you have a constraint that requires coll to be greater than 0, and then an
application submits a query looking for all rows where col1 < 0, if the constraint has always
been in effect, the Optimizer knows that no rows can satisfy this query and the plan is a very



Chapter 5 Tables 285

simple plan. However, if the constraint has been disabled and re-enabled without using the
WITH CHECK option, there is no guarantee that some of the data in the table won't meet the
integrity requirements. You might not have any data less than or equal to 0, but the Optimizer
cannot know that when it is devising the plan; all the Optimizer knows is that the constraint
cannot be trusted. The catalog views sys.check_constraints and sys.foreign_keys each have a
column called is_not_trusted. If you re-enable a constraint and don't use the WITH CHECK
option to tell SQL Server to revalidate all existing data, the is_not_trusted column is set to 1.

Although you cannot use ALTER TABLE to disable or enable a PRIMARY KEY or UNIQUE
constraint, you can use the ALTER INDEX command to disable the associated index. I'll discuss
ALTER INDEX in Chapter 6. You can use ALTER TABLE to drop PRIMARY KEY and UNIQUE
constraints, but you need to be aware that dropping one of these constraints automatically
drops the associated index. In fact, the only way to drop those indexes is by altering the table
to remove the constraint.

Note You can't use ALTER TABLE to modify a constraint definition. You must use ALTER TABLE to
drop the constraint and then use ALTER TABLE to add a new constraint with the new definition.

Dropping a Column

You can use ALTER TABLE to remove one or more columns from a table. However, you can’t
drop the following columns:

B A replicated column
B A column used in an index
® A column used in a CHECK, FOREIGN KEY, UNIQUE, or PRIMARY KEY constraint

B A column associated with a default defined using the DEFAULT keyword or bound to a
default object

B A column to which a rule is bound
You can drop a column using the following syntax:
ALTER TABLE table-name

DROP COLUMN column-name [, next-column-name]...

Note Notice the syntax difference between dropping a column and adding a new column: the
word COLUMN is required when dropping a column but not when you add a new column to
a table.



286

Microsoft SQL Server 2008 Internals

Enabling or Disabling a Trigger

You can enable or disable one or more (or all) triggers on a table using the ALTER TABLE
command.

Internals of Altering Tables

Note that not all the ALTER TABLE variations require SQL Server to change every row when the
ALTER TABLE is issued. SQL Server can carry out an ALTER TABLE command in three basic ways:

B [t might need to change only metadata.

B [t might need to examine all the existing data to make sure it is compatible with the
change but only needs to make changes to metadata.

B [t might need to change every row physically.

In many cases, SQL Server can just change the metadata (primarily the data seen through
sys.columns) to reflect the new structure. In particular, the data isn't touched when a column
is dropped, when a new column is added and NULL is assumed as the new value for all rows,
when the length of a variable-length column is increased, or when a non-nullable column is
changed to allow NULLs. The fact that data isn't touched when a column is dropped means
that the disk space of the column is not reclaimed. You might have to reclaim the disk space
of a dropped column when the row size of a table approaches or has exceeded its limit.

You can reclaim space by creating a clustered index on the table or rebuilding an existing
clustered index by using ALTER INDEX, as we'll see in Chapter 6.

Some changes to a table’s structure require that the data be examined but not modified. For
example, when you change the nullability property to disallow NULLs, SQL Server must first
make sure there are no NULLs in the existing rows. A variable-length column can be shortened
when all the existing data is within the new limit, so the existing data must be checked. If

any rows have data longer than the new limit specified in the ALTER TABLE, the command

fails. So you do need to be aware that for a huge table, this can take some time. Changing a
fixed-length column to a shorter type, such as changing an int column to smallint or changing
a char(10) to char(8), also requires examining all the data to verify that all the existing values
can be stored in the new type. However, even though the new data type takes up fewer

bytes, the rows on the physical pages are not modified. If you have created a table with an

int column, which needs 4 bytes in each row, all rows will use the full 4 bytes. After altering

the table to change the int to smallint, we are restricted in the range of data values we can
insert, but the rows continue to use 4 bytes for each value, instead of the 2 bytes that smallint
requires. You can verify this by using the DBCC PAGE command. Changing a char(10) to char(8)
displays similar behavior, and the rows continue to use 10 bytes for that column, but only 8 are
allowed to have new data inserted. It is not until the table is rebuilt by creating or re-creating a
clustered index that the char(10) columns are actually re-created to become char(8).



Chapter 5 Tables 287

Other changes to a table’s structure require SQL Server to change every row physically, and
as it makes the changes, it has to write the appropriate records to the transaction log, so
these changes can be extremely resource intensive for a large table. One example of this type
of change is adding a new column that doesn’t allow NULL, in which case you must specify

a default column value. SQL Server physically adds the column with the default to each row.
Note that when adding a new column that allows NULLs, the change is a metadata-only
operation.

Another negative side effect of altering tables happens when a column is altered to increase its
length. In this case, the old column is not actually replaced. Rather, a new column is added to the
table, and DBCC PAGE shows you that the old data is still there. I'll let you explore the page dumps
for this situation on your own, but we can see some of this unexpected behavior by just looking at
the column offsets using the column detail query that | showed you earlier in this chapter.

First, create a table with all fixed-length columns, including a smallint in the first position:

CREATE TABLE change
(coll smallint, col2 char(10), col3 char(5));

Now look at the column offsets:

SELECT c.name AS column_name, column_id, max_inrow_length, pc.system_type_id, leaf_offset
FROM sys.system_internals_partition_columns pc
JOIN sys.partitions p
ON p.partition_id = pc.partition_id
JOIN sys.columns c
ON column_id = partition_column_id
AND c.object_id = p.object_id
WHERE p.object_id=object_id('change');

RESULTS:
column_name column_id  max_inrow_Tlength system_type_id Teaf_offset

coll 2 52 4
col2 2 10 175 6
col3 3 5 175 16

Now change smallint to int:

ALTER TABLE change
ALTER COLUMN coll int;

Finally, run the column detail query again to see that colI now starts much later in the row and
that no column starts at offset 4 immediately after the row header information. This new column
creation due to an ALTER TABLE takes place even before any data has been placed in the table:

column_name column_id max_inrow_length system_type_id Tleaf_offset
coll 1 4 56 21
col2 2 10 175 6
col3 3 5 175 16



288

Microsoft SQL Server 2008 Internals

Another drawback to the behavior of SQL Server in not actually dropping the old column is
that we are now more severely limited in the size of the row. The row size now includes the
old column, which is no longer usable or visible (unless you use DBCC PAGE). For example,
if | create a table with a couple of large fixed-length character columns, as shown here, | can
then ALTER the char(2000) column to be char(3000):

CREATE TABLE bigchange
(coll smallint, col2 char(2000), col3 char(1000));

ALTER TABLE bigchange
ALTER COLUMN col12 char(3000);

At this point, the length of the rows should be just over 4,000 bytes because there is a
3,000-byte column, a 1,000-byte column, and a smallint. However, if | try to add another
3,000-byte column, it fails:

ALTER TABLE bigchange
ADD col14 char(3000);

Msg 1701, Level 16, State 1, Line 1

Creating or altering table 'bigchange' failed because the minimum row size would be 9009,
including 7 bytes of internal overhead. This exceeds the maximum allowable table row size
of8060 bytes.

However, if | just create a table with two 3,000-byte columns and a 1,000-byte column, there
is no problem:

CREATE TABLE nochange
(coll smallint, col2 char(3000), col3 char(1000), col4 char(3000));

Note that there is no way to ALTER a table to rearrange the logical column order or to add a
new column in a particular position in the table. A newly added column always gets the next
highest column_id value. When you execute SELECT * on a table or look at the metadata with
sp_help, the columns are always returned in column_id order. If you need a different order,
you have several options:

B Don't use SELECT *; always SELECT a list of columns in the order that you want to have
them returned.

B Create a view on the table that SELECTs the columns in the order you want them, and
then you can SELECT * from the view or run sp_help on the view.

m Create a new table, copy the data from the old table, drop the old table, and rename
the new table to the old name. Don't forget to re-create all constraints, indexes, and
triggers.

You might think that Management Studio can add a new column in a particular position or
rearrange the column order, but this is not true. Behind the scenes, the tool is actually using the
preceding third option and creating a completely new table with all new indexes, constraints,
and triggers. If you wonder why simply adding a new column to an existing (large) table is
taking a long time, this is probably the reason.



Chapter 5 Tables 289

Heap Modification Internals

We've seen how SQL Server stores data in a heap. Now we'll look at what SQL Server actually
does internally when your heap data is modified. Modifying data in an index, which includes

a table with a clustered index, is a completely separate topic and will be covered in detail in
Chapter 6. As a rule of thumb, you should always have a clustered index on a table. There are
some cases in which you might be better off with a heap, such as when the most important
factor is the speed of INSERT operations, but until you do thorough testing to establish that you
have one of these cases, it's better to have a clustered index than to have no organization to
your data at all. In Chapter 6, you'll see the benefits and tradeoffs of clustered and nonclustered
indexes and examine some guidelines for their use. For now, we'll look only at how SQL Server
deals with the data modifications on tables without clustered indexes.

Allocation Structures

As discussed in Chapter 3, SQL Server allocates one or more IAM pages for each object, to keep
track of which extents in each file belong to that object. If the table is a heap, using the IAMs is
the only way for SQL Server to find all the extents belonging to the table, because the individual
data pages of a table are not connected in a doubly linked list, the way they are if the table has
a clustered index. Pages at each level of an index are linked, and because the data is considered
the leaf level of a clustered index, SQL Server does maintain the linkage. However, for a heap,
no such linked list connects the pages to each other. The only way that SQL Server determines
which pages belong to a table is by inspecting the IAMs for the table.

Another special allocation structure is particularly useful when SQL Server is performing data
modification operations, and that is the Page Free Space (PFS) structure. PFS pages keep track
of how much space is free on each page, so that INSERT operations in a heap know where
space is available for the new data, and UPDATE operations know where a row can be moved.
| briefly mentioned PFS pages in Chapter 3, and | told you that these pages contained 1 byte
for each page in a 8,088-page range of a file. This is much less dense than Global Allocation
Maps (GAMs), Shared Global Allocation Maps (SGAMs), and IAMs, which contain one bit per
extent.) Figure 5-13 shows the structure of a byte on a PFS page. Only the last three bits are
used to indicate the page fullness, and four of the other five bits each have a meaning.

Here is the way the bits are interpreted:

B Bit1l This bit indicates whether the page is actually allocated or not. For example, a
uniform extent can be allocated to an object, but all of the pages in the extent might
not be allocated. To tell which pages within an allocated extent are actually used, SQL
Server needs to look at this bit in the appropriate byte in the PFS page.

B Bit2 Indicates whether or not the corresponding page is from a mixed extent.

B Bit 3 Indicates that this page is an IAM page. Remember that IAM pages are not
located at known locations in a file.



290 Microsoft SQL Server 2008 Internals

BIT: 0

1 2 3 4 5 6 7

Page is allocated

Page has logically deleted (ghosted) rows

7 / \\ [ space Used ]

Mixed allocation page

Page is an IAM Page

Possible values for the three bits indicating
space used:

- 000 = 0: Page is empty

- 001 = 1: Page is 1-50% full

= 010 = 2: Page is 51-80% full
= 011 = 3: Page is 81-95% full
- 100 = 4: Page is 96-100% full

FIGURE 5-13 Meaning of the bits in a PFS byte

m Bit4

Indicates that this page contains ghost records. As we'll see, SQL Server uses a

background cleanup thread to remove ghost records, and these bits on the PFS pages
help SQL Server find those pages that need to be cleaned up. (Ghost records only show
up in indexes or when using row-level versioning, so they won't be discussed further in
this chapter)

®  Bits 5 through 7 Taken as a three-bit value, the values 0 to 4 indicate the page
fullness as follows:

]

]

]

]

]

0: The page is empty.

1: The page is 1-50 percent full.

2: The page is 51-80 percent full.
3: The page is 81-95 percent full.
4: The page is 96-100 percent full.

PFS pages are at known locations within each data file. The second page (page 1) of a file is a
PFS page, as is every 8,088th page thereafter.

Inserting Rows

When inserting a new row into a table, SQL Server must determine where to put it. When a
table has no clustered index—that is, when the table is a heap—a new row is always inserted
wherever room is available in the table. I've discussed how |IAMs and the PFS pages keep
track of which extents in a file already belong to a table and which of the pages in those
extents have space available. Even without a clustered index, space management is quite



Chapter 5 Tables 291

efficient. If no pages with space are available, SQL Server tries to find unallocated pages from
existing uniform extents that already belong to the object. If none exists, SQL Server must
allocate a whole new extent to the table. Chapter 3 discussed how the GAMs and SGAMs
were used to find extents available to be allocated to an object.

Deleting Rows

When you delete rows from a table, you have to consider what happens both to the data
pages and the index pages. Remember that the data is actually the leaf level of a clustered
index, and deleting rows from a table with a clustered index happens the same way as
deleting rows from the leaf level of a nonclustered index. Deleting rows from a heap is
managed in a different way, as is deleting from node pages of an index.

Deleting Rows from a Heap

SQL Server 2008 doesn’t reorganize space on a page automatically when a row is deleted.
As a performance optimization, the compaction doesn’t occur until a page needs additional
contiguous space for inserting a new row. You can see this in the following example, which
deletes a row from the middle of a page and then inspects that page using DBCC PAGE:

USE testdb;
GO

CREATE TABLE smallrows

(
a int identity,
b char(10)

);

GO

INSERT INTO smallrows
VALUES ('row 1');
INSERT INTO smallrows
VALUES ('row 2');
INSERT INTO smallrows
VALUES ('row 3');
INSERT INTO smallrows
VALUES ('row 4');
INSERT INTO smallrows
VALUES ('row 5');
GO

DBCC IND (testdb, smallrows, -1);
-- Note the FileID and PageID from the row where PageType = 1
- and use those values with DBCC PAGE (I got FileID 1 and PageID 4536)

DBCC TRACEON(3604);
GO
DBCC PAGE(testdb, 1, 4536,1);



292 Microsoft SQL Server 2008 Internals

Here is the output from DBCC PAGE:

DATA:

Slot 0, Offset 0x60, Length 21, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP
Memory Dump @0x61D9C060
00000000: 10001200 01000000 726f7720 31202020 t........ row 1

00000010: 20200200 fcttttttttittttttttttittttt

Slot 1, Offset 0x75, Length 21, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP
Memory Dump @0x61D9C075
00000000: 10001200 02000000 726f7720 32202020 t........ row 2

00000010: 20200200 fctttttttttttttttititititttt

Slot 2, Offset 0x8a, Length 21, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP
Memory Dump @0x61D9CO8A
00000000: 10001200 03000000 726f7720 33202020 t........ row 3

00000010: 20200200 fctttttttttttttttititititttt

Slot 3, Offset 0x9f, Length 21, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP
Memory Dump @0x61D9CO9F
00000000: 10001200 04000000 726f7720 34202020 t........ row 4

00000010: 20200200 fettttittttittttittttitittit

STot 4, Offset Oxb4, Length 21, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP
Memory Dump @0x61D9COB4
00000000: 10001200 05000000 726f7720 35202020 t........ row 5

00000010: 20200200 fctttttttttttttttitititttttt

OFFSET TABLE:

Row - Offset

(0x4) - 180 (0xb4)
(0x3) - 159 (0x9f)
(0x2) - 138 (0x8a)
(0x1) - 117 (0x75)
(0x0) - 96 (0x60)

O R N Wb

Now we'll delete the middle row (WHERE a = 3) and look at the page again:

DELETE FROM smallrows
WHERE a = 3;
GO

DBCC PAGE(testdb, 1, 4536,1);
GO

Here is the output from the second execution of DBCC PAGE:

DATA:
Slot 0, Offset 0x60, Length 21, DumpStyle BYTE
Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP



Chapter 5 Tables 293

Memory Dump @0x61B6C060
00000000: 10001200 01000000 726f7720 31202020 t........ row 1
00000010: 20200200 fcttttttttttttttttttttittttt

Slot 1, Offset 0x75, Length 21, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP
Memory Dump @0x61B6C075
00000000: 10001200 02000000 726f7720 32202020 t........ row 2

00000010: 20200200 fcttttttttittttttttttitittt

Slot 3, Offset Ox9f, Length 21, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP
Memory Dump @0x61B6CO9F
00000000: 10001200 04000000 726f7720 34202020 t........ row 4

00000010: 20200200 fctttttttttttttttitititititt

Slot 4, Offset Oxb4, Length 21, DumpStyle BYTE

Record Type = PRIMARY_RECORD Record Attributes = NULL_BITMAP
Memory Dump @0x61B6COB4
00000000: 10001200 05000000 726f7720 35202020 t........ row 5

00000010: 20200200 fctttttttttttttttitititttttt

OFFSET TABLE:

Row - Offset

(0x4) - 180 (0xb4)
(0x3) - 159 (0x9f)
(0x2) - 0 (0x0)
(0x1) - 117 (0x75)
(0x0) - 96 (0x60)

O R N WM

Note that in the heap, the row offset array at the bottom of the page shows that the third
row (at slot 2) is now at offset 0 (which means there really is no row using slot 2), and the row
using slot 3 is at its same offset as before the delete. No data on the page is moved when the
DELETE occurs. The row doesn't show up in the page when you use printopt 1 or 3 for DBCC
PAGE. However, if you dump the page with printopt 2, you still see the bytes for ‘row 3". They
are not physically removed from the page, but the 0 in the row offset array indicates that the
space is not used now and can be used by a new row.

In addition to space on pages not being reclaimed, empty pages in heaps frequently cannot
be reclaimed. Even if you delete all the rows from a heap, SQL Server does not mark the empty
pages as unallocated, so the space is not available for other objects to use. The dynamic
management view (DMV) sys.dm_db_partition_stats still shows the space as belonging to the
heap table. One way to avoid this problem is to request a table lock when the delete is being
performed, and we'll look at lock hints in Chapter 10. If this problem has already occurred, and
you are showing more space belonging to a table than it really has, you can build a clustered
index on the table to reorganize the space and then drop the index.

Reclaiming Pages

When the last row is deleted from a data page, the entire page is deallocated. The exception is if
the table is a heap, as | discussed previously. (If the page is the only one remaining in the table,



294

Microsoft SQL Server 2008 Internals

it isn't deallocated. A table always contains at least one page, even if it's empty.) Deallocation of
a data page results in the deletion of the row in the index page that pointed to the deallocated
data page. Index pages are deallocated if an index row is deleted (which, again, might occur as
part of a delete/insert update strategy), leaving only one entry in the index page. That entry is
moved to its neighboring page, and then the empty page is deallocated.

The discussion so far has focused on the page manipulation necessary for deleting a single
row. If multiple rows are deleted in a single DELETE operation, you must be aware of some
other issues.

Updating Rows

SQL Server can update rows in several different ways, automatically and invisibly choosing
the fastest update strategy for the specific operation. In determining the strategy, SQL Server
evaluates the number of rows affected, how the rows will be accessed (via a scan or an index
retrieval, and via which index), and whether changes to the index keys will occur. Updates can
happen either in place, by just changing one column’s value to a new value in the original
row, or as a delete followed by an insert. In addition, updates can be managed by the query
processor or by the storage engine. In this section, we'll examine only whether the update
happens in place or whether SQL Server treats it as two separate operations: delete the old
row and insert a new row.

Moving Rows

What happens if a row has to move to a new location in the table? In SQL Server 2008, this
can happen for a couple of different reasons. In Chapter 6, we'll look at the structure of
indexes and see that the value in a table’s clustered index column (or columns) determines
the location of the row. So, if the value of the clustered key is changed, the row most likely
has to move within the table.

If it will still have the same row locator (in other words, the clustering key for the row stays
the same), no nonclustered indexes have to be modified. If a table has no clustered index

(in other words, if it's a heap), a row may move because it no longer fits on the original

page. This can happen whenever a row with variable-length columns is updated to a new,
larger size so that it no longer fits in the original location. As you'll see when we cover index
structures in Chapter 6, every nonclustered index on a heap contains pointers to the data
rows that are the actual physical location of the row, including the file number, page number,
and row number. So that the nonclustered indexes do not all have to be updated just
because a row moves to a different physical location, SQL Server leaves a forwarding pointer
in the original location when a row has to move.

Let's look at an example to see these forwarding pointers. I'll create a table that's much like
the one | created for doing DELETE operations, but this table has a third column of variable



Chapter 5 Tables 295

length. After | populate the table with five rows, which fills the page, I'll update one of the
rows to make its third column much longer. The row no longer fits on the original page and
has to move. | can use DBCC IND to get the page numbers used by the table as follows:

USE testdb;
GO
DROP TABLE bigrows;
GO
CREATE TABLE bigrows
( a int IDENTITY ,
b varchar(1600),
c varchar(1600));
GO
INSERT INTO bigrows
VALUES (REPLICATE('a', 1600), '');
INSERT INTO bigrows
VALUES (REPLICATE('b', 1600), '');
INSERT INTO bigrows
VALUES (REPLICATE('c', 1600), '"');
INSERT INTO bigrows
VALUES (REPLICATE('d', 1600), '');
INSERT INTO bigrows
VALUES (REPLICATE('e', 1600), '"');
GO
UPDATE bigrows
SET ¢ = REPLICATE('x', 1600)
WHERE a = 3;
GO

DBCC IND (testdb, bigrows, -1);

DBCC IND (testdb, bigrows, -1);

-- Note the FileID and PageID from the rows where PageType = 1
-- and use those values with DBCC PAGE (I got FileID 1 and
- PageID values of 2252 and 4586.

RESULTS:
PageFID PagePID

DBCC TRACEON(3604);

GO

DBCC PAGE(testdb, 1, 2252, 1);
GO

| won't show you the entire output from the DBCC PAGE command, but I'll show you what
appears in the slot where the row with a = 3 formerly appeared:

Slot 2, Offset Ox1feb, Length 9, DumpStyle BYTE

Record Type = FORWARDING_STUB Record Attributes =
Memory Dump @Ox61ADDFEB

00000000: 04eall00 00010000 O00ttttttttttttttttt.........



296

Microsoft SQL Server 2008 Internals

The value of 4 in the first byte means that this is just a forwarding stub. The 0011ea in

the next 3 bytes is the page number to which the row has been moved. Because this is a
hexadecimal value, we need to convert it to 4586 decimal. The next group of 4 bytes tells us
that the page is at slot 0, file 1. If you then use DBCC PAGE to look at that page, page 4,586,
you can see what the forwarded record looks like, and you can see that the Record Type
indicates FORWARDED_RECORD.

Managing Forward Pointers

Forward pointers allow you to modify data in a heap without worrying about having to make
drastic changes to the nonclustered indexes. If a row that has been forwarded must move again,
the original forwarding pointer is updated to point to the new location. You'll never end up with
a forwarding pointer pointing to another forwarding pointer. In addition, if the forwarded row
shrinks enough to fit in its original place, the record might move back to its original place (if
there is still room on that page), and the forward pointer would be eliminated.

A future version of SQL Server might include some mechanism for performing a physical
reorganization of the data in a heap, which would get rid of forward pointers. Note that
forward pointers exist only in heaps, and that the ALTER TABLE option to reorganize a table
won't do anything to heaps. You can defragment a nonclustered index on a heap but not
the table itself. Currently, when a forward pointer is created, it stays there forever—with only
a few exceptions. The first exception is the case | already mentioned, in which a row shrinks
and returns to its original location. The second exception is when the entire database shrinks.
The bookmarks are actually reassigned when a file is shrunk. The shrink process never
generates forwarding pointers. For pages that were removed because of the shrink process,
any forwarded rows or stubs they contain are effectively “unforwarded.” Other cases in which
the forwarding pointers are removed are the obvious ones: if the forwarded row is deleted,
or if a clustered index is built on the table so that it is no longer a heap.

More Info To get a count of forward records in a table, you can look at the output from the
sys.dm_db_ index_physical_stats function, which will be discussed in Chapter 6.

Updating in Place

In SQL Server 2008, updating a row in place is the rule rather than the exception. This means
that the row stays in exactly the same location on the same page and only the bytes affected
are changed. In addition, the log contains a single record for each such updated row unless
the table has an update trigger on it or is marked for replication. In these cases, the update
still happens in place, but the log contains a delete record followed by an insert record.

In cases where a row can't be updated in place, the cost of a not-in-place update is minimal
because of the way the nonclustered indexes are stored and because of the use of forwarding



Chapter 5 Tables 297

pointers, as described previously. In fact, you can have an update not-in-place for which the

row stays on the original page. Updates happen in place if a heap is being updated (and no
forwarding pointer is required), or if a table with a clustered index is updated without any change
to the clustering keys. You can also get an update in place if the clustering key changes but the
row does not need to move at all. For example, if you have a clustered index on a last-name
column containing consecutive key values of Able, Becker, and Charlie, you might want to update
Becker to Baker. Because the row stays in the same location even after the clustered index key
changes, SQL Server performs this as an update in place. On the other hand, if you update Able to
Buchner, the update cannot occur in place but the new row might stay on the same page.

Updating Not in Place

If your update can’t happen in place because you're updating clustering keys, the update
occurs as a delete followed by an insert. In some cases, you'll get a hybrid update: some of
the rows are updated in place and some aren't. If you're updating index keys, SQL Server
builds a list of all the rows that need to change as both a DELETE and an INSERT operation.
This list is stored in memory, if it's small enough, and is written to tempdb if necessary. This
list is then sorted by key value and operator (DELETE or INSERT). If the index whose keys are
changing isn't unique, the DELETE and INSERT steps are then applied to the table. If the index
is unique, an additional step is carried out to collapse DELETE and INSERT operations on the
same key into a single update operation.

@I More Info The Query Optimizer determines whether this special UPDATE method is
appropriate, and this internal optimization, called Split/Sort/Collapse, is described in detail in
Chapter 8, “The Query Optimizer.”

Summary

Tables are at the heart of relational databases in general and SQL Server in particular. In this
chapter, we looked at the internal storage issues of various data types, in particular comparing
fixed- and variable-length data types. We saw that SQL Server 2008 provides multiple options
for storing variable-length data, including data that is too long to fit on a single data page, and
you saw that it's simplistic to think that using variable-length data types is either always good
or always bad. SQL Server provides user-defined data types for support of domains, and it provides
the IDENTITY property to make a column produce auto-sequenced numeric values. You also
saw how data is physically stored in data pages, and we queried some of the metadata views
that provide information from the underlying (and inaccessible) system tables. SQL Server also
provides constraints, which offer a powerful way to ensure your data’s logical integrity.






Chapter 6
Indexes: Internals and Management

Kalen Delaney, with Kimberly L. Tripp and Paul S. Randal

Microsoft SQL Server doesn’t have a configuration option or a knob that allows you to

make it run faster; there's no magic bullet. However, indexes—when created and designed
appropriately—are probably the closest thing to a magic bullet. The right index, created for

the right query, can take query execution time from hours down to seconds. There's absolutely
no other way to see these kinds of gains—adding hardware, or tweaking configuration

options often only give marginal gains. What is it about indexes that can make a query request
drop from millions of I/Os to only a few? And does just any index improve performance?
Unfortunately, great performance doesn't just happen; all indexes are not equal, nor is just any
index going to improve performance. In fact, over-indexing is often worse than under-indexing.
You can't just “index every column” and expect SQL Server to improve.

So how do you know how to create the best indexes? Honestly, it takes multiple
pieces—knowing your data, knowing your workload, and knowing how SQL Server

works. In terms of how SQL Server works, there are multiple components: index internals,
statistics, query optimization, and maintenance. In this chapter, we focus on index internals
and maintenance—expanding these topics to give you creation best practices and optimal
base indexing strategies. By knowing how SQL Server physically stores indexes as well

as how the storage engine accesses and manipulates these physical structures, you are
better equipped to create the right indexes for your workload. In addition, this information
helps to prepare you for Chapter 8, “The Query Optimizer,” as you can visualize the
choices (in terms of physical structures) from which SQL Server can choose and why some
structures are more effective than others for certain requests.

This chapter is split into multiple sections. The first section explains index usage and concepts
and internals. In this section, you learn how indexes are stored and how they work for data
retrieval. The second section dives into what happens when data is modified—both how

it happens and how SQL Server guarantees consistency. In this section, you also learn the
potential effects of data modifications on indexes, such as fragmentation. Finally, the third
section discusses index management and maintenance.

Overview

Think of the indexes you might see in your everyday life—those in books and other
documents. Suppose that you're trying to create an index in SQL Server using the CREATE
INDEX statement and you're using two SQL Server references to find out how to write the

299



300

Microsoft SQL Server 2008 Internals

statement. One reference is the (hypothetical) Microsoft SQL Server Transact-SQL Language
Reference Manual, which we'll refer to as the “T-SQL Reference.” Assume that this book is just
an alphabetical list of all the SQL Server keywords, commands, procedures, and functions. The
other reference is this book: Microsoft SQL Server 2008 Internals. You can find information
quickly in either book about indexes, even though the two books are organized differently.

In the T-SQL Reference, all the commands and keywords are organized alphabetically. You
know that CREATE INDEX is near the front with all the other CREATE statements, so you

can just ignore most of the rest of the book. Keywords and phrases are shown at the top of
each page to tell you what commands are on that page. Thus, you can flip through just a few
pages quickly and end up at a page that has CREATE DATABASE on it, and you know that
CREATE INDEX appears shortly thereafter. Now, if you flipped forward and came to CREATE
VIEW without passing CREATE INDEX, you'd know that CREATE INDEX was missing from the
book, as the commands and keywords are organized alphabetically. (Of course, this is just an
example—CREATE INDEX would certainly be in the T-SQL Reference.)

Next, you try to find CREATE INDEX in Microsoft SQL Server 2008 Internals. This book is not
ordered alphabetically by commands and keywords, but there's an index at the back of the
book, and all the index entries are organized alphabetically. So, again, you can use the fact
that CREATE INDEX is near the front of the alphabet and find it quickly. However, unlike

in the T-SQL Reference, once you find the words CREATE INDEX, you won't see nice, neat
examples right in front of you. The index only gives you pointers—it tells you what pages
to look at. In fact, it might list many pages in the book. And, if you look up CREATE TABLE
in the book’s index, you might find dozens of pages listed. Finally, if you look up the stored
procedure, sp_addumpdevice (a completely deprecated command), you won't find it in the
index at all because it's not described in this book.

The point is that these two searches are analogous to using a clustered index (in the case

of the book’s contents actually being ordered) and a nonclustered index (in the case of the
lookup from the index into the book). If a table is clustered, the table data is logically stored
in the clustering key order, just as the T-SQL Reference has all the main topics in order. Once
you find the data you're looking for, your search is complete. In a nonclustered index, the
index is a completely separate structure from the data itself. Once you find what you're
looking for in the index, you have to follow some sort of reference pointer to get to the
actual data. Although a nonclustered index in SQL Server is very much like the index in the
back of a book, it is not exactly the same.

SQL Server Index B-trees

In SQL Server, indexes are organized using a B-tree structure, as shown in Figure 6-1. B-tree
stands for “balanced tree,” and SQL Server uses a special kind called B+ trees (pronounced
“b-plus trees”) that are not kept strictly balanced in all ways at all times. Unlike a normal
tree, B-trees are always inverted, with their root (a single page) at the top and their leaf level
at the bottom. The existence of intermediate levels depends on multiple factors. B-tree is



Chapter 6 Indexes: Internals and Management 301

an overloaded term used in different ways by different people—either to mean the entire
index structure or just the non-leaf levels. In this book, the term B-tree means the entire
index structure.

Index level 3
(Root) |A:|

Index level 2 S 1
(Intermediate level) — —

Index level 1 Y/ T e B e B e T
(Intermediate level) — — — —

Index level 0 S A £ 1 £ ] £ ]
(Leaf level) }— - - - - L

FIGURE 6-1 A B-tree for a SQL Server index

What's interesting about these B-trees in SQL Server is how they are constructed and what is
contained in each level. Structurally, indexes might change a small amount based on whether
or not multiple CPUs are used to create or rebuild them (which is explained in more detail in
the section “"MAXDOP," later in this chapter), but for the most part, the size and width of the
tree are based on the definition of the index and the number and size of rows in the table. To
show this, we give a few examples starting with the general terms and definitions. First, indexes
have two primary components: a leaf level and one or more non-leaf levels. The non-leaf
levels are interesting to understand and discuss, but simply put, they're used for navigation
(mostly for navigating to the leaf level). However, the first intermediate level is also used in
fragmentation analysis and to drive read-ahead during large range scans of the index.

To understand these structures, we start with defining the leaf level in generic terms (meaning
that these basic concepts apply to both clustered and nonclustered indexes). The leaf level of
an index contains something (we discuss the specifics when we get into the topic of physical
index structures later in the chapter) for every row of the table in indexed order. In this
discussion, we are focusing on traditional indexes and those created without filters, which
refers to a new SQL Server 2008 feature called filtered indexes.

Non-leaf levels exist to help navigate to a row at the leaf level but the architecture is rather
straightforward. Each non-leaf level stores something for every page of the level below—and
levels are added until the index builds up to a root of one page. Each higher non-leaf level in
the index (that is, farther away from the leaf level) is smaller than the one below it because
each row at a level contains only the minimum key value that can be on each page of the level
below, plus a pointer to that page. Although it sounds like this could result in a lot of levels
(that is, a tall tree), the limitation on the size of the key (which has a maximum of 900 bytes or
16 columns—whichever comes first) in SQL Server helps to keep index trees relatively small.



302

Microsoft SQL Server 2008 Internals

In fact, in the example that we show coming up—which has an index with fairly wide rows and
a key definition that is at the maximum size—the tree size of this example index (at the time
the index is created) is only eight levels deep.

To see this tree (and the computations used to determine its size), we use an example where
the leaf level of the index contains 1,000,000 “rows.” We put quotes around rows because
these are not necessarily data rows—these are just leaf-level rows of any index. Later in the
chapter—when we discuss the physical structures of each specific index—you will see
exactly what leaf-level rows are and how they are structured. However, for this example,
we're focused on an abstract “index” where we're concerned only about the leaf and
non-leaf levels—as well as how they're structured within the confines of SQL Server pages
(8-KB pages). In this example, our leaf-level rows are 4,000 bytes, which means we can store
only two rows per page. For a table with 1,000,000 rows, the leaf level of our index would
have 500,000 pages. Relatively speaking, this is a fairly wide row structure; however, we are
not wasting a lot of space on the page. If our leaf-level page had two 3,000-byte rows we'd
still only fit two rows per page, but then we'd have 2,000 bytes of wasted space. (This
would be an example of internal fragmentation, which is discussed in the section entitled
“Fragmentation,” later in this chapter.)

Now, why are these just “rows” and not specifically data rows? The reason is that this leaf level
could be the leaf level for a clustered index (therefore data rows) or these leaf-level rows could
be rows in a nonclustered index that uses INCLUDE (which was added in SQL Server 2005)

to add non-key columns to the leaf level of the index. When INCLUDE is used, leaf-level
pages can contain wider rows (wider than the 900-byte or 16-column key maximum). Again,
although this doesn't currently sound interesting, we explain later in this chapter why this

can be beneficial. In this example, the leaf level of this index would be 4 GB in size (500,000
8-KB pages) at the time it's created. This structure, depending on its definition could become
larger—and possibly very fragmented—if a lot of new data is added. However (and again
depending on its definition), there are ways to control how fragmented this index becomes
when data is volatile (we look at this topic further in multiple sections later in this chapter). In
this case, the leaf level of the index is large because of “row” width. And, using the maximum
of 900 bytes means that you can fit only eight (8,096 bytes per page/900 bytes per row)

rows per non-leaf level page. However, using this maximum, the resulting tree (up to a root
of one page) would be relatively small and result only in eight levels—as shown here. In

fact, improving scalability is the primary reason for the limit to an index key of 900 bytes or
16 columns—whichever comes first:

B Root page of non-leaf level (Level 7) = 2 rows = 1 page (8 rows per page)
B Intermediate non-leaf level (Level 6) = 16 rows = 2 pages (8 rows per page)

B Intermediate non-leaf level (Level 5) = 123 rows = 16 pages (8 rows per page)

Intermediate non-leaf level (Level 4) = 977 rows = 123 pages (8 rows per page)

B Intermediate non-leaf level (Level 3) = 7,813 rows = 977 pages (8 rows per page)



Chapter 6 Indexes: Internals and Management 303

B Intermediate non-leaf level (Level 2) = 62,500 rows = 7,813 pages (8 rows per page)
B Intermediate non-leaf level (Level 1) = 500,000 rows = 62,500 pages (8 rows per page)
m | eaf level (Level 0) = 1,000,000 rows = 500,000 pages (2 rows per page)

An index with a smaller key size would scale even faster. Imagine the same leaf-level pages
as shown previously (1,000,000 rows at 2 rows per page) but with a smaller index key and
therefore a smaller row size in the non-leaf levels (including some space for overhead) of
only 20 bytes, you can fit 404 rows per non-leaf-level page:

B Root page of non-leaf level (Level 3) = 4 rows = 1 page (404 rows per page)

B Intermediate non-leaf level (Level 2) = 1,238 rows = 4 pages (404 rows per page)

B Intermediate non-leaf level (Level 1) = 500,000 rows = 1,238 pages (404 rows per page)
m | eaf level (Level 0) = 1,000,000 rows = 500,000 pages (2 rows per page)

In this second example, not only is the initial index only four levels, but it can have

an additional 130,878,528 rows added (the maximum possible number of rows is
404*404*404*2—or 131,878,528—minus the number of rows that already exist—1,000,000)
before it would require another level. Think of it like this—the root page currently allows

404 entries; however, we're only storing 4 (and the existing non-leaf levels are not entirely
100 percent full). This is only a theoretical maximum, but without any other factors—such

as fragmentation—a four-level tree would be able to seek into a table with over 131 million
rows (again, with this small index key size). This means that a lookup into this index which uses
the tree to navigate down to the corresponding row requires only four I/Os. And because

the trees are balanced, finding any record requires the same amount of resources. Retrieval
speed is consistent because the index has the same depth throughout. An index can become
fragmented—and pages can become less dense—but these trees do not become unbalanced.
This is something we look at later in this chapter when we cover index maintenance.

It's not critical to memorize all the math that was used to show these examples, but
understanding the true scalability of indexes—especially with reasonably created keys—means
you are likely to create more effective indexes (that is, more efficient, with narrower keys).

In addition, there are tools inside SQL Server to help you see the actual structures (no math
required). Most importantly, the size of an index (and the number of levels) depends on three
things—the index definition, whether or not the base table has a clustered index, and the
number of pages in the leaf level of the indexes. The number of leaf-level pages is directly tied
to both row size and the number of rows in the table. This does not mean that the goal when
defining indexes is to have only very narrow indexes—in fact, extremely narrow indexes usually
have fewer uses than slightly wider indexes. It just means that you should understand the
implications of different indexing choices and decisions. In addition, features such as INCLUDE
and filtered indexes can profoundly affect the index in both size and usefulness. However,
knowing how SQL Server works and the internal structures of indexes are a large part of finding
the right balance between having too many and too few indexes, but most importantly, of
having the right indexes.



304 Microsoft SQL Server 2008 Internals

Tools for Analyzing Indexes

To expose and understand index structures fully, there are a few tools that we're going to
use. To make the scenarios easier to understand, we need to get a feel for which tool is the
most appropriate to use and when. In addition, this section focuses on an overview of the
options for execution, as well as some tips and tricks. However, details on analyzing various
aspects of the output can be found throughout this chapter.

Using the dm_db_index_physical_stats DMV

The sys.dm_db_index_physical_stats function is one of the most useful functions to determine
table structures. DMV can give you insight into whether or not your table has a clustered
index, how many nonclustered indexes exist, and whether or not your table (and each index)
has row-overflow or Large Object (LOB) data. Most importantly, it can expose to you the
entire structure and its state of health. This particular DMV is a function that requires five
parameters, all with defaults. If you set all the parameters to their defaults and do not filter
the rows or the columns, the function returns 21 columns of data for (almost) every level of
every index on every table on every partition in every database of the current SQL Server
instance. You would request that information as follows:

SELECT * FROM sys.dm_db_index_physical_stats (NULL, NULL, NULL, NULL, NULL);

When executed on a very small SQL Server instance, with only the AdventureWorks2008, pubs,
and Northwind databases in addition to the system databases, more than 390 rows are
returned. Obviously, 21 columns and 390 rows is too much output to illustrate here, so this is
a command that you should play with to get some experience. However, it's unlikely that you
actually want to see every index on every table in every database (although that can have
some benefits on smaller instances such as a development instance). To distill this to a more
targeted execution, let's look at the parameters now:

B database_id The first parameter must be specified as a number, but you can embed the
DB_ID function as a parameter if you want to specify the database by name. If you spec-
ify NULL, which is the default, the function returns information about all databases. If the
database ID is NULL, the next three parameters must also be NULL (which is their default
value). In addition, this function must be executed in a database that has a compatibility
mode of at least 90 (indicating SQL Server 2005). If, for some reason, your database is
not running in at least compatibility mode 90, then executing this query from master and
specifying a database name (DB_ID('databasename')) or the specific ID means that you
can execute this without changing the target database’s compatibility mode.

B object_id The second parameter is the object ID, which must also be a number, not a
name. Again, the NULL default means you want information about all objects, and in
that case, the next two parameters, index _id and partition_id, must be NULL. Just as for
the database ID, you can use an embedded function (OBJECT_ID) to get the object ID if



Chapter 6 Indexes: Internals and Management 305

you know the object name. As a word of caution, if you're executing this from a different
database than your current database, you should use a three-part object name with the
OBJECT_ID function, including the database name and the schema name.

index_id The third parameter allows you to specify the index ID from a particular
table, and again, the default of NULL indicates that you want all the indexes. A handy
fact to remember here is that the clustered index on a table always has an index_id of 1.

partition_number The fourth parameter indicates the partition number, and NULL
means you want information for all the partitions. Remember that if you haven't explicitly
created a table or index on a partition scheme, SQL Server internally considers it to be
built on a single partition.

mode The fifth and last parameter is the only one for which the default NULL does
not result in returning the most information. The last parameter indicates the level

of information that you want returned (and therefore directly affects the speed of
execution) when querying this function. When the function is called, SQL Server
traverses the page chains for the allocated pages for the specified partitions of the
table or index. Unlike DBCC SHOWCONTIG in SQL Server 2000, which usually requires a
shared (S) table lock, sys.dm_db_index_physical_stats (and DBCC SHOWCONTIG in SQL
Server 2005) requires only an Intent-Shared (IS) table lock, which is compatible with
most other kinds of locks, as discussed in Chapter 10, “Transactions and Concurrency.”
Valid inputs are DEFAULT, NULL, LIMITED, SAMPLED, and DETAILED. The default is NULL,
which corresponds to LIMITED. Here is what the latter three values mean:

0 LIMITED The LIMITED mode is the fastest and scans the smallest number of
pages. For an inde, it scans only the first non-leaf (or intermediate) level of
the index. For a heap, a scan is avoided by using the table’s IAMs and then the
associated Page Free Space (PFS) pages to define the allocation of the table. This
allows SQL Server to obtain details about fragmentation in terms of page order
(more on this later in the chapter) but not page density (or other details that can
only be calculated from actually reading the leaf-level pages). In other words,
it's fast but not quite as detailed. More specifically, this corresponds to the WITH
FAST option of the now-deprecated DBCC SHOWCONTIG command.

0 SAMPLED The SAMPLED mode returns physical characteristics based on a
1-percent sample of all the pages in the index or heap, plus the page order from
reading the pages at the first intermediate level. However, if the index has less
than 10,000 pages total, SQL Server converts SAMPLED to DETAILED.

0 DETAILED The DETAILED mode scans all pages and returns all physical
characteristics (both page order and page density) for all levels of the index.
This is incredibly helpful when analyzing a small table but can take quite a bit of
time for larger tables. It could also essentially “flush” your buffer pool if the index
being processed is larger than the buffer pool.



306

Microsoft SQL Server 2008 Internals

You must be careful when using the built-in DB_ID or OBJECT_ID functions. If you specify an
invalid name or simply misspell the name, you do not receive an error message and the value
returned is NULL. However, because NULL is a valid parameter, SQL Server just assumes that
this is what you meant to use. For example, to see all the previously described information,
but only for the AdventureWorks2008 database, you might mistype the name as follows:

SELECT * FROM sys.dm_db_index_physical_stats
(DB_ID ('AdventureWorks208'), NULL, NULL, NULL, NULL);

There is no such database as AdventureWorks208, so the DB_ID function returns NULL, and it
is as if you had called the function with all NULL parameters. No error or warning is given.

You might be able to guess from the number of rows returned that you made an error,

but of course, if you have no idea how much output you are expecting, it might not

be immediately obvious. SQL Server Books Online suggests that you can avoid this issue by
capturing the IDs into variables and error-checking the values in the variables before calling
the sys.dm_db_index_physical_stats function, as shown in this code:

DECLARE @db_id SMALLINT;
DECLARE @object_id INT;

SET @db_id = DB_ID (N'AdventureWorks2008');
SET @object_id = OBJECT_ID (N'AdventureWorks2008.Person.Address');

IF (@db_id IS NULL OR @object_id IS NULL)
BEGIN
IF @db_id IS NULL
BEGIN
PRINT N'Invalid database';
END;
ELSE IF @object_id IS NULL
BEGIN
PRINT N'Invalid object';
END
END
ELSE
SELECT *
FROM sys.dm_db_index_physical_stats
(@db_id, @object_id, NULL, NULL, NULL);

Another more insidious problem is that the OBJECT_ID function is called based on your
current database, before any call to the sys.dm_db_index_physical_stats function is made.
So if you are in the AdventureWorks2008 database but want information from a table in the
pubs database, you could try running the following code:

SELECT *
FROM sys.dm_db_index_physical_stats
(DB_ID (N'pubs'), OBJECT_ID (N'dbo.authors'), NULL, NULL, NULL);



Chapter 6 Indexes: Internals and Management 307

However, because there is no dbo.authors table in the current database (AdventureWorks2008),
@object_id is passed as NULL, and you get all the information from all the objects in pubs.

If an object with the same name exists in two databases, the problem may be even harder to
detect. If there were a dbo.authors table in AdventureWorks2008, the ID for that table would
be used to try to retrieve data from the pubs database—and it's unlikely that the authors
table has the same ID even if it exists in both databases. SQL Server returns an error if the

ID returned by object_id() does not match any object in the specified database, but if does
match the object ID for another table, the details for that table are produced, potentially
causing even more confusion. The following script shows the error:

USE AdventureWorks2008;
GO

CREATE TABLE dbo.authors
(ID CHAR(11l), name varchar(60));
GO

SELECT *
FROM sys.dm_db_index_physical_stats
(DB_ID (N'pubs'), OBJECT_ID (N'dbo.authors'), NULL, NULL, NULL);

When you run the preceding SELECT, the dbo.authors ID is determined based on the current
environment, which is still AdventureWorks2008. But when SQL Server tries to use that ID
(which does not exist) in pubs, the following error is generated:

Msg 2573, Level 16, State 40, Line 1
Could not find table or object ID 295672101. Check system catalog.

The best solution is to fully qualify the table name, either in the call to the
sys.dm_db_index_ physical_stats function itself or, as in the code sample shown earlier,

to use variables to get the ID of the fully qualified table name. If you write wrapper
procedures to call the sys.dm_db_index_physical_stats function, you can concatenate the
database name onto the object name before retrieving the object ID, thereby avoiding the
problem. Because the output of this function is a bit cryptic, you might find it beneficial to
write your own procedure to access this function and return the information in a slightly
friendlier fashion.

In summary, this DMV is incredibly useful for determining the size and health of your
indexes; however, you need to know how to work with it to get only the specific information
in which you're interested. But even for a subset of tables or indexes, and with careful use
of the available parameters, you still might get more data back than you want. Because
sys.dm_db_index_physical_stats is a table-valued function, you can add your own filters

to the results being returned. For example, you can choose to look at the results for just

the nonclustered indexes. Using the available parameters, your only choices are to see all



308

Microsoft SQL Server 2008 Internals

the indexes or only one particular index. If we make the third parameter NULL to specify
all indexes, we can then add a filter in a WHERE clause to indicate that we want only
nonclustered index rows (WHERE index_id > 1). Note that while a WHERE clause may limit
the number of rows returned it does not necessarily limit the tables and indexes analyzed.

Using DBCC IND

The DBCC IND command (introduced in Chapter 5, “Tables") is undocumented but widely
known and used. It is safe to use on production systems. The command has four parameters,
but only the first three are required. The following code shows the command syntax:

DBCC IND ( { 'dbname' | dbid }, { ‘objname' | objid },
{ nonclustered indid | 1 | 0 | -1 | -2 } [, partition_number] )

The first parameter is the database name or the database ID. The second parameter is an
object name or object ID within the database; the object can be either a table or an indexed
view. The third parameter is a specific nonclustered index ID (2-250 or 256-1005) or the
values 1, 0, -1, or —2. The values for this parameter have the following meanings:

B 0 Displays information for in-row data pages and in-row IAM pages of the specified
object.

® 1 Displays information for all pages, including IAM pages, data pages, and any
existing LOB pages or row-overflow pages of the requested object. If the requested
object has a clustered index, the index pages are included.

m -1 Displays information for all IAMs, data pages, and index pages for all indexes on
the specified object. This includes LOB and row-overflow data.

B -2 Displays information for all IAMs for the specified object.

B Nonclustered index ID Displays information for all IAMs, data pages, and index
pages for one index. This includes LOB and row-overflow data that might be part of
the index’s included columns.

The final parameter was new for SQL Server 2005 and is optional (to maintain backward
compatibility with scripts that might use DBCC IND from SQL Server 2000). It specifies

a particular partition number, and if no value is specified or a 0 is given, information for all
partitions is displayed.

Unlike DBCC PAGE (discussed in Chapter 5), SQL Server does not require that you enable
trace flag 3604 before running DBCC IND. However, because it's likely that you will want to
investigate pages using DBCC PAGE, after determining the pages owned by an index, it's a
good idea to turn the trace flag on at the beginning of your script.

The columns in the result set are described in Table 6-1. Note that all page references have
the file and page component conveniently split between two columns, so you don't have to
do any conversion.



Chapter 6 Indexes: Internals and Management 309

TABLE 6-1 Column Descriptions for DBCC IND Output

Column Meaning

PageFID File ID containing the page

PagePID Page number within that file

IAMFID File ID containing the IAM managing this page

IAMPID Page number within that file of the IAM managing this page

ObjectID Object ID

IndexID Index ID—valid values are 0-250 and 256-1005 (described later)

PartitionNumber Partition number within the table or index for this page

PartitionID ID for the partition containing this page (unique in the database)

iam_chain_type Type of allocation unit this page belongs to: in-row data, row-overflow data,
or LOB data

PageType Page type: 1 = data page, 2 = index page, 3 = TEXT_MIXED_PAGE,
4 = TEXT_TREE_PAGE, 10 = IAM page

IndexLevel Level of index; 0 is the leaf level and levels are counted up from the leaf
to the root page (of an index structure with Index/D of 1-1005)

NextPageFID File ID containing the next page at this level

NextPagePID Page number within that file for next page at this level

PrevPagefFID File ID containing the previous page at this level

PrevPagePID Page number within that file for previous page at this level

Some of the return values were described in Chapter 5 because they are equally relevant to
heaps. When dealing with indexes, we also can look at the IndexID column, which is O for a
heap, 1 for pages of a clustered index, and a number between 2 and 1,005 for the pages
of a nonclustered index pages. In SQL Server 2008, a table can have up to 1,000 total indexes
(1 clustered and 999 nonclustered). Although 1,005 is higher than would be expected
(2-1,000 would be sufficient for 999 nonclustered indexes), the range of nonclustered index
IDs skips 251-255 because 255 had special meaning in earlier releases (it was used for the
LOB values in a table) and 251-254 were unused. To simplify any backward-compatibility
issues, this range (251-255) has been skipped in SQL Server 2008.

The IndexLevel value allows us to see at what level of the index tree a page is located, with a
value of 0 meaning the leaf level. The highest value for any particular index is, therefore, the
root page of that index, and you should be able to verify that the root page is the same value
you get from the sys.system_internals_allocation_units view in the root_page column. The
remaining four columns indicate the page linkage at each level of each index. For each page,
there is a file ID and page ID for the next page and a file ID and page ID for the previous
page. Of course, for the root pages, all these values are 0. You can also determine the first
page by finding one with zeros for the previous page, and you can find the last page because
it has zeros for the next page. Because the output of this DBCC command is too wide to
display in a page of a book, and because it's likely that you want to reorder the result set, we



310

Microsoft SQL Server 2008 Internals

are not going to reproduce it here. If you wish to view it, you can use a script that stores the
output of this command into a table. Once we have this information in a table, we can query
it and retrieve just the columns in which we are interested. Here is a script that creates a
table called sp_tablepages with columns to hold all the returned information from DBCC IND.
Note that any object created in the master database with a name that starts with sp_ can be
accessed from any database, without having to qualify it with the database name:

USE master;

GO

CREATE TABLE sp_tablepages

(PageFID tinyint,
PagePID int,
IAMFID  tinyint,
IAMPID int,
ObjectID iint,
IndexID tinyint,
PartitionNumber tinyint,
PartitionID bigint,
iam_chain_type varchar(30),
PageType tinyint,
IndexLevel tinyint,
NextPageFID tinyint,
NextPagePID int,
PrevPageFID tinyint,
PrevPagePID int,
Primary Key (PageFID, PagePID));

The following code truncates the sp_tablepages table and then fills it with DBCC IND results
from the Sales.SalesOrderDetail table in the AdventureWorks2008 database:

TRUNCATE TABLE sp_tablepages;
INSERT INTO sp_tablepages
EXEC ('DBCC IND (AdventureWorks2008, [Sales.SalesOrderDetail], -1)');

Once you have the results of DBCC IND in a table, you can select any subset of rows or
columns that you are interested in. We use sp_tablepages to report on DBCC IND information
for many examples in this chapter. You can then use DBCC PAGE to examine index pages,
just as you do for data pages. However, if you use DBCC PAGE with style 3 to print out the
details of each column on each row on an index page, the output looks quite different. We
see some examples as we analyze the physical structures of indexes next.

Understanding Index Structures

As we discussed earlier in this chapter, index structures are divided into two basic components
of the index: the leaf level and the non-leaf level(s). The details in this section help you to
better understand what's specifically stored within these portions of your indexes and how
they differ based on index type.



Chapter 6 Indexes: Internals and Management 311

The Dependency on the Clustering Key

The leaf level of a clustered index contains the data, not just the index keys. So the answer
to the question "What else is in the leaf level of a clustered index besides the key value?” is
"Everything else"—that is, all the columns of every row in the table are in the leaf level of a
clustered index. Another way to say this is that when a clustered index is created, the data
becomes the leaf level of the clustered index. At the time a clustered index is created, data
in the table is copied and ordered by the clustering key. Once created, a clustered index is
maintained logically rather than physically. This order is maintained through a doubly linked
list called a page chain. (Note that pages in a heap are not linked in any way to each other.)
The order of pages in the page chain, and the order of rows on the data pages, is based on
the definition of the clustered index. Deciding on which column(s) to cluster is an important
performance consideration.

Because the actual page chain for the data pages can be ordered in only one way, a table can
have only one clustered index. And, in general, most tables perform better when the table is
clustered. However, the clustering key needs to be chosen wisely. And, to appropriately choose

a clustering key, you must understand how the clustered index works, as well as the internal
dependencies on the clustering key (especially as far as the nonclustered indexes are concerned).

The dependencies of the nonclustered indexes on the clustering key have been in SQL Server
since the storage engine was rearchitected in SQL Server 7.0. It all starts with how rows are
identified (and looked up) when using a nonclustered index to reference a corresponding
row within the table. If a table has a clustered index, then rows are identified (and looked up
by) their clustering key. If the table does not have a clustered index, then rows are identified
(and looked up by) their physical row identifier (RID), described in more detail later in this
chapter. This process of looking up corresponding data rows in the base table is known as a
[bookmark] lookup, which is named after the analogy that nonclustered indexes reference

a place within a book, as a bookmark does.

Nonclustered indexes contain only the data as defined by the index. When looking up a row
within a nonclustered index, you often need to go to the actual data row for additional data
that's not part of the nonclustered index. To retrieve this additional data, you must look into
the table for that data. For the purpose of this section, we focus only on how the bookmark
lookup is performed when a table is clustered.

First, and foremost, all clustered indexes must be unique. The primary reason why a clustered
index must be unique is so that nonclustered index entries can point to exactly one specific
row. Consider the problem that would occur if a table were clustered by a nonunique value of
last name. If a nonclustered index existed on a unique value, such as social security number,
and a query looked into the index for a specific social security number of 123-45-6789 and
found that its clustering key was 'Smith,’ then if multiple rows with a last name of Smith
existed, the question would be—which one? How would the specific row with a social security
number of 123-45-6789 be located efficiently?



312

Microsoft SQL Server 2008 Internals

For a clustering key to be used effectively, all nonclustered index entries must refer to exactly
one row. Because that pointer is the clustering key in SQL Server, then the clustering key
must be unique. If you build a clustered index without specifying the UNIQUE keyword, SQL
Server guarantees uniqueness internally by adding a hidden uniquifier column to the rows
when necessary.

Note In SQL Server Books Online, the word uniquifier is written as uniqueifier; however, the
internal tools—such as DBCC PAGE—spell it as we've spelled it here.

This uniquifier is a 4-byte integer value added to the data row when the row's clustering key is
not unique. Once added, it becomes part of the clustering key, meaning that it is duplicated
in every nonclustered index. You can see whether or not a specific row has this extra value
when you review the actual structure of index rows, as we will see later in this chapter.

Second, if a clustering key is used to look up the corresponding data rows from a nonclustered
index into the clustered index (the data) then the clustering key is the most overly duplicated
data in a table; all the columns that make up the clustering key are included in every
nonclustered index in addition to being in the actual data row. As a result, the width of the
clustering key is important. Consider a clustered index with a 64-byte clustering key on a table
with 12 nonclustered indexes and 1 million rows. Without counting internal and structural
overhead, the overhead required just to store the clustering key (to support the lookup) in
every nonclustered index is 732 MB compared to only 92 MB if the clustering key were only

8 bytes and only 46 MB if the clustering key were only 4 bytes. Although this is just a rough
estimate, it shows that you waste a lot of space (and potentially buffer pool memory) if you
have an overly wide clustering key. However, it's not just about space alone; this also translates
into performance and efficiency of your nonclustered indexes. And, in general, you don't want
your nonclustered indexes to be unnecessarily wide.

Third, and because the clustering key is the most redundant data within your entire table, you
should be sure to choose a clustering key that is not volatile. If a clustering key changes, then

it can have multiple negative effects. First, it can cause record relocation within the clustered
index (which can cause page splits and fragmentation, which we discuss in more detail later

in this chapter). Second, it causes every nonclustered index to be modified (so that the value

of the clustering key is correct for the relevant nonclustered index rows). This wastes time and
space, causes fragmentation which then requires maintenance, and adds unnecessary overhead
to every modification of the column(s) that make up the clustering key.

These three attributes—unique, narrow, and static—also (but not always) apply to a well-chosen
primary key, and because you can have only one primary key (and only one clustering key), SQL
Server uses a unique clustered index to enforce a primary key constraint (when no index type is
defined in the primary key definition). However, this is not always known by the table’s creator.
And, if the primary key doesn't adhere to these criteria (for example, when the primary key has
been chosen from the data’s natural key, which, for example, is a wide, 100-byte combination

of seven columns that is unique only when combined), then using a clustered index to enforce



Chapter 6 Indexes: Internals and Management 313

uniqueness and duplicating the entire 100-byte combination of columns in every nonclustered
index can have very negative side effects. So, for some unsuspecting database developers, a very
wide clustering key may have been created for them because of these defaults. The good news is
that you can define the primary key to be nonclustered and easily create a clustered index on a
different column (or set of columns); however, you have to know when—and how—to do this.

Finally, a table’s clustering key should also be chosen so as to minimize fragmentation for
inserts (fragmentation is discussed in more detail later in this chapter). Although only the
logical order of a clustered index is maintained after it is created, the maintenance of this
structure does have overhead. If rows consistently need to enter the table at random entry
points (for example, inserts into a table ordered by last name), then that table’s logical order
is slightly more expensive to maintain than a table that's always adding rows to the end of
the table (for example, inserts into a table ordered by order number, which is—or should
be—an ever-increasing identity column).

More details will be available as we review the internals of indexes later in the chapter, but
to summarize our discussion thus far, the clustering key should be chosen not only based
on table usage (and, it's really hard to say “always” or "never” with regard to the clustering
key) but also based on the internal dependencies that SQL Server has on the clustering
key. For the latter, the clustering key should be unique, narrow, and static—and preferably,
ever-increasing.

Examples of good clustering keys are the following:

B Asingle column key defined with an ever-increasing identity column (for example, a
4-byte int or an 8-byte bigint).

B A composite key defined with an ever-increasing date column (first), followed by a
second column that uniquely identifies the rows—Ilike an identity column. This can be
very useful for date-based partitioned tables and tables where the data is inserted in
increasing date-based order as it offers an additional benefit for range queries on date.
Examples of this include a 12-byte composite key comprised of SalesDate (8 bytes) and
SalesNumber (4-byte int) or, in SQL Server 2008, a date column that does not include
time. However, date alone is not a good clustering key because it is not unique (and
requires a uniquifier).

B A GUID column can be used successfully as a clustering key because it's clearly unique,
relatively narrow (16 bytes wide), and likely to be static. However, as a clustering
key, a GUID is appropriate only when it follows an ever-increasing pattern. Some
GUIDs—depending on how there are generated—may cause a tremendous amount of
fragmentation. If the GUID is generated outside SQL Server (like in a client application)
or generated inside SQL Server using the NEWID() function, then fragmentation
reduces the effectiveness of this column as a clustering key. If possible, consider using
the NEWSEQUENTIALID() function instead (for ever-increasing GUIDs) or choosing a
different clustering key. If you still want to use a GUID as a primary key and it's not
ever-increasing, you can make it a nonclustered index instead of a clustered index.



314

Microsoft SQL Server 2008 Internals

In summary, there are no absolutes to choosing a clustering key; there are only general best
practices which work well for most tables. However, if a table has only one index—and no
nonclustered indexes—then the nonclustered index dependencies on the clustering key are
no longer relevant and a clustered index can take any form. However, most tables are likely
to have at least a few nonclustered indexes, and most tables perform better with a clustered
index. Because this is the case, a clustered index with a well-chosen clustering key is always
the first step to better performance. The second step is “finding the right balance” in your
nonclustered indexes by choosing appropriate—and usually a relatively minimal number
of—nonclustered indexes.

Nonclustered Indexes

As shown earlier, there are two primary components of all indexes—the leaf level and the
non-leaf level(s). For a clustered index, the leaf level is the data. For a nonclustered index,

the leaf level is a separate and additional structure that has a copy of some of the data.
Specifically, a nonclustered index depends on its definition to form the leaf level. The leaf
level of a nonclustered index consists of the index key (as per the definition of the index), any
included columns (using the INCLUDE feature added in SQL Server 2005), and the data row’s
bookmark value (either the clustering key if the table is clustered or the row’s physical RID

if the table is a heap). A nonclustered index has exactly the same number of rows as there are
rows in the table, unless a filter predicate is used when the index is defined. Filtered indexes
are new in SQL Server 2008 and are discussed in more detail later in this chapter.

In terms of how the nonclustered index is used, there are really two ways—either to help point
to the data (similar to an index in the back of a book, using bookmark lookups, as discussed
earlier) or to answer a query directly. When a nonclustered index has all the data as requested
by the query, this is known as query covering, and the index is called a covering index. When

a nonclustered index covers a query, the nonclustered index can be used to answer a query
directly and a bookmark lookup (which can be expensive for a nonselective query) can be
avoided. This can be one of the most effective ways to improve range query performance.

The bookmark lookup of a row occurs when a nonclustered index does not have all the data
required by the query but the query is driven by a predicate that the index can help to find.

If a table has a clustered index, the nonclustered index is used to drive the query to find the
corresponding data row by using the clustering key. If the table is a heap (in other words,

it has no clustered index), the lookup value is an 8-btye RID, which is an actual row locator

in the form FileID:PagelD:SlotNumber. This 8-byte row identifier breaks down into 2 bytes

for the FilelD, 4 bytes for the PagelD, and 2 bytes for the SlotNumber. We will see exactly how
these lookup values are used when we review data access later in this chapter.

The presence or absence of a nonclustered index doesn't affect how the data pages are
organized, so you're not restricted to having only one nonclustered index per table, as is
the case with clustered indexes. In SQL Server 2008, each table can include as many as 999
nonclustered indexes (up from 249 in SQL Server 2005), but you'll usually want to have far
fewer than that (with a few exceptions, such as filtered indexes).



Chapter 6 Indexes: Internals and Management 315

In summary, nonclustered indexes do not affect the base table; however, the base table’s
structure—either a heap or a table with a clustered index—affects the structure of your
nonclustered indexes. This is something to consider and understand if you want to minimize
wasted overhead and achieve the best performance.

Constraints and Indexes

As mentioned earlier, an unsuspecting database developer might have a clustered index
unintentionally due to having created a PRIMARY KEY constraint on their table. The idea for
using constraints comes from relational theory, where a table has entity identifiers defined
(to understand table relationships and help to join tables in a normalized schema). When
constraints are defined on a table in SQL Server, both PRIMARY KEY and UNIQUE KEY
constraints can enforce certain aspects of entity integrity within the database.

For a PRIMARY KEY constraint, SQL Server enforces two things: first, that all the columns
involved in the PRIMARY KEY do not allow NULL values, and second, that the PRIMARY KEY
value is unique within the table. If any of the columns allow NULL values, the PRIMARY KEY
constraint cannot be created. To enforce uniqueness, SQL Server creates a UNIQUE index
on the columns that make up the PRIMARY KEY constraint. The default index type, if not
specified, is a unique clustered index.

For a UNIQUE constraint, SQL Server allows the columns that make up the UNIQUE constraint
to allow NULLs, but it does not allow all columns to be NULL for more than one row.

To enforce uniqueness for the UNIQUE constraint, SQL Server creates a unique index on the
columns that make up the constraint. The default index type, if not specified, is a unique
nonclustered index.

When you declare a PRIMARY KEY or UNIQUE constraint, the underlying index structure that
is created is the same as if you had used the CREATE INDEX command directly. However,
there are some differences in terms of usage and features. For example, a constraint-based
index cannot have other features added (such as included columns or filters, features that
are discussed later in this chapter), but a UNIQUE index can have these features while still
enforcing uniqueness over the key definition of the index. And when referencing a UNIQUE
index—which does not support a constraint—you cannot reference indexes with filters.
However, an index that doesn't use filters or an index that uses included columns can be
referenced. These can be powerful options to use to minimize the total number of indexes
and yet still create a reference with a FOREIGN KEY constraint.

The names of the indexes that are built to support these constraints are the same as the
constraint names. In terms of internal storage and how these indexes work, there is no
difference between unique indexes created using the CREATE INDEX command and indexes
created to support constraints. The Query Optimizer makes decisions based on the presence
of the unique index rather than on whether the column was declared as a constraint or not.
In other words, how the index was created is irrelevant to the Query Optimizer.



316

Microsoft SQL Server 2008 Internals

Index Creation Options

In terms of creating indexes, the CREATE INDEX command is relatively straightforward:

CREATE [ UNIQUE ] [ CLUSTERED | NONCLUSTERED ] INDEX index_name
ON <object> ( column [ ASC | DESC ] [ ,...n 1)
[ INCLUDE ( column_name [ ,...n ] ) ]
[ WHERE <filter_predicate> ]

The required parts of an index are the index name, the key definition, and the table on which
this index is defined. An index can have non-key columns included in the leaf level of the
index, using INCLUDE. An index can be defined over the entire rowset of the table—which is
the default—or, new in SQL Server 2008, can be limited to only the rows as defined by a filter,
using WHERE <filter_predicate>. We discuss both of these as we analyze the physical
structures of nonclustered indexes.

However, CREATE INDEX has some additional options available for specialized purposes. You
can add a WITH clause to the CREATE INDEX command:

[WITH

([FILLFACTOR = fillfactor]

[[,] [PAD_INDEX] = { ON | OFF }]

[[,] DROP_EXISTING = { ON | OFF }]

[[,] IGNORE_DUP_KEY = { ON | OFF }]

[[,] SORT_IN_TEMPDB = { ON | OFF }]

[[,] STATISTICS_NORECOMPUTE = { ON | OFF }]
[[,] ALLOW_ROW_LOCKS = { ON | OFF }]

[[,] ALLOW_PAGE_LOCKS = { ON | OFF }]

[[,] MAXDOP = max_degree_of_parallelism]
[[,] ONLINE = { ON | OFF }] )]

The FILLFACTOR, PAD_INDEX, DROP_EXISTING, SORT_IN_TEMPDB, and ONLINE index
creation options are predominantly defined and used for index maintenance. To use them
appropriately, you must better understand the physical structures of indexes as well as how
data modifications work. We cover these options in detail in the section entitled “Managing
Index Structures,” later in this chapter. The remaining options are described here.

IGNORE_DUP_KEY

You can ensure the uniqueness of an index key by defining it as UNIQUE or by defining a
PRIMARY KEY or UNIQUE constraint. If an UPDATE or INSERT statement would affect multiple
rows, or if even one row is found that would cause duplicates of keys defined as unique, the
entire statement is aborted and no rows are affected. Alternatively, when you create a UNIQUE
index, you can use the IGNORE_DUP_KEY option so that a duplicate key error on a multiple-row
INSERT won't cause the entire statement to be rolled back. The nonunique row is discarded,
and all other rows are inserted. IGNORE_DUP_KEY doesn't allow the uniqueness of the index to
be violated; instead, it makes a violation in a multiple-row data modification nonfatal to all the
nonviolating rows.



Chapter 6 Indexes: Internals and Management 317

STATISTICS_NORECOMPUTE

The STATISTICS_NORECOMPUTE option determines whether the statistics on the index should
be updated automatically. Every index maintains a histogram representing the distribution of
values for the leading column of the index. Among other things, the Query Optimizer uses these
statistics to determine the usefulness of a particular index when choosing a query plan. As data
is modified, the statistics get increasingly out of date, and this can lead to less-than-optimal
query plans if the statistics are not updated. In Chapter 3, “Databases and Database Files,” you
learned about the database option AUTO_UPDATE_STATISTICS, which enables all statistics in a
database to be updated automatically when needed. In general, the database option should be
enabled. However, if desired, a specific statistic or index can be set to not update automatically,
using the STATISTICS_NORECOMPUTE option. Adding this clause overrides an ON value for

the AUTO_UPDATE_STATISTICS database option. If the database option is set to OFF, you cannot
override that behavior for a particular index, and in that case, all statistics in the database must
be updated manually using UPDATE STATISTICS or sp_updatestats. To see if the statistics for a
given table are set to auto-update, as well as the last time they were updated, use sp_autostats
<table_name>.

MAXDOP

The option MAXDOP controls the maximum number of processors that can be used for index
creation. It can override the server configuration option max degree of parallelism for index
building. Allowing multiple processors to be used for index creation can greatly enhance the
performance of index build operations. As with other parallel operations, the Query Optimizer
determines at run time the actual number of processors to use, based on the current load

on the system. The MAXDOP value just sets a maximum. Multiple processors can be used for
index creation only when you run SQL Server Enterprise or SQL Server Developer editions.
And, when used, each processor builds an equal-sized chunk of the index in parallel. When
this occurs, the tree might not be perfectly balanced, and the math that's used to determine
the theoretical minimum number of required pages differs from the actual number, as each
parallel thread builds a separate tree. Once each of the threads have completed, the trees are
essentially concatenated together. SQL Server can use any extra page space that's reserved
during this parallel process for later modifications.

Index Placement
A final clause in the CREATE INDEX command allows you to specify the placement of the index:

[ ON { partition_scheme_name ( column_name )
| filegroup_name } ]

You can specify that an index should either be placed on a particular filegroup or partitioned
according to a predefined partition scheme. By default, if no filegroup or partition scheme is

specified, the index is placed on the same filegroup as the base table. We discussed filegroups
in Chapter 3 and you will learn about table and index partitioning in Chapter 7, “Special Storage.”



318

Microsoft SQL Server 2008 Internals

Constraints and Indexes

The issue of whether a unique index should be defined using a UNIQUE or PRIMARY KEY
constraint or through the CREATE INDEX command is a common concern and a frequent
source of confusion. As mentioned earlier, there is no internal difference in structure, or in the
Query Optimizer's choices, for a unique clustered index built using the CREATE INDEX command
or one that was built to support a PRIMARY KEY constraint. The difference is really a design
issue, so it is beyond the scope of this book, which deals with SQL Server internals. However,
one simple distinction can be made; a constraint is a logical construct and an index is a physical
one. When you build an index, you are asking SQL Server to create a physical structure that
takes up storage space and must be maintained during data modifications. When you define

a constraint, you are defining a property of your data and expecting SQL Server to enforce
that property, but you are not telling SQL Server how to enforce it. In the current version, SQL
Server enforces PRIMARY KEY and UNIQUE constraints by creating unique indexes, but there is
no requirement that it do so. In a future release, SQL Server could enforce this through another
mechanism, although it is unlikely to do so because of backward compatibility issues.

Physical Index Structures

Index pages have almost the same structure as data pages except that they store index
records instead of data records. As with all other types of pages in SQL Server, index pages
use a fixed size of 8 KB, or 8,192 bytes. Index pages also have a 96-byte header, and there

is an offset array at the end of the page with 2 bytes for each row to indicate the offset of
that row on the page. A nonclustered index can have all three allocation units associated
with it: IN_ROW_DATA, ROW_OVERFLOW_DATA, and LOB_DATA. Each index has a row in the
sys.indexes catalog view, with an index_id value of either 1 (for a clustered index) or a number
between 2 and 250 or between 256 and 1005 (indicating a nonclustered index). Remember
that SQL Server has reserved values between 251 and 255.

Index Row Formats

Index rows are structured just like data rows, with two main exceptions. First, an index row
cannot have SPARSE columns. If a SPARSE column is used in an index definition (and there
are some limitations as to where a SPARSE column can be used in indexes, such as that it
cannot be used in a PRIMARY KEY), then the column is created in the index row as if it had
not been defined as SPARSE. Second, if a clustered index is created and the index is not
defined as unique, then the duplicate key values include a uniquifier.

There are a couple of other differences in structure between index and data rows. An index
row does not use the TagB or Fsize row header values. In place of the Fsize field, which
indicates where the fixed-length portion of a row ends, the page header pminlen value is
used to decode an index row. The pminlen value indicates the offset at which the fixed-length
data portion of the row ends. If the index row has no variable-length or nullable columns,



Chapter 6 Indexes: Internals and Management 319

that is the end of the row. Only if the index row has nullable columns are the field called
Ncol and the null bitmap both present. The Ncol field contains a value indicating how many
columns are in the index row; this value is needed to determine how many bits are in the
null bitmap. Data rows have an Ncol field and null bitmap whether or not any columns allow
NULL, but index rows have only a null bitmap and an Ncol field if NULLs are allowed in any
of the columns of the index. Table 6-2 shows the general format of an index row.

TABLE 6-2 Information Stored in an Index Row

Information Mnemonic Size

Status Bits A TagA 1 byte
Some of the relevant bits are:
B Bits 1 through 3:

Taken as a 3-bit value.

0 indicates a primary record.

3 indicates an index record.

5 indicates a ghost index record.
(Ghost records are discussed later in
this chapter.)

B Bit4
Indicates that a NULL bitmap exists.
®  Bit5:

Indicates that variable-length columns
exist in the row.

Fixed-length data Fdata pminlen—1
Number of columns Ncol 2 bytes
NULL bitmap (1 bit for each column Nullbits Ceiling

in the table; a 1 indicates that the (Ncol / 8)

corresponding column is NULL)

Number of variable-length columns; VarCount 2 bytes
only present if > 0

Variable column offset array; only VarOffset 2 * VarCount
present if VarCount > 0

Variable-length data, if any VarData

The specific column data stored in an index row depends on the type of index and the level
in which that index row is located.

Clustered Index Structures

The leaf level of a clustered index is the data itself. When a clustered index is created, the
data is physically copied and ordered based on the clustering key (as discussed earlier in this
chapter). There is no difference between the row structure of a clustered index and the row
structure of a heap, except in one case: when the clustering key has not been defined with
the UNIQUE attribute. In this case, SQL Server must guarantee uniqueness internally, and to
do this, each duplicate row requires an additional uniquifier value.



320

Microsoft SQL Server 2008 Internals

Clustered Index Rows with a Uniquifier

As mentioned earlier, if your clustered index was not created with the UNIQUE property, SQL
Server adds a 4-byte integer to make each nonunique key value unique. Because the clustering
key is used to identify the base rows being referenced by nonclustered indexes (the bookmark
lookup), there needs to be a unique way to refer to each row in a clustered index.

SQL Server adds the uniquifier only when necessary—that is, when duplicate keys are added
to the table. As an example, we create a small table with all fixed-length columns and then
add a clustered, nonunique index to the table:

USE AdventureWorks2008;
GO

CREATE TABLE Clustered_Dupes
(Co11l CHAR(5) NOT NULL,
Col12 INT NOT NULL,
Co13 CHAR(3) NULL,
Co14 CHAR(6) NOT NULL);
GO

CREATE CLUSTERED INDEX C1_dupes_coll ON Clustered_Dupes(coll);

If you look at the row in the sysindexes compatibility view for this table, you notice something
unexpected:

SELECT indid, keycnt, name FROM sysindexes
WHERE id = OBJECT_ID ('Clustered_Dupes');

RESULT:
indid keycnt name

1 2 Cl_dupes_coll

The column called keycnt, which indicates the number of keys an index has, has a value

of 2. (Note that this column is available only in the compatibility view sysindexes, not in the
catalog view sys.indexes.) If this index had the UNIQUE property, the keycnt value would

be 1. Because creating a clustered index on a nonunique key is not recommended—it
wastes time and space with the process of making rows unique—we’ll skip a full analysis

of this structure. However, there is a script named ExaminingtheClusteredindexUniquifier.

sql included with this chapter’s resource materials in the companion content (which can be
found at http.//www.SQLServerinternals.com/companion). The script creates and analyzes the
clustered index row structure when the clustering key is not defined as UNIQUE.

The Non-Leaf Level(s) of a Clustered Index

To navigate to the leaf level of an index, a B-tree is created, which includes the data rows
in the leaf level. Each row in the non-leaf levels has one entry for every page of the level
below (later in this chapter, we look more into what this specifically looks like with each index



Chapter 6 Indexes: Internals and Management 321

type) and this entry includes an index key value and a 6-byte pointer to reference the page.

In this case, the page pointer is in the format of 2 bytes for the FileID and 4 bytes for the
PageNumberInThefFile. SQL Server does not need an 8-byte RID because the slot number does
not need to be stored. The index key part of the entry always indicates the minimum value
that could be on the pointed-to page. Note that they do not necessarily indicate the actual
lowest value, just the lowest possible value for the page (as when the row with the lowest key
value on a page is deleted, the index row in the level above is not updated).

Analyzing a Clustered Index Structure

To better illustrate how the clustered index is stored as well as traversed, we review specific
structures created in a sample database called Indexinternals. For this example, we review an
Employee table created with a clustered index on the PRIMARY KEY.

Note The Indexinternals sample database is available for download. A few tables exist in this
database already. Review the EmployeeCaseStudy-TableDefinition.sql script to see the table
definitions, and then move to the EmployeeCaseStudy-AnalyzeStructures.sql script to analyze the
structures. A backup of this database and a zip file containing the solution can be found in the
companion content.

Here is the table definition for the Employee table, as it already exists within the Indexinternals
database:

CREATE TABLE Employee

(EmployeeID INT NOT NULL IDENTITY,

LastName NCHAR(30) NOT NULL,

FirstName NCHAR(29) NOT NULL,

MiddleInitial  NCHAR(1) NULL,

SSN CHAR(11) NOT NULL,

OtherColumns CHAR(258) NOT NULL DEFAULT 'Junk');
GO

The Employee table was created using a few deviations from normal best practices to make
the structures somewhat predictable (for example, easier math and easier visualization).

First, all columns have fixed widths even if when data values vary. Not all columns should

be variable just because the data values vary, but when your column is over 20 characters

and your data varies (and is not overly volatile), then it's best to consider variable-width
character columns rather than fixed-width columns, to save space and for better INSERT
performance. (UPDATE performance may be compromised, especially when updates make the
variable-width column larger.) We discuss this in more detail in the section on fragmentation
later in this chapter. In these specific tables, fixed-width columns are used to ensure a
predictable row size and to help in better visualizing the data structures.

In this case, and including overhead, the data rows of the Employee table are exactly
400 bytes per row (using a filler column called OtherColumns, which adds 258 bytes of
junk at the end of the data row). A row size of 400 bytes means that we can fit 20 rows per



322

Microsoft SQL Server 2008 Internals

data page (8,096 bytes per page/400 bytes per row = 20.24, which translates into 20 rows
per page because the IN_ROW portion of the data row cannot span pages). To calculate
how large our tables are, we need to know how many rows these tables contain. And, in
the Indexinternals database, this table has already been set up with exactly 80,000 rows. At
20 rows per page, this table requires 4,000 data pages to store its 80,000 rows.

In the current table definition, this table is a heap. For the Employee table, we define the
clustered index by using a PRIMARY KEY constraint:

-- Add the CLUSTERED PRIMARY KEY for Employee
ALTER TABLE Employee
ADD CONSTRAINT EmpTloyeePK
PRIMARY KEY CLUSTERED (EmployeelD);
GO

To investigate our Employee table further, we use sys.dm_db_index_physical_stats to
determine the number of pages within the table, as well as the number of levels within our
indexes. We can confirm the index structures using the DMV to see the number of levels as
well as the number of pages within each level:

SELECT 1index_depth AS D
, index_level AS L
, record_count AS 'Count'
, page_count AS PgCnt
, avg_page_space_used_in_percent AS 'PgPercentFull'
, min_record_size_in_bytes AS 'MinLen'
, max_record_size_in_bytes AS 'MaxLen'
, avg_record_size_in_bytes AS 'AvglLen'
FROM sys.dm_db_index_physical_stats
(DB_ID ('IndexInternals')
, OBJECT_ID ('IndexInternals.dbo.Employee')
, 1, NULL, 'DETAILED'");
GO

RESULT:
D L  Count PgCnt PgPercentFull MinLen MaxLen AvglLen

3 0 80000 4000 99.3081294786261 400 400 400
3 1 4000 7 91.7540400296516 11 11 11
3 2 7 1 1.09957993575488 11 11 11

The clustered index for this table has a leaf level of 4,000 pages, which is as expected, given
that we have 80,000 rows at 20 rows per page. From the MinLen (min_record_size_in_bytes)
column, we can see our row length in the leaf level is 400 bytes; however, the row length of
the non-leaf levels is only 11 bytes. This structure is easily broken down as 4 bytes for the
integer column (EmployeelD) on which the clustered index is defined, 6 bytes for our page
pointer, and 1 byte for row overhead. Only 1 byte is needed for overhead because our index
row contains only fixed-width columns and none of those columns allow NULLs (therefore,
we do not need a NULL bitmap in the index pages). In addition, you can see that there are
4,000 rows in the first level above the leaf level because level 1 has a Count (record_count) of
4,000. In fact, in level 1 there are only seven pages [shown as PgCnt (page_count)], and in



Chapter 6 Indexes: Internals and Management 323

level 2, you can see that Count shows as 7. This refers back to earlier in this chapter, when we
explained that each level up the tree contains a pointer for every page of the level below it.
If a level has 4,000 pages, then the next level up has 4,000 rows. You can see a more detailed
version of this structure in Figure 6-2.

Root = 1 page L.
(Level 2) 12441...
r==-24881.. L - —n Non-leaf levels
1 1
1 1
. 74641.. . .2 levels (_root +1
1 I 1 intermediate level)
1 1
1 1 Total overhead in
Intermediate level <> < terms of disk space
= 7 pages 1. 74641..
(Level 1) 21.. = 8 pages (or < 1%)
. -———=-141. v o . |79941.. ] - -
X X 79961.. X X
1 1 1 1
. . 12421... 79981... . .
1 1 1 1 _J 1 1
1 1 1 1 1 1
¥ gt ¥ gt y > A + <& ¥ gt ¥
1. 21.. 41.. 79941... 79961... 79981...
2. 22... 42... 79942... 79962... 79982...
3. 23.. 43.. e e e 79943... 79963... 79983...
20... 40... 60... 7 79960... 7 79980... 80000...

Leaf level = 4,000 pages (Level 0)

FIGURE 6-2 Page details for multiple index levels

To understand both traversal as well as linkage further, you can use the DBCC IND command to
see which pages have which data, as well as which pages precede and follow various pages in all
levels of the index. In this case, we insert the results of DBCC IND into our sp_tablepages table in
the master database so that we can access (and order) only specific columns of information:

TRUNCATE TABLE sp_tablepages;
INSERT sp_tablepages

EXEC ('DBCC IND (IndexInternals, Employee, 1)');
GO

SELECT IndexLevel
, PageFID
, PagePID
, PrevPageFID
, PrevPagePID
, NextPageFID
, NextPagePID
FROM sp_tablepages
ORDER BY IndexLevel DESC, PrevPagePID;
GO



324

Microsoft SQL Server 2008 Internals

RESULT (abbreviated):

IndexLevel PageFID PagePID PrevPageFID PrevPagePID NextPageFID NextPagePID
2 1 234 0 0 0 0

1 1 232 0 0 1 233
1 1 233 1 232 1 235
1 1 235 1 233 1 236
1 1 236 1 235 1 237
1 1 237 1 236 1 238
1 1 238 1 237 1 239
1 1 239 1 238 0 0

0 1 168 0 0 1 169
0 1 169 1 168 1 170
<snip>

0 1 4230 1 4229 1 4231
0 1 4231 1 4230 0 0
NULL 1 157 0 0 0 0

Because this table was created when the database was empty and because the clustered
index was built after loading the data into a staging area (this is solely a separate location
used for temporarily storing data—in this case, a different filegroup), this table's clustered
index was able to use a completely contiguous range of pages within file 1. However, they
are not completely contiguous from the root down because indexes are built from the leaf
level up to the root as the rows are ordered for each of the levels. The most important thing
to understand, however, is navigation. Imagine the following query:

SELECT e.*
FROM dbo.Employee AS e
WHERE e.EmployeelD = 27682;

To find all the data for a row with an EmployeelD of 27682 (remember, this is the clustering
key value), SQL Server starts at the root page and navigates down to the leaf level. Based on
the output shown previously, the root page is page 234 in FileID 1 (you can see this because
the root page is the only page at the highest index level (IndexLevel = 2). To analyze the root
page, we use DBCC PAGE with output style 3—and we make sure that the query window

in SQL Server Management Studio is set to return grid results. The reason for this is that
when using output style 3, the tabular set of a non-leaf page is returned to the grid results,
separating the rows from the page header, which is returned to the messages window:

DBCC PAGE (IndexInternals, 1, 234, 3);

GO

RESULT:

FileId PageId Row Level ChildFileId ChildPageId EmployeeID (key) KeyHashValue
1 234 0 2 1 232 NULL NULL

1 234 1 2 1 233 12441 NULL

1 234 2 2 1 235 24881 NULL

1 234 3 2 1 236 37321 NULL



Chapter 6 Indexes: Internals and Management 325

1 234 4 2 1 237 49761 NULL
1 234 5 2 1 238 62201 NULL
1 234 6 2 1 239 74641 NULL

Reviewing the output from DBCC PAGE for the root page, we can see the EmployeelD values
at the start of each “child page” in the EmployeelD (key) column. And because these are
based on ordered rows in the level below, we solely need to find the appropriate range.

For the third page, you can see a low value of 24881, and for the fourth page, a low value

of 37321. So if the value 27682 exists, it would have to be in the index area defined by this
particular range. For navigational purposes, we must navigate down the tree using page
(ChildPageld) 235 in FilelD (ChildFileld) 1. To see this page’s contents, we can again use DBCC
PAGE with output style 3:

DBCC PAGE (IndexInternals, 1, 235, 3);
GO

RESULT (abbreviated):

FileId PageId Row Level ChildFileId ChildPageId EmployeeID (key) KeyHashValue
1 235 0 1 1 1476 24881 NULL
1 235 139 1 1 1615 27661 NULL
1 235 140 1 1 1616 27681 NULL
1 235 141 1 1 1617 27701 NULL
1 235 621 1 1 2097 3730 NULL

Finally, if a row with an EmployeelD of 27682 exists, it must be on page 1,616 of FilelD 1. Let's
see if itis:

DBCC TRACEON(3604) ;

GO

DBCC PAGE (IndexInternals, 1, 1616, 3);
GO

STot 1 Column 1 Offset 0x4 Length 4 Length (physical) 4
EmployeeID = 27682

STot 1 Column 2 Offset 0x8 Length 60 Length (physical) 60
LastName = Arbariol

STot 1 Column 3 Offset 0x44 Length 58 Length (physical) 58
FirstName = Burt

STot 1 Column 4 Offset Ox7e Length 2 Length (physical) 2
MiddleInitial = R

STot 1 Column 5 Offset 0x80 Length 11 Length (physical) 11
SSN = 373-00-8368

STot 1 Column 6 Offset O0x8b Length 258 Length (physical) 258
OtherColumns = Junk



326

Microsoft SQL Server 2008 Internals

Note DBCC PAGE returns all the details for the page; that is, the header and all data rows. In this
condensed output, we see only the converted row values from output style 3 for our EmployeelD
value of interest (27682). The header and all other rows have been removed.

By having traversed the structure for a row, we have reviewed two things—the index
internals and the process by which a single data row can be found using a clustering key
value. This method is used when performing a bookmark lookup from a nonclustered index
to retrieve the data when the table is clustered. To understand fully how nonclustered
indexes are used, we also need to know how a nonclustered index is stored and how it is
traversed to get to the data.

Nonclustered Index Structures

The contents of the leaf level of a nonclustered index depend on many factors: the definition
of the nonclustered index key, the base table's structure (either a heap or a clustered index),
the existence of any nonclustered index features such as included columns or filtered indexes,
and finally, whether or not the nonclustered index is defined as unique.

To best understand nonclustered indexes, we continue using our IndexInternals database.
This time, however, we review nonclustered indexes on two tables: the Employee

table, which is clustered by the PRIMARY KEY constraint on the EmployeelD column,

and the EmployeeHeap table, which does not have a clustered index. The EmployeeHeap
table is an exact copy of the Employee table; however, it uses a nonclustered PRIMARY KEY
constraint on the EmployeelD column instead of a clustered one. This is the first structure
we review.

Nonclustered Index Rows on a Heap

The EmployeeHeap table has exactly the same definition and data as the Employee table used
in the prior example. Here is the EmployeeHeap table definition:

CREATE TABLE EmployeeHeap

(EmployeeID INT NOT NULL IDENTITY,

LastName NCHAR(30) NOT NULL,

FirstName NCHAR(29) NOT NULL,

MiddTeInitial NCHAR (1) NULL,

SSN CHAR(11) NOT NULL,

OtherColumns CHAR(258) NOT NULL DEFAULT 'Junk');
GO

As with the Employee table, the data rows of the EmployeeHeap table are exactly 400 bytes
per row and with 80,000 rows, this table also requires 4,000 data pages. To see the physical
size of the data, you can use the sys.dm_db_index_physical_stats DMV discussed at the
beginning of this chapter. We can confirm that this table is exactly the same (in terms of data)



Chapter 6 Indexes: Internals and Management 327

as the leaf level of the clustered index by using the DMV to see the number of pages, as well
as the row length for the index with an index_id of 0 (the third parameter to the DMV):

SELECT index_depth AS D
, index_level AS L
, record_count AS 'Count'
, page_count AS PgCnt
, avg_page_space_used_in_percent AS 'PgPercentFull'
, min_record_size_in_bytes AS 'MinLen'
, max_record_size_in_bytes AS 'MaxLen'
, avg_record_size_in_bytes AS 'AvglLen'
FROM sys.dm_db_index_physical_stats
(DB_ID ('IndexInternals')
, OBJECT_ID ('IndexInternals.dbo.EmployeeHeap')
, 0, NULL, 'DETAILED'");
GO

RESULT:
D L  Count PgCnt PgPercentFull MinLen MaxLen AvglLen

1 0 80000 4000 99.3081294786261 400 400 400

For the EmployeeHeap table, all the constraints are going to be created using nonclustered
indexes. The following commands create the PRIMARY KEY as a nonclustered index on the
EmployeelD column and a UNIQUE KEY as a nonclustered index on the SSN column:

-- Add a NONCLUSTERED PRIMARY KEY for EmployeeHeap
ALTER TABLE EmpTloyeeHeap
ADD CONSTRAINT EmployeeHeapPK
PRIMARY KEY NONCLUSTERED (EmployeelID);
GO

-- Add the NONCLUSTERED UNIQUE KEY on SSN for EmployeeHeap
ALTER TABLE EmpTloyeeHeap
ADD CONSTRAINT SSNHeapUK
UNIQUE NONCLUSTERED (SSN);
GO

To determine what's in the leaf level of a nonclustered index built on a heap, we first review
the structure of the nonclustered index as shown by the DMV. For nonclustered indexes, we
supply the specific index ID for parameter 3. To see the index ID assigned, we can use a query
against sys.indexes:

SELECT index_depth AS D
, index_level AS L
, record_count AS 'Count'
, page_count AS PgCnt
, avg_page_space_used_in_percent AS 'PgPercentFull'
, min_record_size_in_bytes AS 'MinLen'
, max_record_size_in_bytes AS 'MaxLen
, avg_record_size_in_bytes AS 'AvglLen
FROM sys.dm_db_index_physical_stats
(DB_ID ('IndexInternals')



328 Microsoft SQL Server 2008 Internals

, OBJECT_ID ('IndexInternals.dbo.EmployeeHeap')
, 2, NULL, 'DETAILED');

GO

RESULT:

D L Count PgCnt PgPercentFull MinLen MaxLen AvglLen
2 0 80000 149 99.477291821102 13 13 13

2 1 149 1 23.9065974796145 11 11 11

In this case, the leaf level of the nonclustered index (level 0) shows a record count of 80,000
(based on the fact that there are 80,000 rows in the table) and a minimum, maximum, and
average length of 13 (these are fixed-width index rows). This breaks down very clearly and
easily—the nonclustered index is defined on the EmployeelD column (an integer of 4 bytes);
the table is a heap so the data row’s bookmark (the physical RID) is 8 bytes; and because
this is a fixed-width row with no columns that allow NULL values, the row overhead is 1 byte
(4 + 8 + 1 = 13 bytes). To see the data stored more specifically, we can use DBCC IND to
review the leaf-level pages of this index:

TRUNCATE TABLE sp_tablepages;
INSERT sp_tablepages

EXEC ('DBCC IND (IndexInternals, EmployeeHeap, 2)');
GO

SELECT IndexLevel
, PageFID
, PagePID
, PrevPageFID
, PrevPagePID
, NextPageFID
, NextPagePID
FROM sp_tablepages
ORDER BY IndexLevel DESC, PrevPagePID;
GO

RESULT (abbreviated):

IndexLevel PageFID PagePID PrevPageFID PrevPagePID NextPageFID NextPagePID
1 1 8608 0 0 0 0

0 1 8544 0 0 1 8545

0 1 8545 1 8544 1 8546

0 1 8755 1 8754 1 8756

0 1 8756 1 8755 0 0

NULL 1 254 0 0 0 0

The root page is on page 8608 of FileID 1. Leaf-level pages are labeled with an IndexLevel
of 0, so the first page of the leaf level is on page 8544 of FilelD 1. To review the data on this
page, we can use DBCC PAGE with output style 3. (The output for this leaf-level index page
shows only the first 8 rows and the last 3 rows, out of a total of 539 rows.)



Chapter 6

DBCC PAGE (IndexInternals, 1, 8544, 3);

GO

RESULT (abbreviated):

FileId PageId Row Level EmployeeID (key) HEAP RID KeyHashValue

1 8544 0 0 1 0xF500000001000000 (010086470766)
1 8544 1 0 2 0xF500000001000100 (020068e8b274)
1 8544 2 0 3 0xF500000001000200 (03000d8f0ecc)
1 8544 3 0 4 0xF500000001000300 (0400b4b7d951)
1 8544 4 0 5 0xF500000001000400 (0500d1d065e9)
1 8544 5 0 6 0xF500000001000500 (06003f7fd0fb)
1 8544 6 0 7 0xF500000001000600 (07005a186c43)
1 8544 7 0 8 0xF500000001000700 (08000c080f1b)
1 8544 536 0 537 0xD211000001001000 (190098ec2ef0)
1 8544 537 0 538 0xD211000001001100 (1a0076439be2)
1 8544 538 0 539 0xD211000001001200 (1b001324275a)

Indexes: Internals and Management

From the output of DBCC PAGE, you can see that the leaf-level page of a nonclustered index
on a heap has the index key column value (in this case, the EmployeelD), plus the actual data
row’s RID. The final value displayed is called KeyHashValue, which is not actually stored in
the index row. It is a fixed-length string derived using a hash formula on all the key columns.
This value is used to represent the row in certain other tools. One such tool that is discussed
in Chapter 10 is the sys.dm_tran_locks DMV that shows the locks that are being held. When
a lock is held on an index row, the list of locks displays KeyHashValue to indicate which key
(or index row) is locked.

The RID can be converted to the FilelD:PagelD:SlotNumber format by using the following
function:

CREATE FUNCTION convert_RIDs (@rid BINARY(8))
RETURNS VARCHAR(30)
AS
BEGIN
RETURN (
CONVERT (VARCHAR(5),
CONVERT(INT, SUBSTRING(@rid, 6, 1)
+ SUBSTRING(@rid, 5, 1)) )
+ "+
CONVERT (VARCHAR(10),
CONVERT(INT, SUBSTRING(@rid, 4, 1)
+ SUBSTRING(@rid, 3, 1)
+ SUBSTRING(@rid, 2, 1)
+ SUBSTRING(@rid, 1, 1)) )
+ "'+
CONVERT (VARCHAR(5),
CONVERT(INT, SUBSTRING(@rid, 8, 1)
+ SUBSTRING(@rid, 7, 1)) ) )
END;
GO



330

Microsoft SQL Server 2008 Internals

With this function, you can find out the specific page number on which a row resides. For
example, a row with an EmployeelD of 6 has a hexadecimal RID of 0xF500000001000500:

SELECT dbo.convert_RIDs (0xF500000001000500);
GO

RESULT:
1:245:5

Using the function, this converts to 1:245:5, which is comprised of FilelD 1, PagelD 245, and
SlotNumber 5. To view this specific page, we can use DBCC PAGE and then review the data on
slot 5 (to see if this is in fact the row with EmployeelD of 6):

DBCC PAGE (IndexInternals, 1, 245, 3);
GO

STot 5 Column 1 Offset 0x4 Length 4 Length (physical) 4
EmployeeID = 6

STot 5 Column 2 Offset 0x8 Length 60 Length (physical) 60
LastName = Anderson

STot 5 Column 3 Offset 0x44 Length 58 Length (physical) 58
FirstName = Dreaxjktgvnhye

STot 5 Column 4 Offset O0x7e Length 2 Length (physical) 2
MiddleInitial =

STot 5 Column 5 Offset 0x80 Length 11 Length (physical) 11
SSN = 250-07-9751

STot 5 Column 6 Offset 0x8b Length 258 Length (physical) 258
OtherColumns = Junk

In this case, you have seen the structure of a nonclustered index row in the leaf level of the
nonclustered index, as well as how a bookmark lookup is performed using the heap’s RID
from the nonclustered index to the heap.

In terms of navigation, imagine the following query:

SELECT e.*
FROM dbo.EmployeeHeap AS e
WHERE e.EmployeelID = 27682;

Because this table is a heap, only nonclustered indexes can be used to navigate this data
efficiently. And, in this case, we have a nonclustered index on EmployeelD. The first step is to go to
the root page (as shown in the DBCC IND output earlier, the root page is page 8608 of FilelD 1):

DBCC PAGE (IndexInternals, 1, 8608, 3);
GO



Chapter 6 Indexes: Internals and Management 331

RESULT:

FileId PageId Row Level ChildFileId ChildPageId EmployeeID (key) KeyHashValue
1 8608 0 1 1 8544 NULL NULL
1 8608 1 1 1 8545 540 NULL
1 8608 49 1 1 8593 26412 NULL
1 8608 50 1 1 8594 26951 NULL
1 8608 51 1 1 8595 27490 NULL
1 8608 52 1 1 8596 28029 NULL
1 8608 53 1 1 8597 28568 NULL
1 8608 54 1 1 8598 29107 NULL
1 8608 147 1 1 8755 79234 NULL
1 8608 148 1 1 8756 79773 NULL

Using the EmployeelD column in this output, you can see a low value of 27490 for the child
page 8595 in File/D 1, and then the next page has a low value of 28029. So if an EmployeelD
of 27682 exists, it would have to be in the index area defined by this particular range. Then
we must navigate down the tree using page (ChildPageld) 8595 in FilelD (ChildFileld) 1. To
see this page’s contents, we can again use DBCC PAGE with output style 3:

DBCC PAGE (IndexInternals, 1, 8595, 3);

GO

RESULT:

FileId PageId Row Level EmployeeID (key) HEAP RID KeyHashValue

1 8595 0 0 27490 0x1617000001000900 (6200aa3b160b)

1 8595 1 0 27491 0x1617000001000A00 (6300cf5caab3)

1 8595 191 0 27681 0x2017000001000000 (2100fcdaf887)

1 8595 192 0 27682 0x2017000001000100 (220012754d95)

1 8595 193 0 27683 0x2017000001000200 (23007712f12d)

1 8595 538 0 28028 0x3117000001000700  (7c00b4675dbf)

Note The output returns 539 rows. In this condensed output, we see the first two rows, the
last row, and then three rows surrounding the value of interest (27682).

From this point, you know how the navigation continues. SQL Server translates the data row’s
RID into the format of FileID:PagelD:SlotNumber and proceeds to look up the corresponding
data row in the heap.

Nonclustered Index Rows on a Clustered Table

For nonclustered indexes on a table that has a clustered index, the leaf-level row structure
is similar to that of a nonclustered index on a heap. The leaf level of the nonclustered index
contains the index key and the bookmark lookup value (the clustering key). However, if



332

Microsoft SQL Server 2008 Internals

the nonclustered index key has some columns in common with the clustering key, SQL
Server stores the common columns only once in the nonclustered index row. For example,
if the key of your clustered index is EmployeelD, and you have a nonclustered index on
(Lastname, EmployeelD, SSN), then the index rows do not store the value of EmployeelD
twice. In fact, the number of columns and the column order do not matter. For this example
(as it's not generally a good practice to have a wide clustering key), imagine a clustering

key that is defined on columns b, e, and h. The following nonclustered indexes would have
these column(s) added to make up the nonclustered index leaf-level rows (the columns—if
any—that are added to the leaf level of the nonclustered index, are italicized and bolded):

Nonclustered Index Key Nonclustered Leaf-Level Row

a a,beh
¢ he ¢ heb

e e, b h

h h e b

b, cd b,cdeh

To review the physical structures of a nonclustered index created on a table that is clustered,
we review the UNIQUE constraint on the SSN column of the Employee table:

-- Add the NONCLUSTERED UNIQUE KEY on SSN for Employee
ALTER TABLE EmpTloyee
ADD CONSTRAINT EmployeeSSNUK
UNIQUE NONCLUSTERED (SSN);
GO

To gather information on the data size and number of levels, we use the DMV. However,
before we can use the DMV, we need the specific index ID for parameter 3. To see the index
ID assigned to this nonclustered index, we can use a query against sys.indexes:

SELECT name AS IndexName, index_id
FROM sys.indexes
WHERE [object_id] = OBJECT_ID ('Employee');

GO

RESULT:

IndexName index_id
EmpToyeePK 1

EmpTloyeeSSNUK 2

SELECT 1index_depth AS D
, index_Tevel AS L
, record_count AS 'Count'
, page_count AS PgCnt
, avg_page_space_used_in_percent AS 'PgPercentFull'
, min_record_size_in_bytes AS 'MinLen'



Chapter 6

, max_record_size_in_bytes AS 'MaxLen'
, avg_record_size_in_bytes AS 'AvglLen'
FROM sys.dm_db_index_physical_stats
(DB_ID ('IndexInternals')
, OBJECT_ID ('IndexInternals.dbo.Employee')

Indexes: Internals and Management

333

, 2, NULL, 'DETAILED');
GO
RESULT:
D L Count PgCnt  PgPercentFull MinLen  MaxLen AvglLen
2 0 80000 179 99.3661106992834 16 16 16
2 1 179 1 44.2055843834939 18 18 18

In this case, the leaf level of the nonclustered index (level 0) shows a record count of 80,000
(there are 80,000 rows in the table) and a minimum, maximum, and average length of 16
(these are fixed-width index rows). This breaks down very clearly and easily—the nonclustered
index is defined on the SSN column (a fixed-width character column of 11 bytes), the table
has a clustering key of EmployeelD so the data row’s bookmark (the clustering key) is 4 bytes,
and because this row is a fixed-width row with no columns that allow NULL values, the row
overhead is 1 byte (11 + 4 + 1 = 16 bytes). To see the data stored more specifically, we can

use DBCC IND to review the leaf-level pages of this index:

TRUNCATE TABLE sp_tablepages;
INSERT sp_tablepages

EXEC ('DBCC IND (IndexInternals, Employee, 2)');
GO

SELECT IndexLevel
, PageFID
, PagePID
, PrevPageFID
, PrevPagePID
, NextPageFID
, NextPagePID
FROM sp_tablepages
ORDER BY IndexLevel DESC, PrevPagePID;
GO

RESULT (abbreviated):

IndexLevel PageFID PagePID PrevPageFID PrevPagePID NextPageFID
1 1 4328 0 0 0
0 1 4264 0 0 1
0 1 4265 1 4264 1
0 1 4505 1 4504 1
0 1 4506 1 4505 0
NULL 1 158 0 0 0

NextPagePID

4265
4266

4506



334

Microsoft SQL Server 2008 Internals

The root page is on page 4328 of FilelD 1. Leaf-level pages are labeled with an IndexLevel
of 0, so the first page of the leaf level is on page 4264 of FilelD 1. To review the data on this
page, we can use DBCC PAGE with format 3:

DBCC PAGE (IndexInternals, 1, 4264, 3);
GO

RESULT (abbreviated):

FileId PageId Row Level SSN (key) EmployeeID KeyHashValue

1 4264 0 0 000-00-0184 31101 (fd00604642ee)
1 4264 1 0 000-00-0236 22669 (fb00de40feel)
1 4264 2 0 000-00-0395 18705 (0101d993da83)
1 4264 446 0 013-00-5906 44969 (ff00355b1727)
1 4264 447 0 013-00-5982 7176 (03012415a3e8)
1 4264 448 0 013-00-6001 11932 (f100f75a17a4)

From the output of DBCC PAGE, you can see that the leaf-level page of a nonclustered index
on a clustered table has actual column values for both the index key (in this case, the SSN
column) and the data row's bookmark, which in this case is the EmployeelD. And this is an
actual value, copied into the leaf level of the nonclustered index. Had the clustering key been
wider, the leaf level of the nonclustered index would have been wider as well.

In terms of navigation, review the following query:

SELECT e.*
FROM dbo.Employee AS e
WHERE e.SSN = '123-45-6789';

To find all the data for a row with a SSN of 123-45-6789, SQL Server starts at the root page
and navigates down to the leaf level. Based on the output shown previously, the root page is
in page 4328 of FileID 1 (you can see this because the root page is the only page at the
highest index level (IndexLevel = 1). We could perform the same analysis as before and follow
the navigation through the B-tree, but this is left as an exercise for you, if you wish.

Nonunique Nonclustered Index Rows

You now know that the leaf level of a nonclustered index must have a bookmark because

from the leaf level, you want to be able to find the actual data row. The non-leaf levels of a
nonclustered index need only help us traverse down to pages at the lower levels. In the case of
a unique nonclustered index (such as in the previous examples of PRIMARY KEY and UNIQUE
constraint indexes), the non-leaf level rows contain only the nonclustered index key values and
the child-page pointer. However, if the index is not unique, the non-leaf level rows contain the
nonclustered index key values, the child-page pointer, and the bookmark value. In other words,
the bookmark value is added to the nonclustered index key in a nonunique, nonclustered index
to guarantee uniqueness (as the bookmark, by definition, must be unique).

Keep in the mind that for the purposes of creating the index rows, SQL Server doesn't care
whether the keys in the nonunique index actually contain duplicates. If the index is not defined to
be unique, even if all the values are unique, the non-leaf index rows always contain the bookmark.



Chapter 6 Indexes: Internals and Management 335

You can easily see this by creating the following three indexes to review both their leaf and
non-leaf level row sizes:

CREATE NONCLUSTERED INDEX TestTreeStructure
ON Employee (SSN);
GO

CREATE UNIQUE NONCLUSTERED INDEX TestTreeStructureUniquel
ON Employee (SSN);
GO

CREATE UNIQUE NONCLUSTERED INDEX TestTreeStructureUnique2
ON Employee (SSN, EmployeelD);
GO

SELECT si.[name] AS iname

, index_depth AS D

, index_Tevel AS L

, record_count AS 'Count'

, page_count AS PgCnt

, avg_page_space_used_in_percent AS 'PgPercentFull’

, min_record_size_in_bytes AS 'MinLen'

, max_record_size_in_bytes AS 'MaxLen'

, avg_record_size_in_bytes AS 'AvglLen'
FROM sys.dm_db_index_physical_stats

(DB_ID ('IndexInternals')

, OBJECT_ID ('IndexInternals.dbo.Employee')

, NULL, NULL, 'DETAILED') ps

INNER JOIN sys.indexes si

ON ps.[object_id] = si.[object_id]
AND ps.[index_id] = si.[index_id]

WHERE ps.[index_id] > 2;

GO

RESULT:

iname D L Count PgCnt PgPercentFull MinLen MaxLen AvglLen
TestTreeStructure 2 0 80000 179  99.3661106992834 16 16 16
TestTreeStructure 21179 1 53.0516431924883 22 22 22
TestTreeStructureUniquel 2 0 80000 179 99.3661106992834 16 16 16
TestTreeStructureUniquel 2 1 179 1 44.2055843834939 18 18 18
TestTreeStructureUnique2 2 0 80000 179  99.3661106992834 16 16 16
TestTreeStructureUnique2 2 1 179 1 53.0516431924883 22 22 22

Notice that the leaf level (level 0) of all three indexes is identical in all columns: Count
(record_count), PgCnt (page_count), PgPercentFull (avg_space_used_in_percent), and all three
length columns. For the non-leaf level of the indexes (which are very small), you can see that
the lengths vary—for the first (TestTreeStructure) and the third (TestTreeStructureUnique?),
the non-leaf levels are identical. The first index has the EmployeelD added because it's the
clustering key (therefore the bookmark). The third index has EmployeelD already in the
index—there’s no need to add it again. However, in the first index, because it was not
defined as unique, SQL Server had to add the clustering key all the way up the tree. For the
second index—which was unique on SSN alone—SQL Server did not include EmployeelD all
the way up the tree. If you're interested, you can continue to analyze these structures using
DBCC IND and DBCC PAGE to view the physical row structures further.



336

Microsoft SQL Server 2008 Internals

Nonclustered Index Rows with Included Columns (Using INCLUDE)

In all nonclustered indexes so far, we have focused on the physical aspects of indexes created
by constraints or indexes created to test physical structures. Nowhere have we approached
the limits of index key size, which are 900 bytes or 16 columns, whichever comes first. The
reason that these limits exist is to help to ensure index tree scalability. However, this has also
traditionally limited the maximum number of columns that can be indexed.

In some cases, adding columns in an index allows SQL Server to eliminate the bookmark
lookup when accessing data for a range query, a concept called covering indexes. A covering
index is a nonclustered index in which all the information needed to satisfy a query can be
found in the leaf level, so SQL Server doesn't have to access the data pages at all. This can be
a powerful tool for optimizing some of your more complex range-based queries.

Instead of adding columns to the nonclustered index key, and making the tree deeper,
columns for a covering index can be added to the index rows without becoming part of the
key using the INCLUDE syntax. It is a very simple addition to your CREATE INDEX command:

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
ON table_name (column_name [ASC | DESC][,...n])
[ INCLUDE (C column_name [ ,...n 1 ) ]

These columns listed after the keyword INCLUDE allow you to exceed the 900-byte or
16-key column limits in the leaf level of a nonclustered index. The included columns
appear only in the leaf level and do not affect the sort order of the index rows in any way.
In certain situations, SQL Server can silently add an included column to your indexes. This
might happen when an index is created on a partitioned table and no ON filegroup or ON
partition_scheme_name is specified.

Nonclustered Index Rows with Filters (Filtered Indexes)

Without using filters, the leaf level of a nonclustered index contains one index row for every
row of data in the table, in logical order based on the index definition. New in SQL Server
2008, you can add a filter predicate to your nonclustered index definition. This allows SQL
Server to create nonclustered index rows only for data that matches your predicate, thus
limiting the size of the nonclustered index. This can be extremely useful if you have one of
the following situations:

B When a column contains mostly NULL values and where queries retrieve only the rows
where the data is NOT NULL. This is especially useful when combined with SPARSE
columns.

B When a column contains only a limited number of interesting values or you want to
enforce uniqueness only for a set of values. For example, what if you wanted to allow
NULL values for the SSN column of the Employee table? Using a constraint, SQL Server
allows only a single row to be NULL. However, using a filtered index you can create a



Chapter 6 Indexes: Internals and Management 337

unique index over only the rows where the SSN is not NULL. The syntax would look like
the following:

CREATE UNIQUE NONCLUSTERED INDEX SSN_NOT_NULLs
ON Employee (SSN)
WHERE SSN IS NOT NULL;

B When queries retrieve only a particular range of data and you want to add indexes to
this data but not the entire table. For example, you have a table which is partitioned
by month and covers three years worth of data (2008, 2007, and 2006) and a team
wants to heavily analyze data in the fourth quarter of 2007. Instead of creating wider
nonclustered indexes for all your data, you can create indexes (possibly using INCLUDE
as well) that focus only on:

WHERE SalesDate > '20071001' AND SalesDate < '20080101';

The end result of an index created with a filter is that the leaf level of the nonclustered index
contains a row only if the row matches the filter definition. And the column over which the filter
is defined does not need to be in the key, or even in an included column; however, that can
help to make the index more useful for certain queries. You can use DBCC IND, DBCC PAGE,
and, the previously mentioned, DMVs to review the size and structure for indexes with filters.

Special Index Structures

SQL Server 2008 allows you to create several special kinds of indexes: indexes on computed
columns, indexes on views, spatial indexes, full-text indexes, and XML indexes. This section
covers the requirements and the structural differences of creating these types of indexes.

Indexes on Computed Columns and Indexed Views

Without indexes, some of these constructs—computed columns and views—are purely logical.
There is no physical storage for the data involved. A computed column is not stored with

the table data; it is recomputed every time a row is accessed (unless the computed column is
marked as PERSISTED). A view does not save any data; it basically saves a SELECT statement that
is executed again every time the data in the view is accessed. With these special indexes, SQL
Server actually materializes what was only logical data into the physical leaf level of an index.

Prerequisites

Before you can create indexes on either computed columns or views, certain prerequisites
must be met. The biggest issue is that SQL Server must be able to guarantee that given the
identical base table data, the same values are always returned for any computed columns
or for the rows in a view (that is, the computed columns and views are deterministic).

To guarantee that the same values are always generated, these special indexes have three



338

Microsoft SQL Server 2008 Internals

categories of requirements. First, a number of session-level options must be set to a specific
value. Second, there are some restrictions on the functions that can be used within the
computed column or view definition. The third requirement, which applies only to indexed
views, is that the tables that the view is based on must meet certain criteria.

SET Options

The following seven SET options can affect the resulting value of an expression or predicate,
so you must set them as shown to create indexed views or indexes on computed columns:

SET CONCAT_NULL_YIELDS_NULL ON
SET QUOTED_IDENTIFIER ON

SET ANSI_NULLS ON

SET ANSI_PADDING ON

SET ANSI_WARNINGS ON

SET NUMERIC_ROUNDABORT OFF

Note that all the options have to be ON except the NUMERIC_ROUNDABORT option, which
has to be OFF. Technically, the option ARITHABORT must also be set to ON. And, when

your database is set to 90 compatibility mode or higher, setting ANSI_WARNINGS to ON
automatically sets ARITHABORT to ON, so you do not need to set it separately. If any of these
options are not set as specified, you get an error message when you try to create a special
index. In addition, if you've already created one of these indexes, after which you change the
SET option settings, and then attempt to modify the computed column or view on which the
index is based, you get an error. If you issue a SELECT that normally should use the index, and
if the SET options do not have the values indicated, the index is ignored but no error is generated.

There are a couple of ways to determine whether the SET options are set appropriately
before you create one of these special indexes. You can use the function SESSIONPROPERTY
to test the settings for your current connection. A returned value of 1 means that the setting
is ON, and a 0 means that it is OFF. The following example checks the current session setting
for the option NUMERIC_ROUNDABORT:

SELECT SESSIONPROPERTY ('NUMERIC_ROUNDABORT');

Alternatively, you can use the sys.dm_exec_sessions DMV to check the SET options for any
connection. The following query returns the values for five of the previously discussed six SET
options for the current session:

SELECT quoted_identifier, arithabort, ansi_warnings,
ansi_padding, ansi_nulls, concat_null_yields_null

FROM sys.dm_exec_sessions

WHERE session_id = @@spid;

Unfortunately, NUMERIC_ROUNDABORT is not included in the sys.dm_exec_sessions DMV
results. There is no way to see the setting for that value for any other connections besides the
current one.



Chapter 6 Indexes: Internals and Management 339

Permissible Functions

A function is either deterministic or nondeterministic. If the function returns the same result
every time it is called with the same set of input values, it is deterministic. If it can return
different results when called with the same set of input values, it is nondeterministic. For
the purposes of indexes, a function is considered deterministic if it always returns the same
values for the same input values when all the SET options have the required settings. Any
function used in a computed column’s definition or used in the SELECT list or WHERE clause
of an indexable view must be deterministic.

More Info SQL Server Books Online contains a complete list of which supplied functions are
deterministic and which are nondeterministic. Some functions can be either deterministic or
nondeterministic, depending on how they are used, and SQL Server Books Online also describes
these functions.

It might seem that the list of nondeterministic functions is quite restrictive, but SQL Server
must be able to guarantee that the values stored in the index are consistent. In some cases,
the restrictions might be overly cautious, but the downside of being not cautious enough
would be that your indexed views or indexes on computed columns are meaningless. The
same restrictions apply to functions you use in your own user-defined functions (UDFs)—that
is, your own functions cannot be based on any nondeterministic built-in function. You can
verify the determinism property of any function by using the OBJECTPROPERTY function:

SELECT OBJECTPROPERTY (object_id('<function_name>'), 'IsDeterministic')

Even if a function is deterministic, if it contains float or real expressions, the result of the
function might vary with different processors depending on the processor architecture or
microcode version. Expressions or functions containing values of the data type float or real
are therefore considered to be imprecise. To guarantee consistent values even when moving
a database from one machine to another (by detaching and attaching, or by performing
backup and restore), imprecise values can be used only in key columns of indexes if they are
physically stored in the database and not recomputed. An imprecise value can be used if

it is the value of a stored column in a table or if it is a computed column that is marked as
persisted. We discuss persisted columns in more detail in the upcoming section entitled
“Indexes on Computed Columns.”

Schema Binding

To create an indexed view, a requirement on the table itself is that the definition of any
underlying object’s schema cannot change. To prevent a change in schema definition, the
CREATE VIEW statement allows the WITH SCHEMABINDING option. When you specify WITH
SCHEMABINDING, the SELECT statement that defines the view must include the two-part
names (schema.object) of all referenced tables. You can't drop the table or alter the columns



340

Microsoft SQL Server 2008 Internals

that participate in a view created with the WITH SCHEMABINDING clause unless you've dropped
that view or changed the view so that it's no longer schemabound. Otherwise, SQL Server raises
an error. If any of the tables on which the view is based are owned by someone other than the
user creating the view, the view creator doesn't automatically have the right to create the view
with schema binding because that would restrict the table’s owner from making changes to

her own table. A user must be granted REFERENCES permission on a table to create a view with
schema binding on that table. We will see an example of schema binding in a moment.

Indexes on Computed Columns

SQL Server 2008 allows you to build indexes on deterministic, precise (and persisted imprecise)
computed columns where the resulting data type is otherwise indexable. This means that the
column’s data type cannot be any of the LOB data types (such as text, varchar(max), or XML).
Such a computed column can be an index key, included column, or part of a PRIMARY KEY or
UNIQUE constraint. You cannot define a FOREIGN KEY, CHECK, or DEFAULT constraint on a
computed column, and computed columns are always considered nullable unless you enclose
the expression in the ISNULL function. When you create an index on computed columns, the
six previously mentioned SET options must first have the correct values set.

Here's an example:

CREATE TABLE t1 (a INT, b as 2*a);
GO

CREATE INDEX il ON t1 (b);

GO

If any of your SET options does not have the correct value when you create the table, you get
this message when you try to create the index:

Server: Msg 1935, Level 16, State 1, Line 2
Cannot create index. Object '<tname>' was created with the following SET options off:
'<option(s)>"'.

If more than one option has an incorrect value, the error message reports them all.

Here's an example that creates a table with a nondeterministic computed column:

CREATE TABLE t2 (a INT, b DATETIME, c AS DATENAME(MM, b));
GO

CREATE INDEX i2 ON t2 (c);

GO

When you try to create the index on the computed column ¢, you get this error:

Msg 2729, Level 16, State 1, Line 1

Column 'c' in table 't2' cannot be used in an index or statistics or as a partition key
because it is nondeterministic.

Column ¢ is nondeterministic because the month value of DATENAME() can have different
values depending on the language you're using.



Chapter 6 Indexes: Internals and Management 341

Using the COLUMNPROPERTY Function You can use the IsDeterministic column
property to determine before you create an index on a computed column (or on a view)
whether that column is deterministic. If you specify this property, the COLUMNPROPERTY
function returns 1 if the column is deterministic and 0 otherwise. The result is undefined
for columns that are neither computed columns nor columns in a view, so you should
consider checking the IsComputed property before you check the IsDeterministic property.
The following example detects that column c in table t2 in the previous example is
nondeterministic:

SELECT COLUMNPROPERTY (OBJECT_ID('t2'), 'c', 'IsDeterministic');

The value 0 is returned, which means that column c is nondeterministic. Note that the
COLUMNPROPERTY function requires an object ID for the first argument and a column name
for the second argument.

However, the COLUMNPROPERTY function also has a property of Isindexable. That's probably
the easiest to use for a quick check, but it won't give you the reason if the column is not
indexable. For that, you should check these other properties.

Implementation of a Computed Column

If you create a clustered index on a computed column, the computed column is no longer

a virtual column in the table. The computed value physically exists in the rows of the table,
which is the leaf level of the clustered index. Updates to the columns that the computed
column is based on also update the computed column in the table itself. For example, in the
t1 table created previously, if we insert a row with the value 10 in column g, the row is created
with both the values 10 and 20 in the actual data row. If we then update the 10 to 15, the
second column is updated automatically to 30.

Persisted Columns The ability to mark a computed column as PERSISTED (a feature
introduced in SQL Server 2005) allows storage of computed values in a table, even before you
build an index. In fact, this feature was added to the product to allow columns of computed
values from underlying table columns of type float or real to have indexes built on them. The
alternative, when you want an index on such a column, would be to drop and re-create the
underlying column, which can involve an enormous amount of overhead on a large table.

Here's an example. In the Northwind database, the Order Details table has a column called
Discount that is of type real. The following code adds a computed column called Final that shows
the total price for an item after the discount is applied. The statement to build an index on Final
fails because the resultant column involving the real value is imprecise and not persisted:

USE Northwind;
GO
ALTER TABLE [Order Details]
ADD Final AS
(Quantity * UnitPrice) - Discount * (Quantity * UnitPrice);
GO



342

Microsoft SQL Server 2008 Internals

CREATE INDEX OD_Final_Index on [Order Details](Final);
GO

Error Message:

Msg 2799, Level 16, State 1, Line 1

Cannot create index or statistics 'OD_Final_Index' on table 'Order Details'
because the computed column 'Final' is imprecise and not persisted. Consider removing
column from index or statistics key or marking computed column persisted.

Without persisted computed columns, the only way to create an index on a computed column
containing the final price would be to drop the Discount column from the table and redefine
it. Any existing indexes on Discount would have to be dropped as well, and then rebuilt. With
persisted computed columns, all you need to do is drop the computed column (which is a
metadata-only operation) and then redefine it as a persisted computed column. You can
then build the index on the column:

ALTER TABLE [Order Details]
DROP COLUMN Final;
GO
ALTER TABLE [Order Details]
ADD Final AS
(Quantity * UnitPrice) - Discount * (Quantity * UnitPrice) PERSISTED;
GO
CREATE INDEX OD_Final_Index on [Order Details](Final);

When determining whether you have to use the PERSISTED option, use the COLUMNPROPERTY
function and the IsPrecise property to determine whether a deterministic column is precise:

SELECT COLUMNPROPERTY (OBJECT_ID ('Order Details'), 'Final', 'IsPrecise');

You can also use persisted computed columns when you define partitions. A computed column
that is used as the partitioning column must be explicitly marked as PERSISTED, whether it is
precise or imprecise. We look at partitioning in Chapter 7.

Indexed Views

Indexed views in SQL Server are similar to what other products call materialized views.

One of the most important benefits of indexed views is the ability to materialize summary
aggregates of large tables. For example, consider a customer table containing rows for
several million U.S.-based customers, from which you want information regarding customers
in each state. You can create a view based on a GROUP BY query, grouping by state and
containing the count of orders per state. Normal views are only named, saved queries and
do not store the results. Every time the view is referenced, the aggregation to produce the
grouped results must be recomputed. When you create an index on the view, the aggregated
data is stored in the leaf level of the index. So instead of millions of customer rows, your
indexed view has only 50 rows—one for each state. Your aggregate reporting queries can then
be processed using the indexed views without having to scan the underlying, large tables.



Chapter 6 Indexes: Internals and Management 343

The first index you must build on a view is a clustered index, and because the clustered index
contains all the data at its leaf level, this index actually does the materialization of the view.
The view's data is physically stored at the leaf level of the clustered index.

Additional Requirements

In addition to the requirement that all functions used in the view must be deterministic, and
that the required SET options must be set to the appropriate values, the view definition can't
contain any of the following:

m TOP

B | OB columns

m  DISTINCT

B MIN, MAX, COUNT(*), COUNT(<expression>), STDEV, VARIANCE, AVG
B SUM on a nullable expression

B A derived table

B The ROWSET function

B Another view (you can reference only base tables)
m UNION

B Subqueries, OUTER joins, or self-joins

B Full-text predicates (CONTAINS, FREETEXT)

m  COMPUTE, COMPUTE BY

®  ORDER BY

Also, if the view definition contains GROUP BY, the SELECT list must include the aggregate
COUNT_BIG (*. COUNT_BIG returns a BIGINT, which is an 8-byte integer. A view that contains
GROUP BY can't contain HAVING, CUBE, ROLLUP, or GROUP BY ALL. Also, all GROUP BY columns
must appear in the SELECT list. Note that if your view contains both SUM and COUNT_BIG (%), you
can compute the equivalent of the AVG aggregate function even though AVG is not allowed in
indexed views. Although these restrictions might seem severe, remember that they apply to the
view definitions, not to the queries that might use the indexed views.

To verify that you've met all the requirements, you can use the OBJECTPROPERTY function's
Isindexable property. The following query tells you whether you can build an index on a view
called Product Totals:

SELECT OBJECTPROPERTY (OBJECT_ID ('Product_Totals'), 'IsIndexable');

A return value of 1 means you've met all requirements and can build an index on the view.



344

Microsoft SQL Server 2008 Internals

Creating an Indexed View

The first step in building an index on a view is to create the view itself. Here's an example
from the AdventureWorks2008 database:

USE AdventureWorks2008;

GO

CREATE VIEW Vdiscountl

WITH SCHEMABINDING

AS SELECT SUM (UnitPrice*OrderQty) AS SumPrice
, SUM (UnitPri