
 Microsoft®

Foreword by David Campbell
Microsoft Technical Fellow

SQL Server® 
2008 Internals

Paul S. Randal, Kimberly L. Tripp, 
Conor Cunningham, Adam Machanic, and Ben Nevarez

Kalen Delaney



PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Kalen Delaney

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means 
without the written permission of the publisher.

Library of Congress Control Number: 2008940524

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9   QWT   4 3 2 1 0 9 

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about 
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at 
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, Active Directory, Excel, MS, MSDN, Outlook, SQL Server, Visual SourceSafe, Win32, 
Windows, and Windows Server are either registered trademarks or trademarks of the Microsoft group of companies. Other 
product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events 
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, 
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any 
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will 
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Sally Stickney 
Project Editor: Lynn Finnel 
Editorial Production: S4Carlisle Publishing Services 
Technical Reviewer: Benjamin Nevarez; Technical Review services provided by Content Master, a member of CM Group, Ltd. 
Cover: Tom Draper Design 
 
 
 
 
 
 

Body Part No. X15-32079



For Dan, forever . . . .

—Kalen

A03D626249.indd   iii 2/9/2009   10:37:47 AM



A03D626249.indd   iv 2/9/2009   10:37:47 AM



  v

Contents at a Glance

 1 SQL Server 2008 Architecture and Confi guration  . . . . . . . . . . . . . 1

 2 Change Tracking, Tracing, and Extended Events  . . . . . . . . . . . . . 75

 3 Databases and Database Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

 4 Logging and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

 5 Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

 6 Indexes: Internals and Management  . . . . . . . . . . . . . . . . . . . . . . 299

 7 Special Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

 8 The Query Optimizer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

 9 Plan Caching and Recompilation  . . . . . . . . . . . . . . . . . . . . . . . . . 525

 10 Transactions and Concurrency  . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

 11 DBCC Internals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

  Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

A04C626249.indd   v 2/11/2009   2:31:36 PM



A04C626249.indd   vi 2/11/2009   2:31:36 PM



  vii

Table of Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xix

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxi

 1 SQL Server 2008 Architecture and Confi guration  . . . . . . . . . . . . . 1

SQL Server Editions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

SQL Server Metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Compatibility Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Catalog Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Other Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Components of the SQL Server Engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Observing Engine Behavior  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

The Relational Engine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

The Storage Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

The SQLOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

NUMA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

The Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

SQL Server Workers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Binding Schedulers to CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

The Dedicated Administrator Connection (DAC) . . . . . . . . . . . . . . . . . . . . 27

Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

The Buffer Pool and the Data Cache  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Access to In-Memory Data Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Managing Pages in the Data Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

The Free Buffer List and the Lazywriter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Checkpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Managing Memory in Other Caches  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Sizing Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Sizing the Buffer Pool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  

resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

A05T626249.indd   vii 2/16/2009   3:22:16 PM



viii Table of Contents

SQL Server Resource Governor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Resource Governor Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Resource Governor Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Resource Governor Metadata  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

SQL Server 2008 Confi guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Using SQL Server Confi guration Manager. . . . . . . . . . . . . . . . . . . . . . . . . . 54

Confi guring Network Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Default Network Confi guration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Managing Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

SQL Server System Confi guration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Operating System Confi guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Trace Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

SQL Server Confi guration Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

The Default Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

 2 Change Tracking, Tracing, and Extended Events  . . . . . . . . . . . . . 75

The Basics: Triggers and Event Notifi cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Run-Time Trigger Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Change Tracking   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Change Tracking Confi guration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Change Tracking Run-Time Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Tracing and Profi ling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

SQL Trace Architecture and Terminology  . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Security and Permissions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Getting Started: Profi ler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Server-Side Tracing and Collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Extended Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Components of the XE Infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Event Sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Extended Events DDL and Querying  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

 3 Databases and Database Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

System Databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

master  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

tempdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

The Resource Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

msdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A05T626249.indd   viii 2/16/2009   3:22:16 PM



 Table of Contents ix

Sample Databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

AdventureWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

pubs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Northwind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Database Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Creating a Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A CREATE DATABASE Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Expanding or Shrinking a Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Automatic File Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Manual File Expansion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Fast File Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Automatic Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Manual Shrinkage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Using Database Filegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

The Default Filegroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A FILEGROUP CREATION Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Filestream Filegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Altering a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

ALTER DATABASE Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Databases Under the Hood  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Space Allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Setting Database Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

State Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Cursor Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Auto Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

SQL Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Database Recovery Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Other Database Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Database Snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Creating a Database Snapshot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Space Used by Database Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Managing Your Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

The tempdb Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Objects in tempdb  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Optimizations in tempdb  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Best Practices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

tempdb Space Monitoring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Database Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Database Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Managing Database Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A05T626249.indd   ix 2/16/2009   3:22:16 PM



x Table of Contents

Databases vs. Schemas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Principals and Schemas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Default Schemas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Moving or Copying a Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Detaching and Reattaching a Database. . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Backing Up and Restoring a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Moving System Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Moving the master Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Compatibility Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

 4 Logging and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Transaction Log Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Phases of Recovery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Reading the Log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Changes in Log Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Virtual Log Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Observing Virtual Log Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Automatic Truncation of Virtual Log Files . . . . . . . . . . . . . . . . . . . . . . . . . 192

Maintaining a Recoverable Log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Automatic Shrinking of the Log  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Log File Size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Backing Up and Restoring a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Types of Backups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Recovery Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Choosing a Backup Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Restoring a Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

 5 Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Creating Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Naming Tables and Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Reserved Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Delimited Identifi ers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Naming Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Much Ado About NULL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

A05T626249.indd   x 2/16/2009   3:22:16 PM



 Table of Contents xi

User-Defi ned Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

IDENTITY Property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Internal Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

The sys.indexes Catalog View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Data Storage Metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Data Pages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Examining Data Pages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

The Structure of Data Rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Finding a Physical Page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Storage of Fixed-Length Rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Storage of Variable-Length Rows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Storage of Date and Time Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Storage of sql_variant Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Constraint Names and Catalog View Information . . . . . . . . . . . . . . . . . . 280

Constraint Failures in Transactions and Multiple-Row 
Data Modifi cations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Altering a Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Changing a Data Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Adding a New Column  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Adding, Dropping, Disabling, or Enabling a Constraint  . . . . . . . . . . . . . 284

Dropping a Column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Enabling or Disabling a Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Internals of Altering Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Heap Modifi cation Internals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Allocation Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Inserting Rows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Deleting Rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Updating Rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

 6 Indexes: Internals and Management  . . . . . . . . . . . . . . . . . . . . . . 299

Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

SQL Server Index B-trees  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Tools for Analyzing Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Using the dm_db_index_physical_stats DMV. . . . . . . . . . . . . . . . . . . . . . . 304

Using DBCC IND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

A05T626249.indd   xi 2/16/2009   3:22:16 PM



xii Table of Contents

Understanding Index Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

The Dependency on the Clustering Key  . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Nonclustered Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Constraints and Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Index Creation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

IGNORE_DUP_KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

STATISTICS_NORECOMPUTE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

MAXDOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Index Placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Constraints and Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Physical Index Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Index Row Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Clustered Index Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

The Non-Leaf Level(s) of a Clustered Index. . . . . . . . . . . . . . . . . . . . . . . . 320

Analyzing a Clustered Index Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Nonclustered Index Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Special Index Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Indexes on Computed Columns and Indexed Views . . . . . . . . . . . . . . . . 337

Full-Text Indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Spatial Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

XML Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Data Modifi cation Internals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Inserting Rows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Splitting Pages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Deleting Rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Updating Rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Table-Level vs. Index-Level Data Modifi cation . . . . . . . . . . . . . . . . . . . . . 362

Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Locking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Fragmentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Managing Index Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Dropping Indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

ALTER INDEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Detecting Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Removing Fragmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Rebuilding an Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

A05T626249.indd   xii 2/16/2009   3:22:16 PM



 Table of Contents xiii

 7 Special Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Large Object Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Restricted-Length Large Object Data (Row-Overfl ow Data)  . . . . . . . . . 376

Unrestricted-Length Large Object Data  . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Storage of MAX-Length Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Filestream Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Enabling Filestream Data for SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Creating a Filestream-Enabled Database. . . . . . . . . . . . . . . . . . . . . . . . . . 390

Creating a Table to Hold Filestream Data  . . . . . . . . . . . . . . . . . . . . . . . . . 390

Manipulating Filestream Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Metadata for Filestream Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Performance Considerations for Filestream Data. . . . . . . . . . . . . . . . . . . 399

Sparse Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400

Management of Sparse Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400

Column Sets and Sparse Column Manipulation   . . . . . . . . . . . . . . . . . . . 403

Physical Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Storage Savings with Sparse Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Data Compression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Vardecimal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Row Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Page Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Table and Index Partitioning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Partition Functions and Partition Schemes . . . . . . . . . . . . . . . . . . . . . . . . 434

Metadata for Partitioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

The Sliding Window Benefi ts of Partitioning  . . . . . . . . . . . . . . . . . . . . . . 439

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

 8 The Query Optimizer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Tree Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .444

What Is Optimization? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

How the Query Optimizer Explores Query Plans . . . . . . . . . . . . . . . . . . . . . . . .446

Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446

Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Storage of Alternatives—The “Memo” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

A05T626249.indd   xiii 2/16/2009   3:22:16 PM



xiv Table of Contents

Optimizer Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

Before Optimization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

Simplifi cation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Trivial Plan/Auto-Parameterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

The Memo—Exploring Multiple Plans Effi ciently. . . . . . . . . . . . . . . . . . . 459

Statistics, Cardinality Estimation, and Costing. . . . . . . . . . . . . . . . . . . . . . . . . . . 462

Statistics Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Density/Frequency Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Filtered Statistics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

String Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

Cardinality Estimation Details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

Costing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Index Selection   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Filtered Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

Indexed Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

Partitioned Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Partition-Aligned Index Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

Data Warehousing   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

Updates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Halloween Protection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

Split/Sort/Collapse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Merge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

Wide Update Plans  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Sparse Column Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Partitioned Updates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Locking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Distributed Query  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Extended Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

Full-Text Indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

XML Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

Spatial Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

Plan Hinting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

Debugging Plan Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

{HASH | ORDER} GROUP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

{MERGE | HASH | CONCAT } UNION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

FORCE ORDER, {LOOP | MERGE | HASH } JOIN. . . . . . . . . . . . . . . . . . . . . 516

A05T626249.indd   xiv 2/16/2009   3:22:16 PM



 Table of Contents xv

INDEX=<indexname> | <indexid>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

FORCESEEK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

FAST <number_rows> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

MAXDOP <N>  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

OPTIMIZE FOR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

PARAMETERIZATION {SIMPLE | FORCED}  . . . . . . . . . . . . . . . . . . . . . . . . . 520

NOEXPAND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

USE PLAN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

 9 Plan Caching and Recompilation  . . . . . . . . . . . . . . . . . . . . . . . . . 525

The Plan Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Plan Cache Metadata  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Clearing Plan Cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

Caching Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Adhoc Query Caching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Optimizing for Adhoc Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Simple Parameterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

Prepared Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

Compiled Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

Causes of Recompilation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

Plan Cache Internals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Cache Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Compiled Plans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

Execution Contexts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

Plan Cache Metadata  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Handles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

sys.dm_exec_sql_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

sys.dm_exec_query_plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

sys.dm_exec_text_query_plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

sys.dm_exec_cached_plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

sys.dm_exec_cached_plan_dependent_objects. . . . . . . . . . . . . . . . . . . . . . 559

sys.dm_exec_requests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

sys.dm_exec_query_stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

Cache Size Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Costing of Cache Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

Objects in Plan Cache: The Big Picture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

Multiple Plans in Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

A05T626249.indd   xv 2/16/2009   3:22:16 PM



xvi Table of Contents

When to Use Stored Procedures and Other Caching Mechanisms . . . . . . . . . 568

Troubleshooting Plan Cache Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

Wait Statistics Indicating Plan Cache Problems  . . . . . . . . . . . . . . . . . . . . 569

Other Caching Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

Handling Problems with Compilation and Recompilation . . . . . . . . . . . 572

Plan Guides and Optimization Hints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

 10 Transactions and Concurrency  . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

Concurrency Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

Pessimistic Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

Optimistic Concurrency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

Transaction Processing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

ACID Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

Transaction Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

Isolation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

Locking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

Locking Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

Spinlocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

Lock Types for User Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

Lock Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

Lock Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

Lock Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

Lock Ownership  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

Viewing Locks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

Locking Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

Lock Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

Internal Locking Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

Lock Partitioning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

Lock Blocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

Lock Owner Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

syslockinfo Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

Row-Level Locking vs. Page-Level Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

Lock Escalation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

Deadlocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

Row Versioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Overview of Row Versioning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Row Versioning Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

Snapshot-Based Isolation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

Choosing a Concurrency Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

A05T626249.indd   xvi 2/16/2009   3:22:16 PM



 Table of Contents xvii

Controlling Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

Lock Hints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

 11 DBCC Internals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

Getting a Consistent View of the Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

Obtaining a Consistent View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

Processing the Database Effi ciently  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

Fact Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

Using the Query Processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670

Batches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

Reading the Pages to Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

Primitive System Catalog Consistency Checks  . . . . . . . . . . . . . . . . . . . . . . . . . . 677

Allocation Consistency Checks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

Collecting Allocation Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

Checking Allocation Facts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

Per-Table Logical Consistency Checks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

Metadata Consistency Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684

Page Audit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

Data and Index Page Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687

Column Processing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

Text Page Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

Cross-Page Consistency Checks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

Cross-Table Consistency Checks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

Service Broker Consistency Checks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706

Cross-Catalog Consistency Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707

Indexed-View Consistency Checks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707

XML-Index Consistency Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

Spatial-Index Consistency Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

DBCC CHECKDB Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

Regular Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710

SQL Server Error Log Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

Application Event Log Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

Progress Reporting Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

DBCC CHECKDB Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

NOINDEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

Repair Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

ALL_ERRORMSGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

EXTENDED_LOGICAL_CHECKS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

A05T626249.indd   xvii 2/16/2009   3:22:16 PM



xviii Table of Contents

NO_INFOMSGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

TABLOCK  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

ESTIMATEONLY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

PHYSICAL_ONLY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718

DATA_PURITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

Database Repairs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

Repair Mechanisms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720

Emergency Mode Repair  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

What Data Was Deleted by Repair?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722

Consistency-Checking Commands Other Than DBCC CHECKDB . . . . . . . . . . 723

DBCC CHECKALLOC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724

DBCC CHECKTABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725

DBCC CHECKFILEGROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725

DBCC CHECKCATALOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726

DBCC CHECKIDENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726

DBCC CHECKCONSTRAINTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  

resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

A05T626249.indd   xviii 2/16/2009   3:22:16 PM



  xix

Foreword

The developers who create products such as Microsoft SQL Server typically become experts 
in one area of the technology, such as access methods or query execution. They live and 
 experience the product inside out and often know their component so deeply they acquire a 
“curse of knowledge”: they possess so much detail about their particular domain, they fi nd it 
diffi cult to describe their work in a way that helps customers get the most out of the product.

Technical writers who create product-focused books, on the other hand, experience a 
 product outside in. Most of these authors acquire a broad, but somewhat shallow, surface 
knowledge of the products they write about and produce valuable books, usually fi lled with 
many screenshots, which help new and intermediate users quickly learn how to get things 
done with the product.

When the curse of knowledge meets surface knowledge, it leaves a gap where many of 
the great capabilities created by product developers don’t get communicated in a way 
that  allows customers, particularly intermediate to advanced users, to use a product to 
its full potential. This is where Microsoft SQL Server 2008 Internals comes in. This book, 
like those in the earlier “Inside SQL Server” series, is the defi nitive reference for how SQL 
Server  really works. Kalen Delaney has been working with the SQL Server product team for 
over a decade, spending countless hours with developers breaking through the curse of 
 knowledge and then capturing the result in an incredibly clear form that allows  intermediate 
to advanced users to wring the most from the capabilities of SQL Server. In Microsoft SQL 
Server 2008 Internals, Kalen is joined by four SQL Server experts who also share the gift 
of breaking the curse. Conor Cunningham and Paul Randal have years of experience as 
SQL Server  product developers, and each of them is both a deep technical expert and a 
gifted  communicator. Kimberly Tripp and Adam Machanic both combine a passion to really 
 understand how things work and to then effectively share it with others. Kimberly and Adam 
are both  standing-room-only speakers at SQL Server events. This team has captured and 
 incorporated the details of key architectural changes for SQL Server 2008, resulting in a new, 
 comprehensive internals reference for SQL Server.

There is a litmus test you can use to determine if a technical product title deserves a 
“ defi nitive reference” classifi cation. It’s a relatively easy test but a hard one for everybody to 
conduct. The test, quite simply, is to look at how many of the developers who created the 
product in question have a copy of the book on their shelves—and reference it. I can assure 
you that each version of Inside Microsoft SQL Server that Kalen has produced has met this 
test. Microsoft SQL Server 2008 Internals will, too. 

Dave Campbell

Technical Fellow
Microsoft SQL Server

A06F626249.indd   xix 2/11/2009   2:46:39 PM



A06F626249.indd   xx 2/11/2009   2:46:39 PM



  xxi

Introduction

The book you are now holding is the evolutionary successor to the Inside SQL Server series, 
which included Inside SQL Server 6.5, Inside SQL Server 7, Inside SQL Server 2000, and Inside 
SQL Server 2005 (in four volumes). The Inside series was becoming too unfocused, and the 
name “Inside” had been usurped by other authors and even other publishers. I needed a title 
that was much more indicative of what this book is really about. 

SQL Server 2008 Internals tells you how SQL Server, Microsoft’s fl agship relational database 
product, works. Along with that, I explain how you can use the knowledge of how it works 
to help you get better performance from the product, but that is a side effect, not the goal. 
There are dozens of other books on the market that describe tuning and best practices for 
SQL Server. This one helps you understand why certain tuning practices work the way they 
do, and it helps you determine your own best practices as you continue to work with SQL 
Server as a developer, data architect, or DBA.

Who This Book Is For

This book is intended to be read by anyone who wants a deeper understanding of what 
SQL Server does behind the scenes. The focus of this book is on the core SQL Server 
 engine—in particular, the query processor and the storage engine. I expect that you have 
some  experience with both the SQL Server engine and with the T-SQL language. You don’t 
have to be an expert in either, but it helps if you aspire to become an expert and would like 
to fi nd out all you can about what SQL Server is actually doing when you submit a query 
for execution. 

This series doesn’t discuss client programming interfaces, heterogeneous queries, business 
intelligence, or replication. In fact, most of the high-availability features are not covered, but 
a few, such as mirroring, are mentioned at a high level when we discuss database property 
settings. I don’t drill into the details of some internal operations, such as security, because 
that’s such a big topic it deserves a whole volume of its own.

My hope is that you’ll look at the cup as half full instead of half empty and appreciate this 
book for what it does include. As for the topics that aren’t included, I hope you’ll fi nd the 
 information you need in other sources. 

A07I626249.indd   xxi 2/16/2009   2:55:13 PM



xxii Introduction

What This Book Is About

SQL Server Internals provides detailed information on the way that SQL Server processes 
your queries and manages your data. It starts with an overview of the architecture of the SQL 
Server relational database system and then continues looking at aspects of query processing 
and data storage in 10 additional chapters, as follows: 

■ Chapter 1 SQL Server 2008 Architecture and Confi guration

■ Chapter 2 Change Tracking, Tracing, and Extended Events

■ Chapter 3 Databases and Database Files

■ Chapter 4 Logging and Recovery

■ Chapter 5 Tables 

■ Chapter 6 Indexes: Internals and Management

■ Chapter 7 Special Storage

■ Chapter 8 The Query Optimizer 

■ Chapter 9 Plan Caching and Recompilation

■ Chapter 10 Transactions and Concurrency

■ Chapter 11 DBCC Internals 

A twelfth chapter covering the details of reading query plans is available in the companion 
content (which is described in the next section). This chapter, called “Query Execution,” was 
part of my previous book, Inside SQL Server 2005: Query Tuning and Optimization. Because 
99 percent of the chapter is still valid for SQL Server 2008, we have included it “as is” for your 
additional reference.

Companion Content

This book features a companion Web site that makes available to you all the code used 
in the book, organized by chapter. The companion content also includes an extra  chapter 
from my previous book, as well as the “History of SQL Server” chapter from my book 
SQL Server 2000. The site also provides extra scripts and tools to enhance your experience 
and  understanding of SQL Server internals. As errors are found and reported, they will also 
be posted online. You can access this content from the companion site at this address: 
http://www.SQLServerInternals.com/companion. 

System Requirements

To use the code samples, you’ll need Internet access and a system capable of running SQL 
Server 2008 Enterprise or Developer edition. To get system requirements for SQL Server 2008 
and to obtain a trial version, go to http://www.microsoft.com/downloads.

A07I626249.indd   xxii 2/16/2009   2:55:13 PM



 Introduction xxiii

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the 
 companion Web site. As corrections or changes are collected, they will be added to a 
Microsoft Knowledge Base article. 

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books/

Questions and Comments

If you have comments, questions, or ideas regarding the book, or questions that are 
not  answered by visiting the sites above, please send them to Microsoft Press via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press
Attn: Microsoft SQL Server 2008 Internals Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above addresses.

Acknowledgments

As always, a work like this is not an individual effort, and for this current volume, it 
is truer than ever. I was honored to have four other SQL Server experts join me in writing 
SQL Server 2008 Internals, and I truly could not have written this book alone. I am grateful to 
Adam Machanic, Paul Randal, Conor Cunningham, and Kimberly Tripp for helping to make 
this book a reality. In addition to my brilliant co-authors, this book could never have seen the 
light of day with help and encouragement from many other people. 

First on my list is you, the readers. Thank you to all of you for reading what I have written. 
Thank you to those who have taken the time to write to me about what you thought of the 
book and what else you want to learn about SQL Server. I wish I could answer every question 
in detail. I appreciate all your input, even when I’m unable to send you a complete reply. One 
particular reader of one of my previous books, Inside SQL Server 2005: The Storage Engine, 
deserves particular thanks. I came to know Ben Nevarez as a very astute reader who found 
some uncaught errors and subtle inconsistencies and politely and succinctly reported them 
to me through my Web site. After a few dozen e-mails, I started to look forward to Ben’s 
e-mails and was delighted when I fi nally got the chance to meet him. Ben is now my most 
valued technical reviewer, and I am deeply indebted to him for his extremely careful reading 
of every one of the chapters. 

A07I626249.indd   xxiii 2/16/2009   2:55:13 PM



xxiv Introduction

As usual, the SQL Server team at Microsoft has been awesome. Although Lubor Kollar and Sunil 
Agarwal were not directly involved in much of the research for this book, I always knew they 
were there in spirit, and both of them always had an encouraging word whenever I saw them. 

Boris Baryshnikov, Kevin Farlee, Marcel van der Holst, Peter Byrne, Sangeetha Shekar, Robin 
Dhamankar, Artem Oks, Srini Acharya, and Ryan Stonecipher met with me and responded 
to my (sometimes seemingly endless) e-mails. Jerome Halmans, Joanna Omel, Nikunj Koolar, 
Tres London, Mike Purtell, Lin Chan, and Dipti Sangani also offered valuable technical 
 insights and information when responding to my e-mails. I hope they all know how much 
I  appreciated every piece of information I received. 

I am also indebted to Bob Ward, Bob Dorr, and Keith Elmore of the SQL Server Product 
Support team, not just for answering occasional questions but for making so much 
 information about SQL Server available through white papers, conference presentations, 
and Knowledge Base articles. I am grateful to Alan Brewer and Gail Erickson for the great 
job they and their User Education team did putting together the SQL Server documentation 
in SQL Server Books Online. 

And, of course, Buck Woody deserves my gratitude many times over. First from his job in the User 
Education group, then as a member of the SQL Server development team, he was always there 
when I had an unanswered question. His presentations and blog posts are always educational as 
well as entertaining, and his generosity and unfl agging good spirits are a true inspiration. 

I would also like to thank Leona Lowry and Cheryl Walter for fi nding me offi ce space in the same 
building as most of the SQL Server team. The welcome they gave me was much appreciated.

I would like to extend my heartfelt thanks to all of the SQL Server MVPs, but most  especially 
Erland Sommarskog. Erland wrote the section in Chapter 5 on collations just because he 
thought it was needed, and that someone who has to deal with only the 26 letters of the 
English alphabet could never do it justice. Also deserving of special mention are Tibor Karaszi 
and Roy Harvey, for all the personal support and encouragement they gave me. Other MVPs 
who inspired me during the writing of this volume are Tony Rogerson, John Paul Cook, Steve 
Kass, Paul Nielsen, Hugo Kornelis, Tom Moreau, and Linchi Shea. Being a part of the SQL Server 
MVP team continues to be one of the greatest honors and privileges of my professional life. 

I am deeply indebted to my students in my “SQL Server Internals” classes, not only for their 
enthusiasm for the SQL Server product and for what I have to teach and share with them, 
but for all they have to share with me. Much of what I have learned has been inspired by 
questions from my curious students. Some of my students, such as Cindy Gross and Lara 
Rubbelke, have become friends (in addition to becoming Microsoft employees) and continue 
to provide ongoing inspiration. 

Most important of all, my family continues to provide the rock-solid foundation I need to 
do the work that I do. My husband, Dan, continues to be the guiding light of my life after 
24 years of marriage. My daughter, Melissa, and my three sons, Brendan, Rickey, and Connor, 

A07I626249.indd   xxiv 2/16/2009   2:55:13 PM



 Introduction xxv

are now for the most part all grown, and are all generous, loving, and compassionate people. 
I feel truly blessed to have them in my life.

Kalen Delaney

Paul Randal

I’ve been itching to write a complete description of what DBCC CHECKDB does for many 
years now—not least to get it all out of my head and make room for something else! When 
Kalen asked me to write the “Consistency Checking” chapter for this book, I jumped at the 
chance, and for that my sincere thanks go to Kalen. I’d like to give special thanks to two 
 people from Microsoft, among the many great folks I worked with there (and in many cases 
still do). The fi rst is Ryan Stonecipher, who I hired away from being an Escalation Engineer 
in SQL Product Support in late 2003 to work with me on DBCC, and who was suddenly 
thrust into complete ownership of 100,000+ lines of DBCC code when I become the team 
manager two months later. I couldn’t have asked for more capable hands to take over my 
precious DBCC. . . . The second is Bob Ward, who heads up the SQL Product Support team 
and has been a great friend since my early days at Microsoft. We must have collaborated 
on  hundreds of cases of corruption over the years, and I’ve yet to meet someone with more 
drive for  solving customer problems and improving Microsoft SQL Server. Thanks must also 
go to Steve Lindell, the author of the original online consistency checking code for SQL 
Server 2000, who spent many hours patiently explaining how it worked in 1999. Finally, I’d 
like to thank my wife, Kimberly, who is, along with Katelyn and Kiera, the other passions in 
my life apart from SQL Server.

Kimberly Tripp

First, I want to thank my good friend Kalen, for inviting me to participate in this title. After 
working together in various capacities—even having formed a company together back 
in 1996—it’s great to fi nally have our ideas and content together in a book as deep and 
 technical as this. In terms of performance tuning, indexes are critical; there’s no better way 
to improve a system than by creating the right indexes. However, knowing what’s right takes 
multiple components, some of which is only known after experience, after  testing, and 
 after seeing something in action. For this, I want to thank many of you—readers,  students, 
 conference attendees, customers—those of you who have asked the questions, shown me 
interesting scenarios, and stayed late to “play” and/or just fi gure it out. It’s the deep  desire 
to know why something is working the way that it is that keeps this product  interesting to 
me and has always made me want to dive deeper and deeper into understanding what’s 
 really going on. For that, I thank the SQL team in general—the folks that I’ve met and 
worked with over the years have been inspiring, intelligent, and insightful. Specifi cally, 
I want to thank a few folks on the SQL team who have patiently, quickly, and thoroughly 
responded to questions about what’s really going on and often, why: Conor Cunningham, 

A07I626249.indd   xxv 2/16/2009   2:55:13 PM



xxvi Introduction

Cesar  Galindo-Legaria, and from my early days with SQL Server, Dave Campbell, Nigel Ellis, 
and Rande Blackman. Gert E. R. Drapers requires special mention due to the many hours 
spent together over the years where we talked, argued, and fi gured it out. And, to Paul, my 
best friend and husband, who before that was also a good source of SQL information. We 
just don’t talk about it anymore . . . at home. OK, maybe a little.

Conor Cunningham

I’d like to thank Bob Beauchemin and Milind Joshi for their efforts to review my chapter, 
“The Query Optimizer,” in this book for technical correctness. I’d also like to thank Kimberly 
Tripp and Paul Randal for their encouragement and support while I wrote this chapter. Finally, 
I’d like to thank all the members of the SQL Server Query Processor team who answered 
many technical questions for me.

Adam Machanic

I would like to, fi rst and foremost, extend my thanks to Kalen Delaney for leading the effort 
of this book from conception through reality. Kalen did a great job of keeping us focused 
and on task, as well as helping to fi nd those hidden nuggets of information that make a 
book like this one great. A few Microsoft SQL Server team members dedicated their time to 
 helping review my work: Jerome Halmans and Fabricio Voznika from the Extended Events 
team, and Mark Scurrell from the Change Tracking team. I would like to thank each of you for 
keeping me honest, answering my questions, and improving the quality of my chapter. 
Finally, I would like to thank Kate and Aura, my wife and daughter, who always understand 
when I disappear into the offi ce for a day or two around deadline time. 

A07I626249.indd   xxvi 2/16/2009   2:55:13 PM



  1

Chapter 1

SQL Server 2008 Architecture 
and Confi guration
Kalen Delaney

 Microsoft SQL Server is Microsoft’s premiere database management system, and 
SQL Server 2008 is the most powerful and feature-rich version yet. In addition to the core 
database engine, which allows you to store and retrieve large volumes of relational data, 
and the world-class Query Optimizer, which determines the fastest way to process your 
queries and access your data, dozens of other components increase the usability of your 
data and make your data and applications more available and more scalable. As you can 
imagine, no single book could cover all these features in depth. This book, SQL Server 2008 
Internals, covers the main features of the core database engine. 

 Throughout this book, we’ll delve into the details of specifi c features of the SQL Server Database 
Engine. In this fi rst chapter, you’ll get a high-level view of the components of that engine 
and how they work together. My goal is to help you understand how the topics covered in 
 subsequent chapters fi t into the overall operations of the engine. 

 In this chapter, however, we’ll dig deeper into one big area of the SQL Server Database Engine 
that isn’t covered later: the SQL operating system (SQLOS) and, in particular, the components 
related to memory management and scheduling. We’ll also look at the metadata that SQL 
Server makes available to allow you to observe the engine behavior and data organization.  

SQL Server Editions 

 Each version of SQL Server comes in various editions, which you can think of as a subset of the 
product features, with its own specifi c pricing and licensing requirements. Although we won’t 
be discussing pricing and licensing in this book, some of the information about editions is 
important, because of the features that are available with each edition. The editions  available 
and the feature list that each supports is described in detail in SQL Server Books Online, but 
here we will list the main editions. You can verify what edition you are running with the 
 following query: 

SELECT SERVERPROPERTY('Edition');

 There is also a server property called EngineEdition that you can inspect, as follows: 

SELECT SERVERPROPERTY('EngineEdition');

C01626249.indd   1 2/13/2009   9:39:56 AM



2 Microsoft SQL Server 2008 Internals

 The EngineEdition property returns a value of 2, 3, or 4 (1 is not a possible value), and this value 
determines what features are available. A value of 3 indicates that your SQL Server  edition is 
either Enterprise, Enterprise Evaluation, or Developer. These three editions have  exactly the 
same features and functionality. If your EngineEdition value is 2, your edition is either Standard 
or Workgroup, and fewer features are available. The features and behaviors discussed in this 
book will be the ones available in one of these two engine editions. The features in Enterprise 
edition (as well as in Developer edition and Enterprise Evaluation edition) that are not in 
Standard  edition generally relate to scalability and high-availability features, but there are 
other Enterprise-only features as well. When we discuss such features that are considered 
Enterprise-only, we’ll let you know. For full details on what is in each edition, see the SQL Server 
Books Online topic “Features Supported by the Editions of SQL Server 2008.” (A value of 4 for 
EngineEdition indicates that your SQL Server edition is an Express edition, which  includes SQL 
Server Express, SQL Server Express with Advanced Services, or Windows Embedded SQL. None 
of these versions will be discussed specifi cally.) There is also a SERVERPROPERTY  property 
called EditionID, which allows you to differentiate between the specifi c editions within each 
of the different EngineEdition values (that is, it allows you to differentiate between Enterprise, 
Enterprise Evaluation, and Developer editions). 

SQL Server Metadata

 SQL Server maintains a set of tables that store information about all the objects, data types, 
constraints, confi guration options, and resources available to SQL Server. In SQL Server 2008, 
these tables are called the system base tables. Some of the system base tables exist only in 
the master database and contain system-wide information, and others exist in every database 
(including master) and contain information about the objects and resources belonging to that 
particular database. Beginning with SQL Server 2005, the system base tables are not always 
visible by default, in master or any other database. You won’t see them when you expand 
the tables node in the Object Explorer in SQL Server Management Studio, and unless you are 
a system administrator, you won’t see them when you execute the sp_help system procedure. 
If you log in as a system administrator and select from the catalog view (discussed shortly) 
called sys.objects, you can see the names of all the system tables. For example, the following 
query returns 58 rows of output on my SQL Server 2008 instance: 

USE master; 

SELECT name FROM sys.objects 

WHERE type_desc = 'SYSTEM_TABLE';

 But even as a system administrator, if you try to select data from one of the tables whose 
names are returned by the preceding query, you get a 208 error, indicating that the object 
name is invalid. The only way to see the data in the system base tables is to make a  connection 
using the dedicated administrator connection (DAC), which we’ll tell you about in the  section 
entitled “The Scheduler,” later in this chapter. Keep in mind that the system base tables 

C01626249.indd   2 2/13/2009   9:39:56 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 3

are used for internal purposes only within the Database Engine and are not intended for 
 general use. They are subject to change, and compatibility is not guaranteed. In SQL Server 
2008, there are three types of system metadata objects. One type is Dynamic Management 
Objects, which we’ll talk about later in this chapter when we discuss SQL Server scheduling 
and  memory  management. These Dynamic Management Objects don’t really correspond to 
 physical  tables—they contain information gathered from internal structures to allow you to 
observe the current state of your SQL Server instance. The other two types of system objects 
are actually views built on top of the system base tables. 

Compatibility Views

 Although you were allowed to see data in the system tables in versions of SQL Server before 
2005, you weren’t encouraged to do this. Nevertheless, many people used system tables for 
developing their own troubleshooting and reporting tools and techniques, providing  result 
sets that aren’t available using the supplied system procedures. You might assume that due 
to the inaccessibility of the system base tables, you would have to use the DAC to utilize 
your  homegrown tools when using SQL Server 2005 or 2008. However, you still might be 
 disappointed. Many of the names and much of the content of the SQL Server 2000 system 
 tables have changed, so any code that used them is completely unusable even with the DAC. 
The DAC is intended only for emergency access, and no support is provided for any other use 
of it. To save you from this grief, SQL Server 2005 and 2008 offer a set of compatibility views 
that allow you to continue to access a subset of the SQL Server 2000 system tables. These 
views are accessible from any database, although they are created in the hidden resource 
database. 

 Some of the compatibility views have names that might be quite familiar to you, such as 
 sysobjects, sysindexes, sysusers, and sysdatabases. Others, like sysmembers and sysmessages, 
might be less familiar. For compatibility reasons, the views in SQL Server 2008 have the same 
names as their SQL Server 2000 counterparts, as well as the same column names, which means 
that any code that uses the SQL Server 2000 system tables won’t break. However, when you 
select from these views, you are not guaranteed to get exactly the same results that you get 
from the corresponding tables in SQL Server 2000. In addition, the compatibility views do 
not contain any metadata related to new SQL Server 2005 or 2008 features, such as  partitioning 
or the Resource Governor. You should consider the compatibility views to be for backward 
 compatibility only; going forward, you should consider using other metadata mechanisms, 
such as the catalog view discussed in the next section. All these compatibility views will be 
 removed in a future version of SQL Server. 

 More Info You can fi nd a complete list of names and the columns in these views in SQL Server 
Books Online.  

C01626249.indd   3 2/13/2009   9:39:56 AM



4 Microsoft SQL Server 2008 Internals

 SQL Server 2005 and 2008 also provide compatibility views for the SQL Server 2000 
pseudotables, such as sysprocesses and syscacheobjects. Pseudotables are tables that are 
not based on data stored on disk but are built as needed from internal structures and can 
be queried exactly as if they are tables. SQL Server 2005 replaced these pseudotables with 
Dynamic Management Objects. Note that there is not always a one-to-one  correspondence 
between the SQL Server 2000 pseudotables and the SQL Server 2005 and SQL Server 
2008 Dynamic Management Objects. For example, for SQL Server 2008 to retrieve all 
the  information available in sysprocesses, you must access three Dynamic Management 
Objects: sys.dm_exec_connections, sys.dm_exec_sessions, and  sys.dm_exec_requests. 

Catalog Views

 SQL Server 2005 introduced a set of catalog views as a general interface to the persisted 
system metadata. All the catalog views (as well as the Dynamic Management Objects and 
compatibility views) are in the sys schema, and you must reference the schema name when 
you access the objects. Some of the names are easy to remember because they are similar to 
the SQL Server 2000 system table names. For example, there is a catalog view called objects 
in the sys schema, so to reference the view, the following can be executed: 

SELECT * FROM sys.objects;

 Similarly, there are catalog views called sys.indexes and sys.databases, but the columns 
 displayed for these catalog views are very different from the columns in the compatibility 
views. Because the output from these types of queries is too wide to reproduce, let me just 
suggest that you run these two queries yourself and observe the difference:  

SELECT * FROM sys.databases; 

SELECT * FROM sysdatabases;

 The sysdatabases compatibility view is in the sys schema, so you can reference it as sys.sysdatabases. 
You can also reference it using dbo.sysdatabases. But again, for compatibility reasons, the schema 
name is not required, as it is for the catalog views. (That is, you cannot simply select from a view 
called databases; you must use the schema sys as a prefi x.)  

 When you compare the output from the two preceding queries, you might notice that 
there are a lot more columns in the sys.databases catalog view. Instead of a bitmap 
 status fi eld that needs to be decoded, each possible database property has its own column 
in sys.databases. With SQL Server 2000, running the system procedure sp_helpdb decodes 
all these database options, but because sp_helpdb is a procedure, it is diffi cult to fi lter the 
 results. As a view, sys.databases can be queried and fi ltered. For example, if you want to 
know which databases are in simple recovery mode, you can run the following: 

SELECT name FROM sys.databases

WHERE recovery_model_desc = 'SIMPLE';

C01626249.indd   4 2/13/2009   9:39:56 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 5

 The catalog views are built on an inheritance model, so sets of attributes common to many 
objects don’t have to be redefi ned internally. For example, sys.objects contains all the columns 
for attributes common to all types of objects, and the views sys.tables and sys.views contain 
all the same columns as sys.objects, as well as some additional columns that are relevant only 
to the particular type of objects. If you select from sys.objects, you get 12 columns, and if you 
then select from sys.tables, you get exactly the same 12 columns in the same order, plus 15 
additional columns that aren’t applicable to all types of objects but are meaningful for tables. 
In addition, although the base view sys.objects contains a subset of columns compared to the 
derived views such as sys.tables, it contains a superset of rows compared to a derived view. 
For example, the sys.objects view shows metadata for procedures and views in addition to 
that for tables, whereas the sys.tables view shows only rows for tables. So I can summarize the 
relationship between the base view and the derived views as follows: “The base views  contain 
a subset of columns and a superset of rows, and the derived views contain a superset of 
 columns and a subset of rows.”  

 Just as in SQL Server 2000, some of the metadata appears only in the master database, and 
it keeps track of system-wide data, such as databases and logins. Other metadata is available in 
every database, such as objects and permissions. The SQL Server Books Online topic “Mapping 
System Tables to System Views” categorizes its objects into two lists—those appearing only 
in master and those appearing in all databases. Note that metadata appearing only in the 
msdb database is not available through catalog views but is still available in system tables, 
in the schema dbo. This includes metadata for backup and restore, replication, Database 
Maintenance Plans, Integration Services, log shipping, and SQL Server Agent.  

 As views, these metadata objects are based on an underlying Transact-SQL (T-SQL) defi nition. 
The most straightforward way to see the defi nition of these views is by using the object_defi nition 
 function. (You can also see the defi nition of these system views by using sp_helptext or by  selecting 
from the catalog view sys.system_sql_modules.) So to see the defi nition of sys.tables, you can 
 execute the following: 

SELECT object_definition (object_id('sys.tables'));

 If you execute the preceding SELECT statement, you’ll see that the defi nition of sys.tables 
references several completely undocumented system objects. On the other hand, some system 
object defi nitions refer only to objects that are documented. For example, the defi nition of 
the compatibility view syscacheobjects refers only to three Dynamic Management Objects 
(one view, sys.dm_exec_cached_plans, and two functions, sys.dm_exec_sql_text and 
sys.dm_exec_plan_attributes) that are fully documented. 

 The metadata with names starting with ‘sys.dm_’, such as the just-mentioned sys.dm_exec_
cached_plans, are considered Dynamic Management Objects, and we’ll be discussing them in 
the next section when we discuss the SQL Server Database Engine’s behavior. 

C01626249.indd   5 2/13/2009   9:39:56 AM



6 Microsoft SQL Server 2008 Internals

Other Metadata

 Although the catalog views are the recommended interface for accessing the SQL Server 
2008 catalog, other tools are available as well.  

Information Schema Views 

 Information schema views, introduced in SQL Server 7.0, were the original system table–
independent view of the SQL Server metadata. The information schema views included 
in SQL Server 2008 comply with the SQL-92 standard and all these views are in a schema 
called INFORMATION_SCHEMA. Some of the information available through the catalog 
views is  available through the information schema views, and if you need to write a portable 
 application that accesses the metadata, you should consider using these objects. However, the 
information schema views only show objects that are compatible with the SQL-92 standard. 
This means there is no information schema view for certain features, such as indexes, which are 
not defi ned in the standard. (Indexes are an implementation detail.) If your code does not need 
to be strictly portable, or if you need metadata about nonstandard features such as indexes, 
 fi legroups, the CLR, and SQL Server Service Broker, we suggest using the  Microsoft-supplied 
catalog views. Most of the examples in the documentation, as well as in this and other 
 reference books, are based on the catalog view interface. 

System Functions

 Most SQL Server system functions are property functions, which were introduced in SQL 
Server 7.0 and greatly enhanced in SQL Server 2000. SQL Server 2005 and 2008 have  enhanced 
these functions still further. Property functions give us individual values for many SQL Server 
objects and also for SQL Server databases and the SQL Server instance itself. The values 
 returned by the property functions are scalar as opposed to tabular, so they can be used as values 
returned by SELECT statements and as values to populate columns in tables. Here is the list of 
property functions available in SQL Server 2008: 

■  SERVERPROPERTY 

■  COLUMNPROPERTY  

■  DATABASEPROPERTY  

■  DATABASEPROPERTYEX  

■  INDEXPROPERTY  

■  INDEXKEY_PROPERTY 

■  OBJECTPROPERTY 

■  OBJECTPROPERTYEX  

■  SQL_VARIANT_PROPERTY  

■  FILEPROPERTY  

C01626249.indd   6 2/13/2009   9:39:56 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 7

■  FILEGROUPPROPERTY  

■  TYPEPROPERTY  

■  CONNECTIONPROPERTY 

■  ASSEMBLYPROPERTY 

 The only way to fi nd out what the possible property values are for the various functions is to 
check SQL Server Books Online.  

 Some of the information returned by the property functions can also be seen using the catalog 
views. For example, the DATABASEPROPERTYEX function has a property called Recovery that 
returns the recovery model of a database. To view the recovery model of a single database, 
you can use the property function as follows: 

SELECT DATABASEPROPERTYEX('msdb', 'Recovery'); 

 To view the recovery models of all our databases, you can use the sys.databases view: 

SELECT name, recovery_model, recovery_model_desc 

FROM sys.databases;

 Note Columns with names ending in _desc are the so-called friendly name columns, and they 
are always paired with another column that is much more compact, but cryptic. In this case, the 
recovery_model column is a tinyint with a value of 1, 2, or 3. Both columns are available in the 
view because different consumers have different needs. For example, internally at Microsoft, the 
teams building the internal interfaces wanted to bind to more compact columns, whereas DBAs 
running adhoc queries might prefer the friendly names.  

 In addition to the property functions, the system functions include functions that are 
merely shortcuts for catalog view access. For example, to fi nd out the database ID for the 
AdventureWorks2008 database, you can either query the sys.databases catalog view or use the 
DB_ID() function. Both of the following SELECT statements should return the same result:  

SELECT database_id 

FROM sys.databases 

WHERE name = 'AdventureWorks2008'; 

 

SELECT DB_ID('AdventureWorks2008');

System Stored Procedures

 System stored procedures are the original metadata access tool, in addition to the  system 
 tables themselves. Most of the system stored procedures introduced in the very fi rst  version 
of SQL Server are still available. However, catalog views are a big improvement over these 
procedures: you have control over how much of the metadata you see because you can 
 query the views as if they were tables. With the system stored procedures, you basically 
have to accept the data that it returns. Some of the procedures allow parameters, but they 
are very limited. So for the sp_helpdb procedure, you can pass a parameter to see just one 

C01626249.indd   7 2/13/2009   9:39:56 AM



8 Microsoft SQL Server 2008 Internals

 database’s information or not pass a parameter and see information for all databases. 
However, if you want to see only databases that the login sue owns, or just see databases 
that are in a lower  compatibility level, you cannot do it using the supplied stored procedure. 
Using the catalog views, these queries are straightforward: 

SELECT name FROM sys.databases 

WHERE suser_sname(owner_sid) ='sue'; 

 

SELECT name FROM sys.databases 

WHERE compatibility_level < 90; 

Metadata Wrap-Up

 Figure 1-1 shows the multiple layers of metadata available in SQL Server 2008, with the  lowest 
layer being the system base tables (the actual catalog). Any interface that accesses the 
 information contained in the system base tables is subject to the metadata security policies. 
For SQL Server 2008, that means that no users can see any metadata that they don’t need to 
see or to which they haven’t specifi cally been granted permissions. (There are a few exceptions, 
but they are very minor.) The “other metadata” refers to system information not contained in 
system tables, such as the internal information provided by the Dynamic Management Objects. 
Remember that the preferred interfaces to the system metadata are the catalog views and 
 system functions. Although not all the compatibility views, INFORMATION_SCHEMA views, 
and system procedures are actually defi ned in terms of the catalog views, conceptually it is 
useful to think of them as another layer on top of the catalog view interface. 

Backward Compatible Views
INFORMATION_SCHEMA Views

Other
Metadata

Catalog Views

Metadata Security Layer

SQL Server 2008 Catalog – Persisted State

Built-in Functions

FIGURE 1-1 Layers of metadata in SQL Server 2008

Components of the SQL Server Engine

 Figure 1-2 shows the general architecture of SQL Server, which has four major components. 
Three of those components, along with their subcomponents are shown in the fi gure: the 
relational engine (also called the query processor), the storage engine, and the SQLOS. 

C01626249.indd   8 2/13/2009   9:39:56 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 9

(The fourth component is the protocol layer, which is not shown.) Every batch  submitted 
to SQL Server for execution, from any client application, must interact with these four 
 components. (For simplicity, I’ve made some minor omissions and simplifi cations and  ignored 
certain “helper” modules among the subcomponents.) 

 The protocol layer receives the request and translates it into a form that the relational 
 engine can work with, and it also takes the fi nal results of any queries, status messages, or 
error  messages and translates them into a form the client can understand before sending 
them back to the  client. The relational engine layer accepts T-SQL batches and determines 
what to do with them. For T-SQL queries and programming constructs, it parses, compiles, 
and  optimizes the request and oversees the process of executing the batch. As the batch 
is  executed, if data is needed, a  request for that data is passed to the storage engine. The 
storage engine manages all data access, both through transaction-based commands and 
bulk operations such as backup, bulk insert, and certain DBCC commands. The SQLOS layer 
handles  activities that are normally  considered to be operating system responsibilities, such 
as thread  management (scheduling), synchronization primitives, deadlock detection, and 
memory management, including the buffer pool.  

Storage Engine (Access Methods, Database Page
Cache, Locking, Transactions, ...)

Query Optimization

(Plan Generation, View
Matching, Statistics, Costing)

(Query Operators,
Memory Grants, Parallelism)

Query Execution

Language Processing
(Parse/Bind, Statement/Batch Execution)

SQLOS (Schedulers, Buffer Pool, Memory
Management, Synchronization Primitives, ...)

M
et

ad
at

a,
 T

yp
e 

Sy
st

em
,

Ex
pr

es
si

on
 S

er
vi

ce
s

U
tilities

(D
BCC, Backup/Restore, BCP, ...)

FIGURE 1-2 The major components of the SQL Server Database Engine

Observing Engine Behavior

 SQL Server 2008 includes a suite of system objects that allow developers and database 
 administrators to observe much of the internals of SQL Server. These metadata objects, 
 introduced in SQL Server 2005, are called Dynamic Management Objects. These objects 
include both views and functions, but the vast majority are views. (Dynamic Management 
Objects are frequently referred to as Dynamic Management Views (DMVs) to refl ect the 
fact that most of the objects are views.) You can access these metadata objects as if they 
reside in the sys schema, which exists in every SQL Server 2008 database, but they are 
not real tables that are stored on disk. They are similar to the pseudotables used in SQL 
Server 2000 for  observing the active processes (sysprocesses) or the contents of the plan 

C01626249.indd   9 2/13/2009   9:39:57 AM



10 Microsoft SQL Server 2008 Internals

cache  (syscacheobjects). However, the pseudotables in SQL Server 2000 do not provide any 
 tracking of detailed resource usage and are not always directly usable to detect resource 
problems or state changes. Some of the DMVs allow tracking of detailed resource history, 
and there are more than 100 such objects that you can directly query and join with SQL 
SELECT statements, although not all of these objects are documented. The DMVs expose 
changing server state information that might span multiple sessions, multiple transactions, 
and multiple user requests. These objects can be used for diagnostics, memory and process 
tuning, and monitoring across all sessions in the server. They also provide much of the data 
available through the Management Data Warehouse’s performance reports, which is a new 
feature in SQL Server 2008. (Note that sysprocesses and syscacheobjects are still available as 
compatibility views, which we mentioned in the section “SQL Server Metadata,” earlier in 
this chapter.)  

 The DMVs aren’t based on real tables stored in database fi les but are based on internal server 
structures, some of which we’ll discuss in this chapter. We’ll discuss further details about the 
DMVs in various places in this book, where the contents of one or more of the objects can 
illuminate the topics being discussed. The objects are separated into several categories based 
on the functional area of the information they expose. They are all in the sys schema and 
have a name that starts with dm_, followed by a code indicating the area of the server with 
which the object deals. The main categories we’ll address are the following: 

 dm_exec_* 

 Contains information directly or indirectly related to the execution of user code 
and  associated connections. For example, sys.dm_exec_sessions returns one row per 
 authenticated session on SQL Server. This object contains much of the same  information 
that sysprocesses contains but has even more information about the  operating 
 environment of each session. 

  dm_os_*

Contains low-level system information such as memory, locking, and scheduling. 
For example, sys.dm_os_schedulers is a DMV that returns one row per scheduler. It is 
primarily used to monitor the condition of a scheduler or to identify runaway tasks. 

 dm_tran_*

Contains details about current transactions. For example, sys.dm_tran_locks returns 
 information about currently active lock resources. Each row represents a currently 
 active request to the lock management component for a lock that has been granted 
or is waiting to be granted.  

 dm_io_*

Keeps track of I/O activity on networks and disks. For example, the  function 
sys.dm_io_virtual_fi le_stats returns I/O statistics for data and log fi les.  

 dm_db_*

Contains details about databases and database objects such as indexes. For example, 
sys.dm_db_index_physical_stats is a function that returns size and fragmentation 
 information for the data and indexes of the specifi ed table or view.  

C01626249.indd   10 2/13/2009   9:39:57 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 11

 SQL Server 2008 also has Dynamic Management Objects for many of its functional 
 components; these include objects for monitoring full-text search catalogs, change data 
 capture (CDC) information, service broker, replication, and the CLR.  

 Now let’s look at the major components of the SQL Server Database Engine.  

Protocols

 When an application communicates with the Database Engine, the application  programming 
interfaces (APIs) exposed by the protocol layer formats the communication using a 
 Microsoft-defi ned format called a tabular data stream (TDS) packet. The SQL Server Network 
Interface (SNI) protocol layer on both the server and client computers encapsulates the TDS 
packet inside a standard communication protocol, such as TCP/IP or Named Pipes. On the 
server side of the communication, the network libraries are part of the Database Engine. On 
the client side, the network libraries are part of the SQL Native Client. The confi guration of 
the client and the instance of SQL Server determine which protocol is used.  

 SQL Server can be confi gured to support multiple protocols simultaneously,  coming from 
 different clients. Each client connects to SQL Server with a single protocol. If the client 
 program does not know which protocols SQL Server is listening on, you can  confi gure 
the  client to attempt multiple protocols sequentially. The following protocols are 
available:  

 Shared Memory The simplest protocol to use, with no confi gurable settings. Clients  using 
the Shared Memory protocol can connect only to a SQL Server instance  running 
on the same computer, so this protocol is not useful for most database activity. 
Use this protocol for troubleshooting when you suspect that the other protocols 
are  confi gured incorrectly. Clients using MDAC 2.8 or earlier cannot use the Shared 
Memory protocol. If such a connection is attempted, the client is switched to the 
Named Pipes protocol. 

 Named Pipes A protocol developed for local area networks (LANs). A portion of memory is 
used by one process to pass information to another process, so that the output of one 
is the input of the other. The second process can be local (on the same computer as the 
fi rst) or remote (on a networked computer). 

 TCP/IP The most widely used protocol over the Internet. TCP/IP can communicate across 
 interconnected networks of computers with diverse hardware architectures and  operating 
systems. It includes standards for routing network traffi c and offers advanced security 
 features. Enabling SQL Server to use TCP/IP requires the most confi guration effort, but 
most networked computers are already properly confi gured. 

 Virtual Interface Adapter (VIA) A protocol that works with VIA hardware. This is a specialized 
protocol; confi guration details are available from your hardware vendor. 

C01626249.indd   11 2/13/2009   9:39:57 AM



12 Microsoft SQL Server 2008 Internals

Tabular Data Stream Endpoints 

 SQL Server 2008 also allows you to create a TDS endpoint, so that SQL Server listens on an 
additional TCP port. During setup, SQL Server automatically creates an endpoint for each 
of the four protocols supported by SQL Server, and if the protocol is enabled, all users have 
 access to it. For disabled protocols, the endpoint still exists but cannot be used. An additional 
endpoint is created for the DAC, which can be used only by members of the sysadmin fi xed 
server role. (We’ll discuss the DAC in more detail shortly.)  

The Relational Engine

 As mentioned earlier, the relational engine is also called the query processor. It includes the 
components of SQL Server that determine exactly what your query needs to do and the 
best way to do it. In Figure 1-2, the relational engine is shown as two primary  components: 
Query Optimization and Query Execution. By far the most complex component of the query 
 processor, and maybe even of the entire SQL Server product, is the Query Optimizer, which 
determines the best execution plan for the queries in the batch. The Query Optimizer is 
 discussed in great detail in Chapter 8, “The Query Optimizer”; in this section, we’ll give you 
just a  high-level overview of the Query Optimizer as well as of the other components of the 
query processor. 

 The relational engine also manages the execution of queries as it requests data from the 
storage engine and processes the results returned. Communication between the relational 
engine and the storage engine is generally in terms of OLE DB row sets. (Row set is the 
OLE DB term for a result set.) The storage engine comprises the components needed to 
 actually access and modify data on disk. 

The Command Parser

 The command parser handles T-SQL language events sent to SQL Server. It checks for proper 
syntax and translates T-SQL commands into an internal format that can be operated on. This 
internal format is known as a query tree. If the parser doesn’t recognize the syntax, a syntax 
error is immediately raised that identifi es where the error occurred. However, nonsyntax 
 error messages cannot be explicit about the exact source line that caused the error. Because 
only the command parser can access the source of the statement, the statement is no longer 
available in source format when the command is actually executed. 

The Query Optimizer

 The Query Optimizer takes the query tree from the command parser and prepares it for 
execution. Statements that can’t be optimized, such as fl ow-of-control and Data Defi nition 
Language (DDL) commands, are compiled into an internal form. The statements that are 

C01626249.indd   12 2/13/2009   9:39:57 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 13

 optimizable are marked as such and then passed to the Query Optimizer. The Query Optimizer 
is mainly concerned with the Data Manipulation Language (DML) statements SELECT, INSERT, 
UPDATE, and DELETE, which can be processed in more than one way, and it is the Query 
Optimizer’s job to determine which of the many possible ways is the best. It compiles an 
 entire command batch, optimizes queries that are optimizable, and checks security. The  query 
 optimization and compilation result in an execution plan.  

 The fi rst step in producing such a plan is to normalize each query, which potentially breaks 
down a single query into multiple, fi ne-grained queries. After the Query Optimizer normalizes 
a query, it optimizes it, which means that it determines a plan for executing that query. Query 
optimization is cost-based; the Query Optimizer chooses the plan that it determines would 
cost the least based on internal metrics that include estimated memory requirements, CPU 
utilization, and number of required I/Os. The Query Optimizer considers the type of  statement 
requested, checks the amount of data in the various tables affected, looks at the indexes 
 available for each table, and then looks at a sampling of the data values kept for each index or 
column referenced in the query. The sampling of the data values is called distribution  statistics. 
(Statistics will be discussed in detail in Chapter 8.) Based on the available information, the 
Query Optimizer considers the various access methods and processing strategies that it could 
use to resolve a query and chooses the most cost-effective plan. 

 The Query Optimizer also uses pruning heuristics to ensure that optimizing a query doesn’t 
take longer than it would take to simply choose a plan and execute it. The Query Optimizer 
doesn’t  necessarily perform exhaustive optimization. Some products consider every 
 possible plan and then choose the most cost-effective one. The advantage of this exhaustive 
 optimization is that the syntax chosen for a query theoretically never causes a performance 
difference, no matter what syntax the user employed. But with a complex query, it could take 
much longer to estimate the cost of every conceivable plan than it would to accept a good 
plan, even if it is not the best one, and execute it. 

 After normalization and optimization are completed, the normalized tree produced by those 
processes is compiled into the execution plan, which is actually a data structure. Each command 
included in it specifi es exactly which table will be affected, which indexes will be used (if any), 
which security checks must be made, and which criteria (such as equality to a specifi ed value) 
must evaluate to TRUE for selection. This execution plan might be considerably more complex 
than is immediately apparent. In addition to the actual commands, the execution plan includes 
all the steps necessary to ensure that constraints are checked. Steps for calling a trigger are 
slightly different from those for verifying constraints. If a trigger is included for the action 
 being taken, a call to the procedure that comprises the trigger is appended. If the trigger is an 
instead-of trigger, the call to the trigger’s plan replaces the actual data modifi cation command. 
For after triggers, the trigger’s plan is branched to right after the plan for the modifi cation 
statement that fi red the trigger, before that modifi cation is committed. The specifi c steps for 
the trigger are not compiled into the execution plan, unlike those for constraint verifi cation. 

C01626249.indd   13 2/13/2009   9:39:57 AM



14 Microsoft SQL Server 2008 Internals

 A simple request to insert one row into a table with multiple constraints can result in an 
 execution plan that requires many other tables to be accessed or expressions to be evaluated 
as well. In addition, the existence of a trigger can cause many more steps to be executed. 
The step that carries out the actual INSERT statement might be just a small part of the total 
execution plan necessary to ensure that all actions and constraints associated with adding a 
row are carried out.  

The Query Executor

 The query executor runs the execution plan that the Query Optimizer produced, acting as 
a  dispatcher for all the commands in the execution plan. This module steps through each 
 command of the execution plan until the batch is complete. Most of the commands require 
interaction with the storage engine to modify or retrieve data and to manage  transactions 
and locking. More information on query execution, and execution plans, is available on the 
companion Web site, http://www.SQLServerInternals.com/companion. 

The Storage Engine

 The SQL Server storage engine includes all the components involved with the accessing and 
managing of data in your database. In SQL Server 2008, the storage engine is composed of 
three main areas: access methods, locking and transaction services, and utility commands.  

Access Methods

 When SQL Server needs to locate data, it calls the access methods code. The access methods 
code sets up and requests scans of data pages and index pages and prepares the OLE DB 
row sets to return to the relational engine. Similarly, when data is to be inserted, the access 
 methods code can receive an OLE DB row set from the client. The access methods code  contains 
 components to open a table, retrieve qualifi ed data, and update data. The access methods 
code doesn’t actually retrieve the pages; it makes the request to the buffer manager, which 
 ultimately serves up the page in its cache or reads it to cache from disk. When the scan starts, a 
 look-ahead mechanism qualifi es the rows or index entries on a page. The retrieving of rows that 
meet specifi ed criteria is known as a qualifi ed retrieval. The access methods code is employed 
not only for SELECT statements but also for qualifi ed UPDATE and DELETE statements (for 
 example, UPDATE with a WHERE clause) and for any data modifi cation operations that need to 
modify index entries. Some types of access methods are listed below.  

Row and Index Operations  You can consider row and index operations to be  components 
of the access methods code because they carry out the actual method of access. Each 
 component is responsible for  manipulating and maintaining its respective on-disk data 
 structures—namely, rows of data or B-tree indexes, respectively. They understand and 
 manipulate information on data and index pages. 

C01626249.indd   14 2/13/2009   9:39:57 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 15

 The row operations code retrieves, modifi es, and performs operations on individual rows. 
It  performs an operation within a row, such as “retrieve column 2” or “write this value to 
 column 3.” As a result of the work performed by the access methods code, as well as by the 
lock and transaction management components (discussed shortly), the row is found and 
 appropriately locked as part of a transaction. After formatting or modifying a row in  memory, 
the row  operations code inserts or deletes a row. There are special operations that the row 
operations code needs to handle if the data is a Large Object (LOB) data type—text, image, 
or ntext—or if the row is too large to fi t on a single page and needs to be stored as overfl ow 
data. We’ll look at the different types of data storage structures in Chapters 5, “Tables,” 6, 
“Indexes: Internals and Management,” and 7, “Special Storage.” 

 The index operations code maintains and supports searches on B-trees, which are used for 
SQL Server indexes. An index is structured as a tree, with a root page and intermediate-level 
and lower-level pages. (If the tree is very small, there might not be intermediate-level pages.) 
A B-tree groups records that have similar index keys, thereby allowing fast access to data 
by searching on a key value. The B-tree’s core feature is its ability to balance the index tree. 
(B stands for balanced.) Branches of the index tree are spliced together or split apart as  necessary 
so that the search for any given record always traverses the same number of levels and therefore 
requires the same number of page accesses. 

Page Allocation Operations   The allocation operations code manages a collection of pages 
for each database and keeps track of which pages in a database have already been used, for 
what purpose they have been used, and how much space is available on each page. Each 
 database is a collection of 8-KB disk pages that are spread across one or more physical fi les. 
(In Chapter 3, “Databases and Database Files,” you’ll fi nd more details about the physical 
 organization of databases.) 

 SQL Server uses 13 types of disk pages. The ones we’ll be discussing in this book are data 
 pages, two types of LOB pages, row-overfl ow pages, index pages, Page Free Space (PFS) 
 pages, Global Allocation Map and Shared Global Allocation Map (GAM and SGAM) pages, 
Index Allocation Map (IAM) pages, Bulk Changed Map (BCM) pages, and Differential Changed 
Map (DCM) pages.  

 All user data is stored on data or LOB pages, and all index rows are stored on index pages. PFS 
pages keep track of which pages in a database are available to hold new data. Allocation pages 
(GAMs, SGAMs, and IAMs) keep track of the other pages. They contain no database rows and 
are used only internally. BCM and DCM pages are used to make backup and  recovery more 
effi cient. We’ll explain these types of pages in Chapters 3 and 4, “Logging and Recovery.” 

Versioning Operations  Another type of data access, which was added to the product in SQL 
Server 2005, is access through the version store. Row versioning allows SQL Server to  maintain 
older versions of changed rows. The row versioning technology in SQL Server supports 
 Snapshot isolation as well as other features of SQL Server 2008, including online index builds 
and triggers, and it is the versioning operations code that maintains row versions for whatever 
purpose they are needed.  

C01626249.indd   15 2/13/2009   9:39:57 AM



16 Microsoft SQL Server 2008 Internals

 Chapters 3, 5, 6, and 7 deal extensively with the internal details of the structures that the 
 access methods code works with: databases, tables, and indexes. 

Transaction Services

 A core feature of SQL Server is its ability to ensure that transactions are atomic—that is, all or 
nothing. In addition, transactions must be durable, which means that if a transaction has been 
committed, it must be recoverable by SQL Server no matter what—even if a total system failure 
occurs one millisecond after the commit was acknowledged. There are actually four properties 
that transactions must adhere to: atomicity, consistency, isolation, and durability, called the ACID 
properties. we’ll discuss all four of these properties in Chapter 10, “Transactions and Concurrency,” 
when we discuss transaction management and concurrency issues. 

 In SQL Server, if work is in progress and a system failure occurs before the transaction is 
committed, all the work is rolled back to the state that existed before the transaction began. 
Write-ahead logging makes it possible to always roll back work in progress or roll forward 
committed work that has not yet been applied to the data pages. Write-ahead logging 
 ensures that the record of each transaction’s changes is captured on disk in the  transaction 
log before a transaction is acknowledged as committed, and that the log records are always 
written to disk before the data pages where the changes were actually made are written. 
Writes to the transaction log are always synchronous—that is, SQL Server must wait for 
them to complete. Writes to the data pages can be asynchronous because all the effects 
can be  reconstructed from the log if necessary. The transaction management component 
 coordinates logging, recovery, and buffer management. These topics are discussed later in 
this book; at this point, we’ll just look briefl y at transactions themselves. 

 The transaction management component delineates the boundaries of statements that must 
be grouped together to form an operation. It handles transactions that cross databases 
within the same SQL Server instance, and it allows nested transaction sequences. (However, 
nested transactions simply execute in the context of the fi rst-level transaction; no special 
 action occurs when they are committed. And a rollback specifi ed in a lower level of a nested 
transaction undoes the entire transaction.) For a distributed transaction to another SQL 
Server instance (or to any other resource manager), the transaction management component 
coordinates with the Microsoft Distributed Transaction Coordinator (MS DTC) service using 
operating system remote procedure calls. The transaction management component marks 
save points—points you designate within a transaction at which work can be partially rolled 
back or undone. 

 The transaction management component also coordinates with the locking code regarding 
when locks can be released, based on the isolation level in effect. It also coordinates with the 
versioning code to determine when old versions are no longer needed and can be removed 
from the version store. The isolation level in which your transaction runs determines how 
sensitive your application is to changes made by others and consequently how long your 
transaction must hold locks or maintain versioned data to protect against those changes.  

C01626249.indd   16 2/13/2009   9:39:57 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 17

 SQL Server 2008 supports two concurrency models for guaranteeing the ACID properties of 
transactions: optimistic concurrency and pessimistic concurrency. Pessimistic concurrency 
guarantees correctness and consistency by locking data so that it cannot be changed; this 
is the concurrency model that every version of SQL Server prior to SQL Server 2005 used 
 exclusively, and it is the default in both SQL Server 2005 and SQL Server 2008. SQL Server 
2005 introduced optimistic concurrency, which provides consistent data by keeping older 
versions of rows with committed values in an area of tempdb called the version store. With 
optimistic concurrency, readers do not block writers and writers do not block readers, but 
writers still block writers. The cost of these nonblocking reads and writes must be considered. 
To support optimistic concurrency, SQL Server needs to spend more time managing the 
 version store. In addition, administrators have to pay close attention to the tempdb database 
and plan for the extra maintenance it requires.  

 Five isolation-level semantics are available in SQL Server 2008. Three of them support 
only pessimistic concurrency: Read Uncommitted, Repeatable Read, and Serializable. 
Snapshot isolation level supports optimistic concurrency. The default isolation level, Read 
Committed, can support either optimistic or pessimistic concurrency, depending on a 
 database setting. 

 The behavior of your transactions depends on the isolation level and the concurrency 
model you are working with. A complete understanding of isolation levels also requires an 
 understanding of locking because the topics are so closely related. The next section gives 
an overview of locking; you’ll fi nd more detailed information on isolation, transactions, and 
 concurrency management in Chapter 10. 

Locking Operations  Locking is a crucial function of a multiuser database system such as 
SQL Server, even if you are operating primarily in the Snapshot isolation level with optimistic 
concurrency. SQL Server lets you manage multiple users simultaneously and ensures that the 
transactions observe the properties of the chosen isolation level. Even though readers do not 
block writers and writers do not block readers in Snapshot isolation, writers do acquire locks 
and can still block other writers, and if two writers try to change the same data concurrently, 
a confl ict occurs that must be resolved. The locking code acquires and releases various types 
of locks, such as share locks for reading, exclusive locks for writing, intent locks taken at a 
higher granularity to signal a potential “plan” to perform some operation, and extent locks 
for space allocation. It manages compatibility between the lock types, resolves deadlocks, 
and escalates locks if needed. The locking code controls table, page, and row locks as well as 
system data locks. 

 Note Concurrency, with locks or row versions, is an important aspect of SQL Server. Many 
 developers are keenly interested in it because of its potential effect on application performance. 
Chapter 10 is devoted to the subject, so we won’t go into it further here. 

C01626249.indd   17 2/13/2009   9:39:57 AM



18 Microsoft SQL Server 2008 Internals

Other Operations

 Also included in the storage engine are components for controlling utilities such as  bulk-load, 
DBCC commands, full-text index population and management, and backup and restore 
 operations. DBCC is discussed in detail in Chapter 11, “DBCC Internals.” The log manager 
makes sure that log records are written in a manner to guarantee transaction durability and 
recoverability; we’ll go into detail about the transaction log and its role in backup and restore 
operations in Chapter 4. 

The SQLOS

 The SQLOS is a separate application layer at the lowest level of the SQL Server Database 
Engine, that both SQL Server and SQL Reporting Services run atop. Earlier versions of SQL 
Server have a thin layer of interfaces between the storage engine and the actual operating 
system through which SQL Server makes calls to the operating system for memory allocation, 
scheduler resources, thread and worker management, and synchronization objects. However, 
the services in SQL Server that needed to access these interfaces can be in any part of the 
engine. SQL Server requirements for managing memory, schedulers, synchronization objects, 
and so forth have become more complex. Rather than each part of the engine growing to 
support the increased functionality, a single application layer has been designed to manage 
all operating system resources that are specifi c to SQL Server.  

 The two main functions of SQLOS are scheduling and memory management, both of which 
we’ll talk about in detail later in this section. Other functions of SQLOS include the following:  

 Synchronization Synchronization objects include spinlocks, mutexes, and special reader/
writer locks on system resources.  

 Memory Brokers Memory brokers distribute memory allocation between various 
 components within SQL Server, but do not perform any allocations, which are handled 
by the Memory Manager.  

 SQL Server Exception Handling Exception handling involves dealing with user errors as 
well as system-generated errors. 

 Deadlock Detection The deadlock detection mechanism doesn’t just involve locks, but 
checks for any tasks holding onto resources, that are mutually blocking each other. 
We’ll talk about  deadlocks involving locks (by far the most common kind) in 
Chapter 10. 

 Extended Events Tracking extended events is similar to the SQL Trace capability, but is 
much more  effi cient because the tracking runs at a much lower level than SQL Trace. 
In addition, because the extended event layer is so low and deep, there are many more 
types of events that can be tracked. The SQL Server 2008 Resource Governor manages 

C01626249.indd   18 2/13/2009   9:39:57 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 19

resource usage using extended events. We’ll talk about extended events in Chapter 2, 
“Change Tracking, Tracing, and Extended Events.” (In a future version, all tracing will be 
handled at this level by  extended events.) 

 Asynchronous IO The difference between asynchronous and synchronous is what part of 
the system is actually waiting for an unavailable resource. When SQL Server requests a 
synchronous I/O, if the resource is not available the Windows kernel will put the thread 
on a wait queue until the resource becomes available. For asynchronous I/O, SQL Server 
requests that Windows initiate an I/O. Windows starts the I/O operation and doesn’t 
stop the thread from running. SQL Server will then place the server session in an I/O 
wait queue until it gets the signal from Windows that the resource is available. 

NUMA Architecture

 SQL Server 2008 is NUMA–aware, and both scheduling and memory management can take 
advantage of NUMA hardware by default. You can use some special confi gurations when 
you work with NUMA, so we’ll provide some general  background here before discussing 
 scheduling and memory.  

 The main benefi t of NUMA is scalability, which has defi nite limits when you use symmetric 
multiprocessing (SMP) architecture. With SMP, all memory access is posted to the same shared 
memory bus. This works fi ne for a relatively small number of CPUs, but problems appear 
when you have many CPUs competing for access to the shared memory bus. The trend in 
hardware has been to have more than one system bus, each serving a small set of  processors. 
NUMA limits the number of CPUs on any one memory bus. Each group of  processors has 
its own memory and possibly its own I/O channels. However, each CPU can access memory 
 associated with other groups in a coherent way, and we’ll discuss this a bit more later in 
the chapter. Each group is called a NUMA node, and the nodes are linked to each other by 
a  high-speed interconnection. The number of CPUs within a NUMA node depends on the 
hardware vendor. It is faster to access local memory than the memory associated with other 
NUMA nodes. This is the reason for the name Non-Uniform Memory Access. Figure 1-3 shows 
a NUMA node with four CPUs.  

 SQL Server 2008 allows you to subdivide one or more physical NUMA nodes into smaller 
NUMA nodes, referred to as software NUMA or soft-NUMA. You typically use soft-NUMA 
when you have many CPUs and do not have hardware NUMA because soft-NUMA allows 
only for the subdividing of CPUs but not memory. You can also use soft-NUMA to subdivide 
hardware NUMA nodes into groups of fewer CPUs than is provided by the hardware NUMA. 
Your soft-NUMA nodes can also be confi gured to listen on their own ports. 

 Only the SQL Server scheduler and SNI are soft-NUMA–aware. Memory nodes are created 
based on hardware NUMA and are therefore not affected by soft-NUMA.  

C01626249.indd   19 2/13/2009   9:39:57 AM



20 Microsoft SQL Server 2008 Internals

CPU

CPU LazywriterI/O

Resource
Monitor

CPU MEM

CPU

Memory
controller

System
Interconnect

FIGURE 1-3 A NUMA node with four CPUs 

 TCP/IP, VIA, Named Pipes, and shared memory can take advantage of NUMA round-robin 
scheduling, but only TCP and VIA can affi nitize to a specifi c set of NUMA nodes. See SQL 
Server Books Online for how to use the SQL Server Confi guration Manager to set a TCP/IP 
 address and port to single or multiple nodes. 

The Scheduler

 Prior to SQL Server 7.0, scheduling depended entirely on the underlying Microsoft Windows 
operating system. Although this meant that SQL Server could take advantage of the hard 
work done by Windows engineers to enhance scalability and effi cient processor use, there 
were defi nite limits. The Windows scheduler knew nothing about the needs of a relational 
database system, so it treated SQL Server worker threads the same as any other  process 
 running on the operating system. However, a high-performance system such as SQL 
Server functions best when the scheduler can meet its special needs. SQL Server 7.0 and 
all  subsequent versions are designed to handle their own scheduling to gain a number of 
 advantages, including the following: 

■  A private scheduler can support SQL Server tasks using fi bers as easily as it supports 
 using threads. 

■  Context switching and switching into kernel mode can be avoided as much as possible. 

 Note The scheduler in SQL Server 7.0 and SQL Server 2000 was called the User Mode Scheduler 
(UMS) to refl ect the fact that it ran primarily in user mode, as opposed to kernel mode. SQL 
Server 2005 and 2008 call the scheduler the SOS Scheduler and improve on UMS even more.  

 One major difference between the SOS scheduler and the Windows scheduler is that the SQL 
Server scheduler runs as a cooperative rather than a preemptive scheduler. This means that 
it relies on the workers, threads, or fi bers to yield voluntarily often enough so one process 
or thread doesn’t have exclusive control of the system. The SQL Server product team has to 

C01626249.indd   20 2/13/2009   9:39:57 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 21

make sure that its code runs effi ciently and voluntarily yields the scheduler in appropriate 
places; the reward for this is much greater control and scalability than is possible with the 
Windows scheduler.  

 Even though the scheduler is not preemptive, the SQL Server scheduler still adheres to a 
concept of a quantum. Instead of SQL Server tasks being forced to give up the CPU by the 
operating system, SQL Server tasks can request to be put on a wait queue periodically, and 
if they have exceeded the internally defi ned quantum, and they are not in the middle of an 
operation that cannot be stopped, they will voluntarily relinquish the CPU.  

SQL Server Workers 

 You can think of the SQL Server scheduler as a logical CPU used by SQL Server workers. 
A worker can be either a thread or a fi ber that is bound to a logical scheduler. If the Affi nity 
Mask Confi guration option is set, each scheduler is affi nitized to a particular CPU. (We’ll talk 
about confi guration later in this chapter.) Thus, each worker is also associated with a single 
CPU. Each scheduler is assigned a worker limit based on the confi gured Max Worker Threads 
and the number of schedulers, and each scheduler is responsible for creating or destroying 
workers as needed. A worker cannot move from one scheduler to another, but as workers are 
destroyed and created, it can appear as if workers are moving between schedulers. 

 Workers are created when the scheduler receives a request (a task to execute) and there are 
no idle workers. A worker can be destroyed if it has been idle for at least 15 minutes, or if SQL 
Server is under memory pressure. Each worker can use at least half a megabyte of memory 
on a 32-bit system and at least 2 MB on a 64-bit system, so destroying  multiple workers and 
freeing their memory can yield an immediate performance improvement on  memory-starved 
systems. SQL Server actually handles the worker pool very effi ciently, and you might be 
 surprised to know that even on very large systems with hundreds or even  thousands of 
 users, the actual number of SQL Server workers might be much lower than the confi gured 
value for Max Worker Threads. Later in this section, we’ll tell you about some of the Dynamic 
Management Objects that let you see how many workers you actually have, as well as 
 scheduler and task information (discussed in the next section).  

SQL Server Schedulers

 In SQL Server 2008, each actual CPU (whether hyperthreaded or physical) has a scheduler 
created for it when SQL Server starts. This is true even if the affi nity mask option has been 
confi gured so that SQL Server is set to not use all the available physical CPUs. In SQL Server 
2008, each scheduler is set to either ONLINE or OFFLINE based on the affi nity mask  settings, 
and the default is that all schedulers are ONLINE. Changing the affi nity mask value can 
change the status of one or more schedulers to OFFLINE, and you can do this without having 
to restart your SQL Server. Note that when a scheduler is switched from ONLINE to OFFLINE 
due to a confi guration change, any work already assigned to the scheduler is fi rst completed 
and no new work is assigned.  

C01626249.indd   21 2/13/2009   9:39:57 AM



22 Microsoft SQL Server 2008 Internals

SQL Server Tasks

 The unit of work for a SQL Server worker is a request, or a task, which you can think of as  being 
equivalent to a single batch sent from the client to the server. Once a request is  received by SQL 
Server, it is bound to a worker, and that worker processes the entire request before handling 
any other request. This holds true even if the request is blocked for some reason, such as while it 
waits for a lock or for I/O to complete. The particular worker does not handle any new requests 
but waits until the blocking condition is resolved and the request can be completed. Keep in 
mind that a session ID (SPID) is not the same as a task. A SPID is a connection or channel over 
which requests can be sent, but there is not always an active request on any particular SPID.  

 In SQL Server 2008, a SPID is not bound to a particular scheduler. Each SPID has a 
 preferred scheduler, which is the scheduler that most recently processed a request from 
the SPID. The SPID is initially assigned to the scheduler with the lowest load. (You can get 
some  insight into the load on each scheduler by looking at the load_factor column in the 
DMV  sys.dm_os_schedulers.) However, when subsequent requests are sent from the same 
SPID, if  another scheduler has a load factor that is less than a certain percentage of the 
average of the  scheduler’s entire load factor, the new task is given to the scheduler with 
the smallest load factor. There is a restriction that all tasks for one SPID must be processed 
by schedulers on the same NUMA node. The exception to this restriction is when a query 
is being executed as a parallel query across multiple CPUs. The optimizer can decide to 
use more CPUs that are available on the NUMA node processing the query, so other CPUs 
(and other schedulers) can be used.  

Threads vs. Fibers

 As mentioned earlier, the UMS was designed to work with workers running on either threads 
or fi bers. Windows fi bers have less overhead associated with them than threads do, and 
 multiple  fi bers can run on a single thread. You can confi gure SQL Server to run in fi ber mode by 
 setting the Lightweight Pooling option to 1. Although using less overhead and a “lightweight” 
 mechanism sounds like a good idea, you should evaluate the use of fi bers carefully.  

 Certain components of SQL Server don’t work, or don’t work well, when SQL Server runs in 
fi ber mode. These components include SQLMail and SQLXML. Other components, such as 
heterogeneous and CLR queries, are not supported at all in fi ber mode because they need 
certain thread-specifi c facilities provided by Windows. Although it is possible for SQL Server to 
switch to thread mode to process requests that need it, the overhead might be greater than 
the overhead of using threads exclusively. Fiber mode was actually intended just for special 
niche situations in which SQL Server reaches a limit in scalability due to spending too much 
time switching between thread contexts or switching between user mode and kernel mode. In 
most environments, the performance benefi t gained by fi bers is quite small compared to the 
benefi ts you can get by tuning in other areas. If you’re certain you have a situation that could 
benefi t from fi bers, be sure to test thoroughly before you set the option on a  production 
 server. In addition, you might even want to contact Microsoft Customer Support Services 
(http://support.microsoft.com/ph/2855) just to be certain.  

C01626249.indd   22 2/13/2009   9:39:57 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 23

NUMA and Schedulers

 With a NUMA confi guration, every node has some subset of the machine’s processors and 
the same number of schedulers. If the machine is confi gured for hardware NUMA, the 
 number of processors on each node will be preset, but for soft-NUMA that you  confi gure 
yourself, you can decide how many processors are assigned to each node. There is still 
the same number of schedulers as processors, however. When SPIDs are fi rst created, they 
are  assigned to nodes on a round-robin basis. The Scheduler Monitor then assigns the 
SPID to the least loaded scheduler on that node. As mentioned earlier, if the SPID is moved 
to  another scheduler, it stays on the same node. A single processor or SMP  machine 
will be treated as a machine with a single NUMA node. Just like on an SMP  machine, 
there is no hard mapping between schedulers and a CPU with NUMA, so any scheduler 
on an  individual node can run on any CPU on that node. However, if you have set the 
Affi nity Mask Confi guration option, each scheduler on each node will be fi xed to run on a 
 particular CPU. 

 Every NUMA node has its own lazywriter (which we’ll talk about in the section entitled 
“Memory,” later in this chapter) as well as its own I/O Completion Port (IOCP), which is 
the network listener. Every node also has its own Resource Monitor, which is managed 
by a  hidden scheduler. You can see the hidden schedulers in sys.dm_os_schedulers. Each 
Resource Monitor has its own SPID, which you can see by querying the sys.dm_exec_requests 
and sys.dm_os_workers DMVs, as shown here: 

SELECT session_id,    

    CONVERT (varchar(10), t1.status) AS status,    

    CONVERT (varchar(20), t1.command) AS command,   

    CONVERT (varchar(15), t2.state) AS worker_state  

FROM sys.dm_exec_requests AS t1 JOIN sys.dm_os_workers AS t2  

ON  t2.task_address = t1.task_address 

WHERE command = 'RESOURCE MONITOR';

 Every node has its own Scheduler Monitor, which can run on any SPID and runs in a preemptive 
mode. The Scheduler Monitor is a thread that wakes up periodically and checks each scheduler 
to see if it has yielded since the last time the Scheduler Monitor woke up (unless the scheduler 
is idle). The Scheduler Monitor raises an error (17883) if a nonidle thread has not yielded. The 
17883 error can occur when an application other than SQL Server is monopolizing the CPU. The 
Scheduler Monitor knows only that the CPU is not yielding; it can’t ascertain what kind of task 
is using it. The Scheduler Monitor is also responsible for sending messages to the schedulers to 
help them balance their workload.  

Dynamic Affi nity

 In SQL Server 2008 (in all editions except SQL Server Express), processor affi nity can be 
controlled dynamically. When SQL Server starts up, all scheduler tasks are started on server 
startup, so there is one scheduler per CPU. If the affi nity mask has been set, some of the 
schedulers are then marked as offl ine and no tasks are assigned to them.  

C01626249.indd   23 2/13/2009   9:39:57 AM



24 Microsoft SQL Server 2008 Internals

 When the affi nity mask is changed to include additional CPUs, the new CPU is brought 
 online. The Scheduler Monitor then notices an imbalance in the workload and starts  picking 
workers to move to the new CPU. When a CPU is brought offl ine by changing the affi nity 
mask, the scheduler for that CPU continues to run active workers, but the scheduler itself 
is moved to one of the other CPUs that are still online. No new workers are given to this 
 scheduler, which is now offl ine, and when all active workers have fi nished their tasks, the 
scheduler stops.  

Binding Schedulers to CPUs

 Remember that normally, schedulers are not bound to CPUs in a strict one-to-one relationship, 
even though there is the same number of schedulers as CPUs. A scheduler is bound to a CPU 
only when the affi nity mask is set. This is true even if you specify that the affi nity mask use all 
the CPUs, which is the default setting. For example, the default Affi nity Mask Confi guration 
value is 0, which means to use all CPUs, with no hard binding of scheduler to CPU. In fact, in 
some cases when there is a heavy load on the machine, Windows can run two schedulers on 
one CPU.  

 For an eight-processor machine, an affi nity mask value of 3 (bit string 00000011) means 
that only CPUs 0 and 1 are used and two schedulers are bound to the two CPUs. If you 
set the affi nity mask to 255 (bit string 11111111), all the CPUs are used, just as with 
the  default. However, with the affi nity mask set, the eight CPUs will be bound to the eight 
schedulers.  

 In some situations, you might want to limit the number of CPUs available but not bind 
a particular scheduler to a single CPU—for example, if you are using a multiple-CPU 
 machine for server consolidation. Suppose that you have a 64-processor machine on which 
you are running eight SQL Server instances and you want each instance to use eight of 
the processors. Each instance has a different affi nity mask that specifi es a different subset 
of the 64 processors, so you might have affi nity mask values 255 (0xFF), 65280 (0xFF00), 
16711680 (0xFF0000), and 4278190080 (0xFF000000). Because the affi nity mask is set, 
each instance has hard binding of scheduler to CPU. If you want to limit the number of 
CPUs but still not constrain a particular scheduler to running on a specifi c CPU, you can 
start SQL Server with trace fl ag 8002. This lets you have CPUs mapped to an instance, but 
within the instance, schedulers are not bound to CPUs.  

Observing Scheduler Internals

 SQL Server 2008 has several Dynamic Management Objects that provide information about 
schedulers, workers, and tasks. These are primarily intended for use by Microsoft Customer 
Support Services, but you can use them to gain a greater appreciation for the information 
that SQL Server monitors.  

C01626249.indd   24 2/13/2009   9:39:57 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 25

 Note All these objects (as well as most of the other Dynamic Management Objects) require 
a permission called View Server State. By default, only a SQL Server administrator has that 
 permission, but it can be granted to others. For each of the objects, we will list some of the 
more useful or interesting columns and provide the description of each column taken from SQL 
Server 2008 Books Online. For the full list of columns, most of which are useful only to support 
 personnel, you can refer to SQL Server Books Online, but even then, you’ll fi nd that some of the 
columns are listed as “for internal use only.”  

 These Dynamic Management Objects are as follows: 

 sys.dm_os_schedulers This view returns one row per scheduler in SQL Server. Each 
 scheduler is mapped to an individual processor in SQL Server. You can use this view to 
monitor the condition of a scheduler or to identify runaway tasks. Interesting columns 
include the following: 

 parent_node_id The ID of the node that the scheduler belongs to, also known as the 
parent node. This represents a NUMA node.  

 scheduler_id The ID of the scheduler. All schedulers that are used to run regular 
 queries have IDs of less than 255. Those with IDs greater than or equal to 255, 
such as the  dedicated administrator connection scheduler, are used internally by 
SQL Server. 

 cpu_id The ID of the CPU with which this scheduler is associated. If SQL Server is 
 confi gured to run with affi nity, the value is the ID of the CPU on which the scheduler 
is supposed to run. If the affi nity mask has not been specifi ed, the cpu_id will be 255. 

 is_online If SQL Server is confi gured to use only some of the available processors on 
the server, this can mean that some schedulers are mapped to processors that are 
not in the affi nity mask. If that is the case, this column returns 0. This means the 
scheduler is not being used to process queries or batches. 

 current_tasks_count The number of current tasks associated with this scheduler, 
 including the  following. (When a task is completed, this count is decremented.) 

❏  Tasks that are waiting on a resource to be acquired before proceeding 

❏  Tasks that are currently running or that are runnable and waiting to be executed 

 runnable_tasks_count The number of tasks waiting to run on the scheduler.  

 current_workers_count The number of workers associated with this scheduler, 
 including workers that are not assigned any task.  

 active_workers_count The number of workers that have been assigned a task.  

 work_queue_count The number of tasks waiting for a worker. If current_workers_count 
is greater than active_workers_count, this work queue count should be 0 and the 
work queue should not grow.  

C01626249.indd   25 2/13/2009   9:39:57 AM



26 Microsoft SQL Server 2008 Internals

 pending_disk_io_count The number of pending I/Os. Each scheduler has a list of 
 pending I/Os that are checked every time there is a context switch to determine 
whether they have been completed. The count is incremented when the request 
is inserted. It is  decremented when the  request is completed. This number does 
not indicate the state of the I/Os.  

 load_factor The internal value that indicates the perceived load on this scheduler. This 
 value is used to determine whether a new task should be put on this  scheduler or 
 another scheduler. It is useful for debugging purposes when schedulers  appear 
not to be evenly loaded. In SQL Server 2000, a task is routed to a particular 
scheduler. In SQL Server 2008, the routing decision is based on the load on the 
scheduler. SQL Server 2008 also uses a load factor of nodes and schedulers to 
help determine the best  location to acquire  resources. When a task is added to 
the queue, the load factor  increases. When a task is completed, the load factor 
decreases. Using load factors helps the SQLOS balance the work load better.  

 sys.dm_os_workers This view returns a row for every worker in the system. Interesting 
 columns include the following:  

 is_preemptive A value of 1 means that the worker is running with  preemptive 
 scheduling. Any worker running external code is run under preemptive 
scheduling.  

 is_fi ber A value of 1 means that the worker is running with lightweight pooling.  

 sys.dm_os_threads This view returns a list of all SQLOS threads that are running under the 
SQL Server  process. Interesting columns include the following:  

 started_by_sqlserver Indicates the thread initiator. A 1 means that SQL Server started 
the thread and 0 means that another component, such as an extended procedure 
from within SQL Server, started the thread.  

 creation_time The time when this thread was created.  

 stack_bytes_used The number of bytes that are actively being used on the thread.  

 affi nity The CPU mask on which this thread is supposed to be running. This depends 
on the value in the sp_confi gure “affi nity mask.” 

 locale The cached locale LCID for the thread.  

 sys.dm_os_tasks This view returns one row for each task that is active in the instance of SQL 
Server. Interesting columns include the following: 

 task_state The state of the task. The value can be one of the following: 

❏  PENDING: Waiting for a worker thread 

❏  RUNNABLE: Runnable but waiting to receive a quantum 

❏  RUNNING: Currently running on the scheduler 

C01626249.indd   26 2/13/2009   9:39:57 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 27

❏  SUSPENDED: Has a worker but is waiting for an event 

❏  DONE: Completed 

❏  SPINLOOP: Processing a spinlock, as when waiting for a signal 

 context_switches_count The number of scheduler context switches that this task has 
completed.  

 pending_io_count The number of physical I/Os performed by this task.  

 pending_io_byte_count The total byte count of I/Os performed by this task.  

 pending_io_byte_average The average byte count of I/Os performed by this task.  

 scheduler_id The ID of the parent scheduler. This is a handle to the scheduler 
 information for this task.  

 session_id The ID of the session associated with the task.  

 sys.dm_os_waiting_tasks This view returns information about the queue of tasks that are 
waiting on some  resource. Interesting columns include the following: 

 session_id The ID of the session associated with the task.  

 exec_context_id The ID of the execution context associated with the task.  

 wait_duration_ms The total wait time for this wait type, in milliseconds. This time is 
 inclusive of signal_wait_time.  

 wait_type The name of the wait type.  

 resource_address The address of the resource for which the task is waiting.  

 blocking_task_address The task that is currently holding this resource. 

 blocking_session_id The ID of the session of the blocking task.  

 blocking_exec_context_id The ID of the execution context of the blocking task. 

 resource_description The description of the resource that is being consumed.  

The Dedicated Administrator Connection (DAC)

 Under extreme conditions such as a complete lack of available resources, it is possible for 
SQL Server to enter an abnormal state in which no further connections can be made to the 
SQL Server instance. Prior to SQL Server 2005, this situation meant that an administrator 
could not get in to kill any troublesome connections or even begin to diagnose the possible 
cause of the problem. SQL Server 2005 introduced a special connection called the DAC that 
was designed to be accessible even when no other access can be made.  

 Access via the DAC must be specially requested. You can connect to the DAC using the 
 command-line tool SQLCMD, and specifying the -A (or /A) fl ag. This method of  connection 
is recommended because it uses fewer resources than the graphical user interface (GUI). 

C01626249.indd   27 2/13/2009   9:39:57 AM



28 Microsoft SQL Server 2008 Internals

Through Management Studio, you can specify that you want to connect using DAC 
by  preceding the name of your SQL Server with ADMIN: in the Connection dialog box.  

 For example, to connect to the default SQL Server instance on my machine, TENAR, we 
would enter ADMIN:TENAR. To connect to a named instance called SQL2008 on the same 
machine, we would enter ADMIN:TENAR\SQL2008. 

 The DAC is a special-purpose connection designed for diagnosing problems in SQL Server 
and possibly resolving them. It is not meant to be used as a regular user connection. Any 
 attempt to connect using the DAC when there is already an active DAC connection results 
in an error. The message returned to the client says only that the connection was rejected; 
it does not state explicitly that it was because there already was an active DAC. However, 
a message is written to the error log indicating the attempt (and failure) to get a second DAC 
connection. You can check whether a DAC is in use by running the following query. If there is 
an active DAC, the query will return the SPID for the DAC; otherwise, it will return no rows.  

SELECT s.session_id  

FROM sys.tcp_endpoints as e JOIN sys.dm_exec_sessions as s   

   ON e.endpoint_id = s.endpoint_id 

WHERE e.name='Dedicated Admin Connection';  

 You should keep the following points in mind about using the DAC: 

■  By default, the DAC is available only locally. However, an administrator can  confi gure 
SQL Server to allow remote connection by using the confi guration option called 
Remote Admin Connections.  

■  The user logon to connect via the DAC must be a member of the sysadmin server role. 

■  There are only a few restrictions on the SQL statements that can be executed on the 
DAC. (For example, you cannot run BACKUP or RESTORE using the DAC.) However, 
it is recommended that you do not run any resource-intensive queries that might 
 exacerbate the problem that led you to use the DAC. The DAC connection is created 
primarily for troubleshooting and diagnostic purposes. In general, you’ll use the DAC 
for running queries against the Dynamic Management Objects, some of which you’ve 
seen already and many more of which we’ll discuss later in this book. 

■  A special thread is assigned to the DAC that allows it to execute the diagnostic functions 
or queries on a separate scheduler. This thread cannot be terminated. You can kill only 
the DAC session, if needed. The DAC scheduler always uses the scheduler_id value of 255, 
and this thread has the highest priority. There is no lazywriter thread for the DAC, but 
the DAC does have its own IOCP, a worker thread, and an idle thread.  

 You might not always be able to accomplish your intended tasks using the DAC. Suppose 
you have an idle connection that is holding on to a lock. If the connection has no active 
task, there is no thread associated with it, only a connection ID. Suppose further that many 
other processes are trying to get access to the locked resource, and that they are blocked. 
Those connections still have an incomplete task, so they do not release their worker. If 255 
such  processes (the default number of worker threads) try to get the same lock, all available 

C01626249.indd   28 2/13/2009   9:39:58 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 29

 workers might get used up and no more connections can be made to SQL Server. Because 
the DAC has its own scheduler, you can start it, and the expected solution would be to kill the 
 connection that is holding the lock but not do any further processing to release the lock. But if 
you try to use the DAC to kill the process holding the lock, the attempt fails. SQL Server would 
need to give a worker to the task to kill it, and no workers are available. The only solution is to kill 
several of the (blameless) blocked processes that still have workers associated with them.  

 Note To conserve resources, SQL Server 2008 Express edition does not support a DAC 
 connection unless started with a trace fl ag 7806. 

 The DAC is not guaranteed to always be usable, but because it reserves memory and a private 
scheduler and is implemented as a separate node, a connection probably is possible when 
you cannot connect in any other way. 

Memory

 Memory management is a huge topic, and to cover every detail of it would require a whole 
book in itself. My goal in this section is twofold: fi rst, to provide enough information about 
how SQL Server uses its memory resources so you can determine whether memory is being 
managed well on your system; and second, to describe the aspects of memory management 
that you have control over so you can understand when to exert that control. 

 By default, SQL Server 2008 manages its memory resources almost completely dynamically. 
When allocating memory, SQL Server must communicate constantly with the operating 
 system, which is one of the reasons the SQLOS layer of the engine is so important.  

The Buffer Pool and the Data Cache

 The main memory component in SQL Server is the buffer pool. All memory not used by 
 another memory component remains in the buffer pool to be used as a data cache for pages 
read in from the database fi les on disk. The buffer manager manages disk I/O functions 
for bringing data and index pages into the data cache so data can be shared among users. 
When other components require memory, they can request a buffer from the buffer pool. 
A buffer is a page in memory that’s the same size as a data or index page. You can think of it 
as a page frame that can hold one page from a database. Most of the buffers taken from the 
buffer pool for other memory components go to other kinds of memory caches, the  largest 
of which is typically the cache for procedure and query plans, which is usually called the 
plan cache. 

 Occasionally, SQL Server must request contiguous memory in larger blocks than the 8-KB 
pages that the buffer pool can provide, so memory must be allocated from outside the 
 buffer pool. Use of large memory blocks is typically kept to a minimum, so direct calls to the 
operating system account for a small fraction of SQL Server memory usage. 

C01626249.indd   29 2/13/2009   9:39:58 AM



30 Microsoft SQL Server 2008 Internals

Access to In-Memory Data Pages

 Access to pages in the data cache must be fast. Even with real memory, it would be  ridiculously 
ineffi cient to scan the whole data cache for a page when you have gigabytes of data. Pages 
in the data cache are therefore hashed for fast access. Hashing is a technique that uniformly 
maps a key via a hash function across a set of hash buckets. A hash table is a  structure in 
 memory that contains an array of pointers (implemented as a linked list) to the buffer pages. 
If all the pointers to buffer pages do not fi t on a single hash page, a linked list chains to 
 additional hash pages. 

 Given a dbid-fi leno-pageno identifi er (a combination of the database ID, fi le number, and page 
number), the hash function converts that key to the hash bucket that should be checked; in 
essence, the hash bucket serves as an index to the specifi c page needed. By using hashing, 
even when large amounts of memory are present, SQL Server can fi nd a specifi c data page 
in cache with only a few memory reads. Similarly, it takes only a few memory reads for SQL 
Server to determine that a desired page is not in cache and that it must be read in from disk. 

 Note Finding a data page might require that multiple buffers be accessed via the hash buckets 
chain (linked list). The hash function attempts to uniformly distribute the dbid-fi leno-pageno 
 values throughout the available hash buckets. The number of hash buckets is set internally by 
SQL Server and depends on the total size of the buffer pool.  

Managing Pages in the Data Cache

 You can use a data page or an index page only if it exists in memory. Therefore, a buffer in 
the data cache must be available for the page to be read into. Keeping a supply of buffers 
available for immediate use is an important performance optimization. If a buffer isn’t readily 
available, many memory pages might have to be searched simply to locate a buffer to free 
up for use as a workspace. 

 In SQL Server 2008, a single mechanism is responsible both for writing changed pages to 
disk and for marking as free those pages that have not been referenced for some time. SQL 
Server maintains a linked list of the addresses of free pages, and any worker needing a buffer 
page uses the fi rst page of this list.  

 Every buffer in the data cache has a header that contains information about the last two 
times the page was referenced and some status information, including whether the page 
is dirty (that is, it has been changed since it was read into disk). The reference information 
is used to implement the page replacement policy for the data cache pages, which uses an 
 algorithm called LRU-K, which was introduced by Elizabeth O’Neil, Patrick O’Neil, and Gerhard 
Weikum (in the Proceedings of the ACM SIGMOD Conference, May 1993). This algorithm is a 
great improvement over a strict Least Recently Used (LRU) replacement policy, which has no 
knowledge of how recently a page was used. It is also an improvement over a Least Frequently 
Used (LFU) policy involving reference counters because it requires far fewer adjustments by 

C01626249.indd   30 2/13/2009   9:39:58 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 31

the engine and much less bookkeeping overhead. An LRU-K algorithm keeps track of the 
last K times a page was referenced and can differentiate between types of pages, such as 
 index and data pages, with different levels of frequency. It can actually simulate the effect of 
 assigning pages to different buffer pools of specifi cally tuned sizes. SQL Server 2008 uses a 
K value of 2, so it keeps track of the two most recent accesses of each buffer page.  

 The data cache is periodically scanned from the start to the end. Because the buffer cache is 
all in memory, these scans are quick and require no I/O. During the scan, a value is associated 
with each buffer based on its usage history. When the value gets low enough, the dirty page 
indicator is checked. If the page is dirty, a write is scheduled to write the modifi cations to disk. 
Instances of SQL Server use a write-ahead log so the write of the dirty data page is blocked 
while the log page recording the modifi cation is fi rst written to disk. (We’ll discuss logging in 
much more detail in Chapter 4.) After the modifi ed page has been fl ushed to disk, or if the 
page was not dirty to start with, the page is freed. The association between the buffer page 
and the data page that it contains is removed by deleting information about the buffer from 
the hash table, and the buffer is put on the free list. 

 Using this algorithm, buffers holding pages that are considered more valuable remain in the 
active buffer pool whereas buffers holding pages not referenced often enough eventually 
return to the free buffer list. The instance of SQL Server determines internally the size of the 
free buffer list, based on the size of the buffer cache. The size cannot be confi gured. 

The Free Buffer List and the Lazywriter

 The work of scanning the buffer pool, writing dirty pages, and populating the free buffer list 
is primarily performed by the individual workers after they have scheduled an asynchronous 
read and before the read is completed. The worker gets the address of a section of the buffer 
pool containing 64 buffers from a central data structure in the SQL Server Database Engine. 
Once the read has been initiated, the worker checks to see whether the free list is too small. 
(Note that this process has consumed one or more pages of the list for its own read.) If so, 
the worker searches for buffers to free up, examining all 64 buffers, regardless of how many 
it actually fi nds to free up in that group of 64. If a write must be performed for a dirty buffer 
in the scanned section, the write is also scheduled.  

 Each instance of SQL Server also has a thread called lazywriter for each NUMA node (and every 
instance has at least one) that scans through the buffer cache associated with that node. The 
lazywriter thread sleeps for a specifi c interval of time, and when it wakes up, it examines the 
size of the free buffer list. If the list is below a certain threshold, which depends on the total 
size of the buffer pool, the lazywriter thread scans the buffer pool to repopulate the free list. 
As buffers are added to the free list, they are also written to disk if they are dirty.  

 When SQL Server uses memory dynamically, it must constantly be aware of the amount of 
free memory. The lazywriter for each node queries the system periodically to determine the 
amount of free physical memory available. The lazywriter expands or shrinks the data cache to 
keep the operating system’s free physical memory at 5 MB (plus or minus 200 KB) to prevent 

C01626249.indd   31 2/13/2009   9:39:58 AM



32 Microsoft SQL Server 2008 Internals

paging. If the operating system has less than 5 MB free, the lazywriter releases memory to the 
operating system instead of adding it to the free list. If more than 5 MB of physical memory 
is free, the lazywriter recommits memory to the buffer pool by adding it to the free list. The 
 lazywriter recommits memory to the buffer pool only when it repopulates the free list; a 
 server at rest does not grow its buffer pool. 

 SQL Server also releases memory to the operating system if it detects that too much  paging 
is taking place. You can tell when SQL Server increases or decreases its total memory use by 
 using one of SQL Server’s tracing mechanisms to monitor Server Memory Change events 
(in the Server Event category). An event is generated whenever memory in SQL Server 
 increases or decreases by 1 MB or 5 percent of the maximum server memory, whichever is 
greater. You can look at the value of the data element, called Event Sub Class, to see whether 
the change was an increase or a decrease. An Event Sub Class value of 1 means a memory 
 increase; a value of 2 means a memory decrease. Tracing will be covered in detail in Chapter 2.  

Checkpoints

 The checkpoint process also scans the buffer cache periodically and writes any dirty data 
pages for a particular database to disk. The difference between the checkpoint process and 
the lazywriter (or the worker threads’ management of pages) is that the checkpoint process 
never puts buffers on the free list. The only purpose of the checkpoint process is to ensure 
that pages written before a certain time are written to disk, so that the number of dirty pages 
in memory is always kept to a minimum, which in turn ensures that the length of time SQL 
Server requires for recovery of a database after a failure is kept to a minimum. In some cases, 
checkpoints may fi nd few dirty pages to write to disk if most of the dirty pages have been 
written to disk by the workers or the lazywriters in the period between two checkpoints. 

 When a checkpoint occurs, SQL Server writes a checkpoint record to the transaction log, 
which lists all the transactions that are active. This allows the recovery process to build a table 
containing a list of all the potentially dirty pages. Checkpoints occur automatically at regular 
intervals but can also be requested manually.  

 Checkpoints are triggered when any of the following occurs: 

■  A database owner (or backup operator) explicitly issues a CHECKPOINT command 
to  perform a checkpoint in that database. In SQL Server 2008, you can run multiple 
 checkpoints (in different databases) concurrently by using the CHECKPOINT command.  

■  The log is getting full (more than 70 percent of capacity) and the database is 
in  autotruncate mode. (We’ll tell you about autotruncate mode in Chapter 4.) 
A  checkpoint is triggered to truncate the transaction log and free up space. However, 
if no space can be freed up, perhaps because of a long-running transaction, no 
 checkpoint occurs. 

■  A long recovery time is estimated. When recovery time is predicted to be longer than 
the Recovery Interval confi guration option, a checkpoint is triggered. SQL Server 2008 

C01626249.indd   32 2/13/2009   9:39:58 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 33

uses a simple metric to predict recovery time because it can recover, or redo, in less 
time than it took the original operations to run. Thus, if checkpoints are taken about 
as often as the recovery interval frequency, recovery completes within the interval. 
A  recovery interval setting of 1 means that checkpoints occur about every minute 
so long as transactions are being processed in the database. A minimum amount of 
work must be done for the automatic checkpoint to fi re; this is currently 10 MB of 
logs per minute. In this way, SQL Server doesn’t waste time taking checkpoints on 
idle  databases. A default recovery interval of 0 means that SQL Server chooses an 
 appropriate value; for the current version, this is one minute.  

■  An orderly shutdown of SQL Server is requested, without the NOWAIT option. 
A  checkpoint operation is then run in each database on the instance. An orderly 
 shutdown occurs when you explicitly shut down SQL Server, unless you do so by  using 
the SHUTDOWN WITH NOWAIT command. An orderly shutdown also occurs when 
the SQL Server service is stopped through Service Control Manager or the net stop 
 command from an operating system prompt.  

 You can also use the sp_confi gure Recovery Interval option to infl uence checkpointing 
 frequency, balancing the time to recover vs. any impact on run-time performance. If you’re 
interested in tracing when checkpoints actually occur, you can use the SQL Server extended 
events sqlserver.checkpoint_begin and sqlserver.checkpoint_end to monitor checkpoint activity. 
(Details on extended events can be found in Chapter 2.) 

 The checkpoint process goes through the buffer pool, scanning the pages in a nonsequential 
order, and when it fi nds a dirty page, it looks to see whether any physically contiguous (on 
the disk) pages are also dirty so that it can do a large block write. But this means that it might, 
for example, write buffers 14, 200, 260, and 1,000 when it sees that buffer 14 is dirty. (Those 
pages might have contiguous disk locations even though they’re far apart in the buffer pool. 
In this case, the noncontiguous pages in the buffer pool can be written as a single operation 
called a gather-write.) The process continues to scan the buffer pool until it gets to page 1,000. 
In some cases, an already written page could potentially be dirty again, and it might need to 
be written out to disk a second time.  

 The larger the buffer pool, the greater the chance that a buffer that has already been written 
will be dirty again before the checkpoint is done. To avoid this, SQL Server uses a bit  associated 
with each buffer called a generation number. At the beginning of a checkpoint, all the bits are 
toggled to the same value, either all 0’s or all 1’s. As a checkpoint checks a page, it toggles the 
generation bit to the opposite value. When the checkpoint comes across a page whose bit 
has already been toggled, it doesn’t write that page. Also, any new pages brought into cache 
 during the checkpoint process get the new generation number so they won’t be written during 
that checkpoint cycle. Any pages already written because they’re in proximity to other pages 
(and are written together in a gather write) aren’t written a second time. 

 In some cases checkpoints may issue a substantial amount of I/O, causing the I/O  subsystem to 
get inundated with write requests which can severely impact read performance. On the other 
hand, there may be periods of relatively low I/O activity that could be utilized. SQL Server 2008 

C01626249.indd   33 2/13/2009   9:39:58 AM



34 Microsoft SQL Server 2008 Internals

includes a command-line option that allows throttling of checkpoint I/Os. You can use the 
SQL Server Confi guration Manager, and add the –k parameter, followed by a decimal  number, 
to the list of startup parameters for the SQL Server service. The value  specifi ed  indicates the 
 number of megabytes per second that the checkpoint process can write. By using this –k 
 option, the I/O overhead of checkpoints can be spread out and have a more  measured impact. 
Remember that by default, the checkpoint process makes sure that SQL Server can recover 
databases within the recovery interval that you specify. If you enable this option, the default 
behavior changes, resulting in a long recovery time if you specify a very low value for the 
 parameter. Backups may take a slightly longer time to fi nish because a checkpoint process that 
a backup initiates is also delayed. Before enabling this option on a production system, you 
should make sure that you have enough hardware to sustain the I/O requests that are posted 
by SQL Server and that you have thoroughly tested your  applications on the system.  

Managing Memory in Other Caches

 Buffer pool memory that isn’t used for the data cache is used for other types of caches, primarily 
the plan cache. The page replacement policy, as well as the mechanism by which freeable pages 
are searched for, are quite a bit different than for the data cache.  

 SQL Server 2008 uses a common caching framework that is used by all caches except the 
data cache. The framework consists of a set of stores and the Resource Monitor. There are 
three types of stores: cache stores, user stores (which don’t actually have anything to do 
with users), and object stores. The plan cache is the main example of a cache store, and the 
metadata cache is the prime example of a user store. Both cache stores and user stores use 
the same LRU mechanism and the same costing algorithm to determine which pages can stay 
and which can be freed. Object stores, on the other hand, are just pools of memory blocks 
and don’t require LRU or costing. One example of the use of an object store is the SNI, which 
uses the object store for pooling network buffers. For the rest of this section, my discussion 
of stores refers only to cache stores and user stores.  

 The LRU mechanism used by the stores is a straightforward variation of the clock algorithm. 
Imagine a clock hand sweeping through the store, looking at every entry; as it touches each 
entry, it decreases the cost. Once the cost of an entry reaches 0, the entry can be removed 
from the cache. The cost is reset whenever an entry is reused.  

 Memory management in the stores takes into account both global and local memory 
 management policies. Global policies consider the total memory on the system and enable the 
running of the clock algorithm across all the caches. Local policies involve looking at one store 
or cache in isolation and making sure it is not using a disproportionate amount of memory.  

 To satisfy global and local policies, the SQL Server stores implement two hands: external and 
 internal. Each store has two clock hands, and you can observe these by examining the DMV 
sys.dm_os_memory_cache_clock_hands. This view contains one internal and one external 
clock hand for each cache store or user store. The external clock hands implement the global 
policy, and the internal clock hands implement the local policy. The Resource Monitor is in 

C01626249.indd   34 2/13/2009   9:39:58 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 35

charge of  moving the external hands whenever it notices memory pressure. There are many 
types of memory pressure, and it is beyond the scope of this book to go into all the details 
of detecting and  troubleshooting memory problems. However, if you take a look at the DMV 
sys.dm_os_memory_cache_clock_hands, specifi cally at the removed_last_round_count  column, 
you can look for a value that is very large compared to other values. If you notice that value 
increasing dramatically, that is a strong indication of memory pressure. The  companion 
Web site for this book contains a comprehensive white paper called “Troubleshooting 
Performance Problems in SQL Server 2008,” which includes many details on tracking down 
and dealing with memory problems. 

 The internal clock moves whenever an individual cache needs to be trimmed. SQL Server 
 attempts to keep each cache reasonably sized compared to other caches. The internal clock 
hands move only in response to activity. If a worker running a task that accesses a cache 
notices a high number of entries in the cache or notices that the size of the cache is greater 
than a certain percentage of memory, the internal clock hand for that cache starts to free up 
memory for that cache.  

The Memory Broker

 Because memory is needed by so many components in SQL Server, and to make sure each 
 component uses memory effi ciently, SQL Server uses a Memory Broker, whose job is to  analyze 
the behavior of SQL Server with respect to memory consumption and to improve  dynamic 
memory distribution. The Memory Broker is a centralized mechanism that  dynamically  distributes 
memory between the buffer pool, the query executor, the Query Optimizer, and all the  various 
caches, and it attempts to adapt its distribution algorithm for different types of workloads. 
You can think of the Memory Broker as a control mechanism with a feedback loop. It monitors 
 memory demand and consumption by component, and it uses the information that it  gathers 
to calculate the optimal memory distribution across all components. It can  broadcast this 
 information to the component, which then uses the information to adapt its memory  usage. You 
can monitor Memory Broker behavior by querying the Memory Broker ring buffer as follows: 

SELECT * FROM sys.dm_os_ring_buffers 

WHERE ring_buffer_type = 

'RING_BUFFER_MEMORY_BROKER';

 The ring buffer for the Memory Broker is updated only when the Memory Broker wants the 
behavior of a given component to change—that is, to grow, shrink, or remain stable (if it has 
previously been growing or shrinking). 

Sizing Memory

 When we talk about SQL Server memory, we are actually talking about more than just the 
buffer pool. SQL Server memory is actually organized into three sections, and the buffer 
pool is usually the largest and most frequently used. The buffer pool is used as a set of 8-KB 
 buffers, so any memory that is needed in chunks larger than 8 KB is managed separately. 

C01626249.indd   35 2/13/2009   9:39:58 AM



36 Microsoft SQL Server 2008 Internals

The DMV called sys.dm_os_memory_clerks has a column called multi_pages_kb that shows 
how much space is used by a memory component outside the buffer pool:  

SELECT type, sum(multi_pages_kb) 

FROM sys.dm_os_memory_clerks 

WHERE multi_pages_kb != 0 

GROUP BY type;

 If your SQL Server instance is confi gured to use Address Windowing Extensions (AWE) 
memory, that can be considered a third memory area. AWE is an API that allows a 32-bit 
 application to access physical memory beyond the 32-bit address limit. Although AWE 
 memory is measured as part of the buffer pool, it must be kept track of separately because 
only data cache pages can use AWE memory. None of the other memory components, such 
as the plan cache, can use AWE memory. 

 Note If AWE is enabled, the only way to get information about the actual memory consumption 
of SQL Server is by using SQL Server–specifi c counters or DMVs inside the server; you won’t get 
this information from operating system–level performance counters. 

Sizing the Buffer Pool

 When SQL Server starts, it computes the size of the virtual address space (VAS) of the SQL 
Server process. Each process running on Windows has its own VAS. The set of all virtual 
 addresses available for process use constitutes the size of the VAS. The size of the VAS 
 depends on the architecture (32- or 64-bit) and the operating system. VAS is just the set of 
all possible addresses; it might be much greater than the physical memory on the machine. 

 A 32-bit machine can directly address only 4 GB of memory and, by default, Windows 
 itself reserves the top 2 GB of address space for its own use, which leaves only 2 GB as the 
maximum size of the VAS for any application, such as SQL Server. You can increase this by 
enabling a /3GB fl ag in the system’s Boot.ini fi le, which allows applications to have a VAS of 
up to 3 GB. If your system has more than 3 GB of RAM, the only way a 32-bit machine can 
get to it is by enabling AWE. One benefi t of using AWE in SQL Server 2008 is that memory 
pages allocated through the AWE mechanism are considered locked pages and can never 
be swapped out.  

 On a 64-bit platform, the AWE Enabled confi guration option is present, but its setting is 
 ignored. However, the Windows policy option Lock Pages in Memory is available, although 
it is disabled by default. This policy determines which accounts can make use of a Windows 
feature to keep data in physical memory, preventing the system from paging the data to 
 virtual memory on disk. It is recommended that you enable this policy on a 64-bit system.  

 On 32-bit operating systems, you have to enable the Lock Pages in Memory option when 
using AWE. It is recommended that you don’t enable the Lock Pages in Memory option if 

C01626249.indd   36 2/13/2009   9:39:58 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 37

you are not using AWE. Although SQL Server ignores this option when AWE is not enabled, 
other processes on the system may be affected.  

Note Memory management is much more straightforward on a 64-bit machine, both for 
SQL Server, which has so much more VAS to work with, and for an administrator, who doesn’t 
have to worry about special operating system fl ags or even whether to enable AWE. Unless you 
are  working only with very small databases and do not expect to need more than a couple of 
 gigabytes of RAM, you should defi nitely consider running a 64-bit edition of SQL Server 2008.  

Table 1-1 shows the possible memory confi gurations for various editions of SQL Server 2008. 

TABLE 1-1 SQL Server 2008 Memory Confi gurations

Confi guration VAS

Maximum 

Physical Memory

AWE/Locked 

Pages Support

Native 32-bit on 32-bit operating 
system with /3GB boot parameter

2 GB

3 GB

64 GB

16 GB

AWE

AWE

32-bit on x64 operating system 
(Windows on Windows)

4 GB 64 GB AWE

Native 64-bit on x64 operating 
system

8 terabyte 1 terabyte Locked Pages

Native 64-bit on IA64 operating 
system

7 terabyte 1 terabyte Locked Pages

In addition to the VAS size, SQL Server also calculates a value called Target Memory, which is 
the number of 8-KB pages that it expects to be able to allocate. If the confi guration  option 
Max Server Memory has been set, Target Memory is the lesser of these two values. Target 
Memory is recomputed periodically, particularly when it gets a memory notifi cation from 
Windows. A decrease in the number of target pages on a normally loaded server might 
 indicate a response to external physical memory pressure. You can see the number of target 
pages by using the Performance Monitor—examine the Target Server Pages counter in the 
SQL Server: Memory Manager object. There is also a DMV called sys.dm_os_sys_info that 
 contains one row of general-purpose SQL Server confi guration information, including the 
following columns: 

physical_memory_in_bytes The amount of physical memory available.  

virtual_memory_in_bytes The amount of virtual memory available to the process in user 
mode. You can use this value to determine whether SQL Server was started by using a 
3-GB switch.  

bpool_commited The total number of buffers with pages that have associated memory. This 
does not include virtual memory.  

 bpool_commit_target The optimum number of buffers in the buffer pool.  

Confi guration VAS

Maximum

Physical Memory

AWE/Locked

Pages Support

C01626249.indd   37 2/13/2009   9:39:58 AM



38 Microsoft SQL Server 2008 Internals

 bpool_visible The number of 8-KB buffers in the buffer pool that are directly accessible 
in the  process virtual address space. When not using AWE, when the buffer pool has 
 obtained its  memory target (bpool_committed = bpool_commit_target), the value of 
bpool_visible equals the value of bpool_committed. When using AWE on a  32-bit version 
of SQL Server, bpool_visible represents the size of the AWE mapping  window used to 
 access physical memory allocated by the buffer pool. The size of this  mapping window 
is bound by the process address space and, therefore, the visible amount will be smaller 
than the  committed amount and can be reduced further by internal components 
 consuming memory for purposes other than database pages. If the value of bpool_visible 
is too low, you might receive out-of-memory errors. 

 Although the VAS is reserved, the physical memory up to the target amount is committed 
only when that memory is required for the current workload that the SQL Server instance 
is  handling. The instance continues to acquire physical memory as needed to support the 
 workload, based on the users connecting and the requests being processed. The SQL Server 
instance can continue to commit physical memory until it reaches its target or the operating 
system indicates that there is no more free memory. If SQL Server is notifi ed by the operating 
system that there is a shortage of free memory, it frees up memory if it has more memory than 
the confi gured value for Min Server Memory. Note that SQL Server does not commit memory 
equal to Min Server Memory initially. It commits only what it needs and what the operating 
system can afford. The value for Min Server Memory comes into play only after the buffer pool 
size goes above that amount, and then SQL Server does not let memory go below that setting.  

 As other applications are started on a computer running an instance of SQL Server, they 
 consume memory, and SQL Server might need to adjust its target memory. Normally, this 
should be the only situation in which target memory is less than commit memory, and it should 
stay that way only until memory can be released. The instance of SQL Server adjusts its memory 
consumption, if possible. If another application is stopped and more memory  becomes  available, 
the instance of SQL Server increases the value of its target memory,  allowing the memory 
 allocation to grow when needed. SQL Server adjusts its target and  releases physical memory 
only when there is pressure to do so. Thus, a server that is busy for a while can commit large 
amounts of memory that will not necessarily be released if the  system becomes quiescent.  

 Note There is no special handling of multiple SQL Server instances on the same machine; 
there is no attempt to balance memory across all instances. They all compete for the same 
 physical memory, so to make sure none of the instances becomes starved for physical  memory, 
you should use the Min and Max Server Memory option on all SQL Server instances on a 
 multiple-instance machine. 

Observing Memory Internals

 SQL Server 2008 includes several Dynamic Management Objects that provide information 
about memory and the various caches. Like the Dynamic Management Objects containing 
information about the schedulers, these objects are intended primarily for use by Customer 

C01626249.indd   38 2/13/2009   9:39:58 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 39

Support Services to see what SQL Server is doing, but you can use them for the same 
 purpose. To select from these objects, you must have the View Server State permission. Once 
again, we will list some of the more useful or interesting columns for each object; most of 
these descriptions are taken from SQL Server Books Online: 

 sys.dm_os_memory_clerks This view returns one row per memory clerk that is currently 
 active in the instance of SQL Server. You can think of a clerk as an accounting unit. Each 
store described earlier is a clerk, but some clerks are not stores, such as those for the 
CLR and for full-text search. The following query returns a list of all the types of clerks: 

SELECT DISTINCT type FROM sys.dm_os_memory_clerks;

 Interesting columns include the following: 

 single_pages_kb The amount of single-page memory allocated, in kilobytes. This is 
the amount of memory allocated by using the single-page allocator of a memory 
node. This single-page allocator steals pages directly from the buffer pool.  

 multi_pages_kb The amount of multiple-page memory allocated, in kilobytes. This 
is the amount of memory allocated by using the multiple-page allocator of the 
memory nodes. This memory is allocated outside the buffer pool and takes 
 advantage of the  virtual allocator of the memory nodes. 

 virtual_memory_reserved_kb The amount of virtual memory reserved by a memory 
clerk. This is the amount of memory reserved directly by the component that uses 
this clerk. In most  situations, only the buffer pool reserves VAS  directly by using 
its memory clerk.  

 virtual_memory_committed_kb The amount of memory committed by the clerk. 
The amount of committed memory should always be less than the amount of 
Reserved Memory. 

 awe_allocated_kb The amount of memory allocated by the memory clerk by using 
AWE. In SQL Server, only buffer pool clerks (MEMORYCLERK_SQLBUFFERPOOL) 
use this mechanism, and only when AWE is enabled.  

 sys.dm_os_memory_cache_counters This view returns a snapshot of the health of each 
cache of type userstore and  cachestore. It provides run-time information about the cache 
 entries allocated, their use, and the source of memory for the cache entries. Interesting 
columns include the following: 

 single_pages_kb The amount of single-page memory allocated, in kilobytes. This is 
the amount of memory allocated by using the single-page allocator. This refers to 
the 8-KB pages that are taken directly from the buffer pool for this cache.  

 multi_pages_kb The amount of multiple-page memory allocated, in kilobytes. This 
is the amount of memory allocated by using the multiple-page allocator of 
the memory node. This memory is allocated outside the buffer pool and takes 
 advantage of the  virtual allocator of the memory nodes. 

C01626249.indd   39 2/13/2009   9:39:58 AM



40 Microsoft SQL Server 2008 Internals

 multi_pages_in_use_kb The amount of multiple-page memory being used, in 
kilobytes.  

 single_pages_in_use_kb The amount of single-page memory being used, in kilobytes.  

 entries_count The number of entries in the cache.  

 entries_in_use_count The number of entries in use in the cache.  

 sys.dm_os_memory_cache_hash_tables This view returns a row for each active cache in the 
instance of SQL Server. This view can be joined to sys.dm_os_memory_cache_counters 
on the cache_address column. Interesting columns include the following: 

 buckets_count The number of buckets in the hash table.  

 buckets_in_use_count The number of buckets currently being used.  

 buckets_min_length The minimum number of cache entries in a bucket.  

 buckets_max_length The maximum number of cache entries in a bucket.  

 buckets_avg_length The average number of cache entries in each bucket. If this 
 number gets very large, it might indicate that the hashing algorithm is not ideal.  

 buckets_avg_scan_hit_length The average number of examined entries in a bucket 
before the searched-for item was found. As above, a big number might indicate a 
less-than-optimal cache. You might consider running DBCC FREESYSTEMCACHE 
to remove all  unused entries in the cache stores. You can get more details on this 
command in SQL Server Books Online. 

 sys.dm_os_memory_cache_clock_hands This DMV, discussed earlier, can be joined to the 
other cache DMVs using the cache_address column. Interesting columns include the 
following: 

 clock_hand The type of clock hand, either external or internal. Remember that there 
are two clock hands for every store.  

 clock_status The status of the clock hand: suspended or running. A clock hand runs 
when a corresponding policy kicks in. 

 rounds_count The number of rounds the clock hand has made. All the external clock 
hands should have the same (or close to the same) value in this column. 

 removed_all_rounds_count The number of entries removed by the clock hand in all 
rounds. 

NUMA and Memory

 As mentioned earlier, one major reason for implementing NUMA is to handle large amounts 
of memory effi ciently. As clock speed and the number of processors increase, it becomes 
increasingly diffi cult to reduce the memory latency required to use this additional  processing 

C01626249.indd   40 2/13/2009   9:39:58 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 41

power. Large L3 caches can help alleviate part of the problem, but this is only a limited 
 solution. NUMA is the scalable solution of choice. SQL Server 2008 has been designed to 
take advantage of NUMA-based computers without requiring any application changes. 
Keep in mind that the NUMA memory nodes depend completely on the hardware NUMA 
 confi guration. If you defi ne your own soft-NUMA, as discussed earlier, you will not affect 
the number of NUMA memory nodes. So, for example, if you have an SMP computer with 
eight CPUs and you create four soft-NUMA nodes with two CPUs each, you have only one 
MEMORY node serving all four NUMA nodes. Soft-NUMA does not provide memory to CPU 
affi nity. However, there is a network I/O thread and a lazywriter thread for each NUMA node, 
either hard or soft.  

 The principal reason for using soft-NUMA is to reduce I/O and lazywriter bottlenecks on 
computers with many CPUs and no hardware NUMA. For instance, on a computer with eight 
CPUs and no hardware NUMA, you have one I/O thread and one lazywriter thread that could 
be a bottleneck. Confi guring four soft-NUMA nodes provides four I/O threads and four 
 lazywriter threads, which could defi nitely help performance. 

 If you have multiple NUMA memory nodes, SQL Server divides the total target memory 
evenly among all the nodes. So if you have 10 GB of physical memory and four NUMA nodes 
and SQL Server determines a 10-GB target memory value, all nodes eventually allocate and 
use 2.5 GB of memory as if it were their own. In fact, if one of the nodes has less memory 
than another, it must use memory from another one to reach its 2.5-GB allocation. This 
memory is called foreign memory. Foreign memory is considered local, so if SQL Server has 
readjusted its target memory and each node needs to release some, no attempt will be made 
to free up foreign pages fi rst. In addition, if SQL Server has been confi gured to run on a 
 subset of the available NUMA nodes, the target memory will not be limited automatically to 
the memory on those nodes. You must set the Max Server Memory value to limit the amount 
of memory.  

 In general, the NUMA nodes function largely independently of each other, but that is not 
always the case. For example, if a worker running on a node N1 needs to access a database 
page that is already in node N2’s memory, it does so by accessing N2’s memory, which is 
called nonlocal memory. Note that nonlocal is not the same as foreign memory. 

Read-Ahead

 SQL Server supports a mechanism called read-ahead, whereby the need for data and index 
pages can be anticipated and pages can be brought into the buffer pool before they’re actually 
needed. This performance optimization allows large amounts of data to be processed effectively. 
Read-ahead is managed completely internally, and no confi guration adjustments are necessary. 

 There are two kinds of read-ahead: one for table scans on heaps and one for index ranges. 
For table scans, the table’s allocation structures are consulted to read the table in disk 

C01626249.indd   41 2/13/2009   9:39:58 AM



42 Microsoft SQL Server 2008 Internals

 order. Up to 32 extents (32 * 8 pages/extent * 8,192 bytes/page = 2 MB) of read-ahead may 
be  outstanding at a time. Four extents (32 pages) at a time are read with a single 256-KB 
 scatter read. If the table is spread across multiple fi les in a fi le group, SQL Server attempts to 
 distribute the read-ahead activity across the fi les evenly.  

 For index ranges, the scan uses level 1 of the index structure (the level immediately above 
the leaf) to determine which pages to read ahead. When the index scan starts, read-ahead 
is invoked on the initial descent of the index to minimize the number of reads performed. 
For instance, for a scan of WHERE state = ‘WA’, read-ahead searches the index for 
key = ‘WA’, and it can tell from the level-1 nodes how many pages must be examined to 
satisfy the scan. If the anticipated number of pages is small, all the pages are requested by 
the initial  read-ahead; if the pages are noncontiguous, they’re fetched in scatter reads. If the 
range contains a large number of pages, the initial read-ahead is performed and thereafter, 
every time another 16 pages are consumed by the scan, the index is consulted to read in 
another 16 pages. This has several interesting effects: 

■  Small ranges can be processed in a single read at the data page level whenever the 
 index is contiguous. 

■  The scan range (for example, state = ‘WA’) can be used to prevent reading ahead of 
pages that won’t be used because this information is available in the index. 

■  Read-ahead is not slowed by having to follow page linkages at the data page level. 
(Read-ahead can be done on both clustered indexes and nonclustered indexes.) 

 As you can see, memory management in SQL Server is a huge topic, and I’ve provided you 
with only a basic understanding of how SQL Server uses memory. This information should 
give you a start in interpreting the wealth of information available through the DMVs and 
troubleshooting. The companion Web site includes a white paper that offers many more 
troubleshooting ideas and scenarios.  

SQL Server Resource Governor

 Having suffi cient memory and scheduler resources available is of paramount importance 
in having a system that runs well. Although SQL Server and the SQLOS have many built-in 
 algorithms to distribute these resources equitably, you often understand your resource needs 
better than the SQL Server Database Engine does.  

Resource Governor Overview

 SQL Server 2008 Enterprise Edition provides you with an interface for assigning scheduler 
and memory resources to groups of processes based on your determination of their needs. 
This interface is called the Resource Governor, which has the following goals: 

C01626249.indd   42 2/13/2009   9:39:58 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 43

■  Allow monitoring of resource consumption per workload, where a workload can be 
 defi ned as a group of requests.  

■  Enable workloads to be prioritized. 

■  Provide a means to specify resource boundaries between workloads to allow  predictable 
execution of those workloads where there might otherwise be resource contention 

■  Prevent or reduce the probability of runaway queries. 

 The Resource Governor’s functionality is based on the concepts of workloads and resource 
pools, which are set up by the DBA. Using just a few basic DDL commands, you can  defi ne 
a set of workload groups, create a classifi er function to determine which user sessions 
are members of which groups, and set up pools of resources to allow each workload group 
to have minimum and maximum settings for the amount of memory and the percentage of 
CPU resources that they can use. 

 Figure 1-4 illustrates a sample relationship between the classifi er function applied to 
each session, workload groups, and resource pools. More details about groups and pools 
are  provided throughout this section, but you can see in the fi gure that each new session 
is placed in a workload group based on the result of the classifi er function. Also notice 
that there is a many-to-one relationship between groups and pools. Many workload 
groups can be assigned to the same pool, but each workload group only belongs on 
one pool.  

Enabling the Resource Governor

 The Resource Governor is enabled using the DDL statement ALTER RESOURCE GOVERNOR. 
Using this statement, you can specify a classifi er function to be used to assign sessions to 
a workload, enable or disable the Resource Governor, or reset the statistics being kept on the 
Resource Governor.  

Classifi er Function

 Once a classifi er function has been defi ned and the Resource Governor enabled, the 
 function is applied to each new session to determine the name of the workload group to 
which the session will be assigned. The session stays in the same group until its termination, 
 unless it is assigned explicitly to a different group. There can only be a maximum of one 
 classifi er  function active at any given time, and if no classifi er function has been defi ned, all 
new  sessions are assigned to a default group. The classifi er function is typically based on 
 properties of a connection, and determines the workload group based on system functions 
such as SUSER_NAME(), SUSER_SNAME(), IS_SRVROLEMEMBER(), and IS_MEMBER(), and on 
property functions like LOGINPROPERTY and CONNECTIONPROPERTY. 

C01626249.indd   43 2/13/2009   9:39:58 AM



44 Microsoft SQL Server 2008 Internals

Session 1 of n

User-defined classifier
function

Internal
group Group 1

Internal
pool Pool 1

Pool 2

Group 2

Default
group

Default
pool

Classification

Application
1

Group 3

Application
2

Group 4

Application
3

FIGURE 1-4 Resource Governor components

Workload Groups

 A workload group is just a name defi ned by a DBA to allow multiple connections to share the 
same resources. There are two predefi ned workload groups in every SQL Server instance: 

■  Internal group This group is used for the internal activities of SQL Server. Users are 
not able to add sessions to the internal group or affect its resource usage. However, the 
internal group can be monitored.  

■  Default group All sessions are classifi ed into this group when no other classifi er rules 
could be applied. This includes situations where the classifi er function resulted in a 
nonexistent group or when there was a failure of the classifi er function. 

C01626249.indd   44 2/13/2009   9:39:58 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 45

 Many sessions can be assigned to the same workload group, and each session can start multiple 
sequential tasks (or batches). Each batch can be composed of multiple statements, and some 
of those statements, such as stored procedure calls, can be broken down further. Figure 1-5 
 illustrates this relationship between workload groups, sessions, batches, and statements.  

DECLARE @sales int;
DECLARE @custid int;
SET @customer = 555;
SELECT @sales = sales FROM T WHERE customer = @custid;
IF @sales > 100
EXEC sp_givebonus @custid, 1000;
UPDATE  T1 SET checked = 1 WHERE custid = @custid;
GO

CREATE PROC sp_givebonus@custid int, @bonus int AS BEGIN
UPDATE T2 SET bonus = @bonus WHERE custid = @custid;
UPDATE T3 SET total = total + @bonus WHERE promo = 100;
END;

Session

Task or Batch

UPDATE T3 SET total = total + @bonus WHERE promo = 100;

Session2

Workload Group

Statement

FIGURE 1-5 Workload groups, sessions, batches, and statements

 When you create a workload group, you give it a name and then supply values for up to six 
specifi c properties of the group. For any properties that aren’t specifi ed, there is a default 
value. In addition to the properties of the group, the group is assigned to a resource pool; 
and if no pool is specifi ed, the default group is assumed. The six properties that can be 
 specifi ed are the following: 

 1.  IMPORTANCE Each workload group can have an importance of low, medium, or high 
within their resource pool. Medium is the default. This value determines the  relative  ratio 
of CPU bandwidth available to the group in a preset proportion (which is  subject to change 
in  future versions or services packs). Currently the weighting is low = 1,  medium =3, and 
high = 9. This means that a scheduler tries to execute runnable sessions from  high-priority 

C01626249.indd   45 2/13/2009   9:39:59 AM



46 Microsoft SQL Server 2008 Internals

 workload groups three times more often than sessions from groups with medium 
 importance, and nine times more often than sessions from groups with low importance. 
It’s up to the DBA to make sure not to have too many sessions in the groups with high 
 importance, or not to assign a high importance to too many groups. If you have nine 
times as many sessions from groups with high importance than from groups with low 
 importance, the end result will be that all the sessions will get equal time on the scheduler.  

 2.  REQUEST_MAX_MEMORY_GRANT_PERCENT This value specifi es the maximum amount 
of memory that a single task from this group can take from the resource pool. This is 
the percent relative to the pool size  specifi ed by the pool’s MAX_MEMORY_PERCENT 
value, not the actual amount of memory  being used. This amount refers only to memory 
 granted for query execution, and not for data buffers or cached plans, which can be 
shared by many requests. The default value is 25 percent, which means a single request 
can consume one-fourth of the pool’s memory. 

 3.  REQUEST_MAX_CPU_TIME_SEC This value is the maximum amount of CPU time in 
 seconds that can be consumed by any one request in the workload group. The default 
setting is 0, which means there is no limit on the CPU time. 

 4.  REQUEST_MEMORY_GRANT_TIMEOUT_SEC This value is the maximum time in 
 seconds that a query waits for a resource to become available. If the resource does not 
become available, it may fail with a timeout error. (In some cases, the query may not 
fail, but it may run with substantially reduced resources.) The default value is 0, which 
means the server will calculate the timeout based on the query cost. 

 5.  MAX_DOP This value specifi es the maximum degree of parallelism (DOP) for a 
 parallel query, and the value takes precedence over the max degree of parallelism 
 confi guration option and any query hints. The actual run-time DOP is also bound by 
number of schedulers and availability of parallel threads. This MAX_DOP setting is a 
maximum limit only, meaning that the server is allowed to run the query using fewer 
processors than specifi ed. The default setting is 0, meaning that the server handles the 
value globally. You should be aware of the following details about working with the 
MAX_DOP value: 

❏  MAXDOP as query hint is honored so long as it does not exceed the workload 
group MAX_DOP value. 

❏  MAXDOP as query hint always overrides the Max Degree of Parallelism 
 confi guration option.  

❏  If the query is marked as serial at compile time, it cannot be changed back to 
 parallel at run time regardless of workload group or confi guration setting. 

❏  Once the degree of parallelism is decided, it can be lowered only when memory 
pressure occurs. Workload group reconfi guration will not be seen for tasks 
 waiting in the grant memory queue. 

C01626249.indd   46 2/13/2009   9:39:59 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 47

 6.  GROUP_MAX_REQUESTS This value is the maximum number of requests allowed 
to be  simultaneously executing in the workload group. The default is 0, which means 
 unlimited requests. 

 Any of the properties of a workload group can be changed by using ALTER WORKLOAD 
GROUP.  

Resource Pools

 A resource pool is a subset of the physical resources of the server. Each pool has two parts. 
One part does not overlap with other pools, which enables you to set a minimum value 
for the resource. The other part of the pool is shared with other pools, and this allows you 
to  defi ne the maximum possible resource consumption. The pool resources are set by 
 specifying one of the following for each resource: 

■  MIN or MAX for CPU 

 ■ MIN or MAX for memory percentage 

 MIN represents the minimum guaranteed resource availability for CPU or memory and MAX 
represents the maximum size of the pool for CPU or memory. 

 The shared part of the pool is used to indicate where available resources can go if resources 
are available. However, when resources are consumed, they go to the specifi ed pool and are 
not shared. This may improve resource utilization in cases where there are no requests in a 
given pool and the resources confi gured to the pool can be freed up for other pools.  

 Here are more details about the four values that can be specifi ed for each resource pool:  

 1.  MIN_CPU_PERCENT This is a guaranteed average CPU bandwidth for all  requests 
in the pool when there is CPU contention. SQL Server attempts to  distribute CPU 
 bandwidth between individual requests as fairly as possible and takes the IMPORTANCE 
property for each workload group into account. The  default value is 0, which means 
there is no  minimum value. 

 2.  MAX_CPU_PERCENT This is the maximum CPU bandwidth that all requests in 
the pool  receive when there is CPU contention. The default value is 100, which means 
there is no maximum value. If there is no contention for CPU resources, a pool can 
 consume up to 100 percent of CPU bandwidth.  

 3.  MIN_MEMORY_PERCENT This value specifi es the amount of memory reserved for 
this pool that cannot be shared with other pools. If there are no requests in the pool but 
the pool has a minimum memory value set, this memory cannot be used for requests in 
other pools and is wasted. Within a pool, distribution of memory between requests is on 
a  fi rst-come-fi rst-served basis. Memory for a request can also be affected by properties 
of the workload group, such as REQUEST_MAX_MEMORY_GRANT_PERCENT. The default 
value of 0 means that there is no minimum memory reserved. 

C01626249.indd   47 2/13/2009   9:39:59 AM



48 Microsoft SQL Server 2008 Internals

 4.  MAX_MEMORY_PERCENT This value specifi es the percent of total server memory 
that can be used by all requests in the specifi ed pool. This amount can go up to 
100 percent, but the actual amount is reduced by memory already reserved by the 
MIN_MEMORY_PERCENT value  specifi ed by other pools. MAX_MEMORY_PERCENT 
is always greater than or equal to MIN_MEMORY_PERCENT. The amount of memory 
for an  individual request will be affected by workload group policy, for example, 
REQUEST_MAX_MEMORY_GRANT_PERCENT. The default  setting of 100 means that all 
the server memory can be used for one pool. This setting cannot be exceeded, even if 
it means that the server will be underutilized.  

 Some extreme cases of pool confi guration are the following: 

■  All pools defi ne minimums that add up to 100 percent of the server resources. This is 
equivalent to dividing the server resources into nonoverlapping pieces regardless of 
the resources consumed inside any given pool. 

■  All pools have no minimums. All the pools compete for available resources, and their 
fi nal sizes are based on resource consumption in each pool.  

 Resource Governor has two predefi ned resource pools for each SQL Server instance:  

 Internal pool This pool represents the resources consumed by the SQL Server itself. This 
pool always contains only the internal workload group and is not alterable in any way. 
There are no restrictions on the resources used by the internal pool. You are not able to 
affect the resource usage of the internal pool or add workload groups to it. However, 
you are able to monitor the resources used by the internal group.  

 Default pool Initially, the default pool contains only the default workload group. This pool 
cannot be dropped, but it can be altered and other workload groups can be added to 
it. Note that the default group cannot be moved out of the default pool.  

Pool Sizing

 Table 1-2, taken from SQL Server 2008 Books Online, illustrates the relationships between the 
MIN and MAX values in several pools and how the effective MAX values are computed. The 
table shows the settings for the internal pool, the default pool, and two user-defi ned pools. 
The following formulas are used for calculating the effective MAX % and the shared %: 

■  Min(X,Y) means the smaller value of X and Y. 

■  Sum(X) means the sum of value X across all pools. 

■  Total shared % = 100 – sum(MIN %). 

■  Effective MAX % = min(X,Y). 

■  Shared % = Effective MAX % – MIN %. 

C01626249.indd   48 2/13/2009   9:39:59 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 49

TABLE 1-2 MIN and MAX Values for Workload Groups 

 Pool 

Name 

MIN % 

Setting 

MAX % 

Setting 

Calculated 

Effective MAX % 

Calculated 

Shared % Comment 

 internal 0 100 100 0 Effective MAX % and shared % 
are not applicable to the 
internal pool.

 default 0 100 30 30 The effective MAX value is 
calculated as min(100,100–
(20+50)) = 30. The calculated 
shared % is effective 
MAX – MIN = 30.

 Pool 1 20 100 50 30 The effective MAX value is 
calculated as min(100,100–50) 
= 50. The calculated shared % is 
effective MAX – MIN = 30.

 Pool 2 50 70 70 20 The effective MAX value is 
calculated as min(70,100–20) = 
70. The calculated shared % is 
effective MAX – MIN = 20.

 Table 1-3, also taken from SQL Server Books Online, shows how the values above can change 
when a new pool is created. This new pool is Pool 3 and has a MIN % setting of 5. 

 TABLE 1-3 MIN and MAX Values for Resource Pools 

 Pool  

Name 

MIN % 

Setting 

MAX % 

Setting 

Calculated 

Effective MAX % 

Calculated 

Shared % Comment 

 internal 0 100 100 0 Effective MAX % and shared % 
are not applicable to the 
 internal pool.

 default 0 100 25 30 The effective MAX value is 
calculated as min(100,100–
(20+50+5)) = 25. The 
calculated shared % is effective 
MAX – MIN = 25.

 Pool 1 20 100 45 25 The effective MAX value is 
calculated as min(100,100–55) 
= 45. The calculated shared % 
is effective MAX – MIN = 30. 

 Pool 2 50 70 70 20 The effective MAX value is 
calculated as min(70,100–25) 
= 70. The calculated shared % 
is effective MAX – MIN = 20.

 Pool 3 5 100 30 25 The effective MAX value is 
calculated as min(100,100–70) 
= 30. The calculated shared % 
is effective MAX – MIN = 25.

Pool

Name 

MIN % 

Setting

MAX %

Setting 

Calculated 

Effective MAX % 

Calculated 

Shared % Comment

Pool 

Name 

MIN % 

Setting 

MAX %

Setting

Calculated

Effective MAX % 

Calculated

Shared % Comment 

C01626249.indd   49 2/13/2009   9:39:59 AM



50 Microsoft SQL Server 2008 Internals

Example

 This section includes a few syntax examples of the Resource Governor DDL commands, to 
give a further idea of how all these concepts work together. This is not a complete discussion 
of all the possible DDL command options; for that, you need to refer to SQL Server Books 
Online.  

--- Create a resource pool for production processing

--- and set limits.

USE master;

GO

CREATE RESOURCE POOL pProductionProcessing

WITH

(

     MAX_CPU_PERCENT = 100,

     MIN_CPU_PERCENT = 50

);

GO

--- Create a workload group for production processing

--- and configure the relative importance.

CREATE WORKLOAD GROUP gProductionProcessing

WITH

(

     IMPORTANCE = MEDIUM

)

--- Assign the workload group to the production processing

--- resource pool.

USING pProductionProcessing;

GO 

--- Create a resource pool for off-hours processing

--- and set limits.

CREATE RESOURCE POOL pOffHoursProcessing

WITH

(

     MAX_CPU_PERCENT = 50,

     MIN_CPU_PERCENT = 0

);

GO

--- Create a workload group for off-hours processing

--- and configure the relative importance.

CREATE WORKLOAD GROUP gOffHoursProcessing

WITH

(

     IMPORTANCE = LOW

)

--- Assign the workload group to the off-hours processing

--- resource pool.

USING pOffHoursProcessing;

GO

--- Any changes to workload groups or resource pools require that the 

--- resource governor be reconfigured.

ALTER RESOURCE GOVERNOR RECONFIGURE;

GO

USE master;

C01626249.indd   50 2/13/2009   9:39:59 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 51

GO

CREATE TABLE tblClassifierTimeTable (

     strGroupName     sysname          not null,

     tStartTime       time              not null,

     tEndTime         time              not null

);

GO

--- Add time values that the classifier will use to

--- determine the workload group for a session.

INSERT into tblClassifierTimeTable 

     VALUES('gProductionProcessing', '6:35 AM', '6:15 PM');

GO

--- Create the classifier function

CREATE FUNCTION fnTimeClassifier()

RETURNS sysname

WITH SCHEMABINDING

AS

BEGIN

     DECLARE @strGroup sysname

     DECLARE @loginTime time

     SET @loginTime = CONVERT(time,GETDATE())

     SELECT TOP 1 @strGroup = strGroupName

     FROM dbo.tblClassifierTimeTable

     WHERE tStartTime <= @loginTime and tEndTime >= @loginTime

     IF(@strGroup is not null)

     BEGIN

          RETURN @strGroup

     END

--- Use the default workload group if there is no match

--- on the lookup.

     RETURN N'gOffHoursProcessing'

END;

GO

--- Reconfigure the Resource Governor to use the new function

ALTER RESOURCE GOVERNOR with (CLASSIFIER_FUNCTION = dbo.fnTimeClassifier);

ALTER RESOURCE GOVERNOR RECONFIGURE;

GO

Resource Governor Controls 

 The actual limitations of resources are controlled by your pool settings. In SQL Server 2008, 
you can control memory and CPU resources, but not I/O. It’s possible that in a future version, 
more resource controls will become available. There is an important difference between the 
way that memory and CPU resources limits are applied.  

 You can think of the memory specifi cations for a pool as hard limits, and no pool will ever 
use more than its maximum memory setting. In addition, SQL Server always reserves the 
minimum memory for each pool, so that if no sessions in workload groups are assigned to a 
pool, its minimum memory reservation is unusable by other sessions.  

 However, CPU limits are soft limits, and unused scheduler bandwidth can be used by other 
sessions. The maximum values are also not always fi xed upper limits. For example, if there are 
two pools, one with a maximum of 25 percent and the other with a maximum of 50  percent, 

C01626249.indd   51 2/13/2009   9:39:59 AM



52 Microsoft SQL Server 2008 Internals

as soon as the fi rst pool has used its 25 percent of the scheduler, sessions from groups in 
the other pool can use all the remaining CPU resources. As soft limits, they can make CPU 
 usage not quite as predictable as memory usage. Each session is assigned to a scheduler, as 
 described in the previous section, with no regard to the workload group that the session is in. 
Assume a minimal situation with only two sessions running on a dual CPU instance. Each will 
most likely be assigned to a different scheduler, and the two sessions may be in two different 
workload groups in two different resource pools.  

 Assume that the session on CPU1 is from a workload group in the fi rst pool that has a maximum 
CPU setting of 80 percent, and that the second session, on CPU2, is from a group in the second 
pool with a maximum CPU setting of 20 percent. Because these are only two sessions, they each 
use 100 percent of their scheduler or 50 percent of the total CPU resources on the instance. If 
CPU1 is then assigned another task from a workload group from the 20 percent pool, the  situation 
changes. Tasks using the 20 percent pool have 20 percent of CPU1 but still have 100 percent of 
CPU2, and tasks using the 80 percent pool still have only 80 percent of CPU1. This means tasks 
running from the 20 percent pool have 60 percent of the total CPU resources, and the one task 
from the 80 percent pool has only 40 percent of the total CPU resources. Of course, as more and 
more tasks are assigned to the schedulers, this anomaly may work itself out, but because of the 
way that scheduler resources are managed across multiple CPUs, there is much less explicit control. 

 For testing and troubleshooting purposes, there may be times you want to be able to turn 
off all Resource Governor functionality easily. You can disable the Resource Governor with 
the command ALTER RESOURCE GOVERNOR DISABLE. You can then re-enable the Resource 
Governor with the command ALTER RESOURCE GOVERNOR RECONFIGURE. If you want to 
make sure the Resource Governor stays disabled, you can start your SQL Server instance with 
trace fl ag 8040 in this situation. When this trace fl ag is used, Resource Governor stays in the 
OFF state at all times and all attempts to reconfi gure it fails. The same behavior results if you 
start your SQL Server instance in single-user mode using the –m and –f fl ags. If the Resource 
Governor is disabled, you should notice the following behaviors: 

■  Only the internal workload group and resource pool exist. 

■  Resource Governor confi guration metadata are not loaded into memory. 

■  Your classifi er function is never executed automatically. 

■  The Resource Governor metadata is visible and can be manipulated. 

Resource Governor Metadata

 There are three specifi c catalog views that you’ll want to take a look at when working with 
the Resource Governor. 

■  sys.resource_governor_confi guration This view returns the stored Resource Governor 
state. 

■  sys.resource_governor_resource_pools This view returns the stored resource pool 
confi guration. Each row of the view  determines the confi guration of an individual pool. 

C01626249.indd   52 2/13/2009   9:39:59 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 53

■  sys.resource_governor_workload_groups This view returns the stored workload group 
confi guration. 

 There are also three DMVs devoted to the Resource Governor: 

■  sys.dm_resource_governor_workload_groups This view returns workload group 
 statistics and the current in-memory confi guration of the workload group. 

■  sys.dm_resource_governor_resource_pools This view returns information about the 
current resource pool state, the current  confi guration of resource pools, and resource 
pool statistics. 

■  sys.dm_resource_governor_confi guration This view returns a row that contains the 
current in-memory confi guration state for the Resource Governor. 

 Finally, six other DMVs contain information related to the Resource Governor:  

■  sys.dm_exec_query_memory_grants This view returns information about the queries 
that have acquired a memory grant or that still require a memory grant to execute. 
Queries that do not have to wait for a memory grant do not appear in this view. The 
following columns are added for the Resource Governor: group_id, pool_id, is_small, 
ideal_memory_kb .

■  sys.dm_exec_query_resource_semaphores This view returns the information about 
the current query-resource semaphore status. It provides general query-execution 
memory status information and allows you to  determine whether the system can access 
enough memory. The pool_id column has been added for the Resource Governor. 

■  sys.dm_exec_sessions This view returns one row per authenticated session on SQL 
Server. The group_id  column has been added for the Resource Governor.  

■  sys.dm_exec_requests This view returns information about each request that 
is  executing within SQL Server. The group_id column is added for the Resource 
Governor.  

■  sys.dm_exec_cached_plans This view returns a row for each query plan that is cached 
by SQL Server for faster  query execution. The pool_id column is added for the Resource 
Governor.  

■  sys.dm_os_memory_brokers This view returns information about allocations that 
are internal to SQL Server, which use the SQL Server memory manager. The  following 
 columns are added for the Resource Governor: pool_id, allocations_db_per_sec, 
 predicated_allocations_kb, overall_limit_kb .

 Although at fi rst glance it may seem like the setup of the Resource Governor is unnecessarily 
complex, hopefully you’ll fi nd that being able to specify properties for both workload groups 
and resource pools provides you with the maximum control and fl exibility. You can think of 
the workload groups as tools that give control to your developers, and the resource pools as 
administrator tools for limiting what the developers can do. 

C01626249.indd   53 2/13/2009   9:39:59 AM



54 Microsoft SQL Server 2008 Internals

SQL Server 2008 Confi guration

 In the second part of this chapter, we’ll look at the options for controlling how SQL Server 
2008 behaves. One main method of controlling the behavior of the Database Engine is to 
adjust confi guration option settings, but you can confi gure behavior in a few other ways as 
well. We’ll fi rst look at using SQL Server Confi guration Manager to control network protocols 
and SQL Server–related services. We’ll then look at other machine settings that can affect 
the  behavior of SQL Server. Finally, we’ll examine some specifi c confi guration options for 
 controlling server-wide settings in SQL Server.  

Using SQL Server Confi guration Manager

 Configuration Manager is a tool for managing the services associated with SQL 
Server,  configuring the network protocols used by SQL Server, and managing the 
 network  connectivity configuration from client computers connecting to SQL Server. It 
is installed as part of SQL Server. Configuration Manager is available by right-clicking 
the registered server in Management Studio, or you can add it to any other Microsoft 
Management Console (MMC) display.  

Confi guring Network Protocols

 A specifi c protocol must be enabled on both the client and the server for the client to connect 
and communicate with the server. SQL Server can listen for requests on all enabled protocols 
at once. The underlying operating system network protocols (such as TCP/IP) should already 
be installed on the client and the server. Network protocols are typically installed during 
Windows setup; they are not part of SQL Server setup. A SQL Server network library does not 
work unless its corresponding network protocol is installed on both the client and the server. 

 On the client computer, the SQL Native Client must be installed and confi gured to use a 
network protocol enabled on the server; this is usually done during Client Tools Connectivity 
setup. The SQL Native Client is a standalone data access API used for both OLE DB and 
ODBC. If the SQL Native Client is available, any network protocol can be  confi gured for 
use with a particular client connecting to SQL Server. You can use SQL Server Confi guration 
Manager to enable a single protocol or to enable multiple protocols and specify an  order 
in which they should be attempted. If the Shared Memory protocol setting is enabled, 
that protocol is always tried fi rst, but, as mentioned earlier in this chapter, it is available for 
 communication only when the client and the server are on the same machine.  

 The following query returns the protocol used for the current connection, using the DMV 
sys.dm_exec_connections:  

SELECT net_transport   

FROM sys.dm_exec_connections   

WHERE session_id = @@SPID;

C01626249.indd   54 2/13/2009   9:39:59 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 55

Default Network Confi guration

The network protocols that can be used to communicate with SQL Server 2008 from another 
computer are not all enabled for SQL Server during installation. To connect from a particular 
client computer, you might need to enable the desired protocol. The Shared Memory protocol 
is enabled by default on all installations, but because it can be used to connect to the Database 
Engine only from a client application on the same computer, its usefulness is limited.  

TCP/IP connectivity to SQL Server 2008 is disabled for new installations of the Developer, 
Evaluation, and SQL Express editions. OLE DB applications connecting with MDAC 2.8  cannot 
connect to the default instance on a local server using “.”, “(local)”, or (<blank>) as the server 
name. To resolve this, supply the server name or enable TCP/IP on the server. Connections 
to local named instances are not affected, nor are connections using the SQL Native Client. 
Installations in which a previous installation of SQL Server is present might not be affected.  

Table 1-4 describes the default network confi guration settings.  

TABLE 1-4 SQL Server 2008 Default Network Confi guration Settings

SQL Server 

Edition  

Type of 

Installation 

Shared 

Memory  TCP/IP  Named Pipes  VIA

Enterprise New Enabled Enabled Disabled (available 
only locally)

Disabled

Enterprise 
(clustered)

New Enabled Enabled Enabled Disabled

Developer New Enabled Disabled Disabled (available 
only locally)

Disabled

Standard New Enabled Enabled Disabled (available 
only locally)

Disabled

Workgroup New Enabled Enabled Disabled (available 
only locally)

Disabled

Evaluation New Enabled Disabled Disabled (available 
only locally)

Disabled

Web New Enabled Enabled Disabled (available 
only locally)

Disabled

SQL Server 
Express

New Enabled Disabled Disabled (available 
only locally)

Disabled

All editions Upgrade or 
side-by-side 
installation

Enabled Settings preserved 
from the previous 
installation

Settings preserved 
from the previous 
installation

Disabled

Managing Services

You can use Confi guration Manager to start, pause, resume, or stop SQL Server–related 
services. The services available depend on the specifi c components of SQL Server you 

SQL Server

Edition  

Type of 

Installation 

Shared

Memory TCP/IP Named Pipes VIA

C01626249.indd   55 2/13/2009   9:39:59 AM



56 Microsoft SQL Server 2008 Internals

have installed, but you should always have the SQL Server service itself and the SQL Server 
Agent service. Other services might include the SQL Server Full-Text Search service and 
SQL Server Integration Services (SSIS). You can also use Confi guration Manager to view the 
 current  properties of the services, such as whether the service is set to start automatically. 
Confi guration Manager is the preferred tool for changing service properties rather than using 
Windows service management tools. When you use a SQL Server tool such as Confi guration 
Manager to change the account used by either the SQL Server or SQL Server Agent service, 
the SQL Server tool automatically makes additional confi gurations, such as setting permissions 
in the Windows Registry so that the new account can read the SQL Server settings. Password 
changes using Confi guration Manager take effect immediately without requiring you to 
 restart the service. 

SQL Server Browser

 One other related service that deserves special attention is the SQL Server Browser service. 
This service is particularly important if you have named instances of SQL Server running on a 
machine. SQL Server Browser listens for requests to access SQL Server resources and provides 
information about the various SQL Server instances installed on the computer where the 
Browser service is running.  

 Prior to SQL Server 2000, only one installation of SQL Server could be on a machine at 
one time, and there really was no concept of an “instance.” SQL Server always listened 
for  incoming requests on port 1433, but any port can be used by only one connection at 
a time. When SQL Server 2000 introduced support for multiple instances of SQL Server, 
a new  protocol called SQL Server Resolution Protocol (SSRP) was developed to listen on 
UDP port 1434. This listener could reply to clients with the names of installed SQL Server 
instances, along with the port numbers or named pipes used by the instance. SQL 
Server 2005 replaced SSRP with the SQL Server Browser service, which is still used in SQL 
Server 2008. 

 If the SQL Server Browser service is not running on a computer, you cannot connect to SQL 
Server on that machine unless you provide the correct port number. However, if the SQL 
Server Browser service is not running, the following connections will not work: 

■  Connecting to a named instance without providing the port number or pipe 

■  Using the DAC to connect to a named instance or the default instance if it us not using 
TCP/IP port 1433 

■  Enumerating servers in Management Studio, Enterprise Manager, or Query Analyzer 

 It is recommended that the Browser Service be set to start automatically on any machine on 
which SQL Server will be accessed using a network connection. 

C01626249.indd   56 2/13/2009   9:39:59 AM

v@v
Text Box
Download at Wow! eBook



 Chapter 1 SQL Server 2008 Architecture and Confi guration 57

SQL Server System Confi guration

 You can confi gure the machine that SQL Server runs on, as well as the Database Engine 
itself, in several ways and through a variety of interfaces. We’ll fi rst look at some  operating 
system–level settings that can affect the behavior of SQL Server. Next, we’ll see some 
SQL Server  options that can affect behavior that aren’t especially considered to be 
 confi guration options. Finally, we’ll examine the confi guration options for controlling the 
behavior of SQL Server 2008, which are set primarily using a stored procedure interface 
called sp_confi gure.  

Operating System Confi guration 

 For your SQL Server to run well, it must be running on a tuned operating system, on a 
 machine that has been properly confi gured to run SQL Server. Although it is beyond the 
scope of this book to discuss operating system and hardware confi guration and tuning, 
there are a few issues that are very straightforward but can have a major impact on the 
 performance of SQL Server, and we will describe them here. 

Task Management

 As you saw in the fi rst part of this chapter, the operating system schedules all threads in the 
system for execution. Each thread of every process has a priority, and Windows executes the 
next available thread with the highest priority. By default, the operating system gives active 
applications a higher priority, but this priority setting may not be appropriate for a server 
application running in the background, such as SQL Server 2008. To remedy this situation, 
the SQL Server installation program modifi es the priority setting to eliminate the favoring of 
foreground applications.  

 It’s not a bad idea to double-check this priority setting periodically in case someone has set 
it back. You’ll need to open the Advanced tab of the Performance Options dialog box.  

 If you’re using Windows XP or Windows Server 2003, click the Start menu, right-click 
My Computer, and choose Properties. The System Properties dialog box opens. On 
the Advanced tab, click the Settings button in the Performance area. Again, select the 
Advanced tab.  

 If you’re using Windows Server 2008, click the Start menu, right-click Computer, and choose 
Properties. The System information screen opens. Select Advanced System Settings from 
the list on the left to open the System Properties dialog box. Just as for Windows XP and 
Windows Server 2003, on the Advanced tab, click the Settings button in the Performance 
area. Again, select the Advanced tab. You should see the Performance Options dialog box, 
shown in Figure 1-6. 

C01626249.indd   57 2/13/2009   9:39:59 AM



58 Microsoft SQL Server 2008 Internals

FIGURE 1-6 Confi guration of priority for background services

 The fi rst set of options is for specifying how to allocate processor resources, and you 
can adjust for the best performance of either programs or background services. Select 
Background Services so that all programs (both background and foreground) receive equal 
processor resources. If you plan to connect to SQL Server 2008 from a local client (that is, 
a client running on the same computer as the server), you can improve processing time by 
using this setting.  

System Paging File Location

 If possible, you should place the operating system paging fi le on a different drive than 
the fi les used by SQL Server. This is vital if your system will be paging. However, a better 
 approach is to add memory or change the SQL Server memory confi guration to effectively 
eliminate paging. In general, SQL Server is designed to minimize paging, so if your memory 
confi guration values are appropriate for the amount of physical memory on the system, 
such a small amount of page-fi le activity will occur that the fi le’s location is irrelevant. 

C01626249.indd   58 2/13/2009   9:39:59 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 59

Nonessential Services

 You should disable any services that you don’t need. In Windows Server 2003, you can 
 right-click My Computer and choose Manage. Expand the Services And Applications 
node in the Computer Management tool, and click Services. In the right-hand pane, you 
see a list of all the services available on the operating system. You can change a service’s 
startup  property by right-clicking its name and choosing Properties. Unnecessary services 
add  overhead to the system and use resources that could otherwise go to SQL Server. No 
 unnecessary services should be marked for automatic startup. Avoid using a server that’s 
running SQL Server as a domain controller, the group’s fi le or print server, the Web server, or 
the Dynamic Host Confi guration Protocol (DHCP) server. You should also consider disabling 
the Alerter, ClipBook, Computer Browser, Messenger, Network Dynamic Data Exchange 
(DDE), and Task Scheduler services, which are enabled by default but are not needed by SQL 
Server. 

Connectivity

 You should run only the network protocols that you actually need for connectivity. You can 
use the SQL Server Confi guration Manager to disable unneeded protocols, as described 
 earlier in this chapter.  

Firewall Setting

 Improper fi rewall settings are another system confi guration issue that can inhibit SQL 
Server connectivity across your network. Firewall systems help prevent unauthorized  access 
to  computer resources and are usually desirable, but to access an instance of SQL Server 
through a fi rewall, you’ll need to confi gure the fi rewall on the computer running SQL 
Server to allow access. Many fi rewall systems are available, and you’ll need to check the 
 documentation for your system for the exact details of how to confi gure it. In general, you’ll 
need to carry out the following steps: 

  1. Confi gure the SQL Server instance to use a specifi c TCP/IP port. Your default SQL Server 
uses port 1433 by default, but that can be changed. Named instances use dynamic 
ports by default, but that can also be changed using the SQL Server Confi guration 
Manager.  

  2. Confi gure your fi rewall to allow access to the specifi c port for authorized users or 
computers. 

  3. As an alternative to confi guring SQL Server to listen on a specifi c port and then 
 opening that port, you can list the SQL Server executable (Sqlservr.exe) and the SQL 
Browser executable (Sqlbrowser.exe) when requiring a connection to named instances, 
as exceptions to the blocked programs. You can use this method when you want to 
continue to use dynamic ports. 

C01626249.indd   59 2/13/2009   9:39:59 AM



60 Microsoft SQL Server 2008 Internals

Trace Flags

 SQL Server Books Online lists only about a dozen trace fl ags that are fully supported. You can 
think of trace fl ags as special switches that you can turn on or off to change the behavior of 
SQL Server. There are actually many dozens, if not hundreds, of trace fl ags. However, most 
were created for the SQL Server development team’s internal testing of the product and were 
never intended for use by anybody outside Microsoft.  

 You can set trace fl ags on or off by using the DBCC TRACEON or DBCC TRACEOFF  command 
or by specifying them on the command line when you start SQL Server using Sqlservr.exe. 
You can also use the SQL Server Confi guration Manager to enable one or more trace fl ags 
 every time the SQL Server service is started. (You can read about how to do that in SQL 
Server Books Online.) Trace fl ags enabled with DBCC TRACEON are valid only for a single 
 connection unless you specifi ed an additional parameter of –1, in which case they are active 
for all connections, even ones opened before you ran DBCC TRACEON. Trace fl ags enabled as 
part of starting the SQL Server service are enabled for all sessions.  

 A few of the trace fl ags are particularly relevant to topics covered in this book, and we will 
discuss particular ones when we describe topics that they are related to. For example, we 
 already mentioned trace fl ag 8040 in conjunction with the Resource Governor. 

 Caution Because trace fl ags change the way SQL Server behaves, they can actually cause 
 trouble if used inappropriately. Trace fl ags are not harmless features that you can experiment 
with just to see what happens, especially not on a production system. Using them effectively 
 requires a thorough understanding of SQL Server default behavior (so that you know exactly 
what you’ll be changing) and extensive testing to determine that your system really will benefi t 
from the use of the trace fl ag.  

SQL Server Confi guration Settings

 If you choose to have SQL Server automatically confi gure your system, it dynamically adjusts 
the most important confi guration options for you. It’s best to accept the default  confi guration 
values unless you have a good reason to change them. A poorly confi gured system can 
 destroy performance. For example, a system with an incorrectly confi gured memory setting 
can break an application.  

 In certain cases, tweaking the settings rather than letting SQL Server dynamically adjust them 
might lead to a tiny performance improvement, but your time is probably better spent on 
 application and database designing, indexing, query tuning, and other such activities, which 
we’ll talk about later in this book. You might see only a 5 percent improvement in performance 
by moving from a reasonable confi guration to an ideal confi guration, but a badly confi gured 
system can kill your application’s performance. 

 SQL Server 2008 has 68 server confi guration options that you can query using the catalog 
view sys.confi gurations.  

C01626249.indd   60 2/13/2009   9:39:59 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 61

 You should change confi guration options only when you have a clear reason for doing so, 
and you should closely monitor the effects of each change to determine whether the change 
improved or degraded performance. Always make and monitor changes one at a time. The 
server-wide options discussed here can be changed in several ways. All of them can be set 
via the sp_confi gure system stored procedure. However, of the 68 options, all but 16 are 
 considered advanced options and are not manageable by default using sp_confi gure. You’ll 
fi rst need to change the Show Advanced Options option to be 1, as shown here: 

EXEC sp_configure 'show advanced options', 1; 

GO 

RECONFIGURE;  

GO

 To see which options are advanced, you can again query the sys.confi gurations view and 
examine a column called is_advanced, which lets you see which options are considered 
advanced: 

SELECT * FROM sys.configurations

WHERE is_advanced = 1; 

GO 

 Many of the confi guration options can also be set from the Server Properties dialog box in 
the Object Explorer window of Management Studio, but there is no single dialog box from 
which all confi guration settings can be seen or changed. Most of the options that you can 
change from the Server Properties dialog box are controlled from one of the property pages 
that you reach by right-clicking the name of your SQL Server instance from Management 
Studio. You can see the list of property pages in Figure 1-7.  

FIGURE 1-7 List of server property pages in Management Studio

C01626249.indd   61 2/13/2009   9:40:00 AM



62 Microsoft SQL Server 2008 Internals

 If you use the sp_confi gure stored procedure, no changes take effect until the RECONFIGURE 
command runs. In some cases, you might have to specify RECONFIGURE WITH OVERRIDE if 
you are changing an option to a value outside the recommended range. Dynamic changes 
take effect immediately upon reconfi guration, but others do not take effect until the server is 
restarted. If after running RECONFIGURE, an option’s run_value and confi g_value as displayed 
by sp_confi gure are different, or if the value and value_in_use in sys.confi gurations are different, 
you must restart the SQL Server service for the new value to take effect. You can use the 
sys.confi gurations view to determine which options are dynamic: 

SELECT * FROM sys.configurations

WHERE is_dynamic = 1; 

GO 

 We won’t look at every confi guration option here—only the most interesting ones or ones 
that are related to SQL Server performance. In most cases, I’ll discuss options that you should 
not change. Some of these are resource settings that relate to performance only in that they 
consume memory (for example, Locks). But if they are confi gured too high, they can rob 
a system of memory and degrade performance. We’ll group the confi guration settings by 
functionality. Keep in mind that SQL Server sets almost all these options automatically, and 
your applications work well without you ever looking at them. 

Memory Options

 In the preceding section, you saw how SQL Server uses memory, including how it allocates 
memory for different uses and when it reads data from or writes data to disk. However, 
we did not discuss how to control how much memory SQL Server actually uses for these 
purposes.  

Min Server Memory and Max Server Memory  By default, SQL Server adjusts the total 
amount of the memory resources it will use. However, you can use the Min Server Memory 
and Max Server Memory confi guration options to take manual control. The default setting for 
Min Server Memory is 0 MB, and the default setting for Max Server Memory is 2147483647. If 
you use the sp_confi gure stored procedure to change both of these options to the same value, 
you basically take full control and tell SQL Server to use a fi xed memory size. The  absolute 
maximum of 2147483647 MB is actually the largest  value that can be stored in the integer 
fi eld of the underlying system table. It is not related to the actual resources of your system. 
The Min Server Memory option does not force SQL Server to acquire a minimum amount 
of memory at startup. Memory is allocated on demand based on the database workload. 
However, once the Min Server Memory threshold is reached, SQL Server does not release 
memory if it would be left with less than that amount. To ensure that each instance has 
 allocated memory at least equal to the Min Server Memory value, therefore, we recommend 
that you execute a database server load shortly after startup. During normal server activity, 
the memory available per instance varies, but there is never less than the Min Server Memory 
value available for each instance. 

C01626249.indd   62 2/13/2009   9:40:00 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 63

Set Working Set Size  The confi guration option Set Working Set Size is a setting from earlier 
versions, and it has been deprecated. This setting is ignored in SQL Server 2008, even though 
you do not receive an error message when you try to use this value.  

AWE Enabled  This option enables the use of the AWE API to support large memory sizes on 
32-bit systems. With AWE enabled, SQL Server 2008 can use as much memory as the Enterprise, 
Developer, or Standard editions allow. When running on Windows Server 2003 or Windows 
Server 2008, SQL Server reserves only a small portion of AWE-mapped memory when it starts. 
As additional AWE-mapped memory is required, the operating system dynamically allocates 
it to SQL Server. Similarly, if fewer resources are required, SQL Server can return AWE-mapped 
memory to the operating system for use by other processes or applications.  

 Use of AWE, in either Windows Server 2003 or Windows Server 2008, locks the pages 
in memory so that they cannot be written to the paging fi le. Windows has to swap out 
other applications if additional physical memory is needed, so the performance of those 
 applications might suffer. You should therefore set a value for Max Server Memory when you 
have also enabled AWE.  

 If you are running multiple instances of SQL Server on the same computer, and each instance 
uses AWE-mapped memory, you should ensure that the instances perform as expected. Each 
instance should have a Min Server Memory setting. Because AWE-mapped memory cannot 
be swapped out to the page fi le, the sum of the Min Server Memory values for all instances 
should be less than the total physical memory on the computer. 

 If your SQL Server is set up for failover clustering and is confi gured to use AWE memory, you 
must ensure that the sum of the Max Server Memory settings for all the instances is less than 
the least physical memory available on any of the servers in the cluster. If the failover node 
has less physical memory than the original node, the instances of SQL Server may fail to 
start. 

User Connections  SQL Server 2008 dynamically adjusts the number of  simultaneous 
 connections to the server if the User Connections confi guration setting is left at its  default 
of 0. Even if you set this value to a different number, SQL Server does not actually  allocate 
the full amount of memory needed for each user connection until a user actually  connects. 
When SQL Server starts, it allocates an array of pointers with as many entries as the 
 confi gured  value for User Connections. If you must use this option, do not set the value too 
high because each connection takes approximately 28 KB of overhead regardless of whether 
the connection is being used. However, you also don’t want to set it too low  because if you 
exceed the maximum number of user connections, you receive an error message and  cannot 
connect until another connection becomes available. (The exception is the DAC  connection, 
which can be used.) Keep in mind that the User Connections value is not the same as the 
number of users; one user, through one application, can open multiple connections to 
SQL Server. Ideally, you should let SQL Server dynamically adjust the value of the User 
Connections option.  

C01626249.indd   63 2/13/2009   9:40:00 AM



64 Microsoft SQL Server 2008 Internals

 Important The Locks confi guration option is a setting from earlier versions, and it has been 
deprecated. This setting is ignored in SQL Server 2008, even though you do not receive an error 
message when you try to use this value.  

Scheduling Options

 As described previously, SQL Server 2008 has a special algorithm for scheduling user  processes 
using the SQLOS, which manages one scheduler per logical processor and makes sure that only 
one process can run on a scheduler at any given time. The SQLOS manages the  assignment 
of user connections to workers to keep the number of users per CPU as  balanced as possible. 
Five confi guration options affect the behavior of the scheduler: Lightweight Pooling, Affi nity 
Mask, Affi nity64 Mask, Priority Boost, and Max Worker Threads. 

Affi nity Mask and Affi nity64 Mask  From an operating system point of view, the  ability 
of Windows to move process threads among different processors is effi cient, but this 
 activity can reduce SQL Server performance because each processor cache is reloaded with 
data  repeatedly. By setting the Affi nity Mask option, you can allow SQL Server to assign 
 processors to specifi c threads and thus improve performance under heavy load conditions 
by eliminating processor reloads and reducing thread migration and context switching 
across processors. Setting an affi nity mask to a non-0 value not only controls the binding 
of  schedulers to processors, but it also allows you to limit which processors are used for 
 executing SQL Server requests.  

 The value of an affi nity mask is a 4-byte integer, and each bit controls one processor. If you 
set a bit representing a processor to 1, that processor is mapped to a specifi c scheduler. The 
4-byte affi nity mask can support up to 32 processors. For example, to confi gure SQL Server to 
use processors 0 through 5 on an eight-way box, you would set the affi nity mask to 63, which 
is equivalent to a bit string of 00111111. To enable processors 8 through 11 on a 16-way box, 
you would set the affi nity mask to 3840, or 0000111100000000. You might want to do this 
on a machine supporting multiple instances, for example. You would set the affi nity mask of 
each instance to use a different set of processors on the computer.  

 To cover more than 32 CPUs, you confi gure a 4-byte affi nity mask for the fi rst 32 CPUs and 
up to a 4-byte Affi nity64 mask for the remaining CPUs. Note that affi nity support for servers 
with 33 to 64 processors is available only on 64-bit operating systems. 

 You can confi gure the affi nity mask to use all the available CPUs. For an eight-way machine, 
an Affi nity Mask setting of 255 means that all CPUs will be enabled. This is not exactly the 
same as a setting of 0 because with the nonzero value, the schedulers are bound to a specifi c 
CPU, and with the 0 value, they are not. 

Lightweight Pooling   By default, SQL Server operates in thread mode, which means 
that the workers processing SQL Server requests are threads. As we described earlier, SQL 

C01626249.indd   64 2/13/2009   9:40:00 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 65

Server also lets user connections run in fi ber mode. Fibers are less expensive to manage 
than threads. The Lightweight Pooling option can have a value of 0 or 1; 1 means that SQL 
Server should run in fi ber mode. Using fi bers may yield a minor performance advantage, 
 particularly when you have eight or more CPUs and all of the available CPUs are operating 
at or near 100 percent. However, the trade-off is that certain operations, such as running 
queries on linked servers or executing extended stored procedures, must run in thread mode 
and  therefore need to switch from fi ber to thread. The cost of switching from fi ber to thread 
mode for those connections can be noticeable and in some cases offsets any benefi t of 
 operating in fi ber mode. 

 If you’re running in an environment using a high percentage of total CPU resources, and if 
System Monitor shows a lot of context switching, setting Lightweight Pooling to 1 might 
yield some performance benefi t. 

Priority Boost  If the Priority Boost setting is enabled, SQL Server runs at a higher  scheduling 
priority. The result is that the priority of every thread in the server process is set to a priority 
of 13 in Windows 2000 and Windows Server 2003. Most processes run at the  normal priority, 
which is 7. The net effect is that if the server is running a very resource-intensive workload 
and is getting close to maxing out the CPU, these normal priority processes are effectively 
starved.  

 The default Priority Boost setting is 0, which means that SQL Server runs at normal  priority 
whether or not you’re running it on a single-processor machine. There are probably very 
few sites or applications for which setting this option makes much difference, but if your 
 machine is totally dedicated to running SQL Server, you might want to enable this option 
(setting it to 1) to see for yourself. It can potentially offer a performance advantage on a 
heavily  loaded, dedicated system. As with most of the confi guration options, you should use 
it with care. Raising the priority too high might affect the core operating system and  network 
 operations, resulting in problems shutting down SQL Server or running other operating 
 system tasks on the server. 

Max Worker Threads  SQL Server uses the operating system’s thread services by keeping a 
pool of workers (threads or fi bers) that take requests from the queue. It attempts to divide the 
worker threads evenly among the SQLOS schedulers so that the number of threads available 
to each scheduler is the Max Worker Threads setting divided by the number of CPUs. With 100 
or fewer users, there are usually as many worker threads as active users (not just connected 
 users who are idle). With more users, it often makes sense to have fewer worker threads 
than active users. Although some user requests have to wait for a worker thread to become 
 available, total throughput increases because less context switching occurs. 

 The Max Worker Threads default value of 0 means that the number of workers is 
 confi gured by SQL Server, based on the number of processors and machine architec-
ture. For example, for a four-way 32-bit machine running SQL Server, the default is 256 
 workers. This does not mean that 256 workers are created on startup. It means that if a 

C01626249.indd   65 2/13/2009   9:40:00 AM



66 Microsoft SQL Server 2008 Internals

 connection is waiting to be serviced and no worker is available, a new worker is created if 
the  total is currently  below 256. If this setting is confi gured to 256 and the highest number 
of  simultaneously  executing commands is, say, 125, the actual number of workers will not 
 exceed 125. It might be even smaller than that because SQL Server destroys and trims away 
workers that are no longer  being used. You should probably leave this setting alone if your 
system is handling 100 or fewer simultaneous connections. In that case, the worker thread 
pool will not be greater than 100. 

 Table 1-5 lists the default number of workers given your machine architecture and number 
of processors. (Note that Microsoft recommends 1024 as the maximum for 32-bit operating 
systems.) 

 TABLE 1-5 Default Settings for Max Worker Threads

 CPU 32-Bit Computer 64-Bit Computer

 Up to 4 processors 256 512 

 8 processors 288 576 

 16 processors 352 704

 32 processors 480 960

 Even systems that handle 4,000 or more connected users run fi ne with the default setting. 
When thousands of users are simultaneously connected, the actual worker pool is usually 
well below the Max Worker Threads value set by SQL Server because from the perspective 
of the database, most connections are idle even if the user is doing plenty of work on the 
client. 

Disk I/O Options 

 No options are available for controlling the disk read behavior of SQL Server. All the tuning 
options to control read-ahead in previous versions of SQL Server are now handled completely 
internally. One option is available to control disk write behavior. This option controls how 
 frequently the checkpoint process writes to disk. 

Recovery Interval  The Recovery Interval option can be confi gured automatically. 
SQL Server setup sets it to 0, which means autoconfi guration. In SQL Server 2008, this 
means that the recovery time should be less than one minute. This option lets the  database 
administrator control the checkpoint frequency by specifying the maximum number of 
minutes that recovery should take, per database. SQL Server estimates how many data 
modifi cations it can roll forward in that recovery time interval. SQL Server then inspects the 
log of each database (every minute, if the recovery interval is set to the default of 0) and 
issues a checkpoint for each database that has made at least that many data modifi cation 
operations since the last checkpoint. For databases with relatively small transaction logs, 
SQL Server issues a checkpoint when the log becomes 70 percent full, if that is less than the 
estimated number.  

CPU 32-Bit Computer 64-Bit Computer

C01626249.indd   66 2/13/2009   9:40:00 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 67

 The Recovery Interval option does not affect the time it takes to undo long-running transactions. 
For example, if a long-running transaction takes two hours to perform updates before the server 
becomes disabled, the actual recovery takes considerably longer than the Recovery Interval value. 

 The frequency of checkpoints in each database depends on the amount of data modifi cations 
made, not on a time-based measure. So a database that is used primarily for read operations 
will not have many checkpoints issued. To avoid excessive checkpoints, SQL Server tries to 
make sure that the value set for the recovery interval is the minimum amount of time between 
successive checkpoints.  

 As discussed previously, most writing to disk doesn’t actually happen during checkpoint 
 operations. Checkpoints are just a way to guarantee that all dirty pages not written by other 
mechanisms are still written to the disk in a timely manner. For this reason, you should keep 
the Recovery Interval value set at 0 (self-confi guring).  

Affi nity I/O Mask and Affi nity64 I/O Mask  These two options control the affi nity of a 
 processor for I/O operations and work in much the same way as the two options for  controlling 
processing affi nity for workers. Setting a bit for a processor in either of these bit masks means 
that the corresponding processor is used only for I/O operations. You  probably never need 
to set this option. However, if you do decide to use it, perhaps just for  testing  purposes, you 
should use it in conjunction with the Affi nity Mask or Affi nity64 Mask  option and make sure 
the bits set do not overlap. You should thus have one of the following  combinations of settings: 
0 for both Affi nity I/O Mask and Affi nity Mask for a CPU, 1 for the Affi nity I/O Mask option and 
0 for Affi nity Mask, or 0 for Affi nity I/O Mask and 1 for Affi nity Mask. 

Backup Compression Default  Backup Compression is a new feature in SQL Server 2008, 
and for backward compatibility, the default value for backup compression is 0, meaning 
that backups are not compressed. Although only Enterprise edition instances can create a 
 compressed backup, any edition of SQL Server 2008 can restore a compressed backup. When 
Backup Compression is enabled, the compression is performed on the server prior to writing, 
so it can greatly reduce the size of the backups and the I/O required to write the backups to 
the external device. The amount of space reduction depends on many factors, including the 
following: 

■  The type of data in the backup For example, character data compresses more than 
other types of data. 

■  Whether the data is encrypted Encrypted data compresses signifi cantly less than 
equivalent unencrypted data. If transparent data encryption is used to encrypt an 
 entire database, compressing backups might not reduce their size by much, if at all. 

 After the backup has been performed, you can inspect the backupset table in the msdb 
 database to determine the compression ratio, using a statement like the following: 

SELECT backup_size/compressed_backup_size FROM msdb..backupset;

C01626249.indd   67 2/13/2009   9:40:00 AM



68 Microsoft SQL Server 2008 Internals

 Although compressed backups can use signifi cantly fewer I/O resources, it can signifi cantly 
increase CPU usage when performing the compression. This additional load can affect other 
operations occurring concurrently. To minimize this impact, you can consider using the 
Resource Governor to create a workload group for sessions performing backups and assign 
the group to a resource pool with a limit on its maximum CPU utilization.  

 The confi gured value is the instance-wide default for Backup Compression, but it can be 
overridden for a particular backup operation, by specifying WITH COMPRESSION or WITH 
NO_COMPRESSION. Compression can be used for any type of backup: full, log, differential or 
partial (fi le or fi legroup).  

 Note The algorithm used for compressing backups is very different than the database 
 compression algorithms. Backup Compression uses an algorithm very similar to zip, where it is 
just looking for patterns in the data. Data compression will be discussed in Chapter 7. 

Filestream Access Level  Filestream integrates the Database Engine with your NTFS fi le 
 system by storing BLOB data as fi les on the fi le system and allowing you to access this data 
either using T-SQL or Win32 fi le system interfaces to provide  streaming access to the data. 
Filestream uses the Windows system cache for caching fi le data to help reduce any effect 
that fi lestream data might have on SQL Server performance. The SQL Server buffer pool is 
not used so that fi lestream does not reduce the memory available for query processing. 

 Prior to setting this confi guration option to indicate the access level for fi lestream data, you 
must enable FILESTREAM externally using the SQL Server Confi guration Manager (if you 
haven’t enabled FILESTREAM during SQL Server setup). Using the SQL Server Confi guration 
Manager, you can right-click the name of the SQL Server service and choose properties. The 
dialog box has a separate tab for FILESTREAM options. You must check the top box to  enable 
FILESTREAM for T-SQL access, and then you can choose to enable FILESTREAM for fi le I/O 
 streaming if you want.  

 After enabling FILESTREAM for your SQL Server instance, you then set the confi guration 
value. The following values are allowed: 

■  0 Disables FILESTREAM support for this instance 

 ■ 1 Enables FILESTREAM for T-SQL access 

 ■ 2 Enables FILESTREAM for T-SQL and Win32 streaming access 

 Databases that store fi lestream data must have a special fi lestream fi legroup. We’ll 
 discuss fi legroups in Chapter 3. More details about fi lestream storage will be covered in 
Chapter 7. 

C01626249.indd   68 2/13/2009   9:40:00 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 69

Query Processing Options

 SQL Server has several options for controlling the resources available for processing  queries. 
As with all the other tuning options, your best bet is to leave the default values unless 
 thorough testing indicates that a change might help. 

Min Memory Per Query  When a query requires additional memory resources, the  number 
of pages that it gets is determined partly by the Min Memory Per Query option. This  option 
is relevant for sort operations that you specifi cally request using an ORDER BY clause, and 
it also applies to internal memory needed by merge-join operations and by hash-join and 
hash-grouping operations. This confi guration option allows you to specify a minimum 
amount of memory (in kilobytes) that any of these operations should be granted before they 
are executed. Sort, merge, and hash operations receive memory in a very dynamic fashion, 
so you rarely need to adjust this value. In fact, on larger machines, your sort and hash queries 
typically get much more than the Min Memory Per Query setting, so you shouldn’t restrict 
yourself unnecessarily. If you need to do a lot of hashing or sorting, however, and you have 
few users or a lot of available memory, you might improve performance by adjusting this 
value. On smaller machines, setting this value too high can cause virtual memory to page, 
which hurts server performance. 

Query Wait  The Query Wait option controls how long a query that needs additional 
 memory waits if that memory is not available. A setting of –1 means that the query waits 
25 times the estimated execution time of the query, but it always waits at least 25 seconds 
with this setting. A value of 0 or more specifi es the number of seconds that a query waits. 
If the wait time is exceeded, SQL Server generates error 8645: 

Server: Msg 8645, Level 17, State 1, Line 1 

A time out occurred while waiting for memory resources to execute the query. Re-run the 

query.

 Even though memory is allocated dynamically, SQL Server can still run out of memory if the 
memory resources on the machine are exhausted. If your queries time out with error 8645, 
you can try increasing the paging fi le size or even adding more physical memory. You can also 
try tuning the query by creating more useful indexes so that hash or merge operations aren’t 
needed. Keep in mind that this option affects only queries that have to wait for memory 
needed by hash and merge operations. Queries that have to wait for other reasons are not 
affected. 

Blocked Process Threshold  This option allows an administrator to request a notifi cation 
when a user task has been blocked for more than the confi gured number of seconds. When 
Blocked Process Threshold is set to 0, no notifi cation is given. You can set any value up to 
86,400 seconds. When the deadlock monitor detects a task that has been waiting longer 
than the confi gured value, an internal event is generated. You can choose to be notifi ed of 
this event in one of two ways. You can use SQL Trace to create a trace and capture event 
of type Blocked process report, which you can fi nd in the Errors and Warnings category 

C01626249.indd   69 2/13/2009   9:40:00 AM



70 Microsoft SQL Server 2008 Internals

on the Events Select screen in SQL Server Profi ler. So long as a resource stays blocked on a 
 deadlock-detectable resource, the event is raised every time the deadlock monitor checks 
for a deadlock. An Extensible Markup Language (XML) string is captured in the Text Data 
column of the trace that describes the blocked resource and the resource being waited on. 
More  information about deadlock detection is in Chapter 10.  

 Alternatively, you can use event notifi cations to send information about events to a service 
broker service. Event notifi cations can provide a programming alternative to defi ning a trace, 
and they can be used to respond to many of the same events that SQL Trace can capture. 
Event notifi cations, which execute asynchronously, can be used to perform an action inside 
an instance of SQL Server 2008 in response to events with very little consumption of memory 
resources. Because event notifi cations execute asynchronously, these actions do not consume 
any resources defi ned by the immediate transaction.  

Index Create Memory  The Min Memory Per Query option applies only to sorting and 
hashing used during query execution; it does not apply to the sorting that takes place during 
index creation. Another option, Index Create Memory, lets you allocate a specifi c amount of 
memory for index creation. Its value is specifi ed in kilobytes. 

Query Governor Cost Limit  You can use the Query Governor Cost Limit option to specify 
the maximum number of seconds that a query can run. If you specify a nonzero, non-negative 
value, SQL Server disallows execution of any query that has an estimated cost exceeding that 
value. Specifying 0 (the default) for this option turns off the query governor, and all queries 
are allowed to run without any time limit.  

Max Degree Of Parallelism and Cost Threshold For Parallelism  SQL Server 2008 lets you 
run certain kinds of complex queries simultaneously on two or more processors. The queries 
must lend themselves to being executed in sections. Here’s an example: 

SELECT AVG(charge_amt), category 

FROM charge  

GROUP BY category

 If the charge table has 1,000,000 rows and there are 10 different values for category, SQL 
Server can split the rows into groups and have only a subset of the groups processed on each 
processor. For example, with a four-CPU machine, categories 1 through 3 can be  averaged 
on the fi rst processor, categories 4 through 6 can be averaged on the second processor, 
 categories 7 and 8 can be averaged on the third, and categories 9 and 10 can be  averaged 
on the fourth. Each processor can come up with averages for only its groups, and the 
 separate averages are brought together for the fi nal result. 

 During optimization, the Query Optimizer always fi nds the cheapest possible serial plan 
before considering parallelism. If this serial plan costs less than the confi gured value for 
the Cost Threshold For Parallelism option, no parallel plan is generated. Cost Threshold For 
Parallelism refers to the cost of the query in seconds; the default value is 5. If the cheapest 

C01626249.indd   70 2/13/2009   9:40:00 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 71

serial plan costs more than this confi gured threshold, a parallel plan is produced based on 
assumptions about how many processors and how much memory will actually be available at 
runtime. This parallel plan cost is compared with the serial plan cost, and the cheaper one is 
chosen. The other plan is discarded. 

 A parallel query execution plan can use more than one thread; a serial execution plan, which 
is used by a nonparallel query, uses only a single thread. The actual number of threads used 
by a parallel query is determined at query plan execution initialization and is the DOP. The 
decision is based on many factors, including the Affi nity Mask setting, the Max Degree Of 
Parallelism setting, and the available threads when the query starts executing.  

 You can observe when SQL Server is executing a query in parallel by querying the DMV 
sys.dm_os_tasks. A query that is running on multiple CPUs has one row for each thread, as 
follows:  

SELECT  

    task_address, 

    task_state, 

    context_switches_count, 

    pending_io_count,  

    pending_io_byte_count, 

    pending_io_byte_average, 

    scheduler_id, 

    session_id, 

    exec_context_id, 

    request_id, 

    worker_address, 

    host_address 

FROM sys.dm_os_tasks 

ORDER BY session_id, request_id;

 Be careful when you use the Max Degree Of Parallelism and Cost Threshold For Parallelism 
options—they have server-wide impact.  

 There are other confi guration options that we will not mention, most of which deal with 
aspects of SQL Server that are beyond the scope of this book. These include options for 
 confi guring remote queries, replication, SQL Agent, C2 auditing, and full-text search. There is 
a Boolean option to disallow use of the CLR in programming SQL Server objects; it is off (0) 
by default. The Allow Updates option still exists but has no effect in SQL Server 2008. A few 
of the confi guration options deal with programming issues, and you can get more details 
in Inside SQL Server 2008: TSQL Programming. These options include ones for dealing with 
 recursive and nested triggers, cursors, and accessing objects across databases.  

The Default Trace

 One fi nal option that doesn’t seem to fi t into any of the other categories is called Default 
Trace Enabled. We mention it because the default value is 1, which means that as soon as SQL 

C01626249.indd   71 2/13/2009   9:40:00 AM



72 Microsoft SQL Server 2008 Internals

Server starts, it runs a server-side trace, capturing a predetermined set of information into 
a predetermined location. None of the properties of this default trace can be changed; the 
only thing you can do is turn it off.  

 You can compare the default trace to the blackbox trace which has been available since 
SQL Server 7 (and is still available in SQL Server 2008), but the blackbox trace takes a few 
steps to create, and it takes even more steps to have it start automatically when your SQL 
Server starts. This default trace is so lightweight that you might fi nd little reason to disable 
it. If you’re not familiar with SQL Server tracing, you’ll probably need to spend some time 
 reading about tracing in Chapter 2.  

 The default trace output fi le is stored in the same directory in which you installed SQL 
Server, in the \Log subdirectory. So if you’ve installed SQL Server in the default location, the 
 captured trace information for a default instance will be in the fi le C:\Program Files\Microsoft 
SQL Server\MSSQL10.MSSQLSSERVER\MSSQL\LOG\Log.trc. Every time you stop and  restart 
SQL Server, or reach the maximum fi le size of 20 MB, a new trace fi le is created with a 
 sequential numerical suffi x, so the second trace fi le would be Log_01.trc, followed by Log_02.
trc, and so on. If all the trace log fi les are removed or renamed, the next trace fi le starts at 
log.trc again. SQL Server will keep no more than fi ve trace fi les per instance, so when the 
sixth fi le is created, the earliest one is deleted.  

 You can open the trace fi les created through the default trace mechanism by using the SQL 
Server Profi ler, just as you can any other trace fi le, or you can copy to a table by using the 
system function fn_trace_gettable and view the current contents of the trace while the trace 
is still running. As with any server-side trace that writes to a fi le, the writing is done in  128-KB 
blocks. Thus, on a very low-use SQL Server instance, it might look like nothing is being 
 written to the fi le for quite some time. You need 128 KB of data for any writes to the  physical 
fi le to occur. In addition, when the SQL Server service is stopped, whatever events have 
 accumulated for this trace will be written out to the fi le.  

 Unlike the blackbox trace, which captures every single batch completely and can get huge 
quickly, the default trace in SQL Server 2008 captures only a small set of events that were 
deemed likely to cause stability problems or performance degradation of SQL Server. The 
events include database fi le size change operations, error and warning conditions, full-text 
crawl operations, object CREATE, ALTER, and DROP operations, changes to permissions or 
 object ownership, and memory change events.  

 Not only can you not change anything about the fi les saved or their locations, you can’t 
add or remove events, the data captured along with the events, or the fi lters that might be 
 applied to the events. If you want something slightly different than the default trace, you 
can disable the predefi ned trace and create your own with whatever events, data, and fi lters 
you choose. Of course, you must then make sure the trace starts automatically. This is not 
 impossible to do, but we suggest that you leave the default trace on, in addition to whatever 
other traces you need, so that you know that at least some information about the activities 
taking place on your SQL Server is being captured.  

C01626249.indd   72 2/13/2009   9:40:00 AM



 Chapter 1 SQL Server 2008 Architecture and Confi guration 73

Final Words

 In this chapter, I’ve looked at the general workings of the SQL Server engine,  including 
the key components and functional areas that make up the engine. I’ve also looked at 
the  interaction between SQL Server and the operating system. By necessity, I’ve made 
some  simplifi cations throughout the chapter, but the information should provide some 
insight into the roles and responsibilities of the major components in SQL Server and the 
 interrelationships among components. 

 This chapter also covered the primary tools for changing the behavior of SQL Server. The 
 primary means of changing the behavior is by using confi guration options, so we looked 
at the options that can have the biggest impact on SQL Server behavior, especially its 
 performance. To really know when changing the behavior is a good idea, it’s important that 
you understand how and why SQL Server works the way it does. My hope is that this chapter 
has laid the groundwork for you to make informed decisions about confi guration changes.   

C01626249.indd   73 2/13/2009   9:40:00 AM



C01626249.indd   74 2/13/2009   9:40:00 AM



  75

Chapter 2

Change Tracking, Tracing, 
and Extended Events
 Adam Machanic 

 As the Microsoft SQL Server engine processes user requests, a variety of actions can  occur: 
data structures are interrogated; fi les are read from or written to; memory is allocated, 
 deallocated, or accessed; data is read or modifi ed; an error may be raised; and so on. 
Classifi ed as a group, these actions can be referred to as the collection of run-time events 
that can occur within SQL Server.  

 From the point of view of a user—a DBA or database developer working with SQL Server—the 
fact that certain events are occurring may be interesting in the context of supporting  debugging, 
auditing, and general server maintenance tasks. For example, it may be useful to track when a 
specifi c error is raised, every time a certain column is updated, or how much CPU time various 
stored procedures are consuming. 

 To support these kinds of user scenarios, the SQL Server engine is instrumented with a  variety 
of infrastructures designed to support event consumption. These range from relatively simple 
systems such as triggers—which call user code in response to data modifi cations or other 
events—to the complex and extremely fl exible Extended Events Engine, which is new in SQL 
Server 2008. 

 This chapter covers the key areas of each of the common event systems that you might 
 encounter as a SQL Server DBA or database developer: triggers, event notifi cations, Change 
Tracking, SQL Trace, and extended events. Each of these has a similar basic goal—to react or 
report when something happens—but each works somewhat differently. 

The Basics: Triggers and Event Notifi cations

 Although the majority of this chapter is concerned with larger and more complex eventing 
infrastructures, the basics of how SQL Server internally deals with events can be learned more 
easily through an investigation of triggers and event notifi cations; therefore, they are a good 
place to begin.  

 Triggers come in a couple of basic varieties. Data Manipulation Language (DML) triggers can 
be defi ned to fi re on operations like inserts and updates, and Data Defi nition Language (DDL) 
triggers can be defi ned to fi re on either server-level or database-level actions such as creating 
a login or dropping a table. DML triggers can fi re instead of the triggering event, or after the 

C02626249.indd   75 2/12/2009   10:14:17 AM



76 Microsoft SQL Server 2008 Internals

event has completed but before the transaction is committed. DDL triggers can be confi gured to 
fi re only after the event has completed, but again, before the transaction has committed. Event 
notifi cations are really nothing more than special-case DDL triggers that send a message to a 
SQL Service Broker queue rather than invoking user code. The most important  difference is that 
they do not require a transaction and as a result support many non-transactional events—for 
example, a user disconnecting from the SQL Server instance—that standard DDL triggers do not. 

Run-Time Trigger Behavior

 DML triggers and DDL triggers have slightly different run-time behaviors owing to their 
 different modes of operation and the nature of the required data within the trigger. Because 
DDL triggers are associated with metadata operations, they require much less data than their 
DML counterparts.  

 DML triggers are resolved during DML compilation. After the query has been parsed, each 
table involved is checked via an internal function for the presence of a trigger. If triggers are 
found, they are compiled and checked for tables that have triggers, and the process recursively 
continues. During the actual DML operation, the triggers are fi red and the rows in the inserted 
and deleted virtual tables are populated in tempdb, using the version store infrastructure.  

 DDL triggers and event notifi cations follow similar paths, which are slightly different from that 
of DML triggers. In both cases, the triggers themselves are resolved via a check only  after the 
DDL change to which they are bound has been applied. DDL triggers and event notifi cations 
are fi red after the DDL operation has occurred, as a post-operation step rather than during 
the operation as with DML triggers. The only major difference between DDL triggers and 
event notifi cations is that DDL triggers run user-defi ned code, whereas event notifi cations 
send a message to a Service Broker queue. 

Change Tracking 

 Change Tracking is a feature designed to help eliminate the need for many of the  custom 
synchronization schemes that developers must often create from scratch during an 
 application’s lifetime. An example of this kind of system is when an application pulls data 
from the database into a local cache and occasionally asks the database whether any of the 
data has been updated, so that the data in the local store can be brought up to date. Most 
of these systems are implemented using triggers or timestamps, and they are often riddled 
with performance issues or subtle logic fl aws. For example, schemes using timestamps often 
break down if the timestamp column is populated at insert time rather than at commit time. 
This can cause a problem if a large insert happens simultaneously with many smaller inserts, 
and the large insert commits later than smaller inserts that started afterward, thereby ruining 
the ascending nature of the timestamp. Triggers can remedy this particular problem, but they 
cause their own problems—namely, they can introduce blocking issues because they increase 
the amount of time needed for transactions to commit. 

C02626249.indd   76 2/12/2009   10:14:17 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 77

 Unlike custom systems, Change Tracking is deeply integrated into the SQL Server relational 
engine and designed from the ground up with performance and scalability in mind. The 
 system is designed to track data changes in one or more tables in a database and is designed 
to let the user easily determine the order in which changes occurred, as a means by which to 
support multitable synchronization. Changes are tracked synchronously as part of the 
 transaction in which the change is made, meaning that the list of changed rows is always up 
to date and consistent with the actual data in the table. 

 Change Tracking is based on the idea of working forward from a baseline. The data 
 consumer fi rst requests the current state of all the rows in the tracked tables and is given 
a version number with each row. The baseline version number—effectively, the maximum 
version number that the system currently knows about—is also queried at that time and is 
recorded until the next synchronization request. When the request is made, the baseline 
 version  number is sent back to the Change Tracking system, and the system determines 
which rows have been modifi ed since the fi rst request. This way, the consumer needs to 
concern itself only with deltas; there is generally no reason to reacquire rows that have not 
changed. In addition to sending a list of rows that have changed, the system identifi es the 
nature of the change since the baseline—a new row, an update to an existing row, or a 
deleted row. The maximum row version returned when requesting an update becomes the 
new baseline. 

 SQL Server 2008 includes two similar technologies that can be used to support synchronization: 
Change Tracking and Change Data Capture (the details of which are outside the scope of this 
book because it is not an engine feature per se—it uses an external log reader to do its work). 
It is worth spending a moment to discuss where and when Change Tracking should be used. 
Change Tracking is designed to support offl ine applications, occasionally connected  applications, 
and other applications that don’t need real-time notifi cation as data is updated. The Change 
Tracking system sends back only the current versions of any rows requested after the 
 baseline—incremental row states are not preserved—so the ideal Change Tracking  application 
does not require the full history of a given row. As compared with Change Data Capture, which 
records the entire modifi cation history of each row, Change Tracking is lighter weight and less 
applicable to auditing and data warehouse extract, transform, and load (ETL) scenarios.  

Change Tracking Confi guration

 Although Change Tracking is designed to track changes on a table-by-table basis, it is  actually 
confi gured at two levels: the database in which the tables reside and the tables themselves. 
A table cannot be enabled for Change Tracking until the feature has been  enabled in the 
 containing database. 

Database-Level Confi guration

 SQL Server 2008 extends the ALTER DATABASE command to support enabling and disabling 
Change Tracking, as well as confi guring options that defi ne whether and how often the history 

C02626249.indd   77 2/12/2009   10:14:17 AM



78 Microsoft SQL Server 2008 Internals

of changes that have been made to participating tables is purged. To enable Change Tracking 
for a database with the default options, the following ALTER DATABASE syntax is used: 

ALTER DATABASE AdventureWorks2008

SET CHANGE_TRACKING = ON;

Running this statement enables a confi guration change to metadata that allows two related 
changes to occur once table-level confi guration is enabled: First, a hidden system table will 
begin getting populated in the target database, should qualifying transactions occur (see 
the next section). Second, a cleanup task will begin eliminating old rows found in the internal 
table and related tables. 

Commit Table

The hidden table, known as the Commit Table, maintains one row for every transaction in 
the database that modifi es at least one row in a table that participates in Change Tracking. 
At transaction commit time, each qualifying transaction is assigned a unique,  ascending 
 identifi er called a Commit Sequence Number (CSN). The CSN is then inserted—along with 
the transaction identifi er, log sequence information, begin time, and other data—into the 
Commit Table. This table is central to the Change Tracking process and is used to help 
 determine which changes need to be synchronized when a consumer requests an update, by 
maintaining a sequence of committed transactions. 

 Although the Commit Table is an internal table and users can’t access it directly, except 
 administrators, via the dedicated administrator connection (DAC), it is still possible to view 
its columns and indexes by starting with the sys.all_columns catalog view. The physical name 
for the table is sys.syscommitab, and the following query returns six rows, as described in 
Table 2-1: 

SELECT *

FROM sys.all_columns 

WHERE object_id = OBJECT_ID('sys.syscommittab');

TABLE 2-1 Columns in the sys.syscommittab System Table 

Column Name Type Description

commit_ts BIGINT The ascending CSN for the transaction

xdes_id BIGINT The internal identifi er for the transaction

commit_lbn BIGINT The log block number for the transaction

commit_csn BIGINT The instance-wide sequence number for the transaction

commit_time DATETIME The time the transaction was committed

dbfragid INT Reserved for future use

 The sys.syscommitab table has two indexes (which are visible via the sys.indexes catalog view): 
a unique clustered index on the commit_ts and xdes_id columns and a unique nonclustered 

Column Name Type Description

C02626249.indd   78 2/12/2009   10:14:17 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 79

index on the xdes_id column that includes the dbfragid column. None of the columns are nul-
lable, so the per-row data size is 44 bytes for the clustered index and 20 bytes for the non-
clustered index. 

 Note that this table records information about transactions, but none about which rows 
were actually modifi ed. That related data is stored in separate system tables, created when 
Change Tracking is enabled on a user table. Because one transaction can span many  different 
tables and many rows within each table, storing the transaction-specifi c data in a single 
central  table saves a considerable number of bytes that need to be written during a large 
transaction. 

 All the columns in the sys.syscommitab table except dbfragid are visible via the new 
sys.dm_tran_commit_table DMV. This view is described by SQL Server Books Online as being 
included for “supportability purposes,” but it can be interesting to look at for the purpose 
of learning how Change Tracking behaves internally, as well as to watch the cleanup task, 
 discussed in the next section, in action. 

Internal Cleanup Task

 Once Change Tracking is enabled and the Commit Table and related hidden tables fi ll with rows, 
they can begin taking up a considerable amount of space in the database. Consumers—that 
is, synchronizing databases and applications—may not need a change  record beyond a certain 
point of time, and so keeping it around may be a waste. To eliminate this overhead, Change 
Tracking includes functionality to enable an internal task that removes change history on a 
 regular basis.  

 When enabling Change Tracking using the syntax listed previously, the default setting, 
Remove History Older Than Two Days, is used. This setting can be specifi ed when enabling 
Change Tracking using optional parameters to the ALTER DATABASE syntax: 

ALTER DATABASE AdventureWorks2008

SET CHANGE_TRACKING = ON

(AUTO_CLEANUP=ON, CHANGE_RETENTION=1 hours);

 The AUTO_CLEANUP option can be used to disable the internal cleanup task completely, 
and the CHANGE_RETENTION option can be used to specify the interval after which history 
should be removed, in an interval that can be defi ned by a number of minutes, hours, or days.  

 If enabled, the internal task runs once every 30 minutes and evaluates which transactions 
need to be removed by subtracting the retention interval from the current time and then 
 using an interface into the Commit Table to fi nd a list of transaction IDs older than that 
period. These transactions are then purged from both the Commit Table and other hidden 
Change Tracking tables. 

 The current cleanup and retention settings for each database can be queried from the 
sys.change_tracking_databases catalog view. 

C02626249.indd   79 2/12/2009   10:14:17 AM



80 Microsoft SQL Server 2008 Internals

 Note When setting the cleanup retention interval, it is important to err on the side of being too 
long, to ensure that data consumers do not end up with a broken change sequence. If this does 
become a concern, applications can use the CHANGE_TRACKING_MIN_VALID_VERSION  function 
to fi nd the current minimum version number stored in the database. If the  minimum version 
number is higher than the application’s current baseline, the application has to  resynchronize all 
data and take a new baseline. 

Table-Level Confi guration

Once Change Tracking is enabled at the database level, specifi c tables must be confi gured 
to participate. By default, no tables are enlisted in Change Tracking as a result of the feature 
 being enabled at the database level. 

The ALTER TABLE command has been modifi ed to facilitate enabling of Change Tracking at 
the table level. To turn on the feature, use the new ENABLE CHANGE_TRACKING option, as 
shown in the following example: 

ALTER TABLE HumanResources.Employee

ENABLE CHANGE_TRACKING; 

 If Change Tracking has been enabled at the database level, running this statement causes two 
changes to occur. First, a new internal table is created in the database to track changes made 
to rows in the target table. Second, a hidden column is added to the target table to enable 
tracking of changes to specifi c rows by transaction ID. An optional feature called Column 
Tracking can also be enabled; this is covered in the section entitled “Column Tracking,” later in 
this chapter. 

Internal Change Table

 The internal table created by enabling Change Tracking at the table level is named 
sys.change_tracking_[object id], where [object id] is the database object ID for the target 
table. The table can be seen by querying the sys.all_objects catalog view and fi ltering on 
the  parent_object_id column based on the object ID of the table you’re interested in, or by 
 looking at the sys.internal_tables view for tables with an internal_type of 209. 

The internal table has fi ve static columns, plus at least one additional column depending on 
how many columns participate in the target table’s primary key, as shown in Table 2-2.  

TABLE 2-2 Columns in the Internal Change Tracking Table 

Column Name Type Description

sys_change_xdes_id BIGINT NOT NULL Transaction ID of the transaction that 
modifi ed the row.

sys_change_xdes_id_seq BIGINT NOT NULL (IDENTITY) Sequence identifi er for the operation 
within the transaction.

Column Name Type Description

C02626249.indd   80 2/12/2009   10:14:17 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 81

TABLE 2-2 Columns in the Internal Change Tracking Table 

Column Name Type Description

sys_change_operation NCHAR(1) NULL Type of operation that affected the 
row: insert, update, or delete.

sys_change_columns VARBINARY(4100) NULL List of which columns were  modifi ed 
(used for updates, only if column 
 tracking is enabled).

sys_change_context VARBINARY(128) NULL Application-specifi c context 
 information provided during the DML 
operation using the WITH CHANGE_
TRACKING_CONTEXT option.

k_[name]_[ord] [type] NOT NULL Primary key column(s) from the  target 
table. [name] is the name of the 
 primary key column, [ord] is the ordinal 
position in the key, and [type] is the 
data type of the column.

Calculating the per-row overhead of the internal table is a bit trickier than for the Commit 
Table, as several factors can infl uence overall row size. The fi xed cost includes 18 bytes 
for the transaction ID, CSN, and operation type, plus the size of the primary key from the 
 target table. If the operation is an update and column tracking is enabled (as described 
in the  section entitled “Column Tracking,” later in this chapter), up to 4,100 additional 
bytes per row may be consumed by the sys_change_columns column. In addition, context 
 information—such as the name of the application or user doing the modifi cation—can be 
provided using the new WITH CHANGE_TRACKING_CONTEXT DML option (see the  section 
entitled “Query Processing and DML Operations,” later in this chapter), and this adds a 
 maximum of another 128 bytes to each row.  

 The internal table has a unique clustered index on the transaction ID and transaction sequence 
identifi er and no nonclustered indexes. 

Change Tracking Hidden Columns

 In addition to the internal table created when Change Tracking is enabled for a table, a  hidden 
8-byte column is added to the table to record the transaction ID of the transaction that 
last modifi ed each row. This column is not visible in any relational engine metadata (that is, 
 catalog views and the like), but can be seen referenced in query plans as $sys_change_xdes_id. 
In  addition, you may notice the data size of tables increasing accordingly after Change 
Tracking is updated. This column is removed, along with the internal table, if Change Tracking 
is disabled for a table. 

 Note The hidden column’s value can be seen by connecting via the DAC and explicitly referencing 
the column name. It never shows up in the results of a SELECT * query. 

Column Name Type Description

C02626249.indd   81 2/12/2009   10:14:17 AM



82 Microsoft SQL Server 2008 Internals

Change Tracking Run-Time Behavior

 The various hidden and internal objects covered to this point each have a specifi c purpose 
when Change Tracking interfaces with the query processor at run time. Enabling Change 
Tracking for a table modifi es the behavior of every subsequent DML operation against the 
table, in addition to enabling use of the CHANGETABLE function that allows a data consumer 
to fi nd out which rows have changed and need to be synchronized. 

Query Processing and DML Operations

 Once Change Tracking has been enabled for a given table, all existing query plans for the 
table that involve row modifi cation are marked for recompilation. New plans that involve 
modifi cations to the rows in the table include an insert into the internal change table, as 
shown in Figure 2-1. Because the internal table represents all operations—inserts, updates, 
and deletes—by inserting new rows, the subtree added to each of the new query plans is 
 virtually identical. 

FIGURE 2-1 Query plan subtree involving an insert into the internal change table

 In addition to the insert into the internal table, the query processor begins processing a 
new DML option thanks to Change Tracking: the WITH CHANGE_TRACKING_CONTEXT 
 function. This function allows the storage of up to 128 bytes of binary data, alongside 
other  information about the change, in the internal table’s sys_change_context column. This 
 column can be used by developers to persist information about which application or user 
made a given change, using the Change Tracking system as a metadata repository with 
 regard to row changes. 

 The syntax for this option is similar to a Common Table Expression and is applied at the 
 beginning of the DML query, as in the following example: 

DECLARE @context VARBINARY(128) = 

    CONVERT(VARBINARY(128), SUSER_SNAME());

WITH CHANGE_TRACKING_CONTEXT(@context)

UPDATE AdventureWorks2008.HumanResources.Employee

SET 

    JobTitle = 'Production Engineer'

WHERE

    JobTitle = 'Design Engineer';

 Note This syntax is perfectly valid for tables that do not have Change Tracking enabled. However, 
in those cases, the query processor simply ignores the call to the CHANGE_TRACKING_CONTEXT 
function. 

C02626249.indd   82 2/12/2009   10:14:17 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 83

 In addition to the insert into the internal table that occurs synchronously at the end of 
the  transaction, an insert into the Commit Table also occurs at commit time. The inserted 
row  contains the same transaction ID that is used both in the internal table and in the 
 hidden  column on the target table. A CSN is also assigned for the transaction at this time; 
this  number can, therefore, be thought of as the version number that applies to all rows 
 modifi ed by the transaction. 

Column Tracking

 When working with tables that have a large number of columns or tables with one or more 
extremely wide columns, the synchronization process can be optimized by not reacquiring 
the data from those columns that were not updated. To support this kind of optimization, 
Change Tracking includes a feature called Column Tracking, which works by recording, in the 
internal table and only in the case of an update operation, which columns were updated.  

 The column list is persisted within the internal table in the sys_change_columns column. Each 
column is stored as an integer, and a column list including as many as 1,024 columns can be 
stored. If more than 1,024 columns are modifi ed in a transaction, the column list is not stored 
and the application must reacquire the entire row.  

 To enable Column Tracking, a switch called TRACK_COLUMNS_UPDATED is applied to the 
ALTER TABLE statement, as in the following example: 

ALTER TABLE HumanResources.Employee

ENABLE CHANGE_TRACKING

WITH (TRACK_COLUMNS_UPDATED = ON);

 Once enabled, the changed columns list is returned with the output of the 
CHANGETABLE(CHANGES) function, which is described in the next section. The bitmap can 
be evaluated for the presence of a particular column by using the CHANGE_TRACKING_IS_
COLUMN_IN_MASK function.  

 Caution Be careful when enabling Column Tracking for active tables. Although this feature 
may help to optimize the synchronization process by resulting in fewer bytes being sent out at 
 synchronization time, it also increases the number of bytes that must be written with each update 
against the target table. This may result in a net decrease in overall performance if the columns 
are not suffi ciently large enough to balance the additional byte requirements of the bitmap. 

CHANGETABLE Function

 The primary API that users can use to leverage the Change Tracking system is the 
CHANGETABLE function. This function has the dual purpose of returning the baseline  version 
for all rows in the target table and returning a set containing only updated versions and 
related change information. The function accomplishes each of these tasks with the help of 
the various internal and hidden structures created and populated when Change Tracking is 
enabled for a given table or set of tables in a database. 

C02626249.indd   83 2/12/2009   10:14:17 AM



84 Microsoft SQL Server 2008 Internals

 CHANGETABLE is a system table-valued function, but unlike other table-valued functions, 
its result shape changes at run time based on input parameters. In VERSION mode, used for 
 acquiring the baseline values of each row in the table, the function returns only a  primary 
key, version number, and context information for each row. In CHANGES mode, used for 
 getting a list of updated rows, the function also returns the operation that affected the 
change and the column list. 

 Because the VERSION mode for CHANGETABLE is designed to help callers get a baseline, calling 
the function in this mode requires a join to the target table, as in the following example: 

SELECT 

    c.SYS_CHANGE_VERSION,

    c.SYS_CHANGE_CONTEXT,

    e.*

FROM AdventureWorks2008.HumanResources.Employee e

CROSS APPLY CHANGETABLE

(

    VERSION AdventureWorks2008.HumanResources.Employee, 

    (BusinessEntityId), 

    (e.BusinessEntityId)

) c;

 A quick walk-through of this example is called for here. In VERSION mode, the fi rst parameter 
to the function is the target table. The second parameter is a comma-delimited list of the 
primary key columns on the target table. The third parameter is a comma-delimited list, in 
the same order, of the associated primary key columns from the target table as used in the 
query. The columns are internally correlated in this order to support the joins necessary to 
get the baseline versions of each row. 

 When this query is executed, the query processor scans the target table, visiting each row 
and getting the values for every column, along with the value of the hidden column (the 
last transaction ID that modifi ed the row). This transaction ID is used as a key to join to 
the Commit Table to pick up the associated CSN and to populate the sys_change_version 
 column. The transaction ID and primary key are also used to join to the internal tracking 
table in order to populate the sys_change_context column. 

 Once a baseline has been acquired, it is up to the data consumer to call the CHANGE_
TRACKING_CURRENT_VERSION function, which returns the maximum Change Tracking 
 version number currently stored in the database. This number becomes the baseline version 
number that the application can use for future synchronization requests. This number is 
passed into the CHANGETABLE function in CHANGES mode to get subsequent versions of 
the rows in the table, as in the following example: 

DECLARE @last_version BIGINT = 8;

SELECT 

    c.*

C02626249.indd   84 2/12/2009   10:14:18 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 85

FROM CHANGETABLE

(

    CHANGES AdventureWorks2008.HumanResources.Employee, 

    @last_version

) c;

 This query returns a list of all changed rows since version 8, along with what operation 
caused each row to be modifi ed. Note that the output refl ects only the most recent version 
of the row as of the time that the query is run. For example, if a row existed as of version 8 
and was subsequently updated three times and then deleted, this query shows only one 
change for the row: a delete. This query includes in its output the primary keys that changed, 
so it is possible to join to the target table to get the most recent version of each row that 
changed. Care must be taken to use an OUTER JOIN in that case, as shown in the following 
example, as a row may no longer exist if it was deleted: 

DECLARE @last_version BIGINT = 8;

SELECT 

    c.SYS_CHANGE_VERSION,

    c.SYS_CHANGE_OPERATION,

    c.SYS_CHANGE_CONTEXT,

    e.*

FROM CHANGETABLE

(

    CHANGES AdventureWorks2008.HumanResources.Employee, 

    @last_version

) c

LEFT OUTER JOIN AdventureWorks2008.HumanResources.Employee e ON

    e.BusinessEntityID = c.BusinessEntityID;

 When CHANGETABLE is run in CHANGES mode, the various internal structures are used 
slightly differently than in the VERSION example. The fi rst step of the process is to query the 
Commit Table for all transaction IDs associated with CSNs greater than the one passed in to 
the function. This list of transaction IDs is next used to query the internal tracking table for 
the primary keys associated with changes rendered by the transactions. The rows that result 
from this phase must be aggregated based on the primary key and transaction sequence 
identifi er from the internal table to fi nd the most recent row for each primary key. No join 
to the target table is necessary in this case unless the consumer would like to retrieve all 
 associated row values. 

 Because rows may be changing all the time—including while the application is requesting 
a list of changes—it is important to keep consistency in mind when working with Change 
Tracking. The best way to ensure consistent results is to either make use of SNAPSHOT 
isolation if the application retrieves a list of changed keys and then subsequently requests 
the row value, or READ COMMITTED SNAPSHOT isolation if the values are retrieved using 
a JOIN. SNAPSHOT isolation and READ COMMITTED SNAPSHOT isolation are discussed in 
Chapter 10. 

C02626249.indd   85 2/12/2009   10:14:18 AM



86 Microsoft SQL Server 2008 Internals

Tracing and Profi ling

 Query tuning, optimization, and general troubleshooting are all made possible through 
 visibility into what’s going on within SQL Server; it would be impossible to fi x problems 
 without being able to identify what caused them. SQL Trace is one of the more powerful 
tools provided by SQL Server to give you a real-time or near-real-time look at exactly what 
the database engine is doing, at a very granular level.  

 Included in the tracing toolset are 180 events that you can monitor, fi lter, and manipulate 
to get a look at anything from a broad overview of user logins down to such fi ne-grained 
 information as the lock activity done by a specifi c session id (SPID). This data is all made 
available via SQL Server Profi ler, as well as a series of server-side stored procedures and .NET 
classes, giving you the fl exibility to roll a custom solution when a problem calls for one. 

SQL Trace Architecture and Terminology

 SQL Trace is a SQL Server database engine technology, and it is important to understand 
that the client-side Profi ler tool is really nothing more than a wrapper over the  server-side 
 functionality. When tracing, we monitor for specifi c events that are generated when 
 various actions occur in the database engine. For example, a user logging onto the server 
or  executing a query are each actions that cause events to fi re. These events are fi red by 
 instrumentation of the database  engine code; in other words, special code has been added 
to these and other execution paths that cause the events to fi re when hit. 

 Each event has an associated collection of “columns,” which are attributes that contain data 
collected when the event fi res. For instance, in the case of a query, we can collect data about 
when the query started, how long it took, and how much CPU time it used. Finally, each trace 
can specify fi lters, which limit the results returned based on a set of criteria. One could, for 
example, specify that only events that took longer than 50 milliseconds should be returned. 

 With 180 events and 66 columns to choose from, the number of data points that can be 
 collected is quite large. Not every column can be used with every event, but the complete 
set of allowed combinations is over 4,000. Thinking about memory utilization to hold all this 
data and the processor time needed to create it, you might be interested in how SQL Server 
manages to run effi ciently while generating so much information. The answer is that SQL 
Server doesn’t actually collect any data until someone asks for it—instead, the model is to 
selectively enable collection only as necessary. 

Internal Trace Components

 The central component of the SQL Trace architecture is the trace controller, which is a 
shared resource that manages all traces created by any consumer. Throughout the database 
 engine are various event producers; for example, they are found in the query processor, lock 
 manager, and cache manager. Each of these producers is responsible for generating events 

C02626249.indd   86 2/12/2009   10:14:18 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 87

that pertain to certain categories of server activity, but each of the producers is disabled by 
default and therefore generates no data. When a user requests that a trace be started for a 
certain event, a global bitmap in the trace controller is updated, letting the event producer 
know that at least one trace is listening, and causing the event to begin fi ring. Managed 
along with this bitmap is a secondary list of which traces are monitoring which events. 

 Once an event fi res, its data is routed into a global event sink, which queues the event data 
for distribution to each trace that is actively listening. The trace controller routes the data to 
each listening trace based on its internal list of traces and watched events. In addition to the 
trace controller’s own lists, each individual trace keeps track of which events it is monitoring, 
along with which columns are actually being used, as well as what fi lters are in place. The 
event data returned by the trace controller to each trace is fi ltered, and the data columns are 
trimmed down as necessary, before the data is routed to an I/O provider. 

Trace I/O Providers

 The trace I/O providers are what actually send the data along to its fi nal destination. The 
available output formats for trace data are either a fi le on the database server (or a network 
share) or a rowset to a client. Both providers use internal buffers to ensure that if the data is 
not consumed quickly enough (that is, written to disk or read from the rowset) that it will be 
queued. However, there is a big difference in how the providers handle a situation in which 
the queue grows beyond a manageable size.  

 The fi le provider is designed with a guarantee that no event data will be lost. To make this 
work even if an I/O slowdown or stall occurs, the internal buffers begin to fi ll if disk writes 
are not occurring quickly enough. Once the buffers fi ll up, threads sending event data to the 
trace begin waiting for buffer space to free up. To avoid threads waiting on trace  buffers, 
it is imperative to ensure that tracing is performed using a suffi ciently fast disk system. 
To  monitor for these waits, watch the SQLTRACE_LOCK and IO_COMPLETION wait types. 

 The rowset provider, on the other hand, is not designed to make any data loss guarantees. 
If data is not being consumed quickly enough and its internal buffers fi ll, it waits up to 
20  seconds before it begins jettisoning events to free buffers and get things moving. The SQL 
Server Profi ler client tool sends a special error message if events are getting dropped, but 
you can also fi nd out if you’re headed in that direction by monitoring the TRACEWRITE wait 
type in SQL Server, which is incremented as threads are waiting for buffers to free up. 

 A background trace management thread is also started whenever at least one trace is active 
on the server. This background thread is responsible for fl ushing fi le provider buffers (which 
is done every four seconds), in addition to closing rowset-based traces that are considered 
to be expired (this occurs if a trace has been dropping events for more than 10 minutes). By 
fl ushing the fi le provider buffers only occasionally rather than writing the data to disk every 
time an event is collected, SQL Server can take advantage of large block writes, dramatically 
reducing the overhead of tracing, especially on extremely active servers. 

C02626249.indd   87 2/12/2009   10:14:18 AM



88 Microsoft SQL Server 2008 Internals

 A common question asked by DBAs new to SQL Server is why no provider exists that can 
write trace data directly to a table. The reason for this limitation is the amount of overhead 
that would be required for such activity. Because a table does not support large block writes, 
SQL Server would have to write the event data row by row. The performance degradation 
caused by event consumption would require either dropping a lot of events or, if a lossless 
guarantee were enforced, causing a lot of blocking to occur. Neither scenario is especially 
palatable, so SQL Server simply does not provide this ability. However, as we will see later in 
the chapter, it is easy enough to load the data into a table either during or after tracing, so 
this is not much of a limitation. 

Security and Permissions

 Tracing can expose a lot of information about not only the state of the server, but also 
the data sent to and returned from the database engine by users. The ability to monitor 
 individual queries down to the batch or even query plan level is at once both powerful and 
worrisome; even exposure of stored procedure input arguments can give an attacker a lot of 
information about the data in your database. 

 To protect SQL Trace from users that should not be able to view the data it exposes, versions 
of SQL Server prior to SQL Server 2005 allowed only administrative users (members of the 
sysadmin fi xed server role) access to start traces. That restriction proved a bit too infl exible 
for many development teams, and as a result, it has been loosened.  

ALTER TRACE Permission

 Starting with SQL Server 2005, a new permission exists, called ALTER TRACE. This is a server-level 
permission (granted to a login principal), and allows access to start, stop, or modify a trace, in 
addition to providing the ability to generate user-defi ned events. 

 Tip Keep in mind that the ALTER TRACE permission is granted at the server level, and access is 
at the server level; if a user can start a trace, he or she can retrieve event data no matter what 
database the event was generated in. The inclusion of this permission in SQL Server is a great 
step in the right direction for handling situations in which developers might need to run traces on 
 production systems to debug application issues, but it’s important not to grant this permission 
too lightly. It’s still a potential security threat, even if it’s not nearly as severe as giving someone 
full sysadmin access. 

 To grant ALTER TRACE permission to a login, use the GRANT statement as follows (in this 
 example, the permission is granted to a server principal called “Jane”): 

GRANT ALTER TRACE TO Jane;

C02626249.indd   88 2/12/2009   10:14:18 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 89

Protecting Sensitive Event Data

 In addition to being locked down so that only certain users can use SQL Trace, the tracing 
 engine itself has a couple of built-in security features to keep unwanted eyes—including 
those with access to trace—from viewing private information. SQL Trace automatically omits 
data if an event contains a call to a password-related stored procedure or statement. For 
 example, a call to CREATE LOGIN that includes the WITH PASSWORD option is blanked out by 
SQL Trace. 

 Note In versions of SQL Server before SQL Server 2005, SQL Trace automatically blanked out a 
query event if the string sp_password was found anywhere in the text of the query. This feature 
has been removed in SQL Server 2005 and SQL Server 2008, and you should not depend on it to 
protect your intellectual capital. 

 Another security feature of SQL Trace is knowledge of encrypted modules. SQL Trace does 
not return statement text or query plans generated within an encrypted stored procedure, 
user-defi ned function, or view. Again, this helps to safeguard especially sensitive data even 
from users who should have access to see traces. 

Getting Started: Profi ler

 SQL Server 2008 ships with Profi ler, a powerful user interface tool that can be used to  create, 
manipulate, and manage traces. This tool is the primary starting point for most  tracing 
 activity, and thanks to the ease with which it can help you get traces up and running, it is 
perhaps the most important SQL Server component available for quickly  troubleshooting 
database issues. Profi ler also adds a few features to the toolset that are not made possible 
by SQL Trace itself. This section discusses those features in addition to the base tracing 
capabilities. 

Profi ler Basics

 The Profi ler tool can be found in the Performance Tools subfolder of the SQL Server 2008 
Start Menu folder (which you get to by clicking Start and selecting All Programs, SQL 
Server 2008, Performance Tools, SQL Server Profi ler). Once the tool is started, you see a blank 
screen. Click File, New Trace. . . and connect to a SQL Server instance. You are shown a Trace 
Properties  dialog box with two tabs, General and Events Selection. 

 The General tab, shown in Figure 2-2, allows you to control how the trace is processed by 
the consumer. The default setting is to use the rowset provider, displaying the events in real 
time in the SQL Server Profi ler window. Also available are options to save the events to a fi le 
(on either the server or the client), or to a table. However, we generally recommend that you 
avoid these options on a busy server.  

C02626249.indd   89 2/12/2009   10:14:18 AM



90 Microsoft SQL Server 2008 Internals

FIGURE 2-2 Choosing the I/O provider for the trace

 When you ask Profi ler to save the events to a server-side fi le (by selecting the Server 
Processes Trace Data option), it actually starts two equivalent traces, one using the  rowset 
provider and the other using the fi le provider. Having two traces means twice as much 
 overhead, and that is generally not a good idea. See the section entitled “Server-Side Tracing 
and Collection,” later in this chapter for information, on how to set up a trace using the fi le 
provider, which allows you to save to a server-side fi le effi ciently. Saving to a client-side fi le 
does not use the fi le provider at all. Rather, the data is routed to the Profi ler tool via the 
 rowset provider and then saved from there to a fi le. This is more effi cient than using Profi ler 
to write to a server-side fi le, but you do incur network bandwidth because of using the 
 rowset provider, and you also do not get the benefi t of the lossless guarantee that the fi le 
provider offers.  

 Note Seeing the Save To Table option, you might wonder why we stated earlier in this chapter 
that tracing directly to a table is not possible in SQL Trace. The fact is that SQL Trace exposes 
no table output provider. Instead, when you use this option, the Profi ler tool uses the rowset 
 provider and routes the data back into a table. If the table you save to is on the same server 
you’re tracing, you can create quite a large amount of server overhead and bandwidth utilization, 
so if you must use this option we recommend saving the data to a table on a different server. 
Profi ler also provides an option to save the data to a table after you’re done tracing, and this is a 
much more scalable choice in most scenarios. 

 The Events Selection tab, shown in Figure 2-3, is where you’ll spend most of your time 
 confi guring traces in Profi ler. This tab allows you to select events that you’d like to trace, 

C02626249.indd   90 2/12/2009   10:14:18 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 91

along with associated data columns. The default options, shown in Figure 2-3, collect data 
about any connections that exist when the trace starts (the ExistingConnection event) when 
a login or logout occurs (the Audit Login and Audit Logout events), when remote procedure 
calls complete (the RPC:Completed event), and when T-SQL batches start or complete (the 
SQL:BatchCompleted and SQL:BatchStarting events). By default, the complete list of both 
events and available data columns is hidden. Selecting the Show All Events and Show All 
Columns check boxes brings the available selections into the UI. 

FIGURE 2-3 Choosing event/column combinations for the trace

 These default selections are a great starting point and can be used as the basis for a lot 
of commonly required traces. The simplest questions that DBAs generally answer using 
SQL Trace are based around query cost and/or duration. What are the longest queries, or 
the queries that are using the most resources? The default selections can help you answer 
those types of questions, but on an active server, a huge amount of data would have to be 
 collected, which not only means more work for you to be able to answer your question, but 
also more work for the server to collect and distribute that much data. 

 To narrow your scope and help ensure that tracing does not cause performance issues, SQL 
Trace offers the ability to fi lter the events based on various criteria. Filtration is exposed in 
SQL Profi ler via the Column Filters… button in the Events Selection tab. Click this button to 
bring up an Edit Filter dialog box similar to the one shown in Figure 2-4. In this example, 
we want to see only events with a duration greater than or equal to 200 milliseconds. This 
is just an arbitrary number; an optimal choice should be discovered iteratively as you build 
up your knowledge of the tracing requirements for your particular application. Keep raising 

C02626249.indd   91 2/12/2009   10:14:18 AM



92 Microsoft SQL Server 2008 Internals

this  number until you mostly receive only the desired events (in this case, those with long 
 durations) from your trace. By working this way, you can isolate the slowest queries in your 
system easily and quickly. 

 Tip The list of data columns made available by SQL Profi ler for you to use as a fi lter is the same 
list of columns available in the outer Events Selection user interface. Make sure to select the 
Show All Columns check box to ensure that you see a complete list.  

FIGURE 2-4 Defi ning a fi lter for events greater than 200 milliseconds

 Once events are selected and fi lters are defi ned, the trace can be started. In the Trace 
Properties dialog box, click Run. Because Profi ler uses the rowset provider, data begins 
streaming back immediately. If you fi nd that data is coming in too quickly for you to be able 
to read it, consider disabling auto scrolling using the Auto Scroll Window button on the SQL 
Profi ler toolbar.  

 An important note on fi lters is that, by default, events that do not produce data for a 
 specifi c column are not fi ltered if a trace defi nes a fi lter for that column. For example, the 
SQL:BatchStarting event does not produce duration data—the batch is considered to start 
more or less instantly the moment it is submitted to the server. Figure 2-5 shows a trace that 
we ran with a fi lter on the Duration column for values greater than 200 milliseconds. Notice 
that both the ExistingConnection and SQL:BatchStarting events are still returned even though 
they lack the Duration output column. To modify this behavior, select the Exclude Rows That 
Do Not Contain Values check box in the Edit Filter dialog box for the column for which you 
want to change the setting. 

C02626249.indd   92 2/12/2009   10:14:18 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 93

FIGURE 2-5 By default, trace fi lters treat empty values as valid for the sake of the fi lter.

Saving and Replaying Traces

 The functionality covered up through this point in the chapter has all been made possible 
by Profi ler merely acting as a wrapper over what SQL Trace provides. In the section entitled 
“Server-Side Tracing and Collection,” later in this chapter, we show you the mechanisms by 
which Profi ler does its work. But fi rst we’ll get into the features offered by Profi ler that make 
it more than a simple UI wrapper over the SQL Trace features. 

 When we discussed the General tab of the Trace Properties window earlier, we glossed over 
how the default events are actually set: They are included in the standard events template 
that ships with the product. A template is a collection of event and column selections, fi lters, 
and other settings that you can save to create reusable trace defi nitions. This feature can 
be extremely useful if you do a lot of tracing; reconfi guring the options each time you need 
them is generally not a good use of your time. 

 In addition to the ability to save your own templates, Profi ler ships with nine predefi ned 
templates. Aside from the standard template that we already explored, one of the most 
 important of these is the TSQL_Replay template, which is selected in Figure 2-6. This 
 template selects a variety of columns for 15 different events, each of which are required for 
Profi ler to be able to play back (or replay) a collected trace at a later time. By starting a trace 
using this template and then saving the trace data once collection is complete, you can do 
things such as use a trace as a test harness for reproducing a specifi c problem that might 
 occur when certain stored procedures are called in the correct order. 

 To illustrate this functionality, we started a new trace using the TSQL_Replay template and 
sent two batches from each of two connections, as shown in Figure 2-7. The fi rst SPID (53, in 
this case) selected 1, and then the second SPID (54) selected 2. Back to SPID 53, which

C02626249.indd   93 2/12/2009   10:14:18 AM



94 Microsoft SQL Server 2008 Internals

FIGURE 2-6 Selecting the TSQL_Replay template

 selected 3, and then fi nally back to SPID 54, which selected 4. The most interesting thing to 
note in the fi gure is the second column, EventSequence. This column can be thought of almost 
like the IDENTITY property for a table. Its value is incremented globally, as events are recorded 
by the trace controller, to create a single representation of the order in which events occurred 
in the server. This avoids problems that might occur when ordering by StartTime/EndTime 
(also in the trace, but not shown in Figure 2-7), as there will be no ties—the EventSequence is 
unique for every trace. The number is a 64-bit integer, and it is reset whenever the server 
is  restarted, so it is unlikely that you can ever trace enough to run it beyond its range. 

FIGURE 2-7 Two SPIDs sending interleaved batches

C02626249.indd   94 2/12/2009   10:14:18 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 95

 Once the trace data has been collected, it must be saved and then reopened before a replay 
can begin. Profi ler offers the following options for saving trace data, which are available from 
the File menu: 

■  The Trace File option is used to save the data to a fi le formatted using a proprietary 
 binary format. This is generally the fastest way to save the data, and it is also the 
s mallest in terms of bytes on disk. 

■  The Trace Table option is used to save the data to a new or previously created table in a 
database of your choosing. This option is useful if you need to manipulate or report on 
the data using T-SQL. 

■  The Trace XML File option saves the data to a text fi le formatted as XML. 

■  The Trace XML File For Replay option also saves the data to an XML text fi le, but only 
those events and columns needed for replay functionality are saved. 

 Any of these formats can be used as a basis from which to replay a trace, so long as you’ve 
collected all the required events and columns needed to do a replay (guaranteed when you 
use the TSQL_Replay template). We generally recommend using the binary fi le format as a 
starting point and saving to a table if manipulation using T-SQL is necessary. For instance, 
you might want to create a complex query that fi nds the top queries that use certain tables; 
something like that would be beyond the abilities of Profi ler. With regard to the XML fi le 
 formats, so far I have not found much use for them. But as more third-party tools hit the 
market that can use trace data, we may see more use cases. 

 Once the data has been saved to a fi le or table, the original trace window can be closed and 
the fi le or table reopened via the File menu in the Profi ler tool. Once a trace is reopened in 
this way, a Replay menu appears on the Profi ler toolbar, allowing you to start replaying the 
trace, stop the replay, or set a breakpoint—which is useful when you want to test only a small 
portion of a larger trace.  

 After clicking Start in Profi ler, you are asked to connect to a server—either the server from 
which you did the collection, or another server if you want to replay the same trace  somewhere 
else. After connecting, the Replay Confi guration dialog box shown in Figure 2-8 is presented. 
The Basic Replay Options tab allows you to save results of the trace in addition to modifying 
how the trace is played back. 

During the course of the replay, the same events used to produce the trace being replayed 
are traced from the server on which you replay. The Save To File and Save To Table options 
are used for a client-side save. No server-side option exists for saving playback results. 

  The Replay Options pane of the Replay Confi gurations dialog box is a bit confusing as worded. 
No matter which option you select, the trace is replayed on multiple threads, corresponding to 
at most the number you selected in the Number Of Replay Threads drop-down list. However, 
selecting the Replay Events In The Order They Were Traced option ensures that all events are 
played back in exactly the order in which they occurred, as based upon the EventSequence 
 column. Multiple threads are still used to simulate multiple SPIDs. Selecting the Replay Events

C02626249.indd   95 2/12/2009   10:14:18 AM



96 Microsoft SQL Server 2008 Internals

FIGURE 2-8 The Replay Confi guration dialog box

Using Multiple Threads option, on the other hand, allows Profi ler to rearrange the order in 
which each SPID starts to execute events, in order to enhance playback performance. Within a 
given SPID, however, the order of events remains consistent with the EventSequence. 

 To illustrate this difference, we replayed the trace shown in Figure 2-7 twice, each using a 
different replay option. Figure 2-9 shows the result of the Replay In Order option, whereas 
Figure 2-10 shows the result of the Multiple Threads option. In Figure 2-9, the results show 
that the batches were started and completed in exactly the same order in which they were 
originally traced, whereas in Figure 2-10 the two participating SPIDs have had all their events 
grouped together rather than interleaved. 

FIGURE 2-9 Replay using the Replay In Order option

C02626249.indd   96 2/12/2009   10:14:18 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 97

FIGURE 2-10 Replay using the Multiple Threads option

 The Multiple Threads option can be useful if you need to replay a lot of trace data where each 
SPID has no dependency upon other SPIDs. For example, this might be done to  simulate, on a 
test server, a workload captured from a production system. On the other hand, the Replay In 
Order option is useful if you need to ensure that you can duplicate the specifi c conditions that 
occurred during the trace. For example, this might apply when debugging a deadlock or blocking 
condition that results from specifi c interactions of multiple threads  accessing the same data.  

 Profi ler is a full-featured tool that provides extensive support for both tracing and doing 
 simple work with trace data, but if you need to do advanced queries against your collected 
data or run traces against extremely active production systems, Profi ler falls short of the 
 requirements. Again, Profi ler is essentially nothing more than a wrapper over  functionality 
provided within the database engine, and instead of using it for all stages of the trace 
 lifestyle, we can exploit the tool directly to increase fl exibility in some cases. In the following 
section, you learn how Profi ler works with the database engine to start, stop, and manage 
traces, and how you can harness the same tools for your needs. 

Server-Side Tracing and Collection

 Behind its nice user interface, Profi ler is nothing more than a fairly lightweight wrapper over 
a handful of system stored procedures that expose the true functionality of SQL Trace. In this 
section, we explore which stored procedures are used and how to harness SQL Server Profi ler 
as a scripting tool rather than a tracing interface. 

C02626249.indd   97 2/12/2009   10:14:18 AM



98 Microsoft SQL Server 2008 Internals

 The following system stored procedures are used to defi ne and manage traces: 

■  sp_trace_create is used to defi ne a trace and specify an output fi le location as well 
as other options that I’ll cover in the coming pages. This stored procedure returns a 
 handle to the created trace, in the form of an integer trace ID. 

■  sp_trace_setevent is used to add event/column combinations to traces based on the 
trace ID, as well as to remove them, if necessary, from traces in which they have already 
been defi ned. 

■  sp_trace_setfi lter is used to defi ne event fi lters based on trace columns.  

■  sp_trace_setstatus is called to turn on a trace, to stop a trace, and to delete a trace 
 defi nition once you’re done with it. Traces can be started and stopped multiple times 
over their lifespan. 

Scripting Server-Side Traces

 Rather than delve directly into the syntax specifi cations for each of the stored procedures—
all which are documented in detail in SQL Server Books Online—it is a bit more  interesting 
to  observe them in action. To begin, open up SQL Server Profi ler, start a new trace with 
the default template, and clear all the events except for SQL:BatchCompleted, as shown in 
Figure 2-11.  

FIGURE 2-11 Trace events with only SQL:BatchCompleted selected

 Next, remove the default fi lter on the ApplicationName column (set to not pick up SQL Server 
Profi ler events), and add a fi lter on Duration for greater than or equal to 10 milliseconds, as 
shown in Figure 2-12.  

C02626249.indd   98 2/12/2009   10:14:18 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 99

FIGURE 2-12 Filter on Duration set to greater than or equal to 10 milliseconds

 Once you’re fi nished, click Run to start the trace, then immediately click Stop. Because of 
the workfl ow required by the SQL Profi ler user interface, you must actually start a trace 
 before you can script it. On the File menu, select Export, Script Trace Defi nition, and For SQL 
Server 2005 - 2008. This will produce a script similar to the following (edited for brevity and 
readability): 

declare @rc int

declare @TraceID int

declare @maxfilesize bigint

set @maxfilesize = 5 

exec @rc = sp_trace_create 

    @TraceID output, 

    0, 

    N'InsertFileNameHere', 

    @maxfilesize, 

    NULL 

if (@rc != 0) goto finish

-- Set the events

declare @on bit

set @on = 1

exec sp_trace_setevent @TraceID, 12, 15, @on

exec sp_trace_setevent @TraceID, 12, 16, @on

exec sp_trace_setevent @TraceID, 12, 1, @on

exec sp_trace_setevent @TraceID, 12, 9, @on

exec sp_trace_setevent @TraceID, 12, 17, @on

exec sp_trace_setevent @TraceID, 12, 6, @on

exec sp_trace_setevent @TraceID, 12, 10, @on

exec sp_trace_setevent @TraceID, 12, 14, @on

exec sp_trace_setevent @TraceID, 12, 18, @on

exec sp_trace_setevent @TraceID, 12, 11, @on

exec sp_trace_setevent @TraceID, 12, 12, @on

exec sp_trace_setevent @TraceID, 12, 13, @on

C02626249.indd   99 2/12/2009   10:14:18 AM



100 Microsoft SQL Server 2008 Internals

-- Set the Filters

declare @bigintfilter bigint

set @bigintfilter = 10000

exec sp_trace_setfilter @TraceID, 13, 0, 4, @bigintfilter

-- Set the trace status to start

exec sp_trace_setstatus @TraceID, 1

-- display trace id for future references

select TraceID=@TraceID

finish: 

go

 Note An option also exists to script the trace defi nition for SQL Server 2000. The SQL Trace 
stored procedures did not change much between SQL Server 2000 and SQL Server 2005—and 
it did not change at all between SQL Server 2005 and SQL Server 2008—but several new events 
and columns were added to the product. Scripting for SQL Server 2000 simply drops from the 
script any events that are not backward-compatible. 

 This script is an extremely simple yet complete defi nition of a trace that uses the fi le  provider. 
A couple of placeholder values need to be modifi ed, but for the most part, it is totally 
 functional. Given the complexity of working directly with the SQL Trace stored  procedures, 
we generally defi ne a trace using SQL Profi ler’s user interface, and then script it and work 
from there. This way, you get the best of both worlds: ease of use combined with the 
 effi ciency of server-side traces using the fi le provider. 

 This script does a few different things, so we will walk through each stage: 

  1. The script defi nes a few variables to be used in the process. The @rc variable is used 
to get a return code from sp_trace_create. The @TraceID variable holds the handle to 
the newly created trace. Finally, the @maxfi lesize variable defi nes the maximum size 
(in megabytes) per trace fi le. When running server-side traces, the fi le provider can be 
confi gured to create rollover fi les automatically as the primary trace fi le fi lls up. This can 
be useful if you’re working on a drive with limited space, as you can move previously 
fi lled fi les to another device. In addition, smaller fi les can make it easier to manipulate 
subsets of the collected data. Finally, rollover fi les also have their utility in high-load 
scenarios. However, most of the time these are not necessary, and a value of 5 is a bit 
small for the majority of scenarios. 

  2. The script calls the sp_trace_create stored procedure, which initializes—but does not 
start—the trace. The parameters specifi ed here are the output parameter for the trace 
ID of the newly created trace; 0 for the options parameter—meaning that rollover fi les 
should not be used; a placeholder for a server-side fi le path, which should be changed 
before using this script; the maximum fi le size as defi ned by the @maxfi lesize variable; 
and NULL for the stop date—this trace only stops when it is told to. Note that there is also 

C02626249.indd   100 2/12/2009   10:14:18 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 101

a fi nal parameter in sp_trace_create, which allows the user to set the  maximum  number of 
rollover fi les. This parameter, called @fi lecount in the sp_trace_create  documentation, was 
added in SQL Server 2005 and is not added automatically to the trace defi nition scripts 
created with the Script Trace Defi nition option. The @ fi lecount  parameter doesn’t apply 
here because the options parameter was set to 0 and no  rollover fi les are created, but 
it can be useful in many other cases. Note that because  rollover fi les are disabled, if the 
maximum fi le size is reached, the trace automatically stops and closes. 

 Note The fi le extension .trc is appended to the fi le path specifi ed for the output trace fi le 
 automatically. If you use the .trc extension in your fi le name (for example, C:\mytrace.trc), 
the fi le on disk is C:\mytrace.trc.trc. 

  3. sp_trace_setevent is used to defi ne the event/column combinations used for the trace. 
In this case, to keep things simple, only event 12—SQL:BatchCompleted—is used. One 
call to sp_trace_setevent is required for each event/column combination used in the 
trace. As an aside, note that the @on parameter must be a bit. Because numeric  literals 
in SQL Server 2005 and earlier are cast as integers implicitly by default, the local 
@on variable is needed to force the value to be treated appropriately by the stored 
 procedure in those versions. 

  4. Once events are set, fi lters are defi ned. In this case, column 13 (Duration) is fi ltered  using 
the and logical operator (the third parameter, with a value of 0) and the greater than or 
equal to comparison operator (the fourth parameter, with a value of 4). The actual value 
is passed in as the fi nal parameter. Note that it is shown in the script in microseconds; 
SQL Trace uses microseconds for its durations, although the default standard of time in 
SQL Profi ler is milliseconds. To change the SQL Profi ler default, click Tools, Options, and 
then select the Show Values In Duration Column In Microseconds check box (note that 
microsecond durations are available in SQL Server 2005 and SQL Server 2008 only). 

 Note SQL Trace offers both and and or logical operators that can be combined if  multiple 
fi lters are used. However, there is no way to indicate parentheses or other grouping 
 constructs, meaning that the order of operations is limited to left-to-right evaluation. 
This means that an expression such as A and B or C and D is logically evaluated by SQL 
Trace as (((A and B) or C) and D). However, SQL Trace internally breaks the fi lters into 
groups based on columns being fi ltered. So the expression Column1=10 or Column1=20 
and Column3=15 or Column3=25 is actually evaluated as (Column1=10 or Column1=20) 
and (Column3=15 or Column3=25). Not only is this somewhat confusing, but it can make 
 certain conditions diffi cult or impossible to express. Keep in mind that in some cases, you 
may have to break up your fi lter criteria and create multiple traces to capture everything 
the way you intend to. 

  5. The trace has now been created, event and column combinations set, and fi lters 
 defi ned. The fi nal thing to do is actually start tracing. This is done via the call to 
sp_trace_setstatus, with a value of 1 for the second parameter. 

C02626249.indd   101 2/12/2009   10:14:18 AM



102 Microsoft SQL Server 2008 Internals

Querying Server-Side Trace Metadata

 After modifying the fi le name placeholder appropriately and running the test script on my server, 
I received a value of 2 for the trace ID. Using a trace ID, you can retrieve a variety of metadata 
about the trace from the sys.traces catalog view, such as is done by the following query: 

SELECT

    status,

    path,

    max_size,

    buffer_count,

    buffer_size,

    event_count,

    dropped_event_count

FROM sys.traces

WHERE id = 2;

 This query returns the trace status, which is 1 (started) or 0 (stopped); the server-side path 
to the trace fi le (or NULL if the trace is using the rowset provider); the maximum fi le size (or 
again, NULL in the case of the rowset provider); information about how many buffers of what 
size are in use for processing the I/O; the number of events captured; and the number of 
dropped events (in this case, NULL if your trace is using the fi le provider). 

 Note For readers migrating from SQL Server 2000, note that the sys.traces view replaces 
the older fn_trace_getinfo function. This older function returns only a small subset of the data 
 returned by the sys.traces view, so it’s defi nitely better to use the view going forward. 

 In addition to the sys.traces catalog view, SQL Server ships with a few other views and  functions 
to help derive information about traces running on the server. They are described in the 
 upcoming sections. 

fn_trace_geteventinfo  This function returns the numeric combinations of events and 
 columns selected for the trace, in a tabular format. The following T-SQL code returns this 
data for trace ID 2: 

SELECT *

FROM fn_trace_geteventinfo(2);

 The output from running this query on the trace created in the preceding script follows: 

 eventid columnid

 12 1

 12 6

 12 9

 12 10

 12 11

eventid columnid

C02626249.indd   102 2/12/2009   10:14:19 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 103

 eventid columnid

 12 12

 12 13

 12 14

 12 15

 12 16

 12 17

 12 18

sys.trace_events and sys.trace_columns  The numeric representations of trace events and 
columns are not especially interesting on their own. To be able to query this data properly, 
a textual representation is necessary. The sys.trace_events and sys.trace_columns contain not 
only text describing the events and columns, respectively, but also other information such as 
data types for the columns and whether they are fi lterable. Combining these views with the 
previous query against the fn_trace_geteventinfo function, we can get a version of the same 
output that is much easier to read: 

SELECT

    e.name AS Event_Name,

    c.name AS Column_Name

FROM fn_trace_geteventinfo(2) ei

JOIN sys.trace_events e ON ei.eventid = e.trace_event_id

JOIN sys.trace_columns c ON ei.columnid = c.trace_column_id;

 The output from this query follows: 

 Event_Name Column_Name

 SQL:BatchCompleted TextData

 SQL:BatchCompleted NTUserName

 SQL:BatchCompleted ClientProcessID

 SQL:BatchCompleted ApplicationName

 SQL:BatchCompleted LoginName

 SQL:BatchCompleted SPID

 SQL:BatchCompleted Duration

 SQL:BatchCompleted StartTime

 SQL:BatchCompleted EndTime

 SQL:BatchCompleted Reads

 SQL:BatchCompleted Writes

 SQL:BatchCompleted CPU

fn_trace_getfi lterinfo  To get information about which fi lter values were set for a trace, 
the fn_trace_getfi lterinfo function can be used. This function returns the column ID  being 

eventid columnid

Event_Name Column_Name

C02626249.indd   103 2/12/2009   10:14:19 AM



104 Microsoft SQL Server 2008 Internals

 fi ltered (which can be joined to the sys.trace_columns view for more information), the  logical 
 operator, comparison operator, and the value of the fi lter. The following code shows an 
 example of its use: 

SELECT

    columnid,

    logical_operator,

    comparison_operator,

    value

FROM fn_trace_getfilterinfo(2);

Retrieving Data from Server-Side Traces

 Once a trace is started, the obvious next move is to actually read the collected data. This is 
done using the fn_trace_gettable function. This function takes two parameters: The name of the 
fi rst fi le from which to read the data, and the maximum number of rollover fi les to read from 
(should any exist). The following T-SQL reads the trace fi le located at C:\sql_server_internals.trc: 

SELECT *

FROM fn_trace_gettable('c:\sql_server_internals.trc', 1);

 A trace fi le can be read at any time, even while a trace is actively writing data to it. Note that 
this is probably not a great idea in most scenarios because it increases disk contention, thereby 
decreasing the speed with which events can be written to the table and increasing the possibility 
of blocking. However, in situations in which you’re collecting data infrequently—such as when 
you’ve fi ltered for a very specifi c stored procedure pattern that isn’t called often—this is an easy 
way to fi nd out what you’ve collected so far. 

 Because fn_trace_gettable is a table-valued function, its uses within T-SQL are virtually limitless. 
It can be used to formulate queries, or it can be inserted into a table so that indexes can be 
created. In the latter case, it’s probably a good idea to use SELECT INTO to take advantage of 
minimal logging: 

SELECT *

INTO sql_server_internals

FROM fn_trace_gettable('c:\sql_server_internals.trc', 1);

 Once the data has been loaded into a table, it can be manipulated any number of ways to 
troubleshoot or answer questions.  

Stopping and Closing Traces

 When a trace is fi rst created, it has the status of 0, stopped (or not yet started, in that case). 
A trace can be brought back to that state at any time using sp_trace_setstatus. To set trace 
ID 2 to a status of stopped, the following T-SQL code is used: 

EXEC sp_trace_setstatus 2, 0;

C02626249.indd   104 2/12/2009   10:14:19 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 105

 Aside from the obvious benefi t that the trace no longer collects data, there is another perk to 
doing this: Once the trace is in a stopped state, you can modify the event/column selections 
and fi lters using the appropriate stored procedures without re-creating the trace. This can be 
extremely useful if you need to make only a minor adjustment. 

 If you are actually fi nished tracing and do not wish to continue at a later time, you can remove 
the trace defi nition from the system altogether by setting its status to 2: 

EXEC sp_trace_setstatus 2, 2;

 Tip Trace defi nitions are removed automatically in the case of a SQL Server service restart, so if 
you need to run the same trace again later, either save it as a Profi ler template or save the script 
used to start it. 

Investigating the Rowset Provider

 Most of this section has dealt with how to work with the fi le provider using server-side traces, 
but some readers are undoubtedly asking themselves how SQL Server Profi ler interfaces with 
the rowset provider. The rowset provider and its interfaces are completely undocumented. 
However, because Profi ler is doing nothing more than calling stored procedures under the 
covers, it is not too diffi cult to fi nd out what’s going on. As a matter of fact, you can use a 
somewhat recursive process: use Profi ler to trace activity generated by itself.  

 A given trace session cannot capture all its own events (the trace won’t be running yet 
when some of them occur), so to see how Profi ler works, we need to set up two traces: 
an initial trace confi gured to watch for Profi ler activity, and a second trace to produce the 
 activity for the fi rst trace to capture. To begin with, open SQL Profi ler and create a new 
trace  using the default template. In the Edit Filter dialog box, remove the default Not Like 
fi lter on ApplicationName and replace it with a Like fi lter on ApplicationName for the string 
SQL Server Profi ler%. This fi lter captures all activity that is produced by any SQL Server 
Profi ler session. 

 Start that trace, then load up another trace using the default template and start it. The fi rst trace 
window now fi lls with calls to the various sp_trace stored procedures, fi red via RPC:Completed 
events. The fi rst hint that something different happens when using the rowset provider is the 
call made to sp_trace_create: 

declare @p1 int;

exec sp_trace_create @p1 output,1,NULL,NULL,NULL;

select @p1;

 The second parameter, used for options, is set to 1, a value not documented in SQL Server 
Books Online. This is the value that turns on the rowset provider. And the remainder of the 
parameters, which deal with fi le output, are populated with NULLs.  

C02626249.indd   105 2/12/2009   10:14:19 AM



106 Microsoft SQL Server 2008 Internals

 Tip The sp_trace_create options parameter is actually a bit mask—multiple options can be set 
simultaneously. To do that, simply add up the values for each of the options you want. With only 
three documented values and one undocumented value, there aren’t a whole lot of possible 
combinations, but it’s still something to keep in mind. 

 Much of the rest of the captured activity looks familiar at this point; you see normal-looking 
calls to sp_trace_setevent, sp_trace_setfi lter, and sp_trace_setstatus. However, to see the 
 complete picture, you must stop the second trace (the one actually generating the trace 
 activity being captured). As soon as the second trace stops, the fi rst trace captures the 
 following RPC:Completed event: 

exec sp_executesql N'exec sp_trace_getdata @P1, 0',N'@P1 int',3;

 In this case, 3 is the trace ID for the second trace on our system. Given this set of input 
 parameters, the sp_trace_getdata stored procedure streams event data back to the caller in a 
tabular format and does not return until the trace is stopped.  

 Unfortunately, the tabular format produced by sp_trace_getdata is far from recognizable and 
is not in the standard trace table format. By modifying the previous fi le-based trace, we can 
produce a rowset-based trace using the following T-SQL code: 

declare @rc int

declare @TraceID int

exec @rc = sp_trace_create 

    @TraceID output, 

    1, 

    NULL, 

    NULL, 

    NULL 

if (@rc != 0) goto finish

-- Set the events

declare @on bit

set @on = 1

exec sp_trace_setevent @TraceID, 12, 15, @on

exec sp_trace_setevent @TraceID, 12, 16, @on

exec sp_trace_setevent @TraceID, 12, 1, @on

exec sp_trace_setevent @TraceID, 12, 9, @on

exec sp_trace_setevent @TraceID, 12, 17, @on

exec sp_trace_setevent @TraceID, 12, 6, @on

exec sp_trace_setevent @TraceID, 12, 10, @on

exec sp_trace_setevent @TraceID, 12, 14, @on

exec sp_trace_setevent @TraceID, 12, 18, @on

exec sp_trace_setevent @TraceID, 12, 11, @on

exec sp_trace_setevent @TraceID, 12, 12, @on

exec sp_trace_setevent @TraceID, 12, 13, @on

-- Set the Filters

declare @bigintfilter bigint

C02626249.indd   106 2/12/2009   10:14:19 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 107

set @bigintfilter = 10000

exec sp_trace_setfilter @TraceID, 13, 0, 4, @bigintfilter

-- Set the trace status to start

exec sp_trace_setstatus @TraceID, 1

-- display trace id for future references

select TraceID=@TraceID

exec sp_executesql 

    N'exec sp_trace_getdata @P1, 0',

    N'@P1 int',

    @TraceID

finish: 

go

Running this code, then issuing a WAITFOR DELAY ‘00:00:10’ in another window, produces 
the following output (truncated and edited for brevity): 

ColumnId Length Data

65526 6 0xFEFF63000000

14 16 0xD707050002001D001 . . .

65533 31 0x01010000000300000 . . .

65532 26 0x0C000100060009000 . . .

65531 14 0x0D000004080010270 . . .

65526 6 0xFAFF00000000

65526 6 0x0C000E010000

1 48 0x57004100490054004 . . .

6 8 0x4100640061006D00

9 4 0xC8130000

10 92 0x4D006900630072006 . . .

Each of the values in the columnid column corresponds to a trace data column ID. The length 
and data columns are relatively self-explanatory—data is a binary-encoded value that 
 corresponds to the collected column, and length is the number of bytes used by the data 
column. Each row of the output coincides with one column of one event. SQL Server Profi ler 
pulls these events from the rowset provider via a call to sp_trace_getdata and performs a 
pivot to produce the human-readable output that we’re used to seeing. This is yet another 
reason that the rowset provider can be less effi cient than the fi le provider—sending so many 
rows can produce a huge amount of network traffi c. 

 If you do require rowset provider–like behavior for your monitoring needs, luckily you do 
not need to fi gure out how to manipulate this data. SQL Server 2008 ships with a series of 
managed classes in the Microsoft.SqlServer.Management.Trace namespace, designed to help 

ColumnId Length Data

C02626249.indd   107 2/12/2009   10:14:19 AM



108 Microsoft SQL Server 2008 Internals

with setting up and consuming rowset traces. The use of these classes is beyond the scope of 
this chapter, but they are well documented in the SQL Server TechCenter and readers should 
have no trouble fi guring out how to exploit what they offer. 

Extended Events

 As useful as SQL Trace can be for DBAs and developers who need to debug  complex 
 scenarios within SQL Server, the fact is that it has some key limitations. First, its 
 column-based architecture makes it diffi cult to add new events that don’t fi t nicely into 
the existing set of output columns. Second, large traces can have a greater impact on 
 system performance than many DBAs prefer. Finally, SQL Trace is a tracing infrastructure 
only; it cannot be extended into other areas that a general-purpose eventing system can 
be used for. 

 The solution to all these problems is Extended Events (XE, XEvents, or X/Events for short, 
depending on which article or book you happen to be reading—we’ll use the XE shorthand 
for the remainder of this chapter). Unlike SQL Trace, XE is designed as a general eventing 
system that can be used to fulfi ll tracing requirements but that also can be used for a variety 
of other purposes—both internal to the engine and external. Events in XE are not bound to 
a general set of output columns as are SQL Trace events. Instead, each XE event publishes its 
data using its own unique schema, making the system as fl exible as possible. XE also answers 
some of the performance problems associated with SQL Trace. The system was engineered 
from the ground up with performance in mind, and so in most cases, events have minimal 
impact on overall system performance. 

 Due to its general nature, XE is much bigger and more complex than SQL Trace, and learning 
the system requires that DBAs understand a number of new concepts. In addition, because 
the system is new for SQL Server 2008, there is not yet UI support in the form of a Profi ler 
or similar tool. Given the steep learning curve, many DBAs may be less than excited about 
diving in. However, as you will see in the remainder of this chapter, XE is a powerful tool and 
certainly worth learning today. The next several versions of SQL Server will see XE extended 
and utilized in a variety of ways, so understanding its foundations today is a good investment 
for the future.  

Components of the XE Infrastructure

 The majority of the XE system lives in an overarching layer of SQL Server that is  architecturally 
similar to the role of the SQL operating system (SQLOS). As a  general-purpose eventing 
and tracing system, it must be able to interact with all levels of the SQL Server host process, 
from the query processing APIs all the way down into the storage engine. To accomplish its 
goals, XE exposes several types of components that work together to form the complete 
system. 

C02626249.indd   108 2/12/2009   10:14:19 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 109

Packages

 Packages are the basic unit within which all other XE objects ship. Each package is a  collection of 
types, predicates, targets, actions, maps, and events—the actual user- confi gurable  components of 
XE that you work with as you interact with the system. SQL Server 2008 ships with four  packages, 
which can be queried from the sys.dm_xe_packages DMV, as in the following example: 

SELECT *

FROM sys.dm_xe_packages;

 Packages can interact with one another to avoid having to ship the same code in multiple 
contexts. For example, if one package exposes a certain action that can be bound to an 
event, any number of other events in other packages can use it. As a means by which to use 
this fl exibility, Microsoft ships a package called package0 with SQL Server 2008. This package 
can be considered the base; it contains objects designed to be used by all the other packages 
currently shipping with SQL Server, as well as those that might ship in the future. 

 In addition to package0, SQL Server ships with three other packages. The sqlos package 
 contains objects designed to help the user interact with the SQLOS system. The sqlserver 
 package, on the other hand, contains objects specifi c to the rest of the SQL Server system. The 
SecAudit  package is a bit different; it contains objects designed for the use of SQL Audit, which 
is an auditing technology built on top of Extended Events. Querying the sys.dm_xe_packages 
DMV, you can see that this package is marked as private in the capabilities_desc column. This 
means that  non-system consumers can’t directly use the objects that it contains. 

 To see a list of all the objects exposed by the system, query the sys.dm_xe_objects DMV: 

SELECT *

FROM sys.dm_xe_objects;

 This DMV exposes a couple of key columns important for someone interested in exploring 
the objects. The package_guid column is populated with the same GUIDs that can be found 
in the guid column of the sys.dm_xe_packages DMV. The object_type column can be used 
to fi lter on specifi c types of objects. And just like sys.dm_xe_packages, sys.dm_xe_objects 
 exposes a capabilities_desc column that is sometimes set to private for certain objects that 
are not available for use by external consumers. There is also a column called description, 
which purports to contain human-readable text describing each object, but this is a work in 
 progress as of SQL Server 2008 RTM, and many of the descriptions are incomplete.  

 In the following sections, we explore, in detail, each of the object types found in 
sys.dm_xe_objects. 

Events

 Much like SQL Trace, XE exposes a number of events that fi re at various expected times as SQL 
Server goes about its duties. Also, just like with SQL Trace, various code paths throughout the 
product have been instrumented with calls that cause the events to fi re when appropriate. New 

C02626249.indd   109 2/12/2009   10:14:19 AM



110 Microsoft SQL Server 2008 Internals

users of XE will fi nd almost all the same events that SQL Trace exposes, plus many more. SQL 
Trace ships with 180 events in SQL Server 2008; XE ships with 254. This number increases for 
XE because many of the XE events are at a much deeper level than the SQL Trace events. For 
 example, XE includes an event that fi res each time a page split occurs. This allows a user to track 
splits at the query level, something that was impossible to do in previous versions of SQL Server. 

 The most important differentiator of XE events, compared with those exposed by SQL Trace, 
is that each event exposes its own output schema. These schemas are exposed in the 
sys.dm_xe_object_columns DMV, which can be queried for a list of output columns as in the 
 following example: 

SELECT *

FROM sys.dm_xe_object_columns

WHERE

    object_name = 'page_split';

 In addition to a list of column names and column ordinal positions, this query also returns a 
list of data types associated with each column. These data types, just like every other object 
defi ned within the XE system, are contained within packages and each has its own entry in 
the sys.dm_xe_objects DMV. Columns can be marked readonly (per the column_type column), 
in which case they have a value defi ned in the column_value column, or they can be marked 
as data, which means that their values will be populated at run time. The readonly columns 
are metadata, used to store various information including a unique identifi er for the type of 
event that fi red and a version number so that different versions of the schema for each event 
can be independently tracked and used. 

 One of the handful of readonly attributes that is associated with each event is the CHANNEL 
for the event. This is a refl ection of one of the XE design goals, to align with the Event Tracing 
for Windows (ETW) system. Events in SQL Server 2008 are categorized as Admin, Analytic, 
Debug, or Operational. The following is a description of each of these event channels: 

■  Admin events are those that are expected to be of most use to systems administrators, 
and this channel includes events such as error reports and deprecation announcements.  

■  Analytic events are those that fi re on a regular basis—potentially thousands of times 
per second on a busy system—and are designed to be aggregated to support analysis 
about system performance and health. These include events around topics such as lock 
acquisition and SQL statements starting and completing. 

■  Debug events are those expected to be used by DBAs and support engineers to help 
 diagnose and solve engine-related problems. This channel includes events that fi re 
when threads and processes start and stop, various times throughout a scheduler’s 
 lifecycle, and for other similar themes. 

■  Operational events are those expected to be of most use to operational DBAs for 
 managing the SQL Server service and databases. This channel’s events relate to 
 databases being attached, detached, started, and stopped, as well as issues such as 
the detection of database page corruption. 

C02626249.indd   110 2/12/2009   10:14:19 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 111

 Providing such a fl exible event payload system ensures that any consumer can use any exposed 
event, so long as the consumer knows how to read the schema. Events are designed such that 
the output of each instance of the event always includes the same attributes, exposed in the 
exact order defi ned by the schema, to minimize the amount of work required for consumers 
to processes bound events. Event consumers can also use this ordering guarantee to more 
easily  ignore data that they are not interested in. For example, if a consumer knows that the 
fi rst 16 bytes of a given event contains an identifi er that is not pertinent to the consumer’s 
 requirements, these bytes can simply be disregarded rather than needlessly processed. 

 Although the schema of each event is predetermined before run time, the actual size of each 
 instance of the event is not. Event payloads can include both fi xed and variable-length data 
 elements, in addition to non-schematized elements populated by actions (see the section 
 entitled “Actions” later in this chapter, for more information). To reduce the probability of events 
overusing memory and other resources, the system sets a hard 32-MB upper limit on the data 
size of variable-length elements. 

 One thing you might notice about the list of columns returned for each event is that it is small 
compared with the number of columns available for each event in SQL Trace. For  example, the 
XE sql_statement_completed event exposes only seven columns: source_database_id, object_id, 
object_type, cpu, duration, reads, and writes. SQL Trace users might be wondering where all the 
other common attributes are—session ID, login name, perhaps the actual SQL text that caused 
the event to fi re. These are all available by binding to “actions” (described in the section  entitled 
“Actions,” later in this chapter) and are not populated by default by the event’s schema. This 
 design further adds to the fl exibility of the XE architecture and keeps events themselves as 
small as possible, thereby improving overall system performance. 

 As with SQL Trace events, XE events are disabled by default and have virtually no overhead 
until they are enabled in an event session (the XE equivalent of a trace, covered later in this 
chapter). Also like SQL Trace events, XE events can be fi ltered and can be routed to various 
post-event providers for collection. The terminology here is also a bit different; fi lters in XE 
are called predicates, and the post-event providers are referred to as targets, covered in the 
 sections entitled “Predicates” and “Targets,” respectively, later in this chapter. 

Types and Maps

 In the previous section, we saw that each event exposes its own schema, including column 
names and type information. Also mentioned was that each of the types included in these 
schemas is also defi ned within an XE package.  

 Two kinds of data types can be defi ned: scalar types and maps. A scalar type is a single 
value; something like an integer, a single Unicode character, or a binary large object. A map, 
on the other hand, is very similar to an enumeration in most object-oriented systems. The 
idea for a map is that many events have greater value if they can convey to the consumer 
some human-readable text about what occurred, rather than just a set of machine-readable 
 values. Much of this text can be predefi ned—for example, the list of wait types supported by 

C02626249.indd   111 2/12/2009   10:14:19 AM



112 Microsoft SQL Server 2008 Internals

SQL Server—and can be stored in a table indexed by an integer. At the time an event fi res, 
rather than collecting the actual text, the event can simply store the integer, thereby saving 
large amounts of memory and processing resources. 

 Types and maps, like events, are visible in the sys.dm_xe_objects DMV. To see a list of both 
types and maps supported by the system, use the following query: 

SELECT *

FROM sys.dm_xe_objects

WHERE 

    object_type IN ('TYPE', 'MAP');

 Although types are more or less self-describing, maps must expose their associated values 
so that consumers can display the human-readable text when appropriate. This information 
is available in a DMV called sys.dm_xe_map_values. The following query returns all the wait 
types exposed by the SQL Server engine, along with the map keys (the integer representation 
of the type) used within XE events that describe waits: 

SELECT *

FROM sys.dm_xe_map_values

WHERE

    name = 'wait_types';

 As of SQL Server 2008 RTM, virtually all the types are exposed via the package0 package, 
whereas each of the four packages contain many of their own map values. This makes sense, 
given that a scalar type such as an integer does not need to be redefi ned again and again, 
whereas maps are more aligned to specifi c purposes.  

 It is also worth noting, from an architectural point of view, that some thought has been put 
into optimizing the type system by including pass-by-value and pass-by-reference semantics 
depending on the size of the object. Any object of 8 bytes or smaller is passed by value as 
the data fl ows through the system, whereas larger objects are passed by reference using a 
special XE-specifi c 8-byte pointer type. 

Predicates

 As with SQL Trace events, XE events can be fi ltered so that only interesting events are  recorded. 
You may wish to record, for example, only events that occur in a specifi c database, or which 
fi red for a specifi c session ID. In keeping with the design goal of providing the most fl exible 
experience possible, XE predicates are assigned on a per-event basis, rather than to the entire 
session. This is quite a departure from SQL Trace, where fi lters are defi ned at the granularity 
of the entire trace, and so every event used within the trace must abide by the overarching 
fi lter set. In XE, if it makes sense to only fi lter some events and to leave other events totally 
 unfi ltered—or fi ltered using a different set of criteria—that is a perfectly  acceptable option. 

 From a metadata standpoint, predicates are represented in sys.dm_xe_objects as two  different 
object types: pred_compare and pred_source. The pred_compare objects are comparison 

C02626249.indd   112 2/12/2009   10:14:19 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 113

 functions, each designed to compare instances of a specifi c data type, whereas the pred_source 
objects are extended attributes that can be used within predicates.  

 First, we’ll take a look at the pred_compare objects. The following query against the 
sys.dm_xe_objects DMV returns all >= comparison functions that are available, by fi ltering 
on the pred_compare object type: 

SELECT * 

FROM sys.dm_xe_objects 

WHERE 

    object_type = 'pred_compare'

    AND name LIKE 'greater_than_equal%';

 Running this query, you can see comparison functions defi ned for a number of base data 
types—integers, fl oating-point numbers, and various string types. Each of these functions can 
be used explicitly by an XE user, but the DDL for creating event sessions has been overloaded 
with common operators, so that this is unnecessary in the vast majority of cases. For  example, 
if you use the >= operator to defi ne a predicate based on two integers, the XE engine 
 automatically maps the call to the greater_than_equal_int64 predicate that you can see in the 
DMV. There is currently only one predicate that is not overloaded with an operator, a modulus 
operator that tests whether one input equally divides by the other. See the section entitled 
“Extended Events DDL and Querying,” later in this chapter, for more information on how to 
use the comparison functions.  

 The other predicate object type—pred_source—requires a bit of background explanation. In 
the XE system, event predicates can fi lter on one of two types of attribute: a column exposed 
by the event itself—such as source_database_id for the sql_statement_completed event—or any 
of the external attributes (predicate sources) defi ned as pred_source in the sys.dm_xe_objects 
DMV. The available sources are returned by the following query: 

SELECT * 

FROM sys.dm_xe_objects 

WHERE 

    object_type = 'pred_source';

 Each of these attributes—29 as of SQL Server 2008 RTM—can be bound to any event in the 
XE system and can be used anytime you need to fi lter on an attribute that is not  carried by 
the event’s own schematized payload. This lets you ask for events that fi red for a  specifi c 
 session ID, for a certain user name, or—if you want to debug at a deeper level—on a  specifi c 
thread or worker address. The important thing to remember is that these  predicate sources 
are not carried by any of the events by default, and using them forces the XE  engine to 
 acquire the data in an extra step during event processing. For most of the predicates, the 
 acquisition cost is quite small, but if you are using several of them, this cost can add up. 

 We explore when and how predicates fi re in the section entitled “Lifecycle of an Event,” later 
in this chapter. 

C02626249.indd   113 2/12/2009   10:14:19 AM



114 Microsoft SQL Server 2008 Internals

Actions

 One quality of an eventing system is that as events fi re, it may be prudent to exercise some 
external code. For example, consider DML triggers, which are events that fi re in response 
to a DML action and exercise code in the form of the body of the trigger. Aside from 
 doing some sort of work, external code can also retrieve additional information that might 
be important to the event; for example, a trigger can select data from another table in 
the system. 

 In XE, a type of object called an action takes on these dual purposes. Actions, if bound to an 
event, are synchronously invoked after the predicate evaluates to true and can both exercise 
code and write data back into the event’s payload, thereby adding additional attributes. As 
mentioned in the section entitled “Events,” earlier in this chapter, XE events are designed to 
be as lean as possible, including only a few attributes each by default. When dealing with 
predicates, the lack of a complete set of attributes can be solved using predicate sources, but 
these are only enabled for fi ltration. Using a predicate source does not cause its value to be 
stored along with the rest of the event data. The most common use of actions is to collect 
additional  attributes not present by default on a given event.  

 It should by this point come as no surprise that to see a list of the available actions, a user 
should query sys.dm_xe_objects, as in the following example: 

SELECT * 

FROM sys.dm_xe_objects 

WHERE 

    object_type = 'action';

 As of SQL Server 2008 RTM, XE ships with 37 actions, which include attributes that map to 
virtually every predicate source, should you wish to fi lter on a given source as well as include 
the actual value in your event’s output. The list also includes a variety of other attributes, as 
well as a handful of actions that exercise only code and do not return any data to the event’s 
payload.  

 Actions fi re synchronously on an event immediately after the predicates are evaluated, but 
before control is returned to the code that caused the event to fi re (for more information, see 
the section entitled “Lifecycle of an Event,” later in this chapter). This is done to ensure that 
actions will be able to collect information as it happens and before the server state changes, 
which might be a potential problem were they fi red asynchronously.  

 As a result of their synchronous design, actions bear some performance cost. The  majority 
of them—such as those that mirror the available predicates—are relatively inexpensive to 
retrieve, but others can be costly. For example, an especially interesting action useful for 
debugging purposes is the tsql_stack action, which returns the entire nested stack of stored 
procedure and/or function calls that resulted in the event fi ring. Although very useful, this 
 information is not available in the engine without briefl y stopping execution of the  current 
thread and walking the stack, so this action bears a heavier performance cost than, for 
 example, retrieving the current session ID. 

C02626249.indd   114 2/12/2009   10:14:19 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 115

 To see a list of those actions that do not return any data but rather only execute external 
code, fi lter on the type_name column of sys.dm_xe_objects for a ”null” return value, as in the 
following query: 

SELECT * 

FROM sys.dm_xe_objects 

WHERE 

    object_type = 'action'

    and type_name = 'null';

 Note that “null” in this example is actually a string and is not the same as a SQL NULL; null 
is the name of a type defi ned in package0 and shows up in the list of objects of type type. 
There are three actions that do not return additional data: two of them perform mini-dumps 
and the other causes a debugger breakpoint to fi re. All these are best used only when 
 instructed to by product support—especially the debug break event, which stops the active 
thread upon which the breakpoint is hit, potentially blocking the entire SQL Server process 
depending on where the breakpoint is hit. 

 Much like predicates, actions are bound on an event-by-event basis rather than at the event 
session level, so a consumer can choose to invoke actions only when specifi c events fi re 
within a larger session. Certain actions may not apply to every event in the system, and these 
will fail to bind with an error at session creation time, if a user attempts to bind them with an 
incompatible event.  

 From a performance point of view, aside from the synchronous nature of these actions, it is 
important to remember that actions that write data back to the event increase the size of each 
instance of the event. This means that not only do events take longer to fi re and  return  control 
to the caller—because actions are synchronously executed—but once fi red, the event also 
 consumes more memory and requires more processing time to write to the target. The key, as is 
often the case with performance-related issues, is to maintain a balance  between the data needs 
of the consumer and the performance needs of the server as a whole. Keeping in mind that 
 actions are not free helps you to create XE sessions that have less of an impact on the host server. 

Targets

 So far, we have seen events that fi re when an instrumented code path is encountered, predicates 
that fi lter events so that only interesting data is collected, and actions that can add  additional 
data to an event’s payload. Once all this has taken place, the fi nal package of event data needs 
to go somewhere to be collected. This destination for event data is one or more targets, which 
are the means by which XE events are consumed. 

 Targets are the fi nal object type that has metadata exposed within sys.dm_xe_objects, and 
the list of available targets can be seen by running the following query: 

SELECT * 

FROM sys.dm_xe_objects 

WHERE 

    object_type = 'target';

C02626249.indd   115 2/12/2009   10:14:19 AM



116 Microsoft SQL Server 2008 Internals

 SQL Server 2008 RTM ships with 13 targets—7 public and 6 private, for use only by SQL 
Audit. Of the 7 public targets, 3 are marked synchronous in the capabilities_desc column. 
These targets collect event data synchronously—much like actions—before control is 
 returned to the code that caused the event to fi re. The other fi ve events, in comparison, are 
asynchronous, meaning that the data is buffered before being collected by the target at 
some point after the event fi res. Buffering results in better performance for the code that 
caused the event to fi re, but it also introduces latency into the process because the target 
may not collect the event for some time.  

 XE targets come in a variety of types that are both similar to and somewhat different from 
the I/O providers exposed by SQL Trace. Similar to the SQL Trace fi le provider is the XE 
 asynchronous_fi le_target, which buffers data before writing it out to a proprietary binary fi le 
format. Another fi le-based option is the etw_classic_sync_target, which synchronously writes 
data to a fi le format suitable for consumption by any number of ETW-enabled readers. There 
is no XE equivalent for the SQL Trace streaming rowset provider. 

 The remaining fi ve targets are quite different than what is offered by SQL Trace, and all store 
consumed data in memory rather than persisting it to a fi le. The most straightforward of these 
is the ring_buffer target, which stores data in a ring buffer with a user-confi gurable size. A ring 
buffer loops back to the start of the buffer when it fi lls and begins overwriting data collected 
earlier. This means that the buffer can consume an endless quantity of data without using all 
available system memory, but only the newest data is available at any given time.  

 Another target type is the synchronous_event_counter target, which synchronously counts the 
number of times events have fi red. Along these same lines are two bucketizer targets—one 
synchronous and the other asynchronous—which create buckets based on a user-defi ned 
column, and count the number of times that events occur within each bucket. For example, a 
user could “bucketize” based on session ID, and the targets would count the number of events 
that fi red for each SPID. 

 The fi nal target type is called the pair_matching target, and it is designed to help fi nd 
 instances where a pair of events is expected to occur, but one or the other is not fi ring due to 
a bug or some other problem. The pair_matching target works by asynchronously collecting 
events defi ned by the user as begin events, and matching them to events defi ned by the user 
as end events. When a pair of successfully matched events is found, both events are dropped, 
leaving only those events that did not have a match. For an example of where this would 
be useful, consider lock acquisition in the storage engine. Each lock is acquired and—we 
hope—released within a relatively short period to avoid blocking. If blocking problems are 
occurring, it is possible that they are due to locks being acquired and held for longer than 
necessary. By using the pair_matching target in conjunction with the lock acquired and lock 
released events, it is easy to identify those locks that have been taken but not yet released. 

 Targets can often be used in conjunction with one another, and it is therefore possible to bind 
multiple targets to a single session, rather than having to create many sessions to collect the 

C02626249.indd   116 2/12/2009   10:14:19 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 117

same data. For example, a user can create multiple bucketizing targets to simultaneously keep 
metadata counts based on different bucket criteria, while recording all the unaggregated 
data to a fi le for later evaluation.  

 As with the SQL Trace providers, some action must occur when more data enters the system 
than can be processed in a reasonable amount of time. When working with the synchronous 
targets, things are simple; the calling code waits until the target returns control, and the target 
waits until its event data has been fully consumed. With asynchronous targets, on the other 
hand, there are a number of confi guration options that dictate how to handle the situation.  

 When event data buffers begin to fi ll up, the engine can take one of three possible actions 
depending on how the session was confi gured by the user. These actions are the following: 

■  Block, waiting for buffer space to become available (no event loss) This is the same 
behavior characterized by the SQL Trace fi le provider, and can cause performance 
degradation. 

■  Drop the waiting event (allow single event loss) In this case, the system drops only a 
single event at a time while waiting for more buffer space to free up. This is the default 
mode. 

■  Drop a full buffer (allow multiple event loss) Each buffer can contain many events, 
and the number of events lost depends upon the size of the events in addition to the 
size of the buffers (which we will describe shortly). 

 The various options are listed here in decreasing order of their impact on overall system 
performance should buffers begin fi lling up, and in increasing order of the number of events 
that may be lost while waiting for buffers to become free. It is important to choose an  option 
that refl ects the amount of acceptable data loss while keeping in mind that blocking will 
 occur should too restrictive an option be used. Liberal use of predicates, careful attention 
to the number of actions bound to each event, and attention to other confi guration options 
all help users avoid having to worry about buffers fi lling up and whether the choice of these 
 options is a major issue. 

 Along with the ability to specify what should happen when buffers fi ll up, a user can specify 
how much memory is allocated, how the memory is allocated across CPU or NUMA node 
boundaries, and how often buffers are cleared.  

 By default, one central set of buffers, consuming a maximum of 4 MB of memory, is 
 created for each XE session (as described in the next section). The central set of buffers 
always  contains three buffers, each consuming one-third of the maximum amount of 
 memory  specifi ed. A user can override these defaults, creating one set of buffers per CPU 
or one set per NUMA node, and increasing or decreasing the amount of memory that 
each set of  buffers consumes. In addition, a user can specify that events larger than the 
maximum  allocated buffer memory should be allowed to fi re. In that case, those events are 
stored in special large memory buffers. 

C02626249.indd   117 2/12/2009   10:14:19 AM



118 Microsoft SQL Server 2008 Internals

 Another default option is that buffers are cleared every 30 seconds or when they fi ll up. This 
option can be overridden by a user and a maximum latency set. This causes the buffers to 
be checked and cleared both at a specifi c time interval (specifi ed as a number of seconds), in 
addition to when they fi ll up. 

 It is important to note that each of these settings applies not on a per-target basis, but rather 
to any number of targets that are bound to a session. We explore how this works in the next 
section. 

Event Sessions

 We have now gone through each of the elements that make up the core XE infrastructure. 
Bringing each of these together into a cohesive unit at run time are sessions. These are the 
XE equivalent of a trace in SQL Trace parlance. A session describes the events that the user is 
interested in collecting, predicates against which the events should be fi ltered, actions that 
should fi re in conjunction with the events, and fi nally targets that should be used for data 
collection at the end of the cycle. 

 Any number of sessions can be created by users with adequate server-level permission, and 
sessions are for the most part independent of one another, just as with SQL Trace. The main 
thread that links any number of sessions is a central bitmap that indicates whether a given 
event is enabled or disabled. An event can be enabled simultaneously in any number of 
 sessions, but the global bitmap is used to avoid having to check each of those sessions at run 
time. Beyond this level, sessions are completely separate from one another, and each uses its 
own memory and has its own set of defi ned objects. 

Session-Scoped Catalog Metadata

 Along with defi ning a set of events, predicates, actions, and targets, various XE  confi guration 
options are scoped at the session level. As with the objects that defi ne the basis for XE, a 
 number of views have been added to the metadata repository of SQL Server to support 
 metadata queries about sessions.  

 The sys.server_event_sessions catalog view is the central metadata store for information 
about XE sessions. The view exposes one row per session defi ned on the SQL Server instance. 
Like traces in SQL Trace, XE sessions can be started and stopped at will. But unlike traces, XE 
 sessions are persistent with regard to service restarts, and so querying the view before and 
after a restart show the same results unless a session has been explicitly dropped. A  session 
can be confi gured to start itself automatically when the SQL Server instance starts; this 
 setting can be seen via the startup_state column of the view. 

 Along with the central sys.server_event_sessions views are a number of other views describing 
details of how the session was confi gured. The sys.server_event_session_events view exposes 
one row per event bound to each session, and includes a predicate column that contains the 
 defi nition of the predicate used to fi lter the event, if one has been set. There are similar views 

C02626249.indd   118 2/12/2009   10:14:19 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 119

for actions and targets, namely: sys.server_event_session_actions and sys.server_event_ session_
targets. A fi nal view, sys.server_event_session_fi elds, contains information about settings that 
can be customized for a given event or target. For example, the ring buffer target’s memory 
consumption can be set to a specifi c amount by a user; if the target is used, the memory 
 setting appears in this view. 

Session-Scoped Confi guration Options

 As mentioned in the section entitled “Targets,” earlier in this chapter, a number of settings 
are set globally for a session and, in turn, infl uence the run-time behavior of the objects that 
make up the session.  

 The fi rst set of session-scoped options includes those that we have already discussed:  options 
that determine how asynchronous target buffers are confi gured, both from a memory and 
 latency standpoint. These settings infl uence a process called the dispatcher, which is  responsible 
for periodically collecting data from the buffers and sending it to each of the asynchronous 
targets bound to the session. The frequency with which the dispatcher is  activated depends on 
how the memory and latency settings are confi gured. If a latency value of infi nite is specifi ed, 
the dispatcher does not collect data except when the buffers are full. Otherwise, the dispatcher 
collects data at the interval determined by the setting—as often as once a second. 

 The sys.dm_xe_sessions DMV can be used to monitor whether there are any problems 
 dispatching asynchronous buffers. This DMV exposes one row per XE session that has been 
started and exposes a number of columns that can give a user insight into how buffers are 
being handled. The most important columns are the following: 

■  regular_buffer_size and total_regular_buffers. These columns expose the number of 
 buffers created—based on the maximum memory and memory partitioning 
settings—as well as the size of each buffer. Knowing these numbers and estimating the 
approximate size for each event tells you how many events you might lose in case of a 
full buffer situation, should you make use of the allow multiple event loss option. 

■  dropped_event_count and dropped_buffer_count. These columns expose the number 
of events and/or buffers that have been dropped due to there not being enough free 
 buffer space to accommodate incoming event data. 

■  blocked_event_fi re_time. This column exposes the amount of time that blocking 
 occurred, if the no event loss option was used. 

 Another session-scoped option that can be enabled is called causality tracking. This option 
 enables users to use a SQL Server engine feature to help correlate events either when there are 
parent-child relationships between tasks on the same thread or when one thread causes  activity 
to occur on another thread. In the engine code, these relationships are tracked by each task 
defi ning a GUID, known as an activity ID. When a child task is called, the ID is passed along and 
continues down the stack as subsequent tasks are called. If activity needs to pass to another 
thread, the ID is passed in a structure called a transfer block, and the same logic continues.  

C02626249.indd   119 2/12/2009   10:14:20 AM



120 Microsoft SQL Server 2008 Internals

 These identifi ers are exposed via two XE actions: package0.attach_activity_id and package0. 
attach_activity_id_xfer. However, these actions cannot be attached to an event by a user 
 creating a session. Instead, a user must enable the causality tracking option at the session level, 
which automatically binds the actions to every event defi ned for the session. Once the actions 
are enabled, both the activity ID and activity transfer ID are added to each event’s payload. 

Lifecycle of an Event

 The fi ring of an event means, at its core, that a potentially “interesting” point in the SQL 
Server code has been encountered. This point in the code calls a central function that handles 
the event logic, and several things happen, as described in this section and as illustrated in 
Figure 2-13. 

“Interesting”�code
encountered

Is�the�event
enabled?�

Yes

No

Code�execution
continues�

Event�fires;
payload�collected

Event�data�copied�to
qualifying sessions�

Once�per
subscribing
session

Does�the�event
satisfy�predicates?

No�for�all
sessions�

Fire actions,�if
applicable

Once�per
qualifying�session�

Copy�data�to�any�
synchronous�

targets

Once�per
qualifying�session

Once�per
qualifying�session

Buffer�data,�if
applicable

Sometime�later…Dispatch�data�to
asynchronous�targets

Once�all�sessions’�actions,�synchronous
targets, and�asynchronous�buffers are
finished

Yes

FIGURE 2-13 The lifecycle of an extended event

 Once an event has been defi ned within at least one session, a global bitmap is set to indicate 
that the event should fi re when code that references it is encountered. Whether or not an 
event is enabled, the code must always perform this check; for events that are not enabled, the 
check involves a single code branch and adds virtually no overhead to the SQL Server process. 
If the event is not enabled, this is the end of the process and the code continues its normal 
 execution path. Only if an event is enabled in one or more sessions must the event-specifi c 
code continue processing. 

C02626249.indd   120 2/12/2009   10:14:20 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 121

 At this point, if enabled, the event fi res and all the data elements associated with its  schema 
are collected and packaged. The XE engine next fi nds each session that has the event 
 enabled and synchronously (one session at a time) takes the following steps: 

  1.  Check whether the event satisfi es predicates defi ned for the event within the session. 
If not, the engine moves on to the next session without taking any further action. 

  2. If the predicates are satisfi ed, the engine copies the event data into the session’s 
 context. Any actions defi ned for the event within the session are then fi red, followed by 
copying the event data to any synchronous targets. 

  3. Finally, the event data is buffered, if necessary, for any asynchronous targets used by 
the session. 

 Once each of these steps has been performed for each session, code execution resumes. 
It is important to stress that this all happens synchronously, while code execution blocks. 
Although each of these steps, and the entire system, has been designed for performance, 
users can still create problems by defi ning too many sessions, with too many actions or 
synchronous targets, for extremely active events such as those in the analytic channel. 
Care should be taken to avoid overusing the synchronous features, lest run-time blocking 
 becomes an issue. 

 At some point after being buffered—depending on the event latency and memory settings 
for the session(s)—the event data is passed once more, to any asynchronous targets. At this 
point, the event data is removed from the buffer to make room for new incoming data. 

 To help track down problems with targets taking too long to consume the data and 
 therefore causing waiting issues, the sys.dm_xe_session_targets DMV can be used. This DMV 
exposes one row per target defi ned by each active XE session, and includes a column called 
execution_duration_ms. This column indicates the amount of time that the target took to 
process the most recent event or buffer (depending on the target). If you see this number 
begin to climb, waiting issues are almost certainly occurring in SQL Server code paths.  

Extended Events DDL and Querying

 To complete the overview of XE, we will take a quick tour of the session creation DDL and see 
how all the objects apply to what you can control when creating actual sessions. We will also 
look at an example of how to query some of the data collected by an XE session. 

Creating an Event Session

 The primary DDL hook for XE is the CREATE EVENT SESSION statement. This statement 
 allows users to create sessions and map all the various XE objects. An ALTER EVENT SESSION 
 statement also exists, allowing a user to modify a session that has already been created. To 
modify an existing session, it must not be active. 

C02626249.indd   121 2/12/2009   10:14:20 AM



122 Microsoft SQL Server 2008 Internals

 The following T-SQL statement creates a session and shows how to confi gure all the XE 
 features and options we have reviewed in the chapter: 

CREATE EVENT SESSION [statement_completed]

ON SERVER

ADD EVENT 

    sqlserver.sp_statement_completed,

ADD EVENT

    sqlserver.sql_statement_completed

    (

        ACTION

        (

            sqlserver.sql_text

        )

        WHERE

        (

            sqlserver.session_id = 53

        )

    )    

ADD TARGET 

    package0.ring_buffer

    (

        SET 

            max_memory=4096

    )

WITH 

(

    MAX_MEMORY = 4096KB, 

    EVENT_RETENTION_MODE = ALLOW_SINGLE_EVENT_LOSS, 

    MAX_DISPATCH_LATENCY = 1 SECONDS, 

    MEMORY_PARTITION_MODE = NONE, 

    TRACK_CAUSALITY = OFF, 

    STARTUP_STATE = OFF

);

 The session is called statement_completed, and two events are bound: sp_statement_completed 
and sql_statement_completed, both exposed by the sqlserver package. The sp_statement_ 
completed event has no actions or predicates defi ned, so it publishes to the session’s target with 
its default set of attributes every time the event fi res instance-wide. The sql_statement_completed 
event, on the other hand, has a predicate confi gured (the WHERE option) so that it publishes 
only for session ID 53. Note that the predicate uses the equality operator (=) rather than calling 
the pred_compare function for comparing two integers. The standard comparison operators are 
all defi ned;  currently the only reason to call a function directly is for using the divides_by_uint64 
function, which  determines whether one integer exactly divides by another (useful when  working 
with the counter predicate source). Note also that the WHERE clause supports AND, OR, and 
 parentheses—you can create complex predicates that combine many different conditions 
if needed. 

 When the sql_statement_completed event fi res for session ID 53, the event session invokes the 
sql_text action. This action collects the text of the SQL statement that caused the event to fi re 
and adds it to the event’s data. After the event data has been collected, it is pushed to the 
ring_buffer target, which is confi gured to use a maximum of 4,096 KB of memory. 

C02626249.indd   122 2/12/2009   10:14:20 AM



 Chapter 2 Change Tracking, Tracing, and Extended Events 123

 We have also confi gured some session-level options. The session’s asynchronous buffers 
cannot consume more than 4,096 KB of memory, and should they fi ll up, we allow events to 
be dropped. That is probably not likely to happen, though, because we have confi gured the 
dispatcher to clear the buffers every second. Memory is not partitioned across CPUs—so we 
end up with three buffers—and we are not using causality tracking. Finally, after the session 
is created, it exists only as metadata; it does not start until we issue the following statement: 

ALTER EVENT SESSION [statement_completed]

ON SERVER

STATE=START;

Querying Event Data

 Once the session is started, the ring buffer target is updated with new events (assuming there 
are any) every second. Each of the in-memory targets—the ring buffer, bucketizers, and 
event count targets—exposes its data in XML format in the target_data column of the 
sys.dm_xe_session_targets DMV. Given the fact that the data is in XML format, many DBAs 
who have not yet delved into XQuery may want to try it; we highly recommend learning how 
to query the data, given the richness of the information that can be retrieved using XE.  

 Consuming the XML in a tabular format requires knowledge of which nodes are present. In the 
case of the ring buffer target, a root node called RingBufferTarget includes one event node for 
each event that fi res. The event node contains one data node for each attribute contained within 
the event data, and one “action” node for actions bound to the event. These data and action nodes 
contain three nodes each: one node called type, which indicates the data type; one called value, 
which includes the value in most cases; and one called text which is there for longer text values. 

 Explaining how to query every possible event and target is beyond the scope of this book, 
but a quick sample query based on the statement_completed session follows; you can use 
this query as a base from which to work up queries against other events and actions when 
 working with the ring buffer target: 

SELECT

    theNodes.event_data.value('(data/value)[1]', 'bigint') AS source_database_id,

    theNodes.event_data.value('(data/value)[2]', 'bigint') AS object_id,

    theNodes.event_data.value('(data/value)[3]', 'bigint') AS object_type,

    theNodes.event_data.value('(data/value)[4]', 'bigint') AS cpu,

    theNodes.event_data.value('(data/value)[5]', 'bigint') AS duration,

    theNodes.event_data.value('(data/value)[6]', 'bigint') AS reads,

    theNodes.event_data.value('(data/value)[7]', 'bigint') AS writes,

    theNodes.event_data.value('(action/value)[1]', 'nvarchar(max)') AS sql_text

FROM 

(

    SELECT

        CONVERT(XML, st.target_data) AS ring_buffer

    FROM sys.dm_xe_sessions s

    JOIN sys.dm_xe_session_targets st ON

        s.address = st.event_session_address

    WHERE

        s.name = 'statement_completed'

) AS theData

CROSS APPLY theData.ring_buffer.nodes('//RingBufferTarget/event') theNodes (event_data);

C02626249.indd   123 2/12/2009   10:14:20 AM



124 Microsoft SQL Server 2008 Internals

 This query converts the ring buffer data to an XML instance and then uses the nodes XML 
function to create one row per event node found. It then uses the ordinal positions of the 
various data elements within the event nodes to map the data to output columns. Of course, 
more advanced sessions require more advanced XQuery to determine the type of each event 
and do some case logic if the events involved in the session have different schemas—which, 
thankfully, the two in this example do not. Once you’ve gotten to this point, the data is 
just that—standard tabular data, which can be aggregated, joined, inserted into a table, or 
 whatever else you want to do with it. 

 You can also read from the asynchronous fi le target via T-SQL, using the sys.fn_xe_fi le_target_
read_fi le table-valued function. This function returns one row per event, but you still have to 
get comfortable with XML; the event’s data, exposed in a column called event_data, is in an 
XML format similar to data in the ring buffer target. Eventually we can expect a user interface 
to bear some of the XML burden for us, but just as with SQL Trace, even the most powerful 
user interfaces aren’t enough when complex analysis is required. Therefore, XML is here to 
stay for those DBAs who wish to be XE power users. 

Stopping and Removing the Event Session

 Once you have fi nished reading data from the event session, it can be stopped using the 
 following code: 

ALTER EVENT SESSION [statement_completed]

ON SERVER

STATE=STOP;

 Stopping the event session does not remove the metadata; to eliminate the session from the 
server completely, you must drop it using the following statement: 

ALTER EVENT SESSION [statement_completed]

ON SERVER;

Summary

 SQL Server has many eventing systems that range from the simple—like triggers and event 
notifi cations—to the intricate—like XE. Each of these systems is designed to help both  users 
and SQL Server itself work better by enabling arbitrary code execution or data collection 
when specifi c actions occur in the database engine. In this chapter, we explored the  various 
hidden and internal objects used by Change Tracking to help support synchronization 
 applications, the inner workings of the ubiquitous SQL Trace infrastructure, and the complex 
architecture of XE, the future of eventing within SQL Server. Events within SQL Server are 
extremely powerful, and we hope that this chapter has provided you with enough internal 
knowledge of these systems to understand how to better use the many eventing features 
in your day-to-day activities.  

C02626249.indd   124 2/12/2009   10:14:20 AM



  125

Chapter 3

Databases and Database Files
 Kalen Delaney 

 Simply put, a Microsoft SQL Server database is a collection of objects that hold and 
 manipulate data. A typical SQL Server instance has only a handful of databases, but it’s not 
unusual for a single instance to contain several dozen databases. The technical limit for one 
SQL Server  instance is 32,767 databases. But practically speaking, this limit would never 
be reached. 

 To elaborate a bit, you can think of a SQL Server database as having the following properties 
and features:  

■  It is a collection of many objects, such as tables, views, stored procedures, and 
 constraints. The technical limit is 231–1 (more than 2 billion) objects. The number of 
 objects typically ranges from hundreds to tens of thousands .

■  It is owned by a single SQL Server login account. 

■  It maintains its own set of user accounts, roles, schemas, and security. 

■  It has its own set of system tables to hold the database catalog. 

■  It is the primary unit of recovery and maintains logical consistency among objects 
 within it. (For example, primary and foreign key relationships always refer to other 
tables within the same database, not in other databases.) 

■  It has its own transaction log and manages its own transactions.  

■  It can span multiple disk drives and operating system fi les. 

■  It can range in size from 2 MB to a technical limit of 524,272 terabytes. 

■  It can grow and shrink, either automatically or manually. 

■  It can have objects joined in queries with objects from other databases in the same 
SQL Server instance or on linked servers. 

■  It can have specifi c properties enabled or disabled. (For example, you can set a 
 database to be read-only or to be a source of published data in replication.) 

 And here is what a SQL Server database is not: 

■  It is not synonymous with an entire SQL Server instance. 

■  It is not a single SQL Server table. 

■  It is not a specifi c operating system fi le. 

C03626249.indd   125 2/16/2009   4:27:32 PM



126 Microsoft SQL Server 2008 Internals

 Although a database isn’t the same thing as an operating system fi le, it always exists in two 
or more such fi les. These fi les are known as SQL Server database fi les and are specifi ed either 
at the time the database is created, using the CREATE DATABASE command, or afterward, 
 using the ALTER DATABASE command. 

System Databases

 A new SQL Server 2008 installation always includes four databases: master, model, tempdb, 
and msdb. It also contains a fi fth, “hidden” database that you never see using any of the 
 normal SQL commands that list all your databases. This database is referred to as the 
 resource database, but its actual name is mssqlsystemresource.  

master

 The master database is composed of system tables that keep track of the server installation 
as a whole and all other databases that are subsequently created. Although every database 
has a set of system catalogs that maintain information about objects that the database 
 contains, the master database has system catalogs that keep information about disk space, 
fi le allocations and usage, system-wide confi guration settings, endpoints, login accounts, 
databases on the current instance, and the existence of other servers running SQL Server 
(for distributed operations).  

 The master database is critical to your system, so always keep a current backup copy of it. 
Operations such as creating another database, changing confi guration values, and modifying 
login accounts all make modifi cations to master, so you should always back up master after 
performing such actions.  

model

 The model database is simply a template database. Every time you create a new database, 
SQL Server makes a copy of model to form the basis of the new database. If you’d like every 
new database to start out with certain objects or permissions, you can put them in model, 
and all new databases inherit them. You can also change most properties of the model 
 database by using the ALTER DATABASE command, and those property values then are used 
by any new database you create.  

tempdb

 The tempdb database is used as a workspace. It is unique among SQL Server databases  because 
it’s re-created—not recovered—every time SQL Server is restarted. It’s used for  temporary  tables 
explicitly created by users, for worktables that hold intermediate results created  internally by 
SQL Server during query processing and sorting, for maintaining row versions used in  snapshot 

C03626249.indd   126 2/16/2009   4:27:32 PM



 Chapter 3 Databases and Database Files 127

 isolation and certain other operations, and for materializing static cursors and the keys of 
 keyset cursors. Because the tempdb database is re-created, any  objects or permissions that you 
 create in the database are lost the next time you start your SQL Server instance. An  alternative 
is to create the object in the model database, from which tempdb is copied. (Keep in mind that 
any objects that you create in the model database also are added to any new  databases you 
 create subsequently. If you want objects to exist only in tempdb, you can create a startup stored 
 procedure that creates the objects every time your SQL Server instance starts.) 

 The tempdb database sizing and confi guration is critical for optimal functioning and 
 performance of SQL Server, so I’ll discuss tempdb in more detail in its own section later in 
this chapter.  

The Resource Database

 As mentioned, the mssqlsystemresource database is a hidden database and is usually 
 referred to as the resource database. Executable system objects, such as system stored 
 procedures and functions, are stored here. Microsoft created this database to allow very fast 
and safe  upgrades. If no one can get to this database, no one can change it, and you can 
 upgrade to a new service pack that introduces new system objects by simply replacing the 
resource  database with a new one. Keep in mind that you can’t see this database using any of 
the  normal means for viewing databases, such as selecting from sys.databases or executing 
sp_helpdb. It also won’t show up in the system databases tree in the Object Explorer pane of 
SQL Server Management Studio, and it does not appear in the drop-down list of databases 
accessible from your query windows. However, this database still needs disk space.  

 You can see the fi les in your default binn directory by using Microsoft Windows Explorer. 
My data directory is at C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\
MSSQL\Binn; I can see a fi le called mssqlsystemresource.mdf, which is 60.2 MB in size, and 
mssqlsystemresource.ldf, which is 0.5 MB. The created and modifi ed date for both of these fi les 
is the date that the code for the current build was frozen. It should be the same date that you 
see when you run SELECT @@version. For SQL Server 2008, the RTM build, this is 10.0.1600.22. 

 If you have a burning need to “see” the contents of mssqlsystemresource, a couple of 
 methods are available. The easiest, if you just want to see what’s there, is to stop SQL Server, 
make copies of the two fi les for the resource database, restart SQL Server, and then  attach 
the copied fi les to create a database with a new name. You can do this by using Object 
Explorer in Management Studio or by using the CREATE DATABASE FOR ATTACH syntax to 
create a clone database, as shown here: 

CREATE DATABASE resource_COPY  

ON (NAME = data, FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\binn

        \mssqlsystemresource_COPY.mdf'), 

   (NAME = log, FILENAME = 

    'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\binn\mssqlsystemresource_COPY.ldf') 

    FOR ATTACH;

C03626249.indd   127 2/16/2009   4:27:32 PM



128 Microsoft SQL Server 2008 Internals

 SQL Server treats this new resource_COPY database like any other user database, and it 
does not treat the objects in it as special in any way. If you want to change anything in the 
resource database, such as the text of a supplied system stored procedure, changing it in 
 resource_COPY obviously does not affect anything else on your instance. However, if you 
start your SQL Server instance in single-user mode, you can make a single  connection to 
your SQL Server, and that connection can use the mssqlsystemresource database. Starting an 
 instance in  single-user mode is not the same thing as setting a database to single-user mode. 
For  details on how to start SQL Server in single-user mode, see the SQL Server Books Online 
entry for the sqlservr.exe application. In Chapter 6, “Indexes: Internals and Management,” 
when I discuss database  objects, I’ll  discuss some of the objects in the resource database.  

msdb

 The msdb database is used by the SQL Server Agent service and other companion services, 
which perform scheduled activities such as backups and replication tasks, and the Service 
Broker, which provides queuing and reliable messaging for SQL Server. In addition to  backups, 
objects in msdb support jobs, alerts, log shipping, policies, database mail, and recovery of 
damaged pages. When you are not actively performing these activities on this database, 
you can generally ignore msdb. (But you might take a peek at the backup history and other 
information kept there.) All the information in msdb is accessible from Object Explorer in 
Management Studio, so you usually don’t need to access the tables in this database directly. 
You can think of the msdb tables as another form of system table: Just as you can never  directly 
modify system tables, you shouldn’t directly add data to or delete data from tables in msdb 
unless you really know what you’re doing or are instructed to do so by a SQL Server technical 
support engineer. Prior to SQL Server 2005, it was actually possible to drop the msdb database; 
your SQL Server instance was still usable, but you couldn’t maintain any backup history, and 
you weren’t able to defi ne tasks, alerts, or jobs or set up replication. There is an undocumented 
tracefl ag that allows you to drop the msdb database, but because the default msdb database is 
so small, I recommend leaving it alone even if you think you might never need it.  

Sample Databases

 Prior to SQL Server 2005, the installation program automatically installed sample  databases 
so you would have some actual data for exploring SQL Server functionality. As part of 
Microsoft’s efforts to tighten security, SQL Server 2008 does not automatically install any 
sample databases. However, several sample databases are widely available.  

AdventureWorks

 AdventureWorks actually comprises a family of sample databases that was created by the 
Microsoft User Education group as an example of what a “real” database might look like. The 
family includes: AdventureWorks2008, AdventureWorksDW2008, and AdventureWorksLT2008, 

C03626249.indd   128 2/16/2009   4:27:32 PM



 Chapter 3 Databases and Database Files 129

as well as their counterparts created for SQL Server 2005: AdventureWorks, AdventureWorksDW, 
and AdventureWorksLT. You can download these databases from the Microsoft codeplex 
site at http://www.codeplex.com/SqlServerSamples. The database was designed to showcase 
SQL Server features,  including the organization of objects into different schemas. These 
 databases are based on data needed by the fi ctitious Adventure Works Cycles company. 
The AdventureWorks and AdventureWorks2008 databases are designed to support OLTP 
 applications and AdventureWorksDW and AdventureWorksDW2008 are designed to support the 
business  intelligence features of SQL Server and are based on a completely different  database 
 architecture. Both designs are highly normalized. Although  normalized data and many  separate 
schemas might map closely to a real production database’s design, they can make it quite 
 diffi cult to write and test simple queries and to learn basic SQL.  

 Database design is not a major focus of this book, so most of my examples use simple tables that 
I create; if more than a few rows of data are needed, I’ll sometimes copy data from one or more 
AdventureWorks2008 tables into tables of my own. It’s a good idea to become  familiar with the 
design of the AdventureWorks family of databases because many of the examples in SQL Server 
Books Online and in white papers published on the Microsoft Web site (http://www.microsoft.com/
sqlserver/2008/en/us/white-papers.aspx) use data from these databases.  

 Note that it is also possible to install an AdventureWorksLT2008 (or AdventureWorksLT) 
 database, which is a highly  simplifi ed and somewhat denormalized version of the 
AdventureWorks OLTP database and focuses on a simple sales scenario with a single schema. 

pubs

 The pubs database is a sample database that was used extensively in earlier versions of SQL 
Server. Many older publications with SQL Server examples assume that you have this database 
because it was installed automatically on versions of SQL Server prior to SQL Server 2005. You can 
download a script for building this database from Microsoft’s Web site, and I have also included 
the script with this book’s companion content at http://www.SQLServerInternals.com/companion. 

 The pubs database is admittedly simple, but that’s a feature, not a drawback. It provides good 
 examples without a lot of peripheral issues to obscure the central points. You shouldn’t worry 
about making modifi cations in the pubs database as you experiment with SQL Server  features. 
You can rebuild the pubs database from scratch by running the supplied script. In a query 
 window, open the fi le named Instpubs.sql and execute it. Make sure there are no  current 
 connections to pubs because the current pubs database is dropped before the new one is created. 

Northwind

 The Northwind database is a sample database that was originally developed for use with 
Microsoft Offi ce Access. Much of the pre–SQL Server 2005 documentation dealing with 
 application programming uses Northwind. Northwind is a bit more  complex than pubs, 
and, at almost 4 MB, it is slightly larger. As with pubs, you can download a script from the 

C03626249.indd   129 2/16/2009   4:27:33 PM



130 Microsoft SQL Server 2008 Internals

Microsoft Web site to build it, or you can use the script provided with the  companion 
 content. The fi le is called Instnwnd.sql. In addition, some of the sample scripts for this book 
use a modifi ed copy of Northwind called Northwind2. 

Database Files

A database fi le is nothing more than an operating system fi le. (In addition to database fi les, 
SQL Server also has backup devices, which are logical devices that map to operating system 
fi les or to physical devices such as tape drives. In this chapter, I won’t be discussing fi les that 
are used to store backups.) A database spans at least two, and possibly several, database fi les, 
and these fi les are specifi ed when a database is created or altered. Every database must span 
at least two fi les, one for the data (as well as indexes and allocation pages) and one for the 
transaction log.  

 SQL Server 2008 allows the following three types of database fi les: 

■ Primary data fi les Every database has one primary data fi le that keeps track of all the 
rest of the fi les in the database, in addition to storing data. By convention, a primary 
data fi le has the extension .mdf. 

■ Secondary data fi les A database can have zero or more secondary data fi les. By 
 convention, a secondary data fi le has the extension .ndf. 

■ Log fi les Every database has at least one log fi le that contains the information necessary 
to recover all transactions in a database. By convention, a log fi le has the extension .ldf. 

In addition, SQL Server 2008 databases can have fi lestream data fi les and full-text data fi les. 
Filestream data fi les will be discussed in the section “Filestream Filegroups,” later in this 
 chapter, and in Chapter 7, “Special Storage.” Full-text data fi les are created and managed 
completely, separately from your other database fi les and are beyond the scope of this book. 

Each database fi le has fi ve properties that can be specifi ed when you create the fi le: a  logical 
fi lename, a physical fi lename, an initial size, a maximum size, and a growth increment. 
(Filestream data fi les have only the logical and physical name properties.) The value of these 
properties, along with other information about each fi le, can be seen through the metadata 
view sys.database_fi les, which contains one row for each fi le used by a database. Most of the 
columns shown in sys.database_fi les are listed in Table 3-1. The columns not mentioned here 
contain information dealing with transaction log backups relevant to the particular fi le, and 
I’ll discuss the transaction log in Chapter 4, “Logging and Recovery.”  

 TABLE 3-1 The sys.database_fi les Catalog View

  Column Description

  fi leid The fi le identifi cation number (unique for each database).

  fi le_guid GUID for the fi le.

NULL = Database was upgraded from an earlier version of SQL Server.

 Column Description

C03626249.indd   130 2/16/2009   4:27:33 PM



 Chapter 3 Databases and Database Files 131

 TABLE 3-1 The sys.database_fi les Catalog View

 Column Description

  type File type:

0 = Rows (includes full-text catalogs upgraded to or created in 
SQL Server 2008)

1 = Log

2 = FILESTREAM

3 = Reserved for future use

4 = Full-text (includes full-text catalogs from versions earlier than 
SQL Server 2008)

  type_desc Description of the fi le type:

ROWS

LOG

FILESTREAM

FULLTEXT

  data_space_id ID of the data space to which this fi le belongs. Data space is a 
fi legroup.

0 = Log fi le.

  name The logical name of the fi le.

  physical_name Operating-system fi le name.

  state File state:

0 = ONLINE 

1 = RESTORING

2 = RECOVERING

3 = RECOVERY_PENDING

4 = SUSPECT

5 = Reserved for future use

6 = OFFLINE

7 = DEFUNCT

  state_desc Description of the fi le state:

ONLINE 

RESTORING

RECOVERING

RECOVERY_PENDING

SUSPECT

OFFLINE

DEFUNCT

  size Current size of the fi le, in 8-KB pages.

0 = Not applicable

For a database snapshot, size refl ects the maximum space that the snapshot 
can ever use for the fi le.

 Column Description

C03626249.indd   131 2/16/2009   4:27:33 PM



132 Microsoft SQL Server 2008 Internals

 TABLE 3-1 The sys.database_fi les Catalog View

  Column Description

  max_size Maximum fi le size, in 8-KB pages: 

0 = No growth is allowed.

–1 = File will grow until the disk is full.

268435456 = Log fi le will grow to a maximum size of 2 terabytes.

  growth 0 = File is a fi xed size and will not grow.

>0 = File will grow automatically.

If is_percent_growth = 0, growth increment is in units of 8-KB pages, 
rounded to the nearest 64 KB.

If is_percent_growth = 1, growth increment is expressed as a whole number 
percentage.

  is_media_read_only 1 = File is on read-only media.

0 = File is on read/write media.

  is_read_only 1 = File is marked read-only.

0 = File is marked read/write.

  is_sparse 1 = File is a sparse fi le.

0 = File is not a sparse fi le.

(Sparse fi les are used with database snapshots, discussed later in this 
chapter.)

  is_percent_growth See description for growth column, above.

  is_name_reserved 1 = Dropped fi le name (name or physical_name) is reusable only after the 
next log backup. When fi les are dropped from a database, the logical names 
stay in a reserved state until the next log backup. This column is relevant 
only under the full recovery model and the bulk-logged recovery model.

Creating a Database

 The easiest way to create a database is to use Object Explorer in Management Studio, which 
provides a graphical front end to the T-SQL commands that actually create the database 
and set its properties. Figure 3-1 shows the New Database dialog box, which  represents 
the T-SQL CREATE DATABASE command for creating a new user database. Only someone 
with the  appropriate permissions can create a database, either through Object Explorer 
or by  using the CREATE DATABASE command. This includes anyone in the sysadmin role, 
anyone who has been granted CONTROL or ALTER permission on the server, and any user 
who has been granted CREATE DATABASE permission by someone with the sysadmin or 
 dbcreator role. 

When you create a new database, SQL Server copies the model database. If you have an  object 
that you want created in every subsequent user database, you should create that  object in 
model fi rst. You can also use model to set default database options in all  subsequently  created 

 Column Description

C03626249.indd   132 2/16/2009   4:27:33 PM



 Chapter 3 Databases and Database Files 133

databases. The model database includes 53 objects—45 system tables, 6 objects used for SQL 
Server Query Notifi cations and Service Broker, 1 table used for helping to manage fi lestream 
data, and 1 table for helping to manage change tracking. You can see these objects by 
 selecting from the system table called sys.objects. However, if you run the procedure sp_help 
in the model database, it will list 1,978 objects. It turns out that most of these objects are not 
really stored in the model database but are accessible through it. In Chapter 5, “Tables,” I’ll 
tell you what the other kinds of objects are and how you can tell whether an object is really 
stored in a particular database. Most of the objects you see in model will show up when you 
run sp_help in any database, but your user databases will probably have more objects added 
to this list. The contents of model are just the starting point.  

  

FIGURE 3-1 The New Database dialog box, where you can create a new database 

 A new user database must be 3 MB or larger (including the transaction log), and the  primary 
data fi le size must be at least as large as the primary data fi le of the model database. 
(The model database only has one fi le and cannot be altered to add more. So the size of 
the  primary data fi le and the size of the database are basically the same for model.) Almost 
all the possible arguments to the CREATE DATABASE command have default values, so it’s 
 possible to create a database using a simple form of CREATE DATABASE, such as this: 

CREATE DATABASE newdb;

C03626249.indd   133 2/16/2009   4:27:33 PM



134 Microsoft SQL Server 2008 Internals

 This command creates the newdb database, with a default size, on two fi les whose 
 logical names—newdb and newdb_log—are derived from the name of the database. 
The  corresponding physical fi les, newdb.mdf and newdb_log.ldf, are created in the default 
data directory, which is usually determined at the time SQL Server is installed.  

 The SQL Server login account that created the database is known as the database owner, and 
that information is stored with the information about the database properties in the master 
database. A database can have only one actual owner, who always corresponds to a login 
name. Any login that uses any database has a user name in that database, which might be 
the same name as the login name but doesn’t have to be. The login that is the owner of a 
database always has the special user name dbo when using the database it owns. I’ll discuss 
database users later in this chapter when I tell you about the basics of database security. The 
default size of the data fi le is the size of the primary data fi le of the model database (which 
is 2 MB by default), and the default size of the log fi le is 0.5 MB. Whether the database 
name, newdb, is case-sensitive depends on the sort order that you chose during setup. If you 
 accepted the default, the name is case-insensitive. (Note that the actual command CREATE 
DATABASE is case-insensitive, regardless of the case sensitivity chosen for data.) 

 Other default property values apply to the new database and its fi les. For example, if the LOG 
ON clause is not specifi ed but data fi les are specifi ed, SQL Server creates a log fi le with a size 
that is 25 percent of the sum of the sizes of all data fi les. 

 If the MAXSIZE clause isn’t specifi ed for the fi les, the fi le grows until the disk is full. (In other 
words, the fi le size is considered unlimited.) You can specify the values for SIZE, MAXSIZE, and 
FILEGROWTH in units of terabytes, GB, and MB (the default), or KB. You can also specify the 
FILEGROWTH property as a percentage. A value of 0 for FILEGROWTH indicates no growth. If 
no FILEGROWTH value is specifi ed, the default growth  increment for data fi les is 1 MB. The log 
fi le FILEGROWTH default is specifi ed as 10 percent.  

A CREATE DATABASE Example

 The following is a complete example of the CREATE DATABASE command, specifying three 
fi les and all the properties of each fi le: 

CREATE DATABASE Archive 

ON 

PRIMARY  

( NAME = Arch1, 

FILENAME =  

    'c:\program files\microsoft sql server\mssql.1\mssql\data\archdat1.mdf', 

SIZE = 100MB, 

MAXSIZE = 200MB, 

FILEGROWTH = 20MB), 

( NAME = Arch2, 

FILENAME =  

    'c:\program files\microsoft sql server\mssql.1\mssql\data\archdat2.ndf', 

C03626249.indd   134 2/16/2009   4:27:33 PM



 Chapter 3 Databases and Database Files 135

SIZE = 10GB, 

MAXSIZE = 50GB, 

FILEGROWTH = 250MB) 

LOG ON  

( NAME = Archlog1, 

FILENAME =  

    'c:\program files\microsoft sql server\mssql.1\mssql\data\archlog1.ldf', 

SIZE = 2GB, 

MAXSIZE = 10GB, 

FILEGROWTH = 100MB);

Expanding or Shrinking a Database

 Databases can be expanded and shrunk automatically or manually. The mechanism for 
 automatic expansion is completely different from the mechanism for automatic shrinkage. 
Manual expansion is also handled differently from manual shrinkage. Log fi les have their own 
rules for growing and shrinking; I’ll discuss changes in log fi le size in Chapter 4. 

 Warning Shrinking a database or any data fi le is an extremely resource-intensive operation, 
and the only reason to do it is if you absolutely must reclaim disk space. Shrinking a data fi le can 
also lead to excessive logical fragmentation within your database. We’ll discuss fragmentation in 
Chapter 6 and shrinking in Chapter 11, “DBCC Internals.”  

Automatic File Expansion

 Expansion can happen automatically to any one of the database’s fi les when that particular fi le 
becomes full. The fi le property FILEGROWTH determines how that automatic expansion  happens. 
The FILEGROWTH property that is specifi ed when the fi le is fi rst defi ned can be  qualifi ed using 
the suffi x TB, GB, MB, KB, or %, and it is always rounded up to the nearest 64 KB. If the value is 
specifi ed as a percentage, the growth increment is the specifi ed  percentage of the size of the fi le 
when the expansion occurs. The fi le property MAXSIZE sets an upper limit on the size. 

 Allowing SQL Server to grow your data fi les automatically is no substitute for good capacity 
planning before you build or populate any tables. Enabling autogrow might prevent some 
failures due to unexpected increases in data volume, but it can also cause problems. If a 
data fi le is full and your autogrow percentage is set to grow by 10 percent, if an application 
 attempts to insert a single row and there is no space, the database might start to grow by a 
large amount (10 percent of 10,000 MB is 1,000 MB). This in itself can take a lot of time if fast 
fi le initialization (discussed in the next section) is not being used. The growth might take so 
long that the client application’s timeout value is exceeded, which means the insert query fails. 
The query would have failed anyway if autogrow weren’t set, but with autogrow enabled, SQL 
Server spends a lot of time trying to grow the fi le, and you won’t be informed of the problem 
immediately. In addition, fi le growth can result in physical fragmentation on the disk. 

C03626249.indd   135 2/16/2009   4:27:33 PM



136 Microsoft SQL Server 2008 Internals

 With autogrow enabled, your database fi les still cannot grow the database size beyond the 
 limits of the available disk space on the drives on which fi les are defi ned, or beyond the size 
 specifi ed in the MAXSIZE fi le property. So if you rely on the autogrow functionality to size your 
 databases, you must still independently check your available hard disk space or the total fi le 
size. (The  undocumented extended procedure xp_fi xeddrives returns a list of the amount of free 
disk space on each of your local volumes.) To reduce the  possibility of  running out of space, you 
can watch the Performance Monitor counter SQL Server: Databases Object: Data File Size and 
set up a performance alert to fi re when the database fi le reaches a certain size. 

Manual File Expansion

 You can expand a database fi le manually by using the ALTER DATABASE command with the 
MODIFY FILE option to change the SIZE property of one or more of the fi les. When you alter 
a database, the new size of a fi le must be larger than the current size. To decrease the size of 
a fi le, you use the DBCC SHRINKFILE command, which I’ll tell you about shortly. 

Fast File Initialization

 SQL Server 2008 data fi les (but not log fi les) can be initialized instantaneously. This allows 
for fast execution of the fi le creation and growth. Instant fi le initialization adds space to the 
data fi le without fi lling the newly added space with zeros. Instead, the actual disk content 
is  overwritten only as new data is written to the fi les. Until the data is overwritten, there is 
always the chance that a hacker using an external fi le reader tool can see the data that was 
previously on the disk. Although the SQL Server 2008 documentation describes the  instant 
fi le initialization feature as an “option,” it is not really an option within SQL Server. It is 
 actually controlled through a Windows security setting called SE_MANAGE_VOLUME_NAME, 
which is granted to Windows administrators by default. (This right can be granted to other 
Windows users by adding them to the Perform Volume Maintenance Tasks security policy.) If 
your SQL Server service account is in the Windows Administrator role and your SQL Server is 
running on a Windows XP, Windows Server 2003, or Windows Server 2008 fi lesystem, instant 
fi le initialization is used. If you want to make sure your database fi les are zeroed out as they 
are created and expanded, you can use tracefl ag 1806 or deny SE_MANAGE_VOLUME_NAME 
rights to the account under which your SQL Server service is running. 

Automatic Shrinkage

 The database property autoshrink allows a database to shrink automatically. The effect is the 
same as doing a DBCC SHRINKDATABASE (dbname, 25). This option leaves 25 percent free space 
in a database after the shrink, and any free space beyond that is returned to the  operating 
 system. The thread that performs autoshrink shrinks databases at very frequent  intervals, in 
some cases as often as every 30 minutes. Shrinking data fi les is so resource- intensive that it 
should be done only when there is no other way to reclaim needed disk space.  

C03626249.indd   136 2/16/2009   4:27:33 PM



 Chapter 3 Databases and Database Files 137

 Important Automatic shrinking is never recommended. In fact, Microsoft has announced that 
the autoshrink option will be removed in a future version of SQL Server and you should avoid 
using it.  

Manual Shrinkage

 You can shrink a database manually using one of the following DBCC commands: 

DBCC SHRINKFILE ( {file_name | file_id } 

[, target_size][, {EMPTYFILE | NOTRUNCATE | TRUNCATEONLY} ]  ) 

 

DBCC SHRINKDATABASE (database_name [, target_percent] 

[, {NOTRUNCATE | TRUNCATEONLY} ]  )

DBCC SHRINKFILE

 DBCC SHRINKFILE allows you to shrink fi les in the current database. When you specify  target_size, 
DBCC SHRINKFILE attempts to shrink the specifi ed fi le to the specifi ed size in megabytes. Used 
pages in the part of the fi le to be freed are relocated to available free space in the part of the 
fi le that is retained. For example, for a 15-MB data fi le, a DBCC SHRINKFILE with a  target_size of 
12 causes all used pages in the last 3 MB of the fi le to be reallocated into any free slots in the 
fi rst 12 MB of the fi le. DBCC SHRINKFILE doesn’t shrink a fi le past the size needed to store the 
data. For example, if 70 percent of the pages in a 10-MB data fi le are used, a DBCC SHRINKFILE 
 command with a target_size of 5 shrinks the fi le to only 7 MB, not 5 MB. 

DBCC SHRINKDATABASE

 DBCC SHRINKDATABASE shrinks all fi les in a database but does not allow any fi le to be 
shrunk smaller than its minimum size. The minimum size of a database fi le is the initial size 
of the fi le (specifi ed when the database was created) or the size to which the fi le has been 
explicitly extended or reduced, using either the ALTER DATABASE or DBCC SHRINKFILE 
 command. If you need to shrink a database smaller than its minimum size, you should use 
the DBCC SHRINKFILE command to shrink individual database fi les to a specifi c size. The size 
to which a fi le is shrunk becomes the new minimum size. 

 The numeric target_percent argument passed to the DBCC SHRINKDATABASE command is 
a percentage of free space to leave in each fi le of the database. For example, if you’ve used 
60 MB of a 100-MB database fi le, you can specify a shrink percentage of 25 percent. SQL 
Server then shrinks the fi le to a size of 80 MB, and you have 20 MB of free space in addition 
to the original 60 MB of data. In other words, the 80-MB fi le has 25 percent of its space free. 
If, on the other hand, you’ve used 80 MB or more of a 100-MB database fi le, there is no way 
that SQL Server can shrink this fi le to leave 25 percent free space. In that case, the fi le size 
remains unchanged. 

C03626249.indd   137 2/16/2009   4:27:33 PM



138 Microsoft SQL Server 2008 Internals

 Because DBCC SHRINKDATABASE shrinks the database on a fi le-by-fi le basis, the  mechanism 
used to perform the actual shrinking of data fi les is the same as that used with DBCC 
SHRINKFILE (when a data fi le is specifi ed). SQL Server fi rst moves pages to the front of fi les to 
free up space at the end, and then it releases the appropriate number of freed pages to the 
operating system. The actual internal details of how data fi les are shrunk will be discussed in 
Chapter 11.  

 Note Shrinking a log fi le is very different from shrinking a data fi le, and understanding 
how much you can shrink a log fi le and what exactly happens when you shrink it requires an 
 understanding of how the log is used. For this reason, I will postpone the discussion of shrinking 
log fi les until Chapter 4. 

 As the warning at the beginning of this section indicated, shrinking a database or any data 
fi les is a resource-intensive operation. If you absolutely need to recover disk space from the 
database, you should plan the shrink operation carefully and perform it when it has the least 
impact on the rest of the system. You should never enable the AUTOSHRINK  option, which will 
shrink all the data fi les at regular intervals and wreak havoc with  system  performance. Because 
shrinking data fi les can move data all around a fi le, it can also  introduce  fragmentation, which 
you then might want to remove. Defragmenting your data fi les can then have its own  impact 
on productivity because it uses system resources. Fragmentation and  defragmentation will be 
discussed in Chapter 6. 

 It is possible for shrink operations to be blocked by a transaction that has been enabled for 
either of the snapshot-based isolation levels. When this happens, DBCC SHRINKFILE and 
DBCC SHRINKDATABASE print out an informational message to the error log every fi ve 
minutes in the fi rst hour and then every hour after that. SQL Server also provides progress 
reporting for the SHRINK  commands, available through the sys.dm_exec_requests view. 
Progress reporting will be discussed in Chapter 11. 

Using Database Filegroups

 You can group data fi les for a database into fi legroups for allocation and administration 
 purposes. In some cases, you can improve performance by controlling the placement of data 
and indexes into specifi c fi legroups on specifi c drives or volumes. The fi legroup containing 
the primary data fi le is called the primary fi legroup. There is only one primary fi legroup, and 
if you don’t ask specifi cally to place fi les in other fi legroups when you create your database, 
all of your data fi les are in the primary fi legroup. 

 In addition to the primary fi legroup, a database can have one or more user-defi ned 
 fi legroups. You can create user-defi ned fi legroups by using the FILEGROUP keyword in the 
CREATE DATABASE or ALTER DATABASE command. 

C03626249.indd   138 2/16/2009   4:27:33 PM



 Chapter 3 Databases and Database Files 139

 Don’t confuse the primary fi legroup and the primary fi le. Here are the differences: 

■  The primary fi le is always the fi rst fi le listed when you create a database, and it  typically 
has the fi le extension .mdf. The one special feature of the primary fi le is that it has pointers 
into a table in the master database (which you can access through the catalog view 
sys.database_fi les) that contains information about all the fi les belonging to the database.  

■  The primary fi legroup is always the fi legroup that contains the primary fi le. This  fi legroup 
contains the primary data fi le and any fi les not put into another specifi c  fi legroup. All 
pages from system tables are always allocated from fi les in the primary fi legroup. 

The Default Filegroup

 One fi legroup always has the property of DEFAULT. Note that DEFAULT is a property of 
a  fi legroup, not a name. Only one fi legroup in each database can be the default fi legroup. 
By default, the primary fi legroup is also the default fi legroup. A database owner can change 
which fi legroup is the default by using the ALTER DATABASE command. When creating 
a  table or index, it is created in the default fi legroup if no specifi c fi legroup is specifi ed.  

 Most SQL Server databases have a single data fi le in one (default) fi legroup. In fact, most 
 users probably never know enough about how SQL Server works to know what a  fi legroup 
is. As a user acquires greater database sophistication, she might decide to use multiple 
 devices to spread out the I/O for a database. The easiest way to do this is to create a 
 database fi le on a RAID device. Still, there would be no need to use fi legroups. At the next 
level of  sophistication and complexity, the user might decide that she really wants multiple 
fi les—perhaps to create a database that uses more space than is available on a single drive. 
In this case, she still doesn’t need fi legroups—she can accomplish her goals using CREATE 
DATABASE with a list of fi les on separate drives. 

 More sophisticated database administrators might decide to have different tables assigned 
to different drives or to use the table and index partitioning feature in SQL Server 2008. Only 
then will they need to use fi legroups. They can then use Object Explorer in Management 
Studio to create the database on multiple fi legroups. Then they can right-click the database 
name in Object Explorer and create a script of the CREATE DATABASE command that includes 
all the fi les in their appropriate fi legroups. They can save and reuse this script when they 
need to re-create the database or build a similar database.  

Why Use Multiple Files?

 You might wonder why you would want to create a database on multiple fi les located 
on one physical drive. There’s usually no performance benefi t in doing so, but it gives 
you added fl exibility in two important ways. 

 First, if you need to restore a database from a backup because of a disk crash, the new 
 database must contain the same number of fi les as the original. For example, if your 
 original database consisted of one large 120-GB fi le, you would need to restore it to 

C03626249.indd   139 2/16/2009   4:27:33 PM



140 Microsoft SQL Server 2008 Internals

a database with one fi le of that size. If you don’t have another 120-GB drive immediately 
available, you cannot restore the database. If, however, you originally created the  database 
on several smaller fi les, you have added fl exibility during a restoration. You might be more 
likely to have several 40-GB drives available than one large 120-GB drive. 

 Second, spreading the database onto multiple fi les, even on the same drive, gives you 
the fl exibility of easily moving the database onto separate drives if you modify your 
hardware confi guration in the future. (Please refer to the section “Moving or Copying a 
Database,” later in this chapter, for details.) 

 Objects that have space allocated to them, namely tables and indexes, are created on a 
 particular fi legroup. (They can also be created on a partition scheme, which is a collection 
of fi legroups. I’ll discuss partitioning and partition schemes in Chapter 7.) If the fi legroup 
(or partition scheme) is not specifi ed, objects are created on the default  fi legroup. When you 
add space to objects stored in a particular fi legroup, the data is stored in a proportional fi ll 
manner, which means that if you have one fi le in a fi legroup with twice as much free space 
as another, the fi rst fi le has two extents (or units of space) allocated from it for each  extent 
 allocated from the second fi le. (I’ll discuss extents in more detail in the  section entitled 
“Space Allocation,” later in this chapter.) It’s recommended that you create all of your fi les to 
be the same size to avoid the issues of proportional fi ll.  

 You can also use fi legroups to allow backups of parts of the database. Because a table is  created 
on a single fi legroup, you can choose to back up just a certain set of critical tables by  backing 
up the fi legroups in which you placed those tables. You can also restore individual fi les or 
 fi legroups in two ways. First, you can do a partial restore of a database and restore only a  subset 
of  fi legroups, which must always include the primary fi legroup. The database will be online 
as soon as the primary fi legroup has been restored, but only objects created on the restored 
 fi legroups will be available. Partial restore of just a subset of fi legroups can be a solution to allow 
very large databases to be available within a mandated time window. Alternatively, if you have 
a failure of a subset of the disks on which you created your database, you can restore backups 
of the fi legroups on those disks on top of the existing database. This method of  restoring also 
 requires that you have log backups, so I’ll discuss this topic in more detail in Chapter 4.  

A FILEGROUP CREATION Example

 This example creates a database named sales with three fi legroups: 

■  The primary fi legroup, with the fi les salesPrimary1 and salesPrimary2. The FILEGROWTH 
increment for both of these fi les is specifi ed as 100 MB. 

■  A fi legroup named SalesGroup1, with the fi les salesGrp1File1 and salesGrp1Fi1e2. 

■  A fi legroup named SalesGroup2, with the fi les salesGrp2File1 and salesGrp2Fi1e2. 

C03626249.indd   140 2/16/2009   4:27:33 PM



 Chapter 3 Databases and Database Files 141

CREATE DATABASE Sales 

ON PRIMARY 

( NAME = salesPrimary1, 

FILENAME =  

    'c:\program files\microsoft sql server\mssql.1\mssql\data\salesPrimary1.mdf', 

SIZE = 100, 

MAXSIZE = 500, 

FILEGROWTH = 100 ), 

( NAME = salesPrimary2, 

FILENAME =  

    'c:\program files\microsoft sql server\mssql.1\mssql\data\salesPrimary2.ndf', 

SIZE = 100, 

MAXSIZE = 500, 

FILEGROWTH = 100 ), 

FILEGROUP SalesGroup1 

( NAME = salesGrp1Fi1e1, 

FILENAME =  

    'c:\program files\microsoft sql server\mssql.1\mssql\data\salesGrp1Fi1e1.ndf', 

SIZE = 500, 

MAXSIZE = 3000, 

FILEGROWTH = 500 ), 

( NAME = salesGrp1Fi1e2, 

FILENAME =  

    'c:\program files\microsoft sql server\mssql.1\mssql\data\salesGrp1Fi1e2.ndf', 

SIZE = 500, 

MAXSIZE = 3000, 

FILEGROWTH = 500 ), 

FILEGROUP SalesGroup2 

( NAME = salesGrp2Fi1e1, 

FILENAME =  

    'c:\program files\microsoft sql server\mssql.1\mssql\data\salesGrp2Fi1e1.ndf', 

SIZE = 100, 

MAXSIZE = 5000, 

FILEGROWTH = 500 ), 

( NAME = salesGrp2Fi1e2, 

FILENAME =  

    'c:\program files\microsoft sql server\mssql.1\mssql\data\salesGrp2Fi1e2.ndf', 

SIZE = 100, 

MAXSIZE = 5000, 

FILEGROWTH = 500 ) 

LOG ON 

( NAME = 'Sales_log', 

FILENAME =  

    'c:\program files\microsoft sql server\mssql.1\mssql\data\saleslog.ldf', 

SIZE = 5MB, 

MAXSIZE = 25MB, 

FILEGROWTH = 5MB );

Filestream Filegroups 

 I briefl y mentioned fi lestream storage in Chapter 1, “SQL Server 2008 Architecture and 
Confi guration,” when I talked about confi guration options. Filestream fi legroups can be 
 created when you create a database, just like regular fi legroups can be, but you must  specify 

C03626249.indd   141 2/16/2009   4:27:33 PM



142 Microsoft SQL Server 2008 Internals

that the fi legroup is for fi lestream data by using the phrase CONTAINS FILESTREAM. Unlike 
regular fi legroups, each fi lestream fi legroup can contain only one fi le reference, and that fi le 
is specifi ed as an operating system folder, not a specifi c fi le. The path up to the last folder 
must exist, and the last folder must not exist. So in my  example, the path C:\Data must 
 exist, but the Reviews_FS subfolder cannot exist when you  execute the CREATE DATABASE 
 command. Also unlike regular fi legroups, there is no space  preallocated to the fi legroup and 
you do not specify size or growth information for the fi le within the fi legroup. The fi le and 
fi legroup will grow as data is added to tables that have been created with 
fi lestream columns: 

CREATE DATABASE MyMovieReviews 

ON

PRIMARY 

  ( NAME = Reviews_data,

    FILENAME = 'c:\data\Reviews_data.mdf'),

FILEGROUP MovieReviewsFSGroup1 CONTAINS FILESTREAM

  ( NAME = Reviews_FS,

    FILENAME = 'c:\data\Reviews_FS')

LOG ON  ( NAME = Reviews_log,

    FILENAME = 'c:\data\Reviews_log.ldf');

GO

 If you run the previous code, you should see a Filestream.hdr fi le and an $FSLOG folder in 
the C:\Data\Reviews_FS folder. The Filestream.hdr fi le is a FILESTREAM container header fi le. 
This fi le should not be modifi ed or removed. For existing databases, you can add a fi lestream 
fi legroup using ALTER DATABASE, which I’ll cover in the next section. All data in all columns 
placed in the MovieReviewsFSGroup1 is maintained and managed with individual fi les  created 
in the Reviews_FS folder. I’ll tell you more about the fi le organization within this folder in 
Chapter 7, when I talk about special storage formats.  

Altering a Database

 You can use the ALTER DATABASE command to change a database’s defi nition in one of the 
following ways: 

■  Change the name of the database. 

■  Add one or more new data fi les to the database. If you want, you can put these fi les in 
a user-defi ned fi legroup. All fi les added in a single ALTER DATABASE command must go 
in the same fi legroup. 

■  Add one or more new log fi les to the database. 

■  Remove a fi le or a fi legroup from the database. You can do this only if the fi le or 
 fi legroup is completely empty. Removing a fi legroup removes all the fi les in it. 

C03626249.indd   142 2/16/2009   4:27:34 PM



 Chapter 3 Databases and Database Files 143

■  Add a new fi legroup to a database. (Adding fi les to those fi legroups must be done 
in a separate ALTER DATABASE command.) Modify an existing fi le in one of the 
following ways: 

❏  Increase the value of the SIZE property. 

❏  Change the MAXSIZE or FILEGROWTH property. 

❏  Change the logical name of a fi le by specifying a NEWNAME property. The value of 
NEWNAME is then used as the NAME property for all future references to this fi le. 

❏  Change the FILENAME property for fi les, which can effectively move the fi les to a new 
location. The new name or location doesn’t take effect until you restart SQL Server. 
For tempdb, SQL Server automatically creates the fi les with the new name in the new 
location; for other databases, you must move the fi le manually after  stopping your 
SQL Server instance. SQL Server then fi nds the new fi le when it restarts.  

■  Mark the fi le as OFFLINE. You should set a fi le to OFFLINE when the physical fi le has 
become corrupted and the fi le backup is available to use for restoring. (There is also 
an option to mark the whole database as OFFLINE, which I'll discuss shortly when I talk 
about database properties.) Marking a fi le as OFFLINE allows you to indicate that you 
don’t want SQL Server to recover that particular fi le when it is restarted. Modify an 
 existing fi legroup in one of the following ways: 

❏  Mark the fi legroup as READONLY so that updates to objects in the fi legroup 
aren’t allowed. The primary fi legroup cannot be made READONLY. 

❏  Mark the fi legroup as READWRITE, which reverses the READONLY property. 

❏  Mark the fi legroup as the default fi legroup for the database. 

❏  Change the name of the fi legroup. 

■  Change one or more database options. (I’ll discuss database options later in the chapter.) 

 The ALTER DATABASE command can make only one of the changes described each time it is 
executed. Note that you cannot move a fi le from one fi legroup to another. 

ALTER DATABASE Examples

 The following examples demonstrate some of the changes that you can make using the 
ALTER DATABASE command. 

 This example increases the size of a database fi le: 

USE master 

GO 

ALTER DATABASE Test1  

MODIFY FILE 

( NAME = 'test1dat3', 

SIZE = 2000MB);

C03626249.indd   143 2/16/2009   4:27:34 PM



144 Microsoft SQL Server 2008 Internals

 The following example creates a new fi legroup in a database, adds two 500-MB fi les to 
the fi legroup, and makes the new fi legroup the default fi legroup. You need three ALTER 
DATABASE statements: 

ALTER DATABASE Test1  

ADD FILEGROUP Test1FG1; 

GO 

ALTER DATABASE Test1  

ADD FILE  

( NAME = 'test1dat4', 

FILENAME =  

    'c:\program files\microsoft sql server\mssql.1\mssql\data\t1dat4.ndf', 

SIZE = 500MB, 

MAXSIZE = 1000MB, 

FILEGROWTH = 50MB), 

( NAME = 'test1dat5', 

FILENAME =  

    'c:\program files\microsoft sql server\mssql.1\mssql\data\t1dat5.ndf', 

SIZE = 500MB, 

MAXSIZE = 1000MB, 

FILEGROWTH = 50MB) 

TO FILEGROUP Test1FG1; 

GO 

ALTER DATABASE Test1 

MODIFY FILEGROUP Test1FG1 DEFAULT; 

GO

Databases Under the Hood

 A database consists of user-defi ned space for the permanent storage of user objects such as 
tables and indexes. This space is allocated in one or more operating system fi les. 

 Databases are divided into logical pages (of 8 KB each), and within each fi le the pages are 
numbered contiguously from 0 to x, with the value x being defi ned by the size of the fi le. 
You can refer to any page by specifying a database ID, a fi le ID, and a page number. When 
you use the ALTER DATABASE command to enlarge a fi le, the new space is added to the end 
of the fi le. That is, the fi rst page of the newly allocated space is page x + 1 on the fi le you’re 
enlarging. When you shrink a database by using the DBCC SHRINKDATABASE or DBCC 
SHRINKFILE command, pages are removed starting at the highest-numbered page in the 
 database (at the end) and moving toward lower-numbered pages. This ensures that page 
numbers within a fi le are always contiguous. 

 When you create a new database using the CREATE DATABASE command, it is given a unique 
database ID, and you can see a row for the new database in the sys.databases view. The rows 
returned in sys.databases include basic information about each database, such as its name, 
 database_id, and creation date, as well as the value for each database option that can be 
set with the ALTER DATABASE command. I’ll discuss database options in more detail later in 
the chapter. 

C03626249.indd   144 2/16/2009   4:27:34 PM



 Chapter 3 Databases and Database Files 145

Space Allocation

The space in a database is used for storing tables and indexes. The space is managed in units 
called extents. An extent is made up of eight logically contiguous pages (or 64 KB of space). 
To make space allocation more effi cient, SQL Server 2008 doesn’t allocate entire extents to 
tables with small amounts of data. SQL Server 2008 has two types of extents: 

■ Uniform extents These are owned by a single object; all eight pages in the extent can 
be used only by the owning object. 

■  Mixed extents These are shared by up to eight objects. 

 SQL Server allocates pages for a new table or index from mixed extents. When the table or 
index grows to eight pages, all future allocations use uniform extents. 

 When a table or index needs more space, SQL Server needs to fi nd space that’s available to 
be allocated. If the table or index is still less than eight pages total, SQL Server must fi nd a 
mixed extent with space available. If the table or index is eight pages or larger, SQL Server 
must fi nd a free uniform extent. 

 SQL Server uses two special types of pages to record which extents have been allocated and 
which type of use (mixed or uniform) the extent is available for: 

■  Global Allocation Map (GAM) pages These pages record which extents have been 
allocated for any type of use. A GAM has a bit for each extent in the interval it covers. 
If the bit is 0, the corresponding extent is in use; if the bit is 1, the extent is free. After 
the header and other overhead are accounted for, there are 8,000 bytes, or 64,000 bits, 
available on the page, so each GAM can cover about 64,000 extents, or almost 4 GB of 
data. This means that one GAM page exists in a fi le for every 4 GB of fi le size. 

■  Shared Global Allocation Map (SGAM) pages These pages record which extents are 
currently used as mixed extents and have at least one unused page. Just like a GAM, 
each SGAM covers about 64,000 extents, or almost 4 GB of data. The SGAM has a bit 
for each extent in the interval it covers. If the bit is 1, the extent being used is a mixed 
extent and has free pages; if the bit is 0, the extent isn’t being used as a mixed extent, 
or it’s a mixed extent whose pages are all in use. 

 Table 3-2 shows the bit patterns that each extent has set in the GAM and SGAM pages, based 
on its current use. 

 TABLE 3-2 Bit Settings in GAM and SGAM Pages

 Current Use of Extent GAM Bit Setting SGAM Bit Setting

 Free, not in use 1 0

 Uniform extent or full mixed extent 0 0

 Mixed extent with free pages 0 1

Current Use of Extent GAM Bit Setting SGAM Bit Setting

C03626249.indd   145 2/16/2009   4:27:34 PM



146 Microsoft SQL Server 2008 Internals

 There are several tools available for actually examining the bits in the GAMs and SGAMs. 
Chapter 5 discusses the DBCC PAGE command which allows you to view the contents of a 
SQL Server database page using a query window. Because the page numbers of the GAMs 
and SGAMs are known, we can just look at pages 2 or 3. If we use format 3, which gives the 
most details, we can see that output displays which extents are allocated and which are not. 
Figure 3-2 shows the last section of the output using DBCC PAGE with format 3 for the fi rst 
GAM page of my AdventureWorks2008 database.                 

(1:0)              - (1:24256)       =          ALLOCATED

(1:24264)      -                       = NOT ALLOCATED

(1:24272)      - (1:29752)       =          ALLOCATED

(1:29760)      - (1:30168)       = NOT ALLOCATED

(1:30176)      - (1:30240)       =          ALLOCATED

(1:30248)      - (1:30256)       = NOT ALLOCATED

(1:30264)      - (1:32080)       =          ALLOCATED

(1:32088)      - (1:32304)       = NOT ALLOCATED

FIGURE 3-2 GAM page contents indicating allocation status of extents in a fi le

 This output indicates that all the extents up through the one that starts on page 24,256 are 
allocated. This corresponds to the fi rst 189 MB of the fi le. The extent starting at 24,264 is not 
allocated, but the next 5,480 pages are allocated.  

 We can also use a graphical tool called SQL Internals Viewer to look at which extents have been 
allocated. SQL Internals Viewer is a free tool available from http://www.SQLInternalsViewer.com, 
and is also available on this book’s companion Web site. Figure 3-3 shows the main  allocation 
page for my master database. GAMs and SGAMs have been combined in one display and 
 indicate the status of every page, not just every extent. The green squares indicate that the 
SGAM is being used but the extent is not used, so there are pages available for single-page 
 allocations. The blue blocks indicate that both the GAM bit and the SGAM bit are set, so the 
 corresponding extent is completely unavailable. The gray blocks indicate that the extent is free.  

  

FIGURE 3-3 SQL Internals Viewer indicating the allocation status of each page

C03626249.indd   146 2/16/2009   4:27:34 PM



 Chapter 3 Databases and Database Files 147

 If SQL Server needs to fi nd a new, completely unused extent, it can use any extent with a 
 corresponding bit value of 1 in the GAM page. If it needs to fi nd a mixed extent with  available 
space (one or more free pages), it fi nds an extent with a value in the SGAM of 1 (which always 
has a value in the GAM of 0). If there are no mixed extents with available space, it uses the 
GAM page to fi nd a whole new extent to allocate as a mixed extent, and uses one page from 
that. If there are no free extents at all, the fi le is full. 

 SQL Server can locate the GAMs in a fi le quickly because a GAM is always the third page in 
any database fi le (that is, page 2). An SGAM is the fourth page (that is, page 3). Another GAM 
appears every 511,230 pages after the fi rst GAM on page 2, and another SGAM appears 
 every 511,230 pages after the fi rst SGAM on page 3. Page 0 in any fi le is the File Header 
page, and only one exists per fi le. Page 1 is a Page Free Space (PFS) page. In Chapter 5, I’ll 
say more about how individual pages within a table look and tell you about the details of PFS 
pages. For now, because I’m talking about space allocation, I’ll examine how to keep track of 
which pages belong to which tables. 

 IAM pages keep track of the extents in a 4-GB section of a  database fi le used by an  allocation 
unit. An allocation unit is a set of pages belonging to a single  partition in a table or index 
and comprises pages of one of three storage types: pages  holding regular in-row data, pages 
holding Large Object (LOB) data, or pages holding  row-overfl ow data. I’ll discuss these regular 
in-row storage in Chapter 5, and LOB, row-overfl ow storage, and partitions in Chapter 7.  

 For example, a table on four partitions that has all three types of data (in-row, LOB, and 
 row-overfl ow) has at least 12 IAM pages. Again, a single IAM page covers only a 4-GB  section 
of a single fi le, so if the partition spans fi les, there will be multiple IAM pages, and if the fi le is 
more than 4 GB in size and the partition uses pages in more than one 4-GB section, there will 
be additional IAM pages.  

 An IAM page contains a 96-byte page header, like all other pages followed by an IAM page 
header, which contains eight page-pointer slots. Finally, an IAM page contains a set of bits 
that map a range of extents onto a fi le, which doesn’t necessarily have to be the same fi le 
that the IAM page is in. The header has the address of the fi rst extent in the range mapped 
by the IAM. The eight page-pointer slots might contain pointers to pages belonging to the 
relevant object contained in mixed extents; only the fi rst IAM for an object has values in 
these pointers. Once an object takes up more than eight pages, all of its additional extents 
are uniform extents—which means that an object never needs more than eight pointers to 
pages in mixed extents. If rows have been deleted from a table, the table can actually use 
fewer than eight of these pointers. Each bit of the bitmap represents an extent in the range, 
regardless of whether the extent is allocated to the object owning the IAM. If a bit is on, 
the relative extent in the range is allocated to the object owning the IAM; if a bit is off, the 
 relative extent isn’t allocated to the object owning the IAM. 

C03626249.indd   147 2/16/2009   4:27:34 PM



148 Microsoft SQL Server 2008 Internals

 For example, if the bit pattern in the fi rst byte of the IAM is 1100 0000, the fi rst and second 
extents in the range covered by the IAM are allocated to the object owning the IAM and 
 extents 3 through 8 aren’t allocated to the object owning the IAM. 

 IAM pages are allocated as needed for each object and are located randomly in the database 
fi le. Each IAM covers a possible range of about 512,000 pages.  

 The internal system view called sys.system_internals_allocation_units has a column called 
fi rst_iam_page that points to the fi rst IAM page for an allocation unit. All the IAM pages for 
that allocation unit are linked in a chain, with each IAM page containing a pointer to the next 
in the chain. You can fi nd out more about IAMs and allocation units in Chapters 5, 6, and 7 
when I discuss object and index storage.  

 In addition to GAMs, SGAMs, and IAMs, a database fi le has three other types of special 
 allocation pages. PFS pages keep track of how each particular page in a fi le is used. The second 
page (page 1) of a fi le is a PFS page, as is every 8,088th page thereafter. I’ll talk about them 
more in Chapter 5. The seventh page (page 6) is called a Differential Changed Map (DCM) 
page. It keeps track of which extents in a fi le have been modifi ed since the last full database 
backup. The eighth page (page 7) is called a Bulk Changed Map (BCM) page and is used when 
an extent in the fi le is used in a minimally or bulk-logged operation. I’ll tell you more about 
these two kinds of pages when I talk about the internals of backup and restore operations in 
Chapter 4. Like GAM and SGAM pages, DCM and BCM pages have 1 bit for each extent in the 
section of the fi le they represent. They occur at regular intervals—every 511,230 pages. 

 You can see the details of IAMs and PFS pages, as well as DCM and BCM pages, using either 
DBCC PAGE or the SQL Internals Viewer. I’ll show you more examples of the output of DBCC 
PAGE in later chapters as we cover more details of the different types of allocation pages. 

Setting Database Options

 You can set several dozen options, or properties, for a database to control certain behavior 
within that database. Some options must be set to ON or OFF, some must be set to one of 
a list of possible values, and others are enabled by just specifying their name. By default, 
all the options that require ON or OFF have an initial value of OFF unless the option was 
set to ON in the model database. All databases created after an option is changed in model 
have the same values as model. You can easily change the value of some of these options by 
 using Management Studio. You can set all of them directly by using the ALTER DATABASE 
 command. (You can also use the sp_dboption system stored procedure to set some of the 
 options, but that procedure is provided for backward compatibility only and is scheduled to 
be removed in the next version of SQL Server.)  

 Examining the sys.databases catalog view can show you the current values of all the options. 
The view also contains other useful information, such as database ID, creation date, and the 
Security ID (SID) of the database owner. The following query retrieves some of the most 

C03626249.indd   148 2/16/2009   4:27:34 PM



 Chapter 3 Databases and Database Files 149

 important columns from sys.databases for the four databases that exist on a new default 
 installation of SQL Server: 

SELECT name, database_id, suser_sname(owner_sid) as owner,

     create_date, user_access_desc, state_desc

FROM sys.databases

WHERE database_id <= 4;

The query produces this output, although the created dates may vary: 

name   database_id owner create_date             user_access_desc state_desc 

------ ----------- ----- ----------------------- ---------------- ---------- 

master 1           sa    2003-04-08 09:13:36.390 MULTI_USER       ONLINE     

tempdb 2           sa    2008-04-19 12:02:35.327 MULTI_USER       ONLINE     

model  3           sa    2003-04-08 09:13:36.390 MULTI_USER       ONLINE     

msdb   4           sa    2008-03-21 01:54:05.240 MULTI_USER       ONLINE     

The sys.databases view actually contains both a number and a name for the user_access 
and state information. Selecting all the columns from sys.databases would show you that 
the user_access_desc value of MULTI_USER has a corresponding user_access value of 0, and 
the state_desc value of ONLINE has a state value of 0. SQL Server Books Online shows the 
 complete list of number and name relationships for the columns in sys.databases. These are 
just two of the database options displayed in the sys.databases view. The complete list of 
database options is divided into seven main categories: state options, cursor options, auto 
 options,  parameterization options, SQL options, database recovery options, and  external 
 access options. There are also options for specifi c technologies that SQL Server can use, 
 including  database mirroring, Service Broker activities, change tracking, database encryption, 
and  snapshot isolation. Some of the options, particularly the SQL options, have corresponding 
SET options that you can turn on or off for a particular connection. Be aware that the ODBC or 
OLE DB drivers turn on a number of these SET  options by default, so applications act as if the 
 corresponding database option has already been set.  

Here is a list of the options, by category. Options listed on a single line and values separated 
by vertical bars (|) are mutually exclusive. 

State options

 1. SINGLE_USER | RESTRICTED_USER | MULTI_USER 

 2. OFFLINE | ONLINE | EMERGENCY 

 3. READ_ONLY | READ_WRITE 

Cursor options

 1. CURSOR_CLOSE_ON_COMMIT { ON | OFF } 

 2.  CURSOR_DEFAULT { LOCAL | GLOBAL } 

State options

Cursor options

C03626249.indd   149 2/16/2009   4:27:34 PM



150 Microsoft SQL Server 2008 Internals

Auto options

   1. AUTO_CLOSE { ON | OFF }  

 2.  AUTO_CREATE_STATISTICS { ON | OFF }  

 3.  AUTO_SHRINK { ON | OFF }  

 4.  AUTO_UPDATE_STATISTICS { ON | OFF }  

 5.  AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF } 

Parameterization options 

 1. DATE_CORRELATION_OPTIMIZATION { ON | OFF } 

 2. PARAMETERIZATION { SIMPLE | FORCED } 

SQL options

 1.  ANSI_NULL_DEFAULT { ON | OFF } 

 2.  ANSI_NULLS { ON | OFF } 

 3.  ANSI_PADDING { ON | OFF } 

 4.  ANSI_WARNINGS { ON | OFF } 

 5.  ARITHABORT { ON | OFF } 

 6.  CONCAT_NULL_YIELDS_NULL { ON | OFF } 

 7.  NUMERIC_ROUNDABORT { ON | OFF } 

 8.  QUOTED_IDENTIFIER { ON | OFF } 

 9.  RECURSIVE_TRIGGERS { ON | OFF } 

Database recovery options

 1.  RECOVERY { FULL | BULK_LOGGED | SIMPLE }  

 2.  TORN_PAGE_DETECTION { ON | OFF } 

 3.  PAGE_VERIFY { CHECKSUM | TORN_PAGE_DETECTION | NONE } 

External access options 

 1.  DB_CHAINING { ON | OFF } 

 2.  TRUSTWORTHY { ON | OFF } 

Database mirroring options

 1.  PARTNER { = ‘partner_server’ } 

 2.  | FAILOVER  

Auto options

Parameterization options

SQL options

Database recovery options

External access options

Database mirroring options

C03626249.indd   150 2/16/2009   4:27:34 PM



 Chapter 3 Databases and Database Files 151

 3. | FORCE_SERVICE_ALLOW_DATA_LOSS  

 4. | OFF  

 5.  | RESUME  

 6.  | SAFETY { FULL | OFF } 

 7.  | SUSPEND  

 8.  | TIMEOUT integer  

 9.  } 

 10.  WITNESS { = ‘witness_server’ }| OFF } 

Service Broker options

 1.  ENABLE_BROKER | DISABLE_BROKER  

 2.  NEW_BROKER  

 3.  ERROR_BROKER_CONVERSATIONS  

Change Tracking options

 1. CHANGE_TRACKING {= ON [ <change_tracking_settings> | = OFF} 

Database Encryption options

 1. ENCRYPTION {ON | OFF} 

Snapshot Isolation options

 1. ALLOW_SNAPSHOT_ISOLATION {ON | OFF } 

 2.  READ_COMMITTED_SNAPSHOT {ON | OFF } [ WITH <termination> ] 

State Options

The state options control who can use the database and for what operations. There are three 
aspects to usability: The user access state determines which users can use the  database; 
the  status state determines whether the database is available to anybody for use; and the 
 updateability state determines what operations can be performed on the database. You 
 control each of these aspects by using the ALTER DATABASE command to enable an option 
for the  database. None of the state options uses the keywords ON and OFF to control the 
state value. 

SINGLE_USER | RESTRICTED_USER | MULTI_USER

The three options SINGLE_USER, RESTRICTED_USER, and MULTI_USER describe the user 
access property of a database. They are mutually exclusive; setting any one of them unsets 

Service Broker options

Change Tracking options

Database Encryption options

Snapshot Isolation options

C03626249.indd   151 2/16/2009   4:27:34 PM



152 Microsoft SQL Server 2008 Internals

the others. To set one of these options for your database, you just use the option name. For 
 example, to set the AdventureWorks2008 database to single-user mode, use the following code: 

ALTER DATABASE AdventureWorks2008 SET SINGLE_USER;

 A database in SINGLE_USER mode can have only one connection at a time. A database 
in RESTRICTED_USER mode can have connections only from users who are considered 
“qualifi ed”—those who are members of the dbcreator or sysadmin server role or the db_owner 
role for that database. The default for a database is MULTI_USER mode, which means anyone 
with a valid user name in the database can connect to it. If you attempt to change a database’s 
state to a mode that is incompatible with the current conditions—for example, if you try to 
change the database to SINGLE_USER mode when other connections exist—the behavior of 
SQL Server is determined by the TERMINATION option you specify. I’ll discuss termination 
 options shortly. 

 To determine which user access value is set for a database, you can examine the sys. databases 
catalog view, as shown here: 

SELECT USER_ACCESS_DESC FROM sys.databases

WHERE name = '<name of database>';

 This query will return one of MULTI_USER, SINGLE_USER, or RESTRICTED_USER.  

OFFLINE | ONLINE | EMERGENCY 

 You use the OFFLINE, ONLINE, and EMERGENCY options to describe the status of a database. 
They are mutually exclusive. The default for a database is ONLINE. As with the user access 
options, when you use ALTER DATABASE to put the database in one of these modes, you 
don’t specify a value of ON or OFF—you just use the name of the option. When a database 
is set to OFFLINE, it is closed and shut down cleanly and marked as offl ine. The database 
 cannot be modifi ed while the database is offl ine. A database cannot be put into OFFLINE 
mode if there are any connections in the database. Whether SQL Server waits for the other 
connections to terminate or generates an error message is determined by the TERMINATION 
option specifi ed. 

 The following code examples show how to set a database’s status value to OFFLINE and how 
to determine the status of a database: 

ALTER DATABASE AdventureWorks2008 SET OFFLINE;

SELECT state_desc from sys.databases 

WHERE name = 'AdventureWorks2008';

 A database can be explicitly set to EMERGENCY mode, and that option will be discussed in 
Chapter 11, in conjunction with DBCC commands. 

 As shown in the preceding query, you can determine the current status of a database by 
 examining the state_desc column of the sys.databases view. This column can return status 

C03626249.indd   152 2/16/2009   4:27:34 PM



 Chapter 3 Databases and Database Files 153

 values other than OFFLINE, ONLINE, and EMERGENCY, but those values are not directly 
 settable using ALTER DATABASE. A database can have the status value RESTORING while it 
is in the process of being restored from a backup. It can have the status value RECOVERING 
during a restart of SQL Server. The recovery process is performed on one database at a 
time, and until SQL Server has fi nished recovering a database, the database has a status of 
RECOVERING. If the recovery process cannot be completed for some reason (most likely 
 because one or more of the log fi les for the database is unavailable or unreadable), SQL 
Server gives the database the status of RECOVERY_PENDING. Your databases can also be put 
into RECOVERY_PENDING mode if SQL Server runs out of either log or data space during 
rollback recovery, or if SQL Server runs out of locks or memory during any part of the startup 
process. I’ll go into more detail about the  difference between rollback recovery and startup 
recovery in Chapter 4.  

 If all the needed resources, including the log fi les, are available, but corruption is detected 
during recovery, the database may be put in the SUSPECT state. You can determine the state 
value by looking at the state_desc column in the sys.databases view. A database is completely 
unavailable if it’s in the SUSPECT state, and you will not even see the database listed if you 
run sp_helpdb. However, you can still see the status of a suspect database in the sys.databases 
view. In many cases, you can make a suspect database available for read-only operations by 
setting its status to EMERGENCY mode. If you really have lost one or more of the log fi les 
for a database, EMERGENCY mode allows you to access the data while you copy it to a new 
 location. When you move from RECOVERY_ PENDING to EMERGENCY, SQL Server shuts down 
the database and then restarts it with a special fl ag that allows it to skip the recovery process. 
Skipping recovery can mean you have logically or physically inconsistent  data—missing index 
rows, broken page links, or incorrect metadata pointers. By specifi cally putting your database 
in EMERGENCY mode, you are acknowledging that the data might be inconsistent but that 
you want access to it anyway.  

READ_ONLY | READ_WRITE

 These options describe the updatability of a database. They are mutually exclusive. The default 
for a database is READ_WRITE. As with the user access options, when you use ALTER DATABASE 
to put the database in one of these modes, you don’t specify a value of ON or OFF, you just 
use the name of the option. When the database is in READ_WRITE mode, any user with the 
 appropriate permissions can carry out data modifi cation operations. In READ_ONLY mode, no 
INSERT, UPDATE, or DELETE operations can be executed. In addition, because no  modifi cations 
are done when a database is in READ_ONLY mode, automatic recovery is not run on this 
 database when SQL Server is restarted, and no locks need to be acquired during any SELECT 
operations. Shrinking a database in READ_ONLY mode is not possible. 

 A database cannot be put into READ_ONLY mode if there are any connections to the 
 database. Whether SQL Server waits for the other connections to terminate or generates an 
error message is determined by the TERMINATION option specifi ed. 

C03626249.indd   153 2/16/2009   4:27:34 PM



154 Microsoft SQL Server 2008 Internals

 The following code shows how to set a database’s updatability value to READ_ONLY and how 
to determine the updatability of a database: 

ALTER DATABASE AdventureWorks2008 SET READ_ONLY; 

SELECT name, is_read_only FROM sys.databases

WHERE name = 'AdventureWorks2008';

 When READ_ONLY is enabled for database, the is_read_only column returns 1; otherwise, for 
a READ_WRITE database, it returns 0. 

Termination Options

 As I just mentioned, several of the state options cannot be set when a database is in use or 
when it is in use by an unqualifi ed user. You can specify how SQL Server should handle this 
situation by indicating a termination option in the ALTER DATABASE command. You can have 
SQL Server wait for the situation to change, generate an error message, or terminate the 
 connections of unqualifi ed users. The termination option determines the behavior of SQL 
Server in the following situations: 

■  When you attempt to change a database to SINGLE_USER and it has more than one 
current connection 

■  When you attempt to change a database to RESTRICTED_USER and unqualifi ed users 
are currently connected to it 

■  When you attempt to change a database to OFFLINE and there are current connections 
to it 

■  When you attempt to change a database to READ_ONLY and there are current 
 connections to it 

 The default behavior of SQL Server in any of these situations is to wait indefi nitely. The  following 
TERMINATION options change this behavior: 

■  ROLLBACK AFTER integer [SECONDS] This option causes SQL Server to wait for the 
specifi ed number of seconds and then break unqualifi ed connections. Incomplete 
transactions are rolled back. When the transition is to SINGLE_USER mode, all 
 connections are unqualifi ed except the one issuing the ALTER DATABASE command. 
When the transition is to RESTRICTED_USER mode, unqualifi ed connections are those 
of users who are not members of the db_owner fi xed database role or the dbcreator 
and sysadmin fi xed server roles. 

■  ROLLBACK IMMEDIATE This option breaks unqualifi ed connections immediately. All 
incomplete transactions are rolled back. Keep in mind that although the connection 
may be broken immediately, the rollback might take some time to complete. All work 
done by the transaction must be undone, so for certain operations, such as a batch 
update of millions of rows or a large index rebuild, you could be in for a long wait. 
Unqualifi ed connections are the same as those described previously.  

C03626249.indd   154 2/16/2009   4:27:35 PM



 Chapter 3 Databases and Database Files 155

■  NO_WAIT This option causes SQL Server to check for connections before  attempting 
to change the database state and causes the ALTER DATABASE command to fail if 
certain connections exist. If the database is being set to SINGLE_USER mode, the 
ALTER DATABASE command fails if any other connections exist. If the transition is 
to RESTRICTED_USER mode, the ALTER DATABASE command fails if any unqualifi ed 
 connections exist. 

 The following command changes the user access option of the AdventureWorks2008  database 
to SINGLE_USER and generates an error if any other connections to the AdventureWorks2008 
 database exist: 

ALTER DATABASE AdventureWorks2008 SET SINGLE_USER WITH NO_WAIT; 

Cursor Options

 The cursor options control the behavior of server-side cursors that were defi ned using one 
of the following T-SQL commands for defi ning and manipulating cursors: DECLARE, OPEN, 
FETCH, CLOSE, and DEALLOCATE.  

■  CURSOR_CLOSE_ON_COMMIT {ON | OFF} When this option is set to ON, any open 
cursors are closed (in compliance with SQL-92) when a transaction is committed or 
rolled back. If OFF (the default) is specifi ed, cursors remain open after a transaction 
is committed. Rolling back a transaction closes any cursors except those defi ned as 
INSENSITIVE or STATIC. 

■  CURSOR_DEFAULT {LOCAL | GLOBAL} When this option is set to LOCAL and  cursors 
aren’t specifi ed as GLOBAL when they are created, the scope of any cursor is local to 
the batch, stored procedure, or trigger in which it was created. The cursor name is 
valid only within this scope. The cursor can be referenced by local cursor variables in 
the batch, stored procedure, or trigger, or by a stored procedure output parameter. 
When this option is set to GLOBAL and cursors aren’t specifi ed as LOCAL when they are 
 created, the scope of the cursor is global to the connection. The cursor name can be 
referenced in any stored procedure or batch executed by the connection. 

Auto Options

 The auto options affect actions that SQL Server might take automatically. All these options 
are Boolean options, with a value of ON or OFF. 

■  AUTO_CLOSE When this option is set to ON, the database is closed and shut down 
cleanly when the last user of the database exits, thereby freeing any resources. All fi le 
handles are closed, and all in-memory structures are removed so that the database is 
not using any memory. When a user tries to use the database again, it reopens. If the 
database was shut down cleanly, the database isn’t initialized (reopened) until a user 

C03626249.indd   155 2/16/2009   4:27:35 PM



156 Microsoft SQL Server 2008 Internals

tries to use the database the next time SQL Server is restarted. The AUTO_CLOSE option 
is handy for personal SQL Server databases because it allows you to manage  database 
fi les as normal fi les. You can move them, copy them to make backups, or even e-mail 
them to other users. However, you shouldn’t use this option for databases  accessed 
by an  application that repeatedly makes and breaks connections to SQL Server. The 
overhead of closing and reopening the database between each connection will 
hurt performance. 

■  AUTO_SHRINK When this option is set to ON, all of a database’s fi les are  candidates 
for periodic shrinking. Both data fi les and log fi les can be automatically shrunk by 
SQL Server. The only way to free space in the log fi les so that they can be shrunk 
is to back up the transaction log or set the recovery model to SIMPLE. The log 
fi les shrink at the point that the log is backed up or truncated. This option is never 
recommended. 

■  AUTO_CREATE_STATISTICS When this option is set to ON (the default), the SQL 
Server Query Optimizer creates statistics on columns referenced in a query’s WHERE 
or ON clause. Adding statistics improves query performance because the SQL Server 
Query Optimizer can better determine how to evaluate a query. 

■  AUTO_UPDATE_STATISTICS When this option is set to ON (the default),  existing 
 statistics are updated if the data in the tables has changed. SQL Server keeps a 
 counter of the modifi cations made to a table and uses it to determine when statistics 
are  outdated. When this option is set to OFF, existing statistics are not automatically 
 updated. (They can be updated manually.) Statistics will be discussed in more detail in 
Chapter 6 and Chapter 8, “The Query Optimizer.”   

SQL Options

 The SQL options control how various SQL statements are interpreted. They are all Boolean 
options. The default for all these options is OFF for SQL Server, but many tools, such as the 
Management Studio, and many programming interfaces, such as ODBC, enable certain 
session-level options that override the database options and make it appear as if the ON 
 behavior is the default.  

■  ANSI_NULL_DEFAULT When this option is set to ON, columns comply with the ANSI 
SQL-92 rules for column nullability. That is, if you don’t specifi cally indicate whether a 
column in a table allows NULL values, NULLs are allowed. When this option is set to 
OFF, newly created columns do not allow NULLs if no nullability constraint is specifi ed. 

■  ANSI_NULLS When this option is set to ON, any comparisons with a NULL value 
 result in UNKNOWN, as specifi ed by the ANSI-92 standard. If this option is set to OFF, 
 comparisons of non-Unicode values to NULL result in a value of TRUE if both values 
 being compared are NULL. 

C03626249.indd   156 2/16/2009   4:27:35 PM



 Chapter 3 Databases and Database Files 157

■  ANSI_PADDING When this option is set to ON, strings being compared with each 
other are set to the same length before the comparison takes place. When this option 
is OFF, no padding takes place. 

■  ANSI_WARNINGS When this option is set to ON, errors or warnings are issued when 
conditions such as division by zero or arithmetic overfl ow occur. 

■  ARITHABORT When this option is set to ON, a query is terminated when an 
 arithmetic overfl ow or division-by-zero error is encountered during the execution of a 
query. When this option is OFF, the query returns NULL as the result of the operation. 

■  CONCAT_NULL_YIELDS_NULL When this option is set to ON, concatenating two 
strings results in a NULL string if either of the strings is NULL. When this option is set 
to OFF, a NULL string is treated as an empty (zero-length) string for the purposes of 
concatenation. 

■  NUMERIC_ROUNDABORT When this option is set to ON, an error is generated 
if an expression will result in loss of precision. When this option is OFF, the result is 
simply rounded. The setting of ARITHABORT determines the severity of the error. 
If ARITHABORT is OFF, only a warning is issued and the expression returns a NULL. If 
ARITHABORT is ON, an error is generated and no result is returned. 

■  QUOTED_IDENTIFIER When this option is set to ON, identifi ers such as table and 
column names can be delimited by double quotation marks, and literals must then 
be delimited by single quotation marks. All strings delimited by double quotation 
marks are interpreted as object identifi ers. Quoted identifi ers don’t have to  follow the 
T-SQL rules for identifi ers when QUOTED_IDENTIFIER is ON. They can be  keywords 
and can include characters not normally allowed in T-SQL identifi ers, such as spaces 
and dashes. You can’t use double quotation marks to delimit literal string  expressions; 
you must use  single quotation marks. If a single quotation mark is part of the literal 
string, it can be represented by two single quotation marks (''). This option must be 
set to ON if  reserved keywords are used for object names in the database. When 
it is OFF,  identifi ers can’t be in quotation marks and must follow all T-SQL rules 
for identifi ers. 

■  RECURSIVE_TRIGGERS When this option is set to ON, triggers can fi re  recursively, 
 either directly or indirectly. Indirect recursion occurs when a trigger fi res and  performs 
an action that causes a trigger on another table to fi re, thereby causing an  update to 
occur on the original table, which causes the original trigger to fi re again. For  example, 
an application updates table T1, which causes trigger Trig1 to fi re. Trig1  updates  table T2, 
which causes trigger Trig2 to fi re. Trig2 in turn updates table T1, which causes Trig1 
to fi re again. Direct recursion occurs when a trigger fi res and performs an  action that 
causes the same trigger to fi re again. For example, an application updates table T3, 
which causes trigger Trig3 to fi re. Trig3 updates table T3 again, which causes  trigger Trig3 
to fi re again. When this option is OFF (the default), triggers can’t be fi red recursively. 

C03626249.indd   157 2/16/2009   4:27:35 PM



158 Microsoft SQL Server 2008 Internals

Database Recovery Options

 The database option RECOVERY (FULL, BULK_LOGGED or SIMPLE) determines how much 
recovery can be done on a SQL Server database. It also controls how much information is 
logged and how much of the log is available for backups. I’ll cover this option in more detail 
in Chapter 4.  

 Two other options also apply to work done when a database is recovered. Setting the 
TORN_PAGE_DETECTION option to ON or OFF is possible in SQL Server 2008, but that  particular 
option will go away in a future version. The recommended alternative is to set the PAGE_VERIFY 
option to a value of TORN_PAGE_DETECTION or CHECKSUM. (So TORN_PAGE_DETECTION 
should now be considered a value, rather the name of an option.) 

 The PAGE_VERIFY options discover damaged database pages caused by disk I/O path  errors, 
which can cause database corruption problems. The I/O errors themselves are generally 
caused by power failures or disk failures that occur when a page is being written to disk.  

■  CHECKSUM When the PAGE_VERIFY option is set to CHECKSUM, SQL Server 
 calculates a checksum over the contents of each page and stores the value in the page 
header when a page is written to disk. When the page is read from disk, a checksum is 
recomputed and compared with the value stored in the page header. If the values do 
not match, error message 824 (indicating a checksum failure) is reported. 

■  TORN_PAGE_DETECTION When the PAGE_VERIFY option is set to TORN_PAGE_
DETECTION, it causes a bit to be fl ipped for each 512-byte sector in a database page 
(8 KB) whenever the page is written to disk. It allows SQL Server to detect  incomplete 
I/O operations caused by power failures or other system outages. If a bit is in the 
wrong state when the page is later read by SQL Server, it means that the page was 
 written  incorrectly. (A torn page has been detected.) Although SQL Server database 
pages are 8 KB, disks perform I/O operations using 512-byte sectors. Therefore, 
16  sectors are written per database page. A torn page can occur if the system crashes 
(for  example, because of power failure) between the time the operating system writes 
the fi rst  512-byte sector to disk and the completion of the 8-KB I/O operation. When 
the page is read from disk, the torn bits stored in the page header are compared 
with the  actual page sector information. Unmatched values indicate that only part of 
the page was written to disk. In this situation, error message 824 (indicating a torn 
page error) is reported. Torn pages are typically detected by database recovery if it is 
truly an  incomplete write of a page. However, other I/O path failures can cause a torn 
page at any time. 

■  NONE (No Page Verify Option) You can specify that that neither the CHECKSUM nor 
the TORN_PAGE_DETCTION value will be generated when a page is written, and these 
values will not be verifi ed when a page is read.  

 Both checksum and torn page errors generate error message 824, which is written to 
both the SQL Server error log and the Windows event log. For any page that generates an 

C03626249.indd   158 2/16/2009   4:27:35 PM



 Chapter 3 Databases and Database Files 159

824 error when read, SQL Server inserts a row into the system table suspect_pages in the 
msdb database. (SQL Server Books Online has more information on “Understanding and 
Managing the suspect _pages Table.”) 

 SQL Server retries any read that fails with a checksum, torn page, or other I/O error four 
times. If the read is successful in any one of those attempts, a message is written to the error 
log and the command that triggered the read continues. If the attempts fail, the command 
fails with error message 824. 

 You can “fi x” the error by restoring the data or potentially rebuilding the index if the failure 
is limited to index pages. If you encounter a checksum failure, you can run DBCC CHECKDB 
to determine the type of database page or pages affected. You should also determine the 
root cause of the error and correct the problem as soon as possible to prevent additional or 
ongoing errors. Finding the root cause requires investigating the hardware, fi rmware drivers, 
BIOS, fi lter drivers (such as virus software), and other I/O path components. 

 In SQL Server 2008 and SQL Server 2005, the default is CHECKSUM. In SQL Server 2000, 
TORN_PAGE_ DETECTION was the default, and CHECKSUM was not available. If you upgrade 
a  database from SQL Server 2000, the PAGE_VERIFY value will be NONE or TORN_PAGE_
DETECTION. You should always consider using CHECKSUM. Although TORN_PAGE_DETECTION 
uses fewer resources, it provides less protection than CHECKSUM. Keep in mind that if you 
 enable CHECKSUM on a database upgraded from SQL Server 2000, that a checksum value is 
computed only on pages that are modifi ed.  

 Note Prior to SQL Server 2008, neither CHECKSUM nor TORN_PAGE_DETECTION was available 
in the tempdb database.  

Other Database Options

 Of the other categories of database options, two more will be covered in later chapters. The 
snapshot isolation options will be discussed in Chapter 10, “Transactions and Concurrency.” 
and the change tracking options were covered in Chapter 2. The others are beyond the scope 
of this book. 

Database Snapshots

 An interesting feature added to the product in SQL Server 2005 Enterprise Edition is 
 database snapshots, which allow you to create a point-in-time, read-only copy of any 
 database. In fact, you can create multiple snapshots of the same source database at  different 
points in time. The actual space needed for each snapshot is typically much less than the 
space  required for the original database because the snapshot stores only pages that have 
changed, as will be discussed shortly. 

C03626249.indd   159 2/16/2009   4:27:35 PM



160 Microsoft SQL Server 2008 Internals

 Database snapshots allow you to do the following: 

■  Turn a database mirror into a reporting server. (You cannot read from a database 
 mirror, but you can create a snapshot of the mirror and read from that.) 

■  Generate reports without blocking or being blocked by production operations. 

■  Protect against administrative or user errors. 

 You’ll probably think of more ways to use snapshots as you gain experience working with them.  

Creating a Database Snapshot

 The mechanics of snapshot creation are straightforward—you simply specify an option for 
the CREATE DATABASE command. There is no graphical interface for creating a database 
snapshot through Object Explorer, so you must use the T-SQL syntax. When you create a 
snapshot, you must include each data fi le from the source database in the CREATE DATABASE 
command, with the original logical name and a new physical name and path. No other 
 properties of the fi les can be specifi ed, and no log fi le is used.  

 Here is the syntax to create a snapshot of the AdventureWorks2008 database, putting the 
 snapshot fi les in the SQL Server 2008 default data directory: 

CREATE DATABASE AdventureWorks_snapshot ON  

( NAME = N'AdventureWorks_Data',  

  FILENAME =  

 N'C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\

   Data\AW_data_snapshot.mdf')

AS SNAPSHOT OF AdventureWorks2008;

 Each fi le in the snapshot is created as a sparse fi le, which is a feature of the NTFS fi le  system. 
(Don’t confuse sparse fi les with sparse columns available in SQL Server 2008.) Initially, a 
sparse fi le contains no user data, and disk space for user data has not been allocated to it. 
As data is written to the sparse fi le, NTFS allocates disk space gradually. A sparse fi le can 
 potentially grow very large. Sparse fi les grow in 64-KB increments; thus, the size of a sparse 
fi le on disk is always a multiple of 64 KB.  

 The snapshot fi les contain only the data that has changed from the source. For every fi le, SQL 
Server creates a bitmap that is kept in cache, with a bit for each page of the fi le,  indicating 
whether that page has been copied to the snapshot. Every time a page in the source is  updated, 
SQL Server checks the bitmap for the fi le to see if the page has already been  copied, and if it 
hasn’t, it is copied at that time. This operation is called a copy-on-write  operation. Figure 3-4 shows 
a database with a snapshot that contains 10 percent of the data (one page) from the source.  

 When a process reads from the snapshot, it fi rst accesses the bitmap to see whether the page 
it wants is in the snapshot fi le or is still the source. Figure 3-5 shows read operations from the 
same database as in Figure 3-4. Nine of the pages are accessed from the source database, 
and one is accessed from the snapshot because it has been updated on the source. When a 
process reads from a snapshot database, no locks are taken no matter what isolation level

C03626249.indd   160 2/16/2009   4:27:35 PM



 Chapter 3 Databases and Database Files 161

Unallocated
Original page
Updated page
Copy-on-write
operation

Percent copied 10%

Source database
Page

Snapshot
Page

  

FIGURE 3-4 A database snapshot that contains one page of data from the source database

Source database
Page

Snapshot

Unallocated
Original page
Updated page

Percent copied 10%

Page

Read operation
on the snapshot

  

FIGURE 3-5 Read operations from a database snapshot, reading changed pages from the snapshot and 
 unchanged pages from the source database 

C03626249.indd   161 2/16/2009   4:27:35 PM



162 Microsoft SQL Server 2008 Internals

you are in. This is true whether the page is read from the sparse fi le or from the source 
 database. This is one of the big advantages of using database snapshots.  

 As mentioned earlier, the bitmap is stored in cache, not with the fi le itself, so it is always readily 
available. When SQL Server shuts down or the database is closed, the bitmaps are lost and need 
to be reconstructed at database startup. SQL Server determines whether each page is in the 
sparse fi le as it is accessed, and then it records that information in the bitmap for future use.  

 The snapshot refl ects the point in time when the CREATE DATABASE command is 
 issued—that is, when the creation operation commences. SQL Server checkpoints the 
source  database and records a synchronization Log Sequence Number (LSN) in the source 
database’s transaction log. As you’ll see in Chapter 4, when I talk about the transaction log, 
the LSN is a way to determine a specifi c point in time in a database. SQL Server then runs 
recovery on the source database so that any uncommitted transactions are rolled back in 
the snapshot. So although the sparse fi le for the snapshot starts out empty, it might not 
stay that way for long. If transactions are in progress at the time the snapshot is created, 
the recovery process has to undo  uncommitted transactions before the snapshot database 
can be usable, so the snapshot contains the  original versions of any page in the source that 
 contains modifi ed data.  

 Snapshots can be created only on NTFS volumes because they are the only volumes that 
support the sparse fi le technology. If you try to create a snapshot on a FAT or FAT32 volume, 
you’ll get an error like one of the following: 

Msg 1823, Level 16, State 2, Line 1 

A database snapshot cannot be created because it failed to start. 

 

Msg 5119, Level 16, State 1, Line 1 

Cannot make the file "E:\AW_snapshot.MDF" a sparse file. Make sure the file system supports 

sparse files.

 The fi rst error is basically the generic failure message, and the second message provides 
more details about why the operation failed.  

Space Used by Database Snapshots

 You can fi nd out the number of bytes that each sparse fi le of the snapshot is currently using 
on disk by looking at the Dynamic Management Function sys.dm_io_virtual_fi le_stats, which 
returns the current number of bytes in a fi le in the size_on_disk_bytes column. This  function 
takes database_id and fi le_id as parameters. The database ID of the snapshot  database 
and the fi le IDs of each of its sparse fi les are displayed in the sys.master_fi les  catalog view. 
You can also view the size in Windows Explorer by right-clicking the fi le name and  looking at 
the properties, as shown in Figure 3-6. The Size value is the maximum size, and the size on 
disk should be the same value that you see using sys.dm_io_virtual_fi le_stats. The  maximum 
size should be about the same size the source database was when the snapshot was created.  

C03626249.indd   162 2/16/2009   4:27:35 PM



 Chapter 3 Databases and Database Files 163

  

FIGURE 3-6 The snapshot fi le’s Properties dialog box in Windows Explorer showing the current size of the 
sparse fi le as the size on disk

 Because it is possible to have multiple snapshots for the same database, you need to make 
sure you have enough disk space available. The snapshots start out relatively small, but as 
the source database is updated, each snapshot grows. Allocations to sparse fi les are made 
in fragments called regions, in units of 64 KB. When a region is allocated, all the pages 
are  zeroed out except the one page that has changed. There is then space for seven more 
changed pages in the same region, and a new region is not allocated until those seven 
 pages are used.  

 It is possible to overcommit your storage. This means that under normal circumstances, 
you can have many times more snapshots than you have physical storage for, but if the 
 snapshots grow, the physical volume might run out of space. (Note that this can  happen 
when  running online DBCC CHECKDB, and related commands, which use a hidden 
 snapshot during  processing. You have no control of the placement of the hidden snapshot 
that the commands use—they’re placed on the same volume that the fi les of the parent 
database reside on. If this happens, the DBCC uses the source database and acquires table 
locks. You can read lots more details of the internals of the DBCC commands in Chapter 11.) 
Once the physical  volume runs out of space, the write operations to the source  cannot 
copy the Before image of the page to the sparse fi le. The snapshots that cannot write their 
pages out are marked as suspect and are unusable, but the source database  continues 
 operating normally. There is no way to “fi x” a suspect snapshot; you must drop the 
 snapshot database.  

C03626249.indd   163 2/16/2009   4:27:35 PM



164 Microsoft SQL Server 2008 Internals

Managing Your Snapshots

 If any snapshots exist on a source database, the source database cannot be dropped, 
 detached, or restored. In addition, you can basically replace the source database with one of 
its snapshots by reverting the source database to the way it was when a snapshot was made. 
You do this by using the RESTORE command: 

RESTORE DATABASE AdventureWorks2008   

FROM DATABASE_SNAPSHOT = 'AdventureWorks_snapshot';

 During the revert operation, both the snapshot and the source database are unavailable and 
are marked as “In restore.” If an error occurs during the revert operation, the operation tries 
to fi nish reverting when the database starts again. You cannot revert to a snapshot if multiple 
snapshots exist, so you should fi rst drop all snapshots except the one you want to revert to. 
Dropping a snapshot is like using any other DROP DATABASE operation. When the snapshot 
is deleted, all the NTFS sparse fi les are also deleted. 

 Keep in mind these additional considerations regarding database snapshots:  

■  Snapshots cannot be created for the model, master, or tempdb database. (Internally, 
snapshots can be created to run the online DBCC checks on the master database, but 
they cannot be created explicitly.) 

■  A snapshot inherits the security constraints of its source database, and because it is 
read-only, you cannot change the permissions.  

■  If you drop a user from the source database, the user is still in the snapshot.  

■  Snapshots cannot be backed up or restored, but backing up the source database works 
normally; it is unaffected by database snapshots. 

■  Snapshots cannot be attached or detached. 

■  Full-text indexing is not supported on database snapshots, and full-text catalogs are 
not propagated from the source database. 

The tempdb Database

 In some ways, the tempdb database is just like any other database, but it has some unique 
behaviors. Not all of them are relevant to the topic of this chapter, so I will provide some 
 references to other chapters where you can fi nd additional information.  

 As mentioned previously, the biggest difference between tempdb and all the other databases 
in your SQL Server instance is that tempdb is re-created—not recovered—every time SQL 
Server is restarted. You can think of tempdb as a workspace for temporary user objects and 
internal objects explicitly created by SQL Server itself.  

 Every time tempdb is re-created, it inherits most database options from the model database. 
However, the recovery model is not copied because tempdb always uses simple recovery, 

C03626249.indd   164 2/16/2009   4:27:35 PM



 Chapter 3 Databases and Database Files 165

which will be discussed in detail in Chapter 4. Certain database options cannot be set for 
tempdb, such as OFFLINE and READONLY. You also cannot drop the tempdb database.  

 In the SIMPLE recovery model, the tempdb database’s log is constantly being truncated, and 
it can never be backed up. No recovery information is needed because every time SQL Server 
is started, tempdb is completely re-created; any previous user-created temporary objects 
(that is, all your tables and data) disappear.  

 Logging for tempdb is also different than for other databases. (Normal logging will be 
 discussed in Chapter 4.) Many people assume that there is no logging in tempdb, but this is 
not true. Operations within tempdb are logged so that transactions on temporary objects 
can be rolled back, but the records in the log contain only enough information to roll back 
a transaction, not to recover (or redo) it.  

 As I mentioned previously, recovery is run on a database as one of the fi rst steps in  creating 
a snapshot. We can’t recover tempdb, so we cannot create a snapshot of it, and this means 
we can’t run DBCC CHECKDB using a snapshot (or, in fact, most of the DBCC validation 
 commands). Another difference with running DBCC in tempdb is that SQL Server skips all 
 allocation and catalog checks. Running DBCC CHECKDB (or CHECKTABLE) in tempdb acquires 
a Shared Table lock on each table as it is checked. (Locking will be discussed in Chapter 10.)  

Objects in tempdb

 Three types of objects are stored in tempdb: user objects, internal objects, and the version 
store, used primarily for snapshot isolation.  

User Objects

 All users have the privileges to create and use local and global temporary tables that reside 
in tempdb. (Local and global table names have the # or ## prefi x, respectively. However, by 
default, users don’t have the privileges to use tempdb and then create a table there, unless the 
table name is prefaced with # or ##.) But you can easily grant the privileges in an autostart 
procedure that runs each time SQL Server is restarted.  

 Other user objects that need space in tempdb include table variables and table-valued functions. 
The user objects that are created in tempdb are in many ways treated just like user objects in any 
other database. Space must be allocated for them when they are populated, and the metadata 
needs to be managed. You can see user objects by examining the system catalog views, such as 
sys.objects, and information in the sys.partitions and sys.allocation_units views will allow you to 
see how much space is taken up by user objects. I’ll discuss these views in Chapters 5 and 7. 

Internal Objects

 Internal objects in tempdb are not visible using the normal tools, but they still take up space 
from the database. They are not listed in the catalog views because their metadata is stored only 
in memory. The three basic types of internal objects are work tables, work fi les, and sort units.  

C03626249.indd   165 2/16/2009   4:27:35 PM



166 Microsoft SQL Server 2008 Internals

 Work tables are created by SQL Server during the following operations: 

■  Spooling, to hold intermediate results during a large query 

■  Running DBCC CHECKDB or DBCC CHECKTABLE 

■  Working with XML or varchar(MAX) variables 

■  Processing SQL Service Broker objects 

■  Working with static or keyset cursors 

 Work fi les are used when SQL Server is processing a query that uses a hash operator, either 
for joining or aggregating data.  

 Sort units are created when a sort operation takes place, and this occurs in many  situations 
in  addition to a query containing an ORDER BY clause. SQL Server uses sorting to build an 
index, and it might use sorting to process queries involving grouping. Certain types of joins 
might  require that SQL Server sort the data before performing the join. Sort units are  created 
in  tempdb to hold the data as it is being sorted. SQL Server can also create sort units in user 
 databases in addition to tempdb, in particular when creating indexes. As you’ll see in Chapter 6, 
when you create an index, you have the option to do the sort in the current user database or 
in tempdb. 

Version Store

 The version store supports technology for row-level versioning of data. Older versions of 
 updated rows are kept in tempdb in the following situations: 

■  When an AFTER trigger is fi red 

■  When a Data Modifi cation Language (DML) command is executed in a database that 
allows snapshot transactions  

■  When multiple active result sets (MARS) are invoked from a client application 

■  During online index builds or rebuilds when there is concurrent DML on the index 

 Versioning and snapshot transactions are discussed in detail in Chapter 10.  

Optimizations in tempdb

 Because tempdb is used for many internal operations in SQL Server 2008 than in previous 
 versions, you have to take care in monitoring and managing it. The next section presents 
some best practices and monitoring suggestions. In this section, I tell you about some 
of the internal optimizations in SQL Server that allow tempdb to manage objects much more 
effi ciently.  

C03626249.indd   166 2/16/2009   4:27:35 PM

v@v
Text Box
Download at Wow! eBook



 Chapter 3 Databases and Database Files 167

Logging Optimizations

 As you know, every operation that affects your user database in any way is logged. In  tempdb, 
however, this is not entirely true. For example, with logging update operations, only the 
original data (the “before” image) is logged, not the new values (the after image). In  addition, 
the commit operations and committed log records are not fl ushed to disk synchronously in 
tempdb, as they are in other databases. 

Allocation and Caching Optimizations 

 Many of the allocation optimizations are used in all databases, not just tempdb. However, 
tempdb is most likely the database in which the greatest number of new objects are created 
and dropped during production operations, so the impact on tempdb is greater than on user 
databases. In SQL Server 2008, allocation pages are accessed very effi ciently to determine 
where free extents are available; you should see far less contention on the allocation pages 
than in previous versions. SQL Server 2008 also has a very effi cient search algorithm for 
 fi nding an available single page from mixed extents. When a database has multiple fi les, SQL 
Server 2008 has a very effi cient proportional fi ll algorithm that allocates space to multiple 
data fi les, proportional to the amount of free space available in each fi le.  

 Another optimization specifi c to tempdb prevents you from having to allocate any new space 
for some objects. If a work table is dropped, one IAM page and one extent are saved (for a 
total of nine pages), so there is no need to deallocate and then reallocate the space if the same 
work table needs to be created again. This dropped work table cache is not very big and 
has room for only 64 objects. If a work table is truncated internally and the query plan that 
uses that worktable is still in the plan cache, again the fi rst IAM page and the fi rst extent are 
saved. For these truncated tables, there is no specifi c limitation on the number of objects that 
can be cached; it depends only on the available memory space.  

 User objects in tempdb can also have some of their space cached if they are dropped. For a 
small table of less than 8 MB, dropping a user object in tempdb causes one IAM page and 
one  extent to be saved. However, if the table has had any additional DDL performed, such 
as creating  indexes or constraints, or if the table was created using dynamic SQL, no caching 
is done.  

 For a large table, the entire drop is performed as a deferred operation. Deferred drop 
 operations are in fact used in every database as a way to improve overall throughput 
 because a thread does not need to wait for the drop to complete before proceeding with 
its next task. Like the other allocation optimizations that are available in all databases, the 
deferred drop  probably provides the most benefi t in tempdb, which is where tables are 
most likely to be dropped  during production operations. A background thread eventually 
cleans up the space allocated for dropped tables, but until then, the allocated space remains. 
You can detect this space by looking at the sys.allocation_units system view for rows with a 
type value of 0, which indicates a dropped object; you will also see that the column called 

C03626249.indd   167 2/16/2009   4:27:35 PM



168 Microsoft SQL Server 2008 Internals

 container_id is 0, which indicates that the allocated space does not really belong to any 
 object. I’ll look at sys.allocation_units and the other system views that keep track of space 
 usage in Chapter 5. 

Best Practices

 By default, your tempdb database is created on only one data fi le. You will probably fi nd that 
multiple fi les give you better I/O performance and less contention on the global allocation 
structures (the GAM, SGAM, and PFS pages). An initial recommendation is that you have one fi le 
per CPU, but your own testing based on your data and usage patterns might indicate more or 
less than that. For the greatest effi ciency with the proportional fi ll algorithm, the fi les should be 
the same size. The downside of multiple fi les is that every object will have multiple IAM  pages 
and there will be more switching costs as objects are accessed. It will also take more  effort just 
to manage the fi les. No matter how many fi les you have, they should be on the  fastest disks you 
can afford. One log fi le should be suffi cient, and that should also be on a fast disk.  

 To determine the optimum size of your tempdb, you must test your own applications with 
your data volumes, but knowing when and how tempdb is used can help you make preliminary 
estimates. Keep in mind that there is only one tempdb for each SQL Server instance, so one 
badly behaving application can affect all other users in all other applications. In Chapter 10, 
I’ll explain how to determine the size of the version store. All these factors affect the space 
needed for your tempdb. Finally, in Chapter 11, I’ll look at how the DBCC consistency 
 checking commands use tempdb and how to determine the tempdb space requirements.  

 Database options for tempdb should rarely be changed, and some options are not applicable 
to tempdb. In particular, the autoshrink option is ignored in tempdb. In any case, shrinking 
tempdb is not recommended unless your workload patterns have changed signifi cantly. If 
you do need to shrink your tempdb, you’re probably better off shrinking each fi le individually. 
Keep in mind that the fi les might not be able to shrink if any internal objects or version store 
pages need to be moved. The best way to shrink tempdb is to ALTER the database, change 
the fi les’ sizes, and then stop and restart SQL Server so tempdb is rebuilt to the  desired size. 
You should allow your tempdb fi les to autogrow only as a last resort and only to prevent 
 errors due to running out of room. You should not rely on autogrow to manage the size 
of your tempdb fi les. Autogrow causes a delay in processing when you can probably least 
 afford it, although the impact is somewhat less if you use instant fi le initialization. You should 
 determine the size of tempdb through testing and planning so that tempdb can start with as 
much space as it needs and won’t have to grow while your applications are running.  

 Here are some tips for making optimum use of your tempdb. Later chapters will elaborate on 
why these suggestions are considered best practices: 

■  Take advantage of tempdb object caching. 

■  Keep your transactions short, especially those that use snapshot isolation, MARS, 
or triggers. 

C03626249.indd   168 2/16/2009   4:27:35 PM



 Chapter 3 Databases and Database Files 169

■  If you expect a lot of allocation page contention, force a query plan that uses tempdb less. 

■  Avoid page allocation and deallocation by keeping columns that are to be updated at 
a fi xed size rather than a variable size (which can implement the UPDATE as a DELETE 
 followed by an INSERT). 

■  Do not mix long and short transactions from different databases (in the same instance) 
if versioning is being used. 

tempdb Space Monitoring

 Quite a few tools, stored procedures, and system views report on object space usage, as 
 discussed in Chapters 5 and 7. However, one set of system views reports  information only for 
tempdb. The simplest view is sys.dm_db_fi le_space_usage, which returns one row for each data 
fi le in tempdb. It returns the following columns: 

■  database_id (even though the DBID 2 is the only one used) 

■  fi le_id  

■  unallocated_extent_page_count  

■  version_store_reserved_page_count  

■  user_object_reserved_page_count  

■  internal_object_reserved_page_count  

■  mixed_extent_page_count 

 These columns can show you how the space in tempdb is being used for the three types of 
storage: user objects, internals objects, and version store.  

 Two other system views are similar to each other:  

■  sys.dm_db_task_space_usage This view returns one row for each active task and 
shows the space allocated and deallocated by the task for user objects and internal 
objects. If no tasks are being run by a session, this view still gives you one row for the 
session, with all the space values showing 0. No version store information is reported 
because that space is not associated with any particular task or session. Every running 
task starts with zeros for all the space allocation and deallocation values.  

■  sys.dm_db_session_space_usage This view returns one row for each session, with the 
cumulative values for space allocated and deallocated by the session for user  objects 
and internal objects, for all tasks that have been completed. In general, the space 
 allocated values should be the same as the space deallocated values, but if there are 
deferred drop operations, allocated values will be greater than the deallocated values. 
Keep in mind that this information is not available to all users; a special permission 
called VIEW SERVER STATE is needed to select from this view. 

C03626249.indd   169 2/16/2009   4:27:35 PM



170 Microsoft SQL Server 2008 Internals

Database Security

 Security is a huge topic that affects almost every action of every SQL Server user, including 
administrators and developers, and it deserves an entire book of its own. However, some 
areas of the SQL Server security framework are crucial to understanding how to work with a 
database or with any objects in a SQL Server database, so I can’t leave the topic completely 
untouched in this book.  

 SQL Server manages a hierarchical collection of entities. The most prominent of these entities 
are the server and databases in the server. Underneath the database level are objects. Each 
of these entities below the server level is owned by individuals or groups of individuals. The 
SQL Server security framework controls access to the entities within a SQL Server instance. 
Like any resource manager, the SQL Server security model has two parts: authentication and 
authorization. 

 Authentication is the process by which the SQL Server validates and establishes the identity 
of an individual who wants to access a resource. Authorization is the process by which SQL 
Server decides whether a given identity is allowed to access a resource. 

 In this section, I’ll discuss the basic issues of database access and then describe the  metadata 
where information on database access is stored. I’ll also tell you about the concept of 
 schemas and describe how they are used to access objects. 

 The following two terms now form the foundation for describing security control in SQL 
Server 2008: 

■  Securable A securable is an entity on which permissions can be granted. Securables 
include databases, schemas, and objects. 

■  Principal A principal is an entity that can access securables. A primary principal 
 represents a single user (such as a SQL Server login or a Windows login); a secondary 
principal represents multiple users (such as a role or a Windows group). 

Database Access

 Authentication is performed at two different levels in SQL Server. First, anyone who wants to 
access any SQL Server resource must be authenticated at the server level. SQL Server 2008 
security provides two basic methods for authenticating logins: Windows Authentication 
and SQL Server Authentication. In Windows Authentication, SQL Server login security is 
 integrated directly with Windows security, allowing the operating system to authenticate 
SQL Server users. In SQL Server Authentication, an administrator creates SQL Server login 
accounts within SQL Server, and any user connecting to SQL Server must supply a valid SQL 
Server login name and password. 

C03626249.indd   170 2/16/2009   4:27:36 PM



 Chapter 3 Databases and Database Files 171

 Windows Authentication uses trusted connections, which rely on the impersonation feature 
of Windows. Through impersonation, SQL Server can take on the security context of the 
Windows user account initiating the connection and test whether the SID has a valid privilege 
level. Windows impersonation and trusted connections are supported by any of the available 
network libraries when connecting to SQL Server.  

 Under Windows Server 2003 and Windows Server 2008, SQL Server can use Kerberos to 
 support mutual authentication between the client and the server, as well as to pass a client’s 
security credentials between computers so that work on a remote server can proceed using 
the credentials of the impersonated client. With Windows Server 2003 and Windows Server 
2008, SQL Server uses Kerberos and delegation to support Windows authentication as well as 
SQL Server authentication. 

 The authentication method (or methods) used by SQL Server is determined by its security mode. 
SQL Server can run in one of two security modes: Windows Authentication mode (which uses 
only Windows authentication) and Mixed mode (which can use either Windows authentication 
or SQL Server authentication, as chosen by the client). When you connect to an instance of SQL 
Server confi gured for Windows Authentication mode, you cannot  supply a SQL Server login 
name, and your Windows user name determines your level of access to SQL Server. 

 One advantage of Windows authentication has always been that it allows SQL Server to take 
advantage of the security features of the operating system, such as  password  encryption, 
password aging, and minimum and maximum length restrictions on  passwords. When  running 
on Windows Server 2003 or Windows Server 2008, SQL Server  authentication can also take 
advantage of Windows password policies. Take a look at the ALTER LOGIN  command in SQL 
Server Books Online for the full details. Also note that if you choose Windows Authentication 
 during setup, the default SQL Server sa login is disabled. If you switch to Mixed mode after 
setup, you can enable the sa login using the ALTER LOGIN  command. You can change the 
authentication mode in Management Studio by  right- clicking on the server name, choosing 
Properties, and then selecting the Security page. Under Server  authentication, select the new 
server authentication mode, as shown in Figure 3-7.  

 Under Mixed mode, Windows-based clients can connect using Windows authentication, 
and connections that don’t come from Windows clients or that come across the Internet can 
 connect using SQL Server authentication. In addition, when a user connects to an instance of 
SQL Server that has been installed in Mixed mode, the connection can always supply a SQL 
Server login name explicitly. This allows a connection to be made using a login name distinct 
from the user name in Windows.  

 All login names, whether from Windows or SQL Server authentication, can be seen in the 
sys.server_principals catalog view, which also contains a SID for each server principal. If the 
 principal is a Windows login, the SID is the same one that Windows uses to validate the user’s 
access to Windows resources. The view contains rows for server roles, Windows groups, and 
logins mapped to certifi cates and asymmetric keys, but I will not discuss those principals here.  

C03626249.indd   171 2/16/2009   4:27:36 PM



172 Microsoft SQL Server 2008 Internals

  

FIGURE 3-7 Choosing an authentication mode for your SQL Server instance in the 
Server Properties dialog box

Managing Database Security

 Login names can be the owners of databases, as seen in the sys.databases view, which has a 
column for the SID of the login that owns the database. Databases are the only resource owned 
by login names. As you’ll see, all objects within a database are owned by database principals.  

 The SID used by a principal determines which databases that principal has access to. Each 
 database has a sys.database_principals catalog view, which you can think of as a mapping 
table that maps login names to users in that particular database. Although a login name and 
a user name can have the same value, they are separate things. The following query shows 
the mapping of users in the AdventureWorks2008 database to login names, and it also shows 
the default schema (which I will discuss shortly) for each database user: 

SELECT s.name as [Login Name], d.name as [User Name],  

     default_schema_name as [Default Schema] 

   FROM sys.server_principals s  

      JOIN sys.database_principals d 

   ON d.sid = s.sid;

C03626249.indd   172 2/16/2009   4:27:36 PM



 Chapter 3 Databases and Database Files 173

 In my AdventureWorks2008 database, these are the results I receive: 

Login Name User Name  Default Schema 

---------- ---------- -------------- 

sa         dbo        dbo        

sue        sue        sue  

 Note that the login sue has the same value for the user name in this database. There is no 
guarantee that other databases that sue has access to will use the same user name. The login 
name sa has the user name dbo. This name is a special login that is used by the sa login, by 
all logins in the sysadmin role, and by whatever login is listed in sys.databases as the owner 
of the database. Within a database, it is users, not logins, who own objects, and users, not 
 logins, to whom permissions are granted.  

 The preceding results also indicate the default schema for each user in my AdventureWorks2008 
database. In this case, the default schema is the same as the user name, but that doesn’t have 
to be the case, as you’ll see in the next section.  

Databases vs. Schemas

 In the ANSI SQL-92 standard, a schema is defi ned as a collection of database objects that are 
owned by a single user and form a single namespace. A namespace is a set of objects that 
 cannot have duplicate names. For example, two tables can have the same name only if they 
are in  separate schemas, so no two tables in the same schema can have the same name. You 
can think of a schema as a container of objects. (In the context of database tools, a schema 
also refers to the catalog information that describes the objects in a schema or database. 
In SQL Server Analysis Services, a schema is a description of multidimensional objects such as 
cubes and dimensions.)  

Principals and Schemas

 Prior to SQL Server 2005, there was a CREATE SCHEMA command, but it effectively did 
 nothing because there was an implicit relationship between users and schemas that could be 
changed or removed. In fact, the relationship was so close that many users of these earlier 
versions of SQL Server were unaware that users and schemas are different things. Every user 
was the owner of a schema that has the same name as the user. If you created a user sue, for 
example, SQL Server 2000 created a schema called sue, which was sue’s default schema.  

 In SQL Server 2005 and SQL Server 2008, users and schemas are two separate things. 
To  understand the difference between users and schemas, think of the following: Permissions 
are granted to users, but objects are placed in schemas. 

 The command GRANT CREATE TABLE TO sue refers to the user sue. Let’s say sue then creates 
a table, as follows: 

CREATE TABLE mytable (col1 varchar(20));

C03626249.indd   173 2/16/2009   4:27:36 PM



174 Microsoft SQL Server 2008 Internals

 This table is placed in sue’s default schema, which may be the schema sue. If another user 
wants to retrieve data from this table, he can issue this statement: 

SELECT col1 FROM sue.mytable;

 In this statement, sue refers to the schema that contains the table. 

 Schemas can be owned by either primary or secondary principals. Although every object in a 
SQL Server 2008 database is owned by a user, you never reference an object by its owner; you 
reference it by the schema in which it is contained. In most cases, the owner of the schema 
is the same as the owner of all objects within the schema. The metadata view sys.objects 
 contains a column called principal_id, which contains the user_id of an object’s owner if it 
is not the same as the owner of the object’s schema. In addition, a user is never added to a 
 schema; schemas contain objects, not users. For backward compatibility, if you execute the  
sp_adduser or sp_grantdbaccess procedure to add a user to a database, SQL Server 2008 
creates both a user and a schema of the same name, and it makes the schema the default 
schema for the new user. However, you should get used to using the new DDL CREATE USER 
and CREATE SCHEMA commands because sp_adduser and sp_grantdbaccess have been 
 deprecated. When you create a user, you can specify a default schema if you want, but the 
default for the default schema is the dbo schema.  

Default Schemas

 When you create a new database in SQL Server 2008, several schemas are included in it. 
These include dbo, INFORMATION_SCHEMA, and guest. In addition, every database has a 
schema called sys, which provides a way to access all the system tables and views. Finally, 
 every fi xed database role except public has a schema of the same name in SQL Server 2008. 

 Users can be assigned a default schema that might or might not exist when the user is 
 created. A user can have at most one default schema at any time. As mentioned earlier, if no 
default schema is specifi ed for a user, the default schema for the user is dbo. A user’s default 
schema is used for name resolution during object creation or object reference. This can be 
both good news and bad news for backward compatibility. The good news is that if you’ve 
upgraded a database from SQL Server 2000, which has many objects in the dbo schema, your 
code can continue to reference those objects without having to specify the schema  explicitly. 
The bad news is that for object creation, SQL Server tries to create the object in the dbo 
schema rather than in a schema owned by the user creating the table. The user might not 
have permission to create objects in the dbo schema, even if that is the user’s default schema. 
To avoid confusion, in SQL Server 2008 you should always specify the schema name for all 
object access as well as object management.  

 Note When a login in the sysadmin role creates an object with a single part name, the schema 
is always dbo. However, a sysadmin can explicitly specify an alternate schema in which to create 
an object. 

C03626249.indd   174 2/16/2009   4:27:36 PM



 Chapter 3 Databases and Database Files 175

 To create an object in a schema, you must satisfy the following conditions: 

 ■ The schema must exist. 

■  The user creating the object must have permission to create the object (through 
CREATE TABLE, CREATE VIEW, CREATE PROCEDURE, and so on), either directly or 
through role membership. 

■  The user creating the object must be the owner of the schema or a member of the role 
that owns the schema, or the user must have ALTER rights on the schema or have the 
ALTER ANY SCHEMA permission in the database.  

Moving or Copying a Database

 You might need to move a database before performing maintenance on your system, after 
a hardware failure, or when you replace your hardware with a newer, faster system. Copying 
a database is a common way to create a secondary development or testing environment. You 
can move or copy a database by using a technique called detach and attach or by backing up 
the database and restoring it in the new location.  

Detaching and Reattaching a Database

 You can detach a database from a server by using a simple stored procedure. Detaching 
a database requires that no one is using the database. If you fi nd existing connections that 
you can’t terminate, you can use the ALTER DATABASE command and set the database to 
SINGLE_USER mode using one of the termination options that breaks existing connections. 
Detaching a database ensures that no incomplete transactions are in the database and that 
there are no dirty pages for this database in memory. If these conditions cannot be met, the 
detach operation fails. Once the database is detached, the entry for it is removed from the 
sys.databases catalog view and from the underlying system tables. 

 Here is the command to detach a database: 

EXEC sp_detach_db <name of database>;

 Once the database has been detached, from the perspective of SQL Server, it’s as if you 
had dropped the database. No metadata for the database remains within the SQL Server 
 instance, and the only time there might be a trace of it is when your msdb database contains 
backup and restore history for the database that has not yet been deleted. But the history of 
when backups and restores were done would provide no information about the structure or 
content of the database. If you are planning to reattach the database later, it’s a good idea to 
record the properties of all the fi les that were part of the database.  

C03626249.indd   175 2/16/2009   4:27:36 PM



176 Microsoft SQL Server 2008 Internals

 Note The DROP DATABASE command also removes all traces of the database from your 
 instance, but dropping a database is more severe than detaching. SQL Server makes sure that no 
one is connected to the database before dropping it, but it doesn’t check for dirty pages or open 
transactions. Dropping a database also removes the physical fi les from the operating system, so 
unless you have a backup, the database is really gone. 

 To attach a database, you can use the CREATE DATABASE command with the FOR 
ATTACH option. (There is a stored procedure, sp_attach_db, but it is deprecated and not 
 recommended in SQL Server 2008.) The CREATE DATABASE command gives you control over 
all the fi les and their placement and is not limited to only 16 fi les like sp_attach_db is. CREATE 
DATABASE has no such limit—in fact, you can specify up to 32,767 fi les and 32,767 fi le groups 
for each database. The syntax summary for the CREATE DATABASE command showing the 
attach options is shown here: 

CREATE DATABASE database_name  

    ON <filespec> [ ,...n ]  

    FOR { ATTACH  

        | ATTACH_REBUILD_LOG }

 Note that only the primary fi le is required to have a <fi lespec> entry because the primary fi le 
contains information about the location of all the other fi les. If you’ll be attaching existing 
fi les with a different path than when the database was fi rst created or last attached, you must 
have additional <fi lespec> entries. In any event, all the data fi les for the database must be 
available, whether or not they are specifi ed in the CREATE DATABASE command. If there are 
multiple log fi les, they must all be available.  

 However, if a read/write database has a single log fi le that is currently unavailable and if the 
database was shut down with no users or open transactions before the attach operation, 
FOR ATTACH rebuilds the log fi le and updates information about the log in the primary fi le. 
If the database is read-only, the primary fi le cannot be updated, so the log cannot be rebuilt. 
Therefore, when you attach a read-only database, you must specify the log fi le or fi les in the 
FOR ATTACH clause.  

 Alternatively, you can use the FOR ATTACH_REBUILD_LOG option, which specifi es that the 
database will be created by attaching an existing set of operating system fi les. This option 
is limited to read/write databases. If one or more transaction log fi les are missing, the log is 
 rebuilt. There must be a <fi lespec> entry specifying the primary fi le. In addition, if the log 
fi les are available, SQL Server uses those fi les instead of rebuilding the log fi les, so the FOR 
ATTACH_REBUILD_LOG will function as if you used FOR ATTACH.  

 If your transaction log is rebuilt by attaching the database, using the FOR ATTACH_REBUILD_
LOG breaks the log backup chain. You should consider making a full backup after  performing 
this operation. 

C03626249.indd   176 2/16/2009   4:27:36 PM



 Chapter 3 Databases and Database Files 177

 You typically use FOR ATTACH_REBUILD_LOG when you copy a read/write database with 
a large log to another server where the copy will be used mostly or exclusively for read 
 operations and therefore require less log space than the original database. 

 Although the documentation says that you should use CREATE DATABASE FOR ATTACH only 
on databases that were previously detached using sp_detach_db, sometimes following this 
 recommendation isn’t necessary. If you shut down the SQL Server instance, the fi les are closed, 
just as if you had detached the database. However, you are not guaranteed that all dirty pages 
from the database were written to disk before the shutdown. This should not cause a  problem 
when you attach such a database if the log fi le is available. The log fi le has a record of all 
 completed transactions, and a full recovery is performed when the database is attached to 
make sure the database is consistent. One benefi t of using the sp_detach_db procedure is that 
SQL Server records the fact that the database was shut down cleanly, and the log fi le does not 
have to be available to attach the database. SQL Server builds a new log fi le for you. This can be 
a quick way to shrink a log fi le that has become much larger than you would like, because the 
new log fi le that sp_attach_db creates for you would be the minimum size—less than 1 MB. 

Backing Up and Restoring a Database

 You can also use backup and restore to move a database to a new location, as an  alternative 
to detach and attach. One benefi t of this method is that the database does not need to come 
 offl ine at all because backup is a completely online operation. Because this book is not a  how-to 
book for database administrators, you should refer to the bibliography in the  companion 
content for several excellent book recommendations about the mechanics of  backing up and 
restoring a database and to learn best practices for setting up a backup-and-restore plan for 
your organization. Nevertheless, some issues relating to backup-and-restore processes can help 
you understand why one backup plan might be better suited to your needs than another, so I 
will discuss backup and restore briefl y in Chapter 4. Most of these issues involve the role of the 
transaction log in backup-and-restore operations. 

Moving System Databases

 You might need to move system databases as part of a planned relocation or  scheduled 
maintenance operation. If you move a system database and later rebuild the master 
 database, you must move the system database again because the rebuild operation installs 
all system databases to their default location. The steps for moving tempdb, model, and msdb 
are slightly different than for moving the master database.  

 Note In SQL Server 2008, the mssqlsystemresource database cannot be moved. If you move the 
fi les for this database, you will not be able to restart your SQL Server service. This is  incorrectly 
documented in the RTM edition of SQL Server 2008 Books Online, which indicates that the 
 mssqlsystemresource database can be moved, but this misinformation may be corrected in a 
later refresh.  

C03626249.indd   177 2/16/2009   4:27:36 PM



178 Microsoft SQL Server 2008 Internals

 Here are the steps for moving an undamaged system database (that is, not the master 
database):  

  1. For each fi le in the database to be moved, use the ALTER DATABASE command with the 
MODIFY FILE option to specify the new physical location. 

  2. Stop the SQL Server instance. 

  3. Physically move the fi les. 

  4. Restart the SQL Server instance. 

  5. Verify the change by running the following query: 

SELECT name, physical_name AS CurrentLocation, state_desc 

FROM sys.master_files 

WHERE database_id = DB_ID(N'<database_name>');

 If the system database needs to be moved because of a hardware failure, the solution is a 
bit more problematical because you might not have access to the server to run the ALTER 
DATABASE command. Here are the steps to move a damaged system database (other than 
the master database or the resource database):  

  1. Stop the instance of SQL Server if it has been started. 

  2. Start the instance of SQL Server in master-only recovery mode (by specifying tracefl ag 
3608) by entering one of the following commands at the command prompt: 

-- If the instance is the default instance: 

NET START MSSQLSERVER /f /T3608 

  

-- For a named instance: 

NET START MSSQL$instancename /f /T3608

  3. For each fi le in the database to be moved, use the ALTER DATABASE command with 
the MODIFY FILE option to specify the new physical location. You can use either 
Management Studio or the SQLCMD utility.  

  4. Exit Management Studio or the SQLCMD utility. 

  5. Stop the instance of SQL Server. 

  6. Physically move the fi le or fi les to the new location. 

  7. Restart the instance of SQL Server without tracefl ag 3608. For example, run NET START 
MSSQLSERVER. 

  8. Verify the change by running the following query: 

SELECT name, physical_name AS CurrentLocation, state_desc 

FROM sys.master_files 

WHERE database_id = DB_ID(N'<database_name>');

C03626249.indd   178 2/16/2009   4:27:36 PM



 Chapter 3 Databases and Database Files 179

Moving the master Database 

 Full details on moving the master database can be found in SQL Server Books Online, but I will 
summarize the steps here. The biggest difference between moving this database and moving 
other system databases is that you must go through the SQL Server Confi guration Manager.  

 To move the master database, follow these steps.  

  1. Open the SQL Server Confi guration Manager. Right-click the desired instance of SQL 
Server, choose Properties, and then click the Advanced tab. 

  2. Edit the Startup Parameters values to point to the new directory location for the master 
database data and log fi les. If you want, you can also move the SQL Server error log 
fi les. The parameter value for the data fi le must follow the –d parameter, the value for 
the log fi le must follow the –l parameter, and the value for the error log must follow 
the –e parameter, as shown here:  

-dE:\SQLData\master.mdf; 

-lE:\SQLData\mastlog.ldf; 

-eE:\ SQLData\LOG\ERRORLOG

  3. Stop the instance of SQL Server and physically move the fi les for to the new location. 

  4. Restart the instance of SQL Server. 

  5. Verify the fi le change for the master database by running the following query:  

SELECT name, physical_name AS CurrentLocation, state_desc 

FROM sys.master_files 

WHERE database_id = DB_ID('master');

Compatibility Levels

 Each new version of SQL Server includes a large number of new features, many of which  require 
new keywords and also change certain behaviors that existed in earlier  versions. To  provide 
 maximum backward compatibility, Microsoft allows you to set the  compatibility level of a 
 database running on a SQL Server 2008 instance to one of the  following modes: 100, 90, or 80. 
All newly created databases in SQL Server 2008 have a  compatibility level of 100 unless you 
change the level for the model database. A database that has been upgraded or attached from an 
older version has its compatibility level set to the version from which the database was upgraded.  

 All the examples and explanations in this book assume that you’re using a database in 
100 compatibility mode, unless otherwise noted. If you fi nd that your SQL statements 
 behave  differently than the ones in the book, you should fi rst verify that your database is 
in 100 compatibility mode by executing this command: 

SELECT compatibility_level FROM sys.databases

WHERE name =  '<database name>';

C03626249.indd   179 2/16/2009   4:27:36 PM



180 Microsoft SQL Server 2008 Internals

 To change to a different compatibility level, use the ALTER DATABASE command: 

ALTER DATABASE <database name>

SET COMPATIBILITY_LEVEL =  <compatibility-level>;

 Note The compatibility-level options are intended to provide a transition period while you’re 
upgrading a database or an application to SQL Server 2008. I strongly suggest that you try 
to change your applications so that compatibility options are not needed. Microsoft doesn’t 
 guarantee that these options will continue to work in future versions of SQL Server. 

 Not all changes in behavior from older versions of SQL Server can be duplicated by  changing 
the compatibility level. For the most part, the differences have to do with whether new 
 reserved keywords and new syntax are recognized, and they do not affect how your queries 
are processed internally. For example, if you change to compatibility level 80, you don’t make 
the system tables viewable or do away with schemas. But because the word MERGE is a new 
reserved keyword in SQL Server 2008 (compatibility level 100), by setting your compatibility 
level to 80 or 90, you can create a table called MERGE without using any special delimiters—or 
a table that you already have in a SQL Server 2005 database continues to be accessible if the 
database stays in the 90 compatibility level.  

 For a complete list of the behavioral differences between the compatibility levels and the 
new reserved keywords, see the documentation for ALTER DATABASE Compatibility Level in 
SQL Server Books Online. 

Summary

 A database is a collection of objects such as tables, views, and stored procedures. Although 
a typical SQL Server installation has many databases, it always includes the following three: 
master, model, and tempdb. An installation usually also includes msdb, but that database can 
be removed. (To remove msdb requires a special tracefl ag and is rarely recommended.) A SQL 
Server instance also includes the mssqlsystemresource database that cannot be seen  using 
the normal tools. Every database has its own transaction log; integrity constraints among 
 objects keep a database logically consistent. 

 Databases are stored in operating system fi les in a one-to-many relationship. Each  database 
has at least one fi le for data and one fi le for the transaction log. You can increase and 
 decrease the size of databases and their fi les easily, either manually or automatically. 

C03626249.indd   180 2/16/2009   4:27:36 PM



  181

Chapter 4

Logging and Recovery
 Kalen Delaney  

 In Chapter 3, “Databases and Database Files,” I told you about the data fi les that are created 
to hold information in a Microsoft SQL Server database. Every database also has at least one 
fi le that stores its transaction log. I referred to SQL Server transaction logs and log fi les in 
Chapter 3, but I did not really go into detail about how a log fi le is different from a data fi le 
and exactly how SQL Server uses its log fi les. In this chapter, I tell you about the structure 
of SQL Server log fi les and how they’re managed when transaction information is logged. 
I explain how SQL Server log fi les grow and when and how a log fi le can be reduced in size. 
Finally, I look at how log fi les are used during SQL Server backup and restore operations and 
how they are affected by your database’s recovery model.  

Transaction Log Basics

 The transaction log records changes made to the database and stores enough information to 
allow SQL Server to recover the database. The recovery process takes place every time a SQL 
Server instance is started, and it can take place every time SQL Server restores a database or a 
log from backup. Recovery is the process of reconciling the data fi les and the log. Any changes 
to the data that the log indicates have been committed must appear in the data fi les, and any 
changes that are not marked as committed must not appear in the data fi les. The log also 
stores information needed to roll back an operation if SQL Server receives a request to roll 
back a transaction from the client (using the ROLLBACK TRAN command) or if an error, such 
as a deadlock, generates an internal ROLLBACK. 

 Physically, the transaction log is one or more fi les associated with a database at the time 
the database is created or altered. Operations that perform database modifi cations write 
records in the transaction log that describe the changes made (including the page numbers 
of the data pages modifi ed by the operation), the data values that were added or removed, 
 information about the transaction that the modifi cation was part of, and the date and time of 
the beginning and end of the transaction. SQL Server also writes log records when certain 
internal events happen, such as checkpoints. Each log record is labeled with a Log Sequence 
Number (LSN) that is guaranteed to be unique. All log entries that are part of the same 
 transaction are linked so that all parts of a transaction can be located easily for both undo 
activities (as with a rollback) and redo activities (during system recovery). 

 The Buffer Manager guarantees that the transaction log will be written before the changes 
to the database are written. (This is called write-ahead logging.) This guarantee is possible 

C04626249.indd   181 2/16/2009   4:29:36 PM



182 Microsoft SQL Server 2008 Internals 

because SQL Server keeps track of its current position in the log by means of the LSN. Every 
time a page is changed, the LSN corresponding to the log entry for that change is written 
into the header of the data page. Dirty pages can be written to the disk only when the LSN 
on the page is less than or equal to the LSN for the last record written to the log. The Buffer 
Manager also guarantees that log pages are written in a specifi c order, making it clear 
which log blocks must be processed after a system failure, regardless of when the failure 
occurred.  

 The log records for a transaction are written to disk before the commit acknowledgement is 
sent to the client process, but the actual changed data might not have been physically  written 
out to the data pages. Although the writes to the log are asynchronous, at commit time the 
thread must wait for the writes to complete to the point of writing the commit record in the 
log for the transaction. (SQL Server must wait for the commit record to be written so that it 
knows the relevant log records are safely on the disk.) Writes to data pages are completely 
 asynchronous. That is, writes to data pages need only be posted to the operating system, and 
SQL Server can check later to see that they were completed. They don’t have to be  completed 
immediately because the log contains all the information needed to redo the work, even in 
the event of a power failure or system crash before the write completes. The system would be 
much slower if it had to wait for every I/O request to complete before proceeding. 

 Logging involves demarcating the beginning and end of each transaction (and savepoints, 
if a transaction uses them). Between the beginning and ending demarcations is  information 
about the changes made to the data. This information can take the form of the actual  “before 
and after” data, or it can refer to the operation that was performed so that those  values can 
be derived. The end of a typical transaction is marked with a Commit record, which indicates 
that the transaction must be refl ected in the database’s data fi les or redone if necessary. 
A transaction aborted during normal runtime (not system restart) due to an explicit rollback 
or something like a resource error (for example, an out-of-memory error) actually undoes 
the operation by applying changes that undo the original data modifi cations. The records of 
these changes are written to the log and marked as “compensation log records.”  

 As mentioned previously, there are two types of recovery, both of which have the goal of 
making sure the log and the data agree. A restart recovery runs every time SQL Server is 
started. The process runs on each database because each database has its own  transaction 
log. Your SQL Server error log reports the progress of restart recovery, and for each 
 database, the error log tells you how many transactions were rolled forward and how many 
were rolled back. This type of recovery is sometimes referred to as crash recovery because 
a crash, or unexpected stopping of the SQL Server service, requires the recovery process 
to be run when the service is restarted. If the service was shut down cleanly with no open 
 transactions in any database, only minimal recovery is necessary upon system restart. In SQL 
Server 2008, restart recovery can be run on multiple databases in parallel, each handled by a 
different thread. 

C04626249.indd   182 2/16/2009   4:29:36 PM



 Chapter 4 Logging and Recovery 183

 The other type of recovery, restore recovery (or media recovery), is run by request when a 
restore operation is executed. This process makes sure that all the committed transactions in 
the backup of the transaction log are refl ected in the data and that any transactions that did 
not complete do not show up in the data. I’ll talk more about restore recovery later in the 
chapter.  

 Both types of recovery must deal with two situations: when transactions are recorded as 
 committed in the log but not yet written to the data fi les, and when changes to the data 
fi les don’t correspond to committed transactions. These two situations can occur because 
 committed log records are written to the log fi les on disk every time a transaction  commits. 
Changed data pages are written to the data fi les on disk completely asynchronously,  every time 
a checkpoint occurs in a database. As I mentioned in Chapter 1, “SQL Server 2008 Architecture 
and Confi guration,” data pages can also be written to disk at other times, but the regularly 
 occurring checkpoint operations give SQL Server a point at which all changed (or dirty) pages 
are known to have been written to disk. Checkpoint operations also write log records from 
transactions in progress to disk because the cached log records are also considered to be dirty. 

 If the SQL Server service stops after a transaction commits but before the data is written out 
to the data pages, when SQL Server starts and runs recovery, the transaction must be rolled 
forward. SQL Server essentially redoes the transaction by reapplying the changes indicated 
in the transaction log. All the transactions that need to be redone are processed fi rst (even 
though some of them might need to be undone later during the next phase). This is called 
the redo phase of recovery.  

 If a checkpoint occurs before a transaction is committed, it writes the uncommitted changes 
out to disk. If the SQL Server service then stops before the commit occurs, the recovery 
 process fi nds the changes for the uncommitted transactions in the data fi les, and it has to roll 
back the transaction by undoing the changes refl ected in the transaction log. Rolling back all 
the incomplete transactions is called the undo phase of recovery.  

 Note I’ll continue to refer to recovery as a system startup function, which is its most  common 
role by far. However, remember that recovery is also run during the fi nal step of restoring a 
 database from backup or attaching a database, and can also be forced manually. In addition, 
recovery is run when creating a database snapshot, during database mirroring, or when failing 
over to a database mirror. 

 Later in this chapter, I’ll cover some special issues related to recovery during a database 
 restore. These include the three recovery models that you can set using the ALTER DATABASE 
 statement and the ability to place a named marker in the log to indicate a specifi c point to 
recover to. The discussion that follows deals with recovery in general, whether it’s performed 
when the SQL Server service restarts or when a database is being restored from a backup. 

C04626249.indd   183 2/16/2009   4:29:36 PM



184 Microsoft SQL Server 2008 Internals 

Phases of Recovery

 During recovery, only changes that occurred or were in progress since the last checkpoint are 
evaluated to determine if they need to be redone or undone. Any transactions that completed 
prior to the last checkpoint, either by being committed or rolled back, are accurately refl ected 
in the data pages, and no additional work needs to be done for them during recovery.  

 The recovery algorithm has three phases, which center around the last checkpoint record in 
the transaction log. The three phases are illustrated in Figure 4-1. 

 Phase 1: Analysis The fi rst phase is a forward pass starting at the last checkpoint record 
in the transaction log. This pass determines and constructs a dirty page table (DPT) 
 consisting of pages that might have been dirty at the time SQL Server stopped. 
An  active transaction table is also built that consists of uncommitted transactions at the 
time SQL Server stops. 

 Phase 2: Redo This phase returns the database to the state it was in at the time the SQL 
Server service stopped. The starting point for this forward pass is the start of the  oldest 
uncommitted transaction. The minimum LSN in the DPT is the fi rst time SQL Server 
expects to have to redo an operation on a page, but it needs to redo the logged 
 operations starting all the way back at the start of the oldest open transaction so that 
the necessary locks can be acquired. (Prior to SQL Server 2005, it was just allocation 
locks that needed to be reacquired. In SQL 2005 and later, all locks for those open 
transactions need to be reacquired.)  

 Phase 3: Undo This phase uses the list of active transactions (uncommitted at the time 
SQL Server came down) which were found in Phase 1 (Analysis). It rolls each of these 
 active transactions back individually. SQL Server follows the links between entries in 
the  transaction log for each transaction. Any transaction that was not committed at the 
time SQL Server stopped is undone so that none of the changes are actually refl ected 
in the database. 

Phase

CrashMinimum
recovery

LSN

Oldest
transaction

CheckpointLog
start

Undo

Redo

Analysis

Log/Time

(acquire active transaction locks)

FIGURE 4-1 The three phases of the SQL Server recovery process

C04626249.indd   184 2/16/2009   4:29:36 PM



 Chapter 4 Logging and Recovery 185

 SQL Server uses the log to keep track of the data modifi cations that were made, as well as 
any locks that were applied to the objects being modifi ed. This allows SQL Server to support 
a  feature called fast recovery when SQL Server is restarted (in the Enterprise and Developer 
 editions only). With fast recovery, the database is available as soon as the redo phase is fi nished. 
The same locks that were acquired during the original modifi cation can be reacquired to keep 
other processes from accessing the data that needs to have its changes undone; all other data 
in the database remains available. Fast recovery cannot be done during media recovery, but it is 
used by database mirroring recovery, which uses a hybrid of media recovery and restart recovery. 

 In addition, SQL Server uses multiple threads to process the recovery operations on the different 
databases simultaneously, so databases with higher ID numbers don’t have to wait for all databases 
with lower ID numbers to be completely recovered before their own recovery process starts.  

Page LSNs and Recovery

 Every database page has an LSN in the page header that refl ects the location in the  transaction 
log of the last log entry that modifi ed a row on this page. Each log record for changes to a 
data page has two LSNs associated with it. In addition to the LSN for the actual log record, it 
also keeps track of the LSN, which was on the data page before the change recorded by this 
log record. During a redo operation of transactions, the LSNs on each log record are compared 
to the page LSN of the data page that the log entry modifi ed. If the page LSN is equal to the 
previous page LSN in the log record, the operation indicated in the log entry is redone. If the 
LSN on the page is equal to or higher than the actual LSN for this log record, SQL Server skips 
the REDO operation. These two possibilities are illustrated in Figure 4-2. The LSN on the page 
cannot be between the previous and current values for the log record. 

The log record at LSN 2:210:6 refers to page 1:25, which
has an LSN value of 2:200:7, which is less than the log LSN.
Thus, the update indicated in the log record must be redone.

Data page Transaction log

Page 1:42

LSN: 2:300:10

Data page Transaction log

The log record at LSN 2:290:6 refers to page 1:42, which has an
LSN value of 2:300:10. The page LSN is greater than the log LSN.

Therefore, this page was written to disk after the indicated transaction
occurred, and the transaction does not need to be redone.

Op: Update...
Page 1:25

Row: 4
LSN: 2:210:6

Prev LSN 2:200:7

Op: Update...
Page 1:42
Row: 10

LSN: 2:290:6

Prev LSN 2:260:3

Page 1:25

LSN: 2:200:7

FIGURE 4-2 Comparing LSNs to decide whether to process the log entry during recovery

C04626249.indd   185 2/16/2009   4:29:36 PM



186 Microsoft SQL Server 2008 Internals 

 Because recovery fi nds the last checkpoint record in the log (plus transactions that were 
still active at the time of the checkpoint) and proceeds from there, recovery time is short, 
and all changes committed before the checkpoint can be purged from the log or archived. 
Otherwise, recovery could take a long time and transaction logs could become unreasonably 
large. A transaction log cannot be truncated prior to the point of the earliest transaction that 
is still open, no matter how many checkpoints have occurred since the transaction started 
and no matter how many other transactions have started or completed. If a transaction 
 remains open, the log must be preserved because it’s still not clear whether the transaction is 
done or ever will be done. The transaction might ultimately need to be rolled back or rolled 
forward. 

  Note Truncating of the transaction log is a logical operation and merely marks parts of the 
log as no longer needed, so the space can be reused. Truncation is not a physical operation and 
does not reduce the size of the transaction log fi les on disk. To reduce the physical size, a shrink 
 operation must be performed. 

 Some SQL Server administrators have noted that the transaction log seems unable to be 
 truncated, even after the log has been backed up. This problem often results from a user 
 opening a transaction and then forgetting about it. For this reason, from an  application 
 development standpoint, you should ensure that transactions are kept short. Another 
 possible reason for an inability to truncate the log relates to a table being replicated using 
transactional replication when the replication log reader hasn’t processed all the relevant log 
records yet. This situation is less common, however, because typically a latency of only a few 
seconds  occurs while the log reader does its work. You can use DBCC OPENTRAN to look for 
the earliest open transaction or the oldest replicated transaction not yet processed and then 
take corrective measures (such as killing the offending process or running the sp_repldone 
stored procedure to allow the replicated transactions to be purged). I’ll discuss problems 
with transaction  management and some possible solutions in Chapter 10, “Transactions and 
Concurrency.” I’ll discuss shrinking of the log in the next section. 

Reading the Log

 Although the log contains a record of every change made to a database, it is not intended 
to be used as an auditing tool. The transaction log is used to enable SQL Server to guarantee 
recoverability in case of statement or system failure and to allow a system administrator to 
take backups of the changes to a SQL Server database. If you want to keep a readable record 
of changes to a database, you have to do your own auditing. You can do this by creating a 
trace of SQL Server activities, using SQL Server Profi ler or one of the tracing mechanisms in 
SQL Server, as discussed in Chapter 2, “Change Tracking, Tracing, and Extended Events.”  

C04626249.indd   186 2/16/2009   4:29:36 PM



 Chapter 4 Logging and Recovery 187

  Note You might be aware that some third-party tools can read the transaction log and show 
you all the operations that have taken place in a database and can allow you to roll back any 
of those operations. The developers of these tools spent tens of thousands of hours looking at 
byte-level dumps of the transaction log fi les and correlating that information with the output 
of an undocumented DBCC LOG command. Once they had a product on the market, Microsoft 
started working with them, which made their lives a bit easier in subsequent releases. However, 
no such tools are available for SQL Server 2008. 

 Although you might assume that reading the transaction log directly would be interesting or 
even useful, it’s usually just too much information. If you know in advance that you want to 
keep track of what your server running SQL Server is doing, you’re much better off defi ning a 
trace with the appropriate fi lter to capture just the information that is useful to you.  

Changes in Log Size

 No matter how many physical fi les have been defi ned for the transaction log, SQL 
Server  always treats the log as one contiguous stream. For example, when the DBCC 
SHRINKDATABASE command (discussed in Chapter 3) determines how much the log can be 
shrunk, it does not consider the log fi les separately but instead determines the shrinkable size 
based on the entire log. 

Virtual Log Files

 The transaction log for any database is managed as a set of virtual log fi les (VLFs) whose size is 
determined internally by SQL Server based on the total size of all the log fi les and the growth 
increment used when enlarging the log. When a log fi le is fi rst created, it always has between 
2 and 16 VLFs. If the fi le size is 1 MB or less, SQL Server divides the size of the log fi le by the 
minimum VLF size [31 * 8 KB] to determine the number of VLFs. If the log fi le size is  between 
1 and 64 MB, SQL Server splits the log into 4 VLFs. If the log fi le is greater than 64 MB but 
less than or equal to 1 GB, 8 VLFs are created. If the size is more than 1 GB, there will be 
16 VLFs. When the log grows, the same formula is used to determine how many new VLFs 
to add. A log always grows in units of entire VLFs and can be shrunk only to a VLF boundary. 
(Figure 4-3 illustrates a physical log fi le, along with several VLFs.) 

 A VLF can be in one of four states: 

 Active The active portion of the log begins at the minimum LSN representing an active 
 (uncommitted) transaction. The active portion of the log ends at the last LSN written. 
Any VLFs that contain any part of the active log are considered active VLFs. (Unused 
space in the physical log is not part of any VLF.) Figure 4-3 contains two active VLFs.  

 Recoverable The portion of the log preceding the oldest active transaction is needed only 
to maintain a sequence of log backups for restoring the database to a former state. 

C04626249.indd   187 2/16/2009   4:29:36 PM



188 Microsoft SQL Server 2008 Internals 

 Reusable If transaction log backups are not being maintained or if you have already backed 
up the log, VLFs before the oldest active transaction are not needed and can be reused. 
Truncating or backing up the transaction log changes recoverable VLFs into reusable 
VLFs. For the purpose of determining which VLFs are reusable, active transactions include 
more than just open transactions. The earliest active transaction may be a transaction 
marked for replication that has not yet been processed, the beginning of a log backup 
operation, or the beginning of an internal diagnostic scan that SQL Server performs 
periodically.  

 Unused One or more VLFs at the physical end of the log fi les might not have been used yet 
if not enough logged activity has taken place or if earlier VLFs have been marked as 
reusable and then reused.  

Physical
log file

VLF #1 VLF #2 VLF #3 VLF #4

End of
logical log

Start of
logical log

(first active VLF)

Current log
position

Minimum
LSN

Last
checkpoint

Unused
space

Truncated

FIGURE 4-3 Multiple VLFs that make up a physical log fi le

Observing Virtual Log Files

 You can observe the same key properties of virtual log fi les by executing the undocumented 
command DBCC LOGINFO. This command takes no parameters, so it must be run in the 
 database for which you want information. It returns one row for each VLF. When I run this 
command in my AdventureWorks2008 database, I get the following eight rows returned (not 
all columns are shown): 

FileId   FileSize       StartOffset    FSeqNo      Status      CreateLSN

-------- -------------- -------------- ----------- ----------- -------------------

2        458752         8192           42          2           0

2        458752         466944         41          0           0

2        458752         925696         43          2           0

2        712704         1384448        44          2           0

2        4194304        2097152        47          2           44000000085601161

2        4194304        6291456        46          2           44000000085601161

2        4194304        10485760       40          2           44000000085601161

2        4194304        14680064       0           0           44000000085601161

C04626249.indd   188 2/16/2009   4:29:36 PM



 Chapter 4 Logging and Recovery 189

 The number of rows tells me how many VLFs are in my database. The FileID column indicates 
which of the log’s physical fi les contains the VLF; for my AdventureWorks2008 database, there 
is only one physical log fi le. FileSize and StartOffset are indicated in bytes, so you can see that 
the fi rst VLF starts after 8192 bytes, which is the number of bytes in a page. The fi rst physical 
page of a log fi le contains header information, not log records, so the VLF is considered to 
start on the second page. The FileSize column is actually redundant for most rows because 
the size value can be computed by subtracting the StartOffset values for two successive VLFs. 
The rows are listed in physical order, but that is not always the order in which the VLFs have 
been used. The use order (logical order) is refl ected in the column called FSeqNo (which 
stands for File Sequence Number).  

 In the output shown previously, you can see that the rows are listed in physical order  according 
to the StartOffset, but the logical order does not match. The FSeqNo values indicate that 
the seventh VLF is actually the fi rst one in use (logical) order; the last one in use order is the 
fi fth VLF in physical order. The Status column indicates whether the VLF is reusable. A status 
of 2 means that it is either active or recoverable; a status of 0 indicates that it is reusable or 
 completely unused. (A completely unused VLF has a FSeqNo value of 0, as in the eighth row of 
my output.) As I mentioned previously, truncating or backing up the transaction log changes 
 recoverable VLFs into reusable VLFs, so a status of 2 changes to a status of 0 for all VLFs that 
don’t include active log records. In fact, that’s one way to tell which VLFs are active: the VLFs 
that still have a status of 2 after a log backup or truncation must contain records from  active 
transactions. VLFs with a status of 0 can be reused for new log records, and the log does not 
need to grow to keep track of the activity in the database. On the other hand, if all the VLFs 
in the log have a status of 2, SQL Server needs to add new VLFs to the log to record new 
 transaction activity. One last column shown in the DBCC LOG output shown previously is called 
CreateLSN. That column contains an LSN value; in fact, it is the current LSN at the time the VLF 
was added to the transaction log. If the CreateLSN value is 0, it means the VLF was part of the 
original log fi le created when the database was created. You can also tell how many VLFs were 
added in any one operation by noticing which VLFs have the same value for CreateLSN. In my 
output, the CreateLSN values indicate that my log fi le only grew once, and four new VLFs were 
added at the same time.  

Multiple Log Files

 I mentioned previously that SQL Server treats multiple physical log fi les as if they were one 
sequential stream. This means that all the VLFs in one physical fi le are used before any VLFs 
in the second fi le are used. If you have a well-managed log that is regularly backed up or 
truncated, you might never use any log fi les other than the fi rst one. If none of the VLFs in 
multiple physical log fi les is available for reuse when a new VLF is needed, SQL Server adds 
new VLFs to each physical log fi le in a round-robin fashion.  

 You can actually see the order of usage of different physical fi les by examining the output 
of DBCC LOGINFO. The fi rst column is the fi le_id of the physical fi le. If we can capture the 
output of DBCC LOGINFO into a table, we can then sort it in a way that is useful to us. The 

C04626249.indd   189 2/16/2009   4:29:36 PM



190 Microsoft SQL Server 2008 Internals 

following code creates a table called sp_loginfo that can hold the output of DBCC LOGINFO. 
Because the table is created in the master database and starts with the three characters ‘sp_’, 
it can be accessed and modifi ed in any database: 

USE master

GO

IF EXISTS  (SELECT 1 FROM sys.tables

   WHERE name = 'sp_LOGINFO')

 DROP TABLE sp_loginfo;

GO

CREATE TABLE sp_LOGINFO 

(FileId tinyint,

 FileSize bigint, 

 StartOffset bigint,

 FSeqNo int,

 Status tinyint,

 Parity tinyint,

 CreateLSN numeric(25,0) );

GO

 The following code creates a new database called TWO_LOGS and then copies a large table 
from the AdventureWorks2008 sample database into TWO_LOGS, causing the log to grow:  

USE Master

GO

IF EXISTS (SELECT * FROM sys.databases 

   WHERE name = 'TWO_LOGS')

    DROP DATABASE TWO_LOGS;

GO

CREATE DATABASE TWO_LOGS 

  ON PRIMARY

  (NAME = Data , 

    FILENAME =

    'C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\TWO_LOGS.mdf' 

        , SIZE = 100 MB)

   LOG ON

  (NAME = TWO_LOGS1,

    FILENAME =

    'C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\TWO_LOGS1.ldf' 

        , SIZE = 5 MB

        , MAXSIZE = 2 GB),

  (NAME = TWO_LOGS2, 

    FILENAME =

    'C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\TWO_LOGS2.ldf' 

        , SIZE = 5 MB);

GO

 If you run DBCC LOGINFO, you’ll notice that it returns VLFs sorted by FileID, and initially, the 
fi le sequential number values (FSeqNo) are also in order:  

USE TWO_LOGS

GO

DBCC LOGINFO;

GO

C04626249.indd   190 2/16/2009   4:29:36 PM



 Chapter 4 Logging and Recovery 191

 Now we can insert some rows into the database, by copying from another table: 

SELECT * INTO Orders

    FROM AdventureWorks2008.Sales.SalesOrderDetail;

GO

 If you run DBCC LOGINFO again, you see that after the SELECT INTO operation, even though 
there are many more rows for each FileID, the output is still sorted by FileID, and FSeqNo values 
are not related at all. Instead, we can save the output of DBCC LOGINFO in the sp_loginfo table, 
and sort by FSeqNo: 

TRUNCATE TABLE sp_LOGINFO;

INSERT INTO sp_LOGINFO

   EXEC ('DBCC LOGINFO');

GO

-- Unused VLFs have a Status of 0, so the CASE forces those to the end

SELECT * FROM sp_LOGINFO

ORDER BY CASE FSeqNo WHEN 0 THEN 9999999 ELSE FSeqNo END;

GO

 The output of the SELECT is shown here: 

FileId StartOffset          FSeqNo      Status CreateLSN

------ -------------------- ----------- ------ -----------------

2      8192                 43          0      0

2      1253376              44          0      0

2      2498560              45          0      0

2      3743744              46          0      0

3      8192                 47          0      0

3      1253376              48          0      0

3      2498560              49          0      0

3      3743744              50          0      0

2      5242880              51          0      50000000247200092

2      5496832              52          0      50000000247200092

3      5242880              53          0      51000000035600288

3      5496832              54          0      51000000035600288

2      5767168              55          0      53000000037600316

2      6021120              56          0      53000000037600316

3      5767168              57          0      56000000010400488

3      6021120              58          0      56000000010400488

2      6356992              59          0      58000000007200407

2      6610944              60          0      58000000007200407

3      6356992              61          0      60000000025600218

3      6610944              62          0      60000000025600218

2      7012352              63          0      62000000023900246

2      7266304              64          0      62000000023900246

3      7012352              65          0      64000000037100225

3      7266304              66          0      64000000037100225

2      7733248              67          0      66000000037600259

2      7987200              68          0      66000000037600259

2      8241152              69          0      66000000037600259

3      7733248              70          0      68000000035500288

3      7987200              71          0      68000000035500288

C04626249.indd   191 2/16/2009   4:29:36 PM



192 Microsoft SQL Server 2008 Internals 

3      8241152              72          0      68000000035500288

2      8519680              73          0      71000000037300145

2      8773632              74          0      71000000037300145

2      9027584              75          0      71000000037300145

3      8519680              76          0      75000000018700013

3      8773632              77          2      75000000018700013

3      9027584              0           0      75000000018700013

 Now you can notice that after the fi rst eight initial VLFs are used (the ones with a CreateLSN 
value of 0), the VLFs alternate between the physical fi les. Because of the amount of log 
growth each time, several new VLFs are created, fi rst from FileID 2 and then from FileID 3. 
The last VLF added to FileID 3 has not been used yet. 

 So there is really no reason to use multiple physical log fi les if you have done thorough 
 testing and have determined the optimal size of your database’s transaction log. However, 
if you fi nd that the log needs to grow more than expected and if the volume containing the 
log does not have suffi cient free space to allow the log to grow enough, you might need to 
create a second log fi le on another volume.  

Automatic Truncation of Virtual Log Files

 SQL Server assumes you’re not maintaining a sequence of log backups if any of the following 
is true: 

■  You have confi gured the database to truncate the log on a regular basis by setting the 
recovery model to SIMPLE. 

■  You have never taken a full database backup. 

 Under any of these circumstances, SQL Server truncates the database’s transaction log every 
time it gets “full enough.” (I’ll explain this in a moment.) The database is considered to be in 
autotruncate mode. 

 Remember that truncation means that all log records prior to the oldest active transaction 
are invalidated and all VLFs not containing any part of the active log are marked as reusable. 
It does not imply shrinking of the physical log fi le. In addition, if your database is a publisher 
in a replication scenario, the oldest open transaction could be a transaction marked for 
 replication that has not yet been replicated.  

 “Full enough” means that there are more log records than can be redone during system startup 
in a reasonable amount of time—the recovery interval. You can change the recovery interval 
manually by using the sp_confi gure stored procedure or by using SQL Server Management 
Studio, as discussed in Chapter 1. However, it is best to let SQL Server autotune this value. In 
most cases, this recovery interval value is set to one minute. By default, sp_confi gure shows zero 
minutes, meaning SQL Server autotunes the value. SQL Server bases its recovery interval on the 
estimate that 10 MB worth of transactions can be recovered in one minute. 

C04626249.indd   192 2/16/2009   4:29:36 PM



 Chapter 4 Logging and Recovery 193

 The actual log truncation is invoked by the checkpoint process, which is usually sleeping and 
is awakened only on demand. Each time a user thread calls the log manager, the log manager 
checks the size of the log. If the size exceeds the amount of work that can be recovered during 
the recovery interval, the checkpoint thread is woken up. The checkpoint thread checkpoints 
the database and then truncates the inactive portion of the log. 

 In addition, if the log ever gets to 70 percent full while the database is in autotruncate mode, 
the log manager wakes the checkpoint thread to force a checkpoint. Growing the log is much 
more expensive than truncating it, so SQL Server truncates the log whenever it can. 

 Note If the log manager is never needed, the checkpoint process won’t be invoked and the 
truncation never happens. If you have a database in autotruncate mode, for which the transaction 
log has VLFs with a status of 2, you do not see the status change to 0 until some logging activity 
is required in the database.  

 If the log is regularly truncated, SQL Server can reuse space in the physical fi le by cycling 
back to an earlier VLF when it reaches the end of the physical log fi le. In effect, SQL Server 
 recycles the space in the log fi le that is no longer needed for recovery or backup purposes. My 
AdventureWorks2008 database is in this state because I have never made a full database backup.  

Maintaining a Recoverable Log

 If a log backup sequence is being maintained, the part of the log before the minimum LSN 
 cannot be overwritten until those log records have actually been backed up. The VLF status stays 
at 2 until the log backup occurs. After the log backup, the status changes to 0 and SQL Server 
can cycle back to the beginning of the fi le. Figure 4-4 depicts this cycle in a simplifi ed fashion. 
As you can see from the FSeqNo values in the earlier output from the AdventureWorks2008 
 database, SQL Server does not always reuse the log fi les in their physical sequence. 

Physical
log file

VLF #1 VLF #2 VLF #3 VLF #4

End of
logical log

Start of
logical log

Minimum
LSN

Last
checkpoint

Current log
position

FIGURE 4-4 The active portion of the log cycling back to the beginning of the physical log fi le

C04626249.indd   193 2/16/2009   4:29:36 PM



194 Microsoft SQL Server 2008 Internals 

 Note If a database is not in autotruncate mode and you are not performing regular log backups, 
your transaction log is never truncated. If you are doing only full database backups, you must 
truncate the log manually to keep it at a manageable size. 

 The easiest way to tell whether a database is in autotruncate mode is by using the catalog 
view called sys.database_recovery_status and looking in the column called last_log_backup_lsn. 
If that column value is null, the database is in autotruncate mode.  

 You can actually observe the difference between a database that is in autotruncate mode and 
a database that isn’t by running a simple script in the pubs database, which is shown at the 
end of this paragraph. This script works so long as you have never made a full backup of the 
pubs database. If you have never made any modifi cations to pubs, and you installed it  using 
the Instpubs.sql script, the size of its transaction log fi le is just about 0.75 MB, which is the 
size at creation. The following script creates a new table in the pubs database, inserts three 
records, and then updates those records 1,000 times. Each update is an individual  transaction, 
and each one is written to the transaction log. However, you should note that the log does 
not grow at all, and the number of VLFs does not increase even after 3,000  update records 
are written. (If you’ve already taken a backup of pubs, you might want to  re-create the 
 database before trying this example. You can do that by running the script Instpubs.sql again, 
which you can download from the companion Web site, http://www.SQLServerInternals.com/
companion.) However, even though the number of VLFs does not change, you see that the 
FSeqNo values change. Log records are being generated, and as each VLF is reused, it gets a 
new FSeqNo value:  

USE pubs;

-- First look at the VLFs for the pubs database 

DBCC LOGINFO;

-- Now verify that pubs is in auto truncate mode 

SELECT last_log_backup_lsn  

FROM master.sys.database_recovery_status 

WHERE database_id = db_id('pubs'); 

GO 

CREATE TABLE newtable (a int); 

GO 

INSERT INTO newtable VALUES (10); 

INSERT INTO newtable VALUES (20); 

INSERT INTO newtable VALUES (30); 

GO

SET NOCOUNT ON 

DECLARE @counter int; 

SET @counter = 1 ;

WHILE @counter < 1000 BEGIN 

    UPDATE newtable SET a = a + 1; 

    SET @counter = @counter + 1; 

END;

 Now make a backup of the pubs database after making sure that the database is not in the 
SIMPLE recovery model. I’ll discuss recovery models later in this chapter, but for now, you 

C04626249.indd   194 2/16/2009   4:29:36 PM



 Chapter 4 Logging and Recovery 195

can just make sure that pubs is in the appropriate recovery model by executing the following 
command: 

ALTER DATABASE pubs SET RECOVERY FULL;

 You can use the following statement to make the backup, substituting the path shown with 
the path to your SQL Server installation, or the path to any backup location: 

BACKUP DATABASE pubs to disk =  

    'c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\backup\pubs.bak';

 As soon as you make the full backup, you can verify that the database is not in autotruncate 
mode, again by looking at the database_recovery_status view: 

SELECT last_log_backup_lsn  

FROM master.sys.database_recovery_status 

WHERE database_id = db_id('pubs');

 This time, you should get a non-null value for last_log_backup_lsn to indicate that log backups 
are expected. Next, run the update script again, starting with the DECLARE statement. You 
should see that the physical log fi le has grown to accommodate the log records added and 
that there are more VLFs. The initial space in the log could not be reused because SQL Server 
assumed that you were saving that information for transaction log backups. 

 Now you can try to shrink the log back down again. The fi rst thing that you need to do is 
truncate the log, which you can do by setting the recovery model to SIMPLE as follows: 

ALTER DATABASE pubs SET RECOVERY SIMPLE;

 If you then issue the following command, or if you issue the DBCC SHRINKDATABASE 
 command for the pubs database, SQL Server shrinks the log fi le: 

DBCC SHRINKFILE (2);

 At this point, you should notice that the physical size of the log fi le has been reduced. If a log 
is truncated without any shrink command issued, SQL Server marks the space used by the 
truncated records as available for reuse but does not change the size of the physical fi le.  

 In SQL Server 7.0, where this log architecture was fi rst introduced, running the preceding 
commands exactly as specifi ed did not always shrink the physical log fi le. When the log fi le 
did not shrink, it was because the active part of the log was located at the end of the physical 
fi le. Physical shrinking can take place only from the end of the log, and the active portion is 
never shrinkable. To remedy this situation, you had to enter some dummy transactions after 
truncating the log to force the active part of the log to move around to the beginning of the 
fi le. In versions later than SQL Server 7.0, this process is unnecessary. If a shrink command has 
already been issued, truncating the log internally generates a series of NO-OP (or dummy) 
log records that force the active log to move from the physical end of the fi le. Shrinking 
 happens as soon as the log is no longer needed. 

C04626249.indd   195 2/16/2009   4:29:37 PM



196 Microsoft SQL Server 2008 Internals 

Automatic Shrinking of the Log

 Remember that truncating is not shrinking. A database should be truncated so that it is most 
shrinkable, and if the log is in autotruncate mode and the autoshrink option is set, the log is 
physically shrunk at regular intervals. 

 If a database has the autoshrink option on, an autoshrink process kicks in every 30 minutes (as 
discussed in Chapter 3) and determines the size to which the log should be shrunk. The log 
manager accumulates statistics on the maximum amount of log space used in the 30-minute 
interval between autoshrink processes. The autoshrink process marks the shrinkpoint of the 
log as 125 percent of the maximum log space actually used or the minimum size of the log, 
whichever is larger. (Minimum size is the creation size of the log or the size to which it has 
been manually increased or decreased.) The log then shrinks to that size whenever it gets the 
chance, which is when it gets truncated or backed up. It’s possible to have autoshrink  without 
having the database in autotruncate mode, although you cannot guarantee that the log 
 actually shrinks. For example, if the log is never backed up, none of the VLFs are marked as 
reusable, so no shrinking can take place. 

 As a fi nal note, you need to be aware that just because a database is in autotruncate mode, 
you cannot guarantee that the log won’t grow. (It is the converse that you can be sure of—
that if a database is not in autotruncate mode, the log will grow.) Autotruncate means only 
that VLFs that are considered recoverable are marked as reusable at regular intervals. But VLFs 
in an active state are not affected. If you have a long-running transaction (which might be a 
transaction that someone forgot to commit), all the VLFs that contain any log records since 
that long-running transaction started are considered active and can never be reused. One 
uncommitted transaction can mean the difference between a very manageable transaction 
log size and a log that uses more disk space than the database itself and continues to grow. 

Log File Size

 You can see the current size of the log fi le for all databases, as well as the percentage of the log 
fi le space that has been used, by running the command DBCC SQLPERF(‘logspace’). However, 
 because it is a DBCC command, it’s hard to fi lter the rows to get just the rows for a single 
 database. Instead, you can use the dynamic management view sys.dm_os_performance_counters 
and retrieve the percentage full for each database’s log:  

SELECT instance_name as [Database],

       cntr_value as "LogFullPct"

FROM sys.dm_os_performance_counters

WHERE counter_name LIKE 'Percent Log Used%'

    AND instance_name not in ('_Total', ‘mssqlsystemresource') 

    AND cntr_value > 0;

 The fi nal condition is needed to fi lter out databases that have no log fi le size reported. This 
includes any database that is unavailable because it has not been recovered or is in a suspect 
state, as well as any database snapshots, which have no transaction log.  

C04626249.indd   196 2/16/2009   4:29:37 PM



 Chapter 4 Logging and Recovery 197

Backing Up and Restoring a Database

 As you probably know by now, this book is not intended to be a how-to book for database 
administrators. The bibliography in the companion content lists several excellent books that 
can teach you the mechanics of making database backups and restoring and can offer best 
practices for setting up a backup-and-restore plan for your organization. Nevertheless, some 
important issues relating to backup and restore processes can help you understand why one 
backup plan might be better suited to your needs than another. Most of these issues involve 
the role the transaction log plays in backup and restore operations, so I’ll discuss the main 
ones in this section. 

Types of Backups

 No matter how much fault tolerance you have implemented on your database system, it is no 
replacement for regular backups. Backups can provide a solution to accidental or  malicious 
data modifi cations, programming errors, and natural disasters (if you store backups in a  remote 
 location). If you opt for the fastest possible speed for data fi le access at the cost of fault  tolerance, 
backups provide insurance in case your data fi les are damaged. In addition,  backups are also the 
preferred way to manage copying of databases to other machines or other instances. 

 If you’re using a backup to restore lost data, the amount of data that is potentially recoverable 
depends on the type of backup. SQL Server 2008 has four main types of backups (and a couple 
of variations on those types): 

 Full backup A full database backup basically copies all the pages from a database onto a 
backup device, which can be a local or network disk fi le, or a local tape drive. 

 Differential backup A differential backup copies only the extents that were changed since 
the last full backup was made. The extents are copied onto a specifi ed backup device. 
SQL Server can tell quickly which extents need to be backed up by examining the bits on 
the Differential Changed Map (DCM) pages for each data fi le in the database. DCM pages 
are big bitmaps, with one bit representing an extent in a fi le, just like the Global Allocation 
Map (GAM) and Shared Global Allocation Map (SGAM) pages that I  discussed in Chapter 3. 
Each time a full backup is made, all the bits in the DCM are cleared to 0. When any page in 
an extent is changed, its corresponding bit in the DCM page is changed to 1. 

 Log backup  In most cases, a log backup copies all the log records that have been written 
to the transaction log since the last full or log backup was made. However, the exact 
behavior of the BACKUP LOG command depends on your database’s recovery mode 
setting. I’ll discuss recovery modes shortly. 

 File and fi legroup backup File and fi legroup backups are intended to increase fl exibility in 
scheduling and media handling compared to full backups, in particular for very large 
databases. File and fi legroup backups are also useful for large databases that contain 
data with varying update characteristics, meaning some fi legroups allow both read and 
write operations and some are read-only. 

C04626249.indd   197 2/16/2009   4:29:37 PM



198 Microsoft SQL Server 2008 Internals 

 More Info For full details on the mechanics of defi ning backup devices, making backups, and 
scheduling backups to occur at regular intervals, consult SQL Server Books Online or one of the 
SQL Server administration books listed in the bibliography in the online companion content.  

 A full backup can be made while your database is in use. This is considered a “fuzzy” backup—
that is, it is not an exact image of the state of the database at any particular point in time. 
The backup threads just copy extents, and if other processes need to make changes to those 
 extents while the backup is in progress, they can do so. 

 To maintain consistency for either full, differential, or fi le backups, SQL Server records the 
current log sequence number (LSN) at the time the backup starts and again at the time 
the backup ends. This allows the backup to capture the relevant parts of the log as well. The 
relevant part starts with the oldest active transaction at the time of the fi rst recorded LSN 
and ends with the second recorded LSN.  

 As I mentioned previously, what gets recorded with a log backup depends on the  recovery 
model that you are using. So before I talk about log backup in detail, I’ll tell you about 
 recovery models. 

Recovery Models

 As I said in Chapter 3 when I discussed database options, the RECOVERY option has three 
possible values: FULL, BULK_LOGGED, or SIMPLE. The value that you choose determines the 
size of your transaction log, the speed and size of your transaction log backups (or whether 
you can make log backups at all), as well as the degree to which you are at risk of losing 
committed transactions in case of media failure. 

FULL Recovery Model

 The FULL recovery model provides the least risk of losing work in the case of a damaged 
data fi le. If a database is in this mode, all operations are fully logged. This means that in 
 addition to logging every row added with the INSERT operation, removed with the DELETE 
 operation, or changed with the UPDATE operation, SQL Server also writes to the transaction 
log in its entirety every row inserted using a bcp or BULK INSERT operation. If you experience 
a media failure for a database fi le and need to recover a database that was in FULL recovery 
mode and you’ve been making regular transaction log backups preceded by a full database 
backup, you can restore to any specifi ed point in time up to the time of the last log backup. 
In  addition, if your log fi le is available after the failure of a data fi le, you can restore up to the 
last transaction committed before the failure. SQL Server 2008 also supports a feature called 
log marks, which allows you to place reference points in the transaction log. If your database 
is in FULL recovery mode, you can choose to recover to one of these log marks. 

C04626249.indd   198 2/16/2009   4:29:37 PM



 Chapter 4 Logging and Recovery 199

 In FULL recovery mode, SQL Server also fully logs CREATE INDEX operations. When you 
 restore from a transaction log backup that includes index creations, the recovery operation 
is much faster because the index does not have to be rebuilt—all the index pages have been 
captured as part of the database backup. Prior to SQL Server 2000, SQL Server logged only 
the fact that an index had been built, so when you restored from a log backup, the entire 
 index would have to be built all over again. 

 So FULL recovery mode sounds great, right? As always, there are trade-offs. The biggest 
trade-off is that the size of your transaction log fi les can be enormous, so it can take much 
longer to make log backups than with releases prior to SQL Server 2000. 

BULK_LOGGED Recovery Model

 The BULK_LOGGED recovery model allows you to restore a database completely in case of 
 media failure and also gives you the best performance and least log space usage for certain bulk 
 operations. In FULL recovery mode, these operations are fully logged, but in BULK_LOGGED 
recovery mode, they are logged only minimally. This can be much more effi cient than normal 
logging because in general, when you write data to a user database, you must write it to disk 
twice: once to the log and once to the database itself. This is because the database system uses 
an undo/redo log so it can roll back or redo transactions when needed. Minimal logging consists 
of logging only the information that is required to roll back the transaction without supporting 
point-in-time recovery. These bulk operations include:  

■  SELECT INTO  

❏  This command always creates a new table in the default fi legroup. 

■  Bulk import operations, including the following: 

❏  The BULK INSERT command 

❏  The bcp executable 

■  The INSERT INTO . . . SELECT command, when data is selected using the 
OPENROWSET(BULK. . .) function. 

■  The INSERT INTO . . . SELECT command, when more than an extent’s worth of data is 
 being inserted into a table without nonclustered indexes and the TABLOCK hint is used. 
If the destination table is empty, it can have a clustered index. If the destination table 
is already populated, it cannot. (This option can be useful to create a new table in a 
 nondefault fi legroup with minimal logging. The SELECT INTO command does not  allow 
specifying a fi legroup.) 

■  Partial updates to columns having a large value data type (which will be discussed in 
Chapter 7, “Special Storage”). 

■  Using the .WRITE clause in the UPDATE statement when inserting or appending new 
data. 

C04626249.indd   199 2/16/2009   4:29:37 PM



200 Microsoft SQL Server 2008 Internals 

■  WRITETEXT and UPDATETEXT statements when inserting or appending new data into 
LOB data columns (text, ntext, or image).  

❏  Minimal logging is not used in these cases when existing data is updated. 

■  Index operations 

❏  CREATE INDEX, including indexes on views 

❏  ALTER INDEX REBUILD or DBCC DBREINDEX 

❏  DROP INDEX. The creation of the new heap is minimally logged, but the page 
deallocation is always fully logged. 

 When you execute one of these bulk operations, SQL Server logs only the fact that the  operation 
occurred and information about space allocations. Every data fi le in a SQL Server 2008 database 
has at least one special page called a Bulk Changed Map (BCM) page, or also called a Minimally 
Logged Map (ML Map) page, which is managed much like the GAM and SGAM pages that 
I  discussed in Chapter 3 and the DCM pages that I mentioned previously. Each bit on a BCM 
page represents an extent, and if the bit is 1, it means that this extent has been changed by a 
minimally logged bulk operation since the last transaction log backup. A BCM page is located 
on the eighth page of every data fi le and every 511,230 pages thereafter. All the bits on a BCM 
page are reset to 0 every time a log backup occurs. 

 Because of the ability to minimally log bulk operations, the operations themselves can 
 potentially be carried out much faster than in FULL recovery mode. However, the speed 
 improvement is not guaranteed. The only guarantee with minimally logged operations is that 
the log itself is smaller. Minimal logging might actually be slower than fully logged operations 
in certain cases. Although there are not as many log records to write, with minimal logging 
SQL Server forces the data pages to be fl ushed to disk before the transaction commits. This 
forced fl ushing of the data pages can be very expensive, especially when the I/O for these 
pages is random. You can contrast this to full logging, which is always sequential I/O. If you 
don’t have a fast I/O subsystem, it can become very noticeable that minimal logging is slower 
than full logging. 

 In general, minimal logging does not mean no logging, and it doesn’t minimize logging 
for all operations. It is a feature that minimizes the amount of logging for the operations 
 described previously, and if you have a high-performance I/O subsystem, performance likely 
improves as well. But on lower-end machines, minimally logged operations are slower than 
fully logged operations. 

 If your database is in BULK_LOGGED mode and you have not actually performed any bulk 
operations, you can restore your database to any point in time or to a named log mark 
 because the log contains a full sequential record of all changes to your database. 

 The trade-off to having a smaller log comes during the backing up of the log. In addition to 
copying the contents of the transaction log to the backup media, SQL Server scans the BCM 

C04626249.indd   200 2/16/2009   4:29:37 PM



 Chapter 4 Logging and Recovery 201

pages and backs up all the modifi ed extents along with the transaction log itself. The log 
fi le itself stays small, but the backup of the log can be many times larger. So the log backup 
takes more time and might take up a lot more space than in FULL recovery mode. The time 
it takes to restore a log backup made in BULK_LOGGED recovery mode is similar to the time 
it takes to restore a log backup made in FULL recovery mode. The operations don’t have to 
be redone; all the information necessary to recover all data and index structures is available 
in the log backup. 

SIMPLE Recovery Model

 The SIMPLE recovery model offers the simplest backup-and-restore strategy. Your  transaction 
log is truncated whenever a checkpoint occurs, which happens at regular, frequent  intervals. 
Therefore, the only types of backups that can be made are those that don’t require log 
 backups. These types of backups are full database backups, differential backups, partial full 
and differential backups, and fi legroup backups for read-only fi legroups. You get an error if 
you try to back up the log while in SIMPLE recovery mode. Because the log is not needed for 
backup purposes, sections of it can be reused as soon as all the transactions that it contains 
are committed or rolled back, and the transactions are no longer needed for recovery from 
server or transaction failure. In fact, as soon as you change your database to SIMPLE recovery 
model, the log is truncated. 

 Keep in mind that SIMPLE logging does not mean no logging. What’s “simple” is your backup 
strategy, because you never need to worry about log backups. However, all operations are 
logged in SIMPLE mode, even though some operations may have fewer log records in that 
mode than in FULL mode. A log for a database in SIMPLE mode might not grow as much as a 
database in FULL mode because the bulk operations discussed earlier in this chapter also are 
minimally logged in SIMPLE mode. This does not mean you don’t have to worry about the 
size of the log in SIMPLE mode. As in any recovery mode, log records for active  transactions 
cannot be truncated, and neither can log records for any transaction that started after the 
oldest open transaction. So if you have large or long-running transactions, you still might 
need lots of log space.  

Compatibility with Database Options

 Microsoft introduced these recovery models in SQL Server 2000 and intended them to 
 replace the select into/bulkcopy and trunc. log on chkpt. database options. SQL Server 7.0 
and earlier versions required that the select into/bulkcopy option be set for you to perform a 
SELECT INTO or bulk copy operation. The trunc. log on chkpt. option forced your  transaction 
log to be  truncated every time a checkpoint occurred in the database. This option was 
 recommended only for test or development systems, not for production servers. You can still 
set these options by using the sp_dboption procedure, but not by using the ALTER DATABASE 
command. However, with versions later than SQL Server 7.0, changing either of these options 
 using sp_dboption also changes your recovery model, and changing your recovery model 

C04626249.indd   201 2/16/2009   4:29:37 PM



202 Microsoft SQL Server 2008 Internals 

changes the value of one or both of these options, as you’ll see here. The recommended 
 method for changing your database recovery mode is to use the ALTER DATABASE command:  

ALTER DATABASE <database_name> 

    SET RECOVERY [FULL | BULK_LOGGED | SIMPLE]

 To see what mode your database is in, you can inspect the sys.databases view. For example, 
this query returns the recovery mode and the state of the AdventureWorks2008 database: 

SELECT name, database_id, suser_sname(owner_sid) as owner , 

        state_desc, recovery_model_desc 

FROM sys.databases 

WHERE name = 'AdventureWorks2008'

 As I just mentioned, you can change the recovery mode by changing the database options. For 
example, if your database is in FULL recovery mode and you change the select into/bulkcopy 
option to true, your database recovery mode changes to BULK_LOGGED. Conversely, if you 
force the database back into FULL mode by using ALTER DATABASE, the value of the select into/
bulkcopy option changes. If you’re using SQL Server 2008 Standard or Enterprise edition, the 
model  database starts in FULL recovery mode, so all your new databases will also be in FULL 
mode. You can change the mode of the model database or any other user database by using 
the ALTER DATABASE command. 

 To make best use of your transaction log, you can switch between FULL and BULK_LOGGED mode 
without worrying about your backup scripts failing. Prior to SQL Server 2000, once you performed 
a SELECT INTO command or a bulk copy, you could no longer back up your transaction log. So 
if you had automatic log backup scripts scheduled to run at regular intervals, they would break 
and generate an error. This can no longer happen. You can run SELECT INTO or bulk copy in any 
recovery mode, and you can back up the log in either FULL or BULK_LOGGED mode. You might 
want to switch between FULL and BULK_LOGGED modes if you usually operate in FULL mode but 
occasionally need to perform a bulk operation quickly. You can change to BULK_LOGGED and pay 
the price later when you back up the log; the backup simply takes longer and is larger. 

 You can’t easily switch to and from SIMPLE mode if you’re trying to maintain a sequence of 
log backups. Switching into SIMPLE mode is no problem, but when you switch back to FULL 
or BULK_LOGGED, you need to plan your backup strategy and be aware that there are no log 
backups up to that point. So when you use the ALTER DATABASE command to change from 
SIMPLE to FULL or BULK_LOGGED, you should fi rst make a complete database backup in 
order for the change in behavior to be complete. Remember that in SIMPLE recovery mode, 
your transaction log is truncated at regular intervals. This recovery mode isn’t  recommended 
for production databases, where you need maximum transaction recoverability. The only 
time that SIMPLE mode is really useful is in test and development situations or for small 
 databases that are primarily read-only. I suggest that you use FULL or BULK_LOGGED for 
your production databases and switch between those modes whenever you need to. 

C04626249.indd   202 2/16/2009   4:29:37 PM



 Chapter 4 Logging and Recovery 203

Choosing a Backup Type

 If you’re responsible for creating the backup plan for your data, you need to choose not only 
a recovery model but also the kind of backup to make. I mentioned the three main types: 
full, differential, and log. In fact, you can use all three types together. To accomplish any type 
of full restore of a database, you must make a full database backup occasionally, to use as a 
starting point for other types of backups. In addition, you may choose among a differential 
backup, a log backup, or a combination of both. Here are the characteristics of these last two 
types, which can help you decide between them. 

 A differential backup 

■  Is faster if your environment includes a lot of changes to the same data. It backs up 
only the most recent change, whereas a log backup captures every individual update. 

■  Captures the entire B-tree structures for new indexes, whereas a log backup captures 
each individual step in building the index. 

■  Is cumulative. When you recover from a media failure, only the most recent  differential 
backup needs to be restored because it contains all the changes since the last full 
 database backup. 

 A log backup 

■  Allows you to restore to any point in time because it is a sequential record of all 
changes. 

■  Can be made after the database media fails, so long as the log is available. This allows 
you to recover right up to the point of the failure. The last log backup (called the tail of 
the log) must specify the WITH NO_TRUNCATE option in the BACKUP LOG command if 
the database itself is unavailable. 

■  Is sequential and discrete. Each log backup contains completely different log records. 
When you use a log backup to restore a database after a media failure, all log backups 
must be applied in the order that they were made. 

 Remember that backups can be created as compressed backups, as briefl y discussed in 
Chapter 1. This can greatly reduce the amount of time and space required to actually  create 
the backup (full, differential, or log) on the backup device. The algorithm for  compressing 
backups is very different than the algorithms used for row or page data compression. 
I  elaborate on the differences in Chapter 7. 

Restoring a Database

 How often you make each type of backup determines two things: how fast you can restore 
a database and how much control you have over which transactions are restored. Consider 

C04626249.indd   203 2/16/2009   4:29:37 PM



204 Microsoft SQL Server 2008 Internals 

the schedule in Figure 4-5, which shows a database fully backed up on Sundays. The log is 
backed up daily, and a differential backup is made on Tuesdays and Thursdays. A drive failure 
occurs on a Friday. If the failure does not include the log fi les, or if you have mirrored them 
using RAID 1, you should back up the tail of the log with the NO_TRUNCATE option. 

 Warning If you are operating in BULK_LOGGED recovery mode, backing up the log also backs 
up any data that was changed with a BULK_LOGGED operation, so you might need to have more 
than just the log fi le available to back up the tail of the log. You also need to have available any 
fi legroups containing data inserted by a minimally logged operation.  

Log
backups

Full
database
backup

Sunday Monday Tuesday SundayWednesday Thursday Friday Saturday

Differential
database
backup

Differential
database
backup

FIGURE 4-5 The combined use of log and differential backups, which reduces total restore time

 To restore this database after a failure, you must start by restoring the full backup made on 
Sunday. This does two things: it copies all the data and index extents, as well as all the log 
blocks, from the backup media to the database fi les, and it applies all the transactions in the 
log. You must determine whether incomplete transactions are rolled back. You can opt to 
recover the database by using the WITH RECOVERY option of the RESTORE command. This 
rolls back any incomplete transactions and opens the database for use. No further restoring 
can be done. If you choose not to roll back incomplete transactions by specifying the WITH 
NORECOVERY option, the database is left in an inconsistent state and is not usable. 

 If you choose WITH NORECOVERY, you can then apply the next backup. In the scenario 
 depicted in Figure 4-5, you would restore the differential backup made on Thursday, which 
would copy all the changed extents back into the data fi les. The differential backup also 
contains the log records spanning the time the differential backup was being made, so you 
have to decide whether to recover the database. Complete transactions are always rolled 
 forward, but you determine whether incomplete transactions are rolled back. 

C04626249.indd   204 2/16/2009   4:29:37 PM



 Chapter 4 Logging and Recovery 205

 After the differential backup is restored, you must restore, in sequence, all the log backups 
made after the differential backup was made. This includes the tail of the log backed up after 
the failure if you were able to make this last backup. 

 Note Restore recovery (media recovery) is similar to restart recovery, which I described 
 previously in this chapter, but it is a REDO-only operation. It includes an analysis pass to 
 determine how much work might need to be done, and then a roll-forward pass to redo 
 completed transactions and return the database to the state it was in when the backup was 
complete. Unlike restart restore recovery, you have control over when the rollback pass is done. 
It should not be done until all the rolling forward from all the backups has been applied. Once 
a RESTORE WITH RECOVERY is specifi ed, after the redo pass, the database is restarted and SQL 
Server runs a restart recovery to undo incomplete transactions. In addition, SQL Server might 
need to make some adjustments to metadata after the recovery is complete, so no access to the 
database is allowed until all phases of recovery are fi nished. In other words, you don’t have the 
option to use “fast” recovery as part of a RESTORE. 

Backing Up and Restoring Files and Filegroups

 SQL Server 2008 allows you to back up individual fi les or fi legroups. This can be useful in 
 environments with extremely large databases. You can choose to back up just one fi le or 
 fi legroup each day, so the entire database does not have to be backed up as often. This also 
can be useful when you have an isolated media failure on a single drive and you think that 
 restoring the entire database would take too long. 

 Here are some details to keep in mind about backing up and restoring fi les and fi legroups: 

■  Individual fi les and fi legroups with the read-write property can be backed up only when 
your database is in FULL or BULK_LOGGED recovery mode because you must apply log 
backups after you restore a fi le or fi legroup, and you can’t make log backups in SIMPLE 
mode. Read-only fi legroups and the fi les in them can be backed up in SIMPLE mode. 

■  You can restore individual fi le or fi legroup backups from a full database backup. 

■  Immediately before restoring an individual fi le or fi legroup, you must back up the 
transaction log. You must have an unbroken chain of log backups from the time the fi le 
or fi legroup backup was made. 

■  After restoring a fi le or fi legroup backup, you must restore all the transaction logs 
made between the time you backed up the fi le or fi legroup and the time you restored 
it. This guarantees that the restored fi les are in sync with the rest of the database. 

 For example, suppose that you back up fi legroup FG1 at 10 A.M. on Monday. The database is 
still in use, and changes happen to data in FG1 and transactions are processed that change 
data in both FG1 and other fi legroups. You back up the log at 4 P.M. More transactions are 
processed that change data in both FG1 and other fi legroups. At 6 P.M., a media failure  occurs 
and you lose one or more of the fi les that make up FG1. 

C04626249.indd   205 2/16/2009   4:29:37 PM



206 Microsoft SQL Server 2008 Internals 

 To restore, you must fi rst back up the tail of the log containing all changes that occurred 
 between 4 P.M. and 6 P.M. The tail of the log is backed up using the special WITH NO_TRUNCATE 
option, but you can also use the NORECOVERY option. When backing up the tail of the log 
WITH NORECOVERY, the database is put into the RESTORING state and can prevent an accidental 
 background change from interfering with the restore sequence.  

 You can then restore FG1 using the RESTORE DATABASE command, specifying just fi legroup 
FG1. Your database is not in a consistent state because the restored FG1 has changes only 
through 10 A.M., and the rest of the database has changes through 6 P.M. However, SQL Server 
knows when the last change was made to the database because each page in a database stores 
the LSN of the last log record that changed that page. When restoring a fi legroup, SQL Server 
makes a note of the maximum LSN in the database. You must restore log backups until the log 
reaches at least the maximum LSN in the database, and you do not reach that point until you 
apply the 6 P.M. log backup. 

Partial Backups

 A partial backup can be based either on a full or a differential backup, but a partial backup 
does not contain all the fi legroups. Partial backups contain all the data in the primary 
 fi legroup and all the read-write fi legroups. In addition, you can specify that any read-only 
fi les also be backed up. If the entire database is marked as read-only, a partial backup 
 contains only the primary fi legroup. Partial backups are particularly useful for very large 
 databases (VLDBs) using the SIMPLE recovery model because they allow you to back up only 
specifi c fi legroups, even without having log backups. 

Page Restore

 SQL Server 2008 also allows you to restore individual pages. When SQL Server detects a damaged 
page, it marks it as suspect and stores information about the page in the suspect_pages table in 
the msdb database.  

 Damaged pages can be detected when activities such as the following take place:  

■  A query needs to read a page. 

■  DBCC CHECKDB or DBCC CHECKTABLE is being run. 

■  BACKUP or RESTORE is being run. 

■  You are trying to repair a database with DBCC DBREPAIR. 

 Several types of errors can require a page to be marked as suspect and entered into the 
 suspect_pages table. These can include checksum and torn page errors, as well as internal 
consistency problems, such as a bad page ID in the page header. The column event_type in 
the suspect_pages table indicates the reason for the status of the page, which usually refl ects 

C04626249.indd   206 2/16/2009   4:29:37 PM



 Chapter 4 Logging and Recovery 207

the reason the page has been entered into the suspect_pages table. SQL Server Books Online 
lists the following possible values for the event_type column: 

event_type value Description

1 823 error caused by an operating system CDC error or 824 errors other than a 
bad checksum or a torn page (for example, a bad page ID). 

 2 Bad checksum. 

 3 Torn page. 

 4 Restored. (The page was restored after it was marked as bad.) 

 5 Repaired. (DBCC repaired the page.) 

 7 Deallocated by DBCC.  

 Some of the errors recorded in the suspect_pages table might be transient errors, such as 
an I/O error that occurs because a cable has been disconnected. Rows can be deleted from 
the suspect_pages table by someone with the appropriate permissions, such as someone in 
the sysadmin server role. In addition, not all errors that cause a page to be inserted in the 
suspect_pages table require that the page be restored. A problem that occurs in cached data, 
such as in a nonclustered index, might be resolved by rebuilding the index. If a sysadmin 
drops a nonclustered index and rebuilds it, the corrupt data, although fi xed, is not indicated 
as fi xed in the suspect_pages table.  

 Page restore is specifi cally intended to replace pages that have been marked as suspect 
 because of an invalid checksum or a torn write. Although multiple database pages can be 
 restored at once, you aren’t expected to be replacing a large number of individual pages. 
If you do have many damaged pages, you should probably consider a full fi le or database 
 restore. In addition, you should probably try to determine the cause of the errors; if you 
discover a pending device failure, you should do your full fi le or database restore to a new 
location. Log restores must be done after the page restores to bring the new pages up to 
date with the rest of the database. Just as with fi le restore, the log backups are applied to the 
database fi les containing a page that is being recovered. 

 In an online page restore, the database is online for the duration of the restore, and only 
the data being restored is offl ine. Note that not all damaged pages can be restored with the 
 database online.  

 Note Online page restore is allowed only in SQL Server 2008 Enterprise Edition.  

SQL Server Books Online lists the following basic steps for a page restore:  

 1. Obtain the page IDs of the damaged pages to be restored. A checksum or torn write 
error returns the page ID, which is the information needed for specifying the pages. 
You can also get page IDs from the suspect_pages table. 

event_type value Description

C04626249.indd   207 2/16/2009   4:29:37 PM



208 Microsoft SQL Server 2008 Internals 

  2. Start a page restore with a full, fi le, or fi legroup backup that contains the page or pages 
to be restored. In the RESTORE DATABASE statement, use the PAGE clause to list the 
page IDs of all the pages to be restored. The maximum number of pages that can be 
restored in a single fi le is 1,000. 

  3. Apply any available differentials required for the pages being restored. 

  4. Apply the subsequent log backups.  

  5. Create a new log backup of the database that includes the fi nal LSN of the restored 
pages—that is, the point at which the last restored page was taken offl ine. The fi nal 
LSN, which is set as part of the fi rst restore in the sequence, is the redo target LSN. 
Online roll-forward of the fi le containing the page can stop at the redo target LSN. 
To learn the current redo target LSN of a fi le, see the redo_target_lsn column of 
sys.master_fi les.  

  6. Restore the new log backup. Once this new log backup is applied, the page restore is 
complete and the pages are usable. All the pages that were bad are affected by the 
log restore. All other pages have a more recent LSN in their page header, and there is 
 nothing to redo. In addition, no UNDO phase is needed for page-level restore.  

Partial Restore

 SQL Server 2008 lets you do a partial restore of a database in emergency situations. 
Although the description and the syntax look similar to fi le and fi legroup backup and restore, 
there is a big difference. With fi le and fi legroup restore, you start with a complete database 
and replace one or more fi les or fi legroups with previously backed up versions. With a partial 
database restore, you don’t start with a full database. You restore individual fi legroups, which 
must include the primary fi legroup containing all the system tables, to a new location. Any 
fi legroups that you don’t restore are treated as offl ine when you attempt to refer to data 
stored on them. You can then restore log backups or differential backups to bring the data 
in those fi legroups to a later point in time. This allows you the option of recovering the data 
from a subset of tables after an accidental deletion or modifi cation of table data. You can use 
the partially restored database to extract the data from the lost tables and copy it back into 
your original database. 

Restoring with Standby

 In normal recovery operations, you have the choice of either running recovery to roll back 
 incomplete transactions or not running recovery at all. If you run recovery, no further log 
backups can be restored and the database is fully usable. If you don’t run recovery, the 
 database is inconsistent and SQL Server won’t let you use it at all. You have to choose one or 
the other because of the way log backups are made. 

 For example, in SQL Server 2008, log backups do not overlap—each log backup starts where 
the previous one ended. Consider a transaction that makes hundreds of updates to a single 

C04626249.indd   208 2/16/2009   4:29:38 PM



 Chapter 4 Logging and Recovery 209

table. If you back up the log during the update and then after it, the fi rst log backup has 
the beginning of the transaction and some of the updates, and the second log backup has 
the remainder of the updates and the commit. Suppose that you then need to restore these 
log backups after restoring the full database. If you run recovery after restoring the fi rst log 
backup, the fi rst part of the transaction is rolled back. If you then try to restore the second log 
backup, it starts in the middle of a transaction, and SQL Server won’t have information about 
what the beginning of the transaction was. You certainly can’t recover transactions from this 
point because their operations might depend on this update that you’ve partially lost. SQL 
Server, therefore, does not allow any more restoring to be done. The alternative is not to 
run recovery to roll back the fi rst part of the transaction and instead to leave the  transaction 
 incomplete. SQL Server takes into account that the database is inconsistent and does not 
 allow any users into the database until you fi nally run recovery on it. 

 What if you want to combine the two approaches? It would be nice to be able to restore one 
log backup and look at the data before restoring more log backups, particularly if you’re 
 trying to do a point-in-time recovery, but you won’t know what the right point is. SQL Server 
 provides an option called STANDBY that allows you to recover the database and still restore 
more log backups. If you restore a log backup and specify WITH STANDBY = ‘<some fi lename>’, 
SQL Server rolls back incomplete transactions but keeps track of the rolled-back work in the 
 specifi ed fi le, which is known as a standby fi le. The next restore operation reads the contents of 
the standby fi le and redoes the operations that were rolled back, and then it restores the next 
log. If that restore also specifi es WITH STANDBY, incomplete transactions again are rolled back, 
but a record of those rolled-back transactions is saved. Keep in mind that you can’t modify any 
data if you’ve restored WITH STANDBY (SQL Server generates an error message if you try), but 
you can read the data and continue to restore more logs. The fi nal log must be restored WITH 
RECOVERY (and no standby fi le is kept) to make the database fully usable. 

Summary

 In addition to one or more data fi les, every database in a SQL Server instance has one or more 
log fi les that keep track of changes to that database. (Remember that database snapshots do 
not have log fi les because no changes are ever made directly to a snapshot.) SQL Server uses 
the transaction log to guarantee consistency of your data, at both a logical and a physical 
 level. In addition, an administrator can make backups of the transaction log to make  restoring 
a database more effi cient. An administrator or database owner can also set a database’s 
 recovery mode to determine the level of detail stored in the transaction log.  

C04626249.indd   209 2/16/2009   4:29:38 PM



C04626249.indd   210 2/16/2009   4:29:38 PM



  211

Chapter 5

Tables
 Kalen Delaney 

 In this chapter, we’ll start with a basic introduction to tables and continue into some very 
 detailed examinations of their internal structures. Simply put, a table is a collection of data 
about a specifi c entity (a person, place, or thing) that has a discrete number of named 
 attributes (for example, quantity or type). Tables are at the heart of Microsoft SQL Server and 
the relational model in general. In SQL Server, a table is often referred to as a base table to 
emphasize where data is stored. Calling it a base table also distinguishes it from a view—a 
virtual table that’s an internal query referencing one or more base tables or other views. 

 Attributes of a table’s data (such as color, size, quantity, order date, and supplier’s name) 
take the form of named columns in the table. Each instance of data in a table is represented 
as a single entry, or row (formally called a tuple). In a true relational database, each row in a 
table is unique and has a unique identifi er called a primary key. (SQL Server, in  accordance 
with the ANSI SQL standard, doesn’t require you to make a row unique or declare a  primary 
key. However, because both of these concepts are central to the relational model, I 
 recommend that you always implement them.) 

 Most tables have some relationship to other tables. For example, in a typical order-entry 
system, the orders table has a customer_number column for keeping track of the customer 
number for an order, and customer_number also appears in the customer table. Assuming that 
customer_ number is a unique identifi er, or primary key, of the customer table, a foreign key 
relationship is established by which orders and customer tables can subsequently be joined. 

 So much for the 30-second database design primer. You can fi nd plenty of books that discuss 
logical database and table design, but this isn’t one of them. I’ll assume that you understand 
basic database theory and design and that you generally know what your tables will look like. 
The rest of this chapter discusses the internals of tables in SQL Server 2008.  

Creating Tables

 To create a table, SQL Server uses the ANSI SQL standard CREATE TABLE syntax. SQL Server 
Management Studio provides a front-end, fi ll-in-the-blank table designer that can sometimes 
make your job easier. Ultimately, the SQL syntax is always sent to SQL Server to create a table, 
no matter what interface you use. In this chapter, I’ll emphasize direct use of the Data Defi nition 
Language (DDL) rather than discuss the GUI tools. You should keep all DDL commands in a 
script so you can run them easily at a later time to re-create the table. (Even if you use one of the 
friendly front-end tools, it’s critical that you are able to re-create the table later.) Management 

C05626249.indd   211 2/16/2009   4:30:06 PM



212 Microsoft SQL Server 2008 Internals

Studio and other front-end tools can create and save operating system fi les using the SQL DDL 
commands necessary to create any object. This DDL is essentially source code, and you should 
treat it as such. Keep a backup copy. You should also consider keeping these fi les under version 
control using a source control product such as Microsoft Visual SourceSafe.  

 At the basic level, creating a table requires little more than knowing what you want to name 
it, what columns it contains, and what range of values (domain) each column can store. Here’s 
the basic syntax for creating the customer table in the dbo schema, with three fi xed-length 
character (char) columns. (Note that this table defi nition isn’t necessarily the most effi cient 
way to store data because it always requires 46 bytes per entry for data plus a few bytes of 
overhead, regardless of the actual length of the data.) 

CREATE TABLE dbo.customer 

( 

name         char(30), 

phone        char(12), 

emp_id       char(4) 

);

 This example shows each column on a separate line for readability. As far as the SQL Server 
parser is concerned, white spaces created by tabs, carriage returns, and the spacebar are 
identical. From the system’s standpoint, the following CREATE TABLE example is identical to 
the preceding one, but it’s harder to read from a user’s standpoint: 

CREATE TABLE customer (name char(30), phone char(12), emp_id char(4));

Naming Tables and Columns

 A table is always created within one schema of one database. Tables also have owners, but 
 unlike in versions of SQL Server prior to 2005, the table owner is not used to access the table. 
The schema is used for all object access. Normally, a table is created in the default schema of the 
user who is creating it, but the CREATE TABLE statement can specify the schema in which the 
object is to be created. A user can create a table only in a schema for which the user has ALTER 
permissions. Any user in the sysadmin, db_ddladmin, or db_owner roles can create a table in any 
schema. A database can contain multiple tables with the same name, so long as the tables are in 
different schemas. The full name of a table has three parts, in the following form: 

 database_name.schema_name.table_name  

 The fi rst two parts of the three-part name specifi cation have default values. The default for the 
name of the database is whatever database context in which you’re currently working. The 
schema_name actually has two possible defaults when querying. If no schema name is  specifi ed 
when you reference an object, SQL Server fi rst checks for an object in your default schema. 
If there is no such table in your default schema, SQL Server then checks to see if there is an 
 object of the specifi ed name in the dbo schema.  

C05626249.indd   212 2/16/2009   4:30:06 PM



 Chapter 5 Tables 213

 Note To access a table or other object in a schema other than your default schema or the dbo 
schema, you must include the schema name along with the table name. In fact, you should get in 
the habit of always including the schema name when referring to any object in SQL Server 2008. 
Not only does this remove any possible confusion about which schema you are interested in, but 
it can lead to some performance benefi ts.  

 The sys schema is a special case. For compatibility views, such as sysobjects, SQL Server accesses 
the object in the sys schema prior to any object you might have created with the same name. 
Obviously, it is not a good idea to create an object of your own called sysobjects, as you will 
never be able to access it. Compatibility views can also be accessed through the dbo schema, 
so the objects sys.sysobjects and dbo.sysobjects are the same. For catalog views and Dynamic 
Management Objects, you must specify the sys schema to access the object.  

 You should make column names descriptive, and because you’ll use them repeatedly, you 
should avoid wordiness. The name of the column (or any object in SQL Server, such as a 
table or a view) can be whatever you choose, so long as it conforms to the SQL Server rule 
for regular identifi ers: it must consist of a combination of 1 through 128 letters, digits, or the 
symbols #, $, @, or _.  

 More Info Alternatively, you can use a delimited identifi er that includes any characters you like. 
For more about identifi er rules, see “Identifi ers” in SQL Server Books Online. The discussion there 
applies to all SQL Server object names, not just column names. 

 In some cases, you can access a table using a four-part name, in which the fi rst part is the 
name of the SQL Server instance. However, you can refer to a table using a four-part name 
only if the SQL Server instance has been defi ned as a linked server. You can read more about 
linked servers in SQL Server Books Online; I won’t discuss them further here. 

Reserved Keywords

 Certain reserved keywords, such as TABLE, CREATE, SELECT, and UPDATE, have  special  meaning 
to the SQL Server parser, and collectively they make up the SQL language  implementation. You 
should avoid using reserved keywords for your object names. In  addition to the SQL Server 
reserved keywords, the SQL-92 standard has its own list of  reserved keywords. In some cases, 
this list is more restrictive than the SQL Server list; in other cases, it’s less restrictive. SQL Server 
Books Online includes both lists. 

 Watch out for the SQL-92 reserved keywords. Some of the words aren’t reserved keywords in 
SQL Server yet, but they might become reserved keywords in a future SQL Server version. If 
you use a SQL-92 reserved keyword, you might end up having to alter your application before 
upgrading it if the word becomes a SQL Server reserved keyword. 

C05626249.indd   213 2/16/2009   4:30:07 PM



214 Microsoft SQL Server 2008 Internals

Delimited Identifi ers

 You can’t use keywords in your object names unless you use a delimited identifi er. In fact, if 
you use a delimited identifi er, not only can you use keywords as identifi ers, but you can also 
use any other string as an object name—whether or not it follows the rules for identifi ers. 
This includes spaces and other nonalphanumeric characters that are normally not allowed. 
Two types of delimited identifi ers exist: 

■  Bracketed identifi ers, which are delimited by square brackets ([object name]) 

■  Quoted identifi ers, which are delimited by double quotation marks (“object name”) 

 You can use bracketed identifi ers in any environment, but to use quoted identifi ers, you 
must enable a special option using SET QUOTED_IDENTIFIER ON. If you turn on QUOTED_ 
IDENTIFIER, double quotes are interpreted as referencing an object. To delimit string or date 
constants, you must use single quotes. 

 Let’s look at some examples. Because column is a reserved keyword, the fi rst statement 
that follows is illegal in all circumstances. The second statement is illegal unless QUOTED_ 
IDENTIFIER is on. The third statement is legal in any circumstance: 

CREATE TABLE dbo.customer(name char(30), column char(12), emp_id char(4)); 

 

CREATE TABLE dbo.customer(name char(30), "column" char(12), emp_id char(4)); 

 

CREATE TABLE dbo.customer(name char(30), [column] char(12), emp_id char(4)); 

 The SQL Native Client ODBC driver and SQL Native Client OLE DB Provider for SQL Server 
 automatically set QUOTED_IDENTIFIER to ON when connecting. You can confi gure this in 
ODBC data sources, ODBC connection attributes, or OLE DB connection properties. You can 
determine whether this option is on or off for your session by executing the following query: 

SELECT quoted_identifier 

FROM sys.dm_exec_sessions  

WHERE session_id = @@spid;

 A result value of 1 indicates that QUOTED_IDENTIFIER is ON. If you’re using Management 
Studio, you can check the setting by running the preceding command in a query window 
or by choosing Options from the Tools menu and then expanding the Query Execution/SQL 
Server node and examining the ANSI properties information, as shown in Figure 5-1.  

 Tip Technically, you can use delimited identifi ers with all object and column names, so you never 
have to worry about reserved keywords. However, I don’t recommend this. Many third-party 
tools for SQL Server don’t handle quoted identifi ers well, and they can make your code diffi cult 
to read. Using quoted identifi ers might also make upgrading to future versions of SQL Server 
more diffi cult. 

C05626249.indd   214 2/16/2009   4:30:07 PM



 Chapter 5 Tables 215

FIGURE 5-1 Examining the ANSI properties for a connection in Management Studio

 Rather than using delimited identifi ers to protect against reserved keyword problems, 
you should simply adopt some simple naming conventions. For example, you can precede 
 column names with the fi rst few letters of the table name and an underscore. This naming 
style makes the column or object name more readable and also greatly reduces your chances 
of encountering a keyword or reserved word confl ict. 

Naming Conventions

 Many organizations and multiuser development projects adopt standard naming 
 conventions. This is generally a good practice. For example, assigning a standard moniker of 
cust_id to  represent a customer number in every table clearly shows that all the tables share 
common data. If an organization instead uses several monikers in the tables to represent a 
customer number, such as cust_id, cust_num, customer_number, and customer_#, it won’t be 
as obvious that these monikers represent common data. 

 One naming convention is the Hungarian-style notation for column names.  Hungarian-style 
 notation is a widely used practice in C programming, whereby variable names include 
 information about their data types. This notation uses names such as sint_nn_custnum to 
 indicate that the custnum column is a small integer (smallint of 2 bytes) and is NOT NULL 
(doesn’t allow nulls). Although this practice makes good sense in C programming, it defeats the 
data type independence that SQL Server provides; therefore, I recommend against using it.  

Data Types

 SQL Server provides many data types, most of which are straightforward. Choosing the 
 appropriate data type is simply a matter of mapping the domain of values you need to 
store to the corresponding data type. In choosing data types, you want to avoid wasting 
 storage space while allowing enough space for a suffi cient range of possible values over the 

C05626249.indd   215 2/16/2009   4:30:07 PM



216 Microsoft SQL Server 2008 Internals

life of your application. Discussing the details about all the possible considerations when 
 programming with the various data types is beyond the scope of this book. For the most 
part, I’ll just cover some of the basic issues related to dealing with the various data types. 

Choosing a Data Type

 The decision about what data type to use for each column depends primarily on the nature 
of the data the column holds and the operations you want to perform on the data. The fi ve 
basic data type categories in SQL Server 2008 are numeric, character, date and time, Large 
Object (LOB), and miscellaneous. SQL Server 2008 also supports a variant data type called 
sql_variant. Values stored in a sql_variant column can be of almost any data type. I’ll discuss 
LOB columns in Chapter 7, “Special Storage,” because their storage format is different than 
that of other data types discussed in this chapter. In this section, I’ll examine some of the 
 issues related to storing data of different data types. 

Numeric Data Types

 You should use numeric data types for data on which you want to perform numeric comparisons 
or arithmetic operations. Your main decisions are the maximum range of possible values you 
want to be able to store and the accuracy you need. The tradeoff is that data types that can 
store a greater range of values take up more space. 

 Numeric data types can also be classifi ed as either exact or approximate. Exact numeric values are 
guaranteed to store exact representations of your numbers. Approximate numeric values have a 
far greater range of values, but the values are not guaranteed to be stored precisely. The greatest 
range of values that exact numeric values can store data is –10 3̂8 + 1 to 10 3̂8 –1. Unless you 
need numbers with greater magnitude, I recommend that you not use the  approximate numeric 
data types. 

 The exact numeric data types can be divided into two groups: integers and decimals. Integer 
types range in size from 1 to 8 bytes, with a corresponding increase in the range of possible 
values. The money and smallmoney data types are included frequently among the integer 
types because internally they are stored in the same way. For the money and smallmoney 
data types, it is understood that the rightmost four digits are after the decimal point. For the 
other integer types, no digits come after the decimal point. Table 5-1 lists the integer data 
types along with their storage size and range of values. 

 The decimal and numeric data types allow a high degree of accuracy and a large range of  values. 
For those two synonymous data types, you can specify a precision (the total number of  digits 
stored) and a scale (the maximum number of digits to the right of the decimal point). The  maximum 
number of digits that can be stored to the left of the decimal point is precision – scale (that is, 
 subtract the scale from precision to get the number of digits). Two different decimal  values can have 
the same precision and very different ranges. For  example, a column defi ned as  decimal (8,4) 
can store values from –9,999.9999 to 9,999.9999, and a  column defi ned as  decimal (8,0) can 
store values from –99,999,999 to 99,999,999. 

C05626249.indd   216 2/16/2009   4:30:07 PM



 Chapter 5 Tables 217

TABLE 5-1 Range and Storage Requirements for Integer Data Types 

Data Type Range Storage (Bytes)

bigint –263 to 263–1 8

int –231 to 231–1 4

Smallint –215 to 215–1 2

Tinyint 0 to 255 1

Money –922,337,203,685,477.5808 to 
922,337,203,685,477.5807, with accuracy of one 
ten-thousandth of a monetary unit

8

Smallmoney –214,748.3648 to 214,748.3647, with accuracy 
of one ten-thousandth of a monetary unit

4

Table 5-2 shows the storage space required for decimal and numeric data based on the 
 defi ned precision. 

TABLE 5-2 Storage Requirements for Decimal and Numeric Data Types 

 Precision Storage (Bytes)

 1 to 9 5

 10 to 19 9

 20 to 28 13

 29 to 38 17

 Note SQL Server 2005 SP2 added a feature to allow decimal data to be stored in a  variable 
amount of space. This can be useful when you have some values that need a high degree 
of  precision, but most of the values in the column need only a few bytes, or are 0 or NULL. 
Vardecimal, unlike varchar, is not a data type, but rather a property of a table which is set 
by using the sp_tableoption procedure, and in SQL Server 2005, it must also be enabled for 
the  database. In SQL Server 2008, all databases except the master, model, tempdb, and msdb 
 databases always allow tables to have the vardecimal storage format property enabled.  

 Although the vardecimal storage format can reduce the storage size of the data, it comes at the 
cost of adding additional CPU overhead. Once the vardecimal property is enabled for a table, all 
decimal data in the table is stored as variable-length data. This includes all indexes on decimal 
data and all log records that include decimal data.  

 Changing the value of the vardecimal storage format property of a table is an offl ine  operation 
and SQL Server exclusively locks the table that is being modifi ed until all the  decimal data is 
converted to the new format. The vardecimal storage format has been  deprecated, so I will not 
be describing the details of the internal storage for vardecimal data. For new development, it 
is recommended that you use SQL Server’s compression capabilities to minimize your storage 
requirement for data that requires a variable number of bytes. I will discuss data compression 
in Chapter 7. 

Data Type Range Storage (Bytes)

Precision Storage (Bytes)

C05626249.indd   217 2/16/2009   4:30:07 PM



218 Microsoft SQL Server 2008 Internals

Date and Time Data Types

 SQL Server 2008 supports six data types for storing date and time information: datetime 
and smalldatetime have been available since the very fi rst version and four new types were 
added in SQL Server 2008: date, time, datetime2, and datetimeoffset. The difference between 
these types is the range of possible dates, the number of bytes needed for storage, whether 
both date and time are stored (or just the date or just the time), and whether time zone 
 information is incorporated into the stored value. Table 5-3, taken from SQL Server 2008 
Books Online, shows the range and storage requirements for each of the date and time 
data types.  

TABLE 5-3 SQL Server Date and Time Data Types Range and Storage Requirements 

Type Format Range Accuracy 

Storage 

Size 

(bytes) 

User-Defi ned 

Fractional 

Second 

Precision

time hh:mm:ss
[.nnnnnnn]

00:00:00.0000000 
through 
23:59:59.9999999

100 
nanoseconds

3 to 5 Yes

date YYYY-
MM-DD

0001-01-01 through 
9999-12-31

1 day 3 No

smalldatetime YYYY-
MM-DD 
hh:mm:ss

1900-01-01 through 
2079-06-06

1 minute 4 No

datetime YYYY-
MM-DD 
hh:mm:ss
[.nnn]

1753-01-01 through 
9999-12-31

0.00333 
second

8 No

datetime2 YYYY-
MM-DD 
hh:mm:ss
[.nnnnnnn] 

0001-01-01 
00:00:00.0000000 
through 9999-12-31 
23:59:59.9999999

100 
nanoseconds

6 to 8 Yes

datetimeoffset YYYY-
MM-DD 
hh:mm:ss
[.nnnnnnn] 
[+|-]hh:mm

0001-01-01 
00:00:00.0000000 
through 9999-12-31 
23:59:59.9999999 
(in UTC)

100 
nanoseconds

8 to 10 
(2 bytes 
for time 
zone 
data)

Yes

 If no date is supplied, the default of January 1, 1900, is assumed; if no time is supplied, the 
default of 00:00:00.000 (midnight) is assumed.  

Type Format Range Accuracy 

Storage

Size

(bytes)

User-Defi ned 

Fractional

Second 

Precision

C05626249.indd   218 2/16/2009   4:30:07 PM



 Chapter 5 Tables 219

 Note If you’re new to SQL Server date and time data, you might be surprised that for the 
 original datetime data type, the earliest possible date that can be stored is January 1, 1753. 
This was done for historical reasons, and started with the original Sybase specifi cation for the 
 datetime data type. In what we sometimes refer to as the Western world, there have been two 
calendars in modern time: the Julian and the Gregorian calendars. These calendars were a 
 number of days apart (depending on which century you look at), so when a culture that used 
the Julian calendar moved to the Gregorian calendar, they dropped between 10 to 13 days from 
the calendar. Great Britain made this shift in 1752, and in that year, September 2 was followed by 
September 14. Sybase decided not to store dates earlier than 1753 because the date arithmetic 
functions would be ambiguous. However, other countries made the change at other times, and in 
Turkey, the calendar was not shifted until 1927.  

 Internally, values for all the date and time data types are stored completely differently from 
how you enter them or how they are displayed. Dates and times are always stored as two 
separate components: a date component and a time component.  

 For the original datetime data types, datetime and smalldatetime, the data is stored internally 
as two separate components. For datetime values, the data is stored as two 4-byte values, the 
fi rst (for the date) being the number of days before or after the base date of January 1, 1900, 
and the second (for the time) being the number of clock ticks after midnight, with each tick 
 representing 3.33 milliseconds, or 1/300 of a second. You can actually see these two parts if you 
convert a datetime value to a binary string of 8 hexadecimal bytes. For smalldatetime values, 
each component is stored in 2 bytes. The date is stored as the number of days after January 1, 
1900, and the time is stored as the number of minutes after midnight.  

 The following example shows how to see the component parts of the current date and time, 
stored in a variable of type datetime, retrieved using the parameterless system function 
CURRENT_TIMESTAMP. The fi rst CONVERT operation shows the full hexadecimal byte string 
that stores the datetime value. The second CONVERT displays the fi rst four bytes converted 
to an integer and the third CONVERT displays the second four bytes converted to an integer. 
Because we’re storing current date and time in a local variable, we can be sure we’re using 
the same value for all the CONVERT operations: 

DECLARE @today datetime

SELECT @today = CURRENT_TIMESTAMP 

SELECT @today AS [CURRENT TIMESTAMP];

SELECT CONVERT (varbinary(8), @today) AS [INTERNAL FORMAT];

SELECT CONVERT (int, SUBSTRING (CONVERT (varbinary(8), @today), 1, 4)) 

        AS [DAYS AFTER 1/1/1900];

SELECT CONVERT (int, SUBSTRING (CONVERT (varbinary(8), @today), 5, 4))

        AS [TICKS AFTER MIDNIGHT];

These are the results when the code runs on July 10, 2008:

CURRENT TIMESTAMP

-----------------------

2008-07-10 17:29:11.967

C05626249.indd   219 2/16/2009   4:30:07 PM



220 Microsoft SQL Server 2008 Internals

INTERNAL FORMAT

------------------

0x00009AD501202BD6

DAYS AFTER 1/1/1900

-------------------

39637

TICKS AFTER MIDNIGHT

--------------------

18885590

 Microsoft used the opportunity when adding new date and time data types in SQL Server 2008 
to change the internal representation of dates and times completely. Dates are now stored 
as a three-byte positive number, representing the number of days after January 1, 0001. For 
the  datetimeoffset type, an additional two bytes are used to store a time offset, in hours and 
 minutes, from UTC. Note that although internally, the base date for the new date and data types 
is January 1, 0001, when SQL Server is interpreting a date value where the actual date is not 
specifi ed, January 1, 1900, is the default. For example, if you try to insert the string ’01:15:00’ 
into a datetime2 column, SQL Server interprets this as a time of 1:15 on January 1, 1900. 

 All the new types that contain time information (time, datetime2, and datetimeoffset) allow 
you to specify the precision of the time component by following the data type name with a 
number between 1 and 7 indicating the desired scale. The default, if no scale is specifi ed, is 
to assume a scale of 7. Table 5-4 shows what each of the possible scale values means in terms 
of the precision and storage requirement of the stored data values. 

 TABLE 5-4 Scale Values for Time Data with Storage Requirements and Precision 

 Specifi ed Scale 

Result 

(precision, scale) 

Column Length 

(bytes) 

Fractional Seconds 

(precision) 

 none (16,7) 5 7

 (0) (8,0) 3 0–2

 (1) (10,1) 3 0–2

 (2) (11,2) 3 0–2

 (3) (12,3) 4 3–4

 (4) (13,4) 4 3–4

 (5) (14,5) 5 5–7

 (6) (15,6) 5 5–7

 (7) (16,7) 5 5–7

 For a quick look at what the information in Table 5-4 means, you can run the following three 
conversions: 

SELECT CAST(CURRENT_TIMESTAMP AS time);

SELECT CAST(CURRENT_TIMESTAMP AS time(2));

SELECT CAST(CURRENT_TIMESTAMP AS time(7));

Specifi ed Scale 

Result

(precision, scale) 

Column Length

(bytes) 

Fractional Seconds 

(precision) 

C05626249.indd   220 2/16/2009   4:30:07 PM



 Chapter 5 Tables 221

 I got the following results. Note that the scale value determines the number of decimal digits 
and that the value for time is identical to time(7):  

17:39:43.0830000

17:39:43.08

17:39:43.0830000

 Internally, the time is computed using the following formula, assuming H is hours, M is 
 minutes, S is seconds, F is fractional sections, and D is scale (number of decimal digits): 

(((H * 60) + M) * 60 + S) * 10D + F

 For example, the value 17:39:43.08, with time(2) format, would be stored internally as 

(((17 * 60) + 39) * 60 + 43) * 102 + 083, or 6358383

 The same time, stored as time(7) would be  

(((17 * 60) + 39) * 60 + 43) * 107 + 083, or 635830000083

 In the section entitled “Internal Storage,” later in this chapter, we’ll see what this data looks 
like when stored in a data row. 

 SQL Server 2008 provides dozens of functions for working with date and time data, as well 
as dozens of different formats that can be used for interpreting and displaying date and 
time values. It is beyond the scope of this book to cover date and time data in that level of 
detail. However, the most important thing to understand about these types is that what you 
see is not what is actually stored on disk. The on-disk format, whether you’re using the old 
 datetime and smalldatetime types or any of the new types, is completely unambiguous, but it 
is not very user-friendly. You need to make sure that you provide input data in a format that 
is also unambiguous. For example, the value ‘3/4/48’ is not unambiguous. Does it represent 
March 4 or April 3, and is the year 1948, 2048, or perhaps 48 (almost 2,000 years ago)? The 
ISO 8601 format is an international standard with unambiguous specifi cation. In addition this 
format is not affected by your session’s SET DATEFORMAT or SET LANGUAGE settings. Using 
this format, March 4, 1948, could be represented as 19480304 or 1948-03-04. 

Character Data Types

 Character data types come in four varieties. They can be fi xed-length or variable-length 
strings of single-byte characters (char and varchar) or fi xed-length or variable-length strings 
of Unicode characters (nchar and nvarchar). Unicode character strings need two bytes for 
each stored character; use them when you need to represent characters that can’t be stored in 
the single-byte characters that are suffi cient for storing most of the characters in the English 
and European alphabets. Single-byte character strings can store up to 8,000  characters, and 
Unicode character strings can store up to 4,000 characters. You should know the type of 
data that you are dealing with to decide between single-byte and double-byte character 

C05626249.indd   221 2/16/2009   4:30:07 PM



222 Microsoft SQL Server 2008 Internals

strings. Keep in mind that the catalog view sys.types reports the length in number of bytes, 
not in number of characters. In SQL Server 2005 and SQL Server 2008, you can also defi ne 
a  variable-length character string with a MAX length. Columns defi ned as varchar(max) are 
treated as normal variable-length columns when the actual length is less than or equal to 
8,000 bytes, and they are treated as a large object value (mentioned later in this section and 
covered in  detail in Chapter 7) when the actual length is greater than 8,000 bytes. 

 Deciding whether to use a variable-length or a fi xed-length data type is a more diffi cult 
 decision, and it isn’t always straightforward or obvious. As a general rule, variable-length 
data types are most appropriate when you expect signifi cant variation in the size of the data 
for a column and when the data in the column won’t be changed frequently. 

 Using variable-length data types can yield important storage savings. It can sometimes result 
in a minor performance loss, and at other times it can result in improved performance. A row 
with variable-length columns requires special offset entries to be internally maintained. These 
entries keep track of the actual length of the column. Calculating and maintaining the offsets 
requires slightly more overhead than does a pure fi xed-length row, which needs no such 
 offsets. This task requires a few addition and subtraction operations to maintain the offset 
value. However, the extra overhead of maintaining these offsets is generally inconsequential, 
and this alone would not make a signifi cant difference on most, if any, systems. 

 Another potential performance issue with variable-length fi elds is the cost of increasing the 
size of a row on a page that is almost full. If a row with variable-length columns uses only 
part of its maximum length and is later updated to a longer length, the enlarged row might 
no longer fi t on the same page. If the table has a clustered index, the row must stay in the 
same position relative to the other rows, so the solution is to split the page and move some 
of the rows from the page with the enlarged row onto a newly linked page. This can be an 
expensive operation. Chapter 6, “Indexes: Internals and Management,” describes the details 
of page splitting and moving rows. If the table has no clustered index, the row can move to a 
new location and leave a forwarding pointer in the original location. I’ll talk about forwarding 
pointers later in this chapter. 

 On the other hand, using variable-length columns can sometimes improve performance 
 because it can allow more rows to fi t on a page. But the effi ciency results from more than 
simply requiring less disk space. A data page for SQL Server is 8 KB (8,192 bytes), of which 
8,096 bytes are available to store data. (The rest is for internal use to keep track of  structural 
information about the page and the object to which it belongs.) One I/O  operation brings 
back the entire page. If you can fi t 80 rows on a page, a single I/O operation brings back 80 
rows. But if you can fi t 160 rows on a page, one I/O operation is essentially twice as  effi cient. 
In operations that scan for data and return lots of adjacent rows, this can amount to a 
 signifi cant performance improvement. The more rows you can fi t per page, the better your 
I/O and cache-hit effi ciency is. 

 For example, consider a simple customer table. Suppose that you could defi ne it in two ways: 
fi xed-length and variable-length, as shown in Figures 5-2 and 5-3. 

C05626249.indd   222 2/16/2009   4:30:07 PM



 Chapter 5 Tables 223

 Columns that contain addresses, names, or URLs all have data that varies signifi cantly in 
length. Let’s look at the differences between choosing fi xed-length columns and choosing 
variable-length columns. In Figure 5-2, which uses all fi xed-length columns, every row uses 
384 bytes for data regardless of the number of characters actually inserted in the row. SQL 
Server also needs an additional 10 bytes of overhead for every row in this table, so each 
row needs a total of 394 bytes for storage. But let’s say that even though the table must 
 accommodate addresses and names up to the specifi ed size, the average row is only half the 
maximum size. 

USE testdb
GO

CREATE TABLE customer_fixed
(
cust_id    smallint  NULL,
cust_name   char(50)  NULL,
cust_addr1   char(50)   NULL,
cust_addr2   char(50)   NULL,
cust_city   char(50)   NULL,
cust_state   char(2)  NULL,
cust_postal_code   char(10)   NULL,
cust_phone   char(20)   NULL,
cust_fax    char(20)   NULL,
cust_email   char(30)   NULL,
cust_web_url   char(100) NULL,
)

FIGURE 5-2 A customer table with all fi xed-length columns

USE testdb
GO

CREATE TABLE customer_var
(
cust_id    smallint   NULL,
cust_name   varchar(50)  NULL,
cust_addr1   varchar(50)  NULL,
cust_addr2   varchar(50)  NULL,
cust_city   varchar(50)  NULL,
cust_state   char(2)   NULL,
cust_postal_code   varchar(10)  NULL,
cust_phone   varchar(20)  NULL,
cust_fax    varchar(20)  NULL,
cust_email   varchar(30)  NULL,
cust_web_url   varchar(100)  NULL
)

FIGURE 5-3 A customer table with variable-length columns

 In Figure 5-3, assume that for all the variable-length (varchar) columns the average entry 
is actually only about half the maximum. Instead of a row length of 394 bytes, the average 
length is 224 bytes. This length is computed as follows: The smallint and char(2) columns total 
4 bytes. The varchar columns’ maximum total length is 380, half of which is 190 bytes. And 
a 2-byte overhead exists for each of nine varchar columns, for 18 bytes. Add 2 more bytes 

C05626249.indd   223 2/16/2009   4:30:08 PM



224 Microsoft SQL Server 2008 Internals

for any row that has one or more variable-length columns. In addition, these rows require 
the same 10 bytes of overhead that the fi xed-length rows from Figure 5-2 require,  regardless 
of the presence of variable-length fi elds. So the total is 4 + 190 + 18 + 2 + 10, or 224. (I’ll 
 discuss the actual meaning of each of these bytes of overhead later in this chapter.) 

 In the fi xed-length example in Figure 5-2, you always fi t 20 rows on a data page (8,096/394, 
discarding the remainder). In the variable-length example in Figure 5-3, you can fi t an  average 
of 36 rows per page (8,096/224). The table using variable-length columns will  consume about 
half as many pages in storage, a single I/O operation retrieves almost twice as many rows, and 
a page cached in memory is twice as likely to contain the row you want.  

 More Info You need additional overhead bytes for each row if you are using snapshot isolation. 
I’ll discuss this concurrency option, as well as the extra row overhead needed to support it, in 
Chapter 10, “Transactions and Concurrency.” 

 When you choose lengths for columns, don’t be wasteful—but don’t be cheap, either. Allow 
for future needs, and realize that if the additional length doesn’t change how many rows fi t on 
a page, the additional size is free anyway. Consider again the examples in Figures 5-2 and 5-3. 
The cust_id is declared as a smallint, meaning that its maximum positive value is 32,767 
 (unfortunately, SQL Server doesn’t provide any unsigned int or unsigned smallint data types), 
and it consumes 2 bytes of storage. Although 32,767 customers might seem like a lot to a new 
company, the company might be surprised by its own success and fi nd in a couple of years 
that 32,767 is too limited. 

 The database designers might regret that they tried to save 2 bytes and didn’t simply make 
the data type an int, using 4 bytes but with a maximum positive value of 2,147,483,647. They’ll 
be especially disappointed if they realize they didn’t really save any space. If you  compute the 
rows-per-page calculations just discussed, increasing the row size by 2 bytes, you’ll see that 
the same number of rows still fi t on a page. The additional 2 bytes are free—they were simply 
wasted space before. They never cause fewer rows per page in the  fi xed-length example, and 
they’ll rarely cause fewer rows per page even in the  variable-length case. 

 So which strategy wins? Potentially better update performance? Or more rows per page? 
Like most questions of this nature, no one answer is right. It depends on your application. If 
you  understand the tradeoffs, you can make the best choice. Now that you know the issues, 
this general rule merits repeating: Variable-length data types are most appropriate when 
you  expect signifi cant variation in the size of the data for that column and when the column 
won’t be updated frequently. 

Character Data Collation

 For many data types, the rules to compare and sort are straightforward. No matter whom 
you ask, 12 is always greater than 11, and even if people may write dates in different ways, 
August 20, 2008, is never the same as August 21, 2007. But for character data, this  principle 

C05626249.indd   224 2/16/2009   4:30:08 PM



 Chapter 5 Tables 225

doesn’t apply. Most people would sort csak before cukor, but in an Hungarian  dictionary, 
they come in the opposite order. And is STREET equal to Street or not? Also, how are 
 characters with diacritic marks, such as accents or umlauts, sorted?  

 Because different users have different preferences and needs, character data in SQL Server 
are always associated with a collation. A collation is a set of rules that defi nes how character 
data are sorted and compared, and how language-dependent functions such as UPPER and 
LOWER work. The collation also determines the character repertoire for the single-byte data 
types, char, varchar, and text. Metadata in SQL Server (that is, names of tables, variables, etc.) 
are also subject to collation rules. 

Determining Which Collation to Use  You can defi ne which collation to use at several 
 levels in SQL Server. When you create a table, you can defi ne the collation for each character 
 column. If you don’t supply a collation, the database collation is used.  

 The database collation also determines the collation for the metadata in the database. So 
in a database with a case-insensitive collation, you can use MyTable or MYTABLE to refer to 
a table which was created with the name mytable, but in a database with a case-sensitive 
 collation, you must refer to it as mytable. The database collation also determines the collation 
for string literals and for data in character variables. 

 You can specify the database collation when you create a database. If you do not, the server 
collation is used. Under some fairly restricted circumstances, the ALTER DATABASE statement 
permits you to change the database collation. (Basically, if you have any CHECK constraints in 
the database, you cannot change the collation.) This will rebuild the system tables to refl ect 
the new collation rules in the metadata. However, columns in user tables are left unchanged, 
and you need to change these yourself. For details on all restrictions, please see the ALTER 
DATABASE topic in SQL Server Books Online.  

 The server collation is used by the system databases master, model, tempdb, and msdb. (The 
 resource database, on the other hand, always has the same collation, Latin1_General_CI_AI.) The 
server collation is also the collation for variable names, so on a server with a case- insensitive 
collation, @a and @A are the same variable, but they are two different ones if the server 
 collation is case-sensitive. You select the server collation at setup. 

 Finally, you can use the COLLATE clause to force the collation in an expression. One situation 
where you need to do this is when the same expression includes two columns with different 
collations. This results in a collation confl ict, and SQL Server requires you to resolve it with the 
COLLATE clause. 

Available Collations  To see the available collations, you can run the query 

SELECT * FROM fn_helpcollations();

 When running this query on a SQL Server 2008 instance, the result contains 2,397 collations. 
There are another 112 collations that are deprecated and not listed by fn_helpcollations.  

C05626249.indd   225 2/16/2009   4:30:08 PM



226 Microsoft SQL Server 2008 Internals

 Collations fall into two main groups: Windows collations and SQL Server collations. 
SQL Server collations are mainly former collations retained for compatibility reasons. 
Nevertheless, the collation SQL_Latin1_General_CP1_CI_AS is one of the most commonly 
used ones  because it is the default collation when you install SQL Server on a machine with 
English (United States) as the system locale.  

Windows Collations  Windows collations take their defi nition from Microsoft Windows. SQL 
Server does not go out and query Windows for collation rules; rather, the SQL Server team has 
copied the collation defi nitions into SQL Server. The collations in Windows typically are  modifi ed 
with new releases of Windows to adapt to changes in the Unicode standard, and because 
 collations determine in which order data appear in indexes, SQL Server cannot accept that the 
defi nition of a collation changes because you move a database to a different Windows version. 

The Anatomy of a Collation Name  Windows collations come in families, with 18 collations 
in each family. All collations in the same family start with the same collation designator, which 
indicates which language or group of languages the collation family supports. 

 The collation designator is followed by tokens that indicate the nature of the collation. The 
 collation can be a binary collation, in which case the token is BIN or BIN2. For the other 
16  collations, the tokens are CI/CS to indicate case sensitivity/insensitivity, AI/AS to indicate accent 
sensitivity/insensitivity, KS to indicate kanatype sensitivity, and WS to indicate width sensitivity.  

 If CI is part of the collation name, the strings smith and SMITH are equal, but they are  different 
if CS is in the name. Likewise, if the collation is AI, cote, coté, côte, and côté are all equal, 
but in an AS collation, they are different. Kanatype relates to Japanese text only, and in a 
 kanatype-sensitive collation, katakana and hiragana counterparts are considered different. 
Width sensitivity refers to East Asian languages for which there exists both half-width and 
 full-width forms of some characters. KI and WI tokens do not exist, but kanatype and width 
insensitivity are implied if KS and WS are absent. 

 The following are some examples of collation names:  

■  Latin1_General_CI_AS A case-insensitive, accent-sensitive collation for Western 
European languages such as English, German, and Italian 

■  Finnish_Swedish_CS_AS A case-sensitive and accent-sensitive collation for Finnish 
and Swedish 

■  Japanese_CI_AI_KS_WS A collation that is insensitive to case and accent and sensitive 
to kanatype and width differences 

■  Turkish_BIN2 A binary collation for Turkish  

Different Versions of the Same Collation  A collation designator may include a version 
number that indicates in which version of SQL Server the collation was added. The lack of a 
version number means that the collation was one of the original collations in SQL Server 2000; 
90 indicates that the collation was added in SQL Server 2005; and 100 means that it was added 
in SQL Server 2008. 

C05626249.indd   226 2/16/2009   4:30:08 PM



 Chapter 5 Tables 227

 SQL Server 2008 added new collations for languages and language groups for which a 
 collation already existed. So there is now both Latin1_General and Latin1_General_100, 
Finnish_Swedish and Finnish_Swedish_100, and other collation pairs. 

 These additions refl ect the changes in Windows. The old collations are based on the collations 
in Windows 2000, and the new _100 collations are based on the collations in Windows 2008. 

 Caution If you plan to access your SQL Server 2008 instance as a linked server from SQL Server 
2005, you should avoid using the new _100 collations because if you try to access such a column 
from SQL Server 2005, you get the error message, “An invalid tabular data stream (TDS) collation 
was encountered.” 

The Single-Byte Character Types  The single-byte character data types, char, varchar, and 
text, can represent only 255 possible characters, and the code page of the collation determines 
which 255 characters are available. In most code pages, the characters from 32 to 127 are 
 always the same, taken from the ASCII standard, and remaining characters are selected to fi t a 
certain language area. For instance, CP1252, also known as Latin-1, supports Western European 
languages such as English, French, Swedish, and others. CP1250 is for the Cyrillic script, CP1251 
is for Eastern European languages, and so on.  

 When it comes to other operations—sorting, comparing, lower/upper, and so on—in a 
Windows collation, the rules are exactly the same for the single-byte data types and the 
double-byte Unicode data types. There is one exception to this: in a binary collation, sorting is 
done by character codes, and the order in the single-byte code page can be different from the 
order in Unicode. For instance, in a Polish collation, char(209) prints N’  (a capital N with an acute 
accent), whereas unicode(N’N’  ’) prints 323, which is the code point in Unicode for this character. 
(The code points in Unicode agree with the code points in Latin-1, but that applies only to the 
range 160-255.) Microsoft has added some extra characters to their version of Latin-1. One 
 example of this is the Euro(€) character, which is char(128) in a collation based on CP1252, but 
in Unicode, code point 128 is a nonprinting character, and unicode(N’€’) prints 8364.  

 There are some collations that do not map to a single-byte code page. You can use these 
collations only with Unicode data types. For instance, if you run the code 

CREATE TABLE NepaleseTest 

    (abc char(5) COLLATE Nepali_100_CI_AS NOT NULL);

 you get the following error message: 

Msg 459, Level 16, State 2, Line 1

Collation 'Nepali_100_CI_AS' is supported on Unicode data types only and cannot be applied 

to char, varchar or text data types.

 To view the code page for a collation, you can use the collationproperty function, as in this 
example: 

SELECT collationproperty('Latin1_General_CS_AS', 'CodePage');

C05626249.indd   227 2/16/2009   4:30:08 PM



228 Microsoft SQL Server 2008 Internals

 This returns 1252. For a collation that supports Unicode only, you get 0 in return. (If you get 
NULL back, you have misspelled the collation name or the word CodePage.) 

 You cannot use Unicode-only collations as the server collation. 

Sort Order  The collation determines the sort order. When a Windows collation is insensitive 
(such as case or accents), this also applies to the sort order. For instance, in a case-insensitive 
collation, differences in case do not affect how the data is sorted. In a sensitive collation, 
case,  accent, kanatype, and width affect the sorting, but only with a secondary weight. That 
is, these  properties affect the sorting only when no other differences exist. 

 To illustrate this, consider this table: 

CREATE TABLE #words (word   nvarchar(20) NOT NULL,

                     wordno tinyint PRIMARY KEY CLUSTERED);

INSERT #words 

   VALUES(N'cloud',  1), (N'CSAK',    6), (N'cukor',   11), 

         (N'Oblige', 2), (N'Opera',   7), (N'Öl',      12),

         (N'résumé', 3), (N'RESUME',  8), (N'RÉSUMÉ',  13),

         (N'resume', 4), (N'resumes', 9), (N'résumés', 14),

         (N'ŒIL',    5), (N'œil',    10);

 To examine how a collation works, we use the query shown here. We start by looking at the 
commonly used collation Latin1_General_CI_AS: 

WITH collatedwords (collatedword, wordno) AS (

   SELECT word COLLATE Latin1_General_CI_AS, wordno

   FROM   #words

)

SELECT collatedword, rank = dense_rank() OVER(ORDER BY collatedword), 

       wordno

FROM   collatedwords

ORDER  BY collatedword;

 When I ran the query, I got this result: 

collatedword   rank   wordno

-------------- ------ ------

cloud          1      1

CSAK           2      6

cukor          3      11

Oblige         4      2

ŒIL            5      5

œil            5      10

Öl             6      12

Opera          7      7

RESUME         8      8

resume         8      4

résumé         9      3

RÉSUMÉ         9      13

resumes        10     9

résumés        11     14

C05626249.indd   228 2/16/2009   4:30:08 PM



 Chapter 5 Tables 229

 The rank column gives the ranking in the sort order. We can see that for the words that 
 differ only in case, the ranking is the same. We can also see from the output that sometimes 
the uppercase version comes fi rst, and sometimes the lowercase version comes fi rst. This is 
something that is entirely arbitrary, and it’s perfectly possible that you will see a different 
 order for these pairs if you run the query yourself. 

 If we change the collation to Latin1_General_CS_AS, we get this result: 

collatedword   rank   wordno

-------------- ------ ------

cloud          1      1

CSAK           2      6

cukor          3      11

Oblige         4      2

œil            5      10

ŒIL            6      5

Öl             7      12

Opera          8      7

resume         9      4

RESUME         10     8

résumé         11     3

RÉSUMÉ         12     13

resumes        13     9

résumés        14     14

 All entries now have a different ranking. The lowercase forms come before the uppercase 
forms when no other difference exists because in Windows collations, lowercase always has 
a lower secondary weight than uppercase. 

 Let’s now see what happens with a different language. Here’s a test for the collation 
Hungarian_CI_AI: 

collatedword   rank   wordno

-------------- ------ ------

cloud          1      1

cukor          2      11

CSAK           3      6

Oblige         4      2

ŒIL            5      5

œil            5      10

Opera          6      7

Öl             7      12

RÉSUMÉ         8      13

RESUME         8      8

résumé         8      3

resume         8      4

resumes        9      9

résumés        9      14

 The words CSAK and öl now sort after cukor and Opera. This is because in the Hungarian 
 alphabet, CS and Ö are letters on their own. You can also see that in this CI_AI collation, all 
four forms of résumé have the same rank.  

C05626249.indd   229 2/16/2009   4:30:08 PM



230 Microsoft SQL Server 2008 Internals

 In these examples, the data type for the column was nvarchar, but if you change the table to 
use varchar and rerun the examples, you get the same results. 

Character Ranges and Collations  The sort order applies not only to ORDER BY clauses, 
but also to operators such as > and ranges in LIKE expressions. For instance, note the 
 following code: 

SELECT * FROM #words 

WHERE word COLLATE Latin1_General_CI_AS > 'opera';

SELECT * FROM #words 

WHERE word COLLATE Latin1_General_CS_AS > 'opera';

 The fi rst SELECT lists six words, whereas the second lists seven (because in a case-sensitive 
collation, Opera is > opera). 

 If you are used to character ranges from regular expressions in other languages, you may fall 
into the following trap when trying to select the words that start with an uppercase letter: 

SELECT * FROM #words WHERE word LIKE '[A-Z]%';

 But even with a case-sensitive collation, this code usually lists all 14 words. (In some languages, 
Ö sorts as a separate letter after Z, so it does not fall into the specifi ed range.) The range A–Z 
is also subject to the collation rules. This also has another consequence: change cloud to aloud 
in the list. Using a case-sensitive collation, SELECT now returns only 13 rows. Because a sorts 
before A, the range A–Z does not include a.  

 As you can see, this can be a bit confusing. My advice is that you be very careful when using 
ranges with character data. If you need to do it, make sure that you really test the edge cases 
to ensure that you don’t exclude any data inadvertently.  

Binary Collations  In a binary collation, no secondary weights exist, and characters sort by 
their code points in the character set. So with Latin1_General_BIN2 in the previous example, 
we get 

collatedword   rank   wordno

-------------- ------ ------

CSAK           1      6

Oblige         2      2

Opera          3      7

RESUME         4      8

RÉSUMÉ         5      13

cloud          6      1

cukor          7      11

resume         8      4

resumes        9      9

résumé         10     3

résumés        11     14

Öl             12     12

ŒIL            13     5

œil            14     10

C05626249.indd   230 2/16/2009   4:30:08 PM



 Chapter 5 Tables 231

 Now the words with the uppercase fi rst letters C, O, and R come before those with the 
 lowercase c, o, and r, as they do in the ASCII standard. Öl and the two forms of œil have code 
points beyond the fi rst 127 ASCII codes and therefore come at the end of the list. 

 Because binary collations are based on the code points and they may be different in the 
 single-byte code page and in Unicode, the order can be different for single-byte and 
Unicode data types. For instance, if you change the data type in #words to varchar and run 
the example with Latin1_General_BIN2 again, you fi nd that Öl now comes last. 

 As you recall from the previous discussion, two types of binary collations exist, BIN and BIN2. 
Of these, the BIN collations are earlier collations, and if you need to use a binary collation in 
new development, you should use a BIN2 collation. To understand the difference between the 
two, we need to look at a Unicode string in its binary representation. For instance, consider  

SELECT convert(varbinary, N'ABC');

 This code returns 0x410042004300. The ASCII code for A is 65, or 41 in hexadecimal. And in 
Unicode, A is U+0041. (Unicode characters are often written as U+XXXX, where XXXX is the 
code point in hexadecimal notation.) But converted to varbinary, it appears as 4100. This is 
because PC architecture is little endian, which means that the least signifi cant byte is stored 
fi rst. (The reason for this is beyond the scope of this book to explain.) 

 Therefore, to sort nvarchar data by their code points properly, SQL Server should not just look 
at the byte string but swap each word to get the correct code points. And this is exactly what 
the BIN2 collations do. The older BIN collations perform this swap only for the fi rst  character, 
and then perform a byte-per-byte comparison for remaining characters. To illustrate the 
 difference between the two types of binary collations and also true byte-sort, here is an 
 example where we use the characters Z (U+005A) and N’  (N with grave accent; U+0143):  

SELECT n, str, convert(binary(6), str) AS bytestr,

       row_number() OVER(ORDER BY convert(varbinary, str)) 

          AS bytesort,

       row_number() OVER(ORDER BY str COLLATE Latin1_General_BIN) 

          AS collate_BIN,

       row_number() OVER(ORDER BY str COLLATE Latin1_General_BIN2) 

          AS collate_BIN2

FROM  (VALUES(1, N'ZZZ'), (2, N'ZŃŃ'), (3, N'ŃZZ'), (4, N'ŃŃŃ')) 

      AS T(n, str)

ORDER BY n;

 Here is the result: 

n           str    bytestr          bytesort    collate_BIN    collate_BIN2

----------- ------ ---------------- ----------  -------------  ------------

1           ZZZ    0x5A005A005A00   4           2              1

2           ZŃŃ    0x5A0043014301   3           1              2

3           ŃZZ    0x43015A005A00   2           4              3

4           ŃŃŃ    0x430143014301   1           3              4

C05626249.indd   231 2/16/2009   4:30:08 PM



232 Microsoft SQL Server 2008 Internals

 You can see that in the collate_BIN2 column, the rows are numbered according to their code 
points in Unicode. In the bytesort column, on the other hand, they are numbered in reverse 
order because the least signifi cant byte in the character code takes precedence. Finally, in the 
collate_BIN column, the two entries that start with Z are sorted fi rst, but in reverse order with 
regards to collate_BIN2. 

SQL Server Collations  The SQL Server collations (known as SQL collations for short) is a 
much smaller group than the Windows collations. In total, there are 76 SQL collations, of 
which 1 is deprecated.  

 A SQL collation uses two different rule sets. One is for single-byte data types, and the other 
is for Unicode data types. The rules for single-byte data types are defi ned by SQL Server 
itself, and derive from the days when SQL Server did not support Unicode. When you work 
with Unicode data, a SQL collation uses the same rules as the matching Windows collation. 
To see which Windows collation a certain SQL collation matches, you can view the description 
 column in the output from fn_helpcollations(). 

 The name of a SQL collation always starts with SQL_ followed by a language indicator, similar to 
the name of a Windows collation. Likewise, names for SQL collations include CI/CS and AI/AS to 
indicate case and accent sensitivity. Some binary SQL collations also exist. In contrast to names 
for Windows collations, SQL collations always include the code page for single-byte characters 
in the name. For some reason, though, CP1252, Windows Latin-1, appears as CP1 in the names.  

 Many SQL collations relate to American National Standards Institute (ANSI) code pages, that 
is, code pages used by non-Unicode Windows applications. But there are also SQL collations 
for the OEM code pages CP437 and CP850; that is, code pages used in the command-line 
window. There are even a few SQL collations for EBCDIC. 

Sort Orders  With a SQL collation, you can get different results depending on the data type. 
For instance, in the example with the 14 words, if we run it with word as nvarchar and with the 
commonly used SQL collation SQL_Latin1_General_CP1_CI_AS, the result is the same as when 
we used Latin1_General_CI_AS. But if you change word to be varchar, you get this result: 

collatedword   rank   wordno

-------------- ------ ------

ŒIL            1      5

œil            2      10

cloud          3      1

CSAK           4      6

cukor          5      11

Oblige         6      2

Öl             7      12

Opera          8      7

RESUME         9      8

resume         9      4

résumé         10     3

RÉSUMÉ         10     13

resumes        11     9

résumés        12     14

C05626249.indd   232 2/16/2009   4:30:08 PM



 Chapter 5 Tables 233

 Now the two forms of œil come fi rst and they have different ranks, despite the collation 
 being case insensitive. In this collation, a few accented letters sort as if they were punctuation 
characters. (The others are Š, Ÿ, and Ž.) Other differences in SQL_Latin1_General_CP1_CI_AS 
between the single-byte and Unicode data types include how punctuation characters are 
sorted. However, so long as your data mainly consist of the digits 0–9 and the English letters 
A–Z, these differences likely will not be signifi cant to you. 

Tertiary Collations  Just like Windows collations, SQL collations have primary and  secondary 
weights, but it does not stop there. A total of 32 of the SQL collations also have tertiary 
weights. With one exception, the tertiary collations are all case insensitive. The purpose of 
the tertiary weight is to give preference to uppercase, so when everything else is equal in 
the  entire ORDER BY clause, uppercase words sort fi rst. In some tertiary collations, this is 
 indicated by Pref appearing in the name, whereas in other tertiary collations, this is implicit. 
You fi nd the full list of tertiary collations in SQL Server Books Online in the topic for the 
 built-in function TERTIARY_WEIGHTS. 

 To study the tertiary collations, we use a different table with different words as follows: 

CREATE TABLE #prefwords 

           (word   char(3) COLLATE SQL_Latin1_General_Pref_CP1_CI_AS                  

                           NOT NULL,

            wordno int NOT NULL PRIMARY KEY NONCLUSTERED,

            tert   AS tertiary_weights(word));

CREATE CLUSTERED INDEX word_ix ON #prefwords (word);

--CREATE INDEX tert_ix on #prefwords(word, tert)

go                     

INSERT #prefwords (word, wordno) 

   VALUES ('abc', 1), ('abC', 4), ('aBc', 7),

          ('aBC', 2), ('Abc', 5), ('ABc', 8),

          ('AbC', 3), ('ABC', 6);

go

SELECT word, wordno, rank = dense_rank() OVER(ORDER BY word),

       rowno = row_number() OVER (ORDER BY word)

FROM   #prefwords

ORDER  BY word--, wordno;

 The output from this query is 

word   wordno   rank   rowno

------ -------- ------ -----

ABC    6        1      8

ABc    8        1      6

AbC    3        1      7

Abc    5        1      5

aBC    2        1      4

aBc    7        1      3

abC    4        1      2

abc    1        1      1

 You can see that all words have the same rank; nevertheless, uppercase letters consistently 
come before lowercase. And in the rowno column, rows are numbered in opposite order, 

C05626249.indd   233 2/16/2009   4:30:08 PM



234 Microsoft SQL Server 2008 Internals

which is likely to be by chance. That is, the tertiary weight affects only the ORDER BY at the 
end of the query, but not the ORDER BY for the dense_rank and row_number functions. 

 Now, if you look at the query plan for this query, you fi nd a Sort operator, which is  surprising, 
given there is a clustered index on word. If you go one step back in the plan, you fi nd 
a Compute Scalar operator, and if you press F4, you can see that this operator defi nes 
[Expr1005] = Scalar Operator(tertiary_weights([tempdb].[dbo].[#prefwords].[word])), and if 
you look at the Sort operator, you see that it sorts by word and Expr1005. That is, the tertiary 
weight is not stored in the index, but computed at run time. 

 This is where the function TERTIARY_WEIGHTS comes in. This function accepts parameters of 
the types char, varchar, and text and returns a non-NULL value if the input value is not from 
a tertiary collation. SQL Server Books Online suggests that you can add a computed column 
with this function and then add an index on the character column and the computed column, 
like the tert_ix in the previous script. If you uncomment the creation of tert_ix in the  previous 
script and also comment out the rank and rowno columns from the SELECT statement, you 
see a plan without any Sort operator. Thus the function TERTIARY_WEIGHTS can help to 
 improve performance with tertiary collations.  

 Now see what happens if we uncomment wordno from the ORDER BY clause, so that the 
query now reads: 

SELECT word, wordno

FROM   #prefwords

ORDER  BY word, wordno;

 This is the output: 

word   wordno

------ ------

abc    1

aBC    2

AbC    3

abC    4

Abc    5

ABC    6

aBc    7

ABc    8

 That is, the tertiary weight only matters when there is no other difference in the entire 
ORDER BY clause. Needless to say, the query plan again includes the Sort operator. 

Collations Defi ned During SQL Server Setup  When you install SQL Server, you need 
to  select a server collation. This is an important choice, because if you make an incorrect 
 selection, you cannot easily change this later. You will essentially have to reinstall SQL Server. 

 The SQL Server Setup provides a default collation, and this will always be a CI_AS collation—
that is, a collation that is sensitive to accents but insensitive to case, kanatype, and width. 

C05626249.indd   234 2/16/2009   4:30:08 PM



 Chapter 5 Tables 235

Setup selects the collation designator for the default collation from the system locale—that 
is, the locale that applies on the system level, which may be different from the regional 
 settings for your own Windows user. The default is always a Windows collation, except in one 
very notable case: if your system locale is English (United States), the default is SQL_Latin1_
General_CP1_CI_AS. The reason for this seemingly odd default is backward compatibility.  

 When different versions of the same language exist, the default depends on whether your 
system locale existed in previous versions of Windows or was added in Windows 2008. So, for 
instance, for English (United Kingdom) and German (Germany) the default is Latin1_General_
CI_AS, whereas for English (Singapore) and Swahili (Kenya), the default is Latin1_General_100_
CI_AS. Again, the reason for this variation is backward compatibility. For the full list of default 
collations, see the topic “Collation Settings in Setup” in SQL Server Books Online. 

 Although Setup suggests a default collation, it is far from certain that this default is the best 
for your server. You should make a conscious, deliberate decision. If you install a server to 
run a third-party product, you should consult the vendor’s documentation to see if it has any 
recommendations or requirements for the application. If you plan to migrate databases from 
an earlier version of SQL Server, you should probably select the same collation for the new 
server as for your existing server. As I noted earlier, if you plan to access the server as a linked 
server from SQL Server 2005, you should avoid the new _100 collations. 

 Another thing to beware of is that your Windows administrator may have installed a U.S. 
English version of Windows, leaving the system locale as English (United States) even if 
the local language is something else. If this is the case on your server, and you do not pay 
 attention when you install SQL Server, you may end up with a collation that does not fi t well 
with the language in your country.  

 Some languages have multiple appropriate choices. For instance, for German, the default 
is Latin1_General_CI_AS, but you can also use any of the German_Phonebook collations (in 
which ä, ö, and ü sort as ae, oe, and ue). 

Running the Installation Wizard  When you run the Installation Wizard for SQL Server 2008, 
you need to be observant because the collation selection is not on a page of its own but 
appears on a second tab on the Server Confi guration page. You’ll have to watch carefully 
because the collation tab is not displayed when you get to the Server Confi guration screen. 
You’ll see a screen asking for information about the service accounts to use. When you select 
the collation tab on that screen, you see something like Figure 5-4. 

 This screenshot was taken on a machine with the system locale set to Swedish, and thus the 
default collation is Finnish_Swedish_CI_AS. (As you can see, you can also set the collation for 
Analysis Services on this tab, but that is beyond the scope of this book.) 

C05626249.indd   235 2/16/2009   4:30:08 PM



236 Microsoft SQL Server 2008 Internals

FIGURE 5-4 Setting the server confi guration 

 Figure 5-5 shows you what you see when you press Customize. 

FIGURE 5-5 Customize the collation properties 

 You can use an option button to select whether to use a Windows collation or a SQL  collation. 
If you select a Windows collation, there is a drop-down list where you can select the Collation 
designator. Below that are check boxes to select case sensitivity and other  features. The choice 

C05626249.indd   236 2/16/2009   4:30:09 PM



 Chapter 5 Tables 237

Binary gives you a BIN collation, whereas Binary-code point gives you a BIN2 collation. If you 
select to use a SQL collation, there is a single list box that lists all SQL collations. 

Performance Considerations  Does the choice of collation affect performance? Yes, but in 
many cases only marginally, and your most important criteria should be to choose the collation 
that best meet your users’ needs. However, there are a few situations where the collation can 
have quite drastic effects. 

 Generally, binary collations give you the best performance, but in most applications, they do 
not give a very good user experience. 

 So long as you work with varchar data, the SQL collations perform almost equally well. The SQL 
collations include rules only for the 255 characters in the code page covered by the collation. 
A Windows collation always works with the full rules of Unicode internally, even for single-byte 
data. Thus, the internal routines for SQL collations are far less complex than those for Unicode.  

 The Windows collations have some differences between collation families where some are 
faster than others. A special case is the case-insensitive Latin1_General and Latin1_General_100 
 collations, which appear to perform better than any other collation family when you work with 
Unicode data. Contrary to what you may expect, case-sensitive collations do not give  better 
performance; rather, their rate is a few percentage points slower in many operations. But, again, 
this is not something that you should pay too much attention to. If your users expect to see data 
sorted according to, say, the Danish alphabet, there is no reason to select Latin1_General_CI_AS 
just because it operates a little faster. What’s the point of a faster  operation that doesn’t do what 
your users need? Also, keep in mind that a typical query includes so many other components 
that the effect of the collation is likely to be lost in the noise.  

A Trap with SQL Server Collations  The collation really does matter in a few situations, 
though. Consider the following: 

SELECT col FROM tbl WHERE indexedcol = @value;

 For this query, the collation does not have much impact so long as the column and @value 
has the same data type. Neither is there an issue, if the column has a Unicode data type and 
@value is char or varchar. But if the column is single-byte and @value is Unicode, there is an 
issue because the data-type precedence rules in SQL Server. The char and varchar data types 
have lower precedence than nchar and nvarchar, so the column is converted to the type of 
the value, and this has ramifi cations for how the index can be used. 

 If the column has a Windows collation, SQL Server can still seek the index, albeit with a more 
complex fi lter, so compared to a query without conversion, you can expect the  execution time 
to double or triple. But it is when the column has a SQL collation that this query  becomes 
 really problematic. The index does not serve any purpose after the conversion  because in a 
SQL  collation, the rules are entirely different for single-byte and Unicode data. SQL Server can 
at best scan the index. In a big table, performance can be drastically affected, with execution 

C05626249.indd   237 2/16/2009   4:30:09 PM



238 Microsoft SQL Server 2008 Internals

times that are 100 or 1,000 times more than for a properly written query. Thus, if you opt to 
use a SQL collation, you need to watch that you don’t mix varchar and nvarchar casually. 

 Another case where the collation can make a huge difference is when SQL Server has to look 
at almost all characters in the strings. For instance, look at the following: 

SELECT COUNT(*) FROM tbl WHERE longcol LIKE '%abc%';

 This may execute 10 times faster or more with a binary collation than a nonbinary Windows 
collation. And with varchar data, this executes up to seven or eight times faster with a SQL 
collation than with a Windows collation. If you have a varchar column, you can speed this up 
by forcing the collation as follows: 

SELECT COUNT(*) FROM tbl 

WHERE longcol COLLATE SQL_Latin1_General_CP_CI_AS LIKE '%abc%';

 If your column is nvarchar, you have to force a binary collation instead, but that would only 
be possible if users can accept a case-sensitive search. 

 The same considerations apply to the functions CHARINDEX and PATINDEX. 

Special Data Types

 I’ll end this section on data types by showing you a few additional data types that you might 
fi nd useful. 

Binary Data Types  These data types are binary and varbinary. They are used to store strings 
of bits, and the values are entered and displayed using their hexadecimal (hex)  representation, 
which is indicated by a prefi x of 0x. So a hex value of 0x270F corresponds to a decimal value of 
9,999 and a bit string of 0010011100001111. In hex, each two displayed characters  represent 
a byte, so the value of 0x270F represents 2 bytes. You need to decide whether you want your 
data to be fi xed or variable length, and you can use some of the same considerations  discussed 
previously for deciding between char and varchar to make your decision. The  maximum length 
of binary or varbinary data is 8,000 bytes. 

bit Data Type  The bit data type can store a 0 or a 1 and can consume only a single bit of 
storage space. However, if there is only one bit column in a table, it will take up a whole byte. 
Up to eight-bit columns are stored in a single byte. 

LOB Data Types  SQL Server 2008 allows you to defi ne columns with the MAX attribute: 
varchar(MAX), nvarchar(MAX), and varbinary(MAX). If the number of bytes actually inserted into 
these columns exceeds the maximum of 8,000, these columns are stored using a special storage 
format for LOB data. The special storage format is the same one as used for the data types text, 
ntext, and image, but because those types will be discontinued in a future  version of SQL Server, 
it is recommend that you use the variable-length data types with the MAX  specifi er for all new 
development. The varchar(MAX) (or text) data type can store up to 2 3̂1 – 1  non-Unicode 

C05626249.indd   238 2/16/2009   4:30:09 PM



 Chapter 5 Tables 239

 characters, nvarchar(MAX) (or ntext) can store up to 2 3̂0 – 1 (half as many) Unicode  characters, 
and varbinary(MAX) (or image) can store up to 2 3̂1 – 1 bytes of binary data. In addition, 
varbinary(MAX) data can be stored as fi lestream data. We’ll cover fi lestream data in more detail 
in Chapter 7, as well as look at the storage structures for LOB data.  

cursor Data Type  The cursor data type can hold a reference to a cursor. Although you 
can’t declare a column in a table to be of type cursor, this data type can be used for output 
 parameters and local variables. I’ve included the cursor data type in this list for completeness, 
but I won’t be talking more about it. 

rowversion Data Type  The rowversion data type is a synonym for what was formerly called 
a timestamp. When using the timestamp data type name, many people might assume that 
the data has something to do with dates or times, but it doesn’t. A column of type rowversion 
holds an internal sequence number that SQL Server automatically updates every time the row 
is modifi ed. The value of any rowversion column is actually unique within an entire database, 
and a table can have only one column of type rowversion. Any operation that modifi es any 
rowversion column in the database generates the next sequential value. The actual value 
stored in a rowversion column is seldom important by itself. The column is used to detect 
whether a row has been modifi ed since the last time it was accessed by determining whether 
the rowversion value has changed. 

sql_variant Data Type  The sql_variant data type allows a column to hold values of any data 
type except text, ntext, image, XML, user-defi ned data types, variable-length data types with 
the MAX specifi er, or rowversion (timestamp). I’ll describe the internal storage of sql_variant 
data later in this chapter.  

Spatial Data Type  SQL Server 2008 provides two data types for storing spatial data. The 
 geometry data type supports planar, or Euclidean (fl at-earth), data. The geometry data type 
conforms to the Open Geospatial Consortium (OGC) Simple Features for SQL Specifi cation 
version 1.1.0. The geography data type stores ellipsoidal (round-earth) data, such as Global 
Positioning Satellite (GPS) latitude and longitude coordinates. These data types have 
their own methods for  accessing and manipulating the data, as well as their own special 
 extended index structures, which are different than the normal SQL Server indexes. Any 
 further  discussion of the  access methods and storage of spatial data is beyond the scope of 
this book. 

table Data Type  The table data type can be used to store the result of a function and can 
be used as the data type of local variables. Columns in tables cannot be of type table.  

xml Data Type  The xml data type lets you store XML documents and fragments in a SQL 
Server database. You can use the xml data type as a column type when you create a table, or 
as the data type for variables, parameters, and the return value of a function. XML data has 
its own methods for retrieval and manipulation. I will not be covering details of working with 
xml data in this book. 

C05626249.indd   239 2/16/2009   4:30:09 PM



240 Microsoft SQL Server 2008 Internals

uniqueidentifi er Data Type  The uniqueidentifi er data type is sometimes referred to as a 
globally unique identifi er (GUID) or universal unique identifi er (UUID). A GUID or UUID is 
a 128-bit (16-byte) value generated in a way that, for all practical purposes, guarantees 
uniqueness among every networked computer in the world. It is becoming an important way 
to identify data, objects, software applications, and applets in distributed systems. Because 
there are some very interesting aspects to the way the uniqueidentifi er data type is generated 
and manipulated, I’ll give you a bit more detail about it. 

 The T-SQL language supports the system functions NEWID and NEWSEQUENTIALID, 
which you can use to generate uniqueidentifi er values. A column or variable of data type 
 uniqueidentifi er can be initialized to a value in one of the following two ways: 

■  Using the system-supplied function NEWID or NEWSEQUENTIALID as a default value. 

■  Using a string constant in the following form (32 hexadecimal digits separated by 
 hyphens): xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. (Each x is a hexadecimal digit in the 
range 0 through 9 or a through f.) 

 This data type can be quite cumbersome to work with, and the only operations that are 
 allowed against a uniqueidentifi er value are comparisons (=, <>, <, >, <=, >=) and checking 
for NULL. However, using this data type internally can offer several advantages. 

 One reason to use the uniqueidentifi er data type is that the values generated by NEWID or 
NEWSEQUENTIALID are guaranteed to be globally unique for any machine on a network 
 because the last six bytes of a uniqueidentifi er value make up the node number for the 
 machine. When the SQL Server machine does not have an Ethernet/Token Ring (IEEE 802.x) 
address, there is no node number and the generated GUID is guaranteed to be unique 
among all GUIDs generated on that computer. However, the possibility exists that another 
computer without an Ethernet/Token Ring address will generate the identical GUID. The 
GUIDs generated on computers with network addresses are guaranteed to be globally 
unique.  

 The primary reason that SQL Server needed a way to generate a GUID was for use in merge 
replication, in which identifi er values for the same table could be generated on any one of 
many different SQL Server machines. There needed to be a way to determine whether two 
rows really were the same row and there had to be no way that two rows not referring to the 
same entity would have the same identifi er. Using GUID values provides that functionality. 
Two rows with the same GUID value must indicate that they really are the same row.  

 The difference between the NEWSEQUENTIALID and the NEWID functions is that 
NEWSEQUENTIALID creates a GUID that is greater than any GUID previously generated by 
this function on a specifi ed computer and can be used to introduce a sequence to your GUID 
values. This turns out to increase greatly the scalability of systems using merge replication. 
If the unqiueidentifer values are being used as the clustered key for the replicated tables, 

C05626249.indd   240 2/16/2009   4:30:09 PM



 Chapter 5 Tables 241

the new rows are then inserted in random disk pages. (You’ll see the details in Chapter 6, 
when clustered indexes are discussed in detail.) If the machines involved are performing a 
large amount of I/O operations, the nonsequential GUID generated by the NEWID function 
results in lots of random B-tree lookups and ineffi cient insert operations. The new function, 
NEWSEQUENTIALID, which is a wrapper around the Windows function UuidCreateSequential, 
does some byte scrambling and creates an ordering to the generated UUID values.  

 The list of uniqueidentifi er values can’t be exhausted. This is not the case with other data 
types frequently used as unique identifi ers. In fact, SQL Server uses this data type internally 
for row-level merge replication. A uniqueidentifi er column can have a special property called 
ROWGUIDCOL; at most, one uniqueidentifi er column can have this property per table. The 
ROWGUIDCOL property can be specifi ed as part of the column defi nition in CREATE TABLE 
and ALTER TABLE ADD column, or it can be added or dropped for an existing column using 
ALTER TABLE ALTER COLUMN. 

 You can reference a uniqueidentifi er column with the ROWGUIDCOL property using the 
 keyword ROWGUIDCOL in a query. This is similar to referencing an identity column  using 
the IDENTITYCOL keyword. The ROWGUIDCOL property does not imply any automatic value 
generation, and if automatic value generation is needed, the NEWID function should be 
 defi ned as the default value of the column. You can have multiple uniqueidentifi er  columns 
per table, but only one of them can have the ROWGUIDCOL property. You can use the 
uniqueidentifi er data type for whatever reason you come up with, but if you’re using one to 
identify the current row, an application must have a generic way to ask for it without needing 
to know the column name. That’s what the ROWGUIDCOL property does. 

Much Ado About NULL

 The issue of whether to allow NULL has become a heated debate for many in the  industry, 
and the discussion here may outrage a few people. However, my  intention isn’t to engage 
in a philosophical debate. Pragmatically, dealing with NULL brings added  complexity to the 
storage engine because SQL Server keeps a special bitmap in every row to  indicate which 
nullable columns actually are NULL. If NULLs are allowed, SQL Server must  decode this 
 bitmap for every row accessed. Allowing NULL also adds complexity in  application code, 
which can  often lead to bugs. You must always add special logic to account for the case 
of NULL. 

 As the database designer, you might understand the nuances of NULL and three-valued 
logic in aggregate functions when you do joins and when you search by values. In addition, 
you must also consider whether your development staff really understands how to work 
with NULLs. I recommend, if possible, that you use all NOT NULL columns and defi ne default 
 values for missing or unknown entries (and possibly make such character columns varchar if 
the default value is signifi cantly different in size from the typical entered value). 

C05626249.indd   241 2/16/2009   4:30:09 PM



242 Microsoft SQL Server 2008 Internals

 In any case, it’s good practice to declare NOT NULL or NULL explicitly when you create a 
table. If no such declaration exists, SQL Server assumes NOT NULL. (In other words, no NULLs 
are allowed.) This might surprise many people who assume that the default for SQL Server is 
to allow NULLs. The reason for this misconception is that most of the tools and interfaces for 
working with SQL Server enable a session setting that makes it the default to allow NULLs. 
However, you can set the default to allow NULLs by using a session setting or a database 
option, which, as I just mentioned, is what most tools and interfaces already do. If you script 
your DDL and then run it against another server that has a different default setting, you get 
different results if you don’t declare NULL or NOT NULL explicitly in the column defi nition. 

 Several database options and session settings can control the behavior of SQL Server 
 regarding NULL values. You can set database options using the ALTER DATABASE command, 
as I showed you in Chapter 3, “Databases and Database Files.” And you can enable session 
settings for one connection at a time using the SET command. 

 Note The database option ANSI null default corresponds to the two session settings ANSI_
NULL_DFLT_ON and ANSI_NULL_DFLT_OFF. When the ANSI null default database option is false 
(the default setting for SQL Server), new columns created with the ALTER TABLE and CREATE 
TABLE commands are, by default, NOT NULL if the nullability status of the column isn’t  explicitly 
specifi ed. SET ANSI_NULL_DFLT_OFF and SET ANSI_NULL_DFLT_ON are mutually exclusive 
 options that indicate whether the database option should be overridden. When on, each option 
forces the opposite option off. Neither option, when off, turns the opposite option on—it only 
discontinues the current on setting. 

 You use the function GETANSINULL to determine the default nullability for your current 
 session. This function returns 1 when new columns allow null values and the column or data 
type nullability wasn’t defi ned explicitly when the table was created or altered. I strongly 
recommend declaring NULL or NOT NULL explicitly when you create a column. This removes 
all ambiguity and ensures that you’re in control of how the table is built, regardless of the 
default nullability setting. 

 The database option concat null yields null corresponds to the session setting SET CONCAT_ 
NULL_YIELDS_NULL. When CONCAT_NULL_YIELDS_NULL is on, concatenating a NULL value 
with a string yields a NULL result. For example, SELECT ‘abc’ + NULL yields NULL. When 
SET CONCAT_NULL_YIELDS_NULL is off, concatenating a NULL value with a string yields 
the string itself. In other words, the NULL value is treated as an empty string. For example, 
SELECT ‘abc’ + NULL yields abc. If the session-level setting isn’t specifi ed, the value of the 
 database option concat null yields null applies. 

 The database option ANSI nulls corresponds to the session setting SET ANSI_NULLS. When 
this option is set to ON, all comparisons to a NULL value evaluate to UNKNOWN. When it is 
set to OFF, comparisons of values to a NULL value evaluate to TRUE if both values are NULL. 
In addition, when this option is set to ON, your code must use the condition IS NULL to 

C05626249.indd   242 2/16/2009   4:30:09 PM



 Chapter 5 Tables 243

 determine whether a column has a NULL value. When this option is set to OFF, SQL Server 
allows = NULL as a synonym for IS NULL and <> NULL as a synonym for IS NOT NULL. 

 A fourth session setting is ANSI_DEFAULTS. Setting this to ON is a shortcut for enabling both 
ANSI_NULLS and ANSI_NULL_DFLT_ON, as well as other session settings not related to NULL 
handling. The SQL Server ODBC driver and the SQL Server OLE DB provider automatically 
set ANSI_DEFAULTS to ON. You can change the ANSI_NULLS setting when you defi ne your 
data source name (DSN). You should be aware that the tool you are using to connect to SQL 
Server might set certain options ON or OFF.  

 The following query shows the values for all the SET options in your current session, and if 
you have VIEW SERVER STATE permission, you can change or remove the WHERE clause to 
return information about other sessions as follows: 

SELECT * FROM sys.dm_exec_sessions 

WHERE session_id = @@spid;

 As you can see, you can confi gure and control the treatment and behavior of NULL values in 
several ways, and you might think it would be impossible to keep track of all the variations. 
If you try to control every aspect of NULL handling separately within each individual session, 
you can cause immeasurable confusion and even grief. However, most of the issues become 
moot if you follow a few basic recommendations: 

■  Never allow NULL values in your tables. 

■  Include a specifi c NOT NULL qualifi cation in your table defi nitions. 

■  Don’t rely on database properties to control the behavior of NULL values. 

 If you must use NULLs in some cases, you can minimize problems by always following the 
same rules, and the easiest rules to follow are the ones that ANSI already specifi es. 

 In addition, certain database designs allow for NULL values in a large number of columns and 
in a large number of rows. SQL Server 2008 introduces the concept of sparse columns. Sparse 
columns reduce the space requirements for NULL values at the cost of more overhead to 
retrieve NOT NULL values. So the biggest benefi t from sparse columns is found when a large 
percentage of your data is NULL. I’ll discuss sparse column storage in Chapter 7. 

 There are a couple of other storage considerations to be aware of when allowing your 
 columns to be NULL. For fi xed-length columns (that are not defi ned to be sparse), the  column 
 always uses the full defi ned length, even when storing NULL. For example, a  column defi ned 
as char(200) always uses 200 bytes whether it is NULL or not. Variable-length  columns are 
 different and do not take up any space for the actual data storage of NULLs. That doesn’t 
mean there is no space requirement at all, as we’ll see later in this chapter when I describe the 
internal storage mechanisms.  

C05626249.indd   243 2/16/2009   4:30:09 PM



244 Microsoft SQL Server 2008 Internals

User-Defi ned Data Types

 A user-defi ned data type (UDT) provides a convenient way for you to guarantee consistent 
use of underlying native data types for columns known to have the same domain of possible 
values. For example, perhaps your database stores various phone numbers in many tables. 
Although no single, defi nitive way exists to store phone numbers, consistency is important in 
this database. You can create a phone_number UDT and use it consistently for any column in 
any table that keeps track of phone numbers to ensure that they all use the same data type. 
Here’s how to create this UDT: 

CREATE TYPE phone_number FROM varchar(20) NOT NULL;

 And here’s how to use the new UDT when you create a table: 

CREATE TABLE customer 

( 

cust_id             smallint        NOT NULL, 

cust_name           varchar(50)     NOT NULL, 

cust_addr1          varchar(50)     NOT NULL, 

cust_addr2          varchar(50)     NOT NULL, 

cust_city           varchar(50)     NOT NULL, 

cust_state          char(2)         NOT NULL, 

cust_postal_code    varchar(10)     NOT NULL, 

cust_phone          phone_number    NOT NULL, 

cust_fax            varchar(20)     NOT NULL, 

cust_email          varchar(30)     NOT NULL, 

cust_web_url        varchar(100)    NOT NULL 

);

 When the table is created, internally the cust_phone data type is known to be varchar(20). 
Notice that both cust_phone and cust_fax are varchar(20), although cust_phone has that 
 declaration through its defi nition as a UDT. 

 Information about the columns in your tables is available through the catalog view sys.
columns, which we’ll look at in more detail in the section entitled “Internal Storage,” later in 
this chapter. For now, we’ll just look at a basic query to show us two columns in sys.columns, 
one containing a number representing the underlying system data type and one  containing 
a number representing the data type used when creating the table. The following query 
 selects all the rows from sys.columns and displays the column_id, the column name, the data 
type values, and the maximum length, and then displays the results:  

SELECT column_id, name, system_type_id, user_type_id,  

        type_name(user_type_id) as user_type_name, max_length 

FROM sys.columns  

WHERE object_id=object_id('customer'); 

column_id   type_name         system_type_id   user_type_id   user_type_name   max_length

----------- ----------------- ---------------- -------------- ---------------- ----------

1           cust_id           52               52             smallint         2

2           cust_name         167              167            varchar          50

3           cust_addr1        167              167            varchar          50

C05626249.indd   244 2/16/2009   4:30:09 PM



 Chapter 5 Tables 245

4           cust_addr2        167              167            varchar          50

5           cust_city         167              167            varchar        50

6           cust_state        175              175            char           2

7           cust_postal_code  167              167            varchar        10

8           cust_phone        167              257            phone_number   20

9           cust_fax          167              167            varchar        20

10          cust_email        167              167            varchar        30

11          cust_web_url      167              167            varchar        100

 You can see that both the cust_phone and cust_fax columns have the same system_type_id 
value, although the cust_phone column shows that the user_type_id is a UDT (user_type_id 
= 257). The type is resolved when the table is created, and the UDT can’t be dropped or 
changed so long as a table is currently using it. Once declared, a UDT is static and immutable, 
so no inherent performance penalty occurs in using a UDT instead of the native data type. 

 The use of UDTs can make your database more consistent and clear. SQL Server implicitly 
converts between compatible columns of different types (either native types or UDTs of 
 different types). 

 Currently, UDTs don’t support the notion of subtyping or inheritance, nor do they allow a 
DEFAULT value or a CHECK constraint to be declared as part of the UDT itself. These powerful 
object-oriented concepts will likely make their way into future versions of SQL Server. These 
limitations notwithstanding, UDT functionality is a dynamic and often underused feature of 
SQL Server. 

IDENTITY Property

 It is common to provide simple counter-type values for tables that don’t have a natural or 
 effi cient primary key. Columns such as cust_id are usually simple counter fi elds. The IDENTITY 
property makes generating unique numeric values easy. IDENTITY isn’t a data type; it’s a 
 column property that you can declare on a whole number data type such as tinyint,  smallint, 
int, bigint, or numeric/decimal (with which only a scale of zero makes any sense). Each table 
can have only one column with the IDENTITY property. The table’s creator can specify the 
starting number (seed) and the amount that this value increments or decrements. If not 
 otherwise specifi ed, the seed value starts at 1 and increments by 1, as shown in this example: 

CREATE TABLE customer 

( 

cust_id      smallint        IDENTITY  NOT NULL, 

cust_name    varchar(50)     NOT NULL 

);

 To fi nd out which seed and increment values were defi ned for a table, you can use the 
IDENT_SEED(tablename) and IDENT_INCR(tablename) functions. Take a look at this statement: 

SELECT IDENT_SEED('customer'), IDENT_INCR('customer')

C05626249.indd   245 2/16/2009   4:30:09 PM



246 Microsoft SQL Server 2008 Internals

 It produces the following result for the customer table because values weren’t declared 
 explicitly and the default values were used. 

1   1

 This next example explicitly starts the numbering at 100 (seed) and increments the value by 20:  

CREATE TABLE customer 

( 

cust_id      smallint        IDENTITY(100, 20)  NOT NULL, 

cust_name    varchar(50)     NOT NULL 

);

 The value automatically produced with the IDENTITY property is normally unique, but that 
isn’t guaranteed by the IDENTITY property itself, nor are the IDENTITY values guaranteed 
to be consecutive. (I will expand on the issues of nonunique and nonconsecutive IDENTITY 
 values later in this section.) For effi ciency, a value is considered used as soon as it is presented 
to a client doing an INSERT operation. If that client doesn’t ultimately commit the INSERT, the 
value never appears, so a break occurs in the consecutive numbers. An unacceptable level of 
serialization would exist if the next number couldn’t be parceled out until the previous one 
was actually committed or rolled back. (And even then, as soon as a row was deleted, the 
 values would no longer be consecutive. Gaps are inevitable.) 

 Note If you need exact sequential values without gaps, IDENTITY isn’t the appropriate feature 
to use. Instead, you should implement a next_number-type table in which you can make the 
operation of bumping the number contained within it part of the larger transaction (and 
incur the serialization of queuing for this value). 

 To temporarily disable the automatic generation of values in an identity column, you use 
the SET IDENTITY_INSERT tablename ON option. In addition to fi lling in gaps in the identity 
 sequence, this option is useful for tasks such as bulk-loading data in which the previous values 
already  exist. For example, perhaps you’re loading a new database with customer data from 
your  previous system. You might want to preserve the previous customer numbers but have 
new ones automatically assigned using IDENTITY. The SET option was created exactly for cases 
like this. 

 Because the SET option allows you to determine your own values for an IDENTITY  column, 
the IDENTITY property alone doesn’t enforce uniqueness of a value within the table. 
Although IDENTITY generates a unique number if IDENTITY_INSERT has never been enabled, 
the uniqueness is not guaranteed once you have used the SET option. To enforce  uniqueness 
(which you’ll almost always want to do when using IDENTITY), you should also declare a 
UNIQUE or PRIMARY KEY constraint on the column. If you insert your own values for an 
identity column (using SET IDENTITY_INSERT), when automatic generation resumes, the next 
value is the next incremented value (or decremented value) of the highest value that exists in 
the table, whether it was generated previously or explicitly inserted. 

C05626249.indd   246 2/16/2009   4:30:09 PM



 Chapter 5 Tables 247

 Tip If you use the bcp utility for bulk-loading data, be aware of the -E (uppercase) parameter if 
your data already has assigned values that you want to keep for a column that has the IDENTITY 
property. You can also use the T-SQL BULK INSERT command with the KEEPIDENTITY option. 
For more information, see the SQL Server documentation for bcp and BULK INSERT. 

 The keyword IDENTITYCOL automatically refers to the specifi c column in a table that has the 
IDENTITY property, whatever its name. If that column is cust_id, you can refer to the column as 
IDENTITYCOL without knowing or using the column name, or you can refer to it explicitly as 
cust_id. For example, the following two statements work identically and return the same data: 

SELECT IDENTITYCOL FROM customer;  

SELECT cust_id FROM customer;

 The column name returned to the caller is cust_id, not IDENTITYCOL, in both cases. 

 When inserting rows, you must omit an identity column from the column list and VALUES 
section. (The only exception is when the IDENTITY_INSERT option is on.) If you do supply a 
column list, you must omit the column for which the value will be supplied automatically. 
Here are two valid INSERT statements for the customer table shown previously: 

INSERT customer VALUES ('ACME Widgets'); 

INSERT customer (cust_name) VALUES ('AAA Gadgets');

 Selecting these two rows produces this output: 

cust_id     cust_name    

-------     --------- 

1           ACME Widgets    

2           AAA Gadgets   

 In applications, it’s sometimes desirable to know immediately the value produced by 
IDENTITY for subsequent use. For example, a transaction might fi rst add a new customer and 
then add an order for that customer. To add the order, you probably need to use the cust_id. 
Rather than selecting the value from the customer table, you can simply select the special 
system function @@IDENTITY, which contains the last identity value used by that connection. 
It doesn’t necessarily provide the last value inserted in the table, however, because another 
user might have subsequently inserted data. If multiple INSERT statements are carried out in 
a batch on the same or different tables, the variable has the value for the last statement only. 
In addition, if an INSERT trigger fi res after you insert the new row, and if that trigger inserts 
rows into a table with an identity column, @@IDENTITY does not have the value inserted by 
the original INSERT statement. To you, it might look like you’re inserting and then immedi-
ately checking the value, as follows: 

INSERT customer (cust_name) VALUES ('AAA Gadgets'); 

SELECT @@IDENTITY;

C05626249.indd   247 2/16/2009   4:30:09 PM



248 Microsoft SQL Server 2008 Internals

 However, if a trigger were fi red for the INSERT, the value of @@IDENTITY might have changed.  

 You might fi nd two other functions useful when working with identity columns: SCOPE_IDENTITY 
and IDENT_CURRENT. SCOPE_IDENTITY returns the last identity value inserted into a table in the 
same scope, which could be a stored procedure, trigger, or batch. So if we replace @@IDENTITY 
with the SCOPE_IDENTITY function in the preceding code snippet, we can see the identity value 
inserted into the customer table. If an INSERT trigger also inserted a row that contained an 
 identity column, it would be in a different scope, like this: 

INSERT customer (cust_name) VALUES ('AAA Gadgets'); 

SELECT SCOPE_IDENTITY();

 In other cases, you might want to know the last identity value inserted in a specifi c table 
from any application or user. You can get this value using the IDENT_CURRENT function, 
which takes a table name as an argument: 

SELECT IDENT_CURRENT('customer');

 This doesn’t always guarantee that you can predict the next identity value to be inserted 
 because another process could insert a row between the time you check the value of  
IDENT_CURRENT and the time you execute your INSERT statement. 

 You can’t defi ne the IDENTITY property as part of a UDT, but you can declare the IDENTITY 
property on a column that uses a UDT. A column that has the IDENTITY property must always 
be declared NOT NULL (either explicitly or implicitly); otherwise, error number 8147 results 
from the CREATE TABLE statement and CREATE won’t succeed. Likewise, you can’t declare the 
IDENTITY property and a DEFAULT on the same column. To check that the current identity 
value is valid based on the current maximum values in the table, and to reset it if an invalid 
value is found (which should never be the case), use the DBCC CHECKIDENT(tablename) 
statement. 

 Identity values are fully recoverable. If a system outage occurs while an insert activity is 
 taking place with tables that have identity columns, the correct value is recovered when SQL 
Server restarts. SQL Server does this during the checkpoint processing by fl ushing the current 
 identity value for all tables. For activity beyond the last checkpoint, subsequent values are 
reconstructed from the transaction log during the standard database recovery process. Any 
inserts into a table that have the IDENTITY property are known to have changed the value, 
and the current value is retrieved from the last INSERT statement (post-checkpoint) for each 
table in the transaction log. The net result is that when the database is recovered, the correct 
current identity value is also recovered. 

 In rare cases, the identity value can get out of sync. If this happens, you can use the DBCC 
CHECKIDENT command to reset the identity value to the appropriate number. In addition, 
the RESEED option to this command allows you to set a new starting value for the identity 
sequence. See the online documentation for complete details. 

C05626249.indd   248 2/16/2009   4:30:09 PM



 Chapter 5 Tables 249

Internal Storage

 This section describes how SQL Server actually stores table data. In addition, it explores 
the basic system metadata that keeps track of data storage information. Although you can 
use SQL Server effectively without understanding the internals of data storage, a detailed 
 knowledge of how SQL Server stores data helps you develop effi cient applications.  

 When you create a table, one or more rows are inserted into a number of system tables to 
manage that table and SQL Server provides catalog views built on top of the system tables 
that allow you to explore their contents. At minimum, you can see metadata for your new 
table in the sys.tables, sys.indexes, and sys.columns catalog views. When you defi ne the new 
table with one or more constraints, you also can see information in the sys.check_constraints, 
sys.default_constraints, sys.key_constraints, or sys.foreign_keys view. For every table created, a 
single row that contains the name, object ID, and ID of the schema containing the new table 
(among other items) is available through the sys.tables view. Remember that the sys.tables 
view inherits all the columns from sys.objects (which shows information relevant to all types of 
objects) and then includes additional columns pertaining only to tables. The sys.columns view 
shows you one row for each column in the new table, and each row contains information such 
as the column name, data type, and length. Each column receives a column ID, which initially 
corresponds to the order in which you specifi ed the columns when you created the table—
that is, the fi rst column listed in the CREATE TABLE statement has a column ID of 1, the second 
column has a column ID of 2, and so on. Figure 5-6 shows the rows returned by the sys.tables 
and sys.columns views when you create a table. (Not all columns are shown for each view.) 

CREATE TABLE dbo.employee (
   emp_lname  varchar(15) NOT NULL,
   emp_fname  varchar(10) NOT NULL,
   address    varchar(30) NOT NULL,
   phone      char(12) NOT NULL,
   job_level  smallint  NOT NULL
)

sys.tables        object_id   name               schema_id   type_desc
                  ----------- ------------------ ----------- ------------------
                  917578307   employee           1           UsER_TABLE    

sys.columns       object_id   column_id   name         system_type_id max_length
                  ----------- ----------- ------------ -------------- ----------
                  917578307   1           emp_lname      167            15
                  917578307   2           emp_fname      167            10
                  917578307   3           address        167            30
                  917578307   4           phone          175            12
                  917578307   5           job_level      52             2

FIGURE 5-6 Basic catalog information stored after a table is created

C05626249.indd   249 2/16/2009   4:30:09 PM



250 Microsoft SQL Server 2008 Internals

 Note There can be gaps in the column ID sequence if the table is altered to drop columns. 
However, the information schema view (INFORMATION_SCHEMA.COLUMNS) gives you a value 
called ORDINAL_POSITION because that is what the ANSI SQL standard demands. The ordinal 
position is the order the column will be listed when you SELECT * on the table. So the column_id 
is not necessarily the ordinal position of that column. 

The sys.indexes Catalog View

 In addition to sys.columns and sys.tables, the sys.indexes view returns at least one row for each 
table. In versions of SQL Server prior to SQL Server 2005, the sysindexes table contains all the 
physical storage information for both tables and indexes, which are the only objects that  actually 
use storage space. The sysindexes table has columns to keep track of the space used by all tables 
and indexes, the physical location of each index root page, and the fi rst page of each table and 
index. (In Chapter 6, you’ll see more about root pages and what the “fi rst” page actually means.) 
In SQL Server 2008, the compatibility view sys.sysindexes contains much of the same information, 
but it is incomplete because of changes in the storage organization introduced in SQL Server 
2005. The sys.indexes catalog view contains only basic property information about indexes, such 
as whether the index is clustered or nonclustered, unique or nonunique, and other properties, 
which are discussed in Chapter 6. To get all the storage information in SQL Server 2005 or SQL 
Server 2008 that previous versions provided in the sysindexes table, we have to look at two other 
catalog views in addition to sys.indexes: sys.partitions and sys.allocation_units (or alternatively, 
the undocumented sys.system_internals_allocation_units). I’ll discuss the basic contents of these 
views shortly, but fi rst let’s focus on sys.indexes.  

 You might be aware that if a table has a clustered index, the table’s data is actually  considered 
part of the index, so the data rows are actually index rows. For a table with a clustered index, SQL 
Server has a row in sys.indexes with an index_id value of 1 and the name column in sys.indexes 
contains the name of the index. The name of the table that is associated with the  index can be 
determined from the object_id column in sys.indexes. If a table has no clustered index, there is 
no organization to the data itself, and we call such a table a heap. A heap in sys. indexes table has 
an index_id value of 0, and the name column contains NULL. Every  additional index has a row 
in sys.indexes with an index_id value between 2 and 250 or between 256 and 1,005. (The values 
251 – 255 are reserved.) Because as many as 999  nonclustered indexes can be on a single table 
and there is one row for the heap or  clustered index, every table has between 1 and 1,000 rows 
in the sys.indexes view for relational indexes. A table can have  additional rows in sys.indexes for 
XML indexes. Metadata for XML indexes is available in the sys.xml_indexes catalog view, which 
inherits columns from the sys.indexes view. Two main features in SQL Server 2008 make it most 
effi cient to use more than one catalog view to keep track of  storage information. First, SQL 
Server has the ability to store a  table or index on  multiple  partitions, so the space used by each 
partition, as well as the  partition’s location, must be kept track of separately. Second, table and 
index data can be stored in three different formats, which are regular row data, row-overfl ow 
data, and LOB data. Both row-overfl ow data and LOB data can be part of an index, so each index 

C05626249.indd   250 2/16/2009   4:30:10 PM



 Chapter 5 Tables 251

has to keep track of its special format data separately. So each table can have multiple indexes, 
and each table and index can be stored on multiple partitions, and each partition needs to keep 
track of data in up to three formats. I’ll  discuss  indexes in Chapter 6, and I’ll discuss the storage of 
 row-overfl ow data and LOB data, as well as partitioned tables and indexes, in Chapter 7.  

Data Storage Metadata

 Each heap and index has a row in sys.indexes, and each table and index in a SQL Server 2008 
database can be stored on multiple partitions. The sys.partitions view contains one row for 
each partition of each heap or index. Every heap or index has at least one partition, even 
if you haven’t specifi cally partitioned the structure, but one table or index can have up to 
1,000  partitions. So there is a one-to-many relationship between sys.indexes and sys.partitions. 
The sys.partitions view contains a column called partition_id as well as the object_id and index_id, 
so we can join sys.indexes to sys.partitions on the object_id and index_id columns to retrieve 
all the partition ID values for a particular table or index. The term used in SQL Server 2008 to 
 describe a subset of a table or index on a single partition is hobt, which stands for Heap Or 
B-Tree and is pronounced (you guessed it) “hobbit.” (A B-tree is the storage structure used for 
indexes.) The sys.partitions view includes a column called hobt_id, and in SQL Server 2008, there 
is always a one-to-one relationship between partition_id and hobt_id. In fact, you can see that 
these two columns in the sys.partitions table always have the same value. 

 Each partition (whether for a heap or an index) can have three types of rows, each stored on 
its own set of pages. These types are called in-row data pages (for our “regular” data or index 
information), row-overfl ow data pages, and LOB data pages. A set of pages of one particular 
type for one particular partition is called an allocation unit, so the fi nal catalog view I need to 
tell you about is sys.allocation_units. The sys.allocation_units view contains one, two, or three 
rows per partition because each heap or index on each partition can have as many as three 
allocation units. There is always an allocation unit for regular in-row pages, but there might 
also be an allocation unit for LOB data and one for row-overfl ow data. Figure 5-7 shows the 
relationship between sys.indexes, sys.partitions, and sys.allocation_units. 

sys.indexes
1

N (1 – 1000)

1

N (1 – 3)

sys.partitions

sys.allocation_units

Partition

Heap Or B-Tree (hobt)

Partition

Heap Or B-Tree (hobt)

Table/Index

Allocation Unit (IAM) Allocation Unit (IAM). . .

.   .   .

IN_ROW LOB ROW_
OVERFLOWIN_ROW LOB ROW_

OVERFLOW

FIGURE 5-7 The relationship between sys.indexes, sys.partitions, and sys.allocation_units 

C05626249.indd   251 2/16/2009   4:30:10 PM



252 Microsoft SQL Server 2008 Internals

Querying the Catalog Views

 Let’s look at a specifi c example now to see information in these three catalog views. Let’s fi rst 
create the table shown earlier in Figure 5-6. You can create it in any database, but I suggest 
either using tempdb, so the table is dropped automatically the next time you restart your SQL 
Server instance, or creating a new database just for testing. Many of my examples assume a 
database called test:  

CREATE TABLE dbo.employee( 

               emp_lname  varchar(15)   NOT NULL, 

               emp_fname  varchar(10)   NOT NULL, 

               address    varchar(30)   NOT NULL, 

               phone      char(12)      NOT NULL, 

               job_level  smallint      NOT NULL 

);

 This table has one row in sys.indexes and one in sys.partitions, as we can see when we run the 
following queries. I am including only a few of the columns from sys.indexes, but sys.partitions 
only has six columns, so I have retrieved them all:  

SELECT  object_id, name, index_id, type_desc 

FROM sys.indexes 

WHERE object_id=object_id('dbo.employee');

 

SELECT * 

FROM sys.partitions 

WHERE object_id=object_id('dbo.employee');

 Here are my results (yours might vary slightly because your ID values are probably 
different):  

 object_id   name    index_id    type_desc

----------- ------- ----------  ------------ 

5575058     NULL    0           HEAP

partition_id       object_id  index_id  partition_number  hobt_id            rows

-----------------  ---------  --------  ----------------  -----------------  -----

72057594038779904  5575058    0         1                 72057594038779904  0  

 Each row in the sys.allocation_units view has a unique allocation_unit_id value. Each row also 
has a value in the column called container_id that can be joined with partition_id in sys.partitions, 
as shown in this query: 

SELECT object_name(object_id) AS name,  

    partition_id, partition_number AS pnum,  rows,  

    allocation_unit_id AS au_id, type_desc as page_type_desc, 

    total_pages AS pages 

FROM sys.partitions p JOIN sys.allocation_units a 

   ON p.partition_id = a.container_id 

WHERE object_id=object_id('dbo.employee');

C05626249.indd   252 2/16/2009   4:30:10 PM



 Chapter 5 Tables 253

 Again, for this simple table, I get only one row because there is only one partition, no 
 nonclustered indexes, and only one type of data (IN_ROW_DATA). Here is the result: 

 name     partition_id        pnum   rows   au_id              page_type_desc pages 

-----    ---------------     ------ ------ ----------------   -------------- ----- 

employee 72057594038779904   1      0      72057594043301888  IN_ROW_DATA    0 

 Now let’s add some new columns to the table that need to be stored on other types of 
pages. Varchar data can be stored on row-overfl ow pages if the total row size exceeds the 
maximum of 8,060 bytes. By default, text data is stored on text pages. For varchar data that 
is stored on row-overfl ow pages, and for text data, there is additional overhead in the row 
itself to store a pointer to the off-row data. We’ll look at the details of row-overfl ow and text 
data storage later in this section, and we’ll look at ALTER TABLE at the end of this chapter, but 
now I just want to look at the additional rows in sys.allocation_units:  

ALTER TABLE dbo.employee ADD resume_short varchar(8000); 

ALTER TABLE dbo.employee ADD resume_long text;

 If we run the preceding query that joins sys.partitions and sys.allocation_units, we get the 
 following three rows: 

name     partition_id           pnum   rows   au_id               page_type_desc      pages

-------- ---------------------- ------ ------ ------------------- ------------------- -----

employee 72057594038779904      1      0      72057594043301888   IN_ROW_DATA         0    

employee 72057594038779904      1      0      72057594043367424   ROW_OVERFLOW_DATA   0    

employee 72057594038779904      1      0      72057594043432960   LOB_DATA            0

 You might also want to add an index or two and check the contents of these catalog views 
again. You should notice that just adding a clustered index does not change the number of 
rows in sys.allocation_units, but it does change the partition_id numbers because the entire 
table is rebuilt internally when you create a clustered index. Adding a nonclustered index adds 
at least one more row to sys.allocation_units to keep track of the pages for that index. The 
following query joins all three views—sys.indexes, sys.partitions, and sys.allocation_units—to 
show you the table name, index name and type, page type, and space usage information for 
the dbo.employee table: 

SELECT  convert(char(8),object_name(i.object_id)) AS table_name, 

    i.name AS index_name, i.index_id, i.type_desc as index_type,

    partition_id, partition_number AS pnum,  rows, 

    allocation_unit_id AS au_id, a.type_desc as page_type_desc, 

    total_pages AS pages

FROM sys.indexes i JOIN sys.partitions p  

        ON i.object_id = p.object_id AND i.index_id = p.index_id

    JOIN sys.allocation_units a

        ON p.partition_id = a.container_id

WHERE i.object_id=object_id('dbo.employee');

 Because I have not inserted any data into this table, you should notice that the values for rows 
and pages are all 0. When I discuss actual page structures, we’ll insert data into our tables so 

C05626249.indd   253 2/16/2009   4:30:10 PM



254 Microsoft SQL Server 2008 Internals

we can look at the internal storage of the data at that time. The queries I’ve run so far do not 
provide us with any information about the location of pages in the various allocation units. 
In SQL Server 2000, the sysindexes table contains three columns that indicate where data is 
located; these columns are called fi rst, root, and fi rstIAM. These columns are still available in 
SQL Server 2008 (with slightly different names: fi rst_page, root_page, and fi rst_iam_page), but 
they can be seen only in an undocumented view called sys.system_internals_allocation_units. 
This view is identical to sys.allocation_units except for the addition of these three additional 
columns, so you can replace sys.allocation_units with sys.system_internals_allocation_units in the 
preceding allocation query and add these three extra columns to the select list. Keep in mind 
that as an undocumented object, this view is for internal use only and is subject to change (as 
are other views starting with system_internals). Forward compatibility is not guaranteed.  

Data Pages

 Data pages are the structures that contain user data that has been added to a database’s 
tables. As we saw earlier, there are three varieties of data pages, each of which stores data in 
a different format. There are pages for in-row data, pages for row-overfl ow data, and pages 
for LOB data. As with all other types of pages in SQL Server, data pages have a fi xed size of 
8 KB, or 8,192 bytes. They consist of three major components: the page header, data rows, 
and the row offset array, as shown in Figure 5-8. 

Page header
96 bytes

Data rows

Row offset array

FIGURE 5-8 The structure of a data page

Page Header

 As you can see in Figure 5-8, the page header occupies the fi rst 96 bytes of each data page 
(leaving 8,096 bytes for data, row overhead, and row offsets). Table 5-5 shows some of the 
information shown when we examine the page header.  

C05626249.indd   254 2/16/2009   4:30:10 PM



 Chapter 5 Tables 255

TABLE 5-5 Information Available by Examining the Page Header 

 Field Meaning

 pageID The fi le number and page number of this page in the database

 nextPage The fi le number and page number of the next page if this page is in a page 
chain

 prevPage The fi le number and page number of the previous page if this page is in a 
page chain

 Metadata: ObjectId The ID of the object to which this page belongs

 Metadata: PartitionId The ID of the partition that this page is part of

 Metadata: AllocUnitId The ID of the allocation unit that contains this page

 LSN The Log Sequence Number (LSN) corresponding to the last log entry that 
changed this page

 slotCnt The total number of slots (rows) used on this page

 Level The level of this page in an index (which always is 0 for leaf pages)

 indexId The index ID of this page (always 0 for data pages)

 freeData The byte offset of the fi rst free space on this page

 Pminlen The number of bytes in fi xed-length portion of rows

 freeCnt The number of free bytes on the page

 reservedCnt The number of bytes reserved by all transactions

 xactreserved The number of bytes reserved by the most recently started transaction

 tornBits A bit string containing 1 bit per sector for detecting torn page writes (or 
checksum information if torn_page_detection is not on)

 fl agBits A 2-byte bitmap that contains additional information about the page

Data Rows for In-Row Data

 Following the page header is the area in which the table’s actual data rows are stored. 
The maximum size of a single data row is 8,060 bytes of in-row data. Rows can also have 
 row-overfl ow and LOB data stored on separate pages. The number of rows stored on a given 
page varies depending on the structure of the table and on the data being stored. A table 
that has all fi xed-length columns is always able to store the same number of rows per page; 
variable-length rows can store as many rows that fi t based on the actual length of the data 
 entered. Keeping the row length shorter allows more rows to fi t on a page, thus reducing I/O 
and improving the cache-hit ratio. 

Row Offset Array

 The row offset array is a block of 2-byte entries, each indicating the offset on the page at which 
the corresponding data row begins. Every row has a 2-byte entry in this array (as discussed 
earlier, when I mentioned the 10 overhead bytes needed by every row). Although these bytes 
aren’t stored in the row with the data, they do affect the number of rows that fi t on a page. 

Field Meaning

C05626249.indd   255 2/16/2009   4:30:10 PM



256 Microsoft SQL Server 2008 Internals

 The row offset array indicates the logical order of rows on a page. For example, if a table 
has a clustered index, SQL Server stores the rows in the order of the clustered index key. This 
doesn’t mean the rows are physically stored on the page in the order of the clustered index 
key. Rather, slot 0 in the offset array refers to the fi rst row in the clustered index key order, 
slot 1 refers to the second row, and so forth. As we’ll see shortly when we examine an actual 
page, the physical location of these rows can be anywhere on the page. 

Examining Data Pages

You can view the contents of a data page by using the DBCC PAGE command, which  allows 
you to view the page header, data rows, and row offset table for any given page in a 
 database. Only a system administrator can use DBCC PAGE. But because you typically won’t 
need to view the contents of a data page, you won’t fi nd information about DBCC PAGE in 
the SQL Server documentation. Nevertheless, in case you want to use it, here’s the syntax: 

DBCC PAGE ({dbid | dbname}, filenum, pagenum[, printopt])

 The DBCC PAGE command includes the parameters shown in Table 5-6. The code and results 
 following Table 5-6 show sample output from DBCC PAGE with a printopt value of 1. Note that 
DBCC TRACEON(3604)  instructs SQL Server to return the results to the client. Without this 
 tracefl ag, no output is returned for the DBCC PAGE command.  

TABLE 5-6 Parameters of the DBCC Page Command 

Parameter Description

Dbid The ID of the database containing the page

Dbname The name of the database containing the page

Filenum The fi le number containing the page

Pagenum The page number within the fi le

Printopt An optional print option; takes one of these values:
■ 0 Default; prints the buffer header and page header
■ 1 Prints the buffer header, page header, each row separately, and 

the row offset table
■ 2 Prints the buffer and page headers, the page as a whole, and the 

offset table
■ 3 Prints the buffer header, page header, each row separately, and 

the row offset table; each row is followed by each of its column values 
listed separately

DBCC TRACEON(3604);

GO 

DBCC PAGE (pubs, 1, 157, 1); 

GO 

Parameter Description

C05626249.indd   256 2/16/2009   4:30:10 PM



 Chapter 5 Tables 257

 PAGE: (1:157)

BUFFER:

BUF @0x038E697C

bpage = 0x0C3AA000                   bhash = 0x00000000                   bpageno = (1:157)

bdbid = 11                           breferences = 0                      bUse1 = 60722

bstat = 0xc00009                     blog = 0x3212159                     bnext = 0x00000000

PAGE HEADER:

Page @0x0C3AA000

m_pageId = (1:157)                   m_headerVersion = 1                  m_type = 1

m_typeFlagBits = 0x4                 m_level = 0                          m_flagBits = 0x200

m_objId (AllocUnitId.idObj) = 27     m_indexId (AllocUnitId.idInd) = 256  

Metadata: AllocUnitId = 72057594039697408                                 

Metadata: PartitionId = 72057594038779904                                 Metadata: IndexId = 1

Metadata: ObjectId = 2105058535      m_prevPage = (0:0)                   m_nextPage = (0:0)

pminlen = 24                         m_slotCnt = 23                       m_freeCnt = 6010

m_freeData = 2136                    m_reservedCnt = 0                    m_lsn = (18:350:2)

m_xactReserved = 0                   m_xdesId = (0:0)                     m_ghostRecCnt = 0

m_tornBits = 1967525613              

Allocation Status

GAM (1:2) = ALLOCATED                SGAM (1:3) = NOT ALLOCATED           

PFS (1:1) = 0x60 MIXED_EXT ALLOCATED   0_PCT_FULL                         DIFF (1:6) = CHANGED

ML (1:7) = NOT MIN_LOGGED            

DATA:

Slot 0, Offset 0x631, Length 88, DumpStyle BYTE

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS

Record Size = 88                     

Memory Dump @0x6292C631

00000000:   30001800 34303820 3439362d 37323233 †0...408 496-7223         

00000010:   43413934 303235ff 09000000 05003300 †CA94025ÿ .....3.         

00000020:   38003f00 4e005800 3137322d 33322d31 †8.?.N.X.172-32-1         

00000030:   31373657 68697465 4a6f686e 736f6e31 †176WhiteJohnson1         

00000040:   30393332 20426967 67652052 642e4d65 †0932 Bigge Rd.Me         

00000050:   6e6c6f20 5061726b †††††††††††††††††††nlo Park                 

Slot 1, Offset 0xb8, Length 88, DumpStyle BYTE

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS

Record Size = 88                     

Memory Dump @0x6292C0B8

00000000:   30001800 34313520 3938362d 37303230 †0...415 986-7020         

C05626249.indd   257 2/16/2009   4:30:10 PM



258 Microsoft SQL Server 2008 Internals

00000010:   43413934 363138ff 09000000 05003300 †CA94618ÿ .....3.         

00000020:   38004000 51005800 3231332d 34362d38 †8.@.Q.X.213-46-8         

00000030:   39313547 7265656e 4d61726a 6f726965 †915GreenMarjorie         

00000040:   33303920 36337264 2053742e 20233431 †309 63rd St. #41         

00000050:   314f616b 6c616e64 †††††††††††††††††††1Oakland                 

Slot 2, Offset 0x110, Length 85, DumpStyle BYTE

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS

Record Size = 85                     

Memory Dump @0x6292C110

00000000:   30001800 34313520 3534382d 37373233 †0...415 548-7723         

00000010:   43413934 373035ff 09000000 05003300 †CA94705ÿ .....3.         

00000020:   39003f00 4d005500 3233382d 39352d37 †9.?.M.U.238-95-7         

00000030:   37363643 6172736f 6e436865 72796c35 †766CarsonCheryl5         

00000040:   38392044 61727769 6e204c6e 2e426572 †89 Darwin Ln.Ber         

00000050:   6b656c65 79††††††††††††††††††††††††††keley                    

/* Data for slots 3 through 20 not shown */

Slot 21, Offset 0x1c0, Length 89, DumpStyle BYTE

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS

Record Size = 89                     

Memory Dump @0x6292C1C0

00000000:   30001800 38303120 3832362d 30373532 †0...801 826-0752         

00000010:   55543834 313532ff 09000000 05003300 †UT84152ÿ .....3.         

00000020:   39003d00 4b005900 3839392d 34362d32 †9.=.K.Y.899-46-2         

00000030:   30333552 696e6765 72416e6e 65363720 †035RingerAnne67          

00000040:   53657665 6e746820 41762e53 616c7420 †Seventh Av.Salt          

00000050:   4c616b65 20436974 79†††††††††††††††††Lake City                

Slot 22, Offset 0x165, Length 91, DumpStyle BYTE

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS

Record Size = 91                     

Memory Dump @0x6292C165

00000000:   30001800 38303120 3832362d 30373532 †0...801 826-0752         

00000010:   55543834 313532ff 09000000 05003300 †UT84152ÿ .....3.         

00000020:   39003f00 4d005b00 3939382d 37322d33 †9.?.M.[.998-72-3         

00000030:   35363752 696e6765 72416c62 65727436 †567RingerAlbert6         

00000040:   37205365 76656e74 68204176 2e53616c †7 Seventh Av.Sal         

00000050:   74204c61 6b652043 697479†††††††††††††t Lake City              

C05626249.indd   258 2/16/2009   4:30:10 PM



 Chapter 5 Tables 259

OFFSET TABLE:

Row - Offset                         

22 (0x16) - 357 (0x165)              

21 (0x15) - 448 (0x1c0)              

20 (0x14) - 711 (0x2c7)              

19 (0x13) - 1767 (0x6e7)             

18 (0x12) - 619 (0x26b)              

17 (0x11) - 970 (0x3ca)              

16 (0x10) - 1055 (0x41f)             

15 (0xf) - 796 (0x31c)               

14 (0xe) - 537 (0x219)               

13 (0xd) - 1673 (0x689)              

12 (0xc) - 1226 (0x4ca)              

11 (0xb) - 1949 (0x79d)              

10 (0xa) - 1488 (0x5d0)              

9 (0x9) - 1854 (0x73e)               

8 (0x8) - 1407 (0x57f)               

7 (0x7) - 1144 (0x478)               

6 (0x6) - 96 (0x60)                  

5 (0x5) - 2047 (0x7ff)               

4 (0x4) - 884 (0x374)                

3 (0x3) - 1314 (0x522)               

2 (0x2) - 272 (0x110)                

1 (0x1) - 184 (0xb8)                 

0 (0x0) - 1585 (0x631)               

DBCC execution completed. If DBCC printed error messages, contact your system administrator. 

 As you can see, the output from DBCC PAGE is divided into four main sections: BUFFER, 
PAGE HEADER, DATA, and OFFSET TABLE (really the offset array). The BUFFER section shows 
 information about the buffer for the given page. A buffer in this context is the in-memory 
structure that manages a page, and the information in this section is relevant only when the 
page is in memory. 

 The PAGE HEADER section in the output from DBCC PAGE displays the data for all the header 
fi elds on the page. (Table 5-5 shows the meaning of most of these fi elds.) The DATA section 
contains information for each row. When DBCC PAGE is used with a printopt value of 1 or 3, 
DBCC PAGE indicates the slot position of each row, the offset of the row on the page, and 
the length of the row. The row data is divided into three parts. The left column indicates the 
byte position within the row where the displayed data occurs. The next section contains the 
actual data stored on the page, displayed in four columns of eight hexadecimal digits each. 
The right column contains an ASCII character representation of the data. Only character data 
is readable in this column, although some of the other data might be displayed. 

C05626249.indd   259 2/16/2009   4:30:10 PM



260 Microsoft SQL Server 2008 Internals

 The OFFSET TABLE section shows the contents of the row offset array at the end of the page. 
In the output from DBCC PAGE, you can see that this page contains 23 rows, with the fi rst 
row (indicated by slot 0) beginning at offset 1585 (0x631). The fi rst row physically stored on 
the page is actually row 6, with an offset in the row offset array of 96. DBCC PAGE with a 
printopt value of 1 displays the rows in slot number order, even though, as you can see by 
the offset of each of the slots, that it isn’t the order in which the rows physically exist on the 
page. If you use DBCC PAGE with a printopt value of 2, you see a dump of all 8,096 bytes of 
the page (after the header) in the order they are stored on the page. 

The Structure of Data Rows

 A table’s data rows have the general structure shown in Figure 5-9 (so long as the data is 
stored in uncompressed form). We call this format the FixedVar format, because the data for 
all fi xed-length columns is stored fi rst, followed by the data for all variable-length columns. 
Table 5-7 shows the information stored in each FixedVar row. (In Chapter 7, we’ll see the 
 format of rows stored in a different format, used when the data on the page is compressed.) 

 Status Bits A contains a bitmap indicating properties of the row. The bits have the following 
meanings: 

■  Bit 0 Versioning information. In SQL Server 2008, this is always 0. 

■  Bits 1 through 3 Taken as a three-bit value, 0 indicates a primary record, 1 indicates a 
forwarded record, 2 indicates a forwarding stub, 3 indicates an index record, 4  indicates a 
blob fragment or row-overfl ow data, 5 indicates a ghost index record, 6 indicates a ghost 
data record, and 7 indicates a ghost version record. (I’ll discuss forwarded  records in the 
section entitled “Moving Rows,” later in this chapter, and ghost records in Chapter 6.) 

■  Bit 4 Indicates that a NULL bitmap exists. In SQL Server 2008, a NULL bitmap is always 
present, even if no NULLs are allowed in any column. 

■  Bit 5 Indicates that variable-length columns exist in the row. 

■  Bit 6 Indicates that the row contains versioning information. 

■  Bit 7 Not used in SQL Server 2008. 

 Only one bit is used in the Status Bits B fi eld, indicating that the record is a ghost forwarded 
record.  

 You can see in both Figure 5-9 and Table 5-7 that the third and fourth bytes indicate the length 
of the fi xed-length portion of the row. As Figure 5-9 explains, it is the length excluding the 
2 bytes for the number of columns, and the NULL bitmap, which is variable length depending 
on the total number of columns in the table. Another way to interpret the data in these bits is 
as the location in the row where the number of columns can be found. For example, if the third 
and fourth bytes (bytes 2-3) contain the value 0x0016, which is decimal 22, it means not only 
that there are 22 bytes in the row before the value for number of columns, but that the value for 
the number of columns can be found at byte 22. In some of the fi gures in this chapter and later 
ones, bytes 2-3 may be identifi ed as the position to fi nd the number of columns. 

C05626249.indd   260 2/16/2009   4:30:10 PM



 Chapter 5 Tables 261

1 byte 1 byte 2 bytes 2 bytes Ceiling
(#cols/8) bytes

2x # varlength
columns2 bytesn bytes n bytes

Data for variable-
length columns

Column offset array

NULL bitmap
1 bit for each column

Number of variable-
length columns

Number of columns

Fixed-length data

Status Bits B

Status Bits A

Length of fixed-length portion of row, not including the
2 bytes for the number of columns and the NULL bitmap

FIGURE 5-9 The structure of data rows

TABLE 5-7 Information Stored in a Table’s Data Rows 

Information Mnemonic Size

Status Bits A TagA 1 byte

Status Bits B TagB 1 byte

Fixed-length size Fsize 2 bytes

Fixed-length data Fdata Fsize – 4

Number of columns Ncol 2 bytes

NULL bitmap (1 bit for each column 
in the table; a 1 indicates that the 
 corresponding column is NULL or that 
the bit is unused.) 

Nullbits Ceiling (Ncol / 8)

Number of variable-length columns 
stored in row

VarCount 2 bytes

Variable column offset array VarOffset 2 * VarCount

Variable-length data VarData VarOff[VarCount] - (Fsize + 4 + 
Ceiling (Ncol / 8) + 2 * VarCount)

Within each block of fi xed-length or variable-length data, the data is stored in the  column 
order in which the table was created. For example, suppose a table is created with the 
 following statement: 

CREATE TABLE Test1 

( 

Col1 int             NOT NULL, 

Col2 char(25)        NOT NULL, 

Information Mnemonic Size

C05626249.indd   261 2/16/2009   4:30:10 PM



262 Microsoft SQL Server 2008 Internals

Col3 varchar(60)     NULL, 

Col4 money           NOT NULL, 

Col5 varchar(20)     NOT NULL 

);

 The fi xed-length data portion of this row contains the data for Col1, followed by the data for 
Col2, followed by the data for Col4. The variable-length data portion contains the data for Col3, 
followed by the data for Col5. For rows that contain only fi xed-length data, the following is true: 

■  The fi rst hexadecimal digit of the fi rst byte of the data row is 1, indicating that no 
 variable-length columns exist. (The fi rst hexadecimal digit comprises bits 4 through 7; 
bits 6 and 7 are always 0, and if there are no variable-length columns, bit 5 is also 0. 
Bit 4 is always 1, so the value of the four bits is displayed as 1.) 

■  The data row ends after the NULL bitmap, which follows the fi xed-length data (that is, 
the shaded portion shown in Figure 5-9 won’t exist in rows with only fi xed-length data). 

■  The total length of every data row is the same. 

 A data row that has any variable-length columns has a column offset array in the data row with 
a 2-byte entry for each non-NULL variable-length column, indicating the position within the row 
where the column ends. (The terms offset and position aren’t exactly interchangeable. Offset is 
0-based, and position is 1-based. A byte at an offset of 7 is in the eighth byte position in the row.) 
There are some special issues storing variable-length columns with a NULL value, and I’ll discuss 
this issue in the section entitled “NULLs and Variable-Length Columns,” later in this chapter.  

Finding a Physical Page

 Before we examine specifi c data, we need to digress a bit. The examples that follow use 
the DBCC PAGE command to examine the physical database pages. To run this command, 
I need to know what page numbers are used to store rows for a table. I mentioned previously 
that a value for fi rst_page was stored in an undocumented view called sys.system_internals_ 
 allocation_units, which is almost identical to the sys.allocation_units view. First, let me create 
a table (that will be used in the following section) and insert a single row into it: 

USE tempdb;

CREATE TABLE Fixed  

( 

Col1 char(5)     NOT NULL, 

Col2 int         NOT NULL, 

Col3 char(3)     NULL, 

Col4 char(6)     NOT NULL  

);

INSERT Fixed VALUES ('ABCDE', 123, NULL, 'CCCC');

 The following query gives me the value for fi rst_page in the Fixed table: 

SELECT object_name(object_id) AS name,  

    rows, type_desc as page_type_desc, 

    total_pages AS pages, first_page 

C05626249.indd   262 2/16/2009   4:30:11 PM



 Chapter 5 Tables 263

FROM sys.partitions p  JOIN sys.system_internals_allocation_units a 

   ON p.partition_id = a.container_id 

WHERE object_id=object_id('dbo.Fixed'); 

RESULTS: 

name    rows   page_type_desc   pages  first_page 

-----   ----   --------------   -----  -------------- 

Fixed   1      IN_ROW_DATA     2      0xCF0400000100

 I can then take the value of fi rst_page from the preceding sys.system_internals_ allocation_
units output (0xCF0400000100) and convert it to a fi le and page address. (The value that you 
get for fi rst_page most likely will be different than the one I got.) In hexadecimal  notation, 
each set of two hexadecimal digits represents a byte. I fi rst had to swap the bytes to get 
00 01 00 00 04 CF. The fi rst two groups represent the 2-byte fi le number; the last four 
groups represent the page number. So the fi le is 0x0001, which is 1, and the page number is 
0x000004CF, which is 1231 in decimal. 

 Unless you particularly enjoy playing with hexadecimal conversions, you might want to use 
one of three other options for determining the actual page numbers associated with your SQL 
Server tables. First you can create the function shown here to convert a 6-byte hexadecimal 
page number value (such as 0xCF0400000100) to a fi le_number:page_number format:  

CREATE FUNCTION convert_page_nums (@page_num binary(6)) 

   RETURNS varchar(11)  

AS  

  BEGIN 

   RETURN(convert(varchar(2), (convert(int, substring(@page_num, 6, 1))  

          * power(2, 8)) +  

             (convert(int, substring(@page_num, 5, 1)))) + ':' +  

               convert(varchar(11),  

   (convert(int, substring(@page_num, 4, 1)) * power(2, 24)) +  

   (convert(int, substring(@page_num, 3, 1)) * power(2, 16)) +  

   (convert(int, substring(@page_num, 2, 1)) * power(2, 8)) +  

   (convert(int, substring(@page_num, 1, 1)))) ) 

  END;

 You can then execute this SELECT to call the function: 

SELECT dbo.convert_page_nums(0xCF0400000100);

 You should get back the result 1:1231. 

 Warning SQL Server does not guarantee that the fi rst_page column in sys.system_internals_ 
allocation_units always indicates the first page of a table. (The view is undocumented, after 
all.) I’ve found that fi rst_page is reliable until you begin to perform deletes and updates on 
the data in the table. 

 The second option for determining the actual page numbers is to use another  undocumented 
command called DBCC IND. Because most of the information returned is relevant only to 

C05626249.indd   263 2/16/2009   4:30:11 PM



264 Microsoft SQL Server 2008 Internals

indexes, I won’t discuss this command in detail until Chapter 6. However, for a sneak preview, 
you can run the following command and note the values in the fi rst two columns of output 
(labeled PageFID and PagePID) in the row where PageType = 1, which indicates that the page 
is a data page:  

DBCC IND(tempdb, Fixed, -1); 

 If you weren’t in tempdb, you would replace tempdb with the name of whatever database you 
were in when you created this table. The values for PageFID and PagePID should be the same 
value you used when you converted the hexadecimal string for the fi rst_page value. In my 
case, I see that PageFID value is 1 and the PagePID value is 1231. So those are the values I use 
when calling DBCC PAGE. 

 The third method for obtaining fi le and page number information involves using an 
 undocumented function, sys.fn_PhysLocFormatter, in conjunction with an undocumented 
value, %%physloc%%, to return the physical row location in your result rows along with data 
values from a table. This can be useful if you want to fi nd which page in a table contains a 
particular value. DBCC IND can be used to fi nd all the pages in a table but not specifi cally 
the pages containing a particular row. However, sys.fn_PhysLocFormatter can show you only 
data pages for the data that is returned in a SELECT statement. We can use this function to 
get the pages used by our data in the table Fixed, as follows: 

SELECT sys.fn_PhysLocFormatter (%%physloc%%) AS RID, * FROM Fixed;

GO 

 Here are my results: 

RID          Col1    Col2          Col3   Col4

------------ ------- ------------- ------ ------

(1:1231:1)   ABCDE   123           NULL   CCCC

 Once you have the FileID and PageID values, you can use DBCC PAGE. For a larger table, we 
could use sys.fn_PhysLocFormatter to get the the pages only for the specifi c rows that were 
returned by the conditions in our WHERE clause. 

 Caution The %%physloc%% value is not understood by the relational engine, which means 
that if you use %%physloc%% in a WHERE clause, SQL Server has to examine every row to see 
which ones are on the page indicated by %%physloc%%. It is not able to use %%physloc%% to 
fi nd the row. Another way of looking at this is that %%physloc%% can be returned as output 
to report on a physical row location, but cannot be used as input to fi nd a particular location 
in a table. The %%physloc%% value was introduced as a debugging feature by the SQL Server 
product  development team and is not intended to be used (and is not supported) in production 
 applications.  

 The two examples that follow illustrate how fi xed-length and variable-length data rows are 
stored. 

C05626249.indd   264 2/16/2009   4:30:11 PM



 Chapter 5 Tables 265

Storage of Fixed-Length Rows

 First, let’s look at the simpler case of an all fi xed-length row using the table I just built in the 
preceding section: 

CREATE TABLE Fixed  

( 

Col1 char(5)     NOT NULL, 

Col2 int         NOT NULL, 

Col3 char(3)     NULL, 

Col4 char(6)     NOT NULL  

);

 When this table is created, you should be able to execute the following queries against the 
sys.indexes and sys.columns views to receive the information similar to the results shown: 

SELECT object_id,  type_desc,  

    indexproperty(object_id, name, 'minlen') as min_row_len 

    FROM sys.indexes where object_id=object_id('Fixed'); 

 

SELECT  column_id, name, system_type_id, max_length as max_col_len

FROM sys.columns  

WHERE object_id=object_id('Fixed'); 

RESULTS: 

object_id     type_desc    minlen  

------------- ------------ -------  

53575229      HEAP         22     

 

column_id     name                 system_type_id   max_length 

------------- -------------------- ---------------- ---------- 

1             Col1                 175              5 

2             Col2                 56               4 

3             Col3                 175              3 

4             Col4                 175              6

 Note The sysindexes compatibility view contains columns called minlen and xmaxlen, which 
store the minimum and maximum length of a row. In SQL Server 2008, these values are not 
 available in any of the catalog views, but you can get them by using undocumented parameters 
to the indexproperty function. As with all undocumented features, keep in mind that they are not 
supported by Microsoft and future compatibility is not guaranteed. 

 For tables containing only fi xed-length columns, the value returned for minlen by the 
 indexproperty function equals the sum of the column lengths (from sys.columns.max_length) 
plus 4 bytes. It doesn’t include the 2 bytes for the number of columns, or the bytes for the NULL 
 bitmap. 

 To look at a specifi c data row in this table, you must fi rst insert a new row. If you didn’t insert 
this row in the preceeding section, insert it now: 

INSERT Fixed VALUES ('ABCDE', 123, NULL, 'CCCC');

C05626249.indd   265 2/16/2009   4:30:11 PM



266 Microsoft SQL Server 2008 Internals

 Figure 5-10 shows this row’s actual contents on the data page.  

DATA:
Slot 0, Offset 0x60, Length 25, DumpStyle BYTE

Record Type = PRIMARY_RECORD         
Record Attributes =  NULL_BITMAP     
Memory Dump @0x61B4C060

00000000:   10001600 41424344 457b0000 00000000 †....ABCDE{......
00000010:   43434343 20200400 f4                †CCCC  ...     

Row Offsets:

10 00 1600 4142434445 7b000000 000000 434343432020 0400 f4

Status Bits A

Status Bits B

Offset to find
number of columns

Data in
Col 1

(’ABCDE’)

Data in
Col 2
(123)

Data in
Col 3

(NULL)

Data in
Col 4

(’CCCC  ’)

Number
of columns

NULL
bitmap

0 21 4 9 13 16 22 24

FIGURE 5-10 A data row containing all fi xed-length columns

 I was able to get the page contents by running the DBCC PAGE command, using the fi le and 
page number obtained using one of the methods that I described previously: 

DBCC PAGE(tempdb, 1, 1231, 1);

 Reading the output of DBCC PAGE takes a bit of practice. First, note that the output shows 
the data rows in groups of 4 bytes at a time. The shaded area in Figure 5-10 has been 
 expanded to show the bytes in an expanded form.  

 The fi rst byte is Status Bits A, and its value (0x10) indicates that only bit 4 is on, and  because 
bit 5 is not on, we know the row has no variable-length columns. The second byte in the 
row (Status Bits B) is unused. The third and fourth bytes (1600) indicate the length of 
the  fi xed-length fi elds, which is also the column offset in which the Ncol value can be found. 
(As a multibyte numeric value, this information is stored in a byte-swapped form, so the 
value is really 0x0016, which translates to 22.) To know where in the row between offsets 
4 and 22 each column actually is located, we need to know the offset of each column. In SQL 
Server 2000, the syscolumns system table has a column indicating the offset within the row. 
Although you can still select from the compatibility view called syscolumns in SQL Server 
2005, the results you get back are not reliable. The offsets can be found in an undocumented 
view called sys.system_internals_partition_columns that we can then join to sys.partitions 
to get the information about the referenced objects and join to sys.columns to get other 
 information about each column.  

C05626249.indd   266 2/16/2009   4:30:11 PM



 Chapter 5 Tables 267

 Here is a query to return basic column information, including the offset within the row for 
each column. I will use the same query for other tables later in this chapter, and I will refer to 
it as the “column detail query.”  

SELECT  c.name AS column_name, column_id, max_inrow_length,  

         pc.system_type_id, leaf_offset  

 FROM sys.system_internals_partition_columns pc 

    JOIN sys.partitions p  

      ON p.partition_id = pc.partition_id 

    JOIN sys.columns c 

         ON column_id = partition_column_id  

            AND c.object_id = p.object_id 

WHERE p.object_id=object_id('Fixed'); 

RESULTS: 

column_name   column_id     max_inrow_length   system_type_id   leaf_offset 

------------- ------------- ------------------ ---------------- ----------- 

Col1          1             5                  175              4           

Col2          2             4                  56               9          

Col3          3             3                  175              13         

Col4          4             6                  175              16         

 So now we can fi nd the data in the row for each column simply by using the offset value in 
the preceding results: the data for column Col1 begins at offset 4, the data for column Col2 
begins at offset 9, and so on. As an int, the data in Col2 (7b000000) must be byte-swapped 
to give the value 0x0000007b, which is equivalent to 123 in decimal. 

 Note that the 3 bytes of data for Col3 are all zeros, representing an actual NULL in the  column. 
Because the row has no variable-length columns, the row ends 3 bytes after the data for 
 column Col4. The 2 bytes starting right after the fi xed-length data at offset 22 (0400, which 
is byte-swapped to yield 0x0004) indicate that four columns are in the row. The last byte 
is the NULL bitmap. The value of 0xf4 is 11110100 in binary, and bits are shown from high 
 order to low order. The low-order four bits represent the four columns in the table, 0100, 
which  indicates that only the third column actually IS NULL. The high-order four bits are 1111 
 because those bits are unused. The NULL bitmap must have a multiple of eight bits, and if the 
number of columns is not a multiple of 8, some bits are unused.  

Storage of Variable-Length Rows

 Now let’s look at the somewhat more complex case of a table with variable-length data. Each 
row has three varchar columns and two fi xed-length columns: 

CREATE TABLE Variable  

( 

Col1 char(3)       NOT NULL, 

Col2 varchar(250)  NOT NULL, 

Col3 varchar(5)    NULL, 

Col4 varchar(20)   NOT NULL, 

Col5 smallint      NULL 

);

C05626249.indd   267 2/16/2009   4:30:11 PM



268 Microsoft SQL Server 2008 Internals

 When this table is created, you should be able to execute the following queries against the 
sys.indexes, sys.partitions, sys.system_internals_partition_columns, and sys.columns views to 
receive the information similar to the results shown here: 

SELECT object_id,  type_desc,  

    indexproperty(object_id, name, 'minlen') as minlen 

    FROM sys.indexes where object_id=object_id('Variable'); 

 

SELECT  name, column_id, max_inrow_length, pc.system_type_id, leaf_offset  

 FROM sys.system_internals_partition_columns pc 

    JOIN sys.partitions p  

          ON p.partition_id = pc.partition_id 

    JOIN sys.columns c 

         ON column_id = partition_column_id AND c.object_id = p.object_id 

WHERE p.object_id=object_id('Variable'); 

RESULTS: 

object_id   type_desc   minlen 

----------- ----------- ----------- 

69575286    HEAP        9 

 

 

column_name   column_id     max_inrow_length   system_type_id   leaf_offset 

------------- ------------- ------------------ ---------------- ----------- 

Col1          1             3                  175               4 

Col2          2             250                167              -1 

Col3          3             5                  167              -2 

Col4          4             20                 167              -3 

Col5          5             2                  52                7

 Now you can insert a row into the table as follows: 

INSERT Variable VALUES  

    ('AAA', REPLICATE('X', 250), NULL, 'ABC', 123);

 The REPLICATE function is used here to simplify populating a column; this function builds a 
string of 250 Xs to be inserted into Col2. 

 You can see the details of this row as stored on the page in the DBCC PAGE output in 
Figure 5-11. The location of the fi xed-length columns can be found by using the leaf_offset 
value in sys.system_internals_partition_columns, in the preceding query results. In this table, 
Col1 begins at offset 4 and Col5 begins at offset 7. Variable-length columns are not shown 
in the query output with a specifi c byte offset because the offset can be different in each 
row. Instead, the row itself holds the ending position of each variable-length column within 
that row in a part of the row called the Column Offset Array. The query output shows that 
Col2 has an leaf_offset value of –1, which means that Col2 is the fi rst variable-length column; 
an offset for Col3 of –2 means that Col3 is the second variable-length column, and an offset 
of –3 for Col4 means that Col4 is the third variable-length column. 

 To fi nd the variable-length columns in the data row itself, you fi rst locate the column  offset 
 array in the row. Right after the 2-byte fi eld indicating the total number of columns (0x0500) 

C05626249.indd   268 2/16/2009   4:30:11 PM



 Chapter 5 Tables 269

and the NULL bitmap with the value 0xe4, a 2-byte fi eld exists with the value 0x0300 (or 3, 
decimal) indicating that three variable-length fi elds exist. Next comes the  column offset  array. 
Three 2-byte values indicate the ending position of each of the three variable-length  columns: 
0x0e01 is byte-swapped to 0x010e, so the fi rst variable byte column ends at position 270. The 
next 2-byte offset is also 0x0e01, so that column has no length and has nothing stored in the 
variable data area. Unlike with fi xed-length fi elds, if a  variable-length fi eld has a NULL value, it 
takes no room in the data row. SQL Server distinguishes between a varchar  containing NULL 
and an empty string by determining whether the bit for the fi eld is 0 or 1 in the NULL bitmap. 
The third 2-byte offset is 0x1101, which, when byte-swapped, gives us 0x0111. This means the 
row ends at position 273 (and is 273 bytes long).  

DATA:

Slot 0, Offset 0x60, Length 273, DumpStyle BYTE

Record Type = PRIMARY_RECORD         
Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS
Memory Dump @0x61C4C060

00000000:   30000900 4141417b 000500e4 03000e01 †0...AAA{........
00000010:   0e011101 58585858 58585858 58585858 †....XXXXXXXXXXXX
00000020:   58585858 58585858 58585858 58585858 †XXXXXXXXXXXXXXXX
00000030:   58585858 58585858 58585858 58585858 †XXXXXXXXXXXXXXXX
...          ...  
000000F0:   58585858 58585858 58585858 58585858 †XXXXXXXXXXXXXXXX
00000100:   58585858 58585858 58585858 58584142 †XXXXXXXXXXXXXXAB
00000110:   43                                  †C           

Row Offsets:

Status Bits A

Status Bits B

Offset to find
number of columns

Data in
Col. 1

Data in
Col. 5

Number
of columns

NULL
bitmap

0 1 2 4 7 9 11 12
30 00 0900 414141 7b00 0500 e4 0300 0e01 0e01 1101 585858…58585858 414243

14 16 18 20 270

Number of variable-
length columns

Pos. where 1st
var. len. col. ends

Pos. where 2nd
var. len. col. ends

Pos. where 3rd
var. len. col. ends

Data in
Col. 2

Data in
Col. 4
(’ABC’)

FIGURE 5-11 A data row with variable-length columns

 The total storage space needed for a row depends on a number of factors. Variable-length 
columns add more overhead to a row, and their actual size is probably unpredictable. Even 
for fi xed-length columns, the number of bytes of overhead can change depending on the 
 number of columns in the table. In the example illustrated earlier in this chapter in Figure 5-2, 
I  mentioned that 10 bytes of overhead exist if a row contains all fi xed-length columns. For 
that table 10 is the correct number. The size of the NULL bitmap needs to be long enough to 
store a bit for every column in the row. In the Figure 5-2 example, the table has 11 columns, 

C05626249.indd   269 2/16/2009   4:30:11 PM



270 Microsoft SQL Server 2008 Internals

so the NULL bitmap needs to be 2 bytes. In the examples illustrated by Figures 5-10 and 5-11, 
the tables have fewer than eight columns, so the NULL bitmaps need only a single byte. Don’t 
 forget that the total row overhead must also include the 2 bytes for each row in the row offset 
table at the bottom of the page.  

NULLS and Variable-Length Columns 

 As mentioned previously, fi xed-length columns are always the same length, even if the  column 
contains NULL. For variable-length columns, NULLs don’t take any space in the  variable-length 
data part of the row. However, as we saw in Figure 5-11, there is still a 2-byte column offset 
entry for each variable-length column, so we can’t say that they take no space at all. However, 
if a zero-length value is stored at the end of the list of variable-length data columns, SQL 
Server does not store any information about it and does not include the 2 bytes in the  column 
offset array. Let’s look at an example.  

 The following table allows NULLs in each of its character columns, and they are all  variable 
length. The only fi xed-length column is the integer identity column:  

CREATE TABLE dbo.null_varchar

    (

      id INT PRIMARY KEY IDENTITY(1,1),

      col1 VARCHAR(10) NULL,

      col2 VARCHAR(10) NULL,

      col3 VARCHAR(10) NULL,

      col4 VARCHAR(10) NULL,

      col5 VARCHAR(10) NULL,

      col6 VARCHAR(10) NULL,

      col7 VARCHAR(10) NULL,

      col8 VARCHAR(10) NULL,

      col9 VARCHAR(10) NULL,

      col10 VARCHAR(10) NULL

    );

GO

 I’ll insert four rows into this table. The fi rst has a single character in the last varchar column, 
and NULLs in all the others. The second has a single character in the fi rst varchar column, and 
NULLs in all the others. The third has a single character in the last varchar column, and empty 
strings in all the others. The fourth has a single character in the fi rst varchar column, and 
empty strings in all the others:  

SET NOCOUNT ON

INSERT INTO null_varchar(col10)

   SELECT 'a';

INSERT INTO null_varchar(col1)

   SELECT 'b';

INSERT INTO null_varchar

   SELECT '','','','','','','','','','c';

INSERT INTO null_varchar

   SELECT  'd','','','','','','','','','';

GO

C05626249.indd   270 2/16/2009   4:30:11 PM



 Chapter 5 Tables 271

 Now I can use DBCC IND and DBCC PAGE (as shown previously) to look at the page containing 
these four rows.  

 Here is the fi rst row (with the column offset array shaded):  

Slot 0, Offset 0x60, Length 35, DumpStyle BYTE

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS

Record Size = 35                     

Memory Dump @0x66B4C060

00000000:   30000800 01000000 0b00fe03 0a002200 †0.........þ...".         

00000010:   22002200 22002200 22002200 22002200 †".".".".".".".".         

00000020:   230061†††††††††††††††††††††††††††††††#.a                      

 There are nine entries in the column offset array with the value (after byte-swapping) of 
hex 22, or decimal 18, and one entry with the decimal value 19. The value of 18 for the 
fi rst nine positions indicates that data ends in the same position as the column offset array 
ends, and SQL Server determines that this means those nine columns are empty. But empty 
could mean either NULL or an empty string. By looking at the NULL bitmap, in positions 
11 and 12, we see fe03, which is hex 03fe after byte-swapping. Looking at this in binary we 
see 0000001111111110. The column  positions are shown from right to left. This table has 
only 11 columns, so the last fi ve bits in the NULL bitmap are ignored. The rest of the string 
 indicates the fi rst and last columns are not NULL, but all the other columns are NULL. 

 The 10th value in the column offset array is hex 23, or decimal 19, which means that data 
ends at offset 19, which contains the ASCII code 61, representing a.  

 Here is the second row (with the column offset array shaded):  

Slot 1, Offset 0x83, Length 17, DumpStyle BYTE

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS

Record Size = 17                     

Memory Dump @0x66B4C083

00000000:   30000800 02000000 0b00fc07 01001100 †0.........ü.....         

00000010:   62†††††††††††††††††††††††††††††††††††b                        

 There are several important differences to note, between this row and the preceding one. First, 
the column offset array contains only a single value, which is the ending position for the fi rst 
variable-length column. The 1100 bytes are byte-swapped to 0011, and converted to 17 decimal, 
which is the offset where the ASCII code for b (that is, 62) is located. Immediately  preceding the 
column offset array is the 2-byte value indicating the number of  variable-length columns. The 
fi rst row had a hex value of 000a here, indicating 10 variable-length columns. The second row 
has 0001, which means only one of the variable-length columns is actually stored in the row. We 
just saw that zero-length columns prior to columns containing data do use the column  offset 
array, but in this case, because all the zero-length columns are after the non-NULL, only the 
 non-NULL column is represented here. If you look at the NULL bitmap, you’ll see fc07, which is 
hex 07fc after byte-swapping. Looking at this in binary, we see 0000011111111100, indicating 
that the fi rst two columns are not NULL, but all the rest are.  

C05626249.indd   271 2/16/2009   4:30:11 PM



272 Microsoft SQL Server 2008 Internals

 If you look at the rows containing empty strings instead of NULLs, the output should be 
 exactly the same, except for the NULL bitmap. Here is the third row (slot 2) and the fourth 
row (slot 3), with the NULL bitmaps shaded: 

Slot 2, Offset 0x94, Length 35, DumpStyle BYTE

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS

Record Size = 35                     

Memory Dump @0x66B4C094

00000000:   30000800 03000000 0b000000 0a002200 †0.............".         

00000010:   22002200 22002200 22002200 22002200 †".".".".".".".".         

00000020:   230063†††††††††††††††††††††††††††††††#.c   

Slot 3, Offset 0xb7, Length 17, DumpStyle BYTE

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP VARIABLE_COLUMNS

Record Size = 17                     

Memory Dump @0x66B4C0B7

00000000:   30000800 04000000 0b000000 01001100 †0...............         

00000010:   63†††††††††††††††††††††††††††††††††††d                                 

 For both the third and fourth rows, the NULL bitmap is all zeros, indicating that none of the 
columns are NULL. The fi rst and third rows differ only in the actual character value stored 
and in the NULL bitmap. The second and fourth rows differ in the same way.  

 If we insert a row with all NULLs in the varchar columns, the row storage changes a bit more. 
Here is what it would look like: 

Slot 4, Offset 0xc8, Length 12, DumpStyle BYTE

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP

Record Size = 12                     

Memory Dump @0x66B4C0C8

00000000:   10000800 05000000 0b000000 ††††††††††.......     

 This row looks just like an all fi xed-length row and ends right after the NULL bitmap. Bit 5 
in the fi rst byte (Status Bits A) has been set to 0 to indicate that there are no variable-length 
columns stored in this row. 

Storage of Date and Time Data

 I described the storage of date and time data types earlier in this chapter, and now that we’ve 
had some practice looking at the actual on-disk storage, let’s look at some date and time 
data. The following table stores all the different data and time data types in a single row, and 
all of the different possible scales for time data. (Remember that datetime2 and datetimeoffset 
can also indicate a scale for the time component, but the time values look no different than 
the time values stored with the simple time data type.) The table also includes single-column 
character values, which I use just so I can fi nd the other values easily in the single row of hex 
data that DBCC PAGE gives me: 

CREATE TABLE times (

 a char(1), 

 dt1 datetime,

C05626249.indd   272 2/16/2009   4:30:11 PM



 Chapter 5 Tables 273

 b char(1),

 sd smalldatetime,

 c char(1),

 dt2 datetime2,

 d char(1),

 dt date,

 e char(1),

 dto datetimeoffset,

 f char(1),

 t time,

 g char(1),

 t0 time(0),

 h char(1),

 t1 time(1),

 i char(1),

 t2 time(2),

 j char(1),

 t3 time(3),

 k char(1),

 t4 time(4),

 l char(1),

 t5 time(5),

 m char(1),

 t6 time(6),

 n char(1),

 t7 time(7));

GO

 Now I’ll insert one one-row data, with the same time value provided for each date or 
time  column. The data types that need a date component assume a default date of 
January 1, 1900: 

INSERT INTO times

SELECT 

    'a', '01:02:03.123',

    'b', '01:02:03.123',

    'c', '01:02:03.123',

    'd', '01:02:03.123',

    'e', '01:02:03.123',

    'f', '01:02:03.123',

    'g', '01:02:03.123',

    'h', '01:02:03.123',

    'i', '01:02:03.123',

    'j', '01:02:03.123',

    'k', '01:02:03.123',

    'l', '01:02:03.123',

    'm', '01:02:03.123',

    'n', '01:02:03.123';

 Here is the DBCC PAGE output for this row. I have shaded the single-character column data 
to use as dividers: 

00000000:   10005800 61090b11 00000000 00623e00 †..X.a .......b>.         

00000010:   00006330 7c27ab08 5b950a64 5b950a65 †..c0|'".[?.d[?.e         

C05626249.indd   273 2/16/2009   4:30:11 PM



274 Microsoft SQL Server 2008 Internals

00000020:   307c27ab 085b950a 00006630 7c27ab08 †0|'".[?...f0|'".         

00000030:   678b0e00 686f9100 6958ae05 6a73cf38 †g?..ho?.iX®.jsÏ8         

00000040:   006b7e1a 38026cec 08311600 6d3859ea †.k~.8.lì.1..m8Yê         

00000050:   dd006e30 7c27ab08 1c000000 0000††††††Ý.n0|'".......                

 Table 5-8 shows the translation into decimal format for each of these values. Here are some 
points to notice:  

■  For the datetime and smalldatetime data types, the date value is stored as 0,  meaning 
that the date is the base of ‘January 1, 1900’. For the other types that store a date, the 
date value is stored as 693595, which represents the number of days after the new 
 internal base date of January 1, 0001. To compute the corresponding date, you can use 
the dateadd function: 

SELECT DATEADD(dd, 693595, CAST('0001/1/1' AS datetime2));

■  This will return the value ‘1900-01-01’ 00:00:00.00’, which is the default when no date is 
specifi ed. 

■  The fractional seconds component is the last N digits of the time component, where 
N is the scale of the time data, as listed in the table defi nition. So for the time(7) value, 
the fractional seconds are .1230000; for the time(4), the fractional seconds are .1230; 
for the time(1) value, the fractional seconds are .1; and for the time(0) value, there are 
no fractional sections.  

■  Whatever remains in the time portion after the appropriate number of digits are 
 removed for the fractional seconds is the hours, minutes, and seconds value. Because 
the same time value was used for all the columns in the table, the time values all start 
with the same four digits: 3723. Previously, I showed you the formula for converting a 
time value to an integer; here, I’ll do the reverse, using the modulo operator (%) and 
integer division. SQL Server uses the following conversions to determine the hours, 
minutes, and seconds from 3723: 

SELECT hours =  (3723 / 60) / 60;

SELECT minutes = (3723 / 60) % 60;

SELECT seconds = 3723 % 60;

RESULT:

hours

-----------

1

minutes

-----------

2

seconds

-----------

3

■  The column storing datetimeoffset data has 2 extra bytes to store the timezone  offset. 
Two bytes are needed because the offset is stored as the number of hours and minutes 
(1 byte for each) from Coordinated Universal Time (UTC).  

C05626249.indd   274 2/16/2009   4:30:11 PM



 Chapter 5 Tables 275

TABLE 5-8 Translation of Various Date and Time Values 

Column  

Name 

Data Type 

and Bytes 

Used

Value 

Stored 

in Row

Byte-Swapped

Date Time

Decimal Values

Date Time

dt1 Datetime -8- 090b110000
000000

00 00 00 00 00 11
0b 09

0 1116937

sd Small
datetime -4-

3e000000 00 00 00 3e 0 62

dt2 datetime2 -8- 307c27ab0
85b950a

0a 95 5b 08 ab 27
7c 30

693595 37231230000

dt date -3- 5b950a 0a 95 5b (none) 693595 (none)

dto datetime
offset -10-

307c27ab08 
5b950a00 00

0a 95 5b 08 ab 27
7c 30

693595 37231230000

t time -5- 307c27ab08 (none) 08 ab 27
7c 30

(none) 37231230000

t0 time(0) -3- 8b0e00 (none) 00 0e 8b (none) 3723

t1 time(1) -3- 6f9100 (none) 00 91 6f (none) 37231

t2 time(2) -3- 58ae05 (none) 05 ae 58 (none) 372312

t3 time(3) -4- 73cf3800 (none) 00 38
cf 73

(none) 3723123

t4 time(4) -4- 7e1a3802 (none) 02 38
1a 7e

(none) 37231230

t5 time(5) -5- ec08311600 (none) 00 16 31
08 ec

(none) 372312300

t6 time(6) -5- 3859eadd00 (none) 00 dd ea 
59 38

(none) 3723123000

t7 time(7) -5- 307c27ab08 (none) 08 ab 27
7c 30

(none) 37231230000

Storage of sql_variant Data

The sql_variant data type provides support for columns that contain any or all of the SQL 
Server base data types except LOBs and variable-length columns with the MAX qualifi er, 
 rowversion (timestamp), XML, and the types that can’t be defi ned for a column in a table, 
namely cursor and table. For instance, a column can contain a smallint value in some rows, 
a fl oat value in others, and a char value in the remainder. 

 This feature was designed to support what appears to be semistructured data in products 
sitting above SQL Server. This semistructured data exists in conceptual tables that have a 
fi xed number of columns of known data types and one or more optional columns whose 
type might not be known in advance. An example is e-mail messages in Microsoft Offi ce 
Outlook and Microsoft Exchange. With the sql_variant data type, you can pivot a conceptual 

Column  

Name

Data Type 

and Bytes 

Used

Value

Stored

in Row

Byte-Swapped

Date Time

Decimal Values

Date Time

C05626249.indd   275 2/16/2009   4:30:11 PM



276 Microsoft SQL Server 2008 Internals

table into a real, more compact table with sets of property-value pairs. Here is a graphical 
 example: the conceptual table shown in Table 5-9 has three rows of data. The fi xed columns 
are the ones that exist in every row. Each row can also have values for one or more of the 
three different properties, which have different data types. 

TABLE 5-9 A Conceptual Table with an Arbitrary Number of Columns and Data Types 

Row Fixed Columns Property 1 Property 2 Property 3

row -1 XXXXXX value-11 value -13

row -2 YYYYYY value-22

row -3 ZZZZZZ value-31 value-32

 This can be pivoted into Table 5-10, where the fi xed columns are repeated for each different 
property that appears with those columns. The column called value can be represented by 
sql_variant data and be a different data type for each different property. 

TABLE 5-10 Semistructured Data Stored Using the sql_variant Data Type 

Fixed Columns Property Value

XXXXXX property-1 value-11

XXXXXX property-3 value-13

YYYYYY property-2 value-22

ZZZZZZ property-1 value-31

ZZZZZZ property-2 value-32

 Internally, columns of type sql_variant are always considered variable length. Their storage 
structure depends on the type of data, but the fi rst byte of every sql_variant fi eld always 
 indicates the actual data type being used in that row. 

I’ll create a simple table with a sql_variant column and insert a few rows into it so we can 
 observe the structure of the sql_variant storage. 

USE testdb;

GO

CREATE TABLE variant (a int, b sql_variant); 

GO 

INSERT INTO variant VALUES (1, 3); 

INSERT INTO variant VALUES (2, 3000000000); 

INSERT INTO variant VALUES (3, 'abc'); 

INSERT INTO variant VALUES (4, current_timestamp);

SQL Server decides what data type to use in each row based on the data supplied. For 
example, the 3 in the fi rst INSERT is assumed to be an integer. In the second INSERT, the 
3000000000 is larger than the biggest possible integer, so SQL Server assumes a decimal 
with a precision of 10 and a scale of 0. (It could have used a bigint, but that would need more 

Row Fixed Columns Property 1 Property 2 Property 3

Fixed Columns Property Value

C05626249.indd   276 2/16/2009   4:30:12 PM



 Chapter 5 Tables 277

storage space.) We can now use DBCC IND to fi nd the fi rst page of the table and use DBCC 
PAGE to see its contents as follows: 

DBCC IND (testdb, variant, -1); 

-- (I got a value of file 1, page 2508 for the data page in this table) 

GO 

DBCC TRACEON (3604); 

DBCC PAGE (testdb, 1, 2508, 1);

 Figure 5-12 shows the contents of the four rows. I won’t go into the details of every single 
byte because most are the same as what we’ve already examined. 

 The difference between the three rows starts at bytes 13 to 14, which indicate the  position 
where the fi rst variable-length column ends. Because there is only one variable-length  column, 
this is also the length of the row. The sql_variant data begins at byte 15. Byte 15 is the code for 
the data type. You can fi nd the codes in the system_type_id column of the sys.types catalog 
view. I’ve reproduced the relevant part of that view here: 

system_type_id   name

---------------- ----------------------

34               image

35               text

36               uniqueidentifier

40               date

41               time

42               datetime2

43               datetimeoffset

48               tinyint

52               smallint

56               int

58               smalldatetime

59               real

60               money

61               datetime

62               float

98               sql_variant

99               ntext

104              bit

106              decimal

108              numeric

122              smallmoney

127              bigint

165              varbinary

167              varchar

173              binary

175              char

189              timestamp

231              nvarchar

231              sysname

239              nchar

240              hierarchyid

240              geometry

240              geography

241              xml

C05626249.indd   277 2/16/2009   4:30:12 PM



278 Microsoft SQL Server 2008 Internals

DATA:

Slot 0, Offset 0x60,�Length 21,�DumpStyle BYTE�

Record�Type�=�PRIMARY_RECORD������ Record�Attributes�=��NULL_BITMAP�VARIABLE_COLUMNS

Record�Size�=�21

Memory Dump @0x62B7C060

00000000: 30000800 01000000 02000001 00150038 †0..............8

00000010: 01030000 00††††††††††††††††††††††††††.....

Slot 1, Offset 0x75,�Length 24,�DumpStyle BYTE

Record�Type�=�PRIMARY_RECORD������ Record�Attributes�=��NULL_BITMAP�VARIABLE_COLUMNS

Record�Size�=�24

Memory Dump @0x62B7C075

00000000: 30000800 02000000 02000001 0018006c †0..............l

00000010: 010a0001 005ed0b2 †††††††††††††††††††.....^Ð²

Slot 2, Offset 0x8d,�Length 26,�DumpStyle BYTE

Record�Type�=�PRIMARY_RECORD������ Record�Attributes�=��NULL_BITMAP�VARIABLE_COLUMNS

Record�Size�=�26

Memory Dump @0x62B7C08D

00000000: 30000800 03000000 02000001 001a00a7 †0..............§

00000010: 01401f08 d0003461 6263†††††††††††††††.@..Ð.4abc

Slot 3, Offset 0xa7,�Length 25,�DumpStyle BYTE

Record�Type�=�PRIMARY_RECORD������ Record�Attributes�=��NULL_BITMAP�VARIABLE_COLUMNS

Record�Size�=�25

Memory Dump @0x62B7C0A7

00000000: 30000800 04000000 02000001 0019003d †0..............=

00000010: 0183de14 01299b00 00†††††††††††††††††..Þ..)...

OFFSET TABLE:

Row - Offset

3 (0x3) - 167 (0xa7)

2 (0x2) - 141 (0x8d)

1 (0x1) - 117 (0x75)

0 (0x0) - 96 (0x60)

FIGURE 5-12 Rows containing sql_variant data

 In our table, we have the data types 38 hex (which is 56 decimal and int), 6C hex (which is 108 
decimal, which is numeric), A7 hex (which is 167 decimal and varchar), and 3D hex (which is 
61 decimal and datetime). Following the byte for data type is a byte representing the  version 
of the sql_variant format, and that is always 1 in SQL Server 2008. Following the version, 
there can be one of the following four sets of bytes: 

■  For numeric and decimal: 1 byte for the precision and 1 byte for the scale 

■  For strings: 2 bytes for the maximum length and 4 bytes for the collation ID 

C05626249.indd   278 2/16/2009   4:30:12 PM



 Chapter 5 Tables 279

■  For binary and varbinary: 2 bytes for the maximum length 

■  For all other types: no extra bytes 

 These bytes are then followed by the actual data in the sql_variant column. 

Constraints

 Constraints provide a powerful yet easy way to enforce the data integrity in your database. 
Data integrity comes in three forms: 

 Entity integrity Ensures that a table has a primary key. In SQL Server 2008, you can  guarantee 
entity integrity by defi ning PRIMARY KEY or UNIQUE constraints or by  building unique 
indexes. Alternatively, you can write a trigger to enforce entity  integrity, but this is usually 
far less effi cient.  

 Domain integrity Ensures that data values meet certain criteria. In SQL Server 2008, domain 
integrity can be guaranteed in several ways. Choosing appropriate data types can  ensure 
that a data value meets certain conditions—for example, that the data represents a valid 
date. Other approaches include defi ning CHECK constraints or FOREIGN KEY  constraints, 
or writing a trigger. You might also consider DEFAULT constraints as an aspect of 
 enforcing domain integrity. 

 Referential integrity Enforces relationships between two tables, a referenced table, and a 
referencing table. SQL Server allows you to defi ne FOREIGN KEY constraints to enforce 
referential integrity, and you can also write triggers for enforcement. It’s crucial to note 
that there are always two sides to referential integrity enforcement. If data is updated 
or deleted from the referenced table, referential integrity ensures that any data in the 
referencing table that refers to the changed or deleted data is handled in some way. 
On the other side, if data is updated or inserted into the referencing table, referential 
integrity ensures that the new data matches a value in the referenced table. 

 In this section, I’ll briefl y describe some of the internal aspects of managing constraints. 
Constraints are also called declarative data integrity because they are part of the actual table 
defi nition. This is in contrast to programmatic data integrity, which uses stored procedures or 
triggers. 

 Here are the fi ve types of constraints: 

■  PRIMARY KEY 

■  UNIQUE 

■  FOREIGN KEY 

■  CHECK 

■  DEFAULT 

C05626249.indd   279 2/16/2009   4:30:12 PM



280 Microsoft SQL Server 2008 Internals

 You might also sometimes see the IDENTITY property and the nullability of a column 
 described as constraints. I typically don’t consider these attributes to be constraints; instead, 
I think of them as properties of a column, for two reasons. First, each constraint has its own 
row in the sys.objects catalog view, but IDENTITY and nullability information is not available 
in sys.objects, only in sys.columns and sys.identity_columns. This makes me think that these 
properties are more like data types, which are also viewable through sys.columns. Second, 
when you use the SELECT INTO command to make a copy of a table, all column names and 
data types are copied, as well as IDENTITY information and column nullability, but constraints 
are not copied to the new table. This makes me think that IDENTITY and nullability are more 
a part of the actual table structure than the constraints are. 

Constraint Names and Catalog View Information

 The following simple CREATE TABLE statement, which includes a primary key on the table, 
creates a PRIMARY KEY constraint along with the table, and the constraint has a very 
 cryptic-looking name:  

CREATE TABLE customer 

( 

cust_id      int         IDENTITY  NOT NULL  PRIMARY KEY, 

cust_name    varchar(30) NOT NULL 

);

 If you don’t supply a constraint name in the CREATE TABLE or ALTER TABLE statement that 
defi nes the constraint, SQL Server comes up with a name for you.  

 The constraint produced from the preceding simple statement has a name very similar to the 
nonintuitive name PK__customer__3BD0198E35BCFE0A. (The hexadecimal number at the end 
of the name most likely will be different for a customer table that you create.) All types of 
single-column constraints use this naming scheme, which I’ll explain shortly. The  advantage 
of explicitly naming your constraint rather than using the system-generated name is greater 
clarity. The constraint name is used in the error message for any constraint violation, so 
 creating a name such as CUSTOMER_PK probably makes more sense to users than a name 
such as PK__customer__0856260D. You should choose your own constraint names if such 
error messages are visible to your users. The fi rst two characters (PK) show the constraint 
type—PK for PRIMARY KEY, UQ for UNIQUE, FK for FOREIGN KEY, CK for CHECK, and DF 
for DEFAULT. Next are two underscore characters, which are used as a separator.  

 Tip You might be tempted to use one underscore to conserve characters and to avoid  having 
to truncate as much. However, it’s common to use a single underscore in a table name or a 
column name, both of which appear in the constraint name. Using two underscore characters 
 distinguishes the kind of a name it is and where the separation occurs. 

C05626249.indd   280 2/16/2009   4:30:12 PM



 Chapter 5 Tables 281

 Note Constraint names are schema-scoped, which means they all share the same namespace 
and hence must be unique within a schema. Within a schema, you cannot have two tables with 
the same name for any of their constraints.  

 Next comes the table name (customer), which is limited to 116 characters for a PRIMARY KEY 
constraint and slightly fewer characters for all other constraint names. For all  constraints  other 
than PRIMARY KEY and UNIQUE, there are two more underscore characters for  separation, 
followed by the next sequence of characters, which is the column name. The  column name 
is truncated to fi ve characters if necessary. If the column name has fewer than fi ve characters, 
the length of the table name portion can be slightly longer. 

 Finally, the hexadecimal representation of the object ID for the constraint comes after another 
separator. This value is used in the object_id column of the sys.objects catalog view. Object 
names are limited to 128 characters in SQL Server 2008, so the total length of all the portions 
of the constraint name must also be less than or equal to 128. 

 Several catalog views contain constraint information. They all inherit the columns from the 
sys.objects view and include additional columns specifi c to the type of constraint. These 
views are 

■  sys.key_constraints  

■  sys.check_constraints  

■  sys.default_constraints  

■  sys.foreign_keys  

 The parent_object_id column, which indicates which object contains the constraint, is actually 
part of the base sys.objects view, but for objects that have no “parent,” this column is 0.  

Constraint Failures in Transactions and Multiple-Row 
Data Modifi cations

 Many bugs occur in application code because developers don’t understand how the failure 
of a constraint affects a multiple-statement transaction declared by the user. The biggest 
misconception is that any error, such as a constraint failure, automatically aborts and rolls 
back the entire transaction. On the contrary, after an error is raised, it’s up to the transaction 
to proceed and ultimately commit or to roll back. This feature provides the developer with 
the fl exibility to decide how to handle errors. (The semantics are also in accordance with the 
ANSI SQL-92 standard for COMMIT behavior.) 

 Because many developers have handled transaction errors incorrectly and because it can be 
tedious to add an error check after every command, SQL Server includes a SET option called 
XACT_ABORT that causes SQL Server to abort a transaction if it encounters any error during 
the transaction. The default setting is OFF, which is consistent with ANSI-standard behavior.  

C05626249.indd   281 2/16/2009   4:30:12 PM



282 Microsoft SQL Server 2008 Internals

 A fi nal comment about constraint errors and transactions: a single data modifi cation 
 statement (such as an UPDATE statement) that affects multiple rows is automatically an 
atomic operation, even if it’s not part of an explicit transaction. If such an UPDATE statement 
fi nds 100 rows that meet the criteria of the WHERE clause but one row fails because of a 
constraint violation, no rows will be updated. I discuss implicit and explicit transactions a bit 
more in Chapter 10. 

The Order of Integrity Checks

 The modifi cation of a given row fails if any constraint is violated or if a trigger rolls back the 
operation. As soon as a failure in a constraint occurs, the operation is aborted, subsequent 
checks for that row aren’t performed, and no triggers fi re for the row. Hence, the order of 
these checks can be important, as the following list shows: 

  1. Defaults are applied as appropriate. 

  2. NOT NULL violations are raised. 

  3. CHECK constraints are evaluated. 

  4. FOREIGN KEY checks of referencing tables are applied. 

  5. FOREIGN KEY checks of referenced tables are applied. 

  6. The UNIQUE and PRIMARY KEY constraints are checked for correctness. 

  7. Triggers fi re. 

Altering a Table

 SQL Server 2008 allows existing tables to be modifi ed in several ways. Using the ALTER TABLE 
command, you can make the following types of changes to an existing table: 

■  Change the data type or the NULL property of a single column. 

■  Add one or more new columns, with or without defi ning constraints for those columns. 

■  Add one or more constraints. 

■  Drop one or more constraints. 

■  Drop one or more columns. 

■  Enable or disable one or more constraints (applies only to CHECK and FOREIGN KEY 
constraints). 

■  Enable or disable one or more triggers. 

■  Rebuild a table or a partition to change the compression settings or remove  fragmentation. 
(Fragmentation is discussed in Chapter 6, and compression is discussed in Chapter 7.) 

■  Change the lock escalation behavior of a table. (Locks and lock escalation are discussed 
in Chapter 10.) 

C05626249.indd   282 2/16/2009   4:30:12 PM

v@v
Text Box
Download at Wow! eBook



 Chapter 5 Tables 283

Changing a Data Type

 By using the ALTER COLUMN clause of ALTER TABLE, you can modify the data type or the 
NULL property of an existing column. But be aware of the following restrictions: 

■  The modifi ed column can’t be a text, image, ntext, or rowversion (timestamp) column. 

■  If the modifi ed column is the ROWGUIDCOL for the table, only DROP ROWGUIDCOL 
is allowed; no data type changes are allowed. 

■  The modifi ed column can’t be a computed or replicated column. 

■  The modifi ed column can’t have a PRIMARY KEY or FOREIGN KEY constraint defi ned 
on it. 

■  The modifi ed column can’t be referenced in a computed column. 

■  The modifi ed column can’t have the type changed to timestamp. 

■  If the modifi ed column participates in an index, the only type changes that are allowed 
are increasing the length of a variable-length type (for example, varchar(10) to 
varchar(20)), changing nullability of the column, or both. 

■  If the modifi ed column has a UNIQUE or CHECK constraint defi ned on it, the only change 
allowed is altering the length of a variable-length column. For a UNIQUE constraint, the 
new length must be greater than the old length. 

■  If the modifi ed column has a default defi ned on it, the only changes that are allowed 
are increasing or decreasing the length of a variable-length type, changing nullability, 
or changing the precision or scale. 

■  The old type of the column should have an allowed implicit conversion to the new type. 

■  The new type always has ANSI_PADDING semantics if applicable, regardless of the 
 current setting. 

■  If conversion of an old type to a new type causes an overfl ow (arithmetic or size), the 
ALTER TABLE statement is aborted. 

 Here’s the syntax and an example of using the ALTER COLUMN clause of the ALTER TABLE 
statement: 

SYNTAX:

ALTER TABLE table-name ALTER COLUMN column-name

        { type_name [ ( prec [, scale] ) ] [COLLATE <collation name> ] 

          [ NULL | NOT NULL ] 

          |  {ADD | DROP} {ROWGUIDCOL | PERSISTED}  }

EXAMPLE:

/* Change the length of the emp_lname column in the employee  

   table from varchar(15) to varchar(30) */ 

ALTER TABLE employee  

   ALTER COLUMN emp_name varchar(30);

C05626249.indd   283 2/16/2009   4:30:12 PM



284 Microsoft SQL Server 2008 Internals

Adding a New Column

 You can add a new column, with or without specifying column-level constraints. If the new 
column doesn’t allow NULLs, isn’t an identity column, and isn’t a rowversion (or timestamp 
column), the new column must have a default constraint defi ned (unless no data is in the 
table yet). SQL Server populates the new column in every row with a NULL, the appropriate 
identity or rowversion value, or the specifi ed default. If the newly added column is nullable 
and has a default constraint, the existing rows of the table are not fi lled with the default 
 value, but rather with NULL values. You can override this restriction by using the WITH 
VALUES clause so that the existing rows of the table are fi lled with the specifi ed default value. 

Adding, Dropping, Disabling, or Enabling a Constraint

 You can use ALTER TABLE to add, drop, enable, or disable a constraint. The trickiest part of 
using ALTER TABLE to manipulate constraints is that the word CHECK can be used in three 
different ways: 

■  To specify a CHECK constraint.  

■  To defer the checking of a newly added constraint. In the following example, we’re 
adding a constraint to validate that cust_id in orders matches a cust_id in customer, but 
we don’t want the constraint applied to existing data: 

ALTER TABLE orders 

   WITH NOCHECK 

   ADD FOREIGN KEY (cust_id) REFERENCES customer (cust_id);

 Note Instead of using WITH NOCHECK, I could use WITH CHECK to force the constraint 
to be applied to existing data, but that’s unnecessary because it’s the default behavior. 

■  To enable or disable a constraint. In this example, we enable all the constraints on the 
employee table: 

ALTER TABLE employee 

   CHECK CONSTRAINT ALL;

 The only types of constraints that can be disabled are CHECK constraints and FOREIGN KEY 
constraints, and disabling tells SQL Server not to validate new data as it is added or updated. 
You should use caution when disabling and re-enabling constraints. If a constraint was part of 
the table when the table was created or was added to the table using the WITH CHECK  option, 
SQL Server knows that the data conforms to the data integrity requirements of the constraint. 
The SQL Server Query Optimizer can then take advantage of this knowledge in some cases. 
For example, if you have a constraint that requires col1 to be greater than 0, and then an 
 application submits a query looking for all rows where col1 < 0, if the constraint has always 
been in effect, the Optimizer knows that no rows can satisfy this query and the plan is a very 

C05626249.indd   284 2/16/2009   4:30:12 PM



 Chapter 5 Tables 285

simple plan. However, if the constraint has been disabled and re-enabled without using the 
WITH CHECK option, there is no guarantee that some of the data in the table won’t meet the 
integrity requirements. You might not have any data less than or equal to 0, but the Optimizer 
cannot know that when it is devising the plan; all the Optimizer knows is that the constraint 
cannot be trusted. The catalog views sys.check_constraints and sys.foreign_keys each have a 
column called is_not_trusted. If you re-enable a constraint and don’t use the WITH CHECK 
 option to tell SQL Server to revalidate all existing data, the is_not_trusted column is set to 1. 

 Although you cannot use ALTER TABLE to disable or enable a PRIMARY KEY or UNIQUE 
 constraint, you can use the ALTER INDEX command to disable the associated index. I’ll  discuss 
ALTER INDEX in Chapter 6. You can use ALTER TABLE to drop PRIMARY KEY and UNIQUE 
constraints, but you need to be aware that dropping one of these constraints automatically 
drops the associated index. In fact, the only way to drop those indexes is by altering the table 
to remove the constraint. 

 Note You can’t use ALTER TABLE to modify a constraint defi nition. You must use ALTER TABLE to 
drop the constraint and then use ALTER TABLE to add a new constraint with the new defi nition.  

Dropping a Column

 You can use ALTER TABLE to remove one or more columns from a table. However, you can’t 
drop the following columns: 

■  A replicated column 

■  A column used in an index 

■  A column used in a CHECK, FOREIGN KEY, UNIQUE, or PRIMARY KEY constraint 

■  A column associated with a default defi ned using the DEFAULT keyword or bound to a 
default object 

■  A column to which a rule is bound 

 You can drop a column using the following syntax: 

ALTER TABLE table-name 

    DROP COLUMN column-name [, next-column-name]...

 Note Notice the syntax difference between dropping a column and adding a new column: the 
word COLUMN is required when dropping a column but not when you add a new column to 
a table. 

C05626249.indd   285 2/16/2009   4:30:12 PM



286 Microsoft SQL Server 2008 Internals

Enabling or Disabling a Trigger

 You can enable or disable one or more (or all) triggers on a table using the ALTER TABLE 
command. 

Internals of Altering Tables

 Note that not all the ALTER TABLE variations require SQL Server to change every row when the 
ALTER TABLE is issued. SQL Server can carry out an ALTER TABLE command in three basic ways: 

■  It might need to change only metadata.  

■  It might need to examine all the existing data to make sure it is compatible with the 
change but only needs to make changes to metadata. 

■  It might need to change every row physically. 

 In many cases, SQL Server can just change the metadata (primarily the data seen through 
sys.columns) to refl ect the new structure. In particular, the data isn’t touched when a column 
is dropped, when a new column is added and NULL is assumed as the new value for all rows, 
when the length of a variable-length column is increased, or when a non-nullable column is 
changed to allow NULLs. The fact that data isn’t touched when a column is dropped means 
that the disk space of the column is not reclaimed. You might have to reclaim the disk space 
of a dropped column when the row size of a table approaches or has exceeded its limit. 
You can reclaim space by creating a clustered index on the table or rebuilding an existing 
 clustered index by using ALTER INDEX, as we’ll see in Chapter 6. 

 Some changes to a table’s structure require that the data be examined but not modifi ed. For 
example, when you change the nullability property to disallow NULLs, SQL Server must fi rst 
make sure there are no NULLs in the existing rows. A variable-length column can be  shortened 
when all the existing data is within the new limit, so the existing data must be checked. If 
any rows have data longer than the new limit specifi ed in the ALTER TABLE, the command 
fails. So you do need to be aware that for a huge table, this can take some time. Changing a 
 fi xed-length column to a shorter type, such as changing an int column to  smallint or  changing 
a char(10) to char(8), also requires examining all the data to verify that all the existing  values 
can be stored in the new type. However, even though the new data type takes up fewer 
bytes, the rows on the physical pages are not modifi ed. If you have created a table with an 
int  column, which needs 4 bytes in each row, all rows will use the full 4 bytes. After altering 
the table to change the int to smallint, we are restricted in the range of data values we can 
insert, but the rows continue to use 4 bytes for each value, instead of the 2 bytes that  smallint 
 requires. You can verify this by using the DBCC PAGE command. Changing a char(10) to char(8) 
displays similar behavior, and the rows continue to use 10 bytes for that column, but only 8 are 
allowed to have new data inserted. It is not until the table is rebuilt by creating or re-creating a 
clustered index that the char(10) columns are actually re-created to become char(8).  

C05626249.indd   286 2/16/2009   4:30:12 PM



 Chapter 5 Tables 287

 Other changes to a table’s structure require SQL Server to change every row physically, and 
as it makes the changes, it has to write the appropriate records to the transaction log, so 
these changes can be extremely resource intensive for a large table. One example of this type 
of change is adding a new column that doesn’t allow NULL, in which case you must specify 
a default column value. SQL Server physically adds the column with the default to each row. 
Note that when adding a new column that allows NULLs, the change is a  metadata-only 
operation. 

 Another negative side effect of altering tables happens when a column is altered to increase its 
length. In this case, the old column is not actually replaced. Rather, a new column is added to the 
table, and DBCC PAGE shows you that the old data is still there. I’ll let you explore the page dumps 
for this situation on your own, but we can see some of this unexpected behavior by just looking at 
the column offsets using the column detail query that I showed you earlier in this chapter. 

 First, create a table with all fi xed-length columns, including a smallint in the fi rst position: 

CREATE TABLE change 

(col1 smallint, col2 char(10), col3 char(5)); 

 Now look at the column offsets:  

SELECT  c.name AS column_name, column_id, max_inrow_length, pc.system_type_id, leaf_offset  

 FROM sys.system_internals_partition_columns pc 

    JOIN sys.partitions p  

      ON p.partition_id = pc.partition_id 

    JOIN sys.columns c 

         ON column_id = partition_column_id  

            AND c.object_id = p.object_id 

WHERE p.object_id=object_id('change'); 

RESULTS: 

column_name   column_id   max_inrow_length   system_type_id leaf_offset 

------------- ----------- ------------------ -------------- ----------- 

col1          1           2                52             4 

col2          2           10               175            6 

col3          3           5                175            16

 Now change smallint to int: 

ALTER TABLE change 

   ALTER COLUMN col1 int;

 Finally, run the column detail query again to see that col1 now starts much later in the row and 
that no column starts at offset 4 immediately after the row header information. This new column 
creation due to an ALTER TABLE takes place even before any data has been placed in the table:  

column_name   column_id   max_inrow_length   system_type_id   leaf_offset 

------------- ----------- ------------------ ---------------- ----------- 

col1          1           4                  56               21 

col2          2           10                 175              6 

col3          3           5                  175              16

C05626249.indd   287 2/16/2009   4:30:12 PM



288 Microsoft SQL Server 2008 Internals

 Another drawback to the behavior of SQL Server in not actually dropping the old column is 
that we are now more severely limited in the size of the row. The row size now includes the 
old column, which is no longer usable or visible (unless you use DBCC PAGE). For example, 
if I create a table with a couple of large fi xed-length character columns, as shown here, I can 
then ALTER the char(2000) column to be char(3000): 

CREATE TABLE bigchange 

(col1 smallint, col2 char(2000), col3 char(1000)); 

 

ALTER TABLE bigchange  

   ALTER COLUMN col2 char(3000);

 At this point, the length of the rows should be just over 4,000 bytes because there is a 
 3,000-byte column, a 1,000-byte column, and a smallint. However, if I try to add another 
3,000-byte column, it fails: 

ALTER TABLE bigchange  

   ADD col4 char(3000); 

 

Msg 1701, Level 16, State 1, Line 1 

Creating or altering table 'bigchange' failed because the minimum row size would be 9009, 

including 7 bytes of internal overhead. This exceeds the maximum allowable table row size 

of8060 bytes.

 However, if I just create a table with two 3,000-byte columns and a 1,000-byte column, there 
is no problem: 

CREATE TABLE nochange 

(col1 smallint, col2 char(3000), col3 char(1000), col4 char(3000));

 Note that there is no way to ALTER a table to rearrange the logical column order or to add a 
new column in a particular position in the table. A newly added column always gets the next 
highest column_id value. When you execute SELECT * on a table or look at the metadata with 
sp_help, the columns are always returned in column_id order. If you need a different order, 
you have several options: 

■  Don’t use SELECT *; always SELECT a list of columns in the order that you want to have 
them returned. 

■  Create a view on the table that SELECTs the columns in the order you want them, and 
then you can SELECT * from the view or run sp_help on the view. 

■  Create a new table, copy the data from the old table, drop the old table, and rename 
the new table to the old name. Don’t forget to re-create all constraints, indexes, and 
triggers.  

 You might think that Management Studio can add a new column in a particular position or 
 rearrange the column order, but this is not true. Behind the scenes, the tool is actually using the 
preceding third option and creating a completely new table with all new indexes, constraints, 
and triggers. If you wonder why simply adding a new column to an existing (large) table is 
 taking a long time, this is probably the reason.  

C05626249.indd   288 2/16/2009   4:30:12 PM



 Chapter 5 Tables 289

Heap Modifi cation Internals

 We’ve seen how SQL Server stores data in a heap. Now we’ll look at what SQL Server actually 
does internally when your heap data is modifi ed. Modifying data in an index, which includes 
a table with a clustered index, is a completely separate topic and will be covered in detail in 
Chapter 6. As a rule of thumb, you should always have a clustered index on a table. There are 
some cases in which you might be better off with a heap, such as when the most important 
 factor is the speed of INSERT operations, but until you do thorough testing to establish that you 
have one of these cases, it’s better to have a clustered index than to have no organization to 
your data at all. In Chapter 6, you’ll see the benefi ts and tradeoffs of clustered and nonclustered 
indexes and examine some guidelines for their use. For now, we’ll look only at how SQL Server 
deals with the data modifi cations on tables without clustered indexes. 

Allocation Structures

 As discussed in Chapter 3, SQL Server allocates one or more IAM pages for each object, to keep 
track of which extents in each fi le belong to that object. If the table is a heap, using the IAMs is 
the only way for SQL Server to fi nd all the extents belonging to the table, because the individual 
data pages of a table are not connected in a doubly linked list, the way they are if the table has 
a clustered index. Pages at each level of an index are linked, and because the data is considered 
the leaf level of a clustered index, SQL Server does maintain the linkage. However, for a heap, 
no such linked list connects the pages to each other. The only way that SQL Server determines 
which pages belong to a table is by inspecting the IAMs for the table.  

 Another special allocation structure is particularly useful when SQL Server is performing data 
modifi cation operations, and that is the Page Free Space (PFS) structure. PFS pages keep track 
of how much space is free on each page, so that INSERT operations in a heap know where 
space is available for the new data, and UPDATE operations know where a row can be moved. 
I briefl y mentioned PFS pages in Chapter 3, and I told you that these pages contained 1 byte 
for each page in a 8,088-page range of a fi le. This is much less dense than Global Allocation 
Maps (GAMs), Shared Global Allocation Maps (SGAMs), and IAMs, which contain one bit per 
extent.) Figure 5-13 shows the structure of a byte on a PFS page. Only the last three bits are 
used to indicate the page fullness, and four of the other fi ve bits each have a meaning.  

 Here is the way the bits are interpreted: 

■  Bit 1 This bit indicates whether the page is actually allocated or not. For example, a 
uniform extent can be allocated to an object, but all of the pages in the extent might 
not be allocated. To tell which pages within an allocated extent are actually used, SQL 
Server needs to look at this bit in the appropriate byte in the PFS page.  

■  Bit 2 Indicates whether or not the corresponding page is from a mixed extent. 

■  Bit 3 Indicates that this page is an IAM page. Remember that IAM pages are not 
 located at known locations in a fi le.  

C05626249.indd   289 2/16/2009   4:30:13 PM



290 Microsoft SQL Server 2008 Internals

Possible values for the three bits indicating
      space used:

·  000 = 0: Page is empty
·  001 = 1: Page is 1–50% full
·  010 = 2: Page is 51–80% full
·  011 = 3: Page is 81–95% full
·  100 = 4: Page is 96–100% full

Space Used

Page has logically deleted (ghosted) rows

Page is an IAM Page
Mixed allocation page

Page is allocated

BIT: 0 1 2 3 4 5 6 7

FIGURE 5-13 Meaning of the bits in a PFS byte

■  Bit 4 Indicates that this page contains ghost records. As we’ll see, SQL Server uses a 
background cleanup thread to remove ghost records, and these bits on the PFS pages 
help SQL Server fi nd those pages that need to be cleaned up. (Ghost records only show 
up in indexes or when using row-level versioning, so they won’t be discussed further in 
this chapter.) 

■  Bits 5 through 7 Taken as a three-bit value, the values 0 to 4 indicate the page 
 fullness as follows: 

❏  0: The page is empty. 

❏  1: The page is 1–50 percent full. 

❏  2: The page is 51–80 percent full. 

❏  3: The page is 81–95 percent full. 

❏  4: The page is 96–100 percent full. 

 PFS pages are at known locations within each data fi le. The second page (page 1) of a fi le is a 
PFS page, as is every 8,088th page thereafter.  

Inserting Rows

 When inserting a new row into a table, SQL Server must determine where to put it. When a 
table has no clustered index—that is, when the table is a heap—a new row is always inserted 
wherever room is available in the table. I’ve discussed how IAMs and the PFS pages keep 
track of which extents in a fi le already belong to a table and which of the pages in those 
extents have space available. Even without a clustered index, space management is quite 

C05626249.indd   290 2/16/2009   4:30:13 PM



 Chapter 5 Tables 291

 effi cient. If no pages with space are available, SQL Server tries to fi nd unallocated pages from 
existing uniform extents that already belong to the object. If none exists, SQL Server must 
 allocate a whole new extent to the table. Chapter 3 discussed how the GAMs and SGAMs 
were used to fi nd extents available to be allocated to an object. 

Deleting Rows

 When you delete rows from a table, you have to consider what happens both to the data 
pages and the index pages. Remember that the data is actually the leaf level of a  clustered 
index, and deleting rows from a table with a clustered index happens the same way as 
 deleting rows from the leaf level of a nonclustered index. Deleting rows from a heap is 
 managed in a different way, as is deleting from node pages of an index. 

Deleting Rows from a Heap

 SQL Server 2008 doesn’t reorganize space on a page automatically when a row is deleted. 
As a performance optimization, the compaction doesn’t occur until a page needs additional 
contiguous space for inserting a new row. You can see this in the following example, which 
deletes a row from the middle of a page and then inspects that page using DBCC PAGE:  

USE testdb; 

GO 

 

CREATE TABLE smallrows 

( 

    a int identity, 

    b char(10) 

); 

GO 

 

INSERT INTO smallrows  

    VALUES ('row 1');  

INSERT INTO smallrows  

    VALUES ('row 2'); 

INSERT INTO smallrows   

    VALUES ('row 3'); 

INSERT INTO smallrows   

    VALUES ('row 4'); 

INSERT INTO smallrows   

    VALUES ('row 5'); 

GO 

 

DBCC IND (testdb, smallrows, -1); 

-- Note the FileID and PageID from the row where PageType = 1

--   and use those values with DBCC PAGE (I got FileID 1 and PageID 4536) 

 

DBCC TRACEON(3604); 

GO 

DBCC PAGE(testdb, 1, 4536,1);

C05626249.indd   291 2/16/2009   4:30:13 PM



292 Microsoft SQL Server 2008 Internals

 Here is the output from DBCC PAGE: 

DATA: 

 

Slot 0, Offset 0x60, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61D9C060 

00000000:   10001200 01000000 726f7720 31202020 †........row 1             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 1, Offset 0x75, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61D9C075 

00000000:   10001200 02000000 726f7720 32202020 †........row 2             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 2, Offset 0x8a, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61D9C08A 

00000000:   10001200 03000000 726f7720 33202020 †........row 3             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 3, Offset 0x9f, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61D9C09F 

00000000:   10001200 04000000 726f7720 34202020 †........row 4             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 4, Offset 0xb4, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61D9C0B4 

00000000:   10001200 05000000 726f7720 35202020 †........row 5             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

OFFSET TABLE: 

Row - Offset                          

4 (0x4) - 180 (0xb4)                  

3 (0x3) - 159 (0x9f)                  

2 (0x2) - 138 (0x8a)                  

1 (0x1) - 117 (0x75)                  

0 (0x0) - 96 (0x60)

 Now we’ll delete the middle row (WHERE a = 3) and look at the page again:  

DELETE FROM smallrows 

WHERE a = 3; 

GO 

 

DBCC PAGE(testdb, 1, 4536,1); 

GO

 Here is the output from the second execution of DBCC PAGE: 

DATA: 

Slot 0, Offset 0x60, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

C05626249.indd   292 2/16/2009   4:30:13 PM



 Chapter 5 Tables 293

Memory Dump @0x61B6C060 

00000000:   10001200 01000000 726f7720 31202020 †........row 1             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 1, Offset 0x75, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61B6C075 

00000000:   10001200 02000000 726f7720 32202020 †........row 2             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 3, Offset 0x9f, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61B6C09F 

00000000:   10001200 04000000 726f7720 34202020 †........row 4             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 4, Offset 0xb4, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61B6C0B4 

00000000:   10001200 05000000 726f7720 35202020 †........row 5             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

OFFSET TABLE: 

Row - Offset                          

4 (0x4) - 180 (0xb4)                  

3 (0x3) - 159 (0x9f)                  

2 (0x2) - 0 (0x0)                     

1 (0x1) - 117 (0x75)                  

0 (0x0) - 96 (0x60)

 Note that in the heap, the row offset array at the bottom of the page shows that the third 
row (at slot 2) is now at offset 0 (which means there really is no row using slot 2), and the row 
using slot 3 is at its same offset as before the delete. No data on the page is moved when the 
DELETE occurs. The row doesn’t show up in the page when you use printopt 1 or 3 for DBCC 
PAGE. However, if you dump the page with printopt 2, you still see the bytes for ‘row 3’. They 
are not physically removed from the page, but the 0 in the row offset array indicates that the 
space is not used now and can be used by a new row. 

 In addition to space on pages not being reclaimed, empty pages in heaps frequently  cannot 
be reclaimed. Even if you delete all the rows from a heap, SQL Server does not mark the  empty 
pages as unallocated, so the space is not available for other objects to use. The  dynamic 
management view (DMV) sys.dm_db_partition_stats still shows the space as belonging to the 
heap table. One way to avoid this problem is to request a table lock when the delete is being 
performed, and we’ll look at lock hints in Chapter 10. If this problem has already occurred, and 
you are showing more space belonging to a table than it really has, you can build a clustered 
index on the table to reorganize the space and then drop the index.  

Reclaiming Pages

 When the last row is deleted from a data page, the entire page is deallocated. The exception is if 
the table is a heap, as I discussed previously. (If the page is the only one remaining in the table, 

C05626249.indd   293 2/16/2009   4:30:13 PM



294 Microsoft SQL Server 2008 Internals

it isn’t deallocated. A table always contains at least one page, even if it’s empty.) Deallocation of 
a data page results in the deletion of the row in the index page that pointed to the deallocated 
data page. Index pages are deallocated if an index row is deleted (which, again, might occur as 
part of a delete/insert update strategy), leaving only one entry in the index page. That entry is 
moved to its neighboring page, and then the empty page is deallocated. 

 The discussion so far has focused on the page manipulation necessary for deleting a single 
row. If multiple rows are deleted in a single DELETE operation, you must be aware of some 
other issues. 

Updating Rows

 SQL Server can update rows in several different ways, automatically and invisibly choosing 
the fastest update strategy for the specifi c operation. In determining the strategy, SQL Server 
evaluates the number of rows affected, how the rows will be accessed (via a scan or an index 
retrieval, and via which index), and whether changes to the index keys will occur. Updates can 
happen either in place, by just changing one column’s value to a new value in the original 
row, or as a delete followed by an insert. In addition, updates can be managed by the query 
processor or by the storage engine. In this section, we’ll examine only whether the update 
happens in place or whether SQL Server treats it as two separate operations: delete the old 
row and insert a new row.  

Moving Rows

 What happens if a row has to move to a new location in the table? In SQL Server 2008, this 
can happen for a couple of different reasons. In Chapter 6, we’ll look at the structure of 
 indexes and see that the value in a table’s clustered index column (or columns) determines 
the location of the row. So, if the value of the clustered key is changed, the row most likely 
has to move within the table.  

 If it will still have the same row locator (in other words, the clustering key for the row stays 
the same), no nonclustered indexes have to be modifi ed. If a table has no clustered index 
(in other words, if it’s a heap), a row may move because it no longer fi ts on the original 
page. This can happen whenever a row with variable-length columns is updated to a new, 
larger size so that it no longer fi ts in the original location. As you’ll see when we cover index 
 structures in Chapter 6, every nonclustered index on a heap contains pointers to the data 
rows that are the actual physical location of the row, including the fi le number, page  number, 
and row number. So that the nonclustered indexes do not all have to be updated just 
 because a row moves to a different physical location, SQL Server leaves a forwarding pointer 
in the original location when a row has to move.  

 Let’s look at an example to see these forwarding pointers. I’ll create a table that’s much like 
the one I created for doing DELETE operations, but this table has a third column of variable 

C05626249.indd   294 2/16/2009   4:30:13 PM



 Chapter 5 Tables 295

length. After I populate the table with fi ve rows, which fi lls the page, I’ll update one of the 
rows to make its third column much longer. The row no longer fi ts on the original page and 
has to move. I can use DBCC IND to get the page numbers used by the table as follows: 

USE testdb; 

GO 

DROP TABLE bigrows; 

GO 

CREATE TABLE bigrows 

(   a int IDENTITY , 

    b varchar(1600), 

    c varchar(1600)); 

GO 

INSERT INTO bigrows  

    VALUES (REPLICATE('a', 1600), '');  

INSERT INTO bigrows  

    VALUES (REPLICATE('b', 1600), ''); 

INSERT INTO bigrows  

    VALUES (REPLICATE('c', 1600), ''); 

INSERT INTO bigrows  

    VALUES (REPLICATE('d', 1600), ''); 

INSERT INTO bigrows  

    VALUES (REPLICATE('e', 1600), ''); 

GO 

UPDATE bigrows  

SET c = REPLICATE('x', 1600) 

WHERE a = 3; 

GO 

 

DBCC IND (testdb, bigrows, -1);

DBCC IND (testdb, bigrows, -1); 

-- Note the FileID and PageID from the rows where PageType = 1

--   and use those values with DBCC PAGE (I got FileID 1 and 

--    PageID values of 2252 and 4586.

 

RESULTS: 

PageFID PagePID 

------- ----------- 

1       2252 

1       4586 

 

DBCC TRACEON(3604); 

GO 

DBCC PAGE(testdb, 1, 2252, 1); 

GO

 I won’t show you the entire output from the DBCC PAGE command, but I’ll show you what 
appears in the slot where the row with a = 3 formerly appeared: 

Slot 2, Offset 0x1feb, Length 9, DumpStyle BYTE 

Record Type = FORWARDING_STUB        Record Attributes =                   

Memory Dump @0x61ADDFEB 

00000000:   04ea1100 00010000 00†††††††††††††††††.........

C05626249.indd   295 2/16/2009   4:30:13 PM



296 Microsoft SQL Server 2008 Internals

 The value of 4 in the fi rst byte means that this is just a forwarding stub. The 0011ea in 
the next 3 bytes is the page number to which the row has been moved. Because this is a 
 hexadecimal value, we need to convert it to 4586 decimal. The next group of 4 bytes tells us 
that the page is at slot 0, fi le 1. If you then use DBCC PAGE to look at that page, page 4,586, 
you can see what the forwarded record looks like, and you can see that the Record Type 
 indicates FORWARDED_RECORD. 

Managing Forward Pointers

 Forward pointers allow you to modify data in a heap without worrying about having to make 
drastic changes to the nonclustered indexes. If a row that has been forwarded must move again, 
the original forwarding pointer is updated to point to the new location. You’ll never end up with 
a forwarding pointer pointing to another forwarding pointer. In addition, if the forwarded row 
shrinks enough to fi t in its original place, the record might move back to its original place (if 
there is still room on that page), and the forward pointer would be eliminated. 

 A future version of SQL Server might include some mechanism for performing a physical 
reorganization of the data in a heap, which would get rid of forward pointers. Note that 
forward pointers exist only in heaps, and that the ALTER TABLE option to reorganize a table 
won’t do anything to heaps. You can defragment a nonclustered index on a heap but not 
the table itself. Currently, when a forward pointer is created, it stays there forever—with only 
a few exceptions. The fi rst exception is the case I already mentioned, in which a row shrinks 
and returns to its original location. The second exception is when the entire database shrinks. 
The bookmarks are actually reassigned when a fi le is shrunk. The shrink process never 
 generates forwarding pointers. For pages that were removed because of the shrink process, 
any forwarded rows or stubs they contain are effectively “unforwarded.” Other cases in which 
the forwarding pointers are removed are the obvious ones: if the forwarded row is deleted, 
or if a clustered index is built on the table so that it is no longer a heap. 

 More Info To get a count of forward records in a table, you can look at the output from the 
sys.dm_db_ index_physical_stats function, which will be discussed in Chapter 6. 

Updating in Place

 In SQL Server 2008, updating a row in place is the rule rather than the exception. This means 
that the row stays in exactly the same location on the same page and only the bytes affected 
are changed. In addition, the log contains a single record for each such updated row unless 
the table has an update trigger on it or is marked for replication. In these cases, the update 
still happens in place, but the log contains a delete record followed by an insert record. 

 In cases where a row can’t be updated in place, the cost of a not-in-place update is minimal 
 because of the way the nonclustered indexes are stored and because of the use of  forwarding 

C05626249.indd   296 2/16/2009   4:30:13 PM



 Chapter 5 Tables 297

pointers, as described previously. In fact, you can have an update not-in-place for which the 
row stays on the original page. Updates happen in place if a heap is being updated (and no 
 forwarding pointer is required), or if a table with a clustered index is updated without any change 
to the clustering keys. You can also get an update in place if the clustering key changes but the 
row does not need to move at all. For example, if you have a clustered index on a last-name 
 column containing consecutive key values of Able, Becker, and Charlie, you might want to update 
Becker to Baker. Because the row stays in the same location even after the clustered index key 
changes, SQL Server performs this as an update in place. On the other hand, if you update Able to 
Buchner, the update cannot occur in place but the new row might stay on the same page.  

Updating Not in Place

 If your update can’t happen in place because you’re updating clustering keys, the update 
occurs as a delete followed by an insert. In some cases, you’ll get a hybrid update: some of 
the rows are updated in place and some aren’t. If you’re updating index keys, SQL Server 
builds a list of all the rows that need to change as both a DELETE and an INSERT operation. 
This list is stored in memory, if it’s small enough, and is written to tempdb if necessary. This 
list is then sorted by key value and operator (DELETE or INSERT). If the index whose keys are 
changing isn’t unique, the DELETE and INSERT steps are then applied to the table. If the index 
is unique, an additional step is carried out to collapse DELETE and INSERT operations on the 
same key into a single update operation.  

 More Info The Query Optimizer determines whether this special UPDATE method is 
 appropriate, and this internal optimization, called Split/Sort/Collapse, is described in detail in 
Chapter 8, “The Query Optimizer.”  

Summary

 Tables are at the heart of relational databases in general and SQL Server in particular. In this 
chapter, we looked at the internal storage issues of various data types, in particular comparing 
fi xed- and variable-length data types. We saw that SQL Server 2008 provides multiple options 
for storing variable-length data, including data that is too long to fi t on a single data page, and 
you saw that it’s simplistic to think that using variable-length data types is either always good 
or always bad. SQL Server provides user-defi ned data types for support of domains, and it provides 
the IDENTITY property to make a column produce auto-sequenced numeric values. You also 
saw how data is physically stored in data pages, and we queried some of the metadata views 
that provide information from the underlying (and inaccessible) system tables. SQL Server also 
provides constraints, which offer a powerful way to ensure your data’s logical integrity.  

C05626249.indd   297 2/16/2009   4:30:13 PM



C05626249.indd   298 2/16/2009   4:30:13 PM



  299

Chapter 6

Indexes: Internals and Management
 Kalen Delaney, with Kimberly L. Tripp and Paul S. Randal 

 Microsoft SQL Server doesn’t have a confi guration option or a knob that allows you to 
make it run faster; there’s no magic bullet. However, indexes—when created and designed 
 appropriately—are probably the closest thing to a magic bullet. The right index, created for 
the right query, can take query execution time from hours down to seconds. There’s  absolutely 
no other way to see these kinds of gains—adding hardware, or tweaking  confi guration 
 options  often only give marginal gains. What is it about indexes that can make a query  request 
drop from millions of I/Os to only a few? And does just any index improve performance? 
Unfortunately, great performance doesn’t just happen; all indexes are not equal, nor is just any 
index going to improve performance. In fact, over-indexing is often worse than under- indexing. 
You can’t just “index every column” and expect SQL Server to improve.  

 So how do you know how to create the best indexes? Honestly, it takes multiple 
 pieces—knowing your data, knowing your workload, and knowing how SQL Server 
works. In terms of how SQL Server works, there are multiple components: index internals, 
 statistics, query optimization, and maintenance. In this chapter, we focus on index  internals 
and maintenance—expanding these topics to give you creation best practices and  optimal 
base indexing strategies. By knowing how SQL Server physically stores indexes as well 
as how the storage engine accesses and manipulates these physical structures, you are 
 better equipped to create the right indexes for your workload. In addition, this  information 
helps to prepare you for Chapter 8, “The Query Optimizer,” as you can visualize the 
choices (in terms of physical structures) from which SQL Server can choose and why some 
 structures are more effective than others for certain requests. 

 This chapter is split into multiple sections. The fi rst section explains index usage and concepts 
and internals. In this section, you learn how indexes are stored and how they work for data 
retrieval. The second section dives into what happens when data is modifi ed—both how 
it happens and how SQL Server guarantees consistency. In this section, you also learn the 
 potential effects of data modifi cations on indexes, such as fragmentation. Finally, the third 
section discusses index management and maintenance.  

Overview

 Think of the indexes you might see in your everyday life—those in books and other 
 documents. Suppose that you’re trying to create an index in SQL Server using the CREATE 
INDEX  statement and you’re using two SQL Server references to fi nd out how to write the 

C06626249.indd   299 2/16/2009   2:42:06 PM



300 Microsoft SQL Server 2008 Internals

statement. One  reference is the (hypothetical) Microsoft SQL Server Transact-SQL Language 
Reference Manual, which we’ll refer to as the “T-SQL Reference.” Assume that this book is just 
an alphabetical list of all the SQL Server keywords, commands, procedures, and functions. The 
other reference is this book: Microsoft SQL Server 2008 Internals. You can fi nd information 
quickly in either book about indexes, even though the two books are organized differently. 

 In the T-SQL Reference, all the commands and keywords are organized alphabetically. You 
know that CREATE INDEX is near the front with all the other CREATE statements, so you 
can just ignore most of the rest of the book. Keywords and phrases are shown at the top of 
each page to tell you what commands are on that page. Thus, you can fl ip through just a few 
pages quickly and end up at a page that has CREATE DATABASE on it, and you know that 
CREATE INDEX appears shortly thereafter. Now, if you fl ipped forward and came to CREATE 
VIEW without passing CREATE INDEX, you’d know that CREATE INDEX was missing from the 
book, as the commands and keywords are organized alphabetically. (Of course, this is just an 
 example—CREATE INDEX would certainly be in the T-SQL Reference.)  

 Next, you try to fi nd CREATE INDEX in Microsoft SQL Server 2008 Internals. This book is not 
ordered alphabetically by commands and keywords, but there’s an index at the back of the 
book, and all the index entries are organized alphabetically. So, again, you can use the fact 
that CREATE INDEX is near the front of the alphabet and fi nd it quickly. However, unlike 
in the T-SQL Reference, once you fi nd the words CREATE INDEX, you won’t see nice, neat 
 examples right in front of you. The index only gives you pointers—it tells you what pages 
to look at. In fact, it might list many pages in the book. And, if you look up CREATE TABLE 
in the book’s index, you might fi nd dozens of pages listed. Finally, if you look up the stored 
 procedure, sp_addumpdevice (a completely deprecated command), you won’t fi nd it in the 
index at all because it’s not described in this book. 

 The point is that these two searches are analogous to using a clustered index (in the case 
of the book’s contents actually being ordered) and a nonclustered index (in the case of the 
lookup from the index into the book). If a table is clustered, the table data is logically stored 
in the clustering key order, just as the T-SQL Reference has all the main topics in order. Once 
you fi nd the data you’re looking for, your search is complete. In a nonclustered index, the 
 index is a completely separate structure from the data itself. Once you fi nd what you’re 
 looking for in the index, you have to follow some sort of reference pointer to get to the 
 actual data. Although a nonclustered index in SQL Server is very much like the index in the 
back of a book, it is not exactly the same.  

SQL Server Index B-trees

 In SQL Server, indexes are organized using a B-tree structure, as shown in Figure 6-1. B-tree 
stands for “balanced tree,” and SQL Server uses a special kind called B+ trees (pronounced 
“b-plus trees”) that are not kept strictly balanced in all ways at all times. Unlike a normal 
tree, B-trees are always inverted, with their root (a single page) at the top and their leaf level 
at the bottom. The existence of intermediate levels depends on multiple factors. B-tree is 

C06626249.indd   300 2/16/2009   2:42:06 PM



 Chapter 6 Indexes: Internals and Management 301

an  overloaded term used in different ways by different people—either to mean the entire 
 index structure or just the non-leaf levels. In this book, the term B-tree means the entire 
index structure. 

Index level 3
(Root)

Index level 0
(Leaf level)

Index level 1
(Intermediate level)

Index level 2
(Intermediate level)

FIGURE 6-1 A B-tree for a SQL Server index

 What’s interesting about these B-trees in SQL Server is how they are constructed and what is 
contained in each level. Structurally, indexes might change a small amount based on whether 
or not multiple CPUs are used to create or rebuild them (which is explained in more detail in 
the section “MAXDOP,” later in this chapter), but for the most part, the size and width of the 
tree are based on the defi nition of the index and the number and size of rows in the table. To 
show this, we give a few examples starting with the general terms and defi nitions. First, indexes 
have two primary components: a leaf level and one or more non-leaf levels. The non-leaf 
levels are interesting to understand and discuss, but simply put, they’re used for navigation 
(mostly for navigating to the leaf level). However, the fi rst intermediate level is also used in 
 fragmentation analysis and to drive read-ahead during large range scans of the index. 

 To understand these structures, we start with defi ning the leaf level in generic terms ( meaning 
that these basic concepts apply to both clustered and nonclustered indexes). The leaf level of 
an index contains something (we discuss the specifi cs when we get into the topic of  physical 
index structures later in the chapter) for every row of the table in indexed order. In this 
 discussion, we are focusing on traditional indexes and those created without fi lters, which 
 refers to a new SQL Server 2008 feature called fi ltered indexes.  

 Non-leaf levels exist to help navigate to a row at the leaf level but the architecture is rather 
straightforward. Each non-leaf level stores something for every page of the level below—and 
levels are added until the index builds up to a root of one page. Each higher non-leaf level in 
the index (that is, farther away from the leaf level) is smaller than the one below it because 
each row at a level contains only the minimum key value that can be on each page of the  level 
below, plus a pointer to that page. Although it sounds like this could result in a lot of levels 
(that is, a tall tree), the limitation on the size of the key (which has a maximum of 900 bytes or 
16 columns—whichever comes fi rst) in SQL Server helps to keep index trees  relatively small. 

C06626249.indd   301 2/16/2009   2:42:06 PM



302 Microsoft SQL Server 2008 Internals

In fact, in the example that we show coming up—which has an index with fairly wide rows and 
a key defi nition that is at the maximum size—the tree size of this example index (at the time 
the index is created) is only eight levels deep. 

 To see this tree (and the computations used to determine its size), we use an example where 
the leaf level of the index contains 1,000,000 “rows.” We put quotes around rows because 
these are not necessarily data rows—these are just leaf-level rows of any index. Later in the 
chapter—when we discuss the physical structures of each specifi c index—you will see 
 exactly what leaf-level rows are and how they are structured. However, for this  example, 
we’re  focused on an abstract “index” where we’re concerned only about the leaf and 
 non-leaf  levels—as well as how they’re structured within the confi nes of SQL Server pages 
(8-KB pages). In this example, our leaf-level rows are 4,000 bytes, which means we can store 
only two rows per page. For a table with 1,000,000 rows, the leaf level of our index would 
have 500,000 pages. Relatively speaking, this is a fairly wide row structure; however, we are 
not wasting a lot of space on the page. If our leaf-level page had two 3,000-byte rows we’d 
still only fi t two rows per page, but then we’d have 2,000 bytes of wasted space. (This 
would be an example of internal fragmentation, which is discussed in the section entitled 
“Fragmentation,” later in this chapter.) 

 Now, why are these just “rows” and not specifi cally data rows? The reason is that this leaf level 
could be the leaf level for a clustered index (therefore data rows) or these leaf-level rows could 
be rows in a nonclustered index that uses INCLUDE (which was added in SQL Server 2005) 
to add non-key columns to the leaf level of the index. When INCLUDE is used,  leaf-level 
pages can contain wider rows (wider than the 900-byte or 16-column key  maximum). Again, 
although this doesn’t currently sound interesting, we explain later in this  chapter why this 
can be  benefi cial. In this example, the leaf level of this index would be 4 GB in size (500,000 
8-KB pages) at the time it’s created. This structure, depending on its  defi nition could become 
larger—and possibly very fragmented—if a lot of new data is added. However (and again 
depending on its defi nition), there are ways to control how fragmented this index becomes 
when data is volatile (we look at this topic further in multiple sections later in this chapter). In 
this case, the leaf level of the index is large because of “row” width. And, using the  maximum 
of 900 bytes means that you can fi t only eight (8,096 bytes per page/900 bytes per row) 
rows per non-leaf level page. However, using this maximum, the resulting tree (up to a root 
of one page) would be relatively small and result only in eight levels—as shown here. In 
fact, improving scalability is the primary reason for the limit to an index key of 900 bytes or 
16  columns—whichever comes fi rst: 

■  Root page of non-leaf level (Level 7) = 2 rows = 1 page (8 rows per page) 

■  Intermediate non-leaf level (Level 6) = 16 rows = 2 pages (8 rows per page) 

■  Intermediate non-leaf level (Level 5) = 123 rows = 16 pages (8 rows per page) 

■  Intermediate non-leaf level (Level 4) = 977 rows = 123 pages (8 rows per page) 

■  Intermediate non-leaf level (Level 3) = 7,813 rows = 977 pages (8 rows per page) 

C06626249.indd   302 2/16/2009   2:42:06 PM



 Chapter 6 Indexes: Internals and Management 303

■  Intermediate non-leaf level (Level 2) = 62,500 rows = 7,813 pages (8 rows per page) 

■  Intermediate non-leaf level (Level 1) = 500,000 rows = 62,500 pages (8 rows per page) 

■  Leaf level (Level 0) = 1,000,000 rows = 500,000 pages (2 rows per page) 

 An index with a smaller key size would scale even faster. Imagine the same leaf-level pages 
as shown previously (1,000,000 rows at 2 rows per page) but with a smaller index key and 
 therefore a smaller row size in the non-leaf levels (including some space for overhead) of 
only 20 bytes, you can fi t 404 rows per non-leaf-level page:  

■  Root page of non-leaf level (Level 3) = 4 rows = 1 page (404 rows per page)  

■  Intermediate non-leaf level (Level 2) = 1,238 rows = 4 pages (404 rows per page)  

■  Intermediate non-leaf level (Level 1) = 500,000 rows = 1,238 pages (404 rows per page) 

■  Leaf level (Level 0) = 1,000,000 rows = 500,000 pages (2 rows per page) 

 In this second example, not only is the initial index only four levels, but it can have 
an  additional 130,878,528 rows added (the maximum possible number of rows is 
404*404*404*2—or 131,878,528—minus the number of rows that already exist—1,000,000) 
before it would require another level. Think of it like this—the root page currently allows 
404 entries; however, we’re only storing 4 (and the existing non-leaf levels are not entirely 
100 percent full). This is only a theoretical maximum, but without any other factors—such 
as  fragmentation—a four-level tree would be able to seek into a table with over 131  million 
rows (again, with this small index key size). This means that a lookup into this index which uses 
the tree to navigate down to the corresponding row requires only four I/Os. And  because 
the trees are balanced, fi nding any record requires the same amount of resources. Retrieval 
speed is consistent because the index has the same depth throughout. An index can become 
fragmented—and pages can become less dense—but these trees do not become unbalanced. 
This is something we look at later in this chapter when we cover index maintenance. 

 It’s not critical to memorize all the math that was used to show these examples, but 
 understanding the true scalability of indexes—especially with reasonably created keys—means 
you are likely to create more effective indexes (that is, more effi cient, with narrower keys). 
In addition, there are tools inside SQL Server to help you see the actual structures (no math 
required). Most importantly, the size of an index (and the number of levels) depends on three 
things—the index defi nition, whether or not the base table has a clustered index, and the 
number of pages in the leaf level of the indexes. The number of leaf-level pages is directly tied 
to both row size and the number of rows in the table. This does not mean that the goal when 
defi ning indexes is to have only very narrow indexes—in fact, extremely narrow indexes  usually 
have fewer uses than slightly wider indexes. It just means that you should understand the 
 implications of different indexing choices and decisions. In addition, features such as INCLUDE 
and fi ltered indexes can profoundly affect the index in both size and usefulness. However, 
knowing how SQL Server works and the internal structures of indexes are a large part of  fi nding 
the right balance between having too many and too few indexes, but most  importantly, of 
 having the right indexes. 

C06626249.indd   303 2/16/2009   2:42:06 PM



304 Microsoft SQL Server 2008 Internals

Tools for Analyzing Indexes

 To expose and understand index structures fully, there are a few tools that we’re going to 
use. To make the scenarios easier to understand, we need to get a feel for which tool is the 
most appropriate to use and when. In addition, this section focuses on an overview of the 
options for execution, as well as some tips and tricks. However, details on analyzing various 
aspects of the output can be found throughout this chapter. 

Using the dm_db_index_physical_stats DMV

 The sys.dm_db_index_physical_stats function is one of the most useful functions to determine 
table structures. DMV can give you insight into whether or not your table has a clustered 
index, how many nonclustered indexes exist, and whether or not your table (and each index) 
has row-overfl ow or Large Object (LOB) data. Most  importantly, it can expose to you the 
entire structure and its state of health. This particular DMV is a function that requires fi ve 
 parameters, all with defaults. If you set all the parameters to their defaults and do not fi lter 
the rows or the columns, the function returns 21 columns of data for (almost) every level of 
every index on every table on every partition in every  database of the current SQL Server 
 instance. You would request that information as follows:  

SELECT * FROM sys.dm_db_index_physical_stats (NULL, NULL, NULL, NULL, NULL);

 When executed on a very small SQL Server instance, with only the AdventureWorks2008, pubs, 
and Northwind databases in addition to the system databases, more than 390 rows are 
 returned. Obviously, 21 columns and 390 rows is too much output to illustrate here, so this is 
a command that you should play with to get some experience. However, it’s unlikely that you 
actually want to see every index on every table in every database (although that can have 
some benefi ts on smaller instances such as a development instance). To distill this to a more 
targeted execution, let’s look at the parameters now:  

■  database_id The fi rst parameter must be specifi ed as a number, but you can embed the 
DB_ID function as a parameter if you want to specify the database by name. If you spec-
ify NULL, which is the default, the function returns information about all databases. If the 
database ID is NULL, the next three parameters must also be NULL (which is their default 
value). In addition, this function must be executed in a database that has a compatibility 
mode of at least 90 (indicating SQL Server 2005). If, for some reason, your database is 
not running in at least compatibility mode 90, then executing this query from master and 
specifying a database name (DB_ID('databasename')) or the specifi c ID means that you 
can execute this without changing the target database’s compatibility mode.  

■  object_id The second parameter is the object ID, which must also be a number, not a 
name. Again, the NULL default means you want information about all objects, and in 
that case, the next two parameters, index _id and partition_id, must be NULL. Just as for 
the database ID, you can use an embedded function (OBJECT_ID) to get the object ID if 

C06626249.indd   304 2/16/2009   2:42:06 PM



 Chapter 6 Indexes: Internals and Management 305

you know the object name. As a word of caution, if you’re executing this from a different 
database than your current database, you should use a three-part object name with the 
OBJECT_ID  function, including the database name and the schema name. 

■  index_id The third parameter allows you to specify the index ID from a particular 
table, and again, the default of NULL indicates that you want all the indexes. A handy 
fact to remember here is that the clustered index on a table always has an index_id of 1. 

■  partition_number The fourth parameter indicates the partition number, and NULL 
means you want information for all the partitions. Remember that if you haven’t explicitly 
created a table or index on a partition scheme, SQL Server internally considers it to be 
built on a single partition. 

■  mode The fi fth and last parameter is the only one for which the default NULL does 
not result in returning the most information. The last parameter indicates the level 
of information that you want returned (and therefore directly affects the speed of 
 execution) when querying this function. When the function is called, SQL Server 
 traverses the page chains for the allocated pages for the specifi ed partitions of the 
table or index. Unlike DBCC SHOWCONTIG in SQL Server 2000, which usually requires a 
shared (S) table lock, sys.dm_db_index_physical_stats (and DBCC SHOWCONTIG in SQL 
Server 2005) requires only an Intent-Shared (IS) table lock, which is compatible with 
most other kinds of locks, as discussed in Chapter 10, “Transactions and Concurrency.” 
Valid  inputs are DEFAULT, NULL, LIMITED, SAMPLED, and DETAILED. The default is NULL, 
which corresponds to LIMITED. Here is what the latter three values mean: 

❏  LIMITED The LIMITED mode is the fastest and scans the smallest number of 
pages. For an index, it scans only the fi rst non-leaf (or intermediate) level of 
the index. For a heap, a scan is avoided by using the table’s IAMs and then the 
 associated Page Free Space (PFS) pages to defi ne the allocation of the table. This 
allows SQL Server to obtain details about fragmentation in terms of page order 
(more on this later in the chapter) but not page density (or other details that can 
only be calculated from actually reading the leaf-level pages). In other words, 
it’s fast but not quite as detailed. More specifi cally, this corresponds to the WITH 
FAST option of the now-deprecated DBCC SHOWCONTIG command. 

❏  SAMPLED The SAMPLED mode returns physical characteristics based on a 
1-percent sample of all the pages in the index or heap, plus the page order from 
reading the pages at the fi rst intermediate level. However, if the index has less 
than 10,000 pages total, SQL Server converts SAMPLED to DETAILED.  

❏  DETAILED The DETAILED mode scans all pages and returns all physical 
 characteristics (both page order and page density) for all levels of the index. 
This is incredibly helpful when analyzing a small table but can take quite a bit of 
time for larger tables. It could also essentially “fl ush” your buffer pool if the index 
 being processed is larger than the buffer pool. 

C06626249.indd   305 2/16/2009   2:42:06 PM



306 Microsoft SQL Server 2008 Internals

 You must be careful when using the built-in DB_ID or OBJECT_ID functions. If you specify an 
invalid name or simply misspell the name, you do not receive an error message and the value 
returned is NULL. However, because NULL is a valid parameter, SQL Server just assumes that 
this is what you meant to use. For example, to see all the previously described information, 
but only for the AdventureWorks2008 database, you might mistype the name as follows: 

SELECT * FROM sys.dm_db_index_physical_stats  

         (DB_ID ('AdventureWorks208'), NULL, NULL, NULL, NULL);

 There is no such database as AdventureWorks208, so the DB_ID function returns NULL, and it 
is as if you had called the function with all NULL parameters. No error or warning is given.  

 You might be able to guess from the number of rows returned that you made an  error, 
but of course, if you have no idea how much output you are expecting, it might not 
be  immediately obvious. SQL Server Books Online suggests that you can avoid this issue by 
 capturing the IDs into variables and error-checking the values in the variables before calling 
the sys.dm_db_index_physical_stats function, as shown in this code:  

DECLARE @db_id SMALLINT; 

DECLARE @object_id INT; 

 

SET @db_id = DB_ID (N'AdventureWorks2008'); 

SET @object_id = OBJECT_ID (N'AdventureWorks2008.Person.Address'); 

 

IF (@db_id IS NULL OR @object_id IS NULL)

BEGIN

    IF @db_id IS NULL 

    BEGIN 

        PRINT N'Invalid database'; 

    END; 

    ELSE IF @object_id IS NULL 

    BEGIN 

        PRINT N'Invalid object'; 

    END

END

ELSE

SELECT * 

FROM sys.dm_db_index_physical_stats  

    (@db_id, @object_id, NULL, NULL, NULL);

 Another more insidious problem is that the OBJECT_ID function is called based on your 
 current database, before any call to the sys.dm_db_index_physical_stats function is made. 
So if you are in the AdventureWorks2008 database but want information from a table in the 
pubs database, you could try running the following code: 

SELECT *

FROM sys.dm_db_index_physical_stats  

      (DB_ID (N'pubs'), OBJECT_ID (N'dbo.authors'), NULL, NULL, NULL);

C06626249.indd   306 2/16/2009   2:42:06 PM



 Chapter 6 Indexes: Internals and Management 307

 However, because there is no dbo.authors table in the current database (AdventureWorks2008), 
@object_id is passed as NULL, and you get all the information from all the objects in pubs.  

 If an object with the same name exists in two databases, the problem may be even harder to 
detect. If there were a dbo.authors table in AdventureWorks2008, the ID for that table would 
be used to try to retrieve data from the pubs database—and it’s unlikely that the authors 
table has the same ID even if it exists in both databases. SQL Server returns an error if the 
ID returned by object_id() does not match any object in the specifi ed database, but if does 
match the object ID for another table, the details for that table are produced, potentially 
causing even more confusion. The following script shows the error: 

USE AdventureWorks2008;

GO

CREATE TABLE dbo.authors

   (ID CHAR(11), name varchar(60));

GO

SELECT *

FROM sys.dm_db_index_physical_stats

      (DB_ID (N'pubs'), OBJECT_ID (N'dbo.authors'), NULL, NULL, NULL);

 When you run the preceding SELECT, the dbo.authors ID is determined based on the current 
environment, which is still AdventureWorks2008. But when SQL Server tries to use that ID 
(which does not exist) in pubs, the following error is generated:  

Msg 2573, Level 16, State 40, Line 1

Could not find table or object ID 295672101. Check system catalog.

 The best solution is to fully qualify the table name, either in the call to the 
sys.dm_db_index_ physical_stats function itself or, as in the code sample shown  earlier, 
to use variables to get the ID of the fully qualifi ed table name. If you write wrapper 
 procedures to call the sys.dm_db_index_physical_stats function, you can concatenate the 
database name onto the object name before retrieving the object ID, thereby avoiding the 
problem. Because the output of this function is a bit cryptic, you might fi nd it benefi cial to 
write your own procedure to access this function and return the information in a slightly 
friendlier fashion.  

 In summary, this DMV is incredibly useful for determining the size and health of your 
 indexes;  however, you need to know how to work with it to get only the specifi c information 
in which you’re interested. But even for a subset of tables or indexes, and with careful use 
of the  available parameters, you still might get more data back than you want. Because 
sys.dm_db_index_ physical_stats is a table-valued function, you can add your own fi lters 
to the results being returned. For  example, you can choose to look at the results for just 
the  nonclustered indexes. Using the available parameters, your only choices are to see all 

C06626249.indd   307 2/16/2009   2:42:06 PM



308 Microsoft SQL Server 2008 Internals

the indexes or only one particular index. If we make the third parameter NULL to specify 
all  indexes, we can then add a fi lter in a WHERE clause to indicate that we want only 
 nonclustered index rows (WHERE index_id > 1). Note that while a WHERE clause may limit 
the number of rows returned it does not necessarily limit the tables and indexes analyzed. 

Using DBCC IND

 The DBCC IND command (introduced in Chapter 5, “Tables”) is undocumented but widely 
known and used. It is safe to use on production systems. The command has four parameters, 
but only the fi rst three are required. The following code shows the command syntax: 

DBCC IND ( { 'dbname' | dbid }, { 'objname' | objid },  

      { nonclustered indid | 1 | 0 | -1 | -2 } [, partition_number]  )

 The fi rst parameter is the database name or the database ID. The second parameter is an 
object name or object ID within the database; the object can be either a table or an indexed 
view. The third parameter is a specifi c nonclustered index ID (2-250 or 256-1005) or the 
 values 1, 0, –1, or –2. The values for this parameter have the following meanings: 

■  0 Displays information for in-row data pages and in-row IAM pages of the specifi ed 
object. 

■  1 Displays information for all pages, including IAM pages, data pages, and any 
 existing LOB pages or row-overfl ow pages of the requested object. If the requested 
object has a clustered index, the index pages are included. 

■  –1 Displays information for all IAMs, data pages, and index pages for all indexes on 
the specifi ed object. This includes LOB and row-overfl ow data. 

■  –2 Displays information for all IAMs for the specifi ed object. 

■  Nonclustered index ID Displays information for all IAMs, data pages, and index 
 pages for one index. This includes LOB and row-overfl ow data that might be part of 
the index’s included columns. 

 The fi nal parameter was new for SQL Server 2005 and is optional (to maintain backward 
compatibility with scripts that might use DBCC IND from SQL Server 2000). It specifi es 
a  particular partition number, and if no value is specifi ed or a 0 is given, information for all 
 partitions is displayed. 

 Unlike DBCC PAGE (discussed in Chapter 5), SQL Server does not require that you enable 
trace fl ag 3604 before running DBCC IND. However, because it’s likely that you will want to 
investigate pages using DBCC PAGE, after determining the pages owned by an index, it’s a 
good idea to turn the trace fl ag on at the beginning of your script.  

 The columns in the result set are described in Table 6-1. Note that all page references have 
the fi le and page component conveniently split between two columns, so you don’t have to 
do any conversion. 

C06626249.indd   308 2/16/2009   2:42:06 PM



 Chapter 6 Indexes: Internals and Management 309

TABLE 6-1 Column Descriptions for DBCC IND Output 

Column Meaning

PageFID File ID containing the page

PagePID Page number within that fi le

IAMFID File ID containing the IAM managing this page

IAMPID Page number within that fi le of the IAM managing this page

ObjectID Object ID

IndexID Index ID—valid values are 0–250 and 256–1005 (described later)

PartitionNumber Partition number within the table or index for this page

PartitionID ID for the partition containing this page (unique in the database)

iam_chain_type Type of allocation unit this page belongs to: in-row data, row-overfl ow data, 
or LOB data

PageType Page type: 1 = data page, 2 = index page, 3 = TEXT_MIXED_PAGE, 
4 = TEXT_TREE_PAGE, 10 = IAM page

IndexLevel Level of index; 0 is the leaf level and levels are counted up from the leaf 
to the root page (of an index structure with IndexID of 1–1005)

 NextPageFID File ID containing the next page at this level

 NextPagePID Page number within that fi le for next page at this level

 PrevPageFID File ID containing the previous page at this level

 PrevPagePID Page number within that fi le for previous page at this level

Some of the return values were described in Chapter 5 because they are equally relevant to 
heaps. When dealing with indexes, we also can look at the IndexID column, which is 0 for a 
heap, 1 for pages of a clustered index, and a number between 2 and 1,005 for the pages 
of a nonclustered index pages. In SQL Server 2008, a table can have up to 1,000 total  indexes 
(1 clustered and 999 nonclustered). Although 1,005 is higher than would be expected 
(2–1,000 would be suffi cient for 999 nonclustered indexes), the range of nonclustered index 
IDs skips 251–255 because 255 had special meaning in earlier releases (it was used for the 
LOB values in a table) and 251–254 were unused. To simplify any backward-compatibility 
 issues, this range (251–255) has been skipped in SQL Server 2008.  

The IndexLevel value allows us to see at what level of the index tree a page is located, with a 
value of 0 meaning the leaf level. The highest value for any particular index is, therefore, the 
root page of that index, and you should be able to verify that the root page is the same value 
you get from the sys.system_internals_allocation_units view in the root_page column. The 
remaining four columns indicate the page linkage at each level of each index. For each page, 
there is a fi le ID and page ID for the next page and a fi le ID and page ID for the previous 
page. Of course, for the root pages, all these values are 0. You can also determine the fi rst 
page by fi nding one with zeros for the previous page, and you can fi nd the last page because 
it has zeros for the next page. Because the output of this DBCC command is too wide to 
 display in a page of a book, and because it’s likely that you want to reorder the result set, we 

Column Meaning

C06626249.indd   309 2/16/2009   2:42:06 PM



310 Microsoft SQL Server 2008 Internals

are not going to reproduce it here. If you wish to view it, you can use a script that stores the 
output of this command into a table. Once we have this information in a table, we can query 
it and retrieve just the columns in which we are interested. Here is a script that creates a 
table called sp_tablepages with columns to hold all the returned information from DBCC IND. 
Note that any object created in the master database with a name that starts with sp_ can be 
 accessed from any database, without having to qualify it with the database name: 

USE master;

GO

CREATE TABLE sp_tablepages

(PageFID  tinyint, 

  PagePID int,   

  IAMFID   tinyint, 

  IAMPID  int, 

  ObjectID  int,

  IndexID  tinyint,

  PartitionNumber tinyint,

  PartitionID bigint,

  iam_chain_type  varchar(30),    

  PageType  tinyint, 

  IndexLevel  tinyint,

  NextPageFID  tinyint,

  NextPagePID  int,

  PrevPageFID  tinyint,

  PrevPagePID int, 

  Primary Key (PageFID, PagePID));

 The following code truncates the sp_tablepages table and then fi lls it with DBCC IND results 
from the Sales.SalesOrderDetail table in the AdventureWorks2008 database:  

TRUNCATE TABLE sp_tablepages; 

INSERT INTO sp_tablepages 

    EXEC ('DBCC IND (AdventureWorks2008, [Sales.SalesOrderDetail], -1)');

 Once you have the results of DBCC IND in a table, you can select any subset of rows or 
 columns that you are interested in. We use sp_tablepages to report on DBCC IND information 
for many examples in this chapter. You can then use DBCC PAGE to examine index pages, 
just as you do for data pages. However, if you use DBCC PAGE with style 3 to print out the 
details of each column on each row on an index page, the output looks quite different. We 
see some examples as we analyze the physical structures of indexes next. 

Understanding Index Structures

 As we discussed earlier in this chapter, index structures are divided into two basic  components 
of the index: the leaf level and the non-leaf level(s). The details in this section help you to 
 better understand what’s specifi cally stored within these portions of your indexes and how 
they differ based on index type.  

C06626249.indd   310 2/16/2009   2:42:07 PM



 Chapter 6 Indexes: Internals and Management 311

The Dependency on the Clustering Key

 The leaf level of a clustered index contains the data, not just the index keys. So the answer 
to the question “What else is in the leaf level of a clustered index besides the key value?” is 
“Everything else”—that is, all the columns of every row in the table are in the leaf level of a 
clustered index. Another way to say this is that when a clustered index is created, the data 
becomes the leaf level of the clustered index. At the time a clustered index is created, data 
in the table is copied and ordered by the clustering key. Once created, a clustered index is 
maintained logically rather than physically. This order is maintained through a doubly linked 
list called a page chain. (Note that pages in a heap are not linked in any way to each other.) 
The order of pages in the page chain, and the order of rows on the data pages, is based on 
the defi nition of the clustered index. Deciding on which column(s) to cluster is an important 
performance consideration.  

 Because the actual page chain for the data pages can be ordered in only one way, a table can 
have only one clustered index. And, in general, most tables perform better when the table is 
clustered. However, the clustering key needs to be chosen wisely. And, to appropriately choose 
a clustering key, you must understand how the clustered index works, as well as the internal 
 dependencies on the clustering key (especially as far as the nonclustered indexes are concerned). 

 The dependencies of the nonclustered indexes on the clustering key have been in SQL Server 
since the storage engine was rearchitected in SQL Server 7.0. It all starts with how rows are 
identifi ed (and looked up) when using a nonclustered index to reference a corresponding 
row within the table. If a table has a clustered index, then rows are identifi ed (and looked up 
by) their clustering key. If the table does not have a clustered index, then rows are identifi ed 
(and looked up by) their physical row identifi er (RID), described in more detail later in this 
chapter. This process of looking up corresponding data rows in the base table is known as a 
[bookmark] lookup, which is named after the analogy that nonclustered indexes reference 
a place within a book, as a bookmark does. 

 Nonclustered indexes contain only the data as defi ned by the index. When looking up a row 
within a nonclustered index, you often need to go to the actual data row for additional data 
that’s not part of the nonclustered index. To retrieve this additional data, you must look into 
the table for that data. For the purpose of this section, we focus only on how the bookmark 
lookup is performed when a table is clustered. 

 First, and foremost, all clustered indexes must be unique. The primary reason why a  clustered 
index must be unique is so that nonclustered index entries can point to exactly one  specifi c 
row. Consider the problem that would occur if a table were clustered by a nonunique value of 
last name. If a nonclustered index existed on a unique value, such as social security  number, 
and a query looked into the index for a specifi c social security number of 123-45-6789 and 
found that its clustering key was ‘Smith,’ then if multiple rows with a last name of Smith 
 existed, the question would be—which one? How would the specifi c row with a social security 
number of 123-45-6789 be located effi ciently? 

C06626249.indd   311 2/16/2009   2:42:07 PM



312 Microsoft SQL Server 2008 Internals

 For a clustering key to be used effectively, all nonclustered index entries must refer to exactly 
one row. Because that pointer is the clustering key in SQL Server, then the clustering key 
must be unique. If you build a clustered index without specifying the UNIQUE keyword, SQL 
Server guarantees uniqueness internally by adding a hidden uniquifi er column to the rows 
when necessary. 

 Note In SQL Server Books Online, the word uniquifi er is written as uniqueifi er; however, the 
 internal tools—such as DBCC PAGE—spell it as we’ve spelled it here.  

 This uniquifi er is a 4-byte integer value added to the data row when the row’s  clustering key is 
not unique. Once added, it becomes part of the clustering key, meaning that it is  duplicated 
in every nonclustered index. You can see whether or not a specifi c row has this extra value 
when you review the actual structure of index rows, as we will see later in this chapter.  

 Second, if a clustering key is used to look up the corresponding data rows from a  nonclustered 
index into the clustered index (the data) then the clustering key is the most overly  duplicated 
data in a table; all the columns that make up the clustering key are included in every 
 nonclustered index in addition to being in the actual data row. As a result, the width of the 
clustering key is important. Consider a clustered index with a 64-byte clustering key on a table 
with 12 nonclustered indexes and 1 million rows. Without counting internal and  structural 
overhead, the overhead required just to store the clustering key (to support the lookup) in 
every nonclustered index is 732 MB compared to only 92 MB if the clustering key were only 
8 bytes and only 46 MB if the clustering key were only 4 bytes. Although this is just a rough 
 estimate, it shows that you waste a lot of space (and potentially buffer pool memory) if you 
have an overly wide clustering key. However, it’s not just about space alone; this also translates 
into performance and effi ciency of your nonclustered indexes. And, in general, you don’t want 
your nonclustered indexes to be unnecessarily wide. 

 Third, and because the clustering key is the most redundant data within your entire table, you 
should be sure to choose a clustering key that is not volatile. If a clustering key changes, then 
it can have multiple negative effects. First, it can cause record relocation within the  clustered 
index (which can cause page splits and fragmentation, which we discuss in more detail later 
in this chapter). Second, it causes every nonclustered index to be modifi ed (so that the value 
of the clustering key is correct for the relevant nonclustered index rows). This wastes time and 
space, causes fragmentation which then requires maintenance, and adds  unnecessary overhead 
to every modifi cation of the column(s) that make up the clustering key. 

 These three attributes—unique, narrow, and static—also (but not always) apply to a well-chosen 
primary key, and because you can have only one primary key (and only one clustering key), SQL 
Server uses a unique clustered index to enforce a primary key constraint (when no index type is 
defi ned in the primary key defi nition). However, this is not always known by the table’s creator. 
And, if the primary key doesn’t adhere to these criteria (for example, when the primary key has 
been chosen from the data’s natural key, which, for example, is a wide, 100-byte  combination 
of seven columns that is unique only when combined), then using a clustered index to enforce 

C06626249.indd   312 2/16/2009   2:42:07 PM



 Chapter 6 Indexes: Internals and Management 313

 uniqueness and duplicating the entire 100-byte combination of columns in every nonclustered 
index can have very negative side effects. So, for some unsuspecting database developers, a very 
wide clustering key may have been created for them because of these defaults. The good news is 
that you can defi ne the primary key to be nonclustered and easily create a clustered index on a 
different column (or set of columns); however, you have to know when—and how—to do this. 

 Finally, a table’s clustering key should also be chosen so as to minimize fragmentation for 
inserts (fragmentation is discussed in more detail later in this chapter). Although only the 
logical order of a clustered index is maintained after it is created, the maintenance of this 
structure does have overhead. If rows consistently need to enter the table at random entry 
points (for example, inserts into a table ordered by last name), then that table’s logical order 
is slightly more expensive to maintain than a table that’s always adding rows to the end of 
the table (for example, inserts into a table ordered by order number, which is—or should 
be—an  ever-increasing identity column).  

 More details will be available as we review the internals of indexes later in the chapter, but 
to summarize our discussion thus far, the clustering key should be chosen not only based 
on table usage (and, it’s really hard to say “always” or “never” with regard to the  clustering 
key) but also based on the internal dependencies that SQL Server has on the clustering 
key. For the latter, the clustering key should be unique, narrow, and static—and preferably, 
 ever-increasing.  

 Examples of good clustering keys are the following: 

■  A single column key defi ned with an ever-increasing identity column (for example, a 
4-byte int or an 8-byte bigint). 

■  A composite key defi ned with an ever-increasing date column (fi rst), followed by a 
second column that uniquely identifi es the rows—like an identity column. This can be 
very useful for date-based partitioned tables and tables where the data is inserted in 
increasing date-based order as it offers an additional benefi t for range queries on date. 
Examples of this include a 12-byte composite key comprised of SalesDate (8 bytes) and 
SalesNumber (4-byte int) or, in SQL Server 2008, a date column that does not include 
time. However, date alone is not a good clustering key because it is not unique (and 
requires a uniquifi er).  

■  A GUID column can be used successfully as a clustering key because it’s clearly unique, 
relatively narrow (16 bytes wide), and likely to be static. However, as a  clustering 
key, a GUID is appropriate only when it follows an ever-increasing pattern. Some 
 GUIDs—depending on how there are generated—may cause a tremendous amount of 
fragmentation. If the GUID is generated outside SQL Server (like in a client  application) 
or generated inside SQL Server using the NEWID() function, then fragmentation 
 reduces the effectiveness of this column as a clustering key. If possible, consider  using 
the NEWSEQUENTIALID() function instead (for ever-increasing GUIDs) or choosing a 
different clustering key. If you still want to use a GUID as a primary key and it’s not 
ever-increasing, you can make it a nonclustered index instead of a clustered index. 

C06626249.indd   313 2/16/2009   2:42:07 PM



314 Microsoft SQL Server 2008 Internals

 In summary, there are no absolutes to choosing a clustering key; there are only general best 
practices which work well for most tables. However, if a table has only one index—and no 
nonclustered indexes—then the nonclustered index dependencies on the clustering key are 
no longer relevant and a clustered index can take any form. However, most tables are likely 
to have at least a few nonclustered indexes, and most tables perform better with a clustered 
index. Because this is the case, a clustered index with a well-chosen clustering key is always 
the fi rst step to better performance. The second step is “fi nding the right balance” in your 
nonclustered indexes by choosing appropriate—and usually a relatively minimal number 
of—nonclustered indexes. 

Nonclustered Indexes

 As shown earlier, there are two primary components of all indexes—the leaf level and the 
non-leaf level(s). For a clustered index, the leaf level is the data. For a nonclustered index, 
the leaf level is a separate and additional structure that has a copy of some of the data. 
Specifi cally, a nonclustered index depends on its defi nition to form the leaf level. The leaf 
level of a nonclustered index consists of the index key (as per the defi nition of the index), any 
included columns (using the INCLUDE feature added in SQL Server 2005), and the data row’s 
bookmark value (either the clustering key if the table is clustered or the row’s physical RID 
if the table is a heap). A nonclustered index has exactly the same number of rows as there are 
rows in the table, unless a fi lter predicate is used when the index is defi ned. Filtered indexes 
are new in SQL Server 2008 and are discussed in more detail later in this chapter. 

 In terms of how the nonclustered index is used, there are really two ways—either to help point 
to the data (similar to an index in the back of a book, using bookmark lookups, as discussed 
earlier) or to answer a query directly. When a nonclustered index has all the data as requested 
by the query, this is known as query covering, and the index is called a covering index. When 
a nonclustered index covers a query, the nonclustered index can be used to answer a query 
directly and a bookmark lookup (which can be expensive for a nonselective query) can be 
avoided. This can be one of the most effective ways to improve range query performance.  

 The bookmark lookup of a row occurs when a nonclustered index does not have all the data 
required by the query but the query is driven by a predicate that the index can help to fi nd. 
If a table has a clustered index, the nonclustered index is used to drive the query to fi nd the 
corresponding data row by using the clustering key. If the table is a heap (in other words, 
it has no clustered index), the lookup value is an 8-btye RID, which is an actual row locator 
in the form FileID:PageID:SlotNumber. This 8-byte row identifi er breaks down into 2 bytes 
for the FileID, 4 bytes for the PageID, and 2 bytes for the SlotNumber. We will see exactly how 
these lookup values are used when we review data access later in this chapter. 

 The presence or absence of a nonclustered index doesn’t affect how the data pages are 
 organized, so you’re not restricted to having only one nonclustered index per table, as is 
the case with clustered indexes. In SQL Server 2008, each table can include as many as 999 
 nonclustered indexes (up from 249 in SQL Server 2005), but you’ll usually want to have far 
fewer than that (with a few exceptions, such as fi ltered indexes). 

C06626249.indd   314 2/16/2009   2:42:07 PM



 Chapter 6 Indexes: Internals and Management 315

 In summary, nonclustered indexes do not affect the base table; however, the base table’s 
structure—either a heap or a table with a clustered index—affects the structure of your 
nonclustered indexes. This is something to consider and understand if you want to minimize 
wasted overhead and achieve the best performance. 

Constraints and Indexes

 As mentioned earlier, an unsuspecting database developer might have a clustered index 
 unintentionally due to having created a PRIMARY KEY constraint on their table. The idea for 
using constraints comes from relational theory, where a table has entity identifi ers  defi ned 
(to understand table relationships and help to join tables in a normalized schema). When 
constraints are defi ned on a table in SQL Server, both PRIMARY KEY and UNIQUE KEY 
 constraints can enforce certain aspects of entity integrity within the database.  

 For a PRIMARY KEY constraint, SQL Server enforces two things: fi rst, that all the columns 
involved in the PRIMARY KEY do not allow NULL values, and second, that the PRIMARY KEY 
value is unique within the table. If any of the columns allow NULL values, the PRIMARY KEY 
constraint cannot be created. To enforce uniqueness, SQL Server creates a UNIQUE index 
on the columns that make up the PRIMARY KEY constraint. The default index type, if not 
 specifi ed, is a unique clustered index.  

 For a UNIQUE constraint, SQL Server allows the columns that make up the UNIQUE  constraint 
to allow NULLs, but it does not allow all columns to be NULL for more than one row. 
To  enforce uniqueness for the UNIQUE constraint, SQL Server creates a unique index on the 
columns that make up the constraint. The default index type, if not specifi ed, is a unique 
nonclustered index. 

 When you declare a PRIMARY KEY or UNIQUE constraint, the underlying index structure that 
is created is the same as if you had used the CREATE INDEX command directly. However, 
there are some differences in terms of usage and features. For example, a constraint-based 
index cannot have other features added (such as included columns or fi lters, features that 
are discussed later in this chapter), but a UNIQUE index can have these features while still 
 enforcing uniqueness over the key defi nition of the index. And when referencing a UNIQUE 
index—which does not support a constraint—you cannot reference indexes with fi lters. 
However, an index that doesn’t use fi lters or an index that uses included columns can be 
 referenced. These can be powerful options to use to minimize the total number of indexes 
and yet still create a reference with a FOREIGN KEY constraint.  

 The names of the indexes that are built to support these constraints are the same as the 
 constraint names. In terms of internal storage and how these indexes work, there is no 
 difference between unique indexes created using the CREATE INDEX command and indexes 
created to support constraints. The Query Optimizer makes decisions based on the presence 
of the unique index rather than on whether the column was declared as a constraint or not. 
In other words, how the index was created is irrelevant to the Query Optimizer.  

C06626249.indd   315 2/16/2009   2:42:07 PM



316 Microsoft SQL Server 2008 Internals

Index Creation Options

 In terms of creating indexes, the CREATE INDEX command is relatively straightforward: 

CREATE [ UNIQUE ] [ CLUSTERED | NONCLUSTERED ] INDEX index_name

   ON <object> ( column [ ASC | DESC ] [ ,...n ] ) 

    [ INCLUDE ( column_name [ ,...n ] ) ]

    [ WHERE <filter_predicate> ]

 The required parts of an index are the index name, the key defi nition, and the table on which 
this index is defi ned. An index can have non-key columns included in the leaf level of the 
index, using INCLUDE. An index can be defi ned over the entire rowset of the table—which is 
the default—or, new in SQL Server 2008, can be limited to only the rows as defi ned by a  fi lter, 
using WHERE <filter_predicate>. We discuss both of these as we analyze the  physical 
structures of nonclustered indexes. 

 However, CREATE INDEX has some additional options available for specialized purposes. You 
can add a WITH clause to the CREATE INDEX command: 

[WITH 

([FILLFACTOR = fillfactor] 

[[,] [PAD_INDEX] = { ON | OFF }] 

[[,] DROP_EXISTING  = { ON | OFF }] 

[[,] IGNORE_DUP_KEY = { ON | OFF }] 

[[,] SORT_IN_TEMPDB = { ON | OFF }] 

[[,] STATISTICS_NORECOMPUTE  = { ON | OFF }] 

[[,] ALLOW_ROW_LOCKS = { ON | OFF }] 

[[,] ALLOW_PAGE_LOCKS = { ON | OFF }] 

[[,] MAXDOP = max_degree_of_parallelism] 

[[,] ONLINE = { ON | OFF }] )]

 The FILLFACTOR, PAD_INDEX, DROP_EXISTING, SORT_IN_TEMPDB, and ONLINE index 
 creation options are predominantly defi ned and used for index maintenance. To use them 
appropriately, you must better understand the physical structures of indexes as well as how 
data modifi cations work. We cover these options in detail in the section entitled “Managing 
Index Structures,” later in this chapter. The remaining options are described here. 

IGNORE_DUP_KEY

 You can ensure the uniqueness of an index key by defi ning it as UNIQUE or by defi ning a 
PRIMARY KEY or UNIQUE constraint. If an UPDATE or INSERT statement would affect  multiple 
rows, or if even one row is found that would cause duplicates of keys defi ned as unique, the 
entire statement is aborted and no rows are affected. Alternatively, when you create a UNIQUE 
index, you can use the IGNORE_DUP_KEY option so that a duplicate key  error on a multiple-row 
INSERT won’t cause the entire statement to be rolled back. The  nonunique row is discarded, 
and all other rows are inserted. IGNORE_DUP_KEY doesn’t allow the uniqueness of the index to 
be violated; instead, it makes a violation in a multiple-row data modifi cation nonfatal to all the 
nonviolating rows. 

C06626249.indd   316 2/16/2009   2:42:07 PM



 Chapter 6 Indexes: Internals and Management 317

STATISTICS_NORECOMPUTE

 The STATISTICS_NORECOMPUTE option determines whether the statistics on the index should 
be updated automatically. Every index maintains a histogram representing the  distribution of 
values for the leading column of the index. Among other things, the Query Optimizer uses these 
statistics to determine the usefulness of a particular index when  choosing a query plan. As data 
is modifi ed, the statistics get increasingly out of date, and this can lead to less-than- optimal 
query plans if the statistics are not updated. In Chapter 3, “Databases and Database Files,” you 
learned about the database option AUTO_UPDATE_STATISTICS, which enables all  statistics in a 
database to be updated  automatically when  needed. In general, the database option should be 
enabled. However, if desired, a specifi c statistic or index can be set to not update  automatically, 
using the STATISTICS_NORECOMPUTE option. Adding this clause overrides an ON value for 
the AUTO_UPDATE_STATISTICS database option. If the database option is set to OFF, you  cannot 
override that behavior for a particular index, and in that case, all statistics in the database must 
be updated manually using UPDATE STATISTICS or sp_updatestats. To see if the statistics for a 
given table are set to auto-update, as well as the last time they were updated, use sp_autostats 
<table_name>. 

MAXDOP 

 The option MAXDOP controls the maximum number of processors that can be used for index 
creation. It can override the server confi guration option max degree of parallelism for index 
building. Allowing multiple processors to be used for index creation can greatly enhance the 
performance of index build operations. As with other parallel operations, the Query Optimizer 
determines at run time the actual number of processors to use, based on the current load 
on the system. The MAXDOP value just sets a maximum. Multiple processors can be used for 
index creation only when you run SQL Server Enterprise or SQL Server Developer editions. 
And, when used, each processor builds an equal-sized chunk of the index in parallel. When 
this occurs, the tree might not be perfectly balanced, and the math that’s used to determine 
the  theoretical minimum number of required pages differs from the actual number, as each 
 parallel thread builds a separate tree. Once each of the threads have completed, the trees are 
essentially concatenated together. SQL Server can use any extra page space that’s reserved 
during this parallel process for later modifi cations. 

Index Placement

 A fi nal clause in the CREATE INDEX command allows you to specify the placement of the index:  

 [ ON { partition_scheme_name ( column_name )  

        | filegroup_name } ]

 You can specify that an index should either be placed on a particular fi legroup or partitioned 
according to a predefi ned partition scheme. By default, if no fi legroup or partition scheme is 
specifi ed, the index is placed on the same fi legroup as the base table. We discussed fi legroups 
in Chapter 3 and you will learn about table and index partitioning in Chapter 7, “Special Storage.”  

C06626249.indd   317 2/16/2009   2:42:07 PM



318 Microsoft SQL Server 2008 Internals

Constraints and Indexes

 The issue of whether a unique index should be defi ned using a UNIQUE or PRIMARY KEY 
 constraint or through the CREATE INDEX command is a common concern and a frequent 
source of confusion. As mentioned earlier, there is no internal difference in structure, or in the 
Query Optimizer’s choices, for a unique clustered index built using the CREATE INDEX command 
or one that was built to support a PRIMARY KEY constraint. The difference is really a design 
 issue, so it is beyond the scope of this book, which deals with SQL Server internals. However, 
one simple distinction can be made; a constraint is a logical construct and an index is a  physical 
one. When you build an index, you are asking SQL Server to create a physical structure that 
takes up storage space and must be maintained during data modifi cations. When you defi ne 
a constraint, you are defi ning a property of your data and expecting SQL Server to enforce 
that property, but you are not telling SQL Server how to enforce it. In the current version, SQL 
Server enforces PRIMARY KEY and UNIQUE constraints by  creating unique indexes, but there is 
no requirement that it do so. In a future release, SQL Server could enforce this through another 
mechanism, although it is unlikely to do so because of backward compatibility issues. 

Physical Index Structures

 Index pages have almost the same structure as data pages except that they store index 
 records instead of data records. As with all other types of pages in SQL Server, index pages 
use a fi xed size of 8 KB, or 8,192 bytes. Index pages also have a 96-byte header, and there 
is an offset array at the end of the page with 2 bytes for each row to indicate the offset of 
that row on the page. A nonclustered index can have all three allocation units associated 
with it: IN_ROW_DATA, ROW_OVERFLOW_DATA, and LOB_DATA. Each index has a row in the 
sys.indexes catalog view, with an index_id value of either 1 (for a clustered index) or a number 
between 2 and 250 or between 256 and 1005 (indicating a nonclustered index). Remember 
that SQL Server has reserved values between 251 and 255. 

Index Row Formats

 Index rows are structured just like data rows, with two main exceptions. First, an index row 
cannot have SPARSE columns. If a SPARSE column is used in an index defi nition (and there 
are some limitations as to where a SPARSE column can be used in indexes, such as that it 
 cannot be used in a PRIMARY KEY), then the column is created in the index row as if it had 
not been defi ned as SPARSE. Second, if a clustered index is created and the index is not 
 defi ned as unique, then the duplicate key values include a uniquifi er.  

 There are a couple of other differences in structure between index and data rows. An  index 
row does not use the TagB or Fsize row header values. In place of the Fsize fi eld, which 
 indicates where the fi xed-length portion of a row ends, the page header pminlen value is 
used to decode an index row. The pminlen value indicates the offset at which the fi xed-length 
data portion of the row ends. If the index row has no variable-length or nullable columns, 

C06626249.indd   318 2/16/2009   2:42:07 PM



 Chapter 6 Indexes: Internals and Management 319

that is the end of the row. Only if the index row has nullable columns are the fi eld called 
Ncol and the null bitmap both present. The Ncol fi eld contains a value indicating how many 
columns are in the index row; this value is needed to determine how many bits are in the 
null bitmap. Data rows have an Ncol fi eld and null bitmap whether or not any columns allow 
NULL, but index rows have only a null bitmap and an Ncol fi eld if NULLs are allowed in any 
of the columns of the index. Table 6-2 shows the general format of an index row. 

TABLE 6-2 Information Stored in an Index Row 

 Information Mnemonic Size

 Status Bits A TagA

Some of the relevant bits are:
■ Bits 1 through 3:

Taken as a 3-bit value.
0 indicates a primary  record.
3 indicates an index record.
5 indicates a ghost  index record. 
(Ghost records are discussed later in 
this  chapter.)

■ Bit 4:

Indicates that a NULL  bitmap exists.
■ Bit 5:

Indicates that variable-length columns 
 exist in the row.

1 byte

 Fixed-length data Fdata pminlen—1

 Number of columns Ncol 2 bytes

 NULL bitmap (1 bit for each column 
in the table; a 1 indicates that the 
 corresponding column is NULL)

Nullbits Ceiling 
(Ncol / 8)

 Number of variable-length  columns; 
only present if > 0

VarCount 2 bytes

 Variable column offset array; only 
present if VarCount > 0

VarOffset 2 * VarCount

 Variable-length data, if any VarData

 The specifi c column data stored in an index row depends on the type of index and the level 
in which that index row is located.  

Clustered Index Structures

 The leaf level of a clustered index is the data itself. When a clustered index is created, the 
data is physically copied and ordered based on the clustering key (as discussed earlier in this 
chapter). There is no difference between the row structure of a clustered index and the row 
structure of a heap, except in one case: when the clustering key has not been defi ned with 
the UNIQUE attribute. In this case, SQL Server must guarantee uniqueness internally, and to 
do this, each duplicate row requires an additional uniquifi er value. 

Information Mnemonic Size

C06626249.indd   319 2/16/2009   2:42:07 PM



320 Microsoft SQL Server 2008 Internals

Clustered Index Rows with a Uniquifi er

 As mentioned earlier, if your clustered index was not created with the UNIQUE property, SQL 
Server adds a 4-byte integer to make each nonunique key value unique. Because the  clustering 
key is used to identify the base rows being referenced by nonclustered indexes (the bookmark 
lookup), there needs to be a unique way to refer to each row in a clustered index. 

 SQL Server adds the uniquifi er only when necessary—that is, when duplicate keys are added 
to the table. As an example, we create a small table with all fi xed-length columns and then 
add a clustered, nonunique index to the table:  

USE AdventureWorks2008; 

GO

CREATE TABLE Clustered_Dupes  

  (Col1 CHAR(5)   NOT NULL, 

   Col2 INT       NOT NULL, 

   Col3 CHAR(3)   NULL, 

   Col4 CHAR(6)   NOT NULL); 

GO 

CREATE CLUSTERED INDEX Cl_dupes_col1 ON Clustered_Dupes(col1);

 If you look at the row in the sysindexes compatibility view for this table, you notice  something 
unexpected: 

SELECT indid, keycnt, name FROM sysindexes

WHERE id = OBJECT_ID ('Clustered_Dupes'); 

RESULT: 

indid  keycnt name 

------ ------ -------------- 

1      2      Cl_dupes_col1

 The column called keycnt, which indicates the number of keys an index has, has a value 
of 2. (Note that this column is available only in the compatibility view sysindexes, not in the 
catalog view sys.indexes.) If this index had the UNIQUE property, the keycnt value would 
be 1. Because creating a clustered index on a nonunique key is not recommended—it 
wastes time and space with the process of making rows unique—we’ll skip a full analysis 
of this structure. However, there is a script named ExaminingtheClusteredIndexUniquifi er.
sql  included with this chapter’s resource materials in the companion content (which can be 
found at http://www.SQLServerInternals.com/companion). The script creates and analyzes the 
clustered index row structure when the clustering key is not defi ned as UNIQUE.  

The Non-Leaf Level(s) of a Clustered Index

 To navigate to the leaf level of an index, a B-tree is created, which includes the data rows 
in the leaf level. Each row in the non-leaf levels has one entry for every page of the level 
 below (later in this chapter, we look more into what this specifi cally looks like with each index 

C06626249.indd   320 2/16/2009   2:42:07 PM



 Chapter 6 Indexes: Internals and Management 321

type) and this entry includes an index key value and a 6-byte pointer to reference the page. 
In this case, the page pointer is in the format of 2 bytes for the FileID and 4 bytes for the 
PageNumberInTheFile. SQL Server does not need an 8-byte RID because the slot number does 
not need to be stored. The index key part of the entry always indicates the minimum value 
that could be on the pointed-to page. Note that they do not necessarily indicate the actual 
lowest value, just the lowest possible value for the page (as when the row with the lowest key 
value on a page is deleted, the index row in the level above is not updated). 

Analyzing a Clustered Index Structure

 To better illustrate how the clustered index is stored as well as traversed, we review specifi c 
structures created in a sample database called IndexInternals. For this example, we review an 
Employee table created with a clustered index on the PRIMARY KEY.  

 Note The IndexInternals sample database is available for download. A few tables exist in this 
database already. Review the EmployeeCaseStudy-TableDefi nition.sql script to see the table 
 defi nitions, and then move to the EmployeeCaseStudy-AnalyzeStructures.sql script to analyze the 
structures. A backup of this database and a zip fi le containing the solution can be found in the 
companion content. 

 Here is the table defi nition for the Employee table, as it already exists within the IndexInternals 
database: 

CREATE TABLE Employee

  (EmployeeID      INT         NOT NULL     IDENTITY,

   LastName        NCHAR(30)   NOT NULL, 

   FirstName       NCHAR(29)   NOT NULL,

   MiddleInitial   NCHAR(1)    NULL,

   SSN             CHAR(11)    NOT NULL,

   OtherColumns    CHAR(258)   NOT NULL     DEFAULT 'Junk'); 

GO

 The Employee table was created using a few deviations from normal best practices to make 
the structures somewhat predictable (for example, easier math and easier visualization). 
First, all columns have fi xed widths even if when data values vary. Not all columns should 
be  variable just because the data values vary, but when your column is over 20 characters 
and your data varies (and is not overly volatile), then it’s best to consider variable-width 
character columns rather than fi xed-width columns, to save space and for better INSERT 
 performance. (UPDATE performance may be compromised, especially when updates make the 
 variable-width column larger.) We discuss this in more detail in the section on  fragmentation 
later in this chapter. In these specifi c tables, fi xed-width columns are used to ensure a 
 predictable row size and to help in better visualizing the data structures.  

 In this case, and including overhead, the data rows of the Employee table are exactly 
400 bytes per row (using a fi ller column called OtherColumns, which adds 258 bytes of 
junk at the end of the data row). A row size of 400 bytes means that we can fi t 20 rows per 

C06626249.indd   321 2/16/2009   2:42:07 PM



322 Microsoft SQL Server 2008 Internals

data page (8,096 bytes per page/400 bytes per row = 20.24, which translates into 20 rows 
per page because the IN_ROW portion of the data row cannot span pages). To calculate 
how large our tables are, we need to know how many rows these tables contain. And, in 
the IndexInternals database, this table has already been set up with exactly 80,000 rows. At 
20 rows per page, this table requires 4,000 data pages to store its 80,000 rows.  

 In the current table defi nition, this table is a heap. For the Employee table, we defi ne the 
 clustered index by using a PRIMARY KEY constraint: 

-- Add the CLUSTERED PRIMARY KEY for Employee

ALTER TABLE Employee

  ADD CONSTRAINT EmployeePK

    PRIMARY KEY CLUSTERED (EmployeeID);

GO

 To investigate our Employee table further, we use sys.dm_db_index_physical_stats to 
 determine the number of pages within the table, as well as the number of levels within our 
indexes. We can confi rm the index structures using the DMV to see the number of levels as 
well as the number of pages within each level:  

SELECT index_depth AS D

    , index_level AS L

    , record_count AS 'Count'

    , page_count AS PgCnt

    , avg_page_space_used_in_percent AS 'PgPercentFull'

    , min_record_size_in_bytes AS 'MinLen'

    , max_record_size_in_bytes AS 'MaxLen'

    , avg_record_size_in_bytes AS 'AvgLen'

FROM sys.dm_db_index_physical_stats

    (DB_ID ('IndexInternals')

    , OBJECT_ID ('IndexInternals.dbo.Employee')

    , 1, NULL, 'DETAILED');

GO

RESULT:

D   L   Count  PgCnt   PgPercentFull      MinLen  MaxLen  AvgLen

--- --- ------ ------- ------------------ ------- ------- ------

3   0   80000  4000    99.3081294786261   400     400     400

3   1   4000   7       91.7540400296516   11      11      11

3   2   7      1       1.09957993575488   11      11      11

 The clustered index for this table has a leaf level of 4,000 pages, which is as expected, given 
that we have 80,000 rows at 20 rows per page. From the MinLen (min_record_size_in_bytes) 
column, we can see our row length in the leaf level is 400 bytes; however, the row length of 
the non-leaf levels is only 11 bytes. This structure is easily broken down as 4 bytes for the 
integer column (EmployeeID) on which the clustered index is defi ned, 6 bytes for our page 
pointer, and 1 byte for row overhead. Only 1 byte is needed for overhead because our index 
row contains only fi xed-width columns and none of those columns allow NULLs (therefore, 
we do not need a NULL bitmap in the index pages). In addition, you can see that there are 
4,000 rows in the fi rst level above the leaf level because level 1 has a Count (record_count) of 
4,000. In fact, in level 1 there are only seven pages [shown as PgCnt (page_count)], and in 

C06626249.indd   322 2/16/2009   2:42:07 PM



 Chapter 6 Indexes: Internals and Management 323

 level 2, you can see that Count shows as 7. This refers back to earlier in this chapter, when we 
 explained that each level up the tree contains a pointer for every page of the level below it. 
If a level has 4,000 pages, then the next level up has 4,000 rows. You can see a more detailed 
version of this structure in Figure 6-2. 

.  .  .

.  .  .

1...
12441...
24881...
...
74641...

Root = 1 page
(Level 2)

Non-leaf levels

2 levels (root + 1
intermediate level)

Total overhead in
terms of disk space

= 8 pages (or < 1%)

Intermediate level
= 7 pages
(Level 1)

Leaf level = 4,000 pages (Level 0)

1...
21...
41...
...
12421...

41...
42...
43...
...
60...

21...
22...
23...
...
40...

1...
2...
3...
...
20...

79941...
79942...
79943...
...
79960...

79961...
79962...
79963...
...
79980...

79981...
79982...
79983...
...
80000...

74641...
...
79941...
79961...
79981...

FIGURE 6-2 Page details for multiple index levels

 To understand both traversal as well as linkage further, you can use the DBCC IND command to 
see which pages have which data, as well as which pages precede and follow various pages in all 
levels of the index. In this case, we insert the results of DBCC IND into our sp_ tablepages table in 
the master database so that we can access (and order) only specifi c columns of information: 

TRUNCATE TABLE sp_tablepages;

INSERT sp_tablepages

 EXEC ('DBCC IND (IndexInternals, Employee, 1)');

GO

SELECT IndexLevel 

    , PageFID

    , PagePID

    , PrevPageFID

    , PrevPagePID

    , NextPageFID

    , NextPagePID

FROM sp_tablepages

ORDER BY IndexLevel DESC, PrevPagePID;

GO

C06626249.indd   323 2/16/2009   2:42:07 PM



324 Microsoft SQL Server 2008 Internals

RESULT (abbreviated):

IndexLevel PageFID PagePID     PrevPageFID PrevPagePID NextPageFID NextPagePID

---------- ------- ----------- ----------- ----------- ----------- -----------

2          1       234         0           0           0           0

1          1       232         0           0           1           233

1          1       233         1           232         1           235

1          1       235         1           233         1           236

1          1       236         1           235         1           237

1          1       237         1           236         1           238

1          1       238         1           237         1           239

1          1       239         1           238         0           0

0          1       168         0           0           1           169

0          1       169         1           168         1           170

<snip>

0          1       4230        1           4229        1           4231

0          1       4231        1           4230        0           0

NULL       1       157         0           0           0           0

 Because this table was created when the database was empty and because the clustered 
 index was built after loading the data into a staging area (this is solely a separate location 
used for temporarily storing data—in this case, a different fi legroup), this table’s clustered 
index was able to use a completely contiguous range of pages within fi le 1. However, they 
are not completely contiguous from the root down because indexes are built from the leaf 
level up to the root as the rows are ordered for each of the levels. The most important thing 
to understand, however, is navigation. Imagine the following query: 

SELECT e.* 

FROM dbo.Employee AS e

WHERE e.EmployeeID = 27682;

 To fi nd all the data for a row with an EmployeeID of 27682 (remember, this is the clustering 
key value), SQL Server starts at the root page and navigates down to the leaf level. Based on 
the output shown previously, the root page is page 234 in FileID 1 (you can see this because 
the root page is the only page at the highest index level (IndexLevel = 2). To analyze the root 
page, we use DBCC PAGE with output style 3—and we make sure that the query window 
in SQL Server Management Studio is set to return grid results. The reason for this is that 
when using output style 3, the tabular set of a non-leaf page is returned to the grid results, 
 separating the rows from the page header, which is returned to the messages window:  

DBCC PAGE (IndexInternals, 1, 234, 3); 

GO

RESULT:

FileId PageId  Row     Level ChildFileId ChildPageId EmployeeID (key) KeyHashValue

------ ------- ------- ----- ----------- ----------- ---------------- ------------

1      234     0       2     1           232         NULL             NULL

1      234     1       2     1           233         12441            NULL

1      234     2       2     1           235         24881            NULL

1      234     3       2     1           236         37321            NULL

C06626249.indd   324 2/16/2009   2:42:08 PM



 Chapter 6 Indexes: Internals and Management 325

1      234     4       2     1           237         49761            NULL

1      234     5       2     1           238         62201            NULL

1      234     6       2     1           239         74641            NULL

 Reviewing the output from DBCC PAGE for the root page, we can see the EmployeeID  values 
at the start of each “child page” in the EmployeeID (key) column. And because these are 
based on ordered rows in the level below, we solely need to fi nd the appropriate range. 
For the third page, you can see a low value of 24881, and for the fourth page, a low value 
of 37321. So if the value 27682 exists, it would have to be in the index area defi ned by this 
particular range. For navigational purposes, we must navigate down the tree using page 
(ChildPageId) 235 in FileID (ChildFileId) 1. To see this page’s contents, we can again use DBCC 
PAGE with output style 3: 

DBCC PAGE (IndexInternals, 1, 235, 3); 

GO

RESULT (abbreviated):

FileId  PageId Row     Level ChildFileId ChildPageId EmployeeID (key) KeyHashValue

------- ------ ------- ----- ----------- ----------- ---------------- ------------

1       235    0       1     1           1476        24881            NULL

...

1       235    139     1     1           1615        27661            NULL

1       235    140     1     1           1616        27681            NULL

1       235    141     1     1           1617        27701            NULL

...

1       235    621     1     1           2097        3730             NULL

 Finally, if a row with an EmployeeID of 27682 exists, it must be on page 1,616 of FileID 1. Let’s 
see if it is: 

DBCC TRACEON(3604);

GO

DBCC PAGE (IndexInternals, 1, 1616, 3); 

GO

...

Slot 1 Column 1 Offset 0x4 Length 4 Length (physical) 4

EmployeeID = 27682                   

Slot 1 Column 2 Offset 0x8 Length 60 Length (physical) 60

LastName = Arbariol                                                       

Slot 1 Column 3 Offset 0x44 Length 58 Length (physical) 58

FirstName = Burt                                                          

Slot 1 Column 4 Offset 0x7e Length 2 Length (physical) 2

MiddleInitial = R                    

Slot 1 Column 5 Offset 0x80 Length 11 Length (physical) 11

SSN = 373-00-8368                    

Slot 1 Column 6 Offset 0x8b Length 258 Length (physical) 258

OtherColumns = Junk   

...

C06626249.indd   325 2/16/2009   2:42:08 PM



326 Microsoft SQL Server 2008 Internals

 Note DBCC PAGE returns all the details for the page; that is, the header and all data rows. In this 
condensed output, we see only the converted row values from output style 3 for our EmployeeID 
value of interest (27682). The header and all other rows have been removed.  

 By having traversed the structure for a row, we have reviewed two things—the index 
 internals and the process by which a single data row can be found using a clustering key 
 value. This method is used when performing a bookmark lookup from a nonclustered  index 
to retrieve the data when the table is clustered. To understand fully how nonclustered 
 indexes are used, we also need to know how a nonclustered index is stored and how it is 
 traversed to get to the data. 

Nonclustered Index Structures

 The contents of the leaf level of a nonclustered index depend on many factors: the  defi nition 
of the nonclustered index key, the base table’s structure (either a heap or a clustered  index), 
the existence of any nonclustered index features such as included columns or fi ltered  indexes, 
and fi nally, whether or not the nonclustered index is defi ned as unique. 

 To best understand nonclustered indexes, we continue using our IndexInternals  database. 
This time, however, we review nonclustered indexes on two tables: the Employee 
 table, which is clustered by the PRIMARY KEY constraint on the EmployeeID column, 
and the EmployeeHeap table, which does not have a clustered index. The EmployeeHeap 
table is an exact copy of the Employee table; however, it uses a nonclustered PRIMARY KEY 
 constraint on the EmployeeID column instead of a clustered one. This is the fi rst structure 
we review. 

Nonclustered Index Rows on a Heap

 The EmployeeHeap table has exactly the same defi nition and data as the Employee table used 
in the prior example. Here is the EmployeeHeap table defi nition: 

CREATE TABLE EmployeeHeap

  (EmployeeID      INT         NOT NULL     IDENTITY,

   LastName        NCHAR(30)   NOT NULL, 

   FirstName       NCHAR(29)   NOT NULL,

   MiddleInitial   NCHAR(1)    NULL,

   SSN             CHAR(11)    NOT NULL,

   OtherColumns    CHAR(258)   NOT NULL     DEFAULT 'Junk');

GO

 As with the Employee table, the data rows of the EmployeeHeap table are exactly 400 bytes 
per row and with 80,000 rows, this table also requires 4,000 data pages. To see the  physical 
size of the data, you can use the sys.dm_db_index_physical_stats DMV discussed at the 
 beginning of this chapter. We can confi rm that this table is exactly the same (in terms of data) 

C06626249.indd   326 2/16/2009   2:42:08 PM



 Chapter 6 Indexes: Internals and Management 327

as the leaf level of the clustered index by using the DMV to see the number of pages, as well 
as the row length for the index with an index_id of 0 (the third parameter to the DMV):  

SELECT index_depth AS D

    , index_level AS L

    , record_count AS 'Count'

    , page_count AS PgCnt

    , avg_page_space_used_in_percent AS 'PgPercentFull'

    , min_record_size_in_bytes AS 'MinLen'

    , max_record_size_in_bytes AS 'MaxLen'

    , avg_record_size_in_bytes AS 'AvgLen'

FROM sys.dm_db_index_physical_stats

    (DB_ID ('IndexInternals')

    , OBJECT_ID ('IndexInternals.dbo.EmployeeHeap')

    , 0, NULL, 'DETAILED');

GO

RESULT:

D   L   Count  PgCnt   PgPercentFull      MinLen  MaxLen  AvgLen

--- --- ------ ------- ------------------ ------- ------- ------

1   0 80000  4000    99.3081294786261   400     400     400

 For the EmployeeHeap table, all the constraints are going to be created using nonclustered 
indexes. The following commands create the PRIMARY KEY as a nonclustered index on the 
EmployeeID column and a UNIQUE KEY as a nonclustered index on the SSN column: 

-- Add a NONCLUSTERED PRIMARY KEY for EmployeeHeap

ALTER TABLE EmployeeHeap

  ADD CONSTRAINT EmployeeHeapPK

    PRIMARY KEY NONCLUSTERED (EmployeeID);

GO

-- Add the NONCLUSTERED UNIQUE KEY on SSN for EmployeeHeap

ALTER TABLE EmployeeHeap

  ADD CONSTRAINT SSNHeapUK

    UNIQUE NONCLUSTERED (SSN);

GO

 To determine what’s in the leaf level of a nonclustered index built on a heap, we fi rst review 
the structure of the nonclustered index as shown by the DMV. For nonclustered indexes, we 
supply the specifi c index ID for parameter 3. To see the index ID assigned, we can use a query 
against sys.indexes: 

SELECT index_depth AS D

    , index_level AS L

    , record_count AS 'Count'

    , page_count AS PgCnt

    , avg_page_space_used_in_percent AS 'PgPercentFull'

    , min_record_size_in_bytes AS 'MinLen'

    , max_record_size_in_bytes AS 'MaxLen'

    , avg_record_size_in_bytes AS 'AvgLen'

FROM sys.dm_db_index_physical_stats

    (DB_ID ('IndexInternals')

C06626249.indd   327 2/16/2009   2:42:08 PM



328 Microsoft SQL Server 2008 Internals

    , OBJECT_ID ('IndexInternals.dbo.EmployeeHeap')

    , 2, NULL, 'DETAILED');

GO

RESULT:

D   L   Count  PgCnt   PgPercentFull      MinLen  MaxLen  AvgLen

--- --- ------ ------- ------------------ ------- ------- ------

2   0   80000  149     99.477291821102    13      13      13

2   1   149    1       23.9065974796145   11      11      11

 In this case, the leaf level of the nonclustered index (level 0) shows a record count of 80,000 
(based on the fact that there are 80,000 rows in the table) and a minimum, maximum, and 
average length of 13 (these are fi xed-width index rows). This breaks down very clearly and 
easily—the nonclustered index is defi ned on the EmployeeID column (an integer of 4 bytes); 
the table is a heap so the data row’s bookmark (the physical RID) is 8 bytes; and because 
this is a fi xed-width row with no columns that allow NULL values, the row overhead is 1 byte 
(4 + 8 + 1 = 13 bytes). To see the data stored more specifi cally, we can use DBCC IND to 
 review the leaf-level pages of this index: 

TRUNCATE TABLE sp_tablepages;

INSERT sp_tablepages

 EXEC ('DBCC IND (IndexInternals, EmployeeHeap, 2)');

GO

SELECT IndexLevel 

    , PageFID

    , PagePID

    , PrevPageFID

    , PrevPagePID

    , NextPageFID

    , NextPagePID

FROM sp_tablepages

ORDER BY IndexLevel DESC, PrevPagePID;

GO

RESULT (abbreviated):

IndexLevel PageFID PagePID     PrevPageFID PrevPagePID NextPageFID NextPagePID

---------- ------- ----------- ----------- ----------- ----------- -----------

1          1       8608        0           0           0           0

0          1       8544        0           0           1           8545

0          1       8545        1           8544        1           8546

...

0          1       8755        1           8754        1           8756

0          1       8756        1           8755        0           0

NULL       1       254         0           0           0           0

 The root page is on page 8608 of FileID 1. Leaf-level pages are labeled with an IndexLevel 
of 0, so the fi rst page of the leaf level is on page 8544 of FileID 1. To review the data on this 
page, we can use DBCC PAGE with output style 3. (The output for this leaf-level index page 
shows only the fi rst 8 rows and the last 3 rows, out of a total of 539 rows.) 

C06626249.indd   328 2/16/2009   2:42:08 PM



 Chapter 6 Indexes: Internals and Management 329

DBCC PAGE (IndexInternals, 1, 8544, 3);

GO

RESULT (abbreviated):

FileId PageId   Row    Level  EmployeeID (key) HEAP RID            KeyHashValue

------ -------- ------ ------ ---------------- ------------------- ----------------

1      8544     0      0      1                0xF500000001000000  (010086470766)

1      8544     1      0      2                0xF500000001000100  (020068e8b274)

1      8544     2      0      3                0xF500000001000200  (03000d8f0ecc)

1      8544     3      0      4                0xF500000001000300  (0400b4b7d951)

1      8544     4      0      5                0xF500000001000400  (0500d1d065e9)

1      8544     5      0      6                0xF500000001000500  (06003f7fd0fb)

1      8544     6      0      7                0xF500000001000600  (07005a186c43)

1      8544     7      0      8                0xF500000001000700  (08000c080f1b)

...

1      8544     536    0      537              0xD211000001001000  (190098ec2ef0)

1      8544     537    0      538              0xD211000001001100  (1a0076439be2)

1      8544     538    0      539              0xD211000001001200  (1b001324275a)   

 From the output of DBCC PAGE, you can see that the leaf-level page of a nonclustered index 
on a heap has the index key column value (in this case, the EmployeeID), plus the actual data 
row’s RID. The fi nal value displayed is called KeyHashValue, which is not actually stored in 
the index row. It is a fi xed-length string derived using a hash formula on all the key columns. 
This value is used to represent the row in certain other tools. One such tool that is discussed 
in Chapter 10 is the sys.dm_tran_locks DMV that shows the locks that are being held. When 
a lock is held on an index row, the list of locks displays KeyHashValue to indicate which key 
(or index row) is locked. 

 The RID can be converted to the FileID:PageID:SlotNumber format by using the following 
function: 

CREATE FUNCTION convert_RIDs (@rid BINARY(8))

    RETURNS VARCHAR(30)

AS 

    BEGIN

    RETURN (

        CONVERT (VARCHAR(5), 

            CONVERT(INT, SUBSTRING(@rid, 6, 1) 

            + SUBSTRING(@rid, 5, 1)) ) 

        + ':' +

        CONVERT(VARCHAR(10), 

            CONVERT(INT, SUBSTRING(@rid, 4, 1) 

            + SUBSTRING(@rid, 3, 1) 

            + SUBSTRING(@rid, 2, 1) 

            + SUBSTRING(@rid, 1, 1)) ) 

        + ':' +

        CONVERT(VARCHAR(5), 

            CONVERT(INT, SUBSTRING(@rid, 8, 1) 

            + SUBSTRING(@rid, 7, 1)) ) )

    END;

GO  

C06626249.indd   329 2/16/2009   2:42:08 PM



330 Microsoft SQL Server 2008 Internals

 With this function, you can fi nd out the specifi c page number on which a row resides. For 
example, a row with an EmployeeID of 6 has a hexadecimal RID of 0xF500000001000500:  

SELECT dbo.convert_RIDs (0xF500000001000500);

GO

RESULT:

1:245:5 

 Using the function, this converts to 1:245:5, which is comprised of FileID 1, PageID 245, and 
SlotNumber 5. To view this specifi c page, we can use DBCC PAGE and then review the data on 
slot 5 (to see if this is in fact the row with EmployeeID of 6): 

DBCC PAGE (IndexInternals, 1, 245, 3); 

GO

Slot 5 Column 1 Offset 0x4 Length 4 Length (physical) 4

EmployeeID = 6                       

Slot 5 Column 2 Offset 0x8 Length 60 Length (physical) 60

LastName = Anderson                                                       

Slot 5 Column 3 Offset 0x44 Length 58 Length (physical) 58

FirstName = Dreaxjktgvnhye                                                

Slot 5 Column 4 Offset 0x7e Length 2 Length (physical) 2

MiddleInitial =                      

Slot 5 Column 5 Offset 0x80 Length 11 Length (physical) 11

SSN = 250-07-9751                    

Slot 5 Column 6 Offset 0x8b Length 258 Length (physical) 258

OtherColumns = Junk

...

 In this case, you have seen the structure of a nonclustered index row in the leaf level of the 
nonclustered index, as well as how a bookmark lookup is performed using the heap’s RID 
from the nonclustered index to the heap. 

 In terms of navigation, imagine the following query: 

SELECT e.* 

FROM dbo.EmployeeHeap AS e

WHERE e.EmployeeID = 27682;

 Because this table is a heap, only nonclustered indexes can be used to navigate this data 
 effi ciently. And, in this case, we have a nonclustered index on EmployeeID. The fi rst step is to go to 
the root page (as shown in the DBCC IND output earlier, the root page is page 8608 of FileID 1): 

DBCC PAGE (IndexInternals, 1, 8608, 3); 

GO

C06626249.indd   330 2/16/2009   2:42:08 PM



 Chapter 6 Indexes: Internals and Management 331

RESULT:

FileId  PageId Row     Level ChildFileId ChildPageId EmployeeID (key)  KeyHashValue

------- ------ ------- ----- ----------- ----------- ----------------- ------------

1       8608   0       1     1           8544        NULL              NULL

1       8608   1       1     1           8545        540               NULL

...

1       8608   49      1     1           8593        26412             NULL

1       8608   50      1     1           8594        26951             NULL

1       8608   51      1     1           8595        27490             NULL

1       8608   52      1     1           8596        28029             NULL

1       8608   53      1     1           8597        28568             NULL

1       8608   54      1     1           8598        29107             NULL

...

1       8608   147     1     1           8755        79234             NULL

1       8608   148     1     1           8756        79773             NULL

 Using the EmployeeID column in this output, you can see a low value of 27490 for the child 
page 8595 in FileID 1, and then the next page has a low value of 28029. So if an EmployeeID 
of 27682 exists, it would have to be in the index area defi ned by this particular range. Then 
we must navigate down the tree using page (ChildPageId) 8595 in FileID (ChildFileId) 1. To 
see this page’s contents, we can again use DBCC PAGE with output style 3: 

DBCC PAGE (IndexInternals, 1, 8595, 3); 

GO

RESULT:

FileId PageId      Row    Level  EmployeeID (key) HEAP RID           KeyHashValue

------ ----------- ------ ------ ---------------- ------------------ ----------------

1      8595        0      0      27490            0x1617000001000900 (6200aa3b160b)

1      8595        1      0      27491            0x1617000001000A00 (6300cf5caab3)

...

1      8595        191    0      27681            0x2017000001000000 (2100fcdaf887)

1      8595        192    0      27682            0x2017000001000100 (220012754d95)

1      8595        193    0      27683            0x2017000001000200 (23007712f12d)

...

1      8595        538    0      28028            0x3117000001000700   (7c00b4675dbf)

 Note The output returns 539 rows. In this condensed output, we see the fi rst two rows, the 
last row, and then three rows surrounding the value of interest (27682). 

 From this point, you know how the navigation continues. SQL Server translates the data row’s 
RID into the format of FileID:PageID:SlotNumber and proceeds to look up the corresponding 
data row in the heap. 

Nonclustered Index Rows on a Clustered Table

 For nonclustered indexes on a table that has a clustered index, the leaf-level row  structure 
is similar to that of a nonclustered index on a heap. The leaf level of the nonclustered  index 
contains the index key and the bookmark lookup value (the clustering key). However, if 

C06626249.indd   331 2/16/2009   2:42:08 PM



332 Microsoft SQL Server 2008 Internals

the nonclustered index key has some columns in common with the clustering key, SQL 
Server stores the common columns only once in the nonclustered index row. For example, 
if the key of your clustered index is EmployeeID, and you have a nonclustered index on 
(Lastname, EmployeeID, SSN), then the index rows do not store the value of EmployeeID 
twice. In fact, the number of columns and the column order do not matter. For this example 
(as it’s not generally a good practice to have a wide clustering key), imagine a clustering 
key that is  defi ned on columns b, e, and h. The following nonclustered indexes would have 
these column(s) added to make up the nonclustered index leaf-level rows (the columns—if 
any—that are added to the leaf level of the nonclustered index, are italicized and bolded): 

 Nonclustered Index Key Nonclustered Leaf-Level Row 

 a a, b, e, h

 c, h, e c, h, e, b

 e e, b, h

 h h, e, b

 b, c, d b, c, d, e, h

 To review the physical structures of a nonclustered index created on a table that is clustered, 
we review the UNIQUE constraint on the SSN column of the Employee table: 

-- Add the NONCLUSTERED UNIQUE KEY on SSN for Employee

ALTER TABLE Employee

    ADD CONSTRAINT EmployeeSSNUK

        UNIQUE NONCLUSTERED (SSN);

GO

 To gather information on the data size and number of levels, we use the DMV. However, 
 before we can use the DMV, we need the specifi c index ID for parameter 3. To see the index 
ID assigned to this nonclustered index, we can use a query against sys.indexes: 

SELECT name AS IndexName, index_id 

FROM sys.indexes

WHERE [object_id] = OBJECT_ID ('Employee');

GO

RESULT:

IndexName        index_id

---------------- --------

EmployeePK       1

EmployeeSSNUK    2

SELECT index_depth AS D

    , index_level AS L

    , record_count AS 'Count'

    , page_count AS PgCnt

    , avg_page_space_used_in_percent AS 'PgPercentFull'

    , min_record_size_in_bytes AS 'MinLen'

Nonclustered Index Key Nonclustered Leaf-Level Row

C06626249.indd   332 2/16/2009   2:42:08 PM



 Chapter 6 Indexes: Internals and Management 333

    , max_record_size_in_bytes AS 'MaxLen'

    , avg_record_size_in_bytes AS 'AvgLen'

FROM sys.dm_db_index_physical_stats

    (DB_ID ('IndexInternals')

    , OBJECT_ID ('IndexInternals.dbo.Employee')

    , 2, NULL, 'DETAILED');

GO

RESULT:

D   L       Count    PgCnt   PgPercentFull    MinLen   MaxLen   AvgLen

--  ------- -------- ------- ---------------- -------- -------  ------

2   0       80000    179     99.3661106992834 16       16       16

2   1       179      1       44.2055843834939 18       18       18

 In this case, the leaf level of the nonclustered index (level 0) shows a record count of 80,000 
(there are 80,000 rows in the table) and a minimum, maximum, and average length of 16 
(these are fi xed-width index rows). This breaks down very clearly and easily—the  nonclustered 
index is defi ned on the SSN column (a fi xed-width character column of 11 bytes), the table 
has a clustering key of EmployeeID so the data row’s bookmark (the  clustering key) is 4 bytes, 
and because this row is a fi xed-width row with no columns that  allow NULL values, the row 
overhead is 1 byte (11 + 4 + 1 = 16 bytes). To see the data stored more specifi cally, we can 
use DBCC IND to review the leaf-level pages of this index: 

TRUNCATE TABLE sp_tablepages;

INSERT sp_tablepages

 EXEC ('DBCC IND (IndexInternals, Employee, 2)');

GO

SELECT IndexLevel 

    , PageFID

    , PagePID

    , PrevPageFID

    , PrevPagePID

    , NextPageFID

    , NextPagePID

FROM sp_tablepages

ORDER BY IndexLevel DESC, PrevPagePID;

GO

RESULT (abbreviated):

IndexLevel PageFID PagePID     PrevPageFID PrevPagePID NextPageFID NextPagePID

---------- ------- ----------- ----------- ----------- ----------- -----------

1          1       4328        0           0           0           0

0          1       4264        0           0           1           4265

0          1       4265        1           4264        1           4266

...

0          1       4505        1           4504        1           4506

0          1       4506        1           4505        0           0

NULL       1       158         0           0           0           0

C06626249.indd   333 2/16/2009   2:42:08 PM



334 Microsoft SQL Server 2008 Internals

 The root page is on page 4328 of FileID 1. Leaf-level pages are labeled with an IndexLevel 
of 0, so the fi rst page of the leaf level is on page 4264 of FileID 1. To review the data on this 
page, we can use DBCC PAGE with format 3: 

DBCC PAGE (IndexInternals, 1, 4264, 3);

GO

RESULT (abbreviated):

FileId PageId      Row    Level  SSN (key)   EmployeeID  KeyHashValue

------ ----------- ------ ------ ----------- ----------- ----------------

1      4264        0      0      000-00-0184 31101       (fd00604642ee)

1      4264        1      0      000-00-0236 22669       (fb00de40fee1)

1      4264        2      0      000-00-0395 18705       (0101d993da83)

...

1      4264        446    0      013-00-5906 44969       (ff00355b1727)

1      4264        447    0      013-00-5982 7176        (03012415a3e8)

1      4264        448    0      013-00-6001 11932       (f100f75a17a4)

 From the output of DBCC PAGE, you can see that the leaf-level page of a nonclustered index 
on a clustered table has actual column values for both the index key (in this case, the SSN 
column) and the data row’s bookmark, which in this case is the EmployeeID. And this is an 
actual value, copied into the leaf level of the nonclustered index. Had the clustering key been 
wider, the leaf level of the nonclustered index would have been wider as well. 

 In terms of navigation, review the following query: 

SELECT e.* 

FROM dbo.Employee AS e

WHERE e.SSN = '123-45-6789';

 To fi nd all the data for a row with a SSN of 123-45-6789, SQL Server starts at the root page 
and navigates down to the leaf level. Based on the output shown previously, the root page is 
in page 4328 of FileID 1 (you can see this because the root page is the only page at the 
 highest index level (IndexLevel = 1). We could perform the same analysis as before and follow 
the navigation through the B-tree, but this is left as an exercise for you, if you wish. 

Nonunique Nonclustered Index Rows

 You now know that the leaf level of a nonclustered index must have a bookmark because 
from the leaf level, you want to be able to fi nd the actual data row. The non-leaf levels of a 
 nonclustered index need only help us traverse down to pages at the lower levels. In the case of 
a unique nonclustered index (such as in the previous examples of PRIMARY KEY and UNIQUE 
constraint indexes), the non-leaf level rows contain only the nonclustered index key values and 
the child-page pointer. However, if the index is not unique, the non-leaf level rows contain the 
nonclustered index key values, the child-page pointer, and the  bookmark value. In other words, 
the bookmark value is added to the nonclustered index key in a  nonunique,  nonclustered index 
to guarantee uniqueness (as the bookmark, by defi nition, must be unique). 

 Keep in the mind that for the purposes of creating the index rows, SQL Server doesn’t care 
 whether the keys in the nonunique index actually contain duplicates. If the index is not  defi ned to 
be unique, even if all the values are unique, the non-leaf index rows always  contain the bookmark.  

C06626249.indd   334 2/16/2009   2:42:08 PM



 Chapter 6 Indexes: Internals and Management 335

 You can easily see this by creating the following three indexes to review both their leaf and 
non-leaf level row sizes: 

CREATE NONCLUSTERED INDEX TestTreeStructure 

ON Employee (SSN);

GO

CREATE UNIQUE NONCLUSTERED INDEX TestTreeStructureUnique1

ON Employee (SSN);

GO

CREATE UNIQUE NONCLUSTERED INDEX TestTreeStructureUnique2 

ON Employee (SSN, EmployeeID);

GO

SELECT si.[name] AS iname

    , index_depth AS D

    , index_level AS L

    , record_count AS 'Count'

    , page_count AS PgCnt

    , avg_page_space_used_in_percent AS 'PgPercentFull'

    , min_record_size_in_bytes AS 'MinLen'

    , max_record_size_in_bytes AS 'MaxLen'

    , avg_record_size_in_bytes AS 'AvgLen'

FROM sys.dm_db_index_physical_stats

    (DB_ID ('IndexInternals')

    , OBJECT_ID ('IndexInternals.dbo.Employee')

    , NULL, NULL, 'DETAILED') ps

    INNER JOIN sys.indexes si 

        ON ps.[object_id] = si.[object_id] 

            AND ps.[index_id] = si.[index_id]

WHERE ps.[index_id] > 2;

GO

RESULT:

iname                    D L Count PgCnt PgPercentFull    MinLen MaxLen AvgLen

------------------------ - - ----- ----- ---------------- ------ ------ ------

TestTreeStructure        2 0 80000 179   99.3661106992834 16     16     16

TestTreeStructure        2 1 179   1     53.0516431924883 22     22     22

TestTreeStructureUnique1 2 0 80000 179   99.3661106992834 16     16     16

TestTreeStructureUnique1 2 1 179   1     44.2055843834939 18     18     18

TestTreeStructureUnique2 2 0 80000 179   99.3661106992834 16     16     16

TestTreeStructureUnique2 2 1 179   1     53.0516431924883 22     22     22

 Notice that the leaf level (level 0) of all three indexes is identical in all columns: Count 
( record_count), PgCnt (page_count), PgPercentFull (avg_space_used_in_percent), and all three 
length columns. For the non-leaf level of the indexes (which are very small), you can see that 
the lengths vary—for the fi rst (TestTreeStructure) and the third (TestTreeStructureUnique2), 
the non-leaf levels are identical. The fi rst index has the EmployeeID added because it’s the 
clustering key (therefore the bookmark). The third index has EmployeeID already in the 
 index—there’s no need to add it again. However, in the fi rst index, because it was not 
 defi ned as unique, SQL Server had to add the clustering key all the way up the tree. For the 
second index—which was unique on SSN alone—SQL Server did not include EmployeeID all 
the way up the tree. If you’re interested, you can continue to analyze these structures using 
DBCC IND and DBCC PAGE to view the physical row structures further. 

C06626249.indd   335 2/16/2009   2:42:08 PM



336 Microsoft SQL Server 2008 Internals

Nonclustered Index Rows with Included Columns (Using INCLUDE)

 In all nonclustered indexes so far, we have focused on the physical aspects of indexes created 
by constraints or indexes created to test physical structures. Nowhere have we approached 
the limits of index key size, which are 900 bytes or 16 columns, whichever comes fi rst. The 
reason that these limits exist is to help to ensure index tree scalability. However, this has also 
traditionally limited the maximum number of columns that can be indexed. 

 In some cases, adding columns in an index allows SQL Server to eliminate the bookmark 
lookup when accessing data for a range query, a concept called covering indexes. A covering 
index is a nonclustered index in which all the information needed to satisfy a query can be 
found in the leaf level, so SQL Server doesn’t have to access the data pages at all. This can be 
a powerful tool for optimizing some of your more complex range-based queries. 

 Instead of adding columns to the nonclustered index key, and making the tree deeper, 
 columns for a covering index can be added to the index rows without becoming part of the 
key using the INCLUDE syntax. It is a very simple addition to your CREATE INDEX command: 

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name 

  ON table_name (column_name [ASC | DESC][,...n]) 

     [ INCLUDE ( column_name [ ,...n ] ) ]

 These columns listed after the keyword INCLUDE allow you to exceed the 900-byte or 
 16-key column limits in the leaf level of a nonclustered index. The included columns 
 appear only in the leaf level and do not affect the sort order of the index rows in any way. 
In  certain situations, SQL Server can silently add an included column to your indexes. This 
might  happen when an index is created on a partitioned table and no ON fi legroup or ON 
 partition_scheme_name is specifi ed.  

Nonclustered Index Rows with Filters (Filtered Indexes)

 Without using fi lters, the leaf level of a nonclustered index contains one index row for every 
row of data in the table, in logical order based on the index defi nition. New in SQL Server 
2008, you can add a fi lter predicate to your nonclustered index defi nition. This allows SQL 
Server to create nonclustered index rows only for data that matches your predicate, thus 
 limiting the size of the nonclustered index. This can be extremely useful if you have one of 
the following situations: 

■  When a column contains mostly NULL values and where queries retrieve only the rows 
where the data is NOT NULL. This is especially useful when combined with SPARSE 
columns. 

■  When a column contains only a limited number of interesting values or you want to 
 enforce uniqueness only for a set of values. For example, what if you wanted to allow 
NULL values for the SSN column of the Employee table? Using a constraint, SQL Server 
allows only a single row to be NULL. However, using a fi ltered index you can create a 

C06626249.indd   336 2/16/2009   2:42:08 PM



 Chapter 6 Indexes: Internals and Management 337

unique index over only the rows where the SSN is not NULL. The syntax would look like 
the following: 

CREATE UNIQUE NONCLUSTERED INDEX SSN_NOT_NULLs

ON Employee (SSN)

WHERE SSN IS NOT NULL;

■  When queries retrieve only a particular range of data and you want to add indexes to 
this data but not the entire table. For example, you have a table which is partitioned 
by month and covers three years worth of data (2008, 2007, and 2006) and a team 
wants to heavily analyze data in the fourth quarter of 2007. Instead of creating wider 
 nonclustered indexes for all your data, you can create indexes (possibly using INCLUDE 
as well) that focus only on:

WHERE SalesDate > '20071001' AND SalesDate < '20080101'; 

 The end result of an index created with a fi lter is that the leaf level of the nonclustered index 
contains a row only if the row matches the fi lter defi nition. And the column over which the fi lter 
is defi ned does not need to be in the key, or even in an included column; however, that can 
help to make the index more useful for certain queries. You can use DBCC IND, DBCC PAGE, 
and, the previously mentioned, DMVs to review the size and structure for indexes with fi lters. 

Special Index Structures

 SQL Server 2008 allows you to create several special kinds of indexes: indexes on computed 
columns, indexes on views, spatial indexes, full-text indexes, and XML indexes. This section 
covers the requirements and the structural differences of creating these types of indexes. 

Indexes on Computed Columns and Indexed Views

 Without indexes, some of these constructs—computed columns and views—are purely  logical. 
There is no physical storage for the data involved. A computed column is not stored with 
the table data; it is recomputed every time a row is accessed (unless the computed column is 
marked as PERSISTED). A view does not save any data; it basically saves a SELECT statement that 
is executed again every time the data in the view is accessed. With these special indexes, SQL 
Server actually materializes what was only logical data into the physical leaf level of an index. 

Prerequisites

 Before you can create indexes on either computed columns or views, certain  prerequisites 
must be met. The biggest issue is that SQL Server must be able to guarantee that given the 
identical base table data, the same values are always returned for any computed  columns 
or for the rows in a view (that is, the computed columns and views are  deterministic). 
To  guarantee that the same values are always generated, these special indexes have three 

C06626249.indd   337 2/16/2009   2:42:08 PM



338 Microsoft SQL Server 2008 Internals

 categories of requirements. First, a number of session-level options must be set to a  specifi c 
value. Second, there are some restrictions on the functions that can be used within the 
 computed column or view defi nition. The third requirement, which applies only to indexed 
views, is that the tables that the view is based on must meet certain criteria.  

SET Options

 The following seven SET options can affect the resulting value of an expression or predicate, 
so you must set them as shown to create indexed views or indexes on computed columns: 

SET CONCAT_NULL_YIELDS_NULL ON

SET QUOTED_IDENTIFIER ON

SET ANSI_NULLS ON

SET ANSI_PADDING ON

SET ANSI_WARNINGS ON

SET NUMERIC_ROUNDABORT OFF

 Note that all the options have to be ON except the NUMERIC_ROUNDABORT option, which 
has to be OFF. Technically, the option ARITHABORT must also be set to ON. And, when 
your  database is set to 90 compatibility mode or higher, setting ANSI_WARNINGS to ON 
 automatically sets ARITHABORT to ON, so you do not need to set it separately. If any of these 
options are not set as specifi ed, you get an error message when you try to create a special 
 index. In addition, if you’ve already created one of these indexes, after which you change the 
SET option settings, and then attempt to modify the computed column or view on which the 
index is based, you get an error. If you issue a SELECT that normally should use the index, and 
if the SET options do not have the values indicated, the index is ignored but no error is generated.  

 There are a couple of ways to determine whether the SET options are set appropriately 
 before you create one of these special indexes. You can use the function SESSIONPROPERTY 
to test the settings for your current connection. A returned value of 1 means that the setting 
is ON, and a 0 means that it is OFF. The following example checks the current session setting 
for the option NUMERIC_ROUNDABORT: 

SELECT SESSIONPROPERTY ('NUMERIC_ROUNDABORT');

 Alternatively, you can use the sys.dm_exec_sessions DMV to check the SET options for any 
connection. The following query returns the values for fi ve of the previously discussed six SET 
options for the current session: 

SELECT quoted_identifier, arithabort, ansi_warnings,  

       ansi_padding, ansi_nulls, concat_null_yields_null 

FROM sys.dm_exec_sessions 

WHERE session_id = @@spid;

 Unfortunately, NUMERIC_ROUNDABORT is not included in the sys.dm_exec_sessions DMV 
results. There is no way to see the setting for that value for any other connections besides the 
current one. 

C06626249.indd   338 2/16/2009   2:42:09 PM



 Chapter 6 Indexes: Internals and Management 339

Permissible Functions

 A function is either deterministic or nondeterministic. If the function returns the same result 
every time it is called with the same set of input values, it is deterministic. If it can return 
 different results when called with the same set of input values, it is nondeterministic. For 
the purposes of indexes, a function is considered deterministic if it always returns the same 
 values for the same input values when all the SET options have the required settings. Any 
function used in a computed column’s defi nition or used in the SELECT list or WHERE clause 
of an indexable view must be deterministic. 

 More Info SQL Server Books Online contains a complete list of which supplied functions are 
deterministic and which are nondeterministic. Some functions can be either deterministic or 
nondeterministic, depending on how they are used, and SQL Server Books Online also describes 
these functions.  

 It might seem that the list of nondeterministic functions is quite restrictive, but SQL Server 
must be able to guarantee that the values stored in the index are consistent. In some cases, 
the restrictions might be overly cautious, but the downside of being not cautious enough 
would be that your indexed views or indexes on computed columns are meaningless. The 
same restrictions apply to functions you use in your own user-defi ned functions (UDFs)—that 
is, your own functions cannot be based on any nondeterministic built-in function. You can 
verify the determinism property of any function by using the OBJECTPROPERTY function:  

SELECT OBJECTPROPERTY (object_id('<function_name>'), 'IsDeterministic')

 Even if a function is deterministic, if it contains fl oat or real expressions, the result of the 
function might vary with different processors depending on the processor architecture or 
 microcode version. Expressions or functions containing values of the data type fl oat or real 
are therefore considered to be imprecise. To guarantee consistent values even when  moving 
a database from one machine to another (by detaching and attaching, or by  performing 
 backup and restore), imprecise values can be used only in key columns of indexes if they are 
 physically stored in the database and not recomputed. An imprecise value can be used if 
it is the value of a stored column in a table or if it is a computed column that is marked as 
 persisted. We discuss persisted columns in more detail in the upcoming section entitled 
“Indexes on Computed Columns.” 

Schema Binding

 To create an indexed view, a requirement on the table itself is that the defi nition of any 
 underlying object’s schema cannot change. To prevent a change in schema defi nition, the 
CREATE VIEW statement allows the WITH SCHEMABINDING option. When you specify WITH 
SCHEMABINDING, the SELECT statement that defi nes the view must include the two-part 
names (schema.object) of all referenced tables. You can’t drop the table or alter the columns 

C06626249.indd   339 2/16/2009   2:42:09 PM



340 Microsoft SQL Server 2008 Internals

that  participate in a view created with the WITH SCHEMABINDING clause unless you’ve dropped 
that view or changed the view so that it’s no longer schemabound. Otherwise, SQL Server raises 
an error. If any of the tables on which the view is based are owned by someone other than the 
user creating the view, the view creator doesn’t automatically have the right to create the view 
with schema binding because that would restrict the table’s owner from making changes to 
her own table. A user must be granted REFERENCES permission on a table to create a view with 
schema binding on that table. We will see an example of schema binding in a moment. 

Indexes on Computed Columns

 SQL Server 2008 allows you to build indexes on deterministic, precise (and persisted  imprecise) 
computed columns where the resulting data type is otherwise indexable. This means that the 
column’s data type cannot be any of the LOB data types (such as text, varchar(max), or XML). 
Such a computed column can be an index key, included column, or part of a PRIMARY KEY or 
UNIQUE constraint. You cannot defi ne a FOREIGN KEY, CHECK, or DEFAULT constraint on a 
computed column, and computed columns are always considered nullable unless you enclose 
the expression in the ISNULL function. When you create an index on computed columns, the 
six previously mentioned SET options must fi rst have the correct values set. 

 Here’s an example: 

CREATE TABLE t1 (a INT, b as 2*a); 

GO 

CREATE INDEX i1 ON t1 (b); 

GO

 If any of your SET options does not have the correct value when you create the table, you get 
this message when you try to create the index: 

Server: Msg 1935, Level 16, State 1, Line 2 

Cannot create index. Object '<tname>' was created with the following SET options off: 

    '<option(s)>'.

 If more than one option has an incorrect value, the error message reports them all. 

 Here’s an example that creates a table with a nondeterministic computed column: 

CREATE TABLE t2 (a INT, b DATETIME, c AS DATENAME(MM, b)); 

GO 

CREATE INDEX i2 ON t2 (c); 

GO

 When you try to create the index on the computed column c, you get this error: 

Msg 2729, Level 16, State 1, Line 1 

Column 'c' in table 't2' cannot be used in an index or statistics or as a partition key 

    because it is nondeterministic.

 Column c is nondeterministic because the month value of DATENAME() can have different 
values depending on the language you’re using. 

C06626249.indd   340 2/16/2009   2:42:09 PM



 Chapter 6 Indexes: Internals and Management 341

Using the COLUMNPROPERTY Function  You can use the IsDeterministic column 
 property to determine before you create an index on a computed column (or on a view) 
whether that column is deterministic. If you specify this property, the COLUMNPROPERTY 
function returns 1 if the column is deterministic and 0 otherwise. The result is undefi ned 
for columns that are neither computed columns nor  columns in a view, so you should 
 consider checking the IsComputed property before you check the IsDeterministic  property. 
The following example detects that column c in table t2 in the  previous example is 
nondeterministic: 

SELECT COLUMNPROPERTY (OBJECT_ID('t2'), 'c', 'IsDeterministic');

 The value 0 is returned, which means that column c is nondeterministic. Note that the 
COLUMNPROPERTY function requires an object ID for the fi rst argument and a column name 
for the second argument. 

 However, the COLUMNPROPERTY function also has a property of IsIndexable. That’s  probably 
the easiest to use for a quick check, but it won’t give you the reason if the column is not 
 indexable. For that, you should check these other properties.  

Implementation of a Computed Column

 If you create a clustered index on a computed column, the computed column is no longer 
a virtual column in the table. The computed value physically exists in the rows of the table, 
which is the leaf level of the clustered index. Updates to the columns that the computed 
 column is based on also update the computed column in the table itself. For example, in the 
t1 table created previously, if we insert a row with the value 10 in column a, the row is created 
with both the values 10 and 20 in the actual data row. If we then update the 10 to 15, the 
second column is updated automatically to 30. 

Persisted Columns  The ability to mark a computed column as PERSISTED (a feature 
 introduced in SQL Server 2005) allows storage of computed values in a table, even  before you 
build an index. In fact, this feature was added to the product to allow columns of  computed 
values from underlying table columns of type fl oat or real to have indexes built on them. The 
alternative, when you want an index on such a column, would be to drop and re-create the 
 underlying column, which can involve an enormous amount of overhead on a large table.  

 Here’s an example. In the Northwind database, the Order Details table has a column called 
Discount that is of type real. The following code adds a computed column called Final that shows 
the total price for an item after the discount is applied. The statement to build an  index on Final 
fails because the resultant column involving the real value is imprecise and not persisted: 

USE Northwind; 

GO 

ALTER TABLE [Order Details]  

   ADD Final AS  

    (Quantity * UnitPrice) - Discount * (Quantity * UnitPrice); 

GO 

C06626249.indd   341 2/16/2009   2:42:09 PM



342 Microsoft SQL Server 2008 Internals

CREATE INDEX OD_Final_Index on [Order Details](Final);

GO

 

Error Message: 

Msg 2799, Level 16, State 1, Line 1 

Cannot create index or statistics 'OD_Final_Index' on table 'Order Details' 

    because the computed column 'Final' is imprecise and not persisted. Consider removing 

    column from index or statistics key or marking computed column persisted.

 Without persisted computed columns, the only way to create an index on a computed column 
containing the fi nal price would be to drop the Discount column from the table and redefi ne 
it. Any existing indexes on Discount would have to be dropped as well, and then rebuilt. With 
persisted computed columns, all you need to do is drop the computed column (which is a 
metadata-only operation) and then redefi ne it as a persisted computed column. You can 
then build the index on the column:  

ALTER TABLE [Order Details]  

   DROP COLUMN Final; 

GO 

ALTER TABLE [Order Details]  

   ADD Final AS  

   (Quantity * UnitPrice) - Discount * (Quantity * UnitPrice) PERSISTED; 

GO 

CREATE INDEX OD_Final_Index on [Order Details](Final);

 When determining whether you have to use the PERSISTED option, use the COLUMNPROPERTY 
function and the IsPrecise property to determine whether a deterministic column is precise: 

SELECT COLUMNPROPERTY (OBJECT_ID ('Order Details'), 'Final', 'IsPrecise');

 You can also use persisted computed columns when you defi ne partitions. A computed  column 
that is used as the partitioning column must be explicitly marked as PERSISTED, whether it is 
precise or imprecise. We look at partitioning in Chapter 7. 

Indexed Views

 Indexed views in SQL Server are similar to what other products call materialized views. 
One of the most important benefi ts of indexed views is the ability to materialize summary 
 aggregates of large tables. For example, consider a customer table containing rows for 
 several million U.S.-based customers, from which you want information regarding  customers 
in each state. You can create a view based on a GROUP BY query, grouping by state and 
containing the count of orders per state. Normal views are only named, saved queries and 
do not store the results. Every time the view is referenced, the aggregation to produce the 
grouped results must be recomputed. When you create an index on the view, the  aggregated 
data is stored in the leaf level of the index. So instead of millions of customer rows, your 
 indexed view has only 50 rows—one for each state. Your aggregate reporting queries can then 
be processed using the indexed views without having to scan the underlying, large tables. 

C06626249.indd   342 2/16/2009   2:42:09 PM



 Chapter 6 Indexes: Internals and Management 343

The fi rst index you must build on a view is a clustered index, and because the clustered index 
contains all the data at its leaf level, this index actually does the materialization of the view. 
The view’s data is physically stored at the leaf level of the clustered index. 

Additional Requirements

 In addition to the requirement that all functions used in the view must be deterministic, and 
that the required SET options must be set to the appropriate values, the view defi nition can’t 
contain any of the following: 

■  TOP 

■  LOB columns 

■  DISTINCT 

■  MIN, MAX, COUNT(*), COUNT(<expression>), STDEV, VARIANCE, AVG 

■  SUM on a nullable expression 

■  A derived table 

■  The ROWSET function 

■  Another view (you can reference only base tables) 

■  UNION 

■  Subqueries, OUTER joins, or self-joins 

■  Full-text predicates (CONTAINS, FREETEXT) 

■  COMPUTE, COMPUTE BY 

■  ORDER BY 

 Also, if the view defi nition contains GROUP BY, the SELECT list must include the aggregate 
COUNT_BIG (*). COUNT_BIG returns a BIGINT, which is an 8-byte integer. A view that  contains 
GROUP BY can’t contain HAVING, CUBE, ROLLUP, or GROUP BY ALL. Also, all GROUP BY  columns 
must appear in the SELECT list. Note that if your view contains both SUM and COUNT_BIG (*), you 
can compute the equivalent of the AVG aggregate function even though AVG is not allowed in 
indexed views. Although these restrictions might seem severe, remember that they apply to the 
view defi nitions, not to the queries that might use the indexed views. 

 To verify that you’ve met all the requirements, you can use the OBJECTPROPERTY function’s 
IsIndexable property. The following query tells you whether you can build an index on a view 
called Product Totals: 

SELECT OBJECTPROPERTY (OBJECT_ID ('Product_Totals'), 'IsIndexable');

 A return value of 1 means you’ve met all requirements and can build an index on the view. 

C06626249.indd   343 2/16/2009   2:42:09 PM



344 Microsoft SQL Server 2008 Internals

Creating an Indexed View

 The fi rst step in building an index on a view is to create the view itself. Here’s an example 
from the AdventureWorks2008 database: 

USE AdventureWorks2008; 

GO 

CREATE VIEW Vdiscount1     

WITH SCHEMABINDING

AS SELECT SUM (UnitPrice*OrderQty) AS SumPrice    

   , SUM (UnitPrice * OrderQty * (1.00 - UnitPriceDiscount)) 

         AS SumDiscountPrice    

   , COUNT_BIG (*) AS Count    

   , ProductID

FROM Sales.SalesOrderDetail

GROUP BY ProductID;

 Notice the WITH SCHEMABINDING clause and the specifi cation of the schema name (Sales) 
for the table. At this point, we have a normal view—a stored SELECT statement that uses no 
storage space. In fact, if we look at the data in sys.dm_db_partition_stats for this view, we see 
that no rows are returned: 

SELECT si.name AS index_name,  

     ps.used_page_count, ps.reserved_page_count, ps.row_count 

FROM sys.dm_db_partition_stats AS ps

    JOIN sys.indexes AS si

        ON ps.[object_id] = si.[object_id]

WHERE ps.[object_id] = OBJECT_ID ('dbo.Vdiscount1');

 To create an indexed view, you must fi rst create a unique clustered index. The clustered index 
on a view contains all the data that makes up the view defi nition. This statement defi nes a 
unique clustered index for the view: 

CREATE UNIQUE CLUSTERED INDEX VDiscount_Idx ON Vdiscount1 (ProductID);

Once the indexed view has been created, re-run the previous SELECT statement to see the 
pages materialized by the index on the view.

RESULT: 

index_name     used_page_count      reserved_page_count  row_count 

-------------- -------------------- -------------------- --------- 

VDiscountIdx   4                    4                    266

 Data that comprises the indexed view is persistent, with the indexed view storing the data in the 
clustered index’s leaf level. You could construct something similar by using  temporary tables to 
store the data you’re interested in. But a temporary table is static and doesn’t  refl ect changes 
to underlying data. In contrast, SQL Server automatically maintains indexed views, updating 
 information stored in the clustered index whenever anyone changes data that affects the view. 

 After you create the unique clustered index, you can create multiple nonclustered indexes 
on the view. You can determine whether a view is indexed by using the OBJECTPROPERTY 
function’s IsIndexed property. For the Vdiscount1 indexed view, the following statement 
 returns a 1, which means the view is indexed: 

SELECT OBJECTPROPERTY (OBJECT_ID ('Vdiscount1'), 'IsIndexed');

C06626249.indd   344 2/16/2009   2:42:09 PM



 Chapter 6 Indexes: Internals and Management 345

 Once a view is indexed, metadata about space usage and location is available through the 
catalog views, just as for any other index. 

Using an Indexed View

 One of the most valuable benefi ts of indexed views is that your queries don’t have to 
 reference a view directly to use the index on the view. Consider the Vdiscount1 indexed view. 
Suppose that you issue the following SELECT statement: 

SELECT ProductID, total_sales = SUM (UnitPrice * OrderQty) 

FROM  Sales.SalesOrderDetail  

GROUP BY ProductID;

 The Query Optimizer recognizes that the precomputed sums of all the UnitPrice * OrderQty 
values for each ProductID are already available in the index for the Vdiscount1 view. The Query 
Optimizer evaluates the cost of using that indexed view in processing the query, and the 
 indexed view very likely is used to access the information required to satisfy this query—the 
Sales.SalesOrderDetail table might never be touched at all.  

 Note Although you can create indexed views in any edition of SQL Server 2008, for the Query 
Optimizer to consider using them even when they aren’t referenced in the query, the engine 
 edition of your SQL Server 2008 must be Enterprise, Developer, or Evaluation.  

 Just because you have an indexed view doesn’t mean the Query Optimizer will always choose 
it for the query’s execution plan. In fact, even if you reference the indexed view directly in 
the FROM clause, the Query Optimizer might access the base table directly instead. To make 
sure that an indexed view in your FROM clause is not expanded into its underlying SELECT 
 statement, you can use the NOEXPAND hint in the FROM clause. Some of the internals of 
index selection, query optimization, and indexed view usage are discussed in more detail 
in Chapter 8. 

Full-Text Indexes

 Full-text indexes are special-purpose indexes that support the full-text search feature—the 
ability to search effi ciently through character and binary columns in a table. The specifi cs of 
creating and using full-text indexes are beyond the scope of this book, but SQL Server Books 
Online has a comprehensive section describing full-text indexing. 

 Full-text indexes are inverted, stacked, and compressed indexes that are stored in the 
 database in internal tables for convenience. The full-text index data is stored in regular index 
rows in the internal tables, but the majority of the row is opaque to everything except the 
full-text engine itself (tools like DBCC PAGE cannot properly crack open all fi elds in the rows). 

 The storage for full-text indexes is the same as for regular indexes, but as they are stored 
as internal tables, regular methods of fi nding their structures do not work. For instance, the 

C06626249.indd   345 2/16/2009   2:42:09 PM



346 Microsoft SQL Server 2008 Internals

HumanResources.JobCandidate table in the AdventureWorks2008 database has a full-text 
index. To fi nd the object IDs of the internal table(s) in which the full-text index is stored, the 
following T-SQL can be used to query the sys.internal_tables catalog view: 

USE AdventureWorks2008;

GO

SELECT [name], [object_id] FROM sys.internal_tables

WHERE parent_object_id = OBJECT_ID ('HumanResources.JobCandidate');

GO

RESULT:

name                                             object_id

------------------------------------------------ -----------

fulltext_index_docidstatus_1333579789            2046630334

fulltext_docidfilter_1333579789                  2062630391

fulltext_indexeddocid_1333579789                 2078630448

fulltext_avdl_1333579789                         2094630505

 The regular methods for examining index structures can then be employed, using the object 
ID returned from sys.internal_tables. The same method works for spatial indexes and XML 
indexes, described next. 

 As you can see, internal tables have a different root in the system catalogs compared to 
regular tables and indexes, although their space usage is tracked in exactly the same way 
( using IAM pages) and their structures are the same as regular indexes. The SQL Server 
Books Online section “Internal Tables” contains a detailed explanation of them, including 
an  entity-relationship diagram of the relevant system catalogs and various queries to view 
 information about them. 

Spatial Indexes

 A spatial index contains a decomposed view of all values in a spatial data type column in a 
table. The decomposed values are used for fuzzy-pruning of matching values during spatial 
comparison operations. As for full-text indexes, the specifi cs of creating and using spatial 
indexes are beyond the scope of this book, but SQL Server Books Online has an excellent 
 section describing them. See the topic “Spatial Indexing Overview.” 

 A spatial index is a clustered index that is stored as an internal table. Apart from storing the 
decomposed spatial values, it has exactly the same structure as a regular index. 

XML Indexes

 An XML index provides an effi cient mechanism for searching XML BLOB values by storing a 
 shredded representation of the XML data that can be searched with regular B-tree methods,  instead 
of having to walk through a (potentially large) XML BLOB. As with full-text and spatial  indexes, the 
specifi cs of creating and using XML indexes are beyond the scope of this book, but SQL Server 
Books Online has an excellent section describing them. See the topic “Indexes on XML Data Types.”  

C06626249.indd   346 2/16/2009   2:42:09 PM



 Chapter 6 Indexes: Internals and Management 347

 There are two types of XML indexes; primary XML indexes and secondary XML indexes. 
A  primary XML index is a shredded representation of each value in the XML column being 
indexed, with one row for each node in the XML BLOB. A primary XML index is a clustered 
 index and is stored as an internal table. A secondary XML index is a nonclustered index on 
the primary XML index and provides the same function as a regular nonclustered index; 
a different access path to the data using a different sort order. The internal structures of 
these indexes are the same as those for regular indexes. 

Data Modifi cation Internals

 We’ve seen how SQL Server stores data and index information. Now we look at what SQL 
Server actually does internally when your data is modifi ed. We’ve seen how clustered 
 indexes defi ne logical order to your data and how a heap is nothing more than a collection 
of  unordered pages. We’ve seen how nonclustered indexes are structures stored separately 
from the data and how that data is a copy of the actual table’s data, defi ned by the index 
defi nition. And, as a rule of thumb, you should always have a clustered index on a table. 
The SQL Customer Advisory Team published a white paper in mid-2007 that compares 
 various table structures and  essentially  supports this view; see http://www.microsoft.com/
technet/prodtechnol/sql/bestpractice/clusivsh.mspx. In this section, we review how SQL Server 
deals with the existence of indexes when processing data modifi cation statements. 

 Note that for every INSERT, UPDATE, and DELETE operation on a table, the equivalent 
 operation also happens to every nonclustered index on the table. The mechanisms described 
in this section apply equally to clustered and nonclustered indexes. Any modifi cations to the 
table are made to the heap or clustered index fi rst, then to each nonclustered index in turn. 

 In SQL Server 2008, the exception to this rule is fi ltered indexes, where the fi lter predicate means 
the fi ltered nonclustered index may not have a matching row for the table row  being modifi ed. 
When changes are made to the table, the fi ltered index predicate is evaluated to  determine 
whether it is necessary to apply the same operation to the fi ltered nonclustered index. 

Inserting Rows

 When inserting a new row into a table, SQL Server must determine where to put the data, 
as well as insert a corresponding row into each nonclustered index. Each operation follows 
the same pattern: modify the appropriate data page (based on whether or not the table has 
a clustered index) and then insert the corresponding index rows into the leaf level of each 
 nonclustered index. 

 When a table has no clustered index—that is, when the table is a heap—a new row is always 
inserted wherever room is available in the table. In Chapter 3, you learned how IAMs keep 
track of which extents in a fi le already belong to a table and in Chapter 5, you saw how the 
PFS pages indicate which of the pages in those extents have available space. If no pages with 
space are available, SQL Server tries to fi nd unallocated pages from existing uniform extents 

C06626249.indd   347 2/16/2009   2:42:09 PM



348 Microsoft SQL Server 2008 Internals

that already belong to the object. If none exists, SQL Server must allocate a whole new  extent 
to the table. Chapter 3 discussed how the Global Allocated Maps (GAMs) and Shared Global 
Allocation Maps (SGAMs) are used to fi nd extents available to be allocated to an object. So, 
although locating space in which to do an INSERT is relatively effi cient using the PFS and 
IAM, because the location of a row (on INSERT) is not defi ned, determining where to place a 
row within a heap is usually less effi cient than if the table has a clustered index.  

 For an INSERT into a table with a clustered index and for index rows being inserted into 
 nonclustered indexes, the row (regardless of whether it’s a data row or an index row) always 
has a specifi c location within the index where it must be inserted, based on the value the new 
row has for the index key columns. An INSERT occurs either when the new row is the direct 
result of an INSERT or when it’s the result of an UPDATE statement that either causes the row 
to move or for an index key column to change. When a row has to move to a new page, the 
UPDATE statement is internally executed using a DELETE followed by an INSERT (the DELETE/
INSERT strategy). New rows are inserted based on their index key position, and SQL Server 
splices in a new page via a page split if the current leaf level (a data page if this is the clustered 
index or an index page if this is a nonclustered index) has no room. Because the index dictates 
a particular ordering for the rows in the leaf level of the index, every new row has a specifi c 
location where it belongs. If there’s no room for the new row on the page where it belongs, a 
new page must be allocated and linked into the B-tree. If possible, this new page is  allocated 
from the same extent as the other pages to which it is linked. If the extent is already full 
(which is usually the case), a new extent (eight pages or 64 KB) is allocated to the object. As 
 described in Chapter 3, SQL Server uses the GAM pages to fi nd an available extent. 

Splitting Pages

 After SQL Server fi nds the new page, the original page must be split; half the rows (the fi rst half 
based on the slot array on the page) are left on the original page, and the other half are moved 
to the new page (or as close to a 50/50 split as possible). In some cases, SQL Server fi nds that even 
after the split, there’s not enough room for the new row, which, because of variable-length fi elds, 
could potentially be much larger than any of the existing rows on the pages. As part of the split, 
SQL Server must add a corresponding entry for every new page into the parent page of the level 
above. One row is added if only a single split is needed. However, if the new row still won’t fi t  after 
a single split, there can be potentially multiple new pages and multiple additions to the  parent 
page. For example, consider a page with 32 rows on it. Suppose that SQL Server tries to insert a 
new row with 8,000 bytes. It splits the page once, and the new 8,000-byte row won’t fi t. Even after 
a  second split, the new row won’t fi t. Eventually, SQL Server recognizes that the new row cannot fi t 
on a page with any other rows, and it allocates a new page to hold only the new row. Quite a few 
splits occur, resulting in many new pages, and many new rows on the parent page.  

 An index tree is always searched from the root down, so during an INSERT operation, it is split 
on the way down. This means that while the index is being searched on an INSERT, the index 
is protected in anticipation of possibly being updated. The protection mechanism is a latch, 
which you can think of as something like a lock. (Locks are discussed in detail in Chapter 10.) 

C06626249.indd   348 2/16/2009   2:42:09 PM



 Chapter 6 Indexes: Internals and Management 349

A latch is acquired while a page is being read from or written to disk and protects the physical 
integrity of the contents of the page. A parent node is latched (and protected) until the child 
node’s needed split(s) are complete and no further updates to the parent node are required 
from the current operation. Then the parent latch can be released safely. 

 Before the latch on a parent node is released, SQL Server determines whether the page can 
accommodate another two rows; if not, it splits the page. This occurs only if the page is  being 
searched with the objective of adding a row to the index. The goal is to ensure that the parent 
page always has room for the row or rows that result from a child page  splitting. (Occasionally, 
this results in pages being split that don’t need to be—at least not yet. In the long run, it’s a 
performance optimization that helps to minimize deadlocks in an index and allows for free 
space to be added for future rows that may require it.) The type of split  depends on the type 
of page being split: a root page of an index, an intermediate index page, or a leaf-level page. 
And, when a split occurs, it is committed independently of the transaction that caused the 
page to split (using special internal transactions called system transactions). Therefore, even if 
the INSERT transaction is rolled back, the split is not rolled back. 

Splitting the Root Page of an Index

 If the root page of an index needs to be split for a new index row to be inserted, two new 
pages are allocated to the index. All the rows from the root are split between these two new 
pages, and the new index row is inserted into the appropriate place on one of these pages. 
The original root page is still the root, but now it has only two rows on it, pointing to each of 
the newly allocated pages. Keeping the original root page means that an update to the index 
metadata in the system catalogs (that contains a pointer to the index root page) is avoided. 
A root page split creates a new level in the index. Because indexes are usually only a few 
 levels deep and typically very scalable, this type of split doesn’t occur often. 

Splitting an Intermediate Index Page

 An intermediate index page split is accomplished simply by locating the midpoint of the 
index keys on the page, allocating a new page, and then copying the lower half of the old 
index page into the new page. A new row is added to the index page in the level above the 
page that split, corresponding to the newly added page. Again, this doesn’t occur often, 
 although it’s much more common than splitting the root page. 

Splitting a Leaf-Level Page

 A leaf-level page split is the most interesting and potentially common case, and it’s probably 
the only split that you, as a developer or DBA, should be concerned with. The mechanism is 
the same for splitting clustered index data pages or nonclustered index leaf-level index pages. 

 Data pages split only under INSERT activity and only when a clustered index exists on the 
table. Although splits are caused only by INSERT activity, that activity can be a result of an 
UPDATE statement, not just an INSERT statement. As you’re about to learn, if the row can’t 

C06626249.indd   349 2/16/2009   2:42:10 PM



350 Microsoft SQL Server 2008 Internals

be updated in place or at least on the same page, the update is performed as a DELETE of 
the original row followed by an INSERT of the new version of the row. The insertion of the 
new row can cause a page to split. 

 Splitting a leaf-level (data or index) page is a complicated operation. Much like an  intermediate 
index page split, it’s accomplished by locating the midpoint of the index keys on the page, 
 allocating a new page, and then copying half of the old page into the new page. It requires 
that the index manager determine the page on which to locate the new row and then handle 
large rows that don’t fi t on either the old page or the new page. When a data page is split, the 
clustered index key values don’t change, so the nonclustered indexes aren’t affected. 

 Let’s look at what happens to a page when it splits. The following script creates a table with 
large rows—so large, in fact, that only fi ve rows fi t on a page. Once the table is created and 
populated with fi ve rows, we fi nd its fi rst (and only, in this case) page by inserting the output 
of DBCC IND in the sp_tablepages table, fi nding the information for the data page with no 
previous page, and then using DBCC PAGE to look at the contents of the page. Because we 
don’t need to see all 8,020 bytes of data on the page, we look at only the slot array at the 
end of the page and then see what happens to those rows when we insert a sixth row: 

USE AdventureWorks2008; 

GO 

 

DROP TABLE bigrows; 

GO 

 

CREATE TABLE bigrows 

( 

    a int  primary key, 

    b varchar(1600) 

); 

GO 

 

/* Insert five rows into the table */ 

INSERT INTO bigrows   

    VALUES (5, REPLICATE('a', 1600));

INSERT INTO bigrows  

    VALUES (10, replicate('b', 1600));  

INSERT INTO bigrows  

    VALUES (15, replicate('c', 1600));  

INSERT INTO bigrows  

    VALUES (20, replicate('d', 1600));  

INSERT INTO bigrows  

    VALUES (25, replicate('e', 1600));  

GO 

 

TRUNCATE TABLE sp_tablepages; 

INSERT INTO sp_tablepages 

    EXEC ('DBCC IND ( AdventureWorks2008, bigrows, -1)'  ); 

GO

C06626249.indd   350 2/16/2009   2:42:10 PM



 Chapter 6 Indexes: Internals and Management 351

SELECT PageFID, PagePID 

FROM sp_tablepages 

WHERE PageType = 1; 

GO

 

RESULTS: (Yours may vary.) 

PageFID PagePID 

------- ----------- 

1       742

 

DBCC TRACEON(3604); 

GO 

DBCC PAGE(AdventureWorks2008, 1, 742, 1);

GO

 Here is the slot array from the DBCC PAGE output: 

Row - Offset               

4 (0x4) - 6556 (0x199c)    

3 (0x3) - 4941 (0x134d)    

2 (0x2) - 3326 (0xcfe)     

1 (0x1) - 1711 (0x6af)     

0 (0x0) - 96 (0x60)

 Now we insert one more row and look at the slot array again: 

INSERT INTO bigrows  

    VALUES (22, REPLICATE('x', 1600)); 

GO 

DBCC PAGE (AdventureWorks2008, 1, 742, 1); 

GO

 The new page always contains the second half of the rows from the original page, but the 
new row value may be inserted on either page depending on the value of its index keys. In 
this example, the new row, with a clustered key value of 22, would have been inserted in the 
second half of the page. So when this page split occurs, the fi rst three rows stay on page 742, 
the original page. You can inspect the page header to fi nd the location of the next page, 
which contains the new row.  

 The page number is indicated by the m_nextPage fi eld. This value is expressed as a fi le 
number:page number pair, in decimal, so you can easily use it with the DBCC PAGE command. 
In this case, m_nextPage returned a value of 1:21912 (nowhere near the current page). Using 
DBCC PAGE for the “next page” shows the rows there: 

DBCC PAGE (AdventureWorks2008, 1, 21912, 1);

 Here’s the slot array after the INSERT for the second page: 

Row - Offset               

2 (0x2) - 1711 (0x6af)     

1 (0x1) - 3326 (0xcfe)     

0 (0x0) - 96 (0x60)

C06626249.indd   351 2/16/2009   2:42:10 PM



352 Microsoft SQL Server 2008 Internals

 Note that after the page split, three rows are on the page: the last two original rows, with 
keys of 20 and 25, and the new row, with a key of 22. If you examine the actual data on the 
page, you notice that the new row is at slot position 1, even though the row itself is  physically 
the last one on the page. Slot 1 (with value 22) starts at offset 3,326, and slot 2 (with 
 value 25) starts at offset 1,711. The clustered key ordering of the rows is indicated by the 
slot  number of the row, not by the physical position on the page. If a table has a clustered 
index, the row at slot 1 always has a key value less than the row at slot 2 and greater than 
the row at slot 0. Only the slot numbers are rearranged, not the data. This is an optimization 
so that only a small number of offsets are rearranged instead of the entire page’s contents. 
It is a myth that rows in an index are always stored in the exact same physical order as their 
 keys—in fact, SQL Server can store the rows anywhere on a page so long as the slot array 
provides the correct logical ordering. 

 Page splits are expensive operations, involving updates to multiple pages (the page being 
split, the new page, the page that used to be the m_nextPage of the page being split, and 
the parent page), all of which are fully logged. As such, you want to minimize the frequency 
of page splits in your production system, especially during peak usage times. You can avoid 
negatively affecting performance by minimizing splits. Splits can often be minimized by 
choosing a better clustering key (one where new rows are inserted at the end of the table, 
rather than randomly, as with a GUID clustering key) or, especially when splits are caused 
by update to variable-width columns, by reserving some free space on pages using the 
FILLFACTOR option when you’re creating or rebuilding the indexes. You can use this setting 
to your advantage during your least busy operational hours by periodically rebuilding (or 
reorganizing) the indexes with the desired FILLFACTOR. That way, the extra space is available 
during peak usage times, and you save the overhead of splitting then. The pros and cons of 
various maintenance options are discussed later in this chapter.  

Deleting Rows

 When you delete rows from a table, you have to consider what happens both to the data 
 pages and the index pages. Remember that the data is actually the leaf level of a  clustered 
 index, and deleting rows from a table with a clustered index happens the same way as 
 deleting rows from the leaf level of a nonclustered index. Deleting rows from a heap is 
 managed in a different way, as is deleting from non-leaf pages of an index. 

Deleting Rows from a Heap

 SQL Server 2008 doesn’t automatically compact space on a page when a row is deleted. 
As a performance optimization, the compaction doesn’t occur until a page needs additional 
contiguous space for inserting a new row. You can see this in the following example, which 
deletes a row from the middle of a page and then inspects that page using DBCC PAGE: 

USE AdventureWorks2008; 

GO 

 

C06626249.indd   352 2/16/2009   2:42:10 PM



 Chapter 6 Indexes: Internals and Management 353

CREATE TABLE smallrows 

( 

    a int identity, 

    b char(10) 

); 

GO 

 

INSERT INTO smallrows  

    VALUES ('row 1');  

INSERT INTO smallrows  

    VALUES ('row 2'); 

INSERT INTO smallrows   

    VALUES ('row 3'); 

INSERT INTO smallrows   

    VALUES ('row 4'); 

INSERT INTO smallrows   

    VALUES ('row 5'); 

GO 

 

TRUNCATE TABLE sp_tablepages; 

INSERT INTO sp_tablepages 

    EXEC ('DBCC IND (AdventureWorks2008, smallrows, -1)'  ); 

SELECT PageFID, PagePID 

FROM sp_tablepages 

WHERE PageType = 1; 

 

Results: 

PageFID PagePID 

------- ----------- 

1       4536 

 

DBCC TRACEON(3604); 

GO 

DBCC PAGE(AdventureWorks2008, 1, 4536,1);

 Here is the output from DBCC PAGE: 

DATA: 

 

Slot 0, Offset 0x60, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61D9C060 

00000000:   10001200 01000000 726f7720 31202020 †........row 1             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 1, Offset 0x75, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61D9C075 

00000000:   10001200 02000000 726f7720 32202020 †........row 2             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 2, Offset 0x8a, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61D9C08A 

C06626249.indd   353 2/16/2009   2:42:10 PM



354 Microsoft SQL Server 2008 Internals

00000000:   10001200 03000000 726f7720 33202020 †........row 3             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 3, Offset 0x9f, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61D9C09F 

00000000:   10001200 04000000 726f7720 34202020 †........row 4             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 4, Offset 0xb4, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61D9C0B4 

00000000:   10001200 05000000 726f7720 35202020 †........row 5             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

OFFSET TABLE: 

Row - Offset                          

4 (0x4) - 180 (0xb4)                  

3 (0x3) - 159 (0x9f)                  

2 (0x2) - 138 (0x8a)                  

1 (0x1) - 117 (0x75)                  

0 (0x0) - 96 (0x60)

 Now we delete the middle row (WHERE a = 3) and look at the page again:  

DELETE FROM smallrows 

WHERE a = 3; 

GO 

 

DBCC PAGE(AdventureWorks2008, 1, 4536, 1); 

GO

 Here is the output from the second execution of DBCC PAGE: 

DATA: 

Slot 0, Offset 0x60, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61B6C060 

00000000:   10001200 01000000 726f7720 31202020 †........row 1             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 1, Offset 0x75, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61B6C075 

00000000:   10001200 02000000 726f7720 32202020 †........row 2             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 3, Offset 0x9f, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61B6C09F 

00000000:   10001200 04000000 726f7720 34202020 †........row 4             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 4, Offset 0xb4, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61B6C0B4 

C06626249.indd   354 2/16/2009   2:42:10 PM



 Chapter 6 Indexes: Internals and Management 355

00000000:   10001200 05000000 726f7720 35202020 †........row 5             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

OFFSET TABLE: 

Row - Offset                          

4 (0x4) - 180 (0xb4)                  

3 (0x3) - 159 (0x9f)                  

2 (0x2) - 0 (0x0)                     

1 (0x1) - 117 (0x75)                  

0 (0x0) - 96 (0x60)

 Using DBCC PAGE with style 1 on a heap, the row doesn’t show up in the page itself—only in 
the slot array. The slot array at the bottom of the page shows that the third row (at slot 2) is 
now at offset 0 (which means there really is no row using slot 2), and the row using slot 3 is at 
its same offset as before the DELETE. The data on the page is not compacted. 

 In addition to space on pages not being reclaimed, empty pages in heaps frequently  cannot 
be reclaimed. Even if you delete all the rows from a heap, SQL Server does not mark the 
empty pages as unallocated, so the space is not available for other objects to use. The  catalog 
view sys.dm_db_partition_stats still shows the space as belonging to the heap. 

Deleting Rows from a B-tree

 In the leaf level of an index, either clustered or nonclustered, rows are marked as ghost 
 records when they are deleted. This means that the row stays on the page, but a bit is 
changed in the row header to indicate that the row is really deleted (a ghost). The page header 
also refl ects the number of ghost records on a page. Ghost records are used for  several 
 purposes. They can be used to make rollbacks much more effi cient—if the row hasn’t been 
removed physically, all SQL Server has to do to roll back a DELETE is to change the bit 
 indicating that the row is a ghost. It is also a concurrency optimization for key-range locking 
(which is discussed in Chapter 10), along with other locking modes. In addition, ghost records 
are used to support row-level versioning; that topic also is discussed in Chapter 10. 

 Ghost records are cleaned up sooner or later, depending on the load on your system, and 
sometimes they can be cleaned up before you have a chance to inspect them. There is a 
background thread called the ghost-cleanup thread, whose job it is to remove ghost records 
that are no longer needed to support active transactions, or any other feature. In the code 
shown here, if you perform the DELETE and then wait a minute or two to run DBCC PAGE, the 
ghost record might really disappear. That is why we look at the page number for the table 
before we run the DELETE, so we can execute the DELETE and the DBCC PAGE with a single 
click from the query window. To guarantee that the ghost record is not cleaned up, we can 
put the DELETE into a user transaction and not commit or roll back the transaction  before 
examining the page. The ghost-cleanup thread does not clean up ghost records that are part 
of an active transaction. Alternatively, we can use the undocumented trace fl ag 661 to  disable 
ghost cleanup to ensure consistent results when running tests such as in this script. As usual, 
keep in mind that undocumented trace fl ags are not guaranteed to continue to work in any 
future release or service pack, and no support is available for them. Also, be sure to turn off 
the trace fl ag when you’re done with your testing. You can also force SQL Server to clean 

C06626249.indd   355 2/16/2009   2:42:10 PM



356 Microsoft SQL Server 2008 Internals

up the ghost records. The procedure sp_clean_db_free_space will remove all ghost records 
from an entire database (as long as they are not part of an uncommitted transaction) and the 
 procedure sp_clean_db_fi le_free_space will do the same for a single fi le of a database. 

 The following example builds the same table used in the previous DELETE example, but this 
time, the table has a primary key declared, which means a clustered index is built. The data is 
the leaf level of the clustered index, so when the row is removed, it is marked as a ghost: 

USE AdventureWorks2008; 

GO 

DROP TABLE smallrows; 

GO 

CREATE TABLE smallrows 

( 

    a int IDENTITY PRIMARY KEY, 

    b char(10) 

); 

GO 

INSERT INTO smallrows  

    VALUES ('row 1');  

INSERT INTO smallrows 

    VALUES ('row 2'); 

INSERT INTO smallrows 

    VALUES ('row 3'); 

INSERT INTO smallrows 

    VALUES ('row 4'); 

INSERT INTO smallrows 

    VALUES ('row 5'); 

GO 

TRUNCATE TABLE sp_tablepages; 

INSERT INTO sp_tablepages 

    EXEC ('DBCC IND (AdventureWorks2008, smallrows, -1)'  ); 

SELECT PageFID, PagePID 

FROM sp_tablepages 

WHERE PageType = 1; 

 

Results: 

PageFID PagePID 

------- ----------- 

1       4568 

 

DELETE FROM smallrows 

WHERE a = 3; 

GO 

DBCC TRACEON(3604); 

DBCC PAGE(AdventureWorks2008, 1, 4544, 1); 

GO

 Here is the output from DBCC PAGE: 

PAGE HEADER: 

Page @0x064AE000 

m_pageId = (1:4568)                  m_headerVersion = 1                  m_type = 1 

m_typeFlagBits = 0x4                 m_level = 0                          m_flagBits = 0x8000 

m_objId (AllocUnitId.idObj) = 172    m_indexId (AllocUnitId.idInd) = 256   

C06626249.indd   356 2/16/2009   2:42:10 PM



 Chapter 6 Indexes: Internals and Management 357

Metadata: AllocUnitId = 72057594049200128                                  

Metadata: PartitionId = 72057594043105280                                Metadata: 

    IndexId = 1 

Metadata: ObjectId = 1179867270      m_prevPage = (0:0)                  m_nextPage = (0:0) 

pminlen = 18                         m_slotCnt = 5                       m_freeCnt = 7981 

m_freeData = 201                     m_reservedCnt = 0                   m_lsn = (233:499:2)

m_xactReserved = 0                   m_xdesId = (0:18856)                m_ghostRecCnt = 1 

m_tornBits = 0                        

 

 

DATA: 

Slot 0, Offset 0x60, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61B6C060 

00000000:   10001200 01000000 726f7720 31202020 †........row 1             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 1, Offset 0x75, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61B6C075 

00000000:   10001200 02000000 726f7720 32202020 †........row 2             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 2, Offset 0x8a, Length 21, DumpStyle BYTE 

Record Type = GHOST_DATA_RECORD      Record Attributes =  NULL_BITMAP      

Memory Dump @0x61B6C08A 

00000000:   1c001200 03000000 726f7720 33202020 †........row 3             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 3, Offset 0x9f, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61B6C09F 

00000000:   10001200 04000000 726f7720 34202020 †........row 4             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

Slot 4, Offset 0xb4, Length 21, DumpStyle BYTE 

Record Type = PRIMARY_RECORD         Record Attributes =  NULL_BITMAP      

Memory Dump @0x61B6C0B4 

00000000:   10001200 05000000 726f7720 35202020 †........row 5             

00000010:   20200200 fc††††††††††††††††††††††††††  ...                     

 

OFFSET TABLE: 

Row - Offset                          

4 (0x4) - 180 (0xb4)                  

3 (0x3) - 159 (0x9f)                  

2 (0x2) - 138 (0x8a)                  

1 (0x1) - 117 (0x75)                  

0 (0x0) - 96 (0x60)

 Note that the row still shows up in the page itself (using DBCC PAGE style 1) because the 
table has a clustered index. Also, you can experiment using different output styles to see how 
both a heap and a clustered index work with ghosted records, but you still see empty slots, 
GHOST_DATA_RECORD types, or both for clarifi cation. The header information for the row 
shows that this is really a ghost record. The slot array at the bottom of the page shows that 
the row at slot 2 is still at the same offset and that all rows are in the same location as before 

C06626249.indd   357 2/16/2009   2:42:10 PM



358 Microsoft SQL Server 2008 Internals

the deletion. In addition, the page header gives us a value (m_ghostRecCnt) for the number 
of ghost records in the page. To see the total count of ghost records in a table, you can look 
at the sys.dm_db_index_physical_stats function. 

 More Info A detailed discussion of the ghost cleanup mechanism and an examination of the 
 transaction logging involved are available at Paul Randal’s blog—see the blog post at 
http://www.SQLskills.com/BLOGS/PAUL/post/Inside-the-Storage-Engine-Ghost-cleanup-in-depth.aspx. 

Deleting Rows in the Non-Leaf Levels of an Index

 When you delete a row from a table, all nonclustered indexes must be maintained because 
every nonclustered index has a pointer to the row that’s now gone. Rows in index non-leaf 
pages aren’t ghosted when deleted, but just as with heap pages, the space isn’t compacted 
until new index rows need space in that page. 

Reclaiming Pages

 When the last row is deleted from a data page, the entire page is deallocated by the ghost 
cleanup background thread. The exception is if the table is a heap, as we discussed earlier. 
(If the page is the only one remaining in the table, it isn’t deallocated. A table always  contains 
at least one page, even if it’s empty.) Deallocation of a data page results in the deletion of the 
row in the index page that pointed to the deallocated data page. Non-leaf index pages are 
deallocated if an index row is deleted (which, again, for an update might occur as part of a 
DELETE/INSERT strategy), leaving only one entry in the index page. That entry is moved to its 
 neighboring page if there is space, and then the empty page is deallocated. 

 The discussion so far has focused on the page manipulation necessary for deleting a single 
row. If multiple rows are deleted in a single DELETE operation, you must be aware of some 
other issues. Because the issues of modifying multiple rows in a single query are the same for 
INSERTs, UPDATEs, and DELETEs, we discuss this issue in its own section, later in this chapter. 

Updating Rows

 SQL Server updates rows in multiple ways, automatically and invisibly choosing the fastest update 
strategy for the specifi c operation. In determining the strategy, SQL Server evaluates the  number 
of rows affected, how the rows are accessed (via a scan or an index retrieval, and via which 
 index), and whether changes to the index keys occur. Updates can happen either in place, by just 
 changing one column’s value to a new value in the original row, or as a DELETE followed by an 
INSERT. In addition, updates can be managed by the query processor or by the storage engine. In 
this section, we examine only whether the update happens in place or whether SQL Server treats 
it as two separate operations: delete the old row and insert a new row. The question of whether 
the update is controlled by the query processor or the storage engine is actually relevant to all 
data modifi cation operations (not just updates), so we look at that in a separate section. 

C06626249.indd   358 2/16/2009   2:42:10 PM



 Chapter 6 Indexes: Internals and Management 359

Moving Rows

 What happens if a table row has to move to a new location? In SQL Server 2008, this can 
 happen because a row with variable-length columns is updated to a new, larger size so that 
it no longer fi ts on the original page. It can also happen when the clustered or nonclustered 
index column(s) change because rows are logically ordered by the index key. For example, if 
we have a clustered index on lastname, a row with a lastname value of Abbot is stored near 
the beginning of the table. If the lastname value is then updated to Zappa, this row has to 
move to near the end of the table. 

 Earlier in this chapter, we looked at the structure of indexes and saw that the leaf level of 
 nonclustered indexes contains a row locator, or bookmark, for every single row in the table. If 
the table has a clustered index, that row locator is the clustering key for that row. So if—and only 
if—the clustered index key is being updated, modifi cations are required in every  nonclustered 
index (with the possible exception of fi ltered nonclustered indexes). Keep this in mind when 
you decide on which columns to build your clustered index. It’s a great idea to cluster on a 
 nonvolatile column, such as an identity. 

 If a row moves because it no longer fi ts on the original page, it still has the same row  locator 
(in other words, the clustering key for the row stays the same), and no nonclustered  indexes 
have to be modifi ed. This is true even if the table is moved to a new physical location 
( fi legroup or partitioning scheme). Nonclustered indexes are updated only if the clustering key 
changes, and moving the physical location of a table row does not change its clustering key. 

 In our discussion of index internals, you also saw that if a table has no clustered index 
(in other words, if it’s a heap), the row locator stored in the nonclustered index is actually the 
physical location of the row. In SQL Server 2008, if a row in a heap moves to a new page, the 
row leaves a forwarding pointer in the original location. The nonclustered indexes won’t need 
to be changed; they still refer to the original location, and from there, they are directed to 
the new location. In this case, if the table moves to a new location (fi legroup or partitioning 
scheme), the nonclustered indexes are updated, as the physical location of all records in the 
heap must change, thus invalidating the prior row locators in the nonclustered indexes. 

 Let’s look at an example. We have created a table a lot like the one we created for doing 
 inserts, but this table has a third column of variable length. After we populate the table with 
fi ve rows, which fi ll the page, we update one of the rows to make its third column much  longer. 
The row no longer fi ts on the original page and has to move. We can then load the output 
from DBCC IND into the sp_tablepages table to get the page numbers used by the table: 

USE AdventureWorks2008; 

GO 

DROP TABLE bigrows; 

GO 

CREATE TABLE bigrows 

(   a int IDENTITY , 

    b varchar(1600), 

    c varchar(1600)); 

GO 

C06626249.indd   359 2/16/2009   2:42:10 PM



360 Microsoft SQL Server 2008 Internals

INSERT INTO bigrows  

    VALUES (REPLICATE('a', 1600), '');  

INSERT INTO bigrows  

    VALUES (REPLICATE('b', 1600), ''); 

INSERT INTO bigrows  

    VALUES (REPLICATE('c', 1600), ''); 

INSERT INTO bigrows  

    VALUES (REPLICATE('d', 1600), ''); 

INSERT INTO bigrows  

    VALUES (REPLICATE('e', 1600), ''); 

GO 

UPDATE bigrows  

SET c = REPLICATE('x', 1600) 

WHERE a = 3; 

GO 

 

TRUNCATE TABLE sp_tablepages; 

INSERT INTO sp_tablepages 

    EXEC ('DBCC IND (AdventureWorks2008, bigrows, -1)'  ); 

SELECT PageFID, PagePID 

FROM sp_tablepages 

WHERE PageType = 1; 

 

RESULTS: 

PageFID PagePID 

------- ----------- 

1       2252 

1       4586 

 

DBCC TRACEON(3604); 

GO 

DBCC PAGE(AdventureWorks2008, 1, 2252, 1); 

GO

 We won’t show you the entire output from the DBCC PAGE command, but we’ll show you 
what appears in the slot where the row with a = 3 formerly appeared: 

Slot 2, Offset 0x1feb, Length 9, DumpStyle BYTE 

Record Type = FORWARDING_STUB        Record Attributes =                   

Memory Dump @0x61ADDFEB 

00000000:   04ea1100 00010000 00†††††††††††††††††.........

 The value of 4 in the fi rst byte means that this is just a forwarding stub. The 0011ea in 
the next 3 bytes is the page number to which the row has been moved. Because this is a 
 hexadecimal value, we need to convert it to 4,586 decimal. The next group of 4 bytes tells 
us that the page is at slot 0, fi le 1. If you then use DBCC PAGE to look at that page 4,586, you 
can see what the forwarded record looks like. 

Managing Forwarding Pointers

 Forwarding pointers allow you to modify data in a heap without worrying about having to 
make drastic changes to the nonclustered indexes. If a row that has been forwarded must move 
again, the original forwarding pointer is updated to point to the new location. You never end up 

C06626249.indd   360 2/16/2009   2:42:10 PM



 Chapter 6 Indexes: Internals and Management 361

with a forwarding pointer pointing to another forwarding pointer. In addition, if the forwarded 
row shrinks enough to fi t in its original place, the record might move back to its original place, if 
there is still room on that page, and the forwarding pointer would be eliminated. 

 A future version of SQL Server might include some mechanism for performing a physical 
 reorganization of the data in a heap, which would get rid of forwarding pointers. Note that 
forwarding pointers exist only in heaps, and that the ALTER TABLE option to reorganize a 
 table won’t do anything to heaps. You can defragment a nonclustered index on a heap, but 
not the table itself. Currently, when a forwarding pointer is created, it stays there forever—with 
only a few exceptions. The fi rst exception is the case we already mentioned, in which a row 
shrinks and returns to its original location. The second exception is when the entire database 
shrinks. The bookmarks are actually reassigned when a fi le is shrunk. The shrink process 
never generates forwarding pointers. For pages that were removed because of the shrink 
process, any forwarded rows or stubs they contain are effectively “unforwarded.” Other cases 
in which the forwarding pointers are removed are the obvious ones: if the forwarded row is 
deleted or if a clustered index is built on the table so that it is no longer a heap. 

 To get a count of forwarded records in a table, you can look at the output from the 
sys.dm_db_ index_physical_stats function. 

Updating in Place

 In SQL Server 2008, updating a row in place is the rule rather than the exception. This means 
that the row stays in exactly the same location on the same page and only the bytes affected 
are changed. In addition, the log contains a single record for each update in-place operation 
unless the table has an update trigger on it or is marked for replication. In these cases, the 
update still happens in place, but the log contains a DELETE record followed by an INSERT 
record if any of the index key columns are updated. 

 In cases where a row can’t be updated in place, the cost of a not-in-place update is minimal 
because of the way the nonclustered indexes are stored and because of the use of forwarding 
pointers. In fact, you can have an update not in place, for which the row stays on the original 
page. Updates happen in place if a heap is being updated (and there is enough space on the 
page) or if a table with a clustered index is updated without any change to the clustering keys. 
You can also get an update in place if the clustering key changes but the row does not need 
to move at all. For example, if you have a clustered index on a lastname column containing 
consecutive key values of Able, Becker, and Charlie, you might want to update Becker to Baker. 
Because the row stays in the same location even after the clustered index key changes, SQL 
Server performs this as an update in place. On the other hand, if you update Able to Buchner, 
the update cannot occur in place, but the new row might stay on the same page.  

Updating Not in Place

 If your update can’t happen in place because you’re updating clustering keys, the update 
occurs as a DELETE followed by an INSERT. In some cases, you get a hybrid update: some 
of the rows are updated in place and some aren’t. If you’re updating index keys, SQL Server 

C06626249.indd   361 2/16/2009   2:42:10 PM



362 Microsoft SQL Server 2008 Internals

builds a list of all the rows that need to change as both a DELETE and an INSERT operation. 
This list is stored in memory, if it’s small enough, and is written to tempdb if necessary. This 
list is then sorted by key value and operator (DELETE or INSERT). If the index whose keys are 
changing isn’t unique, the DELETE and INSERT steps are then applied to the table. If the index 
is unique, an additional step is carried out to collapse DELETE and INSERT operations on the 
same key into a single UPDATE operation.  

Table-Level vs. Index-Level Data Modifi cation

 We’ve been discussing only the placement and index manipulation necessary for 
 modifying either a single row or a few rows with no more than a single index. If you are 
modifying  multiple rows in a single operation (INSERT, UPDATE, or DELETE) or by using 
BCP or the BULK INSERT command and the table has multiple indexes, you must be aware 
of some other issues. SQL Server 2008 offers two strategies for maintaining all the indexes 
that belong to a table: table-level modifi cation and index-level modifi cation. The Query 
Optimizer chooses between them based on its estimate of the anticipated execution costs 
for each strategy. 

 Table-level modifi cation is sometimes called row-at-a-time, and index-level modifi cation is 
sometimes called index-at-a-time. In table-level modifi cation, all indexes are maintained for 
each row as that row is modifi ed. If the update stream isn’t sorted in any way, SQL Server has 
to do a lot of random index accesses, one access per index per update row. If the update 
stream is sorted, it can’t be sorted in more than one order, so nonrandom index accesses can 
occur for at most one index. 

 In index-level modifi cations, SQL Server gathers all the rows to be modifi ed and sorts them 
for each index. In other words, there are as many sort operations as there are indexes. 
Then, for each index, the updates are merged into the index, and each index page is never 
 accessed more than once, even if multiple updates pertain to a single index leaf page. 

 Clearly, if the update is small—say, less than a handful of rows—and the table and its  indexes 
are sizable, the Query Optimizer usually considers table-level modifi cation the best choice. 
Most OLTP operations use table-level modifi cation. On the other hand, if the update is 
 relatively large, table-level modifi cations require a lot of random I/O operations and might 
even read and write each leaf page in each index multiple times. In that case, index-level 
modifi cation offers much better performance. The amount of logging required is the same 
for both strategies. 

 You can determine whether your updates were done at the table level or the index level by 
inspecting the query execution plan. If SQL Server performs the update at the index level, 
you see a plan produced that contains an UPDATE operator for each of the affected indexes. 
If SQL Server performs the update at the table level, you see only a single UPDATE operator 
in the plan. 

C06626249.indd   362 2/16/2009   2:42:11 PM



 Chapter 6 Indexes: Internals and Management 363

Logging

 Standard INSERT, UPDATE, and DELETE statements are always logged to ensure  atomicity, and 
you can’t disable logging of these operations. The modifi cation must be known to be safely 
on disk in the transaction log (write-ahead logging) before the commit of the  statement or 
transaction can be acknowledged to the calling application. Page allocations and  deallocations, 
including those done by TRUNCATE TABLE, are also logged. As we saw in Chapter 4, “Logging 
and Recovery,” certain operations can be minimally logged when your database is in the 
BULK_LOGGED recovery mode, but even then, information about  allocations and  deallocations 
is written to the log, along with the fact that a minimally logged operation has been executed. 

Locking

 Any data modifi cation must always be protected with some form of exclusive lock. For the 
most part, SQL Server makes all the locking decisions internally; a user or programmer 
doesn’t need to request a particular kind of lock. Chapter 10 explains the different types of 
locks and their compatibility. However, because locking is closely tied to data modifi cation, 
you should always be aware of the following points: 

■  Every type of data modifi cation performed in SQL Server requires some form of  exclusive 
lock. For most data modifi cation operations, SQL Server considers row locking as the 
 default, but if many locks are required, SQL Server can lock pages or even the whole table.  

■  Update locks can be used to signal the intention to do an update, and they are  important 
for avoiding deadlock conditions. But ultimately, the update operation  requires that an 
exclusive lock be performed. The update lock serializes access to  ensure that an exclusive 
lock can be acquired, but the update lock isn’t suffi cient by itself. 

■  Exclusive locks must always be held until the end of a transaction in case the  transaction 
needs to be undone (unlike shared locks, which can be released as soon as the scan 
moves off the page, such as when the READ COMMITTED isolation is in effect). 

■  If a full table scan must be employed to fi nd qualifying rows for an UPDATE or a DELETE, 
SQL Server has to inspect every row to determine the row to modify. Other processes that 
need to fi nd individual rows are blocked even if they ultimately modify different rows. 
Without inspecting the row, SQL Server has no way of knowing whether the row qualifi es 
for the modifi cation. If you’re modifying only a subset of rows in the table, as determined 
by a WHERE clause, be sure that you have indexes available to allow SQL Server to access 
the needed rows directly so it doesn’t have to scan every row in the table.  

Fragmentation

 Fragmentation is a general term used to describe various effects that can occur in indexes 
 because of data modifi cations. There are two general types of fragmentation: internal 
and external. 

C06626249.indd   363 2/16/2009   2:42:11 PM



364 Microsoft SQL Server 2008 Internals

 Internal fragmentation (often called physical fragmentation or page density) is where there is 
wasted space on index pages, both at the leaf and non-leaf levels. This can occur because of 
any or all of the following: 

■  Page splits (described earlier) leaving empty space on the page that was split and the 
newly allocated page 

■  DELETE operations that leave pages less than full 

■  Row sizes that contribute to under-full pages (for instance, a fi xed-width, 5,000-byte data 
record in a clustered index leads to 3,000 wasted bytes per clustered index data page) 

 Internal fragmentation means the index is taking more space than necessary, leading to 
 increased disk space usage, more pages to read to process the data, and more memory 
used to hold the pages in the buffer pool. Sometimes internal fragmentation can be 
 advantageous, as it allows more rows to be inserted on pages without causing page splits. 
Deliberate internal fragmentation can be achieved using the FILLFACTOR and PAD_INDEX 
options, which are described in the next section. 

 External fragmentation (often called logical fragmentation or extent fragmentation) is where 
the pages or extents comprising the leaf level of a clustered or nonclustered index are not in 
the most effi cient order. The most effi cient order is where the logical order of the pages and 
extents (as defi ned by the index keys, following the next-page pointers from the page headers) 
is the same as the physical order of the pages and extents within the data fi le(s). In other words, 
the index leaf-level page that has the row with the next index key is also the next physically 
contiguous page in the data fi le. This is separate from fragmentation at the fi le-system level, 
where the actual data fi les may be comprised of several physical sections. 

 External fragmentation is caused by page splits and reduces the effi ciency of ordered scans 
of part of a clustered or nonclustered index. The more external fragmentation there is, 
the less likely it is that the storage engine can perform effi cient prereading of the pages 
 necessary for the scan. 

 The methods of detecting and removing fragmentation are discussed in the next section. 

Managing Index Structures

 SQL Server maintains your indexes automatically, in terms of making sure the correct rows 
are there. As you add new rows, it automatically inserts them into the correct position in a 
table with a clustered index, and it adds new leaf-level rows to your nonclustered indexes 
that point to the new data rows. When you remove rows, SQL Server automatically deletes 
the corresponding leaf-level rows from your nonclustered indexes. 

 So, although your indexes continue to contain all the correct index rows in the B-tree to help 
SQL Server fi nd the rows you are looking for, you might still occasionally need to perform 
maintenance operations on your indexes, especially to deal with fragmentation in its various 
forms. In addition, several properties of indexes can be changed. 

C06626249.indd   364 2/16/2009   2:42:11 PM



 Chapter 6 Indexes: Internals and Management 365

Dropping Indexes

 One of the biggest differences between managing indexes created using the CREATE INDEX 
command and indexes that support constraints is in how you can drop the index. The DROP 
INDEX  command allows you to drop only indexes that were built with the CREATE INDEX 
command. To drop indexes that support constraints, you must use ALTER TABLE to drop the 
 constraint. In  addition, to drop a PRIMARY KEY or UNIQUE constraint that has any FOREIGN 
KEY  constraints  referencing it, you must fi rst drop the FOREIGN KEY constraint. This can leave 
you with a  window of  vulnerability if your goal is to drop indexes and immediately rebuild 
them,  perhaps with a new fi llfactor. Although the FOREIGN KEY constraint is gone, an INSERT 
statement can add a row to the table that violates your referential integrity. 

 One way to avoid this problem is to use ALTER INDEX, which allows you to drop and  rebuild 
one or all of your indexes on a table in a single statement, without requiring the auxiliary 
step of removing FOREIGN KEY constraints. Alternatively, you can use the CREATE INDEX 
command with the DROP_EXISTING option if you want to rebuild existing indexes without 
having to drop and re-create them in two steps. Although you can normally use CREATE 
INDEX with DROP_EXISTING to redefi ne the properties of an index—such as the key 
 columns or included columns, or whether the index is unique—if you use CREATE INDEX 
with DROP_EXISTING to rebuild an index that supports a constraint, you cannot make these 
kinds of changes. The index must be re-created with the same columns, in the same order, 
and the same values for uniqueness and clustering.  

ALTER INDEX

 SQL Server 2005 introduced the ALTER INDEX command to allow you to use a single 
 command to invoke various kinds of index changes that in previous versions required an 
eclectic collection of different commands, including sp_indexoption, UPDATE STATISTICS, 
DBCC DBREINDEX, and DBCC INDEXDEFRAG. Instead of having individual commands or 
procedures for each different index maintenance activity, they all can be done by using 
ALTER INDEX. For a complete description of all the options to ALTER INDEX, see the SQL 
Server Books Online topic “ALTER INDEX.”  

 Basically, you can make four types of changes using ALTER INDEX, three of which have 
 corresponding options that you can specify when you create an index using CREATE INDEX. 

Rebuilding an Index

 Rebuilding the index replaces the DBCC DBREINDEX command and can be thought of as 
replacing the DROP_EXISTING option to the CREATE INDEX command. However, this  option 
allows indexes to be moved or partitioned, too. A new option allows indexes to be rebuilt 
 online, in the same way you can create indexes online (as we mentioned in the section 
 entitled “Index Creation Options,” earlier in this chapter). We discuss online index building 
and rebuilding shortly. 

C06626249.indd   365 2/16/2009   2:42:11 PM



366 Microsoft SQL Server 2008 Internals

Disabling an Index

 Disabling an index makes it completely unavailable, so it can’t be used for fi nding rows for 
any operations. Disabling the index also means that it won’t be maintained as changes to the 
data are made. You can disable one index or all indexes with a single command. There is no 
ENABLE option. Because no maintenance is performed while an index is disabled,  indexes 
must be completely rebuilt to make them useful again. Re-enabling, which can take place 
either online or offl ine, is done with the REBUILD option to ALTER INDEX. This feature was 
introduced mainly for the internal purposes of SQL Server when applying upgrades and 
 service packs, but there are a few interesting uses for disabling an index. First, you can use 
it if you want to ignore the index temporarily for troubleshooting purposes. Second, instead 
of dropping nonclustered indexes before loading data, you can disable them. However, you 
cannot disable the clustered index. If you disable the clustered index on a table, the table’s 
data will be unavailable because the leaf level of the clustered index is the data. Disabling 
the clustered index essentially disables the table. However, if your data is going to be loaded 
in clustered index order (for an ever-increasing clustering key) such that all new data goes 
to the end of the table, then disabling the nonclustered indexes can help to improve load 
performance. Once the data has been loaded, then you can rebuild the nonclustered indexes 
without having to supply the entire index defi nition. All the metadata has been saved while 
the index was disabled. 

Changing Index Options

 Most of the options that you can specify during a CREATE INDEX operation can also be 
specifi ed with the ALTER INDEX command. These options are ALLOW_ROW_LOCKS, ALLOW_
PAGE_LOCKS, IGNORE_DUP_KEY, FILLFACTOR, PAD_INDEX, STATISTICS _NORECOMPUTE, 
MAXP_DOP, and SORT_IN_TEMPDB. IGNORE_DUP_KEY was described in the section entitled 
“Index Creation Options,” earlier in this chapter. 

FILLFACTOR and PAD_INDEX  FILLFACTOR is probably the most commonly used of these 
options and lets you reserve some space on each leaf page of an index. In a clustered  index, 
because the leaf level contains the data, you can use FILLFACTOR to control how much space 
to leave in the table itself. By reserving free space, you can later avoid the need to split 
pages to make room for a new entry. An important fact about FILLFACTOR is that the value 
is not maintained; it indicates only how much space is reserved with the existing data at the 
time the index is built or rebuilt. If you need to, you can use the ALTER INDEX command to 
rebuild the index and reestablish the original FILLFACTOR specifi ed. If you don’t specify a new 
FILLFACTOR when using ALTER INDEX, the previously used FILLFACTOR is used. 

 FILLFACTOR should always be specifi ed on an index-by-index basis. If FILLFACTOR isn’t 
 specifi ed, the serverwide default is used. The value is set for the server via the sp_ confi gure 
procedure, with the fi llfactor option. This confi guration value is 0 by default (and is the same as 
100), which means that leaf pages of indexes are made as full as possible. It is a best  practice 
not to change this serverwide setting. FILLFACTOR applies only to the index’s leaf pages. 

C06626249.indd   366 2/16/2009   2:42:11 PM



 Chapter 6 Indexes: Internals and Management 367

In specialized and high-use situations, you might want to reserve space in the intermediate 
 index pages to avoid page splits there, too. You can do this by specifying the PAD_INDEX 
 option, which instructs SQL Server to use the same FILLFACTOR value at all levels of the index. 
Just as for FILLFACTOR, PAD_INDEX is applicable only when an index is created (or re-created). 

 When you create a table that includes PRIMARY KEY or UNIQUE constraints, you can specify 
whether the associated index is clustered or nonclustered, and you can also specify the 
 fi llfactor. Because the fi llfactor applies only at the time the index is created, and because 
there is no data when you fi rst create the table, it might seem that specifying the fi llfactor 
at that time is completely useless. However, if you decide to rebuild your indexes after the 
table is populated and if no new fi llfactor is specifi ed, the original value is used. You can also 
specify a fi llfactor when you use ALTER TABLE to add a PRIMARY KEY or UNIQUE constraint 
to a  table; if the table already has data in it, the fi llfactor value is applied when you build the 
index to support the new constraint. 

DROP_EXISTING  The DROP_EXISTING option specifi es that a given index should be 
dropped and rebuilt as a single transaction. This option is particularly useful when you 
 rebuild clustered indexes. Normally, when a developer drops a clustered index, SQL Server 
must rebuild every nonclustered index to change its bookmarks to RIDs instead of the 
 clustering keys. Then, if a developer builds (or rebuilds) a clustered index, SQL Server must 
again rebuild all nonclustered indexes to update the bookmarks. The DROP_EXISTING 
 option of the CREATE INDEX command allows a clustered index to be rebuilt without 
 having to rebuild the nonclustered indexes twice. If you are creating the index on exactly 
the same keys that it had previously, the nonclustered indexes do not need to be rebuilt at all. 
If you are changing the key defi nition, the nonclustered indexes are rebuilt only once, after the 
clustered index is rebuilt. Instead of using the DROP_EXISTING option to rebuild an existing 
index, you can use the ALTER INDEX command. 

SORT_IN_TEMPDB  The SORT_IN_TEMPDB option allows you to control where SQL Server 
performs the sort operation on the key values needed to build an index. The default is that 
SQL Server uses space from the fi legroup on which the index is to be created. While the index 
is being built, SQL Server scans the data pages to fi nd the key values and then builds  leaf-level 
index rows in internal sort buffers. When these sort buffers are fi lled, they are  written to disk. 
If the SORT_IN_TEMPDB option is specifi ed, the sort buffers are allocated from tempdb, so 
much less space is needed in the source database. If you don’t specify SORT_IN_TEMPDB, not 
only does your source database require enough free space for the sort buffers and a copy of 
the index (or the data, if a clustered index is being built), but the disk heads for the database 
need to move back and forth between the base table pages and the work area where the sort 
buffers are stored. If, instead, your CREATE INDEX  command includes the SORT_IN_TEMPDB 
option, performance can be greatly improved if your tempdb database is on a separate 
 physical disk from the database you’re working with. You can  optimize head movement 
 because two separate heads read the base table pages and  manage the sort buffers. You can 
speed up index creation even more if your tempdb  database is on a faster disk than your user 
database and you use the SORT_IN_TEMPDB option.  

C06626249.indd   367 2/16/2009   2:42:11 PM



368 Microsoft SQL Server 2008 Internals

Reorganizing an Index

 Reorganizing an index is the only change that doesn’t have a corresponding option in the 
CREATE INDEX command. The reason for this is that when you create an index, there is 
 nothing to reorganize. The REORGANIZE option replaces the DBCC INDEXDEFRAG command 
and removes some of the fragmentation from an index, but it is not guaranteed to remove 
all the fragmentation, just as DBCC INDEXDEFRAG may not remove all the  fragmentation 
(in spite of its name). Before we discuss removing fragmentation, we must fi rst discuss 
 detecting fragmentation, which we do in the next section.  

Detecting Fragmentation

 As we’ve already seen in numerous examples, the output of sys.dm_db_index_physical_stats 
returns a row for each level of an index. However, when a table is partitioned, it effectively 
treats each partition as a table, so this DMV actually returns a row for each level of each 
 partition of each index. For a small index with only in-row data (no row-overfl ow or LOB 
pages) and only the one default partition, we might get only two or three rows back (one for 
each index level). But if there are multiple partitions and additional allocation units for the 
row-overfl ow and LOB data, we might see many more rows. For example, a clustered index 
on a table containing row-overfl ow data, built on 11 partitions and being two levels deep, 
have 33 rows (2 levels × 11 partitions + 11 partitions for the row_overfl ow allocation units) in 
the fragmentation report returned by sys.dm_db_index_ physical_stats.  

 The section entitled “Tools for Analyzing Indexes,” earlier in this chapter, has a comprehensive 
discussion of the input parameters and the output results, but the following columns give 
fragmentation information that is not obvious: 

■  Forwarded_record_count Forwarded records (discussed in the section entitled “Data 
Modifi cation Internals,” earlier in this chapter) are possible only in a heap and occur 
when a row with variable-length columns increases in size due to updates so that it no 
longer fi ts in its original location. If a table has lots of forwarded records, scanning the 
table can be very ineffi cient. 

■  Ghost_Record_Count and version_ghost_record_count Ghost records are rows that 
physically still exist on a page but logically have been removed, as discussed in the 
 section entitled “Data Modifi cation Internals.” Background processes in SQL Server 
clean up ghost records, but until that happens, no new records can be inserted in 
their place. So if there are lots of ghost records, your table has the drawback of lots 
of  internal fragmentation (that is, the table is spread out over more pages and takes 
longer to scan) with none of the advantages (there is no room on the pages to insert 
new rows to avoid external fragmentation). A subset of ghost records is measured by 
version_ghost_record_count. This value reports the number of rows that have been 
 retained by an outstanding Snapshot isolation transaction. These are not cleaned up 
until all relevant transactions have been committed or rolled back. Snapshot isolation 
is discussed in Chapter 10. 

C06626249.indd   368 2/16/2009   2:42:11 PM



 Chapter 6 Indexes: Internals and Management 369

Removing Fragmentation

 If fragmentation becomes too severe and is affecting query performance, you have  several 
 options for removing it. You might also wonder how severe is too severe. First of all,  fragmentation 
is not always a bad thing. The biggest performance penalty from having  fragmented data arises 
when your application needs to perform an ordered scan on the data. The more the logical order 
differs from the physical order, the greater the cost of scanning the data. If, on the other hand, 
your application needs only one or a few rows of data, it doesn’t matter whether the table or 
index data is in logical order or is physically contiguous, or whether it is spread all over the disk 
in totally random locations. If you have a good index to fi nd the rows you are interested in, SQL 
Server can fi nd one or a few rows very effi ciently, wherever they happen to be physically located.  

 If you are doing ordered scans of an index (such as table scans on a table with a clustered 
index, or a leaf-level scan of a nonclustered index), it is frequently recommended that if your 
avg_fragmentation_in_percent value is between 5 and 20, you should reorganize your index 
to remove the fragmentation. As we see shortly, reorganizing an index (also called defragging) 
compacts the leaf-level pages back to their originally specifi ed fi llfactor and then rearranges 
the pages in the leaf level to correct the logical fragmentation, using the same pages that the 
index originally occupied. No new pages are allocated, so this is a much more space-effi cient 
operation than rebuilding the index. 

 If the avg_fragmentation_in_percent value is greater than 30, you should consider completely 
rebuilding your index. Rebuilding an index means that a whole new set of pages is allocated 
for the index. This removes almost all fragmentation, but it is not guaranteed to eliminate it 
completely. If the free space in the database is itself fragmented, you might not be able to 
allocate enough contiguous space to remove all gaps between extents. In addition, if other 
work is going on that needs to allocate new extents while your index is being rebuilt, the 
 extents allocated to the two processes can end up being interleaved. 

 Defragmentation is designed to remove logical fragmentation from the leaf level of an index 
while keeping the index online and as available as possible. When defragmenting an index, 
SQL Server acquires an Intent-Exclusive lock on the index B-tree. Exclusive page locks are 
taken on individual pages only while those pages are being manipulated, as we see later 
in this chapter when we describe the defragmentation algorithm. Defragmentation in SQL 
Server 2008 is initiated using the ALTER INDEX command. The general form of the command 
to remove fragmentation is as follows: 

ALTER INDEX { index_name | ALL } 

    ON <object> 

      REORGANIZE  

            [ PARTITION = partition_number ] 

            [ WITH ( LOB_COMPACTION = { ON | OFF } ) ]

 ALTER INDEX with the REORGANIZE option offers enhanced functionality compared to DBCC 
INDEXDEFRAG in SQL Server 2000. It supports partitioned indexes, so you can choose to 
defragment just one particular partition (the default is to defragment all the partitions), and it 
allows you to control whether the LOB data is affected by the defragmenting.  

C06626249.indd   369 2/16/2009   2:42:11 PM



370 Microsoft SQL Server 2008 Internals

 As mentioned earlier, every index is created with a specifi c fi llfactor. The initial fi llfactor 
value is stored with the index metadata, so when defragmenting is requested, SQL Server 
can inspect this value. During defragmentation, SQL Server attempts to reestablish the 
 initial fi llfactor if it is greater than the current fi llfactor on a leaf-level page. Defragmentation 
is  designed to compact data, and this can be done by putting more rows per page and 
 increasing the fullness percentage of each page. SQL Server might end up then removing 
pages from the index after the defragmentation. If the current fi llfactor is greater than the 
initial fi llfactor, SQL Server cannot reduce the fullness level of a page by moving rows out of 
it. The compaction algorithm inspects adjacent pages (in logical order) to see if there is room 
to move rows from the second page to the fi rst. From SQL Server 2005 onwards, the process 
is even more effi cient by looking at a sliding window of eight logically consecutive pages. It 
determines whether enough rows can be moved around within the eight pages to allow a 
single page to be emptied and removed, and moves rows only if this is the case. 

 As mentioned earlier, SQL Server 2005 also introduced the option to compact your LOB pages. 
The default is ON. Reorganizing a specifi ed clustered index compacts all LOB columns that are 
contained in the clustered index before it compacts the leaf pages. Reorganizing a  nonclustered 
index compacts all LOB columns that are non-key (INCLUDEd) columns in the index.  

 In SQL Server 2000, the only way a user can compact LOBs in a table is to unload and reload 
the LOB data. LOB compaction in SQL Server 2005 onwards fi nds low-density extents—those 
that are used at less than 75 percent. It moves pages out of these low-density uniform extents 
and places the data from them in available space in other uniform extents already allocated 
to the LOB allocation unit. This functionality allows much better use of disk space, which can 
be wasted with low-density LOB extents. No new extents are allocated, either during this 
compaction phase or during the next phase. 

 The second phase of the reorganization operation actually moves data to new pages 
in the in-row allocation unit with the goal of having the logical order of data match the 
 physical  order. The index is kept online because only two pages at a time are processed in an 
 operation similar to a heapsort or smoothsort (the details of which are beyond the scope of 
this book). The following example is a simplifi cation of the actual process of reorganization. 
Consider an index on a column of datetime data. Monday’s data logically precedes Tuesday’s 
data, which precedes Wednesday’s data, which precedes Thursday’s data, and so on. If,  however, 
Monday’s data is on page 88, Tuesday’s is on page 50, Wednesday’s is on page 100, and 
Thursday’s is on page 77, the physical and logical ordering doesn’t match in the slightest, and 
we have logical fragmentation. When defragmenting an index, SQL Server determines the 
fi rst physical page belonging to the leaf level (page 50, in our case) and the fi rst logical page 
in the leaf level (page 88, which holds Monday’s data) and swaps the data on those two pages 
using one additional new page as a temporary storage area. After this swap, the fi rst logical 
page with Monday’s data is on page 50, the lowest numbered physical page. After each page 
swap, all locks and latches are released and the key of the last page moved is saved. The next 
iteration of the algorithm uses the saved key to fi nd the next logical page—Tuesday’s data, 
which is now on page 88. The next physical page is 77, which holds Thursday’s data. So another 

C06626249.indd   370 2/16/2009   2:42:11 PM



 Chapter 6 Indexes: Internals and Management 371

swap is made to place Tuesday’s data on page 77 and Thursday’s on page 88. This process 
continues until no more swaps need to be made. Note that no defragmenting is done for 
pages on mixed extents.  

 You need to be aware of some restrictions on using the REORGANIZE option. Certainly, if 
the index is disabled it cannot be defragmented. Also, because the process of removing 
 fragmentation needs to work on individual pages, you get an error if you try to reorganize 
an index that has the option ALLOW_PAGE_LOCKS set to OFF. Reorganization cannot happen 
if a concurrent online index is built on the same index or if another process is concurrently 
reorganizing the same index.  

 You can observe the progress of each index’s reorganization in the sys.dm_exec_requests 
DMV in the percent_complete column. The value in this column reports the percentage 
 completed in one index’s reorganization. If you are reorganizing multiple indexes in the same 
command, you might see the value go up and down as each index is defragmented in turn.  

Rebuilding an Index

 You can completely rebuild an index in several ways. You can use a simple combination of 
DROP INDEX followed by CREATE INDEX, but this method is probably the least preferable. 
In particular, if you are rebuilding a clustered index in this way, all the nonclustered indexes 
must be rebuilt when you drop the clustered index. This nonclustered index rebuilding is 
necessary to change the row locators in the leaf level from the clustered key values to row 
IDs. Then, when you rebuild the clustered index, all the nonclustered indexes must be rebuilt 
again. In addition, if the index supports a PRIMARY KEY or UNIQUE constraint, you can’t use 
the DROP INDEX command at all—unless you fi rst drop all the FOREIGN KEYs. Although this 
is possible, it is not preferable. 

 Better solutions are to use the ALTER INDEX command or to use the DROP_EXISTING 
clause along with CREATE INDEX. As an example, here are both methods for rebuilding the 
PK_TransactionHistory_TransactionID index on the Production.TransactionHistory table: 

ALTER INDEX PK_TransactionHistory_TransactionID  

           ON Production.TransactionHistory REBUILD; 

 

CREATE UNIQUE CLUSTERED INDEX PK_TransactionHistory_TransactionID  

              ON Production.TransactionHistory 

                   (TransactionDate, TransactionID) 

              WITH DROP_EXISTING;

 Although the CREATE method requires knowing the index schema, it is actually more 
 powerful and offers more options that you can specify. You can change the columns that 
make up the index, change the uniqueness property, or change a nonclustered index to 
 clustered, as long as there isn’t already a clustered index on the table. You can also specify a 
new fi legroup or a partition scheme to use when rebuilding. Note that if you do change the 
clustered index key properties, all nonclustered indexes must be rebuilt, but only once (not 
twice, as would happen if we were to execute DROP INDEX followed by CREATE INDEX).  

C06626249.indd   371 2/16/2009   2:42:11 PM



372 Microsoft SQL Server 2008 Internals

 When using the ALTER INDEX command to rebuild a clustered index, the nonclustered 
 indexes never need to be rebuilt just as a side effect because you can’t change the  index 
 defi nition at all. However, you can specify ALL instead of an index name and request that 
all indexes be rebuilt. Another advantage of the ALTER INDEX method is that you can 
 specify just a single partition to be rebuilt—if, for example, the fragmentation report from 
sys.dm_db_index_physical_stats shows fragmentation in just one partition or a subset of 
the partitions. 

Online Index Building

 The default behavior of either method of rebuilding an index is that SQL Server takes an 
 exclusive lock on the index, so it is completely unavailable while the index is being rebuilt. 
If the index is clustered, the entire table is unavailable; if the index is nonclustered, there is 
a shared lock on the table, which means no modifi cations can be made but other  processes 
can SELECT from the table. Of course, they cannot take advantage of the index you’re 
 rebuilding, so the query might not perform as well as it should.  

 SQL Server 2005 introduced the option to rebuild one or all indexes online. The ONLINE option 
is available with both ALTER INDEX and CREATE INDEX, with or without the DROP_EXISTING 
option. Here’s the syntax for building the preceding index, but doing it online: 

ALTER INDEX PK_TransactionHistory_TransactionID  

           ON Production.TransactionHistory REBUILD WITH (ONLINE = ON);

 The online build works by maintaining two copies of the index simultaneously: the original 
(the source) and the new one (the target). The target is used only for writing any changes 
made while the rebuild is going on. All reading is done from the source, and  modifi cations 
are applied to the source as well. SQL Server row-level versioning is used, so anyone 
 retrieving information from the index can read consistent data. Figure 6-3 (taken from 
SQL Server Books Online) illustrates the source and target, and it shows three phases that the 
build process goes through. For each phase, the illustration describes what kind of access is 
 allowed, what is happening in the source and target tables, and what locks are applied.  

 The actual processes might differ slightly depending on whether the index is being built initially 
or being rebuilt and whether the index is clustered or nonclustered.  

 Here are the steps involved in rebuilding a nonclustered index: 

  1. A Shared lock (S-lock) is taken on the index, which prevents any data modifi cation 
 queries, and an Intent-Shared lock (IS-lock) is taken on the table.  

  2. The index is created with the same structures as the original and marked as write-only.  

  3. The Shared lock is released on the index, leaving only the Intent-Shared lock on the table. 

 4. A versioned scan (discussed in detail in Chapter 10) is started on the original index, 
which means modifi cations made during the scan are ignored. The scanned data is 
copied to the target.  

C06626249.indd   372 2/16/2009   2:42:11 PM



 Chapter 6 Indexes: Internals and Management 373

Concurrent
Users

Source (Tables) Target
(Clustered Index)

Locking

No concurrent
user activity
allowed

Metadata updated

New empty index
created

Write-only access

Metadata updated

Snapshot
defined

Data scan

Sort/Merge

Bulk load
Insert

Source dropped

IS-lock
S-lock

IS-lock

Sch-M-lockNo concurrent
user activity
allowed

SELECT
UPDATE
DELETE
INSERT

SELECT
UPDATE
DELETE
INSERT

SELECT
UPDATE
DELETE
INSERT

Clustered IndexUser Operation

SQL Server Operation

Key

Preparation
Phase

Build
Phase

Final
Phase

FIGURE 6-3 The structures and phases of online index building

   5. All subsequent modifi cations write to both the source and the target. Reads use only 
the source. 

  6. The scan of the source and copy to the target continues while normal operations are 
performed. SQL Server uses a proprietary method for reconciling obvious problems 
such as a record being deleted before the scan has inserted it into the new index. 

  7. The scan completes. 

  8. A Schema-Modifi cation lock (Sch-M-lock)—the strictest of all types of locks—is taken 
to make the table completely unavailable.  

  9.  The source index is dropped, metadata is updated, and the target index is made to be 
read-write. 

  10.  The Schema-Modifi cation lock is released.  

C06626249.indd   373 2/16/2009   2:42:12 PM



374 Microsoft SQL Server 2008 Internals

 Building a new nonclustered index involves exactly the same steps except there is no target 
index so the versioned scan is done on the base table, and write operations need to  maintain 
only the target index rather than both indexes. A clustered index rebuild works exactly like 
a nonclustered rebuild, so long as there is no schema change (a change of index keys or 
uniqueness property).  

 For a build of new clustered index, or a rebuild of a clustered index with a schema change, 
there are a few more differences. First, an intermediate mapping index is used to translate 
between the source and target physical structures. In addition, all existing nonclustered 
 indexes are rebuilt one at a time after a new base table has been built. For example, creating 
a clustered index on a heap with two nonclustered indexes involves the following steps: 

  1. Create a new write-only clustered index. 

  2. Create a new nonclustered index based on the new clustered index. 

  3. Create another new nonclustered index based on the new clustered index. 

  4. Drop the heap and the two original nonclustered indexes.  

 Before the operation is completed, SQL Server will be maintaining six structures at once. 
Online index building is not really considered a performance enhancement because an index 
can actually be built faster offl ine, and all these structures do not need to be maintained 
simultaneously. Online index building is an availability feature—you can rebuild indexes to 
remove all fragmentation or reestablish a fi llfactor even if your data must be fully available at 
all times. 

 Note There are two exceptions to being able to perform online index operations: 

❏  If the index contains a LOB column, online index operations are not available. This means 
that if the table contains a LOB column, the clustered index cannot be rebuilt online. 
Online operations are prevented only if a nonclustered index specifi cally includes a LOB 
column. 

❏  A single partition of a clustered or nonclustered index cannot be rebuilt online. 

Summary

 In this chapter, we have discussed index concepts, index internals, special index structures, data 
modifi cations, and index management. We covered many best practices along the way and, 
although performance tuning wasn’t our primary goal, the more you know about how indexes 
work internally, the more optimal structures you can create. In addition, by  understanding how 
SQL Server organizes indexes on disk, you can be more adept at  troubleshooting problems 
and managing changes within your database.  

C06626249.indd   374 2/16/2009   2:42:12 PM



  375

Chapter 7

Special Storage
 Kalen Delaney 

 In Chapter 5, “Tables,” and Chapter 6, “Indexes: Internals and Management,” we discussed 
the storage of “regular rows” for both data and index information. I told you in Chapter 5 
that regular rows are in a format called FixedVar. SQL Server provides ways of storing data 
in another format called Column Descriptor (CD). It also can store special values in either the 
FixedVar or CD format that don’t fi t on the regular 8-KB pages. In this chapter, I’ll describe 
data that exceeds the normal row size limitations and is stored as either row-overfl ow or Large 
Object (LOB) data. I’ll tell you about two additional methods for storing data on the actual 
data pages,  introduced in Microsoft SQL Server 2008, one that uses a new type of  complex 
column with a regular data row (sparse columns), and one that uses the new CD format 
( compressed data). I’ll also discuss fi lestream data, a new feature in SQL Server 2008, which 
 allows you to access data from operating system fi les as if it were part of your relational tables.  

 Finally, I will discuss the ability of SQL Server to separate data into partitions. Although this 
doesn’t change the format of data in the rows on or the pages, it does change the metadata 
that keeps track of what space is allocated to which objects.  

Large Object Storage

 SQL Server 2008 has two special formats for storing data that doesn’t fi t on the regular 8-KB data 
page. These formats allow you to have rows that exceed the maximum row size of 8,060 bytes. As 
discussed previously, this maximum row size value includes several bytes of overhead stored with 
the row on the physical pages, so the total size of all the table’s defi ned columns must be slightly 
less than this amount. In fact, the error message that you get if you try to create a table with more 
bytes than the allowable maximum is very specifi c. If you execute the following CREATE TABLE 
statement with column defi nitions that add up to exactly 8,060 bytes, you’ll get the error message 
shown here: 

USE test;

CREATE TABLE dbo.bigrows_fixed  

(   a char(3000),  

    b char(3000), 

    c char(2000), 

    d char(60) ) ;

 

Msg 1701, Level 16, State 1, Line 1 

Creating or altering table 'bigrows' failed because the minimum row size would be 8067, 

including 7 bytes of internal overhead. This exceeds the maximum allowable table row size of 

8060 bytes.

C07626249.indd   375 2/16/2009   1:34:39 PM



376 Microsoft SQL Server 2008 Internals

 In this message, you can see the number of overhead bytes (7) that SQL Server wants to store 
with the row itself. There is also an additional 2 bytes for the row-offset bytes at the end of 
the page, but those bytes are not included in this total here. 

Restricted-Length Large Object Data (Row-Overfl ow Data)

 One way to exceed this size limit of 8,060 bytes is to use variable-length columns because for 
variable-length data, SQL Server 2005 and SQL Server 2008 can store the columns in  special 
row-overfl ow pages, so long as all the fi xed-length columns fi t into the regular in-row size 
limit. So let’s take a look at a table with all variable-length columns. Note that although my 
example uses columns that are all varchar, columns of other data types can also be stored on 
row-overfl ow data pages. These other data types include varbinary, nvarchar, and  sqlvariant 
columns, as well as columns that use the CLR user-defi ned data types. The  following 
code creates a table with rows that have a maximum defi ned length that is much longer 
than 8,060 bytes: 

USE test;

CREATE TABLE dbo.bigrows  

  (a varchar(3000),  

   b varchar(3000), 

   c varchar(3000), 

   d varchar(3000) );

 In fact, if you run this CREATE TABLE statement in SQL Server 7.0, you get an error, and the 
table is not created at all. In SQL Server 2000, the table is created but you get a warning that 
inserts or updates might fail if the row size exceeds the maximum. 

 With SQL Server 2005 and SQL Server 2008, not only can the preceding dbo.bigrows table 
be created, but you can insert a row with column sizes that add up to more than 8,060 bytes 
with a simple INSERT, as shown here: 

INSERT INTO dbo.bigrows 

     SELECT REPLICATE('e', 2100), REPLICATE('f', 2100), 

      REPLICATE('g', 2100),  REPLICATE('h', 2100);

 To determine whether SQL Server is storing any data in row-overfl ow data pages for a 
 particular table, you can run the following allocation query from Chapter 5:  

SELECT object_name(object_id) AS name,  

    partition_id, partition_number AS pnum,  rows,  

    allocation_unit_id AS au_id, type_desc as page_type_desc, 

    total_pages AS pages 

FROM sys.partitions p  JOIN sys.allocation_units a 

   ON p.partition_id = a.container_id 

WHERE object_id=object_id('dbo.bigrows');

C07626249.indd   376 2/16/2009   1:34:39 PM



 Chapter 7 Special Storage 377

 This query should return output similar to that shown here: 

name    partition_id      pnum rows au_id             page_type_desc     pages 

----    ----------------- ---- ---- ----------------- ----------------   -----

bigrows 72057594039238656 1    1    72057594043957248 IN_ROW_DATA        2

bigrows 72057594039238656 1    1    72057594044022784 ROW_OVERFLOW_DATA  2

 You can see that there are two pages for the one row of regular in-row data and two pages 
for the one row of row-overfl ow data. Alternatively, you can use the command DBCC 
IND(test, bigrows, -1) and see the four pages individually. Looking at only four pages with 
DBCC IND is not too awkward, but once a table starts growing and contains hundreds or 
thousands of pages (or even more), the output of DBCC IND can be very diffi cult to work 
with, as DBCC IND returns one row per page. Chapter 6 provided you a script to build a table 
called sp_tablepages, which can be used to capture your DBCC IND output into a table, and 
then it is much easier to fi nd just the rows you’re interested in, to count the rows, to group 
them by page type, or to display just a subset of the columns. To populate this table with the 
information about the bigrows table, I can run the following INSERT statement: 

INSERT INTO sp_tablepages 

    EXEC ('DBCC IND (test, bigrows, -1)');

 Once the table is populated, you can select only the columns of interest, as follows: 

SELECT PageFID, PagePID, ObjectID, PartitionID, IAM_chain_type, PageType 

FROM sp_tablepages;

 You should see the four rows shown, one for each page, as follows: 

PageFID PagePID   ObjectID   PartitionID         IAM_chain_type     PageType 

------- --------  ---------  -----------------   ---------------    --------

1       2252      85575343   72057594039238656   Row-overflow data  3 

1       2251      85575343   72057594039238656   Row-overflow data  10

1       2254      85575343   72057594039238656   In-row data        1 

1       2253      85575343   72057594039238656   In-row data        10

 Two pages are for the row-overfl ow data, and two are for the in-row data. As you saw in 
Chapter 6, the PageType values have the following meanings: 

■  PageType = 1, Data page. 

■  PageType = 2, Index page. 

■  PageType = 3, LOB or row-overfl ow page, TEXT_MIXED. 

■  PageType = 4, LOB or row-overfl ow page, TEXT_DATA.  

■  PageType = 10, IAM page. 

 I’ll tell you more about the different types of LOB pages in the section entitled 
“ Unrestricted-Length Large Object Data,” later in this chapter. 

C07626249.indd   377 2/16/2009   1:34:39 PM



378 Microsoft SQL Server 2008 Internals

 We can see that there is one data page and one IAM page for the  in-row data, and one 
data page and one IAM page for the row-overfl ow data. With the  results from DBCC IND, 
we could then look at the page contents with DBCC PAGE. On the data page for the in-row 
data, we would see three of the four varchar column values, and the fourth column would be 
stored on the data page for the row-overfl ow data. If you run DBCC PAGE for the data page 
storing the in-row data (page 1:2254 in my example), you’ll notice that it isn’t  necessarily the 
fourth column in the column order that is stored off the row. I won’t show you the  entire 
contents of the rows because the single row fi lls almost the entire page. When I look at the 
in-row data page using DBCC PAGE, I see the column with e, the column with g, and the 
 column with h, and it is the column with f that has moved to the new row. In the place of that 
column, we can see the bytes shown here: 

65020000 00010000 00290000 00340800 00cc0800 00010000 0067

 I have included the last byte with e (ASCII code hexadecimal 65) and the fi rst byte with g 
(ASCII code hexadecimal 67), and in between, there are 24 other bytes. Bytes 16 through 23 
(the 17th through the 24th bytes) of those 24 bytes are treated as an 8-byte numeric value: 
cc08000001000000. We need to reverse the byte order and break it into a 2-byte hex value 
for the slot number, a 2-byte hex value for the fi le number, and a 4-byte hex value for the 
page number. So the fi le number is 0x0000 for slot 0 because this overfl owing column is the 
fi rst (and only) data on the row-overfl ow page. We have 0x0001, or 1, for the fi le number, 
and 0x000008cc, or 2252, for the page number. These are the same fi le and page numbers 
that we saw using DBCC IND. 

 The fi rst 16 bytes in the row have the meanings indicated in Table 7-1.  

 TABLE 7-1 The First 16 Bytes of a Row-Overfl ow Pointer 

 Bytes Hex Value Decimal Value Meaning

 0 0x02 2 Type of special fi eld: 
1 = LOB
2 = overfl ow

 1–2 0x0000 0 Level in the B-tree (always 0 for overfl ow)

 3 0x00 0 Unused

 4–7 0x00000001 1 Sequence: a value used by optimistic concurrency 
control for cursors that increases every time a LOB 
or overfl ow column is updated

 8–11 0x00000029 2686976 Timestamp: a random value used by DBCC 
CHECKTABLE that remains unchanged during the 
lifetime of each LOB or overfl ow column

 12–15 0x00000834 2100 Length

 SQL Server stores variable-length columns on row-overfl ow pages only under certain conditions. 
The determining factor is the length of the row itself. It doesn’t matter how full the regular page is 
into which SQL Server is trying to insert the new row. SQL Server constructs the row normally, and 
stores some of its columns on overfl ow pages only if the row itself needs more than 8,060 bytes. 

Bytes Hex Value Decimal Value Meaning

C07626249.indd   378 2/16/2009   1:34:39 PM



 Chapter 7 Special Storage 379

Each column in the table is either completely on the row or completely off the row. This means 
that a 4,000-byte variable-length column cannot have half its bytes on the regular data page and 
half on a row-overfl ow page. If a row is less than 8,060 bytes and there is no room on the page 
where SQL Server is trying to insert it, normal page splitting algorithms (described in Chapter 6) 
are applied.  

 One row can span many row-overfl ow pages if it contains many large variable-length 
 columns. For example, you can create the table dbo.hugerows and insert a single row into it 
as follows: 

CREATE TABLE dbo.hugerows  

  (a varchar(3000),  

   b varchar(8000), 

   c varchar(8000), 

   d varchar(8000)); 

 

INSERT INTO dbo.hugerows 

     SELECT REPLICATE('a', 3000), REPLICATE('b', 8000), 

         REPLICATE('c', 8000),  REPLICATE('d', 8000);

 Now if I run the allocation query shown previously, substituting hugerows for bigrows, I get 
the results shown here: 

name     partition_id       pnum rows au_id              page_type_desc     pages 

-------- -----------------  ---- ---- -----------------  -----------------  ----- 

hugerows 72057594039304192  1    1    72057594044088320  IN_ROW_DATA        2 

hugerows 72057594039304192  1    1    72057594044153856  ROW_OVERFLOW_DATA  4

 There are four pages for the row-overfl ow information, one for the row-overfl ow IAM page, 
and three for the columns that didn’t fi t in the regular row. The number of large  variable-length 
 columns that a table can have is not unlimited, although it is quite large. There is a limit of 
1,024 columns in any table. (The 1,024-column limit can be exceeded when you are using 
sparse  columns, which is discussed later in this chapter.) But  another limit is reached before that. 
When a column has to be moved off a regular page onto a row-overfl ow page, SQL Server 
keeps a pointer to the row-overfl ow information as part of the original row, which we saw in the 
DBCC output before is 24 bytes, and the row still needs 2 bytes in the  column-offset array for 
each variable-length column, whether or not the variable-length column is stored in the row. 
So it turns out that 308 is the maximum number of overfl owing columns we can have, and such 
a row needs 8,008 bytes just for the 26 overhead bytes for each overfl owing column in the row.  

 Note Just because SQL Server can store lots of large columns on row-overfl ow pages doesn’t 
mean it’s always a good idea to do so. This capability does allow you more fl exibility in the 
 organization of your tables, but you might pay a heavy performance price if many additional 
pages need to be accessed for every row of data. Row-overfl ow pages are intended to be a 
solution in the situation where most rows fi t completely on your data pages and you have 
 row-overfl ow data only occasionally. Using row-overfl ow pages, SQL Server can handle the extra 
data effectively, without requiring a redesign of your table.  

C07626249.indd   379 2/16/2009   1:34:39 PM



380 Microsoft SQL Server 2008 Internals

 In some cases, if a large variable-length column shrinks, it can be moved back to the regular 
row. However, for effi ciency reasons, if the decrease is just a few bytes, SQL Server does not 
bother checking. Only when a column stored in a row-overfl ow page is reduced by more than 
1,000 bytes does SQL Server even consider checking to see whether the column can now fi t on 
the regular data page. You can observe this behavior if you previously created the dbo.bigrows 
table for the previous example and inserted only the one row with 2,100 characters in each 
column. 

 The following update reduces the size of the fi rst column by 500 bytes, reducing the row size 
to 7,900 bytes, which should all fi t on one data page:  

UPDATE bigrows 

SET a = replicate('a', 1600);

 However, if you run the allocation query again, you’ll still see two row-overfl ow pages: one 
for the row-overfl ow data and one for the IAM page. Now reduce the size of the fi rst column 
by more than 1,000 bytes and run the allocation query once more:  

UPDATE bigrows 

SET a = 'aaaaa';

 You should see only three pages for the table now, because there is no longer a row-overfl ow 
data page. The IAM page for the row-overfl ow data pages has not been removed, but you 
no longer have a data page for row-overfl ow data.  

 Keep in mind that row-overfl ow data storage applies only to columns of variable-length data, 
which are defi ned as no longer than the normal variable-length maximum of 8,000 bytes per 
column. In addition, to store a variable-length column on a row-overfl ow page, you must 
meet the following conditions: 

■  All the fi xed-length columns, including overhead bytes, must add up to no more than 
8,060 bytes. (The pointer to each row-overfl ow column adds 24 bytes of overhead to 
the row.)  

■  The actual length of the variable-length column must be more than 24 bytes. 

■  The column must not be part of the clustered index key. 

 If you have single columns that might need to store more than 8,000 bytes, you should use 
either LOB (text, image, or ntext) columns or use the MAX data types.  

Unrestricted-Length Large Object Data

 If a table contains the older LOB data types (text, ntext, or image types), by default the  actual 
data is not stored on the regular data pages. Like row-overfl ow data, LOB data is stored 
in its own set of pages, and the allocation query shows you pages for LOB data as well as 
pages for regular in-row data and row-overfl ow data. For LOB columns, SQL Server stores a 
 16-byte pointer in the data row that indicates where the actual data can be found. Although 
the  default behavior is to store all the LOB data off the data row, SQL Server allows you to 

C07626249.indd   380 2/16/2009   1:34:39 PM



 Chapter 7 Special Storage 381

change the storage mechanism by setting a table option to allow LOB data to be stored in 
the data row itself if it is small enough. Note that there is no database or server setting to 
control storing small LOB columns on the data pages; it is managed as a table option. 

 By default no LOB data is stored in the data row. Instead, the data row contains only a 16-byte 
pointer to a page (or the fi rst of a set of pages) where the data can be found. These pages 
are 8 KB in size, like any other page in SQL Server, and individual text, ntext, and image pages 
aren’t limited to storing data for only one occurrence of a text, ntext, or image column. A text, 
ntext, or image page can hold data from multiple columns and from multiple rows; the page 
can even have a mix of text, ntext, and image data. However, one text or image page can hold 
only text or image data from a single table. (Even more specifi cally, one text or image page 
can hold only text or image data from a single partition of a table, which will become clear 
when I discuss partitioning metadata at the end of this chapter.) 

 The collection of 8-KB pages that make up a LOB column aren’t necessarily located next to 
each other. The pages are logically organized in a B-tree structure, so operations starting 
in the middle of the LOB string are very effi cient. The structure of the B-tree varies slightly 
 depending on whether the amount of data is less than or more than 32 KB. (See Figure 7-1 
for the general structure.) B-trees were discussed in detail when describing indexes in 
Chapter 6.  

The row itself contains a
pointer to a root structure.

The root structure
points to blocks of data.

FIGURE 7-1 A text column pointing to a B-tree that contains the blocks of data

C07626249.indd   381 2/16/2009   1:34:39 PM



382 Microsoft SQL Server 2008 Internals

 If the amount of LOB data is less than 32 KB, the text pointer in the data row points to an  84-byte 
text root structure. This forms the root node of the B-tree structure. The root node points to the 
blocks of text, ntext, or image data. Although the data for LOB columns is arranged logically in 
a B-tree, both the root node and the individual blocks of data are spread physically throughout 
LOB pages for the table. They’re placed wherever space is available. The size of each block of 
data is determined by the size written by an application. Small blocks of data are combined to fi ll 
a page. If the amount of data is less than 64 bytes, it’s all stored in the root structure. 

 If the amount of data for one occurrence of a LOB column exceeds 32 KB, SQL Server starts 
building intermediate nodes between the data blocks and the root node. The root structure 
and the data blocks are interleaved throughout the text and image pages. The intermediate 
nodes, however, are stored in pages that aren’t shared between occurrences of text or image 
columns. Each page storing intermediate nodes contains only intermediate nodes for one 
text or image column in one data row. 

 SQL Server can store the LOB root and the actual LOB data on two different types of pages. 
One of these, referred to as TEXT_MIXED, allows LOB data from multiple rows to share the 
same pages. However, once your text data gets larger than about 40 KB, SQL Server starts 
devoting whole pages to a single LOB value. These pages are referred to as TEXT_DATA pages.  

 You can see this behavior by creating a table with a text column, inserting a value of less than 
40 KB and then a value of greater than 40 KB, and examining the output of DBCC IND. The 
following script uses the sp_tablepages table created previously: 

IF EXISTS (SELECT * FROM sys.tables  

   WHERE name = 'textdata')

    DROP TABLE textdata;

GO

CREATE TABLE textdata

 (bigcol text);

GO

INSERT INTO textdata

   SELECT REPLICATE(convert(varchar(MAX), 'a'), 38000);

GO

TRUNCATE TABLE sp_tablepages;

GO

INSERT INTO sp_tablepages

  EXEC('DBCC IND(test, textdata, -1)');

GO

SELECT PageFID, PagePID, ObjectID, IAM_chain_type, PageType

FROM sp_tablepages;

GO

INSERT INTO textdata

   SELECT REPLICATE(convert(varchar(MAX), 'a'), 41000);

GO

TRUNCATE TABLE sp_tablepages;

GO

INSERT INTO sp_tablepages

  EXEC('DBCC IND(test, textdata, -1)');

GO

SELECT PageFID, PagePID, ObjectID, IAM_chain_type, PageType

FROM sp_tablepages;

C07626249.indd   382 2/16/2009   1:34:39 PM



 Chapter 7 Special Storage 383

 The fi rst time that you select from sp_tablepages, you should have PageType values of 1, 3, 
and 10. The second time, once we have inserted data greater than 40 KB in size, we should 
also see PageType values of 4. PageType 3 indicates a TEXT_MIXED page, and PageType 4 
 indicates a TEXT_DATA page.  

LOB Data Stored in the Data Row

 If you store all your LOB data type values outside your regular data pages, SQL Server needs to 
perform additional page reads every time you access that data, just as it does for row-overfl ow 
pages. In some cases, you might notice a performance improvement by allowing some of the 
LOB data to be stored in the data row. You can enable a table option called text in row for a 
particular table by setting the option to ‘ON’ (including the quote marks) or by specifying a 
maximum number of bytes to be stored in the data row. The following command enables up 
to 500 bytes of LOB data to be stored with the regular row data in a table called employee: 

EXEC sp_tableoption employee, 'text in row', 500;

 Note that the value is in bytes, not characters. For ntext data, each character needs 2 bytes so 
that any ntext column is stored in the data row if it is less than or equal to 250 characters. Once 
you enable the text in row option, you never get just the 16-byte pointer for the LOB data in 
the row, as is the case when the option is not ‘ON’. If the data in the LOB fi eld is more than 
the specifi ed maximum, the row holds the root structure containing pointers to the  separate 
chunks of LOB data. The minimum size of a root structure is 24 bytes, and the possible range of 
values that text in row can be set to is 24 to 7,000 bytes. (If you specify the option ‘ON’ instead 
of a specifi c number, SQL Server assumes the default value of 256 bytes.) 

 To disable the text in row option, you can set the value to either ‘OFF’ or 0. To determine whether 
a table has the text in row property enabled, you can inspect the sys.tables catalog view as follows: 

SELECT name, text_in_row_limit

FROM sys.tables

WHERE name = 'employee';

 This text_in_row_limit value indicates the maximum number of bytes allowed for storing LOB 
data in a data row. If a 0 is returned, the text in row option is disabled. 

 Let’s create a table very similar to the one we created to look at row structures, but we’ll 
change the varchar(250) column to the text data type. We’ll use almost the same INSERT 
statement to insert one row into the table: 

CREATE TABLE HasText  

( 

Col1 char(3)       NOT NULL, 

Col2 varchar(5)    NOT NULL, 

Col3 text          NOT NULL, 

Col4 varchar(20)   NOT NULL 

); 

 

INSERT HasText VALUES  

    ('AAA', 'BBB', REPLICATE('X', 250), 'CCC');

C07626249.indd   383 2/16/2009   1:34:39 PM



384 Microsoft SQL Server 2008 Internals

 Now let’s fi nd the basic information for this table using the allocation query and also look at 
the DBCC IND values for this table: 

SELECT convert(char(7), object_name(object_id))  AS name,

     partition_id, partition_number AS pnum,  rows,

     allocation_unit_id AS au_id, convert(char(17), type_desc) as page_type_desc,

    total_pages AS pages

FROM sys.partitions p  JOIN sys.allocation_units a

   ON p.partition_id = a.container_id

WHERE object_id=object_id('dbo.HasText');

DBCC IND (test, HasText, -1);

name    partition_id      pnum rows  au_id             page_type_desc  pages

------- ----------------- ---- ----- ----------------- --------------- -----

HasText 72057594039435264 1    1     72057594044350464 IN_ROW_DATA     2

HasText 72057594039435264 1    1     72057594044416000 LOB_DATA        2

PageFID  PagePID  ObjectID   PartitionID         IAM_chain_type   PageType

-------  -------  --------   -----------------   --------------   -------- 

1        2197     133575514  72057594039435264   LOB data         3

1        2198     133575514  72057594039435264   LOB data         10

1        2199     133575514  72057594039435264   In-row data      1

1        2200     133575514  72057594039435264   In-row data      10

 You can see two LOB pages (the LOB data page and the LOB IAM page) and two pages 
for the in-row data (again, the data page and the IAM page). The data page for the in-row 
data is 2199, and the LOB data is on page 2197. Figure 7-2 shows the output from running 
DBCC PAGE on page 2199. The row structure is very similar to the row structure shown in 
Chapter 5, in Figure 5-10, except for the text fi eld itself. Bytes 21 to 36 are the 16-byte text 
pointer, and you can see the value 9508 starting at offset 29. When we reverse the bytes, it 
becomes 0x0895, or 2197 decimal, which is the page containing the text data, as we saw in 
the DBCC IND output. 

DATA:

Slot�0,�Offset�0x60,�Length�40,�DumpStyle�BYTE

Record Type�=�PRIMARY_RECORD������Record�Attributes�=��NULL_BITMAP�VARIABLE_COLUMNS
Record�Size�=�40
Memory�Dump�@0x625BC060

00000000:���30000700�41414104�00600300�15002580�†0...AAA..`....%.
00000010:���28004242�420000e1�07000000�00950800�†(.BBB..á.....?..
00000020:���00010001�00434343�†††††††††††††††††††.....CCC

FIGURE 7-2 A row containing a text pointer

 Now let’s enable text data in the row, for up to 500 bytes: 

EXEC sp_tableoption HasText, 'text in row', 500;

C07626249.indd   384 2/16/2009   1:34:39 PM



 Chapter 7 Special Storage 385

 Enabling this option does not force the text data to be moved into the row. We have to 
 update the text value to actually force the data movement: 

UPDATE HasText  

SET col3 =  REPLICATE('Z', 250);

 If you run DBCC PAGE on the original data page, you see that the text column of 250 z’s 
is now in the data row and that the row is practically identical in structure to the row 
 containing varchar data that we saw in Figure 5-10. 

 Although enabling text in row does not move the data immediately, disabling the option 
does. If you turn off text in row, the LOB data moves immediately back onto its own pages, so 
you must make sure you don’t turn this off for a large table during heavy operations.  

 A fi nal issue when working with LOB data and the text in row option is dealing with the situation 
where text in row is enabled but the LOB is longer than the maximum confi gured length for 
some rows. If you change the maximum length for text in row to 50 for the HasText table we’ve 
been working with, this also forces the LOB data for all rows with more than 50 bytes of LOB 
data to be moved off the page immediately, just as when you disable the option completely: 

EXEC sp_tableoption HasText, 'text in row', 50;

 However, setting the limit to a smaller value is different than disabling the option in two 
ways. First, some of the rows might still have LOB data that is under the limit, and for those 
rows, the LOB data is stored completely in the data row. Second, if the LOB data doesn’t fi t, 
the information stored in the data row itself is not simply the 16-byte pointer, as it would 
be if text in row were turned off. Instead, for LOB data that doesn’t fi t in the defi ned size, 
the row contains a root structure for a B-tree that points to chunks of the LOB data. So long 
as the text in row option is not ‘OFF’ (or 0), SQL Server never stores the simple 16-byte LOB 
pointer in the row. It stores either the LOB data itself, if it fi ts, or the root structure for the 
LOB data B-tree. 

 A root structure is at least 24 bytes long (which is why 24 is the minimum size for the text 
in row limit) and the meaning of the bytes is similar to the meaning of the 24 bytes in the 
row-overfl ow pointer. The main difference is that no length is stored in bytes 12–15. Instead, 
bytes 12–23 constitute a link to a chunk of LOB data on a separate page. If multiple LOB 
chucks are accessed via the root, multiple sets of 12 bytes can be here, each pointing to LOB 
data on a separate page.  

 As indicated previously, when you fi rst enable text in row, no data movement occurs until the 
text data is actually updated. The same is true if the limit is increased—that is, even if the new 
limit is large enough to accommodate the LOB data that was stored outside the row, the LOB 
data is not moved onto the row automatically. You must update the actual LOB data fi rst. 

 Another point to keep in mind is that even if the amount of LOB data is less than the limit, 
the data is not necessarily stored in the row. You’re still limited to a maximum row size of 

C07626249.indd   385 2/16/2009   1:34:39 PM



386 Microsoft SQL Server 2008 Internals

8,060 bytes for a single row on a data page, so the amount of LOB data that can be stored 
in the actual data row might be reduced if the amount of non-LOB data is large. In  addition, 
if a variable-length column needs to grow, it might push LOB data off the page so as not 
to  exceed the 8,060-byte limit. Growth of variable-length columns always has  priority 
over  storing LOB data in the row. If no variable-length char fi elds need to grow during 
an  update operation, SQL Server checks for growth of in-row LOB data, in column offset 
 order. If one LOB needs to grow, others might be pushed off the row. 

 Finally, you should be aware that SQL Server logs all movement of LOB data, which means 
that reducing the limit of or turning OFF the text in row option can be a very time-consuming 
operation for a large table. 

 Although large data columns using the LOB data types can be stored and managed very 
effi ciently, using them in your tables can be problematic. Data stored as text, ntext, or image 
cannot always be manipulated using the normal data manipulation commands, and in many 
cases, you need to resort to using the operations readtext, writetext, and updatetext, which 
require dealing with byte offsets and data-length values. Prior to SQL Server 2005, you had 
to decide whether to limit your columns to a maximum of 8,000 bytes or deal with your large 
data columns using different operators than you used for your shorter columns. SQL Server 
2005 and SQL Server 2008 provide a solution that gives you the best of both worlds, as we’ll 
see in the next section. 

Storage of MAX-Length Data

 SQL Server 2005 and SQL Server 2008 give us the option of defi ning a variable-length fi eld 
using the MAX specifi er. Although this functionality is frequently described by referring only 
to varchar(MAX), the MAX specifi er can also be used with nvarchar and varbinary. You can 
indicate the MAX specifi er instead of an actual size when you defi ne a column, variable, or 
 parameter using one of these types. By using the MAX specifi er, you leave it up to SQL Server 
to determine whether to store the value as a regular varchar, nvarchar, or varbinary value or as 
a LOB. In general, if the actual length is 8,000 bytes or less, the value is treated as if it were one 
of the regular variable-length data types, including possibly overfl owing onto row-overfl ow 
pages. However, if the varchar(MAX) column does need to spill off the page, the extra pages 
required are considered LOB pages and show the IAM_chain_type LOB when examined using 
DBCC IND. If the actual length is greater than 8,000 bytes, SQL Server stores and treats the 
value exactly as if it were text, ntext, or image. Because variable-length columns with the MAX 
specifi er are treated either as regular variable-length columns or as LOB columns, no special 
discussion of their storage is needed.  

 The size of values specifi ed with MAX can reach the maximum size supported by LOB data, 
which is currently 2 GB. By using the MAX specifi er, though, you are indicating that the 
maximum size should be the maximum the system supports. If you upgrade a table with a 
varchar(MAX) column to a later version of SQL Server in the future, the MAX length will be 
whatever the new maximum is in the new version.  

C07626249.indd   386 2/16/2009   1:34:39 PM



 Chapter 7 Special Storage 387

 Tip Because the MAX data types can store LOB data as well as regular row data, it is 
 recommended that you use these data types in future development in place of the text, ntext, 
or image types, which Microsoft has indicated will be removed in a future version.  

 Note Although the acronym LOB can be expanded to mean “Large Object,” I will be using these 
two terms to mean two different things. I will use LOB only when I want to refer to the data  using 
the special storage format shown in Figure 7-1. I will use the term large object when  referring to any 
of the methods for storing data that might be too large for a regular data page. This includes 
 row-overfl ow columns, the actual LOB data types, the MAX data types, and fi lestream data.  

Appending Data into a LOB Column

 In the storage engine, each LOB column is broken into fragments of a maximum size of 
8,040 bytes each. When you append data to a large object, SQL Server fi nds the append 
point and looks at the current fragment where the new data will be added. It calculates 
the size of the new fragment (including the newly appended data). If the size is more than 
8,040 bytes, SQL Server allocates new large object pages until a fragment is left that is less 
than 8,040 bytes, and then it fi nds a page that has enough space for the remaining bytes.  

 When SQL Server allocates pages for LOB data, it has two allocation strategies: 

  1. For data that is less than 64 KB in size, it randomly allocates a page. This page comes 
from an extent that is part of the large object IAM, but the pages are not guaranteed 
to be continuous. 

  2. For data that is more than 64 KB in size, it uses an append-only page allocator that 
 allocates one extent at a time and writes the pages continuously in the extent. 

 So from a performance standpoint, it is benefi cial to write fragments of 64 KB at a time. 
It might be benefi cial to allocate 1 MB in advance if you know that the size will be 1 MB. 
However, you need to take into account the space required for the transaction log as well. If 
you a create a 1-MB fragment fi rst with any random contents, SQL Server logs the 1 MB, and 
then all the changes are logged as well. When you perform large object data  updates, no 
new pages need to be allocated, but the changes still need to be logged.  

 So long as the large object values are small, they can be in the data page. In this case, 
some preallocation might be a good idea so that the large object data doesn’t become too 
 fragmented. A general recommendation might be that if the amount of data to be inserted 
into a large object column in a single operation is relatively small, that you insert a large 
object value of the fi nal expected value, and then replace substrings of that initial value as 
needed. For larger sizes, try to append or insert in chunks of 8 * 8,040 bytes. This allocates a 
whole extent each time, and 8,040 bytes are stored on each page.  

C07626249.indd   387 2/16/2009   1:34:39 PM



388 Microsoft SQL Server 2008 Internals

 If you do fi nd that your large object data is becoming fragmented, there is an option to ALTER 
INDEX REORGANIZE to defragment your large object data. In fact, this option (WITH LOB_
COMPACTION) is on by default, so you just need to make sure that you don’t set it to ‘OFF’. 

Filestream Data

 Although the fl exible methods that SQL Server uses to store large object data in the database give 
you many advantages over data stored in the fi le system, they also have many disadvantages. 
Some of the benefi ts of storing large objects in your database include the following: 

■  Transactional consistency of your large object data can be guaranteed. 

■  Your backup and restore operations include the large object data, allowing you 
 integrated, point-in-time recovery of your large objects.  

■  All data can be stored using a single storage and query environment. 

 Some of the disadvantages of storing large objects in your database include the following: 

■  Large objects can take a very large number of buffers in cache. 

■  Updating large objects can cause extensive database fragmentation. 

■  Database fi les can become extremely large. 

 SQL Server 2008 allows you to manage fi le system objects as if they were part of your database to 
provide the benefi ts of having large objects in the database while minimizing the disadvantages. 
The data stored in the fi le system is referred to as fi lestream data. As you start evaluating whether 
fi lestream data is benefi cial for your applications, you must consider both the benefi ts and the 
drawbacks. Some of the benefi ts of fi lestream data include the following: 

■  The large object data is stored in the fi le system but rooted in the database as a 
 48-byte fi le pointer value in the column containing the fi lestream data. 

■  The large object data is kept transactionally consistent with structured data.  

■  The large object data is accessible through both Transact-SQL (T-SQL) and the NTFS  streaming 
APIs, which can provide great performance benefi ts. 

■  The large object size is limited only by the NTFS volume size, not the old 2-GB limit for 
LOB data. 

 Some of the drawbacks of using fi lestream data include the following: 

■  Database mirroring cannot be used on databases containing fi lestream data.  

■  Database snapshots cannot include the fi lestream fi legroups, so the fi lestream data 
is unavailable. A SELECT statement in a database snapshot that requests a fi lestream 
 column generates an error.  

■  Filestream data can't be encrypted natively by SQL Server. 

C07626249.indd   388 2/16/2009   1:34:39 PM



 Chapter 7 Special Storage 389

Enabling Filestream Data for SQL Server

 The capability to access fi lestream data must be enabled both outside and inside your 
SQL Server 2008 instance, which I mentioned in Chapter 1, “SQL Server 2008 Architecture 
and Confi guration,” when discussing confi guration. Through the SQL Server Confi guration 
Manager, you must enable T-SQL access to fi lestream data, and if that has been enabled, 
you can also enable fi le I/O streaming access. If fi le I/O streaming access is allowed, you can 
allow remote clients to have access to the streaming data if you want. Once the SQL Server 
Confi guration Manager is opened, make sure you have selected SQL Server Services in the 
left pane. In the right pane, right-click the SQL instance that you want to confi gure and select 
Properties from the drop-down menu. The Properties dialog box has four tabs, including 
one labeled FILESTREAM. You can see the details of the FILESTREAM tab of the SQL Server 
Properties dialog box in Figure 7-3. 

FIGURE 7-3 Confi guring a SQL Server instance to allow FILESTREAM access

 After the server instance has been confi gured, you need to use sp_confi gure to set your SQL 
Server instance to the level of fi lestream access that you require. Three values are possible. 
A value of 0 means that no fi lestream access is allowed, a value of 1 means that you can use 
T-SQL to access fi lestream data, and a value of 2 means that you can use both T-SQL and 
the Win32 API for fi lestream access. As with all confi guration options, don’t forget to run the 
RECONFIGURE command after changing a setting, as shown here: 

EXEC sp_configure 'filestream access level', 1;

RECONFIGURE;

C07626249.indd   389 2/16/2009   1:34:39 PM



390 Microsoft SQL Server 2008 Internals

Creating a Filestream-Enabled Database

 To store fi lestream data, a database must have at least one fi legroup that has been created 
to allow fi lestream data. When creating a database, a fi legroup that allows fi lestream data is 
specifi ed differently than a fi legroup containing row data in several different ways: 

■  There can be only one fi le in the fi lestream fi legroup. 

■  The path specifi ed for the fi lestream fi legroup must exist only up to the last folder 
name. The last folder name must not exist but will be created when SQL Server creates 
the database.  

■  The size, maxsize, and fi legrowth properties do not apply to fi lestream fi legroups. 

■  If there is no fi lestream-containing fi legroup specifi ed as DEFAULT, the fi rst fi lestream-
containing fi legroup listed is the default. (Therefore, there is one default fi legroup for 
row data and one default fi legroup for fi lestream data.) 

 Look at the following code, which creates a database with two fi lestream-containing fi legroups. 
The path C:\Data2 must exist, but it must not contain either the fi lestream1 or the fi lestream2 
folders:  

CREATE DATABASE MyFilestreamDB 

ON

PRIMARY ( NAME = Rowdata1,

    FILENAME = 'c:\Data2\Rowdata1.mdf'),

FILEGROUP FileStreamGroup1 CONTAINS FILESTREAM DEFAULT( NAME = FSData1,

    FILENAME = 'c:\Data2\filestream1'),

FILEGROUP FileStreamGroup2 CONTAINS FILESTREAM ( NAME = FSData2,

    FILENAME = 'c:\Data2\filestream2')

LOG ON  ( NAME = FSDBLOG,

    FILENAME = 'c:\Data2\FSDB_log.ldf');

 When the above MyFilestreamDB database is created, SQL Server creates the two folders, 
fi lestream1 and fi lestream2, in the C:\Data2 directory. These folders are referred to as the 
fi lestream containers. Initially, each container contains an empty folder called $FSLOG and 
a header fi le called fi lestream.hdr. As tables are created to use fi lestream space in a container, 
a folder for each partition or each table containing fi lestream data is created in the container.  

 An existing database can be altered to have a fi lestream fi legroup added, and then a subsequent 
ALTER DATABASE command can add a fi le to the fi lestream fi legroup. Note that you cannot add 
fi lestream fi legroups to the master, model, and tempdb databases.  

Creating a Table to Hold Filestream Data

 To specify that a column is to contain fi lestream data, it must be defi ned as type 
varbinary(MAX) with a FILESTREAM property. The database containing the table must have 
at least one fi legroup defi ned for FILESTREAM. Your table creation statement can specify 
which fi legroup its fi lestream data is stored in, and if none is specifi ed, the default fi lestream 

C07626249.indd   390 2/16/2009   1:34:39 PM



 Chapter 7 Special Storage 391

fi legroup is used. Finally, any table that has fi lestream columns must have a column of the 
uniqueidentifi er data type with the ROWGUIDCOL attribute specifi ed. This column must not 
allow NULL values and must be guaranteed to be unique by specifying either the UNIQUE 
or PRIMARY KEY single-column constraint. The ROWGUIDCOL column acts as a key that the 
FILESTREAM agent can use to locate the actual row in the table to check permissions, obtain 
the physical path to the fi le, and possibly lock the row if required. 

 Now let’s look at the fi les that are created within the container. When created in the 
MyFilestreamDB database, the table here adds several folders to the container for the 
FileStreamGroup1 container:  

CREATE TABLE MyFilestreamDB.dbo.Records

(

 [Id] [uniqueidentifier] ROWGUIDCOL NOT NULL UNIQUE, 

 [SerialNumber] INTEGER UNIQUE,

 [Chart_Primary] VARBINARY(MAX) FILESTREAM NULL,

 [Chart_Secondary] VARBINARY(MAX) FILESTREAM NULL)

FILESTREAM_ON FileStreamGroup1;

 Because this table is created on FileStreamGroup1, the fi lestream1 container is used. 
One  subfolder is created within fi lestream1 for each table or partition created in the 
FileStreamGroup1 fi legroup, and those fi le names will be GUIDs. Each of those fi les has a 
 subfolder for each column within the table or partition, which holds fi lestream data, and 
again, the names of those folders will be GUIDs. Figure 7-4 shows the structure of my fi les 
on disk right after the MyFilestreamDB.dbo.Records table is created. The fi lestream2 folder 
only has the $FSLOG subfolder, and no subfolders for any tables. The fi lestream1 folder has a 
GUID-named subfolder for the dbo.Records table, and within that, a GUID-named subfolder 
for each of the two FILESTREAM columns in the table. There are still no fi les except for the 
original fi lestream.hdr fi le.  

FIGURE 7-4 The operating system fi le structure after creating a table with two fi lestream data columns

C07626249.indd   391 2/16/2009   1:34:39 PM



392 Microsoft SQL Server 2008 Internals

 Files are not added until we actually insert fi lestream data into the table.  

 Warning When the table is dropped, the folders, subfolders, and the fi les they contain are not 
removed from the fi le system immediately. They are removed by a Garbage Collection thread, 
which fi res at regular intervals and also when the SQL Server service stops and restarts. You 
can delete the fi les manually, but be careful. You can delete folders for a column or table that 
still  exists in the database even while the database is online. Subsequent access to that table 
 generates an error message containing the text “Path not found.” You might think that SQL 
Server should prevent any fi le that is part of the database from being deleted; but to absolutely 
prevent the fi le deletions, SQL Server has to hold open fi le handles for every single fi le in all the 
fi lestream containers for the entire database, and for large tables, that would not be practical.  

Manipulating Filestream Data

 Filestream data can be manipulated either using T-SQL or the Win32 API. When using T-SQL, 
the data can be processed exactly as if it were varbinary(MAX). Using the Win32 API requires 
that you fi rst obtain the fi le path and current transaction context. You can then open a 
WIN32 handle and use that handle to read and write the large object data. All the examples 
in this section use T-SQL. You can get the details of Win32 manipulation from SQL Server 
Books Online.  

 As you add data to the table, fi les are added to the subfolders for each column. INSERT 
 operations that fail with a run-time error (for example, due to a uniqueness violation) 
still  create a fi le for each of the fi lestream columns in the row. Although the row is never 
 accessible, it still uses fi le system space.  

Inserting Filestream Data

 Data can be inserted using normal T-SQL INSERT statements. Filestream data must be inserted 
 using the varbinary(MAX) data type, but any string data can be converted in the INSERT  statement. 
The following statement adds one row to the dbo.Records table created previously, which has two 
fi lestream columns. The fi rst fi lestream column gets a 90,000-byte character string converted to 
varbinary(MAX) and the second fi lestream column gets an empty binary string. Note that we fi rst 
convert the nine-character string Base Data to varchar(MAX) because a normal string value  cannot 
be more than 8,000 bytes. The REPLICATE function returns the same data type as its fi rst parameter, 
so I want that fi rst parameter to be unambiguously a large object. Replicating the 9-byte string 
10,000 times results in a 90,000-byte string, which is then converted to varbinary(MAX): 

USE MyFileStreamDB

INSERT INTO dbo.Records

    SELECT newid (), 24, 

      CAST (REPLICATE (CONVERT(varchar(MAX), 'Base Data'), 10000) 

   AS varbinary(max)),

      0x;

C07626249.indd   392 2/16/2009   1:34:39 PM



 Chapter 7 Special Storage 393

 Note that a value of 0x is an empty binary string, which is not the same as a NULL. Every row 
that has a non-NULL value in a FILESTREAM column has a fi le, even for zero-length values.   

 Figure 7-5 shows you what your fi le system would look like after running the previous code 
to create a database with two fi lestream containers and create a table with two FILESTREAM 
columns, and then inserting one row into that table. In the left pane, you can see the two 
fi lestream containers (fi lestream1 and fi lestream2).  

FIGURE 7-5 The operating system fi le structure after inserting fi lestream data

 The fi lestream1 container has a folder with a GUID name for the dbo.Records table that I created, 
and that folder container has two folders with GUID names, for the two columns in that table. 
The right pane shows you the fi le containing the actual data inserted into one of the columns. 

Updating Filestream Data

 When an UPDATE statement is used to modify a fi lestream column, the fi le containing the data is 
modifi ed and the fi le increases or decreases in size as appropriate. Specifi cally, setting the column 
to an empty, zero-length value causes the fi le to have a size of zero. Also, in this fi rst release, the 
T-SQL “chunked update,” specifi ed with the .WRITE clause, is not supported. It is recommended 
that you use fi le system streaming access for manipulation (both inserts and updates) of your 
fi lestream data. Updates to FILESTREAM data are always performed as a DELETE followed by an 
INSERT, so you see a new row in the directory for the column(s) updated.  

 When a fi lestream cell is set to NULL, the fi lestream fi le associated with that cell is deleted 
when the Garbage Collection thread runs. (I’ll tell you about Garbage Collection later in this 
chapter.) 

C07626249.indd   393 2/16/2009   1:34:39 PM



394 Microsoft SQL Server 2008 Internals

Deleting Filestream Data

 When a row is deleted through the use of a DELETE or a TRUNCATE TABLE statement, any 
FILESTREAM fi le associated with the row is deleted. However, the delete of the fi le is not 
synchronous with the deletion of the row. The fi le is deleted by the FILESTREAM Garbage 
Collection thread. This is also true for DELETEs that are generated as part of an UPDATE. 
A new row is added, but the old one is not physically removed until Garbage Collection runs. 

 Note The OUTPUT clause for data manipulation operations (INSERT, UPDATE, DELETE, and 
MERGE) is supported the same way as it is for column modifi cations. However, you need to be 
careful if you are using the OUTPUT clause to insert into a table with a varbinary(MAX) column 
instead without the fi lestream specifi er. If the fi lestream data is larger than 2 GB, the insert of 
fi lestream data into the table may result in a run-time error. 

Filestream Data and Transactions

 Filestream data manipulation is fully transactional. But you need to be aware that when you 
are manipulating FILESTREAM data, not all isolation levels are supported. In addition, some 
isolation levels are supported for T-SQL access but not for fi lesystem access. Table 7-2 indicates 
which isolation levels are available in which access mode. 

 TABLE 7-2 Isolation Levels Supported with Filestream Data Manipulation 

 Isolation Level T-SQL Access Filesystem Access 

 Read uncommitted Supported Not supported

 Read committed Supported Supported

 Repeatable read Supported Not supported

 Serializable Supported Not supported

 Read committed snapshot Supported Not supported

 Snapshot Supported Not supported

 If two processes trying to access the same FILESTREAM datafi le are in incompatible modes, the 
fi lesystem APIs fail with an ERROR_SHARING_VIOLATION message instead of just  blocking, as 
would happen when using T-SQL. As with all data access, readers and writers within the same 
transaction can never get a confl ict on the same fi le but unlike non-FILESTREAM access, two write 
operations within the same transaction can end up confl icting with each other when  accessing 
the same fi le, unless the fi le handle has been previously closed. You can read much more about 
transactions, isolation levels, and confl icts in Chapter 10, “Transactions and Concurrency.”  

Logging Filestream Changes

 As mentioned previously, each FILESTREAM fi legroup has a $FSLOG folder that keeps track 
of all fi lestream activity that touches that fi legroup. The data in this folder is used when you 
perform transaction log backup and restore operations in the database (which include the 
FILESTREAM fi legroup) and also during the recovery process.  

Isolation Level T-SQL Access Filesystem Access

C07626249.indd   394 2/16/2009   1:34:39 PM



 Chapter 7 Special Storage 395

 The $FSLOG folder primarily keeps track of new information added to the fi lestream fi legroup. 
A fi le gets added to the log folder to refl ect each of the following: 

■  A new table containing fi lestream data is created.  

■  A FILESTREAM column is defi ned. 

■  A new row is inserted containing non-NULL data in the FILESTREAM column. 

■  A FILESTREAM value is updated. 

■  A COMMIT occurs. 

 Here are some examples: 

■  If you create a table containing two fi lestream columns, four fi les are added to the 
$FSLOG folder—one for the table, two for the columns, and one for the implied COMMIT. 

■  If you insert a single row containing fi lestream data in an autocommit transaction, two 
fi les will be added to the $FSLOG folder—one for the INSERT and one for the COMMIT. 

■  If you insert fi ve rows in an explicit transaction, six fi les are added to the $FSLOG folder. 

 Files are not added to the $FSLOG folder when data is deleted or when a table is truncated 
or dropped. However, the SQL Server transaction log keeps track of these operations, and a 
new metadata table contains information about the data that has been removed. 

Garbage Collection for Filestream Data

 The fi lestream data can be viewed as serving as the live user data, as well as the log of changes 
to that data, and as row versions for snapshot operations (discussed in Chapter 10). SQL Server 
needs to make sure that the fi lestream data fi les are not removed if there is any  possibility 
they might be needed for any backup or recovery needs. In particular, for log backups, all new 
fi lestream content must be backed up since the transaction log does not contain the actual 
fi lestream data, and only the fi lestream data has the redo information for the actual FILESTREAM 
contents. In general, if your database is not in the SIMPLE recovery mode, you need to back 
up the log twice before the Garbage Collector can remove unneeded data fi les from your 
FILESTREAM folders. Let’s look at an example. We’ll start with a clean slate, by  dropping and 
 re-creating the MyFilestreamDB database. A DROP DATABASE statement immediately removes 
all the folders and fi les because now there is no chance we’re going to do any  subsequent 
log backups. The script given here re-creates the database and creates a table with just a 
single FILESTREAM column. Finally, the script inserts three rows into the table and backs up 
the  database. If you inspect the fi lestream1 container, you see that the folder for the columns 
 contains three fi les for the three rows: 

USE master;

GO

DROP DATABASE MyFilestreamDB;

GO

CREATE DATABASE  MyFilestreamDB  ON  PRIMARY 

     (NAME = N'Rowdata1', FILENAME = N'c:\data\Rowdata1.mdf' , SIZE = 2304KB , 

      MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB ), 

C07626249.indd   395 2/16/2009   1:34:40 PM



396 Microsoft SQL Server 2008 Internals

 FILEGROUP  FileStreamGroup1  CONTAINS FILESTREAM  DEFAULT 

    (NAME = N'FSData1', FILENAME = N'c:\data\filestream1' ), 

 FILEGROUP  FileStreamGroup2  CONTAINS FILESTREAM 

    (NAME = N'FSData2', FILENAME = N'c:\data\filestream2' )

 LOG ON 

    (NAME = N'FSDBLOG', FILENAME = N'c:\data\FSDB_log.ldf' , SIZE = 1024KB , 

     MAXSIZE = 2048GB , FILEGROWTH = 10%);

GO

USE MyFilestreamDB;

GO

CREATE TABLE dbo.Records

(

 Id [uniqueidentifier] ROWGUIDCOL NOT NULL UNIQUE, 

 SerialNumber INTEGER UNIQUE,

 Chart_Primary VARBINARY(MAX) FILESTREAM NULL 

)

FILESTREAM_ON FileStreamGroup1;

GO

INSERT INTO dbo.Records

    VALUES (newid(), 1, 

              CAST (REPLICATE (CONVERT(varchar(MAX), 'Base Data'), 

                      10000) as varbinary(max))),

           (newid(), 2, 

               CAST (REPLICATE (CONVERT(varchar(MAX), 'New Data'), 

                      10000) as   varbinary(max))),

    (newid(), 3, 0x);

GO

BACKUP DATABASE MyFileStreamDB to disk = 'C:\backups\FBDB.bak';

GO

 Now delete one of the rows, as follows: 

DELETE dbo.Records

WHERE SerialNumber = 2;

GO

 Now inspect the fi les on disk, and you still see three fi les. 

 Back up the log and run a checkpoint. Note that in a real system, enough changes would 
probably be made to your data that your database’s log would get full enough to trigger an 
automatic CHECKPOINT. However, during testing, I’m not putting much into the log at all, so 
I have to force the CHECKPOINT: 

BACKUP LOG  MyFileStreamDB to disk = 'C:\backups\FBDB_log.bak';

CHECKPOINT;

 Now if you check the FILESTREAM data fi les, you still see three rows. Wait fi ve seconds for 
Garbage Collection, and you’ll still see three rows. We need to back up the log and then 
force another CHECKPOINT: 

BACKUP LOG  MyFileStreamDB to disk = 'C:\backups\FBDB_log.bak';

CHECKPOINT;

C07626249.indd   396 2/16/2009   1:34:40 PM



 Chapter 7 Special Storage 397

 Now within fi ve seconds, you should see one of the fi les disappear. The reason that we need 
to back up the log twice before the physical fi le is available for garbage collection is to make 
sure that the fi le space is not reused by other fi lestream operations while it still might be 
needed for restore purposes.  

 You can run some additional tests of your own. For example, if you try dropping the dbo.Records 
table, notice that you again have to perform two log backups and CHECKPOINTs before SQL 
Server removes the folders for the table and the column.  

Metadata for Filestream Data

 Within your SQL Server tables, the storage required for fi lestream is not particularly complex. 
In the row itself, each fi lestream column contains a fi le pointer that is 48 bytes in size. Even if 
you look at a data page with the DBCC PAGE command, there is not much more information 
about the fi le that is available. However, SQL Server does provide a new function to  translate 
the fi le pointer to a path name. The function is actually a method applied to the column name 
in the table. So the following code returns a UNC name for the fi le containing the actual 
 column’s data in the row I inserted previously: 

SELECT Chart_Primary, Chart_Primary.PathName()

FROM dbo.Records

WHERE SerialNumber = 24;

GO

 The UNC value returned looks like this: 

\\<server_name>\<share_name>\v1\<db_name>\<object_schema>\<table_name>\<column_name>\<GUID>

 Keep in mind the following points about using the PathName function: 

■  The function name is case-sensitive, even on a server that is not case-sensitive, so it 
 always must be entered as PathName. 

■  The default share_name is the service name for your SQL Server instance. (So for the 
default instance, it is MSSQLSERVER.) Using the SQL Server Confi guration Manager, you 
can right-click your SQL Server instance and choose Properties. The FILESTREAM tab of 
the SQL Server Properties dialog box allows you to change the share_name to another 
value of your choosing. 

■  The PathName function can take an optional parameter of 0, 1, or 2, with 0 being the 
default. The parameter controls only how the server_name value is returned; all other 
 values in the UNC string are unaffected. Table 7-3 shows the meanings of the different 
values. 

C07626249.indd   397 2/16/2009   1:34:40 PM



398 Microsoft SQL Server 2008 Internals

 TABLE 7-3 Parameter Values for the PathName Function  

 Value Description

 0 Returns the server name converted to BIOS format; for example: \\SERVERNAME\
MSSQLSERVER\v1\MyFilestream\dbo\Records\Chart_Primary\
A73F19F7-38EA-4AB0-BB89-E6C545DBD3F9

 1 Returns the server name without conversion; for example: \\ServerName\MSSQLSERVER\
v1\MyFilestream\Dbo\Records\ Chart_Primary\
A73F19F7-38EA-4AB0-BB89-E6C545DBD3F9

 2 Returns the complete server path; for example: \\ServerName.MyDomain.com\
MSSQLSERVER\v1\MyFilestream\Dbo\Records\
Chart_Primary\A73F19F7-38EA-4AB0-BB89-E6C545DBD3F9

 Some of the metadata added in SQL Server 2005 has been enhanced to give you information 
about your fi lestream data: 

■  sys.database_fi les returns a row for each of your fi lestream fi les. These fi les have 
a type value of 2 and a type_desc value of FILESTREAM. 

■ sys.fi legroups returns a row for each of your fi lestream fi legroups. These fi les have 
a type value of FD and a type_desc value of FILESTREAM_DATA_FILEGROUP. 

■ sys.data_spaces returns one row for each data space, which is either a fi legroup or 
a partition scheme. Filegroups holding fi lestream data are indicated by the type FD.  

■ sys.tables has a value in the column for fi lestream_data_space_id, which is the data 
space ID for either the fi lestream fi legroup or the partition scheme that the fi lestream 
data uses. Tables with no fi lestream data have NULL in this column. 

■ sys.columns has a value of 1 in the is_fi lestream column for columns with the 
fi lestream attribute. 

The older metadata, such as the system procedure sp_helpdb <database_name> or sp_help 
<object_name>, does not show any information about fi lestream data. 

I mentioned previously that rows or objects that are deleted do not generate fi les in the $FSLOG 
folder, but data about the removed data is stored in a system table. No metadata view allows 
you to see this table; you can observe it only by using the dedicated administrator connection 
(DAC). You can look in a view called sys.internal_tables for an object with TOMBSTONE in its 
name. Then using the DAC, you can look at the data inside the TOMBSTONE table. If you rerun 
the above script but don’t back up the log, you can use the following script: 

USE MyFilestreamDB;

GO

SELECT name FROM sys.internal_tables

WHERE name like '%tombstone%';

-- I see the table named: filestream_tombstone_2073058421

-- Reconnect using DAC, which puts us in the master database

USE MyFileStreamDB;

GO

SELECT * FROM sys.filestream_tombstone_2073058421;

GO

Value Description

C07626249.indd   398 2/16/2009   1:34:40 PM



 Chapter 7 Special Storage 399

 If this table is empty, then the log in SQL Server and the $FSLOG are in sync, and all unneeded 
fi les have been removed from the FILESTREAM containers on disk.  

Performance Considerations for Filestream Data

 Although a thorough discussion of performance tuning and troubleshooting is beyond the 
scope of this book, I want to provide you with some basic information about setting up your 
system to get high performance from fi lestream data. Paul Randal, one of the co-authors of this 
book, has written a white paper on FILESTREAM that you can access on the MSDN site at 
http://msdn.microsoft.com/en-us/library/cc949109.aspx. (This white paper is also available on 
this book’s companion Web site, http://www.SQLServerInternals.com/companion.) In this section, 
I’ll just briefl y mention some of the main points Paul makes regarding what you can do to get 
good performance. All these suggestions are explained in much more detail in the white paper. 

■  Make sure you’re storing the right-sized data in the right way. Jim Gray (et al.) published 
a research paper a couple of years ago called “To BLOB or Not To BLOB: Large Object 
Storage in a Database or a Filesystem?” To summarize the fi ndings, large object data 
smaller than 256 KB should be stored in a database, and data that is 1 MB or larger 
should be stored in the fi le system. For data between these two values, the answer 
 depends on other factors and you should test your application thoroughly. The key 
point here is that you won’t get good performance if you store lots of relatively small 
large objects using FILESTREAM.  

■  Use an appropriate RAID level for the NTFS volume that hosts the FILESTREAM data 
container. For example, don't use RAID-5 for a write-intensive workload.  

■  Use an appropriate disk technology. SCSI is usually faster than SATA/IDE because SCSI 
drives usually have higher rotational speeds, so they have lower latency and seek times. 
However, SCSI drives are also more expensive. 

■  Whichever disk technology you choose, if it is SATA, ensure that it supports NCQ, and 
if SCSI, ensure that it supports CTQ. Both of these allow the drives to process multiple, 
interleaved I/Os concurrently.  

■  Separate the data containers from each other, and separate the containers from other 
database data and log fi les. This avoids contention for the disk heads.  

■  Defragment the NTFS volume if needed before setting up FILESTREAM, and defragment 
periodically to maintain good scan performance.  

■  Turn off 8.3 name generation on the NTFS volume using the command-line fsutil utility. 
This is an order-N algorithm that has to check that the new name generated doesn't 
collide with any existing names in the directory. Note, however, that this slows insert 
and update performance down a lot.  

■  Turn off tracking of last access time using fsutil.  

■  Set the NTFS cluster size appropriately. For larger objects greater than 1 MB in size, use 
a cluster size of 64 KB to help reduce fragmentation.  

C07626249.indd   399 2/16/2009   1:34:40 PM



400 Microsoft SQL Server 2008 Internals

■  A partial update of FILESTREAM data creates a new fi le. Batch lots of small updates into 
one large update to reduce churn.  

■  When streaming the data back to the client, use an SMB buffer size of approximately 
60 KB or multiples thereof. This helps keep the buffers from getting overly fragmented, 
because Transmission Control Protocol/Internet Protocol (TCP/IP) buffers are 64 KB. 

 Taking these suggestions into consideration and performing thorough testing of your 
 application can give you great performance when working with very large data objects.  

Sparse Columns

 In this section, we’ll look at another special storage format, added in SQL Server 2008. Sparse 
columns are ordinary columns that have an optimized storage format for NULL values. 
Sparse columns reduce the space requirements for NULL values, allowing you to have many 
more columns in your table defi nition, so long as most of them are NULL. The cost of using 
sparse columns is that there will be more overhead to store and retrieve non-NULL values.  

 Sparse columns are intended to be used for tables storing data describing entities with many 
possible attributes, where most of the attributes will be NULL for most rows. For example, a 
content management system like Microsoft Windows SharePoint Services may need to keep 
track of many different types of data in a single table. Different properties apply to different 
subsets of rows in the table. So for each row, only a small subset of the columns is populated 
with values. Another way of looking at it is that for any particular property, only a subset of 
rows has a value for that property. The sparse columns in SQL Server 2008 allow us to store 
a very large number of possible columns for a single row. For this reason, the SPARSE column 
feature is sometimes also referred to as the wide-table feature.  

Management of Sparse Columns

 It is recommended that you don’t consider defi ning a column as SPARSE unless at least 
90 percent of the rows in the table are expected to have NULL values for that column. This 
is not an enforced limit, however, and you can defi ne almost any column as SPARSE. Sparse 
 columns save space on NULL values.  

 This new SQL Server 2008 feature allows you to have far more columns that you ever could 
before. The limit is now 30,000 columns in a table, with no more than 1,024 of them being 
 non-sparse. (Computed columns are considered non-sparse.) Obviously, not all 30,000 columns 
could have values in them. The number of populated columns you can have depends on the 
bytes of data in the row. Sparse columns optimize the storage size for NULL values, which take no 
space at all for sparse columns, unlike non-sparse columns, which do need space even for NULLs. 
(As we saw in Chapter 5, a fi xed-length NULL column always uses the whole column width, and 
a variable-length NULL column uses at least two bytes in the column offset array.). Although the 

C07626249.indd   400 2/16/2009   1:34:40 PM



 Chapter 7 Special Storage 401

sparse columns themselves take no space, some fi xed overhead is needed to allow for sparse 
columns in a row. As soon as you defi ne even one column with the SPARSE attribute, SQL Server 
adds a sparse vector to the end of the row. We’ll see the actual structure of this sparse vector in 
the section entitled “Physical Storage,” later in this chapter, but to start with, you should be aware 
even with sparse columns, the maximum size of a data row (excluding LOB and row-overfl ow) 
remains at 8,060, including overhead bytes. Because the sparse vector includes additional 
 overhead, the maximum number of bytes for the rest of the rows decreases. In addition, the size 
of all fi xed-length non-NULL sparse columns in a row is limited to 8,019 bytes.  

Table Creation

 Creating a table with sparse columns is very straightforward, as you can just add the  attribute 
SPARSE to any column of any data type except text, ntext, image, geography, geometry, 
timestamp, or any user-defi ned data type. In addition, sparse columns cannot include the 
IDENTITY, ROWGUIDCOL, or FILESTREAM attributes. A sparse column cannot be part of 
a clustered index or part of the primary key. Tables containing sparse columns cannot be 
 compressed, either at the row level or the page level. (I’ll discuss compression in detail in 
the next section.) There are also a few other restrictions, particularly if you are partitioning 
a table with sparse columns, so you should check the documentation for full details. The 
 examples in this section are necessarily very simple because it would be impractical to print 
code examples with enough columns to make sparse columns really useful. The following 
example shows the creation of two very similar tables, one that doesn’t allow sparse columns 
and another that does. I attempt to insert the same rows into each table. Because a row 
 allowing sparse columns has a smaller maximum length, it fails when trying to insert a row 
that the table with no sparse columns has no problem with: 

USE test;

GO

CREATE TABLE test_nosparse

( 

  col1 int,

  col2 char(8000),

  col3 varchar(8000)

);

GO

INSERT INTO test_nosparse 

 SELECT null, null, null;

INSERT INTO test_nosparse 

 SELECT 1, 'a', 'b';

GO

 These two rows can be inserted with no error. Now, build the second table:  

CREATE TABLE test_sparse

( 

 col1 int SPARSE,

 col2 char(8000) SPARSE,

 col3 varchar(8000) SPARSE

);

GO

C07626249.indd   401 2/16/2009   1:34:40 PM



402 Microsoft SQL Server 2008 Internals

INSERT INTO test_sparse 

 SELECT NULL, NULL, NULL;

INSERT INTO test_sparse 

 SELECT 1, 'a', 'b';

GO

 The second INSERT statement generates the following error: 

Msg 576, Level 16, State 5, Line 2

Cannot create a row that has sparse data of size 8042 which is greater than the allowable 

maximum sparse data size of 8019.

 Although the second row inserted into the test_sparse table looks just like a row that was 
 inserted successfully into the test_nosparse table, internally it is not. The total of the sparse 
columns is 4 bytes for the int, plus 8,000 bytes for the char, and 24 bytes for the row-overfl ow 
pointer, which is greater than the 8,019-byte limit. 

Altering a Table

 Tables can be altered to convert a non-sparse column into a sparse column, or vice versa. 
Be careful, however, because if you are altering a very large row in a table with no sparse 
columns, changing one column to be sparse reduces the number of bytes of data that are 
allowed on a page. This can result in an error being thrown in cases where an existing column 
is converted into a sparse column. For example, the following code creates a table with large 
rows, but my INSERT statements, with or without NULLs, are accepted. However, when we try 
to make one of the columns SPARSE, even a relatively small column like the 8-byte datetime 
column, the extra overhead makes the existing rows too large and the ALTER fails: 

IF EXISTS (SELECT * FROM sys.tables WHERE name = 'test_nosparse_alter')

  DROP TABLE test_nosparse_alter;

GO

CREATE TABLE test_nosparse_alter

( 

c1 int,

c2 char(4020) ,

c3 char(4020) ,

c4 datetime 

);

GO

INSERT INTO test_nosparse_alter SELECT NULL, NULL, NULL, NULL;

INSERT INTO test_nosparse_alter SELECT 1, 1, 'b', GETDATE();

GO

ALTER TABLE test_nosparse_alter

  ALTER COLUMN c4 datetime SPARSE;

 We receive this error: 

Msg 1701, Level 16, State 1, Line 2

Creating or altering table 'test_nosparse_alter' failed because the minimum row size would 

be 8075, including 23 bytes of internal overhead. This exceeds the maximum allowable table 

row size of 8060 bytes.

C07626249.indd   402 2/16/2009   1:34:40 PM



 Chapter 7 Special Storage 403

 In general, sparse columns can be treated just like any other column, with only a few restrictions. 
In addition to the restrictions mentioned previously on the data types that cannot be defi ned as 
SPARSE, there are also the following limitations to keep in mind: 

■  A sparse column cannot have a default value. 

■  A sparse column cannot be bound to a rule. 

■  Although a computed column can refer to a sparse column, a computed column 
 cannot be marked as SPARSE. 

■  A sparse column cannot be part of a clustered index or a unique primary key index. 
However, both persisted and nonpersisted computed columns that refer to sparse 
 columns can be part of a clustered key. 

■  A sparse column cannot be used as a partition key of a clustered index or heap. 
However, a sparse column can be used as the partition key of a nonclustered index. 

 Note that except for the requirement that sparse columns cannot be part of the clustered 
 index or primary key, there aren’t any other restrictions on building indexes on sparse 
 columns. However, if you are using sparse columns the way they are intended to be used, 
and the vast majority of your rows have NULL for the sparse columns, any regular index on a 
sparse column is very ineffi cient and may have limited usefulness. Sparse columns are really 
intended to be used with fi ltered indexes, which are discussed in Chapter 6.  

Column Sets and Sparse Column Manipulation 

 If sparse columns are used as intended, only a few columns in each row have values, and your 
INSERT and UPDATE statements are relatively straightforward. For INSERT statements, you 
can specify a column list and then specify values only for those few columns in the column 
list. For UPDATE statements, there are only a few columns in each row whose values can be 
 manipulated. The only time you need to be concerned about how to deal with a  potentially 
very large list of columns is if you are selecting data without listing individual columns (that 
is, using a SELECT *). Good developers know that using SELECT * is never a good idea, but 
SQL Server needs a way of dealing with a result set with potentially thousands (or tens of 
thousands) of columns. The mechanism provided to help deal with SELECT * is a construct 
called a COLUMN_SET. A COLUMN_SET is an untyped XML representation that combines 
multiple columns of a table into a structured output. You can think of a COLUMN_SET as a 
nonpersisted computed column because the COLUMN_SET is not physically stored in the 
table. In this release of SQL Server, the only possible COLUMN_SET contains all the sparse 
columns in the table. Future versions may allow us to defi ne other COLUMN_SET variations.  

 A table can only have one COLUMN_SET defi ned, and once a table has a COLUMN_SET 
 defi ned, SELECT * no longer returns individual sparse columns. Instead, it returns an XML 
fragment containing all the non-NULL values for the sparse columns. Let’s look at an example. 

C07626249.indd   403 2/16/2009   1:34:40 PM



404 Microsoft SQL Server 2008 Internals

The following code builds a table containing an identity column, 25 sparse columns, and a 
column set: 

USE test;

GO

IF EXISTS (SELECT * FROM sys.tables WHERE name = 'lots_of_sparse_columns')

  DROP TABLE lots_of_sparse_columns;

GO

CREATE TABLE lots_of_sparse_columns

(ID int IDENTITY,

 col1 int SPARSE,

 col2 int SPARSE, 

 col3 int SPARSE,

 col4 int SPARSE,

 col5 int SPARSE,

 col6 int SPARSE,

 col7 int SPARSE,

 col8 int SPARSE,

 col9 int SPARSE,

 col10 int SPARSE,

 col11 int SPARSE,

 col12 int SPARSE,

 col13 int SPARSE,

 col14 int SPARSE,

 col15 int SPARSE,

 col16 int SPARSE,

 col17 int SPARSE,

 col18 int SPARSE,

 col19 int SPARSE,

 col20 int SPARSE,

 col21 int SPARSE,

 col22 int SPARSE,

 col23 int SPARSE,

 col24 int SPARSE,

 col25 int SPARSE,

 sparse_column_set XML COLUMN_SET FOR ALL_SPARSE_COLUMNS);

 GO

 Next, I insert values into 3 of the 25 columns, specifying individual column names: 

INSERT INTO lots_of_sparse_columns (col4, col7, col12)  SELECT 4,6,11;

 You can also insert directly into the COLUMN_SET, specifying values for columns in an XML 
fragment. Being able to update the COLUMN_SET is another feature that differentiates 
COLUMN_SETs from computed columns: 

INSERT INTO lots_of_sparse_columns (sparse_column_set)

  SELECT '<col8>42</col8><col17>0</col17><col22>30000</col22>';

 Here are the results when I run SELECT * from this table: 

SELECT * FROM lots_of_sparse_columns;

Results:

ID      sparse_column_set

------- ---------------------------------------------------

1       <col4>4</col4><col7>6</col7><col12>11</col12>

2       <col8>42</col8><col17>0</col17><col22>30000</col22>

C07626249.indd   404 2/16/2009   1:34:40 PM



 Chapter 7 Special Storage 405

 We can still select from individual columns, either instead of or in addition to selecting the 
entire COLUMN_SET. So the following SELECT statements are both valid: 

SELECT ID, col10, col15, col20

    FROM lots_of_sparse_columns;

SELECT *, col11

    FROM lots_of_sparse_columns;

 Keep the following points in mind if you decide to use sparse columns in your tables: 

■  Once defi ned, the COLUMN_SET cannot be altered. To change a COLUMN_SET, you 
must drop and re-create the COLUMN_SET column. 

■  A COLUMN_SET can be added to a table that does not include any sparse columns. 
If sparse columns are later added to the table, they appear in the column set. 

■  A COLUMN_SET is optional and is not required to use sparse columns. 

■  Constraints or default values cannot be defi ned on a COLUMN_SET. 

■  Distributed queries are not supported on tables that contain COLUMN_SETs. 

■  Replication does not support COLUMN_SETs. 

■  The Change Data Capture feature does not support COLUMN_SETs. 

■  A COLUMN_SET cannot be part of any kind of index. This includes XML indexes, 
 full-text indexes, and indexed views. A COLUMN_SET cannot be added as an included 
column in any index. 

■  A COLUMN_SET cannot be used in the fi lter expression of a fi ltered index or fi ltered 
statistics. 

■  When a view includes a COLUMN_SET, the COLUMN_SET appears in the view as an 
XML column. 

■  XML data has a size limit of 2 GB. If the combined data of all the non-NULL sparse 
 columns in a row exceeds this limit, the operation produces an error. 

■  Copying all columns from a table with a COLUMN_SET (using either SELECT * INTO 
or INSERT INTO SELECT *) does not copy the individual sparse columns. Only the 
COLUMN_SET, as data type XML, is copied. 

 Now let’s look at how sparse columns are actually stored.  

Physical Storage

 At a high level, you can think of sparse columns as being stored much as they are displayed 
using the COLUMN_SET; that is, as a set of (column-name, value) pairs. So if there is no value 
for a particular column, it is not listed and no space at all is required. If there is a value for a 
column, not only does SQL Server need to store the value, but it needs to store information 
about which column has that value. So non-NULL sparse columns take more space than their 
NULL counterparts. To see the difference graphically, you can compare Tables 7-4 and 7-5.  

C07626249.indd   405 2/16/2009   1:34:40 PM



406 Microsoft SQL Server 2008 Internals

 Table 7-4 represents a table with non-sparse columns. You can see a lot of wasted space 
when most of the columns are NULL. Table 7-5 shows what the same table looks like if all 
the  columns except the ID are defi ned as SPARSE. All that is stored are the names of all the 
 non-NULL columns and their values.  

 TABLE 7-4 Representation of a Table Defi ned with Non-SPARSE Columns, 

with Many NULL Values 

ID sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9

1 1 9

2 2 4

3 6 7

4 1 5

5 4 8

6 3 9

7 5 7

8 2 8

9 3 6

 TABLE 7-5 Representation of a Table Defi ned with SPARSE Columns, 

with Many NULL Values 

 ID <sparse columns>

 1 (sc1,sc9)(1,9) 

 2 (sc2,sc4)(2,4) 

 3 (sc6,sc7)(6,7) 

 4 (sc1,sc5)(1,5) 

 5 (sc4,sc8)(4,8) 

 6 (sc3,sc9)(3,9) 

 7 (sc5,sc7)(5,7) 

 8 (sc2,sc8)(2,8) 

 9 (sc3,sc6)(3,6) 

 SQL Server keeps track of the physical storage of SPARSE columns with a structure within a 
row called a sparse vector. Sparse vectors are present only in the data records of a base table 
that has at least one sparse column declared and each data record of these tables contains a 
sparse vector.  

 A sparse vector is stored as a special variable-length column at the end of a data record. It is 
a special system column, and there is no metadata about this column in sys.columns or any 
other view. The sparse vector is stored as the last variable-length column in the row. The only 
thing after the sparse vector would be versioning information, used primarily with Snapshot 

ID sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9

ID <sparse columns>

C07626249.indd   406 2/16/2009   1:34:40 PM



 Chapter 7 Special Storage 407

isolation, as is discussed in Chapter 10. There is no bit in the NULL bitmap for the sparse 
 vector column (if a sparse vector exists, it is never NULL), but the count in the row of the 
number of variables columns includes the sparse vector. You may want to revisit Figure 5-10 
in Chapter 5 at this time to familiarize yourself with the general structure of data rows.  

Table 7-6 lists the meaning of the bytes in the sparse vector. 

TABLE 7-6 Bytes in a Sparse Vector 

Name Number of Bytes Meaning

Complex Column
Header

2 A value of 05 indicates that the complex column 
is a sparse vector.

Sparse Column 
Count

2 Number of sparse columns.

Column ID Set 2 * the number of sparse 
columns

Two bytes for the column ID of each column in 
the table with a value stored in the sparse vector.

Column Offset Table 2 * the number of sparse 
columns

Two bytes for the offset of the ending position of 
each sparse column.

Sparse Data Depends on actual values Data

Let’s look at the bytes of a row containing SPARSE columns. First, build a table containing 
two sparse columns, and populate it with three rows: 

USE test;

GO

IF EXISTS (SELECT * FROM sys.tables WHERE name = 'sparse_bits')

  DROP TABLE sparse_bits;

GO

CREATE TABLE sparse_bits

( 

c1 int IDENTITY,

c2 varchar(4),

c3 char(4) SPARSE,

c4 varchar(4) SPARSE

);

GO

INSERT INTO sparse_bits SELECT 'aaaa', 'bbbb', 'cccc';

INSERT INTO sparse_bits SELECT 'dddd', null, 'eeee';

INSERT INTO sparse_bits SELECT 'ffff', null, 'gg';

GO

Now we can use DBCC IND to fi nd the page number for the data page storing these three 
rows and then use DBCC PAGE to look at the bytes on the page: 

DBCC IND(test, sparse_bits, -1);

GO

-- The output indicated that the data page for my table was on page 289;

DBCC TRACEON(3604);

DBCC PAGE(test, 1, 289, 1);

Name Number of Bytes Meaning

C07626249.indd   407 2/16/2009   1:34:40 PM



408 Microsoft SQL Server 2008 Internals

 I won’t show you the entire page output, but only the output for the fi rst row (spread over 
three lines of output): 

00000000:   30000800 01000000 02000002 00150029 †0..............)         

00000010:   80616161 61050002 00030004 00100014 †.aaaa...........         

00000020:   00626262 62636363 63†††††††††††††††††.bbbbcccc                

 The grayed bytes are the sparse vector. I can fi nd it easily because it starts right after the last 
non-sparse variable-length column, which contained aaaa, or 61616161, and continues to 
the end of the row. Figure 7-6 translates the sparse vector according to the meanings given 
in Table 7-6. Don’t forget that you need to byte-swap numeric fi elds before translating. 
For  example, the fi rst two bytes are 05 00, which need to be swapped to get the hex value 
0x0005. Then you can convert it to decimal.  

Byte offsets within the sparse vector: 

0x 05
Indicates a
sparse vector

2 sparse
columns

columns
3 and 4
are sparse

0x 14 = 20
end of second
data value

0x 10 = 16
end of first
data value

‘bbbb’ first
data value

‘cccc’ second
data value

0500 0200 0300 0400 1000 1400 62626262 63636363
2 4 6 8 10 12 16 20

Values after byte swapping the numeric values:

0005 0002 0003 0004 0010 0014 62626262 63636363
2 4 6 8 10 12 16 20

FIGURE 7-6 Interpretation of the actual bytes in a sparse vector for a row in the sparse_bits table

 You can apply the same analysis to the bytes in the other two rows on the page. Here are 
some things to note: 

■  No information about columns with NULL values appears in the sparse vector.  

■  Within the sparse vector, there is no difference in storage between fi xed-length 
and variable-length strings. However, that doesn’t mean you should use the two 
 interchangeably. A SPARSE varchar column that doesn’t fi t in the 8,060 bytes can be 
stored as row-overfl ow data; a SPARSE char column cannot be.  

■  Because only two bytes are used to store the number of sparse columns, this sets the 
limit on the maximum number of sparse columns.  

■  The two bytes for the complex column header indicate that there might be other 
 possibilities for complex columns. At this time, the only other type of complex column 
that can be stored is one storing a back-pointer, as SQL Server does when it creates a 
forwarded record. (I discussed forwarded records when discussing updates to heaps in 
Chapter 5.) 

C07626249.indd   408 2/16/2009   1:34:40 PM



 Chapter 7 Special Storage 409

Metadata

 Very little extra metadata is needed to support SPARSE columns. The catalog view sys.columns 
contains the following two columns to keep track of SPARSE columns in your tables. Each of 
these columns has only two possible values, 0 or 1: 

■  is_sparse 

■  is_column_set 

 Corresponding to these column properties in sys.columns, the property function 
COLUMNPROPERTY() also has the following two properties related to SPARSE columns: 

■  IsSparse 

■  IsColumnSet 

 If I want to inspect all the tables I had created with “sparse” in their name and determine 
which of their columns were SPARSE, which were column sets, and which were neither, I could 
run the following query: 

SELECT OBJECT_NAME(object_id) as 'Table', name as 'Column', is_sparse, is_column_set

FROM sys.columns

WHERE OBJECT_NAME(object_id) like '%sparse%';

 If I want to see just the table and column names for all COLUMN_SET columns, I could run 
the following query: 

SELECT OBJECT_NAME(object_id) as 'Table', name as 'Column'

FROM sys.columns

WHERE COLUMNPROPERTY(object_id, name, 'IsColumnSet') = 1;

Storage Savings with Sparse Columns

 The SPARSE column feature is designed to save you considerable space when most of 
your values are NULL. In fact, as mentioned previously, columns that are not NULL but are 
 defi ned as SPARSE take up more space than if they weren’t defi ned as SPARSE because the 
sparse vector has to store a couple of extra bytes to keep track of them. To start to see the 
space differences, you can run the following script, which creates four tables with relatively 
short, fi xed-length columns. Two have sparse columns and two don’t. Rows are inserted into 
each of the tables in a loop, which inserts 100,000 rows. One table with sparse columns is 
 populated with rows with NULL values, and the other is populated with rows that are not 
NULL. One of the tables with no sparse columns is populated with rows with NULL values, 
and the other is populated with rows that are not NULL:  

USE test;

GO

SET NOCOUNT ON;

GO

C07626249.indd   409 2/16/2009   1:34:40 PM



410 Microsoft SQL Server 2008 Internals

IF EXISTS (SELECT * FROM sys.tables  

   WHERE name = 'sparse_nonulls_size')

  DROP TABLE sparse_nonulls_size;

GO

CREATE TABLE sparse_nonulls_size

(col1 int IDENTITY,

 col2 datetime SPARSE,

 col3 char(10) SPARSE

 );

GO

IF EXISTS (SELECT * FROM sys.tables  

   WHERE name = 'nonsparse_nonulls_size')

  DROP TABLE nonsparse_nonulls_size;

GO

CREATE TABLE nonsparse_nonulls_size

(col1 int IDENTITY,

 col2 datetime,

 col3 char(10)

 );

GO

IF EXISTS (SELECT * FROM sys.tables  

   WHERE name = 'sparse_nulls_size')

  DROP TABLE sparse_nulls_size;

GO

CREATE TABLE sparse_nulls_size

(col1 int IDENTITY,

 col2 datetime SPARSE,

 col3 char(10) SPARSE

 );

GO

IF EXISTS (SELECT * FROM sys.tables  

   WHERE name = 'nonsparse_nulls_size')

  DROP TABLE nonsparse_nulls_size;

GO

CREATE TABLE nonsparse_nulls_size

(col1 int IDENTITY,

 col2 datetime,

 col3 char(10)

 );

GO

DECLARE @num int

SET @num = 1

WHILE @num < 100000

BEGIN

  INSERT INTO sparse_nonulls_size

 SELECT GETDATE(), 'my message';

  INSERT INTO nonsparse_nonulls_size

 SELECT GETDATE(), 'my message';

  INSERT INTO sparse_nulls_size

 SELECT NULL, NULL;

  INSERT INTO nonsparse_nulls_size

 SELECT NULL, NULL;

  SET @num = @num + 1;

END;

GO

C07626249.indd   410 2/16/2009   1:34:40 PM



 Chapter 7 Special Storage 411

Now look at the number of pages in each table. The following metadata query looks at the 
number of data pages in the sys.allocation_units view for each of the four tables: 

SELECT object_name(object_id) as 'table with 100K rows', data_pages

FROM sys.allocation_units au 

    JOIN sys.partitions p

       ON p.partition_id = au.container_id

WHERE object_name(object_id) LIKE '%sparse%size'; 

And here are my results: 

table with 100K rows     data_pages

------------------------ ----------

sparse_nonulls_size      610

nonsparse_nonulls_size   402

sparse_nulls_size        169

nonsparse_nulls_size     402

Note that the smallest number of pages is required when the table has sparse columns that are 
NULL. If the table has no sparse columns, the space usage is the same whether the columns 
have NULLs or not because the data was defi ned as fi xed length. This space requirement is 
more than twice as much as needed for the sparse columns with NULL. The worst case is if the 
columns have been defi ned as SPARSE but there are no NULL values.  

 Of course, the previous examples are edge cases, where all the data is either NULL or non-NULL, 
and it is all of fi xed-length data types. So although we can say that SPARSE columns require 
more storage space for non-NULL values than is required for identical data that is not declared 
as SPARSE, the actual space savings depends on the data types and the percentage of rows that 
are NULL. Table 7-7 is reprinted from SQL Server Books Online and shows the space usage for 
each data type. The NULL Percentage column indicates what percent of the data must be NULL 
to achieve a net space savings of 40 percent. Table 7-7 shows the savings for various data types 
in SQL Server 2008.  

 TABLE 7-7 Storage Requirements for SPARSE Columns 

 Data Type

Storage Bytes

When Not 

SPARSE

Storage Bytes 

When SPARSE 

and Not NULL NULL Percentage

 Fixed-Length Data Types

 bit 0.125 4.125 98 percent

 tinyint 1 5 86 percent

 smallint 2 6 76 percent

 int 4 8 64 percent

 bigint 8 12 52 percent

 real 4 8 64 percent

 fl oat 8 12 52 percent

Data Type

Storage Bytes

When Not

SPARSE

Storage Bytes

When SPARSE

and Not NULL NULL Percentage

Fixed-Length Data Types

C07626249.indd   411 2/16/2009   1:34:40 PM



412 Microsoft SQL Server 2008 Internals

TABLE 7-7 Storage Requirements for SPARSE Columns 

Data Type

Storage Bytes

When Not 

SPARSE

Storage Bytes 

When SPARSE 

and Not NULL NULL Percentage

Fixed-Length Data Types

smallmoney 4 8 64 percent

money 8 12 52 percent

smalldatetime 4 8 64 percent

datetime 8 12 52 percent

uniqueidentifi er 16 20 43 percent

date 3 7 69 percent

Precision-Dependent–Length Data Types

datetime2(0) 6 10 57 percent

datetime2(7) 8 12 52 percent

time(0) 3 7 69 percent

time(7) 5 9 60 percent

datetimetoffset(0) 8 12 52 percent

datetimetoffset (7) 10 14 49 percent

decimal/numeric(1,s) 5 9 60 percent

decimal/numeric(38,s) 17 21 42 percent

Data-Dependent–Length Data Types

sql_variant Varies 

varchar or char 4+avg. data 2+avg. data 60 percent

nvarchar or nchar 4+avg. data 2+avg. data 60 percent

varbinary or binary 4+avg. data 2+avg. data 60 percent

xml 4+avg. data 2+avg. data 60 percent

hierarchyId 4+avg. data 2+avg. data 60 percent

 The general recommendation is that you should consider using SPARSE columns when you 
anticipate that it provides a space savings of at least 20 to 40 percent. 

Data Compression

SQL Server 2008 provides the capability of data compression, a new feature that is  available 
in Enterprise edition only. Compression can reduce the size of your tables by exploiting 
 ineffi ciencies that exist in the actual data. These ineffi ciencies can be grouped into two 
 general categories. The fi rst category relates to storage of individual data values when they 
are stored in columns defi ned using the maximum possible size. For example, a table may 
need to defi ne a quantity column as int, because occasionally you may be storing values 
 larger than 32,767, which is the maximum smallint value. However, int columns always need 

Data Type

Storage Bytes

When Not

SPARSE

Storage Bytes

When SPARSE

and Not NULL NULL Percentage

Fixed-Length Data Types

Precision-Dependent–Length Data Types

Data-Dependent–Length Data Types

C07626249.indd   412 2/16/2009   1:34:40 PM



 Chapter 7 Special Storage 413

four bytes, and if most of your quantity values are less than 100, they could be stored in 
 tinyint columns, which need only 1 byte of storage. The Row Compression feature of SQL 
Server can compress individual columns of data to use only the minimum amount of space 
required.  

 The second type of ineffi ciency in the data storage occurs when the data on a page  contains 
duplicate values or common prefi xes across columns and rows. This ineffi ciency can be 
 minimized by storing the repeating values only once and then referencing those values 
from other columns. The Page Compression feature of SQL Server can compress the data on 
a page by maintaining entries containing common prefi xes or repeating values. Note that 
when you choose to apply page compression to a table or index, SQL Server always also 
 applies row compression. 

Vardecimal

 SQL Server 2005 SP2 introduced a simple from of compression, which could be applied only 
to columns defi ned using the decimal data type. (Keep in mind that the data type numeric 
is  completely equivalent to decimal, and anytime I mention decimal, it also means numeric.) 
In SQL Server 2005, the option has to be enabled at both the database level (using the 
 procedure sp_db_vardecimal_storage_format) and at the table level (using the procedure 
sp_tableoption). In SQL Server 2008, all user databases are enabled automatically for the 
 vardecimal storage format, so vardecimal must only be enabled for individual tables. Like data 
compression in SQL Server 2008, which we’ll look at in detail in this section, the vardecimal 
storage format is available only in SQL Server Enterprise edition. 

 In SQL Server 2005, once both of these stored procedures have been run, decimal data in the 
tables enabled for vardecimal will be stored differently. Instead of being treated as fi xed-length 
data, decimal columns are stored in the variable section of the row and use only the number 
of bytes required. (We looked at the difference between fi xed-length data and variable-length 
data storage in Chapter 5.) In addition to all the partitions of the table using the vardecimal 
format for all decimal data, all indexes on the table use the vardecimal format automatically.  

 Decimal data values are defi ned with a precision of between 1 and 38, and depending on the 
defi ned precision, they use between 5 and 17 bytes. Fixed-length decimal data uses the same 
number of bytes for every row, even if the actual data could fi t into far fewer bytes. When 
a table is not using the vardecimal storage format, every entry in the table consumes the 
same number of bytes for each defi ned decimal column, even if the value of a row is 0, NULL, 
or some value that could be expressed in a smaller number of bytes, such as the number 3. 
When vardecimal storage format is enabled for a table, the decimal columns in each row use 
the minimum amount of space required to store the specifi ed value. Of course, as we saw in 
Chapter 5, every variable-length column has 2 bytes of additional overhead associated with 
it, but when storing very small values in a column defi ned as decimal with a large precision, 
the space saving can more than make up for those additional 2 bytes. For vardecimal storage, 
both NULLs and zeros are stored as zero-length data and use only the 2 bytes of overhead. 

C07626249.indd   413 2/16/2009   1:34:41 PM



414 Microsoft SQL Server 2008 Internals

 Although SQL Server 2008 supports the vardecimal format, it is recommended that you use 
row compression when you want to reduce the storage space required by your data rows. 
Both the table option and the database option for enabling vardecimal storage have been 
deprecated.  

Row Compression 

 You can think of row compression as an extension of the vardecimal storage format. There 
can be many situations in which SQL Server uses more space than is necessary to store data 
values, and without SQL Server 2008 Enterprise Edition, the only control you have is to use 
a variable-length data type. Any fi xed-length data types always uses the same amount of 
space in every row of a table, even if space is wasted. For example, you may declare a  column 
as type int because occasionally you may need to store values greater than 32,000. An int 
needs 4 bytes of space, no matter what number is stored, even if the column is NULL. Only 
 character and binary data can be stored in variable-length columns (and, of course, decimal, 
once that option is enabled). Row compression allows integer values to use only the amount 
of storage space required, with the minimum being 1 byte. A value of 100 needs only a single 
byte for storage, and a value of 1,000 needs 2 bytes. There is an optimization that allows 
zero and NULL to use no storage space for the data itself. We’ll see the details about this later 
in this section. 

Enabling Row Compression

 Compression can be enabled when creating a table or index, or using the ALTER TABLE or 
ALTER INDEX command. In addition, if the table or index is partitioned, you can choose to 
just compress a subset of the partitions. (We’ll look at partitioning later in this chapter.)  

 The following script creates two copies of the dbo.Employees table in the AdventureWorks2008 
 database. When storing row-compressed data, SQL Server treats values that can be stored 
in 8 bytes or fewer (that is, short columns) differently than it stores data that needs more than 
8 bytes (long columns). For this reason, my script updates one of the rows in the new tables 
so that none of the columns contains more than 8 bytes. The Employees_rowcompressed 
table is then enabled for row compression, and the Employees_uncompressed table is left 
 uncompressed. A metadata query examining pages allocated to each table is executed against 
each of the tables so that you can compare the sizes before and after row compression: 

USE AdventureWorks2008;

GO

IF EXISTS (SELECT * FROM sys.tables

        WHERE name = 'Employees_uncompressed')

           DROP TABLE Employees_uncompressed;

GO

SELECT e.BusinessEntityID, NationalIDNumber, JobTitle, 

        BirthDate, MaritalStatus, VacationHours, 

        FirstName, LastName

  INTO Employees_uncompressed

C07626249.indd   414 2/16/2009   1:34:41 PM



 Chapter 7 Special Storage 415

  FROM HumanResources.Employee e

   JOIN Person.Person p

        ON e.BusinessEntityID = p.BusinessEntityID;

GO

UPDATE Employees_uncompressed 

SET NationalIDNumber = '1111', 

        JobTitle = 'Boss',

        LastName = 'Gato'

WHERE FirstName = 'Ken'

AND LastName = 'Sánchez';

GO

ALTER TABLE dbo.Employees_uncompressed

   ADD CONSTRAINT EmployeeUn_ID 

       PRIMARY KEY (BusinessEntityID);

GO

SELECT OBJECT_NAME(object_id) as name,

        rows, data_pages, data_compression_desc

FROM sys.partitions p JOIN sys.allocation_units au

        ON p.partition_id = au.container_id

WHERE object_id = object_id('dbo.Employees_uncompressed');

IF EXISTS (SELECT * FROM sys.tables

        WHERE name = 'Employees_rowcompressed')

            DROP TABLE Employees_rowcompressed;

GO 

SELECT BusinessEntityID, NationalIDNumber, JobTitle, 

        BirthDate, MaritalStatus, VacationHours, 

        FirstName, LastName

  INTO Employees_rowcompressed 

  FROM dbo.Employees_uncompressed

GO

ALTER TABLE dbo.Employees_rowcompressed 

   ADD CONSTRAINT EmployeeR_ID 

       PRIMARY KEY (BusinessEntityID);

GO

ALTER TABLE dbo.Employees_rowcompressed

REBUILD WITH (DATA_COMPRESSION = ROW);

GO

SELECT OBJECT_NAME(object_id) as name,

        rows, data_pages, data_compression_desc

FROM sys.partitions p JOIN sys.allocation_units au

        ON p.partition_id = au.container_id

WHERE object_id = object_id('dbo.Employees_rowcompressed');

GO

 I’ll refer to the dbo.Employees_rowcompressed table again later in this section, or you can 
 examine it on your own as I discuss the details of compressed row storage. 

 Now we’ll start looking at the details of row compression, but keep these points in mind: 

■  Row compression is available only in SQL Server 2008 Enterprise and Developer 
editions. 

■  Row compression does not change the maximum row size of a table or index. 

C07626249.indd   415 2/16/2009   1:34:41 PM



416 Microsoft SQL Server 2008 Internals

■  Row compression cannot be enabled on a table with any columns defi ned as SPARSE. 

■  If a table or index has been partitioned, row compression can be enabled on all the 
partitions or on a subset of the partitions. 

New Row Format

 In Chapter 5, we looked at the format for storing rows that has been used since SQL Server 7.0 and 
is still used in SQL Server 2008 if you have not enabled compression. That format is  referred to as 
FixedVar format because it has a fi xed-length data section separate from a  variable-length data 
section. A completely new row format is introduced in SQL Server 2008 for storing  compressed 
rows, and this format is referred to as CD format. CD stands for ”column descriptor,” and that term 
refers to the fact that every column has description information contained in the row  itself. You 
might want to re-examine Figure 5-10 in Chapter 5 as a reminder of what the FixedVar  format 
looks like, and compare it to the new CD format. Figure 7-7 shows an abstraction of the CD 
 format. It’s diffi cult to be as specifi c as Figure 5-10 is because except for the Header, the number 
of bytes in each region is completely dependent on the data in the row.  

Header CD Region Short Data
Region

Long Data
Region

Special
Information

FIGURE 7-7 General structure of a CD record

 I’ll describe each of these sections in detail. 

Header  The row header is always a single byte and roughly corresponds to what I called 
Status Bits A in Chapter 5. The bits have the following meanings: 

 Bit 0 Indicates the type of record; it’s 1 for the new CD record format.  

 Bit 1 Indicates that the row contains versioning information. 

 Bits 2 through 4 Taken as a three-bit value, these bits indicate what kind of information is 
stored in the row. The possible values are the following: 

■  000—primary record 

 ■ 001—ghost empty record 

 ■ 010—forwarding record 

■  011—ghost data record  

■  100—forwarded record 

■  101—ghost forwarded record 

■  110—index record 

■  111—ghost index record 

C07626249.indd   416 2/16/2009   1:34:41 PM



 Chapter 7 Special Storage 417

 Bit 5 Indicates that the row contains a long data region (with values greater than 8 bytes in 
length). 

 Bit 6 - 7 Not used in SQL Server 2008. 

The CD Region  The CD region is composed of two parts. The fi rst part is either 1 or 2 bytes, 
indicating the number of short columns. If the most signifi cant bit of the fi rst byte is set to 0, 
then it is a 1-byte fi eld with a maximum value of 127. If there are more than 127  columns, 
then the most signifi cant bit is 1, and SQL Server uses 2 bytes to represent the number of 
 columns, which can be up to 32,767. 

 Following the 1 or 2 bytes for the number of columns is the CD array. The CD array uses four 
bits for each column in the table, to represent information about the length of the  column. 
Four bits can have 16 different possible values, but in SQL Server 2008, only 13 of them are 
used: 

■  0 (0x0) indicates that the corresponding column is NULL 

■  1 (0x1) indicates that the corresponding column is a 0-byte short value. 

■  2 (0x2) indicates that the corresponding column is a 1-byte short value. 

■  3 (0x3) indicates that the corresponding column is a 2-byte short value. 

■  4 (0x4) indicates that the corresponding column is a 3-byte short value. 

■  5 (0x5) indicates that the corresponding column is a 4-byte short value. 

■  6 (0x6) indicates that the corresponding column is a 5-byte short value. 

■  7 (0x7) indicates that the corresponding column is a 6-byte short value. 

■  8 (0x8) indicates that the corresponding column is a 7-byte short value. 

■  9 (0x9) indicates that the corresponding column is an 8-byte short value. 

■  10 (0xa) indicates that the corresponding column is long data value and uses no space 
in the short data region. 

■  11 (0xb) is used for columns of type bit with the value of 1. The corresponding column 
takes no space in the short data region.  

■  12 (0xc) indicates that the corresponding column is a 1-byte symbol, representing a 
value in the page dictionary. (I’ll talk about the dictionary in the section entitled “Page 
Compression,” later in this chapter). 

The Short Data Region  The short data region doesn’t need to store the length of each of the 
short data values because that information is available in the CD region. However, if there are 
hundreds of columns in the table, it can be expensive to access the last columns. To  minimize 
this cost, columns are grouped into clusters of 30 columns each and at the beginning of the 
short data region, there is an area called the short data cluster array. Each array entry is a 

C07626249.indd   417 2/16/2009   1:34:41 PM



418 Microsoft SQL Server 2008 Internals

 single-byte integer and indicates the sum of the sizes of all the data in the previous cluster in 
the short data region, so that the value is basically a pointer to the fi rst column of the cluster. 
The fi rst cluster of short data starts right after the cluster array, so no cluster offset is needed 
for it. There may not be 30 data columns in a cluster, however, because only columns with a 
length less than or equal to 8 bytes are stored in the short data region.  

 As an example, consider a row with 64 columns, and columns 5, 10, 15, 20, 25, 30, 40, 50, and 
60 are long data, and the others are short. The CD region contains the following: 

■  A single byte containing 64, the number of columns, in the CD region. 

■  A CD array of 4 * 64 bits, or 32 bytes, containing information about the length of each 
column. There are 55 entries with values indicating an actual data length for the short 
data, and 8 entries of 0xa, indicating long data. 

■  The short data region contains the following.  

❏  A short data cluster offset array containing the two values, each containing the 
length of a short data cluster. In this example, the fi rst cluster, which is all the 
short data in the fi rst 30 columns, has a length of 92, so the 92 in the offset  array 
indicates that the second cluster starts 92 bytes after the fi rst. The number of 
clusters can be calculated as (Number of columns – 1) /30. The maximum value 
for any entry in the cluster array is 240, if all 30 columns were short data of 
8 bytes in length. 

❏  All the short data values. 

 Figure 7-8 illustrates the CD region and the short data region with sample data for the row 
described previously. The CD array is shown in its entirety, with a symbol indicating the length 
of each of the 64 values. So the array can fi t on a page of this book, the actual data values are 
not shown. The fi rst cluster has 24 values in the short data region (6 are long values), the  second 
cluster has 27 (3 are long) and the third cluster has the remaining 4 columns (all short). I’ll 
 discuss the storage of the long values next. 

CD Region

Number
of

columns

Length of short
data in each 30-
column cluster
(N–1)/30 values

CD array --64 4-bit values
(’a’ indicates long column) Three clusters of

actual data

24
values

10692 27
values

4
values

Short Data Region

3285a4358a6543a3456a6666a5463a
254372644a745269277a463495736a

5433N = 64

FIGURE 7-8 The CD region and short data region in a CD record

 To locate the entry for a short column value in the short data region, the short data cluster 
array is fi rst examined to determine the start address of the containing cluster for the column 
in the short data region. 

C07626249.indd   418 2/16/2009   1:34:41 PM



 Chapter 7 Special Storage 419

The Long Data Region  Any data in the row longer than 8 bytes is stored in the long data 
region. This includes complex columns, which do not contain actual data but rather contain 
information necessary to locate data stored off the row. This can include large  object data 
and row overfl ow data pointers. Unlike short data, where the length can be stored  simply in 
the CD array, long data needs an actual offset value to allow SQL Server to  determine the 
location of each value. This offset array looks very similar to the offset array I talked about in 
Chapter 5 for the FixedVar records.  

 The long data region is composed of three parts: an offset array, a long data cluster array, 
and the long data.  

 The offset array is composed of the following: 

■  A 1-byte header. In SQL Server 2008, only the fi rst two bits are used. Bit 0 indicates if 
the long data region contains any 2-byte offset values, and in SQL Server 2008, this 
value is always 1, as all offsets are always 2 bytes. Bit 1 indicates if the long data  region 
contains any complex columns.  

■  A 2-byte value indicating the number of offsets to follow. The most signifi cant bit in 
the fi rst byte of the offset value is used to indicate whether the corresponding entry in 
the long data region is a complex column or not. The rest of the bits/bytes in the array 
 entry store the ending offset value for the corresponding entry in the long data region. 

 The long data cluster array is similar to the cluster array for the short data and is used to limit 
the cost of fi nding columns near the end of a long list of columns. It has one entry for each 
30-column cluster (except the last one). Because we already have the offset of each long data 
column stored in the offset array, the cluster array just needs to keep track of how many of 
the long data values are in each cluster. Each value is a one-byte integer representing the 
number of long data columns in that cluster. Just as for the short data cluster, the number of 
entries in the cluster array can be computed as (Number of columns in the table – 1)/ 30. 

 Figure 7-9 illustrates the long data region for the row described previously, with 64 columns, 9 
of which are long. I have not actually included values for the offsets due to space considerations. 
The long data cluster array has two entries indicating that 6 of the values are in the fi rst cluster 
and 2 are in the second. The remaining values are in the last cluster.  

Offset Array Long Data

Long data 1

Long data 2

Long data 3

Long data 4

Long data 5

Long data 6

Long data 7

Long data 8

Long data 9

Long Data
Cluster Array

020901

Header # of
entries

Offset
entries

Number of entries in
each 30-column

cluster
(N−1)/30 values

06

FIGURE 7-9 The long data region of a CD record

C07626249.indd   419 2/16/2009   1:34:41 PM



420 Microsoft SQL Server 2008 Internals

Special Information  The end of the row contains three optional pieces of information. 
The existence of any or all of this information is indicated by bits in the 1-byte header at the 
very beginning of the row. The three special areas are the following: 

■ Forwarding Pointer This value is used when a heap contains a forwarding stub 
that points to a new location to which the original row has been moved. Forwarding 
 pointers were discussed in Chapter 5. The forwarding pointer contains three header 
bytes and an 8-byte Row ID. 

■ Back Pointer This value is used in a row that has been forwarded to indicate the 
 original location of the row. It is stored as an 8-byte Row ID. 

■ Versioning Info When a row is modifi ed under Snapshot isolation, SQL Server adds 
14 bytes of versioning information to the row. Row versioning and Snapshot isolation is 
discussed in Chapter 10.  

Now let’s look at the actual bytes in two of the rows in the dbo.Employees_rowcompressed 
table created previously. The DBCC PAGE command has been enhanced to give additional 
information about compressed rows and pages. In particular, before the bytes for the row are 
shown, DBCC PAGE will display the CD array. For the fi rst row returned on the fi rst page in 
the dbo.Employees_rowcompressed table, all the columns contain short data. The row has the 
following data values: 

For short data, the CD array contains the actual length of each of the columns, and we can 
see the following information for the fi rst row in the DBCC PAGE output:  

CD array entry = Column 1 (cluster 0, CD array offset 0): 0x02 (ONE_BYTE_SHORT)

CD array entry = Column 2 (cluster 0, CD array offset 0): 0x09 (EIGHT_BYTE_SHORT)

CD array entry = Column 3 (cluster 0, CD array offset 1): 0x09 (EIGHT_BYTE_SHORT)

CD array entry = Column 4 (cluster 0, CD array offset 1): 0x04 (THREE_BYTE_SHORT)

CD array entry = Column 5 (cluster 0, CD array offset 2): 0x03 (TWO_BYTE_SHORT)

CD array entry = Column 6 (cluster 0, CD array offset 2): 0x02 (ONE_BYTE_SHORT)

CD array entry = Column 7 (cluster 0, CD array offset 3): 0x07 (SIX_BYTE_SHORT)

CD array entry = Column 8 (cluster 0, CD array offset 3): 0x09 (EIGHT_BYTE_SHORT)

So the fi rst column has a CD code of 0x02, which indicates a 1-byte value, and, as we see 
in the data row, is the integer 1. The second column contains an 8-byte value and is the 
Unicode string 1111. I’ll leave it to you to inspect the code for the remaining columns.  

Figure 7-10 shows the DBCC PAGE output for the row contents, and I have indicated the 
meaning of the different bytes.

CD array entry = Column 1 (cluster 0, CD array offset 0): 0x02 (ONE_BYTE_SHORT)

CD array entry = Column 2 (cluster 0, CD array offset 0): 0x09 (EIGHT_BYTE_SHORT)

CD array entry = Column 3 (cluster 0, CD array offset 1): 0x09 (EIGHT_BYTE_SHORT)

CD array entry = Column 4 (cluster 0, CD array offset 1): 0x04 (THREE_BYTE_SHORT)

CD array entry = Column 5 (cluster 0, CD array offset 2): 0x03 (TWO_BYTE_SHORT)

CD array entry = Column 6 (cluster 0, CD array offset 2): 0x02 (ONE_BYTE_SHORT)

CD array entry = Column 7 (cluster 0, CD array offset 3): 0x07 (SIX_BYTE_SHORT)

CD array entry = Column 8 (cluster 0, CD array offset 3): 0x09 (EIGHT_BYTE_SHORT)

C07626249.indd   420 2/16/2009   1:34:41 PM



 Chapter 7 Special Storage 421

Record�Memory�Dump�for�first�row�from�DBCC�PAGE:Record�Memory�Dump�for�first�row�from�DBCC�PAGE:
�
01089249�23978131�00310031�00310042�†..’I#—.1.1.1.1.B
006f0073�007300c4�e90a5300�e34b0065�†.o.s.s.Äé.S.ãK.e
006e0047�00610074�006f00†††††††††††††.n.G.a.t.o.

Row expansion with byte swapping:Row expansion with byte swapping:

New record
format

8 columns

CD array 
4 bits
per column

Col 1
= +1

Col 2 = ‘1111’

01 08 2994 3279 81 00 31003100 310031 00

Col 3 = ‘Boss’ Col 4
(date)

Col 6
= +99

Col 5
= ‘S’

42006f00 730073 c4 e90a 0053 e3 004b00

Col 7 = ‘Ken’ Col 8 = ‘Gato’

65006e 00 47006100 74006f

FIGURE 7-10 A compressed row with eight short data columns

 The second row returned on the fi rst page has a few long columns in the following data 
values:  

The CD array for this row looks like the following: 

CD array entry = Column 1 (cluster 0, CD array offset 0): 0x02 (ONE_BYTE_SHORT)

CD array entry = Column 2 (cluster 0, CD array offset 0): 0x0a (LONG)     

CD array entry = Column 3 (cluster 0, CD array offset 1): 0x0a (LONG)     

CD array entry = Column 4 (cluster 0, CD array offset 1): 0x04 (THREE_BYTE_SHORT)

CD array entry = Column 5 (cluster 0, CD array offset 2): 0x03 (TWO_BYTE_SHORT)

CD array entry = Column 6 (cluster 0, CD array offset 2): 0x02 (ONE_BYTE_SHORT)

CD array entry = Column 7 (cluster 0, CD array offset 3): 0x0a (LONG)     

CD array entry = Column 8 (cluster 0, CD array offset 3): 0x0a (LONG)     

Note that four of the eight columns are long data values. 

Figure 7-11 shows the bytes that DBCC PAGE returns for this second data row.  

Record�Memory�Dump
6294C08B:���2108a24a�23aa8256�ed0a5300�81010400�†!.¢J#ª‚Ví.S.....
6294C09B:���12004c00�56006000�32003400�35003700�†..L.V.`.2.4.5.7.
6294C0AB:���39003700�39003600�37005600�69006300�†9.7.9.6.7.V.i.c.
6294C0BB:���65002000�50007200�65007300�69006400�†e.�.P.r.e.s.i.d.
6294C0CB:���65006e00�74002000�6f006600�20004500�†e.n.t.�.o.f.�.E.
6294C0DB:���6e006700�69006e00�65006500�72006900�†n.g.i.n.e.e.r.i.
6294C0EB:���6e006700�54006500�72007200�69004400�†n.g.T.e.r.r.i.D.

FIGURE 7-11 A compressed row with four short data columns and four long

CD array entry = Column 1 (cluster 0, CD array offset 0): 0x02 (ONE_BYTE_SHORT)

CD array entry = Column 2 (cluster 0, CD array offset 0): 0x0a (LONG)    

CD array entry = Column 3 (cluster 0, CD array offset 1): 0x0a (LONG)    

CD array entry = Column 4 (cluster 0, CD array offset 1): 0x04 (THREE_BYTE_SHORT)

CD array entry = Column 5 (cluster 0, CD array offset 2): 0x03 (TWO_BYTE_SHORT)

CD array entry = Column 6 (cluster 0, CD array offset 2): 0x02 (ONE_BYTE_SHORT)

CD array entry = Column 7 (cluster 0, CD array offset 3): 0x0a (LONG)    

CD array entry = Column 8 (cluster 0, CD array offset 3): 0x0a (LONG)    

C07626249.indd   421 2/16/2009   1:34:41 PM



422 Microsoft SQL Server 2008 Internals

 I have highlighted the bytes in the long data region. Here are some things to notice in the 
fi rst part of the row, before the long data region: 

■  The fi rst byte in the row is 0x21, indicating that not only is this row in the new CD record 
format, but also that the row contains a long data region. 

■  The second byte indicates there are eight columns in the table, just as for the fi rst row. 

■  The following 8 bytes for the CD array has four values of a, which indicate a long value 
not included in the short data region.  

■  The short data values are listed in order after the CD array and are as follows: 

❏  The BusinessEntityID is 1 byte, with the value 0x82, or +2 

❏  The Birthdate is 3 bytes 

❏  The MaritalStatus is 1 byte, with the value 0x0053, or ‘S’ 

❏  The VacationHours is 1 byte, with the value 0x81, or +1 

 The Long Data Region Offset Array is 10 bytes long, with the following interpretation: 

■  The fi rst byte is 0x01, which indicates that the row-offset positions are 2 bytes long. 

■  The second byte is 0x04, which indicates there are four columns in the long data 
region. 

■  The next 8 bytes are the 2-byte offsets for each of the four values. Note that the offset 
refers to position the column ends with the Long Data area itself.  

❏  The fi rst 2-byte offset is 0x0012, or 18. This indicates that the fi rst long value is 
18 bytes long. (It is Unicode string of 9 characters, 245797967, which would need 
18 bytes.)  

❏  The second 2-byte offset is 0x004c, or 76, which indicates that the second 
long value ends 58 bytes after the fi rst. The second value is Vice President of 
Engineering, which is a 29-byte Unicode string.  

❏  The third 2-byte offset is 0x0056, or 86, which indicates the third value, Terri, is 
10 bytes long.  

❏  The fourth 2-byte offset is 0x0060, or 96, which indicates the fourth value, Duffy, 
is 10 bytes long.  

 Because there are fewer than 30 columns, there is no Long Data Cluster Array, and the data 
values are stored immediately after the Long Data Region Offset Array. 

 Due to space constraints, I won’t show you the details of a row with multiple column clusters 
(that is, more than 30 columns), but hopefully you have enough information to start exploring 
such rows on your own. 

C07626249.indd   422 2/16/2009   1:34:41 PM

v@v
Text Box
Download at Wow! eBook



 Chapter 7 Special Storage 423

Page Compression

 In addition to storing rows in a compressed format to minimize the space required, SQL 
Server 2008 can compress whole pages by isolating and reusing repeating patterns of bytes 
on the page.  

 Unlike row compression, page compression is applied only once a page is full, and if SQL 
Server determines that compressing the page saves a meaningful amount of space. (I’ll 
 elaborate on what that amount is later in this section.) You should keep the following points 
in mind when planning for page compression: 

■  Page compression is available only in the SQL Server 2008 Enterprise and Developer 
editions. 

■  Page compression always includes row compression. (That is, if you enable page 
 compression for a table, row compression is automatically enabled.)   

■  When compressing a B-tree, only the leaf level can be page-compressed. For performance 
reasons, the node levels are left uncompressed.  

■  If a table or index has been partitioned, page compression can be enabled on all the 
partitions, or a subset of the partitions. 

■  Page compression is not maintained as new rows are added. The page compression 
 algorithm must be reapplied to an entire page and is done only when SQL Server  determines 
that doing so brings benefi ts. Again, we’ll see details about this later in this section. 

 The code here makes another copy of the dbo.Employees table and applies page  compression 
to it. It then captures the page location and linkage information from DBCC IND, for the 
three tables: dbo.Employees_uncompressed, dbo.Employees_rowcompressed, and dbo.
Employees_pagecompressed. The code then uses the captured information to report on the 
number of data pages in each of the three tables:  

IF EXISTS (SELECT * FROM sys.tables

 WHERE name = 'Employees_pagecompressed')

  DROP TABLE Employees_pagecompressed;

GO

SELECT BusinessEntityID, NationalIDNumber, JobTitle, 

        BirthDate, MaritalStatus, VacationHours, 

        FirstName, LastName

  INTO Employees_pagecompressed 

  FROM dbo.Employees_uncompressed

GO  

ALTER TABLE dbo.Employees_pagecompressed  

   ADD CONSTRAINT EmployeeP_ID 

       PRIMARY KEY (BusinessEntityID);

GO

ALTER TABLE dbo.Employees_pagecompressed 

REBUILD WITH (DATA_COMPRESSION = PAGE);

GO

SELECT OBJECT_NAME(object_id) as name,

  rows, data_pages, data_compression_desc

C07626249.indd   423 2/16/2009   1:34:41 PM



424 Microsoft SQL Server 2008 Internals

FROM sys.partitions p JOIN sys.allocation_units au

  ON p.partition_id = au.container_id

WHERE object_id = object_id('dbo.Employees_pagecompressed');

GO

TRUNCATE TABLE sp_table_pages;

GO

INSERT INTO sp_tablepages 

   EXEC ('DBCC IND(AdventureWorks2008, Employees_pagecompressed, -1)');

INSERT INTO sp_tablepages

   EXEC ('DBCC IND(AdventureWorks2008, Employees_rowcompressed, -1)');

INSERT INTO sp_tablepages

   EXEC ('DBCC IND(AdventureWorks2008, Employees_uncompressed, -1)');

GO 

SELECT OBJECT_NAME(ObjectID), count(*) as NumPages

FROM sp_tablepages

WHERE pagetype = 1

GROUP BY OBJECT_NAME(ObjectID);

GO

 If you run this script, note in the output that row compression did not reduce the size of this 
small table, but page compression shrank the table from fi ve data pages to three.  

 SQL Server can perform two different operations to try to compress a page using common 
values: column prefi x compression and dictionary compression.  

Column Prefi x Compression

 As the name implies, column prefi x compression works on columns of data in the table 
 being compressed, but it looks only at the column values on a single page. For each column, 
SQL Server chooses a common prefi x that can be used to reduce the storage space required 
for values in that column. The longest value in the column that contains that prefi x is chosen 
as the anchor value. Each column is then stored not as the actual data value but as a delta 
from the anchor value. An example is probably needed to clarify this. Suppose that we have 
the following character values in a column of the table to be page-compressed: 

DEEM

DEE

FFF

DEED

DEE

DAN

 SQL Server might note that DEE is a useful common prefi x, so DEED is chosen as the anchor 
value. Each column would be stored as the difference between its value and the anchor value. 
This difference is stored as a two-part value: the number of characters from the anchor to use, 
and the additional characters to append. So DEEM is stored as <3><M>, meaning the value 
uses the fi rst three characters from the common prefi x and appends a single  character, M, to 
it. DEED is stored as an empty string (but not null) to indicate it matched the prefi x exactly. 
DEE is stored as <3>, with the second part empty, because there are no additional characters 
to be appended. The list of column values is replaced by the values shown here:  

C07626249.indd   424 2/16/2009   1:34:41 PM



 Chapter 7 Special Storage 425

DEEM -> <3><M>

DEE -> <3><>

FFF -> <><FFF>

DEED -> <><>

DEE -> <3><>

DAN -> <1><AN>

 Keep in mind that the compressed row is stored in the CD record format, so the CD array 
value has a special encoding to indicate the value is actually NULL. If the replacement value is 
<><>, and the encoding doesn’t indicate NULL, then the value matches the prefi x exactly.  

 SQL Server applies the prefi x detection and value replacement algorithm to every column 
and creates a new row called an anchor record to store the anchor values for each column. If 
no useful prefi x can be found, the value in the anchor record is NULL, and then all the values 
in the column are stored just as they are.  

 Figure 7-12 shows an image of six rows in a table prior to page compression, and then shows 
the six rows after the anchor record has been created and the substitutions have been made 
for the actual data values. 

ABCD

ABD

ABC

AAN

NULL

ADE

DEEM

DEE

FFF

DEED

DEE

DAN

ABC

DEE

GHI

HHH

KLM

NOP

Original Data

ABCD

<><>

<2><D>

<3><>

<1><AN>

NULL

<1><DE>

DEED

<3><>

<3><M>

<><FFF>

<><>

<3><>

<1><AN>

NULL

ABC

DEE

GHI

HHH

KLM

NOP

Anchor Record

Data After Column Prefix Compression

FIGURE 7-12 Before and after column prefi x compression

C07626249.indd   425 2/16/2009   1:34:41 PM



426 Microsoft SQL Server 2008 Internals

Dictionary Compression

 After prefi x compression has been applied to every column individually, the second phase 
of page compression looks at all values on the page to fi nd duplicates in any column of any 
row, even if they have been encoded to refl ect prefi x usage. You can see in the bottom part 
of Figure 7-11 that two of the values occur multiple times: <3><> occurs three times and 
<1><AN> occurs twice. The process of detecting duplicate values is datatype-agnostic, so 
values in completely different columns could be the same in their binary representation. For 
example, a 1-byte character is represented in hex as 0x54, and it would be seen as a  duplicate 
of the 1-byte integer 84, which is also represented in hex as 0x54. The  dictionary is stored as 
a set of symbols, each of which corresponds to a duplicated value on the data page. Once the 
symbols and data values have been determined, each occurrence of one of the duplicated 
values is replaced by the symbol. SQL Server recognizes that the value actually stored in the 
column is a symbol and not a data value by examining the encoding in the CD array. Values 
which have been replaced by symbols have a CD array value of 0xc. Figure 7-13 shows the 
data from Figure 7-12 after replacing the fi ve values with symbols.  

<><>

<2><D>

[S2]

[S1]

NULL

<1><DE>

<3><M>

[S2]

<><FFF>

<><>

[S2]

[S1]

ABC

DEE

GHI

HHH

KLM

NOP

Dictionary of Symbols:
[S1] = <1><AN>  [S2] = <3><>

FIGURE 7-13 A page compressed with dictionary compression

 Not every page in a compressed table has both an anchor record for prefi xes and a dictionary. 
If there are no useful prefi x values, the page might just have a dictionary. If no values repeat 
often enough that replacing them with symbols saves space, the page might just have an 
anchor record. And, of course, there may be pages that have neither an anchor record nor a 
dictionary, if there are no patterns at all in the data on the page. 

Physical Storage

 There is only one main structural change to a page when it is page-compressed. SQL 
Server adds a hidden row right after the page header (at byte offset 96, or 0x60) called the 
 compression information (CI) record. The structure of the CI record is shown in Figure 7-14. 

Header PageModCount Offsets Anchor Record Dictionary

FIGURE 7-14 Structure of a CI record

C07626249.indd   426 2/16/2009   1:34:41 PM



 Chapter 7 Special Storage 427

 The CI record does not have an entry in the slot array for the page, but it is always 
at the same location. In addition, a bit in the page header indicates that the page is 
 page- compressed, so SQL Server looks for the CI record. If you use DBCC PAGE to dump 
a page, the page header information contains a value called m_typeFlagBits. If this value is 
0x80, the page is compressed. 

 The following script can be run if you have already created the table called sp_tablepages, 
described earlier in this chapter. This script captures the DBCC IND information from the 
tables created in this section: Employees_uncompressed, Employees_rowcompressed, and 
Employees_pagecompressed. The script then displays the fi rst data page number for each of 
the tables. You can use this information to examine the page with DBCC PAGE. Note that 
only the page for Employees_pagecompressed has the m_typeFlagBits value set to 0x80:  

 USE AdventureWorks2008;

GO

TRUNCATE TABLE sp_tablepages;
GO

INSERT INTO sp_tablepages 
   EXEC ('DBCC IND(AdventureWorks2008, Employees_pagecompressed, -1)');

GO  

INSERT INTO sp_tablepages   
   EXEC ('DBCC IND(AdventureWorks2008, Employees_rowcompressed, -1)');

GO

INSERT INTO sp_tablepages
   EXEC ('DBCC IND(AdventureWorks2008, Employees_uncompressed, -1)');

GO 

SELECT OBJECT_NAME(ObjectID), PageFID, PagePID

FROM sp_tablepages
WHERE pagetype = 1

  AND PrevPagePID = 0;

GO   

DBCC TRACEON(3604);

GO 

 Using DBCC PAGE to look at a page-compressed page does provide information about the 
contents of the CI record, and we’ll look at some of that information after we examine what 
each of the sections means, which is discussed next. 

Header  The header is a 1-byte value keeping track of information about the CI. Bit 0 
 indicates the version, which in SQL Server 2008 is always 0. Bit 1 indicates whether the CI has 
an anchor record, and bit 2 indicates whether the CI has a dictionary. The rest of the bits are 
unused. 

C07626249.indd   427 2/16/2009   1:34:41 PM



428 Microsoft SQL Server 2008 Internals

PageModCount  The PageModCount value keeps track of the changes to this  particular 
page and is used when determining whether the compression on the page should be 
 reevaluated, and a new CI record built. I’ll talk more about how this value is used in the next 
section, when I discuss page compression analysis. 

Offsets  The offsets contain values to help SQL Server fi nd the dictionary. It contains a value 
indicating the page offset for the end of the anchor record and a value indicating the page 
offset for the end of the CI record itself.  

Anchor Record  The anchor record looks exactly like a regular CD record on the page, 
 including the record header, the CD array, and both a short data area and a long data area. 
The values stored in the data area are the common prefi x values for each column, some of 
which might be NULL.  

Dictionary  The dictionary area is composed of three sections. The fi rst is a 2-byte fi eld 
containing a numeric value representing the number of entries in the dictionary. The  second 
section is an offset array of 2-byte entries, indicating the end offset of each dictionary  entry 
relative to the start of the dictionary data section. The third section contains the actual 
 dictionary data entries. 

 Remember that each dictionary entry is a byte string that is replaced in the regular data 
rows by a symbol. The symbol is simply an integer value from 0 to N. In addition, remember 
that the byte strings are datatype-independent; that is, they are just bytes. After SQL Server 
determines what recurring values are stored in the dictionary, it sorts the list fi rst by data 
length, then by data value, and then assigns the symbols in order. So suppose that the values 
to be stored in the dictionary are these: 

0x 53 51 4C

0x FF F8

0x DA 15 43 77 64

0x 34 F3 B6 22 CD

0x 12 34 56  

 Table 7-8 shows the sorted dictionary, along with the length and symbol for each entry. 

TABLE 7-8 Values in a Page Compression Dictionary 

 Value Length Symbol

 0x FF F8 2 bytes 0

 0x 12 34 56 3 bytes 1

 0x 53 51 4C 3 bytes 2

 0x 34 F3 B6 22 CD 4 bytes 3

 0x DA 15 43 77 64 4 bytes 4

Value Length Symbol

C07626249.indd   428 2/16/2009   1:34:41 PM



 Chapter 7 Special Storage 429

 The dictionary area would then look like Figure 7-15. 

Header Offsets Dictionary

02 005

05 00

0x FF F8

0x 12 34 56

0x 53 51 4C

0x 34 F3 B6 22 CD

0x DA 15 43 77 64

08 00

0D 00

12 00

FIGURE 7-15 The dictionary area in a Compression Information Record

 Note that the dictionary never actually stores the symbol values. They are stored only in the 
data records that need to use the dictionary. Because they are simply integers, they can be 
used as an index into the offset list to fi nd the appropriate dictionary replacement value. For 
example, if a row on the page contains the dictionary symbol [2], SQL Server looks in the 
offset list for the third entry, which in Figure 7-14 ends at offset 0800 from the start of the 
dictionary. SQL Server then fi nds the value that ends at that byte, which is 0x 53 51 4C. If this 
byte string was stored in a char or varchar column (that is, a single-byte character string), it 
would correspond to the character string SQL.  

 I illustrated earlier in this chapter that the DBCC PAGE output shows you the CD array for 
compressed rows. For compressed pages, DBCC PAGE shows the CI record and details about 
the anchor record within it. In addition, with format 3, DBCC PAGE shows details about 
the dictionary entries. When I captured the DBCC PAGE in format 3 for the fi rst page of 
my Employees_pagecompressed table and copied it to a Microsoft Offi ce Word document, 
it needed 261 pages. Needless to say, I will not show you all that output. Even when I just 
 copied the CI record information, it took 7 pages, which is still too much to show in this book. 
I’ll leave it to you to explore the output of DBCC PAGE for the tables with compressed pages. 

Page Compression Analysis

 In this section, I discuss some of the details regarding how SQL Server determines whether to 
compress a page or not and what values it uses for the anchor record and the dictionary. Row 
compression is always performed when requested, but page compression depends on the 
amount of space that can be saved. However, the actual work of compressing the rows has to 
wait until page compression has been performed. Because both types of page compression, 
prefi x substitution and dictionary symbol substitution, replace the actual data values with 
encodings, the row cannot be compressed until SQL Server determines what encodings are 
going to replace the actual data.  

C07626249.indd   429 2/16/2009   1:34:41 PM



430 Microsoft SQL Server 2008 Internals

 When page compression is fi rst enabled for a table or partition, SQL Server goes through 
every full page to determine the possible space savings. (Any pages that are not full are not 
considered for compression.) This compression analysis actually creates the anchor  record, 
modifi es all the columns to refl ect the anchor values, and generates the dictionary. Then 
it compresses each row. If the new compressed page can hold at least fi ve more rows, or 
25 percent more rows than the current page (whichever is larger), then the compressed 
page replaces the uncompressed page. If compressing the page does not result in this much 
 savings, the compressed page is discarded. 

 When determining what values to use for the anchor record on a compressed page, SQL 
Server needs to look at every byte in every row, one column at a time. As it scans the column, 
it also keeps track of possible dictionary entries (which can be used in multiple columns). The 
anchor record values can be determined for each column in a single pass; that is, by the time 
all the bytes in all the rows for the fi rst column are examined once, SQL Server has determined 
the anchor record value for that column or it has determined that no anchor record value will 
save suffi cient space.  

 As SQL Server examines each column, it collects a list of possible dictionary entries. As we’ve 
discussed, the dictionary contains values that occur enough times on the page so that replacing 
them with a symbol is cost-effective in terms of space. For each possible dictionary entry, SQL 
Server keeps track of the value, its size, and the count of occurrences. If (size_of_data_value –1) 
* (count–1) –2 is greater than zero, it means the dictionary replacement saves space, and the 
value is considered eligible for the dictionary. In general, SQL Server tries to keep no more than 
300 entries in the dictionary, so if more dictionary entries are possible, they are sorted by count 
during the analysis and only the most frequently occurring values are used in the dictionary. 

Rebuilding the CI Record

 If a table is enabled for either page or row compression, new rows are always compressed 
 before they are inserted into the table. However, the CI record containing the anchor  record 
and the dictionary is rebuilt on an all-or-nothing basis; that is, SQL Server does not just 
add some new entry to the dictionary when new rows are inserted. SQL Server evaluates 
whether to rebuild the CI record when the page has been changed a suffi cient number of 
times. It keeps track of changes to each page in the PageModCount fi eld of the CI record, 
and that  value is updated every time a row is inserted, updated, or deleted. If a full page is 
 encountered during a data modifi cation operation, SQL Server examines the PageModCount 
value. If the PageModCount value is greater than 25, or if the value PageModCount/<number 
of rows on the page> is greater than 25 percent, SQL Server applies the compression analysis 
as it does when it fi rst compresses a page. Only if it is determined that recompressing the 
page makes room for at least fi ve more rows (or 25 percent more rows than the current page) 
does the new compressed page replace the old page.  

 There are some important differences between compression of pages in a B-tree and 
 compression of pages in a heap. 

C07626249.indd   430 2/16/2009   1:34:41 PM



 Chapter 7 Special Storage 431

Compression of B-tree Pages  For B-trees, only the leaf level is page-compressed. When 
inserting a new row into a B-tree, if the compressed row fi ts on the page, it is inserted, and 
nothing more is done. If it doesn’t fi t, SQL Server tries to recompress the page, according to 
the conditions described in the preceding section. If the recompression succeeded, it means 
that the CI record changed, so the new row must be recompressed and then SQL Server 
tries to insert it into the page. Again, if it fi ts, it is simply inserted. If the new compressed row 
doesn’t fi t on the page, even after possibly recompressing the page, the page needs to be 
split. When splitting a compressed page, the CI record is copied to a new page, exactly as is, 
except that the PageModCount value is set to 25. This means that the fi rst time the page gets 
full, it gets a full analysis to determine if it should be recompressed. B-tree pages are also 
checked for possible recompression during index rebuilds (either online or offl ine) and during 
shrink operations.  

Compression of Heap Pages  Pages in a heap are checked for possible compression only 
 during rebuild and shrink operations. (Note that SQL Server 2008 provides an option to rebuild 
a table and specify a compression level for just this reason.) Also, if you drop a clustered index 
on a table so that it becomes a heap, SQL Server runs compression analysis on any full pages. 
To make sure that the RowID values stay the same, heaps are not recompressed during normal 
data modifi cation operations. Although the PageModCount value is maintained, SQL Server 
never tries to recompress a page based on the PageModCount value. 

Compression Metadata

 There is not an enormous amount of metadata information relating to data compression. 
The catalog view sys.partitions has a data_compression column and a data_compression_desc 
column. The data_compression column has possible values of 0, 1, and 2, corresponding to 
data_compression_desc values of NONE, ROW, and PAGE. Keep in mind that although row 
compression is always performed, page compression is not. Even if sys.partitions indicates that 
a table or partition is page-compressed, that just means that page compression is enabled. 
Each page is analyzed individually, and if a page is not full, or if compression would not save 
enough space, the page is not compressed. 

 You can also inspect the dynamic management function sys.dm_db_index_operational_stats. 
This table-valued function returns the following compression-related columns:  

■  page_compression_attempt_count The number of pages that were evaluated for 
PAGE-level compression for specifi c partitions of a table, index, or indexed view. 
Includes pages that were not compressed because signifi cant savings could not be 
achieved. 

■  page_compression_success_count The number of data pages that were compressed 
by using PAGE compression for specifi c partitions of a table, index, or indexed view. 

 SQL Server 2008 also provides a stored procedure called sp_estimate_data_compression_savings, 
which can give you some idea of whether compression provides a large space savings or not. 

C07626249.indd   431 2/16/2009   1:34:41 PM



432 Microsoft SQL Server 2008 Internals

This procedure samples up to 5,000 pages of the table and creates an equivalent table with the 
sampled pages in tempdb. Using this temporary table, SQL Server can estimate the new table 
size for the requested compression state (NONE, ROW, or PAGE). Compression can be evaluated 
for whole tables or parts of tables. This includes heaps, clustered indexes, nonclustered indexes, 
indexed views, and table and index partitions.  

 Keep in mind that the result is only an estimate and your actual savings can vary widely 
based on the fi llfactor and the size of the rows. If the procedure indicates that you can 
 reduce your row size by 40 percent, you might not actually get a 40-percent space savings 
for the whole table. For example, if you have a row that is 8,000 bytes long and you reduce 
its size by 40 percent, you still can fi t only one row on a data page and your table still needs 
the same number of pages. 

 You may get results from running sp_estimate_data_compression_savings that indicate that the 
table will grow. This can happen when many rows in the table use almost the whole maximum 
size of the data types, and the addition of the overhead needed for the compression information 
is more than the savings from compression.  

 If the table is already compressed, you can use this procedure to estimate the size of the 
table (or index) if it were to be uncompressed. 

Performance Issues

 The main motivation for compressing your data is to save space with extremely large tables, 
such as data warehouse fact tables. A second goal is to increase performance when scanning 
a table for reporting purposes, because far fewer pages need to be read. You need to keep 
in mind that compression comes at a cost: there is a tradeoff between the space savings and 
the extra CPU overhead to compress the data for storage and then uncompress the data 
when it needs to be used. On a CPU-bound system, you may fi nd that compressing your data 
can actually slow down your system considerably.  

 Page compression provides the most benefi t for systems that are I/O-bound, with tables for 
which the data is written once and then read repeatedly, as in the situations I mentioned 
in the previous paragraph: data warehousing and reporting. For environments with heavy 
read and write activity, such as OLTP applications, you might want to consider enabling row 
 compression only and avoid the costs of analyzing the pages and rebuilding the CI record. 
In this case, the CPU overhead is minimal. In fact, row compression is highly optimized so 
that it is visible only at the storage engine layer. The relational engine (query processor) 
doesn’t need to deal with compressed rows at all. The relational engine sends uncompressed 
rows to the storage engine, which compresses them if required. When returning rows to the 
 relational engine, the storage engine waits as long as it can before uncompressing them. In 
the storage engine, comparisons can be done on compressed data, as internal  conversions 
can convert a data type to its compressed form before comparing to data in the table. In 
addition, only columns requested by the relational engine need to be uncompressed, as 
 opposed to uncompressing an entire row. 

C07626249.indd   432 2/16/2009   1:34:41 PM



 Chapter 7 Special Storage 433

Compression and Logging  In general, SQL Server logs only uncompressed data because 
the log needs to be read in an uncompressed format. This means that logging changes 
to compressed records has a greater performance impact because each row needs to be 
 uncompressed and decoded (from the anchor record and dictionary) prior to writing to the 
log. This is another reason why compression gives you more benefi t on primarily read-only 
systems, where logging is minimal. 

 SQL Server writes compressed data to the log in a few situations. The most common situation 
is when a page is split. SQL Server writes the compressed rows as it logs the data movement 
during the split operation. 

Compression and the Version Store  I will be discussing the version store in Chapter 10, 
when I talk about Snapshot isolation, but I want to mention briefl y here how the version store 
interacts with compression. SQL Server can write compressed rows to the version store and 
the version store processing can traverse older versions in their compressed form. However, 
the version store does not support page compression, so the rows in the version store cannot 
contain encodings of the anchor record prefi xes and the page dictionary. So anytime any row 
from a compressed page needs to be versioned, the page must be uncompressed fi rst.  

 The version store is used for both varieties of Snapshot isolation (full snapshot and 
 read-committed snapshot) and is also used for storing the before-and-after images of 
changed data when triggers are fi red. (These images are visible in the logical tables  inserted 
and deleted.) You should keep this in mind when evaluating the costs of compression. 
Snapshot isolation has lots of overhead already, and adding page compression into the mix 
affects performance even more. 

Backup Compression

 I mentioned backup compression briefl y in Chapter 1, when discussing confi guration options. 
I believe it bears repeating that the algorithm used for compressing backups is very different 
than the database compression algorithms discussed in this chapter. Backup compression uses 
an algorithm very similar to zipping, where it is just looking for patterns in the data. Even after 
tables and indexes have been compressed using the data compression techniques, they still 
can be compressed further using the backup compression algorithms.  

 Page compression looks only for prefi x patterns, and it can still leave other patterns that are 
not compressed, including common suffi xes. Page compression eliminates redundant strings, 
but there still are plenty of strings in most cases that are not redundant, and string data 
 compresses very well using zip-type algorithms.  

 In addition, there is a fair amount of space in a database that constitutes overhead, such 
as unallocated slots on pages and unallocated pages in allocated extents. Depending on 
whether Instant File Initialization was used, and what was on the disk previously if it was, the 
background data can actually compress very well. 

 So making a compressed backup of a database that has many compressed tables and indexes 
can provide additional space savings for the backup set. 

C07626249.indd   433 2/16/2009   1:34:41 PM



434 Microsoft SQL Server 2008 Internals

Table and Index Partitioning

 As we’ve already seen when looking at the metadata for table and index storage,  partitioning 
is an integral feature of SQL Server space organization. Figure 5-7 in Chapter 5 illustrated 
the relationship between tables and indexes (hobts), partitions, and allocation units. Tables 
and indexes that are built without any reference to partitions are considered to be stored on a 
single partition. One of the more useful metadata objects for retrieving information about data 
 storage is the dynamic management view called sys.dm_db_partition_stats, which combines 
information found in sys.partitions, sys.allocation_units, and sys.indexes. 

 A partitioned object is one that is split internally into separate physical units that can be stored in 
different locations. Partitioning is invisible to the users and programmers, who can use T-SQL code 
to select from a partitioned table exactly the same way they select from a nonpartitioned table. 
Creating large objects on multiple partitions improves the manageability and maintainability of 
your database system and can greatly enhance the performance of activities such as purging 
historic data and loading large amounts of data. In SQL Server 2000, partitioning was available 
only by manually creating a view that combines multiple tables. That functionality is referred to 
as partitioned views. The SQL Server 2005 and SQL Server 2008 built-in partitioning of tables and 
indexes has many advantages over partitioned views, including improved execution plans and 
fewer prerequisites for implementation. 

 In this section, we focus primarily on physical storage of partitioned objects and the 
 partitioning metadata. In Chapter 8, ”The Query Optimizer,” we’ll examine query plans 
 involving partitioned tables and partitioned indexes.  

Partition Functions and Partition Schemes

 To understand the partitioning metadata, we need a little background into how partitions 
are defi ned. I will use an example based on the SQL Server samples. You can fi nd my script, 
called Partition.sql, on the companion Web site. This script defi nes two tables: TransactionHistory 
and TransactionHistoryArchive, along with a clustered index and two nonclustered indexes 
on each. Both tables are partitioned on the TransactionDate column, with each month of 
data in a separate partition. Initially, there are 12 partitions in TransactionHistory and 2 in 
TransactionHistoryArchive.  

 Before you create a partitioned table or index, you must defi ne a partition function. A  partition 
function is used to defi ne the partition boundaries logically. When a partition  function is 
 created, you must specify whether or not the partition will use a LEFT- or RIGHT-based 
 boundary point. Simply put, this defi nes whether the boundary value itself is part of the 
 left-hand or right-hand partition. Another way to consider this is to ask this question: Is it an 
upper boundary of one partition (in which case it goes to the LEFT), or a lower boundary point 
of the next partition (in which case it goes to the RIGHT)? The number of partitions created by a 
partition function with n boundaries will be n+1. Here is the partition function that we are using 
for this example: 

C07626249.indd   434 2/16/2009   1:34:41 PM



 Chapter 7 Special Storage 435

CREATE PARTITION FUNCTION [TransactionRangePF1] (datetime) 

AS RANGE RIGHT FOR VALUES ('20081001', '20081101', '20081201', 

               '20090101', '20090201', '20090301', '20090401',  

               '20090501', '20090601', '20090701', '20090801');

 Note that the table name is not mentioned in the function defi nition because the partition 
function is not tied to any particular table. The function TransactionRangePF1 divides the 
data into 12 partitions because there are 11 datetime boundaries. The keyword RIGHT specifi es 
that any value that equals one of the boundary points goes into the partition to the right of 
the endpoint. So for this function, all values less than October 1, 2008, go in the fi rst partition, 
and values greater than or equal to October 1, 2008, and less than November 1, 2008, go in 
the second partition. I could have also specifi ed LEFT (which is the default), in which case the 
value equal to the endpoint goes in the partition to the left. After you defi ne the partition 
function, you defi ne a partition scheme, which lists a set of fi legroups onto which each range 
of data is placed. Here is the partition schema for my example: 

CREATE PARTITION SCHEME [TransactionsPS1] 

AS PARTITION [TransactionRangePF1]  

TO ([PRIMARY], [PRIMARY], [PRIMARY] 

, [PRIMARY], [PRIMARY], [PRIMARY] 

, [PRIMARY], [PRIMARY], [PRIMARY] 

, [PRIMARY], [PRIMARY], [PRIMARY]); 

GO

 To avoid having to create 12 fi les and fi legroups, I have put all the partitions on the PRIMARY 
fi legroup, but for the full benefi t of partitioning, you should probably have each partition 
on its own fi legroup. The CREATE PARTITION SCHEME command must list at least as many 
fi legroups as there are partitions, but there can be one more. If one extra fi legroup is listed, 
it is considered the “next used” fi legroup. If the partition function splits, the new boundary 
point is added in the fi legroup used next. If you do not specify an extra fi legroup at the time 
you create the partition scheme, you can alter the partition scheme to set the next-used 
 fi legroup prior to modifying the function. 

 As you’ve seen, the listed fi legroups do not have to be unique. In fact, if you want to have all 
the partitions on the same fi legroup, as I do here, there is a shortcut syntax: 

CREATE PARTITION SCHEME [TransactionsPS1] 

AS PARTITION [TransactionRangePF1]  

ALL TO ([PRIMARY]); 

GO

 Note that putting all the partitions on the same fi legroup is usually just done for the purpose 
of testing your code.  

 Additional fi legroups are used in order as more partitions are added, which can happen 
when a partition function is altered to split an existing range into two. If you do not specify 
extra fi legroups at the time you create the partition scheme, you can alter the partition 
scheme to add another fi legroup.  

C07626249.indd   435 2/16/2009   1:34:41 PM



436 Microsoft SQL Server 2008 Internals

 The partition function and partition scheme for a second table are shown here: 

CREATE PARTITION FUNCTION [TransactionArchivePF2] (datetime)  

AS RANGE RIGHT FOR VALUES ('20080901'); 

GO 

 

CREATE PARTITION SCHEME [TransactionArchivePS2] 

AS PARTITION [TransactionArchivePF2] 

TO ([PRIMARY], [PRIMARY]); 

GO

 My script then creates two tables and loads data into them. I will not include all the  details 
here. To partition a table, you must specify a partition scheme in the CREATE TABLE  statement. 
I create a table called TransactionArchive that includes this line as the last part of the 
CREATE TABLE statement as follows:  

ON [TransactionsPS1] (TransactionDate)

 My second table, TransactionArchiveHistory, is created using the TransactionsPS1 partitioning 
scheme.  

 My script then loads data into the two tables, and because the partition scheme has already 
been defi ned, each row is placed in the appropriate partition as the data is loaded. After the 
tables are loaded, we can examine the metadata. 

Metadata for Partitioning

 Figure 7-16 shows most of the catalog views for retrieving information about partitions. 
Along the left and bottom edges, you can see the sys.tables, sys.indexes, sys.partitions, and 
sys.allocation_units catalog views that I’ve discussed previously in this chapter.  

sys.tables sys.data_spaces

sys.indexes sys.partition_schemes sys.destination_data_spaces sys.filegroups

sys.partition_functions

sys.partitions sys.allocation_units

1

0..*

0..*

1

1

1

1

1

0..*

0..*

1 1* *

1..*

1..*

0..1

1..3

+partition_id

+container_id

Heap or B-tree data space

LOB data space

FIGURE 7-16 Catalog views containing metadata for partitioning and data storage

C07626249.indd   436 2/16/2009   1:34:41 PM



 Chapter 7 Special Storage 437

 In some of my queries, I am using the undocumented sys.system_internals_allocation_units 
view instead of sys.allocation_units to retrieve page address information. Here, I’ll describe 
the most relevant columns of each of these views: 

■  sys.data_spaces has a primary key called data_space_id, which is either a partition ID 
or a fi legroup ID, and there is one row for each fi legroup and one row for each  partition 
scheme. One of the columns in sys.data_spaces specifi es to which type of data space 
the row refers. If the row refers to a partition scheme, data_space_id can be joined with 
sys.partition_schemes.data_space_id. If the row refers to a fi legroup, data_space_id can 
be joined with sys.fi legroups.data_space_id. The sys.indexes view also has a data_space_id 
column to indicate how each heap or B-tree stored in sys.indexes is stored. So, if we know 
that a table is partitioned, we can directly join it with sys.partition_schemes  without  going 
through sys.data_spaces. Alternatively, you can use the following query to determine 
whether a table is partitioned by replacing Production.TransactionHistoryArchive with the 
name of the table in which you’re interested: 

   SELECT DISTINCT object_name(object_id) as TableName,

               ISNULL(ps.name, 'Not partitioned') as PartitionScheme

       FROM (sys.indexes i LEFT  JOIN sys.partition_schemes ps

                      ON (i.data_space_id = ps.data_space_id))

       WHERE (i.object_id = object_id('Production.TransactionHistoryArchive'))

                 AND   (i.index_id IN (0,1));

■  sys.partition_schemes has one row for each partition scheme. In addition to the data_
space_id and the name of the partition scheme, it has a function_id column to join with 
sys.partition_functions. 

■  sys.destination_data_spaces is a linking table because sys.partition_schemes and 
sys.fi legroups are in a many-to-many relationship with each other. For each partition 
scheme, there is one row for each partition. The partition number is in the  destination_id 
column, and the  fi legroup ID is stored in the data_space_id column. 

■  sys.partition_functions contains one row for each partition function, and its primary 
key function_id is a foreign key in sys.partition_schemes.  

■  sys.partition_range_values (not shown) has one row for each endpoint of each 
 partition function. Its function_id column can be joined with sys.partition_functions, 
and its  boundary_id column can join with either partition_id in sys.partitions or with 
 destination_id in sys.destination_data_spaces.  

 These views have other columns that I haven’t mentioned, and there are additional views that 
provide information, such as the columns and their data types that the partitioning is based 
on. However, the preceding information should be suffi cient to understand Figure 7-15 and 
the view shown in the next block of code. This view returns information about each partition 
of each partitioned table. The WHERE clause fi lters out partitioned indexes (other than the 
clustered index), but you can change that condition if you desire. When selecting from the 

C07626249.indd   437 2/16/2009   1:34:42 PM



438 Microsoft SQL Server 2008 Internals

view, you can add your own WHERE clause to fi nd information about just the table you’re 
interested in:  

CREATE VIEW Partition_Info AS 

SELECT OBJECT_NAME(i.object_id) as Object_Name, 

        p.partition_number, fg.name AS Filegroup_Name, rows, au.total_pages, 

        CASE boundary_value_on_right  

                   WHEN 1 THEN 'less than'  

                   ELSE 'less than or equal to' END as 'comparison', value 

FROM sys.partitions p JOIN sys.indexes i 

     ON p.object_id = i.object_id and p.index_id = i.index_id 

       JOIN sys.partition_schemes ps  

                ON ps.data_space_id = i.data_space_id 

       JOIN sys.partition_functions f  

                   ON f.function_id = ps.function_id 

       LEFT JOIN  sys.partition_range_values rv     

ON f.function_id = rv.function_id  

                    AND p.partition_number = rv.boundary_id 

       JOIN sys.destination_data_spaces dds 

               ON dds.partition_scheme_id = ps.data_space_id  

                    AND dds.destination_id = p.partition_number 

       JOIN sys.filegroups fg  

                  ON dds.data_space_id = fg.data_space_id 

       JOIN (SELECT container_id, sum(total_pages) as total_pages  

                       FROM sys.allocation_units 

                       GROUP BY container_id) AS au 

                  ON au.container_id = p.partition_id   

  WHERE i.index_id <2;

 The LEFT JOIN operator is needed to get all the partitions because the sys.partition_range_values 
view has a row only for each boundary value, not for each partition. LEFT JOIN gives the last 
partition with a boundary value of NULL, which means that the value of the last partition has no 
upper limit. A derived table groups together all the rows in sys.allocation_units for a partition, so 
the space used for all the types of storage (in-row, row-overfl ow, and LOB) is aggregated into a 
single value. This query uses the preceding view to get information about my TransactionHistory 
table’s partitions: 

SELECT * FROM Partition_Info  

WHERE Object_Name = 'TransactionHistory';

 Here are my results: 

Object_Name 

Partition

_number

Filegroup

_Name Rows

Total_

pages Comparison Value

TransactionHistory 1 PRIMARY 11155 209 Less than 2008-10-01

TransactionHistory 2 PRIMARY 9339 177 Less than 2008-11-01

TransactionHistory 3 PRIMARY 10169 185 Less than 2008-12-01

TransactionHistory 4 PRIMARY 12181 225 Less than 2009-01-01

TransactionHistory 5 PRIMARY 9558 177 Less than 2009-02-01

CREATE VIEW Partition_Info AS 

SELECT OBJECT_NAME(i.object_id) as Object_Name,

        p.partition_number, fg.name AS Filegroup_Name, rows, au.total_pages,

        CASE boundary_value_on_right 

                   WHEN 1 THEN 'less than'  

                   ELSE 'less than or equal to' END as 'comparison', value 

FROM sys.partitions p JOIN sys.indexes i 

     ON p.object_id = i.object_id and p.index_id = i.index_id

       JOIN sys.partition_schemes ps 

                ON ps.data_space_id = i.data_space_id

       JOIN sys.partition_functions f  

                   ON f.function_id = ps.function_id 

       LEFT JOIN  sys.partition_range_values rv    

ON f.function_id = rv.function_id 

                    AND p.partition_number = rv.boundary_id

       JOIN sys.destination_data_spaces dds 

               ON dds.partition_scheme_id = ps.data_space_id 

                    AND dds.destination_id = p.partition_number 

       JOIN sys.filegroups fg  

                  ON dds.data_space_id = fg.data_space_id 

       JOIN (SELECT container_id, sum(total_pages) as total_pages  

                       FROM sys.allocation_units

                       GROUP BY container_id) AS au

                  ON au.container_id = p.partition_id   

  WHERE i.index_id <2;

Object_Name

Partition

_number

Filegroup

_Name Rows

Total_

pages Comparison Value

C07626249.indd   438 2/16/2009   1:34:42 PM



 Chapter 7 Special Storage 439

Object_Name 

Partition

_number

Filegroup

_Name Rows

Total_

pages Comparison Value

TransactionHistory 6 PRIMARY 10217 193 Less than 2009-03-01

TransactionHistory 7 PRIMARY 10703 201 Less than 2009-04-01

TransactionHistory 8 PRIMARY 10640 193 Less than 2009-05-01

TransactionHistory 9 PRIMARY 12508 225 Less than 2009-06-01

TransactionHistory 10 PRIMARY 12585 233 Less than 2009-07-01

TransactionHistory 11 PRIMARY 3380 73 Less than 2009-08-01

TransactionHistory 12 PRIMARY 1008 33 Less than NULL

This view contains details about the boundary point of each partition, as well as the fi legroup 
that each partition is stored on, the number of rows in each partition, and the amount of 
space used. Note that although the comparison indicates that the values in the  partitioning 
column for the rows in a particular partition are less than the specifi ed value, you should 
 assume that it also means that the values are greater than or equal to the specifi ed value in 
the preceding partition. However, this view doesn’t provide information about where in the 
particular fi legroup the data is located. We’ll look at a metadata query that gives us location 
information in the next section. 

 Note If a partitioned table contains fi lestream data, it is recommended that the fi lestream data 
be partitioned using the same partition function as the non-fi lestream data. Because the regular 
data and the fi lestream data are on separate fi legroups, the fi lestream data needs its own partition 
scheme. However, the partition scheme for the fi lestream data can use the same partition function 
to make sure the same partitioning is used for both fi lestream and non-fi lestream data. 

The Sliding Window Benefi ts of Partitioning

One of the main benefi ts of partitioning your data is that you can move data from one partition 
to another as a metadata-only operation. The data itself doesn’t have to move. As I mentioned, 
this is not intended to be a complete how-to guide to SQL Server 2008 partitioning; rather, 
it is a description of the internal storage of partitioning information. However, to show the 
 internals of rearranging partitions, we need to look at some additional partitioning operations.  

The main operation you use when working with partitions is the SWITCH option to the ALTER 
TABLE command. This option allows you to 

■ Assign a table as a partition to an already-existing partitioned table 

■ Switch a partition from one partitioned table to another 

■ Reassign a partition to form a single table 

 In all these operations, no data is moved. Rather, the metadata is updated in the sys.partitions and 
sys.system_internals_allocation_units views to indicate that a given allocation unit now is part of a 
different partition. Let’s look at an example. The following query returns information about each 
allocation unit in the fi rst two partitions of my TransactionHistory and TransactionHistoryArchive 

Object_Name

Partition

_number

Filegroup

_Name Rows

Total_

pages Comparison Value

C07626249.indd   439 2/16/2009   1:34:42 PM



440 Microsoft SQL Server 2008 Internals

tables, including the number of rows, the number of pages, the type of data in the allocation unit, 
and the page where the allocation unit starts: 

SELECT convert(char(25),object_name(object_id)) AS name,  

    rows, convert(char(15),type_desc) as page_type_desc, 

    total_pages AS pages, first_page, index_id, partition_number 

FROM sys.partitions p JOIN sys.system_internals_allocation_units a 

     ON p.partition_id = a.container_id 

WHERE (object_id=object_id('[Production].[TransactionHistory]') 

   OR object_id=object_id('[Production].[TransactionHistoryArchive]')) 

  AND index_id = 1 AND partition_number <= 2;

 Here is the data I get back. (I left out the page_type_desc because all the rows are of type 
IN_ROW_DATA.)  

name                       rows    pages      first_page      index_id    partition_number 

-------------------------  ------- ---------- --------------  ----------- ----------------- 

TransactionHistory         11155   209        0xD81B00000100  1           1 

TransactionHistory         9339    177        0xA82200000100  1           2 

TransactionHistoryArchive  89253   1553       0x981B00000100  1           1 

TransactionHistoryArchive  0       0          0x000000000000  1           2

 Now let’s move one of my partitions. My ultimate goal is to add a new partition to 
TransactionHistory to store a new month’s worth of data and to move the oldest month’s data 
into TransactionHistoryArchive. The partition function used by my TransactionHistory table 
divides the data into 12 partitions, and the last one contains all dates greater than or equal 
to August 1, 2009. I’m going to alter the partition function to put a new boundary point 
in for September 1, 2009, so the last partition is split. Before doing that, I must ensure that 
the  partition scheme using this function knows what fi legroup to use for the newly  created 
partition. With this command, some data movement occurs and all data from the last 
 partition of any tables using this partition scheme is moved to a new allocation unit. Please 
refer to SQL Server Books Online for complete details about each of the following commands: 

ALTER PARTITION SCHEME TransactionsPS1  

NEXT USED [PRIMARY]; 

GO 

 

ALTER PARTITION FUNCTION TransactionRangePF1()  

SPLIT RANGE ('20090901'); 

GO

 Next, I’ll do something similar for the function and partition scheme used by 
TransactionHistoryArchive. In this case, I’ll add a new boundary point for October 1, 2008:  

ALTER PARTITION SCHEME TransactionArchivePS2  

NEXT USED [PRIMARY]; 

GO 

 

ALTER PARTITION FUNCTION TransactionArchivePF2()  

SPLIT RANGE ('20081001'); 

GO

C07626249.indd   440 2/16/2009   1:34:42 PM



 Chapter 7 Special Storage 441

 I want to move all data from TransactionHistory with dates earlier than October 1, 2008, to the 
second partition of TransactionHistoryArchive. However, the fi rst partition of TransactionHistory 
technically has no lower limit; it includes everything earlier than October 1, 2008. The second 
partition of TransactionHistoryArchive does have a lower limit, which is the fi rst boundary 
point, or September 1, 2008. To SWITCH a partition from one table to another, I have to 
guarantee that all the data to be moved meets the requirements for the new location. So 
I add a CHECK constraint that guarantees that no data in TransactionHistory is earlier than 
September 1, 2008. After adding the CHECK constraint, I run the ALTER TABLE command 
with the SWITCH option to move the data in partition 1 of TransactionHistory to partition 2 
of TransactionHistoryArchive. (For testing purposes, you could try leaving out the next step 
that adds the constraint and try just executing the ALTER TABLE/SWITCH command. You get 
an error message. After that, you can add the constraint and run the ALTER TABLE/SWITCH 
 command again.) 

ALTER TABLE [Production].[TransactionHistory]  

ADD CONSTRAINT [CK_TransactionHistory_DateRange]  

CHECK ([TransactionDate] >= '20080901'); 

GO 

ALTER TABLE [Production].[TransactionHistory]  

SWITCH PARTITION 1  

TO [Production].[TransactionHistoryArchive] PARTITION 2; 

GO

 Now we run the metadata query that examines the size and location of the fi rst two 
 partitions of each table as follows: 

SELECT convert(char(25),object_name(object_id)) AS name,  

    rows, convert(char(15),type_desc) as page_type_desc, 

    total_pages AS pages, first_page, index_id, partition_number 

FROM sys.partitions p JOIN sys.system_internals_allocation_units a 

     ON p.partition_id = a.container_id 

WHERE (object_id=object_id('[Production].[TransactionHistory]') 

   OR object_id=object_id('[Production].[TransactionHistoryArchive]')) 

  AND index_id = 1 AND partition_number <= 2; 

 

RESULTS: 

name                  rows    pages      first_page      index_id    partition_number 

--------------------  ------- ---------- --------------  ----------- ---------------- 

TransactionHistory    0       0          0x000000000000  1           1 

TransactionHistory    9339    177        0xA82200000100  1           2 

TransactionHistoryAr  89253   1553       0x981B00000100  1           1 

TransactionHistoryAr  11155   209        0xD81B00000100  1           2

 You’ll notice that the second partition of TransactionHistoryArchive now has exactly the same 
information that the fi rst partition of TransactionHistory had in the fi rst result set. It has the 
same number of rows (11,155), the same number of pages (209), and the same starting page 
(0xD81B00000100, or fi le 1, page 7,128). No data was moved; the only change was that 
the allocation unit starting at fi le 1, page 7,128 is not recorded as belonging to the second 
 partition of the TransactionHistoryArchive table. 

C07626249.indd   441 2/16/2009   1:34:42 PM



442 Microsoft SQL Server 2008 Internals

 Although my partitioning script created the indexes for my partitioned tables using the same 
partition scheme used for the tables themselves, this is not always necessary. An index for a 
partitioned table can be partitioned using the same partition scheme or a different one. If 
you do not specify a partition scheme or fi legroup when you build an index on a partitioned 
table, the index is placed in the same partition scheme as the underlying table, using the 
same partitioning column. Indexes built on the same partition scheme as the base table are 
called aligned indexes.  

 However, an internal storage component is associated with automatically aligned indexes. 
As previously mentioned, if you build an index on a partitioned table and do not specify 
a  fi legroup or partitioning scheme on which to place the index, SQL Server creates the  index 
using the same partitioning scheme that the table uses. However, if the partitioning  column 
is not part of the index defi nition, SQL Server adds the partitioning column as an extra  included 
column in the index. If the index is clustered, adding an included column is not  necessary 
 because the clustered index already contains all the columns. Another case in which SQL Server 
does not add an included column automatically is when you create a unique  index,  either 
 clustered or nonclustered. Because unique partitioned indexes require that the  partitioning 
column is contained in the unique key, a unique index for which you have not explicitly 
 included the partitioning key is not partitioned automatically.  

Summary

 In this chapter, we looked at how SQL Server 2008 stores data that doesn’t use the normal 
FixedVar record format and data that doesn’t fi t into the normal 8-KB data page.  

 I discussed row-overfl ow and large object data, which is stored on its own separate pages, 
and fi lestream data, which is stored outside SQL Server, in fi les in the fi lesystem.  

 Some of the new storage capabilities in SQL Server 2008 require that we look at row  storage 
in a completely different way. Sparse columns allow us to have very wide tables of up to 
30,000 columns, so long as most of those columns are NULL in most rows. Each row in a 
 table containing sparse columns has a special descriptor fi eld that provides information 
about which columns are non-NULL for that particular row. 

 I also described a completely new row storage format used with compressed data. Data can 
be compressed at either the row level or the page level, and the rows and pages themselves 
describe the data that is contained therein. This type of row format is referred to as the CD 
format. 

 Finally we looked at partitioning of tables and indexes. Although partitioning doesn’t really 
require a special format for your rows and pages, it does require accessing the metadata in a 
special way.  

C07626249.indd   442 2/16/2009   1:34:42 PM



  443

Chapter 8

The Query Optimizer
 Conor Cunningham 

 The Query Optimizer in Microsoft SQL Server 2008 determines the query plan to be  executed 
for a given SQL statement. Because the Query Optimizer does not have a lot of exposed 
features, it is not as widely understood as some of the other components in the SQL Server 
Engine. This chapter describes the Query Optimizer and how it works. After reading this 
chapter, you should understand the high-level optimizer architecture and should be able to 
reason about why a particular plan was selected by the Query Optimizer. By extension, you 
should be able to troubleshoot problem query plans in the case when the Query Optimizer 
may not select the desired query plan and how to affect that selection. 

 This chapter is split into two sections. The fi rst section explains the basic mechanisms of the 
Query Optimizer. This includes the high-level structures that are used and how this defi nes 
the set of alternatives considered for each plan. The second section discusses specifi c areas 
in the Query Optimizer and how they fi t into this framework. For example, it discusses topics 
like “How do indexes get selected?”, “How do statistics get used?”, and “How do I understand 
update plans?” 

Overview

 The basic compilation “pipeline” for a single query appears in Figure 8-1. 

Parse Bind Optimize Execute

FIGURE 8-1 Query processor pipeline

 When a query is compiled, the SQL statement is fi rst parsed into an equivalent tree  representation. 
For queries with valid SQL syntax, the next stage performs a series of validation steps on the 
 query, generally called binding, where the columns and tables in the tree are compared to 
 database metadata to make sure that those columns and tables exist and are visible to the 
 current user. This stage also performs semantic checks on the query to make sure it is valid, such 
as  making sure that the columns bound to a GROUP BY operation are valid. Once the query tree 
has been bound and is determined to be a valid query, the Query Optimizer takes the query and 
starts evaluating different possible query plans. The Query Optimizer performs this search and 
then selects the query plan to be executed and returns it to the system to execute. The execution 
component runs the query plan and returns the results of the query.  

C08626249.indd   443 2/13/2009   12:29:51 PM



444 Microsoft SQL Server 2008 Internals

 The SQL Server 2008 Query Optimizer has a number of additional features that extend this 
diagram to make it more useful for database developers and DBAs. For example, query plans 
are cached because they are expensive to produce and are often used repeatedly. Old query 
plans are recompiled if the underlying data has changed suffi ciently. SQL Server also supports 
the T-SQL language, which means that batches of multiple statements can be processed in one 
request to the SQL Server Engine. The Query Optimizer does not consider batch compilation 
or workload analysis, so this chapter focuses on what happens in a single query’s compilation.  

Tree Format

 When you submit a SQL query to the query processor, the SQL string is parsed into a tree 
 representation. Each node in the tree represents a query operation to be performed. For 
 example, each table in the FROM clause has its own operator. A WHERE clause is also represented 
in a separate operator. Joins are represented with operators that have one input for each table. 
For example, the query SELECT * FROM Customers C INNER JOIN Orders O on C.cid = O.cid 
WHERE O.date = ‘2008-11-06’ might be represented internally, as seen in Figure 8-2. 

Project (*)

Filter
(O.date=’2008-11-6’)

Inner Join
(C.cid=O.cid)

Get (Orders) as OGet (Customers)
as C

FIGURE 8-2 Query tree format example

 The query processor actually uses different tree formats throughout the compilation process. 
For example, one job that the Query Optimizer performs is to convert a tree from a logical 
description of the desired result, as seen previously, to a plan with real physical operators 
that can be executed. Perhaps the most obvious place where this selection happens is when 
the Query Optimizer selects a join algorithm, converting a logical join (for example, INNER 
JOIN) into a physical join (a hash join, merge join, or nested loops join). Most of the tree 

C08626249.indd   444 2/13/2009   12:29:52 PM



 Chapter 8 The Query Optimizer 445

 formats are pretty close to each other. In many of the examples in this chapter, optimizer 
output trees are used to describe specifi c optimizations performed by the Query Optimizer 
in earlier, internal tree formats.  

What Is Optimization?

 So far, we have discussed only the basic transformation from a logical query tree into an 
equivalent physical query plan. Another major job of the Query Optimizer is to fi nd an 
 effi cient query plan. There are usually many ways to evaluate a given query, and often some 
plans are much slower than others. The speed difference between these two plans is so 
 signifi cant that selecting the wrong query plan can cause a database application to perform 
so slowly that it appears broken to the user. Therefore, it is very important that the Query 
Optimizer select an effi cient plan. 

 At fi rst, it might seem that there would be an “obvious” best plan for every SQL query, 
and the Query Optimizer should just select it as quickly as it can. Unfortunately, query 
 optimization is actually a much more diffi cult problem. Consider the following SQL query: 

SELECT * FROM A 

INNER JOIN B ON (A.a = B.b)

INNER JOIN C ON (A.a = C.c)

INNER JOIN D ON (A.a = D.d)

INNER JOIN E ON (A.a = E.e)

INNER JOIN F ON (A.a = F.f)

INNER JOIN G ON (A.a = G.g)

INNER JOIN H ON (A.a = H.h)

 This query has many possible implementation plans because inner joins can be computed 
in  different orders. Actually, if you add more tables into this query using this same pattern, 
the query would have so many possible plan choices that it isn’t feasible to consider them 
all. Because inner joins can be evaluated in any order (ABCD. . ., ABDC. . ., ACBD. . ., . . .) and in 
 different topologies [(A join B) join (B join C)], the number of possible query plans for this query 
is  actually greater than N! [N x (N-1) x (N-2) x . . .]. As the number of tables in a query increases, 
the set of  alternatives to consider quickly grows to be larger than what can be computed on 
any  computer. The storage of all the possible query plans also becomes a problem. In 32-bit 
Intel x86-based machines, SQL Server usually has about 1.6 GB of memory that could be used 
to compile a query, and it may not be possible to store every possible alternative in  memory. 
Even if a computer could store all these alternatives, the user may not want to wait that long to 
 enumerate all those possible choices. The Query Optimizer solves this problem  using heuristics 
and statistics to guide those heuristics, and this chapter describes these concepts. 

 Many people believe that it is the job of the Query Optimizer to select the absolute best 
query plan for a given query. You can now see that the scope of the problem makes this 
i mpossible—if you can’t consider every plan shape, it is diffi cult to prove that a plan is 
 optimal. However, it is possible for the Query Optimizer to fi nd a “good enough” plan quickly, 
and often this is the optimally performing plan or very close to it. 

C08626249.indd   445 2/13/2009   12:29:52 PM



446 Microsoft SQL Server 2008 Internals

How the Query Optimizer Explores Query Plans

 The Query Optimizer uses a framework to search and compare many different possible plan 
alternatives effi ciently. This framework allows SQL Server to consider complex, non-obvious 
ways to implement a given query. Keeping track of all these different alternatives to fi nd 
a plan to run effi ciently is not easy. The search framework of SQL Server contains several 
 components that help it perform its job effi ciently and reliably. Although largely internal, 
these components are described in this section to give you a better idea about how a query 
is  optimized and to better design your applications to take advantage of its capabilities. 

Rules

 The Query Optimizer is a search framework. From a given query tree, the Query Optimizer 
considers transformations of that tree from the current state to a different, equivalent state 
that is also stored in memory. In the framework used in SQL Server, the transformations are 
done via rules. These rules are very similar to the mathematical theorems you likely learned 
in school. For example, we know that A INNER JOIN B is equivalent to B INNER JOIN A 
 because both queries return the same result for all possible table data sets. This is a form of 
 commutativity (which, in regular integer arithmetic, means that (1+2) is equivalent to (2+1), 
meaning that this operation can be performed in any order and yield the same result (or, in 
the case of databases, return the same set of rows). Rules are matched to tree patterns and 
are then applied if they are suitable to generate new alternatives (which then may also lead 
to more rule matching). These rules form the basis of how the Query Optimizer works, and 
they also help encode some of the heuristics necessary to perform the search in a reasonable 
amount of time.  

 The Query Optimizer has different kinds of rules. Rules that heuristically rewrite a query tree 
into a new shape are called substitution rules. Rules that consider mathematical  equivalences 
are called exploration rules. These rules generate new tree shapes but cannot be directly 
executed. Rules that convert logical trees into physical trees to be executed are called 
 implementation rules. The best of these generated physical alternatives is eventually output 
by the Query Optimizer as the fi nal query execution plan.  

 More Info This chapter contains many examples of query execution plans, used to illustrate the 
Query Optimizer’s behavior. If you would like more background information on how to  interpret 
query execution plans, and what the various operators mean, you can refer to Chapter 3 in Inside 
Microsoft SQL Server 2005: Query Tuning and Optimization (Microsoft Press, 2007). Other than 
some minor  visual  changes in the way graphical query plans are displayed in SQL Server 2008, 
 almost all the  content in that chapter is applicable to SQL Server 2008. We have made this  chapter 
available for you on the companion Web site (http://www.SQLServerInternals.com/ companion).  

C08626249.indd   446 2/13/2009   12:29:52 PM



 Chapter 8 The Query Optimizer 447

Properties

 The search framework collects information about the query tree in a format that can make 
it easier for rules to work. These are called properties, and they collect information from 
 sub-trees to help make decisions about what rules can be processed at a higher point in 
a tree. For example, one property used in SQL Server is the set of columns that make up a 
unique key on the data. Consider the following query: 

SELECT col1, col2, MAX(col3) FROM Table1 GROUP BY col1, col2;

 This query is represented internally as a tree, as seen in Figure 8-3. 

Project
(col1, col2, MAX(col3))

GbAgg
(GB: col1, col2),

MAX(col3)

Get (Table1)

FIGURE 8-3 GROUP BY tree example

 If the columns (col1, col2) make up a unique key on table groupby, then it is not necessary 
to do grouping at all—each group has exactly one row. The MAX() of a set of size one is the 
element itself. So, it is possible to write a rule that removes the groupby from the query tree 
completely. You can see this rule in action in Figure 8-4. 

CREATE TABLE groupby (col1 int, col2 int, col3 int);

ALTER TABLE groupby ADD CONSTRAINT unique1 UNIQUE(col1, col2);

SELECT col1, col2, MAX(col3) FROM groupby GROUP BY col1, col2;

FIGURE 8-4 Query plan with aggregate operation removed

 If you look at the fi nal query plan, you can see that the Query Optimizer performs no 
 grouping operation even though the query has a GROUP BY in it. The properties collected 
during optimization enable this rule to perform a tree transformation to make the resulting 
query plan complete more quickly. 

C08626249.indd   447 2/13/2009   12:29:52 PM



448 Microsoft SQL Server 2008 Internals

 SQL Server also collects many properties during optimization. As is done in most modern 
compilers, the Query Optimizer collects domain constraint information about each column 
referenced in the query. The Query Optimizer collects information from predicates, join 
 conditions, partitioning information, and check constraints to reason about how all these 
predicates can be used to optimize the query. One useful application of this scalar property is 
in contradiction detection. The Query Optimizer can determine if the query is written in such 
a way as to never return any rows at all. When the Query Optimizer detects a contradiction, it 
actually rewrites the query to remove the portion of the query containing the contradiction. 
Figure 8-5 contains an example of a contradiction detected during optimization. 

CREATE TABLE DomainTable(col1 int);

GO

SELECT * 

FROM DomainTable D1 

INNER JOIN DomainTable D2 

ON D1.col1=D2.col1 

WHERE D1.col1 > 5 AND D2.col1 < 0;

FIGURE 8-5 Query plan simplifi ed via contradiction

 The fi nal query plan does not actually even reference the table at all—it is replaced with a 
special Constant Scan operator that does not access the storage engine and, in this case, 
 returns zero rows. This means that the query runs faster, takes less memory, and does 
not need to acquire locks against the resources referenced in the section containing the 
 contradiction when being executed.  

 Note In this chapter, I have tried to create examples that you can run so you can see for yourself 
how the system operates based on experiments. Unfortunately, in some cases, different features 
interact in a way that makes it diffi cult for me to show you how exactly one feature operates in 
isolation. In this example, I added a join to avoid another optimization, called trivial plan, that 
sometimes overrides contradiction detection. Because features change from release to release, 
I ask that you use these examples only to explore the current state of the Query Optimizer—there 
are no guarantees about how the internals of the Query Optimizer work from release to release, so 
you should not attempt to build detailed knowledge of the Query Optimizer into your application. 

 Like rules, there are both logical and physical properties. Logical properties cover things 
like the output column set, key columns, and whether a column can output any nulls or not. 
These apply to all equivalent logical and all physical plan fragments. When an exploration 
rule is evaluated, the resulting query tree shares the same logical properties as the original 
tree used by the rule. Physical properties are specifi c to a single plan, and each plan operator 
has a set of physical properties associated with it. One common physical property is whether 
the result is sorted. This property would infl uence whether the Query Optimizer looks for 

C08626249.indd   448 2/13/2009   12:29:52 PM



 Chapter 8 The Query Optimizer 449

an index to deliver that desired sort. Another physical property is the set of columns from 
a table that a query can read. This drives decisions such as whether a secondary index is 
 suffi cient to return all the needed columns in a query or whether each matching row also 
needs a base table lookup as well. 

Storage of Alternatives—The “Memo”

 Earlier in this chapter, I mentioned that the storage of all the alternatives considered during 
optimization could be large for some queries. The Query Optimizer contains a mechanism to 
avoid storing duplicate information, thus saving memory (and time) during the  compilation 
process. The structure is called the Memo, and one of its purposes is to fi nd previously  explored 
sub-trees and avoid reoptimizing those areas of the plan. It lives for the life of one optimization.  

 The Memo works by storing equivalent trees in groups. If you were to execute each 
 sub-tree in a group, every alternative in that sub-tree would return the same logical result. 
Conceptually, each operator from the original query tree starts in its own group, meaning 
that groups reference other groups instead of referencing other operators directly while 
stored in the Memo. This model is used to avoid storing trees more than once during query 
optimization, and it enables the Query Optimizer to avoid searching the same possible plan 
alternatives more than once as well. 

 In addition to storing equivalent alternatives, groups also store properties structures. 
Alternatives that are rooted in the same group have equivalent logical and scalar  properties. 
Logical properties are actually called group properties in SQL Server, even when not  being 
stored in the Memo. So, every alternative in a group should all have the same output 
 columns, key columns, possible partitionings, and so on. Computing these properties is 
 expensive, so this structure also helps to avoid unnecessary work during optimization. 

 All considered plans are stored in the Memo. For large queries, the Memo may contain many 
thousands of groups and many alternatives within each group. Combined, this represents 
a huge number of alternatives. Although most queries do not consume large amounts of 
memory during optimization, it is possible that large data warehouse queries could consume 
all memory on a machine during optimization. If the Query Optimizer is about to run out 
of memory while searching the set of plans, it contains logic to pick a “good enough” query 
plan instead of running out of memory. 

 When the Query Optimizer has fi nished searching for a plan, it goes through the Memo, 
 starting at the root, to select the best alternative from each group that satisfi es the 
 requirements for the query. These operators are assembled into the fi nal query plan and are 
then transformed into a format that can be understood by the query execution component in 
SQL Server. This fi nal tree transformation does contain a small number of run-time  optimization 
rewrites, but it is very close to the showplan output generated for the query plan. 

 An example of how the Memo works is shown during the examination of the Query 
Optimizer’s architecture and pipeline, later in this chapter. 

C08626249.indd   449 2/13/2009   12:29:52 PM



450 Microsoft SQL Server 2008 Internals

Operators

 SQL Server 2008 has around 40 logical operators and even more physical operators. Some 
operators are extremely common, such as Join or Filter. Others are harder to fi nd, such as 
Segment, Sequence Project, and UDX. Operators in SQL Server 2008 follow the model seen 
in Figure 8-6. 

Operator

GetRow() Return Row

Operator

GetRow() Return Row

32

41

FIGURE 8-6 SQL Server operator data fl ow model

 Every operator in SQL Server works by requesting rows from one or more children and then 
producing rows to return to the caller. The caller can be another operator or can be sent to 
the user if it is the uppermost operator in the query tree. Each operator returns one row at 
a time, meaning that the caller must call for each row. The uniformity in this design allows 
operators to be combined in many different ways. It allows new operators to be added to the 
system without major changes to the Query Optimizer, such as the property framework, that 
help the Query Optimizer select a query plan.  

 To make sure that everyone gets the most of this chapter, I’ll cover a few of the more rare 
and exotic operators so that I can reference them later in the chapter, as well as to give you 
an idea how your query is represented in the system. 

Compute Scalar—Project 

 The Compute Scalar, called a Project in the Query Optimizer, is a simple operator that 
 attempts to declare a set of columns, compute some value, or perhaps restrict columns from 
other operators in the query tree. These correspond to the SELECT list in the SQL language. 
These are actually not overly interesting operations to the Query Optimizer—there is not 
much that the Query Optimizer needs to do with them. The Query Optimizer ends up moving 
them around the query tree during optimization, trying to separate them from the rest of the 
Query Optimizer logic that deals with join order, index selection, and other optimizations.  

C08626249.indd   450 2/13/2009   12:29:52 PM



 Chapter 8 The Query Optimizer 451

Compute Sequence—Sequence Project 

 Compute Sequence is known as a Sequence Project in the Query Optimizer, and this operator 
is somewhat similar to a Compute Scalar in that it computes a new value to be added into 
the output stream. The key difference is that this works on an ordered stream and contains 
state that is preserved from row to row. Ranking functions use this operator, for example. 
This is implemented using a different physical operation and it imposes additional  restrictions 
on how the Query Optimizer can reorder this expression. This operator is usually seen in the 
ranking and windowing functions. 

Semi-Join

 The term semi-join comes from the academic database literature, and it is used to describe 
an operator that performs a join but returns only values from one of its inputs. The query 
processor uses this internal mechanism to handle most subqueries. SQL Server represents 
subqueries in this manner because it makes it easier to reason about the set of possible 
transformations for the query and because the run-time implementation of a semi-join 
and a regular join are similar. Contrary to popular belief, a subquery is not always executed 
and cached in a temporary table. It is treated much like a regular join. In fact, the Query 
Optimizer has transformation rules that can transform regular joins to semi-joins. 

 One common misconception is that it is inherently incorrect to use subqueries. Like most 
 generalizations, this is not true. Often a subquery is the most natural way to represent what 
you want in SQL, and that is why it is part of the SQL language. Sometimes, a subquery is 
blamed for a poorly indexed table, missing statistics, or a predicate that is written in a way 
that is too obtuse for the Query Optimizer to reason about using its domain constraint 
 property framework. Like everything in life, it is possible to have too many subqueries in a 
system, especially if they are duplicated many times in the same query. So, if your company’s 
development practices say, “No subqueries,” then examine your system a  little closely—these 
are blamed for many other problems that might lie right under the surface. 

 Listing 8-1 is an example of where a subquery would be appropriate. Let’s say that we need 
to ask a sales tracking system for a store to show me each customer who has made an order 
in the last 30 days so that we can send them a thank-you e-mail. Figures 8-7, 8-8, and 8-9 
show the query plans for the three different approaches to try to submit queries to answer 
this question. 

 LISTING 8-1 Common Errors in Writing Subquery Plans 

CREATE TABLE Customers(custid int IDENTITY, name NVARCHAR(100));

CREATE TABLE Orders (orderid INT IDENTITY, custid INT, orderdate DATE, amount MONEY);

INSERT INTO Customers(name) VALUES ('Conor Cunningham');

INSERT INTO Customers(name) VALUES ('Paul Randal');

INSERT INTO Orders(custid, orderdate, amount) VALUES (1, '2008-08-12', 49.23);

INSERT INTO Orders(custid, orderdate, amount) VALUES (1, '2008-08-14', 65.00);

INSERT INTO Orders(custid, orderdate, amount) VALUES (2, '2008-08-12', 123.44);

C08626249.indd   451 2/13/2009   12:29:52 PM



452 Microsoft SQL Server 2008 Internals

-- Let's find out customers who have ordered something in the last month

-- Semantically wrong way to ask the question - returns duplicate names (See Figure 8-7)

SELECT name FROM Customers C INNER JOIN Orders O ON C.custid = O.custid WHERE 

DATEDIFF("m", O.orderdate, '2008-08-30') < 1

-- and then people try to "fix" by adding a distinct (See Figure 8-8)

SELECT DISTINCT name 

FROM 

Customers C 

INNER JOIN 

Orders O 

ON C.custid = O.custid 

WHERE DATEDIFF("m", O.orderdate, '2008-08-30') < 1;

-- this happens to work, but it is fragile, hard to modify, and it is usually not done 

properly.

-- the subquery way to write the query returns one row for each matching Customer

SELECT name 

FROM Customers C 

WHERE 

EXISTS (

SELECT 1 

FROM Orders O 

WHERE C.custid = O.custid AND DATEDIFF("m", O.orderdate, '2008-08-30') < 1

);

-- note that the subquery plan has a cheaper estimated cost result 

-- and should be faster to run on larger systems

FIGURE 8-7 Plan for query using INNER JOIN instead of subquery

FIGURE 8-8 Plan for query using DISTINCT and INNER JOIN instead of subquery

C08626249.indd   452 2/13/2009   12:29:52 PM



 Chapter 8 The Query Optimizer 453

FIGURE 8-9 Plan for query using subquery

 In this last query plan, the matching rows from the Customers table are kept and directly 
 returned to the user through the Left Semi-Join operator. 

 Note The Left and Right Semi-Join have to do with which child’s rows are preserved in the 
 operation. Unfortunately for anyone confused as to the meaning of these operators, the plan 
representation in SQL Server Management Studio and in previous tools is transposed. The “left” 
child is the top child and the “right” child is the bottom child in the transposed form.  

Apply

 CROSS APPLY and OUTER APPLY were added to SQL Server 2005, and they represent a 
special kind of subquery where a value from the left input is passed as a parameter to the 
right child. This is sometimes called a correlated nested loops join, and it represents passing 
a parameter to a subquery. The most common application for this feature is to do an index 
lookup join, as seen in Listing 8-2 and Figure 8-10. 

 LISTING 8-2 Example of APPLY Query 

CREATE TABLE idx1(col1 INT PRIMARY KEY, col2 INT);

CREATE TABLE idx2(col1 INT PRIMARY KEY, col2 INT);

GO

SELECT * 

FROM idx1 

CROSS APPLY (

    SELECT * 

    FROM idx2 

    WHERE idx1.col1=idx2.col1

  ) AS a;

FIGURE 8-10 APPLY query plan

C08626249.indd   453 2/13/2009   12:29:52 PM



454 Microsoft SQL Server 2008 Internals

 This query is logically equivalent to an INNER JOIN, and Figure 8-11 demonstrates that the 
 resulting query plan is identical in SQL Server 2008. 

SELECT * FROM idx1 INNER JOIN idx2
ON idx1.col1=idx2.col1;

FIGURE 8-11 INNER JOIN query generates a nested loop and seek plan

 In both cases, a value from the outer table is referenced as an argument to the seek on the 
inner table. Notice that a standard inner join is also able to generate a seek, which means 
that the Query Optimizer considers turning a JOIN into an APPLY as part of the  optimization 
process. Although the example I have done here is so simple that you would not need to 
write the query in the way that I did, there are more complex scenarios where this syntax is 
 useful. First, there is a common pattern for dynamic management views (DMVs, including an 
 example in the section entitled “Plan Hinting,” later in this chapter) where a value is passed to 
a management function using a cross apply. Second, there may be rare, very complex cases 
when the Query Optimizer’s rule engine cannot rewrite a simple inner join to get an index 
seek. In those cases, rewriting the query to use CROSS APPLY is useful to pass a parameter 
down past an opaque operator manually. The semantics of a query can change as a result 
of a rewrite like this, so be very sure that you understand the semantics of your query when 
considering a rewrite like this. 

 The Apply operator is almost like a function call in a procedural language. For each row from 
the outer (left) side, some logic on the inner (right) side is evaluated and zero or more rows 
are returned for that invocation of the right sub-tree. The Query Optimizer can sometimes 
remove the correlation and convert an Apply into a more general join, and in those cases 
other joins can sometimes be reordered to explore different plan choices. 

Spools

 SQL Server has a number of different, specialized spools. Each one is highly tuned for some 
scenario. Conceptually, they all do the same thing—they read all the rows from the input, 
store it in memory or spill it to disk, and then allow operators to read the rows from this 
cache. Spools exist to make a copy of the rows, and this can be important for transactional 
consistency in some update plans and to improve performance by caching a complex 
 subexpression to be used multiple times in a query. 

C08626249.indd   454 2/13/2009   12:29:52 PM



 Chapter 8 The Query Optimizer 455

 The most exotic spool operation is called a common subexpression spool. This spool has the 
ability to be written once and then read by multiple, different children in the query. This is 
currently the only operator that can have multiple parents in the fi nal query plan. This spool 
shows up multiple times in the showplan output and it is actually the same operator. Common 
subexpression spools have only one client at a time. So, the fi rst instance populates the spool, 
and each later reference reads from this spool in sequence. The fi rst reference has children, 
while later references appear in the query plan as leaves of the query tree. 

 Common subexpression spools are used most frequently in wide update plans, described 
later in this chapter. However, they are also used in windowed aggregate functions. These 
are special aggregates that do not have to collapse the rows like a regular aggregate 
 computation. Listing 8-3 and Figure 8-12 demonstrate how a common subexpression spool 
is used to store the intermediate query input and then use it multiple times as inputs to 
other parts of the query tree. The initial table spool reads values from window1, and the later 
branches in the tree supply the spooled rows to multiple branches. 

 LISTING 8-3 Aggregate with OVER Clause Uses Common Subexpression Spool 

CREATE TABLE window1(col1 INT, col2 INT);

GO

DECLARE @i INT=0;

WHILE @i<100

BEGIN

INSERT INTO window1(col1, col2) VALUES (@i/10, rand()*1000);

SET @i+=1;

END;

SELECT col1, SUM(col2) OVER(PARTITION BY col1) FROM window1;

FIGURE 8-12 Query plan containing common subexpression spool 

Exchange

 The Exchange operator is used to represent parallelism in query plans. This can be seen in the 
showplan as a Gather Streams, Repartition Streams, or Distribute Streams operation, based 
on whether it is collecting rows from threads or distributing rows to threads, respectively. 
Several row distribution algorithms exist, and each operator has a preferred algorithm based 

C08626249.indd   455 2/13/2009   12:29:52 PM



456 Microsoft SQL Server 2008 Internals

on its context in a query. In SQL Server, parallelism exists in zones where the system tries to 
speed up by using additional CPUs. Figure 8-13 demonstrates a query where multiple threads 
scan a table in parallel.  

FIGURE 8-13 Exchange operator in query plan

 More Info Other SQL Server 2008 operators are described online at http://technet.microsoft.com/
en-us/library/ms191158.aspx.  

Optimizer Architecture

 The Query Optimizer contains many optimization phases that each performs  different 
 functions. The different phases help the Query Optimizer perform the highest-value 
 operations earliest in the optimization process.  

 The major phases in the optimization of a query, as shown in Figure 8-14, are as follows: 

■  Simplifi cation 

■  Trivial plan 

■  Auto-stats create/update 

■  Exploration/implementation (phases) 

■  Convert to executable plan 

Si
m

pl
ifi

ca
tio

n

Tr
iv

ia
l P

la
n

Co
nv

er
t t

o
Ex

ec
ut

ab
le

Pl
an

Au
to

-S
ta

ts

St
ag

e 
0

St
ag

e 
1

St
ag

e 
2

Exploration

FIGURE 8-14 Query Optimizer pipeline

Before Optimization

 The SQL Server query processor performs several steps before the actual optimization 
 process begins. These transformations help shape the tree into a form about which it can 
be easily reasoned. View expansion is one major preoptimization activity. When a query 

C08626249.indd   456 2/13/2009   12:29:52 PM



 Chapter 8 The Query Optimizer 457

is compiled that references a view, the text of the view is read from the server’s metadata 
and parsed as well. One consequence of this design choice is that a query that references 
a view many times gets this view expanded many times before it is optimized. Coalescing 
adjacent UNION operations is another preoptimization transformation that is performed 
to  simplify the tree. This converts the syntactic two-child form of UNION [ALL], INTERSECT 
[ALL], and EXCEPT [ALL] into a single operator that can have more than two children. This 
rewrite  simplifi es the tree structure and makes it easier for the Query Optimizer to write rules 
to  affect UNIONs. For example, grouping UNION operations makes the task of removing 
 duplicate rows easier and more effi cient.  

Simplifi cation

 Early in optimization, the tree is normalized in the Simplifi cation phase to convert the 
tree from a form linked closely to the user syntax into one that helps later processing. For 
 example, the Query Optimizer detects semantic contradictions in the query and removes 
them by rewriting the query into a simpler form. In addition, the rewrites performed in this 
section make subsequent operations such as index matching, computed column matching, 
and statistics generation easier to perform correctly.  

 The Simplifi cation phase performs a number of other tree rewrites as well. These activities 
include 

■  Grouping joins together and picking an initial join order, based on cardinality data for 
each table 

■  Finding contradictions in queries that can allow portions of a query not to be executed 

■  Performing the necessary work to rewrite SELECT lists to match computed columns. 

 A contradiction detection example was shown earlier in this chapter in Figure 8-5. 

Trivial Plan/Auto-Parameterization

 The main optimization path in SQL Server is a very powerful cost-based model of the 
 execution time of a query. As databases and queries over those databases have become 
 larger and more complex, this model has allowed SQL Server to solve bigger and  bigger 
business problems. The fi xed startup cost for running this model can be expensive for 
 applications that are not trying to perform complex operations. Making a single path that 
spans from the smallest to the largest queries can be challenging, as the requirements and 
specifi cations are vastly different. 

 To be able to satisfy small query applications well, a fast path was added to SQL Server 
to identify queries where cost-based optimization was not needed. Generally, this code 
 identifi es cases where a query does not have any cost-based choices to make. This means 

C08626249.indd   457 2/13/2009   12:29:52 PM



458 Microsoft SQL Server 2008 Internals

that there is only one plan to execute or there is an obvious best plan that can be identifi ed. 
In these cases, the Query Optimizer directly generates the best plan and returns it to the 
 system to be executed. For example, the query SELECT col1 FROM Table1 for a table without 
any indexes has a straightforward best plan choice—read the rows from the base table heap 
and return them to the user, as seen in Figure 8-15. 

CREATE TABLE Table1 (col1 INT, col2 INT);

SELECT col1 FROM Table1;

FIGURE 8-15 Trivial plan example—table scan

 The SQL Server query processor actually takes this concept one step further. When simple 
queries are compiled and optimized, the query processor attempts to turn these queries 
into a parameterized query. If the plan is determined to be trivial, the parameterized query 
is turned into an executable plan. Then, future queries that have the same shape except 
for constants in well-known locations in the query just run the existing compiled query 
and avoid going through the Query Optimizer at all. This speeds up applications with small 
 queries on SQL Server signifi cantly. 

SELECT col1 FROM Table1 WHERE col2 = 5;

SELECT col1 FROM Table1 WHERE col2 = 6;

 If you look at the text of these queries in the procedure cache in Listing 8-4, you see that 
there is actually only one query plan, and it is parameterized. 

 LISTING 8-4 Automatically Parameterized Query Text 

SELECT text

    FROM sys.dm_exec_query_stats AS qs 

    CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) AS st

WHERE st.text LIKE '%Table1%';

----------------------------------------

(@1 tinyint)SELECT [col1] FROM [Table1] WHERE [col2]=@1 

 If you examine the XML plan for this query plan, you see that there is an indication that this 
query was a trivial plan. The other choice is full, meaning that cost-based optimization was 
performed): 

. . . <StmtSimple . . . StatementOptmLevel="TRIVIAL"> . . .

 (XML plan output is verbose, so I have omitted most of it for space. The bold code shows the 
choice the Query Optimizer made.) 

C08626249.indd   458 2/13/2009   12:29:52 PM



 Chapter 8 The Query Optimizer 459

Limitations

 The trivial plan optimization was introduced in SQL Server 7.0. While each version of SQL 
Server has slightly different rules, all versions have queries that skip the trivial plan stage 
completely and only perform regular optimization activities. Using more complex features 
can disqualify a query from being considered trivial because they always have a cost-based 
plan choice or are too diffi cult to identify as trivial or not. Examples of query features that 
cause a query not to be considered trivial include Distributed Query, Bulk Insert, XPath 
 queries, queries with joins or subqueries, and queries with hints, some cursor queries, and 
queries over tables containing fi ltered indexes.  

 SQL Server 2005 added another feature, called forced parameterization, to auto- parameterize 
 queries more aggressively. This feature parameterizes all constants, ignoring cost-based 
 considerations. This feature is most useful for an application where the SQL is generated (and 
you cannot make it generate parameterized queries) and the resulting query plans are almost 
always identical (or the plans perform similarly even if they differ). Specifi cally, it is worth 
 considering when the application queries cannot be changed by the DBA in charge of the 
server. 

 The benefi t of this feature is that it can reduce compilations, compilation time, and the 
 number of plans in the procedure cache. All these things can improve system performance. 
On the other hand, this feature can reduce performance when different parameter values 
would cause different plans to be selected. These values are used in the Query Optimizer’s 
cardinality and property framework to make decisions about how many rows will be returned 
from each possible plan choice, and forced parameterization blocks these optimizations. So 
if you think that your application would benefi t from using forced parameterization, perform 
some experiments and see whether the application works better. Chapter 9, “Plan Caching 
and Recompliation,” goes into more detail on the various parameterization options.  

The Memo—Exploring Multiple Plans Effi ciently

 The core structure of the Query Optimizer is the Memo. This structure helps store the  result 
of all the rules that are run in the Query Optimizer, and it also helps guide the search of 
 possible plans to fi nd a good plan quickly and avoid searching a sub-tree more than once. 
This speeds up the compilation process and reduces the memory requirements. In  effect, 
this allows the Query Optimizer to run more advanced optimizations compared to other 
 optimizers without a similar mechanism. Although this structure is internal to the Query 
Optimizer, this section describes its basic operations so that you can better understand the 
way that the Query Optimizer selects a plan. 

 The Memo stores operators from a query tree and uses logical pointers to represent the 
 edges of that tree. If we consider the query SELECT * FROM (A INNER JOIN B ON A.a=B.b) 
AS D INNER JOIN C ON D.c=C.c, this can be drawn as a tree, as seen in Figure 8-16. 

C08626249.indd   459 2/13/2009   12:29:52 PM



460 Microsoft SQL Server 2008 Internals

Join (D.c=C.c)

Get (C) Join (A.a=B.b)

Get (B)Get (A)

FIGURE 8-16 Tree of a three-table join

 The same query stored in the Memo can be seen in Figure 8-17. 

(Root) Group 4:
 0 Join 3 2
Group 3:
 0 Join 0 1
Group 2:
 0 Table C
Group 1:
 0 Table B
Group 0:
 0 Table A

FIGURE 8-17 Initial Memo layout for a three-table join

 The Memo is made up a series of groups. When the Memo is fi rst populated, each operator 
is put into its own group. The references between operators are changed to be references to 
other groups in the Memo. In this model, it is possible to store multiple alternatives that yield 
the same result in the same group in the Memo. With this change, it is possible to search for 
the best sub-tree independently of what exists in higher-level groups in the Memo. Logical 
properties are stored within each memo group, and every additional entry in a group can 
share the property structure for that group with the initial alternative.  

 One type of alternative explored by the Query Optimizer is join associativity. [(A join B) 
join C)] is equivalent to [A join (B join C)]. After this transformation is considered by the 
Query Optimizer, Figure 8-18 describes the updated Memo structure. (The bold sections 
are new.) 

C08626249.indd   460 2/13/2009   12:29:52 PM



 Chapter 8 The Query Optimizer 461

Group 5:
 0 Join 1 2
(Root) Group 4:
 1 Join 0 5
 0 Join 3 2
Group 3:
 0 Join 0 1
Group 2:
 0 Table C
Group 1:
 0 Table B
Group 0:
 0 Table A

FIGURE 8-18 Three-table Memo after the join associativity rule has been applied

 Notice how the new alternative fi ts into a structure. (B join C) that has not been previously 
seen in the Memo, so a new group is created that then references the existing groups for B 
and C. This representation saves a lot of memory when considering multiple possible query 
plans, and it makes it possible for the Query Optimizer to know if it has previously considered 
a section of the search space so that it can avoid doing that work again. (A join C) would be 
another valid alternative, though it is not shown. 

 Rules are the mechanisms that allow the Memo to explore new alternatives during the 
 optimization process. The join associativity example is implemented as an optimization 
rule that matches a specifi c pattern and then creates a new alternative that is equivalent to 
the fi rst one (returns the same result for that portion of the query). The result of a rule, by 
 defi nition, can go into the same group as the root of the original pattern. 

 An optimization search pass is split into two parts. In the fi rst part of the search,  exploration 
rules match logical trees and generate new, equivalent alternative logical trees that are  inserted 
into the Memo. Implementation rules run next, generating physical trees from the logical trees. 
Once a physical tree has been generated, it is evaluated by the costing  component to  determine 
the cost for this query tree. The resulting cost is stored in the Memo for that  alternative. When 
all physical alternatives and their costs are generated for all groups in the Memo, the Query 
Optimizer fi nds the one query tree in the Memo that has the lowest cost and copies that into a 
stand-alone tree. The selected physical tree is very close to the showplan form of the tree. 

 The optimization process is optimized further by using multiple search passes, separating the 
rules based on cost and how likely they are to be useful. There are three phases, and each 
phase runs a set of exploration and implementation rules. The phases are confi gured to make 
small queries optimize quickly and to make more expensive queries consider more  aggressive 
rewrite rules that may take longer to compile. For example, index matching is performed in 
the fi rst phase, whereas the matching of index view is generally not performed until a later 
stage. The Query Optimizer can quit optimization at the end of a phase if a suffi ciently good 

C08626249.indd   461 2/13/2009   12:29:52 PM



462 Microsoft SQL Server 2008 Internals

plan has been found. This calculation is done by comparing the estimated cost of the best 
plan found so far against the actual time spent optimizing so far. If the current best plan is 
still very expensive, then another phase is run to try to fi nd a better plan. This model allows 
the Query Optimizer to generate plans effi ciently for a wide range of workloads. 

Convert to Executable Plan

 At the end of the search, the Query Optimizer has selected a single plan to be returned to the 
system. This plan is copied from the Memo into a separate tree format that can be stored in the 
Procedure Cache. During this process, a few small, physical rewrites are performed. Finally, the 
plan is copied into a new piece of contiguous memory and is stored in the  procedure cache. 

Statistics, Cardinality Estimation, and Costing

 The Query Optimizer uses a model with estimated costs of each operator to determine which 
plan to choose. The costs are based on statistical information used to estimate the number of 
rows processed in each operator. By default, statistics are generated automatically during the 
optimization process to help generate these cardinality estimates. The Query Optimizer also 
determines which columns need statistics on each table. 

 Once a set of columns is identifi ed as needing statistics, the Query Optimizer attempts to 
fi nd a preexisting statistics object for that column. If it doesn’t fi nd one, the system samples 
the table data to create a new statistics object. If one already existed, it is examined to 
 determine if the sample was recent enough to be useful for the compilation of the current 
query. If it is considered out of date, a new sample is used to rebuild the statistics object. This 
process continues for each column where statistics are needed.  

 Both auto-create and auto-update statistics are enabled by default. In practice, most people 
leave these fl ags enabled and get good behavior from the Query Optimizer. However, it is 
possible to disable the creation and update behavior of statistics: 

ALTER DATABASE . . . SET AUTO_CREATE_STATISTICS {ON | OFF }

ALTER DATABASE . . . SET AUTO_UPDATE_STATISTICS {ON | OFF }

 These commands modify the behavior for auto-create and auto-update statistics,  respectively, 
for all tables in a database. If automatic creation or updating of statistics is disabled, the 
Query Optimizer returns a warning in the showplan output when compiling a query where 
it thinks it needs this information. In this mode of operation, it would be the responsibility of 
the DBA to keep the statistics objects up to date in the system. 

 It is also possible to control the auto-update behavior of individual statistics objects using 
hints on specifi c operations: 

CREATE INDEX . . . WITH (STATISTICS_NORECOMPUTE = ON)

CREATE STATISTICS . . . WITH (NORECOMPUTE)

C08626249.indd   462 2/13/2009   12:29:52 PM



 Chapter 8 The Query Optimizer 463

 While these settings are usually left enabled, some reasons for disabling creating or updating 
statistics include the following: 

■  The database has a maintenance window when the DBA has decided to update  statistics 
explicitly instead of having these objects update automatically during the day. This is 
often because the DBA has reason to believe that the Query Optimizer may choose a 
poor plan if the statistics are changed. 

■  The database table is very large, and the time to update the statistics automatically is 
too high. 

■  The database table has many unique values, and the sample rate used to  generate 
 statistics is not high enough to capture all the statistical information needed to  generate a 
good query plan. The DBA likely uses a maintenance window to update  statistics  manually 
at a higher sample rate than the default (which varies based the size of the table). 

■  The database application has a short query timeout defi ned and does not want 
 automatic statistics to cause a query to take noticeably longer than average to compile 
because it could cause that timeout to abort the query.  

 This last scenario manifests in a subtle manner that can break your applications. If a  query in 
an OLTP application was set with a small timeout of a few seconds, this is generally  suffi cient 
to compile all queries (even with automatic statistics). However, as the database table grows, 
the time to sample the table to create or update statistics grows. Eventually, the total time 
to perform this operation reaches the query timeout. Because each query is  compiled as 
part of a user transaction, a timeout forces the transaction to abort and roll back. When the 
next query against that table was compiled, the timeout is hit again and the whole query 
roll backs. This unfortunately caused applications to fail unexpectedly, and often this would 
 happen after an application was deployed because it was just some  timing threshold based 
on database size. 

 To address this functionality, SQL Server 2005 introduced a feature called asynchronous 
 statistics update (ALTER DATABASE . . . SET AUTO_UPDATE_STATISTICS_ASYNC {ON | OFF). 
This allows the statistics update operation to be performed on a background thread in a 
 different transaction context. The benefi t of this model is that it avoids the repeating rollback 
issue. The original query continues and uses out-of-date statistical information to compile the 
query and return it to be executed. When the statistics are updated, plans based on those 
statistics objects are invalidated and are recompiled on their next use.  

Statistics Design

 Statistics are stored in the system metadata. They are composed primarily of a histogram 
(a  representation of the data distribution for a column). Do not get this confused:  sometimes 
people say statistics when they mean histogram. Other elements in the statistics object  include 
some header information (including the number of rows sampled when the object was created), 
trie trees (a representation of the data distribution for string columns), and density information 
(which tracks information about average data distributions across one or more columns). 

C08626249.indd   463 2/13/2009   12:29:53 PM



464 Microsoft SQL Server 2008 Internals

 Statistics can be created over most, but not all, data types in SQL Server 2008. As a general 
rule, data types that support comparisons (such as >, =, and so on) support the creation of 
 statistics. The Query Optimizer doesn’t need to reason about distributions if these are not 
comparable in the language. Examples of data types where statistics are not supported 
 include old-style BLOBs (such as image, text, and ntext) and some of the newer user-defi ned 
data type (UDT)–based types when they are not byte-order comparable.  

 In addition, SQL Server supports statistics on computed columns. This allows the Query 
Optimizer to make cardinality estimates over expressions, such as col1 + col2, or some of the 
more complex types, such as the geography type, where the primary use case is to run a 
function on the UDT instead of comparing the UDT directly. 

 Listing 8-5 creates statistics on a persisted computed column created on a function of an 
otherwise non-comparable UDT. When this UDT method is used in later queries, the Query 
Optimizer can use this statistic to estimate cardinality more accurately. 

 LISTING 8-5 DBCC SHOW_STATISTICS over a Persisted Computed Column 

CREATE TABLE geog(col1 INT IDENTITY, col2 GEOGRAPHY);

INSERT INTO geog(col2) VALUES (NULL);

INSERT INTO geog(col2) VALUES (GEOGRAPHY::Parse('LINESTRING(0 0, 0 10, 10 10, 10 0, 0 0)'));

ALTER TABLE geog ADD col3 AS col2.STStartPoint().ToString() PERSISTED;

CREATE STATISTICS s2 ON geog(col3);

DBCC SHOW_STATISTICS('geog', 's2');

 Statistics can be enumerated by querying the system metadata using the following code, and 
the results are shown in Figure 8-19. 

SELECT o.name AS tablename, s.name AS statname 

FROM sys.stats s INNER JOIN sys.objects o ON s.object_id = o.object_id;

FIGURE 8-19 Query output listing statistics objects

C08626249.indd   464 2/13/2009   12:29:53 PM



 Chapter 8 The Query Optimizer 465

 Once identifi ed, the statistics object can be viewed using the DBCC SHOW_STATISTICS 
 command, as shown in Figure 8-20. 

FIGURE 8-20 DBCC SHOW_STATISTICS output

 Once the Query Optimizer has determined that it needs to either create a new statistics 
object or update an existing one that is out of date, the system creates an internal query to 
generate a new statistics object. Figure 8-21 demonstrates the query that builds the statistics 
object in the SQL Server Profi ler output. 

FIGURE 8-21 SQL Profi ler showplan output for histogram generation

 Note STATMAN is a special internal aggregate function that works like other aggregate 
 functions in the system—many rows are consumed by a streaming group by operator and 
are passed to the STATMAN aggregate. It generates a BLOB that stores the histogram, density 
 information, and any trie trees created during this operation. When fi nished, the statistics blob 
is stored in the  database metadata and is used by queries (including the one that issued the 
 command originally, except in the case of asynchronous statistics update). 

C08626249.indd   465 2/13/2009   12:29:53 PM



466 Microsoft SQL Server 2008 Internals

 The Optimizer samples database pages to generate statistics, including all rows from each 
sampled page. For small tables, all pages are sampled (meaning all rows are considered 
when building the histogram). For larger tables, a smaller and smaller percentage of pages 
are sampled. To keep the histogram a reasonable size, it is limited to 200 total steps. If it 
 examines more than 200 unique values while building the histogram, the Query Optimizer 
uses logic to try to reduce the number of steps based on an algorithm that preserves as 
much distribution information as possible. Because histograms are most useful for  capturing 
the non-uniform data distributions of a system, this means that it tries to preserve the 
 information that captures the most frequent values and how much more frequent they are 
than the least frequent values in the data.  

Density/Frequency Information

 In addition to a histogram, the Query Optimizer also keeps track of the number of unique 
 values for a set of columns. When combined with the total number of rows viewed when 
 creating the table, this can calculate the average number of duplicate values in the  column. 
This information, called the density information, is stored in the histogram. Density is  calculated 
by the formula 1/frequency, with frequency being the average number of  duplicates for each 
value in a table. This information is also returned when one calls DBCC SHOW_STATISTICS. For 
multicolumn statistics, the statistics object stores density information for each combination 
of columns (in the order that they were specifi ed in the CREATE STATISTICS  statement) in the 
 statistics object. This stores information about the number of duplicate sets of values. 

 In Listing 8-6, we will create a two-column table with 30,000 rows. 

 LISTING 8-6 Multicolumn Statistics 

CREATE TABLE MULTIDENSITY (col1 INT, col2 INT);

go

DECLARE @i INT;

SET @i=0;

WHILE @i < 10000

BEGIN

 INSERT INTO MULTIDENSITY(col1, col2) VALUES (@i, @i+1);

 INSERT INTO MULTIDENSITY(col1, col2) VALUES (@i, @i+2);

 INSERT INTO MULTIDENSITY(col1, col2) VALUES (@i, @i+3);

 set @i+=1;

END;

GO

-- create multi-column density information

CREATE STATISTICS s1 ON MULTIDENSITY(col1, col2);

GO

 In col1, there are 10,000 unique values, each duplicated three times. In col2, there are  actually 
10,002 unique values. For the multicolumn density, each set of (col1, col2) in the table is 
unique. Figure 8-22 shows the data stored for the multicolumn statistics object. 

DBCC SHOW_STATISTICS ('MULTIDENSITY', 's1')

C08626249.indd   466 2/13/2009   12:29:53 PM



 Chapter 8 The Query Optimizer 467

FIGURE 8-22 Multicolumn density information in the statistics object

 The density information for col1 is 0.0001. 1/0.0001 = 10,000, which is the number of unique 
values of col1. The density information for (col1, col2) is about 0.00003 (the numbers are 
stored as fl oating point and are imprecise). 

 Let’s examine the cardinality estimates for the GROUP BY operation using GROUP BY lists 
that match the density information in Figure 8-23. The actual and estimated cardinalities 
match up exactly for this query. 

SET STATISTICS PROFILE ON

SELECT COUNT(*) AS CNT FROM MULTIDENSITY GROUP BY col1

FIGURE 8-23 STATISTICS PROFILE output for the hash aggregate

 Note I have reordered the columns from the STATISTICS PROFILE output to show the 
EstimateRows  column for the Hash Match implementing the GROUP BY operation. 

 For a query grouping over both columns, you can see that the estimate matches up with the 
value seen in the density calculation. The STATISTICS PROFILE output in Figure 8-24 shows 
that this changes the estimate to 30,000 rows. 

SET STATISTICS PROFILE ON

SELECT COUNT(*) AS CNT FROM MULTIDENSITY GROUP BY col1, col2

FIGURE 8-24 The STATISTICS PROFILE output for a two-column aggregate

 The Query Optimizer actually has to perform an additional step when calculating the  output 
cardinality for an operator. Because statistics are usually created before the compilation 
of the query that uses them and are often only samples of the data, the values stored in 
the  statistics object do not usually match the exact count of rows at the time the query is 
 compiled. So the Query Optimizer uses these two values to calculate the fraction of rows that 

C08626249.indd   467 2/13/2009   12:29:53 PM



468 Microsoft SQL Server 2008 Internals

should qualify in the operation. This is then scaled to the actual number of values in the table 
at the time that the query is compiled. 

 The Query Optimizer does not expose exactly how each part of the cardinality estimate 
is computed. However, if you fi nd that a query has estimates that vary widely from what 
 actually happens when you run the query, statistics profi le can help you identify if the Query 
Optimizer has bad information. You may need to update statistics to capture new data in the 
table, create statistics with a higher sample rate, or otherwise make sure that the information 
used during compilation is accurate. Although SQL Server does this automatically in most 
cases, this is often a good way to fi nd and fi x problems with poor plan selection. 

Filtered Statistics

As part of the Filtered Index feature added in SQL Server 2008, the Filtered Statistics feature 
was also added. This means that the statistics object is created over a subset of the rows in 
a table based on a fi lter predicate. Creating a fi ltered index auto-creates a matching fi ltered 
statistics object that matches the behavior of nonfi ltered indexes. This information is exposed 
through the sys.stats metadata view shown in Figure 8-25. 

SELECT * FROM SYS.STATS

FIGURE 8-25 The fi lter_defi nition expression in SQL Server 2008 Statistics

Filtered statistics are used in a manner that is similar to traditional statistics—the set of 
 columns on which distributions are needed is determined early in query compilation. The set 
of fi lter predicates defi ned on the table for the query must be a subset of the fi lter_defi nition 
of the statistics object for the statistic to be considered. If multiple such statistics exist, the 
one with the tightest bounds is used. 

Filtered statistics can avoid a common problem in cardinality estimation where estimates 
become skewed due to data correlation between columns. For example, if you create a 
table called CARS, you might have a column called MAKE and a column called MODEL. For 
 example, the following table shows that multiple models of cars are made by Ford.  

 CAR_ID MAKE MODEL

 1 Ford F-150

 2 Ford Taurus

 3 BMW M3

 In addition, let’s assume that you want to run a query like this: 

SELECT * FROM CARS WHERE MAKE='Ford' AND MODEL='F-150';

CAR_ID MAKE MODEL

C08626249.indd   468 2/13/2009   12:29:53 PM



 Chapter 8 The Query Optimizer 469

 When the query processor tries to estimate the selectivity for each condition in an AND 
clause, it usually assumes that each condition is independent. This allows the selectivity 
of each predicate to be multiplied together to form the total selectivity for the complete 
WHERE clause. For this example, it would be: 

2/3 * 1/3 = 2/9

 The actual selectivity is really 1/3 for this query, because every F-150 is a Ford. This kind of 
estimation error can be large in some data sets. Detecting statistical correlations like this is a 
very computationally expensive problem, so the default behavior is to assume independence 
even though that may introduce some amount of error into the cardinality estimation process.  

 Filtered Statistics solves this problem by capturing the conditional probability for the MODEL 
column when the MAKE value is Ford. While using this solution requires a lot of statistics objects, 
it can be effective to fi x the most important cases in an application where cardinality estimation 
error is causing poorly performing plans to be chosen by the Query Optimizer, especially when 
the WHERE clause has a relatively small number of distinct values. 

 In additional to the Independence assumption, the Query Optimizer contains other  assumptions 
that are used to both simplify the estimation process and to be consistent in how estimates 
are made across all operators. Another assumption in the Query Optimizer is the Uniformity 
 assumption. This means that if a range of values is being considered but they are not known, 
then they are assumed to be uniformly distributed over the range in which they exist. For 
 example, if a query has an IN list with different parameters for each value, the values of the 
 parameters are assumed not to be grouped. The fi nal assumption in the Query Optimizer is 
the Containment assumption. This says that if a range of values is being joined with another 
range of values, then the default assumption is that that query is being asked because those 
ranges  overlap and qualify rows. Without this assumption, many common queries would be 
 underestimated and poor plans would be chosen. 

String Statistics

 SQL Server 2005 introduced a feature to improve cardinality estimation for strings called String 
Statistics or Trie Trees. SQL Server histograms can have up to 200 steps, or unique values, to 
store information about the overall distribution of a table. While this works well for many 
 numeric types, the string data types often have many more unique values as well as  numerous 
functions that depend more heavily on a deeper statistical understanding of the type, such 
as LIKE. Two hundred unique values is often not suffi cient to provide accurate cardinality 
 estimates for strings, and storing lots of strings outside of the table can use a lot of space. Trie 
trees were created to store a sample of the strings in a column in a space-effi cient manner. 

C08626249.indd   469 2/13/2009   12:29:53 PM



470 Microsoft SQL Server 2008 Internals

 The trie tree is not documented, but generally trie trees work as follows: 

 If we have a column containing the following values: 

ABC

AAA

ABCDEF

ADAD

BBB

 The trie tree for this structure is shown in Figure 8-26.  

B(.2)

B(.2)

A(.8)

D(.2)B(.4)A(.2)

FIGURE 8-26 Example of a trie tree

 SQL Server actually stores a sample of the strings in the column, and even this is bound to 
take up not too much space. SQL Server also has some idea of the relative frequency for each 
substring listed in the trie tree. Overall, this provides the ability to store far more than 200 
unique substrings worth of frequency information. 

Cardinality Estimation Details

 During optimization, each operator in the query is evaluated to estimate the number of rows 
that are processed by that operator. This helps the Query Optimizer make proper tradeoffs 
based on the costs of different query plans. This process is done bottom-up, with the base 
table cardinalities and statistics being used as input to tree nodes above it. This process 
continues all the way up the query tree, and the estimated number of rows returned from a 
query in showplan information is based on this calculation. 

 Listing 8-7 contains a sample used to explain how the cardinality derivation process works.  

 LISTING 8-7 Cardinality Estimation Sample 

CREATE TABLE Table3(col1 INT, col2 INT, col3 INT);

GO

SET NOCOUNT ON;

BEGIN TRANSACTION;

DECLARE @i INT=0;

WHILE @i< 10000 

BEGIN

INSERT INTO Table3(col1, col2, col3) VALUES (@i, @i,@i % 50);

SET @i+=1;

END;

COMMIT TRANSACTION;

GO

SELECT col1, col2 FROM Table3 WHERE col3 < 10;

C08626249.indd   470 2/13/2009   12:29:53 PM



 Chapter 8 The Query Optimizer 471

 This query is represented in the query processor using the tree shown in Figure 8-27. 

Project
(col1, col2)

Filter
(col3 > 10)

Get(Table3)

FIGURE 8-27 Example of a logical query tree for cardinality estimation

 For this query, the Filter operator requests statistics on each column participating in the predicate 
(col3 in this query). The request is passed down to Table3, where an appropriate statistics object is 
created or updated. That statistics object is then passed to the fi lter to determine the selectivity of 
the operator. Selectivity is the fraction of rows that are expected to be qualifi ed by the  predicate 
and then returned to the user. Selectivity is used (instead of merely counting the number of 
matching values in a statistics histogram) to scale the estimate from the sample to the current row 
count properly, as the current row count may differ from when the statistics object was created 
and the statistics object may be over only a sample of the rows. 

 Once the selectivity for an operator is computed, it is multiplied by the current number of 
rows for the query. The selectivity of this fi lter operation is based on the histogram loaded 
for column col3. This can be seen in Figure 8-28. 

FIGURE 8-28 Using a histogram to estimate cardinality

C08626249.indd   471 2/13/2009   12:29:53 PM



472 Microsoft SQL Server 2008 Internals

 I’ve used a synthetic data distribution for this example to make it easier to follow the 
 computations. Because I’ve created a distribution on col3 that is uniformly distributed from 0 
to 49, there are 10/50 values less than 10, or 20 percent of the rows. Therefore, the selectivity 
of this fi lter in the query is 0.2. So the calculation of the number of rows resulting from the 
fi lter is: 

 (# rows in operator below) * (selectivity of this operator) 

 10000 * 0.2 = 2000 rows 

 We can validate this computation by looking at the showplan information for the query 
shown in Figure 8-29. 

FIGURE 8-29 Operator row estimate for cardinality example

 The estimate for the operator is taken by looking at the histogram, counting the number of 
sampled rows matching the criteria (in this case, we have 10 histogram steps with 200 equal 
rows for values that match the fi lter condition). Then, the number of qualifying rows (2,000) 
is normalized against the number of rows sampled when the histogram was created (10,000) 
to create the selectivity for the operator (0.2). This is then multiplied by the current number 
of rows in the table (10,000) to get the estimated query output cardinality. The cardinality 
estimation process is continued for any other fi lter conditions and the results are usually just 
multiplied to estimate the total selectivity for each condition. 

 One other interesting aspect of the histogram is RANGE_ROWS, DISTINCT_RANGE_ROWS, 
and AVG_RANGE_ROWS. Because histograms are limited to 200 steps, some values being 
queried may not be represented in the histogram steps. These values are represented in the 
RANGE values, and they are counts of rows between the step values. For query  conditions 
that do not match one of the equal (EQ) rows in the histogram, values in the range are 
 assumed to be uniformly distributed over the domain between the two bounding histogram 
steps. The fraction is determined from this assumption and used to generate the selectivity, 
as in the previous examples. 

 Although most operators work using a mechanism similar to Filter, some other operators 
need additional mechanisms to make good cardinality estimates. For example, GROUP BY 
 actually doesn’t try to determine which slices of a histogram should be used to estimate the 
 selectivity of the operator. Instead, it needs to determine the number of unique values over a 

C08626249.indd   472 2/13/2009   12:29:53 PM



 Chapter 8 The Query Optimizer 473

set of columns, as can be seen in Figure 8-30. This information can be estimated by looking 
at the histogram, but there is another mechanism in the statistics object to help perform this 
calculation quickly. The density information is stored in the histogram in the second result set, 
and in this case, it is 0.02 for col3. 

SELECT COUNT(*) FROM Table3 GROUP BY col3;

FIGURE 8-30 GROUP BY cardinality estimate

 This is a representation of the average number of duplicates for any value in the table. In 
other words, this tells us how to compute the number of groups using the total number of 
rows. For this simple GROUP BY query, the estimate of rows is (1/0.02)*(10,000/10,000) = 50, 
which matches the number of groups we would expect from our creation script: 

GROUP BY Selectivity = (1/density)

GROUP BY Card. Estimate = (Input operator) * (selectivity)

 When a multicolumn statistics object is created, it computes density information for the sets 
of columns being evaluated in the order of the statistics object. So a statistics object  created 
on (col1, col2, col3) has density information stored for ((col1), (col1, col2), and (col1, col2, 
col3)). This can be used to compute the cardinality estimate for a query over that table doing 
GROUP BY col1, GROUP BY col1, col2, or GROUP BY col1, col2, col3. 

 We can see this computation in the results of DBCC SHOW_STATISTICS in Figure 8-31. 

CREATE TABLE Table4(col1 int, col2 int, col3 int)

GO

DECLARE @i int=0

WHILE @i< 10000 

BEGIN

INSERT INTO Table4(col1, col2, col3) VALUES (@i % 5, @i % 10,@i % 50);

SET @i+=1

END

CREATE STATISTICS s1 on Table4(col1, col2, col3)

DBCC SHOW_STATISTICS (Table4, s1)

FIGURE 8-31 Multicolumn density information

C08626249.indd   473 2/13/2009   12:29:53 PM



474 Microsoft SQL Server 2008 Internals

 Note SQL Server does not automatically create statistics for multicolumn cases like this except 
in index creation, so we need to create the statistics object manually for this example. 

 Multicolumn density information is important because it captures correlation data between 
columns in the same table. By default, if every column were assumed to be completely 
 independent, then one would expect a large number of different groups to be returned 
 because each column added to the grouping columns would add more and more  uniqueness 
(and less and less selectivity for the GROUP BY operator). However, in this case, we see that 
the selectivity of the GROUP BY is the same as in our previous example—50 groups. The 
data captured in the multicolumn density can be used to get this cardinality estimation to be 
more accurate.  

 If I create a similar table with random data in the fi rst two columns, the density looks quite 
different, as shown in Figure 8-32. 

FIGURE 8-32 Multicolumn density for random data distribution

 This would imply that every combination of col1, col2, and col3 are actually unique in that 
case. By examining the various inputs into the cardinality estimation process, it is possible to 
determine whether the plan used reasonable information during the compilation process. 

 There are many, many more details to cardinality estimation than can be covered in this  chapter. 
Most of the details change somewhat from release to release, and most of the details are not 
exposed or documented enough to make it useful to try to follow the exact computation. It is 
still very useful to understand the statistics and cardinality estimation mechanism so that you 
can perform plan debugging and hinting (explained later in this chapter). 

Limitations

 The cardinality estimation of SQL Server is usually very good. Unfortunately, it is very diffi cult 
to make a model that is perfect for every query for all applications. While most of these are 
 internal details, some of them are interesting to know about so that you can understand that 
the calculations explained earlier in this section do not work perfectly in every query. 

■  Multiple predicates in an operator The selectivities of multiple predicates are 
 multiplied during cardinality estimation to determine the resulting estimate for 
the whole operator. This means that the predicates are assumed to be statistically 
 independent. In practice, most data has some statistical dependencies between 
 columns. As the number of predicates in the query increases, the Query Optimizer 

C08626249.indd   474 2/13/2009   12:29:53 PM



 Chapter 8 The Query Optimizer 475

actually does not directly multiply all the selectivities and assumes that these different 
predicates are related. So the selectivity of an operator with many predicates may be 
greater than you might expect. 

■  Deep Query Trees The process of tree-based cardinality estimation is good, but it also 
means that any errors lower in the query tree are magnifi ed as the calculation  proceeds 
higher up the query tree to more and more operators. Eventually, the error  introduced in 
all these computations overwhelms the value of using histograms to compute  cardinality 
estimates. As a result, very deep query trees eventually stop using histograms for the 
higher portions of the query tree and may use simpler heuristics to make  cardinality 
 estimates to avoid assuming information on data that is very likely to be invalid. 

■  Less common operators The Query Optimizer has many operators. Most of the 
 common operators have extremely deep support developed over multiple versions 
of the product. Some of the lesser-used operators, however, don’t necessarily have 
the same depth of support for every single scenario. So if you are using an infrequent 
operator or one that has only recently been introduced, it may not provide  cardinality 
estimates that are as good as the most core operators. In these cases, it is worth 
 double-checking the estimates using SET STATISTICS PROFILE ON to see if the  estimates 
are close to what is expected. In many cases where the estimates are incorrect, the 
 impact is often mitigated because specialized operators do not always have many plan 
choices and the impact of an error in cardinality estimation may be reduced. 

Costing

 The process of estimating cardinality is done using the logical query trees. Costing is the  process 
of determining how much time each potential plan choice will take to run, and it is done 
 separately for each physical plan considered. Given that the Query Optimizer considers multiple 
different physical plans that return the same results, this makes sense. Costing is the component 
that picks between hash joins and loops joins or between one join order and another. 

 The idea behind costing is actually quite simple. Using the cardinality estimates and some 
 additional information about the average and maximum width of each column in a table, it is 
able to determine how many rows fi t on each database page. This value is then translated into 
a number of disk reads that a query requires to complete. The total costs for each operator 
are then added to determine the total query cost, and the Query Optimizer is able to select 
the fastest (lowest-cost) query plan from the set of considered plans during optimization. 

 In practice, costing is not this simple. There is a cost difference between sequential I/Os, 
where disk blocks are stored sequentially on disk and therefore do not require waiting to 
move the disk head to a new track or even waiting for a complete rotation of the disk platter, 
and random I/Os, where neither of these conditions are guaranteed to be true. In addition, 
some queries are large enough that the data can be read into memory and read multiple 
times during a query. These additional reads are often going to be able to read the page 

C08626249.indd   475 2/13/2009   12:29:53 PM



476 Microsoft SQL Server 2008 Internals

from the memory-based page buffer pool, avoiding the need to read from disk at all. Even 
further, some queries may take more memory than is available in the server for the query—
in this case, the costing component needs to determine that some pages get evicted from 
the buffer pool and must be reread, either randomly or sequentially. The Optimizer uses 
logic to consider all these conditions, and the process of determining the actual cost for an 
operator can take awhile to calculate. All these considerations help make sure that SQL Server 
does the best job possible to select a good query plan for each query. 

 To make the Query Optimizer more consistent, the development team used several 
 assumptions when creating the costing model. First, a query is assumed to start with a cold 
cache. This means that the query processor assumes that each initial I/O for a query  requires 
reading from disk. In a very small number of cases (usually small, OLTP queries), this may 
cause the Query Optimizer to pick a slightly slower plan that optimizes for the number of 
initial I/Os required to complete the query. The cold-cache assumption is a  simplifi cation 
that allows the query processor to generate plans more consistently, but it is a (small) 
 difference between the mathematical model used to compare plans and reality. Second, 
random I/Os are assumed to be evenly dispersed over the set of pages in a table or index. If 
a  non-indexed based table (a heap) has 100 disk pages and the query is doing 100 random 
bookmark-based lookups into the heap, the Query Optimizer assumes that 100 random 
I/Os occur in the query because it assumes that each target row is on a separate page. Like 
the statistical column correlation example earlier in the chapter, this assumption also does 
not always hold. The actual set of rows could be clustered physically on the same pages 
(perhaps they were all inserted at the same time and thus ended up on adjacent pages), and 
it may only require fi ve I/Os to read the rows of interest. In this case, the Query Optimizer 
would overcost this query. This also rarely happens, but it is valuable to understand that the 
 mathematical model used for costing is just that—a model. In the rare cases when the model 
does not work properly, query hints can be used to help force a different query plan. 

 The Query Optimizer has other assumptions built into its costing model. One assumption 
relates to how the client reads the query results. Costing assumes every query reads every 
row in the query result. However, some clients read only a few rows and then close the query. 
For example, if you are using an application that shows you pages of rows on a screen at 
a time, then that application may read 40 rows even though the original query may have 
returned 10,000 rows. If the Query Optimizer knows the number of rows that the user will 
consume, then it can optimize for the number in the plan selection process to pick a faster 
plan. Typically, this causes the Query Optimizer to switch from using operators such as hash 
join (which has a larger startup cost at the beginning of a query) to nested loops joins (which 
have a lower startup cost but a higher per-row cost). 

 SQL Server exposes a hint called FAST N for just this case. If a user typically only reads a 
 subset of the rows in a query, then it can pass OPTION (FAST N) to the query to tell the 
Query Optimizer to cost the query for returning N rows instead of the whole result set. 
Listing 8-8 contains an example to demonstrate the FAST N hint, which selects a hash join 
without the FAST N hint. Figure 8-33 shows that a loop join is picked when the hint is applied. 

C08626249.indd   476 2/13/2009   12:29:53 PM



 Chapter 8 The Query Optimizer 477

 LISTING 8-8 FAST N Example 

CREATE TABLE A(col1 INT);

CREATE CLUSTERED INDEX i1 ON A(col1);

GO

SET NOCOUNT ON;

BEGIN TRANSACTION;

DECLARE @i INT=0;

WHILE @i < 10000

BEGIN

INSERT INTO A(col1) VALUES (@i);

SET @i+=1;

END;

COMMIT TRANSACTION;

GO

SELECT A1.* FROM A as A1 INNER JOIN A as A2 ON A1.col1=A2.col1; 

SELECT A1.* FROM A as A1 INNER JOIN A as A2 ON A1.col1=A2.col1 OPTION (FAST 1); 

FIGURE 8-33 Loops join plan (with FAST 1 hint)

Index Selection 

 Index selection is one of the most important aspects of query optimization. The basic idea 
behind index matching is to take predicates from a WHERE clause, join condition, or other 
limiting operation in a query and to convert that operation that can be performed against an 
index. Two basic operations can be performed against an index: 

■  Seek (for a single value or a range of values on the index key) 

■  Scan the index (forwards or backwards) 

 For Seek, the initial operation starts at the root of a B+ tree and navigates down the tree to a 
desired location in the index based on the index keys. Once completed, the query processor 
can iterate over all rows that match the predicate or until the last value in the range is found. 
Because leaves in a B+ tree are linked in SQL Server, it is possible to scan rows in order using 
this structure once the intermediate B+ tree nodes have been traversed. 

 The job of the Query Optimizer is to fi gure out which predicates can be applied to the  index 
to return rows as quickly as possible. Some predicates can be applied to an index, while 
 others cannot. For example, the query SELECT col1, PKcol FROM MyTable WHERE col1=2 
has one predicate in the form of <column> = <constant>. This pattern can be matched to a 

C08626249.indd   477 2/13/2009   12:29:53 PM



478 Microsoft SQL Server 2008 Internals

seek operation if there is an index on that column. The resulting alternative that is generated 
is to perform a seek against the nonclustered index and to return the rows that match, if any. 
Figure 8-34 demonstrates a basic seek plan generated by the Query Optimizer. 

CREATE TABLE idxtest2(col2 INT, col3 INT, col4 INT);

CREATE INDEX i2 ON idxtest2(col2, col3);

SELECT col2, col3 FROM idxtest2 WHERE col2=5

FIGURE 8-34 Index seek plan

 The Query Optimizer can also apply compound predicates against multicolumn indexes as 
long as the operation can be converted into starting and ending index keys. Figure 8-35 
shows a multicolumn seek plan, and you can see the predicates used if you look at the 
 properties for this operator in Management Studio. 

FIGURE 8-35 Multicolumn index seek plan

 Predicates that can be converted into an index operation are often called sargable, or 
“ Search-ARGument-able.” This means that the form of the predicate can be converted into 
an index operation. Predicates that cannot ever match or do not match the selected  index 
are called non-sargable predicates. Predicates that are non-sargable would be  applied  after 
any  index seek or range scan operations so that the query can return rows that match 
all  predicates. Making things somewhat confusing is that SQL Server usually evaluates 
 non-sargable predicates within the seek/scan operator in the query tree. This is a  performance 
optimization—if this were not done, the series of steps performed would be as follows: 

  1. Seek Operator: Seek to a key in an index’s B+ tree. 

  2. Latch the page. 

  3. Read the row. 

  4. Release the latch on the page. 

  5. Return the row to the fi lter operator. 

  6. Filter: evaluate the non-sargable predicate against the row. If it qualifi es, pass the row 
to the parent operator. Otherwise, go to step 2 to get the next candidate row. 

C08626249.indd   478 2/13/2009   12:29:53 PM



 Chapter 8 The Query Optimizer 479

 This is slower than optimal because returning the row to a different operator requires  loading 
in a different set of instructions and data to the CPU. By keeping the logic in one place, the 
overall CPU cost of evaluating the query goes down. The actual operation in SQL Server 
looks like this: 

  1. Seek Operator: Seek to a key in an index’s B+ tree. 

  2. Latch the page. 

  3. Read the row. 

  4. Apply the non-sargable predicate fi lter. If the row does not pass the fi lter, go to step 3. 
Otherwise, continue to step 5. 

  5. Release the latch on the page. 

  6. Return the row. 

 This is called pushing non-sargable predicates (the predicate is pushed from the fi lter into the 
seek/scan). It is a physical optimization, but it can show up in queries that process many rows. 

 Not all predicates can be evaluated in the seek/scan operator. Because the latch operation 
prevents other users from even looking at a page in the system, this optimization is reserved 
for predicates that are very cheap to perform. This is called non-pushable, non-sargable 
 predicates. Examples include: 

■  Predicates on large objects (including varbinary(max), varchar(max), nvarchar(max)) 

■  CLR functions 

■  Some T-SQL functions  

 Predicate sargability is an important consideration in database application design. One 
 reason systems can perform poorly is that the application against the database is written 
in such a way as to make predicates non-sargable. In many cases, this is avoidable if the 
 issue is identifi ed early enough, and fi xing this one issue can sometimes increase database 
 application performance by an order of magnitude. 

 SQL Server considers many formulations when trying to apply indexes against sargable 
 predicates in a query. For AND conditions (WHERE col1=5 AND col2=6 AND . . .), SQL Server 
tries to do the following: 

  1. Given a list of required seek equality columns, seek inequality columns, and columns 
needed to satisfy the query but without predicates, fi rst attempt to fi nd an index that 
exactly matches the request. If such an index exists, use it. 

  2. Try to fi nd a set of indexes to satisfy the equality conditions and perform an inner join 
for all such indexes. 

C08626249.indd   479 2/13/2009   12:29:53 PM



480 Microsoft SQL Server 2008 Internals

  3. If step 2 did not cover all required columns, consider joins with any other indexes based 
on the set of columns in the indexes included so far in the solution.  

  4. Finally, perform a join back to the base table to get any remaining columns. 

 In all cases, the costs of each solution are considered and the solution is only returned if it is 
 believed to be least-cost. So, a solution that joins many indexes together will only be used if it is 
 believed to be cheaper than a scan of all rows in the base table. Second, this  algorithm is  performed 
locally in the query tree. Even if the Query Optimizer generates a specifi c  alternative  using this 
process, it may not ultimately be part of the fi nal query plan. Costing is used to determine the 
cheapest, complete query plan. So, this is not a rule-based mechanism for selecting indexes. It is a 
heuristic that is part of a broader costing infrastructure to help choose effi cient query plans. 

Filtered Indexes

 SQL Server 2008 introduces the ability to create indexes with simple predicates that  restrict the 
set of rows included in the index. On fi rst glance, this feature is a subset of the  functionality 
already contained in indexed views. Nevertheless, there are good reasons for this feature 
to exist. First, indexed views are more expensive to use and maintain. Second, the matching 
 capability of the Indexed View feature is not supported in all editions of SQL Server. Third, a 
number of different SQL Server users had scenarios that were just slightly more  complex than 
the regular index feature and therefore, they were not really interested in  moving to a full 
 indexed view solution. So, although indexed views are still a very useful feature, they tend to 
be more useful for the more classical relational query precomputation scenarios. 

 Filtered Indexes are created using a new WHERE clause on a CREATE INDEX statement.  

 Listing 8-9 demonstrates how to create an index and how it can be used in a query. Figures 8-36 
and 8-37 show the resulting query plans for a query where the fi ltered index is covering and 
when it is not, respectively. 

 LISTING 8-9 Filtered Index Example 

CREATE TABLE testfilter1(col1 INT, col2 INT);

go

DECLARE @i INT=0;

SET NOCOUNT ON;

BEGIN TRANSACTION;

WHILE @i < 40000 

BEGIN

INSERT INTO testfilter1(col1, col2) VALUES (rand()*1000, rand()*1000);

SET @i+=1;

END;

COMMIT TRANSACTION;

go

CREATE INDEX i1 ON testfilter1(col2) WHERE col2 > 800;

SELECT col2 FROM testfilter1 WHERE col2 > 800; 

SELECT col2 FROM testfilter1 WHERE col2 > 799; 

C08626249.indd   480 2/13/2009   12:29:53 PM



 Chapter 8 The Query Optimizer 481

FIGURE 8-36 Filtered index used in query plan

FIGURE 8-37 Filtered index not used due to noncovering fi lter condition

 The cost of the fi rst select query is 0.0141293, whereas the second query has an estimated 
cost of 0.112467. The fi ltered index benefi ts from having fewer rows and is also narrower than 
the base table, so it has fewer pages as well. When you know specifi c constraints that are used 
on queries with large tables where space is an issue, this kind of index can be quite useful.  

 SQL Server imposes a number of restrictions on the scalar constructs that can be used to 
 formulate the fi lter in the CREATE INDEX command. These are largely based on what the 
Query Optimizer’s domain property framework can use easily when matching indexes. As 
a result, some of the more complex pieces of the system are not supported in this release 
 because there is no way to match these indexes effi ciently. 

 Several scenarios can be handled by fi ltered indexes: 

■  Not all data fi ts easily into the relational database model with a small, fi xed set of 
 columns that are set for every row. Often, some fi elds are used only occasionally, 
 resulting in many NULL entries for that column. A traditional index stores a lot of NULLs 
and wastes a lot of storage space. Updates to the table have to maintain this index for 
every row.  

■  If you are querying a table with a small number of distinct values and are using a 
 multicolumn predicate where some of the elements are fi xed, you can create a fi ltered 
index to speed up this specifi c query. This might be useful for a regular report run only 
for your boss—it speeds up a small set of queries while not slowing down updates as 
much for everyone else.  

■  As shown in the original example, the index can be used when there is a known query 
condition on an expensive query on a large table. 

C08626249.indd   481 2/13/2009   12:29:53 PM



482 Microsoft SQL Server 2008 Internals

Indexed Views

 Traditional, non-indexed views have been used for goals such as simplifying SQL queries, 
 abstracting data models from user models, and enforcing user security. From an  optimization 
perspective, SQL Server does not do much with these views because they are expanded, 
or  in-lined, before optimization begins. This gives the Query Optimizer opportunities to 
 optimize queries globally, but it also makes it diffi cult for the Query Optimizer to consider 
plans that perform the view evaluation fi rst, then process the rest of the query. Arbitrary tree 
matching is a computationally complex problem, and the feature set of views is too large to 
perform this operation effi ciently. 

 Note Matching of indexed views is supported only in SQL Server 2008 Enterprise Edition. 

 The Indexed Views feature allows SQL Server to expose some of the benefi ts of view 
 materialization while retaining the benefi ts of global reasoning about query operations. SQL 
Server exposes a CREATE INDEX command on views that creates a materialized form of the 
query result. The resulting structure is physically identical to a table with a clustered index. 
Nonclustered indexes also are supported on this structure. The Query Optimizer can use this 
structure to return results more effi ciently to the user. The Query Optimizer contains logic to 
use this index both in cases when the original query text referenced the view explicitly as well 
as in cases when the user submits a query that uses the same components as the view (in any 
equivalent order). Actually, the query processor expands indexed views early in the query 
pipeline and always uses the same matching code for both cases. The WITH(NOEXPAND) hint 
tells the query processor not to expand the view defi nition. Listing 8-10 contains an example 
with three different paths to get SQL Server to match the view. The plans for the matches are 
visible in Figures 8-38, 8-39, and 8-40. 

 LISTING 8-10 Indexed View Matching Examples 

-- Create two tables for use in our indexed view

CREATE TABLE table1(id INT PRIMARY KEY, submitdate DATETIME, comment NVARCHAR(200));

CREATE TABLE table2(id INT PRIMARY KEY IDENTITY, commentid INT, product NVARCHAR(200));

GO

-- submit some data into each table

INSERT INTO table1(id, submitdate, comment) VALUES (1, '2008-08-21', 'Conor Loves Indexed 

Views');

INSERT INTO table2(commentid, product) VALUES (1, 'SQL Server 2008');

GO

-- create a view over the two tables

CREATE VIEW dbo.v1 WITH SCHEMABINDING AS 

SELECT t1.id, t1.submitdate, t1.comment, t2.product FROM dbo.table1 t1 INNER JOIN dbo.table2 

t2 ON t1.id=t2.commentid;

go

-- indexed the view

CREATE UNIQUE CLUSTERED INDEX i1 ON v1(id);

-- query the view directly --> matches 

SELECT * FROM dbo.v1;

-- query the statement used in the view definition --> matches as well 

C08626249.indd   482 2/13/2009   12:29:53 PM



 Chapter 8 The Query Optimizer 483

SELECT t1.id, t1.submitdate, t1.comment, t2.product 

FROM dbo.table1 t1 INNER JOIN dbo.table2 t2 

    ON t1.id=t2.commentid;

-- query a logically equivalent statement used in the view definition that 

-- is written differently --> matches as well 

SELECT t1.id, t1.submitdate, t1.comment, t2.product 

FROM dbo.table2 t2 INNER JOIN dbo.table1 t1 ON t2.commentid=t1.id;

FIGURE 8-38 A direct reference match of an indexed view

FIGURE 8-39 An Indexed View match when the query is a match to the view defi nition

FIGURE 8-40 An Indexed View match when the query is not an exact match to the view defi nition 

 There are cases when the Query Optimizer does not match the view. First, remember that 
indexed views are inserted into the Memo and evaluated against other plan choices. While 
they are often the best plan choice, this is not always the case. In Listing 8-11, the Query 
Optimizer can detect logical contradictions between the view defi nition and the query that 
references the view. Figure 8-41 shows the query plan that directly references the base table 
instead of the view. 

 LISTING 8-11 Example When an Index View Is Not Matched  

CREATE TABLE table3(col1 INT PRIMARY KEY IDENTITY, col2 INT);

INSERT INTO table3(col2) VALUES (10);

INSERT INTO table3(col2) VALUES (20);

INSERT INTO table3(col2) VALUES (30);

GO

-- create a view that returns values of col2 > 20

CREATE VIEW dbo.v2 WITH SCHEMABINDING AS 

SELECT t3.col1, t3.col2 FROM dbo.table3 t3 WHERE t3.col2 > 20;

C08626249.indd   483 2/13/2009   12:29:54 PM



484 Microsoft SQL Server 2008 Internals

GO

-- materialize the view

CREATE UNIQUE CLUSTERED INDEX i1 ON v2(col1);

GO

-- now query the view and filter the results to have col2 values equal to 10.

-- The optimizer can detect this is a contradition and avoid matching the indexed view

-- (the trivial plan feature can "block" this optimization)

SELECT * FROM dbo.v2 WHERE col2 = CONVERT(INT, 10);

FIGURE 8-41 A query plan when Indexed View is not matched

 Note The predicate in this example is [v1].[dbo].[table3].[col2] as [t3].[col2]=[@1] AND [v1].[dbo].
[table3].[col2] as [t3].[col2]>(20). While I have tried to make the examples in this chapter as simple 
as possible, the Query Optimizer uses logic here to detect that I have made this query example 
too simple. As a result, it has treated it like a trivial plan and auto-parameterized it for use by all 
future queries like this one that vary only by the constant (10). Although the intricacies of trivial 
plan are not formally documented and are subject to change each release, Figure 8-42 shows 
what could happen when you modify the query slightly to avoid the trivial plan feature (in my 
case, I used a query hint, but that is not shown in the code). 

FIGURE 8-42 A Constant Scan plan due to non-trivial plan contradiction detection

 This is a zero-row scan because the Query Optimizer recognizes that col2 = 10 and col2 > 20 
never return rows. This query plan doesn’t even try to scan table3 or v2. 

 Tip Unfortunately, there are also some cases where the Query Optimizer does not  recognize an 
indexed view even when it would be a good plan choice. Often, these cases deal with  complex 
interactions between high-level features within the query processor (such as computed  column 
matching and the algorithm to explore join orders). Although SQL Server does provide some 
 information through warnings and showplans that can help you see the behaviors of the system 
at this level, it requires a lot of internal knowledge to understand fully. If you happen to fi nd 
yourself in a case where you believe that the indexed view should match but does not, then 
 consider the WITH (NOEXPAND) hint to force the query processor to pick that indexed view. This 
usually is enough to get the plan to include the indexed view. 

C08626249.indd   484 2/13/2009   12:29:54 PM



 Chapter 8 The Query Optimizer 485

 SQL Server also supports matching indexed views in cases beyond exact matches of the 
query text to the view defi nition. It also supports using an indexed view for inexact matches 
where the defi nition of the view is broader than the query submitted by the user. SQL Server 
then applies residual fi lters, projections (columns in the select list), and even aggregates to 
use the view as a partial precomputation of the query result. 

 Listing 8-12 demonstrates view matching for both fi lter and projection residuals. It creates a 
view that has more rows and more columns than our fi nal query, but the indexed view is still 
matched by the Query Optimizer. The resulting query plan is shown in Figure 8-43. 

 LISTING 8-12 Indexed View Matching Example (A Subset of Rows and Columns) 

-- base table

CREATE TABLE basetbl1 (col1 INT, col2 INT, col3 BINARY(4000));

CREATE UNIQUE CLUSTERED INDEX i1 ON basetbl1(col1);

GO

-- populate base table

SET NOCOUNT ON;

DECLARE @i INT =0;

WHILE @i < 50000

BEGIN

INSERT INTO basetbl1(col1, col2) VALUES (@i, 50000-@i);

SET @i+=1;

END;

GO

-- create a view over the 2 integer columns

CREATE VIEW dbo.v2 WITH SCHEMABINDING AS 

SELECT col1, col2 FROM dbo.basetbl1;

GO

-- index that on col2 (base table is only indexed on col1)

CREATE UNIQUE CLUSTERED INDEX iv1 on dbo.v2(col2);

-- the indexed view still matches for both a restricted 

-- column set and a restricted row set

SELECT col1 FROM dbo.basetbl1 WHERE col2 > 2500;

FIGURE 8-43 An indexed view matched for a subset of rows and columns 

 The projection is not explicitly listed as a separate Compute Scalar operator in this query 
because SQL Server 2008 has special logic to remove projections that do not compute 
an expression. The fi lter operator in the index matching code is translated into an  index 
seek against the view. If we modify the query to compute an expression, Figure 8-44 
 demonstrates the residual Compute Scalar added to the plan: 

SELECT col1 + 1 FROM dbo.basetbl1 WHERE col2 > 2500 AND col1 > 10;

C08626249.indd   485 2/13/2009   12:29:54 PM



486 Microsoft SQL Server 2008 Internals

FIGURE 8-44 Compute Scalar, only needed when computing new values

 Like all options considered by the Query Optimizer, indexed view alternatives are  generated 
and stored in the Memo and are compared using costing equations against other  possible 
plans. Alternatives including partial matches cost the residual operations as well, and 
this means that an indexed-view plan can be generated but not picked when the Query 
Optimizer considers other plans to have lower costs. 

 Indexed views are maintained as part of the update processing for tables on which the view is 
based. This makes sure that the view provides a consistent result if it is selected by the Query 
Optimizer for any query plan. Some query operations are incompatible with this  design 
 guarantee. As a result, SQL Server places some restrictions on the set of supported  constructs 
in indexed views to make sure that the view can be created, matched, and  updated as 
 effi ciently as possible. The description of the restrictions in SQL Server Books Online is very 
long and detailed, and this can make it very diffi cult to understand the higher-level rules. 

 For updating indexed views, the core question behind the restrictions is “Can the query 
processor compute the necessary changes to the Indexed View clustered and nonclustered 
indexes without having to recompute the whole indexed view?” If so, the query processor 
can perform these changes effi ciently as part of the maintenance of the base tables that are 
referenced in the view. This property is relatively easy for fi lters, projections (compute scalar), 
and inner joins on keys. Operators that destroy or create data are more diffi cult to maintain, 
so often these are restricted from use in indexed views. 

 How indexed views are represented in update plans is discussed in the section entitled 
“Updates,” later in this chapter. 

Partitioned Tables

 As SQL Server is used to store more and more data, management of very large  databases 
 becomes a bigger concern for DBAs. First, the time to perform operations like an index 
 rebuild grows with the data size, and eventually this can affect system availability. Second, 
the size of large tables makes performing operations diffi cult because the system is often 
strained for resources, such as temp space, log space, and physical memory. Table and index 
partitioning can help you manage large databases better and minimize downtime. 

 Physically, partitioned tables and indexes are really N tables or indexes that store a  fraction of 
the rows. When comparing this to their nonpartitioned equivalents, the difference in the plan 
is often that the partitioned case requires iterating over a list of tables or a list of indexes to 

C08626249.indd   486 2/13/2009   12:29:54 PM



 Chapter 8 The Query Optimizer 487

return all the rows. In SQL Server 2005, this was represented using an APPLY  operator, which 
is essentially a nested loops join. In the 2005 representation, a special table of  partition IDs 
was passed in as parameters to the query execution component in a join to iterate over 
each partition. While this works well in most cases, there are some important scenarios that 
didn’t work well with this model. For example, there is a  restriction in parallel query plans 
that requires that the parallel table or index scan feature (where  multiple threads read rows 
from a table at once to improve performance) did not work on the inner side of a  nested 
loops join, and this was not possible to fi x before SQL Server 2005 shipped. Unfortunately, 
this is the majority case for table partitioning. In addition, the APPLY  representation enabled 
join collocation, where two tables partitioned in the same way can be joined very effi ciently. 
Unfortunately, this turned out to be less common in practice than was foreseen when the 
feature was originally designed. For reasons like this, the representation was refi ned further 
in the 2008 version of the product. 

 SQL Server 2008 represents partitioning in most cases by storing the partitions within the 
operator that accesses the partitioned table or index. This provides a number of benefi ts, 
like enabling parallel scans to work properly. It also removed a number of other differences 
between partitioned and nonpartitioned cases in the Query Optimizer that manifested 
 themselves as missed performance optimizations. Hopefully this makes it easier to deploy 
partitioning in applications that started out nonpartitioned. 

 Listing 8-13 contains the example to show this new design. Figure 8-45 contains the resulting 
query plan for SQL Server 2008 over partitioned tables. 

 LISTING 8-13 SQL Server 2008 Partitioning Example—No Apply Needed 

CREATE PARTITION FUNCTION pf2008(date) AS RANGE RIGHT 

       FOR VALUES ('2008-10-01', '2008-11-01', '2008-12-01');

CREATE PARTITION SCHEME ps2008 AS PARTITION pf2008 ALL TO ([PRIMARY]);

CREATE TABLE ptnsales(saledate DATE, salesperson INT, amount MONEY) ON ps2008(saledate);

INSERT INTO ptnsales (saledate, salesperson, amount) VALUES ('2008-10-20', 1, 250.00);

INSERT INTO ptnsales (saledate, salesperson, amount) VALUES ('2008-11-05', 2, 129.00);

INSERT INTO ptnsales (saledate, salesperson, amount) VALUES ('2008-12-23', 2, 98.00);

INSERT INTO ptnsales (saledate, salesperson, amount) VALUES ('2008-10-3', 1, 450.00);

SELECT * FROM ptnsales WHERE (saledate) NOT BETWEEN '2008-11-01' AND '2008-11-30';

FIGURE 8-45 Query plan for the new SQL Server 2008 partitioning model

 You can see that the base case doesn’t require an extra join with a Constant Scan. This makes 
the query plans look like the nonpartitioned cases more often, which should make it easier to 
understand the query plans. 

C08626249.indd   487 2/13/2009   12:29:54 PM



488 Microsoft SQL Server 2008 Internals

 One benefi t of this model is that it is now possible to get parallel scans over partitioned 
tables. The following example creates a large partitioned table and then performs a COUNT(*) 
operation that generates a parallel scan. In SQL Server, some aggregate functions can be 
split into two parts, with one part executed in the same thread as the table. This can speed 
up  execution time in large queries and minimize the number of rows that need to be passed 
from thread to thread. Listing 8-14 demonstrates how SQL Server 2008 now  generates 
 parallel scans over partitioned tables to compute aggregates. Figure 8-46 contains the 
 resulting query plan. 

 LISTING 8-14 Partitioned Parallel Scan Example—SQL Server 2008 

CREATE PARTITION FUNCTION pfparallel(INT) AS RANGE RIGHT FOR VALUES (100, 200, 300);

CREATE PARTITION SCHEME psparallel AS PARTITION pfparallel ALL TO ([PRIMARY]);

GO

CREATE TABLE testscan(randomnum INT, value INT, data BINARY(3000)) ON psparallel(randomnum);

GO

SET NOCOUNT ON;

BEGIN TRANSACTION;

DECLARE @i INT=0;

WHILE @i < 100000

BEGIN

INSERT INTO testscan(randomnum, value) VALUES (rand()*400, @i);

SET @i+=1;

END;

COMMIT TRANSACTION;

GO

-- now let's demonstrate a parallel scan over a partitioned table in SQL Server 2008

SELECT COUNT(*) FROM testscan;

FIGURE 8-46 Parallel scan on partitioned tables in SQL Server 2008

 SQL Server 2005 had limitations on how parallel queries could be executed against  partitioned 
tables. The use of the APPLY operator to scan each partition interacted poorly with some 
other restrictions in the system to allow SQL Server 2005 to run only one thread per  partition. 
Although this allowed the query to run in parallel when scanning many partitions, this model 
did not work well when the query accessed a single partition. When accessing a single 
 partition, only one thread could access the partition, essentially ignoring the Parallel Scan 
 feature. Unfortunately, one of the core reasons for SQL Server range partitioning is to access 
the most current partition in a date range. In addition, the APPLY model also made it diffi cult 
to handle partition skew (where one partition is much larger than others) effi ciently. While SQL 
Server 2005 would consider the size of the largest partition when costing a query using this 
pattern, it still has one thread fi nishing later than the other threads. 

 The Query Optimizer has improved the end-to-end experience in partitioned table plan 
generation. The ability to represent partitioned table access in the same manner as 

C08626249.indd   488 2/13/2009   12:29:54 PM



 Chapter 8 The Query Optimizer 489

 nonpartitioned access guarantees that the performance differences between partitioned and 
nonpartitioned tables are minimized. Specifi cally, the set of considered parallel plan options 
is much more consistent. The query execution component can dynamically adjust between 
using one thread per partition and using multiple threads per partition, which should allocate 
threads to fi nish processing a query more effi ciently.  

 In SQL Server 2008, join collocation is still represented using the apply/nested loops join, but 
other cases use the traditional representation. This works with other features within the query 
processor to guarantee that they behave the same as nonpartitioned tables. The  following 
example builds upon the last example to demonstrate that joining two tables with the same 
partitioning scheme can be done using the collocated join technique. The scenarios for this 
remain the same as in SQL Server 2005—cases when you want to join two partitioned tables 
or indexes together. Often, this would be a fact table and a large dimension table index that 
is partitioned in the same manner as the fact table. Figure 8-47 shows a per-partitioned join 
example when the original SQL Server 2005 partitioning logic is still visible. 

-- SQL Server 2008 join collocation still uses the constant scan + apply model

SELECT * FROM testscan t1 INNER JOIN testscan t2 ON t1.randomnum=t2.randomnum;

FIGURE 8-47 Query plan for a per-partition join against a partitioned table

 The partitioned table implementation in SQL Server 2008 does have a quirk that is worth 
noting because it may surprise you at fi rst. If you look closely at the showplan output in 
Figure 8-48 for this last query plan, you may notice that this partitioned table heap scan has 
a seek predicate. 

   

FIGURE 8-48 Seek predicate for partitioned heaps

C08626249.indd   489 2/13/2009   12:29:54 PM



490 Microsoft SQL Server 2008 Internals

 Although SQL Server 2005 exposed the partition ID within the query plan, SQL Server 2008 
largely hides that from view. It is still in the query plan, but it is much more closely tied to 
indexing in most cases. Every partitioned access structure in SQL Server 2008 is modeled 
as an index where the fi rst column is the partitioning column. Because the partitioning ID 
( derived from the partitioning key) is needed to perform seeks anyway, this actually matches 
the effective behavior seen in SQL Server 2005. The only quirk is that partitioned heaps now 
appear to have an index. You can see this in the properties from the previous example. 

Partition-Aligned Index Views

 SQL Server 2008 now allows for partition-aligned index views that can survive across SWITCH 
operations. In SQL Server 2005, these views had to be dropped before a SWITCH could be 
performed, and this hampered the ability to keep a system running as a production system 
while the indexed views were disabled and rebuilt. Now, partitioned tables, especially in large 
data warehouses, have a way to maintain a database while keeping it fully available. 

Data Warehousing 

 SQL Server contains a number of special optimizations that speed the execution of Data 
Warehouse queries. A data warehouse is a large database that usually has one large fact table 
and a number of smaller dimension tables that contain detail information referenced by the 
fact table. These are typically called star schema or snowfl ake schema (snowfl ake applies to 
dimension tables that reference other dimension tables). These kinds of schemas are often 
used to store large amounts of raw data which is then processed to help discover information 
to help a company learn something about its business. 

 Data warehouses often try to make each row in the fact table as small as possible because 
the table is so large. Large data, such as strings, is moved to dimension tables to reduce 
in-row space. Fact tables are usually so large that the use of nonclustered indexes is limited 
 because of the large storage requirements to store these structures. Dimension tables are 
often indexed. This pattern does not match a typical transaction processing system, where 
each table is accessed based on the queries used against the system. 

 When optimizing queries against data warehouses, it is important not to scan the fact table 
more than necessary because this is usually the largest single contributor to execution time. 
SQL Server can recognize star and snowfl ake schemas and apply special optimizations to 
 improve query performance. First, SQL Server orders joins differently in data warehouses to 
try to perform as many limiting operations against the dimension tables as is possible before 
a scan of the fact table is performed. This can even include performing full cross products 
between dimension tables so that scans of the fact table can be eliminated.  

C08626249.indd   490 2/13/2009   12:29:54 PM



 Chapter 8 The Query Optimizer 491

 SQL Server 2008 also contains improvements to bitmap operators which help reduce data 
movement across threads in parallel queries. The bitmap can be used to reduce each row to 
a single bit. Because two bitmaps can be intersected or unioned effi ciently, this model  allows 
SQL Server to join two tables simply by performing a bitmap operation. This allows each 
 dimension table to be queried to identify qualifying rows, creating a bitmap that is then sent 
to the thread(s) scanning the fact table. These bitmaps are applied using a probe fi lter  applied 
as a non-sargable predicate to the fact table. This is somewhat like a special on-the-fl y index, 
created just for data warehouse queries of this pattern. 

 One limitation in SQL Server that still affects large tables, such as the fact table in a data 
 warehouse confi guration, is that there can only be 200 steps in a histogram. Very large tables 
often have more than 200 steps of interesting data distribution data, so sometimes queries 
may be overestimated or underestimated as a result of this limitation, even with full-scan 
 statistics. Luckily, fi ltered statistics can be used to alleviate this problem somewhat—it is 
 possible to create fi ltered statistics for the range that defi nes a partition and then have that 
be used to estimate cardinality. As many queries on partitioned tables are over the current 
 partition in a date range, this covers a reasonable number of the scenarios that were not 
 covered as well in SQL Server 2005. 

Updates

 Updates are an interesting area within query processing. In addition to many of the 
 challenges faced while optimizing traditional SELECT queries, update optimization also 
 considers physical optimizations such as how many indexes need to be touched for each 
row, whether to process the updates one index at a time or all at once, and how to avoid 
 unnecessary locking deadlocks while processing changes as quickly as possible. The 
Optimizer contains a number of features that are specifi c to updates that help make queries 
complete as quickly as possible. In this section, we discuss a number of these optimizations. 

 In this section, the term update processing actually includes all top-level commands that 
change data. This includes INSERT, UPDATE, DELETE, and (as of SQL Server 2008) MERGE. As 
you see in this section, SQL Server treats these commands almost identically. Every update 
query in SQL Server is composed of the same basic operations: 

■  Determines what rows are changed (inserted, updated, deleted, merged) 

■  Calculates the new values for any changed columns 

■  Applies the change to the table and any nonclustered index structures. 

 Figure 8-49 shows how INSERT works using this pattern. 

CREATE TABLE update1 (col1 INT PRIMARY KEY IDENTITY, col2 INT, col3 INT);

INSERT INTO update1 (col2, col3) VALUES (2, 3);

C08626249.indd   491 2/13/2009   12:29:54 PM



492 Microsoft SQL Server 2008 Internals

FIGURE 8-49 Basic INSERT query plan 

 The INSERT query has an operator called a Constant Scan. A Constant Scan is a special  operator 
in the relational algebra that generates rows without reading them from a table. If you are 
 inserting a row into a table, it doesn’t really have an existing table, so this operator creates a 
row for the insert operator to process. The Compute Scalar operation evaluates the values to be 
inserted. In our example, these are constants, but they could be arbitrary scalar expressions or 
scalar subqueries. Finally, the insert operator physically updates the primary key-clustered index. 

 Figure 8-50 shows how UPDATE plans are represented. 

UPDATE update1 SET col2 = 5;

FIGURE 8-50 UPDATE query plan

 The UPDATE query reads values from the clustered index, performs a Top operation, and 
then updates the same clustered index. The Top operation is actually a placeholder for 
 processing ROWCOUNT, and it does nothing unless you have executed a SET ROWCOUNT 
N operation in your session. Also note that in the example, the UPDATE command does not 
modify the key of the clustered index, so the row in the index does not need to be moved 
within an index. Finally, there does not appear to be an operator to calculate the new value 
5 for col2. This is obviously not true—it is handled, but there is a physical  optimization 
to  collapse this command into the Update operator for processing. If you examine the 
 properties of the Update operator (as seen in Figure 8-50), you see that the query has 
also been auto-parameterized and the target value is supplied directly into the Update. 
Figure 8-51 shows the DELETE query plan pattern. 

DELETE FROM update1 WHERE col3 = 10;

 The DELETE query is very similar to the UPDATE query—the only real difference is that the 
row is deleted at the end. The only material difference is that the WHERE clause is used as a 
condition to the source table’s seek operation.  

FIGURE 8-51 DELETE query plan

C08626249.indd   492 2/13/2009   12:29:54 PM



 Chapter 8 The Query Optimizer 493

 SQL Server generates different plans based on the physical layout of tables, indexes, and other 
secondary structures. For example, if we consider a very similar example that does not have a 
primary key-clustered index, we can see that the resulting plan shape changes in Figure 8-52. 

CREATE TABLE update2 (col1 INT , col2 INT, col3 INT);

INSERT INTO update2 (col2, col3) VALUES (2, 3);

 FIGURE 8-52 Simple INSERT query plan 

 When the table is a heap (it has no clustered index), a special optimization occurs that can 
collapse the operations into a smaller form. This is called a simple update (the word update is 
used generically to refer to insert, update, delete, and merge plans), and it is obviously faster. 
This is a single operator that does all the work to insert into a heap, but it does not support 
every feature in Updates.  

 Figure 8-53 shows how inserts work against tables with multiple indexes.  

CREATE TABLE update3 (col1 INT , col2 INT, col3 INT);

CREATE INDEX i1 ON update3(col1);

CREATE INDEX i2 ON update3(col2);

CREATE INDEX i3 ON update3(col3);

INSERT INTO update3(col1, col2, col3) VALUES (1, 2, 3);

FIGURE 8-53 All-in-one INSERT query plan

 This query needs to update all the indexes because a new row has been created. However, 
Figure 8-53 demonstrates that the plan has only the one operator. If you look at the properties 
for this operator in Management Studio, as shown in Figure 8-54, you can see that it actually 
updates all indexes in one operator. 

FIGURE 8-54 Multiple indexes updated by a single operator

C08626249.indd   493 2/13/2009   12:29:54 PM



494 Microsoft SQL Server 2008 Internals

 This is another one of the physical optimizations that are done to improve the performance 
of common update scenarios. This kind of insert is called an all-in-one or a per-row insert. 

 Using the same table, we can try an UPDATE command to update some, but not all, of the 
indexes. Figure 8-55 contains the resulting query plan. 

UPDATE update3 SET col2=5, col3=5;

FIGURE 8-55 A query plan that modifi es only some of the indexes on a table

 Well, now things are getting a bit more complex. The query scans the heap in the Table 
Scan operator, performs the ROWCOUNT Top, then two Compute Scalars, and then a 
Table Update. If you examine the properties for the Table Update, you see that it lists only 
 indexes i2 and i3, because the Query Optimizer can statically determine that i1 will not be 
changed by this command. One of the Compute Scalars calculates the new values for the 
 columns. The other is yet another physical optimization that helps compute whether each 
row needs to modify each and every index. SQL Server contains logic to handle  non-updating 
 updates. In this case, the user calls for an update but actually submits the existing value 
for the row. The Query Optimizer can recognize this case and avoid some internal steps, 
such as logging changes, when a value is updated to the same value. Because a number of 
 prepackaged SQL applications and tools allow users to retrieve a row, modify some columns, 
then write a  complete update for all columns back to the database (not just the columns that 
changed), this actually turned out to be a needed and useful way to speed up queries. This 
optimization is not always applied—SQL Server uses logic to make an  educated guess as to 
how likely and useful this optimization is, but it does reduce write  traffi c and log traffi c in the 
cases when it applies.  

Halloween Protection

 Halloween Protection describes a feature of relational databases that is used to provide 
 correctness in update plans. The need for the solution is best described by explaining what 
happens in a naive implementation of an update plan. One simple way to perform an  update 
is to have an operator that iterates through a B+ tree index and updates each value that 
 satisfi es the fi lter. This works fi ne so long as one assigns a value to a constant or to a value 
that does not apply to the fi lter. If one is not careful, the iterator can see rows that have 
 already been processed earlier in the scan because the previous update moved the row 
ahead of the cursor iterating through the B+ tree.  

 Not every query needs to worry about this problem, but it is an issue for some shapes of 
query plans. The typical protection against this problem is to scan all the rows into a  buffer, 

C08626249.indd   494 2/13/2009   12:29:54 PM



 Chapter 8 The Query Optimizer 495

then process the rows from the buffer. In SQL Server, this is usually implemented using a 
Spool or a Sort operator, each of which has certain guarantees about reading all input rows 
before producing output rows to the next operator in the query tree. SQL Server also can use 
a special form of the Compute Scalar operator to provide Halloween Protection in certain 
limited cases, but the showplan has no public information to indicate that this is happening 
(other than an extra Compute Scalar being in the plan). In all cases, the copy protects against 
seeing the same row twice.  

Split/Sort/Collapse

 SQL Server contains a physical optimization called Split/Sort/Collapse, which is used to make 
wide update plans more effi cient. The feature examines all the change rows to be changed in a 
batch and determines the net effect that these changes would have on an  index. Unnecessary 
changes are avoided, which can reduce the I/O requirements to complete the query. This 
change also allows a single, linear pass to be made to apply changes to each  index, which is 
more effi cient than a series of random I/Os. Figure 8-56 contains the resulting query plan. 

CREATE TABLE update5(col1 INT PRIMARY KEY);

INSERT INTO update5(col1) VALUES (1), (2), (3);

UPDATE update5 SET col1=col1+1;

FIGURE 8-56 Split/Sort/Collapse UPDATE query plan

 This query is modifying a clustered index that has three rows with values 1, 2, and 3. After this 
query, we would expect the rows to have the values 2, 3, and 4. Instead of  modifying three 
rows, it is possible to determine that we can just delete 1 and insert 4 to make the changes to 
this query. For our trivial example, we can avoid the modifi cation of one row, but for larger 
tables, this savings can be substantial. 

 This optimization is implemented using an internal column called the action column. It 
 contains a value to represent whether each row is an INSERT, UPDATE, DELETE, or MERGE. 
The action column is used by the Update operator to determine what change should be 
 applied to the index. Although the showplan shows different names for this Update  operator 
based on the submitted query, it is the same operator internally and is modifi ed by the 
 action column. Unfortunately, you can’t see the values of this column because it is only a 
construct within the query processor. 

C08626249.indd   495 2/13/2009   12:29:54 PM



496 Microsoft SQL Server 2008 Internals

 The action column is also used by the query processor to help determine the net changes to 
be applied to an index. It also is used by the Split/Sort/Collapse logic to determine the next 
change to the index. Let’s walk through what happens in each step. Before the split, the row 
data is shown in Table 8-1. 

 TABLE 8-1 Pre-Split Update Data Representation 

Action Old Value New Value

UPDATE 1 2

UPDATE 2 3

UPDATE 3 4

 Split converts each UPDATE into one DELETE and one INSERT. Immediately after the split, the 
rows now appear as shown in Table 8-2. 

TABLE 8-2 Post-Split Data Representation 

Action Value

DELETE 1

INSERT 2

DELETE 2

INSERT 3

DELETE 3

INSERT 4

 The Sort sorts on (value, action), where DELETE sorts before INSERT. After the sort, the rows 
appear as seen in Table 8-3. 

TABLE 8-3 Post-Sort Data Representation 

 Action Value

 DELETE 1

 DELETE 2

 INSERT 2

 DELETE 3

 INSERT 3

 INSERT 4

 The Collapse operator looks for (DELETE, INSERT) pairs for the same value and removes them. 
In this example, it replaces the DELETE and INSERT rows with UPDATE for the rows with the 
 values 2 and 3. The UPDATE reduces the number of B+ tree maintenance operations necessary, 
and the storage engine is instrumented not to log anything for B+ tree updates to the same 
value (locks are still taken, however, for correctness). The fi nal form of the rows after the collapse 
is Table 8-4. 

Action Old Value New Value

Action Value

Action Value

C08626249.indd   496 2/13/2009   12:29:54 PM



 Chapter 8 The Query Optimizer 497

TABLE 8-4 Post-Collapse Data Representation 

 Action Value

 DELETE 1

 UPDATE 2

 UPDATE 3

 INSERT 4

 The result is the net change that needs to be made to the index. Technically, each index also 
contains a primary key reference or heap row identifi er, and even the rows missing from 
Table 8-5 are actually updated to fi x the reference to the heap or clustered index. Log traffi c 
is still reduced from the regular update path, and the I/O ordering benefi ts are also gained. 

While the Split/Sort/Collapse logic is a performance optimization, it also helps avoid false 
failures when modifying a unique index (such as this primary key). If the original plan were 
to be executed without Split/Sort/Collapse, it would try to change the row with value 1 to 2. 
This would confl ict with the existing row that has value 2 in the index. Although this could be 
avoided for this query by iterating over the rows backwards, it is not always possible to pick a 
single scan order to avoid this issue. Split/Sort/Collapse allows SQL Server to support queries 
such as this example without returning an error. 

Merge

 SQL Server 2008 introduces a new type of update operation called MERGE. MERGE is a 
 hybrid of the other update operations and can be used to perform conditional changes to 
a table. The business value of this operation is that it can collapse multiple T-SQL operations 
into a single query. This simplifi es the code that you have to write to modify tables, improves 
 performance, and really helps operations against large tables that could be so large as to 
make multistep operations effectively too slow to be useful. 

 Now that you have seen how the other update operations are handled, you might have 
 fi gured out that MERGE is actually not a diffi cult extension of the action column techniques 
used in the other operations. Like the other queries, the source data is scanned, fi ltered, and 
modifi ed. However, in the case of MERGE, the set of rows to be changed is then joined with 
the target source to determine what should be done with each row. Based on this join, the 
action column for each row is modifi ed to tell the STREAM UPDATE operation what to do 
with each row. 

 In Listing 8-15, an existing table is going to be updated with new data, some of which might 
already exist in the table. Therefore, MERGE is used to determine only the set of rows that are 
missing. Figure 8-57 contains the resulting MERGE query plan. 

Action Value

C08626249.indd   497 2/13/2009   12:29:54 PM



498 Microsoft SQL Server 2008 Internals

 LISTING 8-15 A MERGE Example 

CREATE TABLE AnimalsInMyYard(sightingdate DATE, Animal NVARCHAR(200));

GO

INSERT INTO AnimalsInMyYard(sightingdate, Animal) VALUES ('2008-08-12', 'Deer');

INSERT INTO AnimalsInMyYard(sightingdate, Animal) VALUES ('2008-08-12', 'Hummingbird');

INSERT INTO AnimalsInMyYard(sightingdate, Animal) VALUES ('2008-08-13', 'Gecko');

GO

CREATE TABLE NewSightings(sightingdate DATE, Animal NVARCHAR(200));

GO

INSERT INTO NewSightings(sightingdate, Animal) VALUES ('2008-08-13', 'Gecko');

INSERT INTO NewSightings(sightingdate, Animal) VALUES ('2008-08-13', 'Robin');

INSERT INTO NewSightings(sightingdate, Animal) VALUES ('2008-08-13', 'Dog');

GO

-- insert values we have not yet seen - do nothing otherwise

MERGE AnimalsInMyYard A USING NewSightings N 

    ON (A.sightingdate = N.sightingdate AND A.Animal = N.Animal)

WHEN NOT MATCHED 

    THEN INSERT (sightingdate, Animal) VALUES (sightingdate, Animal);

FIGURE 8-57 Merge query plan

 As MERGE plans tend to get a bit large, I’ll split this into pieces and discuss each portion of 
the query plan. The fi rst part of the plan can be seen in Figure 8-58.  

FIGURE 8-58 MERGE plan—initial join to fi nd preexisting rows

C08626249.indd   498 2/13/2009   12:29:54 PM



 Chapter 8 The Query Optimizer 499

 First, the source table NewSightings is read, and the query processor performs a probe into the 
target table AnimalsInMyYard to see if the row is already there. The Compute Scalar  underneath 
the Left Outer Join exists merely to add a column that is 1 if the value was matched and, due to 
the nature of how Left Outer Joins work, returns a value of NULL if there is no matching row to 
match the source table row. The Compute Scalar above the join generates the Action column:   

[Action1008] = Scalar Operator(ForceOrder(CASE WHEN [TrgPrb1006] IS NOT NULL THEN NULL ELSE 

(4) END))

FIGURE 8-59 MERGE plan—Update, Halloween protection spool, and row fi lter

 In the upper half of this plan (shown in Figure 8-59), the fi lter eliminates rows that have a 
null action (Predicate: [Action1008] IS NOT NULL), as this MERGE statement only has one 
 action (It is possible to have multiple operations within a single MERGE statement). The Spool 
 provides Halloween Protection, which means that it consumes all rows from its inputs before 
attempting to write values back into the AnimalsInMyYard table. Table MERGE is really just an 
Update operation, but the showplan output has been changed to avoid confusion. 

Wide Update Plans

 SQL Server also has special optimization logic to speed the execution of large batch changes 
to a table. If a large percentage of a table is being changed by a query, SQL Server can  create 
a plan that avoids modifying each B+ tree with many individual updates. Instead, it can 
 generate a per-index plan that determines all the rows that need to be changed, sorts them 
into the order of the index, and then applies the changes in a single pass through the index. 
This approach can be noticeably more effi cient than updating each row individually. These 
plans are called per index or wide update plans, as you see in their plan shape. 

 The following example demonstrates a wide update plan. Figure 8-60 contains the resulting 
plan. 

CREATE TABLE dbo.update6(col1 INT PRIMARY KEY, col2 INT, col3 INT);

CREATE INDEX i1 ON update6(col2);

GO

CREATE VIEW v1 WITH SCHEMABINDING AS SELECT col1, col2 FROM dbo.update6;

GO

CREATE UNIQUE CLUSTERED INDEX i1 ON v1(col1);

UPDATE update6 SET col1=col1 + 1;

C08626249.indd   499 2/13/2009   12:29:54 PM



500 Microsoft SQL Server 2008 Internals

FIGURE 8-60 Wide update query plan (truncated)

 Because this is complicated, let’s split the plan into smaller sections so that it can fi t on the 
printed page and not be as overwhelming. 

 Figure 8-61 contains the fi rst portion of the query plan, and it works just like the previous 
example—the set of net changes are applied to the clustered index. This set is a superset of 
all the nonclustered indexes because a clustered index includes all columns.  

FIGURE 8-61 Clustered index update section of wide update plan

 Figure 8-62 contains the next part of the query plan. The section of the fi rst branch above 
the clustered index update does a number of things. The spool in this plan is a common 
 subexpression spool (described earlier in the chapter). This is a way of broadcasting the rows 
to allow each index to use this data as input. The Sequence operator does not change or 
modify data—it is designed to process the fi rst input fi rst, the second input second, and so 
on. This drives the processing of the rows in a wide update plan. Finally, because there can be 
multiple clients of this set of rows that each perform Split/Sort/Collapse, SQL Server has an 
optimization to perform the split once instead of N times by doing it on the fi rst branch. 

FIGURE 8-62 Updated rows are split and stored in a multiread spool

C08626249.indd   500 2/13/2009   12:29:55 PM



 Chapter 8 The Query Optimizer 501

 Finally, the second branch reads the previous spooled and split rows, sorts them for this 
index, collapses them, and performs the net change to this index. Figure 8-63 contains this 
portion of the plan. If the query had additional indexes to update, they could be applied as 
additional branches in the query that would be processed in order. 

FIGURE 8-63 One nonclustered index branch in a wide update plan

 Note Wide update plans are the most general and fully functional form of update plan in SQL 
Server, and architecturally any plan can be executed as a wide plan in SQL Server. Some  features, 
such as indexed views and query notifi cations, are updated using only wide update plans. 
Because some optimizations available in SQL Server are limited to more traditional feature sets, 
be aware that using some features forces SQL Server to use wide update plans. In most cases, this 
does not matter to your application, but it could matter in systems with small amounts of data 
that perform many updates.  

Non-Updating Updates

 UPDATE operations have a number of special optimizations to improve performance for 
common  scenarios. For example, a common programming paradigm for updating a row 
against a database is as follows: 

  1. Run a SELECT query that retrieves a row from the database and copies the values into 
the client or mid-tier layer, such as: 

SELECT col1, col2, col3, . . . FROM Table WHERE primarykey = <constant>

  2. Allow the user to update some columns selectively. 

  3. When the client is fi nished modifying the row, attempt to write the values back to the 
server with a query like this: 

UPDATE Table SET col1=@p1, col2=@p2, col3=@p3 . . . WHERE primarykey = constant AND col1 

= originalcol1value AND col2 = originalcol2value AND col3 = originalcol3value AND . . .

 This pattern provides a functional but not optimal concurrency control without requiring 
the server to hold locks on the base table. In addition, the database programmer generally 
implements only one UPDATE query that can handle any set of modifi ed columns and just 
passes in the original values in the SET list to avoid having to deal with many query plans. 

 SQL Server has update logic that can determine the set of indexes to maintain based on 
the columns in the SET list of an UPDATE. By default, however, the pattern described here 
would cause SQL Server to update all indexes for each UPDATE, even if only one column 
value  actually changed. To avoid this problem, SQL Server implements a feature called 
 Non-Updating Updates, which can dynamically detect unchanged values and avoid updates 

C08626249.indd   501 2/13/2009   12:29:55 PM



502 Microsoft SQL Server 2008 Internals

to unchanged indexes. While the query plan still reference each index, it is possible to avoid 
the cost to write unneeded values. 

 This optimization is not performed in all cases—some logic is used to try to apply it to  scenarios 
where it seems most likely to improve performance. This optimization is  transparent to the user, 
though you can see it as additional fi lters in some query plans. 

Sparse Column Updates

 SQL Server 2008 introduced a new feature called sparse columns that supports creating 
more columns in a table than were previously supported, as well as creating rows that were 
technically greater than the size of a database page. The primary use case for the feature is 
fl exible-schema systems where users can create columns dynamically. Often these columns 
are mostly NULL but have some set of rows where a value is defi ned. This pattern is also 
largely independent for each sparse column, meaning that a given row potentially has a few 
but usually not many non-NULL sparse column values. 

 Sparse columns are stored in a complex column in a regular data row, as described in 
Chapter 7, “Special Storage.“ When working with the sparse column data, SQL Server must 
interpret the  complex columns to determine which columns actually have values. To modify 
sparse columns, rows are read, new values are computed, and then rows are written. The 
main  difference is that sparse columns require a bit more work to read and modify. 

Partitioned Updates

 Updating partitioned tables is somewhat more complicated than nonpartitioned equivalents. 
Instead of a single physical table (heap) or B+ tree, the query processor has to handle one 
heap or B+ tree per partition. It needs to fi gure out where each row belongs, and rows can 
move  between partitions in some update plans. In addition, each index can be partitioned 
 using a  separate partition function. Even indexed views can be partitioned, and they too can be 
 partitioned differently than the other access paths associated with a table. Luckily, partitioned 
update plans SQL Server 2008 are an extension of the update plan shapes already discussed in 
this chapter. So this section discusses only how those plans are different when using partitioning. 

 In the description of SELECT plans over partitioned tables earlier in this chapter, you may recall 
that the partitioning ID was represented within the query processor as a virtual leading column 
on every access method (heap or index). Partitioned table updates also use this representation, 
which makes the plans look a lot like the plans to update indexes. This leading column also 
 appears in some of the other operators used in update plans, such as the Split/Sort/Collapse 
operators. The following examples demonstrate how partitioning fi ts into these plans. 

 In the fi rst example, we create a partitioned table and then insert a single row into it. The 
plan can be seen in Figure 8-64. 

C08626249.indd   502 2/13/2009   12:29:55 PM



 Chapter 8 The Query Optimizer 503

CREATE PARTITION FUNCTION pfinsert(INT) AS RANGE RIGHT FOR VALUES (100, 200, 300);

CREATE PARTITION SCHEME psinsert AS PARTITION pfinsert ALL TO ([PRIMARY]);

go

CREATE TABLE testinsert(ptncol INT, col2 INT) ON psinsert(ptncol);

go

INSERT INTO testinsert(ptncol, col2) VALUES (1, 2);

   

FIGURE 8-64 Partitioned insert—single partition

 Looking at the query plan, this matches the behavior one would expect from a nonpartitioned 
table. It has a single operator that just inserts into the table. Underneath the covers, however, 
the Query Execution operator has to determine which partition needs to be updated, load that 
partition, and set the appropriate value. Looking at the properties for the INSERT operator, we 
can see (in Figure 8-65) the partitioning-specifi c logic that makes this happen. First, Expr1005 
is  computed to determine the target partition to use, and you can see the partition  boundaries 
passed to an internal function called RangePartitionNew. In the Predicate section, the extra 
Expr1005 computed value is used to set the PtnId1001 column, which is the virtual partition 
ID column that is exposed in the system to support partitioning. The rest of the Predicate list 
 supports setting values for the regular columns ptncol and col2.   

FIGURE 8-65 Partition selection computation in the query plan

 The query processor can load the partition necessary to modify each row dynamically. If we 
insert multiple rows in a single statement, we can see in Figure 8-66 how the query processor 
supports updating each row properly. 

INSERT INTO testinsert(ptncol, col2) VALUES (5, 10),(105,25);

C08626249.indd   503 2/13/2009   12:29:55 PM



504 Microsoft SQL Server 2008 Internals

FIGURE 8-66 Dynamic partition computation in insert plans

 This query attempts to insert two rows, and the query plan represents this using the Constant 
Scan operator. The Compute Scalar operator runs the partitioning function to determine the 
target partition of each row, as seen in Figure 8-67. 

FIGURE 8-67 Range partitioning computation in showplan output

 Furthermore, the Table Insert operator uses this computed scalar (as shown in Figure 8-68) 
and, for each row, changes to the right partition if necessary. 

FIGURE 8-68 Insert uses a range partition to determine insert target partition

 Note Compute Scalar exists in this two-row plan and not in the fi rst example for reasons 
 connected purely to implementation; these factors are not necessary to understand the plans or 
materially affect the performance of the plans when they are run. 

 Changing partitions can be a somewhat expensive operation, especially when many of the 
rows in the table are being changed in a single statement. The Split/Sort/Collapse logic can 
also be used to reduce the number of partition switches that happen, improving  run-time 
performance. In the following example, a large number of rows are inserted into the 
 partitioned table, and the Query Optimizer chooses to sort on the virtual partition ID column 
before inserting to reduce the number of partition switches at run time. Figure 8-69 shows 
the Sort optimization in the query plan. 

INSERT INTO testinsert SELECT * FROM #nonptn;

FIGURE 8-69 Sort optimization to reduce partition switching

 The sort has an ordering requirement, as defi ned in Figure 8-70, which is derived from the 
call to the partitioning function in the Compute Scalar earlier in the plan, just like the previ-
ous example. 

C08626249.indd   504 2/13/2009   12:29:55 PM



 Chapter 8 The Query Optimizer 505

FIGURE 8-70 Ordering requirement for partitioned insert sort optimization

 Updates to partitioned tables are more complex because they can move rows. However, 
they follow the same principles as updates. The key property to understand is that the query 
 processor must read each row, determine the change to that row, compute the target  partition 
for that row, and then perform the change. This may include deleting the  partition from one 
B+ tree and inserting it into another. This matches closely with the Split/Sort/Collapse idea for 
batch updates, but for partitioned updates, it can happen even for smaller changes. 

Locking

 SQL Server contains a number of tricks and optimizations to improve the overall  performance 
and throughput of updates within the system. While much of the Query Optimizer is  agnostic 
to locking, several targeted features and locking modes in Updates improve concurrency 
(and avoid deadlock errors). One special locking mode is called a U (for Update) lock. This is 
a special lock type that is compatible with other S (shared) locks but incompatible with other 
U locks. In many of the plan shapes used in Update queries, SQL Server has two  different 
 operators accessing the same access method. The fi rst one is the source table, and it is only 
reading. The second is the update itself. If only a shared (S) lock were taken in the read 
 operator, multiple users could run queries at the same time, both acquire S locks for a row 
and then deadlock because neither could upgrade the lock to an exclusive (X) lock when the 
update operator later saw the row. To prevent this, the U lock is compatible with other S locks 
but not with other U locks. This prevents other potential writers from reading a row, which 
then avoids the deadlock. 

 Listing 8-16 demonstrates how to examine the locking behavior of an update query plan. 
Figure 8-71 contains the query plan used in this example, and Figure 8-72 contains the 
 locking output from sp_lock. 

 LISTING 8-16 Update Locking Example 

CREATE TABLE lock(col1 INT, col2 INT);

CREATE INDEX i2 ON lock(col2);

INSERT INTO lock (col1, col2) VALUES (1, 2);

INSERT INTO lock (col1, col2) VALUES (10, 3);

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

BEGIN TRANSACTION;

UPDATE lock SET col1 = 5 WHERE col1 > 5;

EXEC sp_lock;

ROLLBACK;

C08626249.indd   505 2/13/2009   12:29:55 PM



506 Microsoft SQL Server 2008 Internals

FIGURE 8-71 An update plan used in the locking example   

FIGURE 8-72 The sp_lock output for the update plan

 Using a higher isolation mode with a user-controlled (non-auto-commit) transaction allows 
you to examine the fi nal locking state of each object in the query. In this case, you can see 
that the row (Resource 1:69641:1) was locked with an X lock. This lock started as a U lock and 
was promoted to an X lock by the UPDATE. 

 We can run a slightly different query that shows that the locks vary based on the query plan 
selected. Figure 8-73 contains a seek-based update plan. In the second example, the U lock is 
taken by the nonclustered index, whereas the base table contains the X lock. So, this U lock 
 protection works only when going through the same access paths because it is taken on the 
fi rst access path in the query plan. Figure 8-74 shows the locking behavior of this query. 

BEGIN TRANSACTION;

UPDATE lock SET col1 = 5 WHERE col2 > 2;

EXEC sp_lock;

FIGURE 8-73 Locking behavior of an update plan with a seek   

FIGURE 8-74 The sp_lock output for a seek-based update plan

C08626249.indd   506 2/13/2009   12:29:55 PM

v@v
Text Box
Download at Wow! eBook



 Chapter 8 The Query Optimizer 507

Partition-Level Lock Escalation

 Locking behavior is usually not the domain of the Query Optimizer. Although the Query 
Optimizer does try to generate plans that minimize locking confl icts, it is largely agnostic to 
the  locking interactions of plans, for better or worse. The Query Optimizer uses a lot of logic 
to  implement partitioning, including logic to prune unnecessary partitions from query plans so 
that they are not touched. One great addition in the SQL Server 2008 product is  partition-level 
lock  escalation. This feature allows the database to avoid lock escalation to the table-level for 
 partitioned tables. When combined with pruning, this provides a powerful way to improve 
 application concurrency, especially when queries over large, partitioned tables can take a long 
time to execute. The functionality can be enabled using the following command: 

ALTER TABLE TableName SET (LOCK_ESCALATION = AUTO);

Locking is discussed in detail in Chapter 10, “Transactions and Concurrency.“

Distributed Query

 SQL Server includes a feature called Distributed Query, which accesses data on different SQL 
Server instances, other database source, and non-database tabular data such as Microsoft Offi ce 
Excel fi les or comma-separated text fi les. Distributed Query is based on the OLE DB interfaces, 
and most OLE DB providers are feature-rich enough to be used by the Distributed Query feature. 
Because multiple sources can be referenced within a single query, it is an effective mechanism to 
interact with data from multiple sources without writing a lot of special-case code. 

 Distributed Query supports several distinct use cases. First, Distributed Query is useful to move 
data from one source to another. Although it is not a complete extract, transform, and load 
(ETL) tool like SQL Server Integration Services, it is often a very easy way to copy a table from 
one server instance to another. For example, if a company’s fi nancial reporting group wanted 
a copy of the sales fi gures for each month, it would be possible to write a query to copy the 
data from the SQL Server instance servicing the Sales team to another instance in the Financial 
Reporting group. Another application of Distributed Query is to integrate nontraditional  sources 
into a SQL Server query. As there are OLE DB providers for non-database data such as Active 
Directory Domain Services, Microsoft Exchange Server, and a number of third-party sources, it 
is possible to write queries to gather information from those sources and to then use the power 
of the SQL language to ask rich questions of that data that may not be supported by the source 
of that data. Distributed Query can also be used for reporting. Because multiple sources can be 
queried in a single query, you can use this to gather data into a single source and generate re-
ports (which can be surfaced through Reporting Services, if desired). Finally, Distributed Query 
can be used for scale-out scenarios. SQL Server supports a special UNION ALL view called a 
Distributed Partitioned View (DPV). This view stitches together distinct  portions of a single range 
that are each stored on a different SQL Server instance. Exceptionally large tables can be stored 
on different servers and queries can be directed to access only the subset necessary to satisfy 

C08626249.indd   507 2/13/2009   12:29:55 PM



508 Microsoft SQL Server 2008 Internals

a particular query. The Distributed Query feature covers a number of scenarios and can help 
make solving those scenarios much easier. 

 Distributed Query is implemented within the Query Optimizer’s plan-searching framework. 
With the exception of pass-through queries, which are not modifi ed during optimization, 
distributed queries initially are represented using the same operators as regular queries. 
Each base table represented in the Query Optimizer tree contains metadata collected from 
the remote source using OLE DB metadata interfaces such as OLE DB schema rowsets. The 
information collected is very similar to the information that the query processor collects for 
local tables, including column information, index information, and statistics. One additional 
piece of collected information includes information about what SQL grammar constructs the 
remote source supports, which are used later in optimization. Once metadata is collected, 
the Query Optimizer derives special property information for each operator that manipulates 
remote data. This property determines whether it is possible to generate a SQL statement 
to represent the whole query sub-tree that can be sent directly to the remote data source. 
Some operators can be remoted easily, like Filter and Project. Others can be performed only 
locally, such as the streaming table-valued function operator used to implement portions of 
the XQuery feature in SQL Server. SQL Server performs exploration rules to transform query 
trees into forms that might allow the server to remote larger trees. For example, SQL Server 
attempts to group all remote tables from the same source together in a single sub-tree and 
splitting aggregates into local forms that can be remoted. During this process, some of the 
more advanced rules in SQL Server are disabled if they are known to generate alternatives 
that prevent sub-tree remoting. While SQL Server does not maintain specifi c costing  models 
for each remote source, the feature is designed to remote large sub-trees to that source 
in the hopes of moving the least amount of data between servers. This usually provides a 
 close-to-optimal query plan. 

 In this example, we create a linked server to point to a remote SQL Server instance. Then, we 
use the four-part name syntax to generate a query that can be completely remoted to the 
remote source (shown in Figure 8-75). 

EXEC sp_addlinkedserver 'remote', N'SQL Server';

go

SELECT * FROM remote.Northwind.dbo.customers WHERE ContactName = 'Marie Bertrand';

FIGURE 8-75 A fully remoted Distributed Query

 As you can see, this relatively simple query was essentially completely remoted by the Query 
Optimizer. The properties information for the Remote Query node contains the query text 
that is executed on the remote server. The results are brought back to the local server and 
returned to the user. 

C08626249.indd   508 2/13/2009   12:29:55 PM



 Chapter 8 The Query Optimizer 509

 The generated query, shown here, is somewhat more verbose than the text submitted 
 originally, but this is necessary to ensure that the semantics of the remoted query match the 
local query text exactly: 

SELECT "Tbl1002"."CustomerID" "Col1004","Tbl1002"."CompanyName" "Col1005",

"Tbl1002"."ContactName" "Col1006","Tbl1002"."ContactTitle" "Col1007","Tbl1002"."Address" 

"Col1008","Tbl1002"."City" "Col1009","Tbl1002"."Region" "Col1010","Tbl1002".

"PostalCode" "Col1011","Tbl1002"."Country" "Col1012","Tbl1002"."Phone" 

"Col1013","Tbl1002"."Fax" "Col1014" FROM "Northwind"."dbo"."customers" "Tbl1002" WHERE 

"Tbl1002"."ContactName"=N'Marie Bertrand';

 Because the OLE DB model has a rich, cursor-based update model, it is possible to use 
SQL Server to update remote data sources using regular UPDATE statements. These plans 
look identical to the local plans discussed in this chapter, except that the top-level Update 
 operation is specifi c to the remote source. Because the storage engine model in SQL Server is 
originally based on the OLE DB interfaces, the mechanisms for performing local and remote 
updates are actually very similar. In the case when a whole update query can be remoted 
(because the property information for every operator determines that the remote source can 
support an UPDATE statement that is semantically equivalent to performing the operation 
locally through the exposed OLE DB interfaces), SQL Server can and will generate complete 
remote INSERT, UPDATE, and DELETE statements to be performed on the remote server. You 
should examine any query that you think can be completely remoted to make sure that it 
actually can—in some cases there may be a specifi c grammar construct or intrinsic function 
that is not necessary in the query that blocks it from being completely remoted. 

 The Distributed Query feature was introduced in SQL Server 7.0, and there are some 
 limitations with the feature that you should consider when designing scenarios that use 
it. First, the  feature relies on the remote providers to supply very detailed cardinality and 
statistical  information to SQL Server so that it can use this knowledge to compare  different 
query plans. As most OLE DB providers do not provide much statistical information, this 
can limit the quality of query plans generated by the Query Optimizer. In addition, OLE 
DB is not being actively extended by Microsoft, and therefore some providers are not 
 actively  maintained. Also, not every  feature in SQL Server is supported via the remote query 
 mechanism, such as some XML and  UDT-based functionality. SQL Server 2008 does not have 
a native mechanism to support  querying  managed adaptors written for the CLR run time. 
Finally, the costing model used within SQL Server is good for general use but sometimes 
generates a plan that is substantially slower than optimal. Unfortunately, the impact of not 
remoting a query in the Distributed Query feature is larger than in the local case because 
there is just more work to be done to move rows from a remote source. Care should be 
taken when using the feature to test out the functionality before you put it into production. 
It might be useful to pregenerate pass-through queries for common, expensive queries to 
make sure that they are always remoted properly. 

C08626249.indd   509 2/13/2009   12:29:55 PM



510 Microsoft SQL Server 2008 Internals

Extended Indexes

 SQL Server contains a number of special indexes to support specifi c use cases. Full-text 
 indexes support document storage, querying, and retrieval. XML indexes are used to 
 support XQuery operations on XML data stored in the database. Spatial indexes, added in 
SQL Server 2008, support queries over spatial data. These indexes are usually better suited 
for their  specifi c domain than a B+ tree index, but they are often specifi c to a particular set 
of use  cases. While the Query Optimizer contains support for each of these, they are not 
 conceptually different from B+ tree indexes. 

Full-Text Indexes

 In SQL Server 2008, full-text indexes have moved from being a completely external construct 
to being a mostly internal index type. Specifi c keywords in SQL grammar tell the system to 
pick the index implicitly, and this is done before the Optimization process begins. Information 
about full-text-index generations and other details of the index is abstracted from the Query 
Optimizer to simplify the maintenance of this index and to avoid recompiles to account for 
each new index generation. 

XML Indexes

 XML indexes are somewhat unlike other indexes in that it is actually stored more similarly 
to an indexed view. It uses the same physical storage as a clustered index, and it also has 
 secondary indexes on various columns. However, this is not matched by the Query Optimizer. 
Like full-text indexes, XQuery constructs are very specifi c in the syntax, and they are taken to 
imply that the operation should always use this index if it exists. 

 An XML index essentially takes each attribute and value in an XML document and shreds it 
into its own row. In addition to these values, other columns are added to this structure to 
store information such as the attribute for a value and its relative location in the document 
(its path from the root node). This information makes specifi c XQuery constructs signifi cantly 
faster when the index is used. 

 Within the query tree representation, XML is represented using a number of nontraditional 
operators. One of these is the Streaming Table-Valued Function (STVF), which is used for 
 other functionality, including SQL Server’s Dynamic Management Objects. This construct 
 allows an XML BLOB to be split into pieces, each returned in one row. 

Spatial Indexes

 Spatial indexes are new in SQL Server 2008, and these indexes are matched in the Query 
Optimizer. Spatial indexes decompose a space and allow points to be indexed. The primary 
model of a spatial index is to divide areas of the space into regions and then use  bounding 

C08626249.indd   510 2/13/2009   12:29:55 PM



 Chapter 8 The Query Optimizer 511

boxes for each region. Within the plan, an STVF generates candidates, based on the  encoding 
function, close to the requested point(s) and the results are used in the rest of the query. 
Figure 8-76 contains an example spatial index query plan. 

CREATE TABLE geo(col1 INT PRIMARY KEY, point GEOGRAPHY);

CREATE SPATIAL INDEX spaidx ON geo(point);

SELECT * FROM geo WITH (INDEX=spaidx) 

    WHERE geo.point.STEquals('POINT(24.0 24.0)')=1;

FIGURE 8-76 Spatial index example

 The spatial index uses more operators in the plan than just the STVF. The fi rst Constant Scan 
and Hash Match help reduce duplicates due to the hierarchy encoding. The fi rst loops join 
retrieves values from the index structure. The sort is needed to fi nd duplicate base rows 
( perhaps there is more than one point for a single database row). The second loops join 
 retrieves any other requested columns from the base table. Finally, the last loops join applies 
the CLR function as a residual predicate.  

Plan Hinting

 There is a lot of misinformation about query hints, and often the misuse of hints can cause 
the creation of global policies for or against the use of hints in queries. One of the goals of 
this chapter is to give DBAs and developers the tools they need to have a different kind of 
conversation about the design, implementation, and maintenance of SQL Server applications. 
This section explains query hints and when to use them. 

C08626249.indd   511 2/13/2009   12:29:55 PM



512 Microsoft SQL Server 2008 Internals

 Early in the chapter, I discussed some of the problems that face the engineering team for 
a Query Optimizer. The complexity of some of the algorithms involved in optimizing SQL 
 queries is high enough that it is effectively impossible to explore every possible query plan 
for every query that can be sent to the system. Latency restrictions in statistics gathering 
and mathematical modeling issues in cardinality estimation also place some limits on the 
 powers of the Query Optimizer, given the current computational powers of processors today. 
The  reality is that there are some queries for which the Query Optimizer cannot generate a 
 perfect plan.  

 That being said, the Query Optimizer actually does an amazing job on most queries. Many 
years of very smart thinking has gone into the development of this component, and the 
result is a system that almost always fi nds a very good query plan very quickly. This is 
 accomplished through a number of smart algorithms, heuristics, and an understanding of 
common scenarios. Each release of the product gets better and can handle more and more 
scenarios. 

 When people ask me about hints, I fi rst ask them about their application. Many people don’t 
realize that the design of the application has a huge impact on whether hints are  appropriate 
or necessary. If your database schema has a classic, third-normal form set of data tables 
and your queries are all written using an understanding of the American National Standards 
Institute (ANSI) SQL grammar, then your odds are very good that SQL Server will do a 
 reasonable job on your query without any modifi cation. As you push the system and stress 
the design in different directions, you can fi nd areas where the algorithms and  heuristics 
in the product start to not work as well. For example, if you have huge variations in data 
 distribution or you have an application that relies on the statistical correlation of  column 
 values to select a great plan, then sometimes you may not get a join order that is near 
 optimal for your query. So before you consider hints, make sure that you can  understand 
how your application is designed, specifi cally around what kinds of things make your 
 application not look like a common database application. 

 If you have identifi ed a poorly performing query that is important to your application and 
you have an idea why the Query Optimizer could be having trouble, then that would be an 
appropriate time to consider whether a hint will help this application. I usually tell people 
not to use a hint unless there is a good reason, which means that the standard behavior 
of the system is unacceptable for your business and there is a better plan choice that is 
 acceptable. So, if you know that a particular join order or index selection yields deadlocks 
with the other queries in your system, then you should consider using a hint—locking is not a 
 factor in how the Query Optimizer optimizes queries, and each query is effectively  optimized 
 independently of the others in the system. 

 Now, some database development teams may impose rules such as “No hints,” or “Always 
force this index on this table when doing a SELECT.” This doesn’t mean that they are wrong—
often there is a very good reason for these kinds of rules to exist. I urge you to read through 

C08626249.indd   512 2/13/2009   12:29:55 PM



 Chapter 8 The Query Optimizer 513

this chapter and make sure that you have a conversation with your DBA about the reasons 
for each rule. When you are building a new feature and changing a database application, it 
may be completely appropriate to use a hint or to alter these development practices. The 
goal of this section is to help you understand the purpose of each hint. I hope that this lets 
you see the situations when it might be appropriate to use a hint (and when it might not be 
appropriate). 

 Query and table hints are, in almost all cases, actually requirements given by the query 
 author to the Query Optimizer when generating a query plan. So, if a hint cannot be 
 satisfi ed, the Query Optimizer actually returns an error and does not return a plan at all. 
Locking hints are an exception—these are sometimes ignored to preserve the correctness 
of data manipulation operations necessary for the system to work properly. The name is 
 somewhat misleading, but this behavior allows you to modify the query and know that you 
had an impact on the query generation process. 

Debugging Plan Issues

 Determining when to use a hint requires an understanding of the workings of the Query 
Optimizer, how it might not be making a correct decision, and then an understanding of how 
the hint might change the plan generation process to address the problem. For more than 
half of the problems that Microsoft typically sees in support calls about query plans, issues 
with incorrect cardinality estimates are the primary cause of a poor plan choice. In other 
words, a better cardinality estimate would yield a plan choice that is acceptable. In other 
 cases, more complex issues around costing, physical data layout, lock  escalation,  memory 
contention, or other issues were factors in the performance  degradation. This section 
 explains how to identify cardinality estimation errors and then use hints to  correct poor plan 
choices, as these are usually something that can be fi xed without buying new hardware or 
otherwise altering the host machine. 

 The primary tool to identify cardinality estimation errors is the statistics profi le output in SQL 
Server. When enabled, this mode generates the actual cardinalities for each query  operator 
in the plan. These can be compared against the Query Optimizer’s estimated cardinalities 
to fi nd any differences. As cardinality estimation is performed from the bottom of the tree 
upwards (right to left in the showplan’s graphical display), errors propagate. Usually, the 
 location of the lowest error indicates where to consider hints.  

 Other tools exist to track down performance issues with query plans. Setting statistics time 
on is a great way to determine run-time information for a query. SQL Profi ler is a great 
tool for tracking deadlocks and other system-wide issues that can be captured by tracing. 
DBCC MEMORYSTATUS is an excellent tool to fi nd out what components in the system are 
 causing memory pressure within SQL Server. Most of these tools fall outside of the scope of 
this chapter, though these tools can be helpful for some plan issues. It is recommended that 
 cardinality issues be researched fi rst when there are concerns about plan quality, as this is 
probably the most common issue.  

C08626249.indd   513 2/13/2009   12:29:55 PM



514 Microsoft SQL Server 2008 Internals

 In Figure 8-77, we run a query against one of the catalog views to see how each operator’s 
estimated and actual cardinalities match up. 

SET STATISTICS PROFILE ON;

SELECT * FROM sys.objects;

FIGURE 8-77 Statistics profi le ouput

 Note The EstimateRows and EstimateExecutions columns have been moved from the actual 
output order for display in the screenshot. While the estimation for this query is actually perfect, 
it is common for estimates to vary from the actual cardinalities, especially as queries get more 
complex. Usually, you’d like them to be close enough that the plan choice won’t change, which 
is almost always less than an order of magnitude off by the top of the tree. Also, note that the 
EstimateRows number is the average per-execution, whereas Rows is merely total rows. You can 
 divide Rows by Executes to get the numbers to be comparable. 

 If an error is found by looking at the statistics profi le output, this can help identify a 
place where the Query Optimizer has used bad information to make a decision. Usually, 
 updating statistics with fullscan can help isolate whether this is an issue with out-of-date or 
 undersampled statistics. If the Query Optimizer makes a poor decision even with  up-to-date 
statistics, then this might mean that there is an out-of-model condition with the Query 
Optimizer. For example, if there is a strong data correlation between two columns in a query, 
this could cause errors in the cardinalities seen in the query. Once an out-of-model condition 
is identifi ed as being the cause of a poor plan choice, hints are the mechanism to correct the 
plan choice and to use a better query plan. 

 This section describes how most of the query or table hints fi t within the context of the Query 
Optimizer’s architecture, including situations where it might be appropriate to use hints. 

{HASH | ORDER} GROUP

 SQL Server has two possible implementations for GROUP BY (and DISTINCT). It can be 
 implemented by sorting the rows and then using the fact that rows in the same group are 
now adjacent physically. It can also hash each group into a different memory location. When 
one of these options is specifi ed, it is implemented by turning off the implementation rule 
for the other physical operator. Note that this applies to all GROUP BY operations within a 
query, including those from views included in the query. 

C08626249.indd   514 2/13/2009   12:29:55 PM



 Chapter 8 The Query Optimizer 515

 Many data warehouse queries have a common pattern of a number of joins followed by an 
aggregate operation. If the estimates for the number of rows returned in the joins  section 
is in error, the estimated size for the aggregate operation can be substantially incorrect. 
If it is underestimated, then a sort and a stream aggregate may be chosen. As memory is 
 allocated to each operator based on the estimated cardinality estimates, an underestimation 
could cause the sort to spill to disk. In a case like this, hinting a hash algorithm might be a 
good option. Similarly, if memory is scarce or there are more distinct grouping values than 
 expected, then perhaps using a stream aggregate would be more appropriate. This hint is a 
good way to affect system performance, especially in larger queries and in situations when 
many queries are being run at once on a system. 

{MERGE | HASH | CONCAT } UNION

 Many people incorrectly use UNION in queries when they likely want to use UNION ALL, 
perhaps because it is shorter. UNION ALL is actually a faster operation, in general, because it 
takes rows from each input and simply returns them all. UNION actually has to compare rows 
from each side and make sure that no duplicates are returned. Essentially, UNION performs 
a UNION ALL and then a GROUP BY operation over all output columns. In some cases, the 
Query Optimizer can determine that the output columns contain a key that is unique over 
both inputs and can convert the UNION to a UNION ALL, but in general, it is worth making 
sure that you are actually asking the right query. These three hints apply only to UNION. 

 Now, assuming that you have the right operation, you can pick among three join patterns, 
and these hints let you specify which one to use. This example shows the MERGE UNION hint. 

CREATE TABLE t1 (col1 INT);

CREATE TABLE t2 (col1 INT);

go

INSERT INTO t1(col1) VALUES (1), (2);

INSERT INTO t2(col1) VALUES (1);

SELECT * FROM t1 

UNION 

SELECT * FROM t2 

OPTION (MERGE UNION);

 As you can see, each hint forces a different query plan pattern. MERGE UNION is useful when 
there are common input sizes. CONCAT UNION is best at low-cardinality plans (one sort). 
HASH UNION works best when there is a small input that can be used to make a hash table 
against which the other inputs can be compared. 

 UNION hinting is done for roughly the same reasons as GROUP BY hinting—both operations 
are commonly used near the top of a query defi nition, and they have the potential to  suffer 
if there is error in cardinality estimation in a query with many joins. Typically, one either 
hints to the HASH operator to address cardinality underestimation or hints to the CONCAT 
 operator to address overestimation. 

C08626249.indd   515 2/13/2009   12:29:55 PM



516 Microsoft SQL Server 2008 Internals

FORCE ORDER, {LOOP | MERGE | HASH } JOIN

 Join order and algorithm hints are common techniques to fi x poor plan choices. When 
 estimating the number of rows that qualify a join, the best algorithm depends on factors 
such as the cardinality of the inputs, the histograms over those inputs (which are used to 
make estimates about how many rows qualify the join condition), the available memory to 
store data in memory such as hash tables, and what indexes are available (which can speed 
up loops join scenarios). If the cardinality or histograms are not representative of the input, 
then a poor join order or algorithm can result. In addition, there can be correlations in data 
across joins that are extremely diffi cult to model with current technologies (even fi ltered 
 statistics in SQL Server 2008 work only within a single table). 

 Tip If the statistics profi le output demonstrates that the cardinality estimates were  substantially 
incorrect, the join order can be forced by rewriting the query into the order you would like to 
see the tables in the output plan. This modifi es how the Query Optimizer sets the initial join 
 order and then disables rules that reorder joins. Once hinted, you should time the new query 
and make sure that the plan is faster than the original. In addition, as your data changes, you 
need to  reexamine these hints regularly to make sure that the plan you have forced is still 
 appropriate—you are essentially saying “I know better than the Query Optimizer,” which is the 
equivalent of performing all the maintenance on your own car.  

 Places where I have seen these hints be appropriate in the past are the following: 

■  Small, OLTP-like queries where locking is a concern. 

■  Larger data-warehouse systems with many joins, complex data correlations, and 
enough of a fi xed query pattern that you can reason about the join order in ways that 
make sense for all queries. For example: “I am happy if I access dimension tables in this 
order fi rst, then the fact table and everything is a hash join.”  

■  Systems that extend beyond traditional relational application design and using some 
engine feature enough to change query performance materially. Examples might 
 include using SQL as a document store with Full-Text or XQuery components that are 
mixed with traditional relational components or using Distributed Queries against a 
remote provider that does not surface statistical information to SQL Server’s query 
processor. 

 Unfortunately, no semi-join specifi c implementation hints are exposed in SQL Server 2008, 
although they can be indirectly affected by the other join hints. 

INDEX=<indexname> | <indexid>

 The INDEX=<indexname> | <indexid> hint has been in the product for many releases and is 
very effective in forcing the Query Optimizer to use a specifi c index when compiling a plan. 
The primary scenario where this is interesting is an OLTP application where you wish to force 

C08626249.indd   516 2/13/2009   12:29:55 PM



 Chapter 8 The Query Optimizer 517

a plan to avoid scans of any type. Remember that the Query Optimizer tries to  generate a 
plan using only this index fi rst, but it also adds joins to additional indexes for a table if the 
index you have forced is not covering for the query (meaning that it has all the columns 
contained in the index key, the table’s primary key, or listed as an INCLUDED column). One 
would generally have a query fi lter predicate that could be used to generate a seek against 
the index, but this hint is also valid for index scans if you use indexes to narrow row widths 
to improve query execution time. A second scenario where this would be useful is a plan 
 developed on one server for use on another, such as a test to deployment server or an ISV 
that creates a plan for an application and then ships this application to their customers to 
deploy on their own SQL Server instance. 

FORCESEEK 

 This hint was added in SQL Server 2008. It tells the Query Optimizer that it needs to generate 
a seek predicate when using an index. There are a few cases when the Query Optimizer can 
 determine that a scan of an index is better than a seek when compiling the query. For example, 
if a query is compiled while the table is almost empty, the storage engine may store all the 
 existing rows in one page in an index. In this case, a scan is faster than a seek, in terms of I/O, 
because the storage engine supports scanning from the leaf nodes of a B+ tree, which would 
avoid one extra page of I/O. This condition might be ephemeral, given that newly created tables 
are often populated soon after. The hint is effective in avoiding such a scenario if you know 
that perhaps the table won’t have enough rows to trigger a recompile or that the performance 
 impact of this condition would be detrimental enough to the system to warrant the hint. 

 The other scenario where such a hint is interesting is to avoid locks in OLTP applications. This 
hint precludes an index scan, so it can be effective if you have a high-scale OLTP application 
where locking is a concern in scaling and concurrency. The hint avoids the possibility of the 
plan taking more locks than desired. Because the Query Optimizer does not explicitly reason 
about locking in plan selection (it does not prefer a plan that has fewer locks, but it might 
prefer a plan that it things will perform faster that also happens to take fewer locks). Care 
should be taken in hinting high-scale applications only when necessary, as a poor hint can 
cause the system to behave substantially worse than an unhinted plan. 

FAST <number_rows>

 The Query Optimizer assumes that the user will read every row produced by a query. 
Although this is often true, some user scenarios, such as manually paging through results, 
do not  follow this pattern—in these cases, the client reads some small number of rows and 
then closes the query result. Often a similar query is submitted in the near future to retrieve 
 another batch of rows from the server. In the costing component, this assumption affects the 
plan choice. For example, hash joins are more effi cient for larger result sets but have a higher 

C08626249.indd   517 2/13/2009   12:29:55 PM



518 Microsoft SQL Server 2008 Internals

startup cost (to build a hash table for one side of a join). Nested loops joins have no startup 
cost but a somewhat higher per-row cost. So, when a client wants only a few rows but does 
not specify a query that returns only a few rows, the latency of the fi rst row may be slower 
due to the startup costs for stop-and-go operators like hash joins, spools, and sorts. 

 The FAST <number_rows> hint supplies the costing infrastructure with a hint from the user 
about how many rows the user will want to read from a query. Internally, this is called a row 
goal, and simply provides an input into the costing formulas to help specify what point on 
the costing function is appropriate for the user’s query. 

 The TOP() syntax in SQL Server introduces a row goal as well. Note that if you supply 
TOP(@param), then the Query Optimizer may not have a good value to sniff from the T-SQL 
 context. In this scenario, you would want to use the OPTIMIZE FOR hint (described later in 
this section).  

MAXDOP <N>

 MAXDOP stands for maximum degree of parallelism, which describes the preferred degree 
of fan-out to be used when this query is run (in SKUs that support parallel query plans). For 
 expensive queries, the Query Optimizer attempts to use multiple threads to reduce the run time 
of a query. Within the costing functions, this means that some portions of the costs of a query 
are divided over multiple processor cores, reducing the overall cost compared to an  otherwise 
identical serial plan. Very complex queries can actually have multiple zones of parallelism, 
meaning that each zone can have up to MAXDOP threads assigned to it during execution.  

 Large queries can consume a nontrivial fraction of the resources available to the system. 
A parallel query can consume memory and threads, blocking other queries that want to 
 begin execution. In some cases, it is benefi cial to the overall health of the system to reduce 
the degree of parallelism for one or more queries to lower the resources required to run a 
long-running query. This helps workloads that do not use the resource governor to  manage 
resources. Often a server that services mixed workloads would be a good candidate for 
 considering this hint, when needed. 

OPTIMIZE FOR

 The Query Optimizer uses scalar values within the query text to help estimate the cardinality 
for each operator in the query. This ultimately helps choose the lowest-cost plan, as cardinality 
is a major input into the costing functions. Parameterized queries can make this process more 
diffi cult because parameters can change from one execution to the next. Given that SQL Server 
automatically parameterizes queries as well, this design choice affects more queries than one 
would expect. When estimating cardinality for parameterized queries, the Query Optimizer 
usually uses a less accurate estimate of the average number of distinct values in the column or 
it sniffs the parameter value from the context (usually only on recompile, unfortunately).  

C08626249.indd   518 2/13/2009   12:29:55 PM



 Chapter 8 The Query Optimizer 519

 This sniffed value is used for cardinality estimation and plan selection, but it is not used 
to simplify the query or otherwise depend on the specifi c parameter value. So,  parameter 
 sniffi ng can help pick a plan that is good for a specifi c case. Because most data sets have 
nonuniform column distributions, the value sniffed can affect the run time of the query 
plan. If a value representing the common distribution is picked, this might work very well 
in the average case and less optimally in the outlier case (a value with substantially more 
 instances than the average case). If the outlier is used to sniff the value, then the plan picked 
might perform noticeably worse than it would have if the average case value had been 
sniffed. This can be a problem due to the plan caching policy in SQL Server—a  parameterized 
query is kept in the cache even though the values change from execution to execution. When 
a  recompile happens, only the information from that specifi c context is used to recompile. 

 The OPTIMIZE FOR hint allows the query author to specify the actual values to use  during 
 compilation. This can be used to tell the Query Optimizer, “This is a common value that 
I expect to see at run time,” and this can provide more plan predictability on parameterized 
queries. This hint works for both the initial compilation and for recompiles. While specifying 
a common value is usually the best approach, test out this hint to make sure that it gives the 
desired behavior.  

 In Listing 8-17, the OPTIMIZE FOR hint is used to force the query plan to account for an 
average value in the optimization of the query. (Note: I am only demonstrating that the 
plans change, not that these two plans perform differently. This technique can be used on 
arbitrarily complex queries to hint plans.) Note that when the value of 23 is used to compile 
the query (as shown in Figure 8-79), a different index is picked than when it is not (shown in 
Figure 8-78) because 23 is a very common value and it is not as selective as the predicate on 
col2. Parameter values can cause index changes, join order changes, and other more complex 
changes to your query plan—testing forced parameters is highly recommended.  

 LISTING 8-17 Parameter Sniffi ng Example 

CREATE TABLE param1(col1 INT, col2 INT);

go

SET NOCOUNT ON;

BEGIN TRANSACTION;

DECLARE @a INT=0;

WHILE @a < 10000

BEGIN

INSERT INTO param1(col1, col2) VALUES (@a, @a);

SET @a+=1;

END;

COMMIT TRANSACTION;

go

CREATE INDEX i1 ON param1(col1);

go

CREATE INDEX i2 ON param1(col2);

go

DECLARE @b INT;

DECLARE @c INT;

SELECT * FROM param1 WHERE col1=@b AND col2=@c;

C08626249.indd   519 2/13/2009   12:29:56 PM



520 Microsoft SQL Server 2008 Internals

FIGURE 8-78 Non-sniffed parameters use index i1

SELECT * FROM param1 WHERE col1=23 AND col2=5;

FIGURE 8-79 Sniffed parameters use i2

DECLARE @b INT;

DECLARE @c INT;

SELECT * FROM param1 WHERE col1=@b AND col2=@c

OPTION (OPTIMIZE FOR (@b=22));

 Using the OPTIMIZE FOR hint instructs the Query Optimizer to use a known common value 
when generating the plan so that it works for a wide range of parameter values. 

PARAMETERIZATION {SIMPLE | FORCED}

 SIMPLE parameterization is the model that has existed in SQL Server for many releases. 
This corresponds to the concept of the trivial plan explained in this chapter. FORCED 
 parameterization always replaces most literals in the query with parameters. As the plan 
quality can suffer, using FORCED should be done with care and an understanding of the 
global behavior of your application. Usually, FORCED mode should be used only in an OLTP 
system with many almost equivalent queries that (almost) always yield the same query plan. 
Essentially, you are betting that the plans will not change between possible parameter values. 
If all the queries are very small, the risk of this bet is smaller. The reasoning for this hint is that 
some OLTP systems with ad-hoc queries spent a large fraction of their time compiling the 
same (or similar) queries repeatedly. When possible, this is a good case to consider adding 
parameters into your application’s queries. 

C08626249.indd   520 2/13/2009   12:29:56 PM



 Chapter 8 The Query Optimizer 521

NOEXPAND

 By default, the query processor expands view defi nitions when parsing and  binding the  query 
tree. While the Query Optimizer usually matches the indexed views during  optimization (as 
well as portions of any query even when the indexed view was not  specifi ed), there are some 
cases where the internal queries are rewritten such that it is not possible to match indexed 
views anymore. The NOEXPAND hint forces the query processor to force the use of the 
 indexed view in the fi nal query plan. In many cases, this can speed up the  execution of the 
query plan because the indexed view often pre-computes an expensive  portion of a query. 
However, this is not always true—the Query Optimizer may be able to fi nd a better plan 
 using the information from the fully expanded query tree. 

USE PLAN

 The USE PLAN N’xml plan’ hint directs the Query Optimizer to try to generate a plan that 
looks like the plan in the supplied XML string. The Query Optimizer has been  instrumented 
to use the shape of this plan as a series of hints to guide the optimization  process to get the 
desired plan shape. Note that this does not guarantee that the _exact_ same plan is selected, 
but it will usually be identical or very close. 

 The common use of this hint is a DBA or database developer who wishes to fi x a plan regression 
in the Query Optimizer. If a baseline of good/expected query plans is saved when the  application 
is developed or fi rst deployed, these can be used later to force a query plan to change back to 
what was expected if the Query Optimizer later determines to change to a different plan that 
is not performing well. This could be necessary to force a join order to avoid locking deadlocks 
or merely to get the right physical plan shape and algorithms to be chosen. In some scenarios, 
the Query Optimizer does not have enough information to make a good decision about a 
 portion of the query plan (for example, the join order) and it can lead to a suboptimal plan 
choice. DBAs should use this option with care—forcing the original query plan may actually 
 degrade  performance further because the plan was likely created for different data volumes and 
 distributions. Try out a plan hint on a test database before deploying it, when possible. 

 Although this feature was added in SQL Server 2005, the feature has been improved in SQL 
Server 2008 with the inclusion of scripting support through Management Studio and the 
ability to hint more types of queries. For example, INSERT/DELETE/UPDATE/MERGE queries 
are now  supported in USE PLAN hints, which can be very useful in forcing specifi c update 
plans that avoid deadlocks in stress scenarios. 

 While SQL Server 2008 supports additional query types, some are not supported with this 
feature. These include: 

■  Dynamic, Keyset, and Fast Forward cursors 

■  Queries containing remote tables 

C08626249.indd   521 2/13/2009   12:29:56 PM



522 Microsoft SQL Server 2008 Internals

■  Full-text Queries 

■  DDL commands, including CREATE INDEX and ALTER PARTITION FUNCTION, which 
 manipulate data 

 In the context of rules, properties, and the Memo, the USE PLAN hint is used by the Query 
Optimizer to control both the initial shape of the query tree (for example, the initial join 
 order after the tree is normalized early in Optimization) as well as the rules that are enabled 
to run for each group in the Memo. In the case of join orders, the Query Optimizer enables 
only join order transformations that led to the confi guration specifi ed in the plan hint. 
Physical implementation rules are also hinted, meaning that a hash aggregate in the XML 
plan hint requires that the implementation rule for hash aggregation be enabled and that 
the stream aggregation rule be disabled. 

 The following example demonstrates how to retrieve a plan hint from SQL Server and then 
apply it as a hint to a subsequent compilation to guarantee the query plan: 

CREATE TABLE customers(id INT, name NVARCHAR(100));

CREATE TABLE orders(orderid INT, customerid INT, amount MONEY);

go

SET SHOWPLAN_XML ON;

go

SELECT * FROM customers c INNER JOIN orders o ON c.id = o.customerid;

 The SELECT statement returns a single row and single column of text of XML that contains 
the XML plan for the query. It is too large to print in the book, but it starts with 

<ShowPlanXML xmlns="http://schemas.microsoft.com/sqlserver/2004/07/showplan" Version="1.0" 

. . .

 Once we have copied the XML, it is necessary to escape single quotes before we can use it in 
the USE PLAN hint. Usually, I copy the XML into an editor and then search for single quotes 
and replace them with double quotes. Then we can copy the XML into the query using the 
OPTION (USE PLAN ‘<xml . . ./>’) hint. (The hint was again shortened for space.) 

SET SHOWPLAN_XML OFF;

SELECT  * FROM customers  c INNER JOIN orders o ON c.id = o.customerid 

OPTION (USE PLAN '<ShowPlanXML xmlns="http://schemas.microsoft.com/sqlserver/2004/07/

showplan" Version="1.0" . . .');

 This technique makes it possible to force one query plan in scenarios when you can 
 manipulate the query submitted to the server. The names used in the XML plan format are 
logical (table names instead of object_id), so it should be possible to take a USE PLAN hint 
from one table and use it on another with the same physical schema (columns, indexes, and 
so on) with only minor modifi cations. A very straightforward way to copy a plan from one 
 table to another table with the same structure, or from one database or SQL Server  instance 
to another is to create a plan guide incorporating the USE PLAN hint. Plan Guides are 
 discussed in Chapter 9. 

C08626249.indd   522 2/13/2009   12:29:56 PM



 Chapter 8 The Query Optimizer 523

Summary

 The Query Optimizer is a complex component with many internal features. While it is not 
always possible to know exactly why the Query Optimizer chose a specifi c plan, knowing a 
little about the Query Optimizer’s design can help a DBA or database developer examine any 
query plan and diagnose any problems. Knowing how the Query Optimizer works can also 
help reinforce good database design methodologies that can improve the quality of your 
 application and reduce problems in deployment. 

 This chapter explains the mechanisms used in query processing and optimization, including 
trees, rules, properties, and the Memo framework. These ideas are used through different 
stages of optimization to try to fi nd a reasonable plan quickly. The examples throughout the 
chapter demonstrate many of the operators and how they are used to implement the SQL 
queries submitted by the user. Finally, the use of the statistics profi le output can help identify 
poorly optimized queries and to use statistics and hints to get the Query Optimizer to select 
a better plan. 

C08626249.indd   523 2/13/2009   12:29:56 PM



C08626249.indd   524 2/13/2009   12:29:56 PM



  525

Chapter 9

Plan Caching and Recompilation
 Kalen Delaney 

 We’ve now looked at the query optimization process and the details of query execution in 
Microsoft SQL Server. Because query optimization can be a complex and time- consuming 
process, SQL Server frequently and benefi cially reuses plans that have already been  generated 
and saved in the plan cache, rather than producing a completely new plan. However, in some 
cases, a previously created plan may not be ideal for the current query execution, and we 
might achieve better performance by creating a new plan. 

 In this chapter, we look at the SQL Server 2008 plan cache and how it is organized. Most of 
the discussion is relevant to SQL Server 2005 as well, and I will tell you when a behavior or 
 feature is specifi c to SQL Server 2008. I will tell you about what kinds of plans are saved, and 
under what conditions SQL Server might decide to reuse them. We look at what might cause 
an existing plan to be re-created. We also look at the metadata that describes the contents of 
plan cache. Finally, I describe the ways that you can encourage SQL Server to use an existing 
plan when it might otherwise create a new one, and how you can force SQL Server to create a 
new plan when you need to know that the most up-to-date plan is available. 

The Plan Cache

 It’s important to understand that the plan cache in SQL Server 2008 is not actually a 
 separate area of memory. Releases prior to SQL Server 7 had two effective confi guration 
values to control the size of the plan cache, which was then called the procedure cache. One 
value specifi ed a fi xed size for the total usable memory in SQL Server; the other specifi ed 
a  percentage of that memory (after fi xed needs were satisfi ed) to be used exclusively for 
 storing procedure plans. Also, in releases prior to SQL Server 7, query plans for adhoc SQL 
statements were never stored in cache, only the plans for stored procedures. That is why it 
was called procedure cache in older versions. In SQL Server 2008, the total size of memory is 
by default dynamic, and the space used for query plans is also very fl uid. 

Plan Cache Metadata

 In the fi rst part of this chapter, I explore the different mechanisms by which a plan can be 
reused, and to observe this plan reuse (or non-reuse), we need to look at only a couple of 
different metadata objects. There are actually about a dozen different metadata views and 
functions that give us information about the contents of plan cache, and that doesn’t include 
the metadata that gives us information about memory usage by the plan cache. Later in the 

C09626249.indd   525 2/16/2009   1:38:29 PM



526 Microsoft SQL Server 2008 Internals

chapter, we look at more details available in the plan cache metadata, but for now, we are 
using just one view and one function. The view is sys.dm_exec_cached_plans, which contains 
one row for each plan in cache, and we look at the columns usecounts, cacheobjtype, and 
objtype. The value in usecounts allows us to see how many times a plan has been reused. 
The possible values for cacheobjtype and objtype are described in the next section. We also 
use the value in the column plan_handle as the parameter when we use the CROSS APPLY 
 operator to join the sys.dm_exec_cached_plans view with the table-valued function (TVF) 
sys.dm_exec_sql_text. This is the query we use, which we refer to as the usecount query: 

SELECT usecounts, cacheobjtype, objtype, [text]

FROM sys.dm_exec_cached_plans P

    CROSS APPLY sys.dm_exec_sql_text(plan_handle)

WHERE cacheobjtype = 'Compiled Plan'

    AND [text] NOT LIKE '%dm_exec_cached_plans%';

Clearing Plan Cache

 Because SQL Server 2008 has the potential to cache almost every query, the number of plans 
in cache can become quite large. There is a very effi cient mechanism, described later in the 
chapter, for fi nding a plan in cache. There is not a direct performance penalty for having 
lots of cached plans, aside from the memory usage. However, if you have many very similar 
queries, the lookup time for SQL Server to fi nd the right plan can sometimes be excessive. 
In addition, from a testing and troubleshooting standpoint, having lots of plans to look at 
can sometimes make it diffi cult to fi nd just the plan in which we’re currently interested. SQL 
Server provides a mechanism for clearing out all the plans in cache, and you probably want 
to do that occasionally on your test servers to keep the cache size manageable and easy to 
examine. You can use any of the following commands: 

■  DBCC FREEPROCCACHE This command removes all cached plans from memory. 
SQL Server 2008 added the capability to add parameters to this command, to allow SQL 
Server to remove a specifi c plan from cache, all plans with the same sql_handle value, or 
all plans in a specifi c resource governor resource pool. I discuss the use of this procedure 
later in this chapter, when I discuss examining the contents of the plan cache.  

■  DBCC FREESYSTEMCACHE This command clears out all SQL Server memory caches, 
in addition to the plan caches. I talk a bit more about the different memory caches in 
the section entitled “Cache Stores,” later in this chapter. 

■  DBCC FLUSHPROCINDB (<dbid>) This command allows you to specify a  particular 
database ID, and then clears all plans from that particular database. Note that the 
usecount query that we use in this section does not return database ID information, 
but the sys.dm_exec_sql_text function has that information available, so dbid could be 
added to the usecount query. 

C09626249.indd   526 2/16/2009   1:38:29 PM



 Chapter 9 Plan Caching and Recompilation 527

 Tip It is, of course, recommended that you don’t use these commands on your production 
 servers because it could affect the performance of your running applications. Usually, you want 
to keep plans in cache. 

Caching Mechanisms

 SQL Server can avoid compilations of previously executed queries by using four mechanisms 
to make plan caching accessible in a wide set of situations: 

■  Adhoc query caching 

■  Autoparameterization 

■  Prepared queries, using either sp_executesql or the prepare and execute method 
 invoked through your API 

■  Stored procedures or other compiled objects (triggers, TVFs, etc.) 

 To determine which mechanism is being used for each plan in cache, we need to look at the 
values in the cacheobjtype and objtype columns in the sys.dm_exec_cached_plans view. The 
cacheobjtype column can have one of six possible values: 

■  Compiled Plan 

■  Compiled Plan Stub 

■  Parse Tree 

■  Extended Proc 

■  CLR Compiled Func 

■  CLR Compiled Proc 

 In this section, the only values we are looking at are Compiled Plan and Compiled Plan Stub. 
Notice that I fi lter the usecount query to limit the results to rows with one of these values.  

 There are 11 different possible values for the objtype column: 

■  Proc (Stored procedure) 

■  Prepared (Prepared statement) 

■  Adhoc (Adhoc query) 

■  ReplProc (Replication-fi lter-procedure) 

■  Trigger  

■  View 

C09626249.indd   527 2/16/2009   1:38:29 PM



528 Microsoft SQL Server 2008 Internals

■  Default (Default constraint or default object) 

■  UsrTab (User table) 

■  SysTab (System table) 

■  Check (CHECK constraint) 

■  Rule (Rule object) 

 We are mainly examining the fi rst three values, but many caching details that apply to stored 
procedures also apply to replication fi lter procedures and triggers. 

Adhoc Query Caching

 If the caching metadata indicates a cacheobjtype value of Compiled Plan and an objtype 
value of Adhoc, the plan is considered to be an adhoc plan. Prior to SQL Server 2005,  adhoc 
plans were cached occasionally, but it was not something on which you could depend. 
However, even when SQL Server caches your adhoc queries, you might not be able to 
 depend on their reuse. When SQL Server caches the plan from an adhoc query, the cached 
plan is reused only if a subsequent batch matches exactly. This feature requires no extra 
work to use, but it is limited to exact textual matches. For example, if the following three 
queries are executed in the Northwind2 database (which can be found on the companion 
Web site, http://www.SQLServerInternals.com/companion), the fi rst and third queries use the 
same plan, but the second one needs to generate a new plan: 

SELECT * FROM Orders WHERE CustomerID = 'HANAR';

SELECT * FROM Orders WHERE CustomerID = 'CHOPS';

SELECT * FROM Orders WHERE CustomerID = 'HANAR';

 You can verify this by fi rst clearing out the plan cache and then running the three queries in 
separate batches. Then run the usecount query referred to previously: 

USE Northwind2;

DBCC FREEPROCCACHE;

GO

SELECT * FROM Orders WHERE CustomerID = 'HANAR';

GO

SELECT * FROM Orders WHERE CustomerID = 'CHOPS';

GO

SELECT * FROM Orders WHERE CustomerID = 'HANAR';

GO

SELECT usecounts, cacheobjtype, objtype, [text]

FROM sys.dm_exec_cached_plans P

       CROSS APPLY sys.dm_exec_sql_text (plan_handle)

WHERE cacheobjtype = 'Compiled Plan'

       AND [text] NOT LIKE '%dm_exec_cached_plans%';

C09626249.indd   528 2/16/2009   1:38:29 PM



 Chapter 9 Plan Caching and Recompilation 529

You should get two rows back because the NOT LIKE condition fi lters out the row for the 
usecount query itself. The two rows are shown here and indicate that one plan was used only 
once, and the other was used twice: 

usecounts cacheobjtype objtype text

1 Compiled Plan Adhoc SELECT * FROM Orders 
WHERE CustomerID = 'CHOPS'

2 Compiled Plan Adhoc SELECT * FROM Orders 
WHERE CustomerID = 'HANAR'

Note The results shown in this section are obtained with the Optimize for Ad Hoc Workloads 
confi guration option set to 0, which is the default value when you install SQL Server. I discuss this 
new SQL Server 2008 option later in this chapter.  

The results show that with a change of the CustomerID value, the same plan cannot be 
 reused. However, to take advantage of reuse of adhoc query plans, you need to make sure 
that not only are the same CustomerID values used in the queries, but also that the  queries 
are identical, character for character. If one query has a new line or an extra space that 
 another one doesn’t have, they are not treated the same. If one query contains a comment 
that the other doesn’t have, they are not identical. In addition, if one query uses a different 
case for either identifi ers or keywords, even in a database with a case-insensitive collation, 
the queries are not the same. If you run the code here, you see that none of the queries can 
reuse the same plan: 

USE Northwind2;

DBCC FREEPROCCACHE;

GO

SELECT * FROM orders WHERE customerID = 'HANAR';

GO

-- Try it again

SELECT * FROM orders WHERE customerID = 'HANAR';

GO

SELECT * FROM orders

WHERE customerID = 'HANAR';

GO

SELECT * FROM Orders WHERE CustomerID = 'HANAR';

GO

select * from orders where customerid = 'HANAR';

GO

SELECT usecounts, cacheobjtype, objtype, [text]

FROM sys.dm_exec_cached_plans P

       CROSS APPLY sys.dm_exec_sql_text (plan_handle)

WHERE cacheobjtype = 'Compiled Plan'

      AND [text] NOT LIKE '%dm_exec_cached_plans%';

Your results should show fi ve rows in sys.dm_exec_cached_plans, each with a usecounts value of 1. 

usecounts cacheobjtype objtype text

C09626249.indd   529 2/16/2009   1:38:29 PM



530 Microsoft SQL Server 2008 Internals

 Note The SELECT statements are all in their own batch, separated by GO. If there were no GOs, 
there would just be one batch, and each batch has its own plan containing the execution plan for 
each individual query within the batch. For reuse of adhoc query plans, the entire batch must be 
identical. 

 There are a few special kinds of statements that are always considered to be adhoc. These 
constructs include the following: 

■  A statement used with EXEC, as in EXEC('SELECT FirstName, LastName, Title 
FROM Employees WHERE EmployeeID = 6') 

■  A statement submitted using sp_executesql, if no parameters are supplied 

 Queries that you submit via your application with sp_prepare and sp_prepexec are not  considered 
to be adhoc. 

Optimizing for Adhoc Workloads

 If most of your queries are adhoc and never be reused, it might seem like a waste of memory 
to cache their execution plans. Later in this chapter, I talk about how the maximum size 
of plan cache is determined. It is true that having tens of thousands of cached plans for 
 adhoc queries that have little likelihood of reuse is probably not the best use of SQL Server’s 
 memory. For this reason, SQL Server 2008 added a confi guration option that you can  enable 
in those cases where you expect most of your queries to be adhoc. Once this option is 
 enabled, SQL Server caches only a stub of your query plan the fi rst time any adhoc query is 
compiled, and only after a second compilation is the stub replaced with the full plan.  

Controlling the Optimize for Ad Hoc Workloads setting 

 Enabling the Optimize for Ad Hoc Workloads option is very straightforward, as shown in the 
following code: 

EXEC sp_configure 'optimize for ad hoc workloads', 1;

RECONFIGURE;

 You can also enable this option using SQL Server Management Studio, in the Advanced page 
of the Server Properties dialog box, as shown in Figure 9-1. 

The Compiled Plan Stub

 The stub that SQL Server caches when Optimize for Ad Hoc Workloads is enabled is only 
about 300 bytes in size and does not contain any part of a query execution plan. It is 
 basically only a placeholder to keep track of whether a particular query has been seen 
 compiled previously. The stub contains the full cache key and a pointer to the actual query

C09626249.indd   530 2/16/2009   1:38:29 PM



 Chapter 9 Plan Caching and Recompilation 531

  

FIGURE 9-1 Using the Server Properties dialog box in Management Studio to enable the Optimize 
for Ad Hoc Workloads option

text, which is stored in the SQL Manager cache. I discuss cache keys and the SQL Manager 
in the section entitled “Plan Cache Internals,” later in this chapter. The usecounts value in the 
cache metadata is always 1 for compiled plan stubs because they are never reused.  

 When a query or batch that generated a compiled plan stub is recompiled, the stub is 
 replaced with the full compiled plan. Initially, the usecounts value is set to 1 because there is 
no guarantee that the previous query had exactly the same execution plan. All that is known 
is that the query itself is the same. I will execute some of the same queries I used in the 
 previous section after enabling the Optimize for Ad Hoc Workloads option, and we see what 
the usecounts query shows us. I need to modify my usecounts query slightly, and instead of 
looking for rows that have a cacheobjtype value of Compiled Plan, I look for cacheobjtype 
 values that start with Compiled Plan: 

EXEC sp_configure 'optimize for ad hoc workloads', 1;

RECONFIGURE;

GO

USE Northwind2;

DBCC FREEPROCCACHE;

GO

C09626249.indd   531 2/16/2009   1:38:29 PM



532 Microsoft SQL Server 2008 Internals

SELECT * FROM Orders WHERE CustomerID = 'HANAR';

GO

SELECT usecounts, cacheobjtype, objtype, [text]

FROM sys.dm_exec_cached_plans P

        CROSS APPLY sys.dm_exec_sql_text (plan_handle)

WHERE cacheobjtype LIKE 'Compiled Plan%'

        AND [text] NOT LIKE '%dm_exec_cached_plans%';

GO

SELECT * FROM Orders WHERE CustomerID = 'HANAR';

GO

SELECT usecounts, cacheobjtype, objtype, [text]

FROM sys.dm_exec_cached_plans P

        CROSS APPLY sys.dm_exec_sql_text (plan_handle)

WHERE cacheobjtype LIKE 'Compiled Plan%'

        AND [text] NOT LIKE '%dm_exec_cached_plans%';

GO

 The fi rst execution of the usecounts query returns the following: 

 usecounts cacheobjtype objtype text

 1 Compiled Plan Stub Adhoc SELECT * FROM Orders 
WHERE CustomerID = 'HANAR'

 The second execution shows the replacement of the stub with the compiled plan: 

usecounts cacheobjtype objtype text

1 Compiled Plan Adhoc SELECT * FROM Orders 
WHERE CustomerID = 'HANAR'

 The stub is generated when the plan is compiled, not when it is executed, so you would see 
this same behavior if you examined the query plan only twice with one of the SHOWPLAN 
options, without ever executing the query.  

 If the Optimize for Ad Hoc Workloads option is set to 1 and then is set back to 0 after 
Compiled Plan Stubs are placed in the plan cache, the stubs are not immediately removed 
from cache. As when the option was set to 1, any resubmission of the same adhoc T-SQL batch 
 replaces the stub with the compiled plan, and then no further stubs are created.  

Even with this new SQL Server 2008 mechanism for improving the caching behavior when 
your workloads use primarily adhoc queries, this does not mean that adhoc workloads are a 
good idea. There are times that you have no control over the kind of queries being submitted 
to your SQL Server, and in that case, you might fi nd this option benefi cial. However, if you and 
your  developers have control over the how your queries are submitted, I recommend that you 
 consider another options, such as Prepared Queries or stored procedures, which is  discussed 
later in this chapter. 

If you are running my sample queries as you are reading, you might want to turn off the 
Optimize for Ad Hoc Workloads option at this point: 

EXEC sp_configure 'optimize for ad hoc workloads', 0;

RECONFIGURE;

GO

usecounts cacheobjtype objtype text

usecounts cacheobjtype objtype text

C09626249.indd   532 2/16/2009   1:38:29 PM



 Chapter 9 Plan Caching and Recompilation 533

Simple Parameterization

For certain queries, SQL Server can decide to treat one or more of the constants as parameters. 
When this happens, subsequent queries that follow the same basic template can use the same 
plan. For example, these two queries run in the Northwind2 database can use the same plan: 

SELECT FirstName, LastName, Title FROM Employees

WHERE EmployeeID = 6;

SELECT FirstName, LastName, Title FROM Employees

WHERE EmployeeID = 2;

Internally, SQL Server parameterizes these queries as follows: 

SELECT FirstName, LastName, Title FROM Employees

WHERE EmployeeID = @1

You can observe this behavior by running the following code and observing the output of 
the usecount query: 

USE Northwind2

GO

DBCC FREEPROCCACHE;

GO

SELECT FirstName, LastName, Title FROM Employees WHERE EmployeeID = 6;

GO

SELECT FirstName, LastName, Title FROM Employees WHERE EmployeeID = 2;

GO

SELECT usecounts, cacheobjtype, objtype, [text]

FROM sys.dm_exec_cached_plans P

       CROSS APPLY sys.dm_exec_sql_text (plan_handle)

WHERE cacheobjtype = 'Compiled Plan'

      AND [text] NOT LIKE '%dm_exec_cached_plans%';

GO

 You should get three rows returned, similar to the following: 

 usecounts cacheobjtype objtype text

 1 Compiled Plan Adhoc SELECT FirstName, LastName, Title 
FROM Employees 
WHERE EmployeeID = 2;

 1 Compiled Plan Adhoc SELECT FirstName, LastName, Title 
FROM Employees 
WHERE EmployeeID = 6;

 2 Compiled Plan Prepared (@1 tinyint)SELECT [FirstName], 
[LastName], [Title] 
FROM [Employees] 
WHERE [EmployeeID] = @1

You should notice that the two individual queries with their distinct constants get cached as 
adhoc queries. However, these are only considered shell queries and are cached only to make 
it easier to fi nd the parameterized version of the query if the exact same query with the same 

usecounts cacheobjtype objtype text

C09626249.indd   533 2/16/2009   1:38:30 PM



534 Microsoft SQL Server 2008 Internals

constant is reused later. These shell queries do not contain the full execution plan but only a 
pointer to the full plan in the corresponding prepared plan. 

 Tip Do not confuse a shell query with a plan stub. A shell query contains the complete text of 
the query, and uses at least 16 KB of memory. Shell queries are created only for those plans that 
SQL Server thinks are parameterizable. A plan stub, as mentioned previously, only uses about 
200 bytes of memory, and is created only for unparameterizable, adhoc queries, and only when 
the Optimize for Ad Hoc Workloads option is set to 1.  

 In the output shown previously, the third row returned from sys.dm_exec_cached_plans has 
an objtype value of Prepared. (The order of the returned rows is not guaranteed. You should 
have two rows with a cacheobjtype value of Adhoc and one row with a cacheobjtype value of 
Prepared.) The query plan is associated with the prepared plan, and you can observe that the 
plan was used twice. In addition, the text for that Prepared row shows a parameter in place of 
a constant. 

 By default, SQL Server is very conservative about deciding when to parameterize  automatically. 
SQL Server automatically parameterizes queries only if the query template is considered to 
be safe. A template is safe if the plan selected does not change even if the actual parameter 
values change. This ensures that the parameterization won’t degrade a query’s performance. 
The  employees table used in the previous queries has a unique index, so any query that has an 
equality comparison on employeeID is guaranteed to never fi nd more than one row. A plan 
using a seek on that unique index can be useful no matter what actual value is used. 

 However, consider a query that has either an inequality comparison or an equality  comparison 
on a nonunique column. In those situations, some actual values may return many rows, and 
others return no rows, or only one. A nonclustered index seek might be a good choice when 
only a few rows are returned, but it might be a terrible choice when many rows are returned. 
So a query for which there is more than one possible best plan, depending on the value used 
in the query, is not considered safe, and it is not parameterized. By default, the only way for 
SQL Server to reuse a plan for such a query is to use the adhoc plan caching described in the 
 previous section (which does not happen if the constant values in the query are different). 

 In addition to requiring that there only be one possible plan for a query template, there 
are many query constructs that normally disallow simple parameterization. Such constructs 
 include any statements with the following elements: 

■  JOIN 

■  BULK INSERT 

■  IN lists 

■  UNION 

■  INTO 

C09626249.indd   534 2/16/2009   1:38:30 PM



 Chapter 9 Plan Caching and Recompilation 535

■  FOR BROWSE 

■  OPTION <query hints> 

■  DISTINCT 

■  TOP 

■  WAITFOR statements 

■  GROUP BY, HAVING, COMPUTE 

■  Full-text predicates 

■  Subqueries 

■  FROM clause of a SELECT statement has a table-valued method or full-text table or 
OPENROWSET or OPENXML or OPENQUERY or OPENDATASOURCE 

■  Comparison predicate of the form EXPR <> a non-null constant 

 Simple parameterization is also disallowed for data modifi cation statements that use the 
 following constructs: 

■  DELETE/UPDATE with a FROM clause 

■  UPDATE with a SET clause that has variables 

Forced Parameterization

 If your application uses many similar queries that you know benefi t from the same plan but 
are not autoparameterized, either because SQL Server doesn’t consider the plans safe or 
because they use one of the disallowed constructs, SQL Server 2008 provides an alternative. 
A database option called PARAMETERIZATION FORCED can be enabled with the following 
command: 

ALTER DATABASE <database_name> SET PARAMETERIZATION FORCED;

 Once this option is enabled, SQL Server treats constants as parameters, with only a very few 
exceptions. These exceptions, as listed in SQL Server Books Online, include the following: 

■  INSERT . . . EXECUTE statements. 

■  Statements inside the bodies of stored procedures, triggers, or user-defi ned functions. 
SQL Server already reuses query plans for these routines. 

■  Prepared statements that have already been parameterized on the client-side 
application. 

■  Statements that contain XQuery method calls, in which the method appears in a  context 
in which its arguments would typically be parameterized, such as a WHERE clause. If the 
method appears in a context in which its arguments would not be  parameterized, the 
rest of the statement is parameterized. 

C09626249.indd   535 2/16/2009   1:38:30 PM



536 Microsoft SQL Server 2008 Internals

■  Statements inside a T-SQL cursor. (SELECT statements inside API cursors are 
parameterized.) 

■  Deprecated query constructs. 

■  Any statement that is run in the context of ANSI_PADDING or ANSI_NULLS set to OFF. 

■  Statements that contain more than 2,097 literals. 

■  Statements that reference variables, such as WHERE T.col2 >= @p. 

■  Statements that contain the RECOMPILE query hint. 

■  Statements that contain a COMPUTE clause. 

■  Statements that contain a WHERE CURRENT OF clause. 

 You need to be careful when setting this option on for the entire database because  assuming 
that all constants should be treated as parameters during optimization and then  reusing 
 existing plans frequently gives very poor performance. An alternative that allows only  selected 
queries to be autoparameterized is to use plan guides, which are discussed at the end of this 
chapter. In addition, plan guides can also be used to override forced  parameterization for 
 selected queries, if the database has been set to PARAMETERIZATION FORCED. 

Drawbacks of Simple Parameterization

 A feature of autoparameterization that you might have noticed in the output from the 
 usecount query shown previously is that SQL Server makes its own decision as to the  data type 
of the parameter, which might not be the data type you think should be used. In the earlier 
 example, looking at the employees table, SQL Server chose to assume a parameter of type 
 tinyint. If we rerun the batch and use a value that doesn’t fi t into the tinyint range (that is, a 
 value less than 0 or larger than 255), SQL Server cannot use the same  autoparameterized query. 
The batch below autoparameterizes both SELECT statements, but it is not able to use the 
same plan for both queries. The output from the usecount query should show two  adhoc shell 
 queries, and two prepared queries. One prepared query has a parameter of type tinyint, and the 
other is smallint. As strange as it may seem, even if you switch the order of the  queries and use 
the bigger value fi rst, you get two prepared queries with two different parameter data types: 

USE Northwind2;

GO

DBCC FREEPROCCACHE;

GO

SELECT FirstName, LastName, Title FROM Employees WHERE EmployeeID = 6;

GO

SELECT FirstName, LastName, Title FROM Employees WHERE EmployeeID = 622;

GO

SELECT usecounts, cacheobjtype, objtype, [text]

FROM sys.dm_exec_cached_plans P

       CROSS APPLY sys.dm_exec_sql_text (plan_handle)

WHERE cacheobjtype = 'Compiled Plan'

       AND [text] NOT LIKE '%dm_exec_cached_plans%';

GO

C09626249.indd   536 2/16/2009   1:38:30 PM



 Chapter 9 Plan Caching and Recompilation 537

The only way to force SQL Server to use the same data type for both queries is to enable 
PARAMETERIZATION FORCED for the database. 

As mentioned, simple parameterization is not always appropriate, which is why SQL Server 
is so conservative in choosing to use it. Consider the following example. The BigOrders table 
in the Northwind2 database has 4,150 rows and 105 pages, so we might expect that a table 
scan reading 105 pages would be the worst possible performance for any query accessing the 
BigOrders table. There is a nonclustered nonunique index on the CustomerID column. If we 
 enable forced parameterization for the Northwind2 database, the plan used for the fi rst SELECT 
is also used for the second SELECT, even though the constants are different. The fi rst query 
 returns 5 rows and the second returns 155. Normally, a nonclustered index seek would be 
chosen for the fi rst SELECT and a clustered index scan for the second because the number of 
qualifying rows exceeds the number of pages in the table. However, with PARAMETERIZATION 
FORCED, that’s not what we get, as you can see when you run the following code: 

USE Northwind2;

GO

ALTER DATABASE Northwind2 SET PARAMETERIZATION FORCED;

GO

SET STATISTICS IO ON;

GO

DBCC FREEPROCCACHE;

GO

SELECT * FROM BigOrders WHERE CustomerID = 'CENTC'

GO

SELECT * FROM BigOrders WHERE CustomerID = 'SAVEA'

GO

SELECT usecounts, cacheobjtype, objtype, [text]

FROM sys.dm_exec_cached_plans P

       CROSS APPLY sys.dm_exec_sql_text (plan_handle)

WHERE cacheobjtype = 'Compiled Plan'

       AND [text] NOT LIKE '%dm_exec_cached_plans%';

GO

ALTER DATABASE Northwind2 SET PARAMETERIZATION SIMPLE;

GO

When we run this code, we see that the fi rst SELECT required 12 logical reads and the second 
required 312, almost three times as many reads as would have been required if scanning the 
table. The output of the usecount query, shown here, shows that forced parameterization was 
applied and the parameterized prepared plan was used twice: 

usecounts cacheobjtype objtype text

1 Compiled Plan Adhoc SELECT * FROM BigOrders 
WHERE CustomerID = ‘SAVEA’ 

1 Compiled Plan Adhoc SELECT * FROM BigOrders 
WHERE CustomerID = ‘CENTC’ 

2 Compiled Plan Prepared (@0 varchar(8000))select * from 
BigOrders where CustomerID = @0

usecounts cacheobjtype objtype text

C09626249.indd   537 2/16/2009   1:38:30 PM



538 Microsoft SQL Server 2008 Internals

 In this example, forcing SQL Server to treat the constant as a parameter is not a good thing, 
and the batch sets the database back to PARAMETERIZATION SIMPLE (the default) as the last 
step. Note also that while we are using PARAMETERIZATION FORCED, the data type chosen 
for the parameterized query is the largest possible regular character data type. 

 So what can you do if you have many queries that should not be parameterized and 
many  others that should be? As we’ve seen, the SQL Server query processor is much more 
 conservative about deciding whether a template is safe than an application can be. SQL Server 
guesses which values are really parameters, whereas your application developers should  actually 
know. Rather than rely on SQL Server to parameterize your queries automatically, you can use 
one of the prepared query mechanisms to mark values as parameters when they are known. 

 The SQL Server Performance Monitor includes an object called SQLServer:SQL Statistics 
that has several counters dealing with automatic parameterization. You can  monitor these 
 counters to determine whether there are many unsafe or failed automatic  parameterization 
attempts. If these numbers are high, you can inspect your applications for situations in which 
the application developers can take responsibility for explicitly marking the parameters. 

Prepared Queries

 As we saw previously, a query that is parameterized by SQL Server shows an objtype of 
Prepared in the cached plan metadata. There are two other constructs that have  prepared 
plans. Both of these constructs allow the programmer to take control over which  values 
are parameters and which aren’t. In addition, unlike with simple  parameterization, the 
 programmer also determines the data type that be used for the  parameters. One  construct 
is the SQL Server stored procedure sp_executesql, which is called from within a T-SQL 
batch, and the other is to use the prepare and execute method from the client application. 

The sp_executesql Procedure

 The stored procedure sp_executesql is halfway between adhoc caching and stored  procedures. 
Using sp_executesql requires that you identify the parameters and their data types, but it 
doesn’t require all the persistent object management needed for stored procedures and  other 
 programmed objects. 

 Here’s the general syntax for the procedure: 

sp_executesql @batch_text, @batch_parameter_definitions,

   param1,...paramN

 Repeated calls with the same values for @batch_text and @batch_parameter_defi nitions 
use the same cached plan, with the new parameter values specifi ed. The plan is reused so 
long as the plan has not been removed from cache and is still valid. The section entitled 
“Causes of Recompilation,” later in this chapter, discusses those situations in which SQL 
Server  determines that a plan is no longer valid. The same cached plan can be used for all 
the  following queries: 

C09626249.indd   538 2/16/2009   1:38:30 PM



 Chapter 9 Plan Caching and Recompilation 539

EXEC sp_executesql N'SELECT FirstName, LastName, Title

    FROM Employees

    WHERE EmployeeID = @p', N'@p tinyint', 6;

EXEC sp_executesql N'SELECT FirstName, LastName, Title

    FROM Employees

    WHERE EmployeeID = @p', N'@p tinyint', 2;

EXEC sp_executesql N'SELECT FirstName, LastName, Title

    FROM Employees

    WHERE EmployeeID = @p', N'@p tinyint', 6;

Just like forcing autoparameterization, using sp_executesql to force reuse of a plan is not 
always appropriate. If we take the same example used earlier when we set the  database to 
PARAMETERIZATION FORCED, we can see that using sp_executesql is just as inappropriate. 

USE Northwind2;

GO

SET STATISTICS IO ON;

GO

DBCC FREEPROCCACHE;

GO

EXEC sp_executesql N'SELECT * FROM BigOrders

       WHERE CustomerID = @p', N'@p nvarchar(10)', 'CENTC';

GO

EXEC sp_executesql N'SELECT * FROM BigOrders

       WHERE CustomerID = @p', N'@p nvarchar(10)', 'SAVEA';

GO

SELECT usecounts, cacheobjtype, objtype, [text]

FROM sys.dm_exec_cached_plans P

       CROSS APPLY sys.dm_exec_sql_text (plan_handle)

WHERE cacheobjtype = 'Compiled Plan'

       AND [text] NOT LIKE '%dm_exec_cached_plans%';

GO

SET STATISTICS IO OFF;

GO

Again, we can see that the fi rst SELECT required 12 logical reads and the second required 312. The 
output of the usecount query, seen here, shows the parameterized query being used twice. Note 
that with sp_executesql, we do not have any entries for the adhoc (unparameterized) shell queries. 

 usecounts cacheobjtype objtype text

 2 Compiled Plan Prepared (@p nvarchar(10))SELECT * FROM 
BigOrders WHERE CustomerID = @p

The Prepare and Execute Method

This last mechanism is like sp_executesql in that parameters to the batch are identifi ed by the 
application, but there are some key differences. The prepare and execute method does not 
r equire the full text of the batch to be sent at each execution. Rather, the full text is sent once at 
prepare time; a handle that can be used to invoke the batch at execute time is returned. ODBC 
and OLE DB expose this functionality via SQLPrepare/SQLExecute and ICommandPrepare. You 
can also use this mechanism via ODBC and OLE DB when cursors are involved. When you use 
these functions, SQL Server is informed that this batch is meant to be used repeatedly. 

usecounts cacheobjtype objtype text

C09626249.indd   539 2/16/2009   1:38:30 PM



540 Microsoft SQL Server 2008 Internals

Caching Prepared Queries

 If your queries have been parameterized at the client using the prepare and  execute  method, 
the metadata shows you prepared queries, just as for queries that are  parameterized 
at the  server, either automatically or by using sp_executesql. However,  queries that are not 
 parameterized ( either under simple or forced parameterization) do not have any  corresponding 
adhoc shell queries in cache, containing the  unparameterized actual  values; they have only the 
 prepared plans. There is no guaranteed way to  detect whether a  prepared plan was prepared 
by SQL Server using simple or forced  parameterization or by the  developer through client-side 
 parameterization. If you see a corresponding shell query, you can know that the query was 
 parameterized by SQL Server, but the opposite is not  always true. Because the shell queries have 
zero cost, they are among the fi rst candidates to be removed when SQL Server is under memory 
pressure. So a lack of a shell query might just mean that adhoc plan was already removed from 
cache, not that there never was a shell query. 

Compiled Objects

 When looking at the metadata in sys.dm_exec_cached_plans, we’ve seen compiled plans with 
objtype values of Adhoc and Prepared. The third objtype value that we will be discussing is 
Proc, and you will see this type used when executing stored procedures, user-defi ned  scalar 
functions, and multistatement TVFs. With these objects, you have full control over what 
 values are parameters and what their data types are when executing these objects. 

Stored Procedures

 Stored procedures and user-defi ned scalar functions are treated almost identically. The  metadata 
indicates that a compiled plan with an objtype value of Proc is cached and can be  reused 
 repeatedly. By default, the cached plan is reused for all successive executions, and as we’ve seen 
with the sp_executesql, this is not always desirable. However, unlike the plans cached and reused 
with sp_executesql, you have an option with stored procedures and  user-defi ned scalar functions 
to force recompilation when the object is executed. In addition, for stored  procedures, you can 
create the object so that a new plan is created every single time it is executed. 

 To force recompilation for a single execution, you can use the EXECUTE . . . WITH RECOMPILE 
option. Here is an example in the Northwind2 database of forcing recompilation for a stored 
procedure: 

USE Northwind2;

GO

CREATE PROCEDURE P_Customers

  @cust nvarchar(10)

AS

  SELECT RowNum, CustomerID, OrderDate, ShipCountry

  FROM BigOrders

WHERE CustomerID = @cust;

GO

C09626249.indd   540 2/16/2009   1:38:30 PM



 Chapter 9 Plan Caching and Recompilation 541

DBCC FREEPROCCACHE;

GO

SET STATISTICS IO ON;

GO

EXEC P_Customers 'CENTC';

GO

EXEC P_Customers 'SAVEA';

GO

EXEC P_Customers 'SAVEA' WITH RECOMPILE;

If you look at the output from STATISTICS IO, you see that the second execution used a 
suboptimal plan that required more pages to be read than would be needed by a table 
scan. This is the situation that you may have seen referred to as parameter sniffi ng. SQL 
Server is basing the plan for the procedure on the fi rst actual parameter, in this case, 
CENTC, and then subsequent executions assume the same or a similar parameter is used. 
The third execution uses the WITH RECOMPILE option to force SQL Server to come up 
with a new plan, and you should see that the number of logical page reads is equal to the 
number of pages in the table. 

If you look at the results from running the usecounts query, shown here, you should see that 
the cached plan for the P_Customers procedure has a usecounts value of 2, instead of 3.  

 usecounts cacheobjtype objtype text

 2 Compiled Plan Proc CREATE PROCEDURE P_Customers 
@cust nvarchar(10) 
AS 
SELECT RowNum, CustomerID, OrderDate, 
ShipCountry 
FROM BigOrders WHERE CustomerID = @cust

The plan developed for a procedure executed with the WITH RECOMPILE option is  considered 
valid only for the current execution; it is never kept in cache for reuse. 

Functions

User-defi ned scalar functions can behave exactly the same way as procedures. If you execute 
them using the EXECUTE statement instead of as part of an expression, you can also force 
recompilation. Here is an example of a function that masks part of a Social Security number. 
We create it in the pubs sample database because the authors table contains a Social Security 
number in the au_id column: 

USE pubs;

GO

CREATE FUNCTION dbo.fnMaskSSN (@ssn char(11))

RETURNS char(11)

AS

BEGIN

  SELECT @SSN = 'xxx-xx-' + right (@ssn,4);

  RETURN @SSN;

END;

GO

usecounts cacheobjtype objtype text

C09626249.indd   541 2/16/2009   1:38:30 PM



542 Microsoft SQL Server 2008 Internals

DBCC FREEPROCCACHE;

GO

DECLARE @mask char(11);

EXEC @mask = dbo.fnMaskSSN '123-45-6789';

SELECT @mask;

GO

DECLARE @mask char(11);

EXEC @mask = dbo.fnMaskSSN '123-66-1111';

SELECT @mask;

GO

DECLARE @mask char(11);

EXEC @mask = dbo.fnMaskSSN '123-66-1111' WITH RECOMPILE;

SELECT @mask;

GO

 If you run the usecounts query, you should notice the cached plan for the function has an 
 objtype of Proc and has a usecounts value of 2. If a scalar function is used within an  expression, 
as in the example here, there is no way to request recompilation: 

SELECT dbo.fnMaskSSN(au_id), au_lname, au_fname, au_id  FROM authors; 

 TVFs may or may not be treated like procedures depending on how you defi ne them. You can 
defi ne a TVF as an inline function or as a multistatement function. Neither method allows you to 
force recompilation when the function is called. Here are two functions that do the same thing: 

USE Northwind2;

GO

CREATE FUNCTION Fnc_Inline_Customers (@cust nvarchar(10))

RETURNS TABLE

AS

 RETURN

 (SELECT RowNum, CustomerID, OrderDate, ShipCountry

 FROM BigOrders

 WHERE CustomerID = @cust);

GO

CREATE FUNCTION Fnc_Multi_Customers (@cust nvarchar(10))

RETURNS @T TABLE (RowNum int, CustomerID nchar(10), OrderDate datetime,

 ShipCountry nvarchar(30))

AS

BEGIN

 INSERT INTO @T

  SELECT RowNum, CustomerID, OrderDate, ShipCountry

  FROM BigOrders

  WHERE CustomerID = @cust

  RETURN

END;

GO

 Here are the calls to the functions: 

DBCC FREEPROCCACHE

GO

C09626249.indd   542 2/16/2009   1:38:31 PM



 Chapter 9 Plan Caching and Recompilation 543

SELECT * FROM Fnc_Multi_Customers('CENTC');

GO

SELECT * FROM Fnc_Inline_Customers('CENTC');

GO

SELECT * FROM Fnc_Multi_Customers('SAVEA');

GO

SELECT * FROM Fnc_Inline_Customers('SAVEA');

GO

 If you run the usecounts query, you see that only the multistatement function has its plan 
reused. The inline function is actually treated like a view, and the only way the plan can 
be reused would be if the exact same query were reexecuted; that is, if the same SELECT 
 statement called the function with the exact same parameter. 

Causes of Recompilation

 Up to this point, we’ve been discussing the situations in which SQL Server automatically 
reuses a plan, and the situation in which a plan may be reused inappropriately so that you 
need to force recompilation. However, there are also situations in which an existing plan is 
not reused because of changes to the underlying objects or the execution environment. The 
reasons for these unexpected recompilations fall into one of two different categories, which 
we call correctness-based recompiles and optimality-based recompiles. 

Correctness-Based Recompiles

 SQL Server may choose to recompile a plan if it has a reason to suspect that the existing plan 
may no longer be correct. This can happen when there are explicit changes to the underlying 
objects, such as changing a data type or dropping an index. Obviously, any existing plan that 
referenced the column assuming its former data type or that accessed data using the now 
nonexistent index would not be correct. Correctness-based recompiles fall into two general 
categories: schema changes and environmental changes. The following changes mark an 
 object’s schema as changed:  

■  Adding or dropping columns to or from a table or view 

■  Adding or dropping constraints, defaults, or rules to or from a table 

■  Adding an index to a table or an indexed view 

■  Dropping an index defi ned on a table or an indexed view if the index is used by the plan 

■  Dropping a statistic defi ned on a table that causes a correctness-related recompilation 
of any query plans that use that table 

■  Adding or dropping a trigger from a table 

 In addition, running the procedure sp_recompile on a table or view changes the  modifi cation 
date for the object, which you can observe in the modify_date column in sys.objects. This 
makes SQL Server determine that a schema change has occurred so that recompilation takes 

C09626249.indd   543 2/16/2009   1:38:31 PM



544 Microsoft SQL Server 2008 Internals

place at the next execution of any stored procedure, function, or trigger that accesses the 
table or view. Running sp_recompile on a procedure, trigger, or function clears all the plans 
for the executable object out of cache to guarantee that the next time it is executed, it will 
be recompiled. 

 Other correctness-based recompiles are invoked when the environment changes by 
 changing one of a list of SET options. Changes in certain SET options can cause a query to 
return  different results, so when one of these values changes, SQL Server wants to make sure 
a plan is used that was created in a similar environment. SQL Server keeps track of which 
SET  options are set when a plan is executed, and you have access to a bitmap of these SET 
 options using the DMF called sys.dm_exec_plan_attributes. This function is called by  passing 
in a plan handle value that you can obtain from the sys.dm_exec_cached_plans view and 
returns one row for each of a list of plan attributes. You need to make sure you include 
plan_handle in the list of columns to be retrieved, not just the few columns we used earlier in 
the usecounts query. Here’s an example of retrieving all the plan attributes when we supply 
a plan_handle value. Table 9-1 shows the results of running this code: 

SELECT * FROM sys.dm_exec_plan_attributes

(0x06001200CF0B831CB821AA05000000000000000000000000)

 Later in the chapter, when we explore cache management and caching internals, you learn 
about some of these values in which the meaning is not obvious and I also go into more 
 detail about the metadata that keeps track of your plans. To get the attributes to be returned 
in a row along with each plan_handle, you can use the PIVOT operator and list each of the 
attributes that you want to turn into a column. In this next query, we want to retrieve the 
set_options, the object_id, and the sql_handle from the list of attributes: 

SELECT plan_handle, pvt.set_options, pvt.object_id, pvt.sql_handle

FROM (SELECT plan_handle, epa.attribute, epa.value

      FROM sys.dm_exec_cached_plans

          OUTER APPLY sys.dm_exec_plan_attributes(plan_handle) AS epa

      WHERE cacheobjtype = 'Compiled Plan'

     ) AS ecpa

PIVOT (MAX(ecpa.value) FOR ecpa.attribute

   IN ("set_options", "object_id", "sql_handle")) AS pvt;

 We get a value of 4347 for set_options which is equivalent to the bit string 1000011111011. 
To see which bit refers to which SET options, we could change one option and then see how 
the bits have changed. For example, if we clear the plan cache and change ANSI_NULLS to 
OFF, the set_options value change to 4315, or binary 1000011011011. The difference is the 
sixth bit from the right, which has a value of 32, the difference between 4347 and 4315. If we 
didn’t clear the plan cache, we would end up with two plans for the same batch, one for each 
set_options value. 

C09626249.indd   544 2/16/2009   1:38:31 PM



 Chapter 9 Plan Caching and Recompilation 545

TABLE 9-1 Attributes Corresponding to a Particular plan_handle 

Attribute Value is_cache_key

set_options 4347 1

objectid 478350287 1

dbid 18 1

dbid_execute 0 1

user_id -2 1

language_id 0 1

date_format 1 1

date_fi rst 7 1

Compat_level 100 1

status 0 1

required_cursor_options 0 1

acceptable_cursor_options 0 1

merge_action_type 0 1

is_replication_specifi c 0 1

optional_spid 0 1

optional_clr_trigger_dbid 0 1

optional_clr_trigger_objid 0 1

inuse_exec_context 0 0

free_exec_context 1 0

hits_exec_context 0 0

misses_exec_context 0 0

removed_exec_context 0 0

inuse_cursors 0 0

free_cursors 0 0

hits_cursors 0 0

misses_cursors 0 0

removed_cursors 0 0

sql_handle 0x02000000CF0B831CBBE70632EC8A
8F7828AD6E6

0

Not all changes to SET options cause a recompile, although many of them do. The following 
is a list of the SET options that cause a recompile when changed: 

■ ANSI_NULL_DFLT_OFF 

■ ANSI_NULL_DFLT_ON 

■ ANSI_NULLS 

■ ANSI_PADDING 

Attribute Value is_cache_key

C09626249.indd   545 2/16/2009   1:38:31 PM



546 Microsoft SQL Server 2008 Internals

■  ANSI_WARNINGS 

■  ARITHABORT 

■  CONCAT_NULL_YIELDS_NULL 

■  DATEFIRST 

■  DATEFORMAT 

■  FORCEPLAN 

■  LANGUAGE 

■  NO_BROWSETABLE 

■  NUMERIC_ROUNDABORT 

■  QUOTED_IDENTIFIER 

 Two of the SET options in this list have a special behavior in relationship to objects, including 
stored procedures, functions, views, and triggers. The SET option settings for ANSI_NULLS 
and QUOTED_IDENTIFIER are actually saved along with the object defi nition and the 
 procedure or function always executes with the SET values as they were when the object was 
fi rst created. You can determine what values these two SET options had for your objects by 
selecting from the OBJECTPROPERTY function, as shown: 

 SELECT OBJECTPROPERTY(object_id('<object name>'), 'ExecIsQuotedIdentOn');  

SELECT OBJECTPROPERTY(object_id('<object name>'), 'ExecIsAnsiNullsOn');  

 A returned value of 0 means the SET option is OFF, a value of 1 means the option is ON, 
and a value of NULL means that you typed something incorrectly or that you don’t have 
 appropriate permissions. However, even though changing the value of either of these 
 options does not cause any difference in execution of the objects, SQL Server may still 
 recompile the statement that accesses the object. The only objects for which  recompilation 
is avoided is for cached plans with an objtype value of Proc, namely stored procedures 
and  multistatement TVFs. For these compiled objects, the usecounts query shows you the 
same plan being  reused and does not show additional plans with different set_options 
 values. Inline TVFs and views create new plans if these options are changed, and the 
set_ options value indicates a  different bitmap. However, the behavior of the underlying 
SELECT  statement does not change. 

Optimality-Based Recompiles

 SQL Server may also choose to recompile a plan if it has reason to suspect that the existing 
plan is no longer optimal. The primary reasons for suspecting a nonoptimal plan deal with 
changes to the underlying data. If any of the statistics used to generate the query plan have 
been updated since the plan was created, or if any of the statistics are considered stale, SQL 
Server recompiles the query plan. 

C09626249.indd   546 2/16/2009   1:38:31 PM



 Chapter 9 Plan Caching and Recompilation 547

Updated Statistics  Statistics can be updated either manually or automatically. Manual updates 
happen when  someone runs sp_updatestats or the UPDATE STATISTICS command. Automatic 
updates happen when SQL Server determines that existing statistics are out of date or stale, and 
these updates happen only when the database has the option AUTO_UPDATE_STATISTICS or 
AUTO_UPDATE_STATISTICS_ASYNC set to ON. This could happen if another batch had tried to use 
one of the same tables or indexes used in the current plan, detected the statistics were stale, and 
initiated an UPDATE STATISTICS operation. 

Stale Statistics  SQL Server detects out-of-date statistics when it is fi rst compiling a batch 
that has no plan in cache. It also detects stale statistics for existing plans. Figure 9-2 shows a 
fl owchart of the steps involved in fi nding an existing plan and checking to see if recompilation 

Success
Cache lookup

Failure

Query compilation
begins. Load all of the
“interesting” statistics.

Yes

No

Are any
stats stale?

Re
co

m
pi

la
tio

n

Refresh all of the
statistics that need
refreshing.

Generate the query plan.
Set recompilation thresholds (RTs)
of all of the tables referenced
in the query.

Test query plan for
correctness-related reasons
(schema checks). Query execution

has (technically)
begun.

Schema valid?
Yes

Do we have newer
stats available?

Any stats stale?

Begin query execution.

Yes

Yes

No

No

No

FIGURE 9-2 Checking an existing plan to see if recompilation is necessary

C09626249.indd   547 2/16/2009   1:38:31 PM



548 Microsoft SQL Server 2008 Internals

is required. You can see that SQL Server checks for stale statistics after checking to see if there 
already are updated statistics available. If there are stale statistics, the statistics are updated, 
and then a  recompile  begins on the batch. If AUTO_UPDATE_STATISTICS_ASYNC is ON for the 
database, SQL Server does not wait for the update of statistics to complete; it just recompiles 
based on the stale statistics. 

 Statistics are considered to be stale if a suffi cient number of modifi cations have occurred on the 
column supporting the statistics. Each table has a recompilation threshold (RT) that  determines 
how many changes can take place before any statistics on that table are marked as stale. The RT 
values for all the tables referenced in a batch are stored with the query plans of that batch. 

 The RT values depend on the type of table, that is, whether it is permanent or temporary, 
and on the current number of rows in the table at the time a plan is compiled. The exact 
algorithms for determining the RT values are subject to change with each service pack, so 
I show you the algorithm for the RTM release of SQL Server 2008. The formulas used in the 
various service packs will be similar to this, but are not guaranteed to be exactly the same. 
N  indicates the cardinality of the table. 

■  For both permanent and temporary tables, if N is less or equal to 500, the RT value 
is 500. This means that for a relatively small table, you must make at least 500  changes 
to trigger recompilation. For larger tables, at least 500 changes must be made, 
plus 20 percent of the number of rows. 

■  For temporary tables, the algorithm is the same, with one exception. If the table is 
very small or empty (N is less than six prior to any data modifi cation operations), all we 
need are six changes to trigger a recompile. This means that a procedure that creates a 
 temporary table, which is empty when created, and then inserts six or more rows into 
that table, will have to be recompiled as soon as the temporary table is accessed. 

 You can get around this frequent recompilation of batches that create temporary 
tables by using the KEEP PLAN query hint. Use of this hint changes the recompilation 
 thresholds for temporary tables and makes them identical to those for permanent 
tables. So if changes to temporary tables are causing many recompilations, and you 
suspect that the recompilations are affecting overall system performance, you can use 
this hint and see if there is a performance improvement. The hint can be specifi ed as 
shown in this query: 

SELECT <column list>

FROM dbo.PermTable A INNER JOIN #TempTable B ON A.col1 = B.col2

WHERE <filter conditions>

OPTION (KEEP PLAN)

■  For table variables, there is no RT value. This means that you will not get recompilations 
caused by changes in the number of rows in a table variable.  

Modifi cation Counters  The RT values discussed here are the number of changes required 
for SQL Server to recognize that statistics are stale. In versions of SQL Server prior to SQL 

C09626249.indd   548 2/16/2009   1:38:31 PM



 Chapter 9 Plan Caching and Recompilation 549

Server 2005, the sysindexes system table keeps track of the number of changes that had 
actually occurred in a table in a column called rowmodctr. These counters keep track of 
any changes in any row of the table or index, even if the change was to a column that was 
not involved in any index or useful statistics. SQL Server 2008 now uses a set of Column 
Modifi cation Counters or colmodctr values, with a separate count being maintained for 
each column in a table, except for computed nonpersisted columns. These counters are not 
 transactional, which means that if a transaction starts, inserts thousands of rows into a table, 
and then is rolled back, the changes to the modifi cation counters are not rolled back. Unlike 
the rowmodctr values in sysindexes, the colmodctr values are not visible to the user. They are 
only available internally to the Query Optimizer. 

Tracking Changes to Tables and Indexed Views Using colmodctr Values  The colmodctr 
 values that SQL Server keeps track of are continually modifi ed as the table data changes. 
Table 9-2 describes when and how the colmodctr values are modifi ed based on changes 
to your data, including INSERT, UPDATE, DELETE, BULK INSERT, and TRUNCATE TABLE 
 operations. Although we are only mentioning table modifi cations specifi cally, keep in mind 
the same colmodctr values are kept track of for indexed views.  

TABLE 9-2 Factors Affecting Changes to the Internal colmodctr Values 

 Statement Changes to colmodctr Values

 INSERT All colmodctr values increased by 1 for each row inserted.

 DELETE All colmodctr values increased by 1 for each row deleted.

 UPDATE If the update is to nonkey columns: colmodctr values for modifi ed columns 
are increased by 1 for each row updated. If the update is to key columns: colmodctr 
values are increased by 2 for all the columns in the table, for each row updated.

 BULK INSERT Treated like N INSERT operations. All colmodctr values increased by N where N is 
the number of rows bulk inserted.

 TRUNCATE 
TABLE

Treated like N DELETE operations. All colmodctr values increased by N where N is 
the table’s cardinality.

Skipping the Recompilation Step

There are several situations in which SQL Server bypasses recompiling a statement for plan 
optimality reasons. These include the following: 

■ When the plan is a trivial plan. A trivial plan is one for which there are no alternative 
plans, based on the tables referenced by the query, and the indexes (or lack of indexes) 
on those tables. In these cases, where there really is only one way to process a query, 
any  recompilation would be a waste of resources, no matter how much the statistics 
had changed. Keep in mind that there is no assurance that a query will continue to 
have a trivial plan just because it originally had a trivial plan. If new indexes have been 
added since the query was last compiled, there may now be multiple possible ways to 
process the query. 

Statement Changes to colmodctr Valuesr

C09626249.indd   549 2/16/2009   1:38:31 PM



550 Microsoft SQL Server 2008 Internals

■  If the query contains the OPTION hint KEEPFIXED PLAN, SQL Server will not recompile 
the plan for any optimality-related reasons. 

■  If automatic updates of statistics for indexes and statistics defi ned on a table or indexed 
view are disabled, all plan optimality-related recompilations caused by those indexes or 
statistics will stop. 

 Caution Turning off the auto-statistics feature is usually not a good idea because the 
Query Optimizer would no longer be sensitive to data changes in those objects, and 
 suboptimal query plans could easily result. You can consider using this technique only as 
a last resort after exhausting all of the other alternative ways to avoid recompilation. Make 
sure you thoroughly test your applications after changing the auto-statistics options to 
verify that you are not hurting performance in other areas. 

■  If all the tables referenced in the query are read-only, SQL Server will not recompile 
the plan. 

Multiple Recompilations

 In the previous discussion of unplanned recompilation, we primarily described situations in 
which a cached plan would be recompiled prior to execution. However, even if SQL Server 
 calculates that it can reuse an existing plan, there may be cases where stale statistics or  schema 
changes are discovered after the batch begins execution, and then a recompile  occurs after 
execution starts. Each batch or stored procedure can contain multiple query plans, one for each 
optimizable statement. Before SQL Server begins executing any of the individual query plans, it 
checks for correctness and optimality of that plan. If one of the checks fails, the corresponding 
statement is compiled again, and a possibly different query plan is produced. 

 In some cases, query plans may be recompiled even if the plan for the batch was not cached. 
For example, if a batch contains a literal larger than 8 KB, it is never cached. However, if this 
batch creates a temporary table, and then inserts multiple rows into that table, the insertion 
of the seventh row causes a recompilation because of passing the recompilation threshold 
for temporary tables. Because of the large literal, the batch was not cached, but the currently 
executing plan needs to be recompiled. 

 In SQL Server 2000, when a batch was recompiled, all the statements in the batch were 
recompiled, not just the one that initiated the recompilation. SQL Server 2005 introduced 
statement-level recompilation, which means that only the statement that causes the 
 recompilation has a new plan created, not the entire batch. This means that SQL Server 
spends less CPU time and memory during recompilations. 

Removing Plans from Cache

 In addition to needing to recompile a plan based on schema or statistics changes, SQL Server 
needs to compile plans for batches if all previous plans have been removed from the plan 
cache. Plans are removed from cache based on memory pressure, which we talk about in the 

C09626249.indd   550 2/16/2009   1:38:31 PM



 Chapter 9 Plan Caching and Recompilation 551

section entitled “Cache Size Management,” later in this chapter. However, other  operations 
can cause plans to be removed from cache. Some of these operations remove all the plans 
from a particular database, and others remove all the plans for the entire SQL Server instance. 

 The following operations fl ush the entire plan cache so that all batches submitted afterwards 
will need a fresh plan. Note that although some of these operations affect only a single 
 database, the entire plan cache is cleared. 

■  Upgrading any database to SQL Server 2008  

■  Running the DBCC FREEPROCCACHE or DBCC FREESYSTEMCACHE commands 

■  Changing any of the following confi guration options: 

❏  cross db ownership chaining 

❏  index create memory 

❏  cost threshold for parallelism 

❏  max degree of parallelism 

❏  max text repl size 

❏  min memory per query 

❏  min server memory 

❏  max server memory 

❏  query governor cost limit 

❏  query wait 

❏  remote query timeout 

❏  user options 

 The following operations clear all plans associated with a particular database: 

■  Running the DBCC FLUSHPROCINDB command 

■  Detaching a database 

■  Closing or opening an auto-close database 

■  Modifying a collation for a database using the ALTER DATABASE . . . COLLATE command 

■  Altering a database with any of the following commands: 

❏  ALTER DATABASE . . . MODIFY_NAME  

❏  ALTER DATABASE . . . MODIFY FILEGROUP  

❏  ALTER DATABASE . . . SET ONLINE  

❏  ALTER DATABASE . . . SET OFFLINE  

❏  ALTER DATABASE . . . SET EMERGENCY  

C09626249.indd   551 2/16/2009   1:38:32 PM



552 Microsoft SQL Server 2008 Internals

❏  ALTER DATABASE . . . SET READ_ONLY  

❏  ALTER DATABASE . . . SET READ_WRITE  

❏  ALTER DATABASE . . . COLLATE  

■  Dropping a database 

 Clearing a single plan from cache can be done in a couple of different ways. First, you can 
create a plan guide that exactly matches the SQL text for the cached plan, and then all 
plans with that text will be removed automatically. SQL Server 2008 provides an easy way of 
 creating a plan guide from plan cache. We look at plan guides in detail later in the chapter. 
The  second method of removing a single plan from cache is new in SQL Server 2008 and 
uses new  options for DBCC FREEPROCCACHE. The syntax is illustrated in the following code: 

DBCC FREEPROCCACHE [ ( { plan_handle | sql_handle | pool_name } ) ] [ WITH NO_INFOMSGS ]

 This command now allows you to specify one of three parameters to indicate which plan or 
plans you want to remove from cache: 

■  plan_handle By specifying a plan_handle, you can remove the plan with that handle 
from cache. (The plan_handle is guaranteed to be unique for all currently existing 
plans.) 

■  sql_handle By specifying a sql_handle, you can remove the plans with that handle 
from cache. You can have multiple plans for the same SQL text if any of the cache key 
values are changed, such as SET options. The following code illustrates this: 

USE Northwind2;

GO

DBCC FREEPROCCACHE;

GO

SET ANSI_NULLS ON

GO

SELECT * FROM orders WHERE customerid = 'HANAR';

GO

SELECT * FROM Orders WHERE CustomerID = 'CENTC';

GO

SET ANSI_NULLS OFF

GO

SELECT * FROM orders WHERE customerid = 'HANAR';

GO

SET ANSI_NULLS ON

GO

-- Now examine the sys.dm_exec_query_stats view and notice two different rows for the 

-- query searching for 'HANAR' 

SELECT execution_count, text, sql_handle, query_plan  

FROM sys.dm_exec_query_stats 

   CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS TXT

       CROSS APPLY sys.dm_exec_query_plan(plan_handle)AS PLN;

GO

C09626249.indd   552 2/16/2009   1:38:33 PM



 Chapter 9 Plan Caching and Recompilation 553

-- The two rows containing 'HANAR'should have the same value for sql_handle;

-- Copy that sql_handle value and paste into the command below:

DBCC FREEPROCCACHE(0x02000000CECDF507D9D4D70720F581172A42506136AA80BA);

GO

-- If you examine sys.dm_exec_query_stats again, you see the rows for this query

-- have been removed

SELECT execution_count, text, sql_handle, query_plan  

FROM sys.dm_exec_query_stats 

   CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS TXT

       CROSS APPLY sys.dm_exec_query_plan(plan_handle)AS PLN;

GO

■  pool_name By specifying the name of a Resource Governor pool, you can clear all 
the plans in cache that are associated with queries that were assigned to workload 
group using the specifi ed resource pool. (The Resource Governor, workload groups, 
and resource pools were discussed in Chapter 1, “SQL Server 2008 Architecture and 
Confi guration.”) 

Plan Cache Internals

 Knowing when and how plans are reused or recompiled can help you design high-performing 
applications. The more you understand about optimal query plans, and how different actual 
 values and cardinalities require different plans, the more you can determine when  recompilation 
is a useful thing. When you are getting unnecessary recompiles, or when SQL Server is not 
 recompiling when you think it should, your troubleshooting efforts will be easier the more 
you know about how plans are managed internally. In this section, we explore the internal 
 organization of the plan cache, the metadata available, how SQL Server fi nds a plan in cache, 
plan cache sizing, and the plan eviction policy. 

Cache Stores

 The plan cache in SQL Server is made up of four separate memory areas, called cache 
stores. There are actually other stores in its memory, which can be seen in the DMV called 
sys.dm_os_memory_cache_counters, but only four that contain query plans. The names in 
 parentheses below are the values that can be seen in the type column of 
sys.dm_os_memory_cache_counters:  

■  Object Plans (CACHESTORE_OBJCP) Object Plans include plans for stored procedures, 
functions, and triggers .

■  SQL Plans (CACHESTORE_SQLCP) SQL Plans include the plans for adhoc cached 
plans, autoparameterized plans, and prepared plans. The memory clerk that manages 
the SQLCP cache store is also used for the SQL Manager, which manages all the T-SQL 
text used in your adhoc queries.  

C09626249.indd   553 2/16/2009   1:38:33 PM



554 Microsoft SQL Server 2008 Internals

■  Bound Trees (CACHESTORE_PHDR) Bound Trees are the structures produced by the 
algebrizer in SQL Server for views, constraints, and defaults. 

■  Extended Stored Procedures (CACHESTORE_XPROC) Extended Procs (Xprocs) are 
 predefi ned system procedures, like sp_executesql and sp_tracecreate, that are defi ned  using 
a dynamic link library (DLL), not using T-SQL statements. The cached  structure  contains 
only the function name and the DLL name in which the procedure is implemented. 

 Each plan cache store contains a hash table to keep track of all the plans in that  particular 
store. Each bucket in the hash table contains zero, one, or more cached plans. When 
 determining which bucket to use, SQL Server uses a very straightforward hash algorithm. 
The hash key is computed as (object_id * database_id) mod (hash table size). For plans that 
are associated with adhoc or prepared plans, the object_id is an internal hash of the batch 
text. The DMV sys.dm_os_memory_cache_hash_tables contains information about each hash 
table, including its size. You can query this view to retrieve the number of buckets for each of 
the plan cache stores using the following query: 

SELECT type as 'plan cache store', buckets_count

FROM sys.dm_os_memory_cache_hash_tables

WHERE type IN ('CACHESTORE_OBJCP', 'CACHESTORE_SQLCP',

   'CACHESTORE_PHDR', 'CACHESTORE_XPROC');

 You should notice that the Bound Trees store has about 10 percent of the number of hash 
buckets of the stores for Object Plans and SQL Plans. (On a 64-bit system, the number of 
buckets for the Object Plan and SQL Plan stores is about 40,000 and on a 32-bit system, the 
number is about 10,000.) The number of buckets for the Extended Stored Procedures store 
is always set to 127 entries. We will not be discussing Bound Trees and Extended Stored 
Procedures further. The rest of the chapter dealing with caching of plans is concerned only 
with Object Plans and SQL Plans. 

 To fi nd the size of the stores themselves, you can use the view sys.dm_os_memory_objects. 
The following query returns the size of all the cache stores holding plans, plus the size of the 
SQL Manager, which stores the T-SQL text of all the adhoc and prepared queries:  

SELECT type AS Store, SUM(pages_allocated_count) AS Pages_used 

FROM sys.dm_os_memory_objects

WHERE type IN ('MEMOBJ_CACHESTOREOBJCP', 'MEMOBJ_CACHESTORESQLCP',

  'MEMOBJ_CACHESTOREXPROC', 'MEMOBJ_SQLMGR')

GROUP BY type

 Finding a plan in cache is a two-step process. The hash key described previously leads 
SQL Server to the bucket in which a plan might be found, but if there are multiple entries in 
the bucket, SQL Server needs more information to determine if the exact plan it is  looking 
for can be found. For this second step, it needs a cache key, which is a combination of 
several attributes of the plan. Earlier, we looked at the DMF sys.dm_exec_plan_attributes, 
to which we could pass a plan_handle. The results obtained were a list of attributes for a 
particular plan, and a Boolean value indicating whether that particular value was part of 
the cache key. Table 9-1 included 17 attributes that comprise the cache key, and SQL Server 

C09626249.indd   554 2/16/2009   1:38:33 PM



 Chapter 9 Plan Caching and Recompilation 555

needs to make sure all 17 values match before determining that it has found a matching 
plan in cache. In  addition to the 17 values found in sys.dm_exec_plan_attributes, the column 
sys.dm_exec_cached_plans.pool_id is also part of the cache key for any plan. 

Compiled Plans

 There are two main types of plans in the Object and SQL plan cache stores: compiled plans 
and execution plans. Compiled plans are the type of object we have been looking at up to 
this point when examining the sys.dm_exec_cached_plans view. We have already discussed 
the three main objtype values that can correspond to a compiled plan: Adhoc, Prepared, and 
Proc. Compiled plans can be stored in either the Object Store or the SQL Store depending on 
which of those three objtype values they have. The compiled plans are considered valuable 
memory objects, since they can be costly to re-create. SQL Server attempts to keep them in 
cache. When SQL Server experiences heavy memory pressure, the policies used to remove 
cache objects ensure that our compiled plans are not the fi rst objects to be removed. 

 A compiled plan is generated for an entire batch, not just for a single statement. For a 
 multistatement batch, you can think of the compiled plan as an array of plans, with each 
 element of the array containing a query plan for an individual statement. Compiled plans 
can be shared between multiple sessions or users. However, you should be aware that not 
every user executing the same plan will get the same results, even if there is no change to 
the  underlying data. Unless the compiled plan is an adhoc plan, each user has his or her own 
parameters and local variables, and the batch may build temporary tables or  worktables 
 specifi c to that user. The information specifi c to one particular execution of a compiled plan 
is stored in another structure called the executable plan. 

Execution Contexts

 Executable plans, or execution contexts, are considered to be dependent on compiled plans 
and do not show up in the sys.dm_exec_cached_plans view. Executable plans are run-time 
 objects created when a compiled plan is executed. Just as for compiled plans,  executable 
plans can be Object Plans, stored in the Object Store, or SQL Plans, stored in the SQL Store. 
Each executable plan exists in the same cache store as the compiled plan on which it 
 depends. Executable plans contain the particular run-time information for one execution of 
a compiled plan, and include the actual run-time parameters, any local variable information, 
object IDs for objects created at run time, the user ID, and information about the currently 
executing statement in the batch. 

 When SQL Server starts executing a compiled plan, it generates an executable plan from that 
compiled plan. Each individual statement in a compiled plan gets its own executable plan, 
which you can think of as a run-time query plan. Unlike compiled plans, executable plans are 
for a single session. For example, if 100 users are executing the same batch  simultaneously, 
there will be 100 executable plans for the same compiled plan. Executable plans can be 

C09626249.indd   555 2/16/2009   1:38:33 PM



556 Microsoft SQL Server 2008 Internals

 regenerated from their associated compiled plan, and they are relatively inexpensive to 
 create. Later in this section, we look at the sys.dm_exec_cached_plan_dependent_objects view, 
which contains information about your executable plans. Note that Compiled Plan Stubs, 
generated when the Optimize for Ad Hoc Workloads confi guration option is set to 1, do not 
have associated execution contexts. 

Plan Cache Metadata

 We have already looked at some of the information in the sys.dm_exec_cached_plans DMV 
when we looked at usecount information to determine whether or not our plans were  being 
reused. In this section, we look at some of the other metadata objects and discuss the 
 meaning of some of the data contained in the metadata. 

Handles

 The sys.dm_exec_cached_plans view contains a value called a plan_handle for every  compiled 
plan. The plan_handle is a hash value that SQL Server derives from the compiled plan of the 
entire batch, and it is guaranteed to be unique for every currently existing compiled plan. 
(The plan_handle values can be reused over time.) The plan_handle can be used as an  identifi er 
for a compiled plan. The plan_handle remains the same even if individual statements in the 
batch are recompiled because of the correctness or optimality reasons discussed earlier. 

 As mentioned, the compiled plans are stored in the two cache stores, depending on whether 
the plan is an Object Plan or a SQL Plan. The actual SQL Text of the batch or object is stored in 
another cache called the SQL Manager Cache (SQLMGR). The T-SQL Text associated with each 
batch is stored in its entirety, including all the comments. The T-SQL Text cached in the SQLMGR 
cache can be retrieved using a data value called the sql_handle. The sql_handle  contains a hash 
of the entire batch text, and because it is unique for every batch, the sql_handle can serve as an 
identifi er for the batch text in the SQLMGR cache. 

 Any specifi c T-SQL batch always has the same sql_handle, but it may not always have the 
same plan_handle. If any of the values in the cache key change, we get a new plan_handle in 
plan cache. Refer back to Table 9-1 to see which plan attributes make up the cache keys. The 
relationship between sql_handle and plan_handle, therefore, is 1:N. 

 We’ve seen that plan_handle values can be obtained easily from the sys.dm_exec_cached_ plans 
view. We can get the sql_handle value that corresponds to a particular plan_handle from the 
sys.dm_exec_plan_attributes function that we looked at earlier. Here is the same query we 
 discussed earlier to return attribute information and pivot it so that three of the attributes are 
returned in the same row as the plan_handle value: 

SELECT plan_handle, pvt.set_options, pvt.object_id, pvt.sql_handle

FROM (SELECT plan_handle, epa.attribute, epa.value

     FROM sys.dm_exec_cached_plans

        OUTER APPLY sys.dm_exec_plan_attributes(plan_handle) AS epa

C09626249.indd   556 2/16/2009   1:38:33 PM



 Chapter 9 Plan Caching and Recompilation 557

    WHERE cacheobjtype = 'Compiled Plan'

    ) AS ecpa

PIVOT (MAX(ecpa.value) FOR ecpa.attribute

   IN ("set_options", "object_id", "sql_handle")) AS pvt;

 The sys.dm_exec_query_stats view contains both plan_handle and sql_handle values, as well 
as information about how often each plan was executed and how much work was involved 
in the execution. The value for sql_handle is very cryptic, and it’s sometimes diffi cult to 
 determine which of our queries each sql_handle corresponds to. To get that information, we 
can use another function. 

sys.dm_exec_sql_text

 The function sys.dm_exec_sql_text can take either a sql_handle or a plan_handle as a  parameter, 
and it returns the SQL Text that corresponds to the handle. Any sensitive  information that 
might be contained in the SQL Text, like passwords, are blocked when the SQL is returned. The 
text column in the functions output contains the entire SQL batch text for adhoc, prepared, 
and autoparameterized queries, and for objects like triggers,  procedures, and functions, it gives 
the full object defi nition. 

 Viewing the SQL Text from sys.dm_exec_sql_text is useful in quickly identifying identical batches 
that may have different compiled plans because of several factors, like SET option  differences. 
As an example, consider the following code, which executes two identical batches. This  example 
is similar to the one we saw previously when I discussed using DBCC FREEPROCCACHE with 
a sql_handle, but this time, we see the sql_handle and plan_handle values. The only  difference 
 between the two consecutive executions is that the value of the SET option QUOTED _IDENTIFIER 
has changed. It is OFF in the fi rst execution and ON in the second. After executing both batches, 
we examine the sys.dm_exec_query_stats view: 

USE Northwind2;

DBCC FREEPROCCACHE;

SET QUOTED_IDENTIFIER OFF;

GO

-- this is an example of the relationship between

-- sql_handle and plan_handle

SELECT LastName, FirstName, Country

FROM Employees

WHERE Country <> 'USA';

GO

SET QUOTED_IDENTIFIER ON;

GO

-- this is an example of the relationship between

-- sql_handle and plan_handle

SELECT LastName, FirstName, Country

FROM Employees

WHERE Country <> 'USA';

GO

SELECT st.text, qs. sql_handle, qs.plan_handle

FROM sys.dm_exec_query_stats qs

   CROSS APPLY sys.dm_exec_sql_text(sql_handle) st;

GO

C09626249.indd   557 2/16/2009   1:38:33 PM



558 Microsoft SQL Server 2008 Internals

 You should see two rows with the same text string and sql_handle, but with different plan_handle 
values, as shown here. (In our output, the difference between the two plan_handle values is only 
a single digit so it may be hard to see, but in other cases, the difference may be more obvious.)  

 text sql_handle plan_handle

 -- this is an example of the 
-- relationship between 
-- sql_handle and plan_handle 
SELECT LastName, FirstName, 
Country FROM Employees 
WHERE Country <> ‘USA’

0x0200000012330
B0EEA82077439354E7A
5B12E1B7E37A1361

0x0600120012330B0EB82
187050000000000000000
00000000

 -- this is an example of the 
-- relationship between 
-- sql_handle and plan_handle 
SELECT LastName, FirstName, 
Country FROM Employees 
WHERE Country <> ‘USA’

0x0200000012330
B0EEA82077439354E7A
5B12E1B7E37A1361

0x0600120012330B0EB82
186050000000000000000
00000000

 We can see that we have two plans corresponding to the same batch text, and this example 
should make clear the importance of making sure that all the SET options that affect plan 
caching should be the same when the same queries are executed repeatedly. You should 
 verify whatever changes your programming interface makes to your SET options to make 
sure you don’t end up with different plans unintentionally. Not all interfaces use the same 
 defaults for the SET option values. For example, the OSQL interface uses the ODBC driver, 
which sets QUOTED_IDENTIFIER to OFF for every connection, whereas Management Studio 
uses ADO.NET, which sets QUOTED_IDENTIFIER to ON. Executing the same batches from 
these two different clients results in multiple plans in cache. 

sys.dm_exec_query_plan

 The function sys.dm_exec_query_plan is a table-valued function that takes a plan_handle as a 
parameter and returns the associated query plan in XML format. If the plan is for an object, 
the TVF includes the database ID, object ID, procedure number, and encryption state of the 
object. If the plan is for an adhoc or prepared query, these additional values are NULL. If the 
plan_handle corresponds to a Compiled Plan Stub, the query plan will also be NULL. I have 
used this function in some of the preceding examples. 

sys.dm_exec_text_query_plan

 The function sys.dm_exec_text_query_plan is a table-valued function that takes a plan_handle as 
a parameter and returns the same basic information as sys.dm_exec_query_plan. The  differences 
between the two functions are as follows: 

■  sys.dm_exec_text_query_plan can take optional input parameters to specify the start and 
end offset of statements with a batch.  

■  The output of sys.dm_exec_text_query_plan returns the plan as text data, instead of XML data. 

text sql_handle plan_handle

C09626249.indd   558 2/16/2009   1:38:33 PM



 Chapter 9 Plan Caching and Recompilation 559

■  The XML output for the query plan returned by sys.dm_exec_query_plan is  limited 
to 128 levels of nested elements. If the plan exceeds that, a NULL is returned. 
The text  output for the query plan returned by sys.dm_exec_text_query_plan is not 
limited in size.  

sys.dm_exec_cached_plans

 The sys.dm_exec_cached_plans view is the one we use most often for troubleshooting query plan 
recompilation issues. It’s the one I used in the fi rst section to illustrate the plan reuse behavior 
of adhoc plans compared to autoparameterized and prepared plans. This view has one row per 
cached plan, and in addition to the plan_handle and usecounts, which we’ve looked at already, 
this DMV has other useful information about the cached plans, including the following: 

■  size_in_byte The number of bytes consumed by this cache object 

■  cacheobjtype The type of the cache object; that is, if it’s a Compiled Plan, or a Parse 
Tree or an Extended Proc 

■  memory_object_address The memory address of the cache object, which can be used 
to get the memory breakdown of the cache object 

 Although this DMV does not have the SQL Text associated with each compiled plan, we’ve 
seen that we can fi nd it by passing the plan_handle to the sys.dm_exec_sql_text function. We 
can use the query below to retrieve the text, usecounts, and size_in_bytes of the compiled plan 
and cacheobjtype for all the plans in cache. The results are returned in order of frequency, 
with the batch having the most use showing up fi rst: 

SELECT st.text, cp.plan_handle, cp.usecounts, cp.size_in_bytes,

    cp.cacheobjtype, cp.objtype

FROM sys.dm_exec_cached_plans cp

    CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st

ORDER BY cp.usecounts DESC;

sys.dm_exec_cached_plan_dependent_objects

 The sys.dm_exec_cached_plan_dependent_objects function returns one row for every depen-
dent object of a compiled plan when you pass a valid plan_handle in as a parameter. If the 
plan_handle is not that of a compiled plan, the function returns NULL. Dependent objects 
include executable plans, as discussed previously, as well as plans for cursors used by the 
compiled plan. The example shown here uses sys.dm_exec_cached_plan_dependent_objects, 
as well as sys.dm_exec_cached_plans, to retrieve the dependent objects for all compiled 
plans, the plan_handle, and their usecounts. It also calls the sys.dm_exec_sql_text function to 
return the associated T-SQL batch: 

SELECT text, plan_handle, d.usecounts, d.cacheobjtype

FROM sys.dm_exec_cached_plans

CROSS APPLY sys.dm_exec_sql_text(plan_handle)

CROSS APPLY

   sys.dm_exec_cached_plan_dependent_objects(plan_handle) d;

C09626249.indd   559 2/16/2009   1:38:33 PM



560 Microsoft SQL Server 2008 Internals

sys.dm_exec_requests

 The sys.dm_exec_requests view returns one row for every currently executing request within 
your SQL Server instance and is useful for many purposes in addition to tracking down plan 
cache information. This DMV contains the sql_handle and the plan_handle for the  current 
statement, as well as resource usage information for each request. For troubleshooting 
 purposes, you can use this view to help identify long-running queries. Keep in mind that the 
sql_handle points to the T-SQL for the entire batch. However, the sys.dm_exec_requests view 
contains the statement_start_offset and statement_end_offset columns, which indicate the 
position within the entire batch where the currently executing statement can be found. The 
offsets start at 0, and an offset of –1 indicates the end of the batch. The statement offsets 
can be used in combination with the sql_handle passed to sys.dm_exec_sql_text to extract 
the query text from the entire batch text, as demonstrated in the following code. This query 
 returns the 10 longest-running queries currently executing: 

SELECT TOP 10 SUBSTRING(text, (statement_start_offset/2) + 1,

   ((CASE statement_end_offset

        WHEN -1

           THEN DATALENGTH(text)

        ELSE statement_end_offset

   END - statement_start_offset)/2) + 1) AS query_text, *

FROM sys.dm_exec_requests

   CROSS APPLY sys.dm_exec_sql_text(sql_handle)

ORDER BY total_elapsed_time DESC;

 Note that including the ‘*’ in the SELECT list indicates that this query should return all of 
the  columns from the sys.dm_exec_requests view. You should replace the ‘*’ with the  columns 
that you are particularly interested in, such as start_time, blocking_session_id, and so on. 

sys.dm_exec_query_stats

 Just as the text returned from the sql_handle is the text for the entire batch, the compiled 
plans that are returned are for the entire batch. For optimum troubleshooting, we can use 
sys.dm_exec_query_stats to return performance information for individual queries within a 
batch. This view returns performance statistics for queries, aggregated across all executions 
of the same query. This view also returns both a sql_handle and a plan_handle, as well as the 
start and end offsets like we saw in sys.dm_exec_requests. The following query returns the 
top 10 queries by total CPU time, to help you identify the most expensive queries on your 
SQL Server instance: 

SELECT TOP 10 SUBSTRING(text, (statement_start_offset/2) + 1,

   ((CASE statement_end_offset

        WHEN -1

           THEN DATALENGTH(text)

        ELSE statement_end_offset

   END - statement_start_offset)/2) + 1) AS query_text, *

C09626249.indd   560 2/16/2009   1:38:33 PM



 Chapter 9 Plan Caching and Recompilation 561

FROM sys.dm_exec_query_stats

   CROSS APPLY sys.dm_exec_sql_text(sql_handle)

   CROSS APPLY sys.dm_exec_query_plan(plan_handle)

ORDER BY total_elapsed_time/execution_count DESC;

 This view has one row per query statement within a batch, and when a plan is removed from 
cache, the corresponding rows and the accumulated statistics for that statement are removed 
from this view. In addition to the plan_handle, sql_handle, and performance information, 
this view contains two new columns in SQL Server 2008, which can help you identify similar 
 queries with different plans.  

■  query_hash This value is a hash of the query text and can be used to identify similar 
queries with the plan cache. Queries that differ only in the values of constants have the 
same query_hash value. 

■  query_plan_hash This value is a hash of the query execution plan and can be used 
to identify similar plans based on logical and physical operators and a subset of the 
operator attributes. To look for cases where you might not want to implement forced 
parameterization, you can search for queries that have similar query_hash values but 
different query_plan_hash values.  

 There are two main differences between sys.dm_exec_cached_plans and sys.dm_exec_query_stats. 
First, sys.dm_exec_cached_plans has one row for each batch that has been compiled and cached, 
whereas sys.dm_exec_query_stats has one row for each statement. Second, sys.dm_exec_query_stats 
contains summary information aggregating all the executions of a particular statement. The 
sys.dm_exec_query_stats returns a tremendous amount of performance information for each 
query, including the number of times it was executed, and the cumulative I/O, CPU, and  duration 
 information. Keep in mind that this view is updated only when a query is completed, so you might 
need to retrieve information multiple times if there is currently a large workload on your server. 

Cache Size Management

 We’ve already talked about plan reuse and how SQL Server fi nds a plan in cache. In this 
 section, we look at how SQL Server manages the size of plan cache and how it determines 
which plans to remove if there is no room left in cache. Earlier, I discussed a few situations in 
which plans would be removed from cache. These situations included global operations like 
running DBCC FREEPROCCACHE to clear all plans from cache, as well as changes to a single 
procedure, such as ALTER PROCEDURE, which would drop all plans for that procedure from 
cache. In most other situations, plans are removed from cache only when memory pressure 
is detected. The algorithm that SQL Server uses to determine when and how plans should be 
removed from cache is called the eviction policy. Each cache store can have its own  eviction 
policy, but we are discussing only the policies for the Object Plan store and the SQL Plan store. 

 Determining which plans to evict is based on the cost of the plan, which is discussed in the 
next section. When eviction starts is based on memory pressure. When SQL Server detects 

C09626249.indd   561 2/16/2009   1:38:33 PM



562 Microsoft SQL Server 2008 Internals

memory pressure, zero-cost plans are removed from cache and the cost of all other plans is 
reduced by half. As discussed in Chapter 1, there are two types of memory pressure, and both 
types lead to removal of plans from cache. These two types of memory pressure are referred 
to as local and global memory pressure. 

 When discussing memory pressure, we refer to the term visible memory. Visible memory is the 
directly addressable physical memory available to the SQL Server buffer pool. On a  32-bit SQL 
Server instance, the maximum value for the visible memory is either 2 GB or 3 GB,  depending 
on whether you have the /3 GB fl ag set in your boot.ini fi le. Memory with  addresses greater 
than 2 GB or 3 GB is available only indirectly, through AWE-mapped-memory. On a 64-bit 
SQL Server instance, visible memory has no special meaning, as all the memory is directly 
 addressable. In any of the discussion that follows, if we refer to visible target memory greater 
than 3 GB, keep in mind that is only possible on a 64-bit SQL Server instance. The term target 
memory refers to the maximum amount of memory that can be committed to the SQL Server 
process. Target memory refers to the physical memory committed to the  buffer pool and is the 
lesser of the value you have confi gured for max server memory and the total amount of physical 
 memory available to the operating system. So visible target memory is the visible portion of the 
target memory. Query plans can be stored only in the non-AWE-mapped memory, which is why 
the concept of visible memory is important. You can see a value for  visible memory, specifi ed 
as the number of 8-KB buffers, in the bpool_visible  column in the sys.dm_os_sys_info DMV. This 
view also contains values for bpool_committed and bpool_commit_target. 

 SQL Server defi nes a cache store pressure limit value, which varies depending on the version 
you’re running and the amount of visible target memory. We explain shortly how this value is 
used. The formula for determining the plan cache pressure limit changed in SQL Server 2005 
SP2. Table 9-3 shows how to determine the plan cache pressure limit in SQL Server 2000 and 
2005, and indicates the change in SP2, which reduced the pressure limit with higher amounts 
of memory. SQL Server 2008 RTM uses the same formulas that were added in SQL Server 2005 
SP2. Be aware that these formulas may be subject to change again in future service packs. 

 TABLE 9-3 Determining the Plan Cache Pressure Limit 

 SQL Server Version Cache Pressure Limit

 SQL Server 2005 RTM & SP1 75 percent of visible target memory from 0 to 8 GB + 50 percent of 
visible target memory from 8 GB to 64 GB + 25 percent of visible 
target memory > 64 GB

 SQL Server 2005 SP2 and SP3, 
SQL Server 2008 RTM

75 percent of visible target memory from 0 to 4 GB + 10 percent 
of visible target memory from 4 GB to 64 GB + 5 percent of visible 
 target memory > 64 GB

 SQL Server 2000 4 GB upper cap on the plan cache

 As an example, assume we are on SQL Server 2005 SP1 on a 64-bit SQL Server instance with 28 GB 
of target memory. The plan cache pressure limit would be 75 percent of 8 GB plus 50  percent of 
the target memory over 8 GB (or 50 percent of 20 GB), which is 6 GB + 10 GB, or 16 GB. 

SQL Server Version Cache Pressure Limit

C09626249.indd   562 2/16/2009   1:38:34 PM



 Chapter 9 Plan Caching and Recompilation 563

 On a 64-bit SQL Server 2008 RTM instance with 28 GB of target memory, the plan cache 
pressure limit would be 75 percent of 4 GB plus 10 percent of the target memory over 4 GB 
(or 10 percent of 24 GB), which is 3 GB + 2.4 GB, or 5.4 GB. 

Local Memory Pressure 

 If any single cache store grows too big, it indicates local memory pressure and SQL Server 
starts removing entries from only that store. This behavior prevents one store from using too 
much of the total system memory. 

 If a cache store reaches 75 percent of the plan cache pressure limit, described in Table 9-3, 
in single-page allocations or 50 percent of the plan cache pressure limit in multipage 
 allocations, internal memory pressure is triggered and plans are removed from cache. For 
example, in the situation described previously, we computed the plan cache pressure limit 
to be 5.4 GB. If any cache store exceeds 75 percent of that value, or 4.05 GB in single-page 
 allocations, internal memory pressure is triggered. If adding a particular plan to cache causes 
the cache store to exceed the limit, the removal of other plans from cache happens on the 
same thread as the one adding the new plan, which can cause the response time of the new 
query to be increased. 

 In addition to memory pressure occurring when the total amount of memory reaches a 
 particular limit, SQL Server also indicates memory pressure when the number of plans in a 
store exceeds four times the hash table size for that store, regardless of the actual size of the 
plans. As I mentioned previously when describing the cache stores, there are either about 
10,000 or 40,000 buckets in these hash tables, for 32-bit and 64-bit systems, respectively. 
That means memory pressure can be triggered when either the SQL Store or the Object 
Store has more than 40,000 or 160,000 entries. The fi rst query shown here is one we saw 
earlier, and it can be used to determine the number of buckets in the hash tables for the 
Object Store and the SQL Store, and the second query returns the number of entries in each 
of those stores: 

SELECT type as 'plan cache store', buckets_count

FROM sys.dm_os_memory_cache_hash_tables

WHERE type IN ('CACHESTORE_OBJCP', 'CACHESTORE_SQLCP');

GO

SELECT type, count(*) total_entries

FROM sys.dm_os_memory_cache_entries

WHERE type IN ('CACHESTORE_SQLCP', 'CACHESTORE_OBJCP')

GROUP BY type;

GO

 Prior to SQL Server 2008, internal memory pressure was rarely triggered due to the  number 
of entries in the hash tables but was almost always initiated by the size of the plans in 
the cache store. However, in SQL Server 2008, if you have enabled Optimize for Ad Hoc 
Workloads, the actual entries in the SQL cache store may be quite small (each Compiled Plan 
Stub is about 300 bytes) so the number of entries can grow to exceed the limit before the 

C09626249.indd   563 2/16/2009   1:38:34 PM



564 Microsoft SQL Server 2008 Internals

size of the store gets too large. If Optimize for Ad Hoc Workloads is not on, the size of the 
entries in cache is much larger, with a minimum size of 24 KB for each plan. To see the size of 
all the plans in a cache store, you need to examine sys.dm_exec_cached_plans, as shown here: 

SELECT objtype, count(*) AS 'number of plans',

      SUM(size_in_bytes)/(1024.0 * 1024.0 * 1024.0) 

            AS size_in_gb_single_use_plans 

FROM sys.dm_exec_cached_plans 

GROUP BY objtype;

 Remember that the adhoc and prepared plans are both stored in the SQL cache store, so to 
monitor the size of that store, you have to add those two values together.  

Global Memory Pressure

 Global memory pressure applies to memory used by all the cache stores together, and can 
be either external or internal. External global pressure occurs when the operating system 
determines that the SQL Server process needs to reduce its physical memory consumption 
because of competing needs from other processes on the server. All cache stores are reduced 
in size when this occurs. 

 Internal global memory pressure can occur when virtual address space is low. Internal global 
memory pressure can also occur when the memory broker predicts that all cache stores 
 combined will use more than 80 percent of the plan cache pressure limit. Again, all cache 
stores will have entries removed when this occurs. 

 As mentioned, when SQL Server detects memory pressure, all zero-cost plans are removed 
from cache and the cost of all other plans is reduced by half. Any particular cycle updates the 
cost of at most 16 entries for every cache store. When an updated entry has a zero-cost value, 
it can be removed. There is no mechanism to free entries that are currently in use. However, 
unused dependent objects for an in-use compiled plan can be removed. Dependent objects 
include the executable plans and cursors, and up to half of the memory for these  objects can 
be removed when memory pressure exists. Remember that dependent objects are  inexpensive 
to re-create, especially compared to compiled plans.  

 More Info For more information on memory management and memory pressure, see Chapter 1. 

Costing of Cache Entries

 The decision of what plans to evict from cache is based on their cost. For adhoc plans, the 
cost is considered to be zero, but it is increased by 1 every time the plan is reused. For other 
types of plans, the cost is a measure of the resources required to produce the plan. When one 
of these plans is reused, the cost is reset to the original cost. For non-adhoc queries, the cost 

C09626249.indd   564 2/16/2009   1:38:34 PM



 Chapter 9 Plan Caching and Recompilation 565

is measured in units called ticks, with a maximum of 31. The cost is based on three  factors: 
I/O, context switches, and memory. Each has its own maximum within the 31-tick total: 

■  I/O: each I/O costs 1 tick, with a maximum of 19 

■  Context switches: 1 tick each, with a maximum of 8 

■  Memory: 1 tick per 16 pages, with a maximum of 4 

 When not under memory pressure, costs are not decreased until the total size of all plans 
cached reaches 50 percent of the buffer pool size. At that point, the next plan  access 
 decrement the cost in ticks of all plans by 1. Once memory pressure is encountered, then 
SQL Server starts a dedicated resource monitor thread to decrement the cost of  either 
plan  objects in one particular cache (for local pressure) or all plan cache objects (for 
global pressure).  

 The sys.dm_os_memory_cache_entries DMV can show you the current and original cost of any 
cache entry, as well as the components that make up that cost: 

SELECT text, objtype, refcounts, usecounts, size_in_bytes,

   disk_ios_count, context_switches_count,

   pages_allocated_count, original_cost, current_cost

FROM sys.dm_exec_cached_plans p

   CROSS APPLY sys.dm_exec_sql_text(plan_handle)

   JOIN sys.dm_os_memory_cache_entries e

   ON p.memory_object_address = e.memory_object_address

WHERE cacheobjtype = 'Compiled Plan'

   AND type in ('CACHESTORE_SQLCP', 'CACHESTORE_OBJCP')

ORDER BY objtype desc, usecounts DESC;

 Note that we can fi nd the specifi c entry in sys.dm_os_memory_cache_entries that corresponds to 
a particular plan in sys.dm_exec_cached_plans by joining on the memory_object_address column.  

Objects in Plan Cache: The Big Picture

 In addition to the DMVs and DMFs discussed so far, there is another metadata object called 
syscacheobjects that is really just a pseudotable. Prior to SQL Server 2005, there were no 
Dynamic Management Objects, but we did have about half a dozen of these pseudotables, 
including sysprocesses and syslockinfo, which took no space on disk and were  materialized 
only when someone executed a query to access them, in a similar manner to the way that 
Dynamic Management Objects work. These objects are still available in SQL Server 2008. 
In SQL Server 2000, the pseudotables are available only in the master database, or by 
 using a full object qualifi cation when referencing them. In SQL Server 2008, you can access 
 syscacheobjects from any database using only the sys schema as a qualifi cation, so we refer 
to the object using its schema. Table 9-4 lists some of the more useful columns in the 
sys.syscacheobjects object. 

C09626249.indd   565 2/16/2009   1:38:34 PM



566 Microsoft SQL Server 2008 Internals

 TABLE 9-4 Useful Columns in the sys.syscacheobjects View 

Column Name Description

bucketid The bucket ID for this plan in an internal hash table; the bucket ID helps SQL 
Server locate the plan more quickly. Two rows with the same bucket ID refer to 
the same object (for example, the same procedure or trigger).

cacheobjtype Type of object in cache: Compiled Plan, Parse Tree, and so on.

objtype Type of object: Adhoc, Prepared, Proc, and so on.

 objid One of the main keys used for looking up an object in cache. This is the  object 
ID stored in sysobjects for database objects (procedures, views, triggers, and 
so on). For cache objects, such as Adhoc or Prepared, objid is an internally 
 generated value.

 dbid Database ID in which the cache object was compiled.

 uid The creator of the plan (for adhoc query plans and prepared plans).

 refcounts Number of other cache objects that reference this cache object.

 usecounts Number of times this cache object has been used since its creation.

 pagesused Number of memory pages consumed by the cache object.

 setopts SET option settings that affect a compiled plan. Changes to values in this 
column indicate that users have modifi ed SET options.

 langid Language ID of the connection that created the cache object.

 dateformat Date format of the connection that created the cache object.

 sql Module defi nition or fi rst 3,900 characters of the batch submitted.

 In SQL Server 2000, the syscacheobjects pseudotable also includes entries for  executable 
plans. That is, the cacheobjtype column could have a value of Executable Plan. In SQL 
Server 2008, because executable plans are considered dependent objects and are stored 
 completely  separately from the compiled plans, they are no longer available through 
the sys. syscacheobjects view. To access the executable plans, you need to select directly 
from the sys.dm_exec_ cached_plan_dependent_objects function, and pass in a plan_handle 
as a parameter. 

 As an alternative to the sys.syscacheobjects view, which is a compatibility view and is not 
 guaranteed to exist in future versions, you can create your own view that retrieves the same 
 information from the SQL Server Dynamic Management Objects. The script  creates a view called 
sp_cacheobjects in the master database. Remember that any objects with a name  starting with 
sp_, created in the master database, can be accessed from any  database  without  having to 
 qualify the object name fully. Besides being able to access the sp_cacheobjects view from 
 anywhere, another benefi t of creating your own object is that you can customize it. For 
 example, it would be relatively straightforward to do one more OUTER APPLY, to join this view 
with the sys.dm_exec_query_plan function, to get the XML plan for each of the plans in cache. 

USE master

GO

CREATE VIEW sp_cacheobjects

   (bucketid, cacheobjtype, objtype, objid, dbid, dbidexec, uid,

Column Name Description

C09626249.indd   566 2/16/2009   1:38:34 PM



 Chapter 9 Plan Caching and Recompilation 567

   refcounts, usecounts, pagesused, setopts, langid, dateformat,

   status, lasttime, maxexectime, avgexectime, lastreads,

   lastwrites, sqlbytes, sql)

AS

   SELECT pvt.bucketid,

      CONVERT(nvarchar(18), pvt.cacheobjtype) AS cacheobjtype,

      pvt.objtype,

      CONVERT(int, pvt.objectid) AS object_id,

      CONVERT(smallint, pvt.dbid) AS dbid,

      CONVERT(smallint, pvt.dbid_execute) AS execute_dbid,

      CONVERT(smallint, pvt.user_id) AS user_id,

      pvt.refcounts, pvt.usecounts,

      pvt.size_in_bytes / 8192 AS size_in_bytes,

      CONVERT(int, pvt.set_options) AS setopts,

      CONVERT(smallint, pvt.language_id) AS langid,

      CONVERT(smallint, pvt.date_format) AS date_format,

      CONVERT(int, pvt.status) AS status,

      CONVERT(bigint, 0),

      CONVERT(bigint, 0),

      CONVERT(bigint, 0),

      CONVERT(bigint, 0),

      CONVERT(bigint, 0),

      CONVERT(int, LEN(CONVERT(nvarchar(max), fgs.text)) * 2),

      CONVERT(nvarchar(3900), fgs.text)

FROM (SELECT ecp.*, epa.attribute, epa.value

  FROM sys.dm_exec_cached_plans ecp

    OUTER APPLY

      sys.dm_exec_plan_attributes(ecp.plan_handle) epa) AS ecpa

PIVOT (MAX(ecpa.value) for ecpa.attribute IN

    ("set_options", "objectid", "dbid",

    "dbid_execute", "user_id", "language_id",

    "date_format", "status")) AS pvt

OUTER APPLY sys.dm_exec_sql_text(pvt.plan_handle) fgs;

 You might notice that several of the output columns are hardcoded to a value of 0. For the 
most part, these are columns for data that is no longer maintained in SQL Server 2005 or SQL 
Server 2008. In particular, these are columns that report on performance information for 
cached plans. In SQL Server 2000, this performance data was maintained for each batch. In 
later  versions, it is maintained on a statement level and available through sys.dm_exec_ query_
stats. To be compatible with the sys.syscacheobjects view, the new view must return something 
in those  column positions. If you choose to customize this view, you could choose to remove 
those columns. 

Multiple Plans in Cache

 SQL Server tries to limit the number of plans for a query or a procedure. Because plans are 
reentrant, this is easy to accomplish. You should be aware of some situations that cause 
 multiple query plans for the same procedure to be saved in cache. The most likely situation 
is a difference in certain SET options, as discussed previously. 

C09626249.indd   567 2/16/2009   1:38:34 PM



568 Microsoft SQL Server 2008 Internals

 One other connection issue can affect whether a plan can be reused. If an owner name must 
be resolved implicitly, a plan cannot be reused. For example, suppose user sue issues the 
 following SELECT statement: 

SELECT * FROM Orders;

 SQL Server fi rst tries to resolve the object by looking for an object called Orders in the  default 
schema for the user sue, and if no such object can be found, it looks for an object called Orders 
in the dbo schema. If user dan executes the exact same query, the object can be resolved in 
a completely different way (to a table in the default schema of the user dan), so sue and dan 
could not share the plan generated for this query. Because there is a  possible ambiguity when 
using the unqualifi ed object name, the query processor does not assume that an existing plan 
can be reused. However, the situation is different if sue issues this command: 

SELECT * FROM dbo.Orders;

 Now there’s no ambiguity. Anyone executing this exact query always references the same 
 object. In the sys.syscacheobjects view, the column uid indicates the user ID for the connection 
in which the plan was generated. For adhoc queries, only another connection with the same 
user ID value can use the same plan. The one exception is if the user ID value is recorded as –2 
in syscacheobjects, which indicates that the query submitted does not depend on implicit name 
resolution and can be shared among different users. This is the preferred method. 

 Tip It is strongly recommended that objects are always qualifi ed with their containing 
schema name, so that you never need to rely on implicit resolutions and the reuse of 
plan cache can be more effective. 

When to Use Stored Procedures and 
Other Caching Mechanisms

 Keep the following guidelines in mind when you are deciding whether to use stored procedures 
or one of the other query mechanisms: 

■  Stored procedures These objects should be used when multiple connections are 
 executing batches in which the parameters are known. They are also useful when you 
need to have control over when a block of code is to be recompiled.  

■  Adhoc caching This option is benefi cial only in limited scenarios. It is not dependable 
enough for you to design an application expecting this behavior to correctly control 
reuse of appropriate plans.  

■  Simple or forced parameterization This option can be useful for applications that 
cannot be easily modifi ed. However, it is preferable when you initially design your 
 applications that you use methods that explicitly allow you to declare what your 
 parameters and what their data types are, such as the two suggestions below.  

C09626249.indd   568 2/16/2009   1:38:34 PM



 Chapter 9 Plan Caching and Recompilation 569

■  The sp_executesql procedure This procedure can be useful when the same batch 
might be used multiple times and when the parameters are known. 

■  The prepare and execute methods These methods are useful when multiple  users 
are executing batches in which the parameters are known, or when a single user will 
 defi nitely use the same batch multiple times.  

Troubleshooting Plan Cache Issues

 To start addressing problems with plan cache usage and management, you must determine 
that existing problems are actually caused by plan caching issues. Performance problems 
caused by misuse or mismanagement of plan cache, or inappropriate recompilation, can 
manifest themselves as simply a decrease in throughput or an increase in query response 
time. Problems with caching can also show up as out-of-memory errors or connection 
 time-out errors, which can be caused by all sorts of different conditions. 

Wait Statistics Indicating Plan Cache Problems

 To determine that plan caching behavior is causing problems, one of the fi rst things to look 
at is your wait statistics in SQL Server. Wait statistics are covered in more detail in Chapter 10, 
“Transactions and Concurrency,” but here, I tell you about some of the primary wait types 
that can indicate problems with your plan cache. 

 Wait statistics are displayed when you query the sys.dm_os_wait_stats view. The query here 
lists all the resources that your SQL Server service might have to wait for, and it displays the 
resources with the longest waiting list: 

SELECT *

FROM sys.dm_os_wait_stats

ORDER BY waiting_tasks_count DESC;

 You should be aware that the values shown in this view are cumulative, so if you need to 
see the resources being waited on during a specifi c time period, you have to poll the view 
at the beginning and end of the period. If you see relatively large wait times for any of 
the  following resources, or if these resources are near the top of the list returned from the 
 previous query, you should investigate your plan cache usage: 

■  CMEMTHREAD waits This wait type indicates that there is contention on the memory 
object from which cache descriptors are allocated. A very high rate of insertion of 
 entries into the plan cache can cause contention problems. Similarly, contention can also 
occur when entries are removed from cache and the resource monitor thread is blocked. 
There is only one thread-safe memory object from which descriptors are  allocated, and 
as we’ve seen, there is only a single cache store for adhoc compiled plans. 

C09626249.indd   569 2/16/2009   1:38:34 PM



570 Microsoft SQL Server 2008 Internals

 Consider the same procedure being called dozens or hundreds of times. Remember 
that SQL Server will cache the adhoc shell query that includes the actual parameter 
for each individual call to the procedure, even though there may be only one cached 
plan for the procedure itself. As SQL Server starts experiencing memory pressure, the 
work to insert the entry for each individual call to the procedure can begin to cause 
 excessive waits resulting in a drop in throughput or even out-of-memory errors. 

 SQL Server 2005 SP2 added some enhancements to caching behavior to alleviate some of 
the fl ooding of cache that could occur when the same procedure or parameterized query 
was called repeatedly with different parameters. In all releases after SQL Server 2005 SP2, 
zero-cost batches that contain SET statements or transaction control are not cached at 
all. The only exception is for those batches that contain only SET and transaction control 
statements. This is not that much of a loss, as plans for batches containing SET statements 
can never be reused in any case. Also, as of SQL Server 2005 SP2, the memory object 
from which cache descriptors are allocated has been partitioned across all the CPUs to 
alleviate contention on the memory object which should reduce CMEMTHREAD waits. 

■  SOS_RESERVEDMEMBLOCKLIST waits This wait type can indicate the presence of 
cached plans for queries with a large number of parameters, or with a large number of 
values specifi ed in an IN clause. These types of queries require that SQL Server allocate 
in larger units, called multipage allocations. You can look at the sys.dm_os_memory_
cache_counters view to see the amount of memory allocated in the multipage units: 

SELECT name, type, single_pages_kb, multi_pages_kb,

   single_pages_in_use_kb, multi_pages_in_use_kb

FROM sys.dm_os_memory_cache_counters

WHERE type = 'CACHESTORE_SQLCP' OR type = 'CACHESTORE_OBJCP';

 Clearing out plan cache with DBCC FREEPROCCACHE can alleviate problems caused by 
too many multipage allocations, at least until the queries are reexecuted and the plans 
are cached again. In addition, the cache management changes in SQL Server 2005 
SP2 can also reduce the waits on SOS_RESERVEDMEMBLOCKLIST. You can also  consider 
rewriting the application to use alternatives to long parameters or long IN lists. In 
 particular, long IN lists can almost always be improved by creating a table of the values 
in the IN list and joining with that table. 

■  RESOURCE_SEMAPHORE_QUERY_COMPILE waits This wait type indicates that there 
are a large number of concurrent compilations. To prevent ineffi cient use of query 
memory, SQL Server 2008 limits the number of concurrent compile operations that need 
extra memory. If you notice a high value for RESOURCE_SEMAPHORE_QUERY_COMPILE 
waits, you can examine the entries in the plan cache through the sys.dm_exec_cached_
plans view, as shown here: 

SELECT usecounts, cacheobjtype, objtype, bucketid, text

FROM sys.dm_exec_cached_plans

   CROSS APPLY sys.dm_exec_sql_text(plan_handle)

WHERE cacheobjtype = 'Compiled Plan'

ORDER BY objtype;

C09626249.indd   570 2/16/2009   1:38:34 PM



 Chapter 9 Plan Caching and Recompilation 571

 If there are no results with the objtype value of Prepared, it means that SQL Server is 
not automatically parameterizing your queries. You can try altering the database to 
PARAMETERIZATION FORCED in this case, but this option affects the entire database, 
including queries that might not benefi t from parameterization. To force SQL Server to 
parameterize just certain queries, plan guides can be used. I discuss plan guides in the 
next section. 

 Keep in mind that caching is done on a per-batch level. If you try to force parameterization  using 
sp_executesql or prepare and execute, all the statements in the batch must be  parameterized 
for the plan to be reusable. If a batch has some parameterized statements and some using 
 constants, each execution of the batch with different constants is considered distinct, and there is 
no value to the parameterization in only part of the batch. 

Other Caching Issues

 In addition to looking at the wait types that can indicate problems with caching, there are 
some other coding behaviors that can have a negative impact on plan reuse: 

■  Verify parameter types, both for prepared queries and autoparameterization With 
 prepared queries, you actually specify the parameter data type, so it’s easier to make 
sure you are always using the same type. When SQL Server parameterizes, it makes its 
own  decisions as to data type. If you look at the parameterized form of your queries of 
type Prepared, you see the data type that SQL Server assumed. We saw earlier in the 
chapter that a value of 12345 is assumed to be a different data type than 12, and two 
queries that are identical except for these specifi c values are never able to share the 
same autoparameterized plan. 

 If the parameter passed is numeric, SQL Server determines the data type based on the 
 precision and scale. A value of 8.4 has a data type of numeric (2, 1), and 8.44 has a data type 
of numeric (3, 2). For varchar data type, server side parameterization is not so dependent on 
the length of the actual value. Take a look at these two queries in the Northwind2 database: 

SELECT * FROM Customers

WHERE CompanyName = 'Around the Horn';

GO

SELECT * FROM Customers

WHERE CompanyName = 'Rattlesnake Canyon Grocery';

GO

 Both of these queries be autoparameterized to the following: 

(@0 varchar(8000))SELECT * FROM Customers WHERE CompanyName = @0

■  Monitor plan cache size and data cache size In general, as more queries are run, the 
amount of memory used for data page caching should increase along with the amount 
of memory used for plan caching. However, as we saw previously when discussing plan 
cache size, in SQL Server 2005 prior to SP2, the maximum limit for plan caching could 
grow to be up to 80 percent of the total buffer pool before memory pressure would 

C09626249.indd   571 2/16/2009   1:38:35 PM



572 Microsoft SQL Server 2008 Internals

start forcing plans to be evicted. This can result in severe performance degradation for 
those queries that depend on good data caching behavior. For any amount of memory 
greater than 4 GB, versions after SQL Server 2005 SP1 change the size limit that plan 
caching can grow to before memory pressure is indicated. One of the easiest places 
to get a comparison of the pages used for plan caching and the pages used for data 
 caching is the performance counters. Take a look at the following counters: SQL Server: 
Plan Cache/Cache Pages(_Total) and SQLServer: BufferManager/Database pages. 

Handling Problems with Compilation and Recompilation 

 There are tools for detecting excessive compiles and recompiles. You can use either System 
Monitor or one of the tracing or event monitoring tools described in Chapter 2, “Change 
Tracking, Tracing, and Extended Events,” to detect compilations and recompilations. Keep 
in mind that compiling and recompiling are not the same thing. Recompiling is performed 
when an existing module or statement is determined to be no longer valid or no longer 
 optimal. All recompiles are considered compiles, but not vice versa. For example, when 
there is no plan in cache, or when executing a procedure using the WITH RECOMPILE option 
or executing a procedure that was  created with the WITH RECOMPILE option, SQL Server 
 considers it a compile but not a recompile. 

 If these tools indicate that you have excessive compilation or recompilation, you can consider 
the following actions: 

■  If the recompile is caused by a change in a SET option, the SQL Trace text data for 
T-SQL statements immediately preceding the recompile event can indicate which SET 
option changed. It’s best to change SET options when a connection is fi rst made and 
avoid changing them after you have started submitting statements on that connection, 
or inside a store procedure. 

■  Recompilation thresholds for temporary tables are lower than for normal tables, as we 
discussed earlier in this chapter. If the recompiles on a temporary table are caused by 
statistics changes, a trace has a data value in the EventSubclass column that  indicates 
that statistics changed for an operation on a temporary table. You can consider 
 changing the temporary tables to table variables, for which statistics are not  maintained. 
Because no statistics are maintained, changes in statistics cannot induce  recompilation. 
However, lack of statistics can result in suboptimal plans for these queries. Your own 
testing can determine if the benefi t of table variables is worth the cost. Another 
 alternative is to use the KEEP PLAN query hint, which sets the recompile threshold for 
temporary tables to be the same as for permanent tables. 

■  To avoid all recompilations that are caused by changes in statistics, whether on a 
 permanent or a temporary table, you can specify the KEEPFIXED PLAN query hint. With 
this hint, recompilations can happen only because of correctness-related reasons, as 
described earlier. An example might be when a recompilation occurs if the schema of a 
table that is referenced by a statement changes, or if a table is marked for recompile by 
using the sp_recompile stored procedure. 

C09626249.indd   572 2/16/2009   1:38:35 PM



 Chapter 9 Plan Caching and Recompilation 573

■  Another way to prevent recompiles caused by statistics changes is by turning off the 
automatic updates of statistics for indexes and columns. Note, however, that turning off 
the Autostatistics feature is usually not a good idea. If you do, the Query Optimizer is no 
longer sensitive to data changes and is likely to come up with a suboptimal plan. This 
method should be considered only as a last resort after exhausting all other options. 

■  All T-SQL code should use two-part object names (for example, Inventory.ProductList) 
to indicate exactly what object is being referenced, which can help avoid recompilation. 

■  Do not use DDL within conditional constructs such as IF statements. 

■  Check to see if the stored procedure was created with the WITH RECOMPILE option. In 
many cases, only one or two statements within a stored procedure might benefi t from 
recompilation on every execution, and we can use the RECOMPILE query hint for just 
those statements. This is much better than using the WITH RECOMPILE option for the 
entire procedure, which means every statement in the procedure is recompiled every 
time the procedure is executed. 

Plan Guides and Optimization Hints

 In Chapter 8, “The Query Optimizer,” we looked at many different execution plans and 
 discussed what it meant for a query to be optimized. In this chapter, we looked at  situations 
in which SQL Server reuses a plan when it might have been best to come up with a new 
one, and we’ve seen situations in which SQL Server does not reuse a plan even if there is a 
 perfectly good one in cache already. One way to encourage plan reuse that has already been 
discussed in this chapter is to enable the PARAMETERIZATION FORCED database  option. In 
other situations, where we just can’t get the optimizer to reuse a plan, we can use  optimizer 
hints. Optimizer hints can also be used to force SQL Server to come up with a new plan in 
those cases in which it might be using an existing plan. There are dozens of hints that can be 
used in your T-SQL code to affect the plan that SQL Server comes up with, and some of them 
were  discussed in Chapter 8. In this section, I specifi cally describe only those hints that affect 
 recompilation, as well as the mother of all hints, USE PLAN, which was added in SQL Server 
2005. Finally, we discuss a SQL Server feature called plan guides. 

Optimization Hints

 All the hints that we are telling you about in this section are referred to in SQL Server Books 
Online as Query Hints, to distinguish them from Table Hints, which are specifi ed in the FROM 
clause after a table name, and Join Hints, which are specifi ed in the JOIN clause before the 
word JOIN. However, we frequently refer to query hints as option hints because they are 
specifi ed in a special clause called the OPTION clause, which is used just for specifying this 
type of hint. An OPTION clause, if included in a query, is always the last clause of any T-SQL 
statement, as you can see in the code examples in the subsequent sections. 

RECOMPILE  The RECOMPILE hint forces SQL Server to recompile a query. It is  particularly 
useful when only a single statement within a batch needs to be recompiled. You know 
that SQL Server compiles your T-SQL batches as a unit, determining the execution plan for 

C09626249.indd   573 2/16/2009   1:38:35 PM



574 Microsoft SQL Server 2008 Internals

each statement in the batch, and it doesn’t execute any statements until the entire batch is 
 compiled. This means that if the batch contains a variable declaration and assignment, the 
assignment doesn’t actually take place during the compilation phase. When the following 
batch is optimized, SQL Server doesn’t have a specifi c value for the variable: 

USE Northwind2;

DECLARE @custID nchar(10);

SET @custID = 'LAZYK';

SELECT * FROM Orders WHERE CustomerID = @custID;

 The plan for the SELECT statement will show that SQL Server is scanning the entire clustered 
index because during optimization, SQL Server had no idea what value it was going to be 
searching for and couldn’t use the histogram in the index statistics to get a good estimate 
of the number of rows. If we had replaced the variable with the constant LAZYK, SQL Server 
could have determined that only a very few rows would qualify and would have chosen to 
use the nonclustered index on customerID. The RECOMPILE hint can be very useful here 
 because it tells the optimizer to come up with a new plan for the single SELECT statement 
right before that statement is executed, which is after the SET statement has executed: 

USE Northwind2;  

DECLARE @custID nchar(10);

SET @custID = 'LAZYK';

SELECT * FROM Orders WHERE CustomerID = @custID

OPTION (RECOMPILE); 

 Note A variable is not the same as a parameter, even though they are written the same way. 
Because a procedure is compiled only when it is being executed, SQL Server always uses a  specifi c 
parameter value. Problems arise when the previously compiled plan is then used for  different 
parameters. However, for a local variable, the value is never known when the  statements using 
the variable are compiled unless the RECOMPILE hint is used. 

OPTIMIZE FOR  The OPTIMIZE FOR hint tells the optimizer to optimize the query as if a 
 particular value has been used for a variable or parameter. Execution uses the real value. 
Keep in mind that the OPTIMIZE FOR hint does not force a query to be recompiled. It only 
instructs SQL Server to assume a variable or parameter has a particular value in those cases 
in which SQL Server has already determined that the query needs optimization. As the 
OPTIMIZE FOR hint was discussed in Chapter 8, we won’t say any more about it here. 

KEEP PLAN  The KEEP PLAN hint relaxes the recompile threshold for a query, particularly 
for queries accessing temporary tables. As we saw earlier in this chapter, a query accessing a 
temporary table can be recompiled when as few as six changes have been made to the table. 
If the query uses the KEEP PLAN hint, the recompilation threshold for temporary tables is 
changed to be the same as for permanent tables. 

KEEPFIXED PLAN  The KEEPFIXED PLAN hint inhibits all recompiles because of  optimality 
 issues. With this hint, queries are recompiled only when forced, or if the schema of the 

C09626249.indd   574 2/16/2009   1:38:35 PM



 Chapter 9 Plan Caching and Recompilation 575

underlying tables is changed, as described in the section entitled “Correctness-Based 
Recompiles,” earlier in this chapter. 

PARAMETERIZATION  The PARAMETERIZATION hint overrides the PARAMETERIZATION 
option for a database. If the database is set to PARAMETERIZATION FORCED, individual 
 queries using the PARAMETERIZATION hint can avoid that and be parameterized only if they 
meet the strict list of conditions. Alternatively, if the database is set to PARAMETERIZATION 
SIMPLE, individual queries can be parameterized on a case-by-case basis. Note however that 
the PARAMETERIZATION hint can only be used in conjunction with plan guides, which we 
discuss shortly. 

USE PLAN  The USE PLAN hint was discussed in Chapter 8, as a way to force SQL Server to use 
a plan that you might not be able to specify using the other hints. The plan  specifi ed must be in 
XML format and can be obtained from a query that uses the desired plan by  using the option 
SET SHOWPLAN_XML ON. Because USE PLAN hints contain a complete XML document in the 
query hint, they are best used within plan guides, which are discussed in the next section. 

Purpose of Plan Guides

 Although it is recommended in most cases that you allow the Query Optimizer to  determine 
the best plan for each of your queries, there are times when the Query Optimizer just 
can’t come up with the best plan and you may fi nd that the only way to get reasonable 
 performance is to use a hint. This is usually a straightforward change to your applications, 
once you have  verifi ed that the desired hint is really going to make a difference. However, in 
some  environments, you have no control over the application code. In cases when the actual 
SQL queries are embedded in inaccessible vendor code or when modifying vendor code 
would break your licensing agreement or invalidate your support guarantees, you might not 
be able to simply add a hint onto the misbehaving query. 

 Plan guides, introduced in SQL Server 2005, provide a solution by giving you a  mechanism 
to add hints to a query without changing the query itself. Basically, a plan guide tells the 
Optimizer that if it tries to optimize a query having a particular format, it should add a 
 specifi ed hint to the query. SQL Server supports three kinds of plan guides: SQL, Object, and 
Template, which we explore shortly. 

 Plan guides are available in the Standard, Enterprise, Evaluation, and Developer editions of SQL 
Server. If you detach a database containing plan guides from a supported edition and attach the 
database to an unsupported edition, such as Workgroup or Express, SQL Server does not use any 
plan guides. However the metadata containing information about plan guides is still available. 

Types of Plan Guides

 The three types of plan types can be created using the sp_create_plan_guide procedure. The 
general form of the sp_create_plan_guide procedure is as follows: 

sp_create_plan_guide 'plan_guide_name', 'statement_text',

   'type_of_plan_guide', 'object_name_or_batch_text',

   'parameter_list', 'hints'

C09626249.indd   575 2/16/2009   1:38:35 PM



576 Microsoft SQL Server 2008 Internals

 We discuss each of the types of plan guides, and then we look at the mechanisms for working 
with plan guides and the metadata that keeps track of information about them. 

Object Plan Guides  A plan guide of type object indicates that you are interested in a T-SQL 
statement  appearing in the context of a SQL Server object, which can be a stored procedure, 
a user-defi ned  function, or a trigger in the database in which the plan guide is created. As an 
example,  suppose we have a stored procedure called Sales.GetOrdersByCountry that takes a 
country as a parameter, and after some error checking and other validation, it returns a set 
of rows for the orders placed by customers in the specifi ed country. Suppose further that 
our testing has determined that a parameter value of US gives us the best plan. Here is an 
 example of a plan guide that tells SQL Server to use the OPTIMIZE FOR hint whenever the 
specifi ed statement is found in the Sales.GetOrdersByCountry procedure: 

EXEC sp_create_plan_guide

   @name = N'plan_US_Country',

   @stmt =

      N'SELECT SalesOrderID, OrderDate, h.CustomerID, h.TerritoryID

           FROM Sales.SalesOrderHeader AS h

           INNER JOIN Sales.Customer AS c

              ON h.CustomerID = c.CustomerID

           INNER JOIN Sales.SalesTerritory AS t

              ON c.TerritoryID = t.TerritoryID

           WHERE t.CountryRegionCode = @Country',

@type = N'OBJECT',

@module_or_batch = N'Sales.GetOrdersByCountry',

@params = NULL,

@hints = N'OPTION (OPTIMIZE FOR (@Country = N''US''))';

 Once this plan is created in the AdventureWorks2008 database, every time the Sales.
GetOrdersByCountry procedure is compiled, the statement indicated in the plan is 
 optimized as if the actual parameter passed was the string ‘US’. No other statements in 
the  procedure are affected by this plan, and if the specifi ed query occurs outside of the 
Sales.GetOrdersByCountry procedure, the plan guide is not invoked. (The companion Web 
site, which contains all the code used in all the book examples, also contains a script to 
build the Sales.GetOrdersByCountry procedure.) 

SQL Plan Guides  A plan guide of type SQL indicates you are interested in a particular SQL 
statement, either as a stand-alone statement, or in a particular batch. T-SQL statements 
that are sent to SQL Server by CLR objects or extended stored procedures, or that are part 
of dynamic SQL invoked with the EXEC (sql_string) construct, are processed as batches on 
SQL Server. To use them in a plan guide, their type should be set to SQL. For a stand-alone 
 statement, the @module_or_batch parameter to sp_create_plan_guide should be set to 
NULL, so that SQL Server assumes that the batch and the statement have the same value. 
If the statement you are interested in is in a larger batch, the entire batch text needs to be 
 specifi ed in the @module_or_batch parameter. If a batch is specifi ed for a SQL plan guide, 
the text of the batch needs to be exactly the same as it appears in the application. The rules 
aren’t quite as strict as those for adhoc query plan reuse, discussed earlier in this chapter, 

C09626249.indd   576 2/16/2009   1:38:35 PM



 Chapter 9 Plan Caching and Recompilation 577

but they are close. Make sure you use the same case, the same whitespace, and the other 
 characteristics that your application does. 

 Here is an example of a plan guide that tells SQL Server to use only one CPU (no  parallelization) 
when a particular query is executed as a stand-alone query: 

EXEC sp_create_plan_guide

@name = N'plan_SalesOrderHeader_DOP1',

@stmt = N'SELECT TOP 10 *

          FROM Sales.SalesOrderHeader

          ORDER BY OrderDate DESC',

@type = N'SQL',

@module_or_batch = NULL,

@params = NULL,

@hints = N'OPTION (MAXDOP 1)';

 Once this plan is created in the AdventureWorks2008 database, every time the specifi ed 
statement is encountered in a batch by itself, it has a plan created that uses only a single 
CPU. If the specifi ed query occurs as part of a larger batch, the plan guide is not invoked. 

Template Plan Guides  A plan guide of type Template can use only the 
PARAMETERIZATION FORCED or PARAMETERIZATION SIMPLE hints to override the 
PARAMETERIZATION database  setting. Template guides are a bit trickier to work with 
 because you have to have SQL Server  construct a template of your query in the same 
 format that it will be in once it is parameterized. This isn’t hard because SQL Server 
 supplies us with a special procedure called sp_get_query_ template, but to use template 
guides, you need to perform  several prerequisite steps. If you take a look at the two 
plan guide examples given previously, you see that the parameter called @params was 
NULL for both OBJECT and SQL plan guides. You only specify a value for @params with a 
TEMPLATE plan guide. 

 To see an example of using a template guide and forcing parameterization, fi rst clear your 
procedure cache, and then execute these two queries in the AdventureWorks2008 database: 

DBCC FREEPROCCACHE;

GO

SELECT * FROM AdventureWorks2008.Sales.SalesOrderHeader AS h

INNER JOIN AdventureWorks2008.Sales.SalesOrderDetail AS d

   ON h.SalesOrderID = d.SalesOrderID

WHERE h.SalesOrderID = 45639;

GO

SELECT * FROM AdventureWorks2008.Sales.SalesOrderHeader AS h

INNER JOIN AdventureWorks2008.Sales.SalesOrderDetail AS d

   ON h.SalesOrderID = d.SalesOrderID

WHERE h.SalesOrderID = 45640;

 These queries are very similar, and the plans for both are identical, but because the query 
is considered too complex, SQL Server does not autoparameterize them. If, after executing 
both queries, you look at the plan cache, you see only adhoc queries. If you’ve created the 

C09626249.indd   577 2/16/2009   1:38:35 PM



578 Microsoft SQL Server 2008 Internals

sp_cacheobjects view described earlier in the chapter, you could use that; otherwise, replace 
sp_cacheobjects with sys.syscacheobjects: 

SELECT objtype, dbid, usecounts, sql

FROM sp_cacheobjects

WHERE cacheobjtype = 'Compiled Plan';

 To create a plan guide to force statements of this type to be parameterized, we fi rst need to 
call the procedure sp_get_query_template and pass two variables as output parameters. One 
parameter holds the parameterized version of the query, and the other holds the  parameter 
list and the parameter data types. The following code then SELECTs these two output 
 parameters so you can see their contents. Of course, you can remove this SELECT from your 
own code. Finally, we call the sp_create_plan_guide procedure, which instructs the optimizer to 
use PARAMETERIZATION FORCED anytime it sees a query that matches this specifi c template. 
In other words, anytime a query that parameterizes to the same form as the query here, it 
uses the same plan already cached: 

DECLARE @sample_statement nvarchar(max);

DECLARE @paramlist nvarchar(max);

EXEC sp_get_query_template

   N'SELECT * FROM AdventureWorks2008.Sales.SalesOrderHeader AS h

     INNER JOIN AdventureWorks2008.Sales.SalesOrderDetail AS d

        ON h.SalesOrderID = d.SalesOrderID

     WHERE h.SalesOrderID = 45639;',

   @sample_statement OUTPUT,

   @paramlist OUTPUT

SELECT @paramlist as parameters, @sample_statement as statement

EXEC sp_create_plan_guide @name = N'Template_Plan',

   @stmt = @sample_statement,

   @type = N'TEMPLATE',

   @module_or_batch = NULL,

   @params = @paramlist,

   @hints = N'OPTION(PARAMETERIZATION FORCED)';

 After creating the plan guide, run the same two statements as shown previously, and then 
examine the plan cache: 

DBCC FREEPROCCACHE;

GO

SELECT * FROM AdventureWorks2008.Sales.SalesOrderHeader AS h

INNER JOIN AdventureWorks2008.Sales.SalesOrderDetail AS d

   ON h.SalesOrderID = d.SalesOrderID

WHERE h.SalesOrderID = 45639;

GO

SELECT * FROM AdventureWorks2008.Sales.SalesOrderHeader AS h

INNER JOIN AdventureWorks2008.Sales.SalesOrderDetail AS d

   ON h.SalesOrderID = d.SalesOrderID

WHERE h.SalesOrderID = 45640;

GO

SELECT objtype, dbid, usecounts, sql

FROM sp_cacheobjects

WHERE cacheobjtype = 'Compiled Plan';

C09626249.indd   578 2/16/2009   1:38:35 PM



 Chapter 9 Plan Caching and Recompilation 579

 You should now see a prepared plan with the following parameterized form: 

(@0 int)select * from AdventureWorks2008.Sales.SalesOrderHeader as h

   inner join AdventureWorks2008.Sales.SalesOrderDetail as d

   on h.SalesOrderID = d.SalesOrderID

   where h.SalesOrderID = @0

Managing Plan Guides

 In addition to the sp_create_plan_guide and sp_get_query_template procedures, the other 
 basic procedure for working with plan guides is sp_control_plan_guide. This procedure allows 
you to DROP, DISABLE, or ENABLE a plan guide using the following basic syntax: 

sp_control_plan_guide '<control_option>' [, '<plan_guide_name>']

 There are six possible control_option values: DISABLE, DISABLE ALL, ENABLE, ENABLE ALL, 
DROP, and DROP ALL. The plan_guide_name parameter is optional because with any of the 
ALL control_option values, no plan_guide_name value is supplied. Plan guides are local to a 
particular database, so the DISABLE ALL, ENABLE ALL, and DROP ALL values apply to all plan 
guides for the current database. In addition, plan guides behave like schema-bound views in 
a way; the stored procedures, triggers, and functions referred to in any Object plan guide in a 
database cannot be altered or dropped. So for our example Object plan guide, so long as the 
plan guide exists, the AdventureWorks2008.Sales.GetOrdersByCountry procedure cannot be 
altered or dropped. This is true whether the plan guide is disabled or enabled, and it remains 
true until all plan guides referencing those objects are dropped with sp_control_plan_guide. 

 The metadata view that contains information about plan guides in a particular database 
is sys.plan_guides. This view contains all the information supplied in the sp_create_plan_guide 
 procedure plus additional information such as the creation date and last modifi cation date 
of each plan guide. Using the information in this view, you can reconstruct the plan guide 
 defi nition manually if necessary. In addition, Management Studio allows you to script your 
plan guide defi nitions from the Object Explorer tree.  

Plan Guide Considerations

 For SQL Server to determine that there is an appropriate plan guide to use, the  statement 
text in the plan guide must match the query being compiled. This must be an exact 
 character-for-character match, including case, whitespace, and comments, just as when 
SQL Server is determining whether it can reuse adhoc query plans, as we discussed earlier in the 
chapter. If your statement text is close, but not quite an exact match, this can lead to a situation 
that is very diffi cult to troubleshoot. When matching a SQL template, whether the defi nition 
also contains a batch that the statement must be part of, SQL Server does  allow more leeway in 
the defi nition of the batch. In particular, keyword case, whitespace, and  comments are ignored. 

 To make sure your plan guides use the exact text that is submitted by your applications, you can 
run a trace using SQL Server Profi ler and capture the SQL:BatchCompleted and RPC:Completed 

C09626249.indd   579 2/16/2009   1:38:35 PM



580 Microsoft SQL Server 2008 Internals

events. After the relevant batch (the one you want to create a plan guide for) shows up in the 
top window of your Profi ler output, you can right-click the event and select Extract Event Data 

to save the SQL Text of the batch to a text fi le. It is not suffi cient to copy and paste from the 
lower window in the Profi ler because the output there can introduce  extra line breaks. 

 To verify that your plan guide was used, you can look at the XML plan for the query. If you 
can run the query directly, you can use the option SET SHOWPLAN_XML ON, or you can 
 capture the showplan XML through a trace. An XML plan has two specifi c items, indicating 
that the query used a plan guide. These items are PlanGuideDB and PlanGuideName. If the 
plan guide was a template plan guide, the XML plan also has the items TemplatePlanGuideDB 
and TemplatePlanGuideName. 

 When a query is submitted for processing, if there are any plan guides in the database at all, SQL 
Server fi rst checks to see if the statement matches a SQL plan guide or Object plan guide. The 
query string is hashed to make it faster to fi nd any matching strings in the  database’s  existing 
plan guides. If no matching SQL or Object plan guides are found, SQL Server then checks 
for a TEMPLATE plan guide. If it fi nds a TEMPLATE guide, it then tries to match the resulting 
 parameterized query to a SQL plan guide. This gives you the  possibility of applying additional 
hints to your queries using forced parameterization. Figure 9-3, copied from SQL Server Books 
Online, shows the process that SQL Server uses to check for  applicable plan guides. 

Start

Request to compile
Statement within Batch

Attempt to match
the SQL plan guide
to Statement
and Batch

Attempt to match
the SQL plan guide
to Statement
and Parameterized
Statement

Attempt to parameterize
Statement using forced
parameterization

Attempt to
parameterize
Statement by
using simple
parameterization

Modify Statement
based on the plan
guide

Compile plan for
Statement

End

Match

Match

Parameterization
succeeded

No Match

No Match
Parameterization

failed

FIGURE 9-3 Checking for applicable plan guides

C09626249.indd   580 2/16/2009   1:38:35 PM



 Chapter 9 Plan Caching and Recompilation 581

 The key steps are the following, which follow the fl owchart from the top left, take the top 
branch to the right, the middle branch down, and then right at the center, to the point where 
the statement is modifi ed based on the plan guide and its hints: 

  1. For a specifi c statement within the batch, SQL Server tries to match the statement 
to a SQL-based plan guide, whose @module_or_batch argument matches that of the 
 incoming batch text, including any constant literal values, and whose @stmt argument 
also matches the statement in the batch. If this kind of plan guide exists and the match 
succeeds, the statement text is modifi ed to include the query hints specifi ed in the plan 
guide. The statement is then compiled using the specifi ed hints. 

  2. If a plan guide is not matched to the statement in step 1, SQL Server tries to parameterize 
the statement by using forced parameterization. In this step, parameterization can fail for 
any one of the following reasons :

❏  The statement is already parameterized or contains local variables. 

❏  The PARAMETERIZATION SIMPLE database SET option is applied (the  default 
 setting), and there is no plan guide of type TEMPLATE that applies to the  statement 
and specifi es the PARAMETERIZATION FORCED query hint. 

❏  A plan guide of type TEMPLATE exists that applies to the statement and specifi es 
the PARAMETERIZATION SIMPLE query hint. 

 Let’s look at an example that involves the distribution of data in the SpecialOfferID column in 
the Sales.SalesOrderDetail table in the AdventureWorks2008 database. There are 12 different 
SpecialOfferID values, and most of them occur only a few hundred times (out of the 121317 
rows in the Sales.SalesOrderDetail) at most, as the following script and output illustrates: 

USE AdventureWorks2008

GO

SELECT SpecialOfferID, COUNT(*) as Total

FROM Sales.SalesOrderDetail

GROUP BY SpecialOfferID;

RESULTS:

SpecialOfferID  Total

--------------  -----------

1               115884

2               3428

3               606

4               80

5               2

7               137

8               98

9               61

11              84

13              524

14              244

16              169

C09626249.indd   581 2/16/2009   1:38:35 PM



582 Microsoft SQL Server 2008 Internals

 As there are 1238 pages in the table, for most of the values, a nonclustered index on 
SpecialOfferID could be useful, so here is the code to build one: 

CREATE INDEX Detail_SpecialOfferIndex ON Sales.SalesOrderDetail(SpecialOfferID); 

 We assume that very few queries actually search for a SpecialOfferID value of 1 or 2, and 
99  percent of the time the queries are looking for the less popular values. We would like 
the Query Optimizer to  autoparameterize queries that access the Sales.SalesOrderDetail 
table, specifying one particular  value for SpecialOfferID. So we create a template plan guide 
to  autoparameterize queries of this form: 

SELECT * FROM Sales.SalesOrderDetail  WHERE SpecialOfferID = 4; 

 However, we want to make sure that the initial parameter that determines the plan is not one 
of the values that might use a Clustered Index scan, namely the values 1 or 2. So we can take 
the autoparameterized query produced by the sp_get_query_template procedure, and use it 
fi rst to create a template plan guide, and then to create a SQL plan guide with the OPTIMIZE 
FOR hint. The hint forces SQL Server to assume a specifi c value of 4 every time the query 
needs to be reoptimized: 

USE AdventureWorks2008;

-- Get plan template and create plan Guide

DECLARE @stmt nvarchar(max);

DECLARE @params nvarchar(max);

EXEC sp_get_query_template

   N'SELECT * FROM Sales.SalesOrderDetail WHERE SpecialOfferID = 4',

   @stmt OUTPUT,

   @params OUTPUT

--SELECT @stmt as statement -- show the value when debugging

--SELECT @params as parameters -- show the value when debugging

EXEC sp_create_plan_guide N'Template_Plan_for SpecialOfferID',

   @stmt,

   N'TEMPLATE',

   NULL,

   @params,

   N'OPTION (PARAMETERIZATION FORCED)';

EXEC sp_create_plan_guide

   @name = N'Force_Value_for_Prepared_Plan',

   @stmt = @stmt,

   @type = N'SQL',

   @module_or_batch = NULL,

   @params = @params,

   @hints = N'OPTION (OPTIMIZE FOR (@0 = 4))';

GO

 You can verify that the plan is being autoparameterized and optimized for a value that uses a 
nonclustered index on SpecialOfferID by running a few tests as follows: 

DBCC FREEPROCCACHE;

SET STATISTICS IO ON;

SELECT * FROM Sales.SalesOrderDetail

C09626249.indd   582 2/16/2009   1:38:36 PM



 Chapter 9 Plan Caching and Recompilation 583

WHERE SpecialOfferID = 3;

GO

SELECT * FROM Sales.SalesOrderDetail

WHERE SpecialOfferID = 4;

GO

SELECT * FROM Sales.SalesOrderDetail

WHERE SpecialOfferID = 5;

GO

 You should note in the STATISTICS IO output that each execution uses a different number of 
reads because it is fi nding a different number of rows through the nonclustered index. You 
can also verify that SQL Server is using the prepared plan by examining the STATISTICS XML 
output. If you set that option to ON, and run the query looking for a value of 5, you should 
have a node in your XML document that looks very much like this: 

<ParameterList>

<ColumnReference Column="@0" ParameterCompiledValue="(4)"

 ParameterRuntimeValue="(5)" />

</ParameterList>

 Plan guides are not intended to speed up query compilation time. Not only does SQL Server fi rst 
have to determine if there is a plan guide that could be a potential match for the query  being 
compiled, but the plan enforced by the plan guide has to be one that the Query Optimizer would 
have come up with on its own. To know that the forced plan is valid, the Query Optimizer has to go 
through most of the process of optimization. The benefi t of plan guides is to reduce  execution time 
for those queries in which the Query Optimizer is not coming up with the best plan on its own. 

 The main plan guide enhancements in SQL Server 2008 have to do with making plan guides 
more usable. SQL Server 2008 contains SMO and Management Studio support, including 
scripting of plan guides as part of scripting out a database. Once a plan guide is scripted, it 
can be copied to other SQL Server instances running the same queries. 

Plan Guide Validation

 One limitation of the SQL Server 2005 implementation of plan guides was that it was  possible 
to change the physical design of a table (for example, dropping an index) in a way that could 
 invalidate a plan guide and any queries using that plan guide would fail whenever they were 
 executed. SQL Server 2008 can detect cases when changing the table design would break a plan 
guide. It can now recompile the query without the plan guide and to notify the  administrator 
through trace events. In addition, there is a new system function that can be used to validate plan 
guides. This function can be used to detect physical database design changes that break existing 
plan guides and allow you to roll back the breaking transaction before it can break the system. 

 To validate all of the existing plan guides in a system, you can use the sys.fn_validate_plan_guide 
function: 

SELECT * FROM sys.plan_guides pg 

CROSS APPLY 

(SELECT * FROM sys.fn_validate_plan_guide(pg.plan_guide_id)) v;

C09626249.indd   583 2/16/2009   1:38:36 PM



584 Microsoft SQL Server 2008 Internals

 The function returns nothing for valid plan guides. When the guide would generate an error, 
it returns a row. So you can incorporate this into any schema changes in the system: 

BEGIN TRANSACTION;

DROP INDEX t2.myindex;

IF EXISTS(

SELECT * FROM sys.plan_guides pg 

CROSS APPLY 

  (SELECT * FROM sys.fn_validate_plan_guide(pg.plan_guide_id)) v

)

ROLLBACK TRANSACTION

ELSE

COMMIT TRANSACTION;

Freezing a Plan from Plan Cache

 SQL Server 2008 added a new stored procedure to allow you to create a plan guide 
 automatically from a plan that has already been cached. The procedure sp_create_plan_
guide_from_handle requires a plan_handle and a plan guide name as parameters and  creates 
a plan guide using the execution plan stored in cache for that plan_handle value. The 
 capability is called plan freezing because it allows you to make sure that a well-performing 
plan is reused every time the associated query is executed. Suppose that we have found 
that the plan just executed for the following query performs extremely well, and we’d like to 
make sure that plan is the one used on subsequent executions: 

SELECT City, StateProvinceID, PostalCode FROM Person.Address ORDER BY PostalCode DESC;

 I can fi nd the corresponding plan in cache by searching for a text value that matches the query: 

SELECT plan_handle 

FROM sys.dm_exec_query_stats AS qs CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) AS st

WHERE st.text LIKE N'SELECT City,%';

 Once I have that plan_handle, I can pass it as a parameter to the sp_create_plan_guide_from_
handle procedure as follows: 

EXEC sp_create_plan_guide_from_handle

     @name = N'Guide1_from_XML_showplan',

     @plan_handle = 0x06000600F19B1E1FC0A14C0A000000000000000000000000

 There are several situations in which plan guides and plan freezing can be particularly benefi cial: 

■  You can use plan guides to provide a workaround for plan regressions after a server 
upgrade. 

■  You can disallow plan changes for critical plans in a well-performing system. 

■  You can troubleshoot a problematic query by freezing a good plan (assuming a good 
plan ever is used). 

C09626249.indd   584 2/16/2009   1:38:36 PM



 Chapter 9 Plan Caching and Recompilation 585

■  ISVs can create known good plans for shipping with their applications. 

■  You can optimize on a test system and then port the plan guide to your production 
system. 

■  You can include plan guides in a cloned database. 

Summary

 For all the caching mechanisms, reusing a cached plan avoids recompilation and 
 optimization. This saves compilation time, but it means that the same plan is used  regardless 
of the particular parameter values passed in. If the optimal plan for a given parameter value 
is not the same as the cached plan, the optimal execution time is not achieved. For this 
 reason, SQL Server is very conservative about autoparameterization. When an application 
uses sp_executesql, prepare and execute, or stored procedures, the application developer is 
responsible for determining what should be parameterized. You should parameterize only 
constants whose range of values does not drastically affect the optimization choices. 

 In this chapter, we looked at the caching and reuse of plans generated by the Query 
Optimizer. SQL Server can cache and reuse plans not only from stored procedures, but 
also from  adhoc and autoparameterized queries. Because generating query plans can be 
 expensive, it helps to understand how and why query plans are reused and when they must 
be regenerated. Understanding how caching and reusing plans work helps you determine 
when using the cached plan can be the right choice and when you might need to make 
sure SQL Server comes up with a new plan to give your queries and applications the best 
performance.  

C09626249.indd   585 2/16/2009   1:38:36 PM



C09626249.indd   586 2/16/2009   1:38:36 PM



  587

Chapter 10

Transactions and Concurrency
 Kalen Delaney 

 Concurrency can be defi ned as the ability of multiple processes to access or change shared 
data at the same time. The greater the number of concurrent user processes that can be  active 
without interfering with each other, the greater the concurrency of the database system. 

 Concurrency is reduced when a process that is changing data prevents other processes from 
reading that data or when a process that is reading data prevents other processes from 
changing that data. I use the terms reading or accessing to describe the impact of using 
the SELECT statement on your data. Concurrency is also affected when multiple  processes 
 attempt to change the same data simultaneously and they cannot all succeed without 
 sacrifi cing data consistency. I use the terms modifying, changing, or writing to describe the 
impact of using the INSERT, UPDATE, MERGE, or DELETE statements on your data. (Note that 
MERGE is a new data modifi cation statement in SQL Server 2008, and you can think of it as a 
combination of INSERT, UPDATE, and DELETE.) 

 In general, database systems can take two approaches to managing concurrent data access: 
optimistic or pessimistic. Microsoft SQL Server 2008 supports both approaches. Pessimistic 
concurrency was the only concurrency model available before SQL Server 2005. As of SQL 
Server 2005, you specify which model to use by using two database options and a SET option 
called TRANSACTION ISOLATION LEVEL.  

 After I describe the basic differences between the two models, we look at the fi ve  possible 
isolation levels in SQL Server 2008, as well as the internals of how SQL Server controls 
 concurrent access using each model. We look at how to control the isolation level, and we 
look at the metadata that shows you what SQL Server is doing.  

Concurrency Models

 In either concurrency model, a confl ict can occur if two processes try to modify the same 
data at the same time. The difference between the two models lies in whether confl icts can 
be avoided before they occur or can be dealt with in some manner after they occur.  

Pessimistic Concurrency

 With pessimistic concurrency, the default behavior is for SQL Server to acquire locks to 
block access to data that another process is using. Pessimistic concurrency assumes that 
enough data modifi cation operations are in the system that any given read operation is likely 

C10626249.indd   587 2/16/2009   5:18:19 PM



588 Microsoft SQL Server 2008 Internals

 affected by a data modifi cation made by another user. In other words, the system behaves 
pessimistically and assumes that a confl ict will occur. Pessimistic concurrency avoids confl icts 
by acquiring locks on data that is being read, so no other processes can modify that data. It 
also acquires locks on data being modifi ed, so no other processes can access that data for 
either reading or modifying. In other words, readers block writers and writers block readers 
in a pessimistic concurrency environment.  

Optimistic Concurrency

 Optimistic concurrency assumes that there are suffi ciently few confl icting data  modifi cation 
operations in the system that any single transaction is unlikely to modify data that  another 
transaction is modifying. The default behavior of optimistic concurrency is to use row 
 versioning to allow data readers to see the state of the data before the modifi cation occurs. 
Older versions of data rows are saved, so a process reading data can see the data as it was 
when the process started reading and not be affected by any changes being made to that 
data. A process that modifi es the data is unaffected by processes reading the data because 
the reader is accessing a saved version of the data rows. In other words, readers do not block 
writers and writers do not block readers. Writers can and will block writers, however, and this 
is what causes confl icts. SQL Server generates an error message when a confl ict occurs, but it 
is up to the application to respond to that error. 

Transaction Processing

 No matter what concurrency model you’re working with, an understanding of transactions 
is crucial. A transaction is the basic unit of work in SQL Server. Typically, it consists of several 
SQL commands that read and update the database, but the update is not considered fi nal 
until a COMMIT command is issued (at least for an explicit transaction). In general, when I 
talk about a modifi cation operation or a read operation, I am talking about the  transaction 
that performs the data modifi cation or the read, which is not necessarily a single SQL 
 statement. When I say that writers will block readers, I mean that so long as the transaction that 
performed the write operation is active, no other process can read the modifi ed data. 

 The concept of a transaction is fundamental to understanding concurrency control. The 
 mechanics of transaction control from a programming perspective are beyond the scope 
of this book, but I discuss basic transaction properties. I also go into detail about the 
 transaction isolation levels because that has a direct impact on how SQL Server manages the 
data being accessed in your transactions.  

 An implicit transaction is any individual INSERT, UPDATE, DELETE, or MERGE statement. (You 
can also consider SELECT statements to be implicit transactions, although SQL Server does 
not write to the log when SELECT statements are processed.) No matter how many rows are 
affected, the statement must exhibit all the ACID properties of a transaction, which I tell you 

C10626249.indd   588 2/16/2009   5:18:19 PM



 Chapter 10 Transactions and Concurrency 589

about in the next section. An explicit transaction is one whose beginning is marked with a 
BEGIN TRAN statement and whose end is marked by a COMMIT TRAN or ROLLBACK TRAN 
statement. Most of the examples I present use explicit transactions because it is the only way 
to show the state of SQL Server in the middle of a transaction. For example, many types of 
locks are held for only the duration of the transaction. I can begin a transaction, perform some 
operations, look around in the metadata to see what locks are being held, and then end the 
transaction. When the transaction ends, the locks are released; I can no longer look at them. 

ACID Properties

 Transaction processing guarantees the consistency and recoverability of SQL Server databases. 
It ensures that all transactions are performed as a single unit of work—even in the presence 
of a hardware or general system failure. Such transactions are referred to as having the ACID 
properties, with ACID standing for atomicity, consistency, isolation, and durability. In addition 
to guaranteeing that explicit multistatement transactions maintain the ACID properties, SQL 
Server guarantees that an implicit transaction also maintains the ACID properties. 

 Here’s an example in pseudocode of an explicit ACID transaction:  

BEGIN TRANSACTION DEBIT_CREDIT 

Debit savings account $1000 

Credit checking account $1000 

COMMIT TRANSACTION DEBIT_CREDIT

 Now let’s take a closer look at each of the ACID properties. 

Atomicity

 SQL Server guarantees the atomicity of its transactions. Atomicity means that each 
 transaction is treated as all or nothing—it either commits or aborts. If a transaction commits, 
all its effects remain. If it aborts, all its effects are undone. In the preceding DEBIT_CREDIT 
example, if the savings account debit is refl ected in the database but the checking account 
credit isn’t, funds essentially disappear from the database—that is, funds are subtracted from 
the savings account but never added to the checking account. If the reverse occurs (if the 
checking account is credited and the savings account is not debited), the customer’s checking 
account mysteriously increases in value without a corresponding customer cash deposit or 
account transfer. Because of the atomicity feature of SQL Server, both the debit and credit must 
be completed or else neither event is completed. 

Consistency

 The consistency property ensures that a transaction won’t allow the system to arrive at an 
incorrect logical state—the data must always be logically correct. Constraints and rules are 
honored even in the event of a system failure. In the DEBIT_CREDIT example, the logical rule 

C10626249.indd   589 2/16/2009   5:18:19 PM



590 Microsoft SQL Server 2008 Internals

is that money can’t be created or destroyed: a corresponding, counterbalancing entry must 
be made for each entry. (Consistency is implied by, and in most situations redundant with, 
atomicity, isolation, and durability.) 

Isolation

 Isolation separates concurrent transactions from the updates of other incomplete  transactions. 
In the DEBIT_CREDIT example, another transaction can’t see the work in  progress while the 
transaction is being carried out. For example, if another transaction reads the balance of the 
savings account after the debit occurs, and then the DEBIT_CREDIT  transaction is aborted, 
the other transaction is working from a balance that never logically existed. 

 SQL Server accomplishes isolation among transactions automatically. It locks data or  creates 
row versions to allow multiple concurrent users to work with data while preventing side 
 effects that can distort the results and make them different from what would be expected if 
users were to serialize their requests (that is, if requests were queued and serviced one at a 
time). This serializability feature is one of the isolation levels that SQL Server supports. SQL 
Server supports multiple isolation levels so that you can choose the appropriate tradeoff 
 between how much data to lock, how long to hold locks, and whether to allow users access 
to prior versions of row data. This tradeoff is known as concurrency vs. consistency.  

Durability

 After a transaction commits, the durability property of SQL Server ensures that the effects 
of the transaction persist even if a system failure occurs. If a system failure occurs while a 
 transaction is in progress, the transaction is completely undone, leaving no partial effects 
on the data. For example, if a power outage occurs in the middle of a transaction before the 
transaction is committed, the entire transaction is rolled back when the system is restarted. 
If the power fails immediately after the acknowledgment of the commit is sent to the calling 
 application, the transaction is guaranteed to exist in the database. Write-ahead logging and 
automatic rollback and roll-forward of transactions during the recovery phase of SQL Server 
startup ensure durability. 

Transaction Dependencies

 In addition to supporting all four ACID properties, a transaction might exhibit several 
other behaviors. Some people call these behaviors “dependency problems” or “ consistency 
 problems,” but I don’t necessarily think of them as problems. They are merely possible 
 behaviors, and except for lost updates, which are never considered desirable, you can 
 determine which of these behaviors you want to allow and which you want to avoid. 
Your choice of isolation level determines which of these behaviors is allowed.  

C10626249.indd   590 2/16/2009   5:18:19 PM



 Chapter 10 Transactions and Concurrency 591

Lost Updates

 Lost updates occur when two processes read the same data and both manipulate the data, 
changing its value, and then both try to update the original data to the new value. The second 
process might overwrite the fi rst update completely. For example, suppose that two clerks in a 
receiving room are receiving parts and adding the new shipments to the inventory database. 
Clerk A and Clerk B both receive shipments of widgets. They both check the current inventory 
and see that 25 widgets are currently in stock. Clerk A’s shipment has 50 widgets, so he adds 
50 to 25 and updates the current value to 75. Clerk B’s shipment has 20 widgets, so she adds 
20 to the value of 25 that she originally read and updates the current value to 45, completely 
overriding the 50 new widgets that Clerk A processed. Clerk A’s update is lost. 

 Lost updates are only one of the behaviors described here that you probably want to avoid in 
all cases. 

Dirty Reads

 Dirty reads occur when a process reads uncommitted data. If one process has changed data but 
not yet committed the change, another process reading the data will read it in an  inconsistent 
state. For example, say that Clerk A has updated the old value of 25 widgets to 75, but 
 before he commits, a salesperson looks at the current value of 75 and commits to  sending 
60  widgets to a customer the following day. If Clerk A then realizes that the widgets are 
 defective and sends them back to the manufacturer, the salesperson has done a dirty read 
and taken action based on uncommitted data.  

 By default, dirty reads are not allowed. Keep in mind that the process updating the data 
has no control over whether another process can read its data before the fi rst process is 
 committed. It’s up to the process reading the data to decide whether it wants to read data 
that is not guaranteed to be committed.  

Nonrepeatable Reads

 A read is nonrepeatable if a process might get different values when reading the same data 
in two separate reads within the same transaction. This can happen when another process 
changes the data in between the reads that the fi rst process is doing. In the receiving room 
example, suppose that a manager comes in to do a spot check of the current  inventory. 
She walks up to each clerk, asking the total number of widgets received today and  adding 
the numbers on her calculator. When she’s done, she wants to double-check the result, so 
she goes back to the fi rst clerk. However, if Clerk A received more widgets between the 
manager’s fi rst and second inquiries, the total is different and the reads are nonrepeatable. 
Nonrepeatable reads are also called inconsistent analysis. 

Phantoms

 Phantoms occur when membership in a set changes. It can happen only when a query 
with a predicate—such as WHERE count_of_widgets < 10—is involved. A phantom  occurs 

C10626249.indd   591 2/16/2009   5:18:19 PM



592 Microsoft SQL Server 2008 Internals

if two SELECT operations using the same predicate in the same transaction return a 
 different  number of rows. For example, let’s say that our manager is still doing spot checks 
of  inventory. This time, she goes around the receiving room and notes which clerks have 
fewer than 10 widgets. After she completes the list, she goes back around to offer advice to 
 everyone with a low total. However, if during her fi rst walkthrough, a clerk with fewer than 
10 widgets returned from a break but was not spotted by the manager, that clerk is not on 
the manager’s list even though he meets the criteria in the predicate. This additional clerk 
(or row) is considered to be a phantom. 

 The behavior of your transactions depends on the isolation level. As mentioned earlier, you 
can decide which of the behaviors described previously to allow by setting an appropriate 
isolation level using the command SET TRANSACTION ISOLATION LEVEL <isolation_level>. 
Your concurrency model (optimistic or pessimistic) determines how the isolation level is 
implemented—or, more specifi cally, how SQL Server guarantees that the behaviors you don’t 
want will not occur.  

Isolation Levels

 SQL Server 2008 supports fi ve isolation levels that control the behavior of your read 
 operations. Three of them are available only with pessimistic concurrency, one is available 
only with optimistic concurrency, and one is available with either. We look at these levels 
now, but a complete understanding of isolation levels also requires an understanding of 
locking and row versioning. In my descriptions of the isolation levels, I mention the locks or 
row versions that support that level, but keep in mind that locking and row versioning are 
discussed in detail later in the chapter. 

Read Uncommitted

 In Read Uncommitted isolation, all the behaviors described previously, except lost updates, 
are possible. Your queries can read uncommitted data, and both nonrepeatable reads and 
phantoms are possible. Read Uncommitted isolation is implemented by allowing your read 
operations to not take any locks, and because SQL Server isn’t trying to acquire locks, it won’t 
be blocked by confl icting locks acquired by other processes. Your process is able to read data 
that another process has modifi ed but not yet committed.  

 In addition to reading individual values that are not yet committed, the Read Uncommitted 
isolation level introduces other undesirable behaviors. When using this isolation level 
and scanning an entire table, SQL Server can decide to do an allocation order scan (in 
 page-number order), instead of a logical order scan (which would follow the page pointers). 
If there are concurrent operations by other processes that change data and move rows to a 
new location in the table, your allocation order scan can end up reading the same row twice. 
This can happen when you’ve read a row before it is updated, and then the update moves 
the row to a higher page number than your scan encounters later. In addition, performing an 

C10626249.indd   592 2/16/2009   5:18:19 PM



 Chapter 10 Transactions and Concurrency 593

allocation order scan under Read Uncommitted can cause you to miss a row completely. This 
can happen when a row on a high page number that hasn’t been read yet is updated and 
moved to a lower page number that has already been read. 

 Although this scenario isn’t usually the ideal option, with Read Uncommitted, you can’t get 
stuck waiting for a lock, and your read operations don’t acquire any locks that might affect 
other processes that are reading or writing data.  

 When using Read Uncommitted, you give up the assurance of strongly consistent data in 
 favor of high concurrency in the system without users locking each other out. So when 
should you choose Read Uncommitted? Clearly, you don’t want to use it for  fi nancial 
 transactions in which every number must balance. But it might be fi ne for certain 
 decision-support analyses—for example, when you look at sales trends—for which complete 
 precision isn’t necessary and the tradeoff in higher concurrency makes it worthwhile. Read 
Uncommitted isolation is a pessimistic solution to the problem of too much blocking activity 
because it just ignores the locks and does not provide you with transactional consistency.  

Read Committed

 SQL Server 2008 supports two varieties of Read Committed isolation, which is the default 
 isolation level. This isolation level can be either optimistic or pessimistic, depending on the 
 database setting READ_COMMITTED_SNAPSHOT. Because the default for the database  option 
is off, the default for this isolation level is to use pessimistic concurrency control. Unless 
 indicated otherwise, when I refer to the Read Committed isolation level, I am referring to both 
variations of this isolation level. I refer to the pessimistic implementation as Read Committed 
(locking), and I refer to the optimistic implementation as Read Committed (snapshot).  

 Read Committed isolation ensures that an operation never reads data that another 
 application has changed but not yet committed. (That is, it never reads data that logically 
never existed.) With Read Committed (locking), if another transaction is updating data and 
consequently has exclusive locks on data rows, your transaction must wait for those locks to 
be released before you can use that data (whether you’re reading or modifying). Also, your 
transaction must put share locks (at a minimum) on the data that are visited, which means 
that data might be unavailable to others to use. A share lock doesn’t prevent others from 
reading the data, but it makes them wait to update the data. By default, share locks can be 
released after the data has been processed—they don’t have to be held for the duration of 
the transaction, or even for the duration of the statement. (That is, if shared row locks are 
acquired, each row lock can be released as soon as the row is processed, even though the 
statement might need to process many more rows.) 

 Read Committed (snapshot) also ensures that an operation never reads uncommitted data, 
but not by forcing other processes to wait. In Read Committed (snapshot), every time a row 
is updated, SQL Server generates a version of the changed row with its previous  committed 
values. The data being changed is still locked, but other processes can see the previous 
 versions of the data as it was before the update operation began. 

C10626249.indd   593 2/16/2009   5:18:19 PM



594 Microsoft SQL Server 2008 Internals

Repeatable Read

 Repeatable Read is a pessimistic isolation level. It adds to the properties of Committed Read 
by ensuring that if a transaction revisits data or a query is reissued, the data does not change. 
In other words, issuing the same query twice within a transaction cannot pick up any changes 
to data values made by another user’s transaction because no changes can be made by 
other transactions. However, the Repeatable Read isolation level does allow phantom rows to 
appear.  

 Preventing nonrepeatable reads is a desirable safeguard in some cases. But there’s no free 
lunch. The cost of this extra safeguard is that all the shared locks in a transaction must be held 
until the completion (COMMIT or ROLLBACK) of the transaction. (Exclusive locks must  always 
be held until the end of a transaction, no matter what the isolation level or  concurrency 
model, so that a transaction can be rolled back if necessary. If the locks were released sooner, 
it might be impossible to undo the work because other concurrent transactions might have 
used the same data and changed the value.) No other user can modify the data visited by 
your transaction as long as your transaction is open. Obviously, this can seriously reduce 
 concurrency and degrade performance. If transactions are not kept short or if applications 
are not written to be aware of such potential lock contention issues, SQL Server can appear to 
stop responding when a process is waiting for locks to be released.  

 Note You can control how long SQL Server waits for a lock to be released by using the session 
option LOCK_TIMEOUT. It is a SET option, so the behavior can be controlled only for an individual 
session. There is no way to set a LOCK_TIMEOUT value for SQL Server as a whole. You can read 
about LOCK_TIMEOUT in SQL Server Books Online.  

Snapshot

 Snapshot isolation (sometimes referred to as SI) is an optimistic isolation level. Like Read 
Committed (snapshot), it allows processes to read older versions of committed data if the 
 current version is locked. The difference between Snapshot and Read Committed ( snapshot) 
has to do with how old the older versions have to be. (We see the details in the  section 
 entitled “Row Versioning,” later in this chapter.) Although the behaviors prevented by 
Snapshot isolation are the same as those prevented by Serializable, Snapshot is not truly a 
Serializable isolation level. With Snapshot isolation, it is possible to have two  transactions 
 executing simultaneously that give us a result that is not possible in any serial  execution. 
Table 10-1 shows an example of two simultaneous transactions. If they run in parallel, they 
end up switching the price of two books in the titles table in the pubs database. However, 
there is no serial execution that would end up switching the values, whether we run 
Transaction 1 and then Transaction 2, or run Transaction 2 and then Transaction 1. Either 
 serial order ends up with the two books having the same price.  

C10626249.indd   594 2/16/2009   5:18:19 PM



 Chapter 10 Transactions and Concurrency 595

TABLE 10-1 Two Simultaneous Transactions in Snapshot Isolation That 

Cannot Be Run Serially  

Time Transaction 1 Transaction 2

1 USE pubs 

SET TRANSACTION ISOLATION LEVEL 

SNAPSHOT

DECLARE @price money 

BEGIN TRAN

USE pubs 

SET TRANSACTION ISOLATION LEVEL 

SNAPSHOT

DECLARE @price money 

BEGIN TRAN

2 SELECT @price = price  

FROM titles  

WHERE title_id = 'BU1032'

SELECT @price = price  

FROM titles  

WHERE title_id = 'PS7777'

3 UPDATE titles  

SET price = @price 

WHERE title_id = 'PS7777'

UPDATE titles  

SET price = @price 

WHERE title_id = 'BU1032'

4 COMMIT TRAN COMMIT TRAN

Serializable

Serializable is also a pessimistic isolation level. The Serializable isolation level adds to the 
properties of Repeatable Read by ensuring that if a query is reissued, rows were not added in 
the interim. In other words, phantoms do not appear if the same query is issued twice within 
a transaction. Serializable is therefore the strongest of the pessimistic isolation levels because 
it prevents all the possible undesirable behaviors discussed earlier—that is, it does not  allow 
uncommitted reads, nonrepeatable reads, or phantoms, and it also guarantees that your 
transactions can be run serially.  

Preventing phantoms is another desirable safeguard. But once again, there’s no free lunch. 
The cost of this extra safeguard is similar to that of Repeatable Read—all the shared locks in a 
transaction must be held until the transaction completes. In addition, enforcing the Serializable 
isolation level requires that you not only lock data that has been read, but also lock data that 
does not exist! For example, suppose that within a transaction, we issue a SELECT statement to 
read all the customers whose ZIP code is between 98000 and 98100, and on fi rst execution, 
no rows satisfy that condition. To enforce the Serializable isolation level, we must lock that 
range of potential rows with ZIP codes between 98000 and 98100 so that if the same query 
is reissued, there are still no rows that satisfy the condition. SQL Server handles this situation 
by using a special kind of lock called a key-range lock. Key-range locks require that there be 
an index on the column that defi nes the range of values. (In this example, that would be the 
column containing the ZIP codes.) If there is no index on that column, Serializable isolation 
 requires a table lock. I discuss the different types of locks in detail in the section on locking. 
The Serializable level gets its name from the fact that running multiple serializable transactions 
at the same time is the equivalent of running them one at a time—that is, serially.  

For example, suppose that transactions A, B, and C run simultaneously at the Serializable 
level and each tries to update the same range of data. If the order in which the  transactions 
 acquire locks on the range of data is B, C, and then A, the result obtained by running all three 

Time Transaction 1 Transaction 2

C10626249.indd   595 2/16/2009   5:18:19 PM



596 Microsoft SQL Server 2008 Internals

 simultaneously is the same as if they were run sequentially in the order B, C, and then A. 
Serializable does not imply that the order is known in advance. The order is considered a chance 
event. Even on a single-user system, the order of transactions hitting the queue would be 
 essentially random. If the batch  order is important to your application, you should implement it 
as a pure batch system. Serializable means only that there should be a way to run the  transactions 
serially to get the same result you get when you run them simultaneously. Table 10-1 illustrates a 
case where two transactions cannot be run serially and get the same result.  

Table 10-2 summarizes the behaviors that are possible in each isolation level and notes the 
concurrency control model that is used to implement each level. You can see that Read 
Committed and Read Committed (snapshot) are identical in the behaviors they  allow, 
but the behaviors are implemented differently—one is pessimistic (locking), and one is 
 optimistic (row versioning). Serializable and Snapshot also have the same No values for all the 
 behaviors, but one is pessimistic and one is optimistic.  

TABLE 10-2 Behaviors Allowed in Each Isolation Level 

 Isolation Level Dirty Read Nonrepeatable Read Phantom Concurrency Control

 Read Uncommitted Yes Yes Yes Pessimistic

 Read Committed 
(locking)

No Yes Yes Pessimistic

 Read Committed 
(snapshot)

No Yes Yes Optimistic

 Repeatable Read No No Yes Pessimistic

 Snapshot No No No Optimistic

 Serializable No No No Pessimistic

Locking

 Locking is a crucial function of any multiuser database system, including SQL Server. Locks 
are applied in both the pessimistic and optimistic concurrency models, although the way 
other processes deal with locked data is different in each. The reason I refer to the pessimistic 
variation of Read Committed isolation as Read Committed (locking) is because locking allows 
concurrent transactions to maintain consistency. In the pessimistic model, writers always block 
readers and writers, and readers can block writers. In the optimistic model, the only blocking 
that occurs is that writers block other writers. But to really understand what these simplifi ed 
behavior summaries mean, we need to look at the details of SQL Server locking.  

Locking Basics

 SQL Server can lock data using several different modes. For example, read operations  acquire 
shared locks, and write operations acquire exclusive locks. Update locks are acquired 
 during the initial portion of an update operation, while SQL Server is searching for the data 

Isolation Level Dirty Read Nonrepeatable Read Phantom Concurrency Control

C10626249.indd   596 2/16/2009   5:18:20 PM



 Chapter 10 Transactions and Concurrency 597

to update. SQL Server acquires and releases all these types of locks automatically. It also 
manages compatibility between lock modes, resolves deadlocks, and escalates locks if  necessary. 
It controls locks on tables, on the pages of a table, on index keys, and on individual rows 
of data. Locks can also be held on system data—data that’s private to the database system, 
such as page headers and indexes. 

 SQL Server provides two separate locking systems. The fi rst system affects all fully shared 
data and provides row locks, page locks, and table locks for tables, data pages, Large Object 
(LOB) pages, and leaf-level index pages. The second system is used internally for index 
concurrency control, controlling access to internal data structures and retrieving individual 
rows of data pages. This second system uses latches, which are less resource-intensive than 
locks and provide performance optimizations. You could use full-blown locks for all locking, 
but because of their complexity, they would slow down the system if you used them for all 
internal needs. If you examine locks using the sp_lock system stored procedure or a similar 
mechanism that gets information from the sys.dm_tran_locks view, you cannot see latches—
you see only information about locks. 

 Another way to look at the difference between locks and latches is that locks ensure the 
 logical consistency of the data and latches ensure the physical consistency. Latching happens 
when you place a row physically on a page or move data in other ways, such as  compressing 
the space on a page. SQL Server must guarantee that this data movement can happen 
 without interference. 

Spinlocks

 For shorter-term needs, SQL Server achieves mutual exclusion with a spinlock. Spinlocks are 
used purely for mutual exclusion and never to lock user data. They are even more lightweight 
than latches, which are lighter than the full locks used for data and index leaf pages. The 
 requester of a spinlock repeats its request if the lock is not immediately available. (That is, the 
requester “spins” on the lock until it is free.)  

 Spinlocks are often used as mutexes within SQL Server for resources that are usually not busy. If 
a resource is busy, the duration of a spinlock is short enough that retrying is better than  waiting 
and then being rescheduled by the operating system, which results in context  switching  between 
threads. The savings in context switches more than offsets the cost of spinning as long as you 
don’t have to spin too long. Spinlocks are used for situations in which the wait for a  resource is 
expected to be brief (or if no wait is expected). The sys.dm_os_tasks dynamic  management view 
(DMV) shows a status of SPINLOOP for any task that is currently using a spinlock. 

Lock Types for User Data

 We examine four aspects of locking user data. First we look at the mode of locking (the type 
of lock). I already mentioned shared, exclusive, and update locks, and I go into more  detail 

C10626249.indd   597 2/16/2009   5:18:20 PM



598 Microsoft SQL Server 2008 Internals

about these modes as well as others. Next we look at the granularity of the lock, which 
 specifi es how much data is covered by a single lock. This can be a row, a page, an index key, 
a range of index keys, an extent, a partition, or an entire table. The third aspect of locking is 
the duration of the lock. As mentioned earlier, some locks are released as soon as the data 
has been accessed, and some locks are held until the transaction commits or rolls back. The 
fourth aspect of locking concerns the ownership of the lock (the scope of the lock). Locks can 
be owned by a session, a transaction, or a cursor. 

Lock Modes

 SQL Server uses several locking modes, including shared locks, exclusive locks, update locks, 
and intent locks, plus variations on these. It is the mode of the lock that determines whether 
a concurrently requested lock is compatible with locks that have already been granted. We 
see the lock compatibility matrix at the end of this section in Figure 10-2.  

Shared Locks

 Shared locks are acquired automatically by SQL Server when data is read. Shared locks can be 
held on a table, a page, an index key, or an individual row. Many processes can hold shared 
locks on the same data, but no process can acquire an exclusive lock on data that has a shared 
lock on it (unless the process requesting the exclusive lock is the same process as the one 
holding the shared lock). Normally, shared locks are released as soon as the data has been 
read, but you can change this by using query hints or a different transaction isolation level. 

Exclusive Locks

 SQL Server automatically acquires exclusive locks on data when the data is modifi ed by an 
INSERT, UPDATE, or DELETE operation. Only one process at a time can hold an exclusive lock 
on a particular data resource; in fact, as you see when we discuss lock compatibility later 
in this chapter, no locks of any kind can be acquired by a process if another process has 
the requested data resource exclusively locked. Exclusive locks are held until the end of the 
transaction. This means the changed data is normally not available to any other process until 
the current transaction commits or rolls back. Other processes can decide to read exclusively 
locked data by using query hints. 

Update Locks

 Update locks are really not a separate kind of lock; they are a hybrid of shared and exclusive 
locks. They are acquired when SQL Server executes a data modifi cation operation but fi rst, 
SQL Server needs to search the table to fi nd the resource that needs to be modifi ed. Using 
query hints, a process can specifi cally request update locks, and in that case, the update locks 
prevent the conversion deadlock situation presented in Figure 10-6 later in this chapter.  

C10626249.indd   598 2/16/2009   5:18:20 PM



 Chapter 10 Transactions and Concurrency 599

 Update locks provide compatibility with other current readers of data, allowing the process 
to later modify data with the assurance that the data hasn’t been changed since it was last 
read. An update lock is not suffi cient to allow you to change the data—all modifi cations 
 require that the data resource being modifi ed have an exclusive lock. An update lock acts 
as a serialization gate to queue future requests for the exclusive lock. (Many processes can 
hold shared locks for a resource, but only one process can hold an update lock.) So long as a 
 process holds an update lock on a resource, no other process can acquire an update lock or 
an exclusive lock for that resource; instead, another process requesting an update or  exclusive 
lock for the same resource must wait. The process holding the update lock can  convert it 
into an exclusive lock on that resource because the update lock prevents lock incompatibility 
with any other processes. You can think of update locks as “intent-to-update” locks, which 
is essentially the role they perform. Used alone, update locks are insuffi cient for updating 
data—an exclusive lock is still required for actual data modifi cation. Serializing access for the 
exclusive lock lets you avoid conversion deadlocks. Update locks are held until the end of the 
transaction or until they are converted to an exclusive lock. 

 Don’t let the name fool you: update locks are not just for UPDATE operations. SQL Server uses 
update locks for any data modifi cation operation that requires a search for the data  prior to the 
actual modifi cation. Such operations include qualifi ed updates and deletes, as well as  inserts 
into a table with a clustered index. In the latter case, SQL Server must fi rst search the data 
( using the clustered index) to fi nd the correct position at which to insert the new row. While 
SQL Server is only searching, it uses update locks to protect the data; only after it has found the 
correct location and begins inserting does it convert the update lock to an exclusive lock. 

Intent Locks

 Intent locks are not really a separate mode of locking; they are a qualifi er to the modes 
 previously discussed. In other words, you can have intent shared locks, intent exclusive locks, 
and even intent update locks. Because SQL Server can acquire locks at different levels of 
granularity, a mechanism is needed to indicate that a component of a resource is already 
locked. For example, if one process tries to lock a table, SQL Server needs a way to determine 
whether a row (or a page) of that table is already locked. Intent locks serve this purpose. We 
discuss them in more detail when we look at lock granularity. 

Special Lock Modes

 SQL Server offers three additional lock modes: schema stability locks, schema modifi cation 
locks, and bulk update locks. When queries are compiled, schema stability locks prevent 
 other processes from acquiring schema modifi cation locks, which are taken when a table’s 
structure is being modifi ed. A bulk update lock is acquired when the BULK INSERT  command 
is executed or when the bcp utility is run to load data into a table. In addition, the bulk 
 import operation must request this special lock by using the TABLOCK hint. Alternatively, the 
table owner can set the table option called table lock on bulk load to True, and then any bulk 
copy IN or BULK INSERT operation automatically requests a bulk update lock. Requesting 

C10626249.indd   599 2/16/2009   5:18:20 PM



600 Microsoft SQL Server 2008 Internals

this  special bulk update table lock does not necessarily mean it is granted. If other processes 
already hold locks on the table, or if the table has any indexes, a bulk update lock cannot be 
granted. If multiple connections have requested and received a bulk update lock, they can 
perform parallel loads into the same table. Unlike exclusive locks, bulk update locks do not 
confl ict with each other, so concurrent inserts by multiple connections is supported. 

Conversion Locks

Conversion locks are never requested directly by SQL Server, but are the result of a  conversion 
from one mode to another. The three types of conversion locks supported by SQL Server 2008 
are SIX, SIU, and UIX. The most common of these is the SIX, which occurs if a  transaction is 
 holding a shared (S) lock on a resource and later an IX lock is needed. The lock mode is  indicated 
as SIX. For example, suppose that you issue the following batch: 

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ 

BEGIN TRAN 

SELECT * FROM bigtable  

UPDATE bigtable 

    SET col = 0 

    WHERE keycolumn = 100

If the table is large, the SELECT statement acquires a shared table lock. (If the table has only 
a few rows, SQL Server acquires individual row or key locks.) The UPDATE statement then 
 acquires a single exclusive key lock to perform the update of a single row, and the X lock at 
the key level means an IX lock at the page and table level. The table then shows SIX when 
viewed through sys.dm_tran_locks. Similarly, SIU occurs when a process has a shared lock 
on a table and an update lock on a row of that table, and UIX occurs when a process has an 
 update lock on the table and an exclusive lock on a row. 

Table 10-3 shows most of the lock modes, as well as the abbreviations used in sys.dm_tran_locks. 

TABLE 10-3 SQL Server Lock Modes 

Abbreviation Lock Mode Description

S Shared Allows other processes to read but not change the locked 
resource.

X Exclusive Prevents another process from modifying or reading data 
in the locked resource. 

U Update Prevents other processes from acquiring an update or 
 exclusive lock; used when searching for the data to 
modify.

IS Intent shared Indicates that a component of this resource is locked with 
a shared lock. This lock can be acquired only at the table 
or page level.

IU Intent update Indicates that a component of this resource is locked with 
an update lock. This lock can be acquired only at the table 
or page level.

Abbreviation Lock Mode Description

C10626249.indd   600 2/16/2009   5:18:20 PM



 Chapter 10 Transactions and Concurrency 601

TABLE 10-3 SQL Server Lock Modes 

Abbreviation Lock Mode Description

IX Intent exclusive Indicates that a component of this resource is locked with 
an exclusive lock. This lock can be acquired only at the 
table or page level.

SIX Shared with intent 
exclusive

Indicates that a resource holding a shared lock also has a 
component (a page or row) locked with an exclusive lock.

SIU Shared with intent 
update

Indicates that a resource holding a shared lock also has a 
component (a page or row) locked with an update lock.

UIX Update with intent 
exclusive

Indicates that a resource holding an update lock also has a 
component (a page or row) locked with an exclusive lock.

Sch-S Schema stability Indicates that a query using this table is being compiled.

Sch-M Schema modifi cation Indicates that the structure of the table is being changed.

BU Bulk update Used when a bulk copy operation is copying data into 
a table and the TABLOCK hint is being applied (either 
 manually or automatically).

Key-Range Locks

Additional lock modes—called key-range locks—are taken only in the Serializable isolation 
level for locking ranges of data. Most lock modes can apply to almost any lock resource. For 
example, shared and exclusive locks can be taken on a table, a page, a row, or a key. Because 
key-range locks can be taken only on keys, I describe the details of key-range locks later in 
this chapter in the section on key locks.  

Lock Granularity

 SQL Server can lock user data resources (not system resources, which are protected with 
latches) at the table, page, or row level. (If locks are escalated, SQL Server can also lock a single 
partition of a table or index.) In addition, SQL Server can lock index keys and ranges of index 
keys. Figure 10-1 shows the basic lock levels in a table that can be acquired when a resource is 
fi rst accessed. Keep in mind that if the table has a clustered index, the data rows are at the leaf 
level of the clustered index and they are locked with key locks instead of row locks. 

 The sys.dm_tran_locks view keeps track of each lock and contains information about the 
 resource, which is locked (such as a row, key, or page), the mode of the lock, and an  identifi er 
for the specifi c resource. Keep in mind that sys.dm_tran_locks is only a dynamic view that 
is used to display the information about the locks that are held. The actual  information 
is stored in  internal SQL Server structures that are not visible to us at all. So when I talk 
about  information being in the sys.dm_tran_locks view, I am referring to the fact that the 
 information can be seen through that view. 

Abbreviation Lock Mode Description

C10626249.indd   601 2/16/2009   5:18:20 PM



602 Microsoft SQL Server 2008 Internals

RowRow Row

Page Page Page

Table

FIGURE 10-1 Levels of granularity for SQL Server locks on a table

 When a process requests a lock, SQL Server compares the lock requested to the  resources 
 already listed in sys.dm_tran_locks and looks for an exact match on the resource type and 
 identifi er. However, if one process has a row exclusively locked in the Sales.SalesOrderHeader 
table, for example, another process might try to get a lock on the entire Sales.SalesOrderHeader 
table. Because these are two different resources, SQL Server does not fi nd an exact match 
 unless additional information is already in sys.dm_tran_locks. This is what intent locks are for. 
The process that has the exclusive lock on a row of the Sales.SalesOrderHeader table also has an 
intent exclusive lock on the page containing the row and another intent exclusive lock on the 
table containing the row. We can see those locks by fi rst running this code: 

USE Adventureworks2008; 

BEGIN TRAN 

UPDATE  Sales.SalesOrderHeader 

SET ShipDate = ShipDate + 1 

WHERE SalesOrderID = 43666;

 This statement should affect a single row. Because I have started a transaction and not yet 
terminated it, the exclusive locks acquired are still held. I can look at those locks using the 
sys.dm_tran_locks view: 

SELECT resource_type, resource_description,  

        resource_associated_entity_id, request_mode, request_status 

FROM sys.dm_tran_locks 

WHERE resource_associated_entity_id > 0;

 I give you more details about the data in the section entitled “sys.dm_tran_locks” later in this 
chapter, but for now, just note that the reason for the fi lter in the WHERE clause is that I am 

C10626249.indd   602 2/16/2009   5:18:20 PM



 Chapter 10 Transactions and Concurrency 603

interested only in locks that are actually held on data resources. If you are running a query on a 
SQL Server instance that others are using, you might have to provide more fi lters to get just the 
rows you’re interested in. For example, you could include a fi lter on request_session_id to limit 
the output to locks held by a particular session. Your results should look something like this: 

resource_type resource_description  resource_associated_entity_id request_mode request_status

------------- -------------------- ----------------------------    ------------ ---------------

KEY             (92007ad11d1d)          72057594045857792               X              GRANT

PAGE          1:5280               72057594045857792              IX           GRANT

OBJECT                             722101613                      IX           GRANT

 Note that there are three locks, even though the UPDATE statement affected only a single 
row. For the KEY and the PAGE locks, the resource_associated_entity_id is a partition_id. 
For the OBJECT locks, the resource_associated_entity_id is a table. We can verify what table it 
is by using the following query: 

SELECT object_name(722101613)

 The results should tell us that the object is the Sales.SalesOrderHeader table. When the sec-
ond process attempts to acquire an exclusive lock on that table, it fi nds a confl icting row al-
ready in sys.dm_tran_locks on the same lock resource (the Sales.SalesOrderHeader table), and 
it is blocked. The sys.dm_tran_locks view shows us the following row, indicating a request for 
an exclusive lock on an object that is unable to be granted. The process requesting the lock is 
in a WAIT state: 

resource_type resource_description  resource_associated_entity_id      request_mode request_status

------------- -------------------- ------------------------------   ------------   ------------

OBJECT                             722101613                      X            WAIT      

 Not all requests for locks on resources that are already locked result in a confl ict. A confl ict 
occurs when one process requests a lock on a resource that is already locked by another 
 process in an incompatible lock mode. For example, two processes can each acquire shared 
locks on the same resource because shared locks are compatible with each other. I discuss 
lock compatibility in detail later in this chapter. 

Key Locks

 SQL Server 2008 supports two kinds of key locks, and which one it uses depends on the 
 isolation level of the current transaction. If the isolation level is Read Committed, Repeatable 
Read, or Snapshot, SQL Server tries to lock the actual index keys accessed while  processing 
the query. With a table that has a clustered index, the data rows are the leaf level of the 
 index, and you see key locks acquired. If the table is a heap, you might see key locks for the 
nonclustered indexes and row locks for the actual data. 

 If the isolation level is Serializable, the situation is different. We want to prevent phantoms, so 
if we have scanned a range of data within a transaction, we need to lock enough of the table 

C10626249.indd   603 2/16/2009   5:18:20 PM



604 Microsoft SQL Server 2008 Internals

to make sure no one can insert a value into the range that was scanned. For example, we can 
issue the following query within an explicit transaction in the AdventureWorks2008 database: 

BEGIN TRAN 

SELECT * FROM Sales.SalesOrderHeader 

WHERE CustomerID BETWEEN 100 and 110;

 When you use Serializable isolation, locks must be acquired to make sure no new rows with 
CustomerID values between 100 and 110 are inserted before the end of the transaction. 
Much older versions of SQL Server (prior to 7.0) guaranteed this by locking whole pages or 
even the entire table. In many cases, however, this was too restrictive—more data was locked 
than the actual WHERE clause indicated, resulting in unnecessary contention. SQL Server 
2008 uses the key-range locks mode, which is associated with a particular key value in an 
index and indicates that all values between that key and the previous one in the index are 
locked. 

 The AdventureWorks2008 database includes an index on the Person table with the LastName 
column as the leading column. Assume that we are in TRANSACTION ISOLATION LEVEL 
SERIALIZABLE and we issue this SELECT statement inside a user-defi ned transaction: 

SELECT * FROM Person.Person 

WHERE LastName BETWEEN 'Freller' AND 'Freund';

 If Fredericksen, French, and Friedland are sequential leaf-level index keys in an index on the 
LastName column, the second two of these keys (French and Friedland) acquire key-range 
locks (although only one row, for French, is returned in the result set). The key-range locks 
prevent any inserts into the ranges ending with the two key-range locks. No values greater 
than Fredericksen and less than or equal to French can be inserted, and no values greater 
than French and less than or equal to Friedland can be inserted. Note that the key-range 
locks imply an open interval starting at the previous sequential key and a closed interval 
ending at the key on which the lock is placed. These two key-range locks prevent anyone 
from inserting either Fremlich or Frenkin, which are in the range specifi ed in the WHERE 
clause. However, the key-range locks would also prevent anyone from inserting Freedman 
(which is greater than Fredericksen and less than French), even though Freedman is not in the 
query’s specifi ed range. Key-range locks are not perfect, but they do provide much greater 
concurrency than locking whole pages or tables, while guaranteeing that phantoms are 
prevented.  

 There are nine types of key-range locks, and each has a two-part name: the fi rst part 
 indicates the type of lock on the range of data between adjacent index keys, and the  second 
part indicates the type of lock on the key itself. These nine types of key-range locks are 
 described in Table 10-4.  

C10626249.indd   604 2/16/2009   5:18:20 PM



 Chapter 10 Transactions and Concurrency 605

TABLE 10-4 Types of Key-Range Locks 

 Abbreviation Description

 RangeS-S Shared lock on the range between keys; shared lock on the key at the end 
of the range

 RangeS-U Shared lock on the range between keys; update lock on the key at the end 
of the range

 RangeIn-Null Exclusive lock to prevent inserts on the range between keys; no lock on the keys 
themselves

 RangeX-X Exclusive lock on the range between keys; exclusive lock on the key at the end of 
the range

 RangeIn-S Conversion lock created by S and RangeIn_Null lock

 RangeIn-U Conversion lock created by U and RangeIn_Null lock

 RangeIn-X Conversion of X and RangeIn_Null lock

 RangeX-S Conversion of RangeIn_Null and RangeS_S lock

 RangeX-U Conversion of RangeIn_Null and RangeS_U lock

Many of these lock modes are very rare or transient, so you do not see them very often in 
sys.dm_tran_locks. For example, the RangeIn-Null lock is acquired when SQL Server attempts 
to insert into the range between keys in a session using Serializable isolation. This type of 
lock is not often seen because it is typically very transient. It is held only until the correct 
location for insertion is found, and then the lock is converted into an X lock. However, if 
one transaction scans a range of data using the Serializable isolation level and then another 
 transaction tries to insert into that range, the second transaction has a lock request with a WAIT 
status with the RangeIn-Null mode. You can observe this by looking at the status column in 
sys.dm_tran_locks, which we discuss in more detail later in the chapter. 

Additional Lock Resources

In addition to locks on objects, pages, keys, and rows, a few other resources can be locked 
by SQL Server. Locks can be taken on extents—units of disk space that are 64 KB in size 
(eight pages of 8 KB each). This kind of locking occurs automatically when a table or an 
 index needs to grow and a new extent must be allocated. You can think of an extent lock as 
 another type of special-purpose latch, but it does show up in sys.dm_tran_locks. Extents can 
have both shared extent and exclusive extent locks. 

When you examine the contents of sys.dm_tran_locks, you should notice that most  processes 
hold a lock on at least one database (resource_type = DATABASE). In fact, any process  holding 
locks in any database other than master or tempdb has a lock for that database  resource. 
These database locks are always shared locks if the process is just using the  database. SQL 
Server checks for these database locks when determining whether a database is in use, and 
then it can determine whether the database can be dropped, restored, altered, or closed. 
Because few changes can be made to master and tempdb and they cannot be dropped 

Abbreviation Description

C10626249.indd   605 2/16/2009   5:18:20 PM



606 Microsoft SQL Server 2008 Internals

or closed, DATABASE locks are unnecessary. In addition, tempdb is never restored, and to 
 restore the master database, the entire server must be started in single-user mode, so again, 
DATABASE locks are unnecessary. When attempting to perform one of these  operations, 
SQL Server requests an exclusive database lock, and if any other processes have a shared lock 
on the database, the request blocks. Generally, you don’t need to be concerned with extent or 
 database locks, but you see them if you are perusing sys.dm_tran_locks. 

 You might occasionally see locks on ALLOCATION_UNIT resources. Although all table and 
index structures contain one or more ALLOCATION_UNITs, when these locks occur, it means 
SQL Server is dealing with one of these resources that is no longer tied to a particular object. 
For example, when you drop or rebuild large tables or indexes, the actual page  deallocation 
is deferred until after the transaction commits. Deferred drop operations do not release 
 allocated space immediately, and they introduce additional overhead costs, so a deferred 
drop is done only on tables or indexes that use more than 128 extents. If the table or index 
uses 128 or fewer extents, dropping, truncating, and rebuilding are not deferred  operations. 
During the fi rst phase of a deferred operation, the existing allocation units used by the 
table or index are marked for deallocation and locked until the transaction commits. This 
is where you see ALLOCATION_UNIT locks in sys.dm_tran_locks. You can also look in the 
sys. allocation_units view to fi nd allocation units with a type_desc value of DROPPED to see 
how much space is being used by the allocation units that are not available for reuse but are 
not currently part of any object. The actual physical dropping of the allocation unit’s space 
 occurs after the transaction commits.  

 Finally, you occasionally have locks on individual partitions, which are indicated in the 
lock metadata as HOBT locks. This can happen only when locks are escalated, and only 
if you have specifi ed that escalation to the partition level is allowed (and, of course, only 
when the table or index has been partitioned). We look at how you can specify that you 
want  partition-level locking in the section entitled “Lock Escalation,” later in this chapter. 

Identifying Lock Resources

 When SQL Server tries to determine whether a requested lock can be granted, it checks the 
sys.dm_tran_locks view to determine whether a matching lock with a confl icting lock mode 
already exists. It compares locks by looking at the database ID (resource_database_ID), the 
 values in the resource_description and resource_associated_entity_id columns, and the type of 
resource locked. SQL Server knows nothing about the meaning of the resource  description. 
It simply compares the strings identifying the lock resources to look for a match. If it fi nds 
a match with a request_status value of GRANT, it knows the resource is already locked; it 
then uses the lock compatibility matrix to determine whether the current lock is compatible 
with the one being requested. Table 10-5 shows many of the possible lock resources that 
are  displayed in the fi rst column of the sys.dm_tran_locks view and the information in the 
 resource_description column, which is used to defi ne the actual resource locked. 

C10626249.indd   606 2/16/2009   5:18:20 PM



 Chapter 10 Transactions and Concurrency 607

TABLE 10-5 Lockable Resources in SQL Server 

 Resource_Type Resource_Description Example

 DATABASE None; the database is always indicated in the resource_ 
database_ID column for every locked resource.

 12

 OBJECT The object ID (which can be any database object, not 
 necessarily a table) is reported in the resource_ associated_
entity_id column.

69575286

 HOBT hobt_id is reported in the resource_associated_entity_id 
column. Used only when partition locking has been 
 enabled for a table.

72057594038779904

 EXTENT File number:page number of the fi rst page of the extent. 1:96

 PAGE File number:page number of the actual table or 
 index page.

1:104

 KEY A hashed value derived from all the key components and 
the locator. For a nonclustered index on a heap, where 
columns c1 and c2 are indexed, the hash will contain 
 contributions from c1, c2, and the RID.

ac0001a10a00

ROW File number:page number:slot number of the actual row. 1:161:3

Note that key locks and key-range locks have identical resource descriptions because key 
range is considered a mode of locking, not a locking resource. When you look at output from 
the sys.dm_tran_locks view, you see that you can distinguish between these types of locks by 
the value in the lock mode column. 

Another type of lockable resource is METADATA. More than any other resource, METADATA 
resources are divided into multiple subtypes, which are described in the resource_subtype 
column of sys.dm_tran_locks. You might see dozens of subtypes of METADATA resources, 
but most of them are beyond the scope of this book. For some, however, even though SQL 
Server Books Online describes them as “for internal use only,” it is pretty obvious what they 
refer to. For example, when you change properties of a database, you can see a resource_type 
of METADATA and a resource_subtype of DATABASE. The value in the resource_description 
 column of that row is database_id =<ID>, indicating the ID of the database whose metadata is 
 currently locked. 

Associated Entity ID

 For locked resources that are part of a larger entity, the resource_associated_entity_id column 
in sys.dm_tran_locks displays the ID of that associated entity in the database. This can be an 
object ID, a partition ID, or an allocation unit ID, depending on the resource type. Of course, 
for some resources, such as DATABASE and EXTENT, there is no resource_associated_entity_id. 
An object ID value is given in this column for OBJECT resources, and an allocation unit ID is 
given for ALLOCATION_UNIT resources. A partition ID is provided for resource types PAGE, 
KEY, and RID. 

Resource_Type Resource_Description Example

C10626249.indd   607 2/16/2009   5:18:20 PM



608 Microsoft SQL Server 2008 Internals

 There is no simple function to convert a partition ID value to an object name; you have to 
 actually select from the sys.partitions view. The following query translates all the resource_ 
associated_entity_id values for locks in the current database by joining sys.dm_tran_locks to 
sys.partitions. For OBJECT resources, the object_name function is applied to the resource_ 
associated_entity_id column. For PAGE, KEY, and RID resources, I use the object_name function 
with the object_id value from the sys.partitions view. For other resources for which there is no 
resource_associated_entity_id, the code just returns n/a. Because the code references the 
sys.partitions view, which occurs in each database, this code is fi ltered to return only lock 
 information for resources in the current database. The output is organized to refl ect the 
information returned by the sp_lock procedure, but you can add any additional fi lters or 
 columns that you need. I will use this query in many examples later in this chapter, so I create 
a VIEW based on the SELECT and call it DBlocks:  

CREATE VIEW DBlocks AS 

SELECT request_session_id as spid,  

    db_name(resource_database_id) as dbname,  

    CASE  

   WHEN resource_type = 'OBJECT' THEN  

         object_name(resource_associated_entity_id) 

      WHEN resource_associated_entity_id = 0 THEN 'n/a' 

   ELSE object_name(p.object_id)  

    END as entity_name, index_id, 

       resource_type as resource,  

       resource_description as description,  

       request_mode as mode, request_status as status 

FROM sys.dm_tran_locks t LEFT JOIN sys.partitions p 

   ON p.partition_id = t.resource_associated_entity_id 

WHERE resource_database_id = db_id();

Lock Duration

 The length of time that a lock is held depends primarily on the mode of the lock and 
the transaction isolation level in effect. The default isolation level for SQL Server is Read 
Committed. At this level, shared locks are released as soon as SQL Server has read and 
processed the locked data. In Snapshot isolation, the behavior is the same—shared locks 
are released as soon as SQL Server has read the data. If your transaction isolation level is 
Repeatable Read or Serializable, shared locks have the same duration as exclusive locks; that 
is, they are not released until the transaction is over. In any isolation level, an exclusive lock 
is held until the end of the transaction, whether the transaction is committed or rolled back. 
An update lock is also held until the end of the transaction unless it has been promoted to 
an exclusive lock, in which case the exclusive lock, as is always the case with exclusive locks, 
remains for the duration of the transaction. 

 In addition to changing your transaction isolation level, you can control the lock duration by 
using query hints. I discuss query hints for locking, briefl y, later in this chapter.  

C10626249.indd   608 2/16/2009   5:18:21 PM



 Chapter 10 Transactions and Concurrency 609

Lock Ownership

 Lock duration is also directly affected by the lock ownership. Lock ownership has nothing 
to do with the process that requested the lock, but you can think of it as the “scope” of the 
lock. There are four types of lock owners, or lock scopes: transactions, cursors, transaction_ 
workspaces, and sessions. The lock owner can be viewed through the request_owner_type 
column in the sys.dm_tran_locks view.  

 Most of our locking discussion deals with locks with a lock owner of TRANSACTION. As we’ve 
seen, these locks can have two different durations depending on the isolation level and lock 
mode. The duration of shared locks in Read Committed isolation is only as long as the locked 
data is being read. The duration of all other locks owned by a transaction is until the end of 
the transaction.  

 A lock with a request_ownertype value of CURSOR must be requested explicitly when the 
 cursor is declared. If a cursor is opened using a locking mode of SCROLL_LOCKS, a cursor 
lock is held on every row fetched until the next row is fetched or the cursor is closed. Even if 
the transaction commits before the next fetch, the cursor lock is not released. 

 In SQL Server 2008, locks owned by a session must also be requested explicitly and apply 
only to APPLICATION locks. A session lock is requested using the sp_getapplock procedure. 
Its duration is until the session disconnects or the lock is released explicitly. 

 Transaction_workspace locks are acquired every time a database is accessed, and the 
 resource  associated with these locks is always a database. A workspace holds database locks 
for  sessions that are enlisted into a common environment. Usually, there is one workspace 
per session, so all DATABASE locks acquired in the session are kept in the same workspace 
object. In the case of distributed transactions, multiple sessions are enlisted into the same 
 workspace, so they share the database locks.  

 Every process acquires a DATABASE lock with an owner of SHARED_TRANSACTION_
WORKSPACE on any database when the process issues the USE command. The exception 
is any processes that use master or tempdb, in which case no DATABASE lock is taken. That 
lock isn’t released until another USE command is issued or until the process is  disconnected. 
If a process attempts to ALTER, RESTORE, or DROP the database, the DATABASE lock 
 acquired has an owner of EXCLUSIVE_TRANSACTION_WORKSPACE. SHARED_TRANSACTION_
WORKSPACE and EXCLUSIVE_TRANSACTION_WORKSPACE locks are maintained by the same 
workspace and are just two different lists in one workspace. The use of two different owner 
names is misleading in this case.  

Viewing Locks

 To see the locks currently outstanding in the system, as well as those that are being waited 
for, the best source of information is the sys.dm_tran_locks view. I’ve shown you some queries 

C10626249.indd   609 2/16/2009   5:18:21 PM



610 Microsoft SQL Server 2008 Internals

from this view in previous sections, and in this section, I show you a few more and explain what 
more of the output columns mean. This view replaces the sp_lock procedure. Although calling 
a procedure might require less typing than querying the sys.dm_tran_locks view, the view is 
much more fl exible. Not only are there many more columns of information providing details 
about your locks, but as a view, sys.dm_tran_locks can be queried to select just the  columns 
you want, or only the rows that meet your criteria. It can be joined with other views and 
 aggregated to get summary information about how many locks of each kind are being held. 

sys.dm_tran_locks

All the columns (with the exception of the last column called lock_owner_address) in 
sys.dm_tran_locks start with one of two prefi xes. The columns whose names begin with 
 resource_ describe the resource on which the lock request is being made. The columns whose 
names begin with request_ describe the process requesting the lock. Two requests operate on 
the same resource only if all the resource_ columns are the same.  

resource_ Columns  I’ve mentioned most of the resource_ columns already, but I referred 
only briefl y to the resource_subtype column. Not all resources have subtypes, and some have 
many. The METADATA resource type, for example, has over 40 subtypes. 

 Table 10-6 lists all the subtypes for resource types other than METADATA. 

 TABLE 10-6 Subtype Resources 

 Resource Type Resource Subtypes Description

 DATABASE BULKOP_BACKUP_DB Used for synchronization of database backups with 
bulk operations

 BULKOP_BACKUP_LOG Used for synchronization of database log backups 
with bulk operations

 DDL Used to synchronize Data Defi nition Language (DDL) 
operations with File Group operations (such as DROP)

 STARTUP Used for database startup synchronization

 TABLE UPDSTATS Used for synchronization of statistics updates on 
a table

 COMPILE Used for synchronization of stored procedure 
 compiles

 INDEX_OPERATION Used for synchronization of index operations

 HOBT INDEX_REORGANIZE Used for synchronization of heap or index 
 reorganization operations

 BULK_OPERATION Used for heap-optimized bulk load operations with 
concurrent scan, in the Snapshot, Read Uncommitted, 
and Read Committed SI levels

 ALLOCATION_UNIT PAGE_COUNT Used for synchronization of allocation unit page 
count statistics during deferred drop operations

Resource Type Resource Subtypes Description

C10626249.indd   610 2/16/2009   5:18:21 PM

v@v
Text Box
Download at Wow! eBook



 Chapter 10 Transactions and Concurrency 611

 As previously mentioned, most METADATA subtypes are documented as being for INTERNAL 
USE ONLY, but their meaning is often pretty obvious. Each type of metadata can be locked 
separately as changes are made. Here is a partial list of the METADATA subtypes: 

■  INDEXSTATS 

■  STATS 

■  SCHEMA 

■  DATABASE_PRINCIPAL 

■  DB_PRINCIPAL_SID 

■  USER_TYPE 

■  DATA_SPACE 

■  PARTITION_FUNCTION 

■  DATABASE 

■  SERVER_PRINCIPAL 

■  SERVER 

 Most of the other METADATA subtypes not listed here refer to elements of SQL Server 2008 
that are not discussed in this book, including CLR routines, XML, certifi cates, full-text search, 
and notifi cation services.  

request_ Columns  I’ve also mentioned a couple of the most important request_ columns in 
sys.dm_tran_locks, including request_mode (the type of lock requested), request_owner_type 
(the scope of the lock requested), and request_session_id. Here are some of the others: 

■  request_type In SQL Server 2008, the only type of resource request tracked in sys.
dm_tran_locks is for a LOCK. Future versions may include other types of resources that 
can be requested. 

■  request_status Status can be one of three values: GRANT, CONVERT, or WAIT. A status 
of CONVERT indicates that the requestor has already been granted a request for the 
same resource in a different mode and is currently waiting for an upgrade (convert) 
from the current lock mode to be granted. (For example, SQL Server can convert a 
U lock to X.) A status of WAIT indicates that the requestor does not currently hold a 
granted request on the resource. 

■  request_reference_count This value is a rough count of number of times the same 
 requestor has requested this resource and applies only to resources that are not 
 automatically released at the end of a transaction. A granted resource is no longer 
 considered to be held by a requestor if this fi eld decreases to 0 and request_lifetime is also 0.  

■  request_lifetime This value is a code that indicates when the lock on the resource is 
released. 

C10626249.indd   611 2/16/2009   5:18:21 PM



612 Microsoft SQL Server 2008 Internals

■  request_session_id This value is the ID of the session that has requested the lock. 
The owning session ID can change for distributed and bound transactions. A value 
of –2 indicates that the request belongs to an orphaned DTC transaction. A value of 
–3  indicates that the request belongs to a deferred recovery transaction. (These are 
 transactions whose rollback has been deferred at recovery because the rollback could 
not be completed successfully.)  

■  request_exec_context_id This value is the execution context ID of the process that 
currently owns this request. A value greater than 0 indicates that this is a subthread 
used to execute a parallel query.  

■  request_request_id This value is the request ID (batch ID) of the process that currently 
owns this request. This column is populated only for the requests coming in from a 
 client application using Multiple Active Result Sets (MARS).  

■  request_owner_id This value is currently used only for requests with an owner of 
TRANSACTION, and the owner ID is the transaction ID. This column can be joined with 
the transaction_id column in the sys.dm_tran_active_transactions view. 

■  request_owner_guid This value is currently used only by DTC transactions when it 
 corresponds to the DTC GUID for that transaction. 

■  lock_owner_address This value is the memory address of the internal data structure 
that is used to track this request. This column can be joined with the resource_address 
column in sys.dm_os_waiting_tasks if this request is in the WAIT or CONVERT state. 

Locking Examples

 The following examples show what many of the lock types and modes discussed earlier look 
like when reported using the DBlocks view that I described previously. 

Example 1: SELECT with Default Isolation Level

 SQL BATCH 

USE Adventureworks2008; 

SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 

BEGIN TRAN 

SELECT * FROM Production.Product 

WHERE Name = 'Reflector'; 

SELECT * FROM DBlocks WHERE spid = @@spid; 

COMMIT TRAN

 RESULTS FROM DBlocks 

spid     dbname               entity_name     index_id  resource    description     mode  status 

-----      -----------------   ------------ --------  ---------  -----------  ----- ------ 

60       Adventureworks2008    n/a          NULL           DATABASE                S      GRANT

60       AdventureWorks2008    DBlocks      NULL       OBJECT                  IS     GRANT

 There are no locks on the data in the Production.Product table because the batch was 
 performing only SELECT operations that acquired shared locks. By default, the shared locks 

C10626249.indd   612 2/16/2009   5:18:21 PM



 Chapter 10 Transactions and Concurrency 613

are released as soon as the data has been read, so by the time the SELECT from the view is 
executed, the locks are no longer held. There is only the ever-present DATABASE lock, and an 
OBJECT lock on the view. 

Example 2: SELECT with Repeatable Read Isolation Level

 SQL BATCH 

USE AdventureWorks2008; 

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ; 

BEGIN TRAN 

SELECT * FROM Production.Product 

WHERE Name LIKE 'Racing Socks%'; 

SELECT * FROM DBlocks  

WHERE spid = @@spid 

AND entity_name = 'Product'; 

COMMIT TRAN

 RESULTS FROM DBlocks 

spid dbname               entity_name  index_id     resource     description     mode     status

---- ------------------- ------------ ---------  ---------- --------------  -------- ------

54   AdventureWorks2008  Product       NULL        OBJECT                        IS        GRANT

54   AdventureWorks2008  Product       1             PAGE       1:16897          IS        GRANT

54   AdventureWorks2008  Product       1          KEY            (6b00b8eeda30)     S         GRANT

54   AdventureWorks2008  Product       1          KEY            (6a00dd896688)     S         GRANT

54   AdventureWorks2008  Product      3           KEY            (9502d56a217e)     S         GRANT

54   AdventureWorks2008  Product      3          PAGE       1:1767          IS        GRANT

54   AdventureWorks2008  Product      3          KEY             (9602945b3a67)     S         GRANT

 This time, I fi ltered out the database lock and the locks on the view and the rowset, just to keep 
the focus on the data locks. Because the Production.Product table has a clustered index, the rows 
of data are all index rows in the leaf level. The locks on the two individual data rows returned are 
listed as key locks. There are also two key locks at the leaf level of the nonclustered index on the 
table used to fi nd the relevant rows. In the Production.Product table, that nonclustered index is 
on the Name column. You can tell the clustered and nonclustered indexes apart by the value in 
the index_id column: the data rows (the leaf rows of the clustered index) have an index_id value 
of 1, and the nonclustered index rows have an index_id value of 3. (For nonclustered indexes, 
the index_id value can be anything between 2 and 250 or between 356 and 1005.) Because the 
transaction isolation level is Repeatable Read, the shared locks are held until the transaction is 
fi nished. Note that the index rows have shared (S) locks, and the data and index pages, as well as 
the table itself, have intent shared (IS) locks. 

Example 3: SELECT with Serializable Isolation Level

 SQL BATCH 

USE AdventureWorks2008 ; 

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; 

BEGIN TRAN 

SELECT * FROM Production.Product 

WHERE Name LIKE 'Racing Socks%'; 

C10626249.indd   613 2/16/2009   5:18:21 PM



614 Microsoft SQL Server 2008 Internals

SELECT * FROM DBlocks  

WHERE spid = @@spid 

AND entity_name = 'Product'; 

COMMIT TRAN

 RESULTS FROM DBlocks 

spid dbname             entity_name  index_id   resource   description    mode      status

---- ------------------ ------------ ---------- ---------- ------------   -------   ------

54   AdventureWorks2008 Product      NULL       OBJECT                    IS        GRANT

54   AdventureWorks2008 Product      1          PAGE       1:16897        IS        GRANT

54   AdventureWorks2008 Product      1          KEY        (6b00b8eeda30) S         GRANT

54   AdventureWorks2008 Product      1          KEY        (6a00dd896688) S         GRANT

54   AdventureWorks2008 Product      3          KEY        (9502d56a217e) RangeS-S  GRANT

54   AdventureWorks2008 Product      3          PAGE       1:1767         IS        GRANT

54   AdventureWorks2008 Product      3          KEY        (23027a50f6db) RangeS-S  GRANT

54   AdventureWorks2008 Product      3          KEY        (9602945b3a67) RangeS-S  GRANT

 The locks held with the Serializable isolation level are almost identical to those held with the 
Repeatable Read isolation level. The main difference is in the mode of the lock. The  two-part 
mode RangeS-S indicates a key-range lock in addition to the lock on the key itself. The fi rst 
part (RangeS) is the lock on the range of keys between (and including) the key holding the 
lock and the previous key in the index. The key-range locks prevent other transactions from 
inserting new rows into the table that meet the condition of this query; that is, no new rows 
with a product name starting with Racing Socks can be inserted. The key-range locks are held 
on ranges in the nonclustered index on Name (index_id = 3) because that is the index used 
to fi nd the qualifying rows. There are three key locks in the nonclustered index because three 
different ranges need to be locked. The two Racing Socks rows are Racing Socks, L and Racing 
Socks, M. SQL Server must lock the range from the key preceding the fi rst Racing Socks 
row in the index up to the fi rst Racing Socks. It must lock the range between the two rows 
 starting with Racing Socks, and it must lock the range from the second Racing Socks to the 
next key in the index. (So actually nothing could be inserted between Racing Socks and the 
previous key, Pinch Bolt, or between Racing Socks and the next key, Rear Brakes. For  example, 
we could not insert a product with the name Portkey or Racing Tights.) 

Example 4: Update Operations

 SQL BATCH 

USE AdventureWorks2008; 

SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 

BEGIN TRAN 

UPDATE Production.Product 

SET ListPrice = ListPrice * 0.6 

WHERE Name LIKE 'Racing Socks%'; 

SELECT * FROM DBlocks  

WHERE spid = @@spid 

AND entity_name = 'Product'; 

COMMIT TRAN

C10626249.indd   614 2/16/2009   5:18:21 PM



 Chapter 10 Transactions and Concurrency 615

 RESULTS FROM DBlocks 

spid dbname              entity_name  index_id   resource   description      mode    status

---- ------------------- -----------  ---------- ---------- --------------  ----- -------

54   AdventureWorks2008  Product      NULL       OBJECT                     IX    GRANT

54   AdventureWorks2008  Product      1          PAGE       1:16897         IX    GRANT

54   AdventureWorks2008  Product      1          KEY        (6b00b8eeda30)  X     GRANT

54   AdventureWorks2008  Product      1          KEY        (6a00dd8966 88) X     GRANT

 The two rows in the leaf level of the clustered index are locked with X locks. The page and 
the table are then locked with IX locks. I mentioned earlier that SQL Server actually acquires 
update locks while it looks for the rows to update. However, these are converted to X locks 
when the actual update is performed, and by the time we look at the DBLocks view, the 
update locks are gone. Unless you actually force update locks with a query hint, you might 
never see them in the lock report from DBLocks or by direct inspection of sys.dm_tran_locks. 

Example 5: Update with Serializable Isolation Level Using an Index

 SQL BATCH 

USE AdventureWorks2008; 

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; 

BEGIN TRAN 

UPDATE Production.Product 

SET ListPrice = ListPrice * 0.6 

WHERE Name LIKE 'Racing Socks%'; 

SELECT * FROM DBlocks  

WHERE spid = @@spid 

AND entity_name = 'Product'; 

COMMIT TRAN

 RESULTS FROM DBlocks 

spid dbname              entity_name  index_id    resource   description     mode     status

---- ------------------- ------------ ----------- ---------- --------------- -------- ------

54   AdventureWorks2008  Product      NULL        OBJECT                     IX       GRANT

54   AdventureWorks2008  Product      1           PAGE       1:16897         IX       GRANT

54   AdventureWorks2008  Product      1           KEY        (6a00dd896688)  X        GRANT

54   AdventureWorks2008  Product      1           KEY        (6b00b8eeda30)  X        GRANT

54   AdventureWorks2008  Product      3           KEY        (9502d56a217e)  RangeS-U GRANT

54   AdventureWorks2008  Product      3           PAGE       1:1767          IU       GRANT

54   AdventureWorks2008  Product      3           KEY        (23027a50f6db)  RangeS-U GRANT

54   AdventureWorks2008  Product      3           KEY        (9602945b3a67)  RangeS-U GRANT

 Again, notice that the key-range locks are on the nonclustered index used to fi nd the  relevant 
rows. The range interval itself needs only a shared lock to prevent insertions, but the searched 
keys have U locks so no other process can attempt to update them. The keys in the table itself 
(index_id = 1) obtain the exclusive lock when the actual modifi cation is made. 

 Now let’s look at an UPDATE operation with the same isolation level when no index can be 
used for the search. 

C10626249.indd   615 2/16/2009   5:18:21 PM



616 Microsoft SQL Server 2008 Internals

Example 6: Update with Serializable Isolation Not Using an Index

 SQL BATCH 

USE AdventureWorks2008; 

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; 

BEGIN TRAN 

UPDATE Production.Product 

SET ListPrice = ListPrice * 0.6 

WHERE Color = 'White'; 

SELECT * FROM DBlocks  

WHERE spid = @@spid 

AND entity_name = 'Product'; 

COMMIT TRAN

 RESULTS FROM DBlocks (Abbreviated) 

spid dbname              entity_name  index_id    resource   description    mode     status 

---- ------------------- ------------ ----------- ---------- -------------- -------- -------

54   AdventureWorks2008  Product      NULL        OBJECT                    IX       GRANT

54   AdventureWorks2008  Product      1           KEY        (7900ac71caca) RangeS-U GRANT

54   AdventureWorks2008  Product      1           KEY        (6100dc0e675f) RangeS-U GRANT

54   AdventureWorks2008  Product      1           KEY        (5700a1a9278a) RangeS-U GRANT

54   AdventureWorks2008  Product      1           PAGE       1:16898        IU       GRANT

54   AdventureWorks2008  Product      1           PAGE       1:16899        IU       GRANT

54   AdventureWorks2008  Product      1           PAGE       1:16896        IU       GRANT

54   AdventureWorks2008  Product      1           PAGE       1:16897        IX       GRANT

54   AdventureWorks2008  Product      1           PAGE       1:16900        IU       GRANT

54   AdventureWorks2008  Product      1           PAGE       1:16901        IU       GRANT

54   AdventureWorks2008  Product      1           KEY        (5600c4ce9b32) RangeS-U GRANT

54   AdventureWorks2008  Product      1           KEY        (7300c89177a5) RangeS-U GRANT 

54   AdventureWorks2008  Product      1           KEY        (7f00702ea1ef) RangeS-U GRANT

54   AdventureWorks2008  Product      1           KEY        (6b00b8eeda30) RangeX-X GRANT 

54   AdventureWorks2008  Product      1           KEY        (c500b9eaac9c) RangeX-X GRANT 

54   AdventureWorks2008  Product      1           KEY        (c6005745198e) RangeX-X GRANT 

54   AdventureWorks2008  Product      1           KEY        (6a00dd896688) RangeX-X GRANT 

 The locks here are similar to those in the previous example except that all the locks are on 
the table itself (index_id = 1). A clustered index scan (on the entire table) had to be done, so 
all keys initially received the RangeS-U lock, and when four rows were eventually modifi ed, 
the locks on those keys were converted to RangeX-X locks. You can see all the RangeX-X 
locks, but not all the RangeS-U locks are shown for space reasons (the table has 504 rows). 

Example 7: Creating a Table

 SQL BATCH 

USE AdventureWorks2008; 

SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 

BEGIN TRAN 

SELECT *  

INTO newProducts 

FROM Production.Product 

WHERE ListPrice between 1 and 10; 

SELECT * FROM DBlocks  

WHERE spid = @@spid; 

COMMIT TRAN

C10626249.indd   616 2/16/2009   5:18:21 PM



 Chapter 10 Transactions and Concurrency 617

 RESULTS FROM DBlocks (Abbreviated) 

spid dbname             entity_name  index_id    resource   description       mode    status

---- ------------------ ------------ ----------- ---------- ----------------  ------  ------

54   AdventureWorks2008 n/a          NULL        DATABASE                     NULL    GRANT

54   AdventureWorks2008 n/a          NULL        DATABASE                     NULL    GRANT

54   AdventureWorks2008 n/a          NULL        DATABASE                     S       GRANT

54   AdventureWorks2008 n/a          NULL        METADATA   user_type_id = 258    Sch-S   GRANT

54   AdventureWorks2008 n/a          NULL        METADATA   data_space_id = 1    Sch-S   GRANT

54   AdventureWorks2008 n/a          NULL        DATABASE                     S       GRANT

54   AdventureWorks2008 n/a          NULL        METADATA   $seq_type = 0, objec Sch-M   GRANT

54   AdventureWorks2008 n/a          NULL        METADATA   user_type_id = 260   Sch-S   GRANT

54   AdventureWorks2008 sysrowsetcol NULL        OBJECT                       IX      GRANT

54   AdventureWorks2008 sysrowsets   NULL        OBJECT                       IX      GRANT

54   AdventureWorks2008 sysallocunit NULL        OBJECT                       IX      GRANT

54   AdventureWorks2008 syshobtcolum NULL        OBJECT                       IX      GRANT

54   AdventureWorks2008 syshobts     NULL        OBJECT                       IX      GRANT

54   AdventureWorks2008 sysserefs    NULL        OBJECT                       IX      GRANT

54   AdventureWorks2008 sysschobjs   NULL        OBJECT                       IX      GRANT

54   AdventureWorks2008 syscolpars   NULL        OBJECT                       IX      GRANT

54   AdventureWorks2008 sysidxstats  NULL        OBJECT                       IX      GRANT

54   AdventureWorks2008 sysrowsetcol 1           KEY        (15004f6b3486)    X       GRANT

54   AdventureWorks2008 sysrowsetcol 1           KEY        (0a00862c4e8e)    X       GRANT

54   AdventureWorks2008 sysrowsets   1           KEY        (000000aaec7b)    X       GRANT

54   AdventureWorks2008 sysallocunit 1           KEY        (00001f2dcf47)    X       GRANT

54   AdventureWorks2008 syshobtcolum 1           KEY        (1900f7d4e2cc)    X       GRANT

54   AdventureWorks2008 syshobts     1           KEY        (000000aaec7b)    X       GRANT

54   AdventureWorks2008 NULL         NULL        RID        1:6707:1          X       GRANT

54   AdventureWorks2008 DBlocks      NULL        OBJECT                       IS      GRANT

54   AdventureWorks2008 newProducts  NULL        OBJECT                       Sch-M   GRANT

54   AdventureWorks2008 sysserefs    1           KEY        (010025fabf73)    X       GRANT

54   AdventureWorks2008 sysschobjs   1           KEY        (3b0042322c99)    X       GRANT

54   AdventureWorks2008 syscolpars   1           KEY        (4200c1eb801c)    X       GRANT

54   AdventureWorks2008 syscolpars   1           KEY        (4e00092bfbc3)    X       GRANT

54   AdventureWorks2008 sysidxstats  1           KEY        (3b0006e110a6)    X       GRANT

54   AdventureWorks2008 sysschobjs   2           KEY        (9202706f3e6c)    X       GRANT

54   AdventureWorks2008 syscolpars   2           KEY        (6c0151be80af)    X       GRANT

54   AdventureWorks2008 syscolpars   2           KEY        (2c03557a0b9d)    X       GRANT

54   AdventureWorks2008 sysidxstats  2           KEY        (3c00f3332a43)    X       GRANT

54   AdventureWorks2008 sysschobjs   3           KEY        (9202d42ddd4d)    X       GRANT

54   AdventureWorks2008 sysschobjs   4           KEY        (3c0040d00163)    X       GRANT

54   AdventureWorks2008 newProducts  0           PAGE       1:6707            X       GRANT

54   AdventureWorks2008 newProducts  0           HOBT                         Sch-M   GRANT

 Very few of these locks are actually acquired on elements of the newProducts table. In the 
entity_name column, you can see that most of the objects are undocumented, and normally 
invisible, system table names. As the new table is created, SQL Server acquires locks on nine 
different system tables to record information about this new table. In addition, notice the 
schema modifi cation (Sch-M) lock and other metadata locks on the new table. 

 The fi nal example looks at the locks held when there is no clustered index on the table and 
the data rows are being updated.  

C10626249.indd   617 2/16/2009   5:18:21 PM



618 Microsoft SQL Server 2008 Internals

Example 8: Row Locks

 SQL BATCH 

USE AdventureWorks2008; 

SET TRANSACTION ISOLATION LEVEL READ COMMITTED 

BEGIN TRAN 

UPDATE newProducts 

SET ListPrice = 5.99 

WHERE name = 'Road Bottle Cage'; 

SELECT * FROM DBlocks  

WHERE spid = @@spid 

AND entity_name = 'newProducts'; 

COMMIT TRAN

 RESULTS FROM DBlocks 

spid dbname              entity_name  index_id    resource   description  mode     status

---- ------------------- ------------ ----------- ---------- ------------ -------- --------

54   AdventureWorks2008  newProducts  NULL        OBJECT                  IX       GRANT

54   AdventureWorks2008  newProducts  0           PAGE       1:6708       IX       GRANT

54   AdventureWorks2008  newProducts  0           RID        1:6708:5     X        GRANT

 There are no indexes on the newProducts table, so the lock on the actual row meeting our 
criteria is an exclusive (X) lock on the row (RID). For RID locks, the description actually reports 
the specifi c row in the form File number:Page number:Slot number. As expected, IX locks are 
taken on the page and the table. 

Lock Compatibility

 Two locks are compatible if one lock can be granted while another lock on the same  resource 
is held by a different process. If a lock requested for a resource is not compatible with a 
lock currently being held, the requesting connection must wait for the lock. For example, if 
a shared page lock exists on a page, another process requesting a shared page lock for the 
same page is granted the lock because the two lock types are compatible. But a  process that 
requests an exclusive lock for the same page is not granted the lock because an  exclusive 
lock is not compatible with the shared lock already held. Figure 10-2 summarizes the 
 compatibility of locks in SQL Server 2008. Along the top are all the lock modes that a  process 
might already hold. Along the left edge are the lock modes that another process might 
request.  

 At the point where the held lock and requested lock meet, there can be three possible 
 values. N indicates that there is no confl ict, C indicates that there will be a confl ict and the 
requesting process will have to wait, and I indicates an invalid combination that could never 
occur. All the I values in the chart involve range locks, which can be applied only to KEY 
 resources, so any type of lock that can never be applied to KEY resources indicates an invalid 
comparison.  

C10626249.indd   618 2/16/2009   5:18:21 PM



 Chapter 10 Transactions and Concurrency 619

NL
SCH-S
SCH-M

S
U
X
IS
IU
IX

SIU
SIX
UIX
BU

RS-S
RI-U
RI-N
RI-S
RI-U
RI-X
RX-S
RX-U
RX-X

NL
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

SCH-S
N
N
C
N
N
N
N
N
N
N
N
N
N
I
I
I
I
I
I
I
I
I

SCH-M
N
C
C
C
C
C
C
C
C
C
C
C
C
I
I
I
I
I
I
I
I
I

S
N
N
C
N
N
C
N
N
C
N
C
C
C
N
N
N
N
N
C
N
N
C

U
N
N
C
N
C
C
N
C
C
C
C
C
C
N
C
N
N
C
C
N
C
C

X
N
N
C
C
C
C
C
C
C
C
C
C
C
C
C
N
C
C
C
C
C
C

IS
N
N
C
N
N
C
N
N
N
N
N
N
C
I
I
I
I
I
I
I
I
I

IU
N
N
C
N
C
C
N
N
N
N
N
C
C
I
I
I
I
I
I
I
I
I

IX
N
N
C
C
C
C
N
N
N
C
C
C
C
I
I
I
I
I
I
I
I
I

SIU
N
N
C
N
C
C
N
N
C
N
C
C
C
I
I
I
I
I
I
I
I
I

SIX
N
N
C
C
C
C
N
N
C
C
C
C
C
I
I
I
I
I
I
I
I
I

UIX
N
N
C
C
C
C
N
C
C
C
C
C
C
I
I
I
I
I
I
I
I
I

BU
N
N
C
C
C
C
C
C
C
C
C
C
N
I
I
I
I
I
I
I
I
I

RS-S
N
I
I
N
N
C
I
I
I
I
I
I
I
N
N
C
C
C
C
C
C
C

RS-U
N
I
I
N
C
C
I
I
I
I
I
I
I
N
C
C
C
C
C
C
C
C

RI-N
N
I
I
N
N
N
I
I
I
I
I
I
I
C
C
N
N
N
N
C
C
C

RI-S
N
I
I
N
N
C
I
I
I
I
I
I
I
C
C
N
N
N
C
C
C
C

RI-U
N
I
I
N
C
C
I
I
I
I
I
I
I
C
C
N
N
C
C
C
C
C

RI-X
N
I
I
C
C
C
I
I
I
I
I
I
I
C
C
N
C
C
C
C
C
C

RX-S
N
I
I
N
N
C
I
I
I
I
I
I
I
C
C
C
C
C
C
C
C
C

RX-U
N
I
I
N
C
C
I
I
I
I
I
I
I
C
C
C
C
C
C
C
C
C

RX-X
N
I
I
C
C
C
I
I
I
I
I
I
I
C
C
C
C
C
C
C
C
C

FIGURE 10-2 SQL Server lock compatibility matrix

 Lock compatibility comes into play between locks on different resources, such as table locks 
and page locks. A table and a page obviously represent an implicit hierarchy because a table 
is made up of multiple pages. If an exclusive page lock is held on one page of a table,  another 
process cannot get even a shared table lock for that table. This hierarchy is protected using 
intent locks. A process acquiring an exclusive page lock, update page lock, or intent  exclusive 
page lock fi rst acquires an intent exclusive lock on the table. This intent exclusive table lock 
prevents another process from acquiring the shared table lock on that table. (Remember that 
intent exclusive locks and shared locks on the same resource are not compatible.) 

 Similarly, a process acquiring a shared row lock must fi rst acquire an intent shared lock for the 
table, which prevents another process from acquiring an exclusive table lock. Or if the  exclusive 
table lock already exists, the intent shared lock is not granted and the shared page lock has 
to wait until the exclusive table lock is released. Without intent locks, process A can lock a 
page in a table with an exclusive page lock and process B can place an exclusive table lock 
on the same table and hence think that it has a right to modify the entire table, including the 
page that process A has exclusively locked. 

 Note Obviously, lock compatibility is an issue only when the locks affect the same object. For 
example, two or more processes each can hold exclusive page locks simultaneously so long as 
the locks are on different pages or different tables. 

 Even if two locks are compatible, the requester of the second lock might still have to wait if 
an incompatible lock is waiting. For example, suppose that process A holds a shared page 
lock. Process B requests an exclusive page lock and must wait because the shared page 
lock and the exclusive page lock are not compatible. Process C requests a shared page lock 

C10626249.indd   619 2/16/2009   5:18:21 PM



620 Microsoft SQL Server 2008 Internals

that is compatible with the shared page already granted to process A. However, the shared 
page lock cannot be granted immediately. Process C must wait for its shared page lock 
 because  process B is ahead of it in the lock queue with a request (exclusive page) that is not 
compatible. 

 By examining the compatibility of locks not only with processes granted locks, but also processes 
waiting, SQL Server prevents lock starvation, which can result when requests for shared locks 
keep overlapping so that the request for the exclusive lock can never be granted. 

Internal Locking Architecture

 Locks are not on-disk structures. You won’t fi nd a lock fi eld directly on a data page or a table 
header, and the metadata that keeps track of locks is never written to disk. Locks are internal 
memory structures—they consume part of the memory used for SQL Server. A lock is identifi ed 
by lock resource, which is a description of the resource that is locked (a row, index key, page, 
or table). To keep track of the database, the type of lock, and the information describing the 
locked resource, each lock requires 64 bytes of memory on a 32-bit system and 128 bytes of 
memory on a 64-bit system. This 64-byte or 128-byte structure is called a lock block.  

 Each process holding a lock also must have a lock owner, which represents the  relationship 
between a lock and the entity that is requesting or holding the lock. The lock owner  requires 
32 bytes of memory on a 32-bit system and 64 bytes of memory on a 64-bit system. This 
 32-byte or 64-byte structure is called a lock owner block. A single transaction can have 
 multiple lock owner blocks; a scrollable cursor sometimes uses several. Also, one lock can 
have many lock owner blocks, as is the case with a shared lock. As mentioned, the lock owner 
represents a relationship between a lock and an entity, and the relationship can be granted, 
waiting, or in a state called waiting-to-convert. 

 The lock manager maintains a lock hash table. Lock resources, contained within a lock block, 
are hashed to determine a target hash slot in the hash table. All lock blocks that hash to the 
same slot are chained together from one entry in the hash table. Each lock block contains a 
15-byte fi eld that describes the locked resource. The lock block also contains pointers to lists of 
lock owner blocks. There is a separate list for lock owners in each of the three states. Figure 10-3 
shows the general lock architecture. 

 The number of slots in the hash table is based on the system’s physical memory, as shown 
in Table 10-7. There is an upper limit of 231 slots. All instances of SQL Server on the same 
 machine have a hash table with the same number of slots. Each entry in the lock hash table 
is 16 bytes in size and consists of a pointer to a list of lock blocks and a spinlock to guarantee 
serialized access to the same slot.  

C10626249.indd   620 2/16/2009   5:18:21 PM



 Chapter 10 Transactions and Concurrency 621

All owner blocks from
same transaction are

linked together.

Lock hash table

Lock block

Convert Grant Wait

Lock resource block

Lock block

Convert Grant Wait

Lock resource block

Lock
owner
block

Lock
owner
block

Lock
owner
block

Lock block

Convert Grant Wait

Lock resource block

FIGURE 10-3 SQL Server locking architecture 

 TABLE 10-7 Number of Slots in the Internal Lock Hash Table 

Physical Memory (MB) Number of Slots Memory Used

< 32 214 = 16384 128 KB

>= 32 and < 64 215 = 32768 256 KB

>= 64 and < 128 216 = 65536 512 KB

>= 128 and < 512 218 = 262144 2048 KB

>= 512 and < 1024 219 = 524288 4096 KB

>= 1024 and < 4096 221 = 2097152 16384 KB

>= 4096 and < 8192 222 = 4194304 32768 KB

>= 8192 and < 16384 223 = 8388608 65536 KB

>= 16384 225 = 33554432 262144 KB

The lock manager allocates in advance a number of lock blocks and lock owner blocks at 
server startup. On NUMA confi gurations, these lock and lock owner blocks are divided 
among all NUMA nodes. So when a lock request is made, local lock blocks are used. If the 
number of locks has been set by sp_confi gure, it allocates that confi gured number of lock 

Physical Memory (MB) Number of Slots Memory Used

C10626249.indd   621 2/16/2009   5:18:21 PM



622 Microsoft SQL Server 2008 Internals

blocks and the same number of lock owner blocks. If the number is not fi xed (0 means 
 auto-tune), it allocates 2,500 lock blocks for your SQL Server instance. It allocates twice as 
many (2 * # lock blocks) of the lock owner blocks. At their maximum, the static  allocations 
can’t consume more than 25 percent of the committed buffer pool size. 

 When a request for a lock is made and no free lock blocks remain, the lock manager 
 dynamically allocates new lock blocks instead of denying the lock request. The lock manager 
cooperates with the global memory manager to negotiate for server allocated memory. 
When necessary, the lock manager can free the dynamically allocated lock blocks. The lock 
manager is limited to 60 percent of the buffer manager’s committed target size allocation to 
lock blocks and lock owner blocks. 

Lock Partitioning

 For large systems, locks on frequently referenced objects can become a performance 
 bottleneck. The process of acquiring and releasing locks can cause contention on the  internal 
locking resources. Lock partitioning enhances locking performance by splitting a single 
lock resource into multiple lock resources. For systems with 16 or more CPUs, SQL Server 
 automatically splits certain locks into multiple lock resources, one per CPU. This is called 
lock partitioning, and there is no way for a user to control this process. (Do not confuse 
lock  partitioning with partition locks, which are discussed in the section entitled “Lock 
Escalation,” later in this chapter.) An informational message is sent to the error log  whenever 
lock  partitioning is active. The error message is “Lock partitioning is enabled. This is an 
 informational message only. No user action is required.” Lock partitioning applies only to full 
object locks (for example, tables and views) in the following lock modes: S, U, X, and SCH-M. 
All other modes (NL, SCH_S, IS, IU, and IX) are acquired on a single CPU. SQL Server assigns a 
default lock partition to every transaction when the transaction starts. During the life of that 
transaction, all lock requests that are spread over all the partitions use the partition assigned 
to that transaction. By this method, access to lock resources of the same object by different 
transactions is distributed across different partitions. 

 The resource_lock_partition column in sys.dm_tran_locks indicates which lock partition a 
particular lock is on, so you can see multiple locks for the exact same resource with different 
resource_lock_partition values. For systems with fewer than 16 CPUs, for which lock partitioning 
is never used, the resource_lock_partition value is always 0.  

 For example, consider a transaction acquiring an IS lock in REPEATABLE READ isolation, so 
that the IS lock is held for the duration of the transaction. The IS lock is acquired on the 
 transaction’s default partition—for example, partition 4. If another transaction tries to  acquire 
an X lock on the same table, the X lock must be acquired on ALL partitions. SQL Server 
 successfully acquires the X lock on partitions 0 to 3, but it blocks when attempting to acquire 
an X lock on partition 4. On partition IDs 5 to 15, which have not yet acquired the X lock for 
this table, other transactions can continue to acquire any locks that do not cause blocking. 

C10626249.indd   622 2/16/2009   5:18:22 PM



 Chapter 10 Transactions and Concurrency 623

 With lock partitioning, SQL Server distributes the load of checking for locks across multiple 
spinlocks, and most accesses to any given spinlock are from the same CPU (and practically 
 always from the same node), which means the spinlock should not spin often. 

Lock Blocks

 The lock block is the key structure in SQL Server’s locking architecture, shown earlier in 
Figure 10-3. A lock block contains the following information: 

■  Lock resource information containing the lock resource name and details about 
the lock. 

■  Pointers to connect the lock blocks to the lock hash table. 

■  Pointers to lists of lock owner blocks for locks on this resource that have been  granted. 
Four grant lists are maintained to minimize the amount of time it takes to fi nd a 
 granted lock.  

■  A pointer to a list of lock owner blocks for locks on this resource that are waiting to be 
converted to another lock mode. This is called the convert list. 

■  A pointer to a list of lock owner blocks for locks that have been requested on this 
 resource but have not yet been granted. This is called the wait list. 

 The lock resource uniquely identifi es the data being locked. Its structure is shown in Figure 10-4. 
Each “row” in the fi gure represents 4 bytes, or 32 bits. 

31 0

DBID Resource
type

Resource-specific data 2

Resource
flags

Resource-specific data 1

Resource-specific data 3

FIGURE 10-4 The structure of a lock resource 

 The meanings of the fi elds shown in Figure 10-4 are described in Table 10-8. The value in the 
resource type byte is one of the locking resources described earlier in Table 10-5. The  number 
in parentheses after the resource type is the code number for the resource type (which we 
see in the syslockinfo table a little later in the chapter). The meaning of the  values in the 
three data fi elds varies depending on the type of resource being described. SR  indicates a 
 subresource (which I describe shortly). 

C10626249.indd   623 2/16/2009   5:18:22 PM



624 Microsoft SQL Server 2008 Internals

 TABLE 10-8 Fields in the Lock Resource Block 

Resource Content

 Resource Type Data 1 Data 2 Data 3

 Database (2) SR 0 0

 File (3) File ID 0 0

 Index (4) Object ID SR Index ID

 Table (5) Object ID SR 0

 Page (6) Page number 0

 Key (7) Partition ID Hashed key

 Extent (8) Extent ID 0

 RID (9) RID 0

 The following are some of the possible SR (SubResource) values. If the lock is on a Database 
resource, SR indicates one of the following: 

■  Full database lock 

■  Bulk operation lock 

 If the lock is on a Table resource, SR indicates one of the following: 

■  Full table lock (default) 

■  Update statistics lock 

■  Compile lock 

 If the lock is on an Index resource, SR indicates one of the following: 

■  Full index lock (default) 

■  Index ID lock 

■  Index name lock 

Lock Owner Blocks

 Each lock owned or waited for by a session is represented in a lock owner block. Lists of 
lock owner blocks form the grant, convert, and wait lists that hang off the lock blocks. Each 
lock owner block for a granted lock is linked with all other lock owner blocks for the same 
transaction or session so they can be freed as appropriate when the transaction or session ends.  

syslockinfo Table

 Although the recommended way of retrieving information about locks is through the 
sys.dm_tran_locks view, there is another metadata object called syslockinfo that provides 
internal information about locks. Prior to the introduction of the DMVs in SQL Server 2005, 
 syslockinfo was the only internal metadata available for examining locking information. 

Resource Content

Resource Type Data 1 Data 2 Data 3

C10626249.indd   624 2/16/2009   5:18:22 PM



 Chapter 10 Transactions and Concurrency 625

In fact, the stored procedure sp_lock is still defi ned to retrieve information from syslockinfo 
 instead of from sys.dm_tran_locks. I will not go into full detail about syslockinfo because 
 almost all the information from that table is available, in a much more readable form, in the 
sys.dm_tran_locks view. However, syslockinfo is available in the master database for you to 
take a look at. One column, however, is of particular interest—the rsc_bin column, which 
 contains a 16-byte description of a locked resource. 

 You can analyze the syslockinfo.rsc_bin fi eld as the resource block. Let’s look at an example. 
I select a single row from the Person table in AdventureWorks2008 using the REPEATABLE 
READ isolation level, so my shared locks continue to be held for the duration of the transaction. 
I then look at the rsc_bin column in syslockinfo for key locks, page locks, and table locks: 

USE AdventureWorks2008 

GO 

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ 

GO 

BEGIN TRAN 

SELECT * FROM Person.Person  

WHERE BusinessEntityID = 249; 

GO 

SELECT rsc_bin, rsc_type  

FROM master..syslockinfo 

WHERE rsc_type IN (5,6,7); 

GO

 Here are the three rows in the result set: 

rsc_bin                            rsc_type 

---------------------------------- -------- 

0x805EFA59000000000000000007000500 5 

0x19050000010000000000000007000600 6 

0x710000000001F900CE79D52507000700 7

 The last 2 bytes in rsc_bin are the resource mode, so after byte-swapping, you can see 
the same value as in the rsc_type column—for example, you byte-swap 0500 to 0005 to 
 resource mode 5 (a table lock). The next 2 bytes at the end indicate the database ID, and 
for all three rows, the value after byte-swapping is 0007, which is the database ID of my 
AdventureWorks2008 database. 

 The rest of the bytes vary depending on the type of resource. For a table, the fi rst 4 bytes 
represent the object ID. The preceding row for the object lock (rsc_type = 5) after byte 
 swapping has a value of 59FA5E80, which is 1509580416 in decimal. I can translate this to an 
object name as follows: 

SELECT object_name(1509580416)

 This shows me the Person table. 

 For a PAGE (rsc_type = 6), the fi rst 6 bytes are the page number followed by the fi le 
 number. After byte-swapping, the fi le number is 0001, or 1 decimal, and the page number 
is 00000519, or 9889 in decimal. So the lock is on fi le 1, page 1305.  

C10626249.indd   625 2/16/2009   5:18:22 PM



626 Microsoft SQL Server 2008 Internals

 Finally, for a KEY (rsc_type = 7), the fi rst 6 bytes represent the partition ID but the translation 
is a bit trickier. We need to add another 2 bytes of zeros to the value after byte-swapping, so 
we end up with 0100000000710000, which translates to 72057594045333504 in decimal. To 
see which object this partition belongs to, I can query the sys.partitions view: 

SELECT object_name(object_id)  

FROM sys.partitions 

WHERE partition_ID = 72057594045333504;

 Again, the result is that this partition is part of the Person table. The next 6 bytes of rsc_bin 
for the KEY resource are F900CE79D525. This is a character fi eld, so no byte-swapping 
is needed. However, the value is not further decipherable. Key locks have a hash value 
 generated for them, based on all the key columns of the index. Indexes can be quite long, so 
for almost any possible data type, SQL Server needs a consistent way to keep track of which 
keys are locked. The hashing function therefore generates a 6-byte hash string to represent 
the key. Although you can’t reverse-engineer this value and determine exactly which index 
row is locked, you can use it to look for matching entries, just like SQL Server does. If two rsc_bin 
values have the same 6-byte hash string, they are referring to the same lock resource.  

 In addition to detecting references to the same lock resource, you can determine which 
specifi c keys are locked by using the undocumented value %%lockres%%, which can return 
the hash string for any key. Selecting this value, along with data from the table, returns the 
lock resource for every row in the result set, based on the index used to retrieve the data. 
Consider the following example, which creates a clustered and nonclustered index on a tiny 
table and then selects the %%lockres%% value for each row, fi rst using the clustered index 
and then using the nonclustered index: 

CREATE TABLE lockres (c1 int, c2 int);

GO

INSERT INTO lockres VALUES (1,10);

INSERT INTO lockres VALUES (2,20);

INSERT INTO lockres VALUES (3,30);

GO

CREATE UNIQUE CLUSTERED INDEX lockres_ci ON lockres(c1);

CREATE UNIQUE NONCLUSTERED INDEX lockres_nci ON lockres(c2);

GO

SELECT %%lockres%% AS lock_resource, * FROM lockres WITH (INDEX = lockres_ci);

SELECT %%lockres%% AS lock_resource, * FROM lockres WITH (INDEX = lockres_nci);

GO

 I get the following results. The fi rst set of rows shows the lock resource for the clustered 
 index keys, and the second set shows the lock resources for the nonclustered index:  

lock_resource                    c1          c2

-------------------------------- ----------- -----------

(010086470766)                   1           10

(020068e8b274)                   2           20

(03000d8f0ecc)                   3           30

C10626249.indd   626 2/16/2009   5:18:22 PM



 Chapter 10 Transactions and Concurrency 627

lock_resource                    c1          c2

-------------------------------- ----------- -----------

(0a0087c006b1)                   1           10

(14002be0c001)                   2           20

(1e004f007d6e)                   3           30

 I can use this lock resource to fi nd which row in a table matches a locked resource. For 
 example, if sys.dm_tran_locks indicates that a row with the lock resource (010086470766) is 
holding a lock in the lockres table, I could fi nd which row that resource corresponds to with 
the following query: 

SELECT * FROM lockres

WHERE %%lockres%% = '(010086470766)'

 Note that if the table is a heap and I look for the lock resource when scanning the table, the 
lock resource is the actual row ID (RID). The value returned looks just like the special value 
%%physloc%%, which I told you about in Chapter 5, “Tables”: 

CREATE TABLE lockres_on_heap (c1 int, c2 int);

GO

INSERT INTO lockres_on_heap VALUES (1,10);

INSERT INTO lockres_on_heap VALUES (2,20);

INSERT INTO lockres_on_heap VALUES (3,30);

GO

SELECT %%lockres%% AS lock_resource, * FROM lockres_on_heap;

 Here are my results: 

lock_resource                    c1          c2

-------------------------------- ----------- ----

1:169:0                          1           10

1:169:1                          2           20

1:169:2                          3           30

 Caution You need to be careful when trying to fi nd the row in a table with a hash string that 
matches a particular lock resource. These queries have to perform a complete scan of the table 
to fi nd the row you are interested in, and with a large table, that process can be very expensive.  

Row-Level Locking vs. Page-Level Locking

 Although SQL Server 2008 fully supports row-level locking, in some situations, the lock 
 manager decides not to lock individual rows and instead locks pages or the whole table. In 
other cases, many smaller locks are escalated to a table lock, as I discuss in the upcoming 
section entitled “Lock Escalation.” 

 Prior to SQL Server 7.0, the smallest unit of data that SQL Server could lock was a page. Even 
though many people argued that this was unacceptable and it was impossible to maintain 
good concurrency while locking entire pages, many large and powerful applications were written 

C10626249.indd   627 2/16/2009   5:18:22 PM



628 Microsoft SQL Server 2008 Internals

and deployed using only page-level locking. If they were well designed and tuned,  concurrency 
was not an issue, and some of these applications supported hundreds of active user  connections 
with acceptable response times and throughput. However, with the change in page size 
from 2 KB to 8 KB for SQL Server 7.0, the issue has become more critical. Locking an entire 
page means locking four times as much data as in previous versions. Beginning with SQL 
Server 7.0, the software implements full row-level locking, so any potential problems due to 
lower concurrency with the larger page size should not be an issue. However, locking isn’t 
free. Resources are required to manage locks. Recall that a lock is an in-memory structure of 
64 or 128 bytes (for 32-bit or 64-bit machines, respectively) with another 32 or 64 bytes for 
each process holding or requesting the lock. If you need a lock for every row and you scan a 
 million rows, you need more than 64 MB of RAM just to hold locks for that one process. 

 Beyond memory consumption issues, locking is a fairly processing-intensive operation. 
Managing locks requires substantial bookkeeping. Recall that, internally, SQL Server uses a 
lightweight mutex called a spinlock to guard resources, and it uses latches—also lighter than 
full-blown locks—to protect non-leaf level index pages. These performance optimizations 
avoid the overhead of full locking. If a page of data contains 50 rows of data, all of which 
are used, it is obviously more effi cient to issue and manage one lock on the page than to 
 manage 50. That’s the obvious benefi t of page locking—a reduction in the number of lock 
structures that must exist and be managed. 

 Let’s say two processes each need to update a few rows of data, and even though the rows 
are not the same ones, some of them happen to exist on the same page. With page-level 
locking, one process would have to wait until the page locks of the other process were 
 released. If you use row-level locking instead, the other process does not have to wait. The 
fi ner granularity of the locks means that no confl ict occurs in the fi rst place because each 
process is concerned with different rows. That’s the obvious benefi t of row-level locking. 
Which of these obvious benefi ts wins? Well, the decision isn’t clear-cut, and it depends on 
the application and the data. Each type of locking can be shown to be superior for different 
types of applications and usage. 

 The ALTER INDEX statement lets you manually control the unit of locking within an index 
with options to disallow page locks or row locks within an index. Because these options are 
available only for indexes, there is no way to control the locking within the data pages of 
a heap. (But remember that if a table has a clustered index, the data pages are part of the 
index and are affected by a value set with ALTER INDEX.) The index options are set for each 
table or index individually. Two options, ALLOW_ROW_LOCKS and ALLOW_PAGE_LOCKS, are 
both set to ON initially for every table and index. If both of these options are set to OFF for a 
table, only full table locks are allowed. 

 As mentioned earlier, during the optimization process, SQL Server determines whether to 
lock rows, pages, or the entire table initially. The locking of rows (or keys) is heavily favored. 
The type of locking chosen is based on the number of rows and pages to be scanned, the 
number of rows on a page, the isolation level in effect, the update activity going on, the 
 number of users on the system needing memory for their own purposes, and so on. 

C10626249.indd   628 2/16/2009   5:18:22 PM



 Chapter 10 Transactions and Concurrency 629

Lock Escalation

 SQL Server automatically escalates row, key, or page locks to coarser table or partition locks 
as appropriate. This escalation protects system resources—it prevents the system from using 
too much memory for keeping track of locks—and increases effi ciency. For example, after 
a query acquires many row locks, the lock level can be escalated because it probably makes 
more sense to acquire and hold a single lock than to hold many row locks. When lock  escalation 
occurs, many locks on smaller units (rows or pages) are released and replaced by one lock on 
a larger unit. This escalation reduces locking overhead and keeps the system from running out 
of locks. Because a fi nite amount of memory is available for the lock structures, escalation is 
 sometimes necessary to make sure the memory for locks stays within reasonable limits. 

 The default in SQL Server is to escalate to table locks. However, SQL Server 2008 
 introduces the ability to escalate to a single partition using the ALTER TABLE statement. The 
LOCK_ESCALATION option of ALTER TABLE can specify that escalation is always to a table  level, 
or that it can be to either a table or partition level. The LOCK_ESCALATION  option can also 
be used to prevent escalation entirely. Here’s an example of altering the TransactionHistory 
table (which you may have created if you ran the partitioning example in Chapter 7, “Special 
Storage”), so that locks can be escalated to either the table or partition level: 

ALTER TABLE TransactionHistory

SET (LOCK_ESCALATION = AUTO);

 Lock escalation occurs in the following situations:  

■  The number of locks held by a single statement on one object, or on one partition of 
one object, exceeds a threshold. Currently that threshold is 5,000 locks, but it might 
change in future service packs. The lock escalation does not occur if the locks are 
spread over multiple objects in the same statement—for example, 3,000 locks in one 
index and 3,000 in another.  

■  Memory taken by lock resources exceeds 40 percent of the non-AWE (32-bit) or regular 
(64-bit) enabled memory and the locks confi guration option is set to 0. (In this case, 
the lock memory is allocated dynamically as needed, so the 40 percent value is not a 
constant.) If the locks option is set to a nonzero value, memory reserved for locks is 
statically allocated when SQL Server starts. Escalation occurs when SQL Server is using 
more than 40 percent of the reserved lock memory for lock resources.  

 When the lock escalation is triggered, the attempt might fail if there are confl icting locks. 
So, for example, if an X lock on a RID needs to be escalated and there are concurrent X locks 
on the same table or partition held by a different process, the lock escalation attempt fails. 
However, SQL Server continues to attempt to escalate the lock every time the transaction 
 acquires another 1,250 locks on the same object. If the lock escalation succeeds, SQL Server 
releases all the row and page locks on the index or the heap. 

C10626249.indd   629 2/16/2009   5:18:22 PM



630 Microsoft SQL Server 2008 Internals

 Note SQL Server never escalates to page locks. The result of a lock escalation is always a table 
or partition. In addition, multiple partition locks are never escalated to a table lock.  

Controlling Lock Escalation

 Lock escalation can potentially lead to blocking of future concurrent access to the index or 
the heap by other transactions needing row or page locks on the object. SQL Server cannot 
de-escalate the lock when new requests are made. So lock escalation is not always a good 
idea for all applications. 

 SQL Server 2008 also supports disabling lock escalation for a single table using the ALTER TABLE 
statement. Here is an example of disabling lock escalation on the TransactionHistory table: 

ALTER TABLE TransactionHistory

SET (LOCK_ESCALATION = DISABLE);

 SQL Server 2008 also supports disabling lock escalation using trace fl ags. Note that these 
trace fl ags affect lock escalation on all tables in all databases in a SQL Server instance.  

■  Trace fl ag 1211 completely disables lock escalation. It instructs SQL Server to ignore 
the memory acquired by the lock manager up to the maximum statically allocated lock 
memory (specifi ed using the locks confi guration option) or 60 percent of the non-AWE 
(32-bit) or regular (64-bit) dynamically allocated memory. At that time, an out-of-lock 
memory error is generated. You should exercise extreme caution when using this trace 
fl ag as a poorly designed application can exhaust the memory and seriously degrade 
the performance of your SQL Server instance.  

■  Trace fl ag 1224 also disables lock escalation based on the number of locks acquired, 
but it allows escalation based on memory consumption. It enables lock escalation when 
the lock manager acquires 40 percent of the statically allocated memory (as per the 
locks option) or 40 percent of the non-AWE (32-bit) or regular (64-bit)  dynamically 
 allocated memory. You should note that if SQL Server cannot allocate memory for 
locks due to memory use by other components, the lock escalation can be triggered 
earlier. As with trace fl ag 1211, SQL Server generates an out-of-memory error when 
memory allocated to the lock manager exceeds the total statically allocated memory or 
60  percent of non-AWE (32-bit) or regular (64-bit) memory for dynamic allocation. 

 If both trace fl ags (1211 and 1224) are set at the same time, trace fl ag 1211 takes precedence. 
Remember that these trace fl ags affect the entire SQL Server instance. In many cases, it is 
desirable to control the escalation threshold at the object level, so you should consider using 
the ALTER TABLE command when possible. 

Deadlocks

 A deadlock occurs when two processes are waiting for a resource and neither process can 
advance because the other process prevents it from getting the resource. A true deadlock is 

C10626249.indd   630 2/16/2009   5:18:22 PM



 Chapter 10 Transactions and Concurrency 631

a Catch-22 in which, without intervention, neither process can ever make progress. When a 
deadlock occurs, SQL Server intervenes automatically. I refer mainly to deadlocks acquired 
due to confl icting locks, although deadlocks can also be detected on worker threads, memory, 
and parallel query resources. 

 Note A simple wait for a lock is not a deadlock. When the process that’s holding the lock 
 completes, the waiting process can acquire the lock. Lock waits are normal, expected, 
and  necessary in multiuser systems. 

 In SQL Server, two main types of deadlocks can occur: a cycle deadlock and a conversion 
deadlock. Figure 10-5 shows an example of a cycle deadlock. Process A starts a  transaction, 
acquires an exclusive table lock on the Product table, and requests an exclusive table lock 
on the PurchaseOrderDetail table. Simultaneously, process B starts a transaction, acquires 
an  exclusive lock on the PurchaseOrderDetail table, and requests an exclusive lock on the 
Product table. The two processes become deadlocked—caught in a “deadly embrace.” Each 
process holds a resource needed by the other process. Neither can progress, and,  without 
 intervention, both would be stuck in deadlock forever. You can actually generate the 
 deadlock in SQL Server Management Studio, as follows: 

  1. Open a query window, and change your database context to the AdventureWorks2008 
database. Execute the following batch for process A: 

BEGIN TRAN 

UPDATE  Production.Product  

    SET ListPrice = ListPrice * 0.9 

WHERE ProductID  = 922;

  2. Open a second window, and execute this batch for process B: 

BEGIN TRAN 

UPDATE  Purchasing.PurchaseOrderDetail 

    SET OrderQty = OrderQty + 200 

    WHERE ProductID  = 922 

    AND PurchaseOrderID = 499;

  3. Go back to the fi rst window, and execute this UPDATE statement: 

UPDATE  Purchasing.PurchaseOrderDetail 

    SET OrderQty = OrderQty - 200 

    WHERE ProductID  = 922 

    AND PurchaseOrderID = 499;

 At this point, the query should block. It is not deadlocked yet, however. It is waiting for 
a lock on the PurchaseOrderDetail table, and there is no reason to suspect that it won’t 
eventually get that lock. 

  4. Go back to the second window, and execute this UPDATE statement: 

UPDATE  Production.Product  

    SET ListPrice = ListPrice * 1.1 

    WHERE ProductID  = 922;

C10626249.indd   631 2/16/2009   5:18:22 PM



632 Microsoft SQL Server 2008 Internals

 At this point, a deadlock occurs. The fi rst connection never gets its requested lock on the 
PurchaseOrderDetail table because the second connection does not give it up until it gets a 
lock on the Product table. Because the fi rst connection already has the lock on the Product 
table, we have a deadlock. One of the processes receives the following error message. 
(Of course, the actual process ID reported will probably be different.) 

Msg 1205, Level 13, State 51, Line 1 

Transaction (Process ID 57) was deadlocked on lock resources with another process and has 

been chosen as the deadlock victim. Rerun the transaction.

DEADLOCK

Process A Process B
Product PurchaseOrderDetail

Acquires
exclusive
lock on
Product

Requests
exclusive lock on

PurchaseOrderDetail
(held by B)

Acquires
exclusive
lock on

PurchaseOrderDetail

Requests
exclusive lock
on Product
(held by A)

ProductPurchaseOrderDetail

FIGURE 10-5 A cycle deadlock resulting from two processes, each holding a resource needed by the other

 Figure 10-6 shows an example of a conversion deadlock. Process A and process B each hold 
a shared lock on the same page within a transaction. Each process wants to promote its 
shared lock to an exclusive lock but cannot do so because of the other process’s lock. Again, 
 intervention is required. 

 SQL Server automatically detects deadlocks and intervenes through the lock manager, 
which provides deadlock detection for regular locks. In SQL Server 2008, deadlocks can also 
 involve resources other than locks. For example, if process A is holding a lock on Table1 and 
is  waiting for memory to become available and process B has some memory that it can’t 
 release until it acquires a lock on Table1, the processes deadlock. When SQL Server detects a 
deadlock, it terminates one process’s batch, rolling back the active transaction and releasing 
all that process’s locks to resolve the deadlock. In addition to deadlocks on lock resources and 
memory resources, deadlocks can also occur with resources involving worker threads, parallel 
query execution–related resources, and MARS resources. Latches are not involved in deadlock 
 detection because SQL Server uses deadlock-proof algorithms when it acquires latches. 

C10626249.indd   632 2/16/2009   5:18:22 PM



 Chapter 10 Transactions and Concurrency 633

Shared lock #1
Process A wants to

convert shared lock on
page 100 to exclusive
but cannot because

process B also has a
shared lock on

page 100.

Process A

Page 100

DEADLOCK

Shared lock #2

Process B

Page 100

DEADLOCK

Process B wants to
convert shared lock on
page 100 to exclusive
but cannot because

process A also has a
shared lock on

page 100.

FIGURE 10-6 A conversion deadlock resulting from two processes wanting to promote their locks on the 
same resource within a transaction

 In SQL Server, a separate thread called LOCK_MONITOR checks the system for deadlocks 
 every fi ve seconds. As deadlocks occur, the deadlock detection interval is reduced and can 
go as low as 100 milliseconds. In fact, the fi rst few lock requests that cannot be satisfi ed after 
a deadlock has been detected will immediately trigger a deadlock search rather than wait for 
the next deadlock detection interval. If the deadlock frequency declines, the interval can go 
back to every fi ve seconds. 

 This LOCK_MONITOR thread checks for deadlocks by inspecting the list of waiting locks 
for any cycles, which indicate a circular relationship between processes holding locks and 
processes waiting for locks. SQL Server attempts to choose as the victim the process that 
would be least expensive to roll back, considering the amount of work the process has 
 already done. That process is killed and error message 1205 is sent to the corresponding 
 client connection. The transaction is rolled back, meaning all its locks are released, so other 
processes involved in the deadlock can proceed. However, certain operations are marked as 
golden, or unkillable, and cannot be chosen as the deadlock victim. For example, a process 
involved in rolling back a transaction cannot be chosen as a deadlock victim because the 
changes being rolled back could be left in an indeterminate state, causing data corruption. 

 Using the SET DEADLOCK_PRIORITY statement, a process can determine its priority for 
 being chosen as the victim if it is involved in a deadlock. There are 21 different priority levels, 
from –10 to 10. You can also specify the value LOW, which is equivalent to –5, NORMAL, which 
is  equivalent to  0, and HIGH, which is equivalent to 5. Which session is chosen as the deadlock 
 victim depends on each session’s deadlock priority. If the sessions have different deadlock 

C10626249.indd   633 2/16/2009   5:18:22 PM



634 Microsoft SQL Server 2008 Internals

priorities, the session with the lowest deadlock priority is chosen as the deadlock victim. 
If both sessions have set the same deadlock priority, SQL Server selects as the victim the 
 session that is less expensive to roll back.  

 Note The lightweight latches and spinlocks used internally do not have deadlock detection 
services. Instead, deadlocks on latches and spinlocks are avoided rather than resolved. Avoidance is 
achieved via strict programming guidelines used by the SQL Server development team. These 
lightweight locks must be acquired in a hierarchy, and a process must not have to wait for a 
 regular lock while holding a latch or spinlock. For example, one coding rule is that a process 
 holding a spinlock must never directly wait for a lock or call another service that might have to 
wait for a lock, and a request can never be made for a spinlock that is higher in the acquisition 
 hierarchy. By establishing similar guidelines for your development team for the order in which SQL 
Server objects are accessed, you can go a long way toward avoiding deadlocks in the fi rst place. 

 In the example in Figure 10-5, the cycle deadlock could have been avoided if the processes 
had decided on a protocol beforehand—for example, if they had decided always to access the 
Product table fi rst and the PurchaseOrderDetail table second. Then one of the processes gets 
the initial exclusive lock on the table being accessed fi rst, and the other process waits for the 
lock to be released. One process waiting for a lock is normal and natural. Remember, waiting 
is not a deadlock. 

 You should always try to have a standard protocol for the order in which processes access 
tables. If you know that the processes might need to update the row after reading it, they 
should initially request an update lock, not a shared lock. If both processes request an update 
lock rather than a shared lock, the process that is granted an update lock is assured that the 
lock can later be promoted to an exclusive lock. The other process requesting an update lock 
has to wait. The use of an update lock serializes the requests for an exclusive lock. Other 
processes needing only to read the data can still get their shared locks and read. Because the 
holder of the update lock is guaranteed an exclusive lock, the deadlock is avoided.  

 In many systems, deadlocks cannot be completely avoided, but if the application handles 
the deadlock appropriately, the impact on any users involved, and on the rest of the 
 system, should be minimal. (Appropriate handling implies that when error 1205 occurs, 
the  application resubmits the batch, which most likely succeeds on the second try. Once 
one  process is killed, its transaction is aborted, and its locks are released, the other  process 
 involved in the deadlock can fi nish its work and release its locks, so the environment is 
not conducive to another deadlock.) Although you might not be able to avoid  deadlocks 
 completely, you can minimize their occurrence. For example, you should write your 
 applications so that your processes hold locks for a minimal amount of time; in that way, 
other processes won’t have to wait too long for locks to be released. Although you don’t 
usually invoke locking directly, you can infl uence locking by keeping transactions as short as 
possible. For example, don’t ask for user input in the middle of a transaction. Instead, get the 
input fi rst and then quickly perform the transaction. 

C10626249.indd   634 2/16/2009   5:18:22 PM



 Chapter 10 Transactions and Concurrency 635

Row Versioning

 At the beginning of this chapter, I described two concurrency models that SQL Server 
can use. Pessimistic concurrency uses locking to guarantee the appropriate transactional 
 behavior and avoid problems such as dirty reads, according to the isolation level you are 
 using. Optimistic concurrency uses a new technology called row versioning to guarantee your 
 transactions. Starting in SQL Server 2005, optimistic concurrency is available after you enable 
one or both of the database properties called READ_COMMITTED_SNAPSHOT and 
ALLOW_SNAPSHOT_ ISOLATION. Exclusive locks can be acquired when you use  optimistic 
 concurrency, so you still need to be aware of all issues related to lock modes, lock  resources, 
and lock duration, as well as the resources required to keep track of and manage locks. 
The difference between optimistic and pessimistic concurrency is that with optimistic 
 concurrency, writers and readers do not block each other. Or, using locking terminology, a 
process requesting an exclusive lock does not block when the requested resource currently 
has a shared lock. Conversely, a process requesting a shared lock does not block when the 
requested resource currently has an exclusive lock. 

 It is possible to avoid blocking because as soon as one of the new database options is 
enabled, SQL Server starts using tempdb to store copies (versions) of all rows that have 
changed, and it keeps those copies as long as there are any transactions that might need to 
access them. The space in tempdb used to store previous versions of changed rows is called 
the version store.  

Overview of Row Versioning

 In earlier versions of SQL Server, the tradeoff in concurrency solutions is that we can avoid 
having writers block readers if we are willing to risk inconsistent data—that is, if we use Read 
Committed isolation. If our results must always be based on committed data, we need to be 
willing to wait for changes to be committed. 

 SQL Server 2005 introduced a new isolation level called Snapshot isolation and a new 
 nonblocking fl avor of Read Committed isolation called Read Committed Snapshot Isolation (RCSI). 
These row versioning–based isolation levels allow a reader to get to a previously  committed 
value of the row without blocking, so concurrency is increased in the system. For this to work, 
SQL Server must keep old versions of a row when it is updated or deleted. If multiple updates are 
made to the same row, multiple older versions of the row might need to be maintained. Because 
of this, row versioning is sometimes called multiversion concurrency control. 

 To support storing multiple older versions of rows, additional disk space is used from the 
tempdb database. The disk space for the version store must be monitored and  managed 
 appropriately, and I point out some of the ways you can do that later in this section. 
Versioning works by making any transaction that changes data keep the old versions of 
the data around so that a snapshot of the database (or a part of the database) can be 
 constructed from these old versions. 

C10626249.indd   635 2/16/2009   5:18:22 PM



636 Microsoft SQL Server 2008 Internals

Row Versioning Details

 When a row in a table or index is updated, the new row is stamped with the transaction 
 sequence number (XSN) of the transaction that is doing the update. The XSN is a  monotonically 
increasing number that is unique within each SQL Server database. The concept of XSN is 
not the same as Log Sequence Numbers (LSNs), which I discussed in Chapter 4, “Logging and 
Recovery.” I discuss XSNs in more detail later. When updating a row, the previous version is 
stored in the version store, and the new row contains a pointer to the old row in the version 
store. Old rows in the version store might contain pointers to even older versions. All the old 
versions of a particular row are chained in a linked list, and SQL Server might need to follow 
several pointers in a list to reach the right version. Version rows must be kept in the version 
store only as long as there are operations that might require them.  

 In Figure 10-7, the current version of the row is generated by transaction T3, and it is stored 
in the normal data page. The previous versions of the row, generated by transaction T2 and 
transaction Tx, are stored in pages in the version store (in tempdb). 

 Row versioning gives SQL Server an optimistic concurrency model to work with when an 
 application requires it or when the concurrency reduction of using the default pessimistic 
model is unacceptable. Before you switch to the row versioning–based isolation levels, you 
must carefully consider the tradeoffs of using this new concurrency model. In addition to 
requiring extra management to monitor the increased use of tempdb for the version store, 
versioning slows the performance of update operations due to the extra work involved in 
maintaining old versions. Update operations bear this cost, even if there are no current 
 readers of the data. If there are readers using row versioning, they have the extra cost of 
 traversing the link pointers to fi nd the appropriate version of the requested row.  

Current Row(K=1, A=11) created by
Transaction T3

Previous Version Row(K=1, A=9)
created by transaction T2

Previous Version(K=1, A=5)
created by transaction Tx

FIGURE 10-7 Versions of a row

 In addition, because the optimistic concurrency model of Snapshot isolation assumes 
( optimistically) that not many update confl icts will occur, you should not choose the Snapshot 
isolation level if you are expecting contention for updating the same data concurrently. Snapshot 
isolation works well to enable readers not to be blocked by writers, but simultaneous writers are 

C10626249.indd   636 2/16/2009   5:18:23 PM



 Chapter 10 Transactions and Concurrency 637

still not allowed. In the default pessimistic model, the fi rst writer will block all  subsequent writers, 
but using Snapshot isolation, subsequent writers could actually receive error messages and the 
application would need to resubmit the original request. Note that these update confl icts occur 
only with the full Snapshot isolation, not with the enhanced RCSI. 

Snapshot-Based Isolation Levels

SQL Server 2008 provides two types of snapshot-based isolation, both of which use row 
 versioning to maintain the snapshot. One type, RCSI, is enabled simply by setting a database 
option. Once enabled, no further changes need to be made. Any transaction that would have 
operated under the default Read Committed isolation will run under RCSI. The other type, 
Snapshot isolation must be enabled in two places. You must fi rst enable the database with 
the ALLOW_SNAPSHOT_ISOLATION option, and then each connection that wants to use SI 
must set the isolation level using the SET TRANSACTION ISOLATION LEVEL command. Let’s 
compare these two types of Snapshot-based isolation. 

Read Committed Snapshot Isolation

RCSI is a statement-level Snapshot-based isolation, which means any queries see the most 
recent committed values as of the beginning of the statement. For example, let’s look at the 
scenario in Table 10-9. Assume that two transactions are running in the AdventureWorks2008 
database, which has been enabled for RCSI, and that before either transaction starts running, 
the ListPrice value of product 922 is 8.89. 

TABLE 10-9 A SELECT Running in RCSI 

Time Transaction 1 Transaction 2

1 BEGIN TRAN 

UPDATE Production.Product 

SET ListPrice = 10.00 

WHERE ProductID  = 922; 

BEGIN TRAN

2 SELECT ListPrice 

FROM Production.Product 

WHERE ProductID  = 922; 

-- SQL Server returns 8.89 

3 COMMIT TRAN

4 SELECT ListPrice 

FROM Production.Product 

WHERE ProductID  = 922; 

-- SQL Server returns 10.00

5 COMMIT TRAN

We should note that at Time = 2, the change made by Transaction 1 is still uncommitted, so 
the lock is still held on the row for ProductID = 922. However, Transaction 2 does not block 
on that lock; it has access to an old version of the row with a last committed ListPrice value 

Time Transaction 1 Transaction 2

C10626249.indd   637 2/16/2009   5:18:23 PM



638 Microsoft SQL Server 2008 Internals

of 8.89. After Transaction 1 has committed and released its lock, Transaction 2 sees the new 
value of ListPrice. This is still Read Committed isolation (just a nonlocking variation), so there is 
no guarantee that read operations are repeatable. 

 You can consider RCSI to be just a variation of the default isolation level Read Committed. 
The same behaviors are allowed and disallowed, as indicated back in Table 10-2. 

 RCSI is enabled and disabled with the ALTER DATABASE command, as shown in this 
 command to enable RCSI in the AdventureWorks2008 database: 

ALTER DATABASE AdventureWorks2008 

   SET READ_COMMITTED_SNAPSHOT ON;

 Ironically, although this isolation level is intended to help avoid blocking, if there are any 
 users in the database when the preceding command is executed, the ALTER statement 
blocks it. (The connection issuing the ALTER command can be in the database, but no other 
 connections can be.) Until the change is successful, the database continues to operate as if it 
is not in RCSI mode. The blocking can be avoided by specifying a TERMINATION clause for 
the ALTER command, as discussed in Chapter 3, “Databases and Database Files”: 

ALTER DATABASE AdventureWorks2008 

   SET READ_COMMITTED_SNAPSHOT ON WITH NO_WAIT;

 If there are any users in the database, the preceding ALTER fails with the following error: 

Msg 5070, Level 16, State 2, Line 1 

Database state cannot be changed while other users are using 

the database 'AdventureWorks2008' 

Msg 5069, Level 16, State 1, Line 1 

ALTER DATABASE statement failed.

 You can also specify one of the ROLLBACK termination options, basically to break any current 
database connections.  

 The biggest benefi t of RCSI is that you can introduce greater concurrency because  readers 
do not block writers and writers do not block readers. However, writers do block writers 
 because the normal locking behavior applies to all UPDATE, DELETE, and INSERT operations. 
No SET options are required for any session to take advantage of RCSI, so you can reduce the 
concurrency impact of blocking and deadlocking without any change in your applications. 

Snapshot Isolation

 Snapshot isolation requires using a SET command in the session, just like for any other 
change of isolation level (for example, SET TRANSACTION ISOLATION LEVEL SERIALIZABLE). For a 
session-level option to take effect, you must also allow the database to use SI by altering the 
database: 

ALTER DATABASE AdventureWorks2008 

   SET ALLOW_SNAPSHOT_ISOLATION ON;

C10626249.indd   638 2/16/2009   5:18:23 PM



 Chapter 10 Transactions and Concurrency 639

 When altering the database to allow SI, a user in the database does not necessarily block the 
command from completing. However, if there is an active transaction in the database, the 
ALTER is blocked. This does not mean that there is no effect until the statement completes. 
Changing the database to allow full SI can be a deferred operation. The database can  actually 
be in one of four states with regard to ALLOW_SNAPSHOT_ISOLATION. It can be ON or OFF, 
but it can also be IN_TRANSITION_TO_ON or IN_TRANSITION_TO_OFF.  

 Here is what happens when you ALTER a database to ALLOW_SNAPSHOT_ISOLATION: 

■  SQL Server waits for the completion of all active transactions, and the database status is 
set to IN_TRANSITION_TO_ON. 

■  Any new UPDATE or DELETE transactions start generating versions in the version store. 

■  New snapshot transactions cannot start because transactions that are already 
in  progress are not storing row versions as the data is changed. New snapshot 
 transactions would have to have committed versions of the data to read. There is 
no  error when you execute the SET TRANSACTION ISOLATION LEVEL SNAPSHOT 
 command; the error occurs when you try to SELECT data, and you get this message: 

Msg 3956, Level 16, State 1, Line 1 

Snapshot isolation transaction failed to start in database 'AdventureWorks2008' 

because the ALTER DATABASE command which enables snapshot isolation for this database 

has not finished yet. The database is in transition to pending ON state. You must wait 

until the ALTER DATABASE Command completes successfully.

■  As soon as all transactions that were active when the ALTER command began have 
 fi nished, the ALTER can fi nish and the state change are complete. The database now is 
in the state ALLOW_SNAPSHOT_ISOLATION. 

 Taking the database out of ALLOW_SNAPSHOT_ISOLATION mode is similar, and again, there 
is a transition phase. 

■  SQL Server waits for the completion of all active transactions, and the database status is 
set to IN_TRANSITION_TO_OFF. 

■  New snapshot transactions cannot start. 

■  Existing snapshot transactions still execute snapshot scans, reading from the version store. 

■  New transactions continue generating versions. 

Snapshot Isolation Scope

 SI gives you a transactionally consistent view of the data. Any rows read are the most recent 
committed version of the rows as of the beginning of the transaction. (For RCSI, we get the 
most recent committed version as of the beginning of the statement.) A key point to keep in 
mind is that the transaction does not start at the BEGIN TRAN statement; for the purposes 
of SI, a transaction starts the fi rst time the transactions accesses any data in the database. 

C10626249.indd   639 2/16/2009   5:18:23 PM



640 Microsoft SQL Server 2008 Internals

 As an example of SI, let’s look at a scenario similar to the one in Table 10-9. Table 10-10 
shows activities in a database with ALLOW_SNAPSHOT_ISOLATION set to ON. Assume 
two transactions are running in the AdventureWorks2008 database and that before either 
 transaction starts, the ListPrice value of Product 922 is 10.00. 

TABLE 10-10 A SELECT Running in a SNAPSHOT Transaction 

Time Transaction 1 Transaction 2

1 BEGIN TRAN

2 UPDATE Production.Product 

SET ListPrice = 12.00 

WHERE ProductID = 922;

SET TRANSACTION ISOLATION 

LEVEL SNAPSHOT

3 BEGIN TRAN

4 SELECT ListPrice 

FROM Production.Product 

WHERE ProductID = 922; 

-- SQL Server returns 10.00 

-- This is the beginning of 

-- the transaction

5 COMMIT TRAN

6 SELECT ListPrice 

FROM Production.Product 

WHERE ProductID = 922; 

-- SQL Server returns 10.00 

-- Return the committed 

-- value as of the beginning 

-- of the transaction

7 COMMIT TRAN

SELECT ListPrice 

FROM Production.Product 

WHERE ProductID = 922; 

-- SQL Server returns 12.00

 Even though Transaction 1 has committed, Transaction 2 continues to return the initial value 
it read of 10.00 until Transaction 2 completes. Only after Transaction 2 is complete does 
the connection read a new value for ListPrice. 

Viewing Database State

 The catalog view sys.databases contains several columns that report on the Snapshot 
 isolation state of the database. A database can be enabled for SI and/or RCSI. However, 
 enabling one does not automatically enable or disable the other. Each one has to be enabled 
or disabled individually using separate ALTER DATABASE commands.  

 The column snapshot_isolation_state has possible values of 0 to 4, indicating each of the four 
possible SI states, and the snapshot_isolation_state_desc column spells out the state. Table 10-11 
summarizes what each state means. 

Time Transaction 1 Transaction 2

C10626249.indd   640 2/16/2009   5:18:23 PM



 Chapter 10 Transactions and Concurrency 641

TABLE 10-11 Possible Values for the Database Option ALLOW_SNAPSHOT_ISOLATION 

 Snapshot Isolation State Description

 OFF Snapshot isolation state is disabled in the database. In other words, 
transactions with Snapshot isolation are not allowed. Database 
 versioning state is initially set to OFF during recovery. If versioning is 
enabled, versioning state is set to ON after recovery.

 IN_TRANSITION_TO_ON The database is in the process of enabling SI. It waits for the 
 completion of all UPDATE transactions that were active when the 
ALTER DATABASE command was issued. New UPDATE transactions in this 
 database start paying the cost of versioning by generating row versions. 
Transactions using Snapshot isolation cannot start. 

 ON SI is enabled. New snapshot transactions can start in this database. 
Existing snapshot transactions (in another snapshot-enabled session) 
that start before versioning state is turned ON cannot do a snapshot 
scan in this database because the snapshot those transactions are 
 interested in is not properly generated by the UPDATE transactions.

 IN_ TRANSITION_TO_OFF The database is in the process of disabling the SI state and is unable to 
start new snapshot transactions. UPDATE transactions still pay the cost 
of versioning in this database. Existing snapshot transactions can still do 
snapshot scans. IN_TRANSITION_TO_OFF does not become OFF until all 
existing transactions fi nish.

The is_read_committed_snapshot_on column has a value of 0 or 1. Table 10-12 summarizes 
what each state means. 

TABLE 10-12 Possible Values for the Database Option READ_COMMITTED_SNAPSHOT 

READ_COMMITTED_SNAPSHOT State Description

0 READ_COMMITTED_SNAPSHOT is disabled.

1 READ_COMMITTED_SNAPSHOT is enabled. Any 
query with Read Committed isolation executes in the 
 nonblocking mode.

You can see the values of each of these snapshot states for all your databases with the 
 following query: 

SELECT name, snapshot_isolation_state_desc, 

         is_read_committed_snapshot_on , * 

FROM sys.databases;

Update Confl icts

 One crucial difference between the two optimistic concurrency levels is that SI can 
 potentially result in update confl icts when a process sees the same data for the duration of 
its transaction and is not blocked simply because another process is changing the same 
data. Table 10-13 illustrates two processes attempting to update the Quantity value of the 
same row in the ProductInventory table in the AdventureWorks2008 database. Two clerks 

Snapshot Isolation State Description

READ_COMMITTED_SNAPSHOT State Description

C10626249.indd   641 2/16/2009   5:18:23 PM



642 Microsoft SQL Server 2008 Internals

have each received shipments of ProductID 872 and are trying to update the inventory. The 
AdventureWorks2008 database has ALLOW_SNAPSHOT_ISOLATION set to ON, and before 
either transaction starts, the Quantity value of Product 872 is 324. 

 TABLE 10-13 An Update Confl ict in SNAPSHOT Isolation 

 Time Transaction 1 Transaction 2

 1 SET TRANSACTION ISOLATION  

LEVEL SNAPSHOT

 2 BEGIN TRAN

 3 SELECT Quantity 

FROM Production.ProductInventory 

WHERE ProductID  = 872; 

-- SQL Server returns 324 

-- This is the beginning of 

-- the transaction

 4 BEGIN TRAN 

UPDATE Production.ProductInventory 

SET Quantity=Quantity + 200 

WHERE ProductID  = 872;  

-- Quantity is now 524

 5 UPDATE Production.ProductInventory 

SET Quantity=Quantity + 300 

WHERE ProductID = 872;  

-- Process will block

 6 COMMIT TRAN

 7 --  Process receives error 3960

 The confl ict happens because Transaction 2 started when the Quantity value was 324. When 
that value was updated by Transaction 1, the row version with 324 was saved in the version 
store. Transaction 2 continues to read that row for the duration of the transaction. If both 
UPDATE operations were allowed to succeed, we would have a classic lost update  situation. 
Transaction 1 added 200 to the quantity, and then Transaction 2 would add 300 to the 
original value and save that. The 200 added by Transaction 1 would be completely lost. SQL 
Server does not allow that. 

 When Transaction 2 fi rst tries to perform the UPDATE, it doesn’t get an error immediately—
it is simply blocked. Transaction 1 has an exclusive lock on the row, so when Transaction 2 
 attempts to get an exclusive lock, it is blocked. If Transaction 1 had rolled back its  transaction, 
Transaction 2 would have been able to complete its UPDATE. But because Transaction 1 
 committed, SQL Server detects a confl ict and generates the following error: 

Msg 3960, Level 16, State 2, Line 1    

Snapshot isolation transaction aborted due to update conflict. You cannot use snapshot 

isolation to access table 'Production.ProductInventory' directly or indirectly in database'

AdventureWorks2008' to update, delete, or insert the row that has been modified or deleted 

by another transaction. Retry the transaction or change the isolation level for the 

update/delete statement.

Time Transaction 1 Transaction 2

C10626249.indd   642 2/16/2009   5:18:23 PM



 Chapter 10 Transactions and Concurrency 643

 Confl icts are possible only with SI because that isolation level is transaction-based, not 
statement-based. If the example in Table 10-13 were executed in a database using RCSI, the 
UPDATE statement executed by Transaction 2 would not use the old value of the data. It 
would be blocked when trying to read the current Quantity, and then when Transaction 1 
fi nished, it would read the new updated Quantity as the current value and add 300 to that. 
Neither update would be lost. 

 If you choose to work in SI, you need to be aware that confl icts can happen. They can be 
minimized, but as with deadlocks, you cannot be sure that you will never have confl icts. 
Your application must be written to handle confl icts appropriately and not assume that the 
UPDATE has succeeded. If confl icts occur occasionally, you might consider it part of the price 
to be paid for using SI, but if they occur too often, you might need to take extra steps. 

 You might consider whether SI is really necessary, and if it is, you should determine whether 
the statement-based RCSI might give you the behavior you need without the cost of detecting 
and dealing with confl icts. Another solution is to use a query hint called UPDLOCK to make 
sure no other process updates data before you’re ready to update it. In Table 10-13, Transaction 2 
could use UPDLOCK on its initial SELECT as follows: 

SELECT Quantity 

FROM Production.ProductInventory WITH (UPDLOCK) 

WHERE ProductID  = 872;

 The UPDLOCK hint forces SQL Server to acquire update locks for Transaction 2 on the row 
that is selected. When Transaction 1 then tries to update that row, it blocks. It is not using 
SI, so it does not see the previous value of Quantity. Transaction 2 can perform its update 
 because Transaction 1 is blocked, and it commits. Transaction 1 can then perform its update 
on the new value of Quantity, and neither update is lost.  

 I will provide a few more details about locking hints at the end of this chapter.  

Data Defi nition Language and SNAPSHOT Isolation

 When working with SI, you need to be aware that although SQL Server keeps versions of all 
the changed data, that metadata is not versioned. Therefore, certain DDL statements are 
not allowed inside a snapshot transaction. The following DDL statements are disallowed in a 
snapshot transaction: 

■  CREATE / ALTER / DROP INDEX  

■  DBCC DBREINDEX 

■  ALTER TABLE 

■  ALTER PARTITION FUNCTION / SCHEME 

C10626249.indd   643 2/16/2009   5:18:23 PM



644 Microsoft SQL Server 2008 Internals

 On the other hand, the following DDL statements are allowed: 

■ CREATE TABLE 

■ CREATE TYPE 

■  CREATE PROC  

 Note that the allowable DDL statements are ones that create brand-new objects. In SI, there 
is no chance that any simultaneous data modifi cations affect the creation of these objects. 
Table 10-14 shows a pseudo-code example of a snapshot transaction that includes both 
CREATE TABLE and CREATE INDEX.  

 TABLE 10-14 DDL Inside a SNAPSHOT Transaction 

Time Transaction 1 Transaction 2

1 SET TRANSACTION ISOLATION  

LEVEL SNAPSHOT;

2 BEGIN TRAN

3 SELECT count(*)  

FROM Production.Product; 

-- This is the beginning of 

-- the transaction 

4 BEGIN TRAN

5 CREATE TABLE NewProducts 

( <column definitions>) 

-- This DDL is legal

INSERT Production.Product 

  VALUES (9999, .....) 

-- A new row is insert into 

--   the Product table

6 COMMIT TRAN

7 CREATE INDEX PriceIndex 

   ON Production.Product 

     (ListPrice) 

-- This DDL will generate an  

-- error

 The CREATE TABLE statement succeeds even though Transaction 1 is in SI because it is not 
 affected by anything any other process can do. The CREATE INDEX statement is a  different 
story. When Transaction 1 started, the new row with ProductID 9999 did not exist. But when 
the CREATE INDEX statement is encountered, the INSERT from Transaction 2 has been 
 committed. Should Transaction 1 include the new row in the index? There is actually no way 
to avoid including the new row, but that would violate the snapshot that Transaction 1 is 
 using, and SQL Server generates an error instead of creating the index.  

 Another aspect of concurrent DDL to consider is what happens when a statement outside 
the snapshot transaction changes an object referenced by a snapshot transaction. The DDL is 
 allowed, but you can get an error in the snapshot transaction when this happens. Table 10-15 
shows an example. 

Time Transaction 1 Transaction 2

C10626249.indd   644 2/16/2009   5:18:23 PM



 Chapter 10 Transactions and Concurrency 645

TABLE 10-15 Concurrent DDL Outside the SNAPSHOT Transaction   

Time Transaction 1 Transaction 2

1 SET TRANSACTION ISOLATION  

LEVEL SNAPSHOT;

2 BEGIN TRAN 

3 SELECT TOP 10 * 

FROM Production.Product; 

-- This is the start of  

-- the transaction

4 BEGIN TRAN 

ALTER TABLE Purchasing.Vendor 

   ADD notes varchar(1000); 

COMMIT TRAN

5 SELECT TOP 10 * 

FROM Production.Product; 

-- Succeeds 

-- The ALTER to a different 

--  table does not affect  

--  this transaction

6 BEGIN TRAN 

ALTER TABLE Production.Product 

   ADD LowestPrice money; 

COMMIT TRAN

7 SELECT TOP 10 * FROM Production.

Product; 

-- ERROR 

For the preceding situation, in Transaction 1, the repeated SELECT statements should always 
return the same data from the Product table. An external ALTER TABLE on a completely 
 different table has no effect on the snapshot transaction, but Transaction 2 then alters the 
Product table to add a new column. Because the metadata representing the former table 
structure is not versioned, Transaction 1 cannot produce the same results for the third 
SELECT. SQL Server generates this error: 

Msg 3961, Level 16, State 1, Line 1 

Snapshot isolation transaction failed in database 'AdventureWorks2008' because the object 

accessed by the statement has been modified by a DDL statement in another concurrent 

transaction since the start of this transaction. It is disallowed because the metadata is 

not versioned. A concurrent update to metadata can lead to inconsistency if mixed with 

snapshot isolation.

In this version, any concurrent change to metadata on objects referenced by a snapshot 
transaction generates this error, even if there is no possibility of anomalies. For example, if 
Transaction 1 issues a SELECT count(*), which is not affected by the ALTER TABLE statement, 
SQL Server still generates error 3961. 

Time Transaction 1 Transaction 2

C10626249.indd   645 2/16/2009   5:18:23 PM



646 Microsoft SQL Server 2008 Internals

Summary of Snapshot-Based Isolation Levels

 SI and RCSI are similar in the sense that they are based on the versioning of rows in a 
 database. However, there are some key differences in how these options are enabled from 
an administration perspective and also in how they affect your applications. I have discussed 
many of these differences already, but for completeness, Table 10-16 lists both the similarities 
and the differences between the two types of snapshot-based isolation. 

TABLE 10-16 Snapshot vs. Read Committed Snapshot Isolation 

Snapshot Isolation Read Committed Snapshot Isolation

The database must be confi gured to allow SI, 
and the session must issue the command SET 
TRANSACTION ISOLATION LEVEL SNAPSHOT.

The database must be confi gured to use RCSI, and 
sessions must use the default isolation level. No 
code changes are required.

Enabling SI for a database is an online 
 operation. It allows a DBA to turn on 
versioning for one  particular application such 
as one that is creating large  reports. The DBA 
can then turn off  versioning after the  reporting 
transaction has started to prevent new 
snapshot transactions from starting. Turning 
on SI in an existing database is synchronous. 
When the ALTER DATABASE command is given, 
control does not return to the DBA until all 
existing  update  transactions that need to 
create versions in the current database fi nish. 
At this time, ALLOW_SNAPSHOT_ISOLATION 
is changed to ON. Only then can users start a 
snapshot transaction in that  database. Turning 
off SI is also synchronous. 

Enabling RCSI for a database requires a SHARED_
TRANSACTION_WORKSPACE lock on the database. 
All users must be kicked out of a database to 
enable this option.

There are no restrictions on active sessions 
in the database when this database option is 
enabled.

There should be no other sessions active in the 
database when you enable this option.

If an application runs a snapshot  transaction 
that accesses tables from two databases, 
the DBA must turn on ALLOW_SNAPSHOT_
ISOLATION in both databases before the 
application starts a snapshot transaction. 

RCSI is really a table-level option, so tables 
from two different databases, referenced in the 
same query, can each have their own individual 
 setting. One table might get its data from the 
version store, while the other table is reading 
only the  current versions of the data. There is no 
 requirement that both databases must have the 
RCSI option enabled.

The IN_TRANSITION versioning states do not 
 persist. Only the ON and OFF states are 
remembered on disk. 

There are no IN_TRANSITION states here. Only ON 
and OFF states persist.

Snapshot Isolation Read Committed Snapshot Isolation

C10626249.indd   646 2/16/2009   5:18:24 PM



 Chapter 10 Transactions and Concurrency 647

TABLE 10-16 Snapshot vs. Read Committed Snapshot Isolation 

Snapshot Isolation Read Committed Snapshot Isolation

When a database is recovered after a server 
crash, or after your SQL Server instance is shut 
down, restored, attached, or made ONLINE, 
all versioning history for that database is lost. 
If database versioning state is ON, SQL Server 
can allow new snapshot transactions to access 
the database, but must prevent previous 
snapshot transactions from accessing the 
database. Those previous transactions would 
need to access data from a point in time before 
the database recovers. 

This is an object-level option; it is not at the 
transaction level, so it is not applicable.

If the database is in the IN_TRANSITION_
TO_ON state, ALTER DATABASE SET ALLOW_
SNAPSHOT_ ISOLATION OFF  waits for about 
six seconds and might fail if the database state 
is still in the IN_TRANSITION_TO_ON state. The 
DBA can retry the command after the database 
state changes to ON. 

This option can be enabled only when there is no 
other active session in the database, so there are no 
transitional states.

For read-only databases, versioning is 
automatically enabled. You still can use ALTER 
DATABASE SET ALLOW_SNAPSHOT_ISOLATION 
ON for a read-only database. If the database is 
made read-write later, versioning for the 
database is still enabled.

As for SI, versioning is enabled automatically for 
read-only databases.

If there are long-running transactions, a DBA 
might need to wait a long time before the 
versioning state change can fi nish. A DBA can 
cancel the wait, and the versioning state is 
rolled back and set to the previous one. 

This option can be enabled only when there is no 
other active session in the database, so there are no 
transitional states.

You cannot use ALTER DATABASE to change 
the database versioning state inside a user 
transaction.

As for SI, you can change the database versioning 
state inside a user transaction.

You can change the versioning state of tempdb. 
The versioning state of tempdb is preserved 
when SQL Server restarts, although the content 
of tempdb is not preserved.

You cannot turn this option ON for tempdb.

You can change the versioning state of the 
master database.

You cannot change this option for the master 
database.

You can change the versioning state of model. 
If versioning is enabled for model, every new 
database created will have versioning enabled 
as well. However, the versioning state of 
tempdb is not automatically enabled if you 
enable versioning for model.

Similar to the behavior for SI, except that there are 
no implications for tempdb.

Snapshot Isolation Read Committed Snapshot Isolation

C10626249.indd   647 2/16/2009   5:18:24 PM



648 Microsoft SQL Server 2008 Internals

TABLE 10-16 Snapshot vs. Read Committed Snapshot Isolation 

Snapshot Isolation Read Committed Snapshot Isolation

You can turn this option ON for msdb. You cannot turn on this option ON for msdb 
because this can potentially break the applications 
built on msdb that rely on blocking behavior of Read 
Committed isolation.

A query in a SI transaction sees data that was 
committed before the start of the transaction, 
and each statement in the transaction sees the 
same set of committed changes. 

A statement running in RCSI sees everything 
committed before the start of the statement. Each 
new statement in the transaction picks up the most 
recent committed changes. 

SI can result in update confl icts that might 
cause a rollback or abort the transaction.

There is no possibility of update confl icts.

The Version Store

 As soon as a database is enabled for ALLOW_SNAPSHOT_ISOLATION or READ_COMMITTED_
SNAPSHOT, all UPDATE and DELETE operations start generating row versions of the 
 previously committed rows, and they store those versions in the version store on data pages 
in tempdb. Version rows must be kept in the version store only so long as there are snapshot 
queries that might need them.  

 SQL Server 2008 provides several DMVs that contain information about active snapshot 
transactions and the version store. We won’t examine all the details of all those DMVs, but we 
look at some of the crucial ones to help you determine how much use is being made of your 
version store and what snapshot transactions might be affecting your results. The fi rst DMV 
we look at, sys.dm_tran_version_store, contains information about the actual rows in the 
 version store. Run the following script to make a copy of the Production.Product table, and 
then turn on ALLOW_SNAPSHOT_ISOLATION in the AdventureWorks2008 database. Finally, 
verify that the option is ON and that there are currently no rows in the version store. You 
might need to close any active transactions currently using AdventureWorks2008:  

USE AdventureWorks2008 

SELECT * INTO NewProduct 

FROM Production.Product; 

GO 

ALTER DATABASE ADVENTUREWORKS2008 SET ALLOW_SNAPSHOT_ISOLATION ON; 

GO 

SELECT name, snapshot_isolation_state_desc,  

      is_read_committed_snapshot_on  

FROM sys.databases  

WHERE name= AdventureWorks2008; 

GO 

SELECT COUNT(*) FROM sys.dm_tran_version_store;

GO

 As soon as you see that the database option is ON and there are no rows in the version store, 
you can continue. What I want to illustrate is that as soon as ALLOW_SNAPSHOT_ ISOLATION 

Snapshot Isolation Read Committed Snapshot Isolation

C10626249.indd   648 2/16/2009   5:18:24 PM



 Chapter 10 Transactions and Concurrency 649

is enabled, SQL Server starts storing row versions, even if no snapshot transactions need to 
read those versions. So now run this UPDATE statement on the NewProduct table and look at 
the version store again: 

UPDATE  NewProduct 

SET ListPrice = ListPrice * 1.1; 

GO 

SELECT COUNT(*) FROM sys.dm_tran_version_store; 

GO

 You should see that there are now 504 rows in the version store because there are 504 rows 
in the NewProduct table. The previous version of each row, prior to the update, has been 
written to the version store in tempdb.  

 Note SQL Server starts generating versions in tempdb as soon as a database is enabled for one 
of the snapshot-based isolation levels. In a heavily updated database, this can affect the behavior 
of other queries that use tempdb, as well as the server itself.  

 As shown earlier in Figure 10-7, the version store maintains link lists of rows. The current row 
points to the next older row, which can point to an older row, and so on. The end of the list is 
the oldest version of that particular row. To support row versioning, a row needs 14  additional 
bytes of information to keep track of the pointers. Eight bytes are needed for the actual  pointer 
to the fi le, page, and row in tempdb, and 6 bytes are needed to store the XSN to help SQL 
Server determine which rows are current, or which versioned row is the one that a  particular 
transaction needs to access. I tell you more about the XSN when we look at some of the other 
snapshot transaction metadata. In addition, one of the bits in the fi rst byte of each data row 
(the TagA byte) is turned on to indicate that this row has versioning information in it.  

 Any row inserted or updated when a database is using one of the snapshot-based isolation 
 levels will contain these 14 extra bytes. The following code creates a small table and inserts 
two rows into it in the AdventureWorks2008 database, which already has ALLOW_SNAPSHOT_
ISOLATION enabled. I then fi nd the page number using DBCC IND (it is page 6,709) and use 
DBCC to look at the rows on the page. The output shows only one of the rows inserted: 

CREATE TABLE T1 (T1ID char(1), T1name char(10)); 

GO 

INSERT T1 SELECT 'A', 'aaaaaaaaaa'; 

INSERT T1 SELECT 'B', 'bbbbbbbbbb'; 

GO 

DBCC IND (AdventureWorks2008, 'T1',-1); -- page 6709 

DBCC TRACEON (3604); 

DBCC PAGE('AdventureWorks2008', 1, 6709, 1); 

OUTPUT ROW: 

Slot 0, Offset 0x60, Length 32, DumpStyle BYTE 

Record Type = PRIMARY_RECORD          

Record Attributes =  NULL_BITMAP VERSIONING_INFO 

 

C10626249.indd   649 2/16/2009   5:18:24 PM



650 Microsoft SQL Server 2008 Internals

Memory Dump @0x6207C060 

00000000:   50000f00 41616161 61616161 61616102 †P...Aaaaaaaaaaa.         

00000010:   00fc0000 00000000 0000020d 00000000 †................

 I have highlighted the new header information that indicates this row contains versioning 
 information, and I have also highlighted the 14 bytes of the versioning information. The 
XSN is all 0’s in the row because it was not modifi ed as part of a transaction that Snapshot 
 isolation needs to keep track of. INSERT statements create new data that no snapshot 
 transaction needs to see. If I update one of these rows, the previous row is written to the 
 version store and the XSN is refl ected in the row versioning information: 

UPDATE T1 SET T1name = '2222222222' where T1ID = 'A'; 

GO 

DBCC PAGE('AdventureWorks2008', 1, 6709, 1); 

GO 

OUTPUT ROW: 

Slot 0, Offset 0x60, Length 32, DumpStyle BYTE 

Record Type = PRIMARY_RECORD          

Record Attributes =  NULL_BITMAP VERSIONING_INFO 

Memory Dump @0x61C4C060 

00000000:   50000f00 41323232 32323232 32323202 †P...A2222222222.         

00000010:   00fc1804 00000100 0100590d 00000000 †..........Y.....

 As mentioned, if your database is enabled for one of the snapshot-based isolation levels,  every 
new row has an additional 14 bytes added to it whether or not that row is ever actually involved 
in versioning. Every row updated also has the 14 bytes added to it, if they aren’t  already part of 
the row, and the update is done as a DELETE followed by an INSERT. This means that for tables 
and indexes on full pages, a simple UPDATE could result in page splitting. 

 When a row is deleted in a database enabled for snapshots, a pointer is left on the page as 
a ghost record to point to the deleted row in the version store. These ghost records are very 
similar to the ones we saw in Chapter 6, “Indexes: Internals and Management,” and they’re 
cleaned up as part of the versioning cleanup process, as I discuss shortly. Here’s an example 
of a ghost record under versioning: 

DELETE T1 WHERE T1ID = 'B'; 

DBCC PAGE('AdventureWorks2008 ', 1, 6709, 1); 

GO 

--Partial Results: 

Slot 4, Offset 0x153, Length 15, DumpStyle BYTE 

 

Record Type = GHOST_VERSION_RECORD    

Record Attributes =  VERSIONING_INFO  

Memory Dump @0x5C0FC153 

 

00000000:   4ef80300 00010000 00210200 000000††††N........!.....

 The record header indicates that this row is a GHOST_VERSION_RECORD and that it  contains 
versioning information. The actual data, however, is not on the row, but the XSN is, so that 
snapshot transactions know when this row was deleted and whether they should access 

C10626249.indd   650 2/16/2009   5:18:24 PM



 Chapter 10 Transactions and Concurrency 651

the older version of it in their snapshot. The sys.dm_db_index_physical_stats DMV that was 
 discussed in Chapter 6 contains the count of ghost records due to versioning ( version_
ghost_record_count) and the count of all ghost records (ghost_record_count), which includes 
the  versioning ghosts. If an update is performed as a DELETE followed by an INSERT (not 
in place), both the ghost for the old value and the new value must exist simultaneously, 
 increasing the space requirements for the object. 

 If a database is in a snapshot-based isolation level, all changes to both data and index rows must 
be versioned. A snapshot query traversing an index still needs access to index rows pointing to 
the older (versioned) rows. So in the index levels, we might have old values, as ghosts, existing 
simultaneously with the new value, and the indexes can require more storage space. 

 The extra 14 bytes of versioning information can be removed if the database is changed 
to a non-snapshot isolation level. Once the database option is changed, each time a row 
 containing versioning information is updated, the versioning bytes are removed.  

Management of the Version Store

 The version store size is managed automatically, and SQL Server maintains a cleanup thread to 
make sure versioned rows are not kept around longer than needed. For  queries  running  under 
SI, the row versions must be kept until the end of the transaction. For SELECT  statements 
 running under RCSI, a particular row version is not needed once the SELECT statement has 
executed and it can be removed. 

 The regular cleanup function is performed every minute as a background process to reclaim 
all reusable space from the version store. If tempdb actually runs out of free space, the cleanup 
function is called before SQL Server increases the size of the fi les. If the disk gets so full that 
the fi les cannot grow, SQL Server stops generating versions. If that happens, a snapshot query 
fails if it needs to read a version that was not generated due to space constraints. Although a 
full discussion of troubleshooting and monitoring is beyond the scope of this book, I will point 
out that SQL Server 2008 includes more than a dozen performance counters to monitor tempdb 
and the version store. These include counters to keep track of transactions that use row 
 versioning. The following counters are contained in the SQLServer:Transactions performance 
object. Additional details and additional counters can be found in SQL Server Books Online. 

■  Free Space in tempdb This counter monitors the amount of free space in the tempdb 
database. You can observe this value to detect when tempdb is running out of space, 
which might lead to problems keeping all the necessary version rows.  

■  Version Store Size This counter monitors the size in kilobytes of the version store. 
Monitoring this counter can help determine a useful estimate of the additional space 
you might need for tempdb. 

■  Version Generation Rate and Version Cleanup Rate These counters monitor the rate 
at which space is acquired and released from the version store, in kilobytes per second.  

C10626249.indd   651 2/16/2009   5:18:24 PM



652 Microsoft SQL Server 2008 Internals

■  Update Confl ict Ratio This counter monitors the ratio of update snapshot 
 transactions that have update confl icts. It is the ratio of the number of confl icts 
 compared to the total number of update snapshot transactions. 

■  Longest Transaction Running Time This counter monitors the longest running 
time in seconds of any transaction using row versioning. It can be used to determine 
 whether any transaction is running for an unreasonable amount of time, as well as help 
you determine the maximum size needed in tempdb for the version store. 

■  Snapshot Transactions This counter monitors the total number of active snapshot 
transactions. 

Snapshot Transaction Metadata

 The most important DMVs for observing snapshot transaction behavior are sys.dm_tran_ version_
store (which we briefl y looked at earlier in this chapter), sys.dm_tran_transactions_snapshot, and 
sys.dm_tran_active_snapshot_database_transactions.  

 All these views contain a column called transaction_sequence_num, which is the XSN that 
I mentioned earlier. Each transaction is assigned a monotonically increasing XSN value when 
it starts a snapshot read or when it writes data in a snapshot-enabled database. The XSN 
is reset to 0 when your SQL Server instance is restarted. Transactions that do not generate 
 version rows and do not use snapshot scans do not receive an XSN.  

 Another column, transaction_id, is also used in some of the snapshot transaction metadata. 
A transaction ID is a unique identifi cation number assigned to the transaction. It is used 
 primarily to identify the transaction in locking operations. It can also help you identify which 
transactions are involved in snapshot operations. The transaction ID value is incremented for 
every transaction across the whole server, including internal system transactions, so whether 
or not that transaction is involved in any snapshot operations, the current transaction ID 
value is usually much larger than the current XSN.  

 You can check current transaction number information using the view sys.dm_tran_current_
transaction, which returns a single row containing the following columns: 

■  transaction_id This value displays the transaction ID of the current transaction. If you 
are selecting from the view inside a user-defi ned transaction, you should continue to 
see the same transaction_id every time you select from the view. If you are running a 
SELECT from sys.dm_tran_current_transaction outside of transaction, the SELECT itself 
generates a new transaction_id value and you see a different value every time you 
 execute the same SELECT, even in the same connection.  

■  transaction_sequence_num This value is the XSN of the current transaction, if it has 
one. Otherwise, this column returns 0.  

■  transaction_is_snapshot This value is 1 if the current transaction was started under 
SNAPSHOT isolation; otherwise, it is 0. (That is, this column is 1 if the current session 
has set TRANSACTION ISOLATION LEVEL to SNAPSHOT explicitly.) 

C10626249.indd   652 2/16/2009   5:18:24 PM



 Chapter 10 Transactions and Concurrency 653

■  fi rst_snapshot_sequence_num When the current transaction started, it took a 
 snapshot of all active transactions, and this value is the lowest XSN of the transactions 
in the snapshot. 

■  last_transaction_sequence_num This value is the most recent XSN generated by the 
system. 

■  fi rst_useful_sequence_num This value is an XSN representing the upper bound of 
version store rows that can be cleaned up without affecting any transactions. Any rows 
with an XSN less than this value are no longer needed. 

 I now create a simple versioning scenario to illustrate how the values in the snapshot 
 metadata get updated. This is not a complete overview, but it should get you started in 
 exploring the versioning metadata for your own queries. I use the AdventureWorks2008 
 database, which has ALLOW_SNAPSHOT_ISOLATION set to ON, and I create a simple table: 

CREATE TABLE t1 

(col1 int primary key, col2 int); 

GO 

INSERT INTO t1 SELECT 1,10; 

INSERT INTO t1 SELECT 2,20; 

INSERT INTO t1 SELECT 3,30;

 We call this session Connection 1. Change the session’s isolation level, start a snapshot 
 transaction, and examine some of the metadata:  

SET TRANSACTION ISOLATION LEVEL SNAPSHOT 

GO 

BEGIN TRAN 

SELECT * FROM t1; 

GO 

select * from sys.dm_tran_current_transaction;  

select * from sys.dm_tran_version_store; 

select * from sys.dm_tran_transactions_snapshot;

 The sys.dm_tran_current_transaction view should show you something like this: the current 
transaction does have an XSN, and the transaction is a snapshot transaction. Also, you can 
note that the fi rst_useful_sequence_num value is the same as this transaction’s XSN because 
no other snapshot transactions are valid now. I refer to this transaction’s XSN as XSN1. 

 The version store should be empty (unless you’ve done other snapshot tests within the last 
minute). Also, sys.dm_tran_transactions_snapshot should be empty, indicating that there were 
no snapshot transactions that started when other transactions were in process.  

 In another connection (Connection 2), run an update and examine some of the metadata for 
the current transaction: 

BEGIN TRAN 

 UPDATE T1 SET col2 = 100 

   WHERE col1 = 1; 

SELECT * FROM sys.dm_tran_current_transaction;

C10626249.indd   653 2/16/2009   5:18:24 PM



654 Microsoft SQL Server 2008 Internals

 Note that although this transaction has an XSN because it generates versions, it is not  running 
in SI, so the transaction_is_snapshot value is 0. I refer to this transaction’s XSN as XSN2. 

 Now start a third transaction in a Connection 3 to perform another SELECT. (Don’t worry, this 
is the last one and we won’t be keeping it around.) It is almost identical to the fi rst, but there 
is an important difference in the metadata results: 

SET TRANSACTION ISOLATION LEVEL SNAPSHOT 

GO 

BEGIN TRAN 

SELECT * FROM t1; 

GO 

select * from sys.dm_tran_current_transaction;  

select * from sys.dm_tran_transactions_snapshot;

 In the sys.dm_tran_current_transaction view, you see a new XSN for this transaction (XSN3), 
and you see that the value for fi rst_snapshot_sequence_num and fi rst_useful_sequence_num 
are both the same as XSN1. In the sys.dm_tran_transactions_snapshot view, you see that this 
transaction with XSN3 has two rows, indicating the two transactions that were active when 
this one started. Both XSN1 and XSN2 show up in the snapshot_sequence_num column. You 
can now either commit or roll back this transaction, and then close the connection. 

 Go back to Connection 2, where you started the UPDATE, and commit the transaction. 

 Now let’s go back to the fi rst SELECT transaction in Connection 1 and rerun the SELECT 
 statement, staying in the same transaction: 

SELECT * FROM t1;

 Even though the UPDATE in Connection 2 has committed, we still see the original data values 
because we are running a snapshot transaction. We can examine the sys.dm_tran_active_ 
snapshot_database_transactions view with this query: 

SELECT transaction_sequence_num, commit_sequence_num,  

   is_snapshot, session_id,first_snapshot_sequence_num, 

   max_version_chain_traversed, elapsed_time_seconds 

FROM  sys.dm_tran_active_snapshot_database_transactions;

 I am not showing you the output here because it is too wide for the page, but there are 
many columns that you should fi nd interesting. In particular, the transaction_sequence_num 
column contains XSN1, which is the XSN for the current connection. You could actually run 
the preceding query from any connection; it shows all active snapshot transactions in the 
SQL Server instance, and because it includes the session_id, you can join it to sys.dm_exec_
sessions to get information about the connection that is running the transaction: 

SELECT transaction_sequence_num, commit_sequence_num,  

    is_snapshot, t.session_id,first_snapshot_sequence_num, 

    max_version_chain_traversed, elapsed_time_seconds,  

    host_name, login_name, transaction_isolation_level 

C10626249.indd   654 2/16/2009   5:18:24 PM



 Chapter 10 Transactions and Concurrency 655

FROM  sys.dm_tran_active_snapshot_database_transactions t 

   JOIN sys.dm_exec_sessions s 

     ON t.session_id = s.session_id;

 Another value to note is in the column called max_version_chain_traversed. Although now 
it should be 1, we can change that. Go back to Connection 2 and run another UPDATE 
 statement. Even though the BEGIN TRAN and COMMIT TRAN are not necessary for a single 
statement transaction, I am including them to make it clear that this transaction is complete: 

BEGIN TRAN 

 UPDATE T1 SET col2 = 300 

   WHERE col1 = 1; 

COMMIT TRAN;

 Examine the version store if desired, to see rows being added: 

SELECT * 

 FROM sys.dm_tran_version_store;

 When you go back to Connection 1 and run the same SELECT inside the original transaction 
and look again at the max_version_chain_traversed column in sys.dm_tran_active_snapshot_
database_transactions, you should see that the number keeps growing. Repeated UPDATE 
operations, either in Connection 2 or a new connection, cause the max_version_chain_traversed 
value to just keep increasing, as long as Connection 1 stays in the same transaction. Keep this 
in mind as an added cost of using Snapshot isolation. As you perform more updates on data 
needed by snapshot transactions, your read operations take longer because SQL Server must 
traverse a longer version chain to get the data needed by your transactions. 

 This is just the tip of the iceberg regarding how the snapshot and transaction metadata can 
be used to examine the behavior of your snapshot transactions.  

Choosing a Concurrency Model

 Pessimistic concurrency is the default in SQL Server 2008 and was the only choice in all  versions 
of SQL Server prior to SQL Server 2005. Transactional behavior is guaranteed by locking, at 
the cost of greater blocking. When accessing the same data resources, readers can block 
 writers and writers can block readers. Because SQL Server was initially designed and built to 
use  pessimistic concurrency, you should consider using that model unless you can verify that 
 optimistic concurrency really will work better for you and your applications. If you fi nd that the 
cost of blocking is becoming excessive  you can consider using optimistic concurrency.  

 In most situations, RCSI is recommended over Snapshot isolation for several reasons: 

■  RCSI consumes less tempdb space than SI. 

■  RCSI works with distributed transactions; SI does not. 

■  RCSI does not produce update confl icts. 

C10626249.indd   655 2/16/2009   5:18:24 PM



656 Microsoft SQL Server 2008 Internals

■  RCSI does not require any change in your applications. All that is needed is one 
change to the database options. Any of your applications written using the default Read 
Committed isolation level automatically uses RCSI after making the change at the 
 database level.  

 You can consider using SI in the following situations: 

■  The probability is low that any of your transactions have to be rolled back because of 
an update confl ict. 

■  You have reports that need to be generated based on long-running, multistatement 
 queries that must have point-in-time consistency. Snapshot isolation provides the  benefi t 
of repeatable reads without being blocked by concurrent modifi cation operations.  

 Optimistic concurrency does have benefi ts, but you must also be aware of the costs. To 
 summarize the benefi ts: 

■  SELECT operations do not acquire shared locks, so readers and writers do not block 
each other. 

■  All SELECT operations retrieve a consistent snapshot of the data. 

■  The total number of locks needed is greatly reduced compared to pessimistic 
 concurrency, so less system overhead is used. 

■  SQL Server needs to perform fewer lock escalations. 

■  Deadlocks are less likely to occur. 

 Now let’s summarize the other side. When weighing your concurrency options, you must 
consider the cost of the snapshot-based isolation levels: 

■  SELECT performance can be affected negatively when long-version chains must be 
scanned. The older the snapshot, the more time it takes to access the required row in 
an SI transaction. 

■  Row versioning requires additional resources in tempdb. 

■  Whenever either of the snapshot-based isolation levels are enabled for a database, 
UPDATE and DELETE operations must generate row versions. (Although I mentioned 
earlier that INSERT operations do not generate row versions, there are some cases 
where they might. In particular, if you insert a row into a table with a unique index, if 
there was an older version of the row with the same key value as the new row and that 
old row still exists as a ghost, your new row generates a version.) 

■  Row versioning information increases the size of every affected row by 14 bytes. 

■  UPDATE performance might be slower due to the work involved in maintaining the row 
versions. 

C10626249.indd   656 2/16/2009   5:18:24 PM



 Chapter 10 Transactions and Concurrency 657

■  UPDATE operations using SI might have to be rolled back because of confl ict detection. 
Your applications must be programmed to deal with any confl icts that occur.  

■  The space in tempdb must be carefully managed. If there are very long-running 
 transactions, all the versions generated by update transactions during the time must be 
kept in tempdb. If tempdb runs out of space, UPDATE operations won’t fail, but SELECT 
operations that need to read versioned data might fail. 

 To maintain a production system using SI, you should allocate enough disk space for 
 tempdb so that there is always at least 10 percent free space. If the free space falls below this 
 threshold, system performance might suffer because SQL Server expends more resources 
trying to reclaim space in the version store. The following formula can give you a rough 
 estimate of the size required by version store. For long-running transactions, it might be 
 useful to monitor the generation and cleanup rate using Performance Monitor, to estimate 
the maximum size needed: 

[size of common version store] = 

2 * [version store data generated per minute]  

* [longest running time (minutes) of the transaction]

Controlling Locking

 The SQL Server Query Optimizer usually chooses the correct type of lock and the lock 
mode. You should override this behavior only if thorough testing has shown that a different 
 approach is preferable. Keep in mind that by setting an isolation level, you have an impact 
on the locks that held, the confl icts that cause blocking, and the duration of your locks. Your 
isolation level is in effect for an entire session, and you should choose the one that provides 
the data consistency required by your application. Table-level locking hints can be used to 
change the default locking behavior only when necessary. Disallowing a locking level can 
 adversely affect concurrency. 

Lock Hints

 T-SQL syntax allows you to specify locking hints for individual tables when they are 
 referenced in SELECT, INSERT, UPDATE, and DELETE statements. The hints tell SQL Server the 
type of locking or row versioning to use for a particular table in a particular query. Because 
these hints are specifi ed in a FROM clause, they are called table-level hints. SQL Server 
Books Online lists other table-level hints besides locking hints, but the vast majority of them 
affect locking behavior. They should be used only when you absolutely need fi ner control 
over  locking at the object level than what is provided by your session’s isolation level. The SQL 
Server locking hints can override the current transaction isolation level for the session. In this 
 section, I will mention only some of the locking hints that you might need to obtain the desired 
 concurrency behavior.  

C10626249.indd   657 2/16/2009   5:18:25 PM



658 Microsoft SQL Server 2008 Internals

 Many of the locking hints work only in the context of a transaction. However, every INSERT, 
UPDATE, and DELETE statement is automatically in a transaction, so the only concern is when 
you use a locking hint with a SELECT statement. To get the benefi t of most of the  following hints 
when used in a SELECT query, you must use an explicit transaction, starting with BEGIN TRAN and 
terminating with either COMMIT TRAN or ROLLBACK TRAN. The lock hint syntax is as follows: 

SELECT select_list 

FROM object [WITH (locking hint)] 

 

DELETE [FROM] object [WITH (locking hint) 

[WHERE <search conditions>] 

 

UDPATE object [WITH (locking hint) 

SET <set_clause> 

[WHERE <search conditions>] 

 

INSERT [INTO] object [WITH (locking hint) 

<insert specification>

 Tip Not all the locking hints require the keyword WITH, but the syntax without WITH will go 
away in a future version of SQL Server. It is recommended that all hints be specifi ed using WITH. 

 You can specify one of the following keywords for the locking hint: 

■  HOLDLOCK This hint is equivalent to the SERIALIZABLE hint. Using this hint is similar 
to specifying SET TRANSACTION ISOLATION LEVEL SERIALIZABLE, except that the SET 
option affects all tables, not only the one specifi ed in this hint. 

■  UPDLOCK This hint forces SQL Server to take update locks instead of shared locks 
while reading the table and holds them until the end of the transaction. Taking update 
locks can be an important technique for eliminating conversion deadlocks. 

■  TABLOCK This hint forces SQL Server to take a shared lock on the table even if page 
locks would be taken otherwise. This hint is useful when you know you escalate to a 
table lock or if you need to get a complete snapshot of a table. You can use this hint 
with HOLDLOCK if you want the table lock held until the end of the transaction block 
to operate in Repeatable Read isolation. If you use this hint with a DELETE statement on 
a heap, it allows SQL Server to deallocate the pages as the rows are deleted. (If row or 
page locks are obtained when deleting from a heap, space will not be deallocated and 
cannot be  reused by other objects.) 

■  PAGLOCK This hint forces SQL Server to take shared page locks when a single shared 
table lock might otherwise be taken. (To request an exclusive page lock, you must use 
the XLOCK hint along with the PAGLOCK hint.) 

■  TABLOCKX This hint forces SQL Server to take an exclusive lock on the table that is 
held until the end of the transaction block. (All exclusive locks are held until the end of 

C10626249.indd   658 2/16/2009   5:18:25 PM



 Chapter 10 Transactions and Concurrency 659

a transaction, regardless of the isolation level in effect. This hint has the same effect as 
specifying both the TABLOCK and the XLOCK hints together.) 

■  ROWLOCK This hint specifi es that a shared row lock should be taken when a single 
shared page or table lock is normally taken. 

■  READUNCOMMITTED | REPEATABLEREAD | SERIALIZABLE These hints specify that SQL 
Server should use the same locking mechanisms as when the transaction isolation level is 
set to the level of the same name. However, the hint controls locking for a single table in a 
single statement, as opposed to locking all tables in all statements in a transaction.  

■  READCOMMITTED This hint specifi es that SELECT operations comply with the rules 
for the Read Committed isolation level by using either locking or row versioning. If the 
database option READ_COMMITTED_SNAPSHOT is OFF, SQL Server uses shared locks 
and releases them as soon as the read operation is completed. If the database option 
READ_COMMITTED_SNAPSHOT is ON, SQL Server does not acquire locks and uses row 
versioning. 

■  READCOMMITTEDLOCK This hint specifi es that SELECT statements use the  locking 
version of Read Committed isolation (the SQL Server default). No matter what the 
 setting is for the database option READ_COMMITTED_SNAPSHOT, SQL Server acquires 
shared locks when it reads the data and releases those locks when the read operation is 
completed. 

■  NOLOCK This hint allows uncommitted, or dirty, reads. Shared locks are not 
 requested so that the statement does not block when reading data that is holding 
 exclusive locks. In other words, no locking confl ict is detected. This hint is equivalent to 
READUNCOMMITTED. 

■  READPAST This hint specifi es that locked rows are skipped (read past). READPAST 
 applies only to transactions operating at the READ COMMITTED isolation level and 
reads past row-level locks only. 

■  XLOCK This hint specifi es that SQL Server should take an exclusive lock that is held 
until the end of the transaction on all data processed by the statement. This lock can be 
specifi ed with either PAGLOCK or TABLOCK, in which case the exclusive lock applies to 
the specifi ed resource. 

Setting a Lock Timeout

 Setting a LOCK_TIMEOUT also lets you control SQL Server locking behavior. By default, SQL 
Server does not time out when waiting for a lock; it assumes optimistically that the lock 
will be released eventually. Most client programming interfaces allow you to set a general 
 timeout limit for the connection so a query is canceled by the client automatically if no 
 response comes back after a specifi ed amount of time. However, the message that comes 
back when the time period is exceeded does not indicate the cause of the cancellation; it 
could be because of a lock not being released, it could be because of a slow network, or it 
could just be a long-running query.  

C10626249.indd   659 2/16/2009   5:18:25 PM



660 Microsoft SQL Server 2008 Internals

 Like other SET options, SET LOCK_TIMEOUT is valid only for your current connection. Its 
 value is expressed in milliseconds and can be accessed by using the system function 
@@LOCK_TIMEOUT. This example sets the LOCK_TIMEOUT value to fi ve seconds and then 
 retrieves that value for display: 

SET LOCK_TIMEOUT 5000; 

SELECT @@LOCK_TIMEOUT;

 If your connection exceeds the lock timeout value, you receive the following error message: 

Server: Msg 1222, Level 16, State 50, Line 1 

Lock request time out period exceeded.

 Setting the LOCK_TIMEOUT value to 0 means that SQL Server does not wait at all for locks. 
It basically cancels the entire statement and goes on to the next one in the batch. This is not 
the same as the READPAST hint, which skips individual rows. 

 The following example illustrates the difference between READPAST, READUNCOMMITTED, 
and setting LOCK_TIMEOUT to 0. All these techniques let you avoid blocking problems, 
but the behavior is slightly different in each case. 

  1. In a new query window, execute the following batch to lock one row in the 
HumanResources.Department table: 

USE AdventureWorks2008; 

BEGIN TRAN; 

UPDATE HumanResources.Department 

SET ModifiedDate = getdate() 

WHERE DepartmentID = 1;

  2. Open a second connection, and execute the following statements: 

USE AdventureWorks2008; 

SET LOCK_TIMEOUT 0; 

SELECT * FROM HumanResources.Department; 

SELECT * FROM Sales.SalesPerson;

 Notice that after error 1222 is received, the second SELECT statement is executed, 
 returning all 17 rows from the SalesPerson table. The batch is not cancelled when error 
1222 is encountered. 

 Warning Not only is a batch not cancelled when a lock timeout error is encountered, 
but any active transaction will not be rolled back. If you have two UPDATE statements in a 
transaction and both must succeed if either succeeds, a lock timeout for one of the UPDATE 
statements will still allow the other statement to be processed. You must  include error 
 handling in your batch to take appropriate action in the event of an  error 1222. 

C10626249.indd   660 2/16/2009   5:18:25 PM



 Chapter 10 Transactions and Concurrency 661

  3. Open a third connection, and execute the following statements: 

USE AdventureWorks2008 ; 

SELECT * FROM HumanResources.Department (READPAST); 

SELECT * FROM Sales.SalesPerson;

 SQL Server skips (reads past) only one row, and the remaining 15 rows of Department 
are returned, followed by all the SalesPerson rows. The READPAST hint is frequently 
used in conjunction with a TOP clause, in particular TOP 1, where your table is serving 
as a work queue. Your SELECT must get a row containing an order to be processed, but 
it really doesn’t matter which row. So SELECT TOP 1 * FROM <OrderTable> returns the 
fi rst unlocked row, and you can use that as the row to start processing.  

  4. Open a fourth connection, and execute the following statements: 

USE AdventureWorks2008 ; 

SELECT * FROM HumanResources.Department (READUNCOMMITTED); 

SELECT * FROM Sales.SalesPerson;

 In this case, SQL Server does not skip anything. It reads all 16 rows from Department, 
but the row for Department 1 shows the dirty data that you changed in step 1. This 
data has not yet been committed and is subject to being rolled back. 

 The READUNCOMMITTED hint is probably the least useful because of the availability of 
row versioning. In fact, anytime you fi nd yourself needing to use this hint, or the  equivalent 
NOLOCK, you should consider whether you can actually afford the cost of one of the 
 snapshot-based isolation levels.  

Summary

 SQL Server lets you manage multiple users simultaneously and ensure that transactions 
 observe the properties of the chosen isolation level. Locking guards data and the internal 
 resources that make it possible for a multiuser system to operate like a single-user system. 
You can choose to have your databases and applications use either optimistic or pessimistic 
 concurrency control. With pessimistic concurrency, the locks acquired by data modifi cation 
operations block users trying to retrieve data. With optimistic concurrency, the locks are 
 ignored and older committed versions of the data are read instead. In this chapter, we looked 
at the locking mechanisms in SQL Server, including full locking for data and leaf-level index 
pages and lightweight locking mechanisms for internally used resources. We also looked at 
the details of how optimistic concurrency avoids blocking on locks and still has access to data.  

 It is important to understand the issues of lock compatibility and escalation if you want to 
design and implement high-concurrency applications. You also need to understand the costs 
and benefi ts of the two concurrency models. 

C10626249.indd   661 2/16/2009   5:18:25 PM



C10626249.indd   662 2/16/2009   5:18:25 PM



  663

 Chapter 11

DBCC Internals
  Paul Randal 

 When anyone mentions consistency checking a Microsoft SQL Server database, the fi rst 
thing that comes to mind is “DBCC.” In SQL Server 7.0, DBCC stood for Database  Consistency 
Checker, but Microsoft changed the defi nition in the next release, SQL Server 2000, to 
 Database Console Commands. This change refl ected the fact that the DBCC command  family 
had grown to do much more than just checking consistency, and also was intended to help 
dispel the perception that SQL Server databases required regular consistency checking 
 because SQL Server itself caused corruption. 

 Although SQL Server itself does not cause database corruptions, I/O subsystems (all the 
 software and hardware between the SQL Server buffer pool and the metal oxide of the 
disk drives) do cause the overwhelmingly vast majority of corruptions. For this reason, 
the  common wisdom is that it is prudent to perform regular consistency checking  because 
all database servers have an I/O subsystem of some sort. The defi nition of regular is a 
 question I am often asked, and it really depends on the situation and how confi dent you 
are with the integrity of your I/O subsystem. I would say that in general, performing a 
 consistency check once a week would be acceptable. 

 Consistency checking is the process of examining the physical and logical structure of the 
database to make sure that there are no corruptions that could prevent the storage engine 
from being able to process part of the database or could lead to some incorrect behavior. 
Some simple examples are 

■  A persisted computed column where the persisted value has been corrupted such that 
it no longer matches the result of the computation 

■  A data page where the page ID in the page header is incorrect 

■  An index where the key order of records is incorrect 

 The consistency checks in SQL Server have evolved signifi cantly since the SQL Server 7.0 days, 
when they used to run offl ine (that is, table locks were required). SQL Server 2000 saw the 
advent of consistency checks being online by default, with a new, highly effi cient mechanism 
for scanning the database. During SQL Server 2005, the consistency checking and repair code 
inside the storage engine was signifi cantly rewritten and enhanced. This was done to cope 
with the plethora of new SQL Server features and rewritten subsystems and to increase the 
performance, reliability, and functionality of the consistency checks and repairs themselves. 
SQL Server 2008 added new functionality and further tweaks for performance and scalability. 

C11626249.indd   663 2/16/2009   4:33:45 PM



664 Microsoft SQL Server 2008 Internals

 The most comprehensive way to perform consistency checks on a database is to use the 
DBCC CHECKDB command. The major steps of DBCC CHECKDB are as follows: 

  1. Create a transactionally consistent, static view of the database. 

  2. Perform low-level consistency checks of the critical system catalogs. 

  3. Perform allocation consistency checks of the database. 

  4. Perform consistency checks of each table in the database. 

  5. So long as no problems were found in the previous steps, the following cross-table 
consistency checks are performed: 

❏  Perform consistency checks of Service Broker metadata. 

❏  Perform consistency checks between various system catalogs. 

❏  Perform consistency checks of indexed views. 

❏  Perform consistency checks of XML indexes. 

❏  Perform consistency checks of spatial indexes. 

  6. Output results. 

 Repairs are carried out at various steps if necessary, but only if the user specifi ed a repair 
option. 

 In this chapter, I explain how the internals of DBCC CHECKDB work in SQL Server 2008, based 
on the steps I’ve listed here. For each of the options that can be specifi ed, I’ll describe how 
it affects the behavior of DBCC CHECKDB. Finally, I explain how repair works and about the 
other DBCC consistency-checking commands.  

Getting a Consistent View of the Database

 A consistent view of the database is necessary, because DBCC CHECKDB must analyze all 
 allocated pages in the database and check the various links between structures on multiple 
pages. This means that the pages being analyzed (that is, the whole database) cannot change 
while the consistency checks are running;  otherwise DBCC CHECKDB reports all kinds of 
incorrect results. As DBCC CHECKDB cannot read all the  allocated pages in the database 
instantaneously, this means the consistent view of the  database must be maintained for the 
duration of the consistency checks. It is also not enough for the database to be simply frozen 
in time—the consistent view of the database must also be transactionally consistent so that 
there are no uncompleted changes in the view that DBCC CHECKDB sees. 

 Here’s an example: consider a transaction to insert a record into a table that has a 
 nonclustered index, with a hypothetical consistency-checking process running concurrently 
that doesn’t enforce a consistent view of the database. The way the query processor works 

C11626249.indd   664 2/16/2009   4:33:45 PM



 Chapter 11 DBCC Internals 665

is to insert the table record fi rst and then insert the matching nonclustered index record. 
Because this hypothetical consistency-checking process doesn’t have a consistent view, it 
might read the record in the table but not that in the nonclustered index, leading to a report 
that the nonclustered index is out of sync with the table. 

 How can this happen? As we see later in this chapter, DBCC CHECKDB reads the database 
pages in a special order to enhance performance. Using this mechanism, and continuing this 
example, it might read the nonclustered index page before the nonclustered index record 
is inserted but read the table page after the table record is inserted. It might then conclude 
that a corruption exists, but in reality, the problem is that it saw the partial results of an 
 in-fl ight transaction. 

Obtaining a Consistent View

 In SQL Server 7.0, the transactionally consistent view was obtained by taking locks at  various 
levels in the database. This was too detrimental to workload performance, so SQL Server 
2000 introduced online consistency checking and removed the need for blocking locks to 
be held. DBCC CHECKDB analyzed the transaction log after scanning the database and 
 essentially ran recovery on its internal view of the database, thus producing a transactionally 
consistent view of the database. 

 The SQL Server 2000 solution was too unwieldy for many reasons, so it was replaced in 
SQL Server 2005 by using a database snapshot, and the mechanism is the same in SQL 
Server 2008. This means that DBCC CHECKDB uses regular storage engine functionality with 
greatly reduced complexity. 

 As described earlier in the book in Chapter 3, “Databases and Database Files,” a database 
snapshot is extremely space-effi cient, containing only the database pages that have changed 
since the database snapshot was created. A combination of the database snapshot contents 
and the unchanged pages in the database give an unchanging, transactionally consistent 
view of the database. 

 This is exactly what DBCC CHECKDB needs to run online. Creating a database snapshot and 
then running the consistency-checking algorithms on the database snapshot is conceptually 
just the same as running the consistency-checking algorithms on a read-only copy of the 
database. 

 DBCC CHECKDB creates a database snapshot that cannot be accessed by users—it’s 
 essentially hidden. This hidden database snapshot is created in a slightly different way 
from regular database snapshots. A regular database snapshot has one snapshot fi le 
 corresponding to each data fi le in the source database, and each fi le must be explicitly 
named when the database snapshot is created. DBCC CHECKDB doesn’t allow any user 
 input to specify the fi lenames for the hidden database snapshot, so instead it creates 

C11626249.indd   665 2/16/2009   4:33:45 PM



666 Microsoft SQL Server 2008 Internals

an NTFS  alternate stream for each existing source database data fi le. You can think of an 
 alternate stream as a hidden fi le that can be accessed through the fi le system path that 
points at the user-visible fi le. This mechanism works well and is transparent to the user. 

Disk Space Issues

 Sometimes an issue arises when the hidden database snapshot runs out of space. As it 
is  implemented using alternate streams of the existing data fi les, the database snapshot 
 consumes space from the same location as the existing data fi les. If there is a heavy  update 
workload on the database being checked, more and more pages are pushed into the 
 database snapshot, causing it to grow. In a situation where there isn’t much space in the 
 volumes hosting the database, this can mean the hidden database snapshot runs out of 
space and DBCC CHECKDB stops with an error. An example of this is shown here (the errors 
may vary depending on the exact point at which the database snapshot runs out of space): 

DBCC CHECKDB ('SalesDB2') WITH NO_INFOMSGS, ALL_ERRORMSGS;

GO

Msg 1823, Level 16, State 1, Line 5

A database snapshot cannot be created because it failed to start.

Msg 1823, Level 16, State 2, Line 1

A database snapshot cannot be created because it failed to start.

Msg 7928, Level 16, State 1, Line 1

The database snapshot for online checks could not be created. Either the reason is given in 

a previous error or one of the underlying volumes does not support sparse files or alternate 

streams. Attempting to get exclusive access to run checks offline.

Msg 5128, Level 17, State 2, Line 1

Write to sparse file 'C:\SQLskills\SalesDBData.mdf:MSSQL_DBCC20' failed due to lack of disk 

space.

Msg 3313, Level 21, State 2, Line 1

During redoing of a logged operation in database 'SalesDB2', an error occurred at log record 

ID (1628:252:1). Typically, the specific failure is previously logged as an error in the 

Windows Event Log service. Restore the database from a full backup, or repair the database.

Msg 0, Level 20, State 0, Line 0

A severe error occurred on the current command.  The results, if any, should be discarded.

 In this case, the solution is to create your own database snapshot, placing the snapshot fi les 
on a volume with more disk space, and then to run DBCC CHECKDB on that. DBCC CHECKDB 
recognizes that it is already running on a database snapshot and does not attempt to create 
another one. 

 If a database snapshot was created by DBCC CHECKDB, it is discarded automatically once the 
consistency-checking algorithms have completed. 

 As well as creating a database snapshot (if needed), the FILESTREAM garbage  collection 
 process is suspended while DBCC CHECKDB is running. This allows the consistency-checking 
algorithms to see a transactionally consistent view of the FILESTREAM data on any FILESTREAM 
data containers. This is explained in more detail later in this chapter. 

C11626249.indd   666 2/16/2009   4:33:45 PM



 Chapter 11 DBCC Internals 667

Alternatives to Using a Database Snapshot

 A database snapshot is not required under the following conditions: 

■  The specifi ed database is a database snapshot itself. 

■  The specifi ed database is read-only, in single-user mode, or in emergency mode. 

■  The server was started in single-user mode with the –m command-line option. 

 In these cases, the database is already essentially consistent because there can be no other 
active connections making changes that would break the consistency checks. 

 A database snapshot cannot be created under the following conditions: 

■  The specifi ed database is stored on a non-NTFS fi le system (in which case, a database 
snapshot cannot be created because it relies on NTFS sparse-fi le technology). 

■  The specifi ed database is tempdb (because a database snapshot cannot be created on 
tempdb). 

■  The TABLOCK option was specifi ed. 

 If a database snapshot cannot be created for any reason, DBCC CHECKDB attempts to use 
locks to obtain a transactionally consistent view of the database. 

 First, it obtains a database-level exclusive lock so that it can perform the allocation  consistency 
checks without any changes taking place. This is not possible on master, which means that 
 offl ine consistency checks cannot be run on master. It is also not possible on tempdb, which 
means that allocation consistency checks are always skipped for tempdb (this was  usually the 
case with SQL Server 2000, too). Instead of waiting for the exclusive lock indefi nitely (or  whatever 
the server lock timeout period has been set to), DBCC CHECKDB waits for 20  seconds (or the 
confi gured lock timeout value for the session) and then exits with the following error: 

DBCC CHECKDB ('msdb') WITH TABLOCK;

GO

Msg 5030, Level 16, State 12, Line 1

The database could not be exclusively locked to perform the operation.

Msg 7926, Level 16, State 1, Line 1

Check statement aborted. The database could not be checked as a database snapshot could not 

be created and the database or table could not be locked. See Books Online for details of 

when this behavior is expected and what workarounds exist. Also see previous errors for more 

details.

 If the lock was acquired, after the allocation checks are completed, the exclusive lock is 
dropped and table-level share locks are acquired while the table-level logical consistency 
checks are performed. The same time-out applies to these table-level locks. 

 One way or another, DBCC CHECKDB obtains a transactionally consistent view of the 
 database that it’s checking. After that, it can start processing the database. 

C11626249.indd   667 2/16/2009   4:33:45 PM



668 Microsoft SQL Server 2008 Internals

Processing the Database Effi ciently

 A database can be thought of as one giant, interconnected structure with all tables linked 
back to system catalogs, and all system catalogs linked back to the lowest-level allocation 
metadata stored in sys.sysallocunits, which in turn has its fi rst page fi xed at page (1:16) in 
every database. With the addition of the fi xed-location allocation bitmaps, such as Page Free 
Space (PFS) and Global Allocation Map (GAM) pages, the entire database can be represented 
as a single entity-relationship diagram. 

 With this thought in mind, one can envisage a consistency-checking algorithm for this 
 metastructure that starts with page (1:16) and the allocation bitmaps and progressively 
expands into the database-checking linkages between objects and structures as it goes. 
Whenever a page linkage is found, the link is followed to ensure that the correct page is 
linked to. Whenever an allocation bitmap has a page marked as, say, an IAM page, that page 
is checked to make sure it really is an IAM page. This would be a depth-fi rst algorithm. 

 Consider a data page with three data records, with each data record containing a link to two 
8,000-byte Large Object (LOB) columns stored off-row. Using the previous algorithm, the 
sequence of operations to consistency-check the page includes the following: 

  1. Extract the page ID containing the fi rst LOB column data from record 1. 

  2. Read that page to make sure it has the correct LOB column data on it. 

  3. Extract the page ID containing the second LOB column data from record 1. 

  4. Read that page to make sure it has the correct LOB column data on it. 

  5. Repeat steps 1–4 as necessary until the whole structure is processed. 

 As you can see, the algorithm described here is very ineffi cient. Pages are read as needed 
and in essentially random order. Pages may be processed multiple times, and the random 
nature of the page reads means the I/O subsystem cannot be used for read-ahead. In terms 
of algorithmic complexity, the algorithm would be described as having complexity O(n2). This 
can be said as “order n-squared,” which means that the algorithm takes exponentially longer 
to run as the number of elements on which it operates increases. In this case, n is the number 
of pages in the database. 

 This is not how DBCC CHECKDB works in SQL Server 2008 (in fact, from SQL Server 2000 
onwards). An O(n2) algorithm is prohibitively expensive to run on large databases. Instead, 
DBCC CHECKDB uses an algorithm with complexity O(n*log(n)), which provides near-linear 
scaling. The rest of this section describes the algorithm used. 

Fact Generation

 DBCC CHECKDB reads all the pages from the objects being consistency-checked in the 
most effi cient way possible—in allocation order (that is, in the order they are stored in 

C11626249.indd   668 2/16/2009   4:33:46 PM



 Chapter 11 DBCC Internals 669

the data fi les) instead of by following page links and reading them in essentially random 
 order. The mechanism for this is described later in this section. 

 As the pages are read in strict allocation order as much as possible, there is no way to 
validate all the relationships between pages immediately while they are being processed. 
Therefore, DBCC CHECKDB must remember what it knows about each page so that it 
can perform the relationship checking at a later stage. It does this by generating bits of 
 information about a page called facts. 

 Continuing the previous example, as part of processing the data page, the following facts are 
generated: 

■  Two facts that the fi rst record links to a LOB value (one fact for each LOB value). Each 
fact contains the following: 

❏  The page ID and slot ID (that is, the record number) of the data record 

❏  The page ID and slot ID where the LOB value should be stored (extracted from 
the text root stored in the data record) 

❏  The text timestamp of the LOB value (that is, a unique ID that is assigned to that 
LOB value) 

❏  The object ID, index ID, partition ID, and allocation unit ID of which the page is part 

■  Two facts that the second record links to a LOB value. 

■  Two facts that the third record links to a LOB value. 

 These facts are known as parent text facts. 

 When each of the text pages containing the actual LOB values is processed, part of the 
processing generates a fact that the LOB value was encountered. Each fact contains 
the following: 

■  The page ID and slot ID of the text record 

■  The text timestamp of the LOB value 

■  The object ID, index ID, partition ID, and allocation unit ID of which the page is part 

 These facts are known as actual text facts. 

 At some later point, the facts are checked against each other (called aggregation). So long as 
there is a matching parent text fact and actual text fact for each LOB value, DBCC CHECKDB 
recognizes that that particular LOB value linkage is free of corruption. 

 There is one more type of fact apart from actual and parent facts, known as sibling facts. 
These are used when checking index B-tree linkages and describe the linked list that exists at 
each level of an index B-tree. 

C11626249.indd   669 2/16/2009   4:33:46 PM



670 Microsoft SQL Server 2008 Internals

 The consistency-checking algorithms for the different parts of the database structure use a  variety 
of fact types and fact contents, but the basic algorithm is the same. The fact types used are 

■  Facts to gather allocation statistics about objects, indexes, partitions, and allocation units 

■  Facts to track FILESTREAM data 

■  Facts to track IAM chain linkages 

■  Facts to track IAM page bitmaps for a particular GAM interval 

■  Facts to track database fi les 

■  Facts to track extent allocations and ownership 

■  Facts to track page allocations and ownership 

■  Facts to track B-tree linkages 

■  Facts to track LOB value linkages 

■  Facts to track forwarding/forwarded records in heaps 

 Between generation and aggregation, the facts are stored in the query processor in memory used 
for a sort operation. Sometimes the size of the sort is larger than the memory  available to the 
query processor; as a result, the sort “spills” to disk (into the tempdb database), thus  generating 
(possibly signifi cant) physical reads and writes in tempdb. Because each fact is  essentially a table 
row, the fact must be split into table columns. Each fact is comprised of fi ve columns: 

■  ROWSET_COLUMN_FACT_KEY The page ID of a page that the fact describes, or the 
LSN of a FILESTREAM fi le 

■  ROWSET_COLUMN_FACT_TYPE The fact type 

■  ROWSET_COLUMN_SLOT_ID The slot ID of the record the fact describes (if any) 

■  ROWSET_COLUMN_COMBINED_ID The object, index, partition, and allocation unit 
IDs of which the page is part 

■  ROWSET_COLUMN_FACT_BLOB A variable-length column to store any extra data 
required 

 If tempdb does not have enough space to store the DBCC sort, DBCC CHECKDB may fail. If 
this happens, error 8921 is output, as shown here: 

Msg 8921, Level 16, State 1, Line 1

Check terminated. A failure was detected while collecting facts. Possibly tempdb out of 

space or a system table is inconsistent. Check previous errors.

Using the Query Processor

 DBCC CHECKDB makes extensive use of the query processor—both to allow easy handling of 
the facts and also to parallelize the consistency-checking process easily. 

C11626249.indd   670 2/16/2009   4:33:46 PM



 Chapter 11 DBCC Internals 671

 The algorithm used to generate facts is as follows: 

  1. The DBCC code issues a query (using syntax only available within SQL Server) to the 
query processor, containing a pointer to a rowset and the name of a custom  aggregation 
function. 

  2. The query processor queries the rowset for a row, essentially calling back into DBCC to 
get a fact to process. 

  3. DBCC hands back a single fact as a rowset row (using the column structure  described 
earlier). If there are no facts available, DBCC reads a page and processes it  entirely, 
generating all necessary facts. The facts are stored in thread-local memory as a 
 fi rst-in-fi rst-out (FIFO) queue, and a single fact is handed back to the query  processor. 
One fact is returned from the head of the thread-local fact queue with each 
 subsequent request from the query processor until no more facts are available. Only at 
that point is another page read and processed to generate facts, populating the fact 
queue again. 

  4. The query processor stores the fact internally in sort memory, and possibly in the 
 tempdb database as well. 

 Once all the facts have been generated for the objects being consistency-checked, the query 
processor completes the sort operation on them and then calls the custom aggregation 
function that DBCC supplied. The facts are sorted by the fact key and grouped by all columns 
except the type, so that the aggregation routine gets the facts in the correct order to allow 
successive facts to be matched easily. 

 Continuing the previous LOB linkage example, the facts are passed back to the aggregation 
routine in the following order: 

  1. Actual text fact for a LOB value (really LOB value 1 from record 1 on the data page) 

  2. Parent text fact for LOB value 1 in record 1 on the data page 

  3. Actual text fact for a LOB value (really LOB value 2 in record 1 on the data page) 

  4. Parent text fact for LOB value 2 in record 1 on the data page 

 If the facts were not in that order, it would be impossible to match facts without again 
 remembering what had already been seen. 

 The aggregation algorithm runs as follows: 

  1. The query processor calls the DBCC custom aggregation function with a single fact. 

  2. Facts are merged until a fact is passed from the query processor that does not match 
the facts being merged. For example, the actual and parent facts for LOB value 1 in the 
previous example are merged. The next fact is for LOB value 2, which is for a different 
part of the database structure. 

C11626249.indd   671 2/16/2009   4:33:46 PM



672 Microsoft SQL Server 2008 Internals

  3. Once a mismatched fact is encountered, the merged set of facts is aggregated to 
 determine whether any errors are present. Aggregation means that the facts are 
checked to see whether the right facts exist for the piece of database structure that they 
describe. For example, a LOB value must have an actual fact (that the value was actually 
encountered) and a parent fact (that some index or data record links to the LOB value). 

  4. If errors are present, an entry is made in the list of errors. The entry is generated  using 
the information contained in the aggregated set of facts. Example errors are a LOB 
value that doesn’t have a data or index record pointing to it .

  5. The facts are then discarded and a new set of merged facts begins, starting with the 
mismatched fact that triggered aggregation. 

  6. The DBCC code then signals to the query processor that it is ready to accept the next 
fact to merge and aggregate. 

 Figure 11-1 shows how the query processor and DBCC code interact while DBCC CHECKDB is 
executing. 

Read

Sort and Store

Aggregate

Query Processor DBCC

Per-Thread Storage

Fact Generation

Rowset

ResultsCheckIndex
Fact Aggregation

FIGURE 11-1 Interaction between the query processor and DBCC

 These algorithms are kicked off by DBCC CHECKDB internally executing a query. The query 
that DBCC CHECKDB runs is shown here: 

DECLARE @BlobEater VARBINARY(8000);

SELECT @BlobEater = CheckIndex(ROWSET_COLUMN_FACT_BLOB)

FROM <memory address of fact rowset>

GROUP BY ROWSET_COLUMN_FACT_KEY

>> WITH ORDER BY

     ROWSET_COLUMN_FACT_KEY,

     ROWSET_COLUMN_SLOT_ID,

     ROWSET_COLUMN_COMBINED_ID,

     ROWSET_COLUMN_FACT_BLOB

OPTION(ORDER GROUP);

C11626249.indd   672 2/16/2009   4:33:46 PM



 Chapter 11 DBCC Internals 673

 This query brings the query processor and the DBCC CHECKDB code together to perform 
the fact-generation, fact-sorting, fact-storing, and fact-aggregation algorithms. The parts of 
the query are as follows: 

■  @BlobEater This is a dummy variable with no purpose other than to consume any 
output from the CheckIndex function (there should never be any, but the syntax 
 requires it). 

■  CheckIndex (ROWSET_COLUMN_FACT_BLOB) This is the custom aggregation 
 function inside DBCC CHECKDB that the query processor calls with sorted and grouped 
facts as part of the overall fact aggregation algorithm. 

■  <memory address of fact rowset> This is the memory address of the OLEDB rowset 
that DBCC CHECKDB provides to the query processor. The query processor queries this 
rowset for rows (containing the generated facts) as part of the overall fact generation 
algorithm. 

■  GROUP BY ROWSET_COLUMN_FACT_KEY This triggers the aggregation in the query 
processor. 

■  >> WITH ORDER BY <column list> This is internal-only syntax that provides  ordered 
aggregation to the aggregation step. As I explained earlier, the DBCC CHECKDB 
 aggregation code is based on the assumption that the order of the aggregated stream 
of facts from the query processor is forced (that is, it requires that the sort order of the 
keys within each group is the order of the four keys in the query). 

■  OPTION(ORDER GROUP) This is a Query Optimizer hint that forces stream  aggregation. 
It forces the Query Optimizer to sort on the grouping columns and avoid hash 
aggregation. 

 This mechanism is used for the allocation consistency-checking and per-table 
 consistency-checking phases of DBCC CHECKDB. By extension, this means the same 
mechanism is also used by the DBCC CHECKALLOC, DBCC CHECKTABLE, and DBCC 
CHECKFILEGROUP commands. 

 If the internal query fails because of a memory shortage, error 8902 is reported. If the 
 internal query fails for any other reason, generic error 8975 is reported. In either case, DBCC 
CHECKDB terminates. 

Batches

 During the per-table logical checks phase, DBCC CHECKDB usually does not process all 
tables in the database together, nor does it usually process only a single table at a time. It 
groups tables into batches and runs the fact generation and aggregation algorithms on all 
tables in that batch. Once all batches have been processed, all tables in the database have 
been consistency-checked. 

C11626249.indd   673 2/16/2009   4:33:46 PM



674 Microsoft SQL Server 2008 Internals

 The reason that DBCC CHECKDB breaks the database into a series of batches is to limit the 
amount of space that is required in tempdb for fact storage. Each fact that is generated takes 
a certain amount of space, depending on the type of fact and its content. The more complex 
a schema is, the more facts that must be generated to allow all the aspects of the table’s 
schema to be consistency-checked. 

 As you can imagine, for a very large database, the amount of space required to store all these 
facts very quickly exceeds the storage available in tempdb if all the tables in the  database are 
consistency-checked in one batch. 

 The set of tables in a batch is determined while DBCC CHECKDB is scanning the metadata 
about tables at the start of the per-table logical checks phase. Batches always have at least 
one table (plus all its nonclustered indexes) and the size of each batch is limited by one of the 
following rules: 

■  If any repair option is specifi ed, building the batch stops when it contains a single table. 
This is to guarantee that repairs are ordered correctly. 

■  When a table is added to a batch and the total number of indexes for all tables in the 
batch exceeds 512, building the batch stops. 

■  When a table is added to a batch and the total, worst-case estimation for how much 
tempdb space is required for all facts for all tables in the batch exceeds 32 MB, building 
the batch stops. 

 Once a batch has been built, the fact-generation and fact-aggregation algorithms are run on 
all the tables in the batch. This means that the internal query described earlier is issued once 
for each batch of tables. 

 When a batch completes, various deep-dive algorithms may be triggered to fi nd unmatched 
text timestamp values or unmatched nonclustered index records. At this point, unchecked 
assemblies may also be cleared. 

 If a table depends on a CLR assembly for the  implementation of a CLR user-defi ned 
 data type (UDT) or computed column and the assembly is  subsequently changed  using 
ALTER ASSEMBLY with the WITH UNCHECKED DATA option, all tables  dependent on 
the  assembly are marked as having unchecked assemblies in the system  catalogs. The only 
mechanism to clear this setting is to run DBCC consistency checks against the affected 
tables. If no errors are found, the unchecked assembly setting is cleared. 

Reading the Pages to Process

 Part of the performance of the fact-generation and fact-aggregation algorithms comes 
from the fact that the pages that comprise the tables and indexes in the batch are read very 
 effi ciently. As I explained earlier, the pages do not have to be read in any specifi c order, as 
the facts are aggregated after all relevant pages have been read (and all facts generated). 

C11626249.indd   674 2/16/2009   4:33:46 PM



 Chapter 11 DBCC Internals 675

 The fastest way to read a set of pages from a data fi le is to read them in allocation order (the 
physical order of the pages in the data fi les). This allows the disk heads to make one sweep 
across the disk rather than doing all random IOs and incurring excessive disk head seek time 
overhead. 

 The pages and extents that comprise each table and index in the batch are tracked by the 
IAM chains for the various allocation units in the table or index. Once the batch has been 
built, all these IAM chains are merged into a large bitmap that is managed by a scanning 
 object inside DBCC CHECKDB. This bitmap then represents all the pages and extents in 
 sorted physical order that comprise all the tables and indexes in the batch. 

 Using this bitmap, all the necessary pages can be read (nearly) sequentially. The scanning 
 object performs read-ahead on the pages to ensure that the CPU(s) never have to wait for 
the next page to process to be read into the buffer pool. The read-ahead mechanism is 
similar to that used in the rest of the storage engine except that it is done in a round-robin 
fashion among the physical volumes on which the logical data fi les are created. This is done 
to try to spread the I/O workload across the physical volumes as such a large amount of I/O 
is done by DBCC CHECKDB. 

 Whenever the next page is required for processing, a call is made into the scanning object, 
which then returns a page to the caller. The type of page returned, or the object/index that 
the page is part of, is completely irrelevant, due to the nature of the fact generation and 
 aggregation algorithms. 

 It should be noted that sometimes random I/Os are necessary because some rows on the 
pages being read may have a portion of the row stored on a different (text) page because 
of the row-overfl ow feature. DBCC CHECKDB materializes an entire row in memory (except 
 off-row LOB columns), which may involve a random I/O to read the row-overfl ow portion of 
the row. 

Parallelism

 DBCC CHECKDB has the ability to run using multiple processor cores in parallel to make 
more effi cient use of the system resources and process the database faster. 

 It can run the current batch in parallel if all the following conditions are true: 

■  The SQL Server instance is Enterprise, Enterprise Eval, or Developer. 

■  There are more than 64 pages comprising all the tables and indexes in the current 
batch. 

■  There are no T-SQL-based or CLR-based computed columns in the tables in the batch. 

■  Parallelism has not been explicitly disabled with trace fl ag 2528. 

C11626249.indd   675 2/16/2009   4:33:46 PM



676 Microsoft SQL Server 2008 Internals

 If all these conditions are true, DBCC CHECKDB signals the query processor that it can be 
parallelized when it issues the internal query described earlier. The query processor then 
makes the fi nal determination as to whether to use parallel threads or not. The query 
 processor makes this determination based on the same factors that affect the parallelization 
of all other queries in SQL Server, such as the following: 

■  The server’s MAXDOP setting 

■  The projected query cost for parallelism 

■  The availability of resources on the server at the time the DBCC CHECKDB query for the 
batch is compiled for execution 

 The determination of whether to parallelize the internal query is performed each time the 
query is issued, which means that different batches in a single execution of DBCC CHECKDB 
may run with different degrees of parallelism. 

 The conceptual fl ow of data when the internal query runs in parallel is shown in Figure 11-2. 
This diagram illustrates the data fl ow when the degree of parallelism is 3. 

DBCC

DBCC

Query
Processor Exchange (Between Hash Buckets)

Read & Hash

Sort & Aggregate

Read & Hash

Sort & Aggregate

Rowset Rowset Rowset

Results

Read & Hash

Sort & Aggregate

CheckIndex
Fact Aggregation

CheckIndex
Fact Aggregation

CheckIndex
Fact Aggregation

FIGURE 11-2 Conceptual data fl ow for the internal query with degree of parallelism = 3

C11626249.indd   676 2/16/2009   4:33:46 PM



 Chapter 11 DBCC Internals 677

 When the internal query runs in parallel, one thread is created for each degree of parallelism. 
During the fact-generation portion of the algorithm, each thread is responsible for requesting 
pages to process from the scanning object and completely processing each page. A page is 
only ever processed by a single thread. During the fact-aggregation portion of the algorithm, 
each thread is responsible for aggregating a separate, self-contained stream of facts (meaning 
that all pertinent facts for a particular part of an object’s structure must be presented to that 
one thread—there is no cross-thread fact aggregation). 

 There is no control over which thread processes which page, so the pages comprising a 
single object may be processed by multiple threads. This could lead to problems during the 
 fact-aggregation phase if facts that really should aggregate together are actually contained 
in the sorted and aggregated fact streams for a different thread. For this reason, when the 
internal query is parallelized, all facts are hashed by their ROWSET_COLUMN_FACT_KEY 
 elements and then passed through an exchange operator into per-thread hash buckets 
 before being sorted. This guarantees that all the facts for a particular part of an object’s 
structure are presented to just one thread. 

 Note The DBCC CHECKTABLE and DBCC CHECKFILEGROUP commands can also use parallelism 
in this way. DBCC CHECKALLOC cannot run in parallel, however. 

 Parallelism can be disabled for all these DBCC commands using trace fl ag 2528 if it is 
 determined that the parallelized command places too heavy a workload on the server. Note 
that disabling parallelism makes the DBCC command take longer to complete. 

 To allow effi cient parallelism and scalability without artifi cial bottlenecks, all parts of the 
DBCC CHECKDB internals that are multithreading-aware (for example, the scanning object 
and the progress reporting object) are designed such that access to them from multiple 
threads do not cause scalability issues up to at least parallelizing across 32 processor cores. 

Primitive System Catalog Consistency Checks

 The storage engine in SQL Server 2008 defi nes three of the system catalogs as being critical 
to its operations. These tables are 

■  sys.sysallocunits 

■  sys.sysrowsets 

■  sys.sysrscols 

 In SQL Server 2005, there were two more critical system tables—sys.syshobts and 
sys.syshobtcolumns—but these have been folded into the sys.sysrowsets and sys.sysrscols 
 tables, respectively. Collectively, these are the equivalent of the old sysindexes, sysobjects, 

C11626249.indd   677 2/16/2009   4:33:46 PM



678 Microsoft SQL Server 2008 Internals

and syscolumns tables. They hold all the base metadata that the storage engine needs to 
navigate around the table and index structures. DBCC CHECKDB also uses them for this 
 purpose, although indirectly through the metadata subsystem in the Relational Engine. 

 These system catalogs each have a clustered index, and some also have nonclustered 
 indexes. DBCC CHECKDB needs to check that the clustered index leaf levels do not have 
 obvious corruptions so that when it calls a metadata function to retrieve some information 
from one of them, there is a good chance the metadata function will succeed. 

 The following checks are performed on the leaf level of these three clustered indexes: 

■  Each page is read into the buffer pool. This checks that there are no I/O problems 
with the page (such as a page checksum failure, invalid page ID, or plain failure of the 
I/O subsystem to read the page). Error 7985 is reported for any pages that fail this 
operation. 

■  Each page is audited. Page auditing is explained later in this chapter, but basically, it 
makes sure the page structure and page header look valid. The page must be a data 
page and must be allocated to the correct allocation unit. Error 7984 is reported for 
any page that fails this check. 

■  The leaf-level linked-list is checked. All pages at a level in an index are in a 
 double-linked-list. Once all pages for the leaf level have been read into the buffer pool 
and audited, the linkage of the pages are checked by following the next-page links 
through the leaf level and making sure that the previous-page link really does point to 
the previous page. Error 7986 or 7987 is reported if the linked-list if broken. 

■  The leaf-level linked-list is checked for loops. This is done while the linked-list 
 linkages are checked by having two pointers into the page linked-list—one that 
 advances at every step and one that advances at every second step. If they ever point 
to the same page before the faster-advancing pointer reaches the right-hand side of 
the leaf level, there's a loop. It’s important that there are no linkage loops; otherwise, 
a range scan may turn into an infi nite loop. I've never seen this occur on a customer 
 system. Error 7988 is reported if a loop is detected. 

 If any of these checks fail, DBCC CHECKDB terminates with an appropriate message, such as 
the one here: 

DBCC CHECKDB ('TestDB') WITH NO_INFOMSGS, ALL_ERRORMSGS;

GO

Msg 7985, Level 16, State 2, Line 1

System table pre-checks: Object ID 4. Could not read and latch page (1:65) with latch type 

SH. Check statement terminated due to unrepairable error.

DBCC results for 'TestDB'.

Msg 5233, Level 16, State 98, Line 1

Table error: alloc unit ID 262144, page (1:65). The test (IS_OFF (BUF_IOERR, pBUF->bstat)) 

failed. The values are 12584969 and -4.

CHECKDB found 0 allocation errors and 1 consistency errors not associated with any single 

object.

CHECKDB found 0 allocation errors and 1 consistency errors in database 'TestDB'.

C11626249.indd   678 2/16/2009   4:33:46 PM



 Chapter 11 DBCC Internals 679

 It terminates because these critical system catalogs are necessary for DBCC CHECKDB to check 
the rest of the database. Note that there is no recommended repair level in the DBCC CHECKDB 
output. These errors cannot be repaired—the only option is to restore from your backups.  

 If no problems are found, the next stage is to run database-level allocation consistency 
checks, which is discussed next. 

Allocation Consistency Checks

 These checks verify the contents of and relationships between the various structures that 
track page and extent allocations in the database. The structures involved are as follows: 

■  PFS pages, which track the allocation status of individual pages within a 64-MB section 
of a data fi le (a PFS interval) 

■  GAM pages, which track the allocation status of all extents within a 4-GB section of a 
data fi le (a GAM interval) 

■  SGAM pages, which track all mixed extents that have at least one page available for 
 allocation with a GAM interval 

■  IAM pages, which track all pages and extents allocated to an allocation unit from a 
GAM interval 

■  IAM chains, which are a linked-list of all IAM pages for an allocation unit (and hence track 
all pages and extents allocated to the allocation unit from all sections of all data fi les) 

■  The storage engine metadata in the three critical system tables, as described previously 

 The allocation consistency checks are very fast—in fact, magnitudes faster than the per-table 
and cross-table consistency checks. The reason for this is that the number of database pages 
that must be read to perform the allocation consistency checks is magnitudes smaller than 
the number that must be read to perform all the per-table and cross-table consistency checks. 

Collecting Allocation Facts

 Before any allocation consistency checks can be run, all the necessary information needs to 
be collected from the various allocation structures and stored as facts. 

 For each data fi le in each online fi legroup in the database, the following actions are performed: 

■  The boot page [page (1:9) in fi le 1] of the database and the fi le header page (page 0) in 
each data fi le are audited. Error 5250 is reported if this check fails and DBCC CHECKDB 
terminates. 

■  All PFS pages are read and processed. This provides a bitmap of all the IAM pages 
in the fi le, as the PFS page also tracks which pages are IAM pages. This also  provides 

C11626249.indd   679 2/16/2009   4:33:46 PM



680 Microsoft SQL Server 2008 Internals

a  bitmap of which pages in the fi le are from mixed extents. Each set of bitmaps 
 collectively takes less space than all the PFS pages in the fi le because a PFS page stores 
8 bits of information for each data fi le page. 

■  All GAM pages are read and processed. This provides a bitmap of all the allocated 
 extents in the fi le. 

■  All Shared Global Allocation Map (SGAM) pages are read and processed. This provides 
a bitmap of all mixed extents in the fi le that have at least one available page. 

■  The Differential Changed Map (DCM) pages and Minimally Logged Map (ML Map) pages 
are read while the GAM extent is being processed, just to make sure that they can be 
read correctly. 

 At the start of every GAM interval is a special extent called the GAM extent, which 
 contains the GAM and SGAM pages for that GAM interval. It also contains two other 
pages that track extents in that GAM interval—the DCM and the ML Map pages. The 
DCM pages track which extents were changed in the GAM interval since the last full 
database backup. The ML Map pages track which extents were changed in the GAM 
interval by minimally logged operations since the last transaction log backup.  

■  All IAM pages are read and processed. This provides 

❏  A list of all the mixed pages in the fi le (pages allocated from mixed extents), and 
by derivation, a list of all mixed extents in the fi le (remember that the fi rst IAM 
page in an IAM chain contains an array—the single-page slot array—to hold up 
to eight mixed pages for the allocation unit it represents). 

❏  A list of all the valid IAM pages in the fi le. This is necessary because a PFS page 
may be corrupt and mistakenly have a page marked as an IAM page, or a real 
IAM page may just be corrupt and unreadable. 

❏  A list of all the allocated dedicated extents in the fi le. 

❏  Linkage information for all IAM chains. 

 All IAM pages in an IAM chain are linked in a doubly linked list. They also contain a 
 sequence number, starting at 0 for the fi rst IAM page in the chain and increasing by 1 
for each IAM page added to the chain. 

 If any allocation page cannot be read because its header is corrupt, error 8946 is reported (or 
error 7965 for a corrupt IAM page). This means that a large range of the database is excluded 
from the consistency checks. The excluded range is reported in error 8998. 

 After all the per-fi le information gathering, the storage engine metadata is processed as follows: 

 1.  The page ID of the fi rst IAM page of each IAM chain is stored in the system catalogs (if 
it wasn’t stored somewhere, the storage engine would not know where to fi nd the list 
of pages and extents allocated to a table or index). 

C11626249.indd   680 2/16/2009   4:33:46 PM



 Chapter 11 DBCC Internals 681

These page IDs are used to generate the parent facts for the fi rst IAM page in each IAM 
chain. This should match up with an actual fact generated during the per-fi le steps. 

During this phase, all system catalogs are checked to make sure that they are stored in 
the primary fi legroup of the database. Error 8995 is reported if any are not. 

 2. Information about IAM chains currently waiting to be “deferred-dropped” is stored in 
an internal queue. 

Deferred-drop is an optimization introduced in SQL Server 2005 that prevents a 
 transaction from running out of lock memory while dropping an IAM chain. It is the 
process by which an IAM chain with more than 128 extents that is dropped (either by 
dropping and rebuilding an index or dropping and truncating a table) does not have its 
actual pages and extents deallocated until after the transaction has committed. The IAM 
chain is unhooked from sys.sysallocunits though and hooked into an internal queue. 

If DBCC CHECKDB didn’t scan the internal queue as part of the allocation fact  generation 
process, it might see all kinds of inconsistencies with the various allocation bitmaps. 

The allocation facts are passed to the query processor, as described earlier, where they are 
sorted and grouped together. They are then passed back to DBCC CHECKDB so they can be 
aggregated and any errors found. 

Checking Allocation Facts

The allocation fact-aggregation algorithms perform the following consistency checks: 

■ Check that each extent in each GAM interval is allocated correctly. The possibilities here 
are that the extent should be 

❏ Marked in the GAM page as available for allocation 

❏ Marked in the SGAM page as a non-full mixed extent 

❏ Marked in exactly one of the IAM pages that cover the GAM interval 

❏ Not marked in any of the allocation bitmaps (in which all pages in the extent 
must be mixed pages, referenced in various IAM pages’ single-page slot arrays) 

Table 11-1 lists the possible combinations, with illegal states shown along with the 
 resulting error number. 

TABLE 11-1 Possible Combinations of Allocation Bitmaps

GAM SGAM IAM Legal Meaning Error

0 0 0 Y Mixed extent with all pages allocated N/A

0 0 1 Y Dedicated extent allocated to an IAM N/A

0 1 0 Y Mixed extent with available pages N/A

0 1 1 N Illegal 8904

GAM SGAM IAM Legal Meaning Error

C11626249.indd   681 2/16/2009   4:33:46 PM



682 Microsoft SQL Server 2008 Internals

TABLE 11-1 Possible Combinations of Allocation Bitmaps

GAM SGAM IAM Legal Meaning Error

1 0 0 Y Extent is not allocated N/A

1 0 1 N Illegal 8904

1 1 0 N Illegal 8903

1 1 1 N Illegal 8904

 If two IAM pages have the same extent allocated, error 8904 is reported. Error 8904 
is always accompanied by error 8913, which gives the second object (or allocation 
 bitmap) that has the extent allocated. If an extent is a mixed extent but none of the 
mixed pages are seen, error 8905 is reported. 

■  Check that the PFS byte for each mixed and IAM page is correct. Error 8948 is reported 
for all pages that fail this check. 

■  Check that each page marked by a PFS page as being a mixed page appears 
 somewhere in a single-page slot array on an IAM page. Error 8906 is reported for any 
pages that fail this check, as shown here: 

Msg 8906, Level 16, State 1, Line 1

Page (1:50139) in database ID 13 is allocated in the SGAM (1:3) and PFS (1:48528), but 

was not allocated in any IAM. PFS flags 'MIXED_EXT ALLOCATED 0_PCT_FULL'.

■  Check that each mixed page is allocated only in a single IAM page’s single-page slot 
array. Error 8910 is reported for any doubly allocated pages. 

■  Check that the IAM pages in an IAM chain have monotonically increasing sequence 
numbers. Error 2577 is reported if this check fails. 

■  Check that no two IAM pages within the same IAM chain map the same GAM interval. 
Error 8947 is reported when this check fails. 

■  Check that all IAM pages within an IAM chain belong to the same allocation unit. 
Error 8959 is reported if this check fails. 

■  Check that IAM pages map valid portions of data fi les (for example, not in fi le ID 0 
or 2). Error 8968 is reported if this check fails. 

■  Check that the linked-list between IAM pages within an IAM chain is correct, including 
the pointer from the sys.sysallocunits catalog to the fi rst IAM page in the IAM chain. 
Error 8969, 2575, or 2576 is reported if this check fails, depending on which linkage is 
broken. An example is below: 

Msg 2576, Level 16, State 1, Line 1

The Index Allocation Map (IAM) page (0:0) is pointed to by the previous pointer 

of IAM page (1:79969) in object ID 0, index ID -1, partition ID 0, alloc unit ID 

107504789946368 (type Unknown), but it was not detected in the scan.

■  Check that an IAM page maps a GAM interval somewhere in the same fi legroup as 
 itself. Error 8996 is reported for any pages that fail this check. 

GAM SGAM IAM Legal Meaning Error

C11626249.indd   682 2/16/2009   4:33:47 PM



 Chapter 11 DBCC Internals 683

■  Check that all IAM, GAM, and SGAM pages that map the fi nal GAM interval in a fi le 
do not have extents marked as allocated that are beyond the physical end of the fi le. 
Error 2579 is reported if this check fails. 

 Once the allocation consistency checks are complete (and any repairs performed if a  repair 
option was specifi ed), the foundation has been laid for the logical consistency checks, 
 discussed next. 

Per-Table Logical Consistency Checks

 These checks verify the consistency for all structures in a table and all its indexes. In this 
 section, when I say “a table,” I mean “all partitions of the heap or clustered index, all 
 partitions of all nonclustered indexes, and any off-row LOB data.” The table could be a 
 regular table, an indexed view, an XML index, a system catalog, a spatial index, a Service 
Broker queue, or any other database object that is stored internally as a table. 

 All the tables within a single batch are checked at the same time, using the fact-generation 
and fact-aggregation algorithms described previously. The fi rst batch contains the  critical 
system tables, and then subsequent batches are built and checked until all tables in the 
 database have been checked. 

 The consistency checks performed for each table are as follows: 

  1. Extract and check all the metadata for the table. 

  2. For each page in the table, do the following: 

❏  Read and audit the page. 

❏  Perform page-level consistency checks. 

❏  Perform record-level consistency checks for all records on the page. 

❏  For data and index records, perform column-level consistency checks on each 
column in each record. 

 3.  Perform cross-page consistency checks as follows: 

❏  Nonclustered index cross-checks. 

❏  B-tree consistency checks 

❏  Off-row LOB data consistency checks 

❏  FILESTREAM consistency checks 

 The remainder of this section explains each step in detail. 

C11626249.indd   683 2/16/2009   4:33:47 PM



684 Microsoft SQL Server 2008 Internals

Metadata Consistency Checks

 DBCC CHECKDB builds an internal cache of most of the metadata that describes each table. 
This metadata cache is used extensively during the various consistency checks, and it is much 
faster for DBCC CHECKDB to access its own cache than to call continually into the metadata 
subsystem of the storage engine. 

 The metadata cache has the following hierarchy of information: 

■  Table metadata object Holds the metadata describing a table and a linked-list of 
 index metadata objects 

■  Index metadata Holds the metadata describing each index of a table, including the 
heap or clustered index, and a linked-list of rowset metadata objects 

■  Rowset metadata Holds the metadata describing each partition of each index 

 It is not necessary to list everything that the metadata cache tracks. Instead, I’ll list some of 
the more interesting items that are tracked in each metadata object. 

 The table metadata cache object includes 

■  The page and record counts for use in the informational messages in the default output 
of DBCC CHECKDB. 

■  The count of errors found for the table. 

■  An expression evaluator that is used to calculate the expected values of persisted and 
indexed computed columns. This is obtained from the query processor, so long as the 
CLR has not been disabled for the instance.  

■  Status information, including whether the table has been found to contain an error. 

 If the CLR has been disabled, the expression evaluator cannot be created and error 2518 
is  reported. If the CLR is enabled, but a problem occurs while initializing the expression 
 evaluator, error 2519 is reported. In either case, computed columns and UDTs are not 
checked. 

 The index metadata cache object includes 

■  All metadata concerning any partitioning function that is used for the index, so each 
record can be checked to ensure that it is in the correct partition. 

■  Status information, including whether the index has been found to contain an  error. 
For a nonclustered index, if an error has been found, then the nonclustered index 
 cross-checks are not performed. 

 If the index being considered is on a fi legroup other than that specifi ed for DBCC 
CHECKFILEGROUP, it is not included in the checks and error 2594 is reported. 

C11626249.indd   684 2/16/2009   4:33:47 PM



 Chapter 11 DBCC Internals 685

 The rowset metadata cache object, the most extensive of the cache objects, includes 

■  Various column and key counts. 

■  Metadata to aid in FILESTREAM consistency checks. 

 If a table or index has a rowset (that is, a partition of an index or table) that resides on an 
offl ine or invalid fi legroup, the table or index is not included in the checks. For an offl ine 
 fi legroup, error 2527 is reported. For an invalid fi legroup, error 2522 is reported. 

 As the rowset metadata cache objects are being constructed, the system catalog page 
counts for each allocation unit are tested to ensure that they are not negative. This condition 
could occur in versions of SQL Server prior to SQL Server 2005. If a negative count is found, 
 error 2508 is output, as shown here: 

Msg 2508, Level 16, State 3, Line 1

The In-row data RSVD page count for object "Receipts", index ID 0, partition ID 

49648614572032, alloc unit ID 49648614572032 (type In-row data) is incorrect. Run DBCC 

UPDATEUSAGE.

 In addition, a separate hash table includes every allocation unit ID present in the table with 
a link to the relevant rowset metadata cache object. This provides a very fast way to fi nd the 
metadata describing a particular page (because each page has only an allocation unit ID in 
the page header), rather than having to do a costly search through the metadata cache. 

 If a specifi c index was requested to be consistency-checked but the index could not be found 
in the database metadata, error 2591 is reported. 

 As this cache is built, it is checked for consistency. If any errors are discovered (for example, 
mismatches between the various columns counts and arrays), an 8901 or 8930 error is output, 
depending on the seriousness of the error. An 8901 error prevents a table being checked, but 
an 8930 error causes DBCC CHECKDB to terminate. An example is shown here: 

Msg 8930, Level 16, State 1, Line 1

Database error: Database 16 has inconsistent metadata. This error cannot be repaired and 

prevents further DBCC processing. Please restore from a backup.

Page Audit

 All pages read by DBCC CHECKDB, no matter what type of page, go through an audit before 
being processed further. The audit process ensures that the page and the records on it are 
correct enough that deeper consistency-checking algorithms do not cause problems inside 
DBCC CHECKDB. 

 DBCC CHECKDB does not perform any physical I/Os itself—instead, it uses the buffer pool 
to read all pages that it processes. In addition to reducing complexity, this allows DBCC 
CHECKDB to use the buffer pool’s auditing. Whenever the buffer pool reads a page into 

C11626249.indd   685 2/16/2009   4:33:47 PM



686 Microsoft SQL Server 2008 Internals

memory, the page is checked to ensure that no I/O errors occurred, and then any torn-page 
or page checksum protection is verifi ed. If any problems are discovered, the usual 823 or 
824 error is raised by the buffer pool but is suppressed by DBCC CHECKDB and translated 
into a DBCC-specifi c error message. These are usually errors 8928 and 8939, as shown here: 

 Msg 8928, Level 16, State 1, Line 1

Object ID 1326627769, index ID 1, partition ID 72057594048872448, alloc unit ID 

72057594055557120 (type LOB data): Page (1:69965) could not be processed. See other errors 

for details.

Msg 8939, Level 16, State 98, Line 1

Table error: Object ID 1326627769, index ID 1, partition ID 72057594048872448, alloc unit ID 

72057594055557120 (type LOB data), page (1:69965). Test (IS_OFF (BUF_IOERR, pBUF->bstat)) 

failed. Values are 12716041 and -4.  

 If the buffer pool audit fails, the page is not processed any further. Otherwise, the DBCC 
page audit is performed. This includes the following steps: 

 1.  Check that the page ID in the page header is correct. This check is actually performed 
by the buffer pool when reading the page and DBCC CHECKDB is notifi ed if the check 
fails. If this check fails while auditing a page from a critical system catalog during the 
primitive system catalog checks, error 5256 (which does not contain any metadata 
 information) is raised, as shown here: 

Msg 5256, Level 16, State 1, Line 1

Table error: alloc unit ID 334184954400421, page (1:2243) contains an incorrect page 

ID in its page header. The PageId in the page header = (0:0).

 If this check fails in any other circumstance, an 8909 error is raised, as shown here: 

Msg 8909, Level 16, State 1, Line 1

Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 844424953200640 

(type Unknown), page ID (1:26483) contains an incorrect page ID in its page header. 

The PageId in the page header = (0:0).

 2.  Check that the page type is valid for the allocation unit of which it is part. For instance, 
a data page should not be present in the allocation unit for a nonclustered index. If this 
check fails, an 8938 error is raised, as shown here: 

Msg 8938, Level 16, State 1, Line 1|

Table error: Page (1:4667), Object ID 1877736499, index ID 1, partition ID 

72044394032172426, alloc unit ID 72044394045227020 (type LOB data). Unexpected page 

type 1.

 3.  Check that each record on the page has the correct structure and doesn’t have any bad 
pointers (for example, pointing into a different record or into free space). If any record 
structure audit checks fail, any of errors 8940 through 8944 may be raised, as shown here: 

Msg 8941, Level 16, State 1, Line 1

Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 72057613244301312 

(type Unknown), page (3:45522). Test (sorted [i].offset >= PAGEHEADSIZE) failed. Slot 

114, offset 0x12 is invalid.

Msg 8942, Level 16, State 1, Line 1

C11626249.indd   686 2/16/2009   4:33:47 PM



 Chapter 11 DBCC Internals 687

Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 72057613244301312 

(type Unknown), page (3:45522). Test (sorted[i].offset >= max) failed. Slot 0, offset 

0x72 overlaps with the prior row.

Msg 8944, Level 16, State 12, Line 1

Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 72057613244301312 

(type Unknown), page (3:45523), row 0. Test (ColumnOffsets <= (nextRec - pRec)) 

failed. Values are 25 and 17.

 As part of the page audit process, any page-compression information on the page is validated, 
including the per-page compression information (CI) record that holds the prefi xes (in an 
 anchor record embedded within the CI record) and compression dictionary (an array of offsets 
plus values). Any corruptions in this record are reported as 5274 errors. 

 Once the page has passed the audit process, the allocation unit ID in the page header is used 
to query the metadata hash table described previously to fi nd all the metadata that describes 
what’s stored within the page records. The page is then checked to determine whether it has 
been changed since the previous full backup was performed. If so, and the relevant differential 
bitmap has not been set correctly to indicate the change, error 2515 is reported, as shown here: 

Msg 2515, Level 16, State 1, Line 1

The page (1:24), object ID 60, index ID 1, partition ID 281474980642816, allocation unit ID 

281474980642816 (type In-row data) has been modified, but is not marked as modified in the 

differential backup bitmap.

 Once these generic checks have all been performed, the page is processed further according 
to its type. 

Data and Index Page Processing

 Data pages and index pages are processed using the same high-level algorithm, which does 
the following for each record: 

■  For records that have off-row LOB data, instantiate the record fully in memory (pulling 
in any row-overfl ow columns). For simple records without off-row LOB data, the record 
is processed directly from the page containing it. 

■  Check that the record length is correct, taking into account any versioning information 
appended to the end of the record. 

■  If the record contains data (that is, isn’t a ghost record), loop over all columns in the 
record and process them. 

■  Check that there are no antimatter columns in the record, indicating a failed online 
 index operation. Error 5228 or 5229 is output if this check fails, as shown here: 

Msg 5228, Level 16, State 3, Line 1

Table error: object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc 

unit ID 72057594042318848 (type "In-row data"), page (3:23345), row 12. DBCC detected 

incomplete cleanup from an online index build operation. (The anti-matter column value 

is 14.)

C11626249.indd   687 2/16/2009   4:33:47 PM



688 Microsoft SQL Server 2008 Internals

■  Check the versioning info for each record, if it exists. If a record has versioning info 
appended to it, but the page header does not indicate that the page has versioned 
records on it, error 5260 is output. If a record has versioning info with a NULL version 
timestamp but a non-NULL version chain pointer, error 5262 is output. 

 Note The validity of the version store itself is not checked by DBCC CHECKDB. 

■  Generate all necessary facts from the record and its contents (for example, B-tree 
 linkage facts and LOB linkage facts). 

 For records that are not stored on heap data pages, the records must be ordered by the 
 defi ned clustered or nonclustered index keys. As the consistency checks progress through 
the page, the keys of the previous record are remembered so they can be compared with the 
current record being processed. If the records are not ordered correctly, error 2511 is output, 
as shown here: 

Msg 2511, Level 16, State 1, Line 1

Table error: Object ID 142675606, index ID 1, partition ID 72057594295025664, alloc unit ID 

72057594301906944 (type In-row data). Keys out of order on page (1:1124457), slots 59 and 60.

 For records that are not stored in heap data pages, the records on a page must also have 
unique key values—that is, no two records can have the same keys. This applies even for 
 indexes that have been defi ned as non-unique—but only at the relational level. At the 
 storage engine level, every record must be uniquely identifi able. If two records have the 
same keys, error 2512 is reported, as shown here: 

Msg 2512, Level 16, State 2, Line 1

Table error: Object ID 4, index ID 1, partition ID 262144, alloc unit ID 262144 (type In-row 

data). Duplicate keys on page (1:4224) slot 9 and page (1:4224) slot 10.

 The consistency checks of the various linkages between pages and records are discussed in 
the section entitled “Cross-Page Consistency Checks,” later in this chapter. 

 Once all records have been processed, the following counters in the page header are checked: 

■  The count of records on the page (the slot count) 

■  The count of ghost records on the page 

 If the record count is incorrect, error 8919 is reported. If the ghost record count is incorrect, 
error 8927 is reported, as shown here: 

Msg 8927, Level 16, State 1, Line 1 

Object ID 29, index ID 1, partition ID 281474978611200, alloc unit ID 281474978611200 (type 

In-row data): The ghosted record count in the header (0) does not match the number of 

ghosted records (1) found on page (1:309).

C11626249.indd   688 2/16/2009   4:33:47 PM



 Chapter 11 DBCC Internals 689

 For non-leaf B-tree pages, there must be at least one record on the page. If not, error 2574 is 
reported. 

 For data pages in a heap, the free space count is checked against the corresponding byte in 
the relevant PFS page. If the two do not match, error 8914 is reported, as shown here: 

Msg 8914, Level 16, State 1, Line 3

Incorrect PFS free space information for page (1:2511951) in object ID 357576312, index 

ID 0, partition ID 72057594040156160, alloc unit ID 72057594044284928 (type In-row data). 

Expected value 100_PCT_FULL, actual value 95_PCT_FULL.

Column Processing

 For data and index records, each column is processed according to its type. Many of the 
checks described in this section result in a generic 2537 (“bad record”) error message with 
some specifi c text added into the error to identify the exact problem. 

 For complex columns (that is, columns that store LOB or FILESTREAM data or links), the 
 column structure is checked as well as being processed to extract the relevant linkage facts. If 
a corrupt complex column is found, error 8960 is output. 

 There are also many ways that columns are processed to support cross-page consistency 
checks. These are discussed in the section entitled “Cross-Page Consistency Checks,” later in 
this chapter. 

Computed Columns

 As described earlier, an expression evaluator is compiled for each object that contains 
 computed columns or CLR UDTs. If the expression evaluator cannot be compiled, these 
 columns cannot be consistency checked. 

 The expression evaluator is called to evaluate persisted computed columns, or computed 
columns that exist in index records. It returns a value which is then compared against the 
persisted value in the data or index record. If the NULL status of the two values differs or a 
byte-comparison of the two values differs, error 2537 is returned. 

 For UDT columns, the comparison is done within the expression evaluator. It is passed the 
entire record being checked and returns a value of True or False depending on the UDT 
comparison. 

 It should be noted that the expression evaluator object is not thread-safe. This means that 
when DBCC CHECKDB is running in parallel across multiple processor cores (with one thread 
per processor core), only one processor core can access and use the expression evaluator 
at a time. Multiple processor cores can process pages from the same table with computed 
columns, so all the cores need access to the expression evaluator. There is, of course,  internal 

C11626249.indd   689 2/16/2009   4:33:47 PM



690 Microsoft SQL Server 2008 Internals

synchronization to prevent this and inevitably, one or more processor cores may have to 
wait for access. As is the case with any mutual exclusion mechanism, this could affect the 
 performance of heavily loaded systems with a large number of computed columns or CLR 
UDTs in the schema. 

NULL and Length Checks

 There are three checks performed here: 

■  Variable-length columns that are NULL must not have a nonzero data length. If this 
check fails, error 7961 is reported. 

■  A column that was created as NOT NULL cannot have a NULL value. If this check fails, 
error 8970 is reported. 

■  A column cannot be longer than the maximum in-row length as defi ned by its 
 metadata. If this check fails, error 2537 is reported. 

Data Purity Checks

 Data purity checks check whether the value of the column is within any bounds defi ned for 
the column’s data type. An example is a corrupt SMALLDATETIME column value that had a 
“minutes past midnight” subvalue of 1440 or more into the next day. 

 As is documented in SQL Server Books Online, in versions of SQL Server prior to SQL Server 
2005, it was possible to import “out-of-bounds” data values into a database. In SQL Server 
2005 and SQL Server 2008, this is no longer possible. SQL Server 2005 introduced the 
 concept of a database being “pure”—in other words, there are no “out-of-bounds” data 
 values in the database. 

 Pure databases have the data purity checks run by default, and they cannot be disabled. 
Databases created on SQL Server 2008 are deemed pure from creation. Databases created on 
SQL Server 2005 are also deemed pure and remain so when upgraded to SQL Server 2008. 

 Databases that are impure do not have the data purity checks run by default—they must 
be specifi cally requested with the WITH DATA_PURITY option. An impure database is one 
that was created before SQL Server 2005, has been upgraded to SQL Server 2008, and has 
not had the data purity checks run without errors. Once data purity checks have been run 
 without errors, the database is irrevocably switched to being pure. A database’s purity status 
is stored in the boot page. 

 Table 11-2 below lists some of the SQL Server data types and the data purity validations that 
are performed for them. 

C11626249.indd   690 2/16/2009   4:33:47 PM



 Chapter 11 DBCC Internals 691

TABLE 11-2 Data Purity Checks by Data Type 

 Data Type Data Purity Checks

 TINYINT None—all values are valid.

 SMALLINT None—all values are valid.

 INT None—all values are valid.

 BIGINT None—all values are valid.

 MONEY None—all values are valid.

 SMALLMONEY None—all values are valid.

 UNIQUEIDENTIFIER None—all values are valid.

 TIMESTAMP None—all values are valid.

 IMAGE None—all values are valid.

 TEXT Depending on the collation, validates any DBCS byte.

 NTEXT Validates that the length is a multiple of 2.

 BIT Ensure the value is 0 or 1.

 REAL or FLOAT Validates that the fl oating-point value is not outside the legal range.

 DATETIME Validates the fi elds within the DATETIME structure. For instance, 
the “days” fi eld must be less than December 31, 9999 and greater than 
January 1, 1753.

 SMALLDATETIME Validates the fi elds within the SMALLDATETIME structure. For instance, the 
“minutes” fi eld must be less than 1440 (that is, 60 x 24).

 DECIMAL or NUMERIC Validates that the precision of the value is less than or equal to the defi ned 
precision, the scale of the value is equal to the defi ned scale, and the value 
is legal.

 BINARY Validates that the value has the correct length.

 VARBINARY Validates that the length is less than or equal to the maximum defi ned 
length.

 VARBINARY(MAX) None—all values are valid.

 NCHAR Validates that the length equals the defi ned length and that the length is a 
multiple of 2.

 NVARCHAR Validates that the length is less than or equal to the maximum defi ned 
length and that the length is a multiple of 2.

 NVARCHAR(MAX) Validates that the length is a multiple of 2.

 CHAR Validates that the length equals the defi ned length. Depending on the 
 collation, validates any DBCS byte.

 VARCHAR Validates that the length is less than or equal to the maximum defi ned 
length. Depending on the collation, validates any DBCS byte.

 VARCHAR(MAX) Depending on the collation, validates any DBCS byte.

 SQLVARIANT Validates that the SQLVARIANT structure is valid and that the value 
 contained within it is valid for its data type.

 UDTs Converts the value to the UDT and performs a byte comparison of the result 
with the original value.

 XML Performs structural validation of the XML value. This is performed by the 
XML subsystem.

Data Type Data Purity Checks

C11626249.indd   691 2/16/2009   4:33:47 PM



692 Microsoft SQL Server 2008 Internals

 Note Compressed values (either through row compression, page compression, or VARDECIMAL) 
must be uncompressed before being checked. This can add CPU overhead and extra run time to 
DBCC CHECKDB if a large proportion of the table, fi legroup, or database is compressed. 

 If any column value fails a data purity check, error 2570 is returned, as shown here: 

Msg 2570, Level 16, State 3, Line 1

Page (1:152), slot 0 in object ID 2073058421, index ID 0, partition ID 72057594038321152, 

alloc unit ID 72057594042318848 (type "In-row data"). Column "c1" value is out of range for 

data type "datetime".  Update column to a legal value.

 These errors cannot be repaired and must be dealt with manually. The method for doing this 
is described in Knowledge Base article 923247 (http://support.microsoft.com/kb/923247). 

Partitioning Checks

 As described previously, if the table or index being checked is partitioned, the index 
 metadata cache object for it contains all information about the partitioning function used.  

 Once all column value checks have been completed, every record on the page is tested 
to ensure that it is in the correct partition. The column used for partitioning is extracted 
from each record and passed into a helper function within the query processor. The helper 
 function evaluates the partition function and returns the partition ID that the record should 
be part of. If the partition ID returned does not match the partition ID that the page is part 
of, errors 8984 and 8988 are output, as shown here: 

Msg 8984, Level 16, State 1, Line 1 

Table error: Object ID 2073058421, index ID 0, partition ID 72057594038452224. A row should 

be on partition number 2 but was found in partition number 3. Possible extra or invalid keys 

for: 

Msg 8988, Level 16, State 1, Line 1 

Row (1:162:0) identified by (HEAP RID = (1:162:0)).

 The 8984 error identifi es the partition containing the error and the 8988 error identifi es the 
physical location of the incorrectly partitioned record, along with the index keys that can be 
used to access the record (or the heap physical RID if the incorrectly partitioned record is 
part of a partitioned heap). 

Sparse Column Checks

 The ability to defi ne a column as SPARSE is a new feature in SQL Server 2008. SPARSE 
 columns that are NULL are not stored in the record at all, not even in the NULL  bitmap. 
This means that NULL values can truly take zero space in a record. When a SPARSE  column 
is non-NULL, it is stored in a special SPARSE column array, which in turn is stored as a 
 variable-length column in the record’s variable-length column array. The consistency 
 checking of the SPARSE column array is performed by the query processor and errors 
 reported as for normal column corruptions. 

C11626249.indd   692 2/16/2009   4:33:47 PM



 Chapter 11 DBCC Internals 693

Text Page Processing

 Text pages are used to store LOB values (either actual LOB values that are stored off-row, or 
non-LOB variable-length columns that have been pushed off-row as row-overfl ow data). In 
all error messages involving text records or LOB linkages, the allocation unit type can be LOB 
data or row-overfl ow data. 

 There are multiple types of text records, used in various ways to construct the loose 
 text-trees that store LOB values. The text records are stored on two types of text pages—
either dedicated to a single LOB value or shared between multiple LOB values. Both types 
of text pages are processed using the same algorithm, which does the following for each 
text record: 

■  Instantiates the record and checks it is a valid text record. 

■  Checks the versioning info for each record, if it exists. If a record has versioning info 
appended to it but the page header does not indicate that the page has versioned 
records on it, error 5260 is output. If a record has versioning info with a NULL version 
timestamp but a non-NULL version chain pointer, error 5262 is output. 

■  Generates all necessary facts from the record and its contents (that is, LOB linkage 
facts). 

 When checking that a text record is valid, multiple types of text records with various 
 structures must be part of that. Apart from regular record format structure checks, the 
 text-specifi c checks that are performed are as follows: 

■  Deleted text records that have versioning info must have the correct row size. If this 
check fails, error 2537 is reported. 

■  The text record must be at least the minimum size required to hold a text-tree 
 leaf-level node. If this check fails, error 2537 is reported. 

■  The text record must be on the correct text page type. If this check fails, error 8963 is 
reported, as shown here: 

Msg 8963, Level 16, State 1, Line 1

Table error: Object ID 1326627769, index ID 1, partition ID 72057594048872448, alloc 

unit ID 72057594022622331 (type LOB data). The off-row data node at page (3:23345), 

slot 12, text ID 89622642688 has type 3. It cannot be placed on a page of type 4.

■  Non-leaf text records must not have more child nodes than are possible to store in 
their text record type, more child nodes than the size of their child links array, or 
more child nodes than the maximum permissible text-tree fan-out. If these checks fail, 
 error 2537 is reported. 

■  The text record must have a valid type. If this check fails, error 8962 is reported. 

C11626249.indd   693 2/16/2009   4:33:47 PM



694 Microsoft SQL Server 2008 Internals

 Errors in text records are usually accompanied by an 8929 error, indicating the data or index 
record that links to the corrupt text record, as shown here: 

 Msg 8929, Level 16, State 1, Line 1

Object ID 1326627769, index ID 1, partition ID 72057594048872448, alloc unit ID 

72057594055622656 (type In-row data): Errors found in off-row data with ID 89622642688 owned 

by data record identified by RID = (1:77754:1) 

 The consistency checks of the various linkages between pages and records are discussed in 
the next section. 

 Once all records have been processed, the various counters in the page header are checked: 

■  The count of records on the page (the slot count) 

■  The count of ghost records on the page 

 If the record count is incorrect, error 8919 is reported. If the ghost record count is incorrect, 
error 8927 is reported. 

 The free space count is checked against the corresponding byte in the relevant PFS page. If 
the two do not match, error 8914 is reported, as shown here: 

Msg 8914, Level 16, State 1, Line 1

Incorrect PFS free space information for page (1:35244) in object ID 1683128146, index ID 1, 

partition ID 223091033422352, alloc unit ID 81405523118118176 (type LOB data). Exected value 

0_PCT_FULL, actual value 100_PCT_FULL

Cross-Page Consistency Checks

 As the various data, index, and text pages are being processed, facts are extracted from 
the records on the pages to support cross-page consistency checks. The various checks 
 performed depend on the schemas present in the database and include 

■  The linkages between forwarding and forwarded records in heap data pages 

■  Intra B-tree page and record linkages 

■  The linkages between data/index records and text records 

■  Intra text-tree record linkages 

■  The linkages between data/index records and FILESTREAM fi les 

■  FILESTREAM container structure 

■  The linkages between base table records and nonclustered index records 

 These checks are discussed in the remainder of this section. 

C11626249.indd   694 2/16/2009   4:33:48 PM



 Chapter 11 DBCC Internals 695

Heap Consistency Checks

 The cross-page consistency checks for a heap validate the linkages between forwarding and 
 forwarded records. Forwarding/forwarded record pairs occur when a data record in a heap 
increases in size and the record’s current page does not have the space to accommodate the 
size increase. The record is moved to a new location (becoming a forwarded record) and a 
small stub record (the forwarding record) is left in the original location to point to the real 
location of the record. 

 The forwarded record points back to the forwarding record in case its location ever needs 
to change again—instead of a chain of forwarding records being created; the original 
 forwarding record is updated to point to the new location. 

 During regular processing of heap data pages, extra facts are generated from forwarding 
and forwarded records: 

■  Forwarding records generate a parent fact. 

■  Forwarded records generate an actual fact, with a note made of the link back to the 
forwarding record. 

 When the facts are aggregated, the following checks are made: 

■  The forwarded record linked to by a forwarding record must exist. If this check fails, 
 error 8993 is reported, as shown here: 

Msg 8993, Level 16, State 1, Line 3

Object ID 357576312, forwarding row page (1:2386712), slot 8 points to page 

(1:2621015), slot 18. Did not encounter forwarded row. Possible allocation error.

■  The forwarding record linked back to by a forwarded record must exist. If this check 
fails, error 8994 is reported, as shown here: 

Msg 8994, Level 16, State 1, Line 1 

Object ID 1967346073, forwarded row page (1:181506), slot 23 should be pointed to by 

forwarding row page (1:83535), slot 66. Did not encounter forwarding row. Possible 

allocation error.

■  The forwarded record linked to by a forwarding record must link back to that 
 forwarding record. If this check fails, error 8971 is reported, as shown here: 

Msg 8971, Level 16, State 1, Line 3

Forwarded row mismatch: Object ID 357576312, partition ID 72057594040156160, alloc 

unit ID 72057594044284928 (type In-row data) page (1:3491303), slot 18 points to 

forwarded row page (1:2506991), slot 22; the forwarded row points back to page 

(1:3423966), slot 1

■  A forwarded record cannot be linked to by multiple forwarding records. If this check 
fails, error 8972 is reported, as shown here: 

Msg 8972, Level 16, State 1, Line 3

Forwarded row referenced by more than one row. Object ID 357576312, partition 

ID 72057594040156160, alloc unit ID 72057594044284928 (type In-row data), page 

(1:2500650), slot 2 incorrectly points to the forwarded row page (1:4361594), slot 4, 

which correctly refers back to page (1:3472293), slot 20.

C11626249.indd   695 2/16/2009   4:33:48 PM



696 Microsoft SQL Server 2008 Internals

B-tree Consistency Checks

 The cross-page consistency checks for a B-tree validate linkages within a B-tree level,  between 
B-tree levels, and the consistency of key ranges across and between levels. 

 For pages at the leaf level of an index, page linkage facts are generated from the page 
 headers, plus facts from the fi rst and last records on the page (to give the key range  contained 
on the page). For pages at the non-leaf levels of an index, all these facts are  produced plus a 
fact from every record on the page, containing a pointer to the page at the next level down in 
the B-tree that record references. 

 When the facts are aggregated, the following checks are made: 

■  A page pointed to by the next-page linkage in a page’s header must have the same 
B-tree level. If this check fails, error 2531 is reported. 

■  The child-page linkage from a non-leaf (parent) page can link only to a page that is 
one level below it in the B-tree. If this check fails, error 8931 is reported. 

■  The previous-page linkage must agree with the ordering of child-page links in the 
 parent page. If a parent page has page B following page A, then the previous-page 
linkage in page B’s page header must link to page A. If this check fails, error 8935 is 
 reported, as shown here: 

Msg 8935, Level 16, State 1, Line 3

Table error: Object ID 1349579846, index ID 1, partition ID 72057594040811520, alloc 

unit ID 72057594046382080 (type In-row data). The previous link (1:233719) on page 

(1:233832) does not match the previous page (1:275049) that the parent (1:42062), slot 

16 expects for this page.

■  If the next-page linkage in the page header of page A links to page B, the  previous-page 
linkage in the page header of page B must link back to page A. if this check fails, error 
8936 is reported, as shown here: 

Msg 8936, Level 16, State 1, Line 3

Table error: Object ID 1349579846, index ID 1, partition ID 72057594040811520, 

alloc unit ID 72057594046382080 (type In-row data). B-tree chain linkage mismatch. 

(1:275049)->next = (1:233832), but (1:233832)->Prev = (1:233719).

■  A page can only be linked to by a single non-leaf page higher in the B-tree (that is, 
it cannot have two child-page linkages from two “parent” pages). If this check fails, 
 error 8937 is reported, as shown here: 

Msg 8937, Level 16, State 1, Line 3

Table error: Object ID 1349579846, index ID 1, partition ID 72057594040811520, alloc 

unit ID 72057594046382080 (type In-row data). B-tree page (1:148135) has two parent 

nodes (1:212962), slot 20 and (1:233839), slot 1. 

■  A page should only be encountered once by the DBCC CHECKDB scan. If this check 
fails, error 8973 is reported. 

C11626249.indd   696 2/16/2009   4:33:48 PM



 Chapter 11 DBCC Internals 697

■  A page must be encountered if a child-page linkage on a “parent” page links down to it 
and a page in the same level has a previous-page link to it. If this check fails, error 8976 
is reported, as shown here: 

Msg 8976, Level 16, State 1, Line 1

Table error: Object ID 2073058421, index ID 1, partition ID 72057594038386688, alloc 

unit ID 72057594042384384 (type In-row data). Page (1:158) was not seen in the scan 

although its parent (1:154) and previous (1:157) refer to it. Check any previous 

errors.

■  Every page in the B-tree must have a “parent page” with a child-page linkage that links 
to it. If this check fails, error 8977 is reported, as shown here: 

Msg 8977, Level 16, State 1, Line 3

Table error: Object ID 1349579846, index ID 1, partition ID 72057594040811520, alloc 

unit ID 72057594046382080 (type In-row data). Parent node for page (1:163989) was not 

encountered.

■  Every page in the B-tree must have a previous page with a next-page linkage that links 
to it. This includes those on the left-hand edge of the B-tree, where a fake linkage fact 
is created to make the aggregation work. If this check fails, error 8978 is reported, as 
shown here: 

Msg 8978, Level 16, State 1, Line 3

Table error: Object ID 1349579846, index ID 1, partition ID 72057594040811520, alloc 

unit ID 72057594046382080 (type In-row data). Page (1:238482) is missing a reference 

from previous page (1:233835). Possible chain linkage problem.

■  Every B-tree page must have a “parent” page with a child-page linkage that links to it, 
and a previous page with a next-page linkage that links to it. This includes those pages 
on the left-hand edge of the B-tree. When this is not the case, it is often the root page 
of the B-tree that has the problem, and is caused by a corrupt system catalog entry. 
This is why this error was created which is really a combination of the two errors above. 
If this check fails, error 8979 is reported, as shown here: 

Msg 8979, Level 16, State 1, Line 1

Table error: Object ID 768057822, index ID 8. Page (1:92278) is missing references 

from parent (unknown) and previous (page (3:10168)) nodes. Possible bad root entry in 

sysindexes.

■  The page linked to by a child-page linkage in a “parent” page must be encountered as 
a valid page in the B-tree by the DBCC CHECKDB scan. If this check fails, error 8980 is 
reported, as shown here: 

Msg 8980, Level 16, State 1, Line 1

Table error: Object ID 421576540, index ID 8. Index node page (1:90702), slot 17 

refers to child page (3:10183) and previous child (3:10182), but they were not 

encountered.

C11626249.indd   697 2/16/2009   4:33:48 PM



698 Microsoft SQL Server 2008 Internals

■  The page linked to by the next-page linkage in a page’s header must be encountered 
as a valid page in the B-tree by the DBCC CHECKDB scan. If this check fails, error 8981 
is reported, as shown here: 

Msg 8981, Level 16, State 1, Line 3

Table error: Object ID 1349579846, index ID 1, partition ID 72057594040811520, alloc 

unit ID 72057594046382080 (type In-row data). The next pointer of (1:233838) refers 

to page (1:233904). Neither (1:233904) nor its parent were encountered. Possible bad 

chain linkage.

■  The next-page linkage in a page’s header must link to a page within the same B-tree. If 
this check fails, error 8982 is reported. 

■  A page must be linked to by a “parent” page and previous page from within the same 
B-tree. If this check fails, error 8926 is reported, as shown here: 

 Msg 8926, Level 16, State 3, Line 1

Table error: Cross object linkage: Parent page (0:1), slot 0 in object 2146106686, 

index 1, partition 72057594048806912, AU 72057594053394432 (In-row data), and page 

(1:16418)->next in object 366624349, index 1, partition 72057594049593344, AU 

72057594054246400 (In-row data), refer to page [1:16768] but are not in the same 

object. 

■  The lowest key value on a page must be greater than or equal to the key value in the 
child-page linkage of the “parent” page in the next level up in the B-tree. If this check 
fails, error 8933 is reported, as shown here: 

Msg 8933, Level 16, State 1, Line 3

Table error: Object ID 1349579846, index ID 1, partition ID 72057594040811520, alloc 

unit ID 72057594046382080 (type In-row data). The low key value on page (1:148134) 

(level 0) is not >= the key value in the parent (1:233839) slot 0.

■  The highest key value on a page must be less than the key value in the child-page 
 linkage of the “parent” page for the next page at the same level of the B-tree. If this 
check fails, error 8934 is reported, as shown here: 

Msg 8934, Level 16, State 3, Line 3

Table error: Object ID 1349579846, index ID 1, partition ID 72057594040811520, alloc 

unit ID 72057594046382080 (type In-row data). The high key value on page (1:275049) 

(level 0) is not less than the low key value in the parent (0:1), slot 0 of the next 

page (1:233832).

 When a B-tree is corrupt, it is common for many of these errors to occur together for the 
same B-tree. Also, many of the errors where an expected page was not encountered are 
 accompanied by a 2533 error, as shown here: 

Msg 2533, Level 16, State 1, Line 1

Table error: Page (3:9947) allocated to object ID 768057822, index ID 4 was not seen. Page 

may be invalid or have incorrect object ID information in its header.

Msg 8976, Level 16, State 1, Line 1

Table error: Object ID 768057822, index ID 4. Page (3:9947) was not seen in the scan 

although its parent (1:858889) and previous (1:84220) refer to it. Check any previous 

errors.

C11626249.indd   698 2/16/2009   4:33:48 PM



 Chapter 11 DBCC Internals 699

 If it can be determined that the missing page is allocated to another object, error 2534 is also 
reported, giving the actual object indicated in the page header. 

LOB Linkage Consistency Checks

 As discussed previously, LOB linkage facts are generated from text records and from complex 
columns in data or index records. This is to allow consistency checking of text trees and of 
the linkages to off-row LOB columns or row-overfl ow data values. 

 At aggregation time, the following checks are performed: 

■  The text timestamp in a text record must match the text timestamp in the data or  index 
record complex column that links to it. If this check fails, error 8961 is reported, as 
shown here: 

Msg 8961, Level 16, State 1, Line 1

Table error: Object ID 434100587, index ID 1, partition ID 72057594146521088, alloc 

unit ID 71804568277286912 (type LOB data). The off-row data node at page (1:2487), 

slot 0, text ID 3788411843723132928 does not match its reference from page (1:34174), 

slot 0.

■  Every text record must have a link to it from another text record or from a  complex 
 column in a data or index record. If this check fails, error 8964 is reported, as 
shown here: 

Msg 8964, Level 16, State 1, Line 1

Table error: Object ID 750625717, index ID 0, partition ID 49193006989312, alloc unit 

ID 71825312068206592 (type LOB data). The off-row data node at page (1:343), slot 0, 

text ID 53411840 is not referenced.

 It is common for multiple 8964 errors to be reported for text records on the same text 
page. This can happen if an entire data or index page cannot be processed, and each 
record on the corrupt page has a complex column linking to a text record on the same 
text page. 

■  If a complex column in a data or index record links to a text record, the text record 
should be encountered by the DBCC CHECKDB scan. If this check fails, error 8965 is 
reported. This commonly happens when a text page cannot be processed for some 
reason, in which case error 8928 is also reported, as shown here: 

Msg 8928, Level 16, State 1, Line 1

Object ID 1993058136, index ID 1, partition ID 412092034711552, alloc unit ID 

71906736119218176 (type LOB data): Page (1:24301) could not be processed. See other 

errors for details.

Msg 8965, Level 16, State 1, Line 1

Table error: Object ID 1993058136, index ID 1, partition ID 412092034711552, alloc 

unit ID 71906736119218176 (type LOB data). The off-row data node at page (1:24301), 

slot 0, text ID 1606680576 is referenced by page (1:24298), slot 0, but was not seen 

in the scan.

C11626249.indd   699 2/16/2009   4:33:48 PM



700 Microsoft SQL Server 2008 Internals

■  A text record can only have one link to it. If this check fails, error 8974 is reported, as 
shown here: 

Msg 8974, Level 16, State 1, Line 1

Table error: Object ID 373576369, index ID 1, partition ID

72057594039238656, alloc unit ID 71800601762136064 (type LOB data). The

off-row data node at page (1:13577), slot 13, text ID 31002918912 is

pointed to by page (1:56), slot 3 and by page (1:11416), slot 37.

■  The LOB linkage from a complex column in a data or index record must link to a text 
record contained within the same object and index. If this check fails, error 8925 is 
reported. 

 These errors commonly occur together, and are usually accompanied by an 8929 error, as 
shown here: 

Msg 8961, Level 16, State 1, Line 1

Table error: Object ID 434100587, index ID 1, partition ID 72057594146521088, alloc unit ID 

71804568277286912 (type LOB data). The off-row data node at page (1:2487), slot 2, text ID 

341442560 does not match its reference from page (1:2487), slot 0.

Msg 8929, Level 16, State 1, Line 1

Object ID 434100587, index ID 1, partition ID 72057594146521088, alloc unit ID 

72057594151239680 (type In-row data): Errors found in off-row data with ID 341442560 owned 

by data record identified by RID = (1:34174:0)

 The 8929 error contains the actual data or index record that links to the corrupt text record. 
This information can be found only by rescanning all data and index records at the end of 
the batch looking for complex columns that contain a text timestamp matching one in a text 
record that has been found to be corrupt. It is critical that this rescanning process (known 
as a deep-dive) is performed so that database repairs can remove both records—the corrupt 
text record, and the record that contains a link to it. 

FILESTREAM Consistency Checks

 One of the major new features in SQL Server 2008 is FILESTREAM storage—the ability to 
store LOB values outside the database in the NTFS fi le system. This permits very fast stream-
ing access to the LOB values while maintaining transactional integrity with the relational data 
stored in the database. 

 As with any multilocation storage system, link integrity is paramount so that DBCC CHECKDB 
in SQL Server 2008 performs rigorous consistency checking of the FILESTREAM storage 
 attached to a database. The FILESTREAM storage structure is as follows: 

■  The top level of the FILESTREAM data container is an NTFS directory. 

■  Each rowset (that is, a partition of a table or index) that contains FILESTREAM data has 
a directory (called a rowset directory) in the top level. 

■  Each column in the partition has as directory (called a column directory) in the rowset 
directory. 

C11626249.indd   700 2/16/2009   4:33:48 PM



 Chapter 11 DBCC Internals 701

■  The FILESTREAM data values for that column in each record in the partition are stored 
inside the column directory. 

■  There is also a FILESTREAM log directory (think of it as a transaction log for the 
FILESTREAM storage) stored in the top level of the FILESTREAM data container. 

 If the FILESTREAM log directory has been tampered with, the FILESTREAM scan fails and causes 
DBCC CHECKDB to terminate in a variety of ways, depending on the corruption. For instance, if 
a fi le is created in the FILESTREAM log directory, DBCC CHECKDB fails, as shown here: 

Msg 8921, Level 16, State 1, Line 1

Check terminated. A failure was detected while collecting facts. Possibly tempdb out of 

space or a system table is inconsistent. Check previous errors.

Msg 5511, Level 23, State 10, Line 1

FILESTREAM's file system log record 'badlog.txt' under log folder '\\?\F:\Production\

FileStreamStorage\Documents\$FSLOG' is corrupted.

 When DBCC CHECKDB starts, FILESTREAM garbage collection (GC) is prevented for the 
duration of the DBCC CHECKDB scan. FILESTREAM linkage facts are generated from the 
following: 

■  Table and index records that contain FILESTREAM columns 

■  The internal GC table, which contains information about which FILESTREAM fi les have 
been deleted logically (and hence do not have a linkage from a data/index record) but 
have not yet been deleted physically 

■  The per-rowset and per-column directories in the FILESTREAM container(s) 

■  The actual FILESTREAM data fi les 

 At fact-aggregation time, the following consistency checks are performed: 

■  A FILESTREAM fi le must have a parent link (from either a data/index record, or the GC 
table). If this check fails, error 7903 is reported. 

■  The FILESTREAM link from a data/index record, or the GC table, must point to a valid 
FILESTREAM fi le. If this check fails, error 7904 is reported. It is not uncommon for these 
two errors to be reported together, as shown here, if a manual change has been made 
to a FILESTREAM data fi le: 

Msg 7903, Level 16, State 2, Line 1

Table error: The orphaned file "00000017-00000101-0003" was found in the FILESTREAM 

directory ID 988dc26c-ab62-46a4-bc44-c1062b6f6f80 for object ID 2105058535, index ID 

0, partition ID 72057594038779904, column ID 3.

Msg 7904, Level 16, State 2, Line 1

Table error: Cannot find the FILESTREAM file "00000017-00000101-0002" for column ID 3 

(column directory ID 988dc26c-ab62-46a4-bc44-c1062b6f6f80) in object ID 2105058535, 

index ID 0, partition ID 72057594038779904, page ID (1:169), slot ID 1.

■  Each directory in the FILESTREAM data container directory structure must be part of 
the FILESTREAM storage structure. If the corrupt directory is in the top level of the 

C11626249.indd   701 2/16/2009   4:33:48 PM



702 Microsoft SQL Server 2008 Internals

FILESTREAM data container, error 7905 is reported; otherwise, error 7907 is reported, 
as shown here: 

Msg 7907, Level 16, State 1, Line 1

Table error: The directory "\988dc26c-ab62-46a4-bc44-c1062b6f6f80\BadDirectory" under 

the rowset directory ID 7e23f5a2-9cc0-462f-82d3-03ff3eaec4c9 is not a valid FILESTREAM 

directory.

■  Each fi le in the FILESTREAM data container directory structure must be a valid 
FILESTREAM data fi le. If the corrupt fi le is in the top level of the FILESTREAM data 
 container, error 7906 is reported; otherwise, error 7908 is reported, as shown here: 

Msg 7908, Level 16, State 1, Line 1

Table error: The file "\988dc26c-ab62-46a4-bc44-c1062b6f6f80\corruptfile.txt" in the 

rowset directory ID 7e23f5a2-9cc0-462f-82d3-03ff3eaec4c9 is not a valid FILESTREAM 

file.

■  Each FILESTREAM rowset or column directory should not be encountered more than 
once by the DBCC CHECKDB scan. If this check fails, error 7931 is reported. 

■  Each FILESTREAM rowset directory should be in the correct FILESTREAM container for a 
database. If this check fails, error 7932 is reported. 

■  Each FILESTREAM rowset directory must map to a valid partition in the database. If this 
check fails, error 7933 is reported. 

■  Each partition in the database for a table or index that contains FILESTREAM data 
must have a matching FILESTREAM rowset directory. If this check fails, error 7934 is 
reported. It is not uncommon for these two errors to be reported together (most likely 
with accompanying 7937 errors, as shown here) if a manual change has been made to a 
FILESTREAM data fi le: 

Msg 7933, Level 16, State 1, Line 1

Table error: A FILESTREAM directory ID 6e23f5a2-9cc0-462f-82d3-03ff3eaec4c9 exists for 

a partition, but the corresponding partition does not exist in the database.

Msg 7937, Level 16, State 1, Line 1

Table error: The FILESTREAM directory ID 988dc26c-ab62-46a4-bc44-c1062b6f6f80 for 

column ID of object ID 2105058535, index ID 0, partition ID 72057594038779904 was not 

found.

Msg 7934, Level 16, State 1, Line 1

Table error: The FILESTREAM directory ID 7e23f5a2-9cc0-462f-82d3-03ff3eaec4c9 for 

object ID 2105058535, index ID 0, partition ID 72057594038779904 was not found.

■  Each FILESTREAM column directory must match a column in a partition. If this check 
fails, error 7935 is reported. 

■  Each FILESTREAM column directory must match a FILESTREAM column in the partition. 
If this check fails, error 7936 is reported. 

■  Each FILESTREAM column in a partition must have a matching FILESTREAM  column 
 directory in the appropriate FILESTREAM rowset directory. If the parent rowset 
 directory is corrupt in some way, all column directories in the rowset directory fail this 
check (as shown earlier), and error 7937 is returned. 

C11626249.indd   702 2/16/2009   4:33:48 PM



 Chapter 11 DBCC Internals 703

■  Each FILESTREAM data fi le should be encountered only once by the DBCC CHECKDB 
scan in a FILESTREAM column directory. If this check fails, it indicates fi le-system 
 corruption and error 7938 is reported. 

■  Each FILESTREAM data fi le must be linked to by only a single record in the table or 
 index partition. If this check fails, error 7941 is reported. 

■  The FILESTREAM log fi le should not be corrupt. If this check fails, error 7963 is reported. 

Nonclustered Index Cross-Checks

 The last of the cross-page consistency checks to discuss concerns about nonclustered 
 indexes. This has always been one of my favorite parts of the DBCC CHECKDB code base 
 because of the intricacies of performing the checks effi ciently. 

 The nonclustered index cross-checks verify that 

■  Every record in a nonclustered index (whether fi ltered or nonfi ltered) must map to a 
valid record in the base table (that is, the heap or clustered index). 

■  Every record in the base table must map to exactly one record in each nonfi ltered, 
 nonclustered index, and one record in each fi ltered index, where the fi lter allows. 

 If a nonclustered index record is missing, errors 8951 and 8955 are reported. Error 8951  reports 
the table name and the name of the index missing a record. Error 8955 identifi es the data record 
that is missing a matching index record plus the index keys of the missing index record. 

 If an extra nonclustered index record is present, errors 8952 and 8956 are reported. Error 8952 
reports the table name and index name of the index with the extra record. Error 8956 identifi es 
the index keys of the extra index record and the data record to which the index  record links. 

 Commonly, a nonclustered index record is corrupt, so all four errors are reported as shown here: 

Msg 8951, Level 16, State 1, Line 1

Table error: table 'FileStreamTest1' (ID 2105058535). Data row does not have a matching 

index row in the index 'UQ__FileStre__3EF188AC7F60ED59' (ID 2). Possible missing or invalid 

keys for the index row matching:

Msg 8955, Level 16, State 1, Line 1

Data row (1:169:0) identified by (HEAP RID = (1:169:0)) with index values 'DocId = 

'7E8193B4-9C86-47C0-2207-BF1293BA8292' and HEAP RID = (1:169:0)'.

Msg 8952, Level 16, State 1, Line 1

Table error: table 'FileStreamTest1' (ID 2105058535). Index row in index 'UQ__

FileStre__3EF188AC7F60ED59' (ID 2) does not match any data row. Possible extra or invalid 

keys for:

Msg 8956, Level 16, State 1, Line 1

Index row (1:171:1) with values (DocId = '7E8193B4-9C86-47C0-B407-BF2293BA8292' and HEAP RID 

= (1:169:0)) pointing to the data row identified by (HEAP RID = (1:169:0)).

 The mechanism to carry out these checks effi ciently has changed in every release since SQL 
Server 7.0—becoming progressively more and more effi cient. In SQL Server 2008, two hash 
tables are created for each partition of each nonclustered index—one hash table is for the 

C11626249.indd   703 2/16/2009   4:33:48 PM



704 Microsoft SQL Server 2008 Internals

actual records in that partition of the nonclustered index, and the other is for the records 
that should exist in that partition of the nonclustered index (as calculated from the existing 
data records in the table). 

 When a nonclustered index record is processed, all columns in the record are hashed together 
into a BIGINT value. This includes 

■  The physical or logical link back to the base table (known as the base table RID) 

■  All included columns—even LOB and FILESTREAM values) are hashed together into a 
BIGINT value 

 The resulting value is added to the master hash value for actual records for the nonclustered 
index partition of which the record is part. 

 DBCC CHECKDB knows which nonclustered indexes exist for the table and what the complete 
nonclustered index record composition should be for each. When a data record is processed, 
the following algorithm is run for each matching nonclustered index record that should exist 
for the data record (taking into account any fi lter predicates for fi ltered nonclustered indexes): 

  1. Create the nonclustered index record in memory (again, including the base table RID, 
plus included columns). 

  2. Hash all columns in the index record together into a BIGINT value. 

  3. Add the resulting value to the “should exist” master hash value for the relevant 
 nonclustered index partition of which the index record is part. 

 The premise that this algorithm works on is that if no corruptions exist, the master hash 
 values for the actual records and “should exist” records for each nonclustered index partition 
should match exactly at the end of the DBCC CHECKDB batch. 

 If they do not, however, there is a problem. The algorithm described here is not without loss. 
There is no way to tell exactly which record is corrupt in a nonclustered index partition if the 
two master hash values do not match (this has always been the case since SQL Server 2000). In 
that case, a deep-dive check must be performed where the table and its  indexes are  compared 
to fi nd the exact corrupt record(s). 

 The deep-dive check can take a long time to run if it is triggered, which may signifi cantly 
 increase the run time of DBCC CHECKDB. If a deep-dive check is triggered, error 5268 is 
 output to the SQL Server error log, along with an error 5275 for each table that was searched. 
An example is shown here: 

2008-11-25 15:57:53.95 spid55      DBCC CHECKDB is performing an exhaustive search of 1 

indexes for possible inconsistencies.  This is an informational message only. No user action 

is required.

2008-11-25 15:57:53.96 spid55      Exhaustive search of 'dbo.FileStreamTest1, UQ__

FileStre__3EF188AC7F60ED59' (database ID 17) for inconsistencies completed.  Processed 1 of 

1 total searches.  Elapsed time: 5 milliseconds.  This is an informational message only. 

No user action is required.

C11626249.indd   704 2/16/2009   4:33:48 PM



 Chapter 11 DBCC Internals 705

 The deep-dive check uses the query processor to perform matches between the table and 
the index of concern, basically doing two left-anti-semi-joins using internal-only syntax. The 
query involved takes the following form: 

SELECT <all information needed for errors 8951 and 8955 for an unmatched data record>

FROM <tablename> tOuter WITH (INDEX = <base table>)

WHERE NOT EXISTS

(

       SELECT 1

       FROM   <tablename> tInner WITH (INDEX = <nonclustered index>)

       WHERE

       (

              (([tInner].<index columns> = [tOuter].<index columns>)

              OR ([tInner].<index columns> IS NULL AND [tOuter].<index columns> IS NULL))

       AND

              (([tInner].<base table RID> = [tOuter].<base table RID>)

              OR ([tInner].<base table RID> IS NULL AND [tOuter].<base table RID> IS NULL))

       )

)

UNION ALL

SELECT <all information needed for errors 8952 and 8956 for an unmatched index record>

FROM <tablename> tOuter WITH (INDEX = <nonclustered index>)

WHERE NOT EXISTS

(

       SELECT 1

       FROM   <tablename> tInner WITH (INDEX = <base table>)

       WHERE

       (

              (([tInner].<index columns> = [tOuter].<index columns>)

              OR ([tInner].<index columns> IS NULL AND [tOuter].<index columns> IS NULL))

       AND

              (([tInner].<base table RID> = [tOuter].<base table RID>)

              OR ([tInner].<base table RID> IS NULL AND [tOuter].<base table RID> IS NULL))

       )

)

 Once the query has been executed for each nonclustered index partition where the two 
 master hash values did not match, the batch is truly completed. 

Cross-Table Consistency Checks

 Cross-table consistency checks involve validating nonphysical relationships between various 
tables in the database. Some examples are 

■  The metadata for a table must have matching metadata describing its columns (the 
two sets of data are stored in different system catalogs). 

■  A primary XML index must be an accurate representation of the XML column that it 
indexes (a primary XML index is stored as an internal table, separate from the table 
containing the XML column it indexes). 

C11626249.indd   705 2/16/2009   4:33:48 PM



706 Microsoft SQL Server 2008 Internals

■  An indexed view must be an accurate representation of the view defi nition (an indexed 
view is stored as an internal table, separate from the tables referenced in the view 
defi nition). 

 These cross-table consistency checks cannot be run unless the tables involved have already 
been checked and have no consistency problems (or have had their consistency problems 
repaired). 

 For example, imagine a case where an XML index is based on an XML column in table T1. 
Table T1 has a page that is damaged in such a way that it seems to be empty (that is, some 
records are inaccessible). If the XML index is checked before table T1, it might seem as 
though the XML index has extra information in it and is corrupt. In reality, however, the T1 
table is corrupt—the XML index needs to be rebuilt after any repair of table T1. 

 This may seem like a subtle difference, but DBCC CHECKDB needs to report the fi rst-order 
consistency errors. The same logic holds for performing the other cross-table consistency 
checks, so depending on what consistency errors are found in earlier steps, some of the 
cross-table consistency checks may be skipped. 

Service Broker Consistency Checks

 The Service Broker feature uses two types of tables in the database: 

■  System catalogs that store metadata about Service Broker usage in the database (for 
example, conversations, endpoints, and queues) 

■  Internal tables that are used to store the Service Broker queues 

 Both types of tables have the same physical structure as user tables but have different 
 attributes governing their behavior and accessibility by users. Their physical structures are 
checked as part of the logical consistency checks described earlier. 

 Another level of checking is performed for the data contained with the Service Broker system 
catalogs and queues, similar to the system catalog consistency checks described earlier in the 
chapter. These checks validate things such as the following: 

■  A conversation must have two endpoints. 

■  A service must be related to a valid contract. 

■  A service must be related to a valid queue. 

■  A message must have a valid message type. 

 These checks are not performed by DBCC CHECKDB—instead, they are performed by the 
Service Broker subsystem itself, on the behalf of DBCC CHECKDB. If any consistency errors are 
found, they are reported back to DBCC CHECKDB for inclusion in the fi nal set of user  results 
as a 8997 error, with the same format as the 8992 cross-catalog consistency-check error. 

C11626249.indd   706 2/16/2009   4:33:48 PM



 Chapter 11 DBCC Internals 707

Cross-Catalog Consistency Checks

 In SQL Server versions prior to SQL Server 2005, there was confusion about when DBCC 
CHECKCATALOG should be run to validate the relationships between the various system 
 catalogs. To remove this confusion, the DBCC CHECKCATALOG functionality was included 
inside DBCC CHECKDB from SQL Server 2005 onwards. 

 The entire metadata subsystem in the Relational Engine was rewritten for SQL Server 2005 
and as part of that effort, a new set of system catalog consistency checks was written, with 
some additions in SQL Server 2008. The checks are more comprehensive and effi cient than 
the corresponding checks in SQL Server 2000 and earlier and are performed by the  metadata 
subsystem on behalf of DBCC CHECKDB (they can also be performed using the DBCC 
CHECKCATALOG command). 

 These checks operate only on the system catalogs dealing with Relational Engine metadata. 
The storage engine metadata system catalogs are checked during the per-table consistency 
checks described earlier. Some examples of the checks include the following: 

■  For all column metadata, the matching table metadata must exist. 

■  All columns referenced in a computed column defi nition must exist. 

■  All columns included in an index defi nition must exist. 

 If any consistency errors are found, they are reported back to DBCC CHECKDB for inclusion 
in the fi nal set of user results as 8992 errors in the following format: 

Msg 8992, Level 16, State 1, Line 1

Check Catalog Msg 3853, State 1: Attribute (object_id=1977058079) of row 

(object_id=1977058079,column_id=1) in sys.columns does not have a matching row 

(object_id=1977058079) in sys.objects.

Msg 8992, Level 16, State 1, Line 1

Check Catalog Msg 3853, State 1: Attribute (object_id=1977058079) of row 

(object_id=1977058079,column_id=2) in sys.columns does not have a matching row 

(object_id=1977058079) in sys.objects.

 Note These checks are not run on the tempdb database. 

Indexed-View Consistency Checks

 Even though an indexed view is a fi rst-class object in the database, it is stored as if it were 
an internal table with a clustered index, so its physical structure is checked for corruptions 
as part of the per-table consistency checks. Those consistency checks do not check that the 
contents of the indexed view match the view defi nition (that is, that the internal table does 
not have any extra or missing rows). 

C11626249.indd   707 2/16/2009   4:33:48 PM



708 Microsoft SQL Server 2008 Internals

 The simple way to describe the indexed view consistency check is that it uses the indexedcview 
defi nition (which is stored in the system catalogs) to generate a temporary copy of the indexed 
view. It then uses the query processor to run two left-anti-semi-joins between the actual 
 indexed view and the temporary indexed view. This query reports any missing or extra rows in 
the actual indexed view. 

 In reality, the temporary copy of the indexed view may not actually be created in its entirety—
it depends which query plan the query processor uses when running the query. The query 
that DBCC CHECKDB uses is similar to the one used for the nonclustered index deep-dive 
 cross-checking that was discussed earlier. The query format is 

SELECT <identifying columns of missing rows>

FROM <materialize the view temporarily> tOuter WITH (NOEXPAND)

WHERE NOT EXISTS

(

       SELECT 1

       FROM <actual view> tInner WITH (INDEX = 1)

       WHERE

       (

              ([tInner].<view columns> = [tOuter].<view columns>) OR

              ([tInner].<view columns> IS NULL AND [tOuter].<view columns> IS NULL)

       )

)

UNION ALL

SELECT <identifying columns of extra rows>

FROM <actual view> tOuter WITH (INDEX = 2)

WHERE NOT EXISTS

(

       SELECT 1

       FROM <materialize the view temporarily> tInner WITH (NOEXPAND)

       WHERE

       (

              ([tInner].<view columns> = [tOuter].<view columns>) OR

              ([tInner].<view columns> IS NULL AND [tOuter].<view columns> IS NULL)

       )

)

 The NOEXPAND hint used in the query instructs the query processor to perform an index scan 
of the indexed view rather than expanding it into its component parts. Any extra rows in the 
indexed view are reported as 8907 errors and any missing rows are reported as 8908 errors. 

 This check can be very time- and space-consuming. The more complex the  indexedcview 
 defi nition, and the larger the table(s) over which it is defi ned, the longer it takes to 
 materialize a temporary copy of the indexed view and the more likely it is to take up space 
in tempdb. This check is not performed by default in SQL Server 2008 and must be enabled 
 using the EXTENDED_LOGICAL_CHECKS option. 

XML-Index Consistency Checks

 A primary XML index is stored as an internal table with a clustered index. A secondary XML 
 index is stored as a nonclustered index on the primary XML index internal table. The  consistency 

C11626249.indd   708 2/16/2009   4:33:48 PM



 Chapter 11 DBCC Internals 709

checks must validate that the XML indexes contain an accurate shredded  representation of the 
XML values in the user table. 

 The mechanism for doing this is similar to that for the indexed-view consistency checks and 
can be visualized using the same style of query, although a T-SQL query is not used. In this 
case, the two left-anti-semi-joins can be thought of as between the actual XML index and a 
temporary copy of the XML index generated by the XML subsystem.  

 Any extra rows in the XML index are reported as 8907 errors and any missing rows are 
 reported as 8908 errors. 

 This check can be very costly to run. The more complex the XML schema and the larger the 
XML column values, the longer it takes to generate the temporary copy of the XML index, 
and the more likely that it takes up space in tempdb. This check is not performed by default 
in SQL Server 2008 and must be enabled using the EXTENDED_LOGICAL_CHECKS option. 

Spatial-Index Consistency Checks

 A spatial index is stored as an internal table with a clustered index. The consistency checks 
must validate that the spatial index contains an accurate decomposed representation of the 
spatial values in the user table. 

 The mechanism for doing this is similar to that for the indexed-view consistency checks and 
can be visualized using the same style of query, although a T-SQL query is not used. In this 
case, the two left-anti-semi-joins can be thought of as between the actual spatial index and a 
temporary copy of the spatial index generated by the spatial subsystem.  

 Any extra rows in the spatial index are reported as 8907 errors and any missing rows are 
 reported as 8908 errors. 

 This check can be very time- and space-consuming, depending on how the spatial index was 
defi ned. The higher the number of cells at each grid level of decomposition inside the index 
bounding box and the higher the number of stored matching grid cells per spatial value, the 
longer it takes to generate the temporary copy of the spatial index and the more likely it is to 
take up space in tempdb. This check is not performed by default in SQL Server 2008 and must 
be enabled using the EXTENDED_LOGICAL_CHECKS option. 

DBCC CHECKDB Output

 DBCC CHECKDB outputs information in four ways: 

■  Regular output, consisting of a list of errors and informational messages to the 
 connection issuing the DBCC CHECKDB command 

■  A message in the SQL Server error log 

C11626249.indd   709 2/16/2009   4:33:48 PM



710 Microsoft SQL Server 2008 Internals

■  An entry in the Microsoft Windows application event log 

■  Progress reporting information in the sys.dm_exec_requests catalog view 

Regular Output

 By default, DBCC CHECKDB reports the following: 

■  A summary of the Service Broker consistency checks 

■  A list of allocation errors, plus a count of these errors 

■  A list of errors where the affected table cannot be determined, plus a count of these 
errors 

■  For each table in the database (including system catalogs): 

❏  The number of rows and pages 

❏  The list of errors, along with a count of these errors 

■  A summary count of allocation and consistency errors 

■  The minimum repair level that must be specifi ed to fi x the reported errors 

 An example of DBCC CHECKDB output is given here, for a database containing some 
corruption: 

DBCC results for 'CorruptDB'.

Service Broker Msg 9675, State 1: Message Types analyzed: 14.

Service Broker Msg 9676, State 1: Service Contracts analyzed: 6.

Service Broker Msg 9667, State 1: Services analyzed: 3.

Service Broker Msg 9668, State 1: Service Queues analyzed: 3.

Service Broker Msg 9669, State 1: Conversation Endpoints analyzed: 0.

Service Broker Msg 9674, State 1: Conversation Groups analyzed: 0.

Service Broker Msg 9670, State 1: Remote Service Bindings analyzed: 0.

Service Broker Msg 9605, State 1: Conversation Priorities analyzed: 0.

Msg 8909, Level 16, State 1, Line 1

Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type Unknown), page 

ID (1:158) contains an incorrect page ID in its page header. The PageId in the page header = 

(0:0).

CHECKDB found 0 allocation errors and 1 consistency errors not associated with any single 

object.

DBCC results for 'sys.sysrscols'.

There are 637 rows in 8 pages for object "sys.sysrscols".

DBCC results for 'sys.sysrowsets'.

There are 92 rows in 1 pages for object "sys.sysrowsets".

DBCC results for 'sys.sysallocunits'.

There are 104 rows in 2 pages for object "sys.sysallocunits".

DBCC results for 'sys.sysfiles1'.

There are 2 rows in 1 pages for object "sys.sysfiles1".

DBCC results for 'sys.syspriorities'.

There are 0 rows in 0 pages for object "sys.syspriorities".

DBCC results for 'sys.sysfgfrag'.

C11626249.indd   710 2/16/2009   4:33:48 PM



 Chapter 11 DBCC Internals 711

There are 2 rows in 1 pages for object "sys.sysfgfrag".

<some results removed for brevity>

DBCC results for 'sys.syssqlguides'.

There are 0 rows in 0 pages for object "sys.syssqlguides".

DBCC results for 'sys.sysbinsubobjs'.

There are 3 rows in 1 pages for object "sys.sysbinsubobjs".

DBCC results for 'sys.syssoftobjrefs'.

There are 0 rows in 0 pages for object "sys.syssoftobjrefs".

DBCC results for 'sys.queue_messages_1977058079'.

There are 0 rows in 0 pages for object "sys.queue_messages_1977058079".

DBCC results for 'sys.queue_messages_2009058193'.

There are 0 rows in 0 pages for object "sys.queue_messages_2009058193".

DBCC results for 'sys.queue_messages_2041058307'.

There are 0 rows in 0 pages for object "sys.queue_messages_2041058307".

DBCC results for 'sales'.

Msg 8928, Level 16, State 1, Line 1

Object ID 2073058421, index ID 1, partition ID 72057594038386688, alloc unit ID 

72057594042384384 (type In-row data): Page (1:158) could not be processed.  See other errors 

for details.

There are 4755 rows in 20 pages for object "sales".

CHECKDB found 0 allocation errors and 1 consistency errors in table 'sales' (object ID 

2073058421).

DBCC results for 'sys.filestream_tombstone_2121058592'.

There are 0 rows in 0 pages for object "sys.filestream_tombstone_2121058592".

DBCC results for 'sys.syscommittab'.

There are 0 rows in 0 pages for object "sys.syscommittab".

CHECKDB found 0 allocation errors and 2 consistency errors in database 'CorruptDB'.

repair_allow_data_loss is the minimum repair level for the errors found by DBCC CHECKDB 

(CorruptDB).

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

 Although this output is comprehensive, the informational messages are redundant. In regular 
operation, the important information concerns the corruptions that may be present in the 
database. I always recommend using the NO_INFOMSGS option to reduce the output only to 
the essential information. For example, here is the output from DBCC CHECKDB of the same 
corrupt database, but with the NO_INFOMSGS option specifi ed: 

Msg 8909, Level 16, State 1, Line 1

Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type Unknown), page 

ID (1:158) contains an incorrect page ID in its page header. The PageId in the page header = 

(0:0).

CHECKDB found 0 allocation errors and 1 consistency errors not associated with any single 

object.

Msg 8928, Level 16, State 1, Line 1

Object ID 2073058421, index ID 1, partition ID 72057594038386688, alloc unit ID 

72057594042384384 (type In-row data): Page (1:158) could not be processed.  See other errors 

for details.

CHECKDB found 0 allocation errors and 1 consistency errors in table 'sales' (object ID 

2073058421).

CHECKDB found 0 allocation errors and 2 consistency errors in database 'CorruptDB'.

repair_allow_data_loss is the minimum repair level for the errors found by DBCC CHECKDB 

(CorruptDB).

 As you can see, this version of the output is easier to read. 

C11626249.indd   711 2/16/2009   4:33:48 PM



712 Microsoft SQL Server 2008 Internals

 There is a special case when DBCC CHECKDB is executed on the master database. In this case, 
DBCC CHECKDB is also run on the hidden resource database, mssqlsystemresource, and so 
the output contains the results for both databases. 

 If DBCC CHECKDB has to terminate prematurely for any reason, and the failure can be 
 controlled by DBCC CHECKDB, error 5235 is output, containing an error state. The error 
states have the following meaning: 

■  0 A fatal metadata corruption was detected. One or more 8930 errors (described 
 previously) accompanies the 5235 error. 

■  1 An invalid internal state was detected inside DBCC CHECKDB. One or more 8967 
errors (described previously) accompanies the 5235 error. 

■  2 The primitive checks of the critical system tables failed. One or more of errors 7984 
through 7988 (described previously) accompanies the 5235 error. 

■  3 The emergency mode repair failed because the database could not be restarted 
after rebuilding the transaction log. Error 7909 accompanies the 5235 error. This is 
 described in more detail later in this chapter. 

■  4 An access violation or assert occurred (even though DBCC CHECKDB was 
re-engineered in SQL Server 2005 to avoid these occurrences). 

■  5 An unknown failure caused DBCC CHECKDB to terminate, although a graceful 
 termination was possible. 

Error Reporting to Microsoft

 In SQL Server 2008, whenever an error is found by DBCC CHECKDB, a dump fi le is  created 
in the instance LOG directory, along with a textual summary of the errors in XML form 
and a copy of the current SQL Server error log fi le. If the instance has been confi gured to 
provide feedback to Microsoft, these fi les are uploaded automatically. The information 
contained within them is used by the SQL Server team to determine how common various 
corruptions are. This helps decide where engineering effort should be invested in future 
 consistency-checking and repair functionality. 

SQL Server Error Log Output

 Each time DBCC CHECKDB completes successfully, an entry is added to the SQL Server error 
log for the database that was consistency-checked. An example is shown below: 

2008-11-03 00:51:11.08 spid56      DBCC CHECKDB (CorruptDB) executed by CHICAGO\

Administrator found 2 errors and repaired 0 errors. Elapsed time: 0 hours 0 minutes 0 

seconds.  Internal database snapshot has split point LSN = 00000044:00000188:0001 and first 

LSN = 00000044:00000187:0001.  This is an informational message only. No user action is 

required. 

 Notice that the entry lists the elapsed time that DBCC CHECKDB took to complete. This is 
included so that database administrators can gain an understanding of the average run time 

C11626249.indd   712 2/16/2009   4:33:49 PM



 Chapter 11 DBCC Internals 713

of DBCC CHECKDB for a particular database without having to resort to manual timing. 
The entry also lists which options were specifi ed. This can be useful to determine whether a 
 database was previously repaired. 

 The entry also lists some metadata information about the database snapshot that DBCC 
CHECKDB created. This can be useful to Product Support when debugging corruption issues. 

 If DBCC CHECKDB terminates prematurely, an abbreviated entry is entered in the  error 
log. If a high-severity error in the storage engine causes DBCC CHECKDB to terminate 
 uncontrollably, there is no entry in the error log. The error-log-entry generation is one of the 
last things that DBCC CHECKDB does when it completes. This means that if an error  occurs 
that, for instance, terminates the connection running the command, DBCC CHECKDB is 
 unable to generate the error log entry. 

Application Event Log Output

 DBCC CHECKDB generates a matching application event log entry each time it writes output 
to the SQL Server error log. 

 Each time DBCC CHECKDB completes successfully, an entry is added to the Application event 
log detailing the number of errors found and fi xed. An example is shown in Figure 11-3. 

FIGURE 11-3 Application event log entry when DBCC CHECKDB completes normally

 If errors were found by DBCC CHECKDB, there may be three additional entries in the event 
log containing metadata for the error-reporting dump fi le described earlier. 

 In the event that DBCC CHECKDB decides to terminate prematurely, an abbreviated entry is 
entered into the event log. If the SQL Server error log entry is not generated because DBCC 
CHECKDB terminated uncontrollably, the application event log entry is also not generated. 

C11626249.indd   713 2/16/2009   4:33:49 PM



714 Microsoft SQL Server 2008 Internals

Progress Reporting Output

 DBCC CHECKDB, DBCC CHECKTABLE, and DBCC CHECKFILEGROUP all report their progress in 
the sys.dm_exec_requests catalog view. The two columns of interest are percent_complete, which 
is self-explanatory, and command, which gives the current phase of execution of the DBCC 
 command being executed. The various phases of DBCC CHECKDB are shown in Table 11-3 in 
order of execution. There is a similar list in the SQL Server Books Online topic “DBCC,” but that 
list has several errors and omissions. 

TABLE 11-3 Progress Reporting Phases of Execution 

 Phase Description Granularity of Reporting

 DBCC ALLOC CHECK Allocation consistency checks This step is considered a single unit of 
work (that is, progress starts at 0 percent 
and jumps to 100 percent when the step 
 completes).

 DBCC ALLOC REPAIR Allocation repairs 
(if  specifi ed)

There is one unit of work per  allocation 
 error found in the previous step, and 
 progress is  updated when each  repair 
 operation  completes. For example, 
with eight  errors found, each repair will 
 increment the progress by 12.5 percent.

 DBCC SYS CHECK Per-table consistency checks 
of critical system tables

Progress is calculated as a fraction of the 
total number of database pages that must 
be read and processed. Progress is updated 
after every 1,000 processed pages.

 DBCC SYS REPAIR Critical system table repairs, 
if specifi ed and possible

As described for DBCC ALLOC REPAIR.

 DBCC TABLE CHECK Per-table consistency checks 
of all tables

As described for DBCC SYS CHECK.

 DBCC TABLE REPAIR User table repairs, if specifi ed As described for DBCC ALLOC REPAIR.

 DBCC SSB CHECK Service Broker  consistency 
checks (and repairs if 
 specifi ed)

This step is considered a single unit of work.

 DBCC CHECKCATALOG Cross-catalog consistency 
checks

This step is considered a single unit of work.

 DBCC IVIEW CHECK Indexed-view, XML-index, 
and spatial-index consistency 
checks, if specifi ed

There is one unit of work for each indexed 
view, XML index, and spatial index that is 
checked.

 DBCC IVIEW REPAIR Indexed-view, XML-index, 
and spatial-index repairs, 
if specifi ed

As described for DBCC ALLOC REPAIR.

 Note There is no phase reported for primitive system table checks. This phase runs so quickly 
that when progress reporting was added into the DBCC CHECKDB code for SQL Server 2005, the 
development team did not think it worthwhile including a separate progress reporting phase. 

Phase Description Granularity of Reporting

C11626249.indd   714 2/16/2009   4:33:49 PM



 Chapter 11 DBCC Internals 715

 For DBCC CHECKTABLE, the following phases are reported: 

■  DBCC TABLE CHECK 

■  DBCC IVIEW CHECK (if no errors were found by the previous step) 

■  DBCC TABLE REPAIR (if errors were found and a repair option was specifi ed) 

 For DBCC CHECKFILEGROUP, the following phases are reported: 

■  DBCC ALLOC CHECK 

■  DBCC SYS CHECK 

■  DBCC TABLE CHECK 

 Note DBCC CHECKFILEGROUP does not support repair operations. 

DBCC CHECKDB Options

 The syntax diagram for DBCC CHECKDB from SQL Server Books Online is 

DBCC CHECKDB

[

    [ ( database_name | database_id | 0

        [ , NOINDEX

        | , { REPAIR_ALLOW_DATA_LOSS | REPAIR_FAST | REPAIR_REBUILD } ]

        ) ]

    [ WITH

        {

            [ ALL_ERRORMSGS ]

            [ , EXTENDED_LOGICAL_CHECKS ]

            [ , NO_INFOMSGS ]

            [ , TABLOCK ]

            [ , ESTIMATEONLY ]

            [ , { PHYSICAL_ONLY | DATA_PURITY } ]

        }

    ]

]

 The rest of this section explains these options, with additional information to that in SQL 
Server Books Online. 

NOINDEX

 The NOINDEX option makes DBCC CHECKDB skip the nonclustered index cross-checks on 
user tables (that is, nonclustered index cross-checks are always performed on system tables 
when this option is specifi ed). These checks are very CPU-intensive so turning them off can 

C11626249.indd   715 2/16/2009   4:33:49 PM



716 Microsoft SQL Server 2008 Internals

make DBCC CHECKDB run faster. This option is rarely used because the PHYSICAL_ONLY 
 option does a much better job of disabling CPU-intensive checks and making DBCC 
CHECKDB run faster. 

Repair Options

 You can specify three repair options, although the REPAIR_FAST option has been changed 
such that it does nothing in SQL Server 2005 and SQL Server 2008 and it exists only for 
 backward compatibility. 

 The REPAIR_REBUILD option attempts to repair errors only where there is no possibility of 
data loss. The REPAIR_ALLOW_DATA_LOSS option attempts to repair all errors, including 
those where data is likely to be lost (the name of the option was carefully chosen). The repair 
process and specifi c repairs are discussed in much more detail later in this chapter. 

 Note These options require the database to be in single-user mode. Running repair is usually 
used only as a last resort when restoring from a backup is not possible. 

ALL_ERRORMSGS

 The ALL_ERRORMSGS option forces DBCC CHECKDB to give output for all corruption  errors 
that it fi nds instead of the default, which is to output only the fi rst 200 error messages. 
If there are more than 200 error messages, error 8986 is added at the end of the DBCC 
CHECKDB results and you need to rerun the command with the ALL_ERRORMSGS option to 
see the complete set of errors. 

 This means that by default, you get an incomplete view of the corruption in the database. 
You may think that 200 error messages is enough to decide what to do, but as discussed later 
in this chapter, it is important to see all error messages because the 201st error message may 
make you change your disaster recovery plan. 

 For example, consider a case where DBCC CHECKDB found 201 corruptions, but you use 
the default settings and see only the fi rst 200. These 200 errors may all be in  nonclustered 
 indexes, meaning that you can rebuild those indexes to fi x the corruptions. However, 
 unbeknownst to you, the 201st error turns out to be a corruption in a clustered index data 
page that renders your nonclustered index rebuilds useless until that corruption is fi xed. 

 Important If you run DBCC CHECKDB using the ALL_ERRORMSGS option from within SQL 
Server Management Studio, it limits the number of errors to 1,000. To work around this, you 
must use sqlcmd. SQL Server Books Online incorrectly states that running DBCC CHECKDB 
 multiple times allows you to see the complete list of error messages. 

C11626249.indd   716 2/16/2009   4:33:49 PM

v@v
Text Box
Download at Wow! eBook



 Chapter 11 DBCC Internals 717

EXTENDED_LOGICAL_CHECKS

 The EXTENDED_LOGICAL_CHECKS option enables the cross-table consistency checks for 
 indexed views, XML indexes, and spatial indexes. Because these checks are so expensive to 
run, they are switched off by default. 

 In SQL Server 2005 (when the indexed view and XML index checks were introduced), these 
checks were on by default. As such, when the database is set to the 90 compatibility level, the 
EXTENDED_LOGICAL_CHECKS option is ignored and these cross-table consistency checks are 
always performed. 

NO_INFOMSGS

 When the NO_INFOMSGS option is specifi ed, no informational messages are included in the 
output. This can make the output easier to read when errors are present. Although this is not 
the default, I recommend that this option is always specifi ed. 

TABLOCK

 The TABLOCK option forces DBCC CHECKDB to take database and table locks to obtain its 
transactionally consistent view of the database (that is, the consistency checks are performed 
offl ine and concurrent activity may be blocked). The locking behavior when this option is 
specifi ed was described earlier in this chapter. 

ESTIMATEONLY

 The ESTIMATEONLY option calculates how much space may be required in tempdb for the 
sort that holds the facts generated by the consistency-checking algorithms, taking into 
 account all other specifi ed options. 

 DBCC CHECKDB goes through the motions of building all the batches of objects to check 
(as described earlier in the chapter), but it does not actually check them. Instead, it uses the 
metadata that it has gathered about each table and index to produce an estimate of the 
number of each type of fact that it generates. The various numbers are multiplied by the size 
of each fact type and added together to form a total size for that batch. The batch with the 
highest total size is the one that is reported. 

 The estimation algorithms are very conservative in their calculations to ensure that an 
 accurate maximum size is returned. The actual amount of tempdb space taken up may be 
considerably lower. For example, the estimation algorithm estimates the number of facts 
required to track forwarding and forwarded records by simply counting all the records in a 
heap and multiplying by two. This is almost never the case, but it is a suffi cient estimation. 

C11626249.indd   717 2/16/2009   4:33:49 PM



718 Microsoft SQL Server 2008 Internals

 When the ESTIMATEONLY option is specifi ed, the output does not contain any error or 
 informational messages. Instead, the output has the following format: 

Estimated TEMPDB space needed for CHECKALLOC (KB)

-------------------------------------------------

32

(1 row(s) affected)

Estimated TEMPDB space needed for CHECKTABLES (KB)

--------------------------------------------------

750

(1 row(s) affected)

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

PHYSICAL_ONLY

 The PHYSICAL_ONLY option makes DBCC CHECKDB skip the CPU-intensive per-table and 
cross-table consistency checks. When this option is specifi ed, DBCC CHECKDB does the 
following: 

■  Create a transactionally consistent, static view of the database. 

■  Perform low-level consistency checks of the critical system catalogs. 

■  Perform allocation consistency checks of the database. 

■  Read and audit all allocated pages from each table in the database. 

 SQL Server Books Online erroneously states that it also checks B-tree linkages, but it does not. 
It also skips all checks of FILESTREAM data. 

 By skipping all the CPU-intensive consistency checks, the PHYSICAL_ONLY option turns DBCC 
CHECKDB from a CPU-bound process into an I/O-bound process. This usually results in 
DBCC CHECKDB running signifi cantly faster. 

 Because this option forces all allocated pages in the database to be read into the buffer pool, 
it is an excellent way to test all page checksums that exist. 

 The PHYSICAL_ONLY option has these restrictions: 

■  It is mutually exclusive with the DATA_PURITY option. 

■  It is mutually exclusive with any repair option. 

■  It switches on the NO_INFOMSGS option. 

C11626249.indd   718 2/16/2009   4:33:49 PM



 Chapter 11 DBCC Internals 719

DATA_PURITY

 The DATA_PURITY option forces the per-column data purity checks to be run (as described 
earlier in this chapter). By default, these checks are run on databases that are marked as 
 being pure. A pure database is one that was created on SQL Server 2005 or SQL Server 2008, 
or an  upgraded database that has had DBCC CHECKDB with the DATA_PURITY option run 
without fi nding any corruptions (which irrevocably marks the database as pure). 

 For all other databases, the data purity checks are run only when this option is specifi ed. The 
DATA_PURITY and PHYSICAL_ONLY options are mutually exclusive. 

Database Repairs

 Apart from performing consistency checks on a database, DBCC CHECKDB can perform 
 repairs of the majority of corruptions that it fi nds. I say “majority” and not “all” because there 
are some corruptions that DBCC CHECKDB cannot repair. This list includes: 

■  Corruption in the leaf level of a critical system catalog clustered index 

■  Corruption in a PFS page header 

■  Data purity errors (error 2570) 

■  Errors from system catalog cross-checks (error 8992) 

 If any of these corruptions are present, DBCC CHECKDB repairs as much as it can and 
 indicates which corruptions cannot be repaired with a 2540 error (“The system cannot self 
repair this error”). 

 This book is not the place to discuss when repair should be used, but suffi ce it to say that 
restoring from valid backups always allows data loss to be minimized and is usually the 
 preferred course of action. Database repair functionality really exists as a last resort when 
backups are not available. 

 Repair should usually be viewed as a last resort for two reasons. First, the majority of the 
 repairs that REPAIR_ALLOW_DATA_LOSS enables are to delete whatever is corrupt and fi x 
up all linkages to and from the corrupt object. This is always the fastest, easiest to  engineer, 
most easily proved, correct, and infallible way to remove a corruption. Second, not all 
 corruptions can be repaired, as I explained previously. 

 However, if no backups are available, repair may be necessary. The necessary repair level to 
use is reported at the end of the DBCC CHECKDB output using an 8958 error, as shown here: 

repair_rebuild is the minimum repair level for the errors found by DBCC CHECKDB 

(ProductionDB).

C11626249.indd   719 2/16/2009   4:33:49 PM



720 Microsoft SQL Server 2008 Internals

 The repairable corruptions fall into two groups—those that can be repaired without  losing 
data (for example, corruptions in nonclustered indexes, indexed views, XML or spatial 
 indexes, or in a forwarding <-> forwarded record linkage), and those that require data loss 
(that is, the majority of corruptions involving heaps and clustered indexes). 

 For those corruptions in the fi rst group, the REPAIR_REBUILD option is suffi cient. For those 
in the second group, the REPAIR_ALLOW_DATA_LOSS option is required. If not specifi ed, 
some corruptions may not be repaired, and DBCC CHECKDB will explain that it is because a 
lower repair level was specifi ed, using an 8923 error (“The repair level on the DBCC statement 
caused this repair to be bypassed”). 

Repair Mechanisms

 If a repair option was specifi ed then once DBCC CHECKDB has completed each phase of 
the consistency checks, repairs are carried out at that point. This ensures that subsequent 
 consistency checks and repairs are performed on a database without lower-level corruptions 
present. 

 When repair is required to run, the repair subsystem inside DBCC CHECKDB is passed the 
list of corruptions that the consistency checks found. The corruptions are not repaired in the 
 order that they are found—instead, they are sorted according to how intrusive the repair is. 

 For instance, consider a nonclustered index that has a corrupt IAM page and a missing 
 record. The repair for the corrupt IAM page is to rebuild the nonclustered index, and the 
 repair for the missing record is simply to insert a new nonclustered index record. If the 
 missing record was fi xed before the corrupt IAM page, the insertion of the new record is 
wasted because the nonclustered index is then completely rebuilt to repair the corrupt 
IAM page. 

 Therefore, it makes sense to rank all corruptions by how intrusive their repairs are, and  perform 
the most intrusive repairs fi rst. This usually allows less intrusive repairs to be skipped because 
they may be repaired as a side effect of performing a more intrusive repair. Continuing the 
 previous example, the nonclustered index IAM page corruption is ranked higher than the 
 missing nonclustered index record. When the index is rebuilt to repair the corrupt IAM page, 
the new index includes the missing record, thus fi xing the missing-nonclustered-index-record 
corruption as a side effect. 

 Repair ranking also prevents the repair system from inadvertently causing more corruption. 
For instance, consider a table that has a corrupt nonclustered index and a corrupt page at the 
 leaf level of the clustered index. It is imperative that the more intrusive repair (deallocating the 
clustered index leaf-level page) is performed fi rst. This guarantees that when the  nonclustered 
index is rebuilt, the rebuild uses an error-free clustered index as its base. If the nonclustered 
 index was rebuilt fi rst, and then the clustered index leaf-level page was deallocated, the 
 nonclustered index is corrupt. 

C11626249.indd   720 2/16/2009   4:33:49 PM



 Chapter 11 DBCC Internals 721

 Each repair is performed within a separate transaction. This allows DBCC CHECKDB to cope 
with a repair failing but then continue repairing other corruptions. 

 The output from DBCC CHECKDB contains details of the repair that was performed. The 
complete list of all corruptions with their repairs is well beyond the scope of this book, but 
example repairs include the following: 

■  Fixing incorrect record counts on a data or index page 

■  Fixing incorrect PFS page bytes 

■  Removing an extra record from a nonclustered index 

■  Inserting a single record into a nonclustered index (a much more effi cient alternative 
than rebuilding a large nonclustered index to repair a single record) 

■  Moving a wrongly partitioned record to the correct partition 

■  Rebuilding a nonclustered index 

■  Rebuilding an indexed view, XML index, or spatial index 

■  Deleting orphaned off-row LOB values or FILESTREAM fi les 

■  Rebuilding a clustered index 

■  Deallocating a data record, with a consequent cascading delete of all nonclustered 
 index records and off-row LOB or FILESTREAM values referenced by the record 

■  Deallocating an entire data page, with the consequent cascading deleted 

■  Setting or unsetting bits in the various GAM, SGAM, and IAM allocation bitmaps 

■  Fixing previous-page and next-page linkages in an IAM chain 

■  Truncating an IAM chain at a corrupt IAM page, stitching together the IAM chain 
 remnants, and performing the consequent rebuilds and cascading deletes 

■  Resolving pages or extents that are allocated to multiple objects 

 Repairs that involve data loss have other possible consequences too. If a table affected by 
repair is involved in a foreign-key relationship, that relationship may be broken after running 
repair and so DBCC CHECKCONSTRAINTS should be performed. If a table affected by repair 
is part of a replication publication, the repairs are not replicated and so the subscription(s) 
should be reinitialized after running repair. 

Emergency Mode Repair

 One additional piece of repair functionality is triggered only when the database is in 
EMERGENCY mode. EMERGENCY mode is used when the transaction log for the database has 
been damaged and no backups are available to restore from. In this case, regular repairs do 
not work—repairs are fully logged and this cannot occur if the transaction log is damaged. 

C11626249.indd   721 2/16/2009   4:33:49 PM



722 Microsoft SQL Server 2008 Internals

 In SQL Server 2000 and earlier, EMERGENCY mode was undocumented and was used to allow 
the transaction log to be rebuilt using the undocumented DBCC REBUILD_LOG  command. 
Unfortunately, this procedure became publicized on the Internet but usually without all 
necessary steps. For this reason, I decided to add a documented and supported method of 
rebuilding a transaction log and recovering the database in SQL Server 2005. The feature is 
called emergency mode repair and its mechanism is unchanged for SQL Server 2008. 

 When the database is in EMERGENCY mode and SINGLE_USER mode, and DBCC CHECKDB is 
run with the REPAIR_ALLOW_DATA_LOSS option, the following steps are taken: 

 1.  Force recovery to run on the transaction log (if it exists). 

 This is essentially recovery with CONTINUE_AFTER_ERROR, in a similar vein to using 
CONTINUE_AFTER_ERROR with either BACKUP or RESTORE. The idea behind this is that 
the database is already inconsistent because either the transaction log is corrupt or 
something in the database is corrupt in such a way that recovery cannot complete.  

 Given that the database is inconsistent and the transaction log is about to be rebuilt, 
it makes sense to salvage as much transactional information as possible from the log 
 before it is discarded and a new one is created. 

 This recovery with CONTINUE_AFTER_ERROR functionality is possible only from within 
DBCC CHECKDB. 

  2. Rebuild the transaction log if it is corrupt.  

  3. Run the full set of consistency checks on the database with the REPAIR_ALLOW_DATA_
LOSS option. 

  4. Bring the database online. 

 Tip The vast majority of the time, this operation completes successfully, albeit with data 
loss. However I have seen it fail in production, especially on corrupt fi le systems, so again, 
backups are the recommended way to avoid data loss. 

What Data Was Deleted by Repair?

 In the unfortunate case where you have no choice but to use the REPAIR_ALLOW_DATA_LOSS 
option, some data is inevitably lost, as explained previously. Your task becomes fi guring out 
what data is lost so that it can be re-created or what other parts of the database are fi xed up 
to refl ect the loss. 

 Before running repair, you could try examining some of the pages that DBCC CHECKDB 
 reports as corrupt to see if you can tell what data is on them. Consider the following error: 

Server: Msg 8928, Level 16, State 1, Line 2

Object ID 645577338, index ID 0: Page (1:168582) could not be processed. See other errors 

for details.

C11626249.indd   722 2/16/2009   4:33:49 PM



 Chapter 11 DBCC Internals 723

 You can try using DBCC PAGE to examine page (1:168582). Depending on how badly the 
page is corrupt, you may be able to see some of the records on the page and fi gure out what 
data is lost when the page is deallocated by the repair operations. 

 After running repair, you may be able to tell what data has been deleted. Unless you are 
 intimately familiar with the data in the database, you have two options: 

■  Create a copy of the corrupt database before running repair so you can compare the 
prerepair and postrepair data and see what is missing. This may be tricky to do if the 
database is badly corrupt—you may need to use the WITH CONTINUE_AFTER_ERROR 
options of BACKUP and RESTORE to do this. 

■  Start an explicit transaction before running repair. It is not very well known that you can 
run repair inside a transaction. After repair completes, you can examine the database 
to see what repair did, and if you want to undo the repairs, you can simply roll back the 
explicit transaction. 

 After the repair has completed, you may be able to query the repaired database to fi nd 
out what data has been repaired. For instance, consider the case where a repair deleted 
a  leaf-level page from a clustered index with an identity column. It may be possible to 
 construct queries that fi nd the range of records deleted, such as the following: 

-- Start of the missing range is when a value does not have a plus-1 neighbor.

SELECT MIN(salesID + 1) FROM DemoRestoreOrRepair.dbo.sales as A

WHERE NOT EXISTS (

       SELECT salesID FROM DemoRestoreOrRepair.dbo.sales as B

       WHERE B.salesID = A.salesID + 1);

GO

-- End of the missing range is when a value does not have a minus-1 neighbor

SELECT MAX(salesID - 1) FROM DemoRestoreOrRepair.dbo.sales as A

WHERE NOT EXISTS (

       SELECT salesID FROM DemoRestoreOrRepair.dbo.sales as B

       WHERE B.salesID = A.salesID - 1);

GO

 At the very least, after running a repair, you should perform a full backup and root-cause 
analysis of the corruption to fi nd out what caused the problem. 

Consistency-Checking Commands Other Than 
DBCC CHECKDB

 In this section, I explain what each of the DBCC CHECK. . . commands does. Historically, 
there has been much confusion about what all the different consistency-checking DBCC 
 commands do, which ones should be performed, and in what order. DBCC CHECKDB 
 includes the functionality of all DBCC CHECK. . . commands except DBCC CHECKIDENT and 
DBCC CHECKCONSTRAINTS. 

C11626249.indd   723 2/16/2009   4:33:49 PM



724 Microsoft SQL Server 2008 Internals

DBCC CHECKALLOC

 DBCC CHECKALLOC performs the following: 

■  Primitive system-catalog consistency checks 

■  Allocation consistency checks on the database 

 It uses a database snapshot by default and has the same options as for DBCC CHECKDB, 
 except for the following: 

■  PHYSICAL_ONLY 

■  REPAIR_REBUILD 

■  DATA_PURITY 

 None of these options make sense for allocation consistency checks. 

 If informational messages are allowed, it outputs comprehensive information about the  number 
of pages and extents allocated to each allocation unit in the database, along with the fi rst IAM 
page in the IAM chain and the root page. This information is not returned when the allocation 
consistency checks are performed as part of DBCC CHECKDB. Example output is shown here: 

DBCC results for 'CorruptDB'.

***************************************************************

Table sys.sysrscols                Object ID 3.

Index ID 1, partition ID 196608, alloc unit ID 196608 (type In-row data). FirstIAM (1:188). 

Root (1:189). Dpages 8.

Index ID 1, partition ID 196608, alloc unit ID 196608 (type In-row data). 10 pages used in 1 

dedicated extents.

Total number of extents is 1.

***************************************************************

<some results removed for brevity>

***************************************************************

Table sys.syscommittab                Object ID 2137058649.

Index ID 1, partition ID 72057594038583296, alloc unit ID 72057594042580992 (type In-row 

data). FirstIAM (0:0). Root (0:0). Dpages 0.

Index ID 1, partition ID 72057594038583296, alloc unit ID 72057594042580992 (type In-row 

data). 0 pages used in 0 dedicated extents.

Index ID 2, partition ID 72057594038648832, alloc unit ID 72057594042646528 (type In-row 

data). FirstIAM (0:0). Root (0:0). Dpages 0.

Index ID 2, partition ID 72057594038648832, alloc unit ID 72057594042646528 (type In-row 

data). 0 pages used in 0 dedicated extents.

Total number of extents is 0.

File 1. The number of extents = 25, used pages = 174, and reserved pages = 195.

           File 1 (number of mixed extents = 18, mixed pages = 139).

    Object ID 3, index ID 1, partition ID 196608, alloc unit ID 196608 (type In-row data), 

data extents 1, pages 10, mixed extent pages 9.

    Object ID 5, index ID 1, partition ID 327680, alloc unit ID 327680 (type In-row data), 

data extents 0, pages 2, mixed extent pages 2.

    Object ID 7, index ID 1, partition ID 458752, alloc unit ID 458752 (type In-row data), 

data extents 0, pages 4, mixed extent pages 4.

    Object ID 7, index ID 2, partition ID 562949953880064, alloc unit ID 562949953880064 

(type In-row data), index extents 0, pages 2, mixed extent pages 2.

C11626249.indd   724 2/16/2009   4:33:49 PM



 Chapter 11 DBCC Internals 725

<some results removed for brevity>

   Object ID 2073058421, index ID 1, partition ID 72057594038386688, alloc unit ID 

72057594042384384 (type In-row data), data extents 2, pages 23, mixed extent pages 9.

The total number of extents = 25, used pages = 174, and reserved pages = 195 in this 

database.

       (number of mixed extents = 18, mixed pages = 139) in this database.

CHECKALLOC found 0 allocation errors and 0 consistency errors in database 'CorruptDB'.

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

DBCC CHECKTABLE

 DBCC CHECKTABLE performs the following: 

■  Primitive system-catalog consistency checks 

■  Per-table consistency checks on the single table specifi ed 

■  Cross-table consistency checks on indexed views that reference the specifi ed table 

 The cross-table consistency checks are not performed if any corruptions were found in the 
table specifi ed, even if the corruptions were repaired. This is slightly more restrictive behavior 
than for DBCC CHECKDB. 

 In addition, a nonclustered index ID can be specifi ed that limits the nonclustered index  cross-checks 
to only that nonclustered index. This cannot be specifi ed if any repair options are used. 

 It uses a database snapshot by default and has the same set of options as DBCC CHECKDB, 
including repairs. 

 The output of the command is limited to the table being checked. 

DBCC CHECKFILEGROUP

 DBCC CHECKFILEGROUP performs the following: 

■  Primitive system-catalog consistency checks 

■  Allocation consistency checks on the fi legroup 

■  Per-table consistency checks on all tables stored in the fi legroup 

■  Cross-table consistency checks, so long as the indexed views, XML indexes, and spatial 
indexes are stored within the fi legroup and the tables on which they are based are also 
stored within the fi legroup 

 It uses a database snapshot by default and has the same set of options as DBCC CHECKDB, 
except for the following: 

■  PHYSICAL_ONLY 

■  DATA_PURITY 

■  Any repair options 

C11626249.indd   725 2/16/2009   4:33:50 PM



726 Microsoft SQL Server 2008 Internals

 There are the following subtleties in the per-table consistency checks when a table and all its 
nonclustered indexes are not stored within the same fi legroup: 

■  If a table is stored within the fi legroup specifi ed but one or more nonclustered indexes 
are stored in other fi legroups, they are not checked for consistency. 

■  If a nonclustered index is stored within the fi legroup specifi ed, but the table (heap or 
clustered index) is stored in another fi legroup, the nonclustered index is not checked 
for consistency. 

 The basic rule of thumb is that DBCC CHECKFILEGROUP does not perform cross-fi legroup 
consistency checks. 

 The output of this command is the same as for DBCC CHECKDB except that it does not 
 report any Service Broker details and only tables within the specifi ed fi legroup are checked. 

DBCC CHECKCATALOG

 DBCC CHECKCATALOG performs the following: 

■  Primitive system catalog consistency checks 

■  Cross-catalog consistency checks 

 It uses a database snapshot by default and only has the NO_INFOMSGS option. If a  database 
snapshot cannot be created, it requires an exclusive database lock to run. Given that neither a 
database snapshot nor an exclusive lock can be acquired on tempdb, DBCC CHECKCATALOG 
cannot be run on the tempdb database (either as part of DBCC CHECKDB or as the 
 stand-alone command). 

 The output of this command is empty unless any corruptions are found. 

DBCC CHECKIDENT

 DBCC CHECKIDENT checks that the identity value for the specifi ed table is valid (that is, 
 larger than the highest identity value contained in the table) and resets it automatically if 
necessary. It works by scanning the rows in the specifi ed table to fi nd the highest identity 
value and then comparing it with the next identity value stored in the table metadata. 

 The command can also be used to reset the identity value manually if required. Care should 
be taken when doing this so as not to produce duplicate values accidentally in the identity 
column. 

 If the command is just checking the identity value, then the table is locked with an 
 intent-share lock, with minimal impact on concurrent operations. If a new value has been 
specifi ed, the table is locked with a schema-modifi cation lock for the short time it takes to 
modify the table metadata. 

C11626249.indd   726 2/16/2009   4:33:50 PM



 Chapter 11 DBCC Internals 727

 More Info The SQL Server Books Online topic for this command, “DBCC CHECKIDENT 
( Transact-SQL),” found at http://msdn.microsoft.com/en-us/library/ms176057.aspx, describes the 
various options and their effects. 

DBCC CHECKCONSTRAINTS

 DBCC CHECKCONSTRAINTS checks the enabled FOREIGN KEY and CHECK constraints 
 defi ned within the database. It can check a single constraint, all the constraints on a table, or 
all constraints in the database. If the ALL_CONSTRAINTS option is specifi ed, it also checks any 
disabled FOREIGN KEY and CHECK constraints. 

 It works by creating a query to fi nd all rows that violate the constraint being checked. The 
query uses an internal query hint to tell the query processor that DBCC CHECKCONSTRAINTS 
is running and that it should not short-circuit the query due to its knowledge of existing 
constraints. 

 It does not use a database snapshot and runs under whatever the session isolation level is 
set to. You must have the session option CONCAT_NULL_YIELDS_NULL set to ON; otherwise, 
the command fails with error 2507. If any rows violate a constraint, the row’s keys are output 
along with the table name containing the row and the name of the violated constraint. 

 Tip DBCC CHECKCONSTRAINTS should be run after performing any kind of DBCC repair 
 because the repairs do not take any constraints into account. 

Summary

 As you can see from the descriptions in this chapter, the consistency checks that SQL Server 
2008 can perform on a database are extremely comprehensive and have evolved signifi cantly 
from earlier releases in terms of breadth, depth, and effi ciency. 

 Also, you can see why DBCC CHECKDB can take such a long time to complete on a large, 
complex database. I’ve tried to include information on every corruption error that DBCC 
CHECKDB can report, as well as background on the consistency-checking mechanisms that it 
used to arrive at its conclusions. 

 Hopefully, this information will help you when you encounter corruption in real life. 

C11626249.indd   727 2/16/2009   4:33:50 PM



C11626249.indd   728 2/16/2009   4:33:50 PM



  729

Index

Symbols and 
Numbers
$FSLOG, 394–95
.trc fi le extension, 101
/3GB fl ag, 36
–k option, 33–34
@@IDENTITY function, 247–48
\Log subdirectory, 72
{HASH | ORDER} group, 514–15
{MERGE | HASH | CONCAT} 

UNION, 515
<fi lespec>, 176
32-bit operating systems

buffer pool sizing, 36–38
Max Worker Threads default 

settings, 66
64-bit operating systems

buffer pool sizing, 36–38
Max Worker Threads setting, 66

A
accent sensitivity/insensitivity, 226
access methods

code, 14–16
database, 150, 170–71
memory, NUMA, 19–20
storage engine, 14–16

ACID properties, 16–17, 589–90
action columns, 495–96
actions, 114–15
Active VLF state, 187
active_workers_count DMO, 25
activity ID, 119–20
actual text facts, 669
Address Windowing Extensions 

(AWE) memory, 36
allocation, 39
AWE enabled option, 63
buffer pool sizing, 36–38
mapped, 562
multiple server instances, 63

adhoc caching, 568
Adhoc objects, 555
adhoc queries, 528–30
Admin events, 110
AdventureWorks2008 database, 

128–29, 576–77, 581, 604, 625, 
631–32, 640, 648–49, 653

affi nity, 26
Affi nity I/O Mask setting, 64, 67

affi nity mask confi guration, 21, 23
binding schedulers to CPUs, 

24–27
dynamic affi nity, 23–24

Affi nity64 I/O Mask setting, 64, 67
aggregation

fact, 669
plan hinting, 515
Query Optimizer, 488
query processor, 671–72

aligned indexes, 442
ALL_ERRORMSGS option, 716
all-in-one insert, 494
allocation

consistency checks, 679–83
multipage, 570
order, 675
pages, 167
storage engine, 15
structures, heap modifi cation, 

289–90
unit ID, 668–70
units, 606

ALLOCATION_UNIT locks, 606
Allow Updates option, 71
ALLOW_PAGE_LOCKS option, 

371, 628
ALLOW_ROW_LOCKS option, 628
ALLOW_SNAPSHOT_ISOLATION 

option, 635, 637, 639
values, 641
version store, 648–49

ALTER ANY SCHEMA permissions, 
175

ALTER ASSEMBLY command, 674
ALTER COLUMN clause, 283
ALTER DATABASE command, 77–78, 

142–43
collation types, 225
compatibility mode, 180
database expansion, 136
detaching databases, 175–76
fi lestream fi legroup fi le addition, 

390
option setting, 148
plan removal, 551–52
Read Committed Snapshot level 

enabling, 638
sample syntax, 143–44
state options, 151
termination options, 154–55

ALTER EVENT SESSION 
command, 121

ALTER INDEX command, 365–68
constraint modifi cation, 285
fragmentation removal, 369–71
index disabling, 366
index rebuilding, 172–73
locking, 628
ONLINE option, 372–74
options, 365–67
row compression enabling, 

414–16
Snapshot isolation level, 643

ALTER INDEX REBUILD command, 
200

ALTER LOGIN command, 171
ALTER PARTITION FUNCTION 

command, 643
ALTER permissions, 132, 175, 212
ALTER RESOURCE GOVERNOR 

command, 43
ALTER RESOURCE GOVERNOR 

DISABLE command, 52
ALTER RESOURCE GOVERNOR 

RECONFIGURE command, 52
ALTER TABLE command, 80, 83, 286

column dropping, 285
constraint modifi cations, 284–85
lock escalation disabling, 630
LOCK_ESCALATION option, 629
partition-level lock escalation, 507
row compression enabling, 

414–16
Snapshot isolation level, 643
SPARSE columns, 402–03
SWITCH option, partitioning, 

439–42
trigger disabling, 286

ALTER TRACE permission, 88
Analytic events, 110
anchor record, page 

compression, 428
AND clause, 469
And operator, 101
ANSI

code pages, 232
null default, 242
nulls option, 242–43
schema defi nition, 173
SQL standard, 211–12

ANSI_DEFAULTS option, 243
ANSI_NULL_DEFAULT option, 156
ANSI_NULLS option, 156
ANSI_PADDING option, 157
ANSI_WARNING option, 157

Z01I626249.indd   729 2/16/2009   2:59:25 PM



730 application event log

application event log, 713
APPLICATION locks, 609
application programming interface 

(API), Database Engine 
communication, 11

Apply operators, 453–54
approximate numeric values, 216–17
ARITHABORT option, 157
assemblies, unchecked, 674
ASSEMBLYPROPERTY function, 7
associated entity ID, 607–08
assumptions, Query Optimizer, 

469, 476
asynchronous I/O, 19
asynchronous_fi le_target, 116
atomicity, 16, 589
attributes, plan handles, 545
Audit Login event, 90–91
Audit Logout event, 90–91
auditing, 186–87, 685–87
authentication, 170–71
Authentication mode, 171
authorization, 170
auto/automatic

autogrow, 135–36
database options, 150, 155–56
parameterization, 457–58, 534, 

536–38, 571–72
scrolling, 92
shrinking, 136–37, 196
statistics, 462–63, 550, 573
truncation, 32, 192–93

AUTO_CLEANUP, 79
AUTO_CLOSE option, 155–56
AUTO_CREATE_STATISTICS option, 

114–56
AUTO_SHRINK option, 156
AUTO_UPDATE_STATISTICS option, 

156, 547–48
STATISTICS_NORECOMPUTE 

option, 317
avg_fragmentation_in_percent 

value, 369
AWE (Address Windowing 

Extension). See Address 
Windowing Extension (AWE)

AWE enabled option, 63
awe_allocated_kb, 39

B
back pointer, 420
Backup Compression feature, 

67–68
BACKUP LOG command, 197, 203
backups. See also recovery

attaching databases, 176
Backup Compression feature, 

67–68

checkpoints, 33–34
compression, 203
database, 177–79, 197–98
database snapshots, 164
devices, 130
differential, 203–05
fi legroups, 140, 197, 205–06
fuzzy, 198
log, 203
log recovery, 193–95
master database, 126
mirroring, 203–04
page compression, 433
partial, 206
pubs database, 194–95
types, selection, 203

backupset table, 67–68
bandwidth

Resource Governor allocation, 
51–52

resource pools allocation, 47–48
workload group allocation, 45–46

base tables, 211. See also tables
nonclustered indexes, 315
non-matched index views, 483

base views, 5
baseline

Change Tracking, 77
table joins, 84–85

batches
DBCCs, 673–74
workload groups, 44–47

BCM (Bulk Changed Map) pages. 
See Bulk Changed Map (BCM) 
pages

bcp command, 362
bcp executable, 199
bcp utility, 247
BEGIN TRAN statement, 588–89

lock hints, 658
bigint data type, 217

storage requirements, 411
BIN1 collations, 231–32
BIN2 collations, 231–32
binary collation, 226–27, 230–32
binary data types, 238
binding, 443
binn directory, 127
bit data type, 238

storage requirements, 411
bit mask, 106
bit settings, GAM and SGAM, 

145–46
bitmaps

allocation combinations, 681–83
database snapshot, 160–62
DCM pages as, 197
IAM allocation order, 675
NULL values, 241, 270–72, 406–07

operators, 491
row properties, 260–62
SET options, 544

bits
CD format header, 416–17
PFS pages, 289–90

blackbox trace, 72
BLOB (binary large object) data 

type, 464–65
fi lestream data, 68

Blocked Process Threshold option, 
69–70

blocked_event_fi re_time, 119
blocking_exec_context_id DMO, 27
blocking_session_id DMO, 27
blocking_task_address DMO, 27
blocks

locks/locking, 623–24
owner, 624

[bookmark] lookup, 311, 314
Boolean options, 71, 155–57
Bound Trees cache store, 554–55
bpool columns, 37–38
bracketed identifi ers, 214–15
Browser Service, 56
B-trees, 300–03

compression, 423
consistency checks, 696–99
index operations, 15
page compression, 431
row deletion, 355–58

buckets columns, 40
Buffer Manager, 181–82
buffer pool, 29

auditing, 685–87
memory sizing, 35–36
sizing, 36–42

buffers
checkpoints, 32–34
data cache page management, 

30–31
fi lestream data, 400
free buffer list, 31–32
I/O trace providers, 87–88
visible memory, 562
XE targets, 117–18

Bulk Changed Map (BCM) pages, 
15, 148

minimal logging, 200
BULK INSERT command, 199, 362

colmodctr values, 549
locks, 599–600

bulk operations, 199–201
bulk update locks, 599–601
BULK_LOGGED recovery mode, 

199–201
backups, 204
fi le and fi legroup backup, 205
switching modes, 202

Z01I626249.indd   730 2/17/2009   12:34:02 AM



 columns 731

bytes
CD format, 421–22
CD region, CD format, 417
long data region, CD format, 419
page compression dictionary, 

428–29
plan stub, 530–31
short data region, CD format, 

417–18
sparse vector, 407–08

C
C programming, 215
cache key, 554–55
cache stores, 34–35, 553–55

eviction policy, 561–63
global memory pressure, 564
health snapshot, 39
local memory pressure, 563–64
pressure limit, 562–63

caches. See caching; data cache; 
plan cache

caching, 525
adhoc, 568
adhoc queries, 528–30
adhoc workload optimization, 

530–32
cache size management, 561–63
cache stores. See case stores
compiled objects, 540–43
costing, 564–65
forced parameterization, 535–36
global memory pressure, 564
local memory pressure, 563–64
mechanisms, 527–28
optimization hints, 573–75
parameterization, 533–38
plan cache. See plan cache
prepared queries, 538–40
recompilation. See recompilation
removing plans, 550–53
simple parameterization, 533–38
stored procedures, 568–69
troubleshooting, 569–85

cardinality estimation, 462–63, 
470–75, 513

fi ltered statistics, 468–69
limitations, 474–75
OPTIMIZE FOR hint, 518–20

case sensitivity/insensitivity, 226
catalog views. See also specifi c 

catalog views
consistency checks, 677–79
constraint names, 280–81
cross-catalog consistency checks, 

707
metadata, 4–5
Resource Governor, 52–53

sys schema, 213
table metadata, 249

causality tracking, 119–20
CD (Column Descriptor) format, 375, 

416–22
Change Data Capture, 77
Change Tracking, 76–77

CHANGETABLE function, 83–85
column tracking, 83
Commit Table, 78–79
database options, 151
database-level confi guration, 

77–78
hidden columns, 81
internal change table, 80–81
internal cleanup task, 79–80
query processing and DML, 82–83
table-level confi guration, 129–30

CHANGE_RETENTION, 79
CHANGE_TRACKING_CONTEXT, 82
CHANGE_TRACKING_CURRENT_

VERSION() function, 84
CHANGE_TRACKING_IS_COLUMN_

IN_MASK function, 83
CHANGE_TRACKING_MIN_VALID_

VERSION() function, 80
CHANGES mode, 84–85
CHANGETABLE function, 82–85
CHANGETABLES(CHANGES) 

function, 83
char characters, 221–22
character data, 221–24

collation, 224–38
single-byte, 227–28

CHARINDEX function, 238
CHECK constraint, 279

disabling, 284–85
partitioning, 441

checkpoints, 32–34
garbage collection, fi lestream 

data, 207
Recovery Interval option, 66–67
transaction log, 183, 186
truncation, 193

checksum errors, 158–59, 207
CHECKSUM option, 158–59
CI record rebuilding, 430–31
classifi er function, 42–43
cleanup

Change Tracking, 79–80
tempdb database, 651
version store, 651

client
network confi guration, 55
network protocol confi guration, 54
protocols, 11

Client Tools Connectivity, 54
clock algorithm, 34–35, 40
clock_hand, 40

clock_status, 40
CLOSE cursor command, 155
CLR

data types, 376
Distributed Query, 509
metadata consistency checks, 684
non-sargable predicates, 479

clustered indexes, 250–51, 253, 
319–26

clustering key, 311–14
computed columns, 341
consistency checks, 678–79
non-leaf level, 320–21
online rebuilding, 374
sample structure, 321–26
SPARSE columns, 403
uniquifi ers, 320

clustering keys, 311–14
CMEMTHREAD waits, 569
code pages

collation, 227
SQL collations, 232

COLLATE clause, 225
collation

binary, 226–27, 230–32
character data, 224–38
code pages, 227
designator, 226
errors, 227
Install Wizard, 235–37
performance and, 237
server, 225
sort order, 228–30, 232–33
SQL. See SQL collation
type, performance and, 237
Unicode, 227–28
Windows, 226

collationproperty function, 227
colmodctr values, 549
Column Descriptor (CD) format, 375, 

416–22
Column Tracking, 80
COLUMN_SET, 403–05
COLUMNPROPERTY function, 6, 409

computed columns, 341
columns, 211

action, 495–96
adding, 284
altering, 283
antimatter, 687
bpool, 37–38
buckets, 40
computed. See computed 

columns
copying, COLUMN_SET, 405
dropping, 285
events, 86
fi lestream data, 390–92
fragmentation information, 368

Z01I626249.indd   731 2/16/2009   2:59:25 PM



732 columns

columns (continued)
hidden, 81
IDENTITY property, 245–48
included, 336, 442
internal Change Tracking table, 

80–81
limit, 400–01
LOB, data appendage, 387–88
modifi cation counters, 548–49
naming, 7, 212–13, 215
nonsparse, converting, 402–03
packages, XE, 109
partitioning, 442
persisted, 341–42
prefi x compression, 424–25
processing, DBCC, 689–92
rowset trace, 107–08
sets, 403–05
snapshot transaction metadata 

views, 652–55
SPARSE. See SPARSE columns
statistics and. See statistics
trace events, 102–03
tracking, 83
variable- vs. fi xed-length, 221–24
VLF, 189
XE buffers, 119
XE events, 111

command-line DAC access, 27–28
commands. See also DBCC; 

specifi c commands
DDL, sample, 50
parser, 12

COMMIT command, 588
Commit record, 182
Commit Table, 78–79
COMMIT TRAN statement, 588–89

lock hints, 658
Common Sequence Number (CSN), 

78–79
common subexpression spool, 455
compatibility

database recovery, 201–02
databases, 179–80
locking/locks, 547–48, 619–20
metadata views, 3–4

compensation log records, 182
compilation

compiled plans, caching, 555
objects caching, 540–43
plan cache, problems, 572–73
plan stubs, adhoc workloads, 

530–32
composite keys, 313
compression. See also data 

compression
backups, 67, 203
column prefi x, 424–25
logging and, 433

vardecimal, 413–14
version store and, 433

Compute Scalar operator, 
450, 494, 504

Halloween Protection, 494–95
indexed views, 485

Compute Sequence operator, 451
computed columns

consistency checks, 689–90
indexes, 337–45
SPARSE columns and, 403
statistics, 464

concat null yields null option, 242
CONCAT UNION hint, 515
concurrency, 587. See also optimistic 

concurrency; pessimistic 
concurrency

model selection, 655–57
models, 587–88
transaction services, 17

Confi guration Manager, 54–56, 68
fi lestream enabling, 389

confi guration, operating system
connectivity, 59
fi rewall setting, 59
nonessential services, 59
paging fi le location, 58
task management, 57–58

confi guration, SQL Server, 54
Confi guration Manager, 54
default trace, 71–72
disk I/O options, 66–68
managing services, 55–56
memory options, 62–64
network confi guration, default, 55
network protocols, 54
operating system, 57–59
query processing options, 69–71
scheduling options, 64–66
server system, 57
settings, 60–71
trace fl ags, 60

CONNECTIONPROPERTY function, 7
connectivity

confi guration, 59
fi rewall setting, 59

consistency, 16, 589–90, 664–66
allocation checks, 679–83
B-tree checks, 696–99
column processing, 689–92
commands, 723–27
cross-catalog checks, 707
cross-page checks, 694–05
cross-table checks, 705–09
data page processing, 687–89
data purity checks, 690–92
fi lestream checks, 700–03
heap checks, 695
index page processing, 687–89

indexed view checks, 707–08
LOB linkage checks, 699–700
metadata checks, 684–85
nonclustered index checks, 

703–05
NULL and length checks, 690
page audit, 685–87
partitioning, 692
per-table checks, 683–05
Service Broker checks, 706
SPARSE column checks, 692
spatial index checks, 709
system catalog checks, 677–79
text page processing, 693–94
XML index checks, 708–09

Constant Scan operator, 448, 504, 511
INSERT statement, 492

constraints, 279–80. See also specifi c 
constraints

CREATE INDEX command, 315, 
318, 365

DROP INDEX command, 365
failures, 281–82
IDENTITY property, 280
indexes, 315, 318, 365
names and catalog view 

information, 280–81
table alteration, 284–85

CONTACT_NULL_YIELDS_NULL 
option, 157

Containment assumption, 469
CONTAINS FILESTREAM, 141–42
context_switches_count, 27
CONTINUE_AFTER_ERROR 

option, 722
contradiction detection, 448, 483
CONTROL permissions, 132
conversion

deadlocks, 631–34
locks, 600–01

CONVERT operation, 219
copy-on-write operations, 160
correctness-based recompilation, 

543–46
correlated nested loops join, 453
Cost Threshold For Parallelism 

option, 70–71
costing, 34–35, 461–63, 475–77

caching, 564–65
query optimization, 13

COUNT(*) operation, 488
counters

longest transaction running, 652
modifi cation, 548–49
performance, 571–72, 651–52
snapshot transactions, 652
Target Server Pages, 37
update confl ict ratio, 652
version store and tempdb, 651–52

Z01I626249.indd   732 2/16/2009   2:59:25 PM



 database 733

covering indexes, 314
cpu_id, 25
CPUs

Affi nity Mask and Affi nity64 Mask 
options, 64

binding to schedulers, 24–27
dynamic affi nity, 23–24
NUMA and, 19–20
overhead, page compression and, 

432
PHYSICAL_ONLY option, 718
plan guides for use, 576–77
Resource Governor controls, 

51–52
resource pools allocation, 47–48
Server schedulers, 21
workgroup allocations, 45–46

crash recovery, 182
CREATE DATABASE command, 

132–34, 300
attaching databases, 176–77
database ID, 144
sample syntax, 134
snapshot creation, 160

CREATE DATABASE FOR ATTACH 
command, 127

CREATE EVENT SESSION command, 
121–23

CREATE INDEX command, 200, 
299–00, 316

constraints, 315, 318, 365
fi ltered index creation, 480–81
index placement, 317
index rebuilding, 371–72
logging, 199
ONLINE option, 372–74
Snapshot isolation level, 643–44

CREATE LOGIN command, 89
CREATE PARTITION SCHEME 

command, 435
CREATE PROC command

Snapshot isolation level, 644
CREATE SCHEMA command, 173
CREATE STATISTICS command, 466
CREATE TABLE command, 211–12

constraints, 280–81
partitioning, 436
Snapshot isolation level, 644

CREATE TYPE command
Snapshot isolation level, 644

CREATE VIEW command, 300
WITH SCHEMABINDING option, 

339–40
creation_time, 26
CROSS APPLY operator, 453–54
CSN (Common Sequence Number), 

78–79
Cunningham, Conor, 443
current_tasks_count, 25

CURRENT_TIMESTAMP function, 219
current_workers_count, 25
cursor data type, 239
cursor options, database, 149, 155
CURSOR_CLOSE_ON_COMMIT 

option, 155
CURSOR_DEFAULT option, 155
cursors lock owner, 609
cycle deadlocks, 631–34

D
DAC (dedicated administrator 

connection). See dedicated 
administrator connection (DAC)

data. See also specifi c types
cache. See data cache
compression. See data 

compression
constraint failures, 281–82
constraints, 279–82
encryption, 67
heap modifi cation, 289–97
in-row. See in-row data
integrity, 279
maps, 111–12
modifi cation, concurrency, 

587–88. See also concurrency
NULL values. See NULL values
numeric, 216–17
pages. See data pages
purity checks, 690–92. See also 

consistency
row overfl ow, 147
scalar, 111–12
special types, 238–41
storage. See data storage
types, 111–12, 215–41
types, changes, 283
types, statistics and, 464
user-defi ned, 244–45, 376
XML format, 123–24

data backup. See backups
data cache, 29

page access, 30
page management, 30–31

data compression, 412–13
encryption, 67
pages, 423–33
rows, 414–22

Data Defi nition Language (DDL)
Snapshot isolation level, 

643–45
table creation, 211–12
triggers, 75–76

Data Manipulation Language (DML)
Query Optimizer, 12–13

Data Manipulation Language (DML) 
triggers, 75–76

data pages, 29, 144
access, 30
fi nding, 262–64
LSNs, 185–86
management, 30–31
processing, DBCC, 687–89
read-ahead feature, 41–42
storage, 254–60
transaction log, 183

data recovery. See database 
recovery; recovery

data storage, 249–50
data pages, 254–60
date and time data, 272–75
internal, 249–79
metadata, 251–54
pages, fi nding, 262–64
rows, 260–62
rows, fi xed-length, 265–67
rows, variable-length, 267–72
sql_variant, 275–79
sys.indexes, 250–51

data warehousing, Query Optimizer, 
490–91

DATA_PURITY option, 719
database, 125–26. See also specifi c 

databases
access,security, 170–71
altering, 142–44
auto options, 150, 155–56
backups, 177–79, 197–98
backups, snapshots, 164
Change Tracking, 77–78, 151
compatibility levels, 179–80
consistency, 664–66
copying, 175–79
creation, 132–34
cursor options, 149, 155
detaching and reattaching, 175–77
encryption options, 151
expanding, 135–38
external access options, 150
fi legroups. See fi legroups
fi les. See database fi les
fi lestream data, creation, 390
fi lestream fi legroup, 68
fragmentation, 135
hidden, 3, 712
locks, 605–06
master. See master database
mirroring options, 150–51
moving, 175–79
option setting, 148–59
organization, 144
parameterization options, 150
physical organization, 15
repairs, 719–23
restoration, 177–79, 203–09. 

See also database recovery

Z01I626249.indd   733 2/16/2009   2:59:25 PM



734 database

database (continued)
sample, 128–30
security, 170–75
Service Broker options, 151
shrinking, 135–38
snapshots. See database 

snapshots
space allocation, 145–48
SQL options, 150, 156–57
state options, 149, 151–54
statistics and. See statistics
system, 126–28
termination options, 154–55
truncation, 193–95
very large (VLDBs), partial 

backup, 206
vs. schema, 173–74

Database Engine, 1
confi guration. See confi guration, 

SQL Server
protocols, 11–12
relational engine, 12–14
SQLOS, 18–19
storage engine, 14–18

database fi les, 125–26, 130–32
properties, 130–32
types, 130

database ID, 144, 625
DATABASE locks, 609
database owner, 134
database pages. See data pages
database recovery, 139–40. 

See also recovery
backup selection, 203
BULK_LOGGED recovery model, 

199–01
compatibility, 201–02
fi legroups and, 139–40
FULL recovery model, 198–99
model view, 7
models, 198–02
multiple fi legroups, 139–40
options, 150, 158–59
rollback vs. startup, 152–53
SIMPLE recovery model, 165, 201

database snapshots, 159–64, 
665–66

alternatives, 667
creating, 160–62
disk space, 162–63, 666
dropping, 164
isolation options, 151
managing, 163–64

database_id parameter, 304
DATABASEPROPERTY function, 6
DATABASEPROPERTYEX function, 6
date and time data, 218–21

storage, 272–75
date data type, 218–21

storage requirements, 412

datetime data type, 218–21, 274
storage requirements, 412

datetime2 data type, 218–21
datetimeoffset data type, 218–21, 274

storage requirements, 412
db_ddladmin role, 212
DB_ID function, 306–07
db_owner role, 212
DBCC, 663–64. See also specifi c 

commands
allocation consistency checks, 

679–83
batches, 673–74
consistency checking commands, 

723–27
consistent view, 664–67
cross-table consistency checks, 

705–09
database repairs, 719–23
fact generation, 668–70
pages, reading, 674–75
parallelism, 675–77
per-table logical consistency 

checks, 683–05
processing effi ciency, 668–77
query processor, 670–73
system catalog consistency 

checks, 677–79
DBCC CHECKALLOC

parallelism, 677
DBCC CHECKCATALOG, 707, 726
DBCC CHECKCONSTRAINTS, 727
DBCC CHECKDB, 159, 163, 664

disk space, 666
options, 715–19
output, 709–15
phases, 714
query parts, 673
tempdb database, 165

DBCC CHECKFILEGROUP, 725–26
parallelism, 677

DBCC CHECKIDENT, 248, 726–27
DBCC CHECKTABLE, 725

parallelism, 677
phases, 715

DBCC commands
snapshots, 163

DBCC DBREINDEX, 200, 365
Snapshot isolation level, 643

DBCC FLUSHPROCINDB, 526, 551
DBCC FREEPROCCACHE, 526, 

551, 561
multipage allocations, 570
plan removal, 552–53

DBCC FREESYSTEMCACHE, 526, 551
DBCC IND, 294–95, 308–10

bigrows table, 377–78
clustered indexes, 323
fi ltered indexes, 337
nonclustered index, 328

nonclustered indexes, 333
page compression, 423–24
page splitting, 350
rows, moving, 359
sparse vector bytes, 407–08
sql_variant, 276
text in row option, 384
version store, 649

DBCC INDEXDEFRAG, 368
DBCC LOGINFO, 188–92
DBCC MEMORYSTATUS, 513
DBCC OPENTRAN, 186
DBCC PAGE, 146, 256–60

bigrows table, 378
B-tree row deletion, 355–58
CD format, 421–22
clustered indexes, 324–26
compressed pages, 427, 429
date and time values, 272–75
DBCC IND and, 310
fi ltered indexes, 337
nonclustered indexes, 328–29, 334
page splitting, 350–52
parameters, 256
physical pages, fi nding, 262–64
row deletion, 291–93
row heap deletion, 352–55
row updating, 295–96
rows, moving, 360
sparse vector bytes, 407–08
sql_varaint, 276
table alterations, 286–88
text in row option, 384–85

DBCC SHOW_STATISTICS, 466, 473
DBCC SHRINKDATABASE, 

137–38, 187
DBCC SHRINKFILE, 136–38
DBCC SQLPERF(logspace), 196
DBCC TRACEOFF, 60
DBCC TRACEON, 60
dbcreator permissions, 132
dbo schema, 5, 174–75
dbo.bigrows table, 376–80
DCM (Differential Change Map) 

pages. See Differential Change 
Map (DCM) pages

DDL (Data Defi nition Language). See 
Data Defi nition Language (DDL)

DDL CREATE SCHEMA, 174
DDL CREATE USER, 174
deadlocks, 18, 630–34
DEALLOCATE cursor command, 155
DEBIT_CREDIT example, 589–90
Debug events, 110
debugging. See also errors

actions, 114–15
query plans, 513–14

decimal/numeric data type, 216–17
compression, 413–14
storage requirements, 412

Z01I626249.indd   734 2/16/2009   2:59:25 PM



 errors 735

declarative data integrity, 279
DECLARE cursor command, 155
dedicated administrator connection 

(DAC), 27–29
Commit Table view, 78–79
system base tables, 2–3, 76–77

deep-dive check, 704–05
DEFAULT constraints, 279
DEFAULT property, 139
default resource pool, 48

MIN and MAX values, 49
default trace, 71–72
Default Trace Enabled option, 71–72
default workload group, 44–47

MIN and MAX values, 49
deferred drop feature, 681
deferred drop operations, 167–68
Delaney, Kalen, 125, 181, 211, 299, 

375, 525, 587
DELETE statement

access methods code, 14
B-tree row deletion, 355–58
colmodctr values, 549
concurrency, 587
fi lestream data deletion, 394
ghost records, 650–51
index row addition, 347–48
lock hints, 657–58
logging, 198, 363
not-in-place updates, 361–62
page splitting, 349–50
Query Optimizer, 12–13, 

491–92
remote server, 509
row updating, 297
shared locks, 598
Snapshot isolation level, 656
Split/Sort/Collapse, 495–97
USE PLAN hints, 521
version store, 648

delimited identifi ers, 214–15
density information, Query 

Optimizer, 466–68
dependencies, transaction, 590–92
derived views, 5
DETAILED parameter, 305
deterministic functions, 339
dictionary compression, 426, 428–29
differential backup, 197, 203

database restoration, 203–05
Differential Changed Map (DCM) 

pages, 15, 148
allocation consistency checks, 680
differential backup, 197

dirty page table (DPT), 184
dirty reads, 591

allowable, by isolation level, 596
DISABLE option, 579
disk I/O. See I/O
disk pages, allocation operations, 15

disk space. See memory; storage
Distribute Streams operation, 

455–56
Distributed Partitioned View (DPV), 

507–08
Distributed Query, 507–09
distributed transactions, 16
distribution statistics, 13
divides_by_uint64 function, 122
division by zero errors, 157
dm_db_*, 10
dm_db_index_physical_stats, 

304–08
dm_exec_*, 10
dm_io_*, 10
dm_os_*, 10
dm_tran_*, 10
DML (Data Manipulation Language). 

See Data Manipulation 
Language (DML)

DMOs (Dynamic Management 
Objects). See Dynamic 
Management Views (DMVs)

DMVs (Dynamic Management 
Views). See Dynamic 
Management Views (DMVs)

domain integrity, 279
DONE task state, 27
DPT (dirty page table), 184
DPV (Distributed Partitioned View), 

507–08
DROP option, 579
DROP DATABASE command, 176

garbage collection, fi lestream 
data, 395–97

DROP INDEX command, 200
constraints, 365
index rebuilding, 371–72
Snapshot isolation level, 643

DROP_EXISTING option, 316, 365, 
367

dropped_buffer_count, 119
dropped_event_count, 119
durability, 16, 590
duration, lock, 608
dynamic affi nity, 23–24
Dynamic Management Objects 

(DMOs). See Dynamic 
Management Views (DMVs)

Dynamic Management Views 
(DMVs), 2–3, 9–12. See also 
specifi c objects and views

asynchronous buffer 
monitoring, 119

cache costing, 565
cache store size, 564
cache stores, 553–55
CROSS APPLY operator, 454
data types and maps, 112
fi ltered indexes, 337

ghost records, 650–51
index analysis, 304–08
index reorganization, 371
locks, 329
log fi le size, 196
memory interval observance, 

38–40
multipage memory 

allocations, 570
packages, XE, 109
partitioning, 434
plan cache metadata, 556–61
plan cache objects, 565–67
pseudotable correlation, 4
Resource Governor, 53
scheduler information, 24–27
SET options, 338, 544
snapshot transaction metadata, 

652–55
spinlocks, 597
target execution problems, 121
version store, 648
visible memory, 562
wait statistics, 569

dynamic ports, 59

E
EditionID property, 2
editions, SQL Server, 1–2
EMERGENCY mode repair, 721–22
EMERGENCY option, 152–53
Employee table example

clustered index, 321–26
nonclustered index, 326–34

EmployeeHeap table example, 
326–34

Employees_pagecompressed table, 
423–24

Employees_rowcompressed table, 
414–16, 420–22

ENABLE option, 579
ENABLE_CHANGE_TRACKING, 80
encryption

database options, 151
tracing security, 89

EngineEdition property, 1–2
entity integrity, 279
entries_count, 40
equality operator, 122
errors

208, 2–3
459, 227
823, 207, 685–86
824, 158–59, 685–86
1222, 660
1701, 402
1783, 23
1823, 162
2508, 685

Z01I626249.indd   735 2/16/2009   2:59:25 PM



736 errors

errors (continued)
2511 and 2512, 688
2515, 687
2518 and 2519, 684
2531, 696
2533 and 2534, 698–99
2537, 689–90, 693
2540, 719
2570, 692
2574, 689
2575 and 2576, 682
2577, 682
2579, 683
2591, 685
3956, 639
3960, 642
3961, 645
5070, 638
5119, 162
5228 and 5229, 687
5235, 712
5250, 679
5256, 686
5260, 688, 693
5262, 688, 693
5268, 704
5274, 687
5275, 704
7903, 701
7904 through 7908, 701–02
7931 through 7936, 702
7937, 702
7938, 703
7941, 703
7961, 690
7963, 703
7965, 680
8147, 248
8645, 69
8901, 685
8902, 673
8903, 682
8904, 681–82
8906, 682
8907 through 8908, 709
8909, 686
8910, 682
8913, 682
8914, 689, 694
8919, 688, 694
8925, 700
8926, 698
8927, 688, 694
8928, 699, 722–23
8929, 694, 700
8930, 685
8931, 696
8933 and 8934, 698
8935 through 8937, 696

8938, 686
8940 through 8944, 686
8946, 680
8947, 682
8948, 682
8951 and 8952, 703–04
8955 and 8956, 703–04
8959, 682
8960, 689
8962, 693
8963, 693
8964 and 8965, 699
8968 and 8969, 682
8970, 690
8971, 695
8972, 695
8973, 696
8974, 700
8976, 697
8977, 697
8978 through 8982, 697–98
8984, 692
8986, 716
8992, 707
8993 and 8994, 695
8995, 681
8996, 682
8998, 680
ALL_ERRORMSGS, 716
allocation checks, 680–83
boot and fi le header page, 679
B-tree consistency checks, 696–99
cardinality estimation, 474–75, 

513–14
checksum, 158–59, 207
collation types, 227
column processing, 689
computed columns, 689–90
constraint failures, 281–82
CREATE TABLE statement, 375–76
DAC connection, 28
data and index pages, 687–89
data purity checks, 692
DB_ID and OBJECT ID functions, 

306–07
DBCC CHECKDB, 666, 673, 

678–79
deallocated page, 207
division by zero, 157
dropped folders, 392
ERROR_SHARING_VIOLATION, 394
exception handling, 18
fi lestream data, 394, 701–03
heap consistency checks, 695
I/O, 207
IDENTITY property, 248
invalid tabular data stream, 227
LOB linkage, 699–00
lock partitioning, 622

lock timeout, 660
log, 182, 712–13
metadata consistency checks, 

684–85
Microsoft reporting, 712
nonclustered index checks, 

703–05
NULL and length checks, 690
out-of-lock memory, 630
page audit, 685–87
partitioning checks, 692
path not found, 392
plan guide validation, 583–84
query timeout, 69
Read Committed Snapshot 

isolation level, 638
recompilation, 572–73
repair options, 716, 719–23
repaired page, 207
restored page, 207
ROLLBACK, 181
Schedule Monitor, 23
snapshot creation, 162
Snapshot isolation level, 636–37, 

639, 642–45
SPARSE columns, 401–03
spatial index checks, 709
subquery plans, 451–53
suspect pages, 206–07
syntax, command parser, 12
termination, 153
text page processing, 693–94
timeout, 46, 463
torn page, 158–59, 207
transaction, 281–82
XML data size limit, 405
XML index checks, 708–09

escalation, lock, 629–30
ESTIMATEONLY option, 717–18
Ethernet/Token Ring address, 240
etw_classic_sync_target, 116
event log, 713
event notifi cations, triggers, 75–76
event producers, 86–87
event sessions, 118–21

creating, 121–23
querying event data, 121–24
removing, 124
session-scoped, 118–20
stopping, 124

Event Sub Class element, 32
events, 75, 86, 109–11

Admin, 110
Analytic, 110
channels, 110–11
columns, 86
Debug, 110
default trace, 72
extended. See Extended Events (XE)

Z01I626249.indd   736 2/16/2009   2:59:25 PM



 foreign memory 737

lifecycle, 120–21
memory, 32
notifi cation, 70
Operational, 110
Profi ler, 90–91
sessions. See event sessions
template, 93–94
tracking, 18–19
types and maps, 111–12

eviction policy, 561–63
exact numeric values, 216–17
exception handling, 18
Exchange operator, 455–56
exclusive (X) locks, 363, 372, 505, 

596–98, 600
EXCLUSIVE_TRANSACTION_

WORKSPACE owner, 609
EXEC statement, 530
exec_context_id, 27
executable plans, 555–56
EXECUTE statement

user-defi ned scalar functions, 
541–43

WITH RECOMPILE option, 540–41
execution, 443
execution contents, 555
execution plan, 12–14, 70–71, 561
executor, query, 12, 14
ExistingConnection event, 90–91
explicit transactions, 588–89
exploration rules, 446, 461
Extended Events (XE), 108

actions, 114–15
DDL and querying, 121–24
event lifecycle, 120–21
events, 109–11
infrastructure, 108–18
packages, 109
predicates, 112–13
sessions, 118–21
session-scoped catalog metadata, 

118–19
session-scoped confi guration 

options, 119–20
targets, 115–18
tracking, 18–19
types and maps, 111–12

Extended Events Engine, 75
extended indexes, 510–11
Extended Stored Procedures cache 

store, 554–55
EXTENDED_LOGICAL_CHECKS 

option, 708, 717
extents, 145–48

differential backup, 197
fragmentation, 364

external access options, 
database, 150

external code, actions, 114

external fragmentation, 364
external global memory 

pressure, 564

F
fact(s)

checking, 681–83
collection, 679–81
forwarding/forwarded records, 

695
generation, 668–70

failover clustering, 63
FAST <number_rows>, 517–18
fast fi le initialization, 135–36
FAST N hint, 476–77
fast recovery, 185
FAT volumes, snapshot creation, 162
FAT32 volumes, snapshot 

creation, 162
FETCH cursor command, 155
fi bers

Lightweight Pooling option, 
64–65

scheduler, 20–22
scheduler workers, 21

fi le ID, 144
fi le provider, 87

server-side traces, 97–05
fi le sequence number (FSeqNo), 

189–92, 194
FILEGROUPPROPERTY function, 7
fi legroups, 138–39

altering, 142–43
backups, 140, 197, 205–06
creation, example, 140
creation, sample syntax, 140, 

143–44
default, 139–40
fi lestream, 141–42. See also 

fi lestream data
moving fi les, 143
partitioning, 435–36

FILEGROWTH property, 134–35
altering, 143

FileID, 190–92
FILENAME property, 143
FILEPROPERTY function, 6
fi les

altering, 142–43
backing up and restoring, 205–06
backups, 197, 205–06
database. See database fi les
formats, traces and, 95
moving, 143
multiple, 139–40
OFFLINE, 143
sparse, 160–63
work, 166

fi lestream data, 130
consistency checks, 700–03
database creation, 390
deleting, 394
enabling, 389
fi legroups, 141–42
garbage collection, 395–97
inserting, 392–93
logging changes, 394–95
manipulation, 392–97
metadata, 397–99
partitioning, 439
performance considerations, 

399–400
storage, 388–400
table creation, 390–92
transactions and, 394
updating, 393

Filestream feature, 68
FILLFACTOR option, 316, 366–67

fragmentation removal, 370
page splitting, 352

Filtered Index feature, 468
fi ltering/fi lters

indexes, 336–37, 347, 480–81
nonclustered index rows, 336–37
statistics, 468–69, 491
trace, 86, 91–92
XE events, 111. See also 

predicates; targets
fi rewall setting, 59
fi xed-length data, 221–24

NULL values, 243
row storage, 265–67
row structure, 260–62

FixedVar format, 260, 375, 416
fl oat data type, 339

storage requirements, 411
fn_trace_geteventinfo, 102–03
fn_trace_getfi lterinfo, 103–04
fn_trace_getinfo function, 102
fn_trace_gettable function, 72, 104
FOR ATTACH option, 176–77
FOR_ ATTACH_REBUILD_LOG 

option, 176–77
FORCE ORDER, {LOOP | MERGE | 

HASH} JOIN, 516
forced parameterization, 459

caching, 535–36, 568
disallowed constructs, 535–36

FORCED PARAMETRIZATION hint, 
520

FORCESEEK, 517
FOREIGN KEY constraint, 

279, 315
disabling, 284–85
dropping, 365

foreign keys, 211
foreign memory, 41

Z01I626249.indd   737 2/16/2009   2:59:25 PM



738 forward pointers

forward pointers, 296, 360–61
CD format, 420

forwarding/forwarded records, 695
fragmentation

database, 135
detecting, 368
indexes, 363–64, 368–71
removing, 369–71

free buffer list, 31–32
FREESYSTEMCACHE DBCC, 40
frequency information, Query 

Optimizer, 466–68
friendly name columns, 7
FROM clause, NOEXPAND hint, 345
FSeqNo (fi le sequence number), 

189–92, 194
fsutil utility, 399
full backup, 197
FULL recovery mode, 198–99

fi le and fi legroup backup, 205
switching modes, 202

full-text catalogs, database 
snapshots, 164

full-text data fi les, 130
full-text indexes, 345–46, 510

database snapshots, 164
functions. See also specifi c functions

aggregate, 488
classifi er, 42–43
date and time data, 221
deterministic vs. nondeterministic, 

339
partitioning, 434–36
property, 6–7, 43
scalar, user-defi ned, 540–43
system, 43

fuzzy backup, 198

G
GAM (Global Allocation Map) pages, 

15, 145–48
Gather Stream operation, 455–56
gather-write operation, 33
generation number, 33
geometry data type, 239
GETANSINULL option, 242
ghost records, 355–58, 368, 650
Global Allocation Map (GAM) pages, 

15, 145–48
allocation consistency checks, 

679–83
GLOBAL cursors, 155
global memory management, 

34–35
global memory pressure, 564
Global Positioning Satellite 

(GPS), 239

GPS (Global Positioning 
Satellite), 239

GRANT statement, 88
granularity, locks, 601–05
Gray, Jim, 399
GROUP BY operation, 342–43, 447

cardinality estimates, 467, 473–77
GROUP BY operations

plan hinting, 514–15
group properties, 449
GROUP_MAX_REQUESTS 

property, 47
groups, Memo, 460
guest schema, 174–75
GUID (globally unique identifi er), 

240–41, 313

H
Halloween Protection, 494–95
handles, 544. See also plan_handle

attributes, 545
plan cache, 556–57

hardware NUMA. See NUMA
hash buckets, 30, 40
HASH JOIN hint, 516
hash key, 554–55
Hash Match operator, 511
hash tables, 30, 554

bucket count, 40
locks, 620–22
metadata cache, 685
nonclustered index checks, 

703–04
HASH UNION hint, 515
hash value

query execution plan, 561
query text, 561

hashing, 30
lock table, 620–22

header
CD format, 416–17
compressed pages, 427

heap modifi cation, 289
allocation structures, 289–90
row addition, 290–91
row deletion, 291–94
row updating, 294–97

heaps
consistency checks, 695
locked resources matching, 627
modifi cation. See heap 

modifi cation
page compression, 431

hidden columns, 
Change Tracking, 81

hidden database, 3, 712
hidden schedulers, 23

hierarchyid data type, storage 
requirements, 412

hints. See also specifi c hints
locking/locks, 657–59
optimization, 573–75
plan guides. See plan hinting
query, 573–75, 598
query vs. table vs. join, 573
table, 657

histograms, 463, 466
cardinality estimation, 230–32
step limits, 491

hobt, 251
HOBT locks, 606
HOLDLOCK hint, 658
Hungarian-style notation, 215

I
I/O

Affi nity Mask and Affi nity 64 
Mask setting, 67

asynchronous, 19
cache costing, 564–65
confi guration, 66–68
consistency checking, 663. See 

also consistency
costing, 475–77
DBCC CHECKDB, 674–75
errors, 207
FORCESEEK hint, 517
minimal logging and, 200
NUMA and, 40–41
options setting, 66–67
providers, trace, 87–88
settings, 66–67
Split/Sort/Collapse, 495–97
subsystem checkpoints, 33–34
synchronous vs. asynchronous, 19
tempdb database, performance 

and, 168
variable-length character data, 

222–24
I/O Completion Port (IOCP), 23

DAC connection, 28
IAM pages, 15, 147–48, 289–90

allocation consistency checks, 
679–83

repair, 720
row-overfl ow pages, 376–80

ICommandPrepare, 539
IDENT_CURRENT function, 248
IDENT_INCR property, 245
IDENT_SEED function, 245
identifi ers, 157

delimited, 214–15
GUID and UUID, 240–41
primary key, 211

Z01I626249.indd   738 2/17/2009   12:34:02 AM



 isolation levels 739

quoted, 214–15
table names, 213

IDENTITY property, 245–48, 280
IDENTITYCOL keyword, 108, 247
idle workers, 21
IF statements, DDL and, 573
IGNORE_DUP_KEY, 316
image data type, 380–81, 

386–87, 464
impersonation, 171
implementation rules, 446, 461
implicit transactions, 588–89
IMPORTANCE property, 45–46
INCLUDE option

leaf levels, 302
nonclustered index rows, 336

included columns, partitioning, 442
inconsistent analysis, 591
identifi ers

bracketed, 214–15
Independence assumption, 469
Index Allocation Map (IAM) pages. 

See IAM pages 
Index Create Memory option, 70
index ID, 668–70
index pages, 15, 29, 318

processing, DBCC, 687–89
read-ahead feature, 41–42
reclaiming, 358
splitting, 348–52

index_id parameter, 305
INDEX_KEYPROPERTY function, 6
INDEX=<indexname> | <indexid>, 

516–17
indexed views

change tracking, 549
computed columns and, 337–45
consistency checks, 707–08
index creation, 337–45
partition-aligned, 490
Query Optimizer, 482–86

Indexed Views feature, 480, 482–86
indexes, 299–300

aligned, 442
ALTER INDEX command, 365–68
analyzing, 304–10
B-trees, 300–03
clustered. See clustered indexes
clustering key, 311–14
computed columns and index 

views, 337–45
constraints, 315, 318, 365
covering, 314
creation, 316–18
data modifi cation internals, 347
data modifi cation vs. table-level 

modifi cation, 362
DBCC IND, 308–10

disabling, 366
dm_db_index_physical_stats DMV, 

304–08
extended, Query Optimizer, 

510–11
fi ltered, 336–37, 347, 480–81
fragmentation, 363–64, 368–71
full-text, 345–46, 510
IGNORE_DUP_KEY, 316
intermediate page splitting, 349
locking/locks, 363
logging, 363
management, 364–74
MAXDOP, 317
memory allocation, 70
nonclustered. See nonclustered 

indexes
operations logging, 200
options setting, 366–67
pages. See index pages
partitioning, 434–42. See also 

partitioning
placement, 317
Query Optimizer selection, 477–86
ranges, read-ahead feature, 41–42
rebuilding, 365, 371–74
reorganizing, 368
root page splitting, 349
row deletion, 352–58
row formats, 318–19
row insertion, 347–48
row updating, 358–62
scalability, 300–03
space allocation, 145–48
spatial, 346, 510–11, 709
STATISTICS_NORECOMPUTE, 317
storage engine operations, 14–15
structure, 310–15, 318–37
views. See indexed views
XML, 346–47, 510, 708–09

IndexInternals sample 
database, 321

INDEXPROPERTY function, 6, 265
information schema views 

metadata, 6
INFORMATION_SCHEMA schema, 

6, 174–75
in-row data, 147, 254–56

index pages, 318
INSENSITIVE cursors, 155
INSERT INTO statement, 199
INSERT statement

@@IDENTITY function, 247–48
colmodctr values, 549
concurrency, 587
fi lestream data insertion, 392–93
ghost records, 650–51
IGNORE_DUP_KEY option, 316

index row addition, 347–48
lock hints, 657–58
logging, 198, 363
not-in-place updates, 361–62
page splitting, 348–50
Query Optimizer, 12–13, 491–92
remote server, 509
row updating, 297
shared locks, 598
SPARSE columns, 401–03
Split/Sort/Collapse, 495–97
USE PLAN hints, 521

inserts, all-in-one/per-row, 494
Inside Microsoft SQL Server 2005: 

Query Tuning and 
Optimization, 446

Inside Microsoft SQL Server 2008: 
T-SQL Programming, 71, 
239, 242

Installation Wizard, collation setting, 
235–37

instances. See server instances
Instant File Initialization, 433
instead-of trigger, 13
int data type, 217

storage requirements, 411
integer values, 216–17
integrity checks, 282
intent locks, 599–01
Intent-Shared (IS) locks, 372–74
internal cleanup task, 79–80
internal fragmentation, 358–64
internal global memory 

pressure, 564
internal resource pool, 48

MIN and MAX values, 49
internal workload group, 44–47

MIN and MAX values, 49
IO_COMPLETION, 87
IS (Intent-Shared) locks, 372–74
is_fi ber, 26
is_online, 25
is_preemptive, 26
isolation, 16, 590
isolation levels, 592–96. See also 

specifi c levels
allowable behaviors, 596
CHANGETABLE function, 85
concurrency, 16–17
fi lestream data manipulation, 394
key locks, 603–04
lock release, 608
locking examples, 612–17
row versioning, 635
selecting, 655–57
transaction dependencies, 590
transaction services, 16–17
T-SQL access, 394

Z01I626249.indd   739 2/16/2009   2:59:25 PM



740 join operations

J
join operations, 444

associativity, 460–61
hints, 573
join order, 516
outer joins, 85
partitioned tables, 489
semi-join operator, 451–53
table, 84–85

K
kanatype sensitivity/insensitivity, 

226
KEEP PLAN hint, 548, 572, 574
KEEPFIXED PLAN hint, 572, 574–75

recompilation, skipping, 550
Kerberos, 171
key locks, 603–05, 626
KeyHashValue, 329
key-range locks, 595, 601, 605
keywords

full-text indexes, 510
reserved, 180, 213

L
LANs (local area networks), Named 

Pipe protocol, 11
Large Object (LOB) data. See LOB 

(Large Object) data type
latches, 597, 634
latency, 119
LAZYK constant, 574
lazywriter, 23, 31–32

NUMA and, 40–41
leaf level

B-tree, 300–03
clustered indexes, 311–14
consistency checks, 

678–79
nonclustered indexes, 314–15, 

326–35
page splitting, 349–52

Least Frequently Used (LFU) policy, 
30–31

Least Recently Used (LRU) policy, 
30–31, 34–35

LEFT JOIN operator, partitions, 438
Left semi-join, 453
LFU (Least Frequently Used) policy, 

30–31
Lightweight Pooling option, 22, 

64–65
LIMITED parameter, 305
linked lists, 30
load_factor, 26

LOB (Large Object) data type, 147, 
238–39, 250–51, 254–56

compaction, 370
fact generation, 668–70
fi lestream. See fi lestream data
fragmentation removal, 370
index pages, 318
linkage consistency checks, 

699–700
MAX-length, storage, 386–88
online index rebuilding, 374
pages, 15
query processor, 671
restricted-length, storage, 376–80
row operations, 15
row-overfl ow data storage, 

376–80
storage, 375–88
unrestricted-length, storage, 

380–86
local area networks (LANs), Named 

Pipe protocol, 11
LOCAL cursors, 155
local memory management, 34–35
local memory pressure, 563–64
locale, 26
Lock Pages in Memory option, 

36–37
LOCK_ESCALATION option, 629
LOCK_MONITOR, 633
LOCK_TIMEOUT option, 594, 659–61
locking/locks, 587, 596–97. See also 

specifi c locks
architecture, 620–22
associated entity ID, 607–08
blocks, 623–24
compatibility, 547–48
control, 657–61
DAC troubleshooting, 28–29
deadlocks, 630–34
duration, 608
escalation, 629–30
examples, 612–18
granularity, 601–05
hints, 657–59
indexes, 363
Intent-Shared, 372–74
key-range locks, 595, 601, 605
lock manager, 632
modes, 598–600
online index builds, 372
operations, 17
owner blocks, 624
ownership, 609
partitioning, 622–23
partition-level escalation, Query 

Optimizer, 507
Read Committed isolation 

level, 593

Read Uncommitted isolation 
level, 592–93

release/timeout, 594
Repeatable Read isolation 

level, 594
resources, 605–07
row- vs. page-level, 627–28
Schema-Modifi cation, 373–74
Server tasks, 22
Shared, 372–74
spinlocks, 597
syslockinfo table, 624–27
table, 595
timeout setting, 659
transaction services, 16
types, user data, 597–98
updates, Query Optimizer, 505–07
viewing, 609–12

Locks option, 64
log backup, 197, 203
log fi les, 130

multiple, 189–92
log manager, 18, 193, 196
log marks, 198
LOG ON clause, 134
Log Sequence Number (LSN), 162, 

181–82, 185–86, 198
maximum, 206
restored pages, 208

logging, 181. See also transaction log
compression and, 433
fi lestream changes, 394–95
indexes, 363
minimal, 199–201
tempdb database, 165
write-ahead, 16

logical fragmentation, 364
logical operators, 101
logical properties, 448–49
login names

authentication, 171
security, 172–73

long data region, CD format, 419
longest transaction running time 

counter, 652
LOOP JOIN hint, 516
lost updates, 591
LRU (Least Recently Used) policy, 

30–31, 34–35
LRU-K algorithm, 30–31
LSN (Log Sequence Number). 

See Log Sequence 
Number (LSN)

M
m_typeFlagBits value, 427
Machanic, Adam, 75
Management Data Warehouse, 9–10

Z01I626249.indd   740 2/16/2009   2:59:25 PM



 multiple-page memory 741

Management Studio
ALL_ERRORMSGS option, 716
authentication mode, 171
DAC connection, 27–28
deadlock generation, 631–32
Object Explorer, 127, 132, 139
QUOTED_IDENTIFIER, 214
recovery interval, setting, 192
table creation, 211–12

master database, 126
backups, 126
consistency checks, 667
locks, 605–06
metadata views, 5
moving, 179
snapshots, 164
sp_cachedobjects, 566
sp_loginfo, 189–92
syslockinfo, 625
system base tables, 2

materialized views, 342–43
MAX attribute, LOB data, 238–39
Max Degree of Parallelism option, 

70–71
Max Server Memory option, 37, 

41, 62
MAX specifi er, data storage, 386–88
MAX values

resource pools, 47–49
workload groups, 48–49

Max Worker Threads setting, 21, 
65–66

MAX_CPU_PERCENT value, 47
MAX_DOP property, 46
MAX_MEMORY_PERCENT value, 48
MAXDOP, 317
MAXDOP <N>, 518
MAXSIZE property, 134–36

altering, 143
MDAC 2.8

client protocols, 11
network confi guration, 55

media recovery, 183
Memo, 449, 459–62
memory, 29. See also storage

Address Windowing Extensions 
(AWE), 36

buffer pool, 29, 36–38
cache management, 34–35
checkpoints, 32–34
confi guration, 62–64
data cache, 29
events, 32
foreign, 41
free buffer list, 31–32
global vs. local management, 

34–35
in-memory data page access, 30
interval observance, 38–40

lazywriter, 31–32
lock escalation, 629–30
lock owner block, 620–22
locks, 627–28
Memory Broker, 35
nonlocal, 41
NUMA, 19–20, 40–41. See also 

NUMA
page management, 30–31
physical, 37–38
pressure, 562–63
pressure, cache costing, 564–65
pressure, global, 564
pressure, local, 563–64
read-ahead, 41–42
Resource Governor controls, 

51–52
resource pools allocation, 47–48
Server worker use, 21
sizing, 35–36
SQL Server 2008 confi gurations, 

37–38
target, 562
virtual, 39
visible, 562
visible target, 562
workload groups, 46

Memory Broker, 35
memory brokers, 18
MERGE JOIN hint, 516
MERGE statement

compatibility levels, 180
concurrency, 587
Query Optimizer, 491–92
USE PLAN hints, 521

MERGE UNION hint, 515
Merge, updates, 497–99
metadata

cache, 34–35
catalog views, 4–5
catalog, session-scoped, 118–19
compatibility views, 3–4
consistency checks, 684–85
data storage, 251–54
fi lestream data, 397–99
information schema views, 6
locking subtypes, 611
locks, 607
page compression, 431–32
partitioning, 436–39
plan cache, 525–26, 556–61
Resource Governor, 52–53
snapshot transaction, 652–55
SPARSE columns, 409
SQL Server, 2–3, 8
statistics, 463
Storage Engine, 680–81
system functions, 6–7
system stored procedures, 7–8

metadata cache, 684–85
Microsoft codeplex site, 128–29
Microsoft Customer Support 

Services, 22, 24
Microsoft Distributed Transaction 

Coordinator (MS DTC), 16
Microsoft SQL Server 2008. 

See SQL Server 2008
Microsoft SQL Server 2008: T-SQL 

Programming, 218
Microsoft User Education, 128–29
Microsoft Visual Source Safe, 212
Microsoft Windows. See Windows 

operating system
Microsoft.SqlServer.Management.

Trace namespace, 107–08
Min Memory Per Query option, 69
Min Server Memory option, 38, 62
MIN values

resource pools, 47–49
workload groups, 48–49

MIN_CPU_PERCENT value, 47
MIN_MEMORY_PERCENT value, 47
minimal logging, 199–201
Minimally Logged Map (ML Map) 

pages, 680
mirroring backups, 203–04
mirroring options, database, 150–51
mirroring recovery, 185
mixed extents, 145
Mixed mode, 171
ML MAP (Minimally Logged Map) 

pages, 680
mode parameter, 305
model database, 126

database creation, 132–34
options setting, 148
recovery mode, changing, 202
snapshots, 164

modifi cation counters, 548–49
MODIFY FILE option, 136
money data type, 216–17

storage requirements, 412
msdb database, 128

backupset table, 67–68
suspect_pages table, 206–07

mssqlsystem resource database. 
See resource database

mssqlsystemresource database, 712
multi_pages_in_use_kb, 40
multi_pages_kb, 39
MULTI_USER option, 151–52
multipage allocations, 570
multiple fi les, 139–40

log, 189–92
tempdb database, 168

multiple-page memory
allocation, 39
use, 40

Z01I626249.indd   741 2/16/2009   2:59:25 PM



742 Named Pipes

N
Named Pipes

network confi guration, 55
Named Pipes protocol, 11
namespaces, 173
naming

constraints, 280–81
constraints, catalog view and, 

280–91
conventions, 215
delimited identifi ers, 214–15
objects, schema name 

qualifi cation, 568
reserved keywords, 213
tables, 215
tables and columns, 212–13
T-SQL code, 573
Windows collations, 226

nchar characters, 221–22
nested transactions, 16
network confi guration, default, 55
network protocol

confi guration, 54
libraries, 11

newdb database, 134
NEWID function, 240–41
NEWNAME property, 143
NEWSEQUENTIALID function, 

240–41
NO_INFOMSGS option, 711, 717
NO_TRUNCATE option, 203–04
NO_WAIT option, 155
NOEXPAND hint, 345, 521
NOINDEX option, 715–16
NOLOCK hint, 659, 661
nonclustered indexes, 314–15, 

326–37
consistency checks, 703–05
forward pointers, 360–61
nonunique rows, 334–35
online rebuilding, 372–74
rows, 326–31
rows on clustered table, 

331–34
rows with included columns, 336
rows, with fi lters, 336–37

nondeterministic functions, 339
non-leaf level

B-trees, 300–03
clustered indexes, 320–21
nonclustered indexes, 334–35
row deletion, 358

nonlocal memory, 41
nonrepeatable reads, 591

allowable, by isolation level, 596
nonunique nonclustered index rows, 

334–35
non-updating updates, 501–02

normalization, query, 13
Northwind2 database, 129–65, 528, 

533, 537, 540, 571
NOT NULL, 241–43
NOWAIT option, 33
ntext data type, 380–81, 

386–87, 464
NTFS fi le system, 160–62

fi lestream data, 399
NULL values, 241–43

actions, 115
column addition, 284
consistency checks, 690
database_id parameter, 304
DB_ID function, 306–07
fi lestream data, 392–93
fi xed-length rows, 267
index row fi lters, 336–37
mode parameter, 305
object_id parameter, 304
partition_number parameter, 305
PRIMARY KEY constraints, 315
SPARSE columns, 400–01, 405–06, 

409–12, 502, 692
SQL options, 156
SQL plan guides, 576–77
sys.dm_exec_cached_plan_

dependent_objects, 559
sys.dm_exec_query_plan, 558
table alterations, 286–87
variable-length columns, 270–72

numeric data, 216–17. See also 
decimal/numeric data type

NUMA
architecture, 19–20
hardware, 19–20
locks, 621–22
memory and, 40–41
nodes, 19
schedulers and, 23

NUMERIC_ROUNDABORT option, 157
nvarchar data type, 221–22

SQL collations, 237–38
storage requirements, 412

O
Object Explorer

database creation, 132
database creation, multiple 

fi legroups, 139
resource database view, 127

object ID, 625, 668–70
sys.change_tracking_[object id], 

80–81
Object plan guide, 576, 579–80
Object Plans cache store, 553–55

compiled plans, 555
executable plans, 555–56

object stores, 34
object_defi nition function, 5
OBJECT_ID function, 306–07
object_id parameter, 304
OBJECTPROPERTY function, 6, 546

determinism property, 339
IsIndexable property, 343–44

OBJECTPROPERTYEX function, 6
objects

compiled, caching, 540–43
correctness-based recompiles, 

543–46
dependent, 559
ID, 249
internal, 165–66
lock compatibility, 619–20
partitioned, 434
plan cache, 565–67
schema changes, 543–44
schema creation, 174–75
schema name qualifi cation, 568
user, 165

ODBC
prepare and execute method, 539
QUOTED_IDENTIFIER, 214
SET option, 149

OFFLINE fi le marker, 143
OFFLINE option, 152–53

partial restore, 208
offsets, page compression, 428
OGC (Open Geospatial 

Consortium), 239
OLE DB, 12

Distributed Query feature, 507–09
network confi guration, 55
prepare and execute method, 539
QUOTED IDENTIFIER, 214
SET options, 149

OLTP (Online Transaction Processing), 
FORCESEEK hint, 517

ON/OFF options, 148
O’Neil, Elizabeth, 30–31
O’Neil, Patrick, 30–31
online index building, 372–74
ONLINE option, 152–53, 

316, 372–74
online page restore, 207
Online Transaction Processing 

(OLTP), FORCESEEK hint, 517
OPEN cursor command, 155
Open Geospatial Consortium 

(OGC), 239
operating systems

buffer pool sizing, 36–38
confi guration, 57–59. See also 

confi guration, operating system
memory available, 31–32

Operational events, 110
operations, bulk, 199–201

Z01I626249.indd   742 2/16/2009   2:59:26 PM



 pending_disk_io_count 743

operators. See also specifi c 
operators

equality, 122
predicates and, 113
Query Optimizer, 444–45
query plan, 450–56

optimality-based recompilation, 
546–50

optimistic concurrency, 17, 587–88, 
636–37

advantages and disadvantages, 
656–57

isolation levels, 592, 596
Read Committed isolation level, 593
row versioning. See row 

versioning
Snapshot isolation level, 594–95

optimization, 445
adhoc workloads, 530–32
hints, 573–75
query. See Query Optimizer
tempdb, 166–68

Optimize for Ad Hoc Workloads 
option, 530–32

OPTIMIZE FOR hint, 518–20, 
574, 582

OPTION (FAST N), 476–77
or operator, 101
OUTER APPLY operator, 453–54, 566
OUTER JOIN, 85
OUTPUT clause, fi lestream data 

deletion, 394
owner blocks, 624
ownership, lock, 609

P
P_Customers procedure, 541
package0, 109, 112
packages, 109
PAD_INDEX option, 316, 

366–67
page compression, 423–24

analysis, 429–30
backups, 433
CI record rebuilding, 430–31
column prefi x, 424–25
dictionary, 426
metadata, 431–32
performance issues, 432–33
physical storage, 426–31

Page Free Space (PFS) pages, 15, 
148, 289–90

allocation consistency checks, 
679–83

page ID, 668–70
PAGE_VERIFY option, 158–59
PageModCount, 428, 430–31

pages. See also data pages; index 
pages

allocation, 167
allocation operations, storage 

engine, 15
allocation structure, 

289–90
auditing, 685–87
BCM. See Bulk Changed Map 

(BCM) pages
chain, 311
code, 227, 232
compression. See page 

compression
cross-page consistency checks, 

694–705
DCM. See Differential Changed 

Map (DCM) pages
density, 364
fi nding, 262–64
GAM, 15, 145–48
header, 254–55
IAM. See IAM pages
ID, 207–08
LOB, 380–83
locking/locks, 597, 627–28, 630
numbering, 144
PAGE VERIFY option, 158–59
PFS, 15, 148, 289–90
reading, 674–75
restoration, 206–08
row-overfl ow, 376–80
SGAM, 15, 145–48
space allocation, 145–48
splitting, 348–52
text, 693–94
TEXT_MIXED and TEXT_DATA, 

382–83
TORN PAGE DETECTION option, 

158–59
paging fi le, 58
PAGLOCK hint, 658
pair_matching target, 116
parallel queries, 46, 70–71, 

488, 518
Parallel Scan feature, 488
parallelism, 675–77

MAX_DOP, 46
MAXDOP <N> hint, 518
query plans, 455–56

parameterization
automatic, 457–58, 534, 536–38, 

571–72
caching, 533–38, 568
database options, 150
failures, plan guides, 581
forced. See forced 

parameterization; 
PARAMETERIZATION FORCED

queries, 458
simple. See PARAMETERIZATION 

SIMPLE; simple 
parameterization

PARAMETERIZATION FORCED, 520, 
537–38, 575

parameterization failures, 581
Template guide plans, 577

PARAMETERIZATION FORCED 
option, 535–36

PARAMETERIZATION SIMPLE, 520, 575
parameterization failures, 581
Template plan guides, 577

parameterized queries, 458–59
parameters

cache plan removal, 552–53
OPTIMIZE FOR hint, 518–20
PathName function, 398
sniffi ng, 541
system stored procedures, 7–8
vs. variables, 574

parent node, 25
parent text facts, 669
parent_node_id DMO, 25
parsing, 443–45
partial backups, 206
partial restore, 208
partition ID, 668–70
partition keys, 403
partition_number parameter, 305
partitioned views, 434
partitioning

compression and, 423
consistency checks, 692
fi lestream data, 439
functions and schemas, 

434–36
ID, 502
lock escalation, 507
locks/locking, 606, 622–23
metadata, 436–39
partition ID, 490
partition-aligned index views, 490
partitioned tables, 486–90, 

502–05
partitioned updates, Query 

Optimizer, 502–05
row compression and, 416
sliding window benefi ts, 439–42
tables, Query Optimizer, 486–90

passwords
Confi guration Manager, 56
tracing security, 89
Windows authentication, 171

PATHINDEX function, 238
PathName function, 397–99

parameters, 398
PENDING task state, 26
pending_disk_io_count, 26

Z01I626249.indd   743 2/16/2009   2:59:26 PM



744 pending_io_byte_average

pending_io_byte_average, 27
pending_io_byte_count, 27
pending_io_count, 27
performance

collation type and, 237
counters, 571–72, 651–52
fi lestream data and, 399–400
fragmentation and, 369
lock escalation, 630
locks, 627–28
page compression, 432–33
plan guides, 575
plan hinting, 515
reports, 9–10
tempdb and version store 

monitoring, 651
per-index update plans, 499–501
permissions. See also sysadmin role

ALTER, 132, 175, 212
ALTER ANY SCHEMA, 175
ALTER TRACE, 88
CONTROL, 132
database creation, 132
dbo object creation, 174
schema creation and altering, 

174–75
server level, 88
tracing, 88–89
View Server State, 25, 38–39

per-row insert, 494
persisted columns, 341–42

computed, 464
pessimistic concurrency, 17, 587–88, 

636–37
advantages and disadvantages, 

655–57
isolation levels, 592, 596
locking/locks. See locks/locking
Read Committed isolation level, 593
Repeatable Read isolation level, 594
Serializable isolation level, 595–96

PFS (Page Free Space) pages. See 
Page Free Space (PFS) pages

phantoms, 591–92
allowable, by isolation level, 596
Serializable isolation level, 595–96

physical fragmentation, 364
physical memory, 37–38
physical properties, 448–49
physical storage, 426–31
physical_memory_in_bytes, 37
PHYSICAL_ONLY option, 718
plan cache, 29, 34–35, 525–27

cache stores, 553–55
clearing, 526–27
compilation and recompilation 

problems, 572–73
compiled plans, 555
costing, 564–65

execution contents, 555–56
handles, 556–57
internals, 553–65
metadata, 525–26, 556–61
multiple plans, 567–68
objects, 565–67
plan freezing, 584–85
plan guides, 573–75, 584–85. 

See also plan guides
plan removal, 550–53
size limit, 561–63
sys.dm_exec_cached_plan_

dependent_objects, 559
sys.dm_exec_cached_plans, 559
sys.dm_exec_query_plan, 558
sys.dm_exec_query_stats, 560–61
sys.dm_exec_requests, 560
sys.dm_exec_sql_text, 557–58
troubleshooting, 569–85
wait statistics, 569–71

plan caching. See caching
plan guides, 522, 573–85

considerations, 579–83
management, 579
plan freezing, 584–85
purpose, 575
types, 575–79
validation, 583–84

plan handles. See handles; 
plan_handles

plan hinting, 511–13
{HASH | ORDER} group, 514–15
{MERGE | HASH | CONCAT} 

UNION, 515
debugging plans, 513–14
FAST <number_rows>, 517–18
FORCE ORDER, {LOOP | MERGE | 

HASH} JOIN, 516
FORCESEEK, 517
INDEX=<indexname> | <indexid>, 

516–17
MAXDOP <N>, 518
NOEXPAND, 521
OPTIMIZE FOR, 518–20
PARAMETERIZATION 

{SIMPLE | FORCED}, 520
USE PLAN Nxml plan, 521–22

plan_handle, 525–26, 544, 552, 556–57
attributes, 545
plan freezing, 584–85
sys.dm_exec_cached_plan_

dependent_objects, 559
sys.dm_exec_cached_plans, 559
sys.dm_exec_query_plan, 558
sys.dm_exec_query_stats, 560–61
sys.dm_exec_requests, 560
sys.dm_exec_sql_text, 557–58
sys.dm_exec_text_query_plan, 

558–59

pool_name, 553
ports

dynamic, 59
fi rewall confi guration, 59
server instances, 56

precision, 216, 220
pred_compare, 112–13
pred_source, 112–13
predicates, 111–13

index searching, 477–80
prefi x compression, column, 424–25
prepare and execute method, 569
Prepared object type, 538–40, 571

compiled plans, cache store, 555
prepared queries

caching, 538–40
parameter verifi cation, 571–72

primary data fi les, 130
primary fi legroups, 138–39
primary key, 211

clustered indexes, 312–13
joins, 84–85

PRIMARY KEY constraint, 
246, 279–81, 315, 318

dropping, 365
fi lestream data, 390–91

primary principals, 170, 174
principals, 170, 173–74
Priority Boost setting, 65
private targets, 116
Proc objects, 540–41, 555
procedure cache, 525
procedures, stored. See stored 

procedures
processes

deadlocks, 632–34
lock compatibility, 619
query. See queries
transactions. See transactions

processing
columns, DBCC, 689–92
data and index pages, DBCC, 

687–89
effi ciency, DBCC, 668–77
parallelism, 675–77
text pages, DBCC, 693–94

processor affi nity, 23–24
Profi ler, 86, 89–97, 105–08, 513
programmatic data integrity, 279
progress reporting, 714–15
Project operator, 450
properties. See also specifi c 

properties
ACID, 16–17, 589
database fi les, 130–32
group, 449
logical vs. physical, 448–49
Query Optimizer, 447–49
workload groups, 45–47

Z01I626249.indd   744 2/16/2009   2:59:26 PM



 recovery 745

property functions, 6–7
proportional fi ll, 140
protocol layer, engine 

confi guration, 8–9
protocols

Database Engine, 11–12
endpoints, 12

pseudotables, 4, 9–10, 565–67
public targets, 116
pubs sample database, 129, 

194–95, 541

Q
qualifi ed retrieval, 14
queries

adhoc, 528–30
Blocked Process Threshold option, 

69–70
caching. See caching
Cost Threshold For Parallelism 

option, 70–71
execution plan, 70–71, 561
hash value, 561
hints, 573–75, 598
Index Create Memory option, 70
index views, 345
longest-running, 560
Max Degree of Parallelism option, 

70–71
Min Memory Per Query option, 69
normalization, 13
optimization, 445. See also 

optimization; Query Optimizer
parallel, 46, 70–71, 488, 518
parameterized, 458–59
plan. See query plan
prepared, 538–40
processing options, 69–71
processing, Change Tracking, 

82–83
processing, DML, 82–83
Query Governor Cost Limit 

option, 70
Query Wait option, 69
remote, 508–09
serial, 46
server-side trace metadata, 

102–04
shell, 533–34, 540
timeout errors, 463
updates. See updates
workload groups, 46–47

query covering, 314
query executor, 12, 14
Query Governor Cost 

Limit option, 70
Query Optimizer, 12–14, 443–45

architecture, 456–62
auto-parameterization, 457–58

cardinality estimation, 462–63, 
470–75

costing, 461–63, 475–77
data warehousing, 490–91
Distributed Query, 507–09
extended indexes, 510–11
index constraints, 315
index selection, 477–86
index views, 345
index- vs. table-level 

modifi cations, 362
limitations, 459
MAXDOP option, 317
optimization, 445
parallel queries, 70–71
partitioned tables, 486–90
plan hinting, 511–22. See also plan 

hinting
query plan, 446–56. See also 

query plan
simplifi cation, 457
statistics, 462–70
STATISTICS_NORECOMPUTE 

option, 317
the Memo, 449, 459–62
tree format, 444–45
trivial plans, 457–59, 484
updates, 491–507. See also updates

query plan, 446–56. See also plan 
hinting

alternatives storage, 449
guides. See plan guides
operators, 450–56
parallelism, 455–56
properties, 447–49
rules, 446
subquery plans, 451–53

query processor, 8–9, 12
DBCCs and, 670–73
fact storage, 670
parallelism, 675–77

query tree, 12
Query Wait option, 69
quotation marks, 214–15

identifi ers, 157
USE PLAN hints, 522

quoted identifi ers, 214–15
QUOTED_IDENTIFIER option, 157, 

214–15

R
RAID

fi lestream data, 399
mirroring, 203–04

Randal, Paul, 299, 358, 399, 663
Range locks, 605
RANGE values, 472
RangePartitionNew function, 503
ranges, sort order, 228–30

Read Committed isolation level, 
394, 593, 596, 635

lock duration, 608
lock example, 612–13

Read Committed Snapshot isolation 
level, 394, 635, 637–38

advantages of, 655–56
CHANGETABLE function, 85
vs. Snapshot, 646–48

Read Uncommitted isolation level, 
394, 592–93, 596

READ_COMMITTED_SNAPSHOT 
option, 593, 635, 659

values, 641–42
READ_ONLY option, 153–54
READ_WRITE option, 153–54
read-ahead feature, 41–42
READCOMMITTED hint, 659
READCOMMITTEDLOCK hint, 659
readers, blocking/locks

concurrency, 17
locking operations, 17

read-only databases, 176
READONLY fi legroups, 143
read-only fi les

backups, 205
partial backup, 206

READPAST hint, 659–61
reads

dirty, 591
nonrepeatable, 591

READUNCOMMITTED hint, 659–61
READWRITE fi legroups, 143
read-write fi les

backups, 205
partial backup, 206

real data type, 339
storage requirements, 411

REBUILD option, 366
recompilation, 525

causes, 543–53
correctness-based, 543–46
multiple, 550
optimality-based, 546–50
problems, 572–73
skipping, 549–50
temporary tables, 572

recompilation threshold (RT), 548
RECOMPILE hint, 573–74
RECONFIGURE command, 62, 389
RECONFIGURE WITH OVERRIDE 

command, 62
Recoverable VLF state, 187
recovery, 181

analysis phase, 184
checkpoints, 32–34
crash, 182
database. See database recovery
fast, 185
interval, 32–33, 66–67, 192

Z01I626249.indd   745 2/16/2009   2:59:26 PM



746 recovery

recovery (continued)
LSNs, 185–86
media, 183
mirroring, 185
models, 198–202
modes, changing, 202
modes, switching between, 202
phases, 184–86
redo phase, 183–84
restart, 182, 205
restore, 183, 205
undo phase, 183–84

Recovery Interval option, 66–67
RECOVERY option, 158–59
RECOVERY_PENDING state, 

152–53
RECURSIVE_TRIGGERS option, 157
referential integrity, 279
regions, 163
relational engine, 8–9, 12–14
Remote Admin Connection, 28
remote queries, 508–09
removed_all_rounds_count, 40
REORGANIZE option, 368–71
REPAIR options, 716
repair, database, 719–23

EMERGENCY mode, 721–22
REPAIR_ALLOW_DATA_LOSS 

option, 722
Repartition Streams operation, 

455–56
Repeatable Read isolation level, 394, 

594, 596
lock duration, 608
lock example, 613

REPEATABLEREAD SERIALIZABLE 
hint, 659

Replay options, traces, 93–97
REPLICATE function, 268

fi lestream data insertion, 392
Request_ columns, 611–12
REQUEST_MAX_CPU_TIME_SEC 

property, 46
REQUEST_MAX_MEMORY_GRANT_

PERCENT property, 46
REQUEST_MEMORY_GRANT_

TIMEOUT_SEC property, 46
requests, Server worker, 22
reserved keywords, 180, 213
resource database, 127–28
Resource Governor, 42–43

cache plan clearing, 553
classifi er function, 43
controls, 51–52
DMOs, 53
enabling, 43
extended events, 18–19
metadata, 52–53
pool sizing, 48–49

resource pools, 47–48
sample syntax, 50
workload groups, 44–47

Resource Monitor, 23, 34–35
resource pools, 42–43, 47–48

MIN and MAX values, 49
sizing, 48–49

resource_ columns, 610–11
resource_address, 27
resource_description, 27
RESOURCE_SEMAPHORE_QUERY_

COMPILE waits, 570
resources, lock, 605–07
restart recovery, 182, 205
restoration

database, 203–09. See also 
backups; database recovery

page, 206–08
partial, 208
with standby, 208–09

RESTORE command, 204–05
RESTORE commands

snapshots, 164
RESTORE DATABASE command, 206

PAGE clause, 208
restore recovery, 183, 205
RESTORING state, 152–53
RESTRICTED_USER option, 151–52

termination, 154–55
result sets, 12
Reusable VLF state, 188
RID, 329–31
Right semi-join, 453
ring buffer target, 123–24
ring_buffer target, 116, 122
ROLLBACK AFTER option, 154
ROLLBACK IMMEDIATE option, 154
ROLLBACK options, 638
ROLLBACK TRAN command, 181, 

588–89
lock hints, 658

rollover fi les, 100
rounds_count, 40
row versioning, 15–16, 635–37

snapshot transaction metadata, 
652–55

snapshot-based isolation levels, 
637–48

version store, 648–52
ROWCOUNT operation, 492
ROWGUIDCOL property, 241, 

390–91
ROWLOCK hint, 659
row-overfl ow data, 147, 250–51, 

253–56
index pages, 318
storage, 376–80

row-overfl ow pages, 15
row-overfl ow pointer bytes, 378–79

rows, 211
addition, heap modifi cation, 

290–91
bigrowstable, 377
B-tree deletion, 355–58
compression, 414–22
compression, page compression 

and, 423
constraint failures, 281–82
deletion, heap modifi cation, 

291–94
deletion, indexes, 352–58
deletion, non-leaf level, 358
FAST <number_rows> hint, 

517–18
fi xed-length, storage, 265–67
heap deletion, 352–55
index formats, 318–19
in-place updates, 361
in-row data, 255
insertion, indexes, 347–48
leaf-level, 300–03
locked resources matching, 

626–27
locking example, 616–17
locks, 597
locks, row- vs. page-level, 627–28
moving, index, 359–60
new format, 416–22
nonclustered indexes, 314, 326–31
nonclustered indexes, clustered 

table, 331–34
nonclustered indexes, fi lters, 

336–37
nonclustered indexes, included 

columns, 336
nonclustered indexes, nonunique, 

334–35
non-leaf level, 300–03
overfl ow data. See row-overfl ow 

data
row offset array, 255–56
sets, 12
storage, 260–62
storage engine operations, 14–15
structure, 260–62
updating, heap modifi cation, 

294–97
updating, indexes, 358–62
updating, not-in-place, 361–62
variable- vs. fi xed-length, 221–24
variable-length, storage, 267–72
versioning. See row versioning
VLF, 189

rowset provider, 87, 105–08
rowversion data type, 239
RPC:Completed event, 90–91, 

105–06, 579–80
rules, Query Optimizer, 446

Z01I626249.indd   746 2/16/2009   2:59:26 PM



 SGAM (Shared Global Allocation Map) pages 747

RUNNABLE task state, 26
runnable_tasks_count, 25
RUNNING task state, 26
run-time events, 75. See also events

S
S locks. See shared (S) locks
sample databases, 128–30. See also 

specifi c databases
SAMPLED parameter, 305
sargable predicates, 478–80
SATA/IDE disk drives, fi lestream 

data, 399
scalability, NUMA, 19
scalar data, 111–12
scale, 216, 220–21
Scan operations, 477–80

parallel, 488
Schedule Monitor, 23
scheduler_id, 25, 27
schedulers, 20–21

binding to CPUs, 24–27
dedicated administrator 

connection (DAC), 27–29
dynamic affi nity, 23–24
Dynamic Management Objects, 

24–27
hidden, 23
NUMA and, 23
preemptive vs. cooperative, 20–21
Server, 21
Server tasks, 22
Server workers, 21
threads vs. fi bers, 22

scheduling
confi guration, 64–66

schemas
binding, 339–40
default, 174–75
ID, 249
modifi cation locks, 373–74, 

599–01
names, 4–5, 212–13
object name qualifi cation, 568
partitioning, 434–36
principals and, 173–74
stability locks, 599–01
table creation, 212
vs. databases, 173
XE events, 110

Sch-M-lock, 373–74
SCOPE_IDENTITY function, 248
scripting, 97–101
SCROLL_LOCKS, 609
SCSI disk drives, fi lestream data, 399
SE_MANAGE_VOLUME_NAME, 136
SecAudit package, 109
secondary data fi les, 130

secondary principals, 170, 174
securable, 170
security

database, 170–75
tracing, 88–89

Seek operation, 477–80
SELECT INTO command, 191, 199, 

201–02
select into/bulkcopy option, 201–02
SELECT statement, 5

access methods code, 14
catalog view shortcuts, 7
concurrency, 587
default isolation level lock 

example, 612–13
DMOs, 9–10
GO separator, 530
lock hints, 657–58
multiple cache plans, 568
optimistic concurrency, 656
phantoms, 591–92
property functions, 6
Query Optimizer, 12–13
Read Committed Snapshot 

isolation level, 637–38, 651
RECOMPILE hint, 573–74
Repeatable Read isolation level 

lock example, 613
Serializable isolation level lock 

example, 613–14
Snapshot isolation level, 640, 645, 

656–57
Template plan guides, 578
transaction ID, 652

SELECT: statement
COLUMN_SET, 403–05

SELECT@@version, 127
semi-join operator, 451–53
Sequence operator, 500
Sequence Project operator, 451
serial queries, 46
Serializable isolation level, 394, 

595–96
lock duration, 608
lock example, 613–16

server collation, 225
server instance

authentication, 171
AWE. See Address Windowing 

Extensions (AWE)
confi guration, 57
CPU binding, 24
fi lestream enabling, 389
lazywriter. See lazywriter
memory, 38. See also memory
network protocols, 11
remote, Distributed Query, 

508–09
resource pools. See resource pools

SQL Server Browser service, 56
tasks. See tasks
tempdb database, 168
transaction management, 16
workload groups. See workload 

groups
Server Memory Change events, 32
Server Profi ler, 579–80
server system confi guration, 57
Server workers, 21–24
SERVERPROPERTY function, 6
server-side tracing, 

97–108
Service Broker

consistency checks, 706
database options, 151
msdb database, 128

services
management, 55–56
nonessential, confi guration, 59

session ID (SPID)
NUMA and schedulers, 23
Server tasks, 22

session_id, 27
SESSIONPROPERTY function, 338
sessions

lock owner, 609
workload groups, 44–47

session-scoped catalog metadata, 
118–19

session-scoped confi guration 
options, 119–20

SET DEADLOCK_PRIORITY 
statement, 633–34

SET IDENTITY_INSERT option, 246
SET LOCK_TIMEOUT, 

659–61
SET options, 149

compilation and recompilation 
problems, 572

computed columns and index 
views, 338

correctness-based 
recompiles, 544

LOCK_TIMEOUT, 594
multiple cache plans, 

558, 567
recompiles, 545–46

SET QUOTED_IDENTIFIER ON, 
214–15

SET SHOWPLAN_XML ON, 
575, 580

SET STATISTICS PROFILE ON, 475
SET TRANSACTION ISOLATION 

LEVEL command, 592
Set Working Size option, 63
SGAM (Shared Global Allocation 

Map) pages. See Shared Global 
Allocation Map (SGAM) pages

Z01I626249.indd   747 2/16/2009   2:59:26 PM



748 shared (S) locks

shared (S) locks, 372–74, 505, 
596–98, 600–01

Repeatable Read isolation 
level, 594

Serializable isolation level, 595
Shared Global Allocation Map 

(SGAM) pages, 15, 145–48
allocation consistency checks, 

679–83
Shared Memory protocol, 11, 54

network confi guration, 55
SHARED_TRANSACTION_

WORKSPACE owner, 609
shell queries, 533–34, 540
short data region, CD format, 

417–18
SHUTDOWN WITH NOWAIT 

command, 33
sibling facts, 669
SIDs, database security, 172–73
simple parameterization

caching, 533–38, 568
disallowed constructs, 534–35
drawbacks, 536–38

SIMPLE PARAMETERIZATION 
hint, 520

SIMPLE recovery model, 165, 
195, 201

fi le and fi legroup backup, 205
partial backup, 206
switching modes, 202
truncation, 201

Simplifi cation phase, Query 
Optimizer, 457

single_pages_in_use_kb, 40
single_pages_kb, 39
SINGLE_USER option, 151–52

detaching databases, 175–76
termination, 155

single-byte character data, 227–28
single-page memory

allocation, 39
use, 40

single-user mode, 128
SIU locks, 600–01
SIX locks, 600–01
SIZE property, 143
sliding window benefi ts, 

partitioning, 439–42
smalldatetime data type, 

218–21, 274
storage requirements, 412

smallint data type, 217
storage requirements, 411

smallmoney data type, 216–17
storage requirements, 412

SMP (symmetric 
multiprocessing), 19

Snapshot isolation level, 394, 
594–96, 638–39

advantages, 656
CHANGETABLE function, 85
database options, 151
database state viewing, 640–43
DDL, 643–45
disadvantages, 656–57
errors, 636–37
locking operations, 17
page compression, 433
row overhead, 224
scope, 639–40
vs. Read Committed Snapshot, 

646–48
snapshot transactions

counter, 652
metadata, 652–55

snapshot-based isolation levels, 
637–48

snowfl ake schema, 490
soft-NUMA, 19

memory and, 40–41
schedulers, 23

sort order
collations, 228–30
SQL collations, 232–33

sort units, 166
SORT_IN_TEMPDB option, 316, 367
SOS scheduler, 20–21. 

See also schedulers
SOS_RESERVEDMEMBLOCKLIST 

waits, 570
sp_adduser, 174
sp_attach_db, 177
sp_cache_objects, 566

Template guide plans, 
577–78

sp_clean_db_fi le_free_space, 356
sp_clean_db_free_space, 356
sp_confi gure, 33, 57, 61–62

recovery interval, 192
sp_control_plan_guide, 579
sp_create_plan_guide

Template plan guides, 578
sp_create_plan_guide procedure, 

575–76
sp_create_plan_guide_from_handle, 

584–85
sp_db_vardecimal_storage_format, 

413
sp_dboption, 148, 201–02
sp_estimate_data_compression_

savings, 431–32
sp_executesql, 538–39, 569

adhoc queries, 530
forced parameterization, 571

sp_get_query_template, 578, 582
sp_grantdbaccess, 174
sp_help, 132–33
sp_helpdb, 4, 7–8
sp_helptext, 5

sp_lock, 505, 597
sp_loginfo, 189–92
sp_password, 89
sp_recompile, 543–44, 572
sp_statement_completed, 122
sp_tableoption, 413
sp_tablepages, 382–83
sp_trace_create, 98, 100–01, 

105–06
sp_trace_getdata, 106–07
sp_trace_setevent, 98, 101
sp_trace_setfi lter, 98
sp_trace_setstatus, 98, 101, 

104–05
SPARSE columns, 400

column sets and column 
manipulation, 403–05

consistency checks, 692
converting, 402–03
index rows, 318
management, 400–03
metadata, 409
NULL vs. non-NULL storage 

requirements, 405–06, 
409–12

physical storage, 405–08
restrictions, 401–03
row compression and, 416
storage savings, 409–12
table alterations, 402–03
table creation, 401–02
updates, Query Optimizer, 502

sparse fi les, 160–63
sparse vectors, 406–08
spatial data type, 239
spatial indexes, 346, 510–11

consistency checks, 709
spinlocks, 597, 634
SPINLOOP task state, 27
Split/Sort/Collapse, 

495–97
Spool operations, 454–55
SQL Audit, 109
SQL collations, 232

defi ned at startup, 234–35
sort order, 232–33
tertiary, 233–34
traps, 237–38

SQL Customer Advisory Team, 347
SQL Internals Viewer, 146
SQL Manager Cache (SQLMGR), 556
SQL Native Client, 54–55
SQL options, database, 150
SQL Plan cache store, 553–55

compiled plans, 555
eviction policy, 561–63
executable plans, 555–56

SQL plan guides, 576–77, 581
SQL Server 2000

cache store pressure limit, 562–63

Z01I626249.indd   748 2/16/2009   2:59:26 PM



 statistics profi le output 749

consistency checking, 663
database recovery method, 

default, 159
pseudotables, 4, 9–10, 565–66
scheduler, 20
scripting traces, 100
sp_helpdb, 4
sys.traces vs. fn_trace_get info, 

102
system base tables, 3–4

SQL Server 2005
Apply operator, 486–87
cache store pressure limit, 

562–63
caching changes, 570
consistency checking, 663
database recovery method, 

default, 159
MAX specifi er, 386
out-of-bounds data import, 690
plan caching, 525
plan guide limitations, 583
recompilation, statement-level, 

550
sys.indexes, 250–51
system base tables, 3–4
Vardecimal Storage property, 217

SQL Server 2008, 1, 73
authentication, 170–71
cache store pressure limit, 

562–64
collation types, 225–27, 234–37
compatibility modes, 179–80
components, 8–18
confi guration, 54–2. See also 

confi guration, SQL Server
consistency checking, 663
databases. See databases
Dedicated Administrator 

Connection (DAC), 27–29
editions, 1–2
Extended Events Engine. See 

Extended Events Engine
fi ber mode, 22
fi lestream enabling, 389
indexes, 299. See also indexes
Installation Wizard, 235–37
instances. See server instances
lock compatibility matrix, 618
lockable resources, 607
MAX specifi er, 386
memory, 29–2. See also memory
metadata, 2–8. See also metadata
NUMA architecture, 19–20
out-of-bounds data import, 690
partitioning, 487. See also 

partitioning
plan caching, 525. See also plan 

caching
plan guides, 575

pseudotables, 565
reserved keywords, 180, 213
Resource Governor, 42–53. 

See also Resource Governor
scheduler, 20–27. See also 

schedulers
server confi guration, 57–72
single-use mode, 128
SQLOS, 18–19
storage. See storage
trace fl ags, 60
upgrading to, 551
USE PLAN hints, 521–22
Vardecimal Storage property, 217
wide update plans, 501

SQL Server 2008 Developer edition, 2
network confi guration, 55
page compression, 423
row compression, 415

SQL Server 2008 Enterprise edition, 2
network confi guration, 55
page compression, 423
Resource Governor. See Resource 

Governor
row compression, 415

SQL Server 2008 Evaluation edition, 2
network confi guration, 55

SQL Server 2008 Express edition
DAC support, 29
network confi guration, 55

SQL Server 2008 Standard edition, 
network confi guration, 55

SQL Server 2008 Web edition, 
network confi guration, 55

SQL Server 2008 Workgroup 
edition, network 
confi guration, 55

SQL Server 7.0
property functions, 6
scheduler, 20

SQL Server Agent service, 
55–56, 128

SQL Server Authentication, 170–71
SQL Server collations. See SQL 

collations
SQL Server Confi guration Manager. 

See Confi guration Manager
SQL Server Database Engine. See 

Database Engine
SQL Server FullText Search service, 

55–56
SQL Server Integration Services 

(SSIS), 55–56
SQL Server Profi ler, 72. See also 

Profi ler
SQL Server Resolution Protocol 

(SSRP), 56
SQL Server TechCenter, 108
SQL Server: Memory Manager 

object, 37

SQL Text
handles, 556–57
sys.dm_exec_cached_plans, 559
sys.dm_exec_sql_text, 557–58

SQL Trace, 18–19
SQL Trace text, 572
SQL: Batch Completed event, 90–91, 

579–80
SQL: Batch Starting event, 90–91
sql_handle, 552, 556–57

sys.dm_exec_query_stats, 560–61
sys.dm_exec_requests, 560
sys.dm_exec_sql_text, 557–58

sql_server.checkpoint_begin, 33
sql_server.checkpoint_end, 33
sql_statement_completed, 122
sql_variant data type, 239

storage, 275–79
storage requirements, 412

SQL_VARIANT_PROPERTY function, 6
SQL-92 standard, reserved 

keywords, 213
sqlcmd, 716
SQLCMD command-line tool, 27–28
SQLOS, 8–9, 18–19

NUMA architecture, 19–20
sqlos package, 109
SQLPrepare/SQLExecute, 539
sqlserver package, 109
SQLSERVER: SQL Statistics object, 538
SQLTRACE_LOCK, 87
stack_bytes_used DMO, 26
STANDBY option, 208–09
standby, restoration with, 208–09
star schema, 490
started_by_sqlserver, 26
statement_completed session, 122
statements

DML, Query Optimizer, 12–13
workload groups, 44–47

STATIC cursors, 155
statistics

asynchronous statistics 
update, 463

auto-create and auto-update, 
462–63

auto-update, 573
density/frequency information, 

466–68
design, 463–66
fi ltered, 468–69, 491
optimality-based recompiles, 547
out-of-date, 547–48
Query Optimizer, 462–70
query performance, 560–61
stale, 547–48
String Statistics, 469–70
wait, plan cache, 569–71

STATISTICS IO output, 583
statistics profi le output, 513–14, 516

Z01I626249.indd   749 2/17/2009   12:34:02 AM



750 STATISTICS PROFILE output

STATISTICS PROFILE output, 467
STATISTICS XML output, 583
STATISTICS_NORECOMPUTE, 317
STATMAN function, 465
storage, 375. See also memory

cache size management, 561–63
caching, 563–64
compressed pages, 426–29
data. See data storage
data compression, 412–33. See 

also data compression
date and time data, 218
DBCC CHECKDB disk space, 666
decimal and numeric data, 217
fi lestream data, 388–400
fi xed-length rows, 265–67
integer data types, 217
LOB, 375–88
partitioning, table and index, 

434–42
Query Optimizer, 445
scale values, time data, 220
SPARSE columns, 407–12. See also 

SPARSE columns
variable-length rows, 267–70
version store, 635

storage engine, 8–9, 14–18
access methods, 14–16
consistency checks, 680–81
transaction services, 16–17
utility commands, 18

stored procedures
caching, 568–69
metadata, 7–8
traces, 97–101

String Statistics feature, 469–70
STVF plan, 510–11
subquery plans, 451–53
substitution rules, 446
SUSPECT state, 153
suspect_pages table, 206–07
SUSPENDED task state, 27
SWITCH operation

Query Optimizer, 490
SWITCH option

partitioning, 439–42
symmetric multiprocessing 

(SMP), 19
synchronization, SQLOS, 18
synchronous I/O, 19
synchronous targets, 116
synchronous_event_counter 

target, 116
syntax errors, command parser, 12
sys admin role

DAC connection, 28
sys schema, 213
sys.all_columns, 78

sys.allocation_units, 165, 167–68, 251
partitioning metadata, 436–39
querying, 252–54
SPARSE columns storage, 411

sys.allocunits
consistency checks, 677–79

sys.change_tracking_databases, 79
sys.columns

PathName function, 398
SPARSE metadata, 409
user-defi ned data, 244–45

sys.confi gurations, 60, 62
sys.data_spaces

PathName function, 398
sys.database_fi les, 130–32

PathName function, 398
sys.database_prinicpals, 172
sys.database_recovery_status, 194
sys.databases catalog view, 4–5
sys.databses

recovery mode, 202
sys.dm metadata, 5
sys.dm_db_fi le_space_usage, 169
sys.dm_db_index_operational_stats, 

431
sys.dm_db_index_physical_stats, 

296, 361, 650–51
fragmentation detection, 368
OBJECT_ID and DB_ID functions, 

306–07
sys.dm_db_partition_stats, 293
sys.dm_db_session_space_usage, 

169
sys.dm_db_task_space_usage, 169
sys.dm_exe_objects, 115
sys.dm_exec_cached_plan_

dependent_objects, 
555–56, 559

sys.dm_exec_cached_plans, 525–26, 
556–57, 559, 564

vs. sys.dm_exec_query_stats, 561
sys.dm_exec_connections, 54
sys.dm_exec_plan_attributes, 544
sys.dm_exec_query_plan, 558
sys.dm_exec_query_stats, 557, 

560–61, 567
vs. sys.dm_exec_cached_plans, 

561
sys.dm_exec_requests, 23, 138, 

371, 560
progress reporting, 714–15

sys.dm_exec_sessions, 338
sys.dm_exec_sql_text, 525–26, 

557–58
sys.dm_io_virtual_fi le_stats, 162–63
sys.dm_memory_objects, 554
sys.dm_os_memory_cache_clock_

hands, 34–35, 40

sys.dm_os_memory_cache_counters, 
39, 553–54, 570

sys.dm_os_memory_cache_entries, 
565

sys.dm_os_memory_cache_hash_
tables, 40, 554

sys.dm_os_memory_clerks, 35–36, 39
sys.dm_os_performance_counters, 

196
sys.dm_os_schedulers, 23, 25
sys.dm_os_sys_info, 37

visible memory, 562
sys.dm_os_tasks, 26, 71, 597
sys.dm_os_threads, 26
sys.dm_os_wait_stats, 569
sys.dm_os_workers, 23, 26
sys.dm_tran_active_snapshot_

database_transactions, 
652–55

sys.dm_tran_commit_table, 79
sys.dm_tran_current_transaction, 

652–53
sys.dm_tran_locks, 329, 597, 605–06
sys.dm_tran_transactions_snapshot, 

652–55
sys.dm_tran_version_store, 648, 

652–55
sys.dm_trans_lock, 601–03
sys.dm_xe_map_values, 112
sys.dm_xe_object_columns, 110
sys.dm_xe_objects, 109, 112–14
sys.dm_xe_packages, 109
sys.dm_xe_sessions, 119
sys.dm_xe_sessions_targets, 121
sys.fi legroups, 398
sys.fn_PhysLocFormatter, 264
sys.fn_validate_plan_guide, 583–84
sys.fn_xe_fi le_target_read_fi le, 124
sys.indexes, 4–5, 548–49

data storage, 250–51
partitioning metadata, 436–39
querying, 252–54

sys.internal_tables, 80, 398–99
sys.lockinfo, 624–27
sys.objects, 3–4
sys.partitions, 165, 251

compression metadata, 431
partitioning metadata, 436–39
querying, 252–54

sys.plan_guides, 579
sys.processes, 4
sys.server_event_session_actions, 

118–19
sys.server_event_session_fi elds, 

118–19
sys.server_event_session_targets, 

118–19
sys.server_event_sessions, 118

Z01I626249.indd   750 2/16/2009   2:59:26 PM



 threads, scheduler 751

sys.server_event_sessions_events, 
118–19

sys.server_principals, 171
sys.stats, 468
sys.syscacheobjects, 565–67

Template plan guides, 577–78
sys.syscommitab, 78–79
sys.sysrcols

consistency checks, 
677–79

sys.sysrowsets
consistency checks, 677–79

sys.system_internals_allocation_
units, 148

sys.system_sql_modules, 5
sys.tables, 5

partitioning metadata, 436–39
PathName function, 398
text in row option, 383

sys.traces, 102
sys.trans_locks, 605
sys.users, 3
sysadmin role, 212, 256. 

See also permissions
database creation, 132
schema creation, 174
suspect_pages table 

alterations, 207
syscacheobjects 

compatibility view, 4
sysdatabases compatibility view, 3
sysindexes compatibility view, 3
system base tables, 2–3, 8
system catalog consistency checks, 

677–79
system databases, 126–28. See also 

specifi c databases
system functions metadata, 6–7
System Monitor

compilation and recompilation 
problems, 572

system stored procedures metadata, 
7–8

T
table alteration, 282

columns, adding, 284
columns, dropping, 285
constraints, 284–85
data type changes, 283
heap modifi cation. See 

heap modifi cation
internals, 286–88
SPARSE columns, 402–03
trigger enabling and disabling, 

286
table data type, 239

tables, 211
altering, 282–88. See also table 

alteration
base. See base tables
batches, 673–74
Change Tracking, 80, 

129–30, 549
cleanup, Change Tracking, 79–80
clustered, 331–34
Column Tracking, 80
Commit Table, 78–79. See also 

Commit Table
consistency checks, cross-table, 

705–09
consistency checks, per-table, 

683–05
creating, 211–43
for fi lestream data, creation, 

390–92
hash. See hash tables
heap modifi cation, 289–97. See 

also heap modifi cation
hints, 573, 657
IDENTITY property, 245–48
internal change table, 80–81
internal storage, 249–79. See also 

data storage
joins, 84–85
lock escalation, 629
locking example, 616–17
locks, 595, 597
modifi cation counters, 548–49
naming, 212–13
partitioned, Query Optimizer, 

486–90
partitioning, 434–42. See also 

partitioning
plan guide errors, 583–84
pseudotables. See pseudotables
scans, read-ahead feature, 

41–42
space allocation, 145–48
SPARSE column creation, 401–02
statistics and. See statistics
table-level vs. index-level 

modifi cation, 362
temporary vs. permanent, 548, 572
work, 166–68

TABLOCK hint, 599–00, 658
TABLOCK option, 717
TABLOCKX hint, 658
tabular data stream (TDS) packets, 

11–12
target memory, 562
Target Memory value, 37
Target Server Pages counter, 37
target_percent argument, 137
targets, 111, 115–18
task_state DMO, 26–27

tasks
blocked, notifi cation, 69–70
management, operating system 

confi guration, 57–58
Server worker, 22

TCP/IP
network confi guration, 55

TCP/IP protocol, 11
NUMA confi guration, 20
port confi guration, 59

TDS (tabular data stream) packets, 
11–12

tempdb database, 126–27, 164–69, 
605–06

best practices, 168–69
cleanup, 651
concurrency, 17
consistency checks, 667
DBCC CHECKDB, 165
ESTIMATEONLY option, 717–18
fact storage, 670
free space counter, 651
internal objects, 165–66
logging, 165
optimizations, 166–68
snapshots, 164
SORT_IN_TEMPDB option, 367
space monitoring, 169–70, 657
user objects, 165
version store, 166, 649. See 

version store
Template plan guides, 577–80
temporary tables, 548, 572
termination

errors, 153
options, 154–55

TERMINATION option, 152, 154–55
tertiary collations, 233–34
TERTIARY_WEIGHTS function, 234
text data type, 380–81, 

386–87, 464
text in row option, 383–86
text pages, processing, 693–94
TEXT_DATA pages, 382
TEXT_MIXED pages, 382
threads

I/O. See I/O
lazywriter. See lazywriter
Lightweight Pooling option, 

64–65
Max Worker Threads setting, 

65–66
parallel processing, 677
priority setting, 57–58
trace management, 

background, 87
threads, scheduler, 20–22

DAC connection, 28
workers, 21

Z01I626249.indd   751 2/16/2009   2:59:26 PM



752 time and date data type

time and date data type, 218–21
storage, 272–75

time data type, 218–21
storage requirements, 412

timeout errors, 46, 69, 463
timeouts, locks, setting, 659
timestamps, 76
tinyint data type, 217

storage requirements, 411
tokens, collation names, 226
TOMBSTONE objects, 398–99
torn page errors, 158–59, 207
TORN_PAGE_DETECTION option, 

158–59
trace controller, 86–87
Trace File option, 95
trace fl ags, 60

1211, 630
1224, 630
1806, 136
2528, 677
3604, 308
7806, 29
DBCC PAGE and DBCC IND, 308

trace I/O providers, 87–88
trace log fi les, 72
Trace Table option, 95
Trace XML File For Replay, 95
Trace XML File option, 95
traces

closing, 104
reading data, 104
rowset, 105–08
stopping, 104–05

TRACEWRITE, 87
tracing, 86

architecture and terminology, 
86–88

blackbox trace, 72
Default Trace enabled option, 

71–72
fi lters, 91–92
log fi les, 72
Profi ler. See Profi ler
security and permissions, 88–89
server-side, 97–08

TRACK_COLUMNS_UPDATED, 83
tracking

causality, 119–20
Change Tracking. See Change 

Tracking
transaction ID, 78–81, 83–85, 652
TRANSACTION ISOLATION LEVEL 

option, 587, 637
transaction lock owner, 609
transaction log, 16, 18, 181–83

attaching databases, 176
autotruncate mode, 32

checkpoints, 32–34
compensation log records, 182
fi le and fi legroup backups, 

205–06
reading, 186–87
recovery phases, 184–86
shrinking, 195
shrinking, automatic, 196
size changes, 187–96
truncation, 186, 192–94, 196
virtual log fi les, 187–96. See also 

virtual log fi les
transaction processing, 588–89

ACID properties, 589–90
isolation levels, 592–96
transaction dependencies, 590–92

transaction sequence number (XSN), 
636, 652–53

version store, 649–50
transaction services, 16–17
transaction_workspaces lock 

owner, 609
TransactionHistory table, 434–36

partitioning, 438–42
TransactionHistoryArchive table, 

434–36
partitioning, 439–42

transactions, 588–89
atomicity, 589
consistency, 589–90, 664–66
constraint failures, 281–82
deadlocks, 630–34
dependencies, 590–92
distributed, 16
durability, 590
errors, 281–82
fi lestream data and, 394
implicit vs. explicit, 588–89
isolation, 590
logging process, 182–83. See also 

transaction log
longest running counter, 652
nested, 16
processing. See transaction 

processing
snapshot counter, 652
Snapshot level, DDL and, 644
snapshot metadata, 652–55
tempdb best practices, 168–69
timeout errors, 463

transfer block, 119–20
tree format, Query Optimizer, 

444–45
Trie Trees feature, 469–70
triggers, 75–25

DDL, 75–76
DML, 75–76
enabling and disabling, 286

query optimization, 13–14
recursive, 157

Tripp, Kimberly L., 299
trivial plans, 448, 457–59, 484

recompilation, skipping, 549–50
troubleshooting. See also errors

cached plans and recompilation, 
559–61

caching, 569–85
DAC. See dedicated administrator 

connection (DAC)
plan guides, 579–83

TRUNCATE statement, 549
TRUNCATE TABLE statement, 394
truncation, 186, 196

automatic, 192–93
manual, 194
pubs database, 193–95
SIMPLE recovery model, 201

trunk. log on chkpt., 201–02
trusted connections, 171
T-SQL, 5

adhoc batch, 532
binary fi le format, traces, 95
BULK INSERT command, 247
cache stores, 553–54
code optimization hints, 

573–75
command parser, 12
compilation and recompilation 

problems, 572
cursor options, 155
database creation, 132
event session creation, 122
fi lestream access, 389
fi lestream data, 392–94
handles, 556
identifi ers, 157
lock hints, 657
Merge operation, 497
non-sargable predicates, 479
object naming, 573
partitioning, 434
querying data, 124
sys.dm_exec_cached_plan_

dependent_objects, 559
trace fi le reading, 104
Trace Table option, 95
uniqueidentifi er data types, 240

tsql_stack action, 114
tuple. See also rows
tuples, 211
TVFs

caching, 542–43
sys.dm_exec_query_plan, 558
sys.dm_exec_text_query_plan, 

558–59
TYPEPROPERTY function, 7

Z01I626249.indd   752 2/16/2009   2:59:27 PM



 Windows operating system 753

U
U lock, 505–06
UIX locks, 600–01
UNC value, 397
unchecked assemblies, 674
Unicode

character strings, 221–22
collations, 227–28

uniform extents, 145
Uniformity assumption, 469
UNION ALL statement, 515
UNION ALL view, 507–08
UNION statement

plan hinting, 515
Query Optimizer, 456–57

UNIQUE constraint, 246, 279
dropping, 365
fi lestream data, 390–91
IGNORE_DUP_KEY option, 316

UNIQUE KEY constraints, 315
UNIQUE keyword, clustered indexes, 

312
uniqueidentifi er data type, 240–41

storage requirements, 412
uniquifi er, 312

clustered index rows, 320
universal unique identifi er (UUID), 

240–41
Unused VLF state, 188
update confl ict ratio counter, 652
UPDATE statement

access methods code, 14
colmodctr values, 549
concurrency, 587
deadlock generation, 631–32
fi lestream data updating, 393
IGNORE_DUP_KEY option, 316
index row addition, 347–48
lock hints, 657–58
lock timeout errors, 660
logging, 198, 363
non-updating updates, 501
page splitting, 349–50
Query Optimizer, 12–13, 491–94
remote server, 509
shared locks, 598
Snapshot isolation level, 642–43, 

656–57
SPARSE columns, 403
Split/Sort/Collapse, 495–97
USE PLAN hints, 521
version store, 648, 650

UPDATE STATISTICS command, 547
updates, 491–94

confl ict ratio counter, 652
Halloween Protection, 494–95
indexed views, 486
locking example, 614–15

locking/locks, 363, 505–07, 
596–01, 634

lost, 591
Merge, 497–99
non-updating, 501–02
partitioned, 502–05
per-index plans, 499–01
Query Optimizer, 491–07
Serializable isolation level, locking 

example, 615–16
SPARSE column, 502
Split/Sort/Collapse, 495–97
wide update plans, 499–02

UPDATETEXT statement, 200
UPDLOCK hint, 643, 658
USE PLAN hint, 575
USE PLAN Nxml plan, 521–22
usecount query, 525–26, 528–29, 

533, 541, 543
User Connections option, 63–64
user data lock types, 597–98
User Mode Scheduler (UMS), 20
user stores, 34–35, 39
user-defi ned data, 244–45, 376
user-defi ned fi legroups, 138–39
user-defi ned scalar functions, 

caching, 540–43
users vs. schema, 173–74
utility commands, storage engine, 18
UUID (universal unique identifi er), 

240–41
UuidCreateSequential function, 

225–41

V
varbinary data type, 238

storage requirements, 412
varbinary(MAX) data type, 392, 394
varchar data type, 221–22, 253

SQL collations, 237–38
storage requirements, 412

varchar(MAX) data type, 386, 392
Vardecimal property, 217, 413–14
variable-length data

character, 221–24
columns, NULL values, 243
row storage, 267–72
row structure, 260–62

variables, vs. parameters, 574
VAS (virtual address space), 36–37
VERSION mode, 84–85
version store, 648–52

compression and, 433
concurrency, 17
generation and cleanup rate 

counters, 651
size counter, 651
versioning operations, 15–16

versioning. See also row versioning
CD format information, 420
example scenario, 653–55
storage engine operations, 15

very large databases (VLDBs), partial 
backup, 206

VIA (Visual Interface Adapter) 
protocol. See Visual Interface 
Adapter (VIA) protocol

View Server State permissions, 25, 
38–39, 169, 243

virtual address space (VAS), 36–37
Virtual Interface Adapter (VIA) 

protocol, 11
NUMA confi guration, 20

virtual log fi les, 187–88
automatic shrinking, 196
automatic truncation, 192–93
observing, 188–92
recoverable, 193–95

virtual memory
committed, 39
reserved, 39

virtual_memory_committed_kb, 39
virtual_memory_in_bytes, 37
virtual_memory_reserved_kb, 39
visible memory, 562
visible target memory, 562
Visual Interface Adapter (VIA) 

protocol
network confi guration, 55

Visual Source Safe, 212
VLDBs (very large databases), partial 

backup, 206

W
wait statistics, 569–71
wait_duration_ms, 27
wait_type, 27
Weikum, Gerhard, 30–31
WHERE clause

event session creation, 122
fi ltered index creation, 480–81
fi ltered statistics, 469
index selection, 477
partitioned indexes, 437–38
Query Optimizer, 492

wide update plans, 499–02
WIDE-TABLE feature. See SPARSE 

columns
width sensitivity/insensitivity, 226
Win32 API, 389, 392
Windows Authentication, 170–71
Windows operating system

authentication, 170–71
collation types, 225–27
fast fi le initialization, 136
nonessential services, disabling, 59

Z01I626249.indd   753 2/16/2009   2:59:27 PM



754 Windows operating system

Windows operating system 
(continued)

priority setting, threads, 
57–58

scheduler, 20–21
WITH CHANGE_TRACKING_

CONTEXT option, 
81–83

WITH CHECK option, 
284–85

WITH clause, CREATE INDEX 
command, 316

WITH DATA_PURITY 
option, 690

WITH keyword, locking hints, 658
WITH LOB_COMPACTION option, 388
WITH NORECOVERY option, 

204–05
WITH PASSWORD option, 89
WITH RECOMPILE option, 

540–41, 573
WITH RECOVERY option, 

204–05
WITH SCHEMABINDING option, 

339–40

WITH STANDBY option, 209
WITH UNCHECKED DATA 

option, 674
WITH(NOEXPAND) hint, 

482, 484
work fi les, 166
work tables, 166–68
work_queue_count, 25
workers, server. See Server workers
workload groups, 42–47

MIN and MAX values, 48–49
properties, 45–47

WRITE clause, BULK_LOGGED 
recovery model, 199

write-ahead logging, 16, 
181–82

writers, blocking/locks
concurrency, 17
locking operations, 17

WRITETEXT statement, 200
www.SQLServerInternals.com 

Web site
memory problems, 35
memory troubleshooting, 42
pubs database script, 129

X
X (exclusive) locks, 363, 372, 505, 

596–98, 600
XACT_ABORT, 251
XE (Extended Events). See Extended 

Events (XE)
XLOCK hint, 658–59
XML

data size limit, 405
format, 123–24
index consistency checks, 705–06, 

708–09
indexes, 346–47, 510
plans, 566, 580
SPARSE columns, 405
USE PLAN hint, 575
USE PLAN Nxml plan hint, 

521–22
xml data type, 239

storage requirements, 412
XQuery operations, 510
XSN (transaction sequence number). 

See transaction sequence 
number (XSN)

Z01I626249.indd   754 2/16/2009   2:59:27 PM



About the Authors 

Kalen Delaney

Kalen Delaney has been working with Microsoft SQL Server for over 
21 years, and she provides advanced SQL Server training to clients 
around the world. She has been a SQL Server MVP (Most Valuable 
Professional) since 1992 and has been writing about SQL Server  almost 
as long. Kalen has spoken at dozens of technical conferences,  including 
every PASS Community Summit held in the United States since the 
 organization’s founding in 1999. Kalen is a partner and Director of 
Training for SQL Tuners (www.sqltuners.net), a SQL Server tuning and 
managed services company based in the northwestern United States.

Kalen is a contributing editor and columnist for SQL Server Magazine and the author or 
 co-author of several Microsoft Press books on SQL Server, including Inside Microsoft SQL 
Server 7, Inside Microsoft SQL Server 2000, Inside Microsoft SQL Server 2005: The Storage 
Engine, and Inside Microsoft SQL Server 2005: Query Tuning and Optimization. Kalen blogs at 
www.sqlblog.com, and her personal Web site can be found at www.SQLServerInternals.com. 

Paul S. Randal

Paul is the managing director of SQLskills.com, which he runs with 
his wife, Kimberly L. Tripp. He is also a SQL Server MVP and one of 
the contributing editors of TechNet Magazine. Paul joined Microsoft 
in 1999 after spending fi ve years at DEC working on the OpenVMS 
fi le system. He wrote various DBCC commands for SQL Server 2000 
and then rewrote all of DBCC CHECKDB for SQL Server 2005 before 
 moving into management on the SQL Server team. During SQL Server 
2008 development, he was responsible for the entire Storage Engine. 

Paul regularly teaches classes on topics such as database maintenance, high availability, 
 disaster recovery, and SQL Server internals. He is a top-rated presenter at worldwide Tech·Ed 
and co-chairs the SQL Server Connections conferences. In the last year, Paul has written a 
large number of SQL Server 2008 materials, including white papers, and articles for TechNet 
Magazine. Paul’s popular blog is at www.SQLskills.com/blogs/paul, and he can be reached at 
Paul@SQLskills.com.

Z02A626249.indd   755 2/16/2009   1:11:48 PM



Kimberly L. Tripp

Kimberly is the president/founder of SQLskills.com, which 
she started in 1995 after leaving Microsoft, where she held 
multiple positions, including technical writer for the SQL 
Server Team and subject matter expert/trainer for Microsoft 
University. She is a SQL Server MVP, a Microsoft regional 
director, and a contributing editor of SQL Server Magazine. 
Since 1990, Kimberly has focused on many aspects of SQL 
Server availability, with emphasis on performance tuning 
and optimization.

Kimberly regularly teaches classes on topics such as database design,  performance 
tuning, database maintenance, and SQL Server internals. She is a top-rated 
 presenter at worldwide Tech·Ed conferences and the PASS Community Summit, and 
she co-chairs the SQL Server Connections conferences with Paul Randal. Kimberly 
has worked with all releases of SQL Server since version 1.0 and has  written 
 numerous resources, including online content and webcasts, white papers, and 
most recently, the Microsoft SQL 2008 JumpStart training class for DBAs. Kimberly’s 
popular blog is at www.SQLskills.com/blogs/kimberly and she can be reached at 
Kimberly@SQLskills.com.

Conor Cunningham

Conor Cunningham is principal architect of the SQL Server 
Core Engine Team, with over 10 years experience  building 
database engines for Microsoft. He specializes in query 
processing and query optimization, and he designed and/
or implemented a number of the query processing features 
available in SQL Server. Conor holds a number of patents 
in the fi eld of query optimization, and he has written 
 numerous academic papers on query processing. Conor 
blogs at “Conor vs. SQL” at http://blogs.msdn.com/
conor_cunningham_msft/default.aspx.

Z02A626249.indd   756 2/16/2009   1:11:48 PM



Adam Machanic

Adam Machanic is a Boston-based independent  database 
consultant, writer, and speaker. He has been involved 
in  dozens of SQL Server implementations for both 
 high-availability OLTP and large-scale data warehouse 
applications, and he has optimized data access layer 
 performance for several data-intensive applications. 
Adam has written for numerous Web sites and magazines, 
 including SQLBlog, Simple Talk, Search SQL Server, SQL 
Server Professional, CoDe, and Visual Systems Journal. He 

has also contributed to several books on SQL Server, including Expert SQL Server 
2005 Development (Apress, 2007) and Inside SQL Server 2005: Query Tuning 
and Optimization (Microsoft Press, 2007). Adam regularly speaks at user groups, 
 community events, and conferences on a variety of SQL Server– and .NET-related 
topics. He is a SQL Server MVP, a Microsoft Certifi ed IT Professional (MCITP), and a 
member of the INETA North American Speakers Bureau.

Technical Reviewer: Benjamin Nevarez

Ben Nevarez has 15 years of experience with relational 
 databases and has worked with SQL Server since version 6.5. 
He holds a master’s degree in computer science and has 
been a speaker at several technology conferences,  including 
the PASS Community Summit. Ben is currently a senior 
database administrator with the American International 
Group (AIG). When he is not working with SQL Server, Ben 
spends time with his wife, Rocio, and his three sons, David, 
Benjamin, and Diego.

Z02A626249.indd   757 2/16/2009   1:11:48 PM


	Cover
	Copyright page

	Dedication
	Contents at a Glance
	Table of Contents
	Foreword
	Introduction
	Who This Book Is For
	What This Book Is About
	Companion Content
	System Requirements
	Support for This Book
	Questions and Comments


	Acknowledgments
	Paul Randal
	Kimberly Tripp
	Conor Cunningham
	Adam Machanic

	Chapter 1: SQL Server 2008 Architecture and Configuration
	SQL Server Editions
	SQL Server Metadata
	Compatibility Views
	Catalog Views
	Other Metadata

	Components of the SQL Server Engine
	Observing Engine Behavior
	Protocols
	The Relational Engine
	The Storage Engine

	The SQLOS
	NUMA Architecture

	The Scheduler
	SQL Server Workers
	Binding Schedulers to CPUs
	The Dedicated Administrator Connection (DAC)

	Memory
	The Buffer Pool and the Data Cache
	Access to In-Memory Data Pages
	Managing Pages in the Data Cache
	The Free Buffer List and the Lazywriter
	Checkpoints
	Managing Memory in Other Caches
	Sizing Memory
	Sizing the Buffer Pool

	SQL Server Resource Governor
	Resource Governor Overview
	Resource Governor Controls
	Resource Governor Metadata

	SQL Server 2008 Configuration
	Using SQL Server Configuration Manager
	Configuring Network Protocols
	Default Network Configuration
	Managing Services

	SQL Server System Configuration
	Operating System Configuration
	Trace Flags

	SQL Server Configuration Settings
	The Default Trace

	Final Words

	Chapter 2: Change Tracking, Tracing, and Extended Events
	The Basics: Triggers and Event Notifications
	Run-Time Trigger Behavior

	Change Tracking
	Change Tracking Configuration
	Change Tracking Run-Time Behavior

	Tracing and Profiling
	SQL Trace Architecture and Terminology
	Security and Permissions
	Getting Started: Profiler
	Server-Side Tracing and Collection

	Extended Events
	Components of the XE Infrastructure
	Event Sessions
	Extended Events DDL and Querying

	Summary

	Chapter 3: Databases and Database Files
	System Databases
	master
	model
	tempdb
	The Resource Database
	msdb

	Sample Databases
	AdventureWorks
	pubs
	Northwind

	Database Files
	Creating a Database
	A CREATE DATABASE Example

	Expanding or Shrinking a Database
	Automatic File Expansion
	Manual File Expansion
	Fast File Initialization
	Automatic Shrinkage
	Manual Shrinkage

	Using Database Filegroups
	The Default Filegroup
	A FILEGROUP CREATION Example
	Filestream Filegroups

	Altering a Database
	ALTER DATABASE Examples

	Databases Under the Hood
	Space Allocation

	Setting Database Options
	State Options
	Cursor Options
	Auto Options
	SQL Options
	Database Recovery Options
	Other Database Options

	Database Snapshots
	Creating a Database Snapshot
	Space Used by Database Snapshots
	Managing Your Snapshots

	The tempdb Database
	Objects in tempdb
	Optimizations in tempdb
	Best Practices
	tempdb Space Monitoring

	Database Security
	Database Access
	Managing Database Security
	Databases vs. Schemas
	Principals and Schemas
	Default Schemas

	Moving or Copying a Database
	Detaching and Reattaching a Database
	Backing Up and Restoring a Database
	Moving System Databases
	Moving the master Database

	Compatibility Levels
	Summary

	Chapter 4: Logging and Recovery
	Transaction Log Basics
	Phases of Recovery
	Reading the Log

	Changes in Log Size
	Virtual Log Files
	Observing Virtual Log Files
	Automatic Truncation of Virtual Log Files
	Maintaining a Recoverable Log
	Automatic Shrinking of the Log
	Log File Size

	Backing Up and Restoring a Database
	Types of Backups
	Recovery Models
	Choosing a Backup Type
	Restoring a Database

	Summary

	Chapter 5: Tables
	Creating Tables
	Naming Tables and Columns
	Reserved Keywords
	Delimited Identifiers
	Naming Conventions
	Data Types
	Much Ado About NULL

	User-Defined Data Types
	IDENTITY Property
	Internal Storage
	The sys.indexes Catalog View
	Data Storage Metadata
	Data Pages
	Examining Data Pages
	The Structure of Data Rows
	Finding a Physical Page
	Storage of Fixed-Length Rows
	Storage of Variable-Length Rows
	Storage of Date and Time Data
	Storage of sql_variant Data

	Constraints
	Constraint Names and Catalog View Information
	Constraint Failures in Transactions and Multiple-Row Data Modifications

	Altering a Table
	Changing a Data Type
	Adding a New Column
	Adding, Dropping, Disabling, or Enabling a Constraint
	Dropping a Column
	Enabling or Disabling a Trigger
	Internals of Altering Tables

	Heap Modification Internals
	Allocation Structures
	Inserting Rows
	Deleting Rows
	Updating Rows

	Summary

	Chapter 6: Indexes: Internals and Management
	Overview
	SQL Server Index B-trees

	Tools for Analyzing Indexes
	Using the dm_db_index_physical_stats DMV
	Using DBCC IND

	Understanding Index Structures
	The Dependency on the Clustering Key
	Nonclustered Indexes
	Constraints and Indexes

	Index Creation Options
	IGNORE_DUP_KEY
	STATISTICS_NORECOMPUTE
	MAXDOP
	Index Placement
	Constraints and Indexes

	Physical Index Structures
	Index Row Formats
	Clustered Index Structures
	The Non-Leaf Level(s) of a Clustered Index
	Analyzing a Clustered Index Structure
	Nonclustered Index Structures

	Special Index Structures
	Indexes on Computed Columns and Indexed Views
	Full-Text Indexes
	Spatial Indexes
	XML Indexes

	Data Modification Internals
	Inserting Rows
	Splitting Pages
	Deleting Rows
	Updating Rows
	Table-Level vs. Index-Level Data Modification
	Logging
	Locking
	Fragmentation

	Managing Index Structures
	Dropping Indexes
	ALTER INDEX
	Detecting Fragmentation
	Removing Fragmentation
	Rebuilding an Index

	Summary

	Chapter 7: Special Storage
	Large Object Storage
	Restricted-Length Large Object Data (Row-Overflow Data)
	Unrestricted-Length Large Object Data
	Storage of MAX-Length Data

	Filestream Data
	Enabling Filestream Data for SQL Server
	Creating a Filestream-Enabled Database
	Creating a Table to Hold Filestream Data
	Manipulating Filestream Data
	Metadata for Filestream Data
	Performance Considerations for Filestream Data

	Sparse Columns
	Management of Sparse Columns
	Column Sets and Sparse Column Manipulation
	Physical Storage
	Metadata
	Storage Savings with Sparse Columns

	Data Compression
	Vardecimal
	Row Compression
	Page Compression

	Table and Index Partitioning
	Partition Functions and Partition Schemes
	Metadata for Partitioning
	The Sliding Window Benefits of Partitioning

	Summary

	Chapter 8: The Query Optimizer
	Overview
	Tree Format

	What Is Optimization?
	How the Query Optimizer Explores Query Plans
	Rules
	Properties
	Storage of Alternatives—The “Memo”
	Operators

	Optimizer Architecture
	Before Optimization
	Simplification
	Trivial Plan/Auto-Parameterization
	Limitations
	The Memo—Exploring Multiple Plans Efficiently

	Statistics, Cardinality Estimation, and Costing
	Statistics Design
	Density/Frequency Information
	Filtered Statistics
	String Statistics
	Cardinality Estimation Details
	Limitations
	Costing

	Index Selection
	Filtered Indexes
	Indexed Views

	Partitioned Tables
	Partition-Aligned Index Views

	Data Warehousing
	Updates
	Halloween Protection
	Split/Sort/Collapse
	Merge
	Wide Update Plans
	Sparse Column Updates
	Partitioned Updates
	Locking

	Distributed Query
	Extended Indexes
	Full-Text Indexes
	XML Indexes
	Spatial Indexes

	Plan Hinting
	Debugging Plan Issues
	{HASH | ORDER} GROUP
	{MERGE | HASH | CONCAT } UNION
	FORCE ORDER, {LOOP | MERGE | HASH } JOIN
	INDEX=<indexname> | <indexid>
	FORCESEEK
	FAST <number_rows>
	MAXDOP <N>
	OPTIMIZE FOR
	PARAMETERIZATION {SIMPLE | FORCED}
	NOEXPAND
	USE PLAN

	Summary

	Chapter 9: Plan Caching and Recompilation
	The Plan Cache
	Plan Cache Metadata
	Clearing Plan Cache

	Caching Mechanisms
	Adhoc Query Caching
	Optimizing for Adhoc Workloads
	Simple Parameterization
	Prepared Queries
	Compiled Objects
	Causes of Recompilation

	Plan Cache Internals
	Cache Stores
	Compiled Plans
	Execution Contexts
	Plan Cache Metadata
	Handles
	sys.dm_exec_sql_text
	sys.dm_exec_query_plan
	sys.dm_exec_text_query_plan
	sys.dm_exec_cached_plans
	sys.dm_exec_cached_plan_dependent_objects
	sys.dm_exec_requests
	sys.dm_exec_query_stats
	Cache Size Management
	Costing of Cache Entries

	Objects in Plan Cache: The Big Picture
	Multiple Plans in Cache
	When to Use Stored Procedures and Other Caching Mechanisms
	Troubleshooting Plan Cache Issues
	Wait Statistics Indicating Plan Cache Problems
	Other Caching Issues
	Handling Problems with Compilation and Recompilation
	Plan Guides and Optimization Hints

	Summary

	Chapter 10: Transactions and Concurrency
	Concurrency Models
	Pessimistic Concurrency
	Optimistic Concurrency

	Transaction Processing
	ACID Properties
	Transaction Dependencies
	Isolation Levels

	Locking
	Locking Basics
	Spinlocks
	Lock Types for User Data
	Lock Modes
	Lock Granularity
	Lock Duration
	Lock Ownership
	Viewing Locks
	Locking Examples

	Lock Compatibility
	Internal Locking Architecture
	Lock Partitioning
	Lock Blocks
	Lock Owner Blocks
	syslockinfoTable

	Row-Level Locking vs. Page-Level Locking
	Lock Escalation
	Deadlocks

	Row Versioning
	Overview of Row Versioning
	Row Versioning Details
	Snapshot-Based Isolation Levels
	Choosing a Concurrency Model

	Controlling Locking
	Lock Hints

	Summary

	Chapter 11: DBCC Internals
	Getting a Consistent View of the Database
	Obtaining a Consistent View

	Processing the Database Efficiently
	Fact Generation
	Using the Query Processor
	Batches
	Reading the Pages to Process
	Parallelism

	Primitive System Catalog Consistency Checks
	Allocation Consistency Checks
	Collecting Allocation Facts
	Checking Allocation Facts

	Per-Table Logical Consistency Checks
	Metadata Consistency Checks
	Page Audit
	Data and Index Page Processing
	Column Processing
	Text Page Processing
	Cross-Page Consistency Checks

	Cross-Table Consistency Checks
	Service Broker Consistency Checks
	Cross-Catalog Consistency Checks
	Indexed-View Consistency Checks
	XML-Index Consistency Checks
	Spatial-Index Consistency Checks

	DBCC CHECKDB Output
	Regular Output
	SQL Server Error Log Output
	Application Event Log Output
	Progress Reporting Output

	DBCC CHECKDB Options
	NOINDEX
	Repair Options
	ALL_ERRORMSGS
	EXTENDED_LOGICAL_CHECKS
	NO_INFOMSGS
	TABLOCK
	ESTIMATEONLY
	PHYSICAL_ONLY
	DATA_PURITY

	Database Repairs
	Repair Mechanisms
	Emergency Mode Repair
	What Data Was Deleted by Repair?

	Consistency-Checking Commands Other Than DBCC CHECKDB
	DBCC CHECKALLOC
	DBCC CHECKTABLE
	DBCC CHECKFILEGROUP
	DBCC CHECKCATALOG
	DBCC CHECKIDENT
	DBCC CHECKCONSTRAINTS

	Summary

	Index
	Symbols and Numbers
	A
	B
	C
	D
	E
	F
	G,H,I
	J,K,L,M
	N,O
	P
	Q,R
	S
	T
	U,V,W
	X

	About the Authors
	Kalen Delaney
	Paul S. Randal
	Kimberly L. Tripp
	Conor Cunningham
	Adam Machanic
	Technical Reviewer: Benjamin Nevarez



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
    /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
    /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
    /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
    /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
    /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
    /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
    /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
    /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
    /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
    /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
    /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
    /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
    /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
    /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
    /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
    /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
    /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
    /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
    /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
    /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive true
      /IncludeLayers true
      /IncludeProfiles true
      /MultimediaHandling /EmbedAll
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




