
Performance Tuning SQL Server JoinsPerformance Tuning SQL Server JoinsPerformance Tuning SQL Server JoinsPerformance Tuning SQL Server Joins

文章出处：http://www.sql-server-performance.com/tuning_joins.asp

One of the best ways to boost JOIN performance is to limit

how many rows need to be JOINed. This is especially beneficial for

the outer table in a JOIN. Only return absolutely only those rows

needed to be JOINed, and no more. [6.5, 7.0, 2000, 2005] Updated

7-25-2005

If you perform regular joins between two or more tables in your

queries, performance will be optimized if each of the joined columns

have their own indexes. This includes adding indexes to the columns

in each table used to join the tables. Generally speaking, a clustered

key is better than a non-clustered key for optimum JOIN performance.

[6.5, 7.0, 2000, 2005] Updated 7-25-2005

If you have two or more tables that are frequently joined

together, then the columns used for the joins on all tables should

have an appropriate index. If the columns used for the joins are not

naturally compact, then considering adding surrogate keys to the

tables that are compact in order to reduce the size of the keys, thus

decreasing read I/O during the join process, increasing overall

performance. [6.5, 7.0, 2000, 2005] Updated 7-25-2005

JOIN performance has a lot to do with how many rows you can

stuff in a data page. For example, let's say you want to JOIN two

tables. Most likely, one of these two tables will be smaller than the

other, and SQL Server will most likely select the smaller of the two

tables to be the inner table of the JOIN. When this happens, SQL

Server tries to put the relevant contents of this table into the buffer

cache for faster performance. If there is not enough room to put all

the relevant data into cache, then SQL Server will have to use

additional resources in order to get data into and out of the cache as

the JOIN is performed.

If all of the data can be cached, the performance of the JOIN will be

faster than if it is not. This comes back to the original statement, that

the number of rows in a table can affect JOIN performance. In other

words, if a table has no wasted space, it is much more likely to get all

of the relevant inner table data into cache, boosting speed. The moral

to this story is to try to get as much data stuffed into a data page as

possible. This can be done through the use of a high fillfactor,

rebuilding indexes often to get rid of empty space, and to optimize

datatypes and widths when creating columns in tables. [6.5, 7.0,

2000, 2005] Updated 7-25-2005

Keep in mind that when you create foreign keys, an index is

not automatically created at the same time. If you ever plan to

join a table to the table with the foreign key, using the foreign key as

the linking column, then you should consider adding an index to the

foreign key column. An index on a foreign key column can

substantially boost the performance of many joins. [6.5, 7.0, 2000,

2005] Updated 7-25-2005

Avoid joining tables based on columns with few unique values.

If columns used for joining aren’t mostly unique, then the SQL Server

optimizer may not be able to use an existing index in order to speed

up the join. Ideally, for best performance, joins should be done on

columns that have unique indexes. [6.5, 7.0, 2000, 2005] Updated

7-25-2005

For best join performance, the indexes on the columns being

joined should ideally be numeric data types, not CHAR or

VARCHAR, or other non-numeric data types. The overhead is lower

and join performance is faster. [6.5, 7.0, 2000, 2005] Updated

7-25-2005

For maximum performance when joining two or more tables, the

indexes on the columns to be joined should have the same

data type, and ideally, the same width.

This also means that you shouldn't mix non-Unicode and Unicode

datatypes when using SQL Server 7.0 or later. (e.g. VARCHAR and

NVARCHAR). If SQL Server has to implicitly convert the data types to

perform the join, this not only slows the joining process, but it also

could mean that SQL Server may not use available indexes,

performing a table scan instead. [6.5, 7.0, 2000, 2005] Updated

7-25-2005

When you create joins using Transact-SQL, you can choose

between two different types of syntax: either ANSI or

Microsoft. ANSI refers to the ANSI standard for writing joins, and

Microsoft refers to the old Microsoft style of writing joins. For

example:

ANSI JOIN Syntax

SELECT fname, lname, department
FROM names INNER JOIN departments ON names.employeeid =
departments.employeeid

Former Microsoft JOIN Syntax

SELECT fname, lname, department
FROM names, departments
WHERE names.employeeid = departments.employeeid

If written correctly, either format will produce identical results. But

that is a big if. The older Microsoft join syntax lends itself to mistakes

because the syntax is a little less obvious. On the other hand, the

ANSI syntax is very explicit and there is little chance you can make a

mistake.

For example, I ran across a slow-performing query from an ERP

program. After reviewing the code, which used the Microsoft JOIN

syntax, I noticed that instead of creating a LEFT JOIN, the developer

had accidentally created a CROSS JOIN instead. In this particular

example, less than 10,000 rows should have resulted from the LEFT

JOIN, but because a CROSS JOIN was used, over 11 million rows were

returned instead. Then the developer used a SELECT DISTINCT to get

rid of all the unnecessary rows created by the CROSS JOIN. As you

can guess, this made for a very lengthy query. Unfortunately, all I

could do was notify the vendor's support department about it, and

they fixed their code.

The moral of this story is that you probably should be using the ANSI

syntax, not the old Microsoft syntax. Besides reducing the odds of

making silly mistakes, this code is more portable between database,

and eventually, I imagine Microsoft will eventually stop supporting the

old format, making the ANSI syntax the only option. [6.5, 7.0, 2000]

Updated 11-1-2005

If you have to regularly join four or more tables to get the

recordset you need, consider denormalizing the tables so that the

number of joined tables is reduced. Often, by adding one or two

columns from one table to another, the number of joins can be

reduced, boosting performance. [6.5, 7.0, 2000] Updated 11-1-2005

If your join is slow, and currently includes hints, remove the

hints to see if the optimizer can do a better job on the join

optimization than you can. This is especially important if your

application has been upgraded from version 6.5 to 7.0, or from 7.0 to

2000. [6.5, 7.0, 2000] Updated 11-1-2005

One of the best ways to boost JOIN performance is to ensure

that the JOINed tables include an appropriate WHERE clause to

minimize the number of rows that need to be JOINed.

For example, I have seen many developers perform a simple JOIN on

two tables, which is not all that unusual. The problem is that each

table may contain over a million rows each. Instead of just JOINing

the tables, appropriate restrictive clauses needed to be added to the

WHERE clause of each table in order to reduce the total number of

rows to be JOINed. This simple step can really boost the performance

of a JOIN of two large tables. Updated 11-1-2005

In the SELECT statement that creates your JOIN, don't use an *

(asterisk) to return all of the columns in both tables. This is bad

form for a couple of reasons. First, you should only return those

columns you need, as the less data you return, the faster your query

will run. It would be rare that you would need all of the columns in all

of the tables you have joined. Second, you will be returning two of

each column used in your JOIN condition, which ends up returning

way more data that you need, and hurting performance.

Take a look at these two queries:

USE Northwind
SELECT *
FROM Orders
INNER JOIN [Order Details]
ON Orders.OrderID = [Order Details].OrderID

and

USE Northwind
SELECT Orders.OrderID, Orders.OrderDate,
 [Order Details].UnitPrice, [Order Details].Quantity,
 [Order Details].Discount
FROM Orders
INNER JOIN [Order Details]
ON Orders.OrderID = [Order Details].OrderID

Both of these queries perform essentially the same function. The

problem with the first one is that it returns not only too many columns

(they aren't all needed by the application), but the OrderID column is

returned twice, which doesn't provide any useful benefits. Both of

these problems contribute to unnecessary server overhead, hurting

performance. The moral of this story is never to use the * in your joins.

[6.5, 7.0, 2000] Updated 7-24-2006

While high index selectivity is generally an important factor that the

Query Optimizer uses to determine whether or not to use an index,

there is one special case where indexes with low selectivity can be

useful speeding up SQL Server. This is in the case of indexes on

foreign keys. Whether an index on a foreign key has either high

or low selectivity, an index on a foreign key can be used by the

Query Optimizer to perform a merge join on the tables in

question. A merge join occurs when a row from each table is taken

and then they are compared to see if they match the specified join

criteria. If the tables being joined have the appropriate indexes (no

matter the selectivity), a merge join can be performed, which is often

much faster than a join to a table with a foreign key that does not

have an index. [7.0, 2000] Updated 7-24-2006

For very large joins, consider placing the tables to be joined in

separate physical files in the same filegroup. This allows SQL

Server to spawn a separate thread for each file being accessed,

boosting performance. [6.5, 7.0, 2000] Updated 7-24-2006

Don't use CROSS JOINS, unless this is the only way to

accomplish your goal. What some inexperienced developers do is

to join two tables using a CROSS JOIN, and then they use either the

DISTINCT or the GROUP BY clauses to "clean up" the mess they have

created. This, as you might imagine, can be a huge waste of SQL

Server resources. [6.5, 7.0, 2000] Updated 7-24-2006

If you have the choice of using a JOIN or a subquery to perform

the same task, generally the JOIN (often an OUTER JOIN) is faster.

But this is not always the case. For example, if the returned data is

going to be small, or if there are no indexes on the joined columns,

then a subquery may indeed be faster.

The only way to really know for sure is to try both methods and then

look at their query plans. If this operation is run often, you should

seriously consider writing the code both ways, and then select the

most efficient code. [6.5, 7.0, 2000] Updated 8-21-2006

We have a query that contains two subselects containing an

aggregate function (SUM, Count, etc.) in the SELECT part. The query

was performing sluggishly. We were able to isolate the problem down

to the aggregate function in the subselect.

To rectify the problem, we reorganized the query so that there was

still an aggregate function in the SELECT part, but replaced the

subselects with a series of JOINS. The query executed much faster.

So, if this holds true — developers, as a rule, should use JOINS in

lieu of subselects when the subselect contains aggregate

functions. [7.0, 2000] Tip provided by Silverscape Technologies, Inc

(www.silverscape.net) Updated 8-21-2006

If you have a query with many joins, one alternative to

de-normalizing a table to boost performance is to use an

Indexed View to pre-join the tables. An Indexed View, which is

only available from SQL Server 2000 Enterprise Edition, allows you to

create a view that is actually a physical object that has its own

clustered index. Whenever a base table of the Indexed View is

updated, the Indexed View is also updated. As you can imagine, this

can potentially reduce INSERT, UPDATE, and DELETE performance on

the base tables. You will have to perform tests, comparing the pros

and cons of performance in order to determine whether or not using

an Indexed View to avoid joins in query is worth the extra

performance cost caused by using them. [2000] Updated 8-21-2006

If you have a query that uses a LEFT OUTER JOIN, check it carefully

to be sure that is the type of join you really want to use. As you may

know, a LEFT OUTER JOIN is used to create a result set that includes

all of the rows from the left table specified in the clause, not just the

ones in which the joined columns match. In addition, when a row in

the left table has no matching rows in the right table, the result set

row contains NULL values for all the selected columns coming from

the right table. If this is what you want, then use this type of join.

The problem is that in the real world, a LEFT OUTER JOIN is rarely

needed, and many developers use them by mistake. While you may

end up with the data you want, you may also end up with more than

the data you want, which contributes to unnecessary overhead and

poor performance. Because of this, always closely examine why you

are using a LEFT OUTER JOIN in your queries, and only use them if

they are exactly what you need. Otherwise, use a JOIN that is more

appropriate to your needs. [6.5, 7.0, 2000] Updated 8-21-2006

If you are having difficulty tuning the performance of a poorly

performing query that has one or more JOINs, check to see if

they query plan created by the query optimizer is using a hash join.

When the query optimizer is asked to join two tables that don't have

appropriate indexes, it will often perform a hash join.

A hash join is resource intensive (especially CPU and I/O) and can

slow the performance of your join. If the query in question is run often,

you should consider adding appropriate indexes. For example, if you

are joining column1 in table1 to column5 in table2, then column1 in

table1 and column5 in table2 need to have indexes.

Once indexes are added to the appropriate columns used in the joins

in your query, the query optimizer will most likely be able to use these

indexes, performing a nested-loop join instead of a hash join, and

performance will improve. [7.0, 2000] Updated 8-21-2006

