
Em
be

dd
ed

 F
ile

 S
ys

te
m
 OSE

Embedded File System

User’s Guide
OSE Systems

Em
be

dd
ed

 F
ile

 S
ys

te
m

 Document No: 420e/OSE52-2 R3.1

Copyright
Copyright © 2001 by OSE Systems. All rights reserved. No part of this publication may be
reproduced, transmitted, stored in a retrieval system, or translated into any language or
computer language, in any form or by any means, electronic, mechanical, optical, chemical
or otherwise, without the prior written permission of OSE Systems. The software described
in this document is furnished under a licence agreement or a non-disclosure agreement. The
software may be used or copied only in accordance with terms of agreement.

Disclaimer
OSE Systems makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular
purpose. Further, OSE Systems reserves the right to revise this publication and to make
changes from time to time in the contents hereof without obligation to OSE Systems to notify
any person of such revision or changes.

Trademarks
OSE is a registered trademark of OSE Systems.
 OSE / Embedded File System

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

Contents
1 Introduction 5

1.1 About his manual - 5

1.2 New for EFS User’s Guide - 5

1.3 Requirements - 6

1.4 Overview of the OSE Embedded File System - 7
2 EFS - System Description 9

2.1 Embedded File System - 10
2.1.1 EFS Components - 10
2.1.2 Additional Tools - 10
2.1.3 Interactions with EFS and Registration of Resources - - - - - - - - - - - - - - - - - - - 10
2.1.4 Interface Support Requests - 10
2.1.5 Implementation Dependent Parameters - 11

2.2 Flow of Signals Through EFS Components - 12

2.3 Path Names and Current Directory in EFS - 14
2.3.1 Path Names, Volume Names and Labels - 14
2.3.2 Current Directory and Other Status Information - 14
2.3.3 Relative or Absolute Path Names - 14

2.4 Function Library - FLIB - 15
2.4.1 Functions - 15
2.4.2 Process Status - 15
2.4.3 Linking Modules - 15
2.4.4 EFS processes for function calls - 16

2.5 File System Server - FSS - 17
2.5.1 FSS can Share their Global Resources with Other Machines - - - - - - - - - - - - - - - - 17
2.5.2 All Resources Must Register with FSS - 17
2.5.3 Resource Names and Resource Types - 18
2.5.4 Resource Resolving with Timeout - 18

2.6 File Managers - FM - 19
2.6.1 FM will Mount Volume Managers and Share Signal Interface - - - - - - - - - - - - - - - 19
2.6.2 Different Types of Format/Volume Managers - 20
2.6.3 Location - 20

2.7 Volume Managers - VM - 21
2.7.1 Volume Manager Status and Control - 21
2.7.2 Common Signal Interface for FM and VM - 22

2.8 Block Device Drivers - DDB - 23
2.8.1 Operations - 23
 / R3.1 Contents • 3

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.8.2 Mounting Units or Partitions - 23
2.8.3 Types of DDB Device Drivers - 24
2.8.4 BIOS Trap Signal Operations - 24

2.9 Character Device Drivers - DDC - 25
2.9.1 Operations - 25
2.9.2 Types of DDC Device Drivers - 26

3 EFS Shell Commands 27
3.1 Command Shell - 27

3.2 EFS Shell Commands Reference - 28
cat - 28
cd - 28
chmod - 29
cp - 29
format - 30
ln - 30
ls - 30
mkdir - 31
mount - 31
mv - 31
pwd - 32
rm - 32
rmdir - 32
sync - 32
unmount - 33
vols - 33

4 Configuration of EFS 35
4.1 Process Types And Priorities - 35

4.2 Static configuration - 36
4.2.1 EFS File System Block - 36
4.2.2 File System Server - FSS - 36
4.2.3 Format Managers - FM - 36
4.2.4 Block Device Drivers - DDB - 36
4.2.5 Shell Commands - 37

4.3 Dynamic Configuration - 38
4.3.1 Mount Devices - 38

4.3.1.1 Mount and Format RAM Disk - 38
4.3.2 Stop Configuration Process - 38

Index 39
 / R3.1 Contents • 4

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

1 Introduction
The OSE Embedded File System, EFS, is a file system for the OSE Real Time Kernel.
EFS will enable application processes to use file system functionality in several different
ways by using the interfaces described in this reference manual. The manual describes the
concepts and design ideas used when implementing the EFS and contains information how
to use the EFS in an OSE system.

1.1 About his manual
This EFS User’s Guide contains a description of how to use and configure the EFS as well
as a description of the shell and login support delivered with EFS. The guide is divided into
the following chapters:

This user’s guide describes:

• “EFS - System Description” on page 9 describes the Embedded File System

• “EFS Shell Commands” on page 27 describes the included shell and login processes with
interactive tools which can be used for the basic administration of the file system.

• “Configuration of EFS” on page 35 explains how to configure an OSE system with EFS

See the EFS Reference Manual for all details regarding the interfaces to EFS. In the
reference manual also an extensive glossary, with terms and definitions, is included.

1.2 New for EFS User’s Guide
• In “EFS Shell Commands Reference” on page 28 under the command “ls” on page 30 the

-a flag has been added and the syntax and description have been changed.
 / R3.1 Introduction • 5

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

1.3 Requirements
Those who need some kind of storage capacity and is therefore involved in writing
applications, file system format managers or lower level device drivers for the EFS should
read this manual. Since the EFS replaces other file systems such as those in UNIX or DOS,
any application running on the OSE platform in need of file and device I/O should use the
EFS. Some of the expected users are:

• Platform developers - writing format managers or device drivers and configuring systems.

• Application programmers - writing applications that use a file system.

The reader is expected to have knowledge of the C programming language since the EFS
interface is expressed in C and examples will be given in C. Some knowledge of the OSE
operating system is necessary since EFS runs on this platform and explanations sometimes
depend on knowledge of issues such as OSE inter-process communication.

Version R3.0.0 of the EFS is a complete update, not backward compatible with the earlier
version.
 / R3.1 Requirements • 6

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

1.4 Overview of the OSE Embedded File System
The OSE Embedded File System, EFS, is designed to handle volumes, files and directories
and their attributes in an OSE environment. It also includes support for handling character
device drivers through a file metaphor, similar to Unix.

Shell and Login Process - Shell
A shell process and a login process are delivered with the OSE Embedded File System,
providing an interactive environment with which typically file system administration can
be performed. See Shell User’s Guide and Reference Manual.

Function Library Interface - FLIB
The Function Library (FLIB) function calls are used by applications. These are functions
compatible with official standards such as ANSI-C and POSIX. Applications using FLIB
do not need to use any of the signal interfaces below.

File System Server Signal Interface - FSS
The File System Server (FSS) provides access to all file system resources. All resources
must register themselves with the FSS.

Format Manager and Volume Manager Signal Interfaces - FM
(VM)

The Format Managers (FM) and Volume Managers (VM) take care of the file structure on
the data stream on an underlying device. Applications using the signalling interface, and
the optional BIOS trap interface, access the Embedded File System through the FM/VM
interfaces.

Blocked Device Driver Signal Interface - DDB
The Blocked Device Driver (DDB) process provides a standardized access interface to
EFS low level blocked device drivers.

Character Device Driver Signal Interface - DDC
The Character Device Driver (DDC) process provides a standardized access interface to
EFS low level character device drivers, typically serial channels.
 / R3.1 Overview of the OSE Embedded File System • 7

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

 / R3.1 Overview of the OSE Embedded File System • 8

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2 EFS - System Description
A OSE Embedded File System, EFS, provides a structured means of storing and retrieving
data in the OSE distributed real time operating system.

From the application’s point of view, data is stored in files within hierarchical directories and
mounted volumes. Volumes are mounted using format managers, knowing the format of a
specific file structure. The volume managers use device drivers to access the raw physical
media.

Also serialized data channels are managed using the same file structured access methods.

Apart from the data itself, a file usually contains some file system specific attributes, such as
file name, creation and modification time, access flags etc. The attributes for each file and
the hierachical directory structure constitutes the format of a file system. For a serialized data
channel the format includes terminal attributes, like control characters to be decoded.

Instead of using the traditional OSE signals for communicating with the file system
managers, an application can use the FLIB function library, with standard ANSI-C and
POSIX function calls for file system access.

Raw media

Device drivers know only the raw data like disk sectors

Managers know the format of the data, like directories and files with attributes

FLIB library with standard function calls for file system access

Application
 / R3.1 EFS - System Description • 9

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.1 Embedded File System
The OSE EFS contains several different components.

2.1.1 EFS Components
• Function Library - FLIB - provides clients with a standardized API.

• The File System Server - FSS - manages the EFS resources.

• Format Managers - FM - imposes a format on the media and mounts volumes.

• Volume Managers - VM - created by format managers to handle each volume.

• Blocked Device Drivers - DDB - handles raw block type media, e.g. disks.

• Character Device Drivers - DDC - handles raw serialized media, e.g. terminal connections.

2.1.2 Additional Tools
In addition the following tools are delivered with EFS:

• Command Shell with daemon - command line interpreter with several standard
commands.

• Login Process - handles the authentication of users.

2.1.3 Interactions with EFS and Registration of Resources
Applications usually (and preferably) only interact with the EFS through the function library.
This library implements standard functions calls, as specified in POSIX and ANSI.
Alternatively it uses the signal interfaces of the FSS and FM (VM uses the FM interface).
The DDB and DDC device drivers are usually tightly integrated with the FM/VM processes
and are seldom accesses directly.

All file system resources register with the FSS file system server, which acts as a resource
broker to allow an application to transparently find a file system in whatever machine it is
implemented. An FSS is required in each machine for access to the distributed EFS.

2.1.4 Interface Support Requests
Each component in the OSE Embedded File System should support a signal to be used to
request a list of supported signals and features. This simplifies future updates and allows the
same client to adapt to different types of components. The EFS signal interface is common
to many different types of I/O systems and some signals might not be of much use to certain
devices. A general rule however is to accept and respond to as many EFS signals as possible,
even if there is no real operation to perform. Using this method a general client could
communicate in the same way with many different types of I/O systems.
 / R3.1 Embedded File System • 10

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.1.5 Implementation Dependent Parameters
In several OSE signals with operations to the format or volume managers and the device
drivers, optional parameters are sent in a text string argument, allowing implementation
dependent parameters to be used within the current signal interface.

It is, therefore, essential that the implementer of different components clearly specifies and
documents the names and values of these optional parameters.
 / R3.1 Implementation Dependent Parameters • 11

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.2 Flow of Signals Through EFS Components
The following figure illustrates how the file system components interact, using OSE signals
within a machine as well as across remote links within OSE.

All these operations are hidden within the FLIB library if the application uses it.

The File System Server serves as a name repository, where all other modules register
themselves.

1. All format managers, FM, register themselves with there local file system server, FSS.

2. Any initiating routine can ask file system servers in different machines to
connect to each other to share the registered resources.

3. An application asks FSS for a suitable format manager using a well known
name. Example: "extfat" which handles an extended DOS FAT file system. A
process id is returned, which could point to a local or remote FM process.

4. The application asks this FM to mount a volume on a given device and gives
the volume name to be used for the volume. FM creates a volume manager VM
to handle this volume. The volume manager will register itself with FSS,
allowing others to find the now mounted volume.

Application

FSS

FM

VM

1. Resolve name

2. Mount volume

3. I/O operations

FM FM

VM
VM

VM VM
VM

VM

DDB

ISR

DDB DDB

ISR

DDC

ISRExample:
RAM disk

Example:
Two disk units

Example:
Serial terminal
connection

Example:
Disk units reached
via SCSI

(optionally FLIB)

FSS

Other machine with
applications using
file system

FSS
Other machine with
applications using
file system

1.

2.
3.FSS connections

Registration
 / R3.1 Flow of Signals Through EFS Components • 12

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

5. A volume manager connects with the device driver and handles all operations
between the application and the device driver. A device driver may include an
ISR, interrupt service routine, to handle the actual hardware. A device like a
RAM disk does not need any hardware access.

6. Alternatively, the application could directly ask FSS for an already mounted
volume.

7. I/O operations for access to directories and files are given by the application
through the volume manager VM.

8. If the volume handles a serial channel, special terminal connection I/O
operations are available for handling user interactions. The login and shell
processes uses a serial channel.

9. Finally a volume can be unmounted, unless it should not stay accessible.
 / R3.1 Flow of Signals Through EFS Components • 13

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.3 Path Names and Current Directory in EFS

2.3.1 Path Names, Volume Names and Labels
The EFS file system root can not contain files or directories, only volume names. A full
absolute path name consists of the following components, separated with slashes (/).

1. Volume name. This is the name the volume is given when it is mounted. Example: "/ram"

2. Optional directory names as a hierarchical path.

3. File name.

Example of an absolute path of a file:

"/ram/applications/database/index.dat"

A different example, where the volume name alone is used to access a serial channel:

"/tty"

A label is a name string stored permanently on some types of devices or on a part of a device
that will be mounted as a volume. A usual case is that applications try to use this same name
when mounting disk volumes, but there is no enforced connection between a label and a
volume name.

2.3.2 Current Directory and Other Status Information
The application process is responsible for keeping status information about process specific
things like current directory, current position in files, any per process file buffers etc. This is
automatically done for the application if the FLIB function library is used.

Format/volume managers and device drivers only keep status information about the objects,
e.g. things like file permission attributes, access locks, cache buffers in the volume manager
or device driver and a count how many open file handles there are on each object.

2.3.3 Relative or Absolute Path Names
If the FLIB function library is used, a current directory for a process is remembered by FLIB
and the application can use relative path names. A relative path is without a leading slash
and assumed to be relative to the current directory.

In all other cases, absolute path names must be used.

NOTE the leading slash, which always must be a part of a registered volume name!
 / R3.1 Path Names and Current Directory in EFS • 14

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.4 Function Library - FLIB
Applications can use standard ANSI-C or POSIX function calls to access EFS file systems,
if they are linked with the EFS FLIB library. When an application uses FLIB, there is no
need to use any of the other signal interfaces described here, except if File System Server
(FSS) resources shall be shared with other machines, in which case an FSS signal need to be
used. For best portability, it is recommended to use FLIB functions instead of the signal
interfaces.

The function calls in FLIB is defined in the standard header files in POSIX and ANSI-C and
in addition in the "efs.h". For the shell and login tools, see "shell.h" and "passwd.h".

2.4.1 Functions
A total of about 90 standard functions are available, including open(), fopen(), opendir(),
tcgetattr() and many others. In addition, a few EFS-specific function calls are included. These
are:

• efs_clone() to export the file system status, e.g. open files etc., from a process to another.

• efs_format() to format a mounted volume, e.g. a disk partition.

• efs_mount() to mount a volume, giving it a name.

• efs_relabel() to write a label string to a volume.

• efs_shared() to share file descriptors within a process segment.

• efs_sync() to force cache buffers to the physical storage.

• efs_unmount() to unmount a volume.

• eprintf() to simplify printing formatted data to standard error, compare printf().

• validate_user() is a declaration for a user-supplied function for LOGIN authentication.

2.4.2 Process Status
In addition to the function call interface, the FLIB also keeps track of process specific file
system status information like the file descriptors, FILE structures and there contents with
current positions, open modes etc. as well as the concept of a current directory for the
process.

2.4.3 Linking Modules
The function library is linked with the application. The library is subdivided into many small
modules which allow only the parts that really are used to be included in the application
executable when it is linked with the library.
 / R3.1 Function Library - FLIB • 15

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.4.4 EFS processes for function calls
The function calls in FLIB are directly translated into OSE signals that are sent to the
different process components in the Embedded File System.

Signals are sent to:

• FSS to find resources.

• FM processes in order to mount volumes.

• VM processes in order to interact with volumes.

There is no direct communication between applications using FLIB and device drivers (DDB,
DDC).
 / R3.1 EFS processes for function calls • 16

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.5 File System Server - FSS
The file system server, FSS, acts as a file system resource broker. It should "know" all file
system resources, both local resources and remote resources needed by any process in the
system. When new resources are created, the resources must register themselves with the FSS
to allow others to find them. FSS is no longer involved when a client process has found a
resource and starts using it.

One FSS process, a static process named "ose_fss", is required in each machine where there
are file system resources or where there are applications wanting to use file system resources.
The signal interface to FSS is defined in the "fss.sig" header file.

2.5.1 FSS can Share their Global Resources with Other Machines
In a distributed system, a suitable initiating routine can create connections between the local
FSS and other remote FSSes in other machines to share the own resources with the remote
machines. As long as this remote connection is open, any changes in the resources will be
updated on the other machines. FSS will attach to the connected remote FSS processes and
re-establish the connection

The FSS connections are unidirected, i.e. "I share my resources with you". Thus other
connections must be opened from the other remote FSSes to my FSS to enable me to reach
their resources.

A resource can be registered as "local" in FSS. In this case it is not shared with any remote
FSS. A resource which is not local is called a global resource.

2.5.2 All Resources Must Register with FSS
File system resources are typically different Format Managers, Device Drivers and
dynamically created Volume Managers. When created, these must be registered with the local
FSS. Usually when these resource processes are started, they hunt for ose_fss and register
themselves with FSS before they start waiting for signals to perform requested actions. The
FSS will unregister them when the resource processes are killed. A resource is registered as:

• Resource type, e.g. Format Manager, Device Driver, Volume Manager, Remote FSS.

• Resource location, e.g. if it shall be local or globally shared with other FSSes.

• Resource name, e.g. the name string with which a resource is found.

If the local FSS process is not reachable when a resource is started, it shall wait and avoid
performing any actions until it has successfully registered with FSS.
 / R3.1 File System Server - FSS • 17

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.5.3 Resource Names and Resource Types
Resources are registered in FSS with a name string, which must be unique in FSS, depending
on the type of resource. Typical names of format managers can be "fat", "extfat", "confm".
Volume managers which are dynamically created (see path and volume names in “Path
Names and Current Directory in EFS” on page 14) usually have names similar to disk volume
labels or a serial ports and ALWAYS begins with a slash (/) as they are the "root" of the
volumes. Typical device driver names are "serdd", "dosfm".

FSS recognized a range of file system resource type names, listed in fss.sig. An additional
wildcard resource type, FSS_TYPE_ANY, is defined to be optionally used when finding
resources.

2.5.4 Resource Resolving with Timeout
To find a resource without using FLIB, an application or other client process hunts for the
FSS (ose_fss) and sends a signal to resolve a resource name. If the resource is not
immediately available, FSS will save the request and when the resource finally registers, the
reply is sent to the application. The reply signal is sent with the resource as "sender",
allowing the application to continue to interact directly with the resource.

A timeout is specified in the request, allowing the client to define what to if no resource
appears during a long time.
 / R3.1 Resource Names and Resource Types • 18

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.6 File Managers - FM
A format manager, FM, is a process which imposes a format (structure) on a raw device. The
FM knows the structure, which typically can be files in directories stored on the raw blocks
on a disk unit or it can be the structure with lines ended with new-line and control characters
input or output on a serial channel. The format manager uses device drivers to access the raw
devices, see DDB and DDC.

When created, each format manager must register itself with the FSS.

The same common OSE signal interface is defined for FM and VM. The interface is defined
in the "fm.sig" header file. See “Common Signal Interface for FM and VM” on page 22.

2.6.1 FM will Mount Volume Managers and Share Signal Interface
In OSE EFS, the main task of the format manager process is to respond to mount requests
and create different Volume Manager processes for each volume which is mounted. The
application or other client finds the registered name of a suitable FM from the FSS and sends
a mount request to it. Further communication is performed directly with the new Volume
Manager.

Alternatively a client can directly find an already mounted Volume Manager in the FSS and
communicate with it without using the FM at all.
 / R3.1 File Managers - FM • 19

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.6.2 Different Types of Format/Volume Managers
Many different format managers might exist in a system, supporting different types of data.
The EFS is delivered with the following format managers:

• DOS/FAT format manager, handling a 12 and 16 bit FAT file structure on a disk, limited
to the usual 8+3 file name size and only the modification time. This format manager
(dosfm) registers itself as "fat" in the FSS.

• Extended FAT format manager, handling long file names, up to 48 characters, and
additional attributes for read/write/execute(search) permissions as well as creation and
modifiation time with one second resolution. This format manager (extfm) registers itself
as "extfat" in the FSS.

• Console terminal format manager, handling a serial terminal connections through
character devices (DDC), like serial devices or telnet connection. POSIX standard termios
type control character handling is included. This format manager (confm) registers itself
as "confm" in the FSS.

The telnet device driver is not a part of EFS but a component in the Internet Utilities product.

2.6.3 Location
A volume manager is usually dynamically spawned by its format manager and often share
code with the FM. In addition a volume manager may need efficient communication with the
device driver. Therefore the most usual situation is having the format and volume manager
as well as the device driver within the same machine. This is not necessary if all
communication is through signals, but if the optional BIOS trap interface for fast data read/
write shall be used between the VM and the device drivers, they must be in the same
machine.
 / R3.1 Different Types of Format/Volume Managers • 20

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.7 Volume Managers - VM
Applications send all file related I/O operations to volume managers, which handle any
formatting of data or operations regarding the structure of the file systems and reads or writes
data using operations towards device drivers. See DDB and DDC.

Volume managers are dynamically created by the format manager when a volume is mounted
and must register itself with the FSS, allowing other applications to find and use it, in
addition to the application performing the mount operation. Also remote applications can find
the volume through FSS and communicate with the volume manager to access the volume.

When unmounted, a volume manager must terminate, allowing FSS to unregister it
automatically.

The same common OSE signal interface is defined for FM and VM, and the volume
managers often share code with the format manager. The interface is defined in the "fm.sig"
header file.

2.7.1 Volume Manager Status and Control
As it is the volume manager that knows how the raw data shall be interpreted, it has the
responsibility to keep the status of objects in the data and control access to it.
 / R3.1 Volume Managers - VM • 21

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.7.2 Common Signal Interface for FM and VM
The same common OSE signal interface is defined for FM and VM. The interface is defined
in the "fm.sig" header file.

A format/volume manager should respond to all defined signals, but can select to reply with
an error reply informing the sender about not supported features.

Operations are available for the following groups of operations:

• Mounting volumes. This is the only operations sent to FM and creates a volume manager.

• Unmounting volumes. An unmount operation is sent to the VM (not FM).

• Formatting a volume, validating the structure, examine a volume, label a volume or force
cache buffers to be written to a volume (sync).

• Operations on object (typically directories or files) directly using path names. Create,
remove, rename, examine, set size, attributes, times or owner.

• Operations on open objects using a handle. Open, close, examine, set size or attributes,
read or write data with buffers in the signal or using pointers (only within the same
machine), force cache data for object to be written to the volume, wait for events, cancel
requests, perform lock operations.

• Operations special for terminal connections, using a handle. Examine and set terminal
configurations or flush the I/O buffers.

Reading from a volume can be performed by activating asynchronous read. The volume
manager will then continue to send data until the read is deactivated or an error occurs. This
is typically of use when reading from an asynchronous serial line.
 / R3.1 Common Signal Interface for FM and VM • 22

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.8 Block Device Drivers - DDB
Storage devices, like disks, are accessed from the Volume Managers through a device driver,
which can handle block structured raw data. Device drivers are usually not accessed directly
from applications.

Device drivers in the OSE EFS are processes, which must register with the FSS to allow
volume managers to find them. Interrupt Service Routines ISR are often used to handle
hardware.

The DDB signal interface is a standard interface between the volume manager and the device
driver and shall be implemented by all device drivers handling block structured devices. The
interface is defined in the "ddb.sig" header file.

A device driver usually controls one I/O controller, like a SCSI controller or an IDE
controller. One controller can have multiple disk units. Unit numbers 0 - 31 are supported.
In addition there is support for mounting only a part of a disk unit, see below.

2.8.1 Operations
Operations are included to support low level formatting and for the use of cache buffers in
the device driver. Device attributes are supported for things like removable, read-only,
random access. The examine request can return various hardware attributes for a disk as well
as for the device itself. A shutdown operation should force a device driver to terminate after
proper actions.

The block device drivers knows nothing about the structure of the data, but sees the device
as one big stream of blocks, where each block has a given fixed size. The volume manager
must remember things like the current position for read and write etc.

2.8.2 Mounting Units or Partitions
Mount/unmount operations are used to reserve either an entire physical disk unit or a part of
it for one volume manager. The area is given as a range of blocks within a unit. The volume
managers are however responsible for staying within the reserved area as the blocks in read/
write operations are always given as absolute block numbers on the unit.

Optionally a device driver could enforce locking of a mounted area. There is support in the
signal interface for this.
 / R3.1 Block Device Drivers - DDB • 23

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.8.3 Types of DDB Device Drivers
Many different device drivers might exist in a system, supporting different types of devices.
The EFS is delivered with the following block device driver:

• RAM disk device driver. This is delivered in source code with EFS as an example device
driver suitable as a starting point for custom made device drivers. The RAM disk driver
registers itself as "ramdisk" with the FSS and uses RAM allocated from the OSE pool as
the media. It is suitable for use together with one of the FAT format managers. and also
contains a BIOS trap handler to be used by the VM for efficient data transfer.

2.8.4 BIOS Trap Signal Operations
A BIOS trap handler can be returned at an interface request on a device driver. This handle
can be used between the volume manager and the device driver for efficient data transfer
without context switches. If sig is a signal with a read or write operation, a call like the
following will cause the driver to "receive" the signal and perform the operation, after which
the client can inspect the result in sig->status as usual and after a read, use the data.

sig = allocate_request_signal();
ret = biosCall(handle, fmPid, &sig); /* The signal operation is performed
*/
if (sig->status == EFS_SUCCESS) use_reply_signal ...;
free_reply_signal(&sig);
 / R3.1 Types of DDB Device Drivers • 24

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.9 Character Device Drivers - DDC
Terminal connections through serial ports or telnet connections contain data as a stream of
characters which can not be randomly addressed and where some characters are control
characters needing special treatment. These type of devices are handled by Character Device
Drivers and also need volume managers of which know about how the control characters are
treated. Character device drivers are accessed from Volume Managers and usually not
accessed directly from applications.

Device drivers in the OSE EFS are processes, which must register with the FSS to allow
volume managers to find them. Interrupt Service Routines ISR are often used to handle
hardware.

The DDC signal interface is a standard interface between the volume manager and the device
driver and shall be implemented by all device drivers handling serial streams of characters.
The interface is defined in the "ddc.sig" header file.

A device driver usually controls one I/O controller, like a controller for serial ports. One
controller can have multiple channels, e.g. communication port 1 and 2.

2.9.1 Operations
The main operation of the DDC device driver is to transmit and receive data on a channel
and control the hardware for this purpose. Additionally it can cache data in the device driver.

Operations are included to support the features in the POSIX termios.h interface, which is to
a large extent implemented in the volume manager and in FLIB. Device attributes supported
are specially designed for the lower levels of the POSIX interface needs with control of the
transmit and receive streams and the serial hardware parameters.

A shutdown operation should force a device driver to terminate after proper actions.

Mounting and unmounting can be used to power on/off hardware in addition to selecting
which physical channel to access.

Reading from a device is always performed by activating asynchronous read. The device
driver will then continue to send data, as it arrives, until the read is deactivated or an error
occurs.
 / R3.1 Character Device Drivers - DDC • 25

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

2.9.2 Types of DDC Device Drivers
Many different device drivers might exist in a system, supporting different types of devices.
The EFS is delivered with the following characteristic device driver:

• Serial device driver "serdd" for controlling serial communication ports. It uses a Board
Support Package (BSP) serial device driver to actually manipulate the hardware. It is
suitable for use together with the confm terminal format managers. and also contains a
BIOS trap handler used by the VM for efficient data transfer.

With the serdd driver and the confm format manager running on the target system, an RS232
terminal or terminal emulator can be connected to the RS232 port of the target and the
terminal will be available for input and output in the file system. If the login process and
SHELL tools are used, a user might login to the system and perform shell commands.
 / R3.1 Types of DDC Device Drivers • 26

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

3 EFS Shell Commands
3.1 Command Shell

EFS has a couple of optional commands which can be added to the shell through late start
hooks. The term added means to register the commands in the group with the shell daemon
so shell knows about them. See the Shell manual for details. The EFS optional commands
are:

Group initEfsCmd • “cat” on page 28

• “cd” on page 28

• “chmod” on page 29

• “cp” on page 29

• “format” on page 30

• “mkdir” on page 31

• “mount” on page 31

• “mv” on page 31

• “ln” on page 30

• “ls” on page 30

• “pwd” on page 32

• “rm” on page 32

• “rmdir” on page 32

• “sync” on page 32

• “unmount” on page 33

• “vols” on page 33
 / R3.1 EFS Shell Commands • 27

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

3.2 EFS Shell Commands Reference
The following syntax is used when describing the command syntax:

[xxx] xxx is optional.

<yyy>Replace yyy with the actual value.

zzz zzz is a literal to be types exactly as shown.

zz/wwThe / means that either zz or ww can be used.

... The preceding item may be given multiple times.

Error messages
Generally errors from the commands are reported to standard error.

cat

Syntax cat [<filename> ...]
Description The cat command concatenates files. It reads each <filename> in sequence and

outputs the file's data on the standard output. Without filename, it reads from
standard input. Exit the standard input read mode by pressing Ctrl-x.

Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).

cd

Syntax cd [<dirname>]
Description The cd command changes the working directory of the shell process. If no

argument is specified and the OSE environment variable HOME has a value, cd
tries to change directory to the value of HOME.

Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).
 / R3.1 EFS Shell Commands Reference • 28

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

chmod

Syntax chmod <mode> <path> ...
Description The chmod command changes the access permission mode (read/write/execute)

for the specified files or directories. The mode is given as one three-digit octal
number or as a sequence of the ‘r’, ‘w’ and ‘x’ characters. With letters, only one
combination can be given which is set for all classes. With a three-digit octal
number the three digits are for the classes owner, group and others.
Any support of classes depends on the format manager.
Note that volumes are never "owned" by anyone.

Example
chmod 444 file allow only read for all classes
chmod r file same as above
chmod rwx file allow read, write, and execute (x=search for directories)
chmod 000 file remove all permissions for all classes

Restrictions The DOS file system only handles write permission. For both the DOS FAT and
the Extended DOS FAT file systems, the owner, group and other attributes are
super positioned, if a permission is set for one class it is set for all three classes.

Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).

cp

Syntax cp <source> ... <destination>
Description The cp command copies one or more files to a destination directory or copies one

file to a new name.
Restrictions There is no -p option, which would copy a file and keep the modification date.

The handling of the modification date depends on the volume manager.
Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).
 / R3.1 EFS Shell Commands Reference • 29

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

format

Syntax format <volume> [<parameters>]
Description The format command formats the specified volume. The volume must exist, i.e.

be the result of a device mounted on a format manager. No files may be open on
the volume. See the command “mount” on page 31.
Device specific parameters can be specified in the optional <parameter> in the
form "name1=value1;name2=value2 ". Also boolean parameters can be given,
i.e. a name without any "=value".

Restrictions If the format fails (for instance if the parameters are invalid) the specified device
may be left in a inconsistent state. Make sure that the format command always
has valid parameters.

Example format "/ram" "fatsize=16,clustersize=4,fats=1,rootsectors=64"
Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).

ln

Syntax ln <filename> [<linkname>]
Description The ln command creates a link with the given name (linkname) to an existing file

(filename). Observe the nonintuitive order of the arguments. If the linkname is
omitted, the link gets the same name as the last component of the filename and
is created in the current directory.

Restrictions Currently not implemented!
Only links to files on the same volume are supported. Not all file systems (e.g.
DOS FAT and Extended DOS FAT) support links.

Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).

ls

Syntax ls [<options>][<dirname> ...]
Description The ls command lists the specified files or the files and subdirectories in that

directory where the command is executed. Two option flags are possible.
Options -l Long listing with information such as access modes, ownership, size and

modification date.
-a Includes files starting with a ’.’ in the listing.
Combining -l and -a should be done by doing ls -la or ls -al.

Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).
 / R3.1 EFS Shell Commands Reference • 30

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

mkdir

Syntax mkdir <directory> ...
Description The mkdir command creates the specified directories. The access permission

attributes are set to allow read, write, execute for everybody.
Example mkdir "/ram/dir" "/ram/dir/subdir" "/ram/dir/subdir/subsub"
Restrictions Deep directories must be created one path component at a time.
Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).

mount

Syntax mount <volume> <format> <device> [<parameters>]
Description The mount command mounts a device on the format manager creating a volume

with the given name. A volume name shall always have a leading /. See the
efs_mount() FLIB function for details of the parameters.
Device specific parameters can be specified in the optional <parameter> in the
form "name1=value1;name2=value2 ". Also boolean parameters can be given,
i.e. a name without any "=value".

Example mount "/ram" "extfat" "ramdisk" "unit=0,lo=0,hi=199,fatbuffers=9,dirbuffers=20"
Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).

mv

Syntax mv <source> ... <destination>
Description The mv command moves or renames files or directories. The command moves

the specified source files to the destination directory. If only one source file is
specified and the destination is not an existing directory, the source file is
renamed to the destination name. The destination will be removed if it exists, but
must not be an open file. A file can be renamed to another path, i.e. moved, as
long as it is moved within the same volume, only if the file manager supports this.
When moving/renaming a directory, the destination must not exist (or at least be
empty as it will be removed).

Restrictions Files cannot be moved between volumes. Actually some file managers even have
the restriction that files cannot be moved between different directories.

Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).
 / R3.1 EFS Shell Commands Reference • 31

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

pwd

Syntax pwd
Description The pwd command prints the full path of the working directory to standard

output. This includes the volume name.
Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).

rm

Syntax rm <filename> ...
Description The rm command removes (deletes) the specified files.
Restrictions The file(s) must not be open.
Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).

rmdir

Syntax rmdir <directory> ...
Description The rmdir command removes (deletes) the specified directories.
Restrictions The directories to remove must be empty.
Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).

sync

Syntax sync <volume>
Description The sync command synchronizes the volume with the physical disk. When the

command returns, any cache buffers have been written by the volume manager to
the physical disk.

Restrictions Any output buffers within processes, in open streams or file descriptors, are NOT
forced out by this command, only the volume manager and device driver buffers.

Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).
 / R3.1 EFS Shell Commands Reference • 32

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

unmount

Syntax unmount [-f] <volume>
Description The unmount command unmounts the specified volume. It must be mounted and

no files must be open on the volume, unless -f is given.
Options -f Forces unmounting also if files are open on the volume.
Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).

vols

Syntax vols [<volume> ...]
Description The vols command reports volume statistics about the specified volumes or all

volumes if none specified.
Start Hook Enabled with the late start handler START_OSE_HOOK2(initEfsCmds).
 / R3.1 EFS Shell Commands Reference • 33

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

 / R3.1 EFS Shell Commands Reference • 34

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

4 Configuration of EFS
The OSE Embedded File System consists of several components. Many of these
components are separate processes that should be declared static in osemain.con or created
dynamically. The function library is linked to the applications and is thus no separate process.

Any shell process is dynamically created by the login process after a successful login. The
login process needs open standard file descriptors and thus need to be dynamically started, if
it shall be used. Common volumes might be mounted by an initiating process if needed.

osemain.con should declare the process start_efs. A standard version of this process in
implemented in startefs.c in the OSE installation. Here any common initiations can be
performed if needed.

Please read the file efs.txt in the OSE installation for detailed configuration information.

If you want to use the Shell with the EFS please read the Shell manual for Configuration
details.

4.1 Process Types And Priorities
Since file system operations require that a connection to the FSS file system server is
established to find EFS resource, the FSS should have as least the same priority as the highest
prioritized client.

Processes having great need for fast real-time response (such as disk device drivers and serial
device drivers) should have high priorities, maybe in the range of 2-10.

Processes having no such need for fast real-time response (such as format/volume managers
and the RAM disk device driver) should have lower priorities, maybe in the range of 15-25.

The login and shell daemon processes are processes that might consume CPU for long
periods of time. These processes do not need real-time responses in the millisecond range
and it is preferable to make them background processes. The login process should be created
dynamically at system start.
 / R3.1 Configuration of EFS • 35

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

4.2 Static configuration

4.2.1 EFS File System Block
The processes implementing the Embedded File System must execute in supervisor mode and
thus must be placed or created in a supervisor block. The DEFAULT block in osemain.con
is such a block but a special EFS block can also be created.

DEF_BLOCK(EFS, 0, DEFAULT, SUPERVISOR_MODE, poolsize, 180,
568, 1568, 8300, 500, 1000, 2000, 4000)

Replace poolsize with the amount of pool that is needed by the EFS block. 180, 568, 1568
and 8300 are buffer sizes suitable for use with the extended DOS FAT format manager. 500,
1000, 2000, 4000 are the stack sizes that should match the stack sizes used for the processes
in this block.

4.2.2 File System Server - FSS
Since the file system server defines the existence of the file system it is proper to define this
process as a static process in osemain.con. An FSS must exist in each machine which either
implements a file system or shall be able to access it.

PRI_PROC(ose_fss, ose_fss, 2000, priority, block, 0, NULL)

Replace priority with actual priorities and replace block with the name of a supervisor block
such as EFS or DEFAULT.

4.2.3 Format Managers - FM
Select one of the two disk format managers, dosfm for DOS/FAT compatibility of extfm for
higher functionality. If a terminal connection (RS232, TELNET) with the system is wanted,
also specify the console format manager confm. The dosfm will register with the name "fat"
in FSS, the extfm uses "extfat" and the confm simply registers as "confm". Declare these
processes as static in osemain.con:

PRI_PROC(ose_dosfm, ose_dosfm, 2000, priority, block, 0, NULL)
PRI_PROC(ose_extfm, ose_extfm, 2000, priority, block, 0, NULL)
PRI_PROC(ose_confm, ose_confm, 2000, priority, block, 0, NULL)

Replace priority with actual priorities and replace block with the name of a block such as
EFS or DEFAULT. To enhance performance, the dosfm and extfm format managers read the
client’s memory space, i.e. FLIB will use the signals with pointers towards dosfm and extfm
where possible. In a system with memory protection (using the MMS) this is only possible
if the CPU is executing in supervisor mode. To accomplish this, the dosfm and extfm
processes must be placed in a supervisor block (such as DEFAULT).

4.2.4 Block Device Drivers - DDB
If any of the disk format managers (dosfm or extfm) should use the RAM disk then configure
the RAM disk device driver. The RAM disk example delivered with EFS will register with
the name "ramdisk". Declare this a static process in osemain.con:
 / R3.1 Static configuration • 36

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

PRI_PROC(ose_ramdisk, ose_ramdisk, 2000, priority, block, 0, NULL)

Replace priority with actual priorities and replace block with the name of the block the
corresponding dosfm or extfm process is placed in.

4.2.5 Shell Commands
To enable the built-in shell commands that manipulates the File System, Processes, they must
be initialized in the shell daemon by running a start hook in osemain.con. Please read the
file shellcmds.txt in the OSE installation and Shell manual for detailed configuration
information.

File system commands (cd, chmod, ls, cat etc.) are enabled by this hook:

START_OSE_HOOK2(initEfsCmds)
 / R3.1 Shell Commands • 37

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

4.3 Dynamic Configuration
Some EFS configurations must be performed dynamically by a custom-written process. This
process should initialize processes, mount devices and start login services. The startefs.c
source is provided with EFS as an example, which could be used as a base for a customized
process. See the Shell manual for more information regarding Shell configuration.

4.3.1 Mount Devices

4.3.1.1 Mount and Format RAM Disk
Use a format manager to mount a volume manager on the RAM disk. Then format the RAM
disk with 8K clusters (16 sectors with 512 bytes each). Below the current directory is set to
the volume created and will later be inherited by the login process, and thus any started shell
processes.

#define DISKNAME "/ram"
if (efs_mount(DISKNAME, "extfat", "ramdisk", "unit=0") != 0)
error(0xDEAD0000 + __LINE__);
if (efs_format(DISKNAME, "clustersize=16", False) != 0)
error(0xDEAD0000 + __LINE__);
if (chdir(DISKNAME) != 0)
error(0xDEAD0000 + __LINE__);

4.3.2 Stop Configuration Process
Close our own copies of the configuration process’ stdio file descriptors and hibernate
forever.

stop(current_process());
 / R3.1 Dynamic Configuration • 38

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

Index
A

absolute paths 14
Additional Tools 10
ANSI-C 7

B
BIOS trap handler 24
BIOS Trap Signal Operations 24
Block Device Drivers 36
Block Device Drivers - DDB 23
block range 23
Blocked Device Driver 7
Blocked Device Driver Signal Interface 7
built-in shell commands 37

C
cache buffers 23
cat shell command 28
cd shell command 28
Character Device Driver 7
Character Device Driver - DDC 7
Character Device Driver Signal Interface 7
Character Device Drivers 25
chdir() 38
Command Shell 27
Common Signal Interface FM 22
confm 36
cp shell command 29
current directory 14

D
DDB

Block Device Drivers Storage 23
Blocked Device Driver 7
disk format managers 36
raw devices 19

DDB Device Drivers 24
DDB ramdisk 36
DDC 25
DDC Device Drivers 26
DDC Device Drivers BIOS trap handler 26
DDC Device drivers confm 26
device driver 7
device drivers - DDB 36
disk device drivers 35
disk devices 23
DOS FAT 29
 / R3.1
DOS/FAT 12 and 16 bit 20
dosfm 36
dosfm fat 36
Dynamic Configuration 38

E
EFS 7
EFS and Registration of Resources 10
EFS Components 10
EFS File System Block 36
EFS processes for function calls 16
EFS Requirements 6
efs.txt 35
efs_mount() 38
Embedded File System 10
Embedded File System Overview 7
example /ram 31
extended DOS FAT 30
extended DOS FAT file systems 29
extended FAT file system 36
extended FAT format manager 20
extfat 36
extfat in the FSS 20
extfm 36

F
FAT 36
File Managers 19
File Managers - FM 19
file system resource broker 17
File System Server 7
File System Server - FSS 17
File System Server Signal Interface 7
FLIB 7
Flow of Signals 12
FM 7
Format and Volume Manager Sig Interfaces 7
Format Manager 7
format manager 21
format manager (dosfm) fat 20
format manager confm 20
Format Managers 36
Format Managers - DDC 19
Format Managers - FM 36
format shell command 30
format/volume manager 35
formatting, low level 23
FSS 7

osemain.con 36
 Index • 39

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

FSS - File System Server 17
Function Library 15
Function Library - FLIB 15
function library function calls 7
Function Library Interface 7
Functions 15

G
global resource 17

I
IDE controller 23
Implementation Dependent Parameters 11
initEfsCmds 37
Interface Support Requests 10
Interrupt Service Routine ISR 23
ISR handle hardware 25

L
label on a volume 14
Linking Modules 15
ln shell command 30
local resource 17
Location 20
locking 23
login 7
login process 35
ls shell command 30

M
memory protection 36
memory space FLIB 36
mkdir shell command 31
MMS 36
Mount and Format RAM Disk 38
Mount Devices 38
mount RAM disk 38
mount shell command 31
Mounting units of partitions volume manager

23
mv shell command 31

N
New for EFS 5

O
Operations 23
Operations FLIB 25
Operatons

POSIX 25
ose_confm 36
ose_dosfm 36
ose_extfm 36
 / R3.1
P
partitions 23
POSIX 7
Process Status 15
Process Types And Priorities 35
Process Types FSS 35
pwd shell command 32

R
RAM disk 38
RAM disk driver ramdisk 24
ramdisk 38
relative paths 14
remote FSS 17
Resolving with Timeout 18
resource broker 17
Resource Names 18
Resource Types 18
Restrictions FAT 30
rm shell command 32
rmdir shell command 32

S
SCSI controller 23
serdd 26
serial ports 25
shell 7
Shell Commands 37
shell commands 27
Shell Process 7
shellcmds.txt 37
start_efs 35
startefs.c 35
startefs.c source 38
Static configuration 36
Static Configuration File System Server 36
Static configuration FSS 36
status 21
Stop Configuration Process 38
storage devices 23
sync shell command 32

T
telnet 20
telnet connections 25
terminal connections 25
terminal format manager 20
termios.h 25

U
unit 23
 Index • 40

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

unmount shell command 33
unregister 21

V
VM 7
VM - Volume Managers 21
vols shell command 33
volume label 14
Volume Manager 7
volume manager 19
volume manager DDB 23
Volume Manager Status and Control 21
Volume Managers - VM 21
volume name format 14
 / R3.1
 Index • 41

User’s Guide

Em
be

dd
ed

 F
ile

 S
ys

te
m

 / R3.1 Index • 42

	Contents
	1 Introduction
	1.1 About his manual
	1.2 New for EFS User’s Guide
	1.3 Requirements
	1.4 Overview of the OSE Embedded File System

	2 EFS - System Description
	2.1 Embedded File System
	2.1.1 EFS Components
	2.1.2 Additional Tools
	2.1.3 Interactions with EFS and Registration of Resources
	2.1.4 Interface Support Requests
	2.1.5 Implementation Dependent Parameters

	2.2 Flow of Signals Through EFS Components
	2.3 Path Names and Current Directory in EFS
	2.3.1 Path Names, Volume Names and Labels
	2.3.2 Current Directory and Other Status Information
	2.3.3 Relative or Absolute Path Names

	2.4 Function Library - FLIB
	2.4.1 Functions
	2.4.2 Process Status
	2.4.3 Linking Modules
	2.4.4 EFS processes for function calls

	2.5 File System Server - FSS
	2.5.1 FSS can Share their Global Resources with Other Machines
	2.5.2 All Resources Must Register with FSS
	2.5.3 Resource Names and Resource Types
	2.5.4 Resource Resolving with Timeout

	2.6 File Managers - FM
	2.6.1 FM will Mount Volume Managers and Share Signal Interface
	2.6.2 Different Types of Format/Volume Managers
	2.6.3 Location

	2.7 Volume Managers - VM
	2.7.1 Volume Manager Status and Control
	2.7.2 Common Signal Interface for FM and VM

	2.8 Block Device Drivers - DDB
	2.8.1 Operations
	2.8.2 Mounting Units or Partitions
	2.8.3 Types of DDB Device Drivers
	2.8.4 BIOS Trap Signal Operations

	2.9 Character Device Drivers - DDC
	2.9.1 Operations
	2.9.2 Types of DDC Device Drivers

	3 EFS Shell Commands
	3.1 Command Shell
	3.2 EFS Shell Commands Reference
	cat
	cd
	chmod
	cp
	format
	ln
	ls
	mkdir
	mount
	mv
	pwd
	rm
	rmdir
	sync
	unmount
	vols

	4 Configuration of EFS
	4.1 Process Types And Priorities
	4.2 Static configuration
	4.2.1 EFS File System Block
	4.2.2 File System Server - FSS
	4.2.3 Format Managers - FM
	4.2.4 Block Device Drivers - DDB
	4.2.5 Shell Commands

	4.3 Dynamic Configuration
	4.3.1 Mount Devices
	4.3.1.1 Mount and Format RAM Disk

	4.3.2 Stop Configuration Process

	Index

