
XE5 - Fun with external Java libraries

Now, I have to assume a few things here - you are reasonably familiar with delphi AND you can

create a library APK yourself. It’s not hard, honest. You DO need to be able to create an APK or JAR

with a classes.dex AND I am only (for my purposes) interested in talking to a java class which I have

code for - its possible to do this without the actual java code but you will need the classes.dex file.

You also need to be brave to delve into the world of JNI.

Android API
To do any of this you have to hit the Android API support functions that are provided, specifically

you need;

 Androidapi.Jni

 Androidapi.JNI.JavaTypes

 Androidapi.JNI.Dalvik

 Androidapi.JNIBridge

 Androidapi.JNI.GraphicsContentViewText

 FMX.Helpers.Android

It took me a bit of grepping and source spelunking to work this lot out, I would advise you do the

same – it is (interestingly) informative.

Loading a class dynamically
Java provides a set of mechanisms to allow you split code across JAR files, these involve

classloaders and generally add some reflection to interact with the contained classes.

Android extends this to provide support for compiled and compressed java classes contained in DEX

files - DEXClassLoader. This android class will allow you to load and get class references of a

contained class – which you can then use to create objects and interact with.

I found a Delphi import for DEXClassLoader in Androidapi.Jni.Dalvik – add this to your project and

you can use it. But hold on a moment – go read the Android developer page on the DexClassLoader

and you will see that there are a couple of things we need to do first.

1. We need a full path to the APK/JAR file that is correct for the device you are targeting.

2. We need a application writable folder to put the optimized DEX file in (don’t ask).

3. We need a “parent” for the class loader.

These things stumpted me for a while – but help is at hand, well a helper class anyway. Delphi

helpfully supplies a FMX.Helpers.Android unit – this has a few useful things in it, but most

importantly it provides access to the Android level context and native activity objects. If you don’t

understand what these are then I would suggest a bit of research and learning about android before

you get in over your head.

Pete

2013-09-18 21:32:41

--

Marked set by Pete

http://www.pclviewer.com/android/androidJNI.html

Setting up
Presuming you have created a java class project using eclipse or android studio AND presuming that

it compiles then you need to copy that to your device. Logically it should be done as part of the

application deployment, but at the time of writing I hadn’t figured that part out (or the deploying of

extra files is broken somehow, now that XE5 is released I must try this part again) – I put mine into

the Downloads folder of the internal (non-system) disk of my Nexus 7.

Using a handy SManager app I had already installed (which contains a workable file manager) I

managed to get a file path for my APK that was (ready for this?)

“/storage/emulated/0/Download/<APK Filename>”

There is almost certainly a way of getting this folder at run time using the Android API – I’ll leave you

to figure that out. Unless you are also targeting a Nexus 7 this path is probably going to be useless

to you – put your APK into a location that makes sense to you and using a file manager app on the

device to get the one that’s correct for you. OR go work out how to get the external storage from

the API – I’ll give you a hint in a mo!

If you have a rooted device and you can get access to the deployment folder in /data/data then you

can deploy the APK into the libs folder (as you are supposed to); however I found that first of you

have to root your device to do it which is probably not a good idea unless you are targeting rooted

devices specifically and secondly that you will have to do it each time you hit the run or debug button

in Delphi. I quickly got bored of that game and placed my APK elsewhere. I will have to test actually

installing the library APK and see where it goes and if you can load it still in the same way.

Something for another day perhaps.

Get the directories
FMX.Helpers.Android contains a global var “SharedActivityContext” – we can use this to get some

bits of information back about the local Android environment – notably the “getDir” function to

query where you can put stuff – this in really useful in android apps – you can use this to work out

where to store state information for your app, or where to put databases you are using. The Android

Dev help page for this is here.

You’ll need to use the helper function STRINGTOJSTRING to convert any Delphi strings to JSTRINGS

to pass them to a java call – including the GETDIR function.

Code sample

const

test_apk_fn='/storage/emulated/0/Download/test.apk';

var

context:JContext;

dexpath_jfile,optimizedpath_jfile:JFile;

dexpath_jstring,optimizedpath_jstring:JString;

begin

context:=SharedActivityContext;

dexpath_jstring:=StringToJString(test_apk_fn);

optimizedpath_jfile:=context.getDir(StringToJString('outdex'),

TJContext.javaclass.mode_private);

http://developer.android.com/reference/android/content/Context.html#getDir(java.lang.String%2C%20int)

optimizedpath_jstring:=optimizedpath_jfile.getAbsolutePath;

Note that we have to jump through a couple of hoops – notably getDir returns a JFILE type which we
call the GETABSOLUTEPATH member of to return something useful , also used the
TJContext.JavaClass to access the MODE_PRIVATE constant – this is true of all the imported android
java classes, the <classname>.javaclass member provides convenient access to class level constants
and class procedures and functions that are not immediately visible in delphi.

Load the library, then load the class
Next step – the title says it all really, we are going to load the class. The important part here is the

call to the correct constructor – calling the TDelphiClass.create constructor never worked for me, I

had to find the constructor (typically called INIT) and hit it directly. This allows you to specify where

the APK/JAR is and where to optimise the classes to – this second folder has to be application

writeable so it is suggested that you make use of the context.getDir function to ensure that you have

full access at run time.

Using the above code example, the call to create the class loader looks like this:-

cl:=TJDexClassLoader.JavaClass.init(dexpath_jstring,optimizedpath_js

tring,nil,TJDexClassLoader.JavaClass.getSystemClassLoader);

Where cl is a JDexClassLoader variable – not a TJDexClassLoader. IF this works you get a

JDexClassLoader back – if the result is NIL then you have gotten something wrong with your paths or

the APK/JAR library.

This done, you make a call to the loadclass function – this (if it works) will return a JLang_Class object

which represents the class in java. For my test I had a simple, parameter-less constructor, if you

have to pass parameters to the constructor then you will need to jump through more hoops I’m

afraid – you’ll have to hit the JNI to find the correct constructor (using the method signature) – I’ll be

covering this in a mo.

For my testing I could use a simple call to newInstance.

Code sample

const

test_apk_fn='/storage/emulated/0/Download/test.apk';

var

context:JContext;

dexpath_jfile,optimizedpath_jfile:JFile;

dexpath_jstring,optimizedpath_jstring:JString;

cl:JDexClassLoader;

jLoadedClass:Jlang_Class;

jLoadedObject:JObject;

begin

context:=SharedActivityContext;

dexpath_jstring:=StringToJString(test_apk_fn);

optimizedpath_jfile:=context.getDir(StringToJString('outdex'),

TJContext.javaclass.mode_private);

optimizedpath_jstring:=optimizedpath_jfile.getAbsolutePath;

cl:=TJDexClassLoader.JavaClass.init(dexpath_jstring,

optimizedpath_jstring,nil,

TJDexClassLoader.JavaClass.getSystemClassLoader);

{you should test for a nil return here and implement error

handling}

jLoadedClass:=cl.loadclass(

stringtoJString(‘com/example/test/testclass’));

jLoadedObject=jLoadedClass.newInstance;

Note the class path, you are not using the expected package naming com.domain.package that you

would use in Java – if you take the time to examine some of the RTL Android imports you will see

that the java signatures take the com/domain/package/classname format – you can list the classes

and the class methods defined in a APK/JAR by extracting the classes.dex file and running DEXDUMP

on it (which is included in the Android SDK, helpfully enough).

Finally, also note that class, package and indeed everything is Java is case sensitive.

Using JNI to find and call methods
When using java classes that are defined by the RTL, JNI is taken care of behind the scenes, the

classes and class methods are mapped to interfaces according to name and signature. This process

is seemless and very easy to use should you find an Android class which is not already imported for

you by the RTL.

There are a couple of things you need to know before you start, however. Firstly you need to know

the exact case of the java method you are calling, its best to either have the source code to check OR

to run DEXDUMP on the classes.dex file.

You gain access to the JNI base calls by using the PJNIENV structure from Android.JNI. You get a

reference to one valid to the current run time environment by using the JNIRESOLVER class in

Android.JNIBridge.

Code sample

Uses

Android.JNIBridge;

var

JavaEnv:PJNIEnv;

Begin

JavaEnv:=TJNIResolver.GetJNIEnv;

End;

This done, you can now make base JNI calls using this structure – rather than being a class, PJBIEnv is

in fact a record.

There is a final bit of trickery needed to use JNI – you need to get JNIObject references for the

loaded class and the java object to pass the JNI methods. Fortunately, you can get to these objects

by using interfaces.

Code sample

var

jLoadedObject:JObject;

jLoadedClass:JLang_Class;

jLoadedClassID,jLoadedObjectID:JNIObject;

begin

{...do the class load and get the references to the java class and

java object first!}

jLoadedClassID:=(jLoadedClass as ILocalObject).GetObjectID;

jLoadedObjectID:= (jLoadedObject as ILocalObject).GetObjectID;

end;

ALL java imports implement the ILocalObject interface – however you can wrap this in error checking

and trapping easily enough by doing a QueryInterface on the java objects. Note that the java class

returned by loadclass is, in fact, just another object to the JNI.

Finally, you have everything you need to query and call members of the java classes you import – the

simplest way of querying a java class is to use the TJNIResolver class (although you can do it with

direct JNI calls using the PJNIEnv structure).

For my internal testing I implemented two simple methods in my java class – on to set a internal

integer value and one to return it. This is designed to be a proof of concept and nothing more, as a

result I have not attempted to cover calling java methods that take multiple parameters, although I

don’t think its much more difficult than this.

Code sample

var

jLoadedClassID,jLoadedObjectID:JNIObject;

jGetMethod,jSetMethod:JNIMethodID;

begin

{...don’t forget the other bits first!}

jGetMethod:=TJNIResolver.GetJavaMethodID(jLoadedClassID

,'getIntValue','()I');

jSetMethod:=TJNIResolver.GetJavaMethodID(jLoadedClassID

,'setIntValue','(I)V');

end;

Note that you need to know the method signature before you call it – doing a DEXDUMP on

classes.dex will tell you this – although its not hard to translate from the source. My test class had

two methods – function “getIntValue” returning a 32bit integer and procedure “setIntValue” taking

1 integer parameter. This gives a method signature of “()I” and “(I)V”, respectively.

Calling these methods requires you to use two JNI CallXXXXMethod members, there are many

defined for passing parameters and returning results in three ways. I am using the A methods which

take the arguments as a JNIValue (well, a pointer to one or a pointer to an array of them).

Code sample

var

jLoadedClassID,jLoadedObjectID:JNIObject;

jGetMethod,jSetMethod:JNIMethodID;

JavaEnv:PJNIEnv;

jiReturnedValue:JNIInt;

jvValuetoSet:JNIValue;

begin

{...don’t forget the other bits first!}

jiReturnedValue:=JavaEnv^.CallIntMethodA(JavaEnv,

jLoadedObjectID,jGetMethod);

jvValuetoSet.i:=1234567890;

JavaEnv^.CallVoidMethodA(JavaEnv, jLoadedObjectID, jSetMethod,

@jvValuetoSet);

end;

There you have it – I believe you have to manage the objects you create in this way yourself, so don’t

forget to properly dispose of them (either cast the objects to TJavaImport and free them or call

DeleteGlobalRef of TJNIResolver). Easy when you know how, eh?

