
www.idesign.net February 2010

- 1 -

©2010 IDesign Inc. All rights reserved

WCF Coding Standard

Guidelines and Best Practices

Version 4.0

Author: Juval Lowy
www.idesign.net

www.idesign.net February 2010

- 2 -

©2010 IDesign Inc. All rights reserved

Table of Content

Preface.. 3
General Design Guidelines... 4
Essentials.. 4
Service Contracts ... 5
Data Contracts.. 6
Instance Management... 6
Operations and Calls .. 6
Faults.. 8
Transactions ... 9
Concurrency Management ... 10
Queued Services... 11
Security .. 12
The Service Bus ... 13
Resources ... 14

www.idesign.net February 2010

- 3 -

©2010 IDesign Inc. All rights reserved

Preface
A comprehensive coding standard is essential for a successful product delivery. The
standard helps in enforcing best practices and avoiding pitfalls, and makes knowledge
dissemination across the team easier. Traditionally, coding standards are thick, laborious
documents, spanning hundreds of pages and detailing the rationale behind every
directive. While these are still better than no standard at all, such efforts are usually
indigestible by the average developer. In contrast, the WCF coding standard presented
here is very thin on the “why” and very detailed on the “what”. I believe that while fully
understanding every insight that goes into a particular programming decision may require
reading books and even years of experience, applying the standard should not. When
absorbing a new developer into your team, you should be able to simply point him or her
at the standard and say: "Read this first." Being able to comply with a good standard
should come before fully understanding and appreciating it—that should come over time,
with experience. The coding standard presented next captures dos and don'ts, pitfalls,
guidelines, and recommendations. It uses the best practices and helper classes discussed
in both the WCF Master Class and my book Programming WCF Services.

Juval Lowy

www.idesign.net February 2010

- 4 -

©2010 IDesign Inc. All rights reserved

General Design Guidelines
1. All services must adhere to these principles:

a) Services are secure.
b) Service operations leave the system in a consistent state.
c) Services are thread-safe and can be accessed by concurrent clients.
d) Services are reliable.
e) Services are robust.

2. Services can optionally adhere to these principles:
a) Services are interoperable.
b) Services are scale-invariant.
c) Services are available.
d) Services are responsive.
e) Services are disciplined and do not block their clients for long.

Essentials
1. Place service code in a class library, not in any hosting EXE.
2. Do not provide parameterized constructors to a service class, unless it is a singleton

that is hosted explicitly.
3. Enable reliability in the relevant bindings.
4. Provide a meaningful namespace for contracts. For outward-facing services, use your

company’s URL or equivalent URN with a year and month to support versioning.
For example:
[ServiceContract(Namespace = "http://www.idesign.net/2009/06")]
interface IMyContract
{...}

For intranet services, use any meaningful unique name, such as MyApplication.
For example:
[ServiceContract(Namespace = "MyApplication")]
interface IMyContract
{...}

5. With intranet applications on prefer self-hosting to IIS hosting when the WAS is
unavailable.

6. Do not mix and match named bindings with default bindings. Either have all your
bindings be explicitly referenced, or use only default bindings.

7. Do not mix and match named behaviors with default behaviors. Either have all your
behaviors be explicitly referenced, or use only default behaviors.

8. Always name all endpoints in the client config file.
9. Do not use SvcUtil or Visual Studio 2010 to generate a config file.

www.idesign.net February 2010

- 5 -

©2010 IDesign Inc. All rights reserved

10. When using a tool such as Visual Studio 2010 to generate the proxy, do clean up the
proxy.

11. Do not duplicate proxy code. If two or more clients use the same contract, factor the
proxy to a separate class library.

12. Always close or dispose of the proxy.
13. When using discovery, prefer dynamic addresses.
14. When using discovery, do support the metadata exchange endpoint over TCP.
15. When using discovery, avoid cardinality of “some”.

Service Contracts
1. Always apply the ServiceContract attribute on an interface, not a class:

//Avoid:
[ServiceContract]
class MyService
{
 [OperationContract]
 public void MyMethod()
 {...}
}
//Correct:
[ServiceContract]
interface IMyContract
{
 [OperationContract]
 void MyMethod();
}
class MyService : IMyContract
{
 public void MyMethod()
 {...}
}

2. Prefix the service contract name with an I:
[ServiceContract]
interface IMyContract
{...}

3. Avoid property-like operations:
//Avoid:
[ServiceContract]
interface IMyContract
{
 [OperationContract]
 string GetName();

 [OperationContract]
 void SetName(string name);
}

4. Avoid contracts with one member.
5. Strive to have three to five members per service contract.

www.idesign.net February 2010

- 6 -

©2010 IDesign Inc. All rights reserved

6. Do not have more than 20 members per service contract. Twelve is probably the
practical limit.

Data Contracts
1. Avoid inferred data contracts (POCO). Always be explicit and apply the

DataContract attribute.
2. Use the DataMember attribute only on properties or read-only public members.
3. Avoid explicit XML serialization on your own types.
4. Avoid message contracts.
5. When using the Order property, assign the same value to all members coming from

the same level in the class hierarchy.
6. Support IExtensibleDataObject on your data contracts. Use explicit interface

implementation.
7. Avoid setting IgnoreExtensionDataObject to true in the

ServiceBehavior and CallbackBehavior attributes. Keep the default of
false.

8. Do not mark delegates and events as data members.
9. Do not pass .NET-specific types, such as Type, as operation parameters.
10. Do not accept or return ADO.NET DataSets and DataTables (or their type-safe

subclasses) from operations. Return a neutral representation such as an array.
11. Suppress the generation of a generic type parameter hash code and provide a legible

type name instead.

Instance Management
1. Prefer the per-call instance mode when scalability is a concern.
2. If setting SessionMode.NotAllowed on the contract, always configure the

service instancing mode as InstanceContextMode.PerCall.
3. Do not mix sessionful contracts and sessionless contracts in the same service.
4. Avoid a singleton unless you have a natural singleton.
5. Use ordered delivery with a sessionful service.
6. Avoid instance deactivation with a sessionful service.
7. Avoid demarcating operations.
8. With durable services, always designate a completing operation.

Operations and Calls
1. Do not treat one-way calls as asynchronous calls.
2. Do not treat one-way calls as concurrent calls.
3. Expect exceptions from a one-way operation.

www.idesign.net February 2010

- 7 -

©2010 IDesign Inc. All rights reserved

4. Enable reliability even on one-way calls. Use of ordered delivery is optional for one-
way calls.

5. Avoid one-way operations on a sessionful service. If used, make it the terminating
operation:
[ServiceContract(SessionMode = SessionMode.Required)]
interface IMyContract
{
 [OperationContract]
 void MyMethod1();

 [OperationContract(IsOneWay = true,IsInitiating = false,IsTerminating =true)]
 void MyMethod2();
}

6. Name the callback contract on the service side after the service contract name,
suffixed by Callback:
interface IMyContractCallback
{...}
[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{...}

7. Strive to mark callback operations as one-way.
8. Use callback contracts for callbacks only.
9. Avoid mixing regular callbacks and events on the same callback contract.
10. Event operations should be well designed:

a) void return type
b) No out-parameters
c) Marked as one-way operations

11. Avoid using raw callback contracts for event management, and prefer using the
publish-subscribe framework.

12. Always provide explicit methods for callback setup and teardown:
[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void DoSomething();

 [OperationContract]
 void Connect();

 [OperationContract]
 void Disconnect();
}
interface IMyContractCallback
{...}

13. Use the type-safe DuplexClientBase<T,C> instead of
DuplexClientBase<T>.

14. Use the type-safe DuplexChannelFactory<T,C> instead of
DuplexChannelFactory<T>.

www.idesign.net February 2010

- 8 -

©2010 IDesign Inc. All rights reserved

15. When debugging or in intranet deployment of callbacks over the
WSDualHttpBinding, use the CallbackBaseAddressBehavior attribute
with CallbackPort set to 0:
[CallbackBaseAddressBehavior(CallbackPort = 0)]
class MyClient : IMyContractCallback
{...}

Faults
1. Never use a proxy instance after an exception, even if you catch that exception.
2. Avoid fault contracts and allow WCF to mask the error.
3. Do not reuse the callback channel after an exception even if you catch that exception,

as the channel may be faulted.
4. Use the FaultContract attribute with exception classes, as opposed to mere

serializable types:
//Avoid:
[OperationContract]
[FaultContract(typeof(double))]
double Divide(double number1,double number2);

//Correct:
[OperationContract]
[FaultContract(typeof(DivideByZeroException))]
double Divide(double number1,double number2);

5. Avoid lengthy processing such as logging in
IErrorHandler.ProvideFault().

6. With both service classes and callback classes, set
IncludeExceptionDetailInFaults to true in debug sessions, either in
the config file or programmatically:
public class DebugHelper
{
 public const bool IncludeExceptionDetailInFaults =
#if DEBUG
 true;
#else
 false;
#endif
}
[ServiceBehavior(IncludeExceptionDetailInFaults =
 DebugHelper.IncludeExceptionDetailInFaults)]
class MyService : IMyContract
{...}

7. In release builds, do not return unknown exceptions as faults except in diagnostic
scenarios.

8. Consider using the ErrorHandlerBehavior attribute on the service, both for
promoting exceptions to fault contracts and for automatic error logging:
[ErrorHandlerBehavior]
class MyService : IMyContract
{...}

www.idesign.net February 2010

- 9 -

©2010 IDesign Inc. All rights reserved

9. Consider using the CallbackErrorHandlerBehaviorAttribute on the
callback client, both for promoting exceptions to fault contracts and for automatic
error logging:
[CallbackErrorHandlerBehavior(typeof(MyClient))]
class MyClient : IMyContractCallback
{
 public void OnCallabck()
 {...}
}

Transactions
1. Never manage transactions directly.
2. Apply the TransactionFlow attribute on the contract, not the service class.
3. Do not perform transactional work in the service constructor.
4. Using this book’s terminology, configure services for either Client or Client/Service

transactions. Avoid None or Service transactions.
5. Using this book’s terminology, configure callbacks for either Service or

Service/Callback transactions. Avoid None or Callback transactions.
6. When using the Client/Service or Service/Callback mode, constrain the binding to

flow transactions using the BindingRequirement attribute.
7. On the client, always catch all exceptions thrown by a service configured for None or

Service transactions.
8. Enable reliability and ordered delivery even when using transactions.
9. In a service operation, never catch an exception and manually abort the transaction:

//Avoid:
[OperationBehavior(TransactionScopeRequired = true)]
public void MyMethod()
{
 try
 {
 ...
 }
 catch
 {
 Transaction.Current.Rollback();
 }
}

10. If you catch an exception in a transactional operation, always rethrow it or another
exception.

11. Keep transactions short.
12. Always use the default isolation level of IsolationLevel.Serializable.
13. Do not call one-way operations from within a transaction.
14. Do not call nontransactional services from within a transaction.
15. Do not access nontransactional resources (such as the filesystem) from within a

transaction.

www.idesign.net February 2010

- 10 -

©2010 IDesign Inc. All rights reserved

16. With a sessionful service, avoid equating the session boundary with the transaction
boundary by relying on auto-complete on session close.

17. Strive to use the TransactionalBehavior attribute to manage transactions on
sessionful services:
[Serializable]
[TransactionalBehavior]
class MyService : IMyContract
{
 public void MyMethod()
 {...}
}

18. When using a sessionful or transactional singleton, use volatile resource managers to
manage state and avoid explicitly state-aware programming or relying on WCF’s
instance deactivation on completion.

19. With transactional durable services, always propagate the transaction to the store by
setting SaveStateInOperationTransaction to true.

Concurrency Management
1. Always provide thread-safe access to:

a) Service in-memory state with sessionful or singleton services
b) Client in-memory state during callbacks
c) Shared resources
d) Static variables

2. Prefer ConcurrencyMode.Single (the default). It enables transactional access
and provides thread safety without any effort.

3. Keep operations on single-mode sessionful and singleton services short in order to
avoid blocking other clients for long.

4. When using ConcurrencyMode.Multiple, you must use transaction auto-
completion.

5. Consider using ConcurrencyMode.Multiple on per-call services to allow
concurrent calls.

6. Transactional singleton service with ConcurrencyMode.Multiple must have
ReleaseServiceInstanceOnTransactionComplete set to false:
[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,
 ConcurrencyMode = ConcurrencyMode.Multiple,
 ReleaseServiceInstanceOnTransactionComplete = false)]
class MySingleton : IMyContract
{...}

7. Never self-host on a UI thread, and have the UI application call the service.
8. Never allow callbacks to the UI application that called the service unless the callback

posts the call using SynchronizationContext.Post().
9. When supplying the proxy with both synchronous and asynchronous methods, apply

the FaultContract attribute only to synchronous methods.

www.idesign.net February 2010

- 11 -

©2010 IDesign Inc. All rights reserved

10. Keep asynchronous operations short. Do not equate asynchronous calls with lengthy
operations.

11. Do not mix transactions with asynchronous calls.

Queued Services
1. On the client, always verify that the queue (and a dead-letter queue, when applicable)

is available before calling the queued service. Use
QueuedServiceHelper.VerifyQueues() for this purpose.

2. Always verify that the queue is available when hosting a queued service (this is done
automatically by ServiceHost<T>).

3. Except in isolated scenarios, avoid designing the same service to work both queued
and non-queued.

4. The service should participate in the playback transaction.
5. When participating in the playback transaction, avoid lengthy processing in the

queued service.
6. Avoid sessionful queued services.
7. When using a singleton queued service, use a volatile resource manager to manage

the singleton state.
8. When using a per-call queued service, explicitly configure the contract and the

service to be per-call and sessionless:
[ServiceContract(SessionMode = SessionMode.NotAllowed)]
interface IMyContract
{...}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract
{...}

9. Always explicitly set contracts on a queued singleton to disallow sessions:
[ServiceContract(SessionMode = SessionMode.NotAllowed)]
interface IMyContract
{...}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
class MyService : IMyContract
{...}

10. The client should call a queued service inside a transaction.
11. On the client side, do not store a queued service proxy in a member variable.
12. Avoid relatively short values of TimeToLive, as they negate the justification for a

queued service.
13. Avoid nontransactional queues.
14. When using a response queue, have the service participate in the playback

transaction and queue the response in that transaction.
15. Have the response service participate in the response playback transaction.
16. Avoid lengthy processing in a queued response operation.

www.idesign.net February 2010

- 12 -

©2010 IDesign Inc. All rights reserved

17. With MSMQ 3.0, prefer a response service to a poison queue service dealing with
failures of the service itself.

18. With MSMQ 4.0, use ReceiveErrorHandling.Reject for poison messages
unless you have advanced processing with ReceiveErrorHandling.Move.
Avoid ReceiveErrorHandling.Fault and
ReceiveErrorHandling.Drop.

19. With MSMQ 4.0, consider the use of a response service to handle service playback
failures.

20. Unless dealing with a sessionful contract and service, never assume the order of
queued calls.

21. Avoid multiple service endpoints sharing a queue.
22. Avoid receive context.

Security
1. Always protect the message and provide for message confidentiality and integrity.
2. In an intranet, you can use Transport security as long as the protection level is set to

EncryptAndSign.
3. In an intranet, avoid impersonation. Set the impersonation level to

TokenImpersonationLevel.Identification.
4. When using impersonation, have the client use

TokenImpersonationLevel.Impersonation.
5. Use the declarative security framework and avoid manual configuration.
6. Never apply the PrincipalPermission attribute directly on the service class:

//Will always fail:
[PrincipalPermission(SecurityAction.Demand,Role = "...")]
public class MyService : IMyContract
{...}

7. Avoid sensitive work that requires authorization at the service constructor.
8. Avoid demanding a particular user, with or without demanding a role:

//Avoid:
[PrincipalPermission(SecurityAction.Demand,Name = "John")]
public void MyMethod()
{...}

9. Do not rely on role-based security in the client’s callback operations.
10. With Internet clients, always use Message security.
11. Allow clients to negotiate the service certificate (the default).
12. Use the ASP.NET providers for custom credentials.
13. When developing a custom credentials store, develop it as a custom ASP.NET

provider.
14. Validate certificates using peer trust.

www.idesign.net February 2010

- 13 -

©2010 IDesign Inc. All rights reserved

The Service Bus
1. Prefer the TCP relay binding.
2. Make your services be discoverable.
3. Do use discrete events.
4. Do not treat buffers as queues.
5. With buffers, avoid raw WCF messages and use the strongly typed, structured calls

technique of BufferedServiceBusHost<T> and
BufferedServiceBusClient<T>.

6. Use message security.
7. Do not use service bus authentication for user authentication.
8. Strive for anonymous calls and let the service bus authenticate the calling

application.

www.idesign.net February 2010

- 14 -

©2010 IDesign Inc. All rights reserved

Resources
1 Programming WCF Services 3rd Edition
By Juval Lowy, O'Reilly 2010

2 The WCF Master Class
The world’s best, most intense WCF training starts by explaining the motivation for
service-orientation and then continues to discuss in depth how to develop service-
oriented applications using WCF. You will see how to take advantage of built-in features
such as service hosting, instance management, asynchronous calls, synchronization,
reliability, transaction management, disconnected queued calls and security. While the
class shows how to use these features, it sets the focus on the ‘why’ and the rationale
behind particular design decisions, often shedding light on poorly-documented and
understood aspects. You will learn not only WCF programming but also relevant design
guidelines, best practices, and pitfalls. The material presented includes IDesign's original
techniques and utilities and goes well beyond anything you can find in conventional
sources. Don’t miss out on this unique opportunity to learn WCF from the IDesign
architects who have been part of the strategic design effort for WCF from the beginning,
and who offer a profound insight on the technology and its applications. Any .NET
developer or architect would benefit greatly from the class.

More at www.idesign.net

3 The Architect’s Master Class
The Architect’s Master Class is a 5 days training, and is the ultimate resource for the
professional architect. The class has three parts, on process, technology & SOA, and the
IDesign method for analysis and design. The class shows the architect how to take an
active leadership role on all three aspects, as a continuum, since when executing a design,
one cannot separate process from design from technology – all three have to work in
concert. You will see relevant design guidelines, best practices, and pitfalls, and the
crucial process required of today’s modern architects. Don’t miss on this unique
opportunity to learn and improve your architecture skills with IDesign, and share their
passion for architecture and software engineering.

More at www.idesign.net

4 The IDesign Serviceware Downloads
The IDesign serviceware downloads are a set of original techniques, tools, utilities and
even breakthroughs developed by the IDesign architects. The utilities are largely
productivity-enhancing tools, or they compensate for some oversight in the design of
.NET or WCF. The demos are also used during our Master Classes to demystify technical
points, as lab exercises or to answer questions. The classes' attendees find the demos
useful not only in class but after it. The demos serve as a starting point for new projects
and as a rich reference and samples source.

More at www.idesign.net

