Regularity criteria for the 3D magneto-micropolar fluid equations in Besov spaces with negative indices

Congchong Guoa, Zujin Zhangb,*, Jialin Wangb

aDepartment of Mathematics, Sun Yat-sen University, Guangzhou 510275, PR China
bSchool of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000 Jiangxi, PR China

\textbf{Abstract}

We consider the Cauchy problem of the magneto-micropolar fluid equations in three space dimensions. It is proved that if the velocity, magnetic field and the micro-rotational velocity belong to some critical Besov space with negative indices, then the solution is in fact smooth.

\textcopyright Crown Copyright \textcopyright 2012 Published by Elsevier Inc. All rights reserved.

\section{1. Introduction}

We consider the magneto-micropolar fluid (MMF) equations in \mathbb{R}^3:

\begin{equation}
\begin{aligned}
\partial_t u + u \cdot \nabla u - (\mu + \chi) \Delta u - \nabla b + \nabla (p + b^2) - \chi \nabla \times \omega &= 0, \\
\partial_t \omega - \gamma \Delta \omega - \kappa \nabla \operatorname{div} \omega + 2\chi \omega + u \cdot \nabla \omega - \chi \nabla \times u &= 0, \\
\partial_t b - \nu \Delta b + u \cdot \nabla b - b \cdot \nabla u &= 0, \\
\nabla \cdot u &= \nabla \cdot b = 0, \\
u(x, 0) = u_0(x), \quad \omega(0, x) = \omega_0(x), \quad b(0, x) = b_0(x).
\end{aligned}
\end{equation}

Here $u = u(x, t)$ represents the velocity field, $b = b(x, t)$ represents the magnetic field, $\omega = \omega(x, t)$ represents the micro-rotational velocity; p denotes the hydrodynamic pressure; $\mu > 0$ is the kinematic viscosity, $\chi > 0$ is the vortex viscosity, $\kappa > 0$ and $\gamma > 0$ are spin viscosities, $1/\nu$ (with $\nu > 0$) is the magnetic Reynold; while u_0, b_0, ω_0 are the corresponding initial data with $\nabla \cdot u_0 = \nabla \cdot b_0 = 0$.

System (1.1) was first proposed by Galdi and Rionero [5]. The existence of global (in time) weak solutions were established by Rojas-Medar and Boldrini [12], while the local strong solutions and global strong solutions for the small initial data were considered, respectively, by Rojas-Medar [11] and Ortega-Torres and Rojas-Medar [13]. However, whether the weak solution is regular or the unique strong solution can exist globally is unknown. Thus there are a lot of literatures devoted to find sufficient conditions to ensure smoothness, see [2,8,9,14,18] for the Navier–Stokes equations ($\omega = b = 0$ in (1.1)), and [6,19] for the MHD equations ($\omega = 0$ in (1.1)).

Very recently, Gala [4] and Zhang et al. [17] considered system (1.1) and showed that if u or ∇u belongs to some critical Besov space, then the solution is actually regular. Our motivation is then to lower the regularity of u to ensure smoothness also, but as a compensation, we need ω and b have some (also rough) regularity. Our result seems to be more helpful in the regularity theory of system (1.1) since the smoothness of u, ω and b are always the same.

The main result now reads:

* Corresponding author.

E-mail addresses: guocongchong77@163.com (C. Guo), uia.china@gmail.com (Z. Zhang), jialinwang1025@hotmail.com (J. Wang).

0096-3003/$ - see front matter \textcopyright Crown Copyright \textcopyright 2012 Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.amc.2012.04.068
Theorem 1.1. Let $u_0, \omega_0, b_0 \in H^1(\mathbb{R}^3)$ with $\nabla \cdot u_0 = \nabla \cdot b_0 = 0$, and the triple (u, ω, b) be the strong solution on $(0, T)$ of system (1.1) with initial data (u_0, ω_0, b_0). If additionally,

$$u, \omega, b \in L^\infty_t(0, T; B_{\infty, \infty}^{-\alpha}), \quad 0 < \alpha < 1,$$

(1.2)

then the solution (u, ω, b) can be extended smoothly beyond $t = T$.

Remark 1.1. Checking the proof of Bernstein Lemma (see [3]), it follows that the Riesz transform $R_j(1 \leq j \leq 3)$ is bounded in $B_{p, q}^{1-\alpha}$ for all $s \in \mathbb{R}$, $1 \leq p < q \leq \infty$. Thus by Theorem 1.1, we have the condition

$$\nabla \times u, \quad \nabla \times \omega, \quad \nabla \times b \in L^\infty_t(0, T; B_{\infty, \infty}^{-\alpha}), \quad 0 < \alpha < 1$$

is enough to ensure the smoothness. This is a Beal–Kato–Majda type criteria (see [1, 10]).

Remark 1.2. Our result covers the one in [7] for the Navier–Stokes equations. We would also like to mention that the result in [16] is an immediate corollary of the one in [7] in view of the boundedness of R_j in $B_{p, q}^1$.

Let us now introduce the function spaces appeared in Theorem 1.1. Take $\psi \in S(\mathbb{R}^3)$ be a radial function supported in $\{\xi \in \mathbb{R}^3; 3/4 \leq |\xi| \leq 8/3\}$ with

$$\sum_{j} \xi^j \psi(2^{-j} \xi) = 1, \quad \forall \xi \in \mathbb{R}^3 - \{0\}.$$

Let $h = F^{-1}\psi$, then we have the formal Littlewood–Paley decomposition

$$f = \sum_{j \in \mathbb{Z}} \Delta f_j = \sum_{j \in \mathbb{Z}} \psi(2^{-j}D)f = \sum_{j \in \mathbb{Z}} 2^{j/2} \int_{\mathbb{R}^3} h(2^j y)f(x-y)dy.$$

For $s \in \mathbb{R}$, $1 \leq p < q < \infty$, the homogeneous Besov space is defined as

$$B_{p, q}^s = \left\{ f \in S'(\mathbb{R}^3); \|f\|_{B_{p, q}^s} < \infty \right\},$$

where

$$\|f\|_{B_{p, q}^s} = \left\| \left\{ \| \Delta f_j \|_p \right\}_{j \in \mathbb{Z}} \right\|_{l^q}.$$

It is proved in [16] that

$$\|fg\|_{B_{p, q}^s} \leq C \left(\|f\|_{\dot{B}_{p, q}^{s+\gamma}}\|g\|_{\dot{B}_{p, q}^{s+\gamma}} + \|f\|_{\dot{B}_{p, q}^{s+\gamma}} \|g\|_{\dot{B}_{p, q}^{s+\gamma}} \right),$$

(1.3)

if $s, \gamma, \delta > 0$, $1 \leq p, q, r, \kappa_1, \kappa_2, \kappa_3, \kappa_4 < \infty$ satisfying

$$\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p_3} + \frac{1}{p_4}, \quad \frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2} = \frac{1}{q_3} + \frac{1}{q_4}.$$

Also, it is well known that

$$\dot{B}_{\infty, \infty}^s = \dot{H}^s, \quad \dot{B}_{2, 2}^s = H^s, \quad \forall s \in \mathbb{R}.$$

For more detailed properties of Besov spaces, see [15].

Through the proof in the next section, we shall frequently use the Young inequality

$$ab \leq \varepsilon a^p + C b^q, \quad \forall \varepsilon > 0, \quad 1 < p, q < \infty \quad \text{with} \quad \frac{1}{p} + \frac{1}{q} = 1$$

(1.4)

and its generalization

$$abc \leq \varepsilon a^p + \varepsilon b^q + C c^r, \quad \forall \varepsilon > 0, \quad 1 < p, q, r < \infty \quad \text{with} \quad \frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1.$$

(1.5)

2. **Proof of Theorem 1.1**

As in [4], applying ∂_i to both sides of (1.1), and then multiplying both sides by $\partial_i u, \partial_i \omega, \partial_i b$, respectively, integration over \mathbb{R}^3, after suitable integration by parts, we have
\[
\frac{1}{2} \frac{d}{dt} \| (\partial_t u, \partial_t \omega, \partial_t b) \|_{L^2}^2 + \sum_{j=1}^{3} \left[(\mu + \chi) \| \partial_{ij}^2 u \|_{L^2}^2 + \gamma \| \partial_{ij}^2 \omega \|_{L^2}^2 + \nu \| \partial_{ij}^2 b \|_{L^2}^2 \right] + 2 \chi \| \partial_t \omega \|_{L^2}^2 + \kappa \| \nabla \text{div} \omega \|_{L^2}^2
\]
\[
\leq \| (\partial_t \cdot \nabla u, \partial_t u) \| + \| (\partial_t \cdot \nabla b, \partial_t u) \| + \| (\partial_t \cdot \nabla b, \partial_t u) \| + \| (\partial_t \cdot \nabla \omega, \partial_t \omega) \| + 2 \chi \| \nabla \times \partial_t u, \partial_t \omega \| + \| (\partial_t (u_j u_k), \partial_t u) \| + \| (\partial_t (u_j b_k), \partial_t b) \| + \| (\partial_t (b_j u_k), \partial_t b) \| + \| (\partial_t (u_j u_k), \partial_t \omega) \| + \| (\partial_t (u_j b_k), \partial_t \omega) \| + \| (\partial_t (b_j u_k), \partial_t \omega) \|
\]
\[
= \sum_{j=1}^{5} l_j, \tag{2.1}
\]
where we use the following facts:
\[
\nabla \cdot u = \nabla \cdot b = 0, \\
(b \cdot \partial_t \nabla b, \partial_t u) + (b \cdot \partial_t \partial_t u, \partial_t b) = 0,
\]
\[
\nabla \times \partial_t u, \partial_t \omega = (\nabla \times \partial_t \omega, \partial_t u).
\]
Using Young inequality, \(l_1 \) is easily estimated as
\[
l_1 \leq \frac{2}{2} \| \nabla \times \partial_t u \|_{L^2}^2 + 2 \chi \| \nabla \omega \|_{L^2}^2. \tag{2.2}
\]
For the second term \(l_2 \), invoking (1.3) and Young inequality, it follows that
\[
l_2 = \| (\Lambda^{-2} \partial_t (u_j u_k), \Lambda^{-2} \partial_t u) \| \leq \| u \otimes u \|_{B^2_{2,2}} \| u \|_{H^8}^2 \leq C \left(\left\| \frac{u}{\| u \|_{B^0_{2,2}}} \right\| \| u \|_{H^8}^2 \right) \| u \|_{H^8}^2 \| u \|_{H^8}^2
\]
\[
\leq C \| u \|_{B^0_{2,2}} \| u \|_{H^8}^2 + \varepsilon \| u \|_{H^8}^4. \tag{2.3}
\]
Here and thereafter, \(\varepsilon > 0 \) is to be determined later. Utilizing (1.5) with exponents
\[
\left(\frac{2}{1 - \alpha}, \frac{2}{2 + \alpha} \right),
\]
the third term \(l_3 \) is dominated as
\[
l_3 \leq \| b \otimes b \|_{B^2_{2,2}} \| u \|_{H^8} \| | u \|_{H^8}^2 \leq C \left(\left\| \frac{b}{\| b \|_{B^0_{2,2}}} \right\| \| u \|_{H^8}^2 \right) \| u \|_{H^8}^2 \| b \|_{H^8}^2
\]
\[
\leq C \| b \|_{B^0_{2,2}} \| u \|_{H^8}^4 + \varepsilon \| u \|_{H^8}^2. \tag{2.4}
\]
For \(l_4 \), using Young inequality with exponents \((2 / (1 - \alpha), 2 / (1 + \alpha)) \) and (1.5) with exponents as in (2.4), we have
\[
l_4 \leq 2 \| u \otimes b \|_{B^2_{2,2}} \| b \|_{H^8} \| u \|_{H^8} \| b \|_{H^8}^2 \leq C \left(\left\| \frac{u}{\| u \|_{B^0_{2,2}}} \right\| \| b \|_{B^0_{2,2}} \| u \|_{H^8} \right) \| b \|_{H^8}^2 \| b \|_{H^8}^2
\]
\[
= C \left(\left\| \frac{u}{\| u \|_{B^0_{2,2}}} \right\| \| u \|_{H^8}^2 \right) \| b \|_{H^8}^2 \| b \|_{H^8} + \left(\left\| \frac{b}{\| b \|_{B^0_{2,2}}} \right\| \| b \|_{H^8}^2 \right) \| b \|_{H^8} \| u \|_{H^8} \| b \|_{H^8} \| u \|_{H^8} \leq C \left(\left\| \frac{u}{\| u \|_{B^0_{2,2}}} \right\| \| b \|_{B^0_{2,2}} \| b \|_{H^8} \| u \|_{H^8} \right) \| b \|_{H^8}^2 + \varepsilon \| u \|_{H^8}^4. \tag{2.5}
\]
The last term \(l_5 \) is treated the same way as the third, leading to
\[
l_5 \leq C \| u \|_{B^0_{2,2}} \| \omega \|_{H^8}^2 + \varepsilon \| u \|_{H^8}^2. \tag{2.6}
\]
Gathering (2.2) and (2.3), Eqs. (2.5)–(2.7), and substituting into (2.1), taking \(\varepsilon > 0 \) sufficiently small, we have
\[
\frac{d}{dt} \| (\nabla u, \nabla \omega, \nabla b) \|_{L^2}^2 \leq \| (u, \omega, b) \|_{B^0_{2,2}}^2 \| (\nabla u, \nabla \omega, \nabla b) \|_{L^2}^2.
\]
Gronwall inequality then implies the fact
\[
u, \omega, b \in L^{\infty}(0, T; H^4),
\]
which ensures the continuation of strong solutions beyond \(t = T \). The proof is complete. \(\square \)

Acknowledgments

Congchong Guo and Zujin Zhang would like to express sincere gratitude to Professor Zheng-an Yao for enthusiastic guidance and constant encouragement. Jialin Wang was supported by National Natural Science Foundation of China, No. 11126294. All authors thank the constructive and helpful comments of the anonymous referees.

References