GM1008 RS-485 接口 8 通道 0-24mA 电流采集模块

版本记录

版本	日期	作者	审核	备注
1.0	20150906	杨帅	王军委	第一版发布

声明: 此文档最终解释权归 银杏公司 所有。

银杏公司 不对文档中错误、不当之处单独 发布声明,但会在下一版说明书中修订。 技术支持电话: 0379-63002125 技术支持论坛: <u>http://www.eeschool.org</u>

银杏科技有限公司 GINGKO Technology Co.,Ltd.

ম	

第一章 快速入门
一、检查附件清单8
二、接口说明
三、连接电源
四、连接 RS-485 接口10
五、Smart DAQ 软件10
六、固件升级功能
七、LED 工作状态解析12
第二章 技术指标
二、默认参数
第三章 原理介绍

二,	三单元相互隔离方案
三,	电源处理单元
四、	电流采集、系统配置单元
五、	RS-485 接口单元
第四章	〔连接传感器
— `,	与两线制传感器连接
二,	与三线制传感器连接
第五章	ž Smart DAQ21
<i>—</i> ,	数据采集
<u> </u>	设置串口通信参数
Ξ,	配置界面
四、	通信参数设置
五、	通道校准

第六章	章 MODBUS 协议	24
→,	modbus 协议简介	25
<u> </u>	寄存器列表	25
Ξ,	寄存器解析	26
四、	连接调试软件	26
第七章	章 固件升级	28
<i>—</i> ,	固件升级简介	29
二,	固件升级步骤	29

第一章 快速入门

通过本章,您可以掌握如何设置模块使其进入准备就绪工作,并熟悉外观及一些简单的参数设置。

本章分为以下几节:

一、检查附件清单
二、接口说明
三、连接电源
四、连接 RS-485 接口

五、Smart DAQ 软件 六、固件升级功能 七、LED 工作状态解析

一、检查附件清单

GM10080~24mA 电流采集模块(以下简称 模块)包含以下附件:

GM1008 电流采集模块	一只
导轨卡扣	一只
导轨安装长螺丝	两只
简易操作说明	一页

请检查模块附带物品是否完好。如有缺失、 损坏,请与供应商联系。

二、接口说明

① 电源接口:

供电接口不分正极性,输入电压为直流 7.5V~36V。

② RS-485 接口:

信号分别为: A+、GND、B-。A+为 RS-485 差分接口正信号, B-为 RS-485 差分接口负 信号, GND 为 RS-485 地信号(接屏蔽)。

③ 系统功能接口(标注为 System):

IAP:即在应用编程(In Application Programming)功能。通过导线短接 IAP 与 GND 信号,进入模块固件升级状态,此功能后续章节 会详细叙述。

CFG:即配置(Configure)功能。通过导线 短接 CFG 与 GND 信号,进入配置状态,此功 能后续章节会详细叙述。

GND:辅助地信号,用于辅助 CFG 和 IAP 与 GND 短接后,进入相应功能。

④ 模拟信号(电流)输入端:

0~24mA 被测电流输入端,此连接器包含 8 个输入通道与两个 GND 端子。两个 GND 端 子内部连接在一起。CH0~CH7 为 8 个电流输入 通道,电流总是从某个通道输入并经过采样电 阻从 GND 端流出。

⑤ LED 指示:

三色(红、绿、蓝) LED 状态指示灯。

三、连接电源

模块采用 7.5V~36V 直流电源供电,通过 导线连接图 1.1 中①端口上,连接时不分正负。 正确连接电源后,LED 指示灯会指示相应工作 状态。

四、连接 RS-485 接口

通过 USB<>RS-485 接口转换器(如本公司 EVC 系列产品)或者 RS-232<>RS-485 接口转 换器与本模块相连。只需要把对应的 RS-485 差 分正电平连接于 A+、RS-485 差分负电平连接于 B-即可。接线较短时 GND 信号可以不接;接 线较长或者模块处在强干扰环境时,可以把 GND 信号连接于双绞线的屏蔽层,以便提高模 块的抗干扰能力。

五、Smart DAQ 软件

Smart DAQ 软件是专门为本模块定制的上位机软件,它包含测量、配置及校准三个功能。

上电之后,默认自动搜索设备,若有通信参数处于默认出厂状态的设备,则直接开始对相应设备的采集数据进行读取。软件界面如图1.2 所示。

Smart	DAQ GM10	- 800	×		
ch0: 0.00mA ch1: 0.00mA ch2: 0.00mA ch3: 0.00mA ch4: 0.00mA ch5: 0.00mA ch6: 0.00mA ch7: 0.00mA 端口: coxt14 (0Xc01) 正确次数: 8 错误次数: 0					
通信设置		采样率			
波 特 率:	9600 💌	0.3s	•		
奇偶校验:	无校验 💌	开始	配置		
停止位:	1 -	停止			
从机地址:	1	采集	<u>×</u> T		
	搜索设备	清 除 统 计	退出		

图 1.2 Smart DAQ for GM1008 软件界面

① 通信设置:

设置 RS-485 参数及 Modbus 从机地址。若

界面中参数信息与设备的实际保存参数一致,则打开软件后即自动开始工作。若界面中参数 信息与设备的实际保存参数不一致,需要人工 调节参数后,点击"搜索设备",匹配后即可手动 点击"开始采集"。

② 显示控制:

采样率:控制采集速率,分别为0.3、1、2、5秒采样一次。

③ 显示区:

该区分为两部分,一是电流值显示区,在上 方用大字体显示,用于显示当前的测量值;二是 状态显示区,在下方用小字体显示,用于显示当 前通信的端口号以及通信次数统计。

④ 采集控制:

开始采集:用于控制开始采集。

停止采集:用于控制停止采集。

清除统计:用于清除当前的统计量。

⑤ 设置控制:

配置:用于配置设备的通信参数,后续章节 将详细介绍此功能。

关于:关于本软件的一些信息,如版本号等。

退出:退出软件。

六、固件升级功能

模块内部基于 32 位先进微处理器。此微处 理器不但性能强,而且具有应用程序升级的功 能,此功能可用于修复程序漏洞、增加新功能等 方面。

模块通过 RS-485 接口, 基于 Xmodem 协议 进行应用程序升级, 后续章节将详细介绍。

七、 LED 工作状态解析

本模块包含一只三色 LED 用于工作状态指示,它位于模块顶面,可以显示绿色、蓝色、红色。其表达的含义列表如下:

功能类别	功能说明	LED 状态
固件升级	升级固件模式(待	红色常亮
模式	机中)	
	正在升级固件	红色闪烁
	升级成功	红色常亮
	升级失败	绿、蓝交替闪烁
配置模式	配置模式(待机	蓝色常亮
	中)	
正常工作	正常工作(待机	绿色常亮
模式	中)	
	Modbus 访问	绿色闪烁
其他	EEPROM 写入过	红色常亮
	程	

第二章 技术指标

通过本章,您可以了解模块技术参数、指标及特性。

本章分为以下几节:

一、技术指标

二、出厂默认参数

一、技术指标

孝	き別	属性	指标	
		输入范围	0mA~24mA	
2	>	输入通道	八通道, 单端模式	
5	3	ADC 分辨率	12位	
12	萨	数据更新率	10 次/秒	
F	¥	测量精度	±0.1% FS ±0.01mA	
		分辨率	0.01mA	
		供电电压	直流 7.5V~36V,约0.7W	
2	Ê ≖	供电方式	接线端子,无极性要求	
0 12	电特性	隔离方式	供电、RS-485、测量通道三	
F			者相互隔离	
		隔离电压	1500V _{dc}	
	接口特性	接口类型	RS-485, 三线式接线端子	
بر ۲		波特率范围	1200~115200bps	
1 1 2		停止位	1、1.5、2位	
F		校验位	无校验、奇校验、偶校验	
		通信协议	Modbus-RTU	
		工作温度	-40°C~85°C	
X	₩ ₩	采样电阻	100 Ω 0.5% 低温漂精密电阻	
512	也特性	机械尺寸	125x70x26mm	
F		重量	净重 95g, 整体重量 240g	
		安装模式	DIN 导轨安装	

二、默认参数

序号	属性	值
1	波特率	9600
2	停止位	1
3	校验位	无
4	从机地址	1

提示:若忘记通信参数及从机地址,可以设定为 配置模式,并通过《Smart DAQ》软件重新设定 通信参数(配置模式中,通信参数恒为默认参 数)。

第三章 原理介绍

通过本章,您可以了解模块及各个单元的工作原理。

本章分为以下几节:

一、整体框架

二、三单元相互隔离方案

三、电源处理单元

四、电流采集、系统配置单元 五、RS-485 接口单元

一、整体框架

模块原理框图如图 3.2 所示。它包含电源处 理单元、RS-485 接口单元、电流采集单元及系 统配置单元。

二、三单元相互隔离方案

为了保证工作性能及操作安全性,本模块 采用双电源隔离模式。电源经两个 1500V 隔离 模块分别输出两路隔离的 5V 电源。一路为电流 采集单元供电,一路为 RS-485 接口单元供电。 实现供电、采集、通信三者之间完全的电气隔离。 如图 3.1 所示。

三、电源处理单元

7.5V~36V 直流电压通过接线端子接入后, 经自动极性变换电路、过压保护电路、LC 滤波 电路后,进入 BUCK 电路变换为 5V 电压。然后 经两路 1500V 直流隔离模块,输出两路 5V 隔 离电源,分别为电流采集单元及 RS-485 接口单 元供电。原理框图如图 3.3 所示。

图 3.3 供电单元原理框图

四、电流采集、系统配置单元

电流采集、系统配置单元是本模块的核心 部分。其功能框图如图 3.4 所示。

电流采集单元包含 8 通道 0~24mA 模拟电路输入,电流经过 100 欧姆采样电阻后进入 AD 转换器。微处理器读取 AD 转化器并把结果通过 Modbus-RTU 协议发送到 RS-485 接口上。

系统配置单元包含两大功能:

IAP:即在应用编程(In Application Programming)功能。通过导线短接 IAP 与 GND 信号,进入模块固件升级状态,此功能后续章节 会详细叙述。

CFG:即配置(Configure)功能。通过导线 短接 CFG 与 GND 信号,进入配置状态,此功 能后续章节会详细叙述。

图 3.4 电流采集、系统配置单元原理框图

五、RS-485 接口单元

RS-485 接口单元如图 3.5 所示。微处理器 的 UART 接口通过磁耦合隔离芯片、RS-485 接 口电路及接口保护电路,连接到模块外部接线 端子上。

通过本章,您可以了解本模块与常用传感器的连接方法。

本章分为以下几节:

一、与两线制传感器连接

二、与三线制传感器连接

一、与两线制传感器连接

与两线制传感器连接示意图如图 4.1 所示。 蓝色线表示连接线,箭头表示电流方向,若方向 接反则测量值显示为负值。图中模块电源、RS-485 没有连接,实际使用过程中传感器与模块可 以使用同一电源供电,也可以使用不同电源供 电。

图 4.1 与两线制传感器连接

二、与三线制传感器连接

与三线制传感器连接示意图如图 4.2 所示。 蓝色线表示连接线,箭头方向表示电流方向。图 中模块电源、RS-485 没有连接,实际使用过程 中传感器与模块可以使用同一电源供电,也可 以使用不同电源供电。

图 4.2 与三线制传感器连接

20

第五章 Smart DAQ

通过本章,您可以掌握如何使用 Smart DAQ 软件。

本章分为以下几节:

一、数据采集

二、设定串口通信参数

三、配置界面

四、通信参数设置 五、通道校准

Smart DAQ 软件为本公司针对数据采集模 块系列产品推出的多功能采集软件。可以通过 以下步骤实现简单的数据采集。本软件在配套 资料包的 Smart_DAQ 文件夹内。

硬件连接:使用 USB 转 RS-485、RS-232 转 RS-485 接口转换器与模块连接,并参考第四章 将传感器、电源与模块连接后,接通电源。

自动采集:打开 Smart DAQ 软件后,会自动查找计算机活动的串口并搜索模块,若模块的通信参数与软件界面中的通信参数一致,则软件会自动连接并直接进行数据采集。

手动采集:若模块的通信参数与软件界面中的通信参数不一致,改变软件界面中的通信参数使其与设备中的通信参数一致,点击搜索设备即可发现设备。此时可以点击"开始采集"按钮进行数据采集;点击"停止采集"结束数据采集;点击"清除统计"清零统计信息。

二、设置串口通信参数

图 5.1 通信设置界面

波特率:用下拉按钮进行选择,可选波特率 有 1200、2400、4800、9600、19200、38400、 57600、115200。

奇偶校验:用下拉按钮进行选择,可选奇偶

校验有无校验、奇校验、偶校验。

停止位:用下拉按钮进行选择,可选停止位 有1位、1.5位、2位。

从机地址:用输入框进行选择,可选从机地 址为1~246。

搜索设备:当参数设置完成之后,可以搜索 与当前界面中参数一致的设备。

三、配置界面

۲	<u>A</u>	置 — 🗆 🗡
配置参数		下位机校准
从机地址:	1	校准前请接入准确的 15mA的由流
液 전 폭:奇偶校验:	1200 •	
停止位:	1 -	通週∪▼ 校准
读取	保存	返回

将配置引脚和地短路,重新上电,模块进入 配置状态,点击'配置'按钮,进入配置界面,配 置界面主要有两个功能,一是配置模块的通信 参数,二是对模块的每通道进行校准,接下来, 详细讲解这两个功能。

四、通信参数设置

配置参数包括 Modbus 从机地址, RS-485 的 通信参数波特率、奇偶校验、停止位。配置参数 完成后,下次重启模块之后,通信参数生效。

五、通道校准

注意:此功能请慎重使用

校准功能,请在需要校准的通道输入15mA 的电流,然后点击'校准'按钮,进行校准,校准 过程大致需要30s,校准完成之后,重新上电之 后,开始采样使用的就是新的校准值。

第六章 MODBUS 协议

通过本章,您可以了解模块内置的 Modbus 通信协议及寄存器含义。

本章分为以下几节:

一、Modbus 协议简介 二、寄存器列表 三、寄存器解析 四、连接调试软件

24

一、Modbus 协议简介

GM1008 模块遵循标准的 MODBUS-RTU 协议。MODBUS 通讯协议详细信息请参见 MODBUS 标准化组织网站: http://www.Modbus-IDA.org。

本模块支持功能码 3,最大读取数据长度为 24 个寄存器。

二、寄存器列表

本模块包含 24 个寄存器,它们均映射到 Modbus 协议里的保持寄存器内。寄存器列表如 下表所示。

地址	名称	类型
40001	CH0 模拟量整数	只读 (R)
40002	CH0 模拟量小数	只读 (R)
40003	CH0 模拟量	只读 (R)
40004	CH1 模拟量整数	只读 (R)
40005	CH1 模拟量小数	只读 (R)
40006	CH1 模拟量	只读 (R)
40007	CH2 模拟量整数	只读 (R)
40008	CH2 模拟量小数	只读 (R)
40009	CH2 模拟量	只读 (R)
40010	CH3 模拟量整数	只读 (R)
40011	CH3 模拟量小数	只读 (R)
40012	CH3 模拟量	只读 (R)
40013	CH4 模拟量整数	只读 (R)
40014	CH4 模拟量小数	只读 (R)
40015	CH4 模拟量	只读 (R)
40016	CH5 模拟量整数	只读 (R)
40017	CH5 模拟量小数	只读 (R)
40018	CH5 模拟量	只读 (R)
400019	CH6 模拟量整数	只读 (R)
40020	CH6 模拟量小数	只读 (R)
40021	CH6 模拟量	只读 (R)
40022	CH7 模拟量整数	只读 (R)
40023	CH7 模拟量小数	只读 (R)
40024	CH7 模拟量	只读 (R)

三、寄存器解析

每通道测量值包含三个16位寄存器,并采 用两种表达方式表征测量值。

1、CH0 测量值寄存器 A(40001 和 40002)

地址 40001 寄存器为测量值的整数部分; 地址 40002 寄存器为测量值的小数部分,可以 通过下面公式得到测量值。这两个寄存器存储 值均为有符号整数。

测量值(mA) = value_[40001] + value_[40002]/100

若 40001 寄存器值为 5,40002 寄存器值为 60,则:

测量值 = 5 + 60/100 = 5.6 mA

2、CH0 测量值寄存器 B(40003)

测量值的第二种表示方法,采用模拟量放

大一百倍映射,此寄存器存储值为有符号整数。

测量值(mA) = value_[40003]/100

其他通道的寄存器与 CH0 一样,不再详细 说明。

四、连接调试软件

GM1008 模块符合标准 Modbus-RTU 协议,可以与任何服从 Modbus-RTU 协议的软件连接,本节讲述通过 Modbus Poll 软件读取模块测量 值的方法。

安装资料包内的 Modbus Poll 软件后打开桌 面上的快捷方式 "Modbus Poll"。然后点击菜单 栏 "Connection"下面的 "Connect..."功能,如 下图所示:

	C	Connectio	n Setu	o ×
Connection				ОК
Serial Port			~	
Serial Settings				Cancel
USB Serial Po	ort (COM1	4)	~	Mode
9600 Baud	~			● RTU ○ ASCII
8 Data bits	~			Response Timeout
None Parity	~			Delau Between Belle
1 Stop Bit	*	Advanced.		10 [ms]
Remote Server				
IP Address		Port	Connec	st Timeout
192.168.0.10		502	3000	[ms]

根据计算机串口位置配置串口信息,然后点击:"Advanced"按钮后取消弹出的对话框中对 RTS Toggle 的选中,点击两次"OK"按钮进入主界面。 完成后点击菜单栏"Setup"里面的"Read/Write definition...功能",并按照如下界面配置。配置完成后点击"OK"按钮返回主界面。

	Read/Write Definiti	on	×	
Slave ID:	0		OK	
Function:	03 Read Holding Registers (4x) 🗸 🗸		Cancel	
Address:	0		A 1	
Quantity:	24		Apply	
Scan Rate:	1000 ms			
√ Read/W	'rite Enabled	Rea	d/Write Once	
View Rows 10 20 50 100 Hide Alias Columns Address in Cell				
Display:	Signed 🗸 🖓 PLC A	.ddres	ses (Base 1)	

此时配置完毕,即可在主界面看到读取到 的寄存器值如下图所示。图中数据表示的测量 值为 0.00mA。

	Alias	00000	Alias	00010	Alias	00020
0		0		0		0
1		0		0		0
2		0		0		0
3		0		0		0
4		0		0		
5		0		0		
6		0		0		
7		0		0		
8		0		0		
9		0		0		

第七章 固件升级

通过本章,您可以了解如何完成固件升级功能。

本章分为以下几节:

一、固件升级简介

二、固件升级步骤

28

一、固件升级简介

为了满足功能更新、bug 修复及固件定制等 需求,GM1008 通过内置 32 位先进微处理器, 实现了固件升级功能。

二、固件升级步骤

按以下操作完成固件升级操作:

①连接设备到计算机:

使用 USB 转 RS-485、RS-232 转 RS-485 接 口转换器(例如本公司的 EVC 系列产品)与模块 连接。

②短接 IAP 与 GND 端口:

将 IAP 端子与 GND 端子短路, 使得设备上 电后进入固件升级状态, 如图 7.1 所示。

29

③连接电源:

连接电源并给模块供电。此时若状态指示 LED 呈红色常亮,则表明成功进入固件升级状态, 若为其他颜色请检查配置端口连接状态。

④配置 PuTTY 软件:

打开资料包内附送 putty.exe 软件并配置端 口号,如图 7.2 所示,重要部分用红色圆圈标示。 其中端口号根据计算机实际配置而定。

⑤发送升级文件:

点击 Open,出现如图 7.3 界面,此状态下 PuTTY 软件连续接到字母 'C',此时说明模块 就绪,可以完成固件升级操作。

点击 Files Transfer 菜单下的 Xmodem 协议,并选择 send 功能后,指向被升级文件(一般为二进制 BIN 后缀格式)。

图 7.2 配置 PuTTY 软件

此时若操作正确,指示 LED 会红蓝交替显示,代表正在升级固件,且 PuTTY 软件 会出现 图 7.4 的进度条状态。

图 7.3 等待固件升级

	Tranfering File	×
FileName: Protocol:	update.bin XM0DEM	
Packet#:	23/113	
Transfering	Cancel	

图 7.4 固件下载 (升级) 进度条

等待固件下载进度条完成,升级操作则即 刻完成,此时 LED 呈红色常亮。将 IAP 端口与 GND 端口断开,重新上电后则可以进入正常工 作模式。

为了安全起见,升级操作过程请不要断开 连线、断开模块供电,不然可能出现不可预期的 错误。若因干扰未完成固件升级,则可通过重新 升级覆盖错误或未完成的固件。