
 Search

Serial Communication:

1. Asynchronous
2. Error Rate
3. Autodetect
4. Timer Capture
5. Project Case
6. Stretched Bit

Home What’s New Links Books

Timing Errors in Serial
Communication

On the previous page, we saw digital logic traces of asynchronous serial

communication. The receiver must read the input pin at a specific rate to

properly interpret the incoming bit patterns. In asynchronous

communication, the sender and receiver rely on their own timing circuitry,

rather than sharing a clock. On this page, we'll determine how inaccurate the timing can be such that

the devices can still communicate reliably.

Baud vs. BPS

In the case of two devices using a simple serial digital signal, the data rate can be described as either

baud or bits per second (bps or bit/s). Think of baud rate as the switching speed, and bps as the

switching speed times the amount of information present at each switch. If only a single bit of

information is available at each switch, then baud and bps are the same. However, if the signal is

converted to parallel or an analog value, then the baud rate and bps will be different.

Imagine you have a bass drum. At a steady rate, you either hit the drum or stay quiet. Hitting the drum

is a '1' bit; staying quiet is a '0' bit. That’s our simple serial digital signal where the baud (beats per

second) is identical to the bps (amount of information delivered per second).

Now, imagine you have a piano with eight keys. If you play the piano at a steady rate, you can deliver 8

bits per beat by pressing up to 8 keys at the same time. In that case, the bps rate (amount of

information delivered per second) is eight times more than the baud rate (beats per second).

Besides analog conversion and parallel wires, if you add compression to the communication channel then

the bps can go much much higher than the baud rate. You are increasing the amount of information

delivered per second even if the timing of the electrical switching stays the same.

How Far Off is Acceptable?

The receiver is expecting to receive serial data at a specific rate. When the wire voltage initially changes

from high to low (the start bit), the receiver starts a timer. Rather than reading each bit at the

beginning of its time, a good receiver will read the value about halfway through. In doing so, any jitter or

slight timing mistakes in changing states at the beginning or ending of a bit won’t corrupt the value. (In

fact, a really good receiver may take multiple samples and average the value, to eliminate electrical

noise or spikes.)

Let’s see what happens when the receiver has perfect timing but the transmitter is either too fast or too

slow. We’re going to focus on the final data bit, shown by the yellow line. The data bit should be '0' --

represented by a low voltage. On the 38400 (perfect) row, the yellow line passes through the center of

a low signal.

Trace showing bit errors due to fast (top) or slow (bottom) serial rate

http://www.robotroom.com/contact.html
http://www.robotroom.com/Asynchronous-Serial-Communication-1.html
http://www.robotroom.com/Asynchronous-Serial-Communication-2.html
http://www.robotroom.com/Asynchronous-Serial-Communication-3.html
http://www.robotroom.com/Asynchronous-Serial-Communication-4.html
http://www.robotroom.com/Asynchronous-Serial-Communication-5.html
http://www.robotroom.com/Asynchronous-Serial-Communication-6.html
http://www.robotroom.com/index.html
http://www.robotroom.com/index.html
http://www.robotroom.com/feed.rss
http://www.robotroom.com/links.html
http://www.robotroom.com/books.html
http://www.robotroom.com/Asynchronous-Serial-Communication-1.html

On the top row (42667 bps), the transmitter is so fast that it is already sending the stop bit (high) at the

moment in time that the receiver is expecting to read the final data bit (low). On the bottom row

(34909 bps), the transmitter is so slow that it is still in the process of sending the next to the last data

bit (high) at the moment in time that the receiver is expecting to read the final data bit (low). In fact,

the final data bit is read as '1' on the top two rows and the bottom two rows.

To make it easy to see bit drift, the above image illustrates transmission speed errors when sending the

letter 'U' (each subsequent bit goes from high to low). That might have you thinking a good receiver

could reset its clock at the start of every voltage change to constantly resynchronize the timing.

However, not only would electrical noise (spikes and dips) result in increased timing errors, but, as

you'll recall from the previous page, some data patterns have long runs of all zeros or all ones. Put

simply, you'll introduce other errors for sake of eliminating some errors. It is better to have an accurate

clock.

Calculating Satisfactory Serial Timing

For 10 bits (1 start, 8 data, 1 stop), each bit is 10% of the total time. Therefore, if the difference

between the timer and receiver is more than 10%, then an entire bit has occurred too early or passed

by without being read, regardless of the receiver’s sampling method. Clearly a 10% difference in timing

is unacceptable.

For purposes of this analysis, let’s say the receiver reads the bit value at the halfway point. So, as long

as less than half a bit is too early or late, the data will still be communicated correctly. Half a bit is 5% of

the total time.

If the sender is 5% too fast, and the receiver is 5% too slow, we’re back to 10% difference again and a

whole bit is missing. Therefore, to be fair, each device is only allowed to be less than 2.5% in error, to

ensure that the total difference in timing between devices is less than 5%. To provide a safer margin,

Atmel recommends a 2% error or less per device.

Atmel AVR UBRR Serial Values

To help you out, here is a massive table with crystal values in MHz, and the bps (or baud) rates that can

be achieved. If you have an Atmel AVR microcontroller, you simply need to set UBRR to the integer

value on the left side of the bps column. For example, to achieve 38400 bps with 0% error and an

18.432 MHz clock, UBRR should be set to 29.

MHz↓ bps→ 300 600 1200 2400 4800 9600 14400 19200 28800 38400 57600 76800 115200

0.128000 26 -1.2% 12 2.6% 6 -4.8% 2 11.1% 1 -16.7% 0 -16.7% 0 -44.4% -1 too fast -1 too fast -1 too fast -1 too fast -1 too fast -1 too fast

1.000000 207 0.2% 103 0.2% 51 0.2% 25 0.2% 12 0.2% 6 -7.0% 3 8.5% 2 8.5% 1 8.5% 1 -18.6% 0 8.5% 0 -18.6% 0 -45.7%

1.843200 383 0.0% 191 0.0% 95 0.0% 47 0.0% 23 0.0% 11 0.0% 7 0.0% 5 0.0% 3 0.0% 2 0.0% 1 0.0% 1 -25.0% 0

3.579545 745 0.0% 372 0.0% 185 0.2% 92 0.2% 46 -0.8% 22 1.3% 15 -2.9% 11 -2.9% 7 -2.9% 5 -2.9% 3 -2.9% 2 -2.9% 1 -2.9%

3.600000 749 0.0% 374 0.0% 187 -0.3% 93 -0.3% 46 -0.3% 22 1.9% 15 -2.3% 11 -2.3% 7 -2.3% 5 -2.3% 3 -2.3% 2 -2.3% 1 -2.3%

3.686400 767 0.0% 383 0.0% 191 0.0% 95 0.0% 47 0.0% 23 0.0% 15 0.0% 11 0.0% 7 0.0% 5 0.0% 3 0.0% 2 0.0% 1

4.032000 839 0.0% 419 0.0% 209 0.0% 104 0.0% 52 -0.9% 25 1.0% 17 -2.8% 12 1.0% 8 -2.8% 6 -6.3% 3 9.4% 2 9.4% 1

4.096000 852 0.0% 426 -0.1% 212 0.2% 106 -0.3% 52 0.6% 26 -1.2% 17 -1.2% 12 2.6% 8 -1.2% 6 -4.8% 3 11.1% 2 11.1% 1 11.1%

4.194304 873 0.0% 436 0.0% 217 0.2% 108 0.2% 54 -0.7% 26 1.1% 17 1.1% 13 -2.5% 8 1.1% 6 -2.5% 4 -9.0% 2 13.8% 1 13.8%

4.433619 923 0.0% 461 0.0% 230 0.0% 114 0.4% 57 -0.5% 28 -0.5% 18 1.3% 13 3.1% 9 -3.8% 6 3.1% 4 -3.8% 3 -9.8% 1 20.3%

4.915200 1023 0.0% 511 0.0% 255 0.0% 127 0.0% 63 0.0% 31 0.0% 20 1.6% 15 0.0% 10 -3.0% 7 0.0% 4 6.7% 3 0.0% 2 -11.1%

7.372800 1535 0.0% 767 0.0% 383 0.0% 191 0.0% 95 0.0% 47 0.0% 31 0.0% 23 0.0% 15 0.0% 11 0.0% 7 0.0% 5 0.0% 3

7.680000 1599 0.0% 799 0.0% 399 0.0% 199 0.0% 99 0.0% 49 0.0% 32 1.0% 24 0.0% 16 -2.0% 12 -3.8% 7 4.2% 5 4.2% 3

8.000000 1666 0.0% 832 0.0% 416 -0.1% 207 0.2% 103 0.2% 51 0.2% 34 -0.8% 25 0.2% 16 2.1% 12 0.2% 8 -3.5% 6 -7.0% 3

9.216000 1919 0.0% 959 0.0% 479 0.0% 239 0.0% 119 0.0% 59 0.0% 39 0.0% 29 0.0% 19 0.0% 14 0.0% 9 0.0% 7 -6.3% 4

10.000000 2082 0.0% 1041 0.0% 520 0.0% 259 0.2% 129 0.2% 64 0.2% 42 0.9% 32 -1.4% 21 -1.4% 15 1.7% 10 -1.4% 7 1.7% 4

11.059200 2303 0.0% 1151 0.0% 575 0.0% 287 0.0% 143 0.0% 71 0.0% 47 0.0% 35 0.0% 23 0.0% 17 0.0% 11 0.0% 8 0.0% 5

13.516800 2815 0.0% 1407 0.0% 703 0.0% 351 0.0% 175 0.0% 87 0.0% 58 -0.6% 43 0.0% 28 1.1% 21 0.0% 14 -2.2% 10 0.0% 6

14.745600 3071 0.0% 1535 0.0% 767 0.0% 383 0.0% 191 0.0% 95 0.0% 63 0.0% 47 0.0% 31 0.0% 23 0.0% 15 0.0% 11 0.0% 7

15.360000 3199 0.0% 1599 0.0% 799 0.0% 399 0.0% 199 0.0% 99 0.0% 66 -0.5% 49 0.0% 32 1.0% 24 0.0% 16 -2.0% 12 -3.8% 7

16.000000 3332 0.0% 1666 0.0% 832 0.0% 416 -0.1% 207 0.2% 103 0.2% 68 0.6% 51 0.2% 34 -0.8% 25 0.2% 16 2.1% 12 0.2% 8 -3.5%

16.384000 3412 0.0% 1706 0.0% 852 0.0% 426 -0.1% 212 0.2% 106 -0.3% 70 0.2% 52 0.6% 35 -1.2% 26 -1.2% 17 -1.2% 12 2.6% 8 -1.2%

18.432000 3839 0.0% 1919 0.0% 959 0.0% 479 0.0% 239 0.0% 119 0.0% 79 0.0% 59 0.0% 39 0.0% 29 0.0% 19 0.0% 14 0.0% 9

19.660800 4095 0.0% 2047 0.0% 1023 0.0% 511 0.0% 255 0.0% 127 0.0% 84 0.4% 63 0.0% 42 -0.8% 31 0.0% 20 1.6% 15 0.0% 10 -3.0%

20.000000 4166 0.0% 2082 0.0% 1041 0.0% 520 0.0% 259 0.2% 129 0.2% 86 -0.2% 64 0.2% 42 0.9% 32 -1.4% 21 -1.4% 15 1.7% 10 -1.4%

22.118400 4607 0.0% 2303 0.0% 1151 0.0% 575 0.0% 287 0.0% 143 0.0% 95 0.0% 71 0.0% 47 0.0% 35 0.0% 23 0.0% 17 0.0% 11

AVR↑ error↑

Did you notice the rows with the most accurate bps values have unusual crystal MHz? What’s magical

about 1,843,200; 3,686,400; 7,372,800; 9,216,000; 11,059,200; 14,745,600; 18,432,000; and

22,118,400? Those crystals and the bps rates are all evenly divisible by 300.

Put another way, 1,843,200 MHz ÷ 300 bps = 6144. The transmitting microcontroller hardware

running at 1,843,200 simply counts down from 6144, outputs a bit, and repeats. But, if the

microcontroller was running at 1,234,567 MHz, it would need to count down from 4115.223333333333,

which is not possible with integer hardware.

The other thing magical about those crystal values is that they are readily available. There’s no use

calculating the baud rate possible for a crystal frequency that you can’t buy.

If you are building two devices from scratch that talk to each other, there is no reason that you need to

limit yourself to classic baud rates in multiples of 300. There is nothing special about those rates. As

long as the devices don’t need to talk to a computer or some other off-the-shelf device, you can pick

any crystal value and any serial timing. For example, a device talking at 123456 bps to a receiver at

123456 bps has 0% relative frequency error.

Is there a way for the receiver to automatically detect the serial data rate in order to adjust its timing to

the transmitter? Yes! Let’s find out how...

« Previous Page | Next Page »

books contact legal home

http://www.robotroom.com/Asynchronous-Serial-Communication-1.html
http://www.robotroom.com/Asynchronous-Serial-Communication-3.html
http://www.robotroom.com/books.html
http://www.robotroom.com/contact.html
http://www.robotroom.com/legal.html
http://www.robotroom.com/index.html

