Sample Code:
https://github.com/devunwired/custom-touch-examples

Mastering the Android
Touch System

Who Is This Guy?

* Android developer since 2009

— ROM customization for
Embedded applications

* Recovering Spark Chaser

— Embedded M2M Monitoring Android RECi as
SyStemS r"Problem-solutionApproa(h

— P2P Radio Links

* Co-Author of Android Recipes
from Apress

Topics Covered

Touch System Overview
Touch Event Framework
Custom Touch Handling
System Provided Touch Handlers

System Provided Gesture Handlers

How Android Handles Touches

Each user touch event is wrapped up as a MotionEvent

Describes user's current action
ACTION_DOWN
ACTION_UP
ACTION_MOVE
ACTION_POINTER_DOWN
ACTION_POINTER_UP
ACTION_CANCEL

Event metadata included

— Touch location

— Number of pointers (fingers)
— Event time

A “gesture” is defined as beginning with ACTION_DOWN and ending
with ACTION_UP.

How Android Handles Touches

Events start at the Activity with dispatchTouchEvent()
Events flow top down through views

— Parents (ViewGroups) dispatch events to their children

— Can intercept events at any time

Events flow down the chain (and back up) until consumed

— Views must declare interest by consuming ACTION_DOWN
— Further events not delivered for efficiency

Any unconsumed events end at the Activity with
onTouchEvent()

Optional External OnTouchListener can intercept touches
on any View/ViewGroup

How Android Handles Touches

e Activity.dispatchTouchEvent()
— Always first to be called
— Sends event to root view attached to Window

— onTouchEvent()
* Called if no views consume the event
* Always last to be called

* View.dispatchTouchEvent()

— Sends event to listener first, if exists
* View.OnTouchListener.onTouch()

— |f not consumed, processes the touch itself
* View.onTouchEvent()

How Android Handles Touches

* ViewGroup.dispatchTouchEvent()

— onlinterceptTouchEvent()

» Check if it should supersede children
* Passes ACTION _CANCEL to active child
» Return true once consumes all subsequent events

For each child view, in reverse order they were added
 If touch is relevant (inside view), child.dispatchTouchEvent()
* If not handled by previous, dispatch to next view

If no children handle event, listener gets a chance
* OnTouchListener.onTouch()

If no listener, or not handled
e onTouchEvent()

* Intercepted events jump over child step

lgnorant View Example

DOWN:

Activity.dispatchTouchEvent() ViewGroup.dispatchTouchEvent() View.dispatchTouchEvent()

Activity

Activity.onTouchEvent() ViewGroup.onTouchEvent() View.onTouchEvent()

MOVE/UP:

Activity.dispatchTouchEvenﬁ

Activity.onTouchEvent()

Interested View Example

DOWN:

Activity

Activity.dispatchTouchEvent() ViewGroup.dispatchTouchEvent() View.dispatchTouchEvent()

‘/ View.onTouchEvent())
1)

MOVE/UP:

Activity.dispatchTouchEvent() ViewGroup.dispatchTouchEvent() View.dispatchTouchEvent()

~

View.onTouchEvent()

DOWN:

Activity.dispatchTouchEvent()

Intercept Example

ViewGroup.dispatchTouchEvent() View.dispatchTouchEvent()

MOVE/UP:

Activity.dispatchTouchEvent()

‘/ View.onTouchEvent())

CANCEL!

ViewGroup.dispatchTouchEvent()

Activity.onTouchEvent()

ViewGroup.onTouchEvent()

Activity

1)

10

Custom Touch Handling

 Handling touch events
— Subclass to override onTouchEvent()
— Provide an OnTouchlListener

* Consuming events
— Return true with ACTION_DOWN to show interest
* Evenifyou aren't interested in ACTION_DOWN, return true
— For other events, returning true simply stops further processing

» Useful constants available in ViewConfiguration
— getScaledTouchSlop()
* Distance move events might vary before they should be considered a drag
getScaledMinimumFlingVelocity()
e Speed at which the system considers a drag to be a fling

getLongPressTimeout()
* Time the system waits to consider an event a long-press

Display values scaled for each device's density

Custom Touch Handling

 Forwarding touch events
— Call target's dispatchTouchEvent()
— Avoid calling target's onTouchEvent() directly

* Stealing touch events (ViewGroup)
— Subclass to override onlnterceptTouchEvent()

— Return true when you want to take over

* All subsequent events for the current gesture will come to
your onTouchEvent() directly

* oninterceptTouchEvent() will no longer be called for each
event (one-shot redirect)

— Any current target will receive ACTION_CANCEL

Custom Touch Handling Warnings

Call through to super whenever possible

— View.onTouchEvent() does a LOT of state management (pressed,
checked, etc.) that you will lose if you capture every touch

Protect ACTION_MOVE with slop checks
— Fingers are fat and twitchy

Always Handle ACTION _CANCEL

— Container views with action (like scrolling) will steal events and
you will likely need to reset state

— Remember after CANCEL, you will get nothing else

Don't intercept events until you're ready to take them all.
— Intercept cannot be reversed until the next gesture.

Multi-Touch Handling

MotionEvent.getPointerCount()
— How many pointers are currently on the screen?

Use the ACTION_POINTER_DOWN and
ACTION_POINTER_UP events to detect secondary pointers

— MotionEvent.getActionMasked()

— MotionEvent.getActionIndex()

Use MotionEvent methods that take a pointer index
parameter to get data for a specific pointer

— Methods with no parameter always return data for the FIRST
pointer

Batching

For efficiency, ACTION_MOVE events can be batched together
in a single MotionEvent

Latest (current) event is always returned by standard methods
— getX(), getY(), getEventTime()
Event occurring between this ACTION_MOVE and the last are
found with historical methods
— getHistoricalX(), getHistoricalY(), getHistoricalEventTime()
— getHistoricalSize() returns number of batched events

Can reconstruct all events as they occurred in time for
maximum precision

System Touch Handlers

Don't jump right to custom touch handling if you don't
have to...

OnClickListener
OnLongClickListener

OnTouchListener
— Monitor individual MotionEvents without a subclass

— Can consume touches from a listener

— Can pre-empt view's handling

OnScrollListener / View.onScrollChanged()

— View with existing scroll functionality has scrolled

System Touch Handlers

For more complex touch interaction

GestureDetector
onDown(), onSingleTapUp(), onDoubleTap()
onLongPress()
onScroll() (user dragging finger)
onFling() (user released drag with velocity

ScaleGestureDetector

— onScaleBegin(), onScale(), onScaleEnd()
Handled via OnTouchListener or onTouchEvent()
Disadvantages

— Consume UP events and exposes no interface for CANCEL events

— May require added touch handling if these cases need special handling
(e.g. resetting a View's appearance)

Touch Delegate

Specialized object to assist in forwarding touches from a
parent view to its child

Allows for the touch area of a specific view to be different
than its actual bounds

Called in onTouchEvent() of attached View

— Events have to make it that far without being consumed by a child
or listener

TouchDelegate is designed to be set on the PARENT and
passed the CHILD view that touches should be forwarded to,
l.e.

ViewGroup parent;

View child;

Rect touchArea;

parent.setTouchDelegate (new TouchDelegate (touchArea, child));

Demo Samples

Once Again...

Dave Smith

Twitter: @devunwired

Blog: http://wiresareobsolete.com
Samples:

— https://github.com/devunwired/custom-touch-examples

http://wiresareobsolete.com
http://wiresareobsolete.com

