
Programming Neural Networks
with Encog3 in Java

Programming Neural Networks
with Encog3 in Java

Jeff Heaton

Heaton Research, Inc.
St. Louis, MO, USA

v

http://www.heatonresearch.com/book
http://www.encog.org/

Publisher: Heaton Research, Inc
Programming Neural Networks with Encog 3 in Java
First Printing
October, 2011
Author: Jeff Heaton
Editor: WordsRU.com
Cover Art: Carrie Spear
ISBN’s for all Editions:
978-1-60439-021-6, Softcover
978-1-60439-022-3, PDF
978-1-60439-023-0, LIT
978-1-60439-024-7, Nook
978-1-60439-025-4, Kindle

Copyright ©2011 by Heaton Research Inc., 1734 Clarkson Rd. #107, Chester-
field, MO 63017-4976. World rights reserved. The author(s) created reusable
code in this publication expressly for reuse by readers. Heaton Research, Inc.
grants readers permission to reuse the code found in this publication or down-
loaded from our website so long as (author(s)) are attributed in any application
containing the reusable code and the source code itself is never redistributed,
posted online by electronic transmission, sold or commercially exploited as a
stand-alone product. Aside from this specific exception concerning reusable
code, no part of this publication may be stored in a retrieval system, trans-
mitted, or reproduced in any way, including, but not limited to photo copy,
photograph, magnetic, or other record, without prior agreement and written
permission of the publisher.

Heaton Research, Encog, the Encog Logo and the Heaton Research logo
are all trademarks of Heaton Research, Inc., in the United States and/or other
countries.

TRADEMARKS: Heaton Research has attempted throughout this book
to distinguish proprietary trademarks from descriptive terms by following the
capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this
book, so the content is based upon the final release of software whenever

vii

possible. Portions of the manuscript may be based upon pre-release versions
supplied by software manufacturer(s). The author and the publisher make no
representation or warranties of any kind with regard to the completeness or
accuracy of the contents herein and accept no liability of any kind including
but not limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to be caused
directly or indirectly from this book.

SOFTWARE LICENSE AGREEMENT: TERMS AND
CONDITIONS

The media and/or any online materials accompanying this book that are
available now or in the future contain programs and/or text files (the “Soft-
ware”) to be used in connection with the book. Heaton Research, Inc. hereby
grants to you a license to use and distribute software programs that make use
of the compiled binary form of this book’s source code. You may not redis-
tribute the source code contained in this book, without the written permission
of Heaton Research, Inc. Your purchase, acceptance, or use of the Software
will constitute your acceptance of such terms.

The Software compilation is the property of Heaton Research, Inc. unless
otherwise indicated and is protected by copyright to Heaton Research, Inc.
or other copyright owner(s) as indicated in the media files (the “Owner(s)”).
You are hereby granted a license to use and distribute the Software for your
personal, noncommercial use only. You may not reproduce, sell, distribute,
publish, circulate, or commercially exploit the Software, or any portion thereof,
without the written consent of Heaton Research, Inc. and the specific copyright
owner(s) of any component software included on this media.

In the event that the Software or components include specific license re-
quirements or end-user agreements, statements of condition, disclaimers, lim-
itations or warranties (“End-User License”), those End-User Licenses super-
sede the terms and conditions herein as to that particular Software component.
Your purchase, acceptance, or use of the Software will constitute your accep-
tance of such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to comply
with all export laws and regulations of the United States as such laws and
regulations may exist from time to time.

viii

SOFTWARE SUPPORT

Components of the supplemental Software and any offers associated with
them may be supported by the specific Owner(s) of that material but they are
not supported by Heaton Research, Inc.. Information regarding any available
support may be obtained from the Owner(s) using the information provided
in the appropriate README files or listed elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support or
decline to honor any offer, Heaton Research, Inc. bears no responsibility. This
notice concerning support for the Software is provided for your information
only. Heaton Research, Inc. is not the agent or principal of the Owner(s), and
Heaton Research, Inc. is in no way responsible for providing any support for
the Software, nor is it liable or responsible for any support provided, or not
provided, by the Owner(s).

WARRANTY

Heaton Research, Inc. warrants the enclosed media to be free of physical
defects for a period of ninety (90) days after purchase. The Software is not
available from Heaton Research, Inc. in any other form or media than that
enclosed herein or posted to www.heatonresearch.com. If you discover a defect
in the media during this warranty period, you may obtain a replacement of
identical format at no charge by sending the defective media, postage prepaid,
with proof of purchase to:

Heaton Research, Inc.
Customer Support Department
1734 Clarkson Rd #107
Chesterfield, MO 63017-4976
Web: www.heatonresearch.com
E-Mail: support@heatonresearch.com

DISCLAIMER

Heaton Research, Inc. makes no warranty or representation, either ex-
pressed or implied, with respect to the Software or its contents, quality, per-
formance, merchantability, or fitness for a particular purpose. In no event will

ix

Heaton Research, Inc., its distributors, or dealers be liable to you or any other
party for direct, indirect, special, incidental, consequential, or other damages
arising out of the use of or inability to use the Software or its contents even
if advised of the possibility of such damage. In the event that the Software
includes an online update feature, Heaton Research, Inc. further disclaims
any obligation to provide this feature for any specific duration other than the
initial posting.

The exclusion of implied warranties is not permitted by some states. There-
fore, the above exclusion may not apply to you. This warranty provides you
with specific legal rights; there may be other rights that you may have that
vary from state to state. The pricing of the book with the Software by Heaton
Research, Inc. reflects the allocation of risk and limitations on liability con-
tained in this agreement of Terms and Conditions.

SHAREWARE DISTRIBUTION

This Software may use various programs and libraries that are distributed
as shareware. Copyright laws apply to both shareware and ordinary com-
mercial software, and the copyright Owner(s) retains all rights. If you try a
shareware program and continue using it, you are expected to register it. In-
dividual programs differ on details of trial periods, registration, and payment.
Please observe the requirements stated in appropriate files.

xi

This book is dedicated to my wonderful
wife, Tracy and our two cockatiels

Cricket and Wynton.

xiii

Contents

Introduction xxi
0.1 The History of Encog . xxi
0.2 Introduction to Neural Networks xxii

0.2.1 Neural Network Structure xxiv
0.2.2 A Simple Example . xxvi

0.3 When to use Neural Networks xxvii
0.3.1 Problems Not Suited to a Neural Network Solution . . xxvii
0.3.2 Problems Suited to a Neural Network xxviii

0.4 Structure of the Book . xxviii

1 Regression, Classification & Clustering 1
1.1 Data Classification . 1
1.2 Regression Analysis . 3
1.3 Clustering . 4
1.4 Structuring a Neural Network 4

1.4.1 Understanding the Input Layer 5
1.4.2 Understanding the Output Layer 6
1.4.3 Hidden Layers . 7

1.5 Using a Neural Network . 8
1.5.1 The XOR Operator and Neural Networks 8
1.5.2 Structuring a Neural Network for XOR 9

xiv CONTENTS

1.5.3 Training a Neural Network 13
1.5.4 Executing a Neural Network 15

1.6 Chapter Summary . 16

2 Obtaining Data for Encog 19
2.1 Where to Get Data for Neural Networks 19
2.2 Normalizing Data . 20

2.2.1 Normalizing Numeric Values 21
2.2.2 Normalizing Nominal Values 23
2.2.3 Understanding One-of-n Normalization 24
2.2.4 Understanding Equilateral Normalization 25

2.3 Programmatic Normalization 27
2.3.1 Normalizing Individual Numbers 27
2.3.2 Normalizing Memory Arrays 28

2.4 Normalizing CSV Files . 29
2.4.1 Implementing Basic File Normalization 30
2.4.2 Saving the Normalization Script 31
2.4.3 Customizing File Normalization 31

2.5 Summary . 32

3 The Encog Workbench 35
3.1 Structure of the Encog Workbench 36

3.1.1 Workbench CSV Files 37
3.1.2 Workbench EG Files 37
3.1.3 Workbench EGA Files 38
3.1.4 Workbench EGB Files 38
3.1.5 Workbench Image Files 39
3.1.6 Workbench Text Files 39

3.2 A Simple XOR Example . 39

CONTENTS xv

3.2.1 Creating a New Project 39
3.2.2 Generate Training Data 40
3.2.3 Create a Neural Network 41
3.2.4 Train the Neural Network 42
3.2.5 Evaluate the Neural Network 43

3.3 Using the Encog Analyst . 45
3.4 Encog Analyst Reports . 48

3.4.1 Range Report . 48
3.4.2 Scatter Plot . 48

3.5 Summary . 49

4 Constructing Neural Networks in Java 51
4.1 Constructing a Neural Network 52
4.2 The Role of Activation Functions 53
4.3 Encog Activation Functions 54

4.3.1 ActivationBiPolar . 54
4.3.2 Activation Competitive 55
4.3.3 ActivationLinear . 56
4.3.4 ActivationLOG . 57
4.3.5 ActivationSigmoid . 58
4.3.6 ActivationSoftMax . 59
4.3.7 ActivationTANH . 60

4.4 Encog Persistence . 61
4.5 Using Encog EG Persistence 61

4.5.1 Using Encog EG Persistence 62
4.6 Using Java Serialization . 64
4.7 Summary . 66

5 Propagation Training 69

xvi CONTENTS

5.1 Understanding Propagation Training 70
5.1.1 Understanding Backpropagation 71
5.1.2 Understanding the Manhattan Update Rule 72
5.1.3 Understanding Quick Propagation Training 73
5.1.4 Understanding Resilient Propagation Training 74
5.1.5 Understanding SCG Training 75
5.1.6 Understanding LMA Training 76

5.2 Encog Method & Training Factories 76
5.2.1 Creating Neural Networks with Factories 77
5.2.2 Creating Training Methods with Factories 77

5.3 How Multithreaded Training Works 78
5.4 Using Multithreaded Training 80
5.5 Summary . 81

6 More Supervised Training 85
6.1 Running the Lunar Lander Example 87
6.2 Examining the Lunar Lander Simulator 92

6.2.1 Simulating the Lander 92
6.2.2 Calculating the Score 95
6.2.3 Flying the Spacecraft 97

6.3 Training the Neural Pilot . 100
6.3.1 What is a Genetic Algorithm 101
6.3.2 Using a Genetic Algorithm 101
6.3.3 What is Simulated Annealing 103
6.3.4 Using Simulated Annealing 103

6.4 Using the Training Set Score Class 104
6.5 Summary . 105

7 Other Neural Network Types 109

CONTENTS xvii

7.1 The Elman Neural Network 110
7.1.1 Creating an Elman Neural Network 113
7.1.2 Training an Elman Neural Network 113

7.2 The Jordan Neural Network 115
7.3 The ART1 Neural Network . 116

7.3.1 Using the ART1 Neural Network 117
7.4 The NEAT Neural Network 120

7.4.1 Creating an Encog NEAT Population 121
7.4.2 Training an Encog NEAT Neural Network 123

7.5 Summary . 124

8 Using Temporal Data 127
8.1 How a Predictive Neural Network Works 128
8.2 Using the Encog Temporal Dataset 129
8.3 Application to Sunspots . 131
8.4 Using the Encog Market Dataset 137
8.5 Application to the Stock Market 139

8.5.1 Generating Training Data 140
8.5.2 Training the Neural Network 141
8.5.3 Incremental Pruning 143
8.5.4 Evaluating the Neural Network 145

8.6 Summary . 150

9 Using Image Data 153
9.1 Finding the Bounds . 154
9.2 Downsampling an Image . 156

9.2.1 What to Do With the Output Neurons 157
9.3 Using the Encog Image Dataset 157
9.4 Image Recognition Example 159

xviii CONTENTS

9.4.1 Creating the Training Set 160
9.4.2 Inputting an Image . 161
9.4.3 Creating the Network 163
9.4.4 Training the Network 164
9.4.5 Recognizing Images . 167

9.5 Summary . 168

10 Using a Self-Organizing Map 171
10.1 The Structure and Training of a SOM 173

10.1.1 Structuring a SOM . 173
10.1.2 Training a SOM . 174
10.1.3 Understanding Neighborhood Functions 176
10.1.4 Forcing a Winner . 178
10.1.5 Calculating Error . 179

10.2 Implementing the Colors SOM in Encog 179
10.2.1 Displaying the Weight Matrix 179
10.2.2 Training the Color Matching SOM 181

10.3 Summary . 184

A Installing and Using Encog 187
A.1 Installing Encog . 188
A.2 Compiling the Encog Core . 189
A.3 Compiling and Executing Encog Examples 191

A.3.1 Running an Example from the Command Line 191

Glossary 193

CONTENTS xix

xxi

Introduction

Encog is a machine learning framework for Java and .NET. Initially, Encog was
created to support only neural networks. Later versions of Encog expanded
more into general machine learning. However, this book will focus primarily on
neural networks. Many of the techniques learned in this book can be applied
to other machine learning techniques. Subsequent books will focus on some of
these areas of Encog programming.

This book is published in conjunction with the Encog 3.0 release and should
stay very compatible with later versions of Encog 3. Future versions in the 3.x
series will attempt to add functionality with minimal disruption to existing
code.

0.1 The History of Encog

The first version of Encog, version 0.5, was released on July 10, 2008. Encog’s
original foundations include some code used in the first edition of “Introduction
to Neural Networks with Java,” published in 2005. Its second edition featured
a completely redesigned neural network engine, which became Encog version
0.5. Encog versions 1.0 through 2.0 greatly enhanced the neural network code
well beyond what can be covered in an introduction book. Encog version 3.0
added more formal support for machine learning methods beyond just neural
networks.

This book will provide a comprehensive instruction on how to use neu-
ral networks with Encog. For the intricacies of actually implementing neural
networks, reference “Introduction to Neural Networks with Java” and “Intro-
duction to Neural Networks with C#.” These books explore how to implement

xxii Introduction

basic neural networks and now to create the internals of a neural network.
These two books can be read in sequence as new concepts are introduced

with very little repetition. These books are not a prerequisite to each other.
This book will equip you to start with Encog if you have a basic understanding
Java programming language. Particularly, you should be familiar with the
following:

• Java Generics

• Collections

• Object Oriented Programming

Before we begin examining how to use Encog, let’s first identify the problems
Encog adept at solving. Neural networks are a programming technique. They
are not a silver bullet solution for every programming problem, yet offer vi-
able solutions to certain programming problems. Of course, there are other
problems for which neural networks are a poor fit.

0.2 Introduction to Neural Networks

This book will define a neural network and how it is used. Most people, even
non-programmers, have heard of neural networks. There are many science
fiction overtones associated with neural networks. And, like many things, sci-
fi writers have created a vast, but somewhat inaccurate, public idea of what a
neural network is.

Most laypeople think of neural networks as a sort of “artificial brain” that
power robots or carry on intelligent conversations with human beings. This
notion is a closer definition of Artificial Intelligence (AI) than neural networks.
AI seeks to create truly intelligent machines. I am not going to waste several
paragraphs explaining what true, human intelligence is, compared to the cur-
rent state of computers. Anyone who has spent any time with both human
beings and computers knows the difference. Current computers are not intel-
ligent.

0.2 Introduction to Neural Networks xxiii

Neural networks are one small part of AI. Neural networks, at least as they
currently exist, carry out very small, specific tasks. Computer-based neural
networks are not general purpose computation devices like the human brain. It
is possible that the perception of neural networks is skewed, as the brain itself
is a network of neurons, or a neural network. This brings up an important
distinction.

The human brain is more accurately described as a biological neural net-
work (BNN). This book is not about biological neural networks. This book
is about artificial neural networks (ANN). Most texts do not make the dis-
tinction between the two. Throughout this text, references to neural networks
imply artificial neural networks.

There are some basic similarities between biological neural networks and
artificial neural networks. Artificial neural networks are largely mathematical
constructs that were inspired by biological neural networks. An important
term that is often used to describe various artificial neural network algorithms
is “biological plausibility.” This term defines how close an artificial neural
network algorithm is to a biological neural network.

As stated earlier, neural networks are designed to accomplish one small
task. A full application likely uses neural networks to accomplish certain
parts of its objectives. The entire application is not be implemented as a
neural network. The application may be made of several neural networks,
each designed for a specific task.

The neural networks accomplish pattern recognition tasking very well.
When communicated a pattern, a neural network communicates that pattern
back. At the highest level, this is all that a typical neural network does. Some
network architectures will vary this, but the vast majority of neural networks
work this way. Figure 1 illustrates a neural network at this level.

Figure 1: A Typical Neural Network

As you can see, the neural network above is accepting a pattern and return-
ing a pattern. Neural networks operate completely synchronously. A neural

xxiv Introduction

network will only output when presented with input. It is not like a human
brain, which does not operate exactly synchronously. The human brain re-
sponds to input, but it will produce output anytime it desires!

0.2.1 Neural Network Structure

Neural networks are made of layers of similar neurons. At minimum, most
neural networks consist of an input layer and output layer. The input pattern
is presented to the input layer. Then the output pattern is returned from
the output layer. What happens between the input and output layers is a
black box. At this point in the book, the neural network’s internal structure
is not yet a concern. There are many architectures that define interactions
between the input and output layer. Later in this book, these architectures
are examined.

The input and output patterns are both arrays of floating point numbers.
An example of these patterns follows.
Neural Network Input : [−0.245 , . 283 , 0 . 0]
Neural Network Output : [0 . 782 , 0 .543]

The neural network above has three neurons in the input layer and two neurons
in the output layer. The number of neurons in the input and output layers
do not change. As a result, the number of elements in the input and output
patterns, for a particular neural network, can never change.

To make use of the neural network, problem input must be expressed as
an array of floating point numbers. Likewise, the problem’s solution must be
an array of floating point numbers. This is the essential and only true value
of a neural network. Neural networks take one array and transform it into
a second. Neural networks do not loop, call subroutines, or perform any of
the other tasks associated with traditional programming. Neural networks
recognize patterns.

0.2 Introduction to Neural Networks xxv

A neural network is much like a hash table in traditional programming.
A hash table is used to map keys to values, somewhat like a dictionary. The
following could be thought of as a hash table:

• “hear” -> “to perceive or apprehend by the ear”

• “run” -> “to go faster than a walk”

• “write” -> “to form (as characters or symbols) on a surface with an
instrument (as a pen)”

This is a mapping between words and the definition of each word, or a hash
table just as in any programming language. It uses a string key to another
value of a string. Input is the dictionary with a key and output is a value.
This is how most neural networks function. One neural network called a
Bidirectional Associative Memory (BAM) actually allows a user to also pass
in the value and receive the key.

Hash tables use keys and values. Think of the pattern sent to the neural
network’s input layer as the key to the hash table. Likewise, think of the
value returned from the hash table as the pattern returned from the neural
network’s output layer. The comparison between a hash table and a neural
network works well; however, the neural network is much more than a hash
table.

What would happen with the above hash table if a word was passed that
was not a map key? For example, pass in the key “wrote.” A hash table
would return null or indicate in some way that it could not find the specified
key. Neural networks do not return null, but rather find the closest match.
Not only do they find the closest match, neural networks modify the output
to estimate the missing value. So if “wrote” is passed to the neural network
above, the output would likely be “write.” There is not enough data for the
neural network to have modified the response, as there are only three samples.
So you would likely get the output from one of the other keys.

The above mapping brings up one very important point about neural net-
works. Recall that neural networks accept an array of floating point numbers
and return another array. How would strings be put into the neural network

xxvi Introduction

as seen above? While there are ways to do this, it is much easier to deal with
numeric data than strings.

With a neural network problem, inputs must be arrays of floating point
numbers. This is one of the most difficult aspects of neural network pro-
gramming. How are problems translated into a fixed-length array of floating
point numbers? The best way is by demonstration. Examples are explored
throughout the remainder of this introduction.

0.2.2 A Simple Example

Most basic literature concerning neural networks provide examples with the
XOR operator. The XOR operator is essentially the “Hello World” of neural
network programming. While this book will describe scenarios much more
complex than XOR, the XOR operator is a great introduction.

To begin, view the XOR operator as though it were a hash table. XOR
operators work similar to the AND and OR operators. For an AND to be
true, both sides must be true. For an OR to be true, either side must be
true. For an XOR to be true, both of the sides must be different from each
other. The truth table for an XOR is as follows.
False XOR False = False
True XOR False = True
Fal se XOR True = True
True XOR True = False

To continue the hash table example, the above truth table would be repre-
sented as follows.
[0 . 0 , 0 . 0] −> [0 . 0]
[1 . 0 , 0 . 0] −> [1 . 0]
[0 . 0 , 1 . 0] −> [1 . 0]
[1 . 0 , 1 . 0] −> [0 . 0]

These mapping show input and the ideal expected output for the neural net-
work.

0.3 When to use Neural Networks xxvii

0.3 When to use Neural Networks

With neural networks defined, it must be determined when or when not to use
them. Knowing when not to use something is just as important as knowing
how to use it. To understand these objectives, we will identify what sort of
problems Encog is adept at solving.

A significant goal of this book is explain how to construct Encog neural
networks and when to use them. Neural network programmers must under-
stand which problems are well-suited for neural network solutions and which
are not. An effective neural network programmer also knows which neural
network structure, if any, is most applicable to a given problem. This sec-
tion begins by identifying which problems that are not conducive to a neural
network solution.

0.3.1 Problems Not Suited to a Neural Network Solu-
tion

Programs that are easily written as flowcharts are not ideal applications for
neural networks. If your program consists of well-defined steps, normal pro-
gramming techniques will suffice.

Another criterion to consider is whether program logic is likely to change.
One of the primary features of neural networks is the ability to learn. If the
algorithm used to solve your problem is an unchanging business rule, there is no
reason to use a neural network. In fact, a neural network might be detrimental
to your application if it attempts to find a better solution and begins to diverge
from the desired process. Unexpected results will likely occur.

Finally, neural networks are often not suitable for problems that require
a clearly traceable path to solution. A neural network can be very useful for
solving the problem for which it was trained, but cannot explain its reasoning.
The neural network knows something because it was trained to know it. How-
ever, a neural network cannot explain the series of steps followed to derive the
answer.

xxviii Introduction

0.3.2 Problems Suited to a Neural Network

Although there are many problems for which neural networks are not well
suited, there are also many problems for which a neural network solution is
quite useful. In addition, neural networks can often solve problems with fewer
lines of code than traditional programming algorithms. It is important to
understand which problems call for a neural network approach.

Neural networks are particularly useful for solving problems that cannot
be expressed as a series of steps. This may include recognizing patterns, clas-
sification, series prediction and data mining.

Pattern recognition is perhaps the most common use for neural networks.
For this type of problem, the neural network is presented a pattern in the
form of an image, a sound or other data. The neural network then attempts
to determine if the input data matches a pattern that it has been trained to
recognize. The remainder of this textbook will examine many examples of how
to use neural networks to recognize patterns.

Classification is a process that is closely related to pattern recognition. A
neural network trained for classification is designed to classify input samples
into groups. These groups may be fuzzy and lack clearly-defined boundaries.
Alternatively, these groups may have quite rigid boundaries.

0.4 Structure of the Book

This book begins with Chapter 1, “Regression, Classification & Clustering.”
This chapter introduces the major tasks performed with neural networks.
These tasks are not just performed by neural networks, but also by many
other machine learning methods as well.

One of the primary tasks for neural networks is to recognize and provide
insight into data. Chapter 2, “Obtaining Data & Normalization,” shows how
to process this data before using a neural network. This chapter will examine
some data that might be used with a neural network and how to normalize
and use this data with a neural network.

Encog includes a GUI neural network editor called the Encog Workbench.
Chapter 3, “Using the Encog Workbench,” details the best methods and uses

0.4 Structure of the Book xxix

for this application. The Encog Workbench provides a GUI tool that can edit
the .EG data files used by the Encog Framework. The powerful Encog Analyst
can also be used to automate many tasks.

The next step is to construct and save neural networks. Chapter 4, “Con-
structing Neural Networks in Java,” shows how to create neural networks using
layers and activation functions. It will also illustrate how to save neural net-
works to either platform-independent .EG files or standard Java serialization.

Neural networks must be trained for effective utilization and there are sev-
eral ways to perform this training. Chapter 5, “Propagation Training,” shows
how to use the propagation methods built into Encog to train neural networks.
Encog supports backpropagation, resilient propagation, the Manhattan update
rule, Quick Propagation and SCG.

Chapter 6, “Other Supervised Training Methods,” shows other supervised
training algorithms supported by Encog. This chapter introduces simulated
annealing and genetic algorithms as training techniques for Encog networks.
Chapter 6 also details how to create hybrid training algorithms.

Feedforward neural networks are not the only type supported by Encog.
Chapter 7, “Other Neural Network Types,” provides a brief introduction to
several other neural network types that Encog supports well. Chapter 7 de-
scribes how to setup NEAT, ART1 and Elman/Jordan neural networks.

Neural networks are commonly used to predict future data changes. One
common use for this is to predict stock market trends. Chapter 8, “Using
Temporal Data,” will show how to use Encog to predict trends.

Images are frequently used as an input for neural networks. Encog contains
classes that make it easy to use image data to feed and train neural networks.
Chapter 9, “Using Image Data,” shows how to use image data with Encog.

Finally, Chapter 10, “Using Self Organizing Maps,” expands beyond su-
pervised training to explain how to use unsupervised training with Encog. A
Self Organizing Map (SOM) can be used to cluster data.

xxx Introduction

As you read though this book you will undoubtedly have questions about
the Encog Framework. Your best resources are the Encog forums at Heaton
Research, found at the following URL.

http://www.heatonresearch.com/forum
Additionally, the Encog Wiki, located at the following URL.
http://www.heatonresearch.com/wiki/Main_Page

http://www.heatonresearch.com/forum
http://www.heatonresearch.com/wiki/Main_Page

0.4 Structure of the Book xxxi

1

Chapter 1

Regression, Classification &
Clustering

• Classifying Data

• Regression Analysis of Data

• Clustering Data

• How Machine Learning Problems are Structured

While there are other models, regression, classification and clustering are the
three primary ways that data is evaluated for machine learning problems.
These three models are the most common and the focus of this book. The
next sections will introduce you to classification, regression and clustering.

1.1 Data Classification

Classification attempts to determine what class the input data falls into. Clas-
sification is usually a supervised training operation, meaning the user provides
data and expected results to the neural network. For data classification, the
expected result is identification of the data class.

2 Regression, Classification & Clustering

Supervised neural networks are always trained with known data. During
training, the networks are evaluated on how well they classify known data.
The hope is that the neural network, once trained, will be able to classify
unknown data as well.

Fisher’s Iris Dataset is an example of classification. This is a dataset that
contains measurements of Iris flowers. This is one of the most famous datasets
and is often used to evaluate machine learning methods. The full dataset is
available at the following URL.

http://www.heatonresearch.com/wiki/Iris Data Set
Below is small sampling from the Iris data set.

” Sepal Length” , ” Sepal Width” , ” Peta l Length” , ” Peta l Width” , ” Spec i e s
”

5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , ” s e t o s a ”
4 . 9 , 3 . 0 , 1 . 4 , 0 . 2 , ” s e t o s a ”
4 . 7 , 3 . 2 , 1 . 3 , 0 . 2 , ” s e t o s a ”
. . .
7 . 0 , 3 . 2 , 4 . 7 , 1 . 4 , ” v e r s i c o l o r ”
6 . 4 , 3 . 2 , 4 . 5 , 1 . 5 , ” v e r s i c o l o r ”
6 . 9 , 3 . 1 , 4 . 9 , 1 . 5 , ” v e r s i c o l o r ”
. . .
6 . 3 , 3 . 3 , 6 . 0 , 2 . 5 , ” v i r g i n i c a ”
5 . 8 , 2 . 7 , 5 . 1 , 1 . 9 , ” v i r g i n i c a ”
7 . 1 , 3 . 0 , 5 . 9 , 2 . 1 , ” v i r g i n i c a ”

The above data is shown as a CSV file. CSV is a very common input format
for a neural network. The first row is typically a definition for each of the
columns in the file. As you can see, for each of the flowers there are five pieces
of information are provided.

• Sepal Length

• Sepal Width

• Petal Length

• Petal Width

• Species

1.2 Regression Analysis 3

For classification, the neural network is instructed that, given the sepal length-
/width and the petal length/width, the species of the flower can be determined.
The species is the class.

A class is usually a non-numeric data attribute and as such, membership in
the class must be well-defined. For the Iris data set, there are three different
types of Iris. If a neural network is trained on three types of Iris, it cannot be
expected to identify a rose. All members of the class must be known at the
time of training.

1.2 Regression Analysis

In the last section, we learned how to use data to classify data. Often the
desired output is not simply a class, but a number. Consider the calculation
of an automobile’s miles per gallon (MPG). Provided data such as the engine
size and car weight, the MPG for the specified car may be calculated.

Consider the following sample data for five cars:
”mpg” , ” c y l i n d e r s ” , ” d i sp lacement ” , ” horsepower ” , ” weight ” , ”

a c c e l e r a t i o n ” , ”model year ” , ” o r i g i n ” , ” car name”
1 8 . 0 , 8 , 3 0 7 . 0 , 1 3 0 . 0 , 3 5 0 4 . , 1 2 . 0 , 7 0 , 1 , ” c h e v r o l e t c h e v e l l e malibu ”
1 5 . 0 , 8 , 3 5 0 . 0 , 1 6 5 . 0 , 3 6 9 3 . , 1 1 . 5 , 7 0 , 1 , ” buick sky la rk 320”
1 8 . 0 , 8 , 3 1 8 . 0 , 1 5 0 . 0 , 3 4 3 6 . , 1 1 . 0 , 7 0 , 1 , ”plymouth s a t e l l i t e ”
1 6 . 0 , 8 , 3 0 4 . 0 , 1 5 0 . 0 , 3 4 3 3 . , 1 2 . 0 , 7 0 , 1 , ”amc r e b e l s s t ”
1 7 . 0 , 8 , 3 0 2 . 0 , 1 4 0 . 0 , 3 4 4 9 . , 1 0 . 5 , 7 0 , 1 , ” f o rd t o r i n o ”
. . .

For more information, the entirety of this dataset may be found at:
http://www.heatonresearch.com/wiki/MPG_Data_Set
The idea of regression is to train the neural network with input data about

the car. However, using regression, the network will not produce a class. The
neural network is expected to provide the miles per gallon that the specified
car would likely get.

It is also important to note that not use every piece of data in the above file
will be used. The columns “car name” and “origin” are not used. The name of a
car has nothing to do with its fuel efficiency and is therefore excluded. Likewise
the origin does not contribute to this equation. The origin is a numeric value

http://www.heatonresearch.com/wiki/MPG_Data_Set

4 Regression, Classification & Clustering

that specifies what geographic region the car was produced in. While some
regions do focus on fuel efficiency, this piece of data is far too broad to be
useful.

1.3 Clustering

Another common type of analysis is clustering. Unlike the previous two anal-
ysis types, clustering is typically unsupervised. Either of the datasets from
the previous two sections could be used for clustering. The difference is that
clustering analysis would not require the user to provide the species in the case
of the Iris dataset, or the MPG number for the MPG dataset. The clustering
algorithm is expected to place the data elements into clusters that correspond
to the species or MPG.

For clustering, the machine learning method simply looks at the data and
attempts to place that data into a number of clusters. The number of clusters
expected must be defined ahead of time. If the number of clusters changes,
the clustering machine learning method will need to be retrained.

Clustering is very similar to classification, with its output being a cluster,
which is similar to a class. However, clustering differs from regression as it does
not provide a number. So if clustering were used with the MPG dataset, the
output would need to be a cluster that the car falls into. Perhaps each cluster
would specify the varying level of fuel efficiency for the vehicle. Perhaps the
clusters would group the cars into clusters that demonstrated some relationship
that had not yet been noticed.

1.4 Structuring a Neural Network

Now the three major problem models for neural networks are identified, it is
time to examine how data is actually presented to the neural network. This
section focuses mainly on how the neural network is structured to accept data
items and provide output. The following chapter will detail how to normalize
the data prior to being presented to the neural network.

Neural networks are typically layered with an input and output layer at

1.4 Structuring a Neural Network 5

minimum. There may also be hidden layers. Some neural network types
are not broken up into any formal layers beyond the input and output layer.
However, the input layer and output layer will always be present and may be
incorporated in the same layer. We will now examine the input layer, output
layer and hidden layers.

1.4.1 Understanding the Input Layer

The input layer is the first layer in a neural network. This layer, like all layers,
contains a specific number of neurons. The neurons in a layer all contain similar
properties. Typically, the input layer will have one neuron for each attribute
that the neural network will use for classification, regression or clustering.

Consider the previous examples. The Iris dataset has four input neurons.
These neurons represent the petal width/length and the sepal width/length.
The MPG dataset has more input neurons. The number of input neurons
does not always directly correspond to the number of attributes and some
attributes will take more than one neuron to encode. This encoding process,
called normalization, will be covered in the next chapter.

The number of neurons determines how a layer’s input is structured. For
each input neuron, one double value is stored. For example, the following
array could be used as input to a layer that contained five neurons.
double [] input = new double [5] ;

The input to a neural network is always an array of the type double. The size
of this array directly corresponds to the number of neurons on the input layer.
Encog uses the MLData interface to define classes that hold these arrays.
The array above can be easily converted into an MLData object with the
following line of code.
MLData data = new BasicMLData (input) ;

The MLData interface defines any “array like” data that may be presented
to Encog. Input must always be presented to the neural network inside of a
MLData object. The BasicMLData class implements the MLData inter-
face. However, the BasicMLData class is not the only way to provide Encog

6 Regression, Classification & Clustering

with data. Other implementations of MLData are used for more specialized
types of data.

The BasicMLData class simply provides a memory-based data holder
for the neural network data. Once the neural network processes the input, a
MLData-based class will be returned from the neural network’s output layer.
The output layer is discussed in the next section.

1.4.2 Understanding the Output Layer

The output layer is the final layer in a neural network. This layer provides the
output after all previous layers have processed the input. The output from
the output layer is formatted very similarly to the data that was provided to
the input layer. The neural network outputs an array of doubles.

The neural network wraps the output in a class based on the MLData
interface. Most of the built-in neural network types return a BasicMLData
class as the output. However, future and third party neural network classes
may return different classes based other implementations of the MLData
interface.

Neural networks are designed to accept input (an array of doubles) and then
produce output (also an array of doubles). Determining how to structure the
input data and attaching meaning to the output are the two main challenges
of adapting a problem to a neural network. The real power of a neural network
comes from its pattern recognition capabilities. The neural network should be
able to produce the desired output even if the input has been slightly distorted.

Regression neural networks typically produce a single output neuron that
provides the numeric value produced by the neural network. Multiple output
neurons may exist if the same neural network is supposed to predict two or
more numbers for the given inputs.

Classification produce one or more output neurons, depending on how the
output class was encoded. There are several different ways to encode classes.
This will be discussed in greater detail in the next chapter.

Clustering is setup similarly as the output neurons identify which data
belongs to what cluster.

1.4 Structuring a Neural Network 7

1.4.3 Hidden Layers

As previously discussed, neural networks contain and input layer and an output
layer. Sometimes the input layer and output layer are the same, but are most
often two separate layers. Additionally, other layers may exist between the
input and output layers and are called hidden layers. These hidden layers are
simply inserted between the input and output layers. The hidden layers can
also take on more complex structures.

The only purpose of the hidden layers is to allow the neural network to
better produce the expected output for the given input. Neural network pro-
gramming involves first defining the input and output layer neuron counts.
Once it is determined how to translate the programming problem into the
input and output neuron counts, it is time to define the hidden layers.

The hidden layers are very much a “black box.” The problem is defined in
terms of the neuron counts for the hidden and output layers. How the neural
network produces the correct output is performed in part by hidden layers.
Once the structure of the input and output layers is defined, the hidden layer
structure that optimally learns the problem must also be defined.

The challenge is to avoid creating a hidden structure that is either too
complex or too simple. Too complex of a hidden structure will take too long
to train. Too simple of a hidden structure will not learn the problem. A good
starting point is a single hidden layer with a number of neurons equal to twice
the input layer. Depending on this network’s performance, the hidden layer’s
number of neurons is either increased or decreased.

Developers often wonder how many hidden layers to use. Some research
has indicated that a second hidden layer is rarely of any value. Encog is an
excellent way to perform a trial and error search for the most optimal hidden
layer configuration. For more information see the following URL:

http://www.heatonresearch.com/wiki/Hidden_Layers

http://www.heatonresearch.com/wiki/Hidden_Layers

8 Regression, Classification & Clustering

Some neural networks have no hidden layers, with the input layer directly
connected to the output layer. Further, some neural networks have only a
single layer in which the single layer is self-connected. These connections
permit the network to learn. Contained in these connections, called synapses,
are individual weight matrixes. These values are changed as the neural network
learns. The next chapter delves more into weight matrixes.

1.5 Using a Neural Network

This section will detail how to structure a neural network for a very simple
problem: to design a neural network that can function as an XOR operator.
Learning the XOR operator is a frequent “first example” when demonstrating
the architecture of a new neural network. Just as most new programming
languages are first demonstrated with a program that simply displays “Hello
World,” neural networks are frequently demonstrated with the XOR operator.
Learning the XOR operator is sort of the “Hello World” application for neural
networks.

1.5.1 The XOR Operator and Neural Networks

The XOR operator is one of common Boolean logical operators. The other two
are the AND and OR operators. For each of these logical operators, there are
four different combinations. All possible combinations for the AND operator
are shown below.
0 AND 0 = 0
1 AND 0 = 0
0 AND 1 = 0
1 AND 1 = 1

This should be consistent with how you learned the AND operator for com-
puter programming. As its name implies, the AND operator will only return
true, or one, when both inputs are true.

1.5 Using a Neural Network 9

The OR operator behaves as follows:
0 OR 0 = 0
1 OR 0 = 1
0 OR 1 = 1
1 OR 1 = 1

This also should be consistent with how you learned the OR operator for
computer programming. For the OR operator to be true, either of the inputs
must be true.

The “exclusive or” (XOR) operator is less frequently used in computer
programming. XOR has the same output as the OR operator, except for the
case where both inputs are true. The possible combinations for the XOR
operator are shown here.
0 XOR 0 = 0
1 XOR 0 = 1
0 XOR 1 = 1
1 XOR 1 = 0

As you can see, the XOR operator only returns true when both inputs differ.
The next section explains how to structure the input, output and hidden layers
for the XOR operator.

1.5.2 Structuring a Neural Network for XOR

There are two inputs to the XOR operator and one output. The input and
output layers will be structured accordingly. The input neurons are fed the
following double values:
0 . 0 , 0 . 0
1 . 0 , 0 . 0
0 . 0 , 1 . 0
1 . 0 , 1 . 0

These values correspond to the inputs to the XOR operator, shown above.
The one output neuron is expected to produce the following double values:
0 .0
1 .0

10 Regression, Classification & Clustering

1 .0
0 .0

This is one way that the neural network can be structured. This method
allows a simple feedforward neural network to learn the XOR operator. The
feedforward neural network, also called a perceptron, is one of the first neural
network architectures that we will learn.

There are other ways that the XOR data could be presented to the neural
network. Later in this book, two examples of recurrent neural networks will be
explored including Elman and Jordan styles of neural networks. These meth-
ods would treat the XOR data as one long sequence, basically concatenating
the truth table for XOR together, resulting in one long XOR sequence, such
as:
0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 1 . 0 , 1 . 0 ,
1 . 0 , 0 . 0 , 1 . 0 ,
1 . 0 , 1 . 0 , 0 . 0

The line breaks are only for readability; the neural network treats XOR as a
long sequence. By using the data above, the network has a single input neuron
and a single output neuron. The input neuron is fed one value from the list
above and the output neuron is expected to return the next value.

This shows that there are often multiple ways to model the data for a
neural network. How the data is modeled will greatly influence the success of
a neural network. If one particular model is not working, another should be
considered. The next step is to format the XOR data for a feedforward neural
network.

Because the XOR operator has two inputs and one output, the neural
network follows suit. Additionally, the neural network has a single hidden
layer with two neurons to help process the data. The choice for two neurons
in the hidden layer is arbitrary and often results in trial and error. The XOR
problem is simple and two hidden neurons are sufficient to solve it. A diagram
for this network is shown in Figure 1.1.

1.5 Using a Neural Network 11

Figure 1.1: Neuron Diagram for the XOR Network

There are four different types of neurons in the above network. These are
summarized below:

• Input Neurons: I1, I2

• Output Neuron: O1

• Hidden Neurons: H1, H2

• Bias Neurons: B1, B2

The input, output and hidden neurons were discussed previously. The new
neuron type seen in this diagram is the bias neuron. A bias neuron always
outputs a value of 1 and never receives input from the previous layer.

In a nutshell, bias neurons allow the neural network to learn patterns more
effectively. They serve a similar function to the hidden neurons. Without
bias neurons, it is very hard for the neural network to output a value of one
when the input is zero. This is not so much a problem for XOR data, but it
can be for other data sets. To read more about their exact function, visit the
following URL:

http://www.heatonresearch.com/wiki/Bias
Now look at the code used to produce a neural network that solves the

XOR operator. The complete code is included with the Encog examples and
can be found at the following location.
org . encog . examples . neura l . xor . XORHelloWorld

http://www.heatonresearch.com/wiki/Bias

12 Regression, Classification & Clustering

The example begins by creating the neural network seen in Figure 1.1. The
code needed to create this network is relatively simple:
BasicNetwork network = new BasicNetwork () ;
network . addLayer (new BasicLayer (null , true , 2)) ;
network . addLayer (new BasicLayer (new Act ivat ionSigmoid () , true , 3)) ;
network . addLayer (new BasicLayer (new Act ivat ionSigmoid () , false , 1)) ;
network . g e tS t ruc tu r e () . f i n a l i z e S t r u c t u r e () ;
network . r e s e t () ;

In the above code, a BasicNetwork is being created. Three layers are added
to this network. The first layer, which becomes the input layer, has two neu-
rons. The hidden layer is added second and has two neurons also. Lastly, the
output layer is added and has a single neuron. Finally, the finalizeStructure
method is called to inform the network that no more layers are to be added.
The call to reset randomizes the weights in the connections between these
layers.

Neural networks always begin with random weight values. A process called
training refines these weights to values that will provide the desired output.
Because neural networks always start with random values, very different results
occur from two runs of the same program. Some random weights provide
a better starting point than others. Sometimes random weights will be far
enough off that the network will fail to learn. In this case, the weights should
be randomized again and the process restarted.

You will also notice the ActivationSigmoid class in the above code. This
specifies the neural network to use the sigmoid activation function. Activation
functions will be covered in Chapter 4. The activation functions are only placed
on the hidden and output layer; the input layer does not have an activation
function. If an activation function were specified for the input layer, it would
have no effect.

Each layer also specifies a boolean value. This boolean value specifies
if bias neurons are present on a layer or not. The output layer, as shown in
Figure 1.1, does not have a bias neuron as input and hidden layers do. This is
because a bias neuron is only connected to the next layer. The output layer
is the final layer, so there is no need for a bias neuron. If a bias neuron was
specified on the output layer, it would have no effect.

1.5 Using a Neural Network 13

These weights make up the long-term memory of the neural network. Some
neural networks also contain context layers which give the neural network a
short-term memory as well. The neural network learns by modifying these
weight values. This is also true of the Elman and Jordan neural networks.

Now that the neural network has been created, it must be trained. Training
is the process where the random weights are refined to produce output closer
to the desired output. Training is discussed in the next section.

1.5.3 Training a Neural Network

To train the neural network, a MLDataSet object is constructed. This object
contains the inputs and the expected outputs. To construct this object, two
arrays are created. The first array will hold the input values for the XOR
operator. The second array will hold the ideal outputs for each of four corre-
sponding input values. These will correspond to the possible values for XOR.
To review, the four possible values are as follows:
0 XOR 0 = 0
1 XOR 0 = 1
0 XOR 1 = 1
1 XOR 1 = 0

First, construct an array to hold the four input values to the XOR operator
using a two dimensional double array. This array is as follows:
public stat ic double XOR INPUT [] [] = {
{ 0 . 0 , 0 . 0 } ,
{ 1 . 0 , 0 . 0 } ,
{ 0 . 0 , 1 . 0 } ,
{ 1 . 0 , 1 . 0 } } ;

Likewise, an array must be created for the expected outputs for each of the
input values. This array is as follows:
public stat ic double XOR IDEAL [] [] = {
{ 0 .0 } ,
{ 1 .0 } ,
{ 1 .0 } ,
{ 0 .0 } } ;

14 Regression, Classification & Clustering

Even though there is only one output value, a two-dimensional array must
still be used to represent the output. If there is more than one output neuron,
additional columns are added to the array.

Now that the two input arrays are constructed, a MLDataSet object must
be created to hold the training set. This object is created as follows:
MLDataSet t r a i n i n g S e t = new BasicMLDataSet (XOR INPUT, XOR IDEAL) ;

Now that the training set has been created, the neural network can be trained.
Training is the process where the neural network’s weights are adjusted to
better produce the expected output. Training will continue for many iterations
until the error rate of the network is below an acceptable level. First, a training
object must be created. Encog supports many different types of training.

For this example Resilient Propagation (RPROP) training is used. RPROP
is perhaps the best general-purpose training algorithm supported by Encog.
Other training techniques are provided as well as certain problems are solved
better with certain training techniques. The following code constructs a
RPROP trainer:
MLTrain t r a i n = new Res i l i en tPropaga t i on (network , t r a i n i n g S e t) ;

All training classes implement the MLTrain interface. The RPROP algorithm
is implemented by the ResilientPropagation class, which is constructed
above.

Once the trainer is constructed, the neural network should be trained.
Training the neural network involves calling the iteration method on the
MLTrain class until the error is below a specific value. The error is the
degree to which the neural network output matches the desired output.
int epoch = 1 ;
do {

t r a i n . i t e r a t i o n () ;
System . out . p r i n t l n (”Epoch #” + epoch + ” Error : ”

+ t r a i n . getError ()) ;
epoch++;

} while (t r a i n . getError () > 0 . 01) ;

The above code loops through as many iterations, or epochs, as it takes to get
the error rate for the neural network to be below 1%. Once the neural network

1.5 Using a Neural Network 15

has been trained, it is ready for use. The next section will explain how to use
a neural network.

1.5.4 Executing a Neural Network

Making use of the neural network involves calling the compute method on
the BasicNetwork class. Here we loop through every training set value and
display the output from the neural network:
System . out . p r i n t l n (” Neural Network Resu l t s : ”) ;
for (MLDataPair pa i r : t r a i n i n g S e t) {

f ina l MLData output =
network . compute (pa i r . get Input ()) ;

System . out . p r i n t l n (pa i r . get Input () . getData (0)
+ ” , ” + pa i r . get Input () . getData (1)
+ ” , ac tua l=” + output . getData (0) + ” , i d e a l=” +

pa i r . g e t I d e a l () . getData (0)) ;
}

The compute method accepts an MLData class and also returns another
MLData object. The returned object contains the output from the neural
network, which is displayed to the user. With the program run, the training
results are first displayed. For each epoch, the current error rate is displayed.

Epoch #1 Error :0 .5604437512295236
Epoch #2 Error :0 .5056375155784316
Epoch #3 Error :0 .5026960720526166
Epoch #4 Error :0 .4907299498390594
. . .
Epoch #104 Error :0 .01017278345766472
Epoch #105 Error :0 .010557202078697751
Epoch #106 Error :0 .011034965164672806
Epoch #107 Error :0 .009682102808616387

The error starts at 56% at epoch 1. By epoch 107, the training dropped below
1% and training stops. Because neural network was initialized with random
weights, it may take different numbers of iterations to train each time the
program is run. Additionally, though the final error rate may be different, it
should always end below 1%.

16 Regression, Classification & Clustering

Finally, the program displays the results from each of the training items as
follows:
Neural Network Resu l t s :
0 . 0 , 0 . 0 , a c tua l =0.002782538818034049 , i d e a l =0.0
1 . 0 , 0 . 0 , a c tua l =0.9903741937121177 , i d e a l =1.0
0 . 0 , 1 . 0 , a c tua l =0.9836807956566187 , i d e a l =1.0
1 . 0 , 1 . 0 , a c tua l =0.0011646072586172778 , i d e a l =0.0

As you can see, the network has not been trained to give the exact results.
This is normal. Because the network was trained to 1% error, each of the
results will also be within generally 1% of the expected value.

Because the neural network is initialized to random values, the final output
will be different on second run of the program.
Neural Network Resu l t s :
0 . 0 , 0 . 0 , a c tua l =0.005489822214926685 , i d e a l =0.0
1 . 0 , 0 . 0 , a c tua l =0.985425090860287 , i d e a l =1.0
0 . 0 , 1 . 0 , a c tua l =0.9888064742994463 , i d e a l =1.0
1 . 0 , 1 . 0 , a c tua l =0.005923146369557053 , i d e a l =0.0

The second run output is slightly different. This is normal.
This is the first Encog example. All of the examples contained in this

book are also included with the examples downloaded with Encog. For more
information on how to download these examples and where this particular
example is located, refer to Appendix A, “Installing Encog.”

1.6 Chapter Summary

Encog is an advanced machine learning framework used to create neural net-
works. This chapter focused on regression in classification and clustering.
Finally, this chapter showed how to create an Encog application that could
learn the XOR operator.

Regression is when a neural network accepts input and produces a numeric
output. Classification is where a neural network accepts input and predicts
what class the input was in. Clustering does not require ideal outputs. Rather,
clustering looks at the input data and clusters the input cases as best it can.

1.6 Chapter Summary 17

There are several different layer types supported by Encog. However, these
layers fall into three groups depending their placement in the neural network.
The input layer accepts input from the outside. Hidden layers accept data from
the input layer for further processing. The output layer takes data, either from
the input or final hidden layer, and presents it on to the outside world.

The XOR operator was used as an example for this chapter. The XOR
operator is frequently used as a simple “Hello World” application for neural
networks. The XOR operator provides a very simple pattern that most neural
networks can easily learn. It is important to know how to structure data for a
neural network. Neural networks both accept and return an array of floating
point numbers.

Finally, this chapter detailed how to send data to a neural network. Data
for the XOR example is easily provided to a neural network. No normaliza-
tion or encoding is necessary. However, most real world data will need to be
normalized. Normalization is demonstrated in the next chapter.

19

Chapter 2

Obtaining Data for Encog

• Finding Data for Neural Networks

• Why Normalize?

• Specifying Normalization Sources

• Specifying Normalization Targets

Neural networks can provide profound insights into the data supplied to them.
However, you can’t just feed any sort of data directly into a neural network.
This “raw” data must usually be normalized into a form that the neural net-
work can process. This chapter will show how to normalize “raw” data for use
by Encog.

Before data can be normalized, we must first have data. Once you decide
what the neural network should do, you must find data to teach the neural
network how to perform a task. Fortunately, the Internet provides a wealth of
information that can be used with neural networks.

2.1 Where to Get Data for Neural Networks

The Internet can be a great source of data for the neural network. Data found
on the Internet can be in many different formats. One of the most convenient

20 Obtaining Data for Encog

formats for data is the comma-separated value (CSV) format. Other times it
may be necessary to create a spider or bot to obtain this data.

One very useful source for neural network is the Machine Learning Repos-
itory, which is run by the University of California at Irvine.

http://kdd.ics.uci.edu/
The Machine Learning Repository site is a repository of various datasets

that have been donated to the University of California. Several of these
datasets will be used in this book.

2.2 Normalizing Data

Data obtained from sites, such as those listed above, often cannot be directly
fed into neural networks. Neural networks can be very “intelligent,” but cannot
receive just any sort of data and produce a meaningful result. Often the data
must first be normalized. We will begin by defining normalization.

Neural networks are designed to accept floating-point numbers as their
input. Usually these input numbers should be in either the range of -1 to
+1 or 0 to +1 for maximum efficiency. The choice of which range is often
dictated by the choice of activation function, as certain activation functions
have a positive range and others have both a negative and positive range.

The sigmoid activation function, for example, has a range of only positive
numbers. Conversely, the hyperbolic tangent activation function has a range of
positive and negative numbers. The most common case is to use a hyperbolic
tangent activation function with a normalization range of -1 to +1.

Recall from Chapter 1 the iris dataset. This data set could be applied to
a classification problem. However, we did not see how the data needed to be
actually processed to make it useful to a neural network.

A sampling of the dataset is shown here:
” Sepal Length” , ” Sepal Width” , ” Peta l Length” , ” Peta l Width” , ” Spec i e s

”
5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , ” s e t o s a ”
4 . 9 , 3 . 0 , 1 . 4 , 0 . 2 , ” s e t o s a ”
4 . 7 , 3 . 2 , 1 . 3 , 0 . 2 , ” s e t o s a ”
. . .

2.2 Normalizing Data 21

7 . 0 , 3 . 2 , 4 . 7 , 1 . 4 , ” v e r s i c o l o r ”
6 . 4 , 3 . 2 , 4 . 5 , 1 . 5 , ” v e r s i c o l o r ”
6 . 9 , 3 . 1 , 4 . 9 , 1 . 5 , ” v e r s i c o l o r ”
. . .
6 . 3 , 3 . 3 , 6 . 0 , 2 . 5 , ” v i r g i n i c a ”
5 . 8 , 2 . 7 , 5 . 1 , 1 . 9 , ” v i r g i n i c a ”
7 . 1 , 3 . 0 , 5 . 9 , 2 . 1 , ” v i r g i n i c a ”

The fields from this dataset must now be represented as an array of floating
point numbers between -1 and +1.

• Sepal Length - Numeric

• Sepal Width - Numeric

• Petal Length - Numeric

• Petal Width - Numeric

• Species - Class

There are really two different attribute types to consider. First, there are four
numeric attributes. Each of these will simply map to an input neuron. The
values will need to be scaled to -1 to +1.

Class attributes, sometimes called nominal attributes, present a unique
challenge. In the example, the species of iris must be represented as either
one or more floating point numbers. The mapping will not be to a single
neuron. Because a three-member class is involved, the number of neurons
used to represent the species will not be a single neuron. The number of
neurons used to represent the species will be either two or three, depending
on the normalization type used.

The next two sections will show how to normalize numeric and class values,
beginning with numeric values.

2.2.1 Normalizing Numeric Values

Normalizing a numeric value is essentially a process of mapping the existing
numeric value to well-defined numeric range, such as -1 to +1. Normalization

22 Obtaining Data for Encog

causes all of the attributes to be in the same range with no one attribute more
powerful than the others.

To normalize, the current numeric ranges must be known for all of the
attributes. The current numeric ranges for each of the iris attributes are
shown here.

• Sepal Length - Max: 7.9, Min: 4.3

• Sepal Width - Max: 4.4, Min: 2.0

• Petal Length - Max: 6.9, Min: 1.0

• Petal Width - Max: 2.5, Min: 0.1

Consider the “Petal Length.” The petal length is in the range of 1.0 to 6.9.
This must convert this length to -1 to +1. To do this we use Equation 2.1.

f(x) = (x−dL)(nH−nL)
(dH−dL) + nL (2.1)

The above equation will normalize a value x, where the variable d represents
the high and low values of the data, the variable n represents the high and
low normalization range desired. For example, to normalize a petal length of
3, to the range -1 to +1, the above equation becomes:

f(x) = (3−1.0)(1.0−(−1.0))
(6.9−1.0) + (−1.0) (2.2)

This results in a value of 0.66. This is the value that will be fed to the neural
network.

For regression, the neural network will return values. These values will be
normalized. To denormalize a value, Equation 2.2 is used.

f(x) = (dL−dH)x−(nH ·dL)+dH ·nL
(nL−nH) (2.3)

To denormalize the value of 0.66, Equation 2.2 becomes:

f(x) = (1.0−6.9)·0.32−(1.0·1.0)+6.9·−1
((−1)−(1.0)) (2.4)

2.2 Normalizing Data 23

Once denormalized, the value of 0.66 becomes 2.0 again. It is important to
note that the 0.66 value was rounded for the calculation here. Encog provides
built-in classes to provide both normalization and denormalization. These
classes will be introduced later in this chapter.

2.2.2 Normalizing Nominal Values

Nominal values are used to name things. One very common example of a
simple nominal value is gender. Something is either male or female. Another
is any sort of Boolean question. Nominal values also include values that are
either “yes/true” or “no/false.” However, not all nominal values have only two
values.

Nominal values can also be used to describe an attribute of something,
such as color. Neural networks deal best with nominal values where the set is
fixed. For the iris dataset, the nominal value to be normalized is the species.
There are three different species to consider for the iris dataset and this value
cannot change. If the neural network is trained with three species, it cannot
be expected to recognize five species.

Encog supports two different ways to encode nominal values. The simplest
means of representing nominal values is called “one-of-n” encoding. One-of-n
encoding can often be hard to train, especially if there are more than a few
nominal types to encode. Equilateral encoding is usually a better choice than
the simpler one-of-n encoding. Both encoding types will be explored in the
next two sections.

24 Obtaining Data for Encog

2.2.3 Understanding One-of-n Normalization

One-of-n is a very simple form of normalization. For an example, consider
the iris dataset again. The input to the neural network is statistics about an
individual iris. The output signifies which species of iris to evaluate. The three
iris species are listed as follows:

• Setosa

• Versicolor

• Virginica

If using the one-of-n normalization, the neural network would have three out-
put neurons. Each of these three neurons would represent one iris species. The
iris species predicted by the neural network would correspond to the output
neuron with the highest activation.

Generating training data for one-of-n is relatively easy. Simply assign a +1
to the neuron that corresponds to the chosen iris and a -1 to the remaining
neurons. For example, the Setosa iris species would be encoded as follows:
1,−1,−1

Likewise, the Versicolor would be encoded as follows:
−1,1,−1

Finally, Virginica would be encoded as follows.
−1,−1,1

Encog provides built-in classes to provide this normalization. These classes
will be introduced later in this chapter.

2.2 Normalizing Data 25

2.2.4 Understanding Equilateral Normalization

The output neurons are constantly checked against the ideal output values
provided in the training set. The error between the actual output and the
ideal output is represented by a percentage. This can cause a problem for the
one-of-n normalization method. Consider if the neural network had predicted
a Versicolor iris when it should have predicted a Verginica iris. The actual
output and ideal would be as follows:
I d e a l Output : −1, −1, 1
Actual Output : −1, 1 , −1

The problem is that only two of three output neurons are incorrect. We would
like to spread the “guilt” for this error over a larger percent of the neurons.
To do this, a unique set of values for each class must be determined. Each set
of values should have an equal Euclidean distance from the others. The equal
distance makes sure that incorrectly choosing iris Setosa for Versicolor has the
same error weight as choosing iris Setosa for iris Virginica.

This can be done using the Equilateral class. The following code segment
shows how to use the Equilateral class to generate these values:
E q u i l a t e r a l eq = new E q u i l a t e r a l (3 ,−1 ,1) ;
for (int i =0; i <3; i++) {

St r i ngBu i l d e r l i n e = new St r i ngBu i l d e r () ;
l i n e . append (i) ;

l i n e . append (’ : ’) ;
double [] d = eq . encode (i) ;

for (int j =0; j<d . l ength ; j++)
{

i f (j >0)
l i n e . append (’ , ’) ;

l i n e . append (Format . formatDouble (d [j] , 4)) ;
}
System . out . p r i n t l n (l i n e . t oS t r i ng ()) ;

}

The inputs to the Equilateral class are the number of classes and the nor-
malized range. In the above code, there are three classes that are normalized
to the range -1 to 1, producing the following output:

26 Obtaining Data for Encog

Listing 2.1: Calculated Class Equilateral Values 3 Classes
0 : 0 .8660 , 0 .5000
1:−0.8660 , 0 .5000
2 : 0 .0000 , −1.0000

Notice that there are two outputs for each of the three classes. This decreases
the number of neurons needed by one from the amount needed for one-of-n
encoding. Equilateral encoding always requires one fewer output neuron than
one-of-n encoding would have. Equilateral encoding is never used for fewer
than three classes.

Look at the example before with equilateral normalization. Just as before,
consider if the neural network had predicted a Versicolor iris, when it should
have predicted a Verginica iris. The output and ideal are as follows:
I d e a l Output : 0 .0000 , −1.0000
Actual Output : −0.8660 , 0 .5000

In this case there are only two neurons, as is consistent with equilateral en-
coding. Now all neurons are producing incorrect values. Additionally, there
are only two output neurons to process, slightly decreasing the complexity of
the neural network.

Neural networks will rarely give output that exactly matches any of its
training values. To deal with this in “one-of-n” encoding, look at which out-
put neuron produced the highest output. This method does not work for
equilateral encoding. Equilateral encoding shows which calculated class equi-
lateral value (Listing 2.1) has the shortest distance to the actual output of the
neural network.

What is meant by each of the sets being equal in distance from each other?
It means that their Euclidean distance is equal. The Euclidean distance can
be calculated using Equation 2.3.

d(p,q) =
√√√√ n∑

i=1
(pi − qi)2 (2.5)

In the above equation the variable “q” represents the ideal output value; the
variable “p” represents the actual output value. There are “n” sets of ideal and
actual. Euclidean normalization is implemented using the Equilateral class in

2.3 Programmatic Normalization 27

Encog. Usually it is unnecessary to directly deal with the Equilateral class in
Encog. Rather, one of the higher-level normalization methods described later
in this chapter is used.

If you are interested in the precise means by which the equilateral numbers
are calculated, visit the following URL:

http://www.heatonresearch.com/wiki/Equilateral

2.3 Programmatic Normalization

Encog provides a number of different means of normalizing data. The exact
means that you use will be determined by exactly what you are trying to
accomplish. The three methods for normalization are summarized here.

• Normalizing Individual Numbers

• Normalizing CSV Files

• Normalizing Memory Arrays

The next three sections will look at all three, beginning with normalizing
individual numbers.

2.3.1 Normalizing Individual Numbers

Very often you will simply want to normalize or denormalize a single number.
The range of values in your data is already known. For this case, it is un-
necessary to go through the overhead of having Encog automatically discover
ranges for you.

The “Lunar Lander” program is a good example of this. You can find the
“Lunar Lander” example here.
org . encog . examples . neura l . lunar . LunarLander

To perform the normalization, several NormalizedField objects are created.
Here you see the NormalizedField object that was created for the lunar
lander’s fuel.

http://www.heatonresearch.com/wiki/Equilateral

28 Obtaining Data for Encog

Normal izedFie ld f u e l S t a t s =
new Normal izedFie ld (

Normal izat ionAct ion . Normalize ,
” f u e l ” ,
200 ,
0 ,
−0.9 ,
0 . 9) ;

For the above example the range is normalized to -0.9 to 0.9. This is very
similar to normalizing between -1 and 1, but less extreme. This can produce
better results at times. It is also known that the acceptable range for fuel is
between 0 and 200.

Now that the field object has been created, it is easy to normalize the
values. Here the value 100 is normalized into the variable n.
double n = this . f u e l S t a t s . normal ize (100) ;

To denormalize n back to the original fuel value, use the following code:
double f = this . f u e l S t a t s . denormal ize (n) ;

Using the NormalizedField classes directly is useful when numbers arrive as
the program runs. If large lists of numbers are already established, such as an
array or CSV file, this method will not be as effective.

2.3.2 Normalizing Memory Arrays

To quickly normalize an array, the NormalizeArray class can be useful.
This object works by normalizing one attribute at a time. An example of
the normalize array class working is shown in the sunspot prediction example.
This example can be found here:
org . encog . examples . neura l . p r e d i c t . sunspot . PredictSunspot

To begin, create an instance of the NormalizeArray object. Set the high
and low range for normalization.
NormalizeArray norm = new NormalizeArray () ;

2.4 Normalizing CSV Files 29

norm . setNormal izedHigh (1) ;
norm . setNormalizedLow (−1) ;

Now raw data array can be normalized into a normalized array.
double [] normal izedSunspots = norm . proce s s (rawDataArray) ;

If you have an entire array to normalize to the same high/low, the Nor-
malizeArray class works well. For more fine-tuned control, use the same
techniques described in the previous section for individual values. However,
all array elements must be looped over.

2.4 Normalizing CSV Files

If the data to be normalized is already stored in CSV files, Encog Analyst
should be used to normalize the data. Encog Analyst can be used both through
the Encog Workbench and directly from Java and C#. This section explains
how to use it through Java to normalize the Iris data set.

To normalize a file, look at the file normalization example found at the
following location:
org . encog . examples . neura l . normal ize . Normal i zeF i l e

This example takes an input and output file. The input file is the iris data
set. The first lines of this file are shown here:
” s e p a l l ” , ” sepa l w ” , ” p e t a l l ” , ” peta l w ” , ” s p e c i e s ”
5 . 1 , 3 . 5 , 1 . 4 , 0 . 2 , I r i s −s e t o s a
4 . 9 , 3 . 0 , 1 . 4 , 0 . 2 , I r i s −s e t o s a
4 . 7 , 3 . 2 , 1 . 3 , 0 . 2 , I r i s −s e t o s a
4 . 6 , 3 . 1 , 1 . 5 , 0 . 2 , I r i s −s e t o s a
5 . 0 , 3 . 6 , 1 . 4 , 0 . 2 , I r i s −s e t o s a
5 . 4 , 3 . 9 , 1 . 7 , 0 . 4 , I r i s −s e t o s a
4 . 6 , 3 . 4 , 1 . 4 , 0 . 3 , I r i s −s e t o s a
5 . 0 , 3 . 4 , 1 . 5 , 0 . 2 , I r i s −s e t o s a

The output will be a normalized version of the input file, as shown below:
” s e p a l l ” , ” sepa l w ” , ” p e t a l l ” , ” peta l w ” , ” s p e c i e s (p0) ” , ” s p e c i e s (p1)

”

30 Obtaining Data for Encog

−0.55 ,0.24 ,−0.86 ,−0.91 ,−0.86 ,−0.5
−0.66 ,−0.16 ,−0.86 ,−0.91 ,−0.86 ,−0.5
−0.77 ,0 ,−0.89 ,−0.91 ,−0.86 ,−0.5
−0.83 ,−0.08 ,−0.83 ,−0.91 ,−0.86 ,−0.5
−0.61 ,0.33 ,−0.86 ,−0.91 ,−0.86 ,−0.5
−0.38 ,0.58 ,−0.76 ,−0.75 ,−0.86 ,−0.5
−0.83 ,0.16 ,−0.86 ,−0.83 ,−0.86 ,−0.5
−0.61 ,0.16 ,−0.83 ,−0.91 ,−0.86 ,−0.5

The above data shows that the numeric values have all been normalized to
between -1 and 1. Additionally, the species field is broken out into two parts.
This is because equilateral normalization was used on the species column.

2.4.1 Implementing Basic File Normalization

In the last section, you saw how Encog Analyst normalizes a file. In this
section, you will learn the programming code necessary to accomplish this.
Begin by accessing the source and target files:
F i l e s o u r c e F i l e = new F i l e (args [0]) ;
F i l e t a r g e t F i l e = new F i l e (args [1]) ;

Now create instances of EncogAnalyst and AnalystWizard. The wizard
will analyze the source file and build all of the normalization stats needed to
perform the normalization.
EncogAnalyst ana ly s t = new EncogAnalyst () ;
AnalystWizard wizard = new AnalystWizard (ana ly s t) ;

The wizard can now be started.
wizard . wizard (sour c eF i l e , true , AnalystFi leFormat .DECPNTCOMMA) ;

Now that the input file has been analyzed, it is time to create a normalization
object. This object will perform the actual normalization.
f ina l AnalystNormalizeCSV norm = new AnalystNormalizeCSV () ;
norm . ana lyze (sou r c eF i l e , true , CSVFormat .ENGLISH, ana ly s t) ;

It is necessary to specify the output format for the CSV, in this case, use
ENGLISH, which specifies a decimal point. It is also important to produce
output headers to easily identify all attributes.

2.4 Normalizing CSV Files 31

norm . setOutputFormat (CSVFormat .ENGLISH) ;
norm . setProduceOutputHeaders (true) ;

Finally, we normalize the file.
norm . normal ize (t a r g e t F i l e) ;

Now that the data is normalized, the normalization stats may be saved for
later use. This is covered in the next section.

2.4.2 Saving the Normalization Script

Encog keeps statistics on normalized data. This data, called the normalization
stats, tells Encog the numeric ranges for each attribute that was normalized.
This data can be saved so that it does not need to be renormalized each time.

To save a stats file, use the following command:
ana ly s t . save (new F i l e (” s t a t s . ega ”)) ;

The file can be later reloaded with the following command:
ana ly s t . load (new F i l e (” s t a t s . ega ”)) ;

The extension EGA is common and stands for “Encog Analyst.”

2.4.3 Customizing File Normalization

The Encog Analyst contains a collection of AnalystField objects. These ob-
jects hold the type of normalization and the ranges of each attribute. This
collection can be directly accessed to change how the attributes are normal-
ized. Also, AnalystField objects can be removed and excludes from the final
output.

The following code shows how to access each of the fields determined by
the wizard.
System . out . p r i n t l n (” F i e l d s found in f i l e : ”) ;
for (Ana lys tF ie ld f i e l d : ana ly s t . g e t S c r i p t () . getNormal ize ()

32 Obtaining Data for Encog

. ge tNormal i zedFie lds ()) {
St r i ngBu i l d e r l i n e = new St r i ngBu i l d e r () ;
l i n e . append (f i e l d . getName ()) ;
l i n e . append (” , a c t i on=”) ;
l i n e . append (f i e l d . getAct ion ()) ;
l i n e . append (” ,min=”) ;
l i n e . append (f i e l d . getActualLow ()) ;
l i n e . append (” ,max=”) ;
l i n e . append (f i e l d . getActualHigh ()) ;
System . out . p r i n t l n (l i n e . t oS t r i ng ()) ;

}

There are several important attributes on each of the AnalystField objects.
For example, to change the normalization range to 0 to 1, execute the following
commands:
f i e l d . setNormal izedHigh (1) ;
f i e l d . setNormalizedLow (0) ;

The mode of normalization can also be changed. To use one-of-n normalization
instead of equilateral, just use the following command:
f i e l d . s e tAct ion (Normal izat ionAct ion . OneOf) ;

Encog Analyst can do much more than just normalize data. It is also performs
the entire normalization, training and evaluation of a neural network. This
will be covered in greater detail in Chapters 3 and 4. Chapter 3 will show how
to do this from the workbench, while Chapter 4 will show how to do this from
code.

2.5 Summary

This chapter explained how to obtain and normalize data for Encog. There are
many different sources of data. One of the best is the UCI Machine Learning
Repository, which provides many of the dataset examples in this book.

There are two broad classes of data to normalize: numeric and non-numeric
data. These two data classes each have techniques for normalization.

Numeric data is normalized by mapping values to a specific range, often
from -1 to +1. Another common range is between 0 and +1. Formulas were

2.5 Summary 33

provided earlier in this chapter for both normalization and denormalization.

Non-numeric data is usually an attribute that defines a class. For the case
of the iris dataset, the iris species is a non-numeric class. To normalize these
classes, they must be converted to an array of floating point values, just as
with numeric data.

Encog supports two types of nominal normalization. The first is called
“one-of-n.” One-of-n creates a number of neurons equal to the number of class
items. The class number to be encoded is given a value of 1. Others are given
zeros.

Equilateral encoding is another way to encode a class. For equilateral
encoding, a number of neurons is used that equals one, less the number of
class items. A code of floating point numbers is created for each class item
with uniform equilateral distance to the other class data items. This allows all
output neurons to play a part in each class item and causes an error to affect
more neurons than one-of-n encoding.

This chapter introduced the Encog Analyst and explained its use to nor-
malize data. The Encog Analyst can also be used in the Encog Workbench.
The Encog Workbench is a GUI application that allows many of the features
of neural networks to be accessed without the need to write code.

35

Chapter 3

The Encog Workbench

• Structure of the Encog Workbench

• A Simple XOR Example

• Using the Encog Analyst

• Encog Analyst Reports

The Encog Workbench is a GUI application that enables many different ma-
chine learning tasks without writing Java or C# code. The Encog Workbench
itself is written in Java, but generates files that can be used with any Encog
framework.

The Encog Workbench is distributed as a single self-executing JAR file.
On most operating systems, the Encog Workbench JAR file is started simply
by double-clicking. This includes Microsoft Windows, Macintosh and some
variants of Linux. To start from the command line, the following command is
used.
java −j a r . / encog−workbench−3.0.0− executab l e

Depending on the version of Encog, the above JAR file might have a differ-
ent name. No matter the version, the file will have “encog-workbench” and
“executable” somewhere in its name. No other JAR files are necessary for the
workbench as all third-party JAR files were are placed inside this JAR.

36 The Encog Workbench

3.1 Structure of the Encog Workbench

Before studying how the Encog Workbench is actually used, we will learn
about its structure. The workbench works with a project directory that holds
all of the files needed for a project. The Encog Workbench project contains
no subdirectories. Also, if a subdirectory is added into an Encog Workbench
project, it simply becomes another independent project.

There is also no main “project file” inside an Encog Workbench project.
Often a readme.txt or readme.html file is placed inside of an Encog Workbench
project to explain what to do with the project. However, this file is included
at the discretion of the project creator.

There are several different file types that might be placed in an Encog
workbench project. These files are organized by their file extension. The
extension of a file is how the Encog Workbench knows what to do with that
file. The following extensions are recognized by the Encog Workbench:

• .csv

• .eg

• .ega

• .egb

• .gif

• .html

• .jpg

• .png

• .txt

The following sections will discuss the purpose of each file type.

3.1 Structure of the Encog Workbench 37

3.1.1 Workbench CSV Files

An acronym for “comma separated values,” CSV files hold tabular data. How-
ever, CSV files are not always “comma separated.” This is especially true in
parts of the world that use a decimal comma instead of a decimal point. The
CSV files used by Encog can be based on a decimal comma. In this case, a
semicolon (;) should be used as the field separator.

CSV files may also have headers to define what each column of the CSV
file means. Column headers are optional, but very much suggested. Column
headers name the attributes and provide consistency across the both the CSV
files created by Encog and provided by the user.

A CSV file defines the data used by Encog. Each row in the CSV file defines
a training set element and each column defines an attribute. If a particular
attribute is not known for a training set element, then the “?” character
should be placed in that row/column. Encog deals with missing values in
various ways. This is discussed later in this chapter in the Encog analyst
discussion.

A CSV file cannot be used to directly train a neural network, but must
first be converted into an EGB file. To convert a CSV file to an EGB file,
right-click the CSV file and choose “Export to Training (EGB).” EGB files
nicely define what columns are input and ideal data, while CSV files do not
offer any distinction. Rather, CSV files might represent raw data provided by
the user. Additionally, some CSV files are generated by Encog as raw user
data is processed.

3.1.2 Workbench EG Files

Encog EG files store a variety of different object types, but in themselves are
simply text files. All data inside of EG files is stored with decimal points and
comma separator, regardless of the geographic region in which Encog is run-
ning. While CSV files can be formatted according to local number formatting
rules, EG files cannot. This is to keep EG files consistent across all Encog
platforms.

38 The Encog Workbench

The following object types are stored in EG files.

• Machine Learning Methods (i.e. Neural Networks)

• NEAT Populations

• Training Continuation Data

The Encog workbench will display the object type of any EG file that is located
in the project directory. An Encog EG file only stores one object per file. If
multiple objects are to be stored, they must be stored in separate EG files.

3.1.3 Workbench EGA Files

Encog Analyst script files, or EGA files, hold instructions for the Encog ana-
lyst. These files hold statistical information about what a CSV file is designed
to analyze. EGA files also hold script information that describes how to pro-
cess raw data. EGA files are executable by the workbench.

A full discussion of the EGA file and every possible configuration/script
item is beyond the scope of this book. However, a future book will be dedi-
cated to the Encog Analyst. Additional reference information about the Encog
Analyst script file can be found here:

http://www.heatonresearch.com/wiki/EGA_File
Later in this chapter, we will create an EGA file to analyze the iris dataset.

3.1.4 Workbench EGB Files

Encog binary files, or EGB files, hold training data. As previously discussed,
CSV files are typically converted to EGB for Encog. This data is stored in
a platform-independent binary format. Because of this, EGB files are read
much faster than a CSV file. Additionally, the EGB file internally contains
the number of input and ideal columns present in the file. CSV files must be
converted to EGB files prior to training. To convert a CSV file to an EGB file,
right-click the selected CSV file and choose “Export to Training (EGB).”

http://www.heatonresearch.com/wiki/EGA_File

3.2 A Simple XOR Example 39

3.1.5 Workbench Image Files

The Encog workbench does not directly work with image files at this point,
but can be displayed by double-clicking. The Encog workbench is capable of
displaying PNG, JPG and GIF files.

3.1.6 Workbench Text Files

Encog Workbench does not directly use text files. However, text files are a
means of storing instructions for project file users. For instance, a readme.txt
file can be added to a project and displayed inside of the analyst. The Encog
Workbench can display both text and HTML files.

3.2 A Simple XOR Example

There are many different ways that the Encog Workbench can be used. The
Encog Analyst can be used to create projects that include normalization, train-
ing and analysis. However, all of the individual neural network parts can also
manually created and trained. If the data is already normalized, Encog Ana-
lyst may not be necessary.

In this section we will see how to use the Encog Workbench without the
Encog Analyst by creating a simple XOR neural network. The XOR dataset
does not require any normalization as itis already in the 0 to 1 range.

We will begin by creating a new project.

3.2.1 Creating a New Project

First create a new project by launching the Encog Workbench. Once the
Encog Workbench starts up, the options of creating a new project, opening an
existing project or quitting will appear. Choose to create a new project and
name it “XOR.” This will create a new empty folder named XOR. You will
now see the Encog Workbench in Figure 3.1.

40 The Encog Workbench

Figure 3.1: The Encog Workbench

This is the basic layout of the Encog Workbench. There are three main
areas. The tall rectangle on the left is where all project files are shown. Cur-
rently this project has no files. You can also see the log output and status
information. The rectangle just above the log output is where documents are
opened. The look of the Encog Workbench is very much like IDE and should
be familiar to developers.

3.2.2 Generate Training Data

The next step is to obtain training data. There are several ways to do this.
First, Encog Workbench supports drag and drop. For instance, CSVs can be
dragged from the operating system and dropped into the project as a copy,
leaving the original file unchanged. These files will then appear in the project
tree.

The Encog Workbench comes with a number of built-in training sets. Ad-
ditionally, it can download external data such as stock prices and even sunspot
information. The sunspot information can be used for time-series prediction
experiments.

The Encog Workbench also has a built-in XOR training set. To access it,
choose Tools->Generate Training Data. This will open the “Create Training
Data” dialog. Choose “XOR Training Set” and name it “xor.csv.” Your new
CSV file will appear in the project tree.

3.2 A Simple XOR Example 41

If you double-click the “xor.csv” file, you will see the following training
data in Listing 3.1:

Listing 3.1: XOR Training Data
”op1” , ”op2” , ” r e s u l t ”
0 ,0 ,0
1 ,0 ,1
0 ,1 ,1
1 ,1 ,0

It is important to note that the file does have headers. This must be specified
when the EGB file is generated.

3.2.3 Create a Neural Network

Now that the training data has been created, a neural network should be
created learn the XOR data. To create a neural network, choose “File->New
File.” Then choose “Machine Learning Method” and name the neural network
“xor.eg.” Choose “Feedforward Neural Network.” This will display the dialog
shown in Figure 3.2:

Figure 3.2: Create a Feedforward Network

Make sure to fill in the dialog exactly as above. There should be two
input neurons, one output neuron and a single hidden layer with two neurons.
Choose both activation functions to be sigmoid. Once the neural network is
created, it will appear on the project tree.

42 The Encog Workbench

3.2.4 Train the Neural Network

It is now time to train the neural network. The neural network that you see
currently is untrained. To easily determine if the neural network is untrained,
double-click the EG file that contains the neural network. This will show
Figure 3.3.

Figure 3.3: Editing the Network

This screen shows some basic stats on the neural network. To see more
detail, select the “Visualize” button and choose “Network Structure.” This
will show Figure 3.4.

Figure 3.4: Network Structure

The input and output neurons are shown from the structure view. All
of the connections between with the hidden layer and bias neurons are also

3.2 A Simple XOR Example 43

visible. The bias neurons, as well as the hidden layer, help the neural network
to learn.

With this complete, it is time to actually train the neural network. Begin
by closing the histogram visualization and the neural network. There should
be no documents open inside of the workbench.

Right-click the “xor.csv” training data. Choose “Export to Training (EGB).”
Fill in two input neurons and one output neuron on the dialog that appears.
On the next dialog, be sure to specify that there are headers. Once this is
complete, an EGB file will be added to the project tree. This will result in
three files: an EG file, an EGB file and a CSV file.

To train the neural network, choose “Tools->Train.” This will open a dialog
to choose the training set and machine learning method. Because there is only
one EG file and one EGB file, this dialog should default to the correct values.
Leave the “Load to Memory” checkbox clicked. As this is such a small training
set, there is no reason to not load to memory.

There are many different training methods to choose from. For this exam-
ple, choose “Propagation - Resilient.” Accept all default parameters for this
training type. Once this is complete, the training progress tab will appear.
Click “Start” to begin training.

Training will usually finish in under a second. However, if the training
continues for several seconds, the training may need to be reset by clicking
the drop list titled “<Select Option>.” Choose to reset the network. Because
a neural network starts with random weights, training times will vary. On a
small neural network such as XOR, the weights can potentially be bad enough
that the network never trains. If this is the case, simply reset the network as
it trains.

3.2.5 Evaluate the Neural Network

There are two ways to evaluate the neural network. The first is to simply
calculate the neural network error by choosing “Tools->Evaluate Network.”
You will be prompted for the machine learning method and training data to
use. This will show you the neural network error when evaluated against the
specified training set.

44 The Encog Workbench

For this example, the error will be a percent. When evaluating this per-
cent, the lower the percent the better. Other machine learning methods may
generate an error as a number or other value.

For a more advanced evaluation, choose “Tools->Validation Chart.” This
will result in an output similar to Figure 3.5.

Figure 3.5: Validation Chart for XOR

3.3 Using the Encog Analyst 45

This graphically depicts how close the neural network’s computation matches
the ideal value (validation). As shown in this example, they are extremely
close.

3.3 Using the Encog Analyst

In the last section we used the Workbench with a simple data set that did not
need normalization. In this section we will use the Encog Analyst to work with
a more complex data set - the iris data set that has already been demonstrated
several times. The normalization procedure is already explored. However, this
will provide an example of how to normalize and produce a neural network for
it using the Encog Analyst

The iris dataset is built into the Encog Workbench, so it is easy to create
a dataset for it. Create a new Encog Workbench project as described in the
previous section. Name this new project “Iris.” To obtain the iris data set,
choose “Tools->Generate Training Data.” Choose the “Iris Dataset” and name
it “iris.csv.”

Right-click the “iris.csv” file and choose “Analyst Wizard.” This will bring
up a dialog like Figure 3.6.

Figure 3.6: Encog Analyst Wizard

You can accept most default values. However, “Target Field” and “CSV
File Headers” fields should be changed. Specify “species” as the target and
indicate that there are headers. The other two tabs should remain unchanged.
Click “OK” and the wizard will generate an EGA file.

46 The Encog Workbench

This exercise also gave the option to show how to deal with missing values.
While the iris dataset has no missing values, this is not the case with every
dataset. The default action is to discard them. However, you can also choose
to average them out.

Double click this EGA file to see its contents as in Figure 3.7.

Figure 3.7: Edit an EGA File

From this tab you can execute the EGA file. Click “Execute” and a status
dialog will be displayed. From here, click “Start” to begin the process. The
entire execution should take under a minute on most computers.

• Step 1: Randomize - Shuffle the file into a random order.

• Step 2: Segregate - Create a training data set and an evaluation data
set.

• Step 3: Normalize - Normalize the data into a form usable by the selected
Machine Learning Method

• Step 4: Generate - Generate the training data into an EGB file that can
be used to train.

• Step 5: Create - Generate the selected Machine Learning Method.

• Step 6: Train - Train the selected Machine Learning Method.

• Step 7: Evaluate - Evaluate the Machine Learning Method.

3.3 Using the Encog Analyst 47

This process will also create a number of files. The complete list of files, in
this project is:

• iris.csv - The raw data.

• iris.ega - The EGA file. This is the Encog Analyst script.

• iris eval.csv - The evaluation data.

• iris norm.csv - The normalized version of iris train.csv.

• iris output.csv - The output from running iris eval.csv.

• iris random.csv - The randomized output from running iris.csv.

• iris train.csv - The training data.

• iris train.eg - The Machine Learning Method that was trained.

• iris train.egb - The binary training data, created from iris norm.egb.

If you change the EGA script file or use different options for the wizard, you
may have different steps.

To see how the network performed, open the iris output.csv file. You will
see Listing 3.2.

Listing 3.2: Evaluation of the Iris Data
” s e p a l l ” , ” sepa l w ” , ” p e t a l l ” , ” peta l w ” , ” s p e c i e s ” , ”Output : s p e c i e s ”
6 . 5 , 3 . 0 , 5 . 8 , 2 . 2 , I r i s −v i r g i n i c a , I r i s −v i r g i n i c a
6 . 2 , 3 . 4 , 5 . 4 , 2 . 3 , I r i s −v i r g i n i c a , I r i s −v i r g i n i c a
7 . 7 , 3 . 0 , 6 . 1 , 2 . 3 , I r i s −v i r g i n i c a , I r i s −v i r g i n i c a
6 . 8 , 3 . 0 , 5 . 5 , 2 . 1 , I r i s −v i r g i n i c a , I r i s −v i r g i n i c a
6 . 5 , 3 . 0 , 5 . 5 , 1 . 8 , I r i s −v i r g i n i c a , I r i s −v i r g i n i c a
6 . 3 , 3 . 3 , 4 . 7 , 1 . 6 , I r i s −v e r s i c o l o r , I r i s −v e r s i c o l o r
5 . 6 , 2 . 9 , 3 . 6 , 1 . 3 , I r i s −v e r s i c o l o r , I r i s −v e r s i c o l o r
. . .

This illustrates how the neural network attempts to predict what iris species
each row belongs to. As you can see, it is correct for all of the rows shown
here. These are data items that the neural network was not originally trained
with.

48 The Encog Workbench

3.4 Encog Analyst Reports

This section will discuss how the Encog Workbench can also produce several
Encog Analyst reports. To produce these reports, open the EGA file as seen
in Figure 3.7. Clicking the “Visualize” button gives you several visualization
options. Choose either a “Range Report” or “Scatter Plot.” Both of these are
discussed in the next sections.

3.4.1 Range Report

The range report shows the ranges of each of the attributes that are used to
perform normalization by the Encog Analyst. Figure 3.8 shows the beginning
of the range report.

Figure 3.8: Encog Analyst Range Report

This is only the top portion. Additional information is available by scrolling
down.

3.4.2 Scatter Plot

It is also possible to display a scatter plot to view the relationship between two
or more attributes. When choosing to display a scatter plot, Encog Analyst
will prompt you to choose which attributes to relate. If you choose just two,
you are shown a regular scatter plot. If you choose all four, you will be shown
a multivariate scatter plot as seen in Figure 3.9.

3.5 Summary 49

Figure 3.9: Encog Analyst Multivariate Scatter Plot Report

This illustrates how four variables relate. To see how to variables relate,
choose two squares on the diagonal. Follow the row and column on each and
the square that intersects is the relationship between those two attributes. It
is also important to note that the triangle formed above the diagonal is the
mirror image (reverse) of the triangle below the diagonal.

3.5 Summary

This chapter introduced the Encog Workbench. The Encog Workbench is a
GUI application that visually works with neural networks and other machine
learning methods. The workbench is a Java application that produces data
that it works across any Encog platforms.

This chapter also demonstrated how to use Encog Workbench to directly
create and train a neural network. For cases where data is already normalized,
this is a good way to train and evaluate neural networks. The workbench
creates and trains neural networks to accomplish this.

For more complex data, Encog Analyst is a valuable tool that performs
automatic normalization. It also organizes a neural network project as a series
of tasks to be executed. The iris dataset was used to illustrate how to use the
Encog Analyst.

So far, this book has shown how to normalize and process data using the
Encog Analyst. The next chapter shows how to construct neural networks with
code using the Encog framework directly with and without Encog Analyst.

51

Chapter 4

Constructing Neural Networks
in Java

• Constructing a Neural Network

• Activation Functions

• Encog Persistence

• Using the Encog Analyst from Code

This chapter will show how to construct feedforward and simple recurrent
neural networks with Encog and how to save these neural networks for later
use. Both of these neural network types are created using the BasicNetwork
and BasicLayer classes. In addition to these two classes, activation functions
are also used. The role of activation functions will be discussed as well.

Neural networks can take a considerable amount of time to train. Because
of this it is important to save your neural networks. Encog neural networks
can be persisted using Java’s built-in serialization. This persistence can also
be achieved by writing the neural network to an EG file, a cross-platform text
file. This chapter will introduce both forms of persistence.

In the last chapter, the Encog Analyst was used to automatically normalize
data. The Encog Analyst can also automatically create neural networks based
on CSV data. This chapter will show how to use the Encog analyst to create
neural networks from code.

52 Constructing Neural Networks in Java

4.1 Constructing a Neural Network

A simple neural network can quickly be created using BasicLayer and Ba-
sicNetwork objects. The following code creates several BasicLayer objects
with a default hyperbolic tangent activation function.
BasicNetwork network = new BasicNetwork () ;
network . addLayer (new BasicLayer (2)) ;
network . addLayer (new BasicLayer (3)) ;
network . addLayer (new BasicLayer (1)) ;
network . g e tS t ruc tu r e () . f i n a l i z e S t r u c t u r e () ;
network . r e s e t () ;

This network will have an input layer of two neurons, a hidden layer with
three neurons and an output layer with a single neuron. To use an activation
function other than the hyperbolic tangent function, use code similar to the
following:
BasicNetwork network = new BasicNetwork () ;
network . addLayer (new BasicLayer (null , true , 2)) ;
network . addLayer (new BasicLayer (new Act ivat ionSigmoid () , true , 3)) ;
network . addLayer (new BasicLayer (new Act ivat ionSigmoid () , false , 1)) ;
network . g e tS t ruc tu r e () . f i n a l i z e S t r u c t u r e () ;
network . r e s e t () ;

The sigmoid activation function is passed to the AddLayer calls for the hidden
and output layer. The true value that was also introduced specifies that the
BasicLayer should have a bias neuron. The output layer does not have bias
neurons, and the input layer does not have an activation function. This is
because the bias neuron affects the next layer, and the activation function
affects data coming from the previous layer.

Unless Encog is being used for something very experimental, always use a
bias neuron. Bias neurons allow the activation function to shift off the origin
of zero. This allows the neural network to produce a zero value even when
the inputs are not zero. The following URL provides a more mathematical
justification for the importance of bias neurons:

http://www.heatonresearch.com/wiki/Bias
Activation functions are attached to layers and used to scale data output

from a layer. Encog applies a layer’s activation function to the data that

http://www.heatonresearch.com/wiki/Bias

4.2 The Role of Activation Functions 53

the layer is about to output. If an activation function is not specified for
BasicLayer, the hyperbolic tangent activation will be defaulted.

It is also possible to create context layers. A context layer can be used to
create an Elman or Jordan style neural networks. The following code could
be used to create an Elman neural network.
BasicLayer input , hidden ;
BasicNetwork network = new BasicNetwork () ;
network . addLayer (input = new BasicLayer (1)) ;
network . addLayer (hidden = new BasicLayer (2)) ;
network . addLayer (new BasicLayer (1)) ;
input . setContextFedBy (hidden) ;
network . g e tS t ruc tu r e () . f i n a l i z e S t r u c t u r e () ;
network . r e s e t () ;

Notice the hidden.setContextFedBy line? This creates a context link from
the output layer to the hidden layer. The hidden layer will always be fed the
output from the last iteration. This creates an Elman style neural network.
Elman and Jordan networks will be introduced in Chapter 7.

4.2 The Role of Activation Functions

The last section illustrated how to assign activation functions to layers. Ac-
tivation functions are used by many neural network architectures to scale the
output from layers. Encog provides many different activation functions that
can be used to construct neural networks. The next sections will introduce
these activation functions.

Activation functions are attached to layers and are used to scale data out-
put from a layer. Encog applies a layer’s activation function to the data that
the layer is about to output. If an activation function is not specified for Ba-
sicLayer, the hyperbolic tangent activation will be the defaulted. All classes
that serve as activation functions must implement the ActivationFunction
interface.

Activation functions play a very important role in training neural networks.
Propagation training, which will be covered in the next chapter, requires than
an activation function have a valid derivative. Not all activation functions

54 Constructing Neural Networks in Java

have valid derivatives. Determining if an activation function has a derivative
may be an important factor in choosing an activation function.

4.3 Encog Activation Functions

The next sections will explain each of the activation functions supported by
Encog. There are several factors to consider when choosing an activation func-
tion. Firstly, it is important to consider how the type of neural network being
used dictates the activation function required. Secondly, consider the neces-
sity of training the neural network using propagation. Propagation training
requires an activation function that provides a derivative. Finally, consider
the range of numbers to be used. Some activation functions deal with only
positive numbers or numbers in a particular range.

4.3.1 ActivationBiPolar

The ActivationBiPolar activation function is used with neural networks that
require bipolar values. Bipolar values are either true or false. A true value
is represented by a bipolar value of 1; a false value is represented by a bipolar
value of -1. The bipolar activation function ensures that any numbers passed
to it are either -1 or 1. The ActivationBiPolar function does this with the
following code:
i f (d [i] > 0) {

d [i] = 1 ;
} else {

d [i] = −1;
}

As shown above, the output from this activation is limited to either -1 or
1. This sort of activation function is used with neural networks that require
bipolar output from one layer to the next. There is no derivative function for
bipolar, so this activation function cannot be used with propagation training.

4.3 Encog Activation Functions 55

4.3.2 Activation Competitive

The ActivationCompetitive function is used to force only a select group of
neurons to win. The winner is the group of neurons with the highest output.
The outputs of each of these neurons are held in the array passed to this
function. The size of the winning neuron group is definable. The function will
first determine the winners. All non-winning neurons will be set to zero. The
winners will all have the same value, which is an even division of the sum of
the winning outputs.

This function begins by creating an array that will track whether each
neuron has already been selected as one of the winners. The number of winners
is also counted.
f ina l boolean [] winners = new boolean [x . l ength] ;
double sumWinners = 0 ;

First, loop maxWinners a number of times to find that number of winners.
// f i n d the de s i r ed number o f winners
for (int i = 0 ; i < this . params [0] ; i++) {

double maxFound = Double . NEGATIVE INFINITY ;
int winner = −1;

Now, one winner must be determined. Loop over all of the neuron outputs
and find the one with the highest output.

for (int j = s t a r t ; j < s t a r t + s i z e ; j++) {

If this neuron has not already won and it has the maximum output, it might
be a winner if no other neuron has a higher activation.

i f (! winners [j] && (x [j] > maxFound)) {
winner = j ;
maxFound = x [j] ;

}
}

Keep the sum of the winners that were found and mark this neuron as a winner.
Marking it a winner will prevent it from being chosen again. The sum of the
winning outputs will ultimately be divided among the winners.

56 Constructing Neural Networks in Java

sumWinners += maxFound ;
winners [winner] = true ;

}

Now that the correct number of winners is determined, the values must be
adjusted for winners and non-winners. The non-winners will all be set to zero.
The winners will share the sum of the values held by all winners.
// a d j u s t we i gh t s f o r winners and non−winners
for (int i = s t a r t ; i < s t a r t + s i z e ; i++) {

i f (winners [i]) {
x [i] = x [i] / sumWinners ;

} else {
x [i] = 0 . 0 ;

}
}

This sort of an activation function can be used with competitive, learning
neural networks such as the self-organizing map. This activation function has
no derivative, so it cannot be used with propagation training.

4.3.3 ActivationLinear

The ActivationLinear function is really no activation function at all. It
simply implements the linear function. The linear function can be seen in
Equation 4.1.

f(x) = x (4.1)
The graph of the linear function is a simple line, as seen in Figure 4.1.

4.3 Encog Activation Functions 57

Figure 4.1: Graph of the Linear Activation Function

The Java implementation for the linear activation function is very simple.
It does nothing. The input is returned as it was passed.
public f ina l void ac t iva t i onFunct i on (f ina l double [] x , f ina l int

s ta r t ,
f ina l int s i z e) {
}

The linear function is used primarily for specific types of neural networks
that have no activation function, such as the self-organizing map. The linear
activation function has a constant derivative of one, so it can be used with
propagation training. Linear layers are sometimes used by the output layer of
a propagation-trained feedforward neural network.

4.3.4 ActivationLOG

The ActivationLog activation function uses an algorithm based on the log
function. The following shows how this activation function is calculated.

f(x) =
log (1 + x) , x >= 0

log (1− x) , otherwise
(4.2)

This produces a curve similar to the hyperbolic tangent activation function,
which will be discussed later in this chapter. The graph for the logarithmic
activation function is shown in Figure 4.2.

58 Constructing Neural Networks in Java

Figure 4.2: Graph of the Logarithmic Activation Function

The logarithmic activation function can be useful to prevent saturation.
A hidden node of a neural network is considered saturated when, on a given
set of inputs, the output is approximately 1 or -1 in most cases. This can
slow training significantly. This makes the logarithmic activation function a
possible choice when training is not successful using the hyperbolic tangent
activation function.

As illustrated in Figure 4.2, the logarithmic activation function spans both
positive and negative numbers. This means it can be used with neural networks
where negative number output is desired. Some activation functions, such
as the sigmoid activation function will only produce positive output. The
logarithmic activation function does have a derivative, so it can be used with
propagation training.

4.3.5 ActivationSigmoid

The ActivationSigmoid activation function should only be used when pos-
itive number output is expected because the ActivationSigmoid function
will only produce positive output. The equation for the ActivationSigmoid
function can be seen in Equation 4.2.

f(x) = 1
1 + e−x

(4.3)

The ActivationSigmoid function will move negative numbers into the pos-
itive range. This can be seen in Figure 4.3, which shows the graph of the
sigmoid function.

4.3 Encog Activation Functions 59

Figure 4.3: Graph of the ActivationSigmoid Function

The ActivationSigmoid function is a very common choice for feedfor-
ward and simple recurrent neural networks. However, it is imperative that
the training data does not expect negative output numbers. If negative num-
bers are required, the hyperbolic tangent activation function may be a better
solution.

4.3.6 ActivationSoftMax

The ActivationSoftMax activation function will scale all of the input values
so that the sum will equal one. The ActivationSoftMax activation function
is sometimes used as a hidden layer activation function.

The activation function begins by summing the natural exponent of all of
the neuron outputs.
double sum = 0 ;
for (int i = 0 ; i < d . l ength ; i++) {

d [i] = BoundMath . exp (d [i]) ;
sum += d [i] ;

}

The output from each of the neurons is then scaled according to this sum.
This produces outputs that will sum to 1.
for (int i = s t a r t ; i < s t a r t + s i z e ; i++) {

x [i] = x [i] / sum ;
}

60 Constructing Neural Networks in Java

The ActivationSoftMax is typically used in the output layer of a neural
network for classification.

4.3.7 ActivationTANH

The ActivationTANH activation function uses the hyperbolic tangent func-
tion. The hyperbolic tangent activation function is probably the most com-
monly used activation function as it works with both negative and positive
numbers. The hyperbolic tangent function is the default activation function
for Encog. The equation for the hyperbolic tangent activation function can be
seen in Equation 4.3.

f(x) = e2x − 1
e2x + 1 (4.4)

The fact that the hyperbolic tangent activation function accepts both positive
and negative numbers can be seen in Figure 4.4, which shows the graph of the
hyperbolic tangent function.

Figure 4.4: Graph of the Hyperbolic Tangent Activation Function

The hyperbolic tangent function is a very common choice for feedforward
and simple recurrent neural networks. The hyperbolic tangent function has a
derivative so it can be used with propagation training.

4.4 Encog Persistence 61

4.4 Encog Persistence

It can take considerable time to train a neural network and it is important
to take measures to guarantee your work is saved once the network has been
trained. Encog provides several means for this data to be saved, with two
primary ways to store Encog data objects. Encog offers file-based persistence
or Java’s own persistence.

Java provides its own means to serialize objects and is called Java serializa-
tion. Java serialization allows many different object types to be written to a
stream, such as a disk file. Java serialization for Encog works the same way as
with any Java object using Java serialization. Every important Encog object
that should support serialization implements the Serializable interface.

Java serialization is a quick way to store an Encog object. However, it
has some important limitations. The files created with Java serialization can
only be used by Encog for Java; they will be incompatible with Encog for
.Net or Encog for Silverlight. Further, Java serialization is directly tied to
the underlying objects. As a result, future versions of Encog may not be
compatible with your serialized files.

To create universal files that will work with all Encog platforms, consider
the Encog EG format. The EG format stores neural networks as flat text files
ending in the extension .EG.

This chapter will introduce both methods of Encog persistence, beginning
with Encog EG persistence. The chapter will end by exploring how a neural
network is saved in an Encog persistence file.

4.5 Using Encog EG Persistence

Encog EG persistence files are the native file format for Encog and are stored
with the extension .EG. The Encog Workbench uses the Encog EG to process
files. This format can be exchanged over different operating systems and Encog
platforms, making it the choice format choice for an Encog application.

This section begins by looking at an XOR example that makes use of
Encog’s EG files. Later, this same example will be used for Java serialization.

62 Constructing Neural Networks in Java

We will begin with the Encog EG persistence example.

4.5.1 Using Encog EG Persistence

Encog EG persistence is very easy to use. The EncogDirectoryPersistence
class is used to load and save objects from an Encog EG file. The following is
a good example of Encog EG persistence:
org . encog . examples . neura l . p e r s i s t . EncogPers i s tence

This example is made up of two primary methods. The first method, trainAnd-
Save, trains a neural network and then saves it to an Encog EG file. The
second method, loadAndEvaluate, loads the Encog EG file and evaluates it.
This proves that the Encog EG file was saved correctly. The main method
simply calls these two in sequence. We will begin by examining the trainAnd-
Save method.
public void trainAndSave () {

System . out . p r i n t l n (
” Train ing XOR network to under 1% e r r o r ra t e . ”) ;

This method begins by creating a basic neural network to be trained with the
XOR operator. It is a simple three-layer feedforward neural network.

BasicNetwork network = new BasicNetwork () ;
network . addLayer (new BasicLayer (2)) ;
network . addLayer (new BasicLayer (6)) ;
network . addLayer (new BasicLayer (1)) ;
network . g e tS t ruc tu r e () . f i n a l i z e S t r u c t u r e () ;
network . r e s e t () ;

A training set is created that contains the expected outputs and inputs for the
XOR operator.

MLDataSet t r a i n i n g S e t =
new BasicMLDataSet (XOR INPUT, XOR IDEAL) ;

This neural network will be trained using resilient propagation (RPROP).
// t r a i n the neura l network
f ina l MLTrain t r a i n =

new Res i l i en tPropaga t i on (network , t r a i n i n g S e t) ;

4.5 Using Encog EG Persistence 63

RPROP iterations are performed until the error rate is very small. Training
will be covered in the next chapter. For now, training is a means to verify that
the error remains the same after a network reload.

do {
t r a i n . i t e r a t i o n () ;

} while (t r a i n . getError () > 0 . 009) ;

Once the network has been trained, display the final error rate. The neural
network can now be saved.

double e = network . c a l c u l a t e E r r o r (t r a i n i n g S e t) ;
System . out . p r i n t l n (”Network t r a i i n e d to e r r o r : ”
+ e) ;
System . out . p r i n t l n (” Saving network ”) ;

The network can now be saved to a file. Only one Encog object is saved per
file. This is done using the saveObject method of the EncogDirectoryPer-
sistence class.
System . out . p r i n t l n (” Saving network ”) ;
EncogDi rec to ryPer s i s t ence . saveObject (new F i l e (FILENAME) , network) ;

Now that the Encog EG file has been created, load the neural network back
from the file to ensure it still performs well using the loadAndEvaluate
method.
public void loadAndEvaluate ()
{

System . out . p r i n t l n (” Loading network ”) ;
BasicNetwork network =

(BasicNetwork) EncogDi rec to ryPer s i s t ence . loadObject (
new F i l e (FILENAME)) ;

Now that the collection has been constructed, load the network named net-
work that was saved earlier. It is important to evaluate the neural network
to prove that it is still trained. To do this, create a training set for the XOR
operator.

MLDataSet t r a i n i n g S e t =
new BasicMLDataSet (XOR INPUT, XOR IDEAL) ;

Calculate the error for the given training data.

64 Constructing Neural Networks in Java

double e = network . c a l c u l a t e E r r o r (t r a i n i n g S e t) ;
System . out . p r i n t l n (

”Loaded network ’ s e r r o r i s (should be same as above) : ” + e) ;
}

This error is displayed and should be the same as before the network was
saved.

4.6 Using Java Serialization

It is also possible to use standard Java serialization with Encog neural networks
and training sets. Encog EG persistence is much more flexible than Java
serialization. However, there are cases a neural network can simply be saved
to a platform-dependant binary file. This example shows how to use Java
serialization with Encog. The example begins by calling the trainAndSave
method.
public void trainAndSave () throws IOException {

System . out . p r i n t l n (
” Train ing XOR network to under 1% e r r o r ra t e . ”) ;

This method begins by creating a basic neural network to be trained with the
XOR operator. It is a simple, three-layer feedforward neural network.

BasicNetwork network = new BasicNetwork () ;
network . addLayer (new BasicLayer (2)) ;
network . addLayer (new BasicLayer (6)) ;
network . addLayer (new BasicLayer (1)) ;
network . g e tS t ruc tu r e () . f i n a l i z e S t r u c t u r e () ;
network . r e s e t () ;
MLDataSet t r a i n i n g S e t =

new BasicMLDataSet (XOR INPUT, XOR IDEAL) ;

We will train this neural network using resilient propagation (RPROP).
// t r a i n the neura l network
f ina l MLTrain t r a i n =

new Res i l i en tPropaga t i on (network , t r a i n i n g S e t) ;

4.6 Using Java Serialization 65

The following code loops through training iterations until the error rate is
below one percent (<0.01).

do {
t r a i n . i t e r a t i o n () ;

} while (t r a i n . getError () > 0 . 01) ;

The final error for the neural network is displayed.
double e = network . c a l c u l a t e E r r o r (t r a i n i n g S e t) ;
System . out . p r i n t l n (”Network t r a i i n e d to e r r o r : ” + e) ;
System . out . p r i n t l n (” Saving network ”) ;

Regular Java Serialization code can be used to save the network or the Seri-
alizeObject class can be used. This utility class provides a save method that
will write any single serializable object to a binary file. Here the save method
is used to save the neural network.

S e r i a l i z e O b j e c t . save (FILENAME, network) ;
}

Now that the binary serialization file is created, load the neural network back
from the file to see if it still performs well. This is performed by the loadAn-
dEvaluate method.
public void loadAndEvaluate ()

throws IOException , ClassNotFoundException {
System . out . p r i n t l n (” Loading network ”) ;

The SerializeObject class also provides a load method that will read an
object back from a binary serialization file.

BasicNetwork network =
(BasicNetwork) S e r i a l i z e O b j e c t . load (FILENAME) ;

MLDataSet t r a i n i n g S e t =
new BasicMLDataSet (XOR INPUT, XOR IDEAL) ;

Now that the network is loaded, the error level is reported.
double e = network . c a l c u l a t e E r r o r (t r a i n i n g S e t) ;
System . out . p r i n t l n (

”Loaded network ’ s e r r o r i s (should be same as above) : ” + e) ;
}

66 Constructing Neural Networks in Java

This error level should match the error level at the time the network was
originally trained.

4.7 Summary

Feedforward and Simple Recurrent Neural Networks are created using the
BasicNetwork and BasicLayer classes. Using these objects, neural networks
can be created. Layers can also be connected using context links, just as simple
recurrent neural networks, such as the Elman neural network, are created.

Encog uses activation functions to scale the output from neural network
layers. By default, Encog will use a hyperbolic tangent function, which is a
good general purposes activation function. Any class that acts as an activation
function must implement the ActivationFunction interface. If the activation
function is to be used with propagation training, the activation function must
be able to calculate for its derivative.

The ActivationBiPolar activation function class is used when a network
only accepts bipolar numbers. The ActivationCompetitive activation func-
tion class is used for competitive neural networks such as the self-organizing
map. The ActivationLinear activation function class is used when no ac-
tivation function is desired. The ActivationLOG activation function class
works similarly to the ActivationTANH activation function class except it
does not always saturate as a hidden layer. The ActivationSigmoid acti-
vation function class is similar to the ActivationTANH activation function
class, except only positive numbers are returned. The ActivationSoftMax
activation function class scales the output so that the sum is one.

This chapter illustrated how to persist Encog objects using two methods.
Objects may be persisted by using either the Encog EG format or by Java
serialization.

The Encog EG format is the preferred means for saving Encog neural net-
works. These objects are accessed using their resource name. The EG file can
be interchanged between any platform that Encog supports.

Encog also allows Java serialization to store objects to disk or stream. Java
serialization is more restrictive than Encog EG files. Because the binary files
are automatically stored directly from the objects, even the smallest change to

4.7 Summary 67

an Encog object can result in incompatible files. Additionally, other platforms
will be unable to use the file.

In the next chapter the concept of neural network training is introduced.
Training is the process where the weights of a neural network are modified to
produce the desired output. There are several ways neural networks can be
trained. The next chapter will introduce propagation training.

69

Chapter 5

Propagation Training

• How Propagation Training Works

• Propagation Training Types

• Training and Method Factories

• Multithreaded Training

Training is the means by which neural network weights are adjusted to give
desirable outputs. This book will cover both supervised and unsupervised
training. This chapter will discuss propagation training, a form of supervised
training where the expected output is given to the training algorithm.

Encog also supports unsupervised training. With unsupervised training,
the neural network is not provided with the expected output. Rather, the
neural network learns and makes insights into the data with limited direction.
Chapter 10 will discuss unsupervised training.

Propagation training can be a very effective form of training for feedfor-
ward, simple recurrent and other types of neural networks. While there are
several different forms of propagation training, this chapter will focus on the
forms of propagation currently supported by Encog. These six forms are listed
as follows:

70 Propagation Training

• Backpropagation Training

• Quick Propagation Training (QPROP)

• Manhattan Update Rule

• Resilient Propagation Training (RPROP)

• Scaled Conjugate Gradient (SCG)

• Levenberg Marquardt (LMA)

All six of these methods work somewhat similarly. However, there are some
important differences. The next section will explore propagation training in
general.

5.1 Understanding Propagation Training

Propagation training algorithms use supervised training. This means that the
training algorithm is given a training set of inputs and the ideal output for each
input. The propagation training algorithm will go through a series of iterations
that will most likely improve the neural network’s error rate by some degree.
The error rate is the percent difference between the actual output from the
neural network and the ideal output provided by the training data.

Each iteration will completely loop through the training data. For each
item of training data, some change to the weight matrix will be calculated.
These changes will be applied in batches using Encog’s batch training. There-
fore, Encog updates the weight matrix values at the end of an iteration.

Each training iteration begins by looping over all of the training elements
in the training set. For each of these training elements, a two-pass process is
executed: a forward pass and a backward pass.

The forward pass simply presents data to the neural network as it nor-
mally would if no training had occurred. The input data is presented and
the algorithm calculates the error, i.e. the difference between the actual and
ideal outputs. The output from each of the layers is also kept in this pass.

5.1 Understanding Propagation Training 71

This allows the training algorithms to see the output from each of the neural
network layers.

The backward pass starts at the output layer and works its way back to the
input layer. The backward pass begins by examining the difference between
each of the ideal and actual outputs from each of the neurons. The gradient of
this error is then calculated. To calculate this gradient, the neural network’s
actual output is applied to the derivative of the activation function used for
this level. This value is then multiplied by the error.

Because the algorithm uses the derivative function of the activation func-
tion, propagation training can only be used with activation functions that
actually have a derivative function. This derivative calculates the error gradi-
ent for each connection in the neural network. How exactly this value is used
depends on the training algorithm used.

5.1.1 Understanding Backpropagation

Backpropagation is one of the oldest training methods for feedforward neural
networks. Backpropagation uses two parameters in conjunction with the gra-
dient descent calculated in the previous section. The first parameter is the
learning rate which is essentially a percent that determines how directly the
gradient descent should be applied to the weight matrix. The gradient is mul-
tiplied by the learning rate and then added to the weight matrix. This slowly
optimizes the weights to values that will produce a lower error.

One of the problems with the backpropagation algorithm is that the gra-
dient descent algorithm will seek out local minima. These local minima are
points of low error, but may not be a global minimum. The second parameter
provided to the backpropagation algorithm helps the backpropagation out of
local minima. The second parameter is called momentum. Momentum speci-
fies to what degree the previous iteration weight changes should be applied to
the current iteration.

The momentum parameter is essentially a percent, just like the learning
rate. To use momentum, the backpropagation algorithm must keep track of
what changes were applied to the weight matrix from the previous iteration.
These changes will be reapplied to the current iteration, except scaled by the

72 Propagation Training

momentum parameters. Usually the momentum parameter will be less than
one, so the weight changes from the previous training iteration are less sig-
nificant than the changes calculated for the current iteration. For example,
setting the momentum to 0.5 would cause 50% of the previous training itera-
tion’s changes to be applied to the weights for the current weight matrix.

The following code will setup a backpropagation trainer, given a training
set and neural network.
Backpropagation t r a i n = new Backpropagation (network , t r a in ingSe t ,

0 . 7 , 0 . 3) ;

The above code would create a backpropagation trainer with a learning rate
of 0.7 and a momentum of 0.3. Once setup the training object is ready for
iteration training. For an example of Encog iteration training see:
org . encog . examples . neura l . xor . HelloWorld

The above example can easily be modified to use backpropagation training by
replacing the resilient propagation training line with the above training line.

5.1.2 Understanding the Manhattan Update Rule

One of the problems with the backpropagation training algorithm is the degree
to which the weights are changed. The gradient descent can often apply too
large of a change to the weight matrix. The Manhattan Update Rule and
resilient propagation training algorithms only use the sign of the gradient.
The magnitude is discarded. This means it is only important if the gradient
is positive, negative or near zero.

For the Manhattan Update Rule, this magnitude is used to determine how
to update the weight matrix value. If the magnitude is near zero, then no
change is made to the weight value. If the magnitude is positive, then the
weight value is increased by a specific amount. If the magnitude is negative,
then the weight value is decreased by a specific amount. The amount by which
the weight value is changed is defined as a constant. You must provide this
constant to the Manhattan Update Rule algorithm.

5.1 Understanding Propagation Training 73

The following code will setup a Manhattan update trainer given a training
set and neural network.
f ina l ManhattanPropagation t r a i n =

new ManhattanPropagation (network , t r a in ingSe t , 0 .00001) ;

The above code would create a Manhattan Update Rule trainer with a learning
rate of 0.00001. Manhattan propagation generally requires a small learning
rate. Once setup is complete, the training object is ready for iteration training.
For an example of Encog iteration training see:
org . encog . examples . neura l . xor . HelloWorld

The above example can easily be modified to use Manhattan propagation
training by replacing the resilient propagation training line with the above
training line.

5.1.3 Understanding Quick Propagation Training

Quick propagation (QPROP) is another variant of propagation training. Quick
propagation is based on Newton’s Method, which is a means of finding a func-
tion’s roots. This can be adapted to the task of minimizing the error of a
neural network. Typically QPROP performs much better than backpropaga-
tion. The user must provide QPROP with a learning rate parameter. How-
ever, there is no momentum parameter as QPROP is typically more tolerant
of higher learning rates. A learning rate of 2.0 is generally a good starting
point.

The following code will setup a Quick Propagation trainer, given a training
set and neural network.
QuickPropagation t r a i n =

new QuickPropagation (network , t r a in ingSe t , 2 . 0) ;

The above code would create a QPROP trainer with a learning rate of 2.0.
QPROP can generally take a higher learning rate. Once setup, the training ob-
ject is ready for iteration training. For an example of Encog iteration training
see:
org . encog . examples . neura l . xor . HelloWorld

74 Propagation Training

The above example can easily be modified to use QPROP training by replacing
the resilient propagation training line with the above training line.

5.1.4 Understanding Resilient Propagation Training

The resilient propagation training (RPROP) algorithm is often the most ef-
ficient training algorithm provided by Encog for supervised feedforward neu-
ral networks. One particular advantage to the RPROP algorithm is that it
requires no parameter setting before using it. There are no learning rates,
momentum values or update constants that need to be determined. This is
good because it can be difficult to determine the exact optimal learning rate.

The RPROP algorithms works similar to the Manhattan Update Rule in
that only the magnitude of the descent is used. However, rather than using a
fixed constant to update the weight values, a much more granular approach is
used. These deltas will not remain fixed like in the Manhattan Update Rule or
backpropagation algorithm. Rather, these delta values will change as training
progresses.

The RPROP algorithm does not keep one global update value, or delta.
Rather, individual deltas are kept for every weight matrix value. These deltas
are first initialized to a very small number. Every iteration through the
RPROP algorithm will update the weight values according to these delta val-
ues. However, as previously mentioned, these delta values do not remain fixed.
The gradient is used to determine how they should change using the magni-
tude to determine how the deltas should be modified further. This allows every
individual weight matrix value to be individually trained, an advantage not
provided by either the backpropagation algorithm or the Manhattan Update
Rule.

The following code will setup a Resilient Propagation trainer, given a train-
ing set and neural network.
Res i l i en tPropaga t i on t r a i n =

new Res i l i en tPropaga t i on (network , t r a i n i n g S e t) ;

The above code would create a RPROP trainer. RPROP requires no pa-
rameters to be set to begin training. This is one of the main advantages of

5.1 Understanding Propagation Training 75

the RPROP training algorithm. Once setup, the training object is ready for
iteration training. For an example of Encog iteration training see:
org . encog . examples . neura l . xor . HelloWorld

The above example already uses RPROP training.
There are four main variants of the RPROP algorithm that are supported

by Encog:

• RPROP+

• RPROP-

• iRPROP+

• iPROP-

By default, Encog uses RPROP+, the most standard RPROP. Some research
indicates that iRPROP+ is the most efficient RPROP algorithm. To set Encog
to use iRPROP+ use the following command.
t r a i n . setRPROPType(RPROPType. iRPROPp) ;

5.1.5 Understanding SCG Training

Scaled Conjugate Gradient (SCG) is a fast and efficient training for Encog.
SCG is based on a class of optimization algorithms called Conjugate Gra-
dient Methods (CGM). SCG is not applicable for all data sets. When it is
used within its applicability, it is quite efficient. Like RPROP, SCG is at an
advantage as there are no parameters that must be set.

The following code will setup an SCG trainer, given a training set and
neural network.
ScaledConjugateGradient t r a i n

= new ScaledConjugateGradient (network , t r a i n i n g S e t) ;

The above code would create a SCG trainer. Once setup, the training object
is ready for iteration training. For an example of Encog iteration training see:

76 Propagation Training

org . encog . examples . neura l . xor . HelloWorld

The above example can easily be modified to use SCG training by replacing
the resilient propagation training line with the above training line.

5.1.6 Understanding LMA Training

The Levenberg Marquardt algorithm (LMA) is a very efficient training method
for neural networks. In many cases, LMA will outperform Resilient Propaga-
tion. LMA is a hybrid algorithm based on both Newton’s Method and gradient
descent (backpropagation), integrating the strengths of both. Gradient descent
is guaranteed to converge to a local minimum, albeit slowly. GNA is quite fast
but often fails to converge. By using a damping factor to interpolate between
the two, a hybrid method is created.

The following code shows how to use Levenberg-Marquardt with Encog for
Java.
LevenbergMarquardtTraining t r a i n = new LevenbergMarquardtTraining (

network , t r a i n i n g S e t) ;

The above code would create an LMA with default parameters that likely
require no adjustments. Once setup, the training object is ready for iteration
training. For an example of Encog iteration training see:
org . encog . examples . neura l . xor . HelloWorld

The above example can easily be modified to use LMA training by replacing
the resilient propagation training line with the above training line.

5.2 Encog Method & Training Factories

This chapter illustrated how to instantiate trainers for many different training
methods using objects such as Backpropagation, ScaledConjugateGradi-
ent or ResilientPropagation. In the previous chapters, we learned to create
different types of neural networks using BasicNetwork and BasicLayer. We
can also create training methods and neural networks using factories.

5.2 Encog Method & Training Factories 77

Factories create neural networks and training methods from text strings,
saving time by eliminating the need to instantiate all of the objects otherwise
necessary. For an example of factory usage see:
org . encog . examples . neura l . xor . XORFactory

The above example uses factories to create both neural networks and training
methods. This section will show how to create both neural networks and
training methods using factories.

5.2.1 Creating Neural Networks with Factories

The following code uses a factory to create a feedforward neural network:
MLMethodFactory methodFactory = new MLMethodFactory () ;
MLMethod method = methodFactory . c r e a t e (

MLMethodFactory .TYPE FEEDFORWARD,
” ? :B−>SIGMOID−>4:B−>SIGMOID−>?” ,
2 ,
1) ;

The above code creates a neural network with two input neurons and one
output neuron. There are four hidden neurons. Bias neurons are placed on
the input and hidden layers. As is typical for neural networks, there are no
bias neurons on the output layer. The sigmoid activation function is used
between both the input and hidden neuron, as well between the hidden and
output layer.

You may notice the two question marks in the neural network architecture
string. These will be filled in by the input and output layer sizes specified in
the create method and are optional. You can hard-code the input and output
sizes. In this case the numbers specified in the create call will be ignored.

5.2.2 Creating Training Methods with Factories

It is also possible to create a training method using a factory. The following
code creates a backpropagation trainer using a factory.

78 Propagation Training

MLTrainFactory t ra inFactory = new MLTrainFactory () ;
MLTrain t r a i n = tra inFactory . c r e a t e (

network ,
dataSet ,
MLTrainFactory .TYPE BACKPROP,
”LR=0.7 ,MOM=0.3”
) ;

The above code creates a backpropagation trainer using a learning rate of 0.7
and a momentum of 0.3.

5.3 How Multithreaded Training Works

Multithreaded training works particularly well with larger training sets and
machines multiple cores. If Encog does not detect that both are present, it
will fall back to single-threaded. When there is more than one processing core
and enough training set items to keep both busy, multithreaded training will
function significantly faster than single-threaded.

This chapter has already introduced three propagation training techniques,
all of which work similarly. Whether it is backpropagation, resilient propaga-
tion or the Manhattan Update Rule, the technique is similar. There are three
distinct steps:
1 . Perform a r e g u l a r f e ed forward pass .
2 . Process the l e v e l s backwards and determine the e r r o r s at each

l e v e l .
3 . Apply the changes to the weights .

First, a regular feed forward pass is performed. The output from each level
is kept so the error for each level can be evaluated independently. Second,
the errors are calculated at each level and the derivatives of each activation
function are used to calculate gradient descents. These gradients show the
direction that the weight must be modified to improve the error of the network.
These gradients will be used in the third step.

The third step is what varies among the different training algorithms.
Backpropagation simply scales the gradient descents by a learning rate. The

5.3 How Multithreaded Training Works 79

scaled gradient descents are then directly applied to the weights. The Man-
hattan Update Rule only uses the gradient sign to decide in which direction to
affect the weight. The weight is then changed in either the positive or negative
direction by a fixed constant.

RPROP keeps an individual delta value for every weight and only uses the
sign of the gradient descent to increase or decrease the delta amounts. The
delta amounts are then applied to the weights.

The multithreaded algorithm uses threads to perform Steps 1 and 2. The
training data is broken into packets that are distributed among the threads.
At the beginning of each iteration, threads are started to handle each of these
packets. Once all threads have completed, a single thread aggregates all of the
results and applies them to the neural network. At the end of the iteration,
there is a very brief amount of time where only one thread is executing. This
can be seen from Figure 5.1.

Figure 5.1: Encog Training on a Hyperthreaded Quadcore

As shown in the above image, the i7 is currently running at 100%. The
end of each iteration is clearly identified by where each of the processors falls
briefly. Fortunately, this is a very brief time and does not have a large impact
on overall training efficiency. In attempting to overcome this, various imple-
mentations tested not forcing the threads to wait at the end of the iteration for
a resynchronization. This method did not provide efficient training because
the propagation training algorithms need all changes applied before the next
iteration begins.

80 Propagation Training

5.4 Using Multithreaded Training

To see multithreaded training really shine, a larger training set is needed. In
the next chapter we will see how to gather information for Encog using larger
training sets. However, for now, we will look a simple benchmarking example
that generates a random training set and compares multithreaded and single-
threaded training times.

A simple benchmark is shown that makes use of an input layer of 40 neu-
rons, a hidden layer of 60 neurons, and an output layer of 20 neurons. A
training set of 50,000 elements is used. This example can be found at the
following location.
org . encog . examples . neura l . benchmark . MultiBench

Executing this program on a Quadcore i7 with Hyperthreading produced the
following result:
Training 20 I t e r a t i o n s with S ing le−threaded
I t e r a t i o n #1 Error :1 .0594453784075148
I t e r a t i o n #2 Error :1 .0594453784075148
I t e r a t i o n #3 Error :1 .0059791059086385
I t e r a t i o n #4 Error :0 .955845375587124
I t e r a t i o n #5 Error :0 .934169803870454
I t e r a t i o n #6 Error :0 .9140418793336804
I t e r a t i o n #7 Error :0 .8950880473422747
I t e r a t i o n #8 Error :0 .8759150228219456
I t e r a t i o n #9 Error :0 .8596693523930371
I t e r a t i o n #10 Error :0 .843578483629412
I t e r a t i o n #11 Error :0 .8239688415389107
I t e r a t i o n #12 Error :0 .8076160458145523
I t e r a t i o n #13 Error :0 .7928442431442133
I t e r a t i o n #14 Error :0 .7772585699972144
I t e r a t i o n #15 Error :0 .7634533283610793
I t e r a t i o n #16 Error :0 .7500401666509937
I t e r a t i o n #17 Error :0 .7376158116045242
I t e r a t i o n #18 Error :0 .7268954113068246
I t e r a t i o n #19 Error :0 .7155784667628093
I t e r a t i o n #20 Error :0 .705537166118038
RPROP Result : 3 5 . 1 3 4 seconds .
F ina l RPROP e r r o r : 0 .6952141684716632
Train ing 20 I t e r a t i o n s with Mult i thread ing

5.5 Summary 81

I t e r a t i o n #1 Error :0 .6952126315707992
I t e r a t i o n #2 Error :0 .6952126315707992
I t e r a t i o n #3 Error :0 .90915249248788
I t e r a t i o n #4 Error :0 .8797061675258835
I t e r a t i o n #5 Error :0 .8561169673033431
I t e r a t i o n #6 Error :0 .7909509694056177
I t e r a t i o n #7 Error :0 .7709539415065737
I t e r a t i o n #8 Error :0 .7541971172618358
I t e r a t i o n #9 Error :0 .7287094412886507
I t e r a t i o n #10 Error :0 .715814914438935
I t e r a t i o n #11 Error :0 .7037730808705016
I t e r a t i o n #12 Error :0 .6925902585055886
I t e r a t i o n #13 Error :0 .6784038181007823
I t e r a t i o n #14 Error :0 .6673310323078667
I t e r a t i o n #15 Error :0 .6585209150749294
I t e r a t i o n #16 Error :0 .6503710867148986
I t e r a t i o n #17 Error :0 .6429473784897797
I t e r a t i o n #18 Error :0 .6370962075614478
I t e r a t i o n #19 Error :0 .6314478792705961
I t e r a t i o n #20 Error :0 .6265724296587237
Multi−Threaded Result : 8 . 7 9 3 seconds .
F ina l Multi−thread e r r o r : 0 .6219704300851074
Factor improvement :4 .0106783805299674

As shown by the above results, the single-threaded RPROP algorithm finished
in 128 seconds and the multithreaded RPROP algorithm finished in only 31
seconds. Multithreading improved performance by a factor of four. Your re-
sults running the above example will depend on how many cores your computer
has. If your computer is single core with no hyperthreading, then the factor
will be close to one. This is because the second multi-threading training will
fall back to a single thread.

5.5 Summary

This chapter explored how to use several propagation training algorithms with
Encog. Propagation training is a very common class of supervised training
algorithms. Resilient propagation training is usually the best choice; however,
the Manhattan Update Rule and backpropagation may be useful for certain
situations. SCG and QPROP are also solid training algorithms.

82 Propagation Training

Backpropagation was one of the original training algorithms for feedforward
neural networks. Though Encog supports it mostly for historic purposes, it can
sometimes be used to further refine a neural network after resilient propagation
has been used. Backpropagation uses a learning rate and momentum. The
learning rate defines how quickly the neural network will learn; the momentum
helps the network get out of local minima.

The Manhattan Update Rule uses a delta value to update the weight values.
It can be difficult to choose this delta value correctly; too high of a value will
cause the network to learn nothing at all.

Resilient propagation (RPROP) is one of the best training algorithms of-
fered by Encog. It does not require you to provide training parameters, like
the other two propagation training algorithms. This makes it much easier
to use. Additionally, resilient propagation is considerably more efficient than
Manhattan Update Rule or backpropagation.

SCG and QPROP are also very effective training methods. SCG does not
work well for all sets training data, but it is very effective when it does work.
QPROP works similar to RPROP. It can be an effective training method.
However, QPROP requires the user to choose a learning rate.

Multithreaded training is a training technique that adapts propagation
training to perform faster with multicore computers. Given a computer with
multiple cores and a large enough training set, multithreaded training is con-
siderably faster than single-threaded training. Encog can automatically set an
optimal number of threads. If these conditions are not present, Encog will fall
back to single-threaded training.

Propagation training is not the only type of supervised training that can
be used with Encog. The next chapter introduces some other types of training
algorithms used for supervised training. It will also explore how to use training
techniques such as simulated annealing and genetic algorithms.

5.5 Summary 83

85

Chapter 6

More Supervised Training

• Introducing the Lunar Lander Example

• Supervised Training without Training Sets

• Using Genetic Algorithms

• Using Simulated Annealing

• Genetic Algorithms and Simulated Annealing with Training Sets

So far, this book has only explored training a neural network by using the
supervised propagation training methods. This chapter will look at some non-
propagation training techniques. The neural network in this chapter will be
trained without a training set. It is still supervised in that feedback from the
neural network’s output is constantly used to help train the neural network.
We simply will not supply training data ahead of time.

Two common techniques for this sort of training are simulated annealing
and genetic algorithms. Encog provides built-in support for both. The exam-
ple in this chapter can be trained with either algorithm, both of which will be
discussed later in this chapter.

The example in this chapter presents the classic “Lunar Lander” game.
This game has been implemented many times and is almost as old as computers
themselves. You can read more about the Lunar Lander game on Wikipedia.

86 More Supervised Training

http://en.wikipedia.org/wiki/Lunar_Lander_%28computer_game%29
The idea behind most variants of the Lunar Lander game is very similar

and the example program works as follows: The lunar lander spacecraft will
begin to fall. As it falls, it accelerates. There is a maximum velocity that
the lander can reach, which is called the ‘terminal velocity.’ Thrusters can be
applied to the lander to slow its descent. However, there is a limited amount
of fuel. Once the fuel is exhausted, the lander will simply fall, and nothing
can be done.

This chapter will teach a neural network to pilot the lander. This is a very
simple text-only simulation. The neural network will have only one option
available to it. It can either decide to fire the thrusters or not to fire the
thrusters. No training data will be created ahead of time and no assumptions
will be made about how the neural network should pilot the craft. If using
training sets, input would be provided ahead of time regarding what the neural
network should do in certain situations. For this example, the neural network
will learn everything on its own.

Even though the neural network will learn everything on its own, this is
still supervised training. The neural network will not be totally left to its own
devices. It will receive a way to score the neural network. To score the neural
network, we must give it some goals and then calculate a numeric value that
determines how well the neural network achieved its goals.

These goals are arbitrary and simply reflect what was picked to score the
network. The goals are summarized here:

• Land as softly as possible

• Cover as much distance as possible

• Conserve fuel

The first goal is not to crash, but to try to hit the lunar surface as softly as
possible. Therefore, any velocity at the time of impact is a very big negative
score. The second goal for the neural network is to try to cover as much
distance as possible while falling. To do this, it needs to stay aloft as long as
possible and additional points are awarded for staying aloft longer. Finally,

http://en.wikipedia.org/wiki/Lunar_Lander_%28computer_game%29

6.1 Running the Lunar Lander Example 87

bonus points are given for still having fuel once the craft lands. The score
calculation can be seen in Equation 6.1.

score = (fuel · 10) + (velocity · 1000) + fuel (6.1)
In the next section we will run the Lunar Lander example and observe as it
learns to land a spacecraft.

6.1 Running the Lunar Lander Example

To run the Lunar Lander game you should execute the LunarLander class.
This class is located at the following location.
org . encog . examples . neura l . lunar . LunarLander

This class requires no arguments. Once the program begins, the neural net-
work immediately begins training. It will cycle through 50 epochs, or training
iterations, before it is done. When it first begins, the score is a negative num-
ber. These early attempts by the untrained neural network are hitting the
moon at high velocity and are not covering much distance.
Epoch #1 Score :−299.0
Epoch #2 Score :−299.0
Epoch #3 Score :−299.0
Epoch #4 Score :−299.0
Epoch #5 Score :−299.0
Epoch #6 Score :−299.0
Epoch #7 Score :−299.0

After the seventh epoch, the score begins to increase.
Epoch #8 Score :−96.0
Epoch #9 Score : 5 7 6 0 . 0
Epoch #10 Score : 5 7 6 0 . 0
Epoch #11 Score : 5 7 6 0 . 0
Epoch #12 Score : 5 7 6 0 . 0
Epoch #13 Score : 5 7 6 0 . 0
Epoch #14 Score : 5 7 6 0 . 0
Epoch #15 Score : 5 7 6 0 . 0
Epoch #16 Score : 5 7 6 0 . 0

88 More Supervised Training

Epoch #17 Score : 6 1 9 6 . 0
Epoch #18 Score : 6 1 9 6 . 0
Epoch #19 Score : 6 1 9 6 . 0

The score will hover at 6,196 for awhile, but will improve at a later epoch.
Epoch #45 Score : 6 2 7 5 . 0
Epoch #46 Score : 6 2 7 5 . 0
Epoch #47 Score : 7 3 4 7 . 0
Epoch #48 Score : 7 3 4 7 . 0
Epoch #49 Score : 7 4 6 0 . 0
Epoch #50 Score : 7 4 6 0 . 0

By the 50th epoch, a score of 7,460 has been achieved. The training techniques
used in this chapter make extensive use of random numbers. As a result,
running this example multiple times may result in entirely different scores.

More epochs may have produced a better-trained neural network; however,
the program limits it to 50. This number usually produces a fairly skilled
neural pilot. Once the network is trained, run the simulation with the winning
pilot. The telemetry is displayed at each second.

The neural pilot kept the craft aloft for 911 seconds. So, we will not show
every telemetry report. However, some of the interesting actions that this
neural pilot learned are highlighted. The neural network learned it was best
to just let the craft free-fall for awhile.
How the winning network landed :
Elapsed : 1 s , Fuel : 200 l , Ve loc i ty : −1.6200 m/s , 9998 m
Elapsed : 2 s , Fuel : 200 l , Ve loc i ty : −3.2400 m/s , 9995 m
Elapsed : 3 s , Fuel : 200 l , Ve loc i ty : −4.8600 m/s , 9990 m
Elapsed : 4 s , Fuel : 200 l , Ve loc i ty : −6.4800 m/s , 9983 m
Elapsed : 5 s , Fuel : 200 l , Ve loc i ty : −8.1000 m/s , 9975 m
Elapsed : 6 s , Fuel : 200 l , Ve loc i ty : −9.7200 m/s , 9965 m
Elapsed : 7 s , Fuel : 200 l , Ve loc i ty : −11.3400 m/s , 9954 m
Elapsed : 8 s , Fuel : 200 l , Ve loc i ty : −12.9600 m/s , 9941 m
Elapsed : 9 s , Fuel : 200 l , Ve loc i ty : −14.5800 m/s , 9927 m
Elapsed : 10 s , Fuel : 200 l , Ve loc i ty : −16.2000 m/s , 9910 m
Elapsed : 11 s , Fuel : 200 l , Ve loc i ty : −17.8200 m/s , 9893 m
Elapsed : 12 s , Fuel : 200 l , Ve loc i ty : −19.4400 m/s , 9873 m
Elapsed : 13 s , Fuel : 200 l , Ve loc i ty : −21.0600 m/s , 9852 m
Elapsed : 14 s , Fuel : 200 l , Ve loc i ty : −22.6800 m/s , 9829 m
Elapsed : 15 s , Fuel : 200 l , Ve loc i ty : −24.3000 m/s , 9805 m

6.1 Running the Lunar Lander Example 89

Elapsed : 16 s , Fuel : 200 l , Ve loc i ty : −25.9200 m/s , 9779 m
Elapsed : 17 s , Fuel : 200 l , Ve loc i ty : −27.5400 m/s , 9752 m
Elapsed : 18 s , Fuel : 200 l , Ve loc i ty : −29.1600 m/s , 9722 m
Elapsed : 19 s , Fuel : 200 l , Ve loc i ty : −30.7800 m/s , 9692 m
Elapsed : 20 s , Fuel : 200 l , Ve loc i ty : −32.4000 m/s , 9659 m
Elapsed : 21 s , Fuel : 200 l , Ve loc i ty : −34.0200 m/s , 9625 m
Elapsed : 22 s , Fuel : 200 l , Ve loc i ty : −35.6400 m/s , 9590 m
Elapsed : 23 s , Fuel : 200 l , Ve loc i ty : −37.2600 m/s , 9552 m
Elapsed : 24 s , Fuel : 200 l , Ve loc i ty : −38.8800 m/s , 9514 m
Elapsed : 25 s , Fuel : 200 l , Ve loc i ty : −40.0000 m/s , 9473 m
Elapsed : 26 s , Fuel : 200 l , Ve loc i ty : −40.0000 m/s , 9431 m
Elapsed : 27 s , Fuel : 200 l , Ve loc i ty : −40.0000 m/s , 9390 m

You can see that 27 seconds in and 9,390 meters above the ground, the terminal
velocity of -40 m/s has been reached. There is no real science behind -40 m/s
being the terminal velocity; it was just chosen as an arbitrary number. Having
a terminal velocity is interesting because the neural networks learn that once
this is reached, the craft will not speed up. They use the terminal velocity to
save fuel and “break their fall” when they get close to the surface. The freefall
at terminal velocity continues for some time.

Finally, at 6,102 meters above the ground, the thrusters are fired for the
first time.
Elapsed : 105 s , Fuel : 200 l , Ve loc i ty : −40.0000 m/s , 6143 m
Elapsed : 106 s , Fuel : 200 l , Ve loc i ty : −40.0000 m/s , 6102 m
THRUST
Elapsed : 107 s , Fuel : 199 l , Ve loc i ty : −31.6200 m/s , 6060 m
Elapsed : 108 s , Fuel : 199 l , Ve loc i ty : −33.2400 m/s , 6027 m
Elapsed : 109 s , Fuel : 199 l , Ve loc i ty : −34.8600 m/s , 5992 m
Elapsed : 110 s , Fuel : 199 l , Ve loc i ty : −36.4800 m/s , 5956 m
Elapsed : 111 s , Fuel : 199 l , Ve loc i ty : −38.1000 m/s , 5917 m
Elapsed : 112 s , Fuel : 199 l , Ve loc i ty : −39.7200 m/s , 5878 m
THRUST
Elapsed : 113 s , Fuel : 198 l , Ve loc i ty : −31.3400 m/s , 5836 m
Elapsed : 114 s , Fuel : 198 l , Ve loc i ty : −32.9600 m/s , 5803 m
Elapsed : 115 s , Fuel : 198 l , Ve loc i ty : −34.5800 m/s , 5769 m
Elapsed : 116 s , Fuel : 198 l , Ve loc i ty : −36.2000 m/s , 5733 m
Elapsed : 117 s , Fuel : 198 l , Ve loc i ty : −37.8200 m/s , 5695 m

The velocity is gradually slowed, as the neural network decides to fire the
thrusters every six seconds. This keeps the velocity around -35 m/s.

90 More Supervised Training

THRUST
Elapsed : 118 s , Fuel : 197 l , Ve loc i ty : −29.4400 m/s , 5655 m
Elapsed : 119 s , Fuel : 197 l , Ve loc i ty : −31.0600 m/s , 5624 m
Elapsed : 120 s , Fuel : 197 l , Ve loc i ty : −32.6800 m/s , 5592 m
Elapsed : 121 s , Fuel : 197 l , Ve loc i ty : −34.3000 m/s , 5557 m
Elapsed : 122 s , Fuel : 197 l , Ve loc i ty : −35.9200 m/s , 5521 m
THRUST
Elapsed : 123 s , Fuel : 196 l , Ve loc i ty : −27.5400 m/s , 5484 m
Elapsed : 124 s , Fuel : 196 l , Ve loc i ty : −29.1600 m/s , 5455 m
Elapsed : 125 s , Fuel : 196 l , Ve loc i ty : −30.7800 m/s , 5424 m
Elapsed : 126 s , Fuel : 196 l , Ve loc i ty : −32.4000 m/s , 5392 m
Elapsed : 127 s , Fuel : 196 l , Ve loc i ty : −34.0200 m/s , 5358 m
Elapsed : 128 s , Fuel : 196 l , Ve loc i ty : −35.6400 m/s , 5322 m
THRUST

As the craft gets closer to the lunar surface, this maximum allowed velocity
begins to decrease. The pilot is slowing the craft, as it gets closer to the lunar
surface. At around 4,274 meters above the surface, the neural network decides
it should now thrust every five seconds. This slows the descent to around -28
m/s.
THRUST
Elapsed : 163 s , Fuel : 189 l , Ve loc i ty : −22.3400 m/s , 4274 m
Elapsed : 164 s , Fuel : 189 l , Ve loc i ty : −23.9600 m/s , 4250 m
Elapsed : 165 s , Fuel : 189 l , Ve loc i ty : −25.5800 m/s , 4224 m
Elapsed : 166 s , Fuel : 189 l , Ve loc i ty : −27.2000 m/s , 4197 m
Elapsed : 167 s , Fuel : 189 l , Ve loc i ty : −28.8200 m/s , 4168 m
THRUST
Elapsed : 168 s , Fuel : 188 l , Ve loc i ty : −20.4400 m/s , 4138 m
Elapsed : 169 s , Fuel : 188 l , Ve loc i ty : −22.0600 m/s , 4116 m
Elapsed : 170 s , Fuel : 188 l , Ve loc i ty : −23.6800 m/s , 4092 m
Elapsed : 171 s , Fuel : 188 l , Ve loc i ty : −25.3000 m/s , 4067 m
Elapsed : 172 s , Fuel : 188 l , Ve loc i ty : −26.9200 m/s , 4040 m
Elapsed : 173 s , Fuel : 188 l , Ve loc i ty : −28.5400 m/s , 4011 m
THRUST

By occasionally using shorter cycles, the neural pilot slows it even further by
the time it reaches only 906 meters above the surface. The craft has been
slowed to -14 meters per second.
THRUST
Elapsed : 320 s , Fuel : 162 l , Ve loc i ty : −6.6800 m/s , 964 m

6.1 Running the Lunar Lander Example 91

Elapsed : 321 s , Fuel : 162 l , Ve loc i ty : −8.3000 m/s , 955 m
Elapsed : 322 s , Fuel : 162 l , Ve loc i ty : −9.9200 m/s , 945 m
Elapsed : 323 s , Fuel : 162 l , Ve loc i ty : −11.5400 m/s , 934 m
Elapsed : 324 s , Fuel : 162 l , Ve loc i ty : −13.1600 m/s , 921 m
Elapsed : 325 s , Fuel : 162 l , Ve loc i ty : −14.7800 m/s , 906 m
THRUST
Elapsed : 326 s , Fuel : 161 l , Ve loc i ty : −6.4000 m/s , 890 m
Elapsed : 327 s , Fuel : 161 l , Ve loc i ty : −8.0200 m/s , 882 m
Elapsed : 328 s , Fuel : 161 l , Ve loc i ty : −9.6400 m/s , 872 m
Elapsed : 329 s , Fuel : 161 l , Ve loc i ty : −11.2600 m/s , 861 m
Elapsed : 330 s , Fuel : 161 l , Ve loc i ty : −12.8800 m/s , 848 m
Elapsed : 331 s , Fuel : 161 l , Ve loc i ty : −14.5000 m/s , 833 m
THRUST

This short cycling continues until the craft has slowed its velocity considerably.
It even thrusts to the point of increasing its altitude towards the final seconds
of the flight.
Elapsed : 899 s , Fuel : 67 l , Ve loc i ty : 5 .3400 m/s , 2 m
Elapsed : 900 s , Fuel : 67 l , Ve loc i ty : 3 .7200 m/s , 5 m
Elapsed : 901 s , Fuel : 67 l , Ve loc i ty : 2 .1000 m/s , 8 m
Elapsed : 902 s , Fuel : 67 l , Ve loc i ty : 0 .4800 m/s , 8 m
Elapsed : 903 s , Fuel : 67 l , Ve loc i ty : −1.1400 m/s , 7 m
Elapsed : 904 s , Fuel : 67 l , Ve loc i ty : −2.7600 m/s , 4 m
THRUST
Elapsed : 905 s , Fuel : 66 l , Ve loc i ty : 5 .6200 m/s , 0 m
Elapsed : 906 s , Fuel : 66 l , Ve loc i ty : 4 .0000 m/s , 4 m
Elapsed : 907 s , Fuel : 66 l , Ve loc i ty : 2 .3800 m/s , 6 m
Elapsed : 908 s , Fuel : 66 l , Ve loc i ty : 0 .7600 m/s , 7 m
Elapsed : 909 s , Fuel : 66 l , Ve loc i ty : −0.8600 m/s , 6 m
Elapsed : 910 s , Fuel : 66 l , Ve loc i ty : −2.4800 m/s , 4 m
THRUST
Elapsed : 911 s , Fuel : 65 l , Ve loc i ty : 5 .9000 m/s , 0 m

Finally, the craft lands, with a very soft velocity of positive 5.9.
You wonder why the lander lands with a velocity of 5.9. This is due to a

slight glitch in the program. This “glitch” is left in because it illustrates an
important point: when neural networks are allowed to learn, they are totally
on their own and will take advantage of everything they can find.

The final positive velocity is because the program decides if it wants to
thrust as the last part of a simulation cycle. The program has already decided

92 More Supervised Training

the craft’s altitude is below zero, and it has landed. But the neural network
“sneaks in” that one final thrust, even though the craft is already landed and
this thrust does no good. However, the final thrust does increase the score of
the neural network.

Recall equation 6.1. For every negative meter per second of velocity at
landing, the program score is decreased by 1,000. The program figured out
that the opposite is also true. For every positive meter per second of velocity,
it also gains 1,000 points. By learning about this little quirk in the program,
the neural pilot can obtain even higher scores.

The neural pilot learned some very interesting things without being fed a
pre-devised strategy. The network learned what it wanted to do. Specifically,
this pilot decided the following:

• Free-fall for some time to take advantage of terminal velocity.

• At a certain point, break the freefall and slow the craft.

• Slowly lose speed as you approach the surface.

• Give one final thrust, after landing, to maximize score.

The neural pilot in this example was trained using a genetic algorithm. Genetic
algorithms and simulated annealing will be discussed later in this chapter.
First, we will see how the Lander was simulated and how its score is actually
calculated.

6.2 Examining the Lunar Lander Simulator

We will now examine how the Lunar Lander example was created by physical
simulation and how the neural network actually pilots the spacecraft. Finally,
we will see how the neural network learns to be a better pilot.

6.2.1 Simulating the Lander

First, we need a class that will simulate the “physics” of lunar landing. The
term “physics” is used very loosely. The purpose of this example is more on

6.2 Examining the Lunar Lander Simulator 93

how a neural network adapts to an artificial environment than any sort of
realistic physical simulation.

All of the physical simulation code is contained in the LanderSimulator
class. This class can be found at the following location.
org . encog . examples . neura l . lunar . LanderSimulator

This class begins by defining some constants that will be important to the
simulation.
public stat ic f ina l double GRAVITY = 1 . 6 2 ;
public stat ic f ina l double THRUST = 10 ;
public stat ic f ina l double TERMINAL VELOCITY = 40 ;

The GRAVITY constant defines the acceleration on the moon that is due to
gravity. It is set to 1.62 and is measured in meters per second. The THRUST
constant specifies how the number of meters per second by which the gravity
acceleration will be countered. The TERMINAL VELOCITY is the fastest
speed that the spacecraft can travel either upward or downward.

In addition to these constants, the simulator program will need several
instance variables to maintain state. These variables are listed below as follows:

private int f u e l ;
private int seconds ;
private double a l t i t u d e ;
private double v e l o c i t y ;

The fuel variable holds the amount of fuel remaining. The seconds variable
holds the number of seconds aloft. The altitude variable holds the current
altitude in meters. The velocity variable holds the current velocity. Positive
numbers indicate that the craft is moving upwards. Negative numbers indicate
that the craft is moving downwards.

The simulator sets the values to reasonable starting values in the following
constructor:
public LanderSimulator () {

this . f u e l = 200 ;
this . seconds = 0 ;
this . a l t i t u d e = 10000;

94 More Supervised Training

this . v e l o c i t y = 0 ;
}

The craft starts with 200 liters and the altitude is set to 10,000 meters above
ground.

The turn method processes each “turn.” A turn is one second in the
simulator. The thrust parameter indicates whether the spacecraft wishes to
thrust during this turn.
public void turn (boolean th rus t) {

First, increase the number of seconds elapsed by one. Decrease the velocity
by the GRAVITY constant to simulate the fall.

this . seconds++;
this . v e l o c i t y−=GRAVITY;

The current velocity increases the altitude. Of course, if the velocity is nega-
tive, the altitude will decrease.

this . a l t i t u d e+=this . v e l o c i t y ;

If thrust is applied during this turn, then decrease the fuel by one and increase
the velocity by the THRUST constant.

i f (th rus t && this . f u e l >0) {
this . f u e l −−;
this . v e l o c i t y+=THRUST;

}

Terminal velocity must be imposed as it cannot fall or ascend faster than
the terminal velocity. The following line makes sure that the lander is not
ascending faster than the terminal velocity.

this . v e l o c i t y = Math . max(
−TERMINAL VELOCITY,
this . v e l o c i t y) ;

The following line makes sure that we are not descending faster than the
terminal velocity.

this . v e l o c i t y = Math . min (

6.2 Examining the Lunar Lander Simulator 95

TERMINAL VELOCITY,
this . v e l o c i t y) ;

The following line makes sure that the altitude does not drop below zero. It
is important to prevent the simulation of the craft hitting so hard that it goes
underground.
i f (this . a l t i t u d e <0)

this . a l t i t u d e = 0 ;
}

In addition to the simulation code, the LanderSimulator also provides two
utility functions. The first calculates the score and should only be called after
the spacecraft lands. This method is shown here.
public int s c o r e () {

return (int) ((this . f u e l ∗10)
+ this . seconds
+ (this . v e l o c i t y ∗1000)) ;

}

The score method implements Equation 6.1. As you can see, it uses fuel,
seconds and velocity to calculate the score according to the earlier equation.

Additionally, a method is provided to determine if the spacecraft is still
flying. If the altitude is greater than zero, it is still flying.
public boolean f l y i n g () {

return (this . a l t i t u d e >0) ;
}

In the next section, we will see how the neural network actually flies the
spacecraft and is given a score.

6.2.2 Calculating the Score

The PilotScore class implements the code necessary for the neural network
to fly the spacecraft. This class also calculates the final score after the craft
has landed. This class is shown in Listing 6.1.

96 More Supervised Training

Listing 6.1: Calculating the Lander Score
package org . encog . examples . neura l . lunar ;
import org . encog . neura l . networks . BasicNetwork ;
import org . encog . neura l . networks . t r a i n i n g . Ca l cu la t eScore ;
public class Pi l o tS co r e implements Calcu la t eScore {

public double c a l c u l a t e S c o r e (BasicNetwork network) {
Neura lP i l o t p i l o t = new Neura lP i l o t (network , fa l se) ;
return p i l o t . s c o r e P i l o t () ;

}
public boolean shouldMinimize () {

return fa l se ;
}

}

As you can see from the following line, the PilotScore class implements the
CalculateScore interface.
public class Pi l o tS co r e implements Calcu la t eScore {

The CalculateScore interface is used by both Encog simulated annealing and
genetic algorithms to determine how effective a neural network is at solving
the given problem. A low score could be either bad or good depending on the
problem.

The CalculateScore interface requires two methods. This first method is
named calculateNetworkScore. This method accepts a neural network and
returns a double that represents the score of the network.
public double ca l cu lateNetworkScore (

BasicNetwork network) {
Neura lP i l o t p i l o t = new Neura lP i l o t (network , fa l se) ;
return p i l o t . s c o r e P i l o t () ;

}

The second method returns a value to indicate if the score should be minimized.

public boolean shouldMinimize () {
return fa l se ;

}

For this example we would like to maximize the score. As a result the should-
Minimize method returns false.

6.2 Examining the Lunar Lander Simulator 97

6.2.3 Flying the Spacecraft

This section shows how the neural network actually flies the spacecraft. The
neural network will be fed environmental information such as fuel remaining,
altitude and current velocity. The neural network will then output a single
value that will indicate if the neural network wishes to thrust. The Neu-
ralPilot class performs this flight. You can see the NeuralPilot class at the
following location:
org . encog . examples . neura l . lunar . Neura lP i l o t

The NeuralPilot constructor sets up the pilot to fly the spacecraft. The
constructor is passed a network to fly the spacecraft, as well as a Boolean that
indicates if telemetry should be tracked to the screen.
public Neura lP i l o t (

BasicNetwork network , boolean t rack) {

The lunar lander must feed the fuel level, altitude and current velocity to the
neural network. These values must be normalized as was covered in Chapter
2. To perform this normalization, the constructor begins by setting several
normalization fields.
private Normal izedFie ld f u e l S t a t s ;
private Normal izedFie ld a l t i t u d e S t a t s ;
private Normal izedFie ld v e l o c i t y S t a t s ;

In addition to the normalized fields, we will also save the operating parameters.
The track variable is saved to the instance level so that the program will later
know if it should display telemetry.
this . t rack = track ;
this . network = network ;

The neural pilot will have three input neurons and one output neuron. These
three input neurons will communicate the following three fields to the neural
network.

• Current fuel level

• Current altitude

98 More Supervised Training

• Current velocity

These three input fields will produce one output field that indicates if the
neural pilot would like to fire the thrusters.

To normalize these three fields, define them as three NormalizedField
objects. First, set up the fuel.
f u e l S t a t s =

new Normal izedFie ld (
Normal izat ionAct ion . Normalize ,
” f u e l ” ,
200 ,
0 ,
−0.9 ,
0 . 9) ;

We know that the range is between 0 and 200 for the fuel. We will normalize
this to the range of -0.9 to 10.9. This is very similar to the range -1 to 1, except
it does not take the values all the way to the extreme. This will sometimes help
the neural network to learn better. Especially when the full range is known.

Next velocity and altitude are set up.
a l t i t u d e S t a t s =

new Normal izedFie ld (
Normal izat ionAct ion . Normalize ,
” a l t i t u d e ” ,
10000 ,
0 ,
−0.9 ,
0 . 9) ;

Velocity and altitude both have known ranges just like fuel. As a result,
velocity is set up similarly to fuel and altitude.
v e l o c i t y S t a t s =

new Normal izedFie ld (Normal izat ionAct ion . Normalize ,
” v e l o c i t y ” ,
LanderSimulator .TERMINAL VELOCITY,
−LanderSimulator .TERMINAL VELOCITY, −0.9 , 0 . 9) ;

6.2 Examining the Lunar Lander Simulator 99

Because we do not have training data, it is very important that we know the
ranges. This is unlike the examples in Chapter 2 that provided sample data
to determine minimum and maximum values.

For this example, the primary purpose of flying the spacecraft is to receive
a score. The scorePilot method calculates this score. It will simulate a flight
from the point that the spacecraft is dropped from the orbiter to the point
that it lands. The scorePilot method calculates this score:
public int s c o r e P i l o t () {

This method begins by creating a LanderSimulator object to simulate the
very simple physics used by this program.

LanderSimulator sim = new LanderSimulator () ;

We now enter the main loop of the scorePilot method. It will continue looping
as long as the spacecraft is still flying. The spacecraft is still flying as long as
its altitude is greater than zero.

while (sim . f l y i n g ()) {

Begin by creating an array to hold the raw data that is obtained directly from
the simulator.
MLData input = new BasicMLData (3) ;
input . setData (0 , this . f u e l S t a t s . normal ize (sim . getFue l ())) ;
input . setData (1 , this . a l t i t u d e S t a t s . normal ize (sim . ge tA l t i tude ())) ;
input . setData (2 , this . v e l o c i t y S t a t s . normal ize (sim . g e tVe l o c i t y ())) ;

The normalize method of the NormalizedField object is used to actually
normalize the files of fuel, altitude and velocity.

MLData output = this . network . compute (input) ;

This single output neuron will determine if the thrusters should be fired.
double value = output . getData (0) ;
boolean th rus t ;

If the value is greater than zero, then the thrusters will be fired. If the space-
craft is tracking, then also display that the thrusters were fired.

100 More Supervised Training

i f (va lue > 0) {
th rus t = true ;
i f (t rack)

System . out . p r i n t l n (”THRUST”) ;
}
else

th rus t = fa l se ;

Process the next “turn” in the simulator and thrust if necessary. Also display
telemetry if the spacecraft is tracking.

sim . turn (th rus t) ;
i f (t rack)

System . out . p r i n t l n (sim . te l emetry ()) ;
}

The spacecraft has now landed. Return the score based on the criteria previ-
ously discussed.

return (sim . co s t ()) ;

We will now look at how to train the neural pilot.

6.3 Training the Neural Pilot

This example can train the neural pilot using either a genetic algorithm or
simulated annealing. Encog treats both genetic algorithms and simulated an-
nealing very similarly. On one hand, you can simply provide a training set
and use simulated annealing or you can use a genetic algorithm just as in a
propagation network. We will see an example of this later in the chapter as we
apply these two techniques to the XOR problem. This will show how similar
they can be to propagation training.

On the other hand, genetic algorithms and simulated annealing can do
something that propagation training cannot. They can allow you to train
without a training set. It is still supervised training since a scoring class is
used, as developed earlier in this chapter. However, it still does not need to
training data input. Rather, the neural network needs input on how good of
a job it is doing. If you can provide this scoring function, simulated annealing

6.3 Training the Neural Pilot 101

or a genetic algorithm can train the neural network. Both methods will be
discussed in the coming sections, beginning with a genetic algorithm.

6.3.1 What is a Genetic Algorithm

Genetic algorithms attempt to simulate Darwinian evolution to create a better
neural network. The neural network is reduced to an array of double variables.
This array becomes the genetic sequence.

The genetic algorithm begins by creating a population of random neural
networks. All neural networks in this population have the same structure,
meaning they have the same number of neurons and layers. However, they all
have different random weights.

These neural networks are sorted according their “scores.” Their scores are
provided by the scoring method as discussed in the last section. In the case of
the neural pilot, this score indicates how softly the ship landed.

The top neural networks are selected to “breed.” The bottom neural net-
works “die.” When two networks breed, nature is simulated by splicing their
DNA. In this case, splices are taken from the double array from each network
and spliced together to create a new offspring neural network. The offspring
neural networks take up the places vacated by the dying neural networks.

Some of the offspring will be “mutated.” That is, some of the genetic
material will be random and not from either parent. This introduces needed
variety into the gene pool and simulates the natural process of mutation.

The population is sorted and the process begins again. Each iteration
provides one cycle. As you can see, there is no need for a training set. All
that is needed is an object to score each neural network. Of course you can
use training sets by simply providing a scoring object that uses a training set
to score each network.

6.3.2 Using a Genetic Algorithm

Using the genetic algorithm is very easy and uses the NeuralGeneticAlgo-
rithm class to do this. The NeuralGeneticAlgorithm class implements the

102 More Supervised Training

MLTrain interface. Therefore, once constructed, it is used in the same way
as any other Encog training class.

The following code creates a new NeuralGeneticAlgorithm to train the
neural pilot.
t r a i n = new NeuralGeneticAlgorithm (

network , new NguyenWidrowRandomizer () ,
new Pi l o tS co r e () ,500 , 0 . 1 , 0 . 25) ;

The base network is provided to communicate the structure of the neural
network to the genetic algorithm. The genetic algorithm will disregard weights
currently set by the neural network.

The randomizer is provided so that the neural network can create a new
random population. The NguyenWidrowRandomizer attempts to produce
starting weights that are less extreme and more trainable than the regular
RangeRandomizer that is usually used. However, either randomizer could
be used.

The value of 500 specifies the population size. Larger populations will train
better, but will take more memory and processing time. The 0.1 is used to
mutate 10% of the offspring. The 0.25 value is used to choose the mating
population from the top 25% of the population.

int epoch = 1 ;

Now that the trainer is set up, the neural network is trained just like any
Encog training object. Here we only iterate 50 times. This is usually enough
to produce a skilled neural pilot.

for (int i =0; i <50; i++) {
t r a i n . i t e r a t i o n () ;
System . out . p r i n t l n (
”Epoch #” + epoch + ” Score : ” + t r a i n . getError ()) ;
epoch++;

}

This neural network could have also trained using the EncogUtility class, as
in the previous chapter. Just for simple training, the EncogUtility is usually
the preferred method. However, if your program needs to do something after
each iteration, the more manual approach shown above may be preferable.

6.3 Training the Neural Pilot 103

6.3.3 What is Simulated Annealing

Simulated annealing can also be used to train the neural pilot. Simulated
annealing is similar to a genetic algorithm in that it needs a scoring object.
However, it works quite differently internally. Simulated annealing simulates
the metallurgical process of annealing.

Annealing is the process by which a very hot molten metal is slowly cooled.
This slow cooling process causes the metal to produce a strong, consistent
molecular structure. Annealing is a process that produces metals less likely to
fracture or shatter.

A similar process can be performed on neural networks. To implement
simulated annealing, the neural network is converted to an array of double
values. This is exactly the same process as was done for the genetic algorithm.

Randomness is used to simulate the heat and cooling effect. While the neu-
ral network is still really “hot,” the neural network’s existing weights increase
in speed. As the network cools, this randomness slows down. Only changes
that produce a positive effect on the network’s score are kept.

6.3.4 Using Simulated Annealing

To use simulated annealing to train the neural pilot, pass the argument anneal
on the command line when running this example. It is very simple for the
example to use annealing rather than a genetic algorithm. They both use the
same scoring function and are interchangeable. The following lines of code
make use of the simulated annealing algorithm for this example.
i f (args . length >0 && args [0] . equa l s IgnoreCase (” anneal ”))
{

t r a i n = new NeuralSimulatedAnneal ing (
network , new Pi l o tS co r e () , 10 , 2 , 100) ;
}

The simulated annealing object NeuralSimulatedAnnealing is used to train
the neural pilot. The neural network is passed along with the same scoring
object that was used to train using a genetic algorithm.

104 More Supervised Training

The values of 10 and 2 are the starting and stopping temperatures, re-
spectively. They are not true temperatures, in terms of Fahrenheit or Celsius.
A higher number will produce more randomness; a lower number produces
less randomness. The following code shows how this temperature or factor is
applied.
public f ina l void randomize () {

f ina l double [] array = NetworkCODEC
. networkToArray (NeuralSimulatedAnneal ing . this . network) ;
for (int i = 0 ; i < array . l ength ; i++) {

double add = NeuralSimulatedAnneal ing .CUT − Math . random () ;
add /= this . anneal . getStartTemperature () ;
add ∗= this . anneal . getTemperature () ;
array [i] = array [i] + add ;

}
NetworkCODEC . arrayToNetwork (array ,

NeuralSimulatedAnneal ing . this . network) ;
}

The number 100 specifies how many cycles, per iteration, that it should take
to go from the higher temperature to the lower temperature. Generally, the
more cycles, the more accurate the results will be. However, the higher the
number, the longer it takes to train.

There are no simple rules for how to set these values. Generally, it is best
to experiment with different values to see which trains your particular neural
network the best.

6.4 Using the Training Set Score Class

Training sets can also be used with genetic algorithms and simulated annealing.
Used this way, simulated annealing and genetic algorithms are a little different
than propagation training based on usage. There is no scoring function when
used this way. You simply use the TrainingSetScore object, which takes the
training set and uses it to score the neural network.

Generally resilient propagation will outperform genetic algorithms or sim-
ulated annealing when used in this way. Genetic algorithms or simulated
annealing really excel when using a scoring method instead of a training set.

6.5 Summary 105

Furthermore, simulated annealing can sometimes to push backpropagation out
of a local minimum.

The Hello World application, found at the following location, could easily
be modified to use a genetic algorithm or simulated annealing:
org . encog . examples . neura l . xor . HelloWorld

To change the above example to use a genetic algorithm, a few lines must
be added. The following lines create a training set-based genetic algorithm.
First, create a TrainingSetScore object.
Calcu la t eScore s co r e = new Tra in ingSetScore (t r a i n i n g S e t) ;

This object can then be used with either a genetic algorithm or simulated
annealing. The following code shows it being used with a genetic algorithm:

f ina l MLTrain t r a i n = new NeuralGeneticAlgorithm (
network , new NguyenWidrowRandomizer () , score , 5000 , 0 . 1 , 0 . 2 5) ;

To use the TrainingSetScore object with simulated annealing, simply pass
it to the simulated annealing constructor, as was done above.

6.5 Summary

This chapter explained how to use genetic algorithms and simulated annealing
to train a neural network. Both of these techniques can use a scoring object,
rather than training sets. However, both algorithms can also use a training
set if desired.

Genetic algorithms attempt to simulate Darwinian evolution. Neural net-
works are sorted based on fitness. Better neural networks are allowed to breed;
inferior networks die. The next generation takes genetic material from the
fittest neural networks.

Simulated annealing simulates the metallurgical process of annealing. The
network weights are taken from a high temperature to a low. As the tempera-
ture is lowered, the best networks are chosen. This produces a neural network
that is suited to getting better scores.

106 More Supervised Training

So far, this book has only discussed how to use a feedforward neural net-
work. This network was trained using propagation training, simulated an-
nealing or a genetic algorithm. Feedforward neural networks are the most
commonly seen neural network types. Just because they are the most com-
mon, this does not mean they are always the best solution. In the next chapter,
we will look at some other neural network architectures.

6.5 Summary 107

109

Chapter 7

Other Neural Network Types

• Understanding the Elman Neural Network

• Understanding the Jordan Neural Network

• The ART1 Neural Network

• Evolving with NEAT

We have primarily looked at feedforward neural networks so far in this book.
All connections in a neural network do not need to be forward. It is also
possible to create recurrent connections. This chapter will introduce neural
networks that are allowed to form recurrent connections.

Though not a recurrent neural network, we will also look at the ART1
neural network. This network type is interesting because it does not have a
distinct learning phase like most other neural networks. The ART1 neural
network learns as it recognizes patterns. In this way it is always learning,
much like the human brain.

This chapter will begin by looking at Elman and Jordan neural networks.
These networks are often called simple recurrent neural networks (SRN).

110 Other Neural Network Types

7.1 The Elman Neural Network

Elman and Jordan neural networks are recurrent neural networks that have
additional layers and function very similarly to the feedforward networks in
previous chapters. They use training techniques similar to feedforward neural
networks as well.

Figure 7.1 shows an Elman neural network.

Figure 7.1: The Elman Neural Network

As shown, the Elman neural network uses context neurons. They are la-
beled as C1 and C2. The context neurons allow feedback. Feedback is when
the output from a previous iteration is used as the input for successive iter-
ations. Notice that the context neurons are fed from hidden neuron output.
There are no weights on these connections. They are simply an output con-
duit from hidden neurons to context neurons. The context neurons remember
this output and then feed it back to the hidden neurons on the next iteration.
Therefore, the context layer is always feeding the hidden layer its own output
from the previous iteration.

The connection from the context layer to the hidden layer is weighted.
This synapse will learn as the network is trained. Context layers allow a
neural network to recognize context.

To see how important context is to a neural network, consider how the
previous networks were trained. The order of the training set elements did not
really matter. The training set could be jumbled in any way needed and the
network would still train in the same manner. With an Elman or a Jordan

7.1 The Elman Neural Network 111

neural network, the order becomes very important. The training set element
previously supported is still affecting the neural network. This becomes very
important for predictive neural networks and makes Elman neural networks
very useful for temporal neural networks.

Chapter 8 will delve more into temporal neural networks. Temporal net-
works attempt to see trends in data and predict future data values. Feed-
forward networks can also be used for prediction, but the input neurons are
structured differently. This chapter will focus on how neurons are structured
for simple recurrent neural networks.

Dr. Jeffrey Elman created the Elman neural network. Dr. Elman used an
XOR pattern to test his neural network. However, he did not use a typical
XOR pattern like we’ve seen in previous chapters. He used a XOR pattern
collapsed to just one input neuron. Consider the following XOR truth table.

1 .0 XOR 0.0 = 1 .0
0 .0 XOR 0.0 = 0 .0
0 .0 XOR 1.0 = 1 .0
1 .0 XOR 1.0 = 0 .0

Now, collapse this to a string of numbers. To do this simply read the numbers
left-to-right, line-by-line. This produces the following:
1 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0

We will create a neural network that accepts one number from the above
list and should predict the next number. This same data will be used with
a Jordan neural network later in this chapter. Sample input to this neural
network would be as follows:
Input Neurons : 1 . 0 ==> Output Neurons : 0 . 0
Input Neurons : 0 . 0 ==> Output Neurons : 1 . 0
Input Neurons : 1 . 0 ==> Output Neurons : 0 . 0
Input Neurons : 0 . 0 ==> Output Neurons : 0 . 0
Input Neurons : 0 . 0 ==> Output Neurons : 0 . 0
Input Neurons : 0 . 0 ==> Output Neurons : 0 . 0

It would be impossible to train a typical feedforward neural network for this.
The training information would be contradictory. Sometimes an input of 0
results in a 1; other times it results in a 0. An input of 1 has similar issues.

112 Other Neural Network Types

The neural network needs context; it should look at what comes before. We
will review an example that uses an Elman and a feedforward network to
attempt to predict the output. An example of the Elman neural network can
be found at the following location.
org . encog . examples . neura l . r e cu r rant . elman .ElmanXOR

When run, this program produces the following output:
Training Elman , Epoch #0 Error :0 .32599411611972673
Train ing Elman , Epoch #1 Error :0 .3259917385997097
Train ing Elman , Epoch #2 Error :0 .32598936110238147
Train ing Elman , Epoch #3 Error :0 .32598698362774564
Train ing Elman , Epoch #4 Error :0 .32598460617580305
Train ing Elman , Epoch #6287 Error :0 .08194924225166297
Train ing Elman , Epoch #6288 Error :0 .08194874110333253
Train ing Elman , Epoch #6289 Error :0 .08194824008016807
Train ing Elman , Epoch #6290 Error :0 .08194773918212342
. . .
Tra in ing Elman , Epoch #7953 Error :0 .0714145283312322
Train ing Elman , Epoch #7954 Error :0 .0714145283312322
Train ing Elman , Epoch #7955 Error :0 .0714145283312322
Train ing Elman , Epoch #7956 Error :0 .0714145283312322
Train ing Elman , Epoch #7957 Error :0 .0714145283312322
Train ing Elman , Epoch #7958 Error :0 .0714145283312322
Train ing Elman , Epoch #7959 Error :0 .0714145283312322
Train ing Elman , Epoch #7960 Error :0 .0714145283312322
Train ing Feedforward , Epoch #0 Error :0 .32599411611972673
Train ing Feedforward , Epoch #1 Error :0 .3259917385997097
Train ing Feedforward , Epoch #2 Error :0 .32598936110238147
Train ing Feedforward , Epoch #3 Error :0 .32598698362774564
Train ing Feedforward , Epoch #4 Error :0 .32598460617580305
. . .
Tra in ing Feedforward , Epoch #109 Error :0 .25000012191064686
Train ing Feedforward , Epoch #110 Error :0 .25000012190802173
Train ing Feedforward , Epoch #111 Error :0 .2500001219053976
Train ing Feedforward , Epoch #112 Error :0 .25000012190277315
Train ing Feedforward , Epoch #113 Error :0 .2500001219001487
Best e r r o r ra t e with Elman Network : 0.0714145283312322
Best e r r o r ra t e with Feedforward Network : 0.2500001219001487
Elman should be ab le to get in to the 10% range ,
f eed forward should not go below 25%.
The r e cu r r en t Elment net can l e a rn b e t t e r in this case .

7.1 The Elman Neural Network 113

I f your r e s u l t s are not as good , try rerunning , or perhaps
t r a i n i n g l onge r .

As you can see, the program attempts to train both a feedforward and an
Elman neural network with the temporal XOR data. The feedforward neural
network does not learn the data well, but the Elman learns better. In this case,
feedforward neural network gets to 49.9% and Elman neural network gets to
7%. The context layer helps considerably.

This program uses random weights to initialize the neural network. If the
first run does not produce good results, try rerunning. A better set of starting
weights can help.

7.1.1 Creating an Elman Neural Network

Calling the createElmanNetwork method creates the Elman neural network
in this example. This method is shown here.
stat ic BasicNetwork createElmanNetwork () {

// cons t ruc t an Elman type network
ElmanPattern pattern = new ElmanPattern () ;
pattern . s e tAct ivat i onFunct ion (new Act ivat ionSigmoid ()) ;
pattern . setInputNeurons (1) ;
pattern . addHiddenLayer (6) ;
pattern . setOutputNeurons (1) ;
return (BasicNetwork) pattern . generate () ;

}

As you can see from the above code, the ElmanPattern is used to actually
create the Elman neural network. This provides a quick way to construct an
Elman neural network.

7.1.2 Training an Elman Neural Network

Elman neural networks tend to be particularly susceptible to local minima.
A local minimum is a point where training stagnates. Visualize the weight
matrix and thresholds as a landscape with mountains and valleys. To get to
the lowest error, you want to find the lowest valley. Sometimes training finds

114 Other Neural Network Types

a low valley and searches near this valley for a lower spot. It may fail to find
an even lower valley several miles away.

This example’s training uses several training strategies to help avoid this
situation. The training code for this example is shown below. The same
training routine is used for both the feedforward and Elman networks and
uses backpropagation with a very small learning rate. However, adding a few
training strategies helps greatly. The trainNetwork method is used to train
the neural network. This method is shown here.
public stat ic double trainNetwork (f ina l St r ing what ,

f ina l BasicNetwork network , f ina l MLDataSet t r a i n i n g S e t) {

One of the strategies employed by this program is a HybridStrategy. This
allows an alternative training technique to be used if the main training tech-
nique stagnates. We will use simulated annealing as the alternative training
strategy.

Calcu la t eScore s co r e = new Tra in ingSetScore (t r a i n i n g S e t) ;
f ina l Train t r a i n A l t = new NeuralSimulatedAnneal ing (

network , score , 10 , 2 , 100) ;

As you can see, we use a training set-based scoring object. For more in-
formation about simulated annealing, refer to Chapter 6, “More Supervised
Training.” The primary training technique is back propagation.
f ina l MLTrain trainMain = new Backpropagation (network , t r a in ingSe t

, 0 . 0 00001 , 0 . 0) ;

We will use a StopTrainingStrategy to tell us when to stop training. The
StopTrainingStrategy will stop the training when the error rate stagnates.
By default, stagnation is defined as less than a 0.00001% improvement over
100 iterations.

f ina l StopTra in ingStrategy stop = new StopTra in ingStrategy () ;

These strategies are added to the main training technique.
trainMain . addStrategy (new Greedy ()) ;
trainMain . addStrategy (new HybridStrategy (t r a i n A l t)) ;
trainMain . addStrategy (stop) ;

7.2 The Jordan Neural Network 115

We also make use of a greedy strategy. This strategy will only allow iterations
to improve the error rate of the neural network.

int epoch = 0 ;
while (! stop . shouldStop ()) {

trainMain . i t e r a t i o n () ;
System . out . p r i n t l n (” Train ing ” + what + ” , Epoch #” + epoch

+ ” Error : ” + trainMain . getError ()) ;
epoch++;
}

return trainMain . getError () ;
}

The loop continues until the stop strategy indicates that it is time to stop.

7.2 The Jordan Neural Network

Encog also contains a pattern for a Jordan neural network. The Jordan neural
network is very similar to the Elman neural network. Figure 7.2 shows a
Jordan neural network.

Figure 7.2: The Jordan Neural Network

As you can see, a context neuron is used and is labeled C1, similar to
the Elman network. However, the output from the output layer is fed back
to the context layer, rather than the hidden layer. This small change in the
architecture can make the Jordan neural network better for certain temporal
prediction tasks.

116 Other Neural Network Types

The Jordan neural network has the same number of context neurons as it
does output neurons. This is because the context neurons are fed from the
output neurons. The XOR operator has only output neuron. This leaves you
with a single context neuron when using the Jordan neural network for XOR.
Jordan networks work better with a larger number of output neurons.

To construct a Jordan neural network, the JordanPattern should be used.
The following code demonstrates this.
JordanPattern pattern = new JordanPattern () ;
pattern . s e tAct ivat i onFunct ion (new Act ivat ionSigmoid ()) ;
pattern . setInputNeurons (1) ;
pattern . addHiddenLayer (6) ;
pattern . setOutputNeurons (1) ;
return (BasicNetwork) pattern . generate () ;

The above code would create a Jordan neural network similar to Figure 7.2.
Encog includes an example XOR network that uses the Jordan neural net-

work. This example is included mainly for completeness for comparison of
Elman and Jordan on the XOR operator. As previously mentioned, Jordan
tends to do better when there are a larger number of output neurons. The
Encog XOR example for Jordan will not be able to train to a very low er-
ror rate and does not perform noticeably better than a feedforward neural
network. The Jordan example can be found at the following location.
org . encog . examples . neura l . r e cu r r en t . jordan . JordanXOR

When executed, the above example will compare a feedforward to a Jordan,
in similar fashion as the previous example.

7.3 The ART1 Neural Network

The ART1 neural network is a type of Adaptive Resonance Theory (ART)
neural network. ART1, developed by Stephen Grossberg and Gail Carpenter,
supports only bipolar input. The ART1 neural network is trained as it is used
and is used for classification. New patterns are presented to the ART1 network
and are classified into either new or existing classes. Once the maximum

7.3 The ART1 Neural Network 117

number of classes has been used, the network will report that it is out of
classes.

An ART1 network appears as a simple two-layer neural network. How-
ever, unlike a feedforward neural network, there are weights in both directions
between the input and output layers. The input neurons are used to present
patterns to the ART1 network. ART1 uses bipolar numbers, so each input neu-
ron is either on or off. A value of one represents on, and a value of negative
one represents off.

The output neurons define the groups that the ART1 neural network will
recognize. Each output neuron represents one group.

7.3.1 Using the ART1 Neural Network

We will now see how to actually make use of an ART1 network. The example
presented here will create a network that is given a series of patterns to learn
to recognize. This example can be found at the following location.
org . encog . examples . neura l . a r t . a r t1 . NeuralART1

This example constructs an ART1 network. This network will be presented
new patterns to recognize and learn. If a new pattern is similar to a previous
pattern, then the new pattern is identified as belonging to the same group as
the original pattern. If the pattern is not similar to a previous pattern, then
a new group is created. If there is already one group per output neuron, then
the neural network reports that it can learn no more patterns.

The output from this example can be seen here.
O − 0

O O − 1
O − 1

O O − 2
O − 1

O O − 2
O − 1

OO O − 3
OO − 3
OO O − 4
OO − 3

118 Other Neural Network Types

OOO − 5
OO − 5
O − 5
OO − 6
OOO − 7
OOOO − 8
OOOOO − 9
O − 5

O − 3
O − 2

O − 0
O − 1

O O − 4
OO O − 9
OO − 7

OOO − 8
OO − 6
OOOO − new Input and a l l C la s s e s exhausted
OOOOO − new Input and a l l C la s s e s exhausted

The above output shows that the neural network is presented with patterns.
The number to the right indicates in which group the ART1 network placed
the pattern. Some patterns are grouped with previous patterns while other
patterns form new groups. Once all of the output neurons have been assigned
to a group, the neural network can learn no more patterns. Once this happens,
the network reports that all classes have been exhausted.

First, an ART1 neural network must be created. This can be done with
the following code.
ART1 l o g i c = new ART1(INPUT NEURONS,OUTPUT NEURONS) ;

This creates a new ART1 network with the specified number of input neurons
and output neurons. Here we create a neural network with 5 input neurons
and 10 output neurons. This neural network will be capable of clustering input
into 10 clusters.

Because the input patterns are stored as string arrays, they must be con-
verted to a boolean array that can be presented to the neural network. Be-
cause the ART1 network is bipolar, it only accepts Boolean values. The follow-
ing code converts each of the pattern strings into an array of Boolean values.

7.3 The ART1 Neural Network 119

public void setupInput () {
this . input = new boolean [PATTERN. length] [INPUT NEURONS] ;
for (int n = 0 ; n < PATTERN. l ength ; n++) {

for (int i = 0 ; i < INPUT NEURONS; i++) {
this . input [n] [i] = (PATTERN[n] . charAt (i) == ’O’) ;

}
}

}

The patterns are stored in the PATTERN array. The converted patterns will
be stored in the boolean input array.

Now that a boolean array represents the input patterns, we can present
each pattern to the neural network to be clustered. This is done with the
following code, beginning by looping through each of the patterns:
for (int i = 0 ; i < PATTERN. l ength ; i++) {

First, we create a BiPolarNeuralData object that will hold the input pat-
tern. A second object is created to hold the output from the neural network.

BiPolarNeuralData in = new BiPolarNeuralData (this . input [i]) ;
BiPolarNeuralData out = new BiPolarNeuralData (OUTPUT NEURONS) ;

Using the input, we compute the output.
l o g i c . compute (in , out) ;

Determine if there is a winning output neuron. If there is, this is the cluster
that the input belongs to.

i f (l o g i c . hasWinner ()) {
System . out . p r i n t l n (PATTERN[i] + ” − ” + l o g i c . getWinner ()) ;

} else {

If there is no winning neuron, the user is informed that all classes have been
used.

System . out . p r i n t l n (PATTERN[i]
+ ” − new Input and a l l C la s s e s exhausted ”) ;

}
}

120 Other Neural Network Types

The ART1 is a network that can be used to cluster data on the fly. There is
no distinct learning phase; it will cluster data as it is received.

7.4 The NEAT Neural Network

NeuroEvolution of Augmenting Topologies (NEAT) is a Genetic Algorithm for
evolving the structure and weights of a neural network. NEAT was developed
by Ken Stanley at The University of Texas at Austin. NEAT relieves the
neural network programmer of the tedious task of figuring out the optimal
structure of a neural network’s hidden layer.

A NEAT neural network has an input and output layer, just like the more
common feedforward neural networks. A NEAT network starts with only an
input layer and output layer. The rest is evolved as the training progresses.
Connections inside of a NEAT neural network can be feedforward, recurrent,
or self-connected. All of these connection types will be tried by NEAT as it
attempts to evolve a neural network capable of the given task.

Figure 7.3: An NEAT Network before Evolving

As you can see, the above network has only an input and hidden layers.
This is not sufficient to learn XOR. These networks evolve by adding neurons
and connections. Figure 7.4 shows a neural network that has evolved to process
the XOR operator.

7.4 The NEAT Neural Network 121

Figure 7.4: An NEAT Network after Evolving

The above network evolved from the previous network. An additional hid-
den neuron was added between the first input neuron and the output neuron.
Additionally, a recurrent connection was made from the output neuron back
to the first hidden neuron. These minor additions allow the neural network to
learn the XOR operator. The connections and neurons are not the only things
being evolved. The weights between these neurons were evolved as well.

As shown in Figure 7.4, a NEAT network does not have clearly defined
layers like traditional feed forward networks. There is a hidden neuron, but
not really a hidden layer. If this were a traditional hidden layer, both input
neurons would be connected to the hidden neuron.

NEAT is a complex neural network type and training method. Addition-
ally, there is a new version of NEAT, called HyperNEAT. Complete coverage
of NEAT is beyond the scope of this book. I will likely release a future book
on focused on Encog application of NEAT and HyperNEAT. This section will
focus on how to use NEAT as a potential replacement for a feedforward neural
network, providing you all of the critical information for using NEAT with
Encog.

7.4.1 Creating an Encog NEAT Population

This section will show how to use a NEAT network to learn the XOR operator.
There is very little difference between the code in this example that used for
a feedforward neural network to learn the XOR operator. One of Encog’s core
objectives is to make machine learning methods as interchangeable as possible.

122 Other Neural Network Types

You can see this example at the following location.
org . encog . examples . neura l . xor .XORNEAT

This example begins by creating an XOR training set to provide the XOR
inputs and expected outputs to the neural network. To review the expected
inputs and outputs for the XOR operator, refer to Chapter 3.
MLDataSet t r a i n i n g S e t = new BasicMLDataSet (XOR INPUT, XOR IDEAL) ;

Next a NEAT population is created. Previously, we would create a single neu-
ral network to be trained. NEAT requires the creation of an entire population
of networks. This population will go through generations producing better
neural networks. Only the fit members of the population will be allowed to
breed new neural networks.
NEATPopulation pop = new NEATPopulation (2 ,1 ,1000) ;

The above population is created with two input neurons, one output neuron
and a population size of 1,000. The larger the population, the better the
networks will train. However, larger populations will run slower and consume
more memory.

Earlier we said that only the fit members of the population are allowed to
breed to create the next generations.
Calcu la t eScore s co r e = new Tra in ingSetScore (t r a i n i n g S e t) ;

One final required step is to set an output activation function for the NEAT
network. This is different than the ”NEAT activation function,” which is
usually sigmoid or TANH. Rather, this activation function is applied to all
data being read from the neural network.

Treat any output from neural network below 0.5 as zero, and any above as
one. This can be done with a step activation function, as follows.
Act ivat ionStep step = new Act ivat ionStep () ;
s t ep . se tCenter (0 . 5) ;
pop . setOutputAct ivat ionFunct ion (s tep) ;

Now that the population has been created, it must be trained.

7.4 The NEAT Neural Network 123

7.4.2 Training an Encog NEAT Neural Network

Training a NEAT neural network is very similar to training any other neural
network in Encog: create a training object and begin looping through itera-
tions. As these iterations progress, the quality of the neural networks in the
population should increase.

A NEAT neural network is trained with the NEATTraining class. Here
you can see a NEATTraining object being created.
f ina l NEATTraining t r a i n = new NEATTraining (score , pop) ;

This object trains the population to a 1% error rate.
EncogUt i l i ty . t ra inToError (t ra in , 0 . 01) ;

Once the population has been trained, extract the best neural network.
NEATNetwork network = (NEATNetwork) t r a i n . getMethod () ;

With an established neural network, its performance must be tested. First,
clear out any recurrent layers from previous runs.
network . c l earContext () ;

Now, display the results from the neural network.
System . out . p r i n t l n (” Neural Network Resu l t s : ”) ;
EncogUt i l i ty . eva luate (network , t r a i n i n g S e t) ;

This will produce the following output.
Beginning t r a i n i n g . . .
I t e r a t i o n #1 Error :25.000000% Target Error : 1.000000%
I t e r a t i o n #2 Error :0.000000% Target Error : 1.000000%
Neural Network Resu l t s :
Input =0.0000 ,0 .0000 , Actual =0.0000 , I d e a l =0.0000
Input =1.0000 ,0 .0000 , Actual =1.0000 , I d e a l =1.0000
Input =0.0000 ,1 .0000 , Actual =1.0000 , I d e a l =1.0000
Input =1.0000 ,1 .0000 , Actual =0.0000 , I d e a l =0.0000

The neural network only took two iterations to produce a neural network that
knew how to function as an XOR operator. The network has learned the XOR
operator from the above results. XOR will produce an output of 1.0 only when
the two inputs are not both of the same value.

124 Other Neural Network Types

7.5 Summary

While previous chapters focused mainly on feedforward neural networks, this
chapter explores some of the other Encog-supported network types including
the Elman, Jordan, ART1 and NEAT neural networks.

In this chapter you learned about recurrent neural networks, which contain
connections backwards to previous layers. Elman and Jordan neural networks
make use of a context layer. This context layer allows them to learn patterns
that span several items of training data. This makes them very useful for
temporal neural networks.

The ART1 neural network can be used to learn binary patterns. Unlike
other neural networks, there is no distinct learning and usage state. The ART1
neural network learns as it is used and requires no training stage. This mimics
the human brain in that humans learn a task as they perform that task.

This chapter concluded with the NEAT neural network. The NEAT net-
work does not have hidden layers like a typical feedforward neural network. A
NEAT network starts out with only an input and output layer. The structure
of the hidden neurons evolves as the NEAT network is trained using a genetic
algorithm.

In the next chapter we will look at temporal neural networks. A temporal
neural network is used to attempt to predict the future. This type of neural
network can be very useful in a variety of fields such as finance, signal process-
ing and general business. The next chapter will show how to structure input
data for neural network queries to make a future prediction.

7.5 Summary 125

127

Chapter 8

Using Temporal Data

• How a Predictive Neural Network Works

• Using the Encog Temporal Dataset

• Attempting to Predict Sunspots

• Using the Encog Market Dataset

• Attempting to Predict the Stock Market

Prediction is another common use for neural networks. A predictive neural
network will attempt to predict future values based on present and past values.
Such neural networks are called temporal neural networks because they operate
over time. This chapter will introduce temporal neural networks and the
support classes that Encog provides for them.

In this chapter, you will see two applications of Encog temporal neural net-
works. First, we will look at how to use Encog to predict sunspots. Sunspots
are reasonably predictable and the neural network should be able to learn fu-
ture patterns by analyzing past data. Next, we will examine a simple case of
applying a neural network to making stock market predictions.

Before we look at either example we must see how a temporal neural net-
work actually works. A temporal neural network is usually either a feedfor-
ward or simple recurrent network. Structured properly, the feedforward neural

128 Using Temporal Data

networks shown so far could be structured as a temporal neural network by
assigning certain input and output neurons.

8.1 How a Predictive Neural Network Works

A predictive neural network uses its inputs to accept information about current
data and uses its outputs to predict future data. It uses two “windows,” a
future window and a past window. Both windows must have a window size,
which is the amount of data that is either predicted or is needed to predict.
To see the two windows in action, consider the following data.
Day 1 : 100
Day 2 : 102
Day 3 : 104
Day 4 : 110
Day 5 : 99
Day 6 : 100
Day 7 : 105
Day 8 : 106
Day 9 : 110
Day 10 : 120

Consider a temporal neural network with a past window size of five and a future
window size of two. This neural network would have five input neurons and
two output neurons. We would break the above data among these windows to
produce training data. The following data shows one such element of training
data.
Input 1 : Day 1 : 100 (input neuron)
Input 2 : Day 2 : 102 (input neuron)
Input 3 : Day 3 : 104 (input neuron)
Input 4 : Day 4 : 110 (input neuron)
Input 5 : Day 5 : 99 (input neuron)
I d e a l 1 : Day 6 : 100 (output neuron)
I d e a l 2 : Day 7 : 105 (output neuron)

Of course the data above needs to be normalized in some way before it can
be fed to the neural network. The above illustration simply shows how the
input and output neurons are mapped to the actual data. To get additional

8.2 Using the Encog Temporal Dataset 129

data, both windows are simply slid forward. The next element of training data
would be as follows.
Input 1 : Day 2 : 102 (input neuron)
Input 2 : Day 3 : 104 (input neuron)
Input 3 : Day 4 : 110 (input neuron)
Input 4 : Day 5 : 99 (input neuron)
Input 5 : Day 6 : 100 (input neuron)
I d e a l 1 : Day 7 : 105 (output neuron)
I d e a l 2 : Day 8 : 106 (output neuron)

You would continue sliding the past and future windows forward as you gen-
erate more training data. Encog contains specialized classes to prepare data
in this format. Simply specify the size of the past, or input, window and the
future, or output, window. These specialized classes will be discussed in the
next section.

8.2 Using the Encog Temporal Dataset

The Encog temporal dataset is contained in the following package:
org . encog . neura l . data . temporal

There are a total of four classes that make up the Encog temporal dataset.
These classes are as follows:

• TemporalDataDescription

• TemporalError

• TemporalMLDataSet

• TemporalPoint

The TemporalDataDescription class describes one unit of data that is ei-
ther used for prediction or output. The TemporalError class is an exception
that is thrown if there is an error while processing the temporal data. The
TemporalMLDataSet class operates just like any Encog dataset and allows

130 Using Temporal Data

the temporal data to be used for training. The TemporalPoint class repre-
sents one point of temporal data.

To begin using a TemporalMLDataSet we must instantiate it as follows:

TemporalMLDataSet r e s u l t =
new TemporalMLDataSet (

[past window s i z e] , [f u tu r e window s i z e]) ;

The above instantiation specifies both the size of the past and future windows.
You must also define one or more TemporalDataDescription objects. These
define the individual items inside of the past and future windows. One single
TemporalDataDescription object can function as both a past and a future
window element as illustrated in the code below.
TemporalDataDescription desc =

new TemporalDataDescription (
[c a l c u l a t i o n type] , [use for past] , [use for f u tu r e]) ;

r e s u l t . addDescr ipt ion (desc) ;

To specify that a TemporalDataDescription object functions as both a past
and future element, use the value true for the last two parameters. There are
several calculation types that you can specify for each data description. These
types are summarized here.

• TemporalDataDescription.RAW

• TemporalDataDescription.PERCENT CHANGE

• TemporalDataDescription.DELTA CHANGE

The RAW type specifies that the data points should be passed on to the
neural network unmodified. The PERCENT CHANGE specifies that each
point should be passed on as a percentage change. The DELTA CHANGE
specifies that each point should be passed on as the actual change between the
two values. If you are normalizing the data yourself, you would use the RAW
type. Otherwise, it is very likely you would use the PERCENT CHANGE
type.

8.3 Application to Sunspots 131

Next, provide the raw data to train the temporal network from. To do
this, create TemporalPoint objects and add them to the temporal dataset.
Each TemporalPoint object can contain multiple values, i.e. have the same
number of values in each temporal data point as in the TemporalDataDe-
scription objects. The following code shows how to define a temporal data
point.
TemporalPoint po int = new TemporalPoint ([number o f va lue s]) ;
po int . setSequence ([a sequence number]) ;
po int . setData (0 , [va lue 1]) ;
po int . setData (1 , [va lue 2]) ;
r e s u l t . ge tPo int s () . add (po int) ;

Every data point should have a sequence number in order to sort the data
points. The setData method calls allow the individual values to be set and
should match the specified number of values in the constructor.

Finally, call the generate method. This method takes all of the tempo-
ral points and creates the training set. After generate has been called, the
TemportalMLDataSet object can be use for training.
r e s u l t . generate () ;

The next section will use a TemportalMLDataSet object to predict sunspots.

8.3 Application to Sunspots

In this section we will see how to use Encog to predict sunspots, which are
fairly periodic and predictable. A neural network can learn this pattern and
predict the number of sunspots with reasonable accuracy. The output from
the sunspot prediction program is shown below. Of course, the neural network
first begins training and will train until the error rate falls below six percent.

Epoch #1 Error :0 .39165411390480664
Epoch #2 Error :1 .2907898518116008
Epoch #3 Error :1 .275679853982214
Epoch #4 Error :0 .8026954615095163

132 Using Temporal Data

Epoch #5 Error :0 .4999305514145095
Epoch #6 Error :0 .468223450164209
Epoch #7 Error :0 .22034289938540677
Epoch #8 Error :0 .2406776630699879
. . .
Epoch #128 Error :0 .06025613803011326
Epoch #129 Error :0 .06002069579351901
Epoch #130 Error :0 .059830227113598734
YearActualPredictClosed Loop Pred i c t
19600 .57230 .55470 .5547
19610 .32670 .40750 .3918
19620 .25770 .18370 .2672
19630 .21730 .11900 .0739
19640 .14290 .17380 .1135
19650 .16350 .26310 .3650
19660 .29770 .23270 .4203
19670 .49460 .28700 .1342
19680 .54550 .61670 .3533
19690 .54380 .51110 .6415
19700 .53950 .38300 .4011
19710 .38010 .40720 .2469
19720 .38980 .21480 .2342
19730 .25980 .25330 .1788
19740 .24510 .16860 .2163
19750 .16520 .19680 .2064
19760 .15300 .14700 .2032
19770 .21480 .15330 .1751
19780 .48910 .35790 .1014

Once the network has been trained, it tries to predict the number of sunspots
between 1960 and 1978. It does this with at least some degree of accuracy.
The number displayed is normalized and simply provides an idea of the relative
number of sunspots. A larger number indicates more sunspot activity; a lower
number indicates less sunspot activity.

There are two prediction numbers given: the regular prediction and the
closed-loop prediction. Both prediction types use a past window of 30 and
a future window of 1. The regular prediction simply uses the last 30 values
from real data. The closed loop starts this way and, as it proceeds, its own
predictions become the input as the window slides forward. This usually results
in a less accurate prediction because any mistakes the neural network makes

8.3 Application to Sunspots 133

are compounded.
We will now examine how this program was implemented. This program

can be found at the following location.
org . encog . examples . neura l . p r e d i c t . sunspot . PredictSunspot

As you can see, the program has sunspot data hardcoded near the top of the
file. This data was taken from a C-based neural network example program.
You can find the original application at the following URL:

http://www.neural-networks-at-your-fingertips.com/bpn.html
The older, C-based neural network example was modified to make use of

Encog. You will notice that the Encog version is much shorter than the C-
based version. This is because much of what the example did was already
implemented in Encog. Further, the Encog version trains the network faster
because it makes use of resilient propagation, whereas the C-based example
makes use of backpropagation.

This example goes through a two-step process for using the data. First,
the raw data is normalized. Then, this normalized data is loaded into a Tem-
portalMLDataSet object for temporal training. The normalizeSunspots
method is called to normalize the sunspots. This method is shown below.
public void normal izeSunspots (double lo , double hi) {

The hi and lo parameters specify the high and low range to which the sunspots
should be normalized. This specifies the normalized sunspot range. Normal-
ization was discussed in Chapter 2. For this example, the lo value is 0.1 and
the high value is 0.9.

To normalize these arrays, create an instance of the NormalizeArray
class. This object will allow you to quickly normalize an array. To use this
object, simply set the normalized high and low values, as follows.

NormalizeArray norm = new NormalizeArray () ;
norm . setNormal izedHigh (h i) ;
norm . setNormalizedLow (l o) ;

The array can now be normalized to this range by calling the process method.

normal izedSunspots = norm . proce s s (SUNSPOTS) ;

134 Using Temporal Data

Now copy the normalized sunspots to the closed loop sunspots.
c losedLoopSunspots = EngineArray . arrayCopy (normal izedSunspots) ;

Initially, the closed-loop array starts out the same as the regular prediction.
However, its predictions will used to fill this array.

Now that the sunspot data has been normalized, it should be converted to
temporal data. This is done by calling the generateTraining method, shown
below.
public MLDataSet generateTra in ing ()
{

This method will return an Encog dataset that can be used for training. First
a TemporalMLDataSet is created and past and future window sizes are
specified.

TemporalMLDataSet r e s u l t = new TemporalMLDataSet (WINDOW SIZE, 1) ;

We will have a single data description. Because the data is already normalized,
we will use RAW data. This data description will be used for both input and
prediction, as the last two parameters specify. Finally, we add this description
to the dataset.

TemporalDataDescription desc = new TemporalDataDescription (
TemporalDataDescription . Type .RAW, true , true) ;

r e s u l t . addDescr ipt ion (desc) ;

It is now necessary to create all of the data points. We will loop between the
starting and ending year, which are the years used to train the neural network.
Other years will be used to test the neural network’s predictive ability.
for (int year = TRAIN START; year<TRAIN END; year++)
{

Each data point will have only one value to predict the sunspots. The sequence
is the year, because there is only one sunspot sample per year.

TemporalPoint po int = new TemporalPoint (1) ;
po int . setSequence (year) ;

8.3 Application to Sunspots 135

The one value we are using is the normalized number of sunspots. This number
is both what we use to predict from past values and what we hope to predict
in the future.

po int . setData (0 , this . normal izedSunspots [year]) ;
r e s u l t . ge tPo int s () . add (po int) ;

}

Finally, we generate the training set and return it.
r e s u l t . generate () ;
return r e s u l t ;

}

The data is now ready for training. This dataset is trained using resilient
propagation. This process is the same as those used many times earlier in this
book. Once training is complete, we will attempt to predict sunspots using
the application. This is done with the predict method, which is shown here.

public void p r e d i c t (BasicNetwork network)
{

First, we create a NumberFormat object so that the numbers can be properly
formatted. We will display four decimal places.

NumberFormat f = NumberFormat . getNumberInstance () ;
f . setMaximumFractionDigits (4) ;
f . setMinimumFractionDigits (4) ;

We display the heading for the table and begin to loop through the evaluation
years.

System . out . p r i n t l n (”Year\ tActual \ tPred i c t \ tClosed Loop Pred i c t ”)
;

for (int year=EVALUATE START; year<EVALUATE END; year++)
{

We create input into the neural network based on actual data, which will be
the actual prediction. We extract 30 years worth of data for the past window.

136 Using Temporal Data

MLData input = new BasicMLData (WINDOW SIZE) ;
for (int i =0; i<input . s i z e () ; i++)
{

input . setData (i , this . normal izedSunspots [
(year−WINDOW SIZE)+i]) ;

}

The neural network is presented with the data and we retrieve the prediction.

MLData output = network . compute (input) ;
double p r e d i c t i o n = output . getData (0) ;

The prediction is saved to the closed-loop array for use with future predictions.

this . c losedLoopSunspots [year] = p r e d i c t i o n ;

We will now calculate the closed-loop value. The calculation is essentially the
same except that the closed-loop data, which is continually modified, is used.
Just as before, we use 30 years worth of data.

for (int i =0; i<input . s i z e () ; i++)
{

input . setData (i , this . c losedLoopSunspots [
(year−WINDOW SIZE)+i]) ;

}

We compute the output.
output = network . compute (input) ;
double c lo sedLoopPred i c t i on = output . getData (0) ;

Finally, we display the closed-loop prediction, the regular prediction and the
actual value.

System . out . p r i n t l n ((STARTING YEAR+year)
+”\ t ”+f . format (this . normal izedSunspots [year])
+”\ t ”+f . format (p r e d i c t i o n)+”\ t ”+f . format (

c lo sedLoopPred i c t i on)) ;
}

}

8.4 Using the Encog Market Dataset 137

This will display a list of all of the sunspot predictions made by Encog. In
the next section we will see how Encog can automatically pull current market
information and attempt to predict stock market directions.

8.4 Using the Encog Market Dataset

Encog also includes a dataset specifically designed for stock market data. This
dataset is capable of downloading data from external sources. Currently, the
only external source included in Encog is Yahoo Finance. The Encog market
dataset is built on top of the temporal dataset and most classes in the Encog
market dataset descend directly from corresponding classes in the temporal
data set.

The following classes make up the Encog Market Dataset package:

• MarketDataDescription

• MarketDataType

• MarketError

• MarketMLDataSet

• MarketPoint

• TickerSymbol

The MarketDataDescription class represents one piece of market data that
is part of either the past or future window. It descends from the Temporal-
DataDescription class. It consists primarily of a TickerSymbol object and
a MarketDataType enumeration. The ticker symbol specifies the security
to include and the MarketDataType specifies what type of data from this
security to use. The available data types are listed below.

• OPEN - The market open for the day.

• CLOSE - The market close for the day.

138 Using Temporal Data

• VOLUME - The volume for the day.

• ADJUSTED CLOSE - The adjusted close. Adjusted for splits and
dividends.

• HIGH - The high for the day.

• LOW - The low for the day.

These are the market data types criteria currently supported by Encog. They
are all represented inside of the MarketDataType enumeration.

The MarketMLDataSet class is descended from the TemporalML-
DataSet. This is the main class when creating market-based training data
for Encog. This class is an Encog dataset and can be trained. If any errors
occur, the MarketError exception will be thrown.

The MarketPoint class descends from the TemporalPoint. You will
usually not deal with this object directly, as Encog usually downloads market
data from Yahoo Finance. The following code shows the general format for
using the MarketMLDataSet class. First, create a loader. Currently, the
YahooFinanceLoader is the only public loader available for Encog.
MarketLoader l oade r = new YahooFinanceLoader () ;

Next, we create the market dataset. We pass the loader, as well as the size of
the past and future windows.
MarketMLDataSet market = new MarketMLDataSet (
loader ,
[past window s i z e] ,
[f u tu r e window s i z e]) ;

Next create a MarketDataDescription object. To do this, specify the
needed ticker symbol and data type. The last two true values at the end
specify that this item is used both for past and predictive purposes.
f ina l MarketDataDescription desc = new MarketDataDescription (
[t i c k e r] , [data type needed] , true , true) ;

We add this data description to the dataset.

8.5 Application to the Stock Market 139

market . addDescr ipt ion (desc) ;

We can add additional descriptions as needed. Next, load the market data
and generate the training data.
market . load ([begin date] , [end date]) ;
market . generate () ;

As shown in the code, the beginning and ending dates must be specified. This
tells Encog the range from which to generate training data.

8.5 Application to the Stock Market

We will now look at an example of applying Encog to stock market prediction.
This program attempts to predict the direction of a single stock based on past
performance. This is a very simple stock market example and is not meant to
offer any sort of investment advice.

First, let’s explain how to run this example. There are four distinct modes
in which this example can be run, depending on the command line argument
that was passed. These arguments are summarized below.

• generate - Download financial data and generate training file.

• train - Train the neural network.

• evaluate - Evaluate the neural network.

• prune - Evaluate try a number of different architectures to determine
the best configuration.

To begin the example you should run the main class, which is named Market-
Predict. The following sections will show how this example generates data,
trains and then evaluates the resulting neural network. This application is
located at the following location.
org . encog . examples . neura l . p r e d i c t . market . MarketPredict

Each of these modes to use this program will now be covered.

140 Using Temporal Data

8.5.1 Generating Training Data

The first step is to generate the training data. The example is going to down-
load about eight years worth of financial information to train with. It takes
some time to download and process this information. The data is downloaded
and written to an Encog EG file. The class MarketBuildTraining provides
this functionality.

All work performed by this class is in the static method named generate.
This method is shown below.
public stat ic void generate (F i l e dataDir) {

This method begins by creating a YahooFinanceLoader that will load the
requested financial data.

f ina l MarketLoader l oade r = new YahooFinanceLoader () ;

A new MarketMLDataSet object is created that will use the loader and a
specified size for the past and future windows. By default, the program uses a
future window size of one and a past window size of 10. These constants are
all defined in the Config class. This is the way to control how the network is
structured and trained by changing any of the values in the Config class.

f ina l MarketMLDataSet market = new MarketMLDataSet (loader ,
Conf ig .INPUT WINDOW, Config .PREDICT WINDOW) ;

The program uses a single market value from which to make predictions. It
will use the adjusted closing price of the specified security. The security that
the program is trying to predict is specified in the Config class.

f ina l MarketDataDescription desc = new MarketDataDescription (
Config .TICKER, MarketDataType .ADJUSTED CLOSE, true , true) ;

market . addDescr ipt ion (desc) ;

The market data is now loaded beginning two years ago and ending two months
prior to today. The last two months will be used to evaluate the neural net-
work’s performance.

Calendar end = new GregorianCalendar () ; // end today
Calendar begin = (Calendar) end . c l one () ; // beg in 30 days ago
begin . add (Calendar .DATE, −60) ;

8.5 Application to the Stock Market 141

end . add (Calendar .DATE, −60) ;
begin . add (Calendar .YEAR, −2) ;
market . load (begin . getTime () , end . getTime ()) ;
market . generate () ;

We now save the training data to a binary EGB file. It is important to note
that TemporalDataSet or any of its derived classes will persist raw numeric
data, just as a BasicMLDataSet would. Only the generated data will be
saved, not the other support objects such as the MarketDataDescription
objects.

EncogUt i l i ty . saveEGB(new F i l e (
dataDir , Conf ig . TRAINING FILE) , market) ;

We will create a network to save to an EG file. This network is a simple
feedforward neural network that may have one or two hidden layers. The sizes
of the hidden layers are specified in the Config class.

f ina l BasicNetwork network = EncogUt i l i ty . simpleFeedForward (
market . g e t InputS i z e () ,
Conf ig .HIDDEN1 COUNT,
Config .HIDDEN2 COUNT,
market . g e t I d e a l S i z e () ,
true) ;

We now create the EG file and store the network to an EG file.
EncogDi rec to ryPer s i s t ence . saveObject (

new F i l e (dataDir , Conf ig .NETWORK FILE) , network) ;
}

Later phases of the program, such as the training and evaluation phases, will
use this file.

8.5.2 Training the Neural Network

Training the neural network is very simple. The network and training data
are already created and stored in an EG file. All that the training class needs
to do is load both of these resources from the EG file and begin training. The
MarketTrain class does this.

142 Using Temporal Data

The static method train performs all of the training. This method is
shown here.
public stat ic void t r a i n () {

The method begins by verifying whether the Encog EG file is present. Training
data and the network will be loaded from here.
f ina l F i l e networkFi le = new F i l e (dataDir , Conf ig .NETWORK FILE) ;
f ina l F i l e t r a i n i n g F i l e = new F i l e (dataDir , Conf ig . TRAINING FILE) ;
// network f i l e
i f (! networkFi le . e x i s t s ()) {

System . out . p r i n t l n (”Can ’ t read f i l e : ”
+ networkFi le . getAbsolutePath ()) ;

return ;
}

Next, use the EncogDirectoryPersistence object to load the EG file. We
will extract a network.
BasicNetwork network = (BasicNetwork) EncogDi rec to ryPer s i s t ence .

loadObject (networkFi le) ;

Next, load the training file from disk. This network will be used for training.
// t r a i n i n g f i l e
i f (! t r a i n i n g F i l e . e x i s t s ()) {

System . out . p r i n t l n (”Can ’ t read f i l e : ” + t r a i n i n g F i l e .
getAbsolutePath ()) ;

return ;
}
f ina l MLDataSet t r a i n i n g S e t = EncogUt i l i ty . loadEGB2Memory(

t r a i n i n g F i l e) ;

The neural network is now ready to train. We will use EncogUtility training
and loop for the number of minutes specified in the Config class. This is the
same as creating a training object and using iterations, as was done previously
in this book. The trainConsole method is simply a shortcut to run the
iterations for a specified number of minutes.
// t r a i n the neura l network
EncogUt i l i ty . t ra inConso l e (network , t r a in ingSe t , Conf ig .

TRAINING MINUTES) ;

8.5 Application to the Stock Market 143

Finally, the neural network is saved back to the EG file.
System . out . p r i n t l n (” Fina l Error : ” + network . c a l c u l a t e E r r o r (

t r a i n i n g S e t)) ;
System . out . p r i n t l n (” Train ing complete , sav ing network . ”) ;
EncogDi rec to ryPer s i s t ence . saveObject (networkFi le , network) ;
System . out . p r i n t l n (”Network saved . ”) ;
Encog . g e t In s tance () . shutdown () ;

At this point, the neural network is trained. To further train the neural net-
work, run the training again or move on to evaluating the neural network. If
you train the same neural network again using resilient propagation, the error
rate will initially spike. This is because the resilient propagation algorithm
must reestablish proper delta values for training.

8.5.3 Incremental Pruning

One challenge with neural networks is determining the optimal architecture
for the hidden layers. Should there be one hidden layer or two? How many
neurons should be in each of the hidden layers? There are no easy answers to
these questions.

Generally, it is best to start with a neural network with one hidden layer
and double the number of hidden neurons as input neurons. There are some
reports that suggest that the second hidden layer has no advantages, although
this is often debated. Other reports suggest a second hidden layer can some-
times lead to faster convergence. For more information, see the hidden layer
page on the Heaton Research wiki.

http://www.heatonresearch.com/wiki/Hidden_Layers
One utility provided by Encog is the incremental pruning class. This class

allows you to use a brute force technique to determine an optimal hidden
layer configuration. Calling the market example with the prune argument
will perform an incremental prune. This will try a number of different hidden
layer configurations to attempt to find the best one.

This command begins by loading a training set to memory.
MLDataSet t r a i n i n g = EncogUt i l i ty . loadEGB2Memory(f i l e) ;

http://www.heatonresearch.com/wiki/Hidden_Layers

144 Using Temporal Data

Next a pattern is created to specify the type of neural network to be created.
FeedForwardPattern pattern = new FeedForwardPattern () ;
pattern . setInputNeurons (t r a i n i n g . g e t InputS i z e ()) ;
pattern . setOutputNeurons (t r a i n i n g . g e t I d e a l S i z e ()) ;
pattern . s e tAct ivat i onFunct ion (new ActivationTANH ()) ;

The above code specifies the creation of feedforward neural networks using the
hyperbolic tangent activation function. Next, the pruning object is created.

PruneIncremental prune = new PruneIncremental (t r a in ing , pattern ,
100 , 1 , 10 , new Conso leStatusReportab le ()) ;

The object will perform 100 training iterations, try one weight for each, and
have 10 top networks. The object will take the 10 best networks after 100
training iterations. The best of these 10 is chosen to be the network with the
smallest number of links.

The user may also specify the number and sizes of the hidden layers to
try. Each call to addHiddenLayer specifies the lower and upper bound to
try. The first call to addHiddenLayer specifies the range for the first hidden
layer. Here we specify to try hidden layer one sizes from 5 to 50. Because the
lower point is not zero, we are required to have a first hidden layer.
prune . addHiddenLayer (5 , 50) ;

Next we specify the size for the second hidden layer. Here we are trying hidden
layers between 0 and 50 neurons. Because the low point is zero, we will also
try neural networks with no second layer.
prune . addHiddenLayer (0 , 50) ;

Now that the object has been setup we are ready to search. Calling the
process method will begin the search.
prune . p roce s s () ;

Once the search is completed you can call the getBestNetwork to get the
best performing network. The following code obtains this network and saves
it.

8.5 Application to the Stock Market 145

F i l e networkFi le = new F i l e (dataDir , Conf ig .NETWORK FILE) ;
EncogDi rec to ryPer s i s t ence . saveObject (networkFi le , prune .

getBestNetwork ()) ;

We now have a neural network saved with a good combination of hidden layers
and neurons. The pruning object does not train each network particularly well,
as it is trying to search a large number of networks. At this point, you will
want to further train this best network.

8.5.4 Evaluating the Neural Network

We are now ready to evaluate the neural network using the trained neural
network from the last section and gauge its performance on actual current
stock market data. The MarketEvaluate class contains all of the evaluation
code.

There are two important methods used during the evaluation process. The
first is the determineDirection class. We are not attempting to determine
the actual percent change for a security, but rather, which direction it will
move the next day.
public stat ic Dir e c t i on dete rmineDi rec t i on (f ina l double d) {

i f (d<0)
return Dir e c t i on . down ;

else
return Dir e c t i on . up ;

}

This method simply returns an enumeration that specifies whether the stock
price moved up or down.

We will need some current market data to evaluate against. The grabData
method obtains the necessary market data. It makes use of a MarketML-
DataSet, just as the training does, to obtain some market data. This method
is shown here.
public stat ic MarketMLDataSet grabData () {

Just like the training data generation, market data is loaded from a Yahoo-
FinanceLoader object.

146 Using Temporal Data

MarketLoader l oade r = new YahooFinanceLoader () ;
MarketMLDataSet r e s u l t = new MarketMLDataSet (

loader ,
Conf ig .INPUT WINDOW,
Config .PREDICT WINDOW) ;

We create exactly the same data description as was used for training: the
adjusted close for the specified ticker symbol. Past and future data are also
desired. By feeding past data to the neural network, we will see how well the
output matches the future data.

MarketDataDescription desc = new MarketDataDescription (
Config .TICKER,
MarketDataType .ADJUSTED CLOSE,
true ,
true) ;

r e s u l t . addDescr ipt ion (desc) ;

Choose what date range to evaluate the network. We will grab the last 60
days worth of data.

Calendar end = new GregorianCalendar () ; // end today
Calendar begin = (Calendar) end . c l one () ; // beg in 60 days ago
begin . add (Calendar .DATE, −60) ;

The market data is now loaded and generated by using the load method call.

r e s u l t . load (begin . getTime () , end . getTime ()) ;
r e s u l t . generate () ;
return r e s u l t ;

}

The resulting data is returned to the calling method. Now that we have
covered the support methods, it is time to learn how the actual training occurs.
The static method evaluate performs the actual evaluation. This method is
shown below.
public stat ic void eva luate () {

First, make sure that the Encog EG file exists.

8.5 Application to the Stock Market 147

F i l e f i l e = new F i l e (Conf ig .FILENAME) ;
i f (! f i l e . e x i s t s ()) {

System . out . p r i n t l n (”Can ’ t read f i l e : ” + f i l e . getAbsolutePath ()
) ;

return ;
}

EncogPer s i s t edCo l l e c t i on encog = new EncogPer s i s t edCo l l e c t i on (
f i l e) ;

Then, we load the neural network from the EG file. Use the neural network
that was trained in the previous section.
BasicNetwork network = (BasicNetwork) EncogDi rec to ryPer s i s t ence .

loadObject (f i l e) ;

Load the market data to be used for network evaluation. This is done using
the grabData method discussed earlier in this section.

MarketMLDataSet data = grabData () ;

Use a formatter to format the percentages.
DecimalFormat format = new DecimalFormat (”#0.0000”) ;

During evaluation, count the number of cases examined and how many were
correct.

int count = 0 ;
int c o r r e c t = 0 ;

Loop over all of the loaded market data.
for (MLDataPair pa i r : data) {

Retrieve one training pair and obtain the actual data as well as what was
predicted. The predicted data is determined by running the network using the
compute method.

MLData input = pa i r . get Input () ;
MLData actualData = pa i r . g e t I d e a l () ;
MLData predictData = network . compute (input) ;

148 Using Temporal Data

Now retrieve the actual and predicted data and calculate the difference. This
establishes the accuracy off the neural network predicting the actual price
change.

double ac tua l = actualData . getData (0) ;
double p r e d i c t = predictData . getData (0) ;
double d i f f = Math . abs (pred i c t−ac tua l) ;

Also calculate the direction the network predicted security takes versus the
direction the security actually took.

Dir e c t i on a c t u a l D i r e c t i o n = dete rmineDi rec t i on (ac tua l) ;
D i r e c t i on p r e d i c t D i r e c t i o n = dete rmineDi rec t i on (p r e d i c t) ;

If the direction was correct, increment the correct count by one. Either way,
increment the total count by one.

i f (a c t u a l D i r e c t i o n==p r e d i c t D i r e c t i o n)
c o r r e c t ++;

count++;

Display the results for each case examined.
System . out . p r i n t l n (”Day ” + count+” : ac tua l=”

+format . format (ac tua l)+” (”+a c t u a l D i r e c t i o n+”) ”
+” , p r e d i c t=”
+format . format (p r e d i c t)+” (”+a c t u a l D i r e c t i o n+”) ”
+” , d i f f=”+d i f f) ;

}

Finally, display stats on the overall accuracy of the neural network.
double percent = (double) c o r r e c t /(double) count ;
System . out . p r i n t l n (” D i r e c t i on c o r r e c t : ” + c o r r e c t + ”/” + count) ;
System . out . p r i n t l n (” D i r e c t i o n a l Accuracy : ”+format . format (percent

∗100)+”%”) ;
}

The following code snippet shows the output of this application when launched
once. Because it uses data preceding the current date, the results will be
different when run. These results occur because the program is attempting to
predict percent movement on Apple Computer’s stock price.

8.5 Application to the Stock Market 149

Day 1 : ac tua l =0.05(up) , p r e d i c t =−0.09(up) , d i f f =0.1331431391626865
Day 2 : ac tua l =−0.02(down) , p r e d i c t =0.15(down) , d i f f

=0.1752316137707985
Day 3 : ac tua l =−0.04(down) , p r e d i c t =−0.08(down) , d i f f

=0.04318588896364293
Day 4 : ac tua l =0.04(up) , p r e d i c t =−0.13(up) , d i f f =0.167230163960771
Day 5 : ac tua l =0.04(up) , p r e d i c t =0.08(up) , d i f f =0.041364210497886064
Day 6 : ac tua l =−0.05(down) , p r e d i c t =−0.15(down) , d i f f

=0.09856291235302134
Day 7 : ac tua l =0.03(up) , p r e d i c t =0.02(up) , d i f f =0.0121349208067498
Day 8 : ac tua l =0.06(up) , p r e d i c t =0.14(up) , d i f f =0.07873950162422072
Day 9 : ac tua l =0.00(up) , p r e d i c t =−0.04(up) , d i f f =0.044884229765456175
Day 10 : ac tua l =−0.02(down) , p r e d i c t =−0.11(down) , d i f f

=0.08800357702537594
Day 11 : ac tua l =−0.03(down) , p r e d i c t =0.10(down) , d i f f

=0.1304932331559785
Day 12 : ac tua l =0.03(up) , p r e d i c t =−0.00(up) , d i f f =0.03830226924277358
Day 13 : ac tua l =−0.04(down) , p r e d i c t =−0.03(down) , d i f f

=0.006017023124087514
Day 14 : ac tua l =0.01(up) , p r e d i c t =−0.00(up) , d i f f =0.011094798099546017
Day 15 : ac tua l =−0.07(down) , p r e d i c t =0.10(down) , d i f f

=0.1634993352860712
Day 16 : ac tua l =0.00(up) , p r e d i c t =0.09(up) , d i f f =0.08529079398874763
Day 17 : ac tua l =0.01(up) , p r e d i c t =0.08(up) , d i f f =0.07476901867409716
Day 18 : ac tua l =−0.05(down) , p r e d i c t =0.10(down) , d i f f

=0.14462998342498684
Day 19 : ac tua l =0.01(up) , p r e d i c t =0.01(up) , d i f f =0.0053944458622837204
Day 20 : ac tua l =−0.02(down) , p r e d i c t =0.16(down) , d i f f

=0.17692298105888082
Day 21 : ac tua l =0.01(up) , p r e d i c t =0.01(up) , d i f f =0.003908063600862748
Day 22 : ac tua l =0.01(up) , p r e d i c t =0.05(up) , d i f f =0.04043842368088156
Day 23 : ac tua l =−0.00(down) , p r e d i c t =0.05(down) , d i f f

=0.05856519756505361
Day 24 : ac tua l =−0.01(down) , p r e d i c t =−0.01(down) , d i f f

=0.0031913517175624975
Day 25 : ac tua l =0.06(up) , p r e d i c t =0.03(up) , d i f f =0.02967685979492382
Day 26 : ac tua l =0.04(up) , p r e d i c t =−0.01(up) , d i f f =0.05155871532643232
Day 27 : ac tua l =−0.02(down) , p r e d i c t =−0.09(down) , d i f f

=0.06931714317358993
Day 28 : ac tua l =−0.02(down) , p r e d i c t =−0.04(down) , d i f f

=0.019323500655091908
Day 29 : ac tua l =0.02(up) , p r e d i c t =0.06(up) , d i f f =0.04364949212592098

150 Using Temporal Data

Day 30 : ac tua l =−0.02(down) , p r e d i c t =−0.06(down) , d i f f
=0.036886336426948246

Di r e c t i on c o r r e c t :18/30
D i r e c t i o n a l Accuracy :60.00%

Here, the program had an accuracy of 60%, which is very good for this sim-
ple neural network. Accuracy rates generally range from 30-40% when this
program was run at different intervals.

This is a very simple stock market predictor and should not be used for
any actual investing. It shows how to structure a neural network to predict
market direction.

8.6 Summary

In this chapter, we learned how Encog could process temporal neural networks.
Temporal networks are used to predict what will occur in the future. The first
example in this chapter showed how to use Encog to predict sunspots. The
second example showed how to use Encog to attempt to predict stock price
movements.

The sunspot example made use of the TemporalDataSet. This is a low-
level temporal dataset that is designed to model any “window-based” predic-
tion neural network. A past window is used to provide several values to the
neural network from which to make predictions. A future window specifies the
number of elements the neural network should predict into the future.

The stock market example used the MarketMLDataSet class. This class
is based on the TemporalDataSet to automatically download financial in-
formation from Yahoo Finance. This is a very simple example to show the
foundation of applying neural networks to the stock market. Investment deci-
sions should not be made based on this network.

The next chapter will show how to use images with neural networks. Pre-
senting images to a neural network is a matter of converting the image into
a numeric array so that a neural network will consider it as input. This is
true for any information to be presented to a neural network. It is a matter
of converting that data into an array of floating point values.

8.6 Summary 151

153

Chapter 9

Using Image Data

• Processing Images

• Finding the Bounds

• Downsampling

• Using the Image Dataset

Using neural networks to recognize images is a very common task. This chapter
will explore how to use images with Encog. By using the same feedforward
neural networks as seen in earlier chapters, neural networks can be designed
to recognize certain images. Specialized datasets ease the process of getting
image data into the neural network.

This chapter will introduce the ImageMLDataSet. This class can accept
a list of images that will be loaded and processed into an Encog-friendly form.
The ImageMLDataSet is based upon the BasicMLDataSet, which is really
just an array of double values for input and idea. The ImageMLDataSet
simply adds special functions to load images into arrays of doubles.

There are several important issues to consider when loading image data
into a neural network. The ImageMLDataSet takes care of two important
aspects of this. The first aspect is detecting boundaries on what is to be
recognized. The second is downsampling where images are usually formatted
in high-resolution and must be downsampled to a consistent lower resolution
to be fed to the neural network.

154 Using Image Data

9.1 Finding the Bounds

An image is a rectangular region that represents the data important to the
neural network. Only a part of the image may be useful. Ideally, the actual
image the neural network must recognize is equal to the entire physical image
- rather than just a portion of the original image. Such is the case with Figure
9.1.

Figure 9.1: An X Drawn Over the Entire Drawing Area

As you can see in the above figure, the letter “X” was drawn over nearly
the entire physical image. This image would require minimal, if any, boundary
detection.

Images will not always be so perfectly created. Consider the image pre-
sented in Figure 9.2.

9.1 Finding the Bounds 155

Figure 9.2: An Off-Center, Off-Scale X

Here the letter “X” is scaled differently than in the previous image and is
also off-center. To properly recognize it, we must find the bounds of the second
letter “X.” Figure 9.3 shows a bounding box around the letter “X.” Only data
inside of the bounding box will be used to recognize the image.

Figure 9.3: The X with its Bounds Detected

As you can see, the bounds have been detected for the letter “X.” The
bounding box signifies that only data inside of that box will be recognized.
Now the “X” is in approximately the same orientation as Figure 9.1.

156 Using Image Data

9.2 Downsampling an Image

Even with bounding boxes, images may not be consistently sized. The letter
“X” in Figure 9.3 is considerably smaller than Figure 9.1. When recognizing
the image, we will draw a grid over the image and line up each grid cell to
an input neuron. To do this, the images must be consistently sized. Further,
most images have too high a resolution to be used with a neural network.

Downsampling solves both of these problems by reducing the image resolu-
tion and scaling all images to a consistent size. To see this in action, consider
Figure 9.4. This figure shows the Encog logo at full resolution.

Figure 9.4: The Encog Logo at Full Resolution

Figure 9.5 shows this same image downsampled.

Figure 9.5: The Encog Logo Downsampled

Do you notice the grid-like pattern? It has been reduced to 32x32 pixels.
These pixels would form the input to a neural network. This neural network
would require 1,024 input neurons, if the network were to only look at the
intensity of each square. Looking at the intensity limits the neural network to
see in “black and white.”

9.3 Using the Encog Image Dataset 157

If you would like the neural network to seen in color, then it is necessary to
provide red, green and blue (RGB) values for each of these pixels. This would
mean three input neurons for each pixel, which would push the input neuron
count to 3,072.

The Encog image dataset provides both boundary detection, as well as
RGB and intensity downsampling. In the next section, the Encog image
dataset will be introduced.

9.2.1 What to Do With the Output Neurons

The output neurons should represent the groups that these images will fall
into. For example, if writing an OCR application, use one output neuron for
every character to be recognized. Equilateral encoding is also useful in this
respect, as discussed in Chapter 2 “Obtaining Data for Encog.”

Supervised training also requires ideal output data for each image. For
a simple OCR, there might be 26 output neurons, one for each letter of the
alphabet. These ideal outputs train the neural network for what the image ac-
tually is. Whether training is supervised or unsupervised training, the output
neurons will relay how the neural network interpreted each image.

9.3 Using the Encog Image Dataset

Before instantiating an ImageMLDataSet object, a downsampled object
must be created. This object is a tool for Encog to use to perform the down-
sample. All Encog downsample objects must implement the interface Down-
sample. Encog currently supports two downsample classes, listed below:

• RGBDownsample

• SimpleIntensityDownsample

The SimpleIntensityDownsample does not take color into consideration. It
simply calculates the brightness or darkness of a pixel. The number of input
neurons will be height multiplied by the width, as there is only one input
neuron needed per pixel.

158 Using Image Data

The RGBDownsample is more advanced than SimpleIntensityDown-
sample. This downsample object converts to the resolution that you specify
and turns every pixel into a three-color (RGB) input. The total number of
input neuron values produced by this object will be height times width times
three. The following code instantiates a SimpleIntensityDownsample ob-
ject. This object will be used to create the training set.
downsample = new SimpleIntensityDownsample () ;

Now that a downsample object is created, it is time to use an ImageML-
DataSet class. It must be instantiated with several parameters. The following
code does this.
t r a i n i n g = new ImageMLDataSet (downsample , false , 1 , −1) ;

The parameters 1 and -1 specify the range to which the colors will be nor-
malized, either by the intensity color or the three individual RGB colors. The
false value means that the dataset should not attempt to detect the edges. If
this value were true, Encog would attempt to detect the edges.

The current Encog edge detection is not very advanced. It looks for one
consistent color around the sides of an image and attempts to remove as much
of that region as it can. More advanced edge detection will likely be built into
future versions of Encog. If advanced edge detection is necessary, it is best to
trim the images before sending them to the ImageMLDataSet object.

Now that the ImageMLDataSet object has been created, it is time to
add some images. To add images to this dataset, an ImageMLData object
must be created for each image. The following lines of code will add one image
from a file.
Image img = ImageIO . read ([f i l ename o f image]) ;
ImageMLData data = new ImageMLData(img) ;
this . t r a i n i n g . add (data , [i d e a l output]) ;

The image is loaded from a file using the Java ImageIO class, which reads
images from files. Any valid Java image object can be used by the dataset.

The ideal output should be specified when using supervised training. With
unsupervised training, this parameter can be omitted. Once the ImageML-
Data object is instantiated, it is added to the dataset. These steps are re-
peated for every image to be added.

9.4 Image Recognition Example 159

Once all of the images are loaded, they are ready to be downsampled. To
downsample the images call the downsample method.
this . t r a i n i n g . downsample ([downsample he ight] ,

[downsample width]) ;

Specify the downsample height and width. All of the images will be downsam-
pled to this size. After calling the downsample method, the training data is
generated and can train a neural network.

9.4 Image Recognition Example

We will now see how to tie all Encog image classes together into an example.
A generic image recognition program will serve as an example and could easily
become the foundation of a much more complex image recognition program.
This example is driven from a script file. Listing 9.1 shows the type of script
file that might drive this program.

Listing 9.1: Image Recognition Script
CreateTra in ing : width : 1 6 , he ight : 1 6 , type :RGB
Input : image : . / co in s /dime . png , i d e n t i t y : dime
Input : image : . / co in s / d o l l a r . png , i d e n t i t y : d o l l a r
Input : image : . / co in s / h a l f . png , i d e n t i t y : h a l f d o l l a r
Input : image : . / co in s / n i c k l e . png , i d e n t i t y : n i c k l e
Input : image : . / co in s /penny . png , i d e n t i t y : penny
Input : image : . / co in s / quarte r . png , i d e n t i t y : quarte r
Network : hidden1 : 100 , hidden2 : 0
Train : Mode : conso le , Minutes : 1 , St rategyError : 0 . 2 5 , St rategyCyc l e s

: 50
Whatis : image : . / co in s /dime . png
Whatis : image : . / co in s / h a l f . png
Whatis : image : . / co in s / t e s t c o i n . png

The syntax used by this script file is very simple. There is a command, followed
by a colon. This command is followed by a comma-separated list of parameters.
Each parameter is a name-value pair that is also separated by a colon. There
are five commands in all: CreateTraining, Input, Network, Train and
WhatIs.

160 Using Image Data

The CreateTraining command creates a new training set. To do so,
specify the downsample height, width, and type - either RGB or Brightness.

The Input command inputs a new image for training. Each input com-
mand specifies the image as well as the identity of the image. Multiple images
can have the same identity. For example, the above script could have provided
a second image of a dime by causing the second Input command to also have
the identity of “dime.”

The Network command creates a new neural network for training and
recognition. Two parameters specify the size of the first and second hidden
layers. If you do not wish to have a second hidden layer, specify zero for the
hidden2 parameter.

The Train command trains the neural network and mode specifies either
console or GUI training. The minutes parameter specifies how many minutes
are required to train the network. This parameter is only used with console
training; for GUI training this parameter should be set to zero. The strategy
tells the training algorithm how many cycles to wait to reset the neural network
if the error level has not dropped below the specified amount.

The WhatIs command accepts an image and tries to recognize it. The
example will print the identity of the image that it thought was most similar.

We will now take a look at the image recognition example. This example
can be found at the following location.
org . encog . examples . neura l . image . ImageNeuralNetwork

Some of the code in the above example deals with parsing the script file and
arguments. Because string parsing is not really the focus of this book, we
will focus on how each command is carried out and how the neural network
is constructed. The next sections discuss how each of these commands is
implemented.

9.4.1 Creating the Training Set

The CreateTraining command is implemented by the processCreateTrain-
ing method. This method is shown here.

9.4 Image Recognition Example 161

private void proce s sCreateTra in ing () {

The CreateTraining command takes three parameters. The following lines
read these parameters.

f ina l St r ing strWidth = getArg (” width ”) ;
f ina l St r ing s t rHe ight = getArg (” he ight ”) ;
f ina l St r ing strType = getArg (” type ”) ;

The width and height parameters are both integers and need to be parsed.

this . downsampleHeight = In t eg e r . pa r s e In t (strWidth) ;
this . downsampleWidth = In t eg e r . pa r s e In t (s t rHe ight) ;

We must now create the downsample object. If the mode is RGB, use RGB-
Downsample. Otherwise, use SimpleIntensityDownsample.

i f (strType . equa l s (”RGB”)) {
this . downsample = new RGBDownsample () ;

} else {
this . downsample = new SimpleIntensityDownsample () ;

}

The ImageMLDataSet can now be created.
this . t r a i n i n g = new ImageMLDataSet (

this . downsample , false , 1 , −1) ;
System . out . p r i n t l n (” Train ing s e t c rea ted ”) ;

}

Now that the training set is created, we can input images. The next section
describes how this is done.

9.4.2 Inputting an Image

The Input command is implemented by the processInput method. This
method is shown here.
private void proce s s Input () throws IOException {

162 Using Image Data

The Input command takes two parameters. The following lines read these
parameters.

f ina l St r ing image = getArg (” image”) ;
f ina l St r ing i d e n t i t y = getArg (” i d e n t i t y ”) ;

The identity is a text string that represents what the image is. We track the
number of unique identities and assign an increasing number to each. These
unique identities will form the neural network’s output layer. Each unique
identity will be assigned an output neuron. When images are presented to the
neural network later, the output neuron with the highest output will represent
the image identity to the network. The assignIdentity method is a simple
method that assigns this increasing count and maps the identity strings to
their neuron index.
f ina l int idx = a s s i g n I d e n t i t y (i d e n t i t y) ;

A File object is created to hold the image. This will later be used to also read
the image.

f ina l F i l e f i l e = new F i l e (image) ;

At this point we do not wish to actually load the individual images. We
will simply make note of the image by saving an ImagePair object. The
ImagePair object links the image to its output neuron index number. The
ImagePair class is not built into Encog. Rather, it is a structure used by this
example to map the images.

this . imageList . add (new ImagePair (f i l e , idx)) ;

Finally, we display a message that tells us that the image has been added.
System . out . p r i n t l n (”Added input image : ” + image) ;

}

Once all the images are added, the number of output neurons is apparent
and we can create the actual neural network. Creating the neural network is
explained in the next section.

9.4 Image Recognition Example 163

9.4.3 Creating the Network

The Network command is implemented by the processInput method. This
method is shown here.
private void processNetwork () throws IOException {

Begin by downsampling the images. Loop over every ImagePair previously
created.

System . out . p r i n t l n (”Downsampling images . . . ”) ;
for (f ina l ImagePair pa i r : this . imageList) {

Create a new BasicMLData to hold the ideal output for each output neuron.

f ina l MLData i d e a l = new
BasicMLData (this . outputCount) ;

The output neuron that corresponds to the identity of the image currently
being trained will be set to 1. All other output neurons will be set to -1.

f ina l int idx = pa i r . g e t I d e n t i t y () ;
for (int i = 0 ; i < this . outputCount ; i++) {
i f (i == idx) {

i d e a l . setData (i , 1) ;
}
else {

i d e a l . setData (i , −1) ; }
}

The input data for this training set item will be the downsampled image. First,
load the image into a Java Image object.

f ina l Image img = ImageIO . read (pa i r . g e t F i l e ()) ;

Create an ImageMLData object to hold this image and add it to the training
set.

f ina l ImageMLData data = new ImageMLData(img) ;
this . t r a i n i n g . add (data , i d e a l) ;
}

164 Using Image Data

There are two parameters provided to the Network command that specify
the number of neurons in each of the two hidden layers. If the second hidden
layer has no neurons, there is a single hidden layer.

f ina l St r ing strHidden1 = getArg (” hidden1 ”) ;
f ina l St r ing strHidden2 = getArg (” hidden2 ”) ;
f ina l int hidden1 = In t eg e r . pa r s e In t (strHidden1) ;
f ina l int hidden2 = In t eg e r . pa r s e In t (strHidden2) ;

We are now ready to downsample all of the images.
this . t r a i n i n g . downsample (

this . downsampleHeight , this . downsampleWidth) ;

Finally, the new neural network is created according to the specified parame-
ters. The final true parameter specifies that we would like to use a hyperbolic
tangent activation function.

this . network = EncogUt i l i ty . simpleFeedForward (
this . t r a i n i n g . g e t InputS i z e () ,
hidden1 , hidden2 ,
this . t r a i n i n g . g e t I d e a l S i z e () , true) ;

Once the network is created, report its completion by printing a message.
System . out . p r i n t l n (” Created network : ” +

this . network . t oS t r i ng ()) ;
}

Now that the network has been created, it can be trained. Training is handled
in the next section.

9.4.4 Training the Network

The Train command is implemented by the processTrain method. This
method is shown here.
private void proces sTra in () throws IOException {

The Train command takes four parameters. The following lines read these
parameters.

9.4 Image Recognition Example 165

f ina l St r ing strMode = getArg (”mode”) ;
f ina l St r ing strMinutes = getArg (” minutes ”) ;
f ina l St r ing s t rS t r a t egyEr ro r = getArg (” s t r a t e g y e r r o r ”) ;
f ina l St r ing s t rS t r a t egyCyc l e s = getArg (” s t r a t e g y c y c l e s ”) ;

Once the parameters are read, display a message stating that training has
begun.

System . out . p r i n t l n (” Train ing Beginning . . . Output pat t e rns=”
+ this . outputCount) ;

Parse the two strategy parameters.
f ina l double s t r a t egyEr ro r = Double . parseDouble (s t rS t r a t egyEr ro r

) ;
f ina l int s t r a t egyCyc l e s = In t eg e r . pa r s e In t (s t rS t r a t egyCyc l e s) ;

The neural network is initialized to random weight and threshold values. Some-
times the random set of weights and thresholds will cause the neural network
training to stagnate. In this situation, reset a new set of random values and
begin training again.

Training is initiated by creating a new ResilientPropagation trainer.
RPROP training was covered in Chapter 5 “Propagation Training.”
f ina l Res i l i en tPropaga t i on t r a i n =

new Res i l i en tPropaga t i on (this . network , this . t r a i n i n g) ;

Encog allows training strategies to be added to handle situations such as this.
One particularly useful training strategy is the ResetStrategy, which takes
two parameters. The first states the minimum error that the network must
achieve before it will be automatically reset to new random values. The second
parameter specifies the number of cycles that the network is allowed to achieve
this error rate. If the specified number of cycles is reached and the network is
not at the required error rate, the weights and thresholds will be randomized.

Encog supports a number of different training strategies. Training strate-
gies enhance whatever training method in use. They allow minor adjustments
as training progresses. Encog supports the following strategies:

166 Using Image Data

• Greedy

• HybridStrategy

• ResetStrategy

• SmartLearningRate

• SmartMomentum

• StopTrainingStrategy

The Greedy strategy only allows a training iteration to save its weight and
threshold changes if the error rate was improved. The HybridStrategy al-
lows a backup training method to be used if the primary training method
stagnates. The hybrid strategy was explained in Chapter 7 “Other Neural
Network Types.” The ResetStrategy resets the network if it stagnates. The
SmartLearningRate and SmartMomentum strategies are used with back-
propagation training to attempt to automatically adjust momentum and learn-
ing rate. The StopTrainingStrategy stops training if it has reached a certain
level.

The following lines of code add a reset strategy.
t r a i n . addStrategy (

new ResetStrategy (s t ra tegyError , s t r a t egyCyc l e s)) ;

If we are truing using the GUI, then we must use trainDialog, otherwise we
should use trainConsole.

i f (strMode . equa l s IgnoreCase (” gui ”)) {
EncogUt i l i ty . t r a i nD ia l og (t ra in , this . network , this . t r a i n i n g) ;

} else {
f ina l int minutes = In t eg e r . pa r s e In t (strMinutes) ;
EncogUt i l i ty . t ra inConso l e (t ra in , this . network , this . t r a in ing ,

minutes) ;
}

The program will indicate that training has stopped by displaying a message
such as the one shown below. The training process stops when it is canceled
by the dialog or, in the case of GUI mode, has been canceled.

9.4 Image Recognition Example 167

System . out . p r i n t l n (” Train ing Stopped . . . ”) ;
}

Once the neural network is trained, it is ready to recognize images. This is
discussed in the next section.

9.4.5 Recognizing Images

The WhatIs command is implemented by the processWhatIs method. This
method is shown here.
public void processWhatIs () throws IOException {

The WhatIs command takes one parameter. The following lines read this
parameter.

f ina l St r ing f i l ename = getArg (” image”) ;

The image is then loaded into an ImageMLData object.
f ina l F i l e f i l e = new F i l e (f i l ename) ;
f ina l Image img = ImageIO . read (f i l e) ;
f ina l ImageMLData input = new ImageMLData(img) ;

The image is downsampled to the correct dimensions.
input . downsample (this . downsample , false , this . downsampleHeight ,

this . downsampleWidth , 1 , −1) ;

The downsampled image is presented to the neural network, which chooses the
“winner” neuron. The winning neuron is the neuron with the greatest output
for the pattern that was presented. This is simple “one-of” normalization as
discussed in Chapter 2. Chapter 2 also introduced equilateral normalization,
which could also be used.

f ina l int winner = this . network . winner (input) ;
System . out . p r i n t l n (”What i s : ” + f i l ename + ” , i t seems to be : ”
+ this . n euron2 ident i ty . get (winner)) ;

}

168 Using Image Data

Finally, we display the pattern recognized by the neural network.
This example demonstrated a simple script-based image recognition pro-

gram. This application could easily be used as the starting point for other
more advanced image recognition applications. One very useful extension to
this application may be the ability to load and save the trained neural network.

9.5 Summary

This chapter demonstrated how to use images as input into Encog. Nearly any
of the neural network types discussed in this book can be used to recognize
images. The classes provided by Encog primarily process the image data into
a form that is usable for a neural network, rather than defining the actual
structure of the neural network.

The classes provided by Encog for image handling provide several very
important functions including bounds detection and downsampling.

Bounds detection is the process that trims unimportant parts of an image.
Encog supports simple bounds checking where a background of a consistent
color can be removed. This prevents an object within the input image from
impairing the neural network’s ability to recognize the image. If bounds de-
tection is used, it should not matter if the image to recognize is in the upper
left or bottom right corner.

Downsampling is the process where the resolution of an image is decreased.
Images can be very high-resolution and often consist of a large amount of
color. Encog provides downsampling to deal with both issues. Images can be
decreased to a much lower resolution so to reduce the number of input neurons.
Downsampling can also discard color information and deal only with intensity.

In this book we have looked at a number of different neural network types.
This chapter showed how feedforward neural networks can be applied to im-
ages. The self-organizing map (SOM) is another neural network type fre-
quently used with images. The next chapter will look at the SOM.

9.5 Summary 169

171

Chapter 10

Using a Self-Organizing Map

• What is a self-organizing map (SOM)?

• Mapping colors with a SOM

• Training a SOM

• Applying the SOM to the forest cover data

This chapter focuses on using Encog to implement a self-organizing map
(SOM). A SOM is a special type of neural network that classifies data. Typi-
cally, a SOM will map higher resolution data to a single or multidimensional
output. This can help a neural network see the similarities among its input
data. Dr. Teuvo Kohonen of the Academy of Finland created the SOM. Be-
cause of this, the SOM is sometimes called a Kohonen neural network.

Encog provides two different means by which SOM networks can be trained:

• Neighborhood Competitive Training

• Cluster Copy

Both training types are unsupervised. This means that no ideal data is pro-
vided. The network is simply given the data and the number of categories

172 Using a Self-Organizing Map

that data should be clustered into. During training, the SOM will cluster all
of the training data. Additionally, the SOM will be capable of clustering new
data without retraining.

The neighborhood competitive training method implements the classic
SOM training model. The SOM is trained using a competitive, unsupervised
training algorithm. Encog implements this training algorithm using the Ba-
sicTrainSOM class. This is a completely different type of training then those
previously used in this book. The SOM does not use a training set or scoring
object. There are no clearly defined objectives provided to the neural network
at all. The only type of “objective” that the SOM has is to group similar
inputs together.

The second training type provided by Encog is a cluster copy. This is
a very simple training method that simply sets the weights into a pattern
to accelerate the neighborhood competitive training. This training method
can also be useful with a small training set where the number of training set
elements exactly matches the number of clusters. The cluster copy training
method is implemented in the SOMClusterCopyTraining class.

The first example in this chapter will take colors as input and map similar
colors together. This GUI example program will visually show how similar
colors are grouped together by the self-organizing map.

The output from a self-organizing map is topological. This output is usually
viewed in an n-dimensional way. Often, the output is single dimensional, but
it can also be two-dimensional, three-dimensional, even four-dimensional or
higher. This means that the “position” of the output neurons is important.
If two output neurons are closer to each other, they will be trained together
more so than two neurons that are not as close.

All of the neural networks that examined so far in this book have not
been topological. In previous examples from this book, the distance between
neurons was unimportant. Output neuron number two was just as significant
to output neuron number one as was output neuron number 100.

10.1 The Structure and Training of a SOM 173

10.1 The Structure and Training of a SOM

An Encog SOM is implemented as a two-layer neural network. The SOM
simply has an input layer and an output layer. The input layer maps data
to the output layer. As patterns are presented to the input layer, the output
neuron with the weights most similar to the input is considered the winner.
This similarity is calculated by comparing the Euclidean distance between
eight sets of weights and the input neurons. The shortest Euclidean distance
wins. Euclidean distance calculation is covered in the next section.

There are no bias values in the SOM as in the feedforward neural net-
work. Rather, there are only weights from the input layer to the output layer.
Additionally, only a linear activation function is used.

10.1.1 Structuring a SOM

We will study how to structure a SOM. This SOM will be given several colors
to train on. These colors will be expressed as RGB vectors. The individual
red, green and blue values can range between -1 and +1. Where -1 is no
color, or black, and +1 is full intensity of red, green or blue. These three-color
components comprise the neural network input.

The output is a 2,500-neuron grid arranged into 50 rows by 50 columns.
This SOM will organize similar colors near each other in this output grid.
Figure 10.1 shows this output.

174 Using a Self-Organizing Map

Figure 10.1: The Output Grid

The above figure may not be as clear in black and white editions of this
book as it is in color. However, you can see similar colors grouped near each
other. A single, color-based SOM is a very simple example that allows you to
visualize the grouping capabilities of the SOM.

10.1.2 Training a SOM

How is a SOM trained? The training process will update the weight matrix,
which is 3 x2,500. Initialize the weight matrix to random values to start. Then
15 training colors are randomly chosen.

Just like previous examples, training will progress through a series of it-
erations. However, unlike feedforward neural networks, SOM networks are
usually trained with a fixed number of iterations. For the colors example in
this chapter, we will use 1,000 iterations.

Begin training the color sample that we wish to train for by choosing one
random color sample per iteration. Pick one output neuron whose weights
most closely match the basis training color. The training pattern is a vector
of three numbers. The weights between each of the 2,500 output neurons

10.1 The Structure and Training of a SOM 175

and the three input neurons are also a vector of three numbers. Calculate
the Euclidean distance between the weight and training pattern. Both are a
vector of three numbers. This is done with Equation 10.1.

d(p,w) =
√√√√ n∑

i=1
(pi − wi)2 (10.1)

This is very similar to Equation 2.3, shown in Chapter 2. In the above equation
the variable p represents the input pattern. The variable w represents the
weight vector. By squaring the differences between each vector component
and taking the square root of the resulting sum, we realize the Euclidean
distance. This measures how different each weight vector is from the input
training pattern.

This distance is calculated for every output neuron. The output neuron
with the shortest distance is called the Best Matching Unit (BMU). The BMU
is the neuron that will learn the most from the training pattern. The neighbors
of the BMU will learn less. Now that a BMU is determined, loop over all
weights in the matrix. Update every weight according to Equation 10.2.

Wv(t+ 1) = Wv(t) + θ(v, t)α(t)(D(t)−Wv(t)) (10.2)
In the above equation, the variable t represents time, or the iteration num-
ber. The purpose of the equation is to calculate the resulting weight vector
Wv(t+1). The next weight will be calculated by adding to the current weight,
which is Wv(t). The end goal is to calculate how different the current weight
is from the input vector. The clause D(T)-Wv(t) achieves this. If we sim-
ply added this value to the weight, the weight would exactly match the input
vector. We don’t want to do this. As a result, we scale it by multiplying it by
two ratios. The first ratio, represented by theta, is the neighborhood function.
The second ratio is a monotonically decreasing learning rate.

The neighborhood function considers how close the output neuron we are
training is to the BMU. For closer neurons, the neighborhood function will be
close to one. For distant neighbors the neighborhood function will return zero.
This controls how near and far neighbors are trained. We will look at how the
neighborhood function determines this in the next section.

176 Using a Self-Organizing Map

The learning rate also scales how much the output neuron will learn. This
learning rate is similar to the learning rate used in backpropagation train-
ing. However, the learning rate should decrease as the training progresses.
This learning rate must decrease monotonically, meaning the function output
only decreases or remains the same as time progresses. The output from the
function will never increase at any interval as time increases.

10.1.3 Understanding Neighborhood Functions

The neighborhood function determines to what degree each output neuron
should receive training from the current training pattern. The neighborhood
function will return a value of one for the BMU. This indicates that it should
receive the most training of any neurons. Neurons further from the BMU will
receive less training. The neighborhood function determines this percent.

If the output is arranged in only one dimension, a simple one-dimensional
neighborhood function should be used. A single dimension self-organizing
map treats the output as one long array of numbers. For instance, a single
dimension network might have 100 output neurons that are simply treated as
a long, single dimension array of 100 values.

A two-dimensional SOM might take these same 100 values and treat them
as a grid, perhaps of 10 rows and 10 columns. The actual structure remains the
same; the neural network has 100 output neurons. The only difference is the
neighborhood function. The first would use a single dimensional neighborhood
function; the second would use a two-dimensional neighborhood function. The
function must consider this additional dimension and factor it into the distance
returned.

It is also possible to have three, four, and even more dimensional functions
for the neighborhood function. Two-dimension is the most popular choice.
Single dimensional neighborhood functions are also somewhat common. Three
or more dimensions are more unusual. It really comes down to computing how
many ways an output neuron can be close to another. Encog supports any
number of dimensions, though each additional dimension adds greatly to the
amount of memory and processing power needed.

The Gaussian function is a popular choice for a neighborhood function.

10.1 The Structure and Training of a SOM 177

The Gaussian function has single- and multi-dimensional forms. The single-
dimension Gaussian function is shown in Equation 10.3.

f(x) = ae− (x−b)2

2c2 (10.3)
The graph of the Gaussian function is shown in Figure 10.2.

Figure 10.2: A One-Dimensional Gaussian Function

The above figure shows why the Gaussian function is a popular choice for
a neighborhood function. If the current output neuron is the BMU, then its
distance (x-axis) will be zero. As a result, the training percent (y-axis) is
100%. As the distance increases either positively or negatively, the training
percentage decreases. Once the distance is great enough, the training percent
is near zero.

There are several constants in Equation 10.3 that govern the shape of the
Gaussian function. The constants a is the height of the curve’s peak, b is the
position of the center of the peak, and c constants the width of the ”bell”. The
variable x represents the distance that the current neuron is from the BMU.

The above Gaussian function is only useful for a one-dimensional output
array. If using a two-dimensional output grid, it is important to use the two-
dimensional form of the Gaussian function. Equation 10.4 shows this.

f(x, y) = Ae
−
(

(x−xo)2

2σ2
x

+ (y−yo)2

2σ2
y

)
(10.4)

The graph form of the two-dimensional form of the Gaussian function is shown
in Figure 10.3.

178 Using a Self-Organizing Map

Figure 10.3: A Two-Dimensional Gaussian Function

The two-dimensional form of the Gaussian function takes a single peak
variable, but allows the user to specify separate values for the position and
width of the curve. The equation does not need to be symmetrical.

How are the Gaussian constants used with a neural network? The peak is
almost always one. To unilaterally decrease the effectiveness of training, the
peak should be set below one. However, this is more the role of the learning
rate. The center is almost always zero to center the curve on the origin. If the
center is changed, then a neuron other than the BMU would receive the full
learning. It is unlikely you would ever want to do this. For a multi-dimensional
Gaussian, set all centers to zero to truly center the curve at the origin.

This leaves the width of the Gaussian function. The width should be set
to something slightly less than the entire width of the grid or array. Then
the width should be gradually decreased. The width should be decreased
monotonically just like the learning rate.

10.1.4 Forcing a Winner

An optional feature to Encog SOM competitive training is the ability to force
a winner. By default, Encog does not force a winner. However, this feature
can be enabled for SOM training. Forcing a winner will try to ensure that each
output neuron is winning for at least one of the training samples. This can
cause a more even distribution of winners. However, it can also skew the data
as somewhat “engineers” the neural network. Because of this, it is disabled by
default.

10.2 Implementing the Colors SOM in Encog 179

10.1.5 Calculating Error

In propagation training we could measure the success of our training by ex-
amining the neural network current error. In a SOM there is no direct error
because there is no expected output. Yet, the Encog interface Train exposes
an error property. This property does return an estimation of the SOM error.

The error is defined to be the ”worst” or longest Euclidean distance of any
BMUs. This value should be minimized as learning progresses. This gives a
general approximation of how well the SOM has been trained.

10.2 Implementing the Colors SOM in Encog

We will now see how the color matching SOM is implemented. There are two
classes that make up this example:

• MapPanel

• SomColors

The MapPanel class is used to display the weight matrix to the screen. The
SomColors class extends the JPanel class and adds the MapPanel to itself
for display. We will examine both classes, starting with the MapPanel.

10.2.1 Displaying the Weight Matrix

The MapPanel class draws the GUI display for the SOM as it progresses.
This relatively simple class can be found at the following location.
org . encog . examples . neura l . gu i . som . MapPanel

The convertColor function is very important. It converts a double that
contains a range of -1 to +1 into the 0 to 255 range that an RGB component
requires. A neural network deals much better with -1 to +1 than 0 to 255. As
a result, this normalization is needed.

180 Using a Self-Organizing Map

private int convertColor (double d) {
double r e s u l t = 128∗d ;
r e s u l t +=128;
r e s u l t = Math . min (r e s u l t , 255) ;
r e s u l t = Math . max(r e s u l t , 0) ;
return (int) r e s u l t ;

}

The number 128 is the midpoint between 0 and 255. We multiply the result
by 128 to get it to the proper range and then add 128 to diverge from the
midpoint. This ensures that the result is in the proper range.

Using the convertColor method the paint method can properly draw the
state of the SOM. The output from this function will be a color map of all
of the neural network weights. Each of the 2,500 output neurons is shown on
a grid. Their color is determined by the weight between that output neuron
and the three input neurons. These three weights are treated as RGB color
components. The convertColor method is shown here.
public void pa int (Graphics g)
{

Begin by looping through all 50 rows and columns.
for (int y = 0 ; y< HEIGHT; y++) {

for (int x = 0 ; x< WIDTH; x++) {

While the output neurons are shown as a two-dimensional grid, they are
all stored as a one-dimensional array. We must calculate the current one-
dimensional index from the two-dimensional x and y values.
int index = (y∗WIDTH)+x ;

We obtain the three weight values from the matrix and use the convertColor
method to convert these to RGB components.
int red = convertColor (weights . get (0 , index)) ;
int green = convertColor (weights . get (1 , index)) ;
int blue = convertColor (weights . get (2 , index)) ;

These three components are used to create a new Color object.

10.2 Implementing the Colors SOM in Encog 181

g . s e tCo lo r (new Color (red , green , b lue)) ;

A filled rectangle is displayed to display the neuron.
g . f i l l R e c t (x∗CELL SIZE , y∗CELL SIZE , CELL SIZE , CELL SIZE) ;

}
}

}

Once the loops complete, the entire weight matrix has been displayed to the
screen.

10.2.2 Training the Color Matching SOM

The SomColors class acts as the main JPanel for the application. It also
provides the neural network all of the training. This class can be found at the
following location.
package org . encog . examples . neura l . gu i . som . SomColors

The BasicTrainSOM class must be set up so that the neural network will
train. To do so, a neighborhood function is required. For this example, use the
NeighborhoodGaussian neighborhood function. This neighborhood func-
tion can support a multi-dimensional Gaussian neighborhood function. The
following line of code creates this neighborhood function.
this . gauss ian = new NeighborhoodRBF (RBFEnum. Gaussian , MapPanel .

WIDTH,
MapPanel .HEIGHT) ;

This constructor creates a two-dimensional Gaussian neighborhood function.
The first two parameters specify the height and width of the grid.

There are other constructors that can create higher dimensional Gaussian
functions. Additionally, there are other neighborhood functions provided by
Encog. The most common is the NeighborhoodRBF. NeighborhoodRBF
can use a Gaussian, or other radial basis functions.

182 Using a Self-Organizing Map

Below is the complete list of neighborhood functions.

• NeighborhoodBubble

• NeighborhoodRBF

• NeighborhoodRBF1D

• NeighborhoodSingle

The NeighborhoodBubble only provides one-dimensional neighborhood func-
tions. A radius is specified and anything within that radius receives full train-
ing. The NeighborhoodSingle functions as a single-dimensional neighbor-
hood function and only allows the BMU to receive training.

The NeighborhoodRBF class supports several RBF functions. The
”Mexican Hat” and ”Gaussian” RBF’s are common choices. However the
Multiquadric and the Inverse Multiquadric are also available.

We must also create a CompetitiveTraining object to make use of the
neighborhood function.
this . t r a i n = new BasicTrainSOM (this . network , 0 . 01 , null , gauss ian)

;

The first parameter specifies the network to train and the second parameter is
the learning rate. Automatically decrease the learning rate from a maximum
value to a minimum value, so the learning rate specified here is not important.
The third parameter is the training set. Randomly feed colors to the neural
network, thus eliminating the need for the training set. Finally, the fourth
parameter is the newly created neighborhood function.

The SOM training is provided for this example by a background thread.
This allows the training to progress while the user watches. The background
thread is implemented in the run method, as shown here.
public void run () {

The run method begins by creating the 15 random colors to train the neural
network. These random samples will be stored in the samples variable, which
is a List.

10.2 Implementing the Colors SOM in Encog 183

List <MLData> samples = new ArrayList<MLData>() ;

The random colors are generated and have random numbers for the RGB
components.

for (int i =0; i <15; i++) {
MLData data = new BasicMLData (3) ;
data . setData (0 , RangeRandomizer . randomize (−1 ,1)) ;
data . setData (1 , RangeRandomizer . randomize (−1 ,1)) ;
data . setData (2 , RangeRandomizer . randomize (−1 ,1)) ;
samples . add (data) ;

}

The following line sets the parameters for the automatic decay of the learning
rate and the radius.

this . t r a i n . setAutoDecay (1000 , 0 . 8 , 0 . 003 , 30 , 5) ;

We must provide the anticipated number of iterations. For this example, the
quantity is 1,000. For SOM neural networks, it is necessary to know the
number of iterations up front. This is different than propagation training that
trained for either a specific amount of time or until below a specific error rate.

The parameters 0.8 and 0.003 are the beginning and ending learning rates.
The error rate will be uniformly decreased from 0.8 to 0.003 over each iteration.
It should reach close to 0.003 by the last iteration.

Likewise, the parameters 30 and 5 represent the beginning and ending
radius. The radius will start at 30 and should be near 5 by the final iteration. If
more than the planned 1,000 iterations are performed, the radius and learning
rate will not fall below their minimums.

for (int i =0; i <1000; i++) {

For each competitive learning iteration, there are two choices. First, you can
choose to simply provide an MLDataSet that contains the training data and
call the iteration method CompetitiveTraining.

184 Using a Self-Organizing Map

Next we choose a random color index and obtain that color.
int idx = (int) (Math . random () ∗ samples . s i z e ()) ;
MLData c = samples . get (idx) ;

The trainPattern method will train the neural network for this random color
pattern. The BMU will be located and updated as described earlier in this
chapter.

this . t r a i n . t r a inPat t e rn (c) ;

Alternatively, the colors could have been loaded into an MLDataSet object
and the iteration method could have been used. However, training the pat-
terns one at a time and using a random pattern looks better when displayed
on the screen.

Next, call the autoDecay method to decrease the learning rate and radius
according to the parameters previously specified.

this . t r a i n . autoDecay () ;

The screen is repainted.
this .map . r epa in t () ;

Finally, we display information about the current iteration.
System . out . p r i n t l n (” I t e r a t i o n ” + i + ” , ”

+ this . t r a i n . t oS t r i ng ()) ;
}

}

This process continues for 1,000 iterations. By the final iteration, the colors
will be grouped.

10.3 Summary

Up to this point in the book, all neural networks have been trained using a
supervised training algorithm. This chapter introduced unsupervised training.
Unsupervised training provides no feedback to the neural network like the error
rates previously examined.

10.3 Summary 185

A very common neural network type that can be used with unsupervised
training is the self-organizing map (SOM), or Kohonen neural network. This
neural network type has only an input and output layer. This is a competi-
tive neural network; the neuron that has the highest output is considered the
winning neuron.

A SOM trains by taking an input pattern and seeing which output neuron
has the closest weight values to this input pattern. The closest matching
neuron, called the best matching unit (BMU) is then trained. All neighboring
neurons are also trained. The neighboring neurons are determined by the
neighborhood function, as is the degree to which neighbors are trained. The
most commonly used neighborhood functions are variants of the Gaussian
function.

This concludes this book on Encog programming. Encog is an ever-evolving
project. For more information on current Encog projects and additional arti-
cles about Encog, visit the following URL:

http://www.encog.org/
Encog is very much shaped by input from its users. We would love to

hear about how you are using Encog and what new features may be beneficial
as well. No software product, or book, is perfect. Bug reports are also very
helpful as well. There is a forum at the above URL that can be used for the
discussion of this book and Encog.

187

Appendix A

Installing and Using Encog

• Downloading Encog

• Running Examples

• Running the Workbench

This appendix shows how to install and use Encog. This consists of down-
loading Encog from the Encog Web site, installing and running the examples.
This section also explains how to run the Encog Workbench.

As Encog uses Java, this appendix instructs under the assumption that
Java JSE version 6 or later is already downloaded and installed on your com-
puter. The latest version of Java can be downloaded from the following web
site:

http://java.sun.com/
The examples in this book were tested with JSE 6 and 7. Java is a

cross-platform programming language; as such, Encog can run on a variety
of platforms. Encog has been used on Macintosh and Linux operating sys-
tems. However, this appendix is written toward the Windows operating sys-
tem. The screen shots illustrate procedures on the Windows 7 operating.
However, Encog should run well on Windows XP or later.

It is also possible to use Encog with an IDE. Encog was primarily developed
using the Eclipse IDE. However, it should work well with other Java IDE’s such
as Netbeans or IntelliJ.

http://java.sun.com/

188 Installing and Using Encog

Useful Encog set up information may also be found at the following web
address.

http://www.heatonresearch.com/wiki/Encog_Examples

A.1 Installing Encog

The latest verion of Encog is always available for download from the following
URL:

http://www.heatonresearch.com/encog/
This page contains the download link for the latest version of Encog, as

well as the following files:

• The Encog Core

• The Encog Examples

• The Encog Workbench

To successfully study this book, it is necessary to download the examples and
the workbench. The workbench is distributed as a universal executable JAR
and is accessed by simply double-clicking on Windows, Linux or Mac. This
JAR file and a few information files comprise the Encog workbench release.

Encog includes both Ant and Maven files to assist with building the ex-
amples. An IDE may also be used. For information on using Encog with an
IDE, refer to the tutorials on following page.

http://www.heatonresearch.com/wiki/Getting_Started
Apache Ant can be obtained from the following URL.
http://ant.apache.org/
Encog contains an API reference in the core download. This documentation

is contained in the standard Javadoc format. Instructions for installing Ant
can be found at the above website. If using Encog with an IDE, it is not
necessary to install Ant. Once Ant is correctly installed, the ant command

http://www.heatonresearch.com/wiki/Encog_Examples
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/wiki/Getting_Started
http://ant.apache.org/

A.2 Compiling the Encog Core 189

may be issued from a command prompt. Figure A.1 shows the expected output
of the ant command.

Figure A.1: Ant Successfully Installed

The Encog Core, Encog Examples and Encog Workbench files can also be
extracted into local directories. This appendix is written assuming these files
are extracted into the following directories:

• c:\encog-java-core-3.0.0\

• c:\encog-java-examples-3.0.0\

• c:\encog-workbench-win-3.0.0\

Now that Encog and Ant are installed on your computer, you are ready to
compile the core and examples. If you only want to use an IDE, skip to that
section in this Appendix.

A.2 Compiling the Encog Core

Unless you would like to modify Encog itself, it is unlikely that you would
need to compile the Encog core. Compiling the Encog core will recompile and
rebuild the Encog core JAR file. It is very easy to recompile the Encog core
using Ant. Open a command prompt and move to the following directory.
c :\ encog−java−core −3.0.0\

From here, issue the following Ant command.

190 Installing and Using Encog

ant

This will rebuild the Encog core. If this command is successful, you should
see output similar to the following:
C:\ encog−java−core −3.0.0> ant
B u i l d f i l e : bu i ld . xml
i n i t :
compi le :
doc :

[javadoc] Generating Javadoc
[javadoc] Javadoc execut ion
[javadoc] Loading source f i l e s for package org . encog . . .
[javadoc] Loading source f i l e s for package org . encog . bot . . .
[javadoc] Loading source f i l e s for package org . encog . bot . browse

. . .
[javadoc] Loading source f i l e s for package org . encog . bot . browse .

ex t r a c t . . .
[javadoc] Loading source f i l e s for package org . encog . bot . browse .

range . . .
[javadoc] Loading source f i l e s for package org . encog . bot .

datauni t . . .
[javadoc] Loading source f i l e s for package org . encog . bot . r s s . . .
[javadoc] Loading source f i l e s for package org . encog . matrix . . .
[javadoc] Loading source f i l e s for package org . encog . neura l . . .
[javadoc] Loading source f i l e s for package org . encog . neura l .

a c t i v a t i o n . . .
. . .

[javadoc] Loading source f i l e s for package org . encog . u t i l . math
. . .

[javadoc] Loading source f i l e s for package org . encog . u t i l . math .
rb f . . .

[javadoc] Loading source f i l e s for package org . encog . u t i l .
randomize . . .

[javadoc] Loading source f i l e s for package org . encog . u t i l . time
. . .

[javadoc] Construct ing Javadoc in fo rmat ion . . .
[javadoc] Standard Doclet v e r s i on 1 . 6 . 0 16
[javadoc] Bui ld ing t r e e for a l l the packages and c l a s s e s . . .
[javadoc] Bui ld ing index for a l l the packages and c l a s s e s . . .
[javadoc] Bui ld ing index for a l l c l a s s e s . . .

d i s t :
BUILD SUCCESSFUL

A.3 Compiling and Executing Encog Examples 191

Total time : 4 seconds
C:\ encog−java−core −3.0.0>

This will result in a new Encog core JAR file being placed inside of the lib
directory.

A.3 Compiling and Executing Encog Exam-
ples

The Encog examples are placed in a hierarchy of directories. The root example
directory is located here.
c :\ encog−java−examples −3.0.0\

The actual example JAR file is placed in a lib subdirectory off of the above
directory. The examples archive already downloaded contains such a JAR file.
It is not necessary to recompile the examples JAR file unless you make changes
to one of the examples. To compile the examples, move to the root examples
directory, given above.

A.3.1 Running an Example from the Command Line

When executing a Java application that uses Encog, the appropriate third-
party JARs must be present in the Java classpath. The following command
shows a way to execute the XORHelloWorld example:
java −cp . / l i b /encog−core −3 . 0 . 0 . j a r ; . / l i b / examples . j a r org . encog .

examples . neura l . xor . XORHelloWorld

If the command does not work, make sure that the JAR files located in the
lib and jar directories are present and named correctly. There may be new
versions of these JAR files since this document was written. If this is the case,
update the above command to match the correct JAR file names.

The Encog examples download for contains many examples. The Encog
examples are each designed to be relatively short and are usually console ap-
plications. This makes them great starting points for creating your own ap-

192 Installing and Using Encog

plication to use a neural network technology similar to the example. To run a
different example, specify the package name and class name as was done above
for XORHelloWorld.

You will also notice from the above example that the -server option was
specified. This runs the application in Java server mode. Java server mode is
very similar to the regular client mode. Programs run the same way, except
server mode takes longer to start the program. But for this longer load time,
you are rewarded with greater processing performance. Neural network appli-
cations are usually processing intense. As a result, it always pays to run them
in server mode.

193

Glossary

Activation Function: A function used to scale the output of a neural network
layer. If this activation function has a derivative, then propagation training
can be used on the neural network.

Adaptive Resonance Theory (ART1): A neural network architecture that
learns to classify patterns as they are presented.

Annealing Cycles: The number of cycles that the simulated annealing train-
ing method will use per iteration.

Artificial Intelligence (AI): A branch of computer science that seeks to give
machines human-like intelligence. Neural networks are one tool used in AI.

Artificial Neural Network (ANN): See neural network.
Autoassociation: A means of pattern recognition where the output of the

neural network is the entire pattern it recognized. The network returns the
same data with which it was trained.

Backpropagation: A propagation algorithm where the error gradients are
applied directly to the weight matrix, scaled only by a learning rate.

Backward Pass: One of two passes in propagation training where the error
gradients are calculated and used to determine changes that should be made
to the weight matrix of a neural network.

Basic Layer: A very versatile Encog neural network layer type that is used
in many different neural networks. It has a number of neurons, an activation
function and optional threshold values.

Batch Training: The accumulation of the weight matrix deltas from a
number of training set elements before these deltas are actually applied to the
weight matrix.

194 Glossary

Best Matching Unit (BMU): The neuron, in a Self Organizing Map (SOM),
that had the shortest Euclidean distance to the training data element. (BMU)

Bidirectional Associative Memory: A neural network type that forms bidi-
rectional associations between two layers.

Biological Neural Network: The actual neural network contained in humans
and other animals. This is what an artificial neural network attempts to
simulate to some degree.

BiPolar: Activation Function: An activation function to support bipolar
numbers. This maps a true value to 1 and a false value to -1.

Black Box: A computer system where the inputs and outputs are well
understood; however, the means to produce the output is not known.

Boltzmann Machine: A simple recurrent neural network that adds a tem-
perature element that randomizes the output of the neural network.

Bounding Box: A box that is drawn around the relevant part of an image.

Competitive Activation Function: An activation function where only a
certain number of neurons are allowed to fire. These winning neurons were
the ones with the highest activation.

Competitive Training: A training method, typically used by a Self Organiz-
ing Map, which chooses a best matching unit (BMU) and further strengthens
that neuron’s activation for the current training element.

Context Layer: An Encog layer type that remembers the input values from
the last iteration and uses those values as the output for the current iteration.
This layer type is used for simple, recurrent neural network types such as the
Elman and Jordan neural networks.

Counter-Propagation Neural Network: A hybrid neural network that com-
bines elements of a regular feedforward neural network and a Self Organizing
Map. Counter-Propagation Neural Networks use both supervised and unsu-
pervised training, which are called outstar and instar training respectively.
(CPN)

Crop: The process where irrelevant portions of an image are removed.
Crossover: A simulation of the biological mating process in a Genetic Al-

195

gorithm where elements from two “parent” solutions are combined to produce
“offspring solutions” that share characteristics of both “parents”.

CSV File: A comma separated value file. These are typically used as
training input for an Encog neural network.

Derivative: In calculus, a measure of how a function changes as its input
changes. Propagation training uses the derivative of the activation function
to calculate an error gradient.

Direct Synapse: An Encog synapse that directly connects two layers of
neurons. This layer type is typically used in a Radial Basis Function neural
network.

Downsample: The process where the resolution and color depth of an image
are reduced. This can make the image easier to recognize for a neural network.

EG File: An XML based file that Encog uses to store neural networks,
training data and other objects.

Elman Neural Network: A simple recurrent neural network where the out-
put of the hidden layer is fed to a context layer and then fed back into the
hidden layer. The Elman Neural Network can be useful for temporal data.

Encog: An Artificial Intelligence Framework for Java, .Net and Silverlight
that specializes in neural network applications.

Encog Benchmark: A means of calculating the performance of Encog on a
particular machine. The benchmark is expressed as a number; a lower number
indicates a faster machine. This benchmark uses multithreaded training and
will score multicore machines higher.

Encog File: See EG file.
Encog Workbench: A GUI application that allows Encog EG files to be

edited.
Ending Temperature: The temperature at which a simulated annealing

iteration should end. The temperature defines the degree to which the weights
are randomly perturbed in a simulated annealing cycle.

Epoch: See iteration.
Equilateral Normalization: A means by which nominal data is normalized

196 Glossary

for a neural network. Often provides better results than the competing one-
of-n normalization.

Equilibrium: The point at which further iterations to a thermal neural
network produce no further meaningful change.

Error Rate: The degree to which the output of neural network differs from
the expected output.

Euclidian Distance: The square root of the squares of the individual dif-
ferences in set of data. Euclidian Distance is often used to determine which
vector is most similar to a comparison vector.

Evaluation: The process in which a trained neural network is evaluated
against data that was not in the original training set.

Feedforward Neural Network: A multilayer neural network where connec-
tions only flow forward.

Field Group: A group of normalization output fields that depend on each
other to calculate the output value.

Forward Pass: One of two passes in propagation training where the output
from the neural network is calculated for a training element.

Future Window: The data that a temporal neural network is attempting
to predict.

Gaussian Activation Function: An activation based on the Gaussian func-
tion.

Gaussian Neighborhood Function: A neighborhood function, used for a
Self Organizing Map, based on the Gaussian function.

Genetic Algorithms: An Artificial Intelligence algorithm that attempts to
derive a solution by simulating the biological process of natural selection.

Gradient Error: A value that is calculated for individual connections in
the neural network that can provide insight into how the weight should be
changed to lower the error of the neural network.

Greedy Training: A training strategy where iterations that do not lower
the error rate of a neural network are discarded.

Hidden Layer: Layers in a neural network that exists between the input
and output layers. They are used to assist the neural network in pattern

197

recognition.
Hopfield Neural Network: A thermal neural network that contains a single

self-connected layer.
Hybrid Training: Training a neural network with more than one training

algorithm.
Hyperbolic Tangent Activation Function: An activation function that makes

use of the hyperbolic tangent function. This activation function can return
both positive and negative numbers.

Ideal Output: The expected output of a neural network.
Incremental Pruning: A means to automatically determine an efficient

number of hidden neurons by increasing the hidden layer and testing each
potential configuration.

Input Field: An Encog normalization field that accepts raw, un-normalized
data. Input fields are provided that accept input from a number of different
sources.

Input Layer: The layer in a neural network that accepts input.
Instar Training: An unsupervised training technique used for the counter-

propagation neural network.
Intensity Downsample: A downsample technique where color information

is discarded, and only the intensity, or brightness, of color is used.
Iteration: The basic unit of training where each iteration attempts to im-

prove the neural network in some way.
Jordan Neural Network: A simple recurrent neural network where the out-

put of the output layer is fed to a context layer and then fed back into the
hidden layer. The Jordan Neural Network can be useful for temporal data.

Kohonen Neural Network: Another name for the Self Organizing Map
(SOM).

Layer: A group of similar neurons in a neural network.
Layer Tag: The means by which Encog names layers.
Learning rate: The percentage of a change to the weight matrix that is al-

lowed to occur. This allows changes that would overwhelm the neural network

198 Glossary

to be scaled to less dramatic values.
Lesser GNU Public License (LGPL): The license under which Encog is

licensed.
Linear Activation Function: An activation function based on a simple linear

function.
LOG Activation Function: An activation function based on logarithms.
Long Term Memory: The weights and threshold values of a neural network.

Lunar Lander Game: A classic computer game where the user fires thrusters
to produce as soft a landing as possible, without running out of fuel.

Manhattan Update Rule: A propagation training technique where only
the sign of the error gradient is used to determine the direction to change the
connection weights. The magnitude of the error gradients is discarded.

Memory Collection: Encog persistence where the entire EG file is loaded
into memory.

Momentum: The degree to which weight deltas from the pervious iteration
are applied to the current iteration. Used in backpropagation to help avoid
local minima.

Multicore: A computer capable of concurrently executing multiple threads.
Software must be written to be multithreaded to use these machines to their
full potential.

Multiplicative Normalization: A normalization technique to adjust a vec-
tor to sum to one. Multiplicative normalization has the effect of only using
the magnitude of the input vector. To use sign and magnitude, z-axis normal-
ization should be considered.

Multithreaded: A programming technique where the programming task is
divided among multiple threads. This allows a multicore machine to greatly
reduce the amount of time a program can take to execute.

Mutation: A technique used in Genetic Algorithms where the offspring are
randomly changed in some way.

Neighborhood Function: A function that scales training in a Self Organiz-
ing Map to neurons near the best matching unit.

199

Network Pattern: A common neural network type, such as a Self Orga-
nizing Map, Elman network or Jordan network. Encog provides classes that
assist in the creation of these neural network types.

Neural Logic: Encog classes that show Encog how to calculate the output
for various types of neural networks.

Neural Network: A computerized simulation of an actual biological neu-
ral network. Sometimes referred to as an Artificial Neural Network (ANN);
however, typically referred to as simply a “neural network”.

Neural Network Properties: Operating parameters that certain neural net-
work types require Encog to associate with the neural network.

Nominal Value: A value that is a member of a set, for example, male or
female.

Normalization: The process where numbers are scaled in order to be ac-
ceptable input to a neural network.

Normalization Target: Where the Encog normalization classes are to store
the results from the normalization value.

Numeric Value: A number value that is to be normalized that has meaning
as a number. For example, altitude would be a numeric value, but a postal
code would not.

One-to-One Synapse: An Encog synapse that directly connects each neuron
in a layer to the corresponding neuron in another layer. A One-to-One Synapse
is typically used to connect a basic layer to a context layer.

One-of-N Normalization: A means by which nominal data is normalized
for a neural network. Often provides inferior results than the competing equi-
lateral normalization.

Online Training: Training where the weight deltas are applied as soon as
they are calculated.

Output Field: A normalization field that specified how an input field, or
group of input fields, should be normalized.

Output Layer: The layer of a neural network that produces output.
Outstar Training: A supervised training technique used for the counter-

propagation neural network.

200 Glossary

Past Window: The values on which a temporal neural network bases future
predictions.

Pattern: Data that is fed into a neural network.
Persistence: The ability to store data in a permanent form. Encog uses

Encog EG files for persistence.
Plasticity: The ability of a neural network to change as data is fed to it.
Propagation Training: A group of training techniques that use error gra-

dients to provide insight into how to update the weights of a neural network
to achieve lower error rates. Forms of propagation training include backprop-
agation, resilient propagation, the Manhattan Update Rule, and others.

Pruning: Attempts to optimize the number of hidden neurons in a neural
network.

Radial Basis Activation Function: An activation function based on a radial
basis function.

Radial Basis Function (RBF): A function with its maximum value at its
peak that decreases rapidly.

Radial Basis Function Layer: The layer, in a radial basis function network,
that uses a compound radial basis function as its activation function.

Radial Basis Function Network: A special type of neural network that
makes use of a radial basis function layer.

Recurrent Neural Network: A neural network that has connections back to
previous layers.

Resilient Propagation (RPROP): A propagation training technique that
uses independent delta values for every connection in the network. This is one
of the most efficient training algorithms offered by Encog.

RGB: The red, green and blue values that make up an image.
RGB Downsample: A means of downsampling that preserves the color

values of an image.
Scaling: See downsampling.
Score: A numeric value used to rank solutions provided by Genetic Algo-

rithms and Simulated Annealing.

201

Segregator: An Encog normalization object that excludes certain elements,
based on the criteria provided.

Selective Pruning: A pruning method where the weakest neurons are se-
lected and removed.

Self-Organizing Map (SOM): A neural network structure that organizes
similar input patterns.

Self-Connected Layer: A layer in a neural network that is connected to
itself.

Serializable: A class that can be serialized.
Short Term Memory: A context layer provides neural network short-term

memory.
Sigmoid Activation Function: An activation function based on the Sigmoid

function. This activation function only produces positive values.
Simple Recurrent Neural Network (SRN): A neural network that has a

recurrent connection through a context layer. The most typical SRN types
are the Elman and Jordan neural networks.

Simulated Annealing: A training technique that simulates the metallurgical
annealing process.

Sine Activation Function: An activation function based on the trigonomet-
ric sine function.

Single Threaded: An application that is not multithreaded. See multi-
threaded.

SoftMax Activation Function: An activation function that scales the out-
put so the sum is one.

Staring Temperature: The temperature for the first simulated annealing
cycle. (8)

Supervised Training: Training where the acceptability of the output of the
neural network can be calculated.

Synapse: An Encog connection between two layers.
Temporal Data: Data that occurs over time.
Temporal Neural Network: A neural network that is designed to accept

temporal data, and generally, offer a prediction.

202 Glossary

Terminal Velocity: The maximum velocity that a falling object can obtain
before friction brings acceleration to zero.

Thermal Neural Network: A neural network that contains a temperature;
examples include the Hopfield Neural Network and the Boltzmann machine.

Threshold Value: Values kept on the layers of networks. Together with the
weights, these are adjusted to train the network.

Training: The process of adjusting the weights and thresholds of a neural
network to lower the error rate.

Training Set: Data that is used to train a neural network.
Traveling Salesman Problem: A computer problem where a traveling sales-

man must find the shortest route among a number of cities. (TSP)
Unsupervised Training: Training where no direction is given to the neural

network as far as expected output.
Update Delta: The amount that training has determined a connection

weight should be updated by.
Vector Length: The square root of the sum of the squares of a vector. This

is a means of taking the average of the numbers in a vector.
Weight Matrix: The collection of connection weights between two layers.

Weighted Synapse: An Encog synapse between two layers that contains
weights. This is the most common form of Encog synapse.

Weightless Synapse: A weight matrix that has no weights, only connec-
tions.

Window: A group of temporal data values.
XML File: A file that is encoded in XML; Encog saves objects to XML

files.
XOR Operator: A logical operator that is only true when its two inputs

do not agree.

203

Index

activation function, xxix, 12, 20, 41,
51–54, 56–60, 66, 71, 77, 78,
122, 144, 164, 173, 193–195,
197, 198, 200, 201

activation functions, xxix, 12, 20, 41,
51, 53, 54, 58, 66, 71

actual, xxii, xxv, 4, 20, 25–27, 30, 36,
43, 70, 71, 92, 95, 97, 99, 113,
117, 128–130, 135, 136, 145–
148, 150, 154, 157, 162, 168,
176, 191, 193, 194, 199

actual data, 129, 135, 147
actual output, 25–27, 70, 71
algorithm, xxiii, xxvii–xxix, 4, 14, 57,

69–72, 74–76, 79, 81, 82, 85,
92, 96, 100–106, 124, 143, 160,
172, 184, 193, 196, 197, 200

analyst, 37–39, 51
annealing, xxix, 82, 85, 92, 96, 100,

101, 103–106, 114, 193, 195,
201

ant, vi–ix, xxiii, xxvi–xxviii, 4, 17, 23,
25–27, 30, 32, 35, 41, 49, 51,
54, 57, 58, 61, 63, 64, 70, 72–
79, 85, 86, 91–95, 99, 111, 114,
130, 139–141, 143, 145, 153,
154, 157, 158, 168, 172, 175,
177–179, 182, 183, 185, 189,

194
array, xxiv, xxvi, 5, 6, 13, 14, 17, 21,

28, 29, 33, 55, 99, 101, 103,
118, 119, 133, 134, 136, 150,
153, 176–178, 180

attribute, vi, 3, 5, 21–23, 28, 30–33,
37, 48, 49

backpropagation, xxix, 71–74, 76–78,
81, 82, 105, 114, 133, 166, 176,
198, 200

bias, 11, 12, 43, 52, 77, 173
bias neuron, 11, 12, 43, 52, 77
binary, vii, 38, 64, 65, 67, 124, 141
biological, xxiii, 195, 196, 199
bipolar, 54, 66, 117, 118, 194
bipolar activation, 54
black box, xxiv, 7
boolean, 12, 118, 119
bot, ix, xxii, xxiv, xxvi, 8, 9, 17, 20,

23, 29, 33, 37, 39, 41, 51, 58,
60, 61, 69, 76–78, 85, 96, 98,
100, 101, 103, 105, 113, 114,
117, 121, 123, 129, 130, 134,
135, 138, 141, 156, 157, 161,
168, 179, 188, 194, 195, 197

bounding box, 155, 156
bounds, 155, 168
brain, xxii–xxiv, 109, 124

204 INDEX

calculate, 3, 26, 27, 43, 57, 66, 70–
72, 78, 86, 92, 95, 96, 99, 136,
148, 157, 173, 175, 180, 193,
195, 196, 199, 201

class, xxviii, xxix, 1–6, 12, 14–16, 20,
21, 23–29, 32, 33, 51, 53, 60,
62, 63, 65, 66, 75, 81, 85, 87,
93, 95–97, 101, 102, 117–119,
123, 127, 129, 130, 133, 137–
143, 145, 150, 153, 157–159,
162, 168, 171, 172, 179, 181,
182, 191–193, 198, 199, 201

classification, xxviii, 1–5, 16, 20, 60,
117

closed-loop, 133, 134, 136
closest match, xxv, 185
cluster data, xxix, 120
clustering, 1, 4, 5, 16, 118, 172
color matching, 179
competitive, 56, 66, 172, 178, 183, 185
competitive training, 172, 178
configuration, 7, 38, 143, 197
connection, vii, 8, 12, 43, 71, 109, 110,

120, 121, 124, 196, 198, 200–
202

context neuron, 110, 115, 116
copyright, vii, ix
csv, 40, 41, 43, 45, 47
csv file, 47
current error, 15, 179

dataset, 2–5, 20, 21, 23, 24, 32, 33, 38,
39, 45, 46, 49, 129–131, 134,
135, 137, 138, 150, 153, 157,
158

decimal point, 30, 37

denormalize, 22, 23, 27, 28
derivative, 54, 56–58, 60, 66, 71, 78,

193, 195
double, 5, 6, 9, 13, 35, 39, 41, 42, 96,

101, 103, 143, 153, 179, 188
download, vi, 16, 40, 137, 138, 140,

150, 187–189, 191, 192
downsampling, 153, 157, 163, 168, 200

edge detection, 158
eg, vii–ix, xxii, xxvi–xxviii, 1, 3–6, 12,

14, 16, 20–22, 25, 27, 28, 30,
37, 39, 41, 43, 46, 48, 55, 58–
62, 64, 65, 70–72, 75, 76, 78,
79, 86, 87, 90, 92–94, 97, 99,
101, 102, 109, 114, 115, 117,
119, 122, 123, 130–136, 139–
144, 154, 158, 160, 161, 163,
165, 166, 172, 175–177, 180,
182, 183, 185, 192, 194–198,
201

ega, vii–ix, 20, 37, 58–60, 72, 79, 86,
87, 92–94, 102, 117, 177, 197,
201

encode, 5, 6, 23, 24, 33, 202
encoding, 5, 17, 23, 26, 33, 157
epoch, 15, 87, 88
equilateral, 26, 27, 30, 32, 33, 167, 199
equilateral encoding, 26, 33
equilateral normalization, 26, 30, 167,

199
error, 7, 10, 14–16, 25, 33, 43, 44, 63–

66, 70, 71, 73, 78, 114–116,
123, 130, 131, 138, 143, 160,
165, 166, 179, 183, 184, 193,
195, 196, 198, 200, 202

INDEX 205

error level, 65, 66, 160
error rate, 14, 15, 63, 65, 70, 114–116,

123, 131, 143, 165, 166, 183,
184, 196, 200, 202

evaluate, 1, 2, 24, 43, 49, 62, 63, 78,
139, 140, 145, 146, 196

evaluation, 32, 44, 135, 141, 145–147
example, xxiv–xxvi, xxviii, 2, 5, 8, 10–

12, 14, 16, 17, 20–24, 26–29,
32, 43–45, 62, 64, 72–77, 80,
81, 85–88, 92, 93, 96, 99, 100,
103, 105, 112–114, 116, 117,
121, 122, 128, 133, 139, 140,
143, 150, 157, 159, 160, 162,
168, 172, 174, 179, 181–183,
187–189, 191, 192, 199, 202

export, vii

factory, 77
feedforward, 10, 51, 57, 59, 60, 62, 64,

69, 71, 74, 77, 82, 106, 109,
110, 112–114, 116, 117, 120,
121, 124, 128, 141, 144, 153,
168, 173, 174, 194

file, vii–ix, xxix, 2, 4, 28–31, 35–43,
45–48, 51, 61–67, 99, 133, 140–
143, 146, 147, 158–160, 188,
189, 191, 195, 198, 200, 202

floating point, xxiv, xxvi, 17, 21, 33,
150

generate training, 139
generation, 105, 122, 145
genetic, xxix, 82, 85, 92, 96, 100–106,

124
genetic algorithm, xxix, 82, 85, 92, 96,

100–106, 124

genetic algorithms, xxix, 82, 85, 96,
100, 101, 104, 105

gradient, 71, 72, 74, 76, 78, 79, 193,
195, 198, 200

gradient descent, 71, 72, 76, 78, 79
greedy, 115

hidden layer, 5, 7–10, 12, 17, 41, 43,
52, 53, 59, 66, 77, 80, 110, 115,
120, 121, 124, 141, 143–145,
160, 164, 195, 197

hidden neuron, 10, 11, 77, 110, 121,
124, 143, 197, 200

hyperbolic tangent, 20, 52, 53, 57–60,
66, 144, 164, 197

ide, vi, viii, ix, xxii, xxvi–xxix, 1–6,
10, 12–14, 16, 17, 19–27, 30,
32, 33, 35–39, 43, 45, 51–55,
58, 61, 65, 69–74, 79, 82, 85,
86, 89–92, 95, 99–102, 111, 113,
117, 120, 122, 127, 128, 130–
133, 138, 140, 143, 150, 153–
158, 160, 162–164, 168, 171–
173, 175, 176, 179, 181–185,
191, 194, 196–201

ideal, xxvi, xxvii, 13, 16, 25–27, 37,
38, 45, 70, 71, 157, 158, 163,
172

ideal output, 13, 16, 25, 27, 70, 71,
157, 158, 163

image, xxviii, xxix, 39, 49, 79, 150,
153–164, 167, 168, 194, 195,
200

image file, 39
images, 150, 153, 156–164, 167, 168
initialized, 15, 16, 74, 165

206 INDEX

input layer, xxiv, xxv, 5–8, 12, 17, 52,
71, 80, 120, 173

input neuron, 5, 9, 10, 21, 41, 43, 77,
97, 111, 117, 118, 121, 122,
128, 143, 156–158, 168, 173,
175, 180

input neurons, 5, 9, 41, 43, 77, 97, 111,
117, 118, 121, 122, 128, 143,
156, 157, 168, 173, 175, 180

input pattern, xxiv, 118, 119, 175, 185,
201

iris, 20–26, 29, 33, 38, 45–47, 49
iris data, 20, 23, 24, 29, 33, 38, 45, 46,

49
iris dataset, 20, 23, 24, 33, 38, 45, 46,

49
iteration, 14, 15, 53, 63, 65, 70–76, 79,

87, 101, 102, 104, 110, 114,
115, 123, 142, 144, 166, 174,
175, 183, 184, 193–198

jar, 191

layer, xxiv, xxv, xxix, 5–13, 17, 41,
43, 52–54, 57, 59, 60, 62, 64,
66, 71, 77, 80, 101, 110, 113,
115, 117, 120, 121, 123, 124,
141, 143–145, 160, 162, 164,
173, 185, 193–197, 199–202

learning method, xxi, xxviii, 2, 4, 43,
44, 49, 121

learning rate, 71–74, 78, 79, 82, 114,
166, 175, 176, 178, 182–184,
193

license, vii, 198
linear activation, 57, 173
linear function, 56, 57, 198

lma, xxix, 10, 13, 53, 66, 109–116, 124,
194, 195, 199, 201

local minima, 71, 82, 114, 198
logarithmic, 57, 58
lower resolution, 153, 168
lunar lander, 27, 86, 97
lunar surface, 87, 90

machine learning, xxi, xxviii, 1, 2, 4,
16, 35, 43, 44, 49, 121

magnitude, 72, 74, 198
market, xxix, 127, 137–140, 143, 145–

147, 150
market data, 137–140, 145–147
matrix, 8, 70–72, 74, 114, 174, 175,

179–181, 193, 198, 202
mean, 1, 6, 20, 23, 26, 27, 37, 39, 58,

61, 63, 66, 69, 70, 72, 73, 101,
106, 139, 157, 158, 171, 172,
176, 193–197, 199, 200, 202

midpoint, 180
momentum, 71–74, 78, 82, 166
multi-dimensional, 177, 178, 181
multicore, 82, 195, 198
multithreaded, 78–82, 195, 198, 201
multithreaded training, 78, 80, 82, 195

ne-dimensional neighborhood, 176, 182
neighborhood, 172, 175–177, 181, 182,

185, 196
neighborhood competitive, 172
neighborhood function, 175–177, 181,

182, 185, 196
network output, 6, 14
network type, xxix, 5, 6, 51, 106, 109,

121, 124, 168, 185, 194, 199

INDEX 207

neural network, xxi–xxix, 1–8, 10–17,
19, 20, 22–26, 32, 33, 37, 39,
41–43, 45, 47, 49, 51–54, 56–
67, 69–77, 79, 82, 85–93, 95–
98, 101–106, 109–124, 127–131,
133–136, 139–148, 150, 153, 154,
156, 157, 159, 160, 162, 164,
165, 167, 168, 171–174, 176,
178–185, 192–202

neural pilot, 88, 90, 92, 97, 98, 100–
103

neuron, xxiii, xxiv, 5–7, 9–12, 14, 21,
24–26, 33, 41, 43, 52, 55, 59,
71, 77, 80, 97, 99, 101, 110,
111, 115–122, 124, 128, 129,
143–145, 156–158, 162–164, 167,
168, 172, 173, 175–178, 180,
181, 185, 193–195, 197–201

neuron output, 55, 59, 110
non-numeric data, 3, 32
non-winners, 56
normalization, 5, 17, 20–33, 39, 45, 48,

49, 97, 167, 179, 196–199, 201
normalize, xxviii, 4, 17, 19–23, 25, 27–

33, 39, 45, 49, 51, 97–99, 129,
132–135, 158, 196, 197, 199

normalized, 17, 19, 20, 22, 23, 25, 28–
31, 33, 39, 49, 97, 129, 132–
135, 158, 196, 197, 199

null, xxv

offspring, 101, 102, 195, 198
one-dimensional, 176, 177, 180, 182
one-of-n, 23–26, 32, 33, 196
operating system, 35, 40, 61, 187
output layer, xxiv, xxv, 5–9, 12, 17,

52, 53, 57, 60, 71, 77, 80, 115,
117, 120, 124, 162, 173, 185,
197

output neuron, 6, 7, 9, 10, 14, 24–26,
33, 41, 43, 77, 97, 99, 116–119,
121, 122, 128, 129, 157, 162,
163, 172, 173, 175–178, 180,
185

output neurons, 6, 24–26, 33, 43, 116–
118, 128, 129, 157, 162, 163,
172, 175, 176, 180

output pattern, xxiv

parameter, 43, 71–76, 82, 94, 97, 130,
133, 134, 158–162, 164, 165,
167, 181–184, 199

pattern, xxiii–xxv, xxviii, 6, 11, 17,
109, 111, 115, 117–119, 124,
127, 131, 144, 156, 167, 168,
172, 173, 175, 176, 184, 185,
193, 197, 201

pattern recognition, xxiii, xxviii, 6, 193,
197

persist, 51, 61, 62, 64, 66, 141, 198,
200

persistence, 51, 61, 62, 64, 198, 200
physical, viii, 92, 93, 154
physical simulation, 92, 93
pilot, 86, 88, 90, 92, 97, 98, 100–103
pixel, 156–158
pixels, 156, 157
plot, 48
population, 101, 102, 122, 123
predict, xxviii, xxix, 6, 16, 24–26, 28,

40, 47, 111, 112, 115, 124, 127,
128, 130–140, 147, 148, 150,

208 INDEX

196, 200, 201
prediction, xxviii, 28, 40, 111, 115, 124,

127, 130, 131, 133–137, 139,
140, 150, 200, 201

problem, xxii, xxiv, xxvi–xxviii, 1, 4,
6–8, 10, 11, 14, 20, 25, 71, 72,
96, 100, 156, 202

programming language, xxii, xxv, 8,
187

propagation, xxix, 54, 56–58, 60, 62,
64, 66, 67, 69–74, 76–79, 81,
82, 85, 100, 101, 104–106, 114,
133, 135, 143, 166, 176, 179,
183, 193, 196–200

propagation training, 54, 56–58, 60,
66, 67, 69–74, 76, 78, 79, 81,
82, 85, 100, 101, 104, 106, 166,
176, 179, 183, 193, 196, 198,
200

prune, 143
pruning, 143–145, 201

radial basis, 181, 200
random, 12, 13, 15, 16, 43, 80, 88,

101–104, 113, 165, 174, 175,
182–184, 194, 195, 198

random weight, 12, 13, 15, 43, 101,
113, 165

randomize, 12, 102, 165, 194
range, 20, 22, 25, 27, 28, 31–33, 39,

48, 54, 58, 98, 99, 133, 139,
144, 146, 150, 158, 173, 176,
179, 180

raw, 19, 29, 37, 38, 99, 131, 133, 141,
154, 156, 179, 180, 194, 197

recognition, xxiii, xxviii, 6, 159, 160,

168, 193, 197
recurrent, 10, 51, 59, 60, 66, 69, 109–

111, 120, 121, 123, 124, 128,
194, 195, 197, 201

recurrent connection, 109, 121, 201
reset, 12, 43, 160, 165, 166
resilient propagation, xxix, 62, 64, 72–

74, 76, 78, 82, 105, 133, 135,
143, 200

scatter plot, 48
score, 86–88, 92, 95, 96, 99–101, 103–

105, 195
scoring function, 101, 103, 104
script, vi, vii, 38, 47, 130, 131, 134,

137–139, 141, 146, 159, 160,
168

script file, 38, 47, 159, 160
self-organizing, 56, 57, 66, 168, 171,

172, 176, 185
self-organizing map, 56, 57, 66, 168,

171, 172, 176, 185
serialization, xxix, 51, 61, 62, 64–67
short-term memory, 13, 201
sigmoid, 12, 20, 41, 52, 58, 77, 122
sigmoid activation, 12, 20, 52, 58, 77
similar color, 172–174
simple recurrent, 51, 59, 60, 66, 69,

109, 111, 128, 194, 195, 197
simulated annealing, xxix, 82, 85, 92,

96, 100, 101, 103–106, 114, 193,
195, 201

single-threaded, 78, 80–82
som, ix, xxi–xxiii, xxv, xxvii, xxviii, 4,

5, 8, 21, 23, 35, 37, 42, 52, 57,
59, 61, 70, 82, 85, 86, 88, 89,

INDEX 209

92, 93, 98, 101, 102, 105, 106,
124, 129, 132, 140, 143, 145,
158, 171, 176, 178, 194, 197,
198

sort, xxii, xxvii, 8, 19, 20, 23, 54, 56,
85, 93, 101, 105, 131, 139

species, 3, 4, 21, 23, 24, 30, 33, 45, 47
stock market, xxix, 127, 137, 139, 145,

150
strategy, 92, 114, 115, 160, 165, 166,

196
sunspot, 28, 40, 127, 131–135, 137,

150
sunspots, 127, 131–135, 150

tangent activation, 20, 52, 53, 57–60,
144, 164

temperature, 104, 105, 194, 195, 201,
202

temporal, 111, 113, 115, 124, 127–131,
133, 134, 137, 150, 195–197,
200–202

temporal data, 129–131, 134, 137, 150,
195, 197, 201, 202

text, vii, xxiii, xxviii, 13, 37, 39, 51,
53, 61, 66, 77, 86, 110–113,
115, 116, 124, 162, 194, 195,
197, 199, 201

thread, 78–82, 182, 195, 198, 201
training, xxix, 1–3, 12, 14–16, 24–26,

32, 37–41, 43, 54, 56–60, 62–
67, 69–82, 85–88, 99–102, 104–
106, 110–112, 114, 120–124, 128–
131, 133–135, 138–147, 157–
161, 163, 165, 166, 172, 174–
179, 181–185, 193–202

training algorithm, xxix, 14, 69–72, 74,
75, 79, 81, 82, 160, 172, 184,
197, 200

training data, 24, 38, 40, 41, 43, 59,
63, 70, 79, 82, 85, 86, 99, 101,
124, 128, 129, 138–141, 145,
159, 172, 183, 194, 195

training iteration, 65, 70, 72, 87, 144,
166

training set, 14, 15, 25, 37, 40, 43, 62–
64, 70, 72–75, 78, 80, 82, 85,
86, 100, 101, 104, 105, 111,
114, 122, 131, 135, 143, 158,
160, 161, 163, 172, 182, 193,
196

unsupervised, xxix, 4, 69, 157, 158,
172, 184, 185, 194, 197

unsupervised training, xxix, 69, 157,
158, 172, 184, 185, 194, 197

update, ix, xxix, 70, 72–74, 82, 174,
184, 191, 200, 202

update rule, xxix

velocity, 86, 87, 89–95, 97–99, 202

web site, 187
weight, 3, 8, 12–15, 25, 43, 67, 69–72,

74, 78, 79, 82, 101–103, 105,
110, 113, 114, 117, 120, 121,
144, 165, 166, 172–175, 179–
181, 185, 193, 195, 196, 198–
200, 202

weight matrix, 8, 70–72, 74, 114, 174,
179, 181, 193, 198, 202

winner, 55, 56, 167, 173, 178
winning neuron, 55, 119, 167, 185, 194

210 INDEX

wizard, 30, 31, 45, 47
workbench, 32, 35, 36, 38, 39, 43, 49,

188
workbench project, 36

xor, 40, 41, 43

	Introduction
	The History of Encog
	Introduction to Neural Networks
	Neural Network Structure
	A Simple Example

	When to use Neural Networks
	Problems Not Suited to a Neural Network Solution
	Problems Suited to a Neural Network

	Structure of the Book

	Regression, Classification & Clustering
	Data Classification
	Regression Analysis
	Clustering
	Structuring a Neural Network
	Understanding the Input Layer
	Understanding the Output Layer
	Hidden Layers

	Using a Neural Network
	The XOR Operator and Neural Networks
	Structuring a Neural Network for XOR
	Training a Neural Network
	Executing a Neural Network

	Chapter Summary

	Obtaining Data for Encog
	Where to Get Data for Neural Networks
	Normalizing Data
	Normalizing Numeric Values
	Normalizing Nominal Values
	Understanding One-of-n Normalization
	Understanding Equilateral Normalization

	Programmatic Normalization
	Normalizing Individual Numbers
	Normalizing Memory Arrays

	Normalizing CSV Files
	Implementing Basic File Normalization
	Saving the Normalization Script
	Customizing File Normalization

	Summary

	The Encog Workbench
	Structure of the Encog Workbench
	Workbench CSV Files
	Workbench EG Files
	Workbench EGA Files
	Workbench EGB Files
	Workbench Image Files
	Workbench Text Files

	A Simple XOR Example
	Creating a New Project
	Generate Training Data
	Create a Neural Network
	Train the Neural Network
	Evaluate the Neural Network

	Using the Encog Analyst
	Encog Analyst Reports
	Range Report
	Scatter Plot

	Summary

	Constructing Neural Networks in Java
	Constructing a Neural Network
	The Role of Activation Functions
	Encog Activation Functions
	ActivationBiPolar
	Activation Competitive
	ActivationLinear
	ActivationLOG
	ActivationSigmoid
	ActivationSoftMax
	ActivationTANH

	Encog Persistence
	Using Encog EG Persistence
	Using Encog EG Persistence

	Using Java Serialization
	Summary

	Propagation Training
	Understanding Propagation Training
	Understanding Backpropagation
	Understanding the Manhattan Update Rule
	Understanding Quick Propagation Training
	Understanding Resilient Propagation Training
	Understanding SCG Training
	Understanding LMA Training

	Encog Method & Training Factories
	Creating Neural Networks with Factories
	Creating Training Methods with Factories

	How Multithreaded Training Works
	Using Multithreaded Training
	Summary

	More Supervised Training
	Running the Lunar Lander Example
	Examining the Lunar Lander Simulator
	Simulating the Lander
	Calculating the Score
	Flying the Spacecraft

	Training the Neural Pilot
	What is a Genetic Algorithm
	Using a Genetic Algorithm
	What is Simulated Annealing
	Using Simulated Annealing

	Using the Training Set Score Class
	Summary

	Other Neural Network Types
	The Elman Neural Network
	Creating an Elman Neural Network
	Training an Elman Neural Network

	The Jordan Neural Network
	The ART1 Neural Network
	Using the ART1 Neural Network

	The NEAT Neural Network
	Creating an Encog NEAT Population
	Training an Encog NEAT Neural Network

	Summary

	Using Temporal Data
	How a Predictive Neural Network Works
	Using the Encog Temporal Dataset
	Application to Sunspots
	Using the Encog Market Dataset
	Application to the Stock Market
	Generating Training Data
	Training the Neural Network
	Incremental Pruning
	Evaluating the Neural Network

	Summary

	Using Image Data
	Finding the Bounds
	Downsampling an Image
	What to Do With the Output Neurons

	Using the Encog Image Dataset
	Image Recognition Example
	Creating the Training Set
	Inputting an Image
	Creating the Network
	Training the Network
	Recognizing Images

	Summary

	Using a Self-Organizing Map
	The Structure and Training of a SOM
	Structuring a SOM
	Training a SOM
	Understanding Neighborhood Functions
	Forcing a Winner
	Calculating Error

	Implementing the Colors SOM in Encog
	Displaying the Weight Matrix
	Training the Color Matching SOM

	Summary

	Installing and Using Encog
	Installing Encog
	Compiling the Encog Core
	Compiling and Executing Encog Examples
	Running an Example from the Command Line

	Glossary

