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ABSTRACT. Scott-Knott is an hierarchical clustering algorithm used in the application of ANOVA, when
the researcher is comparing treatment means, with a very important characteristic: it does not present any
overlapping in its grouping results. We wrote a code, in R, that performs this algorithm starting from
vectors, matrix, data.frame, aov or aov.list objects. The results are presented with letters
representing groups, as well as through graphics using different colors to differentiate distinct groups. This
R package, named ScottKnott is the main topic of this article.
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1 INTRODUCTION

Scott-Knott (SK) is a hierarchical clustering algorithm used as an exploratory data analysis tool.
It was designed to help researchers working with an ANOVA experiment, wherein the compar-

ison of treatment means is an important step in order, to find distinct homogeneous groups of
those means whenever the situation leads to a significant F-test.

The multiple comparison procedures commonly used to solve this problem usually divide the set
of treatment means into groups that are not completely distinct. Therefore, many treatments end

up belonging to different groups simultaneously, this is called overlapping [6].

In fact, as the number of treatments increases, so do the number of overlappings making it dif-
ficult for the experimental users to distinguish the real groups to which the treatments should
belong. In this case, the division of treatments in completely distinct groups is the most impor-

tant solution. Even though the goal of multiple comparison methods is an all-pair comparison,
not a division of the treatment means into groups, biologists, plant breeders and many others
expect those tests to make that divison in groups.
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4 SCOTTKNOTT: A PACKAGE FOR PERFORMING THE SCOTT-KNOTT CLUSTERING ALGORITHM IN R

The possibility of using cluster analysis in place of multiple comparison procedures was sug-
gested by [15] since the results of cluster type analysis, represent a type of solution for dividing
treatments into distinct groups.

The SK algorithm is a hierarchical cluster analysis approach used to partition treatments into
distinct groups. Many other hierarchical cluster analysis approaches have been proposed since
Scott, A.J. and Knott, M. [18] published their results, such as, for example [13], [9], and [6].
However, the SK has been the most widely used approach due to its simple intuitive appeal, and
also the good results it always provides [12, 4, 11, 14].

The SK procedure uses a clever algorithm of cluster analysis, where, starting from the whole
group of observed mean effects, it divides, and keeps dividing the subgroups in such a way that
the intersection of any of the two formed groups remains empty. In the words of A.J. Scott and
M. Knott: “We study the consequences of using a well-known method of cluster analysis to
partition the sample treatment means in a balanced design and show how a corresponding
likelihood ratio test gives a method of judging the significance of the difference among groups
obtained” [18]. Besides, simulation studies reveal that in comparison with the most used mul-
tiple comparison procedures, the SK procedure has a very good performance [10, 5]. We also
try to motivate the reader into the practice of the SK algorithm by bringing a real data example
and compare the SK with other procedures, namely the clustering (hclust, package stats) and
Tukey test (package agricolae).

The main objective of this paper is the ScottKnott R package, which implements the SK proce-
dure [18]. The package is available on the Comprehensive R Archive Network (CRAN) website
and can be accessed at: http://CRAN.R-project.org/package=ScottKnott.

The R Package ScottKnott consists of two methods, SK and SK.nest. The SK method per-
forms the algorithm on treatments of main factors whereas SK.nest does the same on nested
designs of factorial, split-plot and split-split-plot experiments. They return objects of classes
SK, and SK.nest containing the groups of means plus other variables necessary for summary
and plot. The generic functions summary and plot are used to obtain and print a summary
and a plot.

Nowadays, the R environment for computational statistics has become the working language of
computational statistics worldwide. Moreover, the huge processing power and memory space
of modern computers has made it possible to write computer codes for almost every statistical
methodology, indeed, this has eventually become, one of the main working tasks for statisticians
and, as a result, statistical journals have been giving more space to the publication of software
guides. Among them, the most important are the R packages.

2 REAL DATA STUDY

As a motivation we will use an experiment conducted at EMBRAPA Milho e Sorgo (The Brazil-
ian Agricultural Research Corporation, Corn and Sorghum Section). It was published in [16]
page 167. The experiment consists of 16 treatments (cultivars) of sorghum conducted in a
balanced squared lattice design and the yield by plot (kg/plot ). For our purposes, the exper-
iment can be considered an incomplete randomized block design with 4 blocks, 16 treatments,
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JELIHOVSCHI, FARIA and ALLAMAN 5

and 5 repetitions, that is, the yield of each treatment is measured 5 times. These data are available
in the ScottKnott package as sorghum.

The objective of this study is to compare the 16 treatment means, as a first step of the whole
analysis, and the question is: are there groups of treatments which could be considered homo-
geneous? In other words, would it be possible to find groups for which the treatment means
belonging to those groups that represent cultivars yielding the same weight of sorghum and the
differences in the observed results being due to random variability?

We understand that this way of questioning is very important for the agricultural researcher and
might be even more important than testing for the difference between treatment means for every
pair of those means. There is a total of 120 of those pairs.

Even though this first study is just exploratory, it will give the researcher the insight he/she needs
to continue the analysis.

This exploratory analysis was carried out using the SK algorithm, whose results were compared
to two other methods.

> library(ScottKnott)

> data(sorghum)

> av <- aov(y ˜ r/bl + x,

+ data=sorghum$dfm)

> sk <- SK(av,

+ which=’x’,

+ sig.level=0.05)

> plot(sk,

+ title=NULL,

+ col=c(’black’,

+ ’gray’))

The first is the function hclust found in the package stats, which performs hierarchical cluster
analysis on a set of dissimilarities. The used agglomeration method was “ward”. We calculated
the mean value of the 5 repetitions for each treatment and used it in the hclust function.

> dat.cl <- sorghum$dfm[order(sorghum$dfm$x), ][, 4]

> dim(dat.cl) <- c(5, 16)

> dimnames(dat.cl) <- list(paste(’r’,

+ 1:5,

+ sep=’’),

+ 1:16)

> dat.cl.m <- apply(dat.cl,

+ 2,

+ mean)

> cl <- hclust(dist(dat.cl.m),

+ ’ward’)

> plot(cl,

+ main=’’)

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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6 SCOTTKNOTT: A PACKAGE FOR PERFORMING THE SCOTT-KNOTT CLUSTERING ALGORITHM IN R

The second,was the Tukey’s HSD test which is a multiple comparison procedure that is also used

by researchers to divide the treatment means into groups. We used the Rpackage agricolae to
build the graph.

> library(agricolae)

> tk <- HSD.test(av,

+ ’x’,

+ group=TRUE,

+ alpha=0.05)

> bar.group(tk$groups,

+ ylim=c(0, 12),

+ density=4,

+ border="black")

Figure 1 shows the result of the SK algorithm. It divided the means into two groups. The two
main groups found using the function hclust (Fig. 2) are not exactly the same as those found
using the SK algorithm, but they are as similar as it was expected. The treatment means 14, 8,

5, 7, 9, 3 belong to the same group in both figures, and the treatments 1, 2, 4, which belong
to the same group of the above treatments in Figure 1; in Figure 2, on the other hand, they
belong to the second main group. Nevertheless, they are grouped together at the lowest level.

The hclust function cuts at the big gap between treatments 9 and 3 and the function SK at the
big gap between treatments 2 and 12.

Figure 3 shows the result using the Tukey’s HSD test. It finds 3 groups, marked by the letters
a, b and c. Almost all of the treatments are classified to the 3 groups and this overlapping makes

very difficult for the researcher to decide in which groups those means should be sorted.

What makes the SK algorithm more convenient in such cases is that, in addition to dividing the
treatments in groups without overlapping, its result also uses a probabilistic approach aimed at
finding the groups: the SK algorithm takes the maximum between group sum of squares, which

is used in a likelihood ratio test with an asymptotic χ2 distribution. This approach is very useful
when the number of treatments is large.

It is also possible to change the value of the parameter sig.level of the SK function by getting
different groupings, and the researcher can check what makes sense in practice.

3 COMPARATIVE PERFORMANCE OF SK METHOD

In performance studies involving statistical tests, it is often very difficult to obtain the rates of
type I error and power in an anlytical manner. The most usual way to get that information is
through simulation using Monte Carlo methods. [3] show that the difference between analytical

values and Monte Carlo’s is very small thus making its use an optimal way to get the necessary
information. Their results are similar to those found by [2].

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Figure 1: Yield of sorghum using Skott-Knott algorithm, α = 5%.
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Figure 2: Yield of sorghum using hclust, distance = euclidean and agglomeration method = ward.
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Figure 3: Yield of sorghum using Tukey, α = 5%.
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8 SCOTTKNOTT: A PACKAGE FOR PERFORMING THE SCOTT-KNOTT CLUSTERING ALGORITHM IN R

Despite the fact that SK is a clustering procedure, we can use simulation results to compare its

performance to Tukey test and others, as if it were a multiple comparison procedure.

Two of the most common measures to compare “Multiple Comparison Procedures” found in the
literature are:

• The ratio between the number of type I errors (reaching the result that μi �= μ j when truly

μi = μ j ) and the number of comparisons, is defined as comparisonwise error rate.

• The ratio between the number of experiments with one or more type I errors and the total

number of experiments is defined as experimentwise error rate [7, 19].

Two simulation studies conducted at the Federal University of Lavras, Brazil, used Monte Carlo
methods to evaluate the performance of the SK method [3, 2]. One [10] showed that it possesses
high power and an error rate that is almost always in accordance with the nominal levels using

both comparisonwise and experimentwise error rates (Table 1). That is, the rates are not far from
α value or sig.level as defined in the last paragraph of section 4.1.

The other, [5] evaluated the power and the type I error rates of the SK, Tukey and SNK test,

in a wide variety of experimental situations, in conditions of normality and non-normality error
distribution (Table 2). They concluded that the SK is more powerful than the other two and is
also robust against violations of normality assumptions. Both performed 2000 simulations for
each experiment with 5, 10, 20 and 80 treatments with 4, 10 and 20 replications α value of 1%

and 5% plus coefficients of variation of 1%, 10%, 20% and 30%.

4 METHOD

4.1 Methodology

Suppose we have a set of independent sample treatment means in the analysis of variance con-
text, each treatment with the same number of replications, all normal variates, that is a balanced
design. Furthermore, suppose that ANOVA leads to a significant F-test for the difference among
the treatment means. Moreover, by rejecting the homogeneity of the treatment means there is
still the problem of finding out the number of homogeneous groups and which are the treatment

means contained in each group.

It should be noted that we follow [6] in what we mean by homogeneity of treatments: “Once
more it should be borne in mind that non rejection of equality is by no means equivalent to
proving equality. We carefully defined homogeneity as non rejection of equality. Nor should

it be inferred that treatments belonging to different “homogeneous groups” are (significantly)
different; treatments belonging to the same group, however, are not.” The SK procedure is a
hierarchical clustering algorithm that attempts to find out those groups without overlapping.

Let us consider k as the number of treatments. As it starts, the SK procedure will either find

two distinct groups dividing the treatment means or it will determine those k treatment means

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Table 1: Error rates by comparisons (ERC) and experiment (ERE), for the Scott-Knott test, de-

pending on the number of repetitions (REP), number of treatments (TRAT), coefficient of variation

(CV) and nominal levels of significance at α = 1% and α = 5%.

REP TRAT CV
1% 5%

%ERC %ERE %ERC %ERE

4 5 1 0.13∗∗ 0.25∗∗ 3.47∗∗ 6.60∗
4 5 30 0.22∗∗ 0.45∗∗ 2.85∗∗ 5.40

10 5 1 0.67 1.25 3.11∗∗ 5.90
10 5 30 0.54 1.00 3.31∗∗ 6.35

20 5 1 0.54 1.05 3.41∗∗ 6.25
20 5 30 0.69 1.25 3.41∗∗ 6.40∗
4 10 1 0.30∗∗ 0.65 2.12∗∗ 4.20
4 10 30 0.25∗∗ 0.55 2.48∗∗ 4.90

10 10 1 0.55 1.10 2.61∗∗ 5.25
10 10 30 0.41∗∗ 0.80 2.68∗∗ 5.45

20 10 1 0.66 1.35 2.45∗∗ 5.05

20 10 30 0.77 1.55 2.42∗∗ 5.15
4 20 1 0.17∗∗ 0.35∗∗ 2.16∗∗ 4.40

4 20 30 0.33∗∗ 0.65 1.91∗∗ 4.00
10 20 1 0.31∗∗ 0.65 2.28∗∗ 4.80

10 20 30 0.44∗∗ 0.90 2.49∗∗ 5.05
20 20 1 0.42∗∗ 0.85 2.98∗∗ 6.10

20 20 30 0.50∗∗ 1.05 2.56∗∗ 5.35
4 80 1 0.27∗∗ 0.55 1.74∗∗ 3.55∗∗
4 80 30 0.33∗∗ 0.65 1.81∗∗ 3.70∗∗

10 80 1 0.47∗∗ 0.95 2.27∗∗ 4.60

10 80 30 0.47∗∗ 0.95 1.75∗∗ 3.55∗∗
20 80 1 0.50∗∗ 1.00 2.31∗∗ 4.70

20 80 30 0.55 1.10 2.70∗∗ 5.50

Source: Adapted of [10]. ∗Exceeded the upper limit of the confidence interval accurate, with 99% confidence to

nominal levels of significance of 1% (1.727044) and 5% (6.391386). ∗∗Exceeded the upper limit of the confidence

interval accurate, with 99% confidence to nominal levels of significance of 1% (0,518787) and 5% (3,828164).

homogeneous belonging to just one group. To do so, it should divide the 2k−1 − 1 possible
partitions of the k means in two nonempty groups, but it is enough to look at the k − 1 partitions

formed by ordering the treatment means and divide them between two successive ones [18]. Let
T1 and T2 be the totals of two of those groups with k1 and k2 treatments in each one, so that
k1 + k2 = k, that is:

T1 =
k1∑

i=1

y(i) T2 =
k1+k2∑

i=k1+1

y(i)

where y(i), i = 1 : m are the ordered treatment means and y the grand mean [16].

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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10 SCOTTKNOTT: A PACKAGE FOR PERFORMING THE SCOTT-KNOTT CLUSTERING ALGORITHM IN R

Table 2: Type I error rates by experiment (%), to the Tukey, SNK and Scott Knott tests, for

different CV and distributions, considering the number of treatments (p) equal to 10 and 20

replications for nominal levels of significance 1% to 5%.

Distributions CV

Tests

Tukey SNK Scott-Knott

α = 1% α = 5% α = 1% α = 5% α = 1% α = 5%

Normal

1 1.20 5.70 1.20 5.70 0.90 6.35

10 1.15 5.05 1.15 5.10 1.25 6.90

20 1.30 4.60 1.30 4.60 1.20 6.20

30 1.00 4.75 1.00 4.80 1.45 6.00

Lognormal

1 1.15 4.80 1.20 5.05 1.45 5.30

10 0.60 3.80 1.20 6.50 2.00 7.10

20 0.85 4.15 1.55 8.70 2.35 8.15

30 0.35 3.55 0.90 9.25 1.65 7.15

Exponential

1 0.95 5.00 0.95 5.05 1.45 7.25

10 1.00 5.35 1.10 5.40 1.30 6.35

20 0.85 4.35 0.85 4.40 1.45 6.10

30 1.30 5.20 1.35 5.45 1.95 6.00

Weibull 3.6

1 1.25 5.50 1.25 5.55 1.70 6.25

10 0.70 4.35 0.70 4.35 1.10 5.75

20 0.60 4.05 0.60 4.85 1.30 5.80

30 1.00 4.80 1.00 4.90 1.60 6.60

Source: [5].

Also, let B be the between groups sum of squares. That is:

B = T 2
1

k1
+ T 2

2

k2
− (T1 + T2)

2

k1 + k2

Let Bo be the maximum value, taken over the k−1 partitions of the k treatments into two groups,
of the between groups sum of squares B. After finding out those groups, we use the likelihood

ratio test for the null hypothesis of equality of all means against the alternative that they belong
to the two groups found above. If we reject this hypothesis then the two groups are kept, other-
wise the group of k treatment means is considered homogeneous. We then repeat this procedure

for each group separatly and stop until all of the formed groups become homogeneous.

The statistics used for the likelihood ratio test is:

λ = π

2(π − 2)
× Bo

σ 2
o

where σ 2
o is the maximum likelihood estimator of σ 2

r .

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Let s2 = M S E
r be the unbiased estimator of σ 2

r , υ be degrees of freedom associated with that
estimator, then

σ 2
o =

∑k
i=1(y(i) − y)2 + υs2

k + υ

λ is asymptotically a χ2 distributed random variable with υo = k
π−2 degrees of freedom. There-

fore we can use that to set the cutoff point for a given α value each time we perform the test.

We can think the p-value of likelihood ratio test as a distance to be measured between the two
selected groups and the type I error (α value) chosen to be the cut off. If the p-value is smaller

than α, the groups are too far away from each other and should be separated (they are heteroge-
neous), otherwise, they become just one group (homogeneous).

“Choosing an appropriate value for α is difficult. If α is too small, the splitting process will
terminate too soon, on the other hand, if α is too large, the process will go too far and split

homogeneous sets of means” [18].

As we start dividing the first groups into other smaller groups, we repeat the same algorithm for
each group. We keep doing that until every formed group is either homogeneous or just contains
one observed mean.

It is important to emphasize the fact that the above defined α value is not the nominal error rate
of the type I error of the algorithm as a whole. If we set the α value as 5% then every test the SK
procedure performs to divide (or not) a sub-group has a type I error rate of 5%. Nevertheless, we
cannot say that the former type I error rate is 5%. This α value is the parameter called sig.level
in the SK function.

4.2 ScottKnott package

The ScottKnott package was written in R language [17]. The results are objects of the class

list, SK and SK.nest, which are used as an input to the generic functions summary and
plot. It performs the clustering algorithm on three designs and three experiments. Once again,
it must be emphasized again that the two functions SK and SK.nest only work on bal-
anced designs. The designs are: Completely Randomized Design (CRD), Randomized Complete
Block Design (RCBD) and Latin Squares Design (LSD). The experiments are: Factorial Experi-
ment (FE), Split-Plot Experiment (SPE) and Split-Split-Plot Experiment (SSPE).

The ScottKnott package has two main functions: SK and SK.nest. The SK function is

used for clustering the treatment means of a main factor. The SK.nest function, in turn, is
used for clustering treatment means relative to interactions among factors, that is whenever the
treatment means belong to a factor nested in others. For example, the treatment means of factor
A, for level 1 of factor B, and level 1 of factor C. As shown above, the SK.nest function

supports no more than two nestings.

The summary function generates an output where the different groups are displayed as letters
of the alphabet. The plot function generates distinct groups that are differentiated by colors.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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12 SCOTTKNOTT: A PACKAGE FOR PERFORMING THE SCOTT-KNOTT CLUSTERING ALGORITHM IN R

The main algorithm is the MaxValue function which builds groups of means according to the

method of SK. It is basically an algorithm for a pre-order path in a binary decision tree. Every
node of this tree, represents a different group of means and, when the algorithm reaches this
node it takes the decision to either split the group in two, or to form a group of means. At the

end all the leaves of the tree are the groups of homogeneous means.

The SK and SK.nest functions are methods for objects of class vector, matrix or data.
frame joined as default, whereas aov and aovlist are methods for single experiments.

The main parameters used by those methods are:

• x : A design matrix, data.frame or an aov object.

• y: A vector of response variable. It is only necessary to inform this parameter if x repre-
sents the design matrix.

• which: The name of the factor to be used in the clustering. The name must be inside
quoting marks.

• model: If x is a data.frame object, the model to be used in the aov must be specified.

• error: The error to be considered. Only used in cases of split-plot or split-split-plot exper-
iments.

• sig.level: Level of Significance, α value, used in the SK and SK.nest algorithms to create

the groups of means. The default value is 0.05.

• f l1: A vector of length 1 providing the level of the first factor in the tested nesting order.

• f l2: A vector of length 1 providing the level of the second factor in the tested nesting
order.

• id.trim: The number of characters to trim the label of the factor levels.

• . . . : Further arguments (required by generic).

4.2.1 Split-Split-Plot Experiment (SSPE)

We show an example on how to use the ScottKnott package. An object of aovlist class will
be used in the SK.nest function.

SSPE is the objet containing the data set for a Split-Split-Plot Experiment (SSPE). It is a simu-

lated data aimed at modelling a SSPE with 3 plots, each one split 3 times, each split, split again
5 times and 4 repetitions per split-split.

It can be called using the command below:

> data(SSPE)

> nav <- with(SSPE,

+ aov(y ˜ blk + P*SP*SSP + Error(blk/P/SP),

+ data=dfm))

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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SSP factor is nested in SP factor, which is nested in P factor. The value 1 of the parameter f l1
and 1 of parameter f l2 mean that the first level of factors P and SP, respectively, are chosen.
The comparison is made only among levels (treatments) of factor SSP belonging to that par-
ticular combination of levels of factor P and factor SP. Look at the aov(model) and SK.nest

(which) functions for the order at which the factors appear.

> nsk <- SK.nest(nav,

+ which=’P:SP:SSP’,

+ error=’Within’,

+ fl1=1,

+ fl2=1)

> summary(nsk)

Nested: P/SP/SSP

Levels Means SK(5%)

p1/sp1/ssp5 456.3500 a

p1/sp1/ssp4 438.9850 a

p1/sp1/ssp3 392.0725 a

p1/sp1/ssp2 349.3500 b

p1/sp1/ssp1 294.6800 b

> plot(nsk,

+ rl.col=c(rep(’black’, 3),

+ rep(’gray’, 2)),

+ title=’’)
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Figure 4: Split-Split-Plot Experiment (SSPE). Nested analysis (ssp/sp=1/p=1), α = 5%.

Further examples are documented in the folder demo of the R-package ScottKnott.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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14 SCOTTKNOTT: A PACKAGE FOR PERFORMING THE SCOTT-KNOTT CLUSTERING ALGORITHM IN R

5 THE PACKAGE USAGE

The best measurement of how much the ScottKnott package is used around the world is to count
the number of times it has been downloaded since it became available at the CRAN (The Com-

prehensive R Archive Network). Unfortunately, only one (http://cran-logs.rstudio.
com), out of 88 mirrors, has control of downloads. Therefore, the numbers shown below are very
underestimated. Two other factors contribute with that underestimation: the download control

effected by that mirror began on October 1, 2012 and the ScottKnott package has been avail-
able since January 2009, and second, this mirror is not Brazilian, whereas Brazilian statisticians
are those who mostly use the ScottKnott method. In any case, a little information is better than

none at all.

Figure 5 lists the countries that have downloaded the ScottKnott package between periods from
October 1, 2012 to August 30, 2013. The country with the highest number of downloads is
the United States. The “other” category comprises 55 countries with the number of downloads

below 10.
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Figure 5: Number of downloads of the ScottKnott package by countries between October 1, 2012 and

August 30, 2013.

The number of downloads performed per month since the implementation of the download con-

trol can be seen in Figure 6.
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Figure 6: Number of downloads of the ScottKnott package between October 1, 2012 and August 30, 2013.

6 CONCLUSION

The Scott and Knott (SK) algorithm is a very useful methodology in the practice of statistical
analysis of experiments involving of analysis of variance. It has been widely used by researchers

who wish to compare the group means of treatments, since it divides groups without any over-
lapping, a feature that makes the algorithm very useful. The R package ScottKnott provides an
easy-to-use framework for performing the SK algorithm. In comparison with other software or

Rpackages, this one is unique unto itself, since it allows for easily interpreting of graphics results,
what greatly facilitates the interpretation of analyses. As explained in the article, it also makes
possible various designs and experiments.

ScottKnot is still undergoing active development. Planned extensions include extension of the

method to factorial up to fifth order, methods using poisson distribution, dendrogram graphic
option with p-values obtained for each group, and an alternative method of the Scott-Knott test
proposed by [1].

RESUMO. O Scott-Knott é um algoritmo de agrupamento hierárquico utilizado na aplicação

da ANOVA, quando o pesquisador está comparando as médias dos tratamentos, com uma

caracterı́stica muito importante: ele não apresenta qualquer sobreposição em seus resultados

de agrupamento. Nós escrevemos um código em R, que executa este algoritmo a partir de

objetos das classes vectors, matrix, data.frame, aov ou aov.list. Os re-

sultados são apresentados com letras que representam os grupos, bem como por meio de
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gráficos usando cores diferentes para diferenciar os grupos distintos. Este pacote do R,

nomeado ScottKnott é o principal tema deste artigo.

Palavras-chave: Scott-Knott, comparações múltiplas, R core team.
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