
docs.openstack.org

http://docs.openstack.org

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

ii

OpenStack Installation Guide for Ubuntu 12.04 (LTS)
havana (2013-12-10)
Copyright © 2012, 2013 OpenStack Foundation All rights reserved.

The OpenStack® system consists of several key projects that you install separately but that work together
depending on your cloud needs. These projects include Compute, Identity Service, Networking, Image
Service, Block Storage Service, Object Storage, Telemetry, and Orchestration. You can install any of these
projects separately and configure them standalone or as connected entities. This guide walks through an
installation by using packages available through Ubuntu 12.04 (LTS). Explanations of configuration options
and sample configuration files are included.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You
may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

iii

Table of Contents
Preface .. 8

Document change history ... 8
1. Architecture .. 1

Conceptual architecture .. 2
Logical architecture ... 2
Sample architectures ... 3

2. Basic operating system configuration .. 5
Before you begin .. 5
Networking ... 5
Network Time Protocol (NTP) .. 7
MySQL database ... 7
OpenStack packages ... 8
Messaging server ... 8

3. Configure the Identity Service ... 9
Identity Service concepts ... 9
Install the Identity Service ... 10
Define users, tenants, and roles ... 11
Define services and API endpoints ... 12
Verify the Identity Service installation .. 13

4. Configure the Image Service .. 15
Image Service overview ... 15
Install the Image Service .. 16
Verify the Image Service installation .. 18

5. Configure Compute services .. 20
Compute service .. 20
Install Compute controller services ... 23
Configure a Compute node ... 25
Enable Networking .. 27
Launch an instance ... 28

6. Add the dashboard ... 34
System requirements ... 34
Install the dashboard .. 35
Set up session storage for the dashboard .. 36

7. Add the Block Storage Service ... 40
Block Storage Service .. 40
Configure a Block Storage Service controller .. 40
Configure a Block Storage Service node ... 42

8. Add Object Storage ... 45
Object Storage service ... 45
System requirements ... 45
Plan networking for Object Storage .. 46
Example Object Storage installation architecture ... 47
Install Object Storage .. 48
Install and configure storage nodes ... 49
Install and configure the proxy node ... 51
Start services on the storage nodes ... 54
Object Storage post-installation tasks .. 54

9. Install the Networking service ... 57

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

iv

Networking considerations .. 57
Neutron concepts .. 57
Install Networking services .. 59
Neutron deployment use cases .. 72

10. Add the Orchestration service .. 106
Orchestration service overview .. 106
Install the Orchestration service ... 106
Verify the Orchestration service installation ... 108

11. Add the Telemetry service ... 112
The Telemetry Service .. 112
Install the Telemetry service .. 113
Install the Compute agent for the Telemetry service .. 115
Add the Image Service agent for the Telemetry service .. 116
Add the Block Storage Service agent for the Telemetry service 116
Add the Object Storage agent for the Telemetry service 116
Verify the Telemetry Service installation ... 117

A. Community support .. 119
Documentation ... 119
ask.openstack.org .. 120
OpenStack mailing lists .. 120
The OpenStack wiki ... 120
The Launchpad Bugs area ... 121
The OpenStack IRC channel ... 121
Documentation feedback .. 122
OpenStack distribution packages ... 122

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

v

List of Figures
1.1. OpenStack conceptual architecture ... 2
1.2. Logical architecture .. 3
1.3. Basic architecture ... 4
2.1. Basic architecture ... 6

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

vi

List of Tables
1.1. OpenStack services ... 1
8.1. Hardware recommendations ... 46
9.1. Nodes for use case ... 82

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

vii

List of Examples
2.1. /etc/network/interfaces .. 6

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

8

Preface

Document change history
This version of the guide replaces and obsoletes all previous versions. The following table
describes the most recent changes:

Revision Date Summary of Changes

October 25, 2013 • Added initial Debian support.

October 17, 2013 • Havana release.

October 16, 2013 • Add support for SUSE Linux Enterprise.

October 8, 2013 • Complete reorganization for Havana.

September 9, 2013 • Build also for openSUSE.

August 1, 2013 • Fixes to Object Storage verification steps. Fix bug 1207347.

July 25, 2013 • Adds creation of cinder user and addition to the service tenant. Fix bug 1205057.

May 8, 2013 • Updated the book title for consistency.

May 2, 2013 • Updated cover and fixed small errors in appendix.

April 30, 2013 • Grizzly release.

April 18, 2013 • Updates and clean up on the Object Storage installation.

April 8, 2013 • Adds a note about availability of Grizzly packages on Ubuntu and Debian.

April 3, 2013 • Updates RHEL/CentOS/Fedora information for Grizzly release.

March 26, 2013 • Updates Dashboard (Horizon) information for Grizzly release.

February 12, 2013 • Adds chapter about Essex to Folsom upgrade for Compute and related services (excludes
OpenStack Object Storage (Swift) and OpenStack Networking (Quantum)).

January 16, 2013 • Fix file copy issue for figures in the /common/ directory.

November 9, 2012 • Folsom release of this document.

October 10, 2012 • Doc bug fixes: 10544591064745

September 26, 2012 • Adds an all-in-one install section.

July 23, 2012 • Adds additional detail about installing and configuring nova-volumes.
• Doc bug fixes: 978510 1027230

July 17, 2012 • Update build process so two uniquely-named PDF files are output.

July 13, 2012 • Doc bug fixes: 1025840 1025847

June 19, 2012 • Fix PDF links.
• Doc bug fixes: 967778 984959, 1002294, 1010163.

May 31, 2012 • Revise install guide to encompass more Linux distros.
• Doc bug fixes: 996988, 998116, 999005.

May 3, 2012 • Fixes problems with glance-api-paste.ini and glance-registry-paste.ini
samples and instructions.

• Removes "DRAFT" designation.

May 2, 2012 • Essex release.

May 1, 2012 • Updates the Object Storage and Identity (Keystone) configuration.

April 25, 2012 • Changes service_id copy/paste error for the EC2 service-create command.

Adds verification steps for Object Storage installation.

Fixes proxy-server.conf file so it points to keystone not tempauth.

April 23, 2012 • Adds installation and configuration for multi-node Object Storage service.

April 17, 2012 • Doc bug fixes: 983417, 984106, 984034

https://bugs.launchpad.net/openstack-manuals/+bug/1207347
https://bugs.launchpad.net/openstack-manuals/+bug/1205057
https://bugs.launchpad.net/openstack-manuals/+bug/1054459
https://bugs.launchpad.net/openstack-manuals/+bug/1064745
https://bugs.launchpad.net/openstack-manuals/+bug/978510
https://bugs.launchpad.net/openstack-manuals/+bug/1027230
https://bugs.launchpad.net/openstack-manuals/+bug/1025840
https://bugs.launchpad.net/openstack-manuals/+bug/1025847
https://bugs.launchpad.net/openstack-manuals/+bug/967778
https://bugs.launchpad.net/openstack-manuals/+bug/984959
https://bugs.launchpad.net/openstack-manuals/+bug/1002294
https://bugs.launchpad.net/openstack-manuals/+bug/1010163
https://bugs.launchpad.net/openstack-manuals/+bug/996988
https://bugs.launchpad.net/openstack-manuals/+bug/998116
https://bugs.launchpad.net/openstack-manuals/+bug/999005
https://bugs.launchpad.net/openstack-manuals/+bug/983417
https://bugs.launchpad.net/openstack-manuals/+bug/984106
https://bugs.launchpad.net/openstack-manuals/+bug/984034

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

9

Revision Date Summary of Changes

April 13, 2012 • Doc bug fixes: 977905, 980882, 977823, adds additional Glance database preparation steps

April 10, 2012 • Doc bug fixes: 977831

March 23, 2012 • Updates for Xen hypervisor.

March 9, 2012 • Updates for Essex release, includes new Glance config files, new Keystone configuration.

January 24, 2012 • Initial draft for Essex.

• Assumes use of Ubuntu 12.04 repository.

January 24, 2011 • Initial draft for Diablo.

https://bugs.launchpad.net/openstack-manuals/+bug/977905
https://bugs.launchpad.net/openstack-manuals/+bug/980882
https://bugs.launchpad.net/openstack-manuals/+bug/977823
https://bugs.launchpad.net/openstack-manuals/+bug/977831

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

1

1. Architecture

Table of Contents
Conceptual architecture .. 2
Logical architecture ... 2
Sample architectures ... 3

This install guide offers a few of the many ways to install OpenStack components and
have them work together. It is meant as a "choose your own adventure" guide, not a
comprehensive guide. The OpenStack Configuration Reference lists every option in all
OpenStack services. Before you begin an installation adventure, here are some things you
should know about OpenStack concepts.

The OpenStack project is an open source cloud computing platform for all types of clouds,
which aims to be simple to implement, massively scalable, and feature rich. Developers and
cloud computing technologists from around the world create the OpenStack project.

OpenStack provides an Infrastructure as a Service (IaaS) solution through a set of
interrelated services. Each service offers an application programming interface (API) that
facilitates this integration. Depending on your needs, you can install some or all services.

The following table describes the OpenStack services that make up the OpenStack
architecture:

Table 1.1. OpenStack services

Service Project name Description

Dashboard Horizon Enables users to interact with OpenStack services to launch an
instance, assign IP addresses, set access controls, and so on.

Compute Nova Provisions and manages large networks of virtual machines on
demand.

Networking Neutron Enables network connectivity as a service among interface devices
managed by other OpenStack services, usually Compute. Enables
users to create and attach interfaces to networks. Has a pluggable
architecture that supports many popular networking vendors and
technologies.

Storage

Object
Storage

Swift Stores and gets files. Does not mount directories like a file server.

Block Storage Cinder Provides persistent block storage to guest virtual machines.

Shared services

Identity
Service

Keystone Provides authentication and authorization for the OpenStack services.
Also provides a service catalog within a particular OpenStack cloud.

Image Service Glance Provides a registry of virtual machine images. Compute uses it to
provision instances.

Telemetry
Service

Ceilometer Monitors and meters the OpenStack cloud for billing, benchmarking,
scalability, and statistics purposes.

Higher-level services

http://www.openstack.org/software/openstack-dashboard/
http://docs.openstack.org/developer/horizon/
http://www.openstack.org/software/openstack-compute/
http://docs.openstack.org/developer/nova/
http://www.openstack.org/software/openstack-networking/
http://docs.openstack.org/developer/neutron/
http://www.openstack.org/software/openstack-storage/
http://www.openstack.org/software/openstack-storage/
http://docs.openstack.org/developer/swift/
http://www.openstack.org/software/openstack-storage/
http://docs.openstack.org/developer/cinder/
http://www.openstack.org/software/openstack-shared-services/
http://www.openstack.org/software/openstack-shared-services/
http://docs.openstack.org/developer/keystone/
http://www.openstack.org/software/openstack-shared-services/
http://docs.openstack.org/developer/glance/
http://www.openstack.org/software/openstack-shared-services/
http://www.openstack.org/software/openstack-shared-services/
http://docs.openstack.org/developer/ceilometer/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

2

Service Project name Description

Orchestration
Service

Heat Orchestrates multiple composite cloud applications by using either
the native HOT template format or the AWS CloudFormation
template format, through both an OpenStack-native REST API and a
CloudFormation-compatible Query API.

Conceptual architecture
The following diagram shows the relationships among the OpenStack services:

Figure 1.1. OpenStack conceptual architecture

Logical architecture
To design, install, and configure a cloud, cloud administrators must understand the logical
architecture.

OpenStack modules are one of the following types:

http://www.openstack.org/software/openstack-shared-services/
http://www.openstack.org/software/openstack-shared-services/
http://docs.openstack.org/developer/heat/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

3

• Daemon. Runs as a daemon. On Linux platforms, a daemon is usually installed as a
service.

• Script. Installs and tests of a virtual environment. For example, the run_tests.sh script
installs and optionally tests a virtual environment for a service.

• Command-line interface (CLI). Enables users to submit API calls to OpenStack services
through easy-to-use commands.

The following diagram shows the most common, but not the only, architecture for an
OpenStack cloud:

Figure 1.2. Logical architecture

As in Figure 1.1, “OpenStack conceptual architecture” [2], end users can interact
through the dashboard, CLIs, and APIs. All services authenticate through a common
Identity Service and individual services interact with each other through public APIs, except
where privileged administrator commands are necessary.

Sample architectures
This guide enables you to choose your own OpenStack adventure. OpenStack is highly
configurable to meet different needs with various storage and networking options.

This guide offers the following sample architecture examples:

• Example basic architecture. This architecture has two nodes. A cloud controller node runs
the control services, such as database, message queue, and API services for the Identity
Service, Image Service, and Compute. A compute node runs the hypervisor where virtual
machines live.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

4

Figure 1.3. Basic architecture

Cont roller

keyst one

glance-api

nova-api

nova-novncproxy

nova-scheduler

M ySQL

QPid/Rabbit M Q

Int ernal Net w ork

Ext ernal Net w ork

Cloud Nodes

nova-com put e

kvm

vm vm vmnova-cert

glance-regist ry

nova-consoleaut h

nova-net w ork

Technical details: Compute with KVM, local ephemeral storage, nova-network in multi-
host flatDHCP mode, MySQL, nova-api, default scheduler, RabbitMQ for messaging,
Identity Service with SQL back end, Image Service with local storage, Dashboard
(optional extra). Uses as many default options as possible.

• Example architecture from the OpenStack Operations Guide. Same as the basic
architecture but with the Block Storage Service LVM/iSCSI back end, nova-network in
multi-host with FlatDHCP, Live Migration back end, shared storage with NFS, and Object
Storage. One controller node and multiple compute nodes.

• Example architecture with Identity Service and Object Storage: Five-node installation with
Identity Service on the proxy node and three replications of object servers. Dashboard
does not support this configuration so examples are with CLI.

• Example architecture with OpenStack Networking.

http://docs.openstack.org/trunk/openstack-ops/content/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

5

2. Basic operating system configuration

Table of Contents
Before you begin .. 5
Networking ... 5
Network Time Protocol (NTP) ... 7
MySQL database ... 7
OpenStack packages ... 8
Messaging server ... 8

This guide shows you how to create a controller node to host most services and a compute
node to run virtual machine instances. Subsequent chapters create additional nodes to run
more services. OpenStack is flexible about how and where you run each service, so other
configurations are possible. However, you must configure certain operating system settings
on each node.

This chapter details a sample configuration for the controller node and any additional
nodes. You can configure the operating system in other ways, but this guide assumes that
your configuration is compatible with the one described here.

All example commands assume you have administrative privileges. Either run the
commands as the root user or prefix them with the sudo command.

Before you begin
We strongly recommend that you install a 64-bit operating system on your compute nodes.
If you use a 32-bit operating system, attempting a start a virtual machine using a 64-bit
image will fail with an error.

For more information about system requirements, see the OpenStack Operations Guide.

Networking
For an OpenStack production deployment, most nodes must have these network interface
cards:

• One network interface card for external network traffic

• Another card to communicate with other OpenStack nodes.

For simple test cases, you can use machines with a single network interface card.

The following example configures Networking on two networks with static IP addresses
and manually manages a list of host names on each machine. If you manage a large
network, you might already have systems in place to manage this. If so, you can skip this

http://docs.openstack.org/ops/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

6

section but note that the rest of this guide assumes that each node can reach the other
nodes on the internal network by using the controller and compute1 host names.

Configure both eth0 and eth1. The examples in this guide use the 192.168.0.x IP
addresses for the internal network and the 10.0.0.x IP addresses for the external
network. Make sure to connect your network devices to the correct network.

In this guide, the controller node uses the 192.168.0.10 and 10.0.0.10 IP addresses.
When you create the compute node, use the 192.168.0.11 and 10.0.0.11 addresses
instead. Additional nodes that you add in subsequent chapters also follow this pattern.

Figure 2.1. Basic architecture

192.168.0.1 0 192.168.0.1 1

10.0.0.1 0 10.0.0.1 1

Cloud
Cont roller

Com pute
Node

com pute1cont roller

Example 2.1. /etc/network/interfaces

Internal Network
auto eth0
iface eth0 inet static
 address 192.168.0.10
 netmask 255.255.255.0

External Network
auto eth1
iface eth1 inet static
 address 10.0.0.10
 netmask 255.255.255.0

After you configure the network, restart the daemon for changes to take effect:

service networking restart

Set the host name of each machine. Name the controller node controller and the first
compute node compute1. The examples in this guide use these host names.

Use the hostname command to set the host name:

hostname controller

To configure this host name to be available when the system reboots, you must specify it in
the /etc/hostname file, which contains a single line with the host name.

Finally, ensure that each node can reach the other nodes by using host names. You must
manually edit the /etc/hosts file on each system. For large-scale deployments, use DNS
or a configuration management system like Puppet.

127.0.0.1 localhost
192.168.0.10 controller
192.168.0.11 compute1

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

7

Network Time Protocol (NTP)
To synchronize services across multiple machines, you must install NTP. The examples in this
guide configure the controller node as the reference server and any additional nodes to set
their time from the controller node.

Install the ntp package on each system running OpenStack services.

apt-get install ntp

On additional nodes, it is advised that you configure the other nodes to synchronize their
time from the controller node rather than from outside of your LAN. To do so, install the
ntp daemon as above, then edit /etc/ntp.conf and change the server directive to use
the controller node as internet time source.

MySQL database
Most OpenStack services require a database to store information. These examples use a
MySQL database that runs on the controller node. You must install the MySQL database on
the controller node. You must install MySQL client software on any additional nodes that
access MySQL.

• On the controller node, install the MySQL client and server packages, and the Python
library.

apt-get install python-mysqldb mysql-server

Note

When you install the server package, you are prompted for the root
password for the database. Choose a strong password and remember it.

Edit /etc/mysql/my.cnf and set the bind-address to the internal IP address of the
controller, to enable access from outside the controller node.

Instead of skip-networking the default is now to listen only on
localhost which is more compatible and is not less secure.
bind-address = 192.168.0.10

Restart the MySQL service to apply the changes:

service mysql restart

• On nodes other than the controller node, install the MySQL client and the MySQL Python
library on any system that does not host a MySQL database.

apt-get install python-mysqldb

You must delete the anonymous users that are created when the database is first started.
Otherwise, database connection problems occur when you follow the instructions in this
guide. To do this, use the mysql_secure_installation command.

mysql_secure_installation

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

8

This command presents a number of options for you to secure your database installation.
Respond yes to all prompts unless you have a good reason to do otherwise.

OpenStack packages
Distributions might release OpenStack packages as part of their distribution or through
other methods because the OpenStack and distribution release times are independent of
each other.

This section describes the configuration you must complete after you configure machines to
install the latest OpenStack packages.

To use the Ubuntu Cloud Archive for Havana

The Ubuntu Cloud Archive is a special repository that allows you to install newer releases of
OpenStack on the stable supported version of Ubuntu.

1. Install the Ubuntu Cloud Archive for Havana:

apt-get install python-software-properties
add-apt-repository cloud-archive:havana

2. Upgrade the system (and reboot if you need):

apt-get update && apt-get dist-upgrade

Messaging server
On the controller node, install the messaging queue server. Typically this is RabbitMQ but
Qpid and ZeroMQ (0MQ) are also available.

apt-get install rabbitmq-server

Important security consideration

The rabbitmq-server package configures the RabbitMQ service to start
automatically and creates a guest user with a default guest password. The
RabbitMQ examples in this guide use the guest account, though it is strongly
advised to change its default password, especially if you have IPv6 available: by
default the RabbitMQ server enables anyone to connect to it by using guest as
login and password, and with IPv6, it is reachable from the outside.

To change the default guest password of RabbitMQ:

rabbitmqctl change_password guest RABBIT_PASS

Congratulations, now you are ready to install OpenStack services!

https://wiki.ubuntu.com/ServerTeam/CloudArchive

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

9

3. Configure the Identity Service

Table of Contents
Identity Service concepts ... 9
Install the Identity Service ... 10
Define users, tenants, and roles .. 11
Define services and API endpoints ... 12
Verify the Identity Service installation .. 13

Identity Service concepts
The Identity Service performs the following functions:

• User management. Tracks users and their permissions.
• Service catalog. Provides a catalog of available services with their API endpoints.

To understand the Identity Service, you must understand the following concepts:

User Digital representation of a person, system, or service who uses
OpenStack cloud services. The Identity Service validates that incoming
requests are made by the user who claims to be making the call. Users
have a login and may be assigned tokens to access resources. Users
can be directly assigned to a particular tenant and behave as if they
are contained in that tenant.

Credentials Data that is known only by a user that proves who they are. In the
Identity Service, examples are: User name and password, user name
and API key, or an authentication token provided by the Identity
Service.

Authentication The act of confirming the identity of a user. The Identity Service
confirms an incoming request by validating a set of credentials
supplied by the user.

These credentials are initially a user name and password or a user
name and API key. In response to these credentials, the Identity
Service issues an authentication token to the user, which the user
provides in subsequent requests.

Token An arbitrary bit of text that is used to access resources. Each token
has a scope which describes which resources are accessible with it. A
token may be revoked at any time and is valid for a finite duration.

While the Identity Service supports token-based authentication in
this release, the intention is for it to support additional protocols in
the future. The intent is for it to be an integration service foremost,

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

10

and not aspire to be a full-fledged identity store and management
solution.

Tenant A container used to group or isolate resources and/or identity objects.
Depending on the service operator, a tenant may map to a customer,
account, organization, or project.

Service An OpenStack service, such as Compute (Nova), Object Storage
(Swift), or Image Service (Glance). Provides one or more endpoints
through which users can access resources and perform operations.

Endpoint An network-accessible address, usually described by URL, from where
you access a service. If using an extension for templates, you can
create an endpoint template, which represents the templates of all
the consumable services that are available across the regions.

Role A personality that a user assumes that enables them to perform a
specific set of operations. A role includes a set of rights and privileges.
A user assuming that role inherits those rights and privileges.

In the Identity Service, a token that is issued to a user includes the
list of roles that user has. Services that are being called by that user
determine how they interpret the set of roles a user has and to which
operations or resources each role grants access.

The following diagram shows the Identity Service process flow:

Install the Identity Service
1. Install the OpenStack Identity Service on the controller node, together with python-

keystoneclient (which is a dependency):

apt-get install keystone

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

11

2. The Identity Service uses a database to store information. Specify the location of the
database in the configuration file. In this guide, we use a MySQL database on the
controller node with the username keystone. Replace KEYSTONE_DBPASS with a
suitable password for the database user.

Edit /etc/keystone/keystone.conf and change the [sql] section.

...
[sql]
The SQLAlchemy connection string used to connect to the database
connection = mysql://keystone:KEYSTONE_DBPASS@controller/keystone
...

3. By default, the Ubuntu packages create an SQLite database. Delete the keystone.db
file created in the /var/lib/keystone/ directory so that it does not get used by
mistake.

4. Use the password that you set previously to log in as root. Create a keystone
database user:

mysql -u root -p
mysql> CREATE DATABASE keystone;
mysql> GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' \
IDENTIFIED BY 'KEYSTONE_DBPASS';
mysql> GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' \
IDENTIFIED BY 'KEYSTONE_DBPASS';

5. Start the keystone service and create its tables:

keystone-manage db_sync
service keystone restart

6. Define an authorization token to use as a shared secret between the Identity Service
and other OpenStack services. Use openssl to generate a random token and store it in
the configuration file:

openssl rand -hex 10

Edit /etc/keystone/keystone.conf and change the [DEFAULT] section,
replacing ADMIN_TOKEN with the results of the command.

[DEFAULT]
A "shared secret" between keystone and other openstack services
admin_token = ADMIN_TOKEN
...

7. Restart the Identity Service:

service keystone restart

Define users, tenants, and roles
After you install the Identity Service, set up users, tenants, and roles to authenticate
against. These are used to allow access to services and endpoints, described in the next
section.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

12

Typically, you would indicate a user and password to authenticate with the Identity Service.
At this point, however, we have not created any users, so we have to use the authorization
token created in the previous section. You can pass this with the --os-token option to
the keystone command or set the OS_SERVICE_TOKEN environment variable. We'll set
OS_SERVICE_TOKEN, as well as OS_SERVICE_ENDPOINT to specify where the Identity
Service is running. Replace FCAF3E... with your authorization token.

export OS_SERVICE_TOKEN=FCAF3E...
export OS_SERVICE_ENDPOINT=http://controller:35357/v2.0

First, create a tenant for an administrative user and a tenant for other OpenStack services
to use.

keystone tenant-create --name=admin --description="Admin Tenant"
keystone tenant-create --name=service --description="Service Tenant"

Next, create an administrative user called admin. Choose a password for the admin user
and specify an email address for the account.

keystone user-create --name=admin --pass=ADMIN_PASS \
 --email=admin@example.com

Create a role for administrative tasks called admin. Any roles you create should map to
roles specified in the policy.json files of the various OpenStack services. The default
policy files use the admin role to allow access to most services.

keystone role-create --name=admin

Finally, you have to add roles to users. Users always log in with a tenant, and roles are
assigned to users within tenants. Add the admin role to the admin user when logging in
with the admin tenant.

keystone user-role-add --user=admin --tenant=admin --role=admin

Define services and API endpoints
The Identity Service also tracks what OpenStack services are installed and where to locate
them on the network. Run these commands for each service in your OpenStack installation:

• keystone service-create. Describes the service.

• keystone endpoint-create. Associates API endpoints with the service.

For now, create a service for the Identity Service itself that uses normal authentication
instead of the authorization token when you run the keystone command in the future.

1. Create a service entry for the Identity Service:

keystone service-create --name=keystone --type=identity \
 --description="Keystone Identity Service"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	Keystone Identity Service
id	15c11a23667e427e91bc31335b45f4bd
name	keystone

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

13

| type | identity |
+-------------+----------------------------------+

The service ID is randomly generated and is different from the one shown here.

2. Specify an API endpoint for the Identity Service by using the returned service ID. When
you specify an endpoint, you provide URLs for the public API, internal API, and admin
API. In this guide, the controller host name is used. Note that the Identity Service
uses a different port for the admin API.

keystone endpoint-create \
 --service-id=the_service_id_above \
 --publicurl=http://controller:5000/v2.0 \
 --internalurl=http://controller:5000/v2.0 \
 --adminurl=http://controller:35357/v2.0
+-------------+-----------------------------------+
| Property | Value |
+-------------+-----------------------------------+
adminurl	http://controller:35357/v2.0
id	11f9c625a3b94a3f8e66bf4e5de2679f
internalurl	http://controller:5000/v2.0
publicurl	http://controller:5000/v2.0
region	regionOne
service_id	15c11a23667e427e91bc31335b45f4bd
+-------------+-----------------------------------+

3. As you add other services to your OpenStack installation, call these commands to
register the services with the Identity Service.

Verify the Identity Service installation
To verify the Identity Service is installed and configured correctly, first unset the
OS_SERVICE_TOKEN and OS_SERVICE_ENDPOINT environment variables. These were
only used to bootstrap the administrative user and register the Identity Service.

unset OS_SERVICE_TOKEN OS_SERVICE_ENDPOINT

You can now use regular username-based authentication. Request a authentication token
using the admin user and the password you chose for that user.

keystone --os-username=admin --os-password=ADMIN_PASS \
 --os-auth-url=http://controller:35357/v2.0 token-get

You should receive a token in response, paired with your user ID. This verifies that keystone
is running on the expected endpoint, and that your user account is established with the
expected credentials.

Next, verify that authorization is behaving as expected by requesting authorization on a
tenant.

keystone --os-username=admin --os-password=ADMIN_PASS \
 --os-tenant-name=admin --os-auth-url=http://controller:35357/v2.0 token-get

You should receive a new token in response, this time including the ID of the tenant you
specified. This verifies that your user account has an explicitly defined role on the specified
tenant, and that the tenant exists as expected.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

14

You can also set your --os-* variables in your environment to simplify command-line
usage. Set up a keystonerc file with the admin credentials and admin endpoint.

export OS_USERNAME=admin
export OS_PASSWORD=ADMIN_PASS
export OS_TENANT_NAME=admin
export OS_AUTH_URL=http://controller:35357/v2.0

You can source this file to read in the environment variables.

source keystonerc

Verify that your keystonerc is configured correctly by performing the same command as
above, but without the --os-* arguments.

$ keystone token-get

The command returns a token and the ID of the specified tenant. This verifies that you
have configured your environment variables correctly.

Finally, verify that your admin account has authorization to perform administrative
commands.

keystone user-list

+----------------------------------+---------+--------------------+--------+
| id | enabled | email | name |
+----------------------------------+---------+--------------------+--------+
| a4c2d43f80a549a19864c89d759bb3fe | True | admin@example.com | admin |

This verifies that your user account has the admin role, which matches the role used in the
Identity Service policy.json file.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

15

4. Configure the Image Service

Table of Contents
Image Service overview ... 15
Install the Image Service .. 16
Verify the Image Service installation .. 18

The OpenStack Image Service enables users to discover, register, and retrieve virtual
machine images. Also known as the glance project, the Image Service offers a REST API that
enables you to query virtual machine image metadata and retrieve an actual image. Virtual
machine images made available through the Image Service can be stored in a variety of
locations from simple file systems to object-storage systems like OpenStack Object Storage.

Important

For simplicity this guide configures the Image Service to use the file backend.
This means that images uploaded to the Image Service will be stored in a
directory on the same system that hosts the service. By default this directory is /
var/lib/glance/images/.

Ensure that the system has sufficient space available under this directory to
store virtual machine images and snapshots before proceeding. At an absolute
minimum several gigabytes of space should be available for use by the Image
Service in a proof of concept deployment.

Image Service overview
The Image Service includes the following components:

• glance-api. Accepts Image API calls for image discovery, retrieval, and storage.

• glance-registry. Stores, processes, and retrieves metadata about images. Metadata
includes size, type, and so on.

• Database. Stores image metadata. You can choose your database depending on your
preference. Most deployments use MySQL or SQlite.

• Storage repository for image files. In Figure 1.2, “Logical architecture” [3], the Object
Storage Service is the image repository. However, you can configure a different
repository. The Image Service supports normal file systems, RADOS block devices,
Amazon S3, and HTTP. Some choices provide only read-only usage.

A number of periodic processes run on the Image Service to support caching. Replication
services ensures consistency and availability through the cluster. Other periodic processes
include auditors, updaters, and reapers.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

16

As shown in the section called “Conceptual architecture” [2], the Image Service is central
to the overall IaaS picture. It accepts API requests for images or image metadata from end
users or Compute components and can store its disk files in the Object Storage Service.

Install the Image Service
The OpenStack Image Service acts as a registry for virtual disk images. Users can add new
images or take a snapshot of an image from an existing server for immediate storage. Use
snapshots for back up and as templates to launch new servers. You can store registered
images in Object Storage or in other locations. For example, you can store images in simple
file systems or external web servers.

Note

This procedure assumes you set the appropriate environment variables to
your credentials as described in the section called “Verify the Identity Service
installation” [13].

1. Install the Image Service on the controller node:

apt-get install glance python-glanceclient

2. The Image Service stores information about images in a database. The examples in this
guide use the MySQL database that is used by other OpenStack services.

Configure the location of the database. The Image Service provides the glance-
api and glance-registry services, each with its own configuration file. You must
update both configuration files throughout this section. Replace GLANCE_DBPASS
with your Image Service database password.

Edit /etc/glance/glance-api.conf and /etc/glance/glance-
registry.conf and change the [DEFAULT] section.

...
[DEFAULT]
...
SQLAlchemy connection string for the reference implementation
registry server. Any valid SQLAlchemy connection string is fine.
See: http://www.sqlalchemy.org/docs/05/reference/sqlalchemy/connections.
html#sqlalchemy.create_engine
sql_connection = mysql://glance:GLANCE_DBPASS@controller/glance
...

3. By default, the Ubuntu packages create an SQLite database. Delete the
glance.sqlite file created in the /var/lib/glance/ directory so that it does not
get used by mistake.

4. Use the password you created to log in as root and create a glance database user:

mysql -u root -p
mysql> CREATE DATABASE glance;
mysql> GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' \
IDENTIFIED BY 'GLANCE_DBPASS';
mysql> GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' \

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

17

IDENTIFIED BY 'GLANCE_DBPASS';

5. Create the database tables for the Image Service:

glance-manage db_sync

6. Create a glance user that the Image Service can use to authenticate with the Identity
Service. Choose a password and specify an email address for the glance user. Use the
service tenant and give the user the admin role.

keystone user-create --name=glance --pass=GLANCE_PASS \
 --email=glance@example.com
keystone user-role-add --user=glance --tenant=service --role=admin

7. Add the credentials to the Image Service configuration files:

Edit /etc/glance/glance-api.conf and /etc/glance/glance-
registry.conf and change the [keystone_authtoken] section.

...
[keystone_authtoken]
auth_host = controller
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = glance
admin_password = GLANCE_PASS
...

8. Add the credentials to the /etc/glance/glance-api-paste.ini and /etc/
glance/glance-registry-paste.ini files.

Edit each file to set the following options in the [filter:authtoken] section and
leave any other existing option as it is.

[filter:authtoken]
paste.filter_factory=keystoneclient.middleware.auth_token:filter_factory
auth_host=controller
admin_user=glance
admin_tenant_name=service
admin_password=GLANCE_PASS

9. Register the Image Service with the Identity Service so that other OpenStack services
can locate it. Register the service and create the endpoint:

keystone service-create --name=glance --type=image \
 --description="Glance Image Service"

10. Use the id property returned for the service to create the endpoint:

keystone endpoint-create \
 --service-id=the_service_id_above \
 --publicurl=http://controller:9292 \
 --internalurl=http://controller:9292 \
 --adminurl=http://controller:9292

11. Restart the glance service with its new settings.

service glance-registry restart

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

18

service glance-api restart

Verify the Image Service installation
To test the Image Service installation, download at least one virtual machine image that is
known to work with OpenStack. For example, CirrOS is a small test image that is often used
for testing OpenStack deployments (CirrOS downloads). This walk through uses the 64-bit
CirrOS QCOW2 image.

For more information about how to download and build images, see OpenStack Virtual
Machine Image Guide. For information about how to manage images, see the OpenStack
User Guide.

1. Download the image into a dedicated directory using wget or curl:

$ mkdir images
$ cd images/
$ wget http://cdn.download.cirros-cloud.net/0.3.1/cirros-0.3.1-x86_64-
disk.img

2. Upload the image to the Image Service:

glance image-create --name=imageLabel --disk-format=fileFormat \
 --container-format=containerFormat --is-public=accessValue < imageFile

Where:

imageLabel Arbitrary label. The name by which users refer to the image.

fileFormat Specifies the format of the image file. Valid formats include
qcow2, raw, vhd, vmdk, vdi, iso, aki, ari, and ami.

You can verify the format using the file command:

$ file cirros-0.3.1-x86_64-disk.img
cirros-0.3.1-x86_64-disk.img: QEMU QCOW Image (v2),
 41126400 bytes

containerFormat Specifies the container format. Valid formats include: bare,
ovf, aki, ari and ami.

Specify bare to indicate that the image file is not in a file
format that contains metadata about the virtual machine.
Although this field is currently required, it is not actually used
by any of the OpenStack services and has no effect on system
behavior. Because the value is not used anywhere, it safe to
always specify bare as the container format.

accessValue Specifies image access:

• true - All users can view and use the image.

• false - Only administrators can view and use the image.

imageFile Specifies the name of your downloaded image file.

http://download.cirros-cloud.net/
http://docs.openstack.org/image-guide/content/index.html
http://docs.openstack.org/image-guide/content/index.html
http://docs.openstack.org/user-guide/content/index.html
http://docs.openstack.org/user-guide/content/index.html

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

19

For example:

glance image-create --name="CirrOS 0.3.1" --disk-format=qcow2 \
 --container-format=bare --is-public=true < cirros-0.3.1-x86_64-disk.img

+------------------+--------------------------------------+
| Property | Value |
+------------------+--------------------------------------+
checksum	d972013792949d0d3ba628fbe8685bce
container_format	bare
created_at	2013-10-08T18:59:18
deleted	False
deleted_at	None
disk_format	qcow2
id	acafc7c0-40aa-4026-9673-b879898e1fc2
is_public	True
min_disk	0
min_ram	0
name	CirrOS 0.3.1
owner	efa984b0a914450e9a47788ad330699d
protected	False
size	13147648
status	active
updated_at	2013-05-08T18:59:18
+------------------+--------------------------------------+

Note

Because the returned image ID is generated dynamically, your deployment
generates a different ID than the one shown in this example.

3. Confirm that the image was uploaded and display its attributes:

glance image-list

+--------------------------------------+-----------------+-------------
+------------------+----------+--------+
| ID | Name | Disk Format |
 Container Format | Size | Status |
+--------------------------------------+-----------------+-------------
+------------------+----------+--------+
| acafc7c0-40aa-4026-9673-b879898e1fc2 | CirrOS 0.3.1 | qcow2 |
 bare | 13147648 | active |
+--------------------------------------+-----------------+-------------
+------------------+----------+--------+

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

20

5. Configure Compute services

Table of Contents
Compute service .. 20
Install Compute controller services ... 23
Configure a Compute node ... 25
Enable Networking .. 27
Launch an instance ... 28

Compute service
The Compute service is a cloud computing fabric controller, which is the main part of an
IaaS system. Use it to host and manage cloud computing systems. The main modules are
implemented in Python.

Compute interacts with the Identity Service for authentication, Image Service for images,
and the Dashboard for the user and administrative interface. Access to images is limited by
project and by user; quotas are limited per project (for example, the number of instances).
The Compute service scales horizontally on standard hardware, and downloads images to
launch instances as required.

The Compute Service is made up of the following functional areas and their underlying
components:

API

• nova-api service. Accepts and responds to end user compute API calls. Supports the
OpenStack Compute API, the Amazon EC2 API, and a special Admin API for privileged
users to perform administrative actions. Also, initiates most orchestration activities, such
as running an instance, and enforces some policies.

• nova-api-metadata service. Accepts metadata requests from instances. The nova-
api-metadata service is generally only used when you run in multi-host mode
with nova-network installations. For details, see Metadata service in the Cloud
Administrator Guide.

On Debian systems, it is included in the nova-api package, and can be selected through
debconf.

Compute core

• nova-compute process. A worker daemon that creates and terminates virtual machine
instances through hypervisor APIs. For example, XenAPI for XenServer/XCP, libvirt for
KVM or QEMU, VMwareAPI for VMware, and so on. The process by which it does so is
fairly complex but the basics are simple: Accept actions from the queue and perform
a series of system commands, like launching a KVM instance, to carry them out while
updating state in the database.

http://docs.openstack.org/admin-guide-cloud/content/section_metadata-service.html

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

21

• nova-scheduler process. Conceptually the simplest piece of code in Compute. Takes
a virtual machine instance request from the queue and determines on which compute
server host it should run.

• nova-conductor module. Mediates interactions between nova-compute and the
database. Aims to eliminate direct accesses to the cloud database made by nova-
compute. The nova-conductor module scales horizontally. However, do not deploy
it on any nodes where nova-compute runs. For more information, see A new Nova
service: nova-conductor.

Networking for VMs

• nova-network worker daemon. Similar to nova-compute, it accepts networking
tasks from the queue and performs tasks to manipulate the network, such as setting
up bridging interfaces or changing iptables rules. This functionality is being migrated to
OpenStack Networking, which is a separate OpenStack service.

• nova-dhcpbridge script. Tracks IP address leases and records them in the database
by using the dnsmasq dhcp-script facility. This functionality is being migrated to
OpenStack Networking. OpenStack Networking provides a different script.

http://russellbryantnet.wordpress.com/2012/11/19/a-new-nova-service-nova-conductor/
http://russellbryantnet.wordpress.com/2012/11/19/a-new-nova-service-nova-conductor/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

22

Console interface

• nova-consoleauth daemon. Authorizes tokens for users that console proxies provide.
See nova-novncproxy and nova-xvpnvcproxy. This service must be running for
console proxies to work. Many proxies of either type can be run against a single nova-
consoleauth service in a cluster configuration. For information, see About nova-
consoleauth.

• nova-novncproxy daemon. Provides a proxy for accessing running instances through a
VNC connection. Supports browser-based novnc clients.

• nova-console daemon. Deprecated for use with Grizzly. Instead, the nova-
xvpnvncproxy is used.

• nova-xvpnvncproxy daemon. A proxy for accessing running instances through a VNC
connection. Supports a Java client specifically designed for OpenStack.

• nova-cert daemon. Manages x509 certificates.

Image management (EC2 scenario)

• nova-objectstore daemon. Provides an S3 interface for registering images with the
Image Service. Mainly used for installations that must support euca2ools. The euca2ools
tools talk to nova-objectstore in S3 language, and nova-objectstore translates
S3 requests into Image Service requests.

• euca2ools client. A set of command-line interpreter commands for managing cloud
resources. Though not an OpenStack module, you can configure nova-api to support
this EC2 interface. For more information, see the Eucalyptus 2.0 Documentation.

Command-line clients and other interfaces

• nova client. Enables users to submit commands as a tenant administrator or end user.

• nova-manage client. Enables cloud administrators to submit commands.

Other components

• The queue. A central hub for passing messages between daemons. Usually implemented
with RabbitMQ, but could be any AMPQ message queue, such as Apache Qpid or Zero
MQ.

• SQL database. Stores most build-time and runtime states for a cloud infrastructure.
Includes instance types that are available for use, instances in use, available networks,
and projects. Theoretically, OpenStack Compute can support any database that SQL-
Alchemy supports, but the only databases widely used are sqlite3 databases (only
appropriate for test and development work), MySQL, and PostgreSQL.

The Compute Service interacts with other OpenStack services: Identity Service for
authentication, Image Service for images, and the OpenStack dashboard for a web
interface.

http://docs.openstack.org/trunk/config-reference/content/about-nova-consoleauth.html
http://docs.openstack.org/trunk/config-reference/content/about-nova-consoleauth.html
http://www.eucalyptus.com/eucalyptus-cloud/documentation/2.0
http://www.rabbitmq.com/
http://qpid.apache.org/
http://www.zeromq.org/
http://www.zeromq.org/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

23

Install Compute controller services
Compute is a collection of services that enable you to launch virtual machine instances. You
can configure these services to run on separate nodes or the same node. In this guide, most
services run on the controller node and the service that launches virtual machines runs on a
dedicated compute node. This section shows you how to install and configure these services
on the controller node.

1. Install these Compute packages, which provide the Compute services that run on the
controller node.

apt-get install nova-novncproxy novnc nova-api \
 nova-ajax-console-proxy nova-cert nova-conductor \
 nova-consoleauth nova-doc nova-scheduler \
 python-novaclient

2. Compute stores information in a database. The examples in this guide use the MySQL
database that is used by other OpenStack services.

Configure the location of the database. Replace NOVA_DBPASS with your Compute
service password:

Edit the /etc/nova/nova.conf file and add these lines to the [database] and
[keystone_authtoken] sections:

...
[database]
The SQLAlchemy connection string used to connect to the database
connection = mysql://nova:NOVA_DBPASS@controller/nova
[keystone_authtoken]
auth_host = controller
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = nova
admin_password = NOVA_PASS

3. Configure the Compute Service to use the RabbitMQ message broker by setting these
configuration keys in the [DEFAULT] configuration group of the /etc/nova/
nova.conf file:

rpc_backend = nova.rpc.impl_kombu
rabbit_host = controller
rabbit_password = RABBIT_PASS

4. By default, the Ubuntu packages create an SQLite database. Delete the nova.sqlite
file created in the /var/lib/nova/ directory so that it does not get used by mistake.

5. Use the password you created previously to log in as root. Create a nova database
user:

mysql -u root -p
mysql> CREATE DATABASE nova;
mysql> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost' \
IDENTIFIED BY 'NOVA_DBPASS';
mysql> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' \
IDENTIFIED BY 'NOVA_DBPASS';

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

24

6. Create the Compute service tables:

nova-manage db sync

7. Set the my_ip, vncserver_listen, and vncserver_proxyclient_address
configuration options to the internal IP address of the controller node:

Edit the /etc/nova/nova.conf file and add these lines to the [DEFAULT] section:

...
[DEFAULT]
...
my_ip=192.168.0.10
vncserver_listen=192.168.0.10
vncserver_proxyclient_address=192.168.0.10

8. Create a nova user that Compute uses to authenticate with the Identity Service. Use
the service tenant and give the user the admin role:

keystone user-create --name=nova --pass=NOVA_PASS --email=nova@example.
com
keystone user-role-add --user=nova --tenant=service --role=admin

9. For Compute to use these credentials, you must edit the nova.conf configuration
file:

Edit the /etc/nova/nova.conf file and add these lines to the [DEFAULT] section:

...
[DEFAULT]
...
auth_strategy=keystone

10. Add the credentials to the /etc/nova/api-paste.ini file. Add these options to
the [filter:authtoken] section:

Use of .ini files

You might sometimes have to edit .ini files during initial setup. However,
do not edit these files for general configuration tasks.

[filter:authtoken]
paste.filter_factory=keystoneclient.middleware.auth_token:filter_factory
auth_host=controller
auth_port=5000
auth_protocol=http
auth_uri=http://controller:5000/v2.0
admin_tenant_name=service
admin_user=nova
admin_password=NOVA_PASS

Note

Ensure that the api_paste_config=/etc/nova/api-paste.ini
option is set in the /etc/nova/nova.conf file.

11. You must register Compute with the Identity Service so that other OpenStack services
can locate it. Register the service and specify the endpoint:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

25

keystone service-create --name=nova --type=compute \
 --description="Nova Compute service"

12. Use the id property that is returned to create the endpoint.

keystone endpoint-create \
 --service-id=the_service_id_above \
 --publicurl=http://controller:8774/v2/%\(tenant_id\)s \
 --internalurl=http://controller:8774/v2/%\(tenant_id\)s \
 --adminurl=http://controller:8774/v2/%\(tenant_id\)s

13. Restart Compute services:

service nova-api restart
service nova-cert restart
service nova-consoleauth restart
service nova-scheduler restart
service nova-conductor restart
service nova-novncproxy restart

14. To verify your configuration, list available images:

nova image-list
+--------------------------------------+-----------------+--------
+--------+
| ID | Name | Status | Server
 |
+--------------------------------------+-----------------+--------
+--------+
| acafc7c0-40aa-4026-9673-b879898e1fc2 | CirrOS 0.3.1 | ACTIVE |
 |
+--------------------------------------+-----------------+--------
+--------+

Configure a Compute node
After you configure the Compute service on the controller node, you must configure
another system as a Compute node. The Compute node receives requests from the
controller node and hosts virtual machine instances. You can run all services on a single
node, but the examples in this guide use separate systems. This makes it easy to scale
horizontally by adding additional Compute nodes following the instructions in this section.

The Compute service relies on a hypervisor to run virtual machine instances. OpenStack can
use various hypervisors, but this guide uses KVM.

1. Configure the system. Use the instructions in Chapter 2, “Basic operating system
configuration” [5], but note the following differences from the controller node:

• Use different IP addresses when you configure eth0. This guide uses
192.168.0.11 for the internal network. Do not configure eth1 with a static IP
address. The networking component of OpenStack assigns and configures an IP
address.

• Set the host name to compute1. To verify, use the uname -n parameter. Ensure
that the IP addresses and host names for both nodes are listed in the /etc/hosts
file on each system.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

26

• Synchronize from the controller node. Follow the instructions in the section called
“Network Time Protocol (NTP)” [7].

• Install the MySQL client libraries. You do not need to install the MySQL database
server or start the MySQL service.

• Enable the OpenStack packages for the distribution that you are using. See the
section called “OpenStack packages” [8].

2. After you configure the operating system, install the appropriate packages for the
Compute service.

Run this command:

apt-get install nova-compute-kvm python-guestfs

When prompted to create a supermin appliance, respond yes.

3. Due to this bug, which is marked Won't Fix, guestfs is restricted. Run this command
to relax the restriction:

chmod 0644 /boot/vmlinuz*

4. Edit the /etc/nova/nova.conf configuration file and add these lines to the
appropriate sections:

...
[DEFAULT]
...
auth_strategy=keystone
...
[database]
The SQLAlchemy connection string used to connect to the database
connection = mysql://nova:NOVA_DBPASS@controller/nova

5. Configure the Compute Service to use the RabbitMQ message broker by setting these
configuration keys in the [DEFAULT] configuration group of the /etc/nova/
nova.conf file:

rpc_backend = nova.rpc.impl_kombu
rabbit_host = controller
rabbit_password = RABBIT_PASS

6. Set the my_ip, vncserver_listen, and vncserver_proxyclient_address
configuration keys to the IP address of the compute node on the internal network:

Edit /etc/nova/nova.conf and add to the [DEFAULT] section.

[DEFAULT]
...
my_ip=192.168.0.11
vnc_enabled=True
vncserver_listen=0.0.0.0
vncserver_proxyclient_address=192.168.0.11
novncproxy_base_url=http://controller:6080/vnc_auto.html

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/759725

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

27

7. Specify the host that runs the Image Service. Edit /etc/nova/nova.conf file and
add these lines to the [DEFAULT] section:

[DEFAULT]
...
glance_host=controller

8. Edit the /etc/nova/api-paste.ini file to add the credentials to the
[filter:authtoken] section:

Use of .ini files

Files with the extension .ini sometimes need to be edited during initial
setup. However, they should not be used for general configuration tasks.

[filter:authtoken]
paste.filter_factory=keystoneclient.middleware.auth_token:filter_factory
auth_host=controller
auth_port = 35357
auth_protocol = http
admin_user=nova
admin_tenant_name=service
admin_password=NOVA_PASS

9. Restart the Compute service.

service nova-compute restart

10. Remove the SQLite database created by the packages:

rm /var/lib/nova/nova.sqlite

Enable Networking
Configuring Networking can be a bewildering experience. The following example shows
the simplest production-ready configuration that is available: the legacy networking in
OpenStack Compute, with a flat network, that takes care of DHCP.

This set up uses multi-host functionality. Networking is configured to be highly available by
distributing networking functionality across multiple hosts. As a result, no single network
controller acts as a single point of failure. This process configures each compute node for
networking.

Note

If you need the full software-defined networking stack, see Chapter 9, “Install
the Networking service” [57].

1. Install the appropriate packages for compute networking:

apt-get install nova-network

2. Edit the nova.conf file to define the networking mode:

Edit the /etc/nova/nova.conf file and add these lines to the [DEFAULT] section:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

28

[DEFAULT]
...

network_manager=nova.network.manager.FlatDHCPManager
firewall_driver=nova.virt.libvirt.firewall.IptablesFirewallDriver
network_size=254
allow_same_net_traffic=False
multi_host=True
send_arp_for_ha=True
share_dhcp_address=True
force_dhcp_release=True
flat_network_bridge=br100
flat_interface=eth1
public_interface=eth1

3. Restart the network service:

service nova-network restart

Create a network that virtual machines can use. Do this once for the entire installation and
not on each compute node. Run the nova network-create command on the controller:

source keystonerc

nova network-create vmnet --fixed-range-v4=10.0.0.0/24 \
 --bridge-interface=br100 --multi-host=T

Launch an instance
After you configure the Compute services, you can launch an instance. An instance is a
virtual machine that OpenStack provisions on a Compute servers. This example shows you
how to launch a low-resource instance by using a downloaded image.

Note

This procedure assumes you have:

• Installed the nova client library on the machine on which you will run the
commands (log on the controller if you are not sure).

• Set environment variables to specify your credentials. See the section called
“Verify the Identity Service installation” [13].

• Downloaded an image. See the section called “Verify the Image Service
installation” [18].

• Configured networking. See the section called “Enable Networking” [27].

1. Generate a keypair that consists of a private and public key to be able to launch
instances on OpenStack. These keys are injected into the instances to make password-
less SSH access to the instance. This depends on the way the necessary tools are
bundled into the images. For more details, see the OpenStack Admin User Guide.

$ ssh-keygen
$ cd .ssh

http://docs.openstack.org/user-guide-admin/content/cli_manage_images.html

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

29

$ nova keypair-add --pub_key id_rsa.pub mykey

You have just created the mykey keypair. The id_rsa private key is saved locally in
~/.ssh, which you can use to connect to an instance launched by using mykey as the
keypair. To view available keypairs:

$ nova keypair-list
+--------+---+
| Name | Fingerprint |
+--------+---+
| mykey | b0:18:32:fa:4e:d4:3c:1b:c4:6c:dd:cb:53:29:13:82 |
+--------+---+

2. To launch an instance, you must specify the ID for the flavor you want to use for the
instance. A flavor is a resource allocation profile. For example, it specifies how many
virtual CPUs and how much RAM your instance gets. To see a list of the available
profiles:

$ nova flavor-list
+----+-----------+-----------+------+-----------+------+-------
+-------------+-----------+
| ID | Name | Memory_MB | Disk | Ephemeral | Swap | VCPUs |
 RXTX_Factor | Is_Public |
+----+-----------+-----------+------+-----------+------+-------
+-------------+-----------+
| 1 | m1.tiny | 512 | 1 | 0 | | 1 | 1.0
 | True |
| 2 | m1.small | 2048 | 20 | 0 | | 1 | 1.0
 | True |
| 3 | m1.medium | 4096 | 40 | 0 | | 2 | 1.0
 | True |
| 4 | m1.large | 8192 | 80 | 0 | | 4 | 1.0
 | True |
| 5 | m1.xlarge | 16384 | 160 | 0 | | 8 | 1.0
 | True |
+----+-----------+-----------+------+-----------+------+-------
+-------------+-----------+

3. Get the ID of the image to use for the instance:

$ nova image-list
+--------------------------------------+--------------+--------+--------+
| ID | Name | Status | Server |
+--------------------------------------+--------------+--------+--------+
| 9e5c2bee-0373-414c-b4af-b91b0246ad3b | CirrOS 0.3.1 | ACTIVE | |
+--------------------------------------+--------------+--------+--------+

4. To use SSH and ping, you must configure security group rules. See the OpenStack User
Guide.

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

5. Launch the instance:

$ nova boot --flavor flavorType --key_name keypairName --
image ID newInstanceName

Create an instance by using flavor 1 or 2. For example:

http://docs.openstack.org/user-guide/content/
http://docs.openstack.org/user-guide/content/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

30

$ nova boot --flavor 1 --key_name mykey --image 9e5c2bee-0373-414c-b4af-
b91b0246ad3b --security_group default cirrOS
+--------------------------------------
+--------------------------------------+
| Property | Value
 |
+--------------------------------------
+--------------------------------------+
| OS-EXT-STS:task_state | scheduling
 |
| image | CirrOS 0.3.1
 |
| OS-EXT-STS:vm_state | building
 |
| OS-EXT-SRV-ATTR:instance_name | instance-00000001
 |
| OS-SRV-USG:launched_at | None
 |
| flavor | m1.tiny
 |
| id | 3bdf98a0-c767-4247-
bf41-2d147e4aa043 |
| security_groups | [{u'name': u'default'}]
 |
| user_id | 530166901fa24d1face95cda82cfae56
 |
| OS-DCF:diskConfig | MANUAL
 |
| accessIPv4 |
 |
| accessIPv6 |
 |
| progress | 0
 |
| OS-EXT-STS:power_state | 0
 |
| OS-EXT-AZ:availability_zone | nova
 |
| config_drive |
 |
| status | BUILD
 |
| updated | 2013-10-10T06:47:26Z
 |
| hostId |
 |
| OS-EXT-SRV-ATTR:host | None
 |
| OS-SRV-USG:terminated_at | None
 |
| key_name | mykey
 |
| OS-EXT-SRV-ATTR:hypervisor_hostname | None
 |
| name | cirrOS
 |
| adminPass | DWCDW6FnsKNq
 |

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

31

| tenant_id | e66d97ac1b704897853412fc8450f7b9
 |
| created | 2013-10-10T06:47:23Z
 |
| os-extended-volumes:volumes_attached | []
 |
| metadata | {}
 |
+--------------------------------------
+--------------------------------------+

Note

If sufficient RAM is not available for the instance, Compute creates, but
does not start, the instance and sets the status for the instance to ERROR.

6. After the instance launches, use the nova list to view its status. The status changes
from BUILD to ACTIVE:

$ nova list
+--------------------------------------+-----------+--------+------------
+-------------+----------------+
| ID | Name | Status | Task State |
 Power State | Networks |
+--------------------------------------+-----------+--------+------------
+-------------+----------------+
| dcc4a894-869b-479a-a24a-659eef7a54bd | cirrOS | BUILD | spawning |
 NOSTATE | vmnet=10.0.0.3 |
+--------------------------------------+-----------+--------+------------
+-------------+----------------+
$ nova list
+--------------------------------------+-----------+--------+------------
+-------------+----------------+
| ID | Name | Status | Task State |
 Power State | Networks |
+--------------------------------------+-----------+--------+------------
+-------------+----------------+
| dcc4a894-869b-479a-a24a-659eef7a54bd | cirrOS | ACTIVE | None |
 Running | vmnet=10.0.0.3 |
+--------------------------------------+-----------+--------+------------
+-------------+----------------+

Note

To show details for a specified instance:

$ nova show dcc4a894-869b-479a-a24a-659eef7a54bd
 +--------------------------------------
+--+
| Property | Value
 |
+--------------------------------------
+--+
| status | ACTIVE
 |
| updated | 2013-10-16T21:55:24Z
 |
| OS-EXT-STS:task_state | None
 |

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

32

| OS-EXT-SRV-ATTR:host | compute-node
 |
| key_name | mykey
 |
| image | cirros
 (918a1017-8a1b-41ff-8809-6106ba45366e) |
| vmnet network | 10.0.0.3
 |
| hostId |
 306d7c693911170ad4e5218f626f531cc68caa45f3a0f70f1aeba94d |
| OS-EXT-STS:vm_state | active
 |
| OS-EXT-SRV-ATTR:instance_name | instance-0000000a
 |
| OS-SRV-USG:launched_at | 2013-10-16T21:55:24.
000000 |
| OS-EXT-SRV-ATTR:hypervisor_hostname | compute-node
 |
| flavor | m1.tiny (1)
 |
| id | dcc4a894-869b-479a-
a24a-659eef7a54bd |
| security_groups | [{u'name': u'default'}]
 |
| OS-SRV-USG:terminated_at | None
 |
| user_id |
 887ac8736b5b473b9dc3c5430a88b15f |
| name | cirrOS
 |
| created | 2013-10-16T21:54:52Z
 |
| tenant_id |
 43ab520b2b484578bb6924c0ea926190 |
| OS-DCF:diskConfig | MANUAL
 |
| metadata | {}
 |
| os-extended-volumes:volumes_attached | []
 |
| accessIPv4 |
 |
| accessIPv6 |
 |
| progress | 0
 |
| OS-EXT-STS:power_state | 1
 |
| OS-EXT-AZ:availability_zone | nova
 |
| config_drive |
 |
+--------------------------------------
+--+

7. After the instance boots and initializes and you have configured security groups, you
can ssh into the instance without a password by using the keypair you specified in
the nova boot command. Use the nova list command to get the IP address for the

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

33

instance. You do not need to specify the private key because it was stored in the
default location, ~/.ssh/.id_rsa, for the ssh client.

Note

If using a CirrOS image to spawn an instance you must log in as the
cirros, and not the root, user.

You can also log in to the cirros account without an ssh key by using the
cubswin:) password:

$ ssh cirros@10.0.0.3

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

34

6. Add the dashboard

Table of Contents
System requirements ... 34
Install the dashboard .. 35
Set up session storage for the dashboard .. 36

The OpenStack dashboard, also known as Horizon, is a Web interface that enables cloud
administrators and users to manage various OpenStack resources and services.

The dashboard enables web-based interactions with the OpenStack Compute cloud
controller through the OpenStack APIs.

These instructions show an example deployment configured with an Apache web server.

After you install and configure the dashboard, you can complete the following tasks:

• Customize your dashboard. See section Customize the dashboard in the OpenStack Cloud
Administrator Guide.

• Set up session storage for the dashboard. See the section called “Set up session storage
for the dashboard” [36].

System requirements
Before you install the OpenStack dashboard, you must meet the following system
requirements:

• OpenStack Compute installation. Enable the Identity Service for user and project
management.

Note the URLs of the Identity Service and Compute endpoints.

• Identity Service user with sudo privileges. Because Apache does not serve content from a
root user, users must run the dashboard as an Identity Service user with sudo privileges.

• Python 2.6 or 2.7. The Python version must support Django. The Python version should
run on any system, including Mac OS X. Installation prerequisites might differ by
platform.

Then, install and configure the dashboard on a node that can contact the Identity Service.

Provide users with the following information so that they can access the dashboard
through a web browser on their local machine:

• The public IP address from which they can access the dashboard

• The user name and password with which they can access the dashboard

Your web browser, and that of your users, must support HTML5 and have cookies and
JavaScript enabled.

https://github.com/openstack/horizon/
http://docs.openstack.org/admin-guide-cloud/content/ch_install-dashboard.html#dashboard-custom-brand
http://docs.openstack.org/admin-guide-cloud/content/
http://docs.openstack.org/admin-guide-cloud/content/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

35

Note

To use the VNC client with the dashboard, the browser must support HTML5
Canvas and HTML5 WebSockets.

For details about browsers that support noVNC, see https://github.com/
kanaka/noVNC/blob/master/README.md, and https://github.com/kanaka/
noVNC/wiki/Browser-support, respectively.

Install the dashboard
Before you can install and configure the dashboard, meet the requirements in the section
called “System requirements” [34].

Note

When you install only Object Storage and the Identity Service, even if you install
the dashboard, it does not pull up projects and is unusable.

For more information about how to deploy the dashboard, see deployment topics in the
developer documentation.

1. Install the dashboard on the node that can contact the Identity Service as root:

apt-get install memcached libapache2-mod-wsgi openstack-dashboard

Note for Ubuntu users

Remove the openstack-dashboard-ubuntu-theme package. This
theme prevents translations, several menus as well as the network map
from rendering correctly:

apt-get remove --purge openstack-dashboard-ubuntu-theme

2. Modify the value of CACHES['default']['LOCATION'] in /etc/
openstack-dashboard/local_settings.py to match the ones set in /etc/
memcached.conf.

Open /etc/openstack-dashboard/local_settings.py and look for this line:

CACHES = {
'default': {
'BACKEND' : 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION' : '127.0.0.1:11211'
}
}

Notes

• The address and port must match the ones set in /etc/
memcached.conf.

If you change the memcached settings, you must restart the Apache web
server for the changes to take effect.

https://github.com/kanaka/noVNC/blob/master/README.md
https://github.com/kanaka/noVNC/blob/master/README.md
https://github.com/kanaka/noVNC/wiki/Browser-support
https://github.com/kanaka/noVNC/wiki/Browser-support
http://docs.openstack.org/developer/horizon/topics/deployment.html
http://docs.openstack.org/developer/horizon/topics/deployment.html

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

36

• You can use options other than memcached option for session storage.
Set the session back-end through the SESSION_ENGINE option.

• To change the timezone, use the dashboard or edit the /etc/
openstack-dashboard/local_settings.py file.

Change the following parameter: TIME_ZONE = "UTC"

3. Update the ALLOWED_HOSTS in local_settings.py to include the addresses you
wish to access the dashboard from.

Edit /etc/openstack-dashboard/local_settings.py:

ALLOWED_HOSTS = ['localhost', 'my-desktop']

4. This guide assumes that you are running the Dashboard on the controller node.
You can easily run the dashboard on a separate server, by changing the appropriate
settings in local_settings.py.

Edit /etc/openstack-dashboard/local_settings.py and change
OPENSTACK_HOST to the hostname of your Identity Service:

OPENSTACK_HOST = "controller"

5. Start the Apache web server and memcached:

service apache2 restart
service memcached restart

6. You can now access the dashboard at http://controller/horizon .

Login with credentials for any user that you created with the OpenStack Identity
Service.

Set up session storage for the dashboard
The dashboard uses Django sessions framework to handle user session data. However,
you can use any available session back end. You customize the session back end through
the SESSION_ENGINE setting in your local_settings file (on Fedora/RHEL/CentOS:
/etc/openstack-dashboard/local_settings, on Ubuntu and Debian: /etc/
openstack-dashboard/local_settings.py and on openSUSE: /usr/share/
openstack-dashboard/openstack_dashboard/local/local_settings.py).

The following sections describe the pros and cons of each option as it pertains to deploying
the dashboard.

Local memory cache

Local memory storage is the quickest and easiest session back end to set up, as it has no
external dependencies whatsoever. It has the following significant drawbacks:

• No shared storage across processes or workers.

https://docs.djangoproject.com/en/dev/topics/http/sessions/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

37

• No persistence after a process terminates.

The local memory back end is enabled as the default for Horizon solely because it has no
dependencies. It is not recommended for production use, or even for serious development
work. Enabled by:

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
CACHES = {
 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache'
}

Key-value stores

You can use applications such as Memcached or Redis for external caching. These
applications offer persistence and shared storage and are useful for small-scale
deployments and/or development.

Memcached

Memcached is an high-performance and distributed memory object caching system
providing in-memory key-value store for small chunks of arbitrary data.

Requirements:

• Memcached service running and accessible.

• Python module python-memcached installed.

Enabled by:

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
CACHES = {
 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache'
 'LOCATION': 'my_memcached_host:11211',
}

Redis

Redis is an open source, BSD licensed, advanced key-value store. It is often referred to as a
data structure server.

Requirements:

• Redis service running and accessible.

• Python modules redis and django-redis installed.

Enabled by:

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
CACHES = {
 "default": {
 "BACKEND": "redis_cache.cache.RedisCache",
 "LOCATION": "127.0.0.1:6379:1",
 "OPTIONS": {
 "CLIENT_CLASS": "redis_cache.client.DefaultClient",
 }
 }
}

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

38

Initialize and configure the database

Database-backed sessions are scalable, persistent, and can be made high-concurrency and
highly-available.

However, database-backed sessions are one of the slower session storages and incur a high
overhead under heavy usage. Proper configuration of your database deployment can also
be a substantial undertaking and is far beyond the scope of this documentation.

1. Start the mysql command line client:

$ mysql -u root -p

2. Enter the MySQL root user's password when prompted.

3. To configure the MySQL database, create the dash database:

mysql> CREATE DATABASE dash;

4. Create a MySQL user for the newly-created dash database that has full control of the
database. Replace DB_PASS with a password for the new user:

mysql> GRANT ALL ON dash.* TO 'dash'@'%' IDENTIFIED BY 'DB_PASS';
mysql> GRANT ALL ON dash.* TO 'dash'@'localhost' IDENTIFIED BY 'DB_PASS';

5. Enter quit at the mysql> prompt to exit MySQL.

6. In the local_settings file (on Fedora/RHEL/CentOS: /etc/openstack-
dashboard/local_settings, on Ubuntu/Debian: /etc/openstack-
dashboard/local_settings.py and on openSUSE: /usr/share/openstack-
dashboard/openstack_dashboard/local/local_settings.py), change
these options:

SESSION_ENGINE = 'django.core.cache.backends.db.DatabaseCache'
DATABASES = {
 'default': {
 # Database configuration here
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'dash',
 'USER': 'dash',
 'PASSWORD': 'DB_PASS',
 'HOST': 'localhost',
 'default-character-set': 'utf8'
 }
}

7. After configuring the local_settings as shown, you can run the manage.py
syncdb command to populate this newly-created database.

$ /usr/share/openstack-dashboard/manage.py syncdb

As a result, the following output is returned:

Installing custom SQL ...
Installing indexes ...
DEBUG:django.db.backends:(0.008) CREATE INDEX `django_session_c25c2c28` ON
 `django_session` (`expire_date`);; args=()
No fixtures found.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

39

8. On Ubuntu: If you want to avoid a warning when you restart apache2, create a
blackhole directory in the dashboard directory, as follows:

sudo mkdir -p /var/lib/dash/.blackhole

9. Restart Apache to pick up the default site and symbolic link settings:

On Ubuntu:

/etc/init.d/apache2 restart

On Fedora/RHEL/CentOS:

service httpd restart

service apache2 restart

On openSUSE:

systemctl restart apache2.service

10. On Ubuntu, restart the nova-api service to ensure that the API server can connect to
the dashboard without error:

sudo restart nova-api

Cached database

To mitigate the performance issues of database queries, you can use the Django cached_db
session back end, which utilizes both your database and caching infrastructure to perform
write-through caching and efficient retrieval.

Enable this hybrid setting by configuring both your database and cache, as discussed
previously. Then, set the following value:

SESSION_ENGINE = "django.contrib.sessions.backends.cached_db"

Cookies

If you use Django 1.4 or later, the signed_cookies back end avoids server load and scaling
problems.

This back end stores session data in a cookie, which is stored by the user’s browser. The
back end uses a cryptographic signing technique to ensure session data is not tampered
with during transport. This is not the same as encryption; session data is still readable by an
attacker.

The pros of this engine are that it requires no additional dependencies or infrastructure
overhead, and it scales indefinitely as long as the quantity of session data being stored fits
into a normal cookie.

The biggest downside is that it places session data into storage on the user’s machine and
transports it over the wire. It also limits the quantity of session data that can be stored.

See the Django cookie-based sessions documentation.

https://docs.djangoproject.com/en/dev/topics/http/sessions/#using-cookie-based-sessions

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

40

7. Add the Block Storage Service

Table of Contents
Block Storage Service .. 40
Configure a Block Storage Service controller .. 40
Configure a Block Storage Service node ... 42

The OpenStack Block Storage Service works though the interaction of a series of daemon
processes named cinder-* that reside persistently on the host machine or machines. You
can run the binaries from a single node or across multiple nodes. You can also run them on
the same node as other OpenStack services. The following sections introduce Block Storage
Service components and concepts and show you how to configure and install the Block
Storage Service.

Block Storage Service
The Block Storage Service enables management of volumes, volume snapshots, and volume
types. It includes the following components:

• cinder-api. Accepts API requests and routes them to cinder-volume for action.

• cinder-volume. Responds to requests to read from and write to the Block Storage
database to maintain state, interacting with other processes (like cinder-scheduler)
through a message queue and directly upon block storage providing hardware or
software. It can interact with a variety of storage providers through a driver architecture.

• cinder-scheduler daemon. Like the nova-scheduler, picks the optimal block
storage provider node on which to create the volume.

• Messaging queue. Routes information between the Block Storage Service processes.

The Block Storage Service interacts with Compute to provide volumes for instances.

Configure a Block Storage Service controller
To create the components that control the Block Storage Service, complete the following
steps on the controller node.

You can configure OpenStack to use various storage systems. The examples in this guide
show you how to configure LVM.

1. Install the appropriate packages for the Block Storage Service:

apt-get install cinder-api cinder-scheduler

2. The Block Storage Service stores volume information in a database. The examples in
this section use the MySQL database that is used by other OpenStack services.

Configure the Block Storage Service to use the database. Replace CINDER_DBPASS
with a password of your choosing.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

41

Edit /etc/cinder/cinder.conf and change the [database] section.

[database]
...
The SQLAlchemy connection string used to connect to the
database (string value)
connection = mysql://cinder:CINDER_DBPASS@localhost/cinder
...

3. Use the password that you set to log in as root to create a cinder database.

mysql -u root -p
mysql> CREATE DATABASE cinder;
mysql> GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'localhost' \
IDENTIFIED BY 'CINDER_DBPASS';
mysql> GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'%' \
IDENTIFIED BY 'CINDER_DBPASS';

4. Create the database tables for the Block Storage Service.

cinder-manage db sync

5. Create a cinder user. The Block Storage Service uses this user to authenticate with
the Identity Service. Use the service tenant and give the user the admin role.

keystone user-create --name=cinder --pass=CINDER_PASS --
email=cinder@example.com
keystone user-role-add --user=cinder --tenant=service --role=admin

6. Add the credentials to the file /etc/cinder/api-paste.ini. Open the file in a
text editor and locate the section [filter:authtoken]. Set the following options:

[filter:authtoken]
paste.filter_factory=keystoneclient.middleware.auth_token:filter_factory
auth_host=controller
auth_port = 35357
auth_protocol = http
admin_tenant_name=service
admin_user=cinder
admin_password=CINDER_PASS

7. Configure the Block Storage Service to use the RabbitMQ message broker by setting
the following configuration keys. They are found in the DEFAULT configuration group
of the /etc/cinder/cinder.conf file.

rpc_backend = cinder.openstack.common.rpc.impl_kombu
rabbit_host = controller
rabbit_port = 5672
rabbit_userid = guest
rabbit_password = RABBIT_PASS

8. Register the Block Storage Service with the Identity Service so that other OpenStack
services can locate it. Register the service and specify the endpoint using the keystone
command.

keystone service-create --name=cinder --type=volume \
 --description="Cinder Volume Service"

Note the id property returned and use it to create the endpoint.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

42

keystone endpoint-create \
 --service-id=the_service_id_above \
 --publicurl=http://controller:8776/v1/%\(tenant_id\)s \
 --internalurl=http://controller:8776/v1/%\(tenant_id\)s \
 --adminurl=http://controller:8776/v1/%\(tenant_id\)s

9. Also register a service and endpoint for version 2 of the Block Storage Service API.

keystone service-create --name=cinder --type=volumev2 \
 --description="Cinder Volume Service V2"

Note the id property returned and use it to create the endpoint.

keystone endpoint-create \
 --service-id=the_service_id_above \
 --publicurl=http://controller:8776/v2/%\(tenant_id\)s \
 --internalurl=http://controller:8776/v2/%\(tenant_id\)s \
 --adminurl=http://controller:8776/v2/%\(tenant_id\)s

10. Restart the cinder service with its new settings:

service cinder-scheduler restart
service cinder-api restart

Configure a Block Storage Service node
After you configure the services on the controller node, configure a second system to be a
Block Storage Service node. This node contains the disk that serves volumes.

You can configure OpenStack to use various storage systems. The examples in this guide
show you how to configure LVM.

1. Use the instructions in Chapter 2, “Basic operating system configuration” [5] to
configure the system. Note the following differences from the installation instructions
for the controller node:

• Set the host name to block1. Ensure that the IP addresses and host names for both
nodes are listed in the /etc/hosts file on each system.

• Follow the instructions in the section called “Network Time Protocol (NTP)” [7] to
synchronize from the controller node.

2. Create the LVM physical and logical volumes. This guide assumes a second disk /dev/
sdb that is used for this purpose.

pvcreate /dev/sdb
vgcreate cinder-volumes /dev/sdb

3. Add a filter entry to the devices section /etc/lvm/lvm.conf to keep LVM from
scanning devices used by virtual machines.

Note

You must add required physical volumes for LVM on the Block Storage
host. Run the pvdisplay command to get a list or required volumes.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

43

Each item in the filter array starts with either an a for accept, or an r for reject. The
physical volumes that are required on the Block Storage host have names that begin
with a. The array must end with "r/.*/" to reject any device not listed.

In this example, /dev/sda1 is the volume where the volumes for the operating
system for the node reside, while /dev/sdb is the volume reserved for cinder-
volumes.

devices {
...
filter = ["a/sda1/", "a/sdb/", "r/.*/"]
...
}

4. After you configure the operating system, install the appropriate packages for the
Block Storage Service.

apt-get install cinder-volume lvm2

5. Copy the /etc/cinder/api-paste.ini file from the controller, or open the file in
a text editor and locate the section [filter:authtoken]. Make sure the following
options are set:

[filter:authtoken]
paste.filter_factory=keystoneclient.middleware.auth_token:filter_factory
auth_host=controller
auth_port = 35357
auth_protocol = http
admin_tenant_name=service
admin_user=cinder
admin_password=CINDER_PASS

6. Configure the Block Storage Service to use the RabbitMQ message broker by setting
the following configuration keys. They are found in the DEFAULT configuration group
of the /etc/cinder/cinder.conf file.

rpc_backend = cinder.openstack.common.rpc.impl_kombu
rabbit_host = controller
rabbit_port = 5672
rabbit_userid = guest
rabbit_password = RABBIT_PASS

7. Configure the Block Storage Service on this node to use the cinder database on the
controller node.

Edit /etc/cinder/cinder.conf and change the [database] section.

[database]
...
The SQLAlchemy connection string used to connect to the
database (string value)
connection = mysql://cinder:CINDER_DBPASS@controller/cinder
...

8. Restart the cinder service with its new settings.

service cinder-volume restart

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

44

service tgt restart

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

45

8. Add Object Storage

Table of Contents
Object Storage service ... 45
System requirements ... 45
Plan networking for Object Storage .. 46
Example Object Storage installation architecture ... 47
Install Object Storage .. 48
Install and configure storage nodes ... 49
Install and configure the proxy node ... 51
Start services on the storage nodes ... 54
Object Storage post-installation tasks .. 54

The OpenStack Object Storage services work together to provide object storage and
retrieval through a REST API. For this example architecture, you must have already installed
the Identity Service, also known as Keystone.

Object Storage service
The Object Storage service is a highly scalable and durable multi-tenant object storage
system for large amounts of unstructured data at low cost through a RESTful HTTP API.

It includes the following components:

• Proxy servers (swift-proxy-server). Accepts Object Storage API and raw HTTP
requests to upload files, modify metadata, and create containers. It also serves file or
container listings to web browsers. To improve performance, the proxy server can use an
optional cache usually deployed with memcache.

• Account servers (swift-account-server). Manage accounts defined with the Object
Storage service.

• Container servers (swift-container-server). Manage a mapping of containers, or
folders, within the Object Storage service.

• Object servers (swift-object-server). Manage actual objects, such as files, on the
storage nodes.

• A number of periodic processes. Performs housekeeping tasks on the large data store.
The replication services ensure consistency and availability through the cluster. Other
periodic processes include auditors, updaters, and reapers.

Configurable WSGI middleware that handles authentication. Usually the Identity Service.

System requirements
Hardware: OpenStack Object Storage is designed to run on commodity hardware.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

46

Note

When you install only the Object Storage and Identity Service, you cannot use
the dashboard unless you also install Compute and the Image Service.

Table 8.1. Hardware recommendations

Server Recommended Hardware Notes

Object Storage object
servers

Processor: dual quad core

Memory: 8 or 12 GB RAM

Disk space: optimized for
cost per GB

Network: one 1 GB
Network Interface Card
(NIC)

The amount of disk space depends on how much you can fit into
the rack efficiently. You want to optimize these for best cost per
GB while still getting industry-standard failure rates. At Rackspace,
our storage servers are currently running fairly generic 4U servers
with 24 2T SATA drives and 8 cores of processing power. RAID
on the storage drives is not required and not recommended.
Swift's disk usage pattern is the worst case possible for RAID, and
performance degrades very quickly using RAID 5 or 6.

As an example, Rackspace runs Cloud Files storage servers with
24 2T SATA drives and 8 cores of processing power. Most services
support either a worker or concurrency value in the settings. This
allows the services to make effective use of the cores available.

Object Storage
container/account
servers

Processor: dual quad core

Memory: 8 or 12 GB RAM

Network: one 1 GB
Network Interface Card
(NIC)

Optimized for IOPS due to tracking with SQLite databases.

Object Storage proxy
server

Processor: dual quad core

Network: one 1 GB
Network Interface Card
(NIC)

Higher network throughput offers better performance for
supporting many API requests.

Optimize your proxy servers for best CPU performance. The Proxy
Services are more CPU and network I/O intensive. If you are using
10 GB networking to the proxy, or are terminating SSL traffic at
the proxy, greater CPU power is required.

Operating system: OpenStack Object Storage currently runs on Ubuntu, RHEL, CentOS,
Fedora, openSUSE, or SLES.

Networking: 1Gpbs or 10 Gbps is suggested internally. For OpenStack Object Storage, an
external network should connect the outside world to the proxy servers, and the storage
network is intended to be isolated on a private network or multiple private networks.

Database: For OpenStack Object Storage, a SQLite database is part of the OpenStack
Object Storage container and account management process.

Permissions: You can install OpenStack Object Storage either as root or as a user with sudo
permissions if you configure the sudoers file to enable all the permissions.

Plan networking for Object Storage
For both conserving network resources and ensuring that network administrators
understand the needs for networks and public IP addresses for providing access to the
APIs and storage network as necessary, this section offers recommendations and required
minimum sizes. Throughput of at least 1000 Mbps is suggested.

This guide describes the following networks:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

47

• A mandatory public network. Connects to the Proxy server.

• A mandatory storage network. Not accessible from outside the cluster. All nodes connect
to this network.

• An optional replication network. Not accessible from outside the cluster. Dedicated to
replication traffic among Storage nodes. Must be configured in the Ring.

By default, all of the OpenStack Object Storage services, as well as the rsync daemon on the
Storage nodes, are configured to listen on their STORAGE_LOCAL_NET IP addresses.

If you configure a replication network in the Ring, the Account, Container and Object
servers listen on both the STORAGE_LOCAL_NET and STORAGE_REPLICATION_NET IP
addresses. The rsync daemon only listens on the STORAGE_REPLICATION_NET IP address.

Public Network (Publicly
routable IP range)

Provides public IP accessibility to the API endpoints
within the cloud infrastructure.

Minimum size: one IP address for each proxy server.

Storage Network (RFC1918 IP
Range, not publicly routable)

Manages all inter-server communications within the
Object Storage infrastructure.

Minimum size: one IP address for each storage node
and proxy server.

Recommended size: as above, with room for expansion
to the largest your cluster size. For example, 255 or
CIDR /24.

Replication Network (RFC1918 IP
Range, not publicly routable)

Manages replication-related communications among
storage servers within the Object Storage infrastructure.

Recommended size: as for STORAGE_LOCAL_NET.

Example Object Storage installation architecture
• node. A host machine that runs one or more OpenStack Object Storage services.

• Proxy node. Runs Proxy services.

• Storage node. Runs Account, Container, and Object services.

• Ring. A set of mappings between OpenStack Object Storage data to physical devices.

• Replica. A copy of an object. By default, three copies are maintained in the cluster.

• Zone. A logically separate section of the cluster, related to independent failure
characteristics.

To increase reliability and performance, you can add additional proxy servers.

This document describes each storage node as a separate zone in the ring. At a minimum,
five zones are recommended. A zone is a group of nodes that is as isolated as possible from
other nodes (separate servers, network, power, even geography). The ring guarantees that

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

48

every replica is stored in a separate zone. This diagram shows one possible configuration
for a minimal installation:

Install Object Storage
Though you can install OpenStack Object Storage for development or testing purposes on
one server, a multiple-server installation enables the high availability and redundancy you
want in a production distributed object storage system.

To perform a single-node installation for development purposes from source code, use
the Swift All In One instructions (Ubuntu) or DevStack (multiple distros). See http://
swift.openstack.org/development_saio.html for manual instructions or http://devstack.org
for all-in-one including authentication with the Identity Service (keystone).

Before you begin
Have a copy of the operating system installation media available if you are installing on a
new server.

These steps assume you have set up repositories for packages for your operating system as
shown in OpenStack Packages.

This document demonstrates how to install a cluster by using the following types of nodes:

• One proxy node which runs the swift-proxy-server processes. The proxy server proxies
requests to the appropriate storage nodes.

• Five storage nodes that run the swift-account-server, swift-container-server, and swift-
object-server processes which control storage of the account databases, the container
databases, as well as the actual stored objects.

http://swift.openstack.org/development_saio.html
http://swift.openstack.org/development_saio.html
http://devstack.org

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

49

Note

Fewer storage nodes can be used initially, but a minimum of five is
recommended for a production cluster.

General installation steps

1. Install core Swift files and openSSH.

apt-get install swift openssh-server rsync memcached python-netifaces \
 python-xattr python-memcache

2. Create and populate configuration directories on all nodes:

mkdir -p /etc/swift
chown -R swift:swift /etc/swift/

3. Create /etc/swift/swift.conf on all nodes:

[swift-hash]
random unique string that can never change (DO NOT LOSE)
swift_hash_path_suffix = fLIbertYgibbitZ

Note

The suffix value in /etc/swift/swift.conf should be set to some random
string of text to be used as a salt when hashing to determine mappings in the
ring. This file should be the same on every node in the cluster!

Next, set up your storage nodes and proxy node. This example uses the Identity Service for
the common authentication piece.

Install and configure storage nodes

Note

Object Storage works on any file system that supports Extended Attributes
(XATTRS). XFS shows the best overall performance for the swift use case after
considerable testing and benchmarking at Rackspace. It is also the only file
system that has been thoroughly tested. See the OpenStack Configuration
Reference for additional recommendations.

1. Install Storage node packages:

apt-get install swift-account swift-container swift-object xfsprogs

2. For each device on the node that you want to use for storage, set up the XFS volume
(/dev/sdb is used as an example). Use a single partition per drive. For example, in
a server with 12 disks you may use one or two disks for the operating system which
should not be touched in this step. The other 10 or 11 disks should be partitioned with
a single partition, then formatted in XFS.

fdisk /dev/sdb

http://docs.openstack.org/havana/config-reference/content/
http://docs.openstack.org/havana/config-reference/content/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

50

mkfs.xfs /dev/sdb1
echo "/dev/sdb1 /srv/node/sdb1 xfs noatime,nodiratime,nobarrier,logbufs=
8 0 0" >> /etc/fstab
mkdir -p /srv/node/sdb1
mount /srv/node/sdb1
chown -R swift:swift /srv/node

3. Create /etc/rsyncd.conf:

uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = <STORAGE_LOCAL_NET_IP>

[account]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/account.lock

[container]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/container.lock

[object]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/object.lock

4. (Optional) If you want to separate rsync and replication traffic to replication network,
set STORAGE_REPLICATION_NET_IP instead of STORAGE_LOCAL_NET_IP:

address = <STORAGE_REPLICATION_NET_IP>

5. Edit the following line in /etc/default/rsync:

RSYNC_ENABLE = true

6. Start rsync daemon:

service rsync start

Note

The rsync daemon requires no authentication, so run it on a local, private
network.

7. Create the swift recon cache directory and set its permissions.

mkdir -p /var/swift/recon
chown -R swift:swift /var/swift/recon

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

51

Install and configure the proxy node
The proxy server takes each request and looks up locations for the account, container, or
object and routes the requests correctly. The proxy server also handles API requests. You
enable account management by configuring it in the proxy-server.conf file.

Note

The Object Storage processes run under a separate user and group, set by
configuration options, and referred to as swift:swift. The default user is swift,
which may not exist on your system.

1. Install swift-proxy service:

apt-get install swift-proxy memcached python-keystoneclient python-
swiftclient python-webob

2. Create self-signed cert for SSL:

cd /etc/swift
openssl req -new -x509 -nodes -out cert.crt -keyout cert.key

3. Modify memcached to listen on the default interfaces on a local, non-public network.
Edit this line in the /etc/memcached.conf file:

-l 127.0.0.1

Change it to:

-l <PROXY_LOCAL_NET_IP>

4. Restart the memcached server:

service memcached restart

5. Ubuntu only: Because the distribution packages do not include a copy of the
keystoneauth middleware, ensure that the proxy server includes them:

$ git clone https://github.com/openstack/swift.git
$ cd swift
$ python setup.py install
$ swift-init proxy start

6. Create /etc/swift/proxy-server.conf:

[DEFAULT]
bind_port = 8888
user = swift

[pipeline:main]
pipeline = healthcheck cache authtoken keystoneauth proxy-server

[app:proxy-server]
use = egg:swift#proxy
allow_account_management = true
account_autocreate = true

[filter:keystoneauth]

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

52

use = egg:swift#keystoneauth
operator_roles = Member,admin,swiftoperator

[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory

Delaying the auth decision is required to support token-less
usage for anonymous referrers ('.r:*').
delay_auth_decision = true

cache directory for signing certificate
signing_dir = /home/swift/keystone-signing

auth_* settings refer to the Keystone server
auth_protocol = http
auth_host = 192.168.56.3
auth_port = 35357

the same admin_token as provided in keystone.conf
admin_token = 012345SECRET99TOKEN012345

the service tenant and swift userid and password created in Keystone
admin_tenant_name = service
admin_user = swift
admin_password = swift

[filter:cache]
use = egg:swift#memcache

[filter:catch_errors]
use = egg:swift#catch_errors

[filter:healthcheck]
use = egg:swift#healthcheck

Note

If you run multiple memcache servers, put the multiple IP:port listings in
the [filter:cache] section of the proxy-server.conf file:

10.1.2.3:11211,10.1.2.4:11211

Only the proxy server uses memcache.

7. Create the signing_dir and set its permissions accordingly.

mkdir -p /home/swift/keystone-signing
chown -R swift:swift /home/swift/keystone-signing

8. Create the account, container, and object rings. The builder command creates a
builder file with a few parameters. The parameter with the value of 18 represents 2 ^
18th, the value that the partition is sized to. Set this “partition power” value based on
the total amount of storage you expect your entire ring to use. The value 3 represents
the number of replicas of each object, with the last value being the number of hours to
restrict moving a partition more than once.

cd /etc/swift
swift-ring-builder account.builder create 18 3 1
swift-ring-builder container.builder create 18 3 1

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

53

swift-ring-builder object.builder create 18 3 1

9. For every storage device on each node add entries to each ring:

swift-ring-builder account.builder add z<ZONE>-
<STORAGE_LOCAL_NET_IP>:6002[R<STORAGE_REPLICATION_NET_IP>:6005]/<DEVICE>
 100
swift-ring-builder container.builder add z<ZONE>-
<STORAGE_LOCAL_NET_IP_1>:6001[R<STORAGE_REPLICATION_NET_IP>:6004]/<DEVICE>
 100
swift-ring-builder object.builder add z<ZONE>-
<STORAGE_LOCAL_NET_IP_1>:6000[R<STORAGE_REPLICATION_NET_IP>:6003]/<DEVICE>
 100

Note

You must omit the optional STORAGE_REPLICATION_NET_IP parameter
if you do not want to use dedicated network for replication.

For example, if a storage node has a partition in Zone 1 on IP 10.0.0.1, the storage
node has address 10.0.1.1 from replication network. The mount point of this partition
is /srv/node/sdb1, and the path in rsyncd.conf is /srv/node/, the DEVICE would be
sdb1 and the commands are:

swift-ring-builder account.builder add z1-10.0.0.1:6002R10.0.1.1:6005/
sdb1 100
swift-ring-builder container.builder add z1-10.0.0.1:6001R10.0.1.1:6005/
sdb1 100
swift-ring-builder object.builder add z1-10.0.0.1:6000R10.0.1.1:6005/
sdb1 100

Note

If you assume five zones with one node for each zone, start ZONE at 1. For
each additional node, increment ZONE by 1.

10. Verify the ring contents for each ring:

swift-ring-builder account.builder
swift-ring-builder container.builder
swift-ring-builder object.builder

11. Rebalance the rings:

swift-ring-builder account.builder rebalance
swift-ring-builder container.builder rebalance
swift-ring-builder object.builder rebalance

Note

Rebalancing rings can take some time.

12. Copy the account.ring.gz, container.ring.gz, and object.ring.gz files to
each of the Proxy and Storage nodes in /etc/swift.

13. Make sure the swift user owns all configuration files:

chown -R swift:swift /etc/swift

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

54

14. Start Proxy services:

service proxy-server start

Start services on the storage nodes
Now that the ring files are on each storage node, you can start the services. On each
storage node, run the following commands:

service swift-object start
service swift-object-replicator start
service swift-object-updater start
service swift-object-auditor start
service swift-container start
service swift-container-replicator start
service swift-container-updater start
service swift-container-auditor start
service swift-account start
service swift-account-replicator start
service swift-account-reaper start
service swift-account-auditor start

Note

To start all swift services at once, run the command:

swift-init main start

To know more about swift-init command, run:

man swift-init

service rsyslog restart
service memcached restart

Object Storage post-installation tasks

Verify the installation

You can run these commands from the proxy server or any server that has access to the
Identity Service.

1. Export the swift admin password, which you set up as an Identity Service admin and
added to the proxy-server.conf file to a variable. You can also set up an openrc
file as described in the OpenStack User Guide where the variable is OS_USERNAME.

$ export OS_PASSWORD=ADMIN_PASS

$ export OS_AUTH_URL=http://controller:5000/v2.0

Note

The sample proxy-server.conf file uses "swift" for ADMIN_PASS. If
you do not wish to have the swift admin password stored in your shell's
history, you can run the following command:

http://docs.openstack.org/user-guide/content/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

55

$ export SWIFT_PROXY_CONF=/etc/swift/proxy-server.conf export
 OS_PASSWORD=$(grep admin_password ${SWIFT_PROXY_CONF} | awk
 '{ print $NF }')

2. Run the following swift command with the correct Identity Service URL:

$ swift -V 2.0 -A $OS_AUTH_URL -U demo:admin -K $ADMINPASS stat
Account: AUTH_11b9758b7049476d9b48f7a91ea11493
Containers: 0
 Objects: 0
 Bytes: 0
Content-Type: text/plain; charset=utf-8
X-Timestamp: 1381434243.83760
X-Trans-Id: txdcdd594565214fb4a2d33-0052570383
X-Put-Timestamp: 1381434243.83760

3. Run the following swift commands to upload files to a container (create a test text files
if needed):

$ swift -V 2.0 -A $OS_AUTH_URL -U demo:admin -K $OS_PASSWORD upload
 myfiles test.txt
$ swift -V 2.0 -A $OS_AUTH_URL -U demo:admin -K $ADMINPASS upload myfiles
 test2.txt

4. Run the following swift command to download all files from the ‘myfiles’ container:

$ swift -V 2.0 -A $OS_AUTH_URL -U demo:admin -K $ADMINPASS download
 myfiles

test2.txt [headers 0.267s, total 0.267s, 0.000s MB/s]
test.txt [headers 0.271s, total 0.271s, 0.000s MB/s]

Add a proxy server

For reliability, you add proxy servers. You can set up an additional proxy node the same
way that you set up the first proxy node but with additional configuration steps.

After you have more than two proxies, you must load balance them; your storage endpoint
(what clients use to connect to your storage) also changes. You can select from different
strategies for load balancing. For example, you could use round-robin DNS, or a software
or hardware load balancer (like pound) in front of the two proxies, and point your storage
URL to the load balancer.

Configure an initial proxy node. Then, complete these steps to add proxy servers.

1. Update the list of memcache servers in the /etc/swift/proxy-server.conf file
for added proxy servers. If you run multiple memcache servers, use this pattern for the
multiple IP:port listings in each proxy server configuration file:

10.1.2.3:11211,10.1.2.4:11211

[filter:cache]
use = egg:swift#memcache
memcache_servers = <PROXY_LOCAL_NET_IP>:11211

2. Copy ring information to all nodes, including new proxy nodes. Also, ensure that the
ring information gets to all storage nodes.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

56

3. After you sync all nodes, make sure that the admin has keys in /etc/swift and the
ownership for the ring file is correct.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

57

9. Install the Networking service

Table of Contents
Networking considerations .. 57
Neutron concepts .. 57
Install Networking services .. 59
Neutron deployment use cases .. 72

Warning

This chapter is a bit more adventurous than we would like. We are working
on cleanup and improvements to it. Like for the rest of the Installation Guide,
feedback through bug reports and patches to improve it are welcome.

Networking considerations
OpenStack Networking drivers range from software bridges to full control of certain
switching hardware. This guide focuses on the Open vSwitch driver. However, the
theories presented here are mostly applicable to other mechanisms, and the OpenStack
Configuration Reference offers additional information.

To prepare for installation, see the section called “OpenStack packages” [8].

Warning

If you previously set up networking for your compute node by using nova-
network, this configuration overrides those settings.

Neutron concepts
Like Nova Networking, Neutron manages software-defined networking for your OpenStack
installation. However, unlike Nova Networking, you can configure Neutron for advanced
virtual network topologies, such as per-tenant private networks and more.

Neutron has the following object abstractions: networks, subnets, and routers. Each has
functionality that mimics its physical counterpart: networks contain subnets, and routers
route traffic between different subnet and networks.

Any given Neutron set up has at least one external network. This network, unlike the other
networks, is not merely a virtually defined network. Instead, it represents the view into
a slice of the external network that is accessible outside the OpenStack installation. IP
addresses on the Neutron external network are accessible by anybody physically on the
outside network. Because this network merely represents a slice of the outside network,
DHCP is disabled on this network.

In addition to external networks, any Neutron set up has one or more internal networks.
These software-defined networks connect directly to the VMs. Only the VMs on any given

http://docs.openstack.org/havana/config-reference/content/
http://docs.openstack.org/havana/config-reference/content/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

58

internal network, or those on subnets connected through interfaces to a similar router, can
access VMs connected to that network directly.

For the outside network to access VMs, and vice versa, routers between the networks are
needed. Each router has one gateway that is connected to a network and many interfaces
that are connected to subnets. Like a physical router, subnets can access machines on
other subnets that are connected to the same router, and machines can access the outside
network through the gateway for the router.

Additionally, you can allocate IP addresses on an external networks to ports on the internal
network. Whenever something is connected to a subnet, that connection is called a port.
You can associate external network IP addresses with ports to VMs. This way, entities on
the outside network can access VMs.

Neutron also supports security groups. Security groups enable administrators to define
firewall rules in groups. A VM can belong to one or more security groups, and Neutron
applies the rules in those security groups to block or unblock ports, port ranges, or traffic
types for that VM.

Each plug-in that Neutron uses has its own concepts. While not vital to operating Neutron,
understanding these concepts can help you set up Neutron. All Neutron installations use
a core plug-in and a security group plug-in (or just the No-Op security group plug-in).
Additionally, Firewall-as-a-service (FWaaS) and Load-balancing-as-a-service (LBaaS) plug-ins
are available.

Open vSwitch concepts
The Open vSwitch plug-in is one of the most popular core plug-ins. Open vSwitch
configurations consists of bridges and ports. Ports represent connections to other things,
such as physical interfaces and patch cables. Packets from any given port on a bridge are
shared with all other ports on that bridge. Bridges can be connected through Open vSwitch
virtual patch cables or through Linux virtual Ethernet cables (veth). Additionally, bridges
appear as network interfaces to Linux, so you can assign IP addresses to them.

In Neutron, the integration bridge, called br-int, connects directly to the VMs and
associated services. The external bridge, called br-ex, connects to the external network.
Finally, the VLAN configuration of the Open vSwitch plug-in uses bridges associated with
each physical network.

In addition to defining bridges, Open vSwitch has OpenFlow, which enables you to define
networking flow rules. Certain configurations use these rules to transfer packets between
VLANs.

Finally, some configurations of Open vSwitch use network namespaces that enable Linux
to group adapters into unique namespaces that are not visible to other namespaces, which
allows the same network node to manage multiple Neutron routers.

With Open vSwitch, you can use two different technologies to create the virtual networks:
GRE or VLANs.

Generic Routing Encapsulation (GRE) is the technology used in many VPNs. It wraps IP
packets to create entirely new packets with different routing information. When the new
packet reaches its destination, it is unwrapped, and the underlying packet is routed. To use
GRE with Open vSwitch, Neutron creates GRE tunnels. These tunnels are ports on a bridge

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

59

and enable bridges on different systems to act as though they were one bridge, which
allows the compute and network nodes to act as one for the purposes of routing.

Virtual LANs (VLANs), on the other hand, use a special modification to the Ethernet header.
They add a 4-byte VLAN tag that ranges from 1 to 4094 (the 0 tag is special, and the 4095
tag, made of all ones, is equivalent to an untagged packet). Special NICs, switches, and
routers know how to interpret the VLAN tags, as does Open vSwitch. Packets tagged for
one VLAN are only shared with other devices configured to be on that VLAN, even through
all devices are on the same physical network.

The most common security group driver used with Open vSwitch is the Hybrid IPTables/
Open vSwitch plug-in. It uses a combination for IPTables and OpenFlow rules. Use the
IPTables tool to create firewalls and set up NATs on Linux. This tool uses a complex rule
system and chains of rules to accommodate the complex rules required by Neutron security
groups.

Install Networking services
Before you configure individual nodes for Networking, you must create the required
OpenStack components: user, service, database, and one or more endpoints. After you
complete these steps on the controller node, follow the instructions in this guide to set up
OpenStack Networking nodes.

1. Use the password that you set previously to log in as root and create a neutron
database:

mysql -u root -p
mysql> CREATE DATABASE neutron;
mysql> GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'localhost' \
IDENTIFIED BY 'NEUTRON_DBPASS';
mysql> GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'%' \
IDENTIFIED BY 'NEUTRON_DBPASS';

2. Create the required user, service, and endpoint so that Networking can interface with
the Identity Service.

To list the tenant IDs:

keystone tenant-list

To list role IDs:

keystone role-list

Create a neutron user:

keystone user-create --name=neutron --pass=NEUTRON_PASS --
email=neutron@example.com

Add the user role to the neutron user:

keystone user-role-add --user=neutron --tenant=service --role=admin

Create the neutron service:

keystone service-create --name=neutron --type=network \

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

60

 --description="OpenStack Networking Service"

Create a Networking endpoint. Use the id property for the service that was returned
in the previous step to create the endpoint:

keystone endpoint-create \
 --service-id the_service_id_above \
 --publicurl http://controller:9696 \
 --adminurl http://controller:9696 \
 --internalurl http://controller:9696

Install Networking services on a dedicated network node

Note

Before you start, set up a machine as a dedicated network node. Dedicated
network nodes have a MGMT_INTERFACE NIC, a DATA_INTERFACE NIC, and a
EXTERNAL_INTERFACE NIC.

The management network handles communication among nodes. The data
network handles communication coming to and from VMs. The external NIC
connects the network node, and optionally to the controller node, so your VMs
can connect to the outside world.

All NICs must have static IPs. However, the data and external NICs have a
special set up. For details about Networking plug-ins, see the section called
“Install and configure the Networking plug-ins” [62].

1. Install the OpenStack Networking service on the network node:

apt-get install neutron-server neutron-dhcp-agent neutron-plugin-
openvswitch-agent neutron-l3-agent

2. Enable packet forwarding and disable packet destination filtering so that the network
node can coordinate traffic for the VMs. Edit the /etc/sysctl.conf file, as follows:

net.ipv4.ip_forward=1
net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.default.rp_filter=0

Note

With system network-related configurations, you might need to restart the
network service to activate configurations, as follows:

service networking restart

3. Configure the core networking components. Edit the /etc/neutron/
neutron.conf file and add these lines to the keystone_authtoken section:

[keystone_authtoken]
auth_host = controller
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

61

To activate changes in the /etc/sysctl.conf file, run the following command:

sysctl -p

4. Configure the RabbitMQ access. Edit the /etc/neutron/neutron.conf file to
modify the following parameters in the DEFAULT section.

rabbit_host = controller
rabbit_userid = guest
rabbit_password = RABBIT_PASS

5. Configure Networking to connect to the database. Edit the [database] section in
the same file, as follows:

[database]
connection = mysql://neutron:NEUTRON_DBPASS@controller/neutron

6. Edit the /etc/neutron/api-paste.ini file and add these lines to the
[filter:authtoken] section:

[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory
auth_host=controller
auth_uri=http://controller:5000
admin_user=neutron
admin_tenant_name=service
admin_password=NEUTRON_PASS

Warning

keystoneclient.middleware.auth_token: You must configure
auth_uri to point to the public identity endpoint. Otherwise, clients
might not be able to authenticate against an admin endpoint.

7. Install and configure a networking plug-in. OpenStack Networking uses this plug-in to
perform software-defined networking. For instructions, see instructions. Then, return
here.

Now that you've installed and configured a plug-in (you did do that, right?), it is time to
configure the remaining parts of Networking.

1. To perform DHCP on the software-defined networks, Networking supports several
different plug-ins. However, in general, you use the Dnsmasq plug-in. Edit the /etc/
neutron/dhcp_agent.ini file:

dhcp_driver = neutron.agent.linux.dhcp.Dnsmasq

2. To allow virtual machines to access the Compute metadata information, the
Networking metadata agent must be enabled and configured. The agent will act as a
proxy for the Compute metadata service.

On the controller, edit the /etc/nova/nova.conf file to define a secret key that
will be shared between the Compute Service and the Networking metadata agent.

Add to the [DEFAULT] section:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

62

[DEFAULT]
neutron_metadata_proxy_shared_secret = METADATA_PASS
service_neutron_metadata_proxy = true

Restart the nova-api service:

service nova-api restart

On the network node, modify the metadata agent configuration.

Edit the /etc/neutron/metadata_agent.ini file and modify the [DEFAULT]
section:

[DEFAULT]
auth_url = http://controller:5000/v2.0
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS
nova_metadata_ip = controller
metadata_proxy_shared_secret = METADATA_PASS

3. Restart Networking:

service neutron-dhcp-agent restart
service neutron-l3-agent restart
service neutron-metadata-agent restart

4. After you configure the compute and controller nodes, configure the base networks.

Install and configure the Networking plug-ins

Install the Open vSwitch (OVS) plug-in

1. Install the Open vSwitch plug-in and its dependencies:

apt-get install neutron-plugin-openvswitch-agent openvswitch-switch

Note

On Ubuntu 12.04 LTS with GRE you must install openvswitch-datapath-
dkms and restart the service to enable the GRE flow so that OVS 1.10 and
higher is used. Make sure you are running the OVS 1.10 kernel module in
addition to the OVS 1.10 userspace. Both the kernel module and userspace
are required for VXLAN support. The error you see in the /var/log/
openvswitchovs-vswitchd.log log file is "Stderr: 'ovs-ofctl: -1:
negative values not supported for in_port\n'". If you see this error, make
sure modinfo openvswitch shows the right version. Also check the output
from dmesg for the version of the OVS module being loaded.

2. Start Open vSwitch:

service openvswitch-switch restart

3. No matter which networking technology you use, you must add the br-int
integration bridge, which connects to the VMs, and the br-ex external bridge, which
connects to the outside world.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

63

ovs-vsctl add-br br-int
ovs-vsctl add-br br-ex

4. Add a port (connection) from the EXTERNAL_INTERFACE interface to br-ex
interface:

ovs-vsctl add-port br-ex EXTERNAL_INTERFACE

5. Configure the EXTERNAL_INTERFACE without an IP address and in promiscuous
mode. Additionally, you must set the newly created br-ex interface to have the IP
address that formerly belonged to EXTERNAL_INTERFACE.

Warning

Generic Receive Offload (GRO) should not be enabled on this interface
as it can cause severe performance problems. It can be disabled with the
ethtool utility.

6. You must set some common configuration options no matter which networking
technology you choose to use with Open vSwitch. Configure the L3 and DHCP agents
to use OVS and namespaces. Edit the /etc/neutron/l3_agent.ini and /etc/
neutron/dhcp_agent.ini files, respectively:

interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver
use_namespaces = True

7. Similarly, you must also tell Neutron core to use OVS. Edit the /etc/neutron/
neutron.conf file:

core_plugin = neutron.plugins.openvswitch.ovs_neutron_plugin.
OVSNeutronPluginV2

8. Choose a networking technology to create the virtual networks. Neutron supports GRE
tunneling, VLANs, and VXLANs. This guide shows how to configure GRE tunneling and
VLANs.

GRE tunneling is simpler to set up because it does not require any special configuration
from any physical network hardware. However, its protocol makes it difficult to
filter traffic on the physical network. Additionally, this configuration does not use
namespaces. You can have only one router for each network node. However, you can
enable namespacing, and potentially veth, as described in the section detailing how to
use VLANs with OVS).

On the other hand, VLAN tagging modifies the ethernet header of packets. You can
filter packets on the physical network through normal methods. However, not all NICs
handle the increased packet size of VLAN-tagged packets well, and you might need to
complete additional configuration on physical network hardware to ensure that your
Neutron VLANs do not interfere with any other VLANs on your network and that any
physical network hardware between nodes does not strip VLAN tags.

Note

While the examples in this guide enable network namespaces by default,
you can disable them if issues occur or your kernel does not support

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

64

them. Edit the /etc/neutron/l3_agent.ini and /etc/neutron/
dhcp_agent.ini files, respectively:

use_namespaces = False

Edit the /etc/neutron/neutron.conf file to disable overlapping IP
addresses:

allow_overlapping_ips = False

Note that when network namespaces are disabled, you can have only
one router for each network node and overlapping IP addresses are not
supported.

You must complete additional steps after you create the initial Neutron
virtual networks and router.

9. Configure a firewall plug-in. If you do not wish to enforce firewall rules, called security
groups by OpenStack, you can use neutron.agent.firewall.NoopFirewall.
Otherwise, you can choose one of the Networking firewall plug-ins. The most
common choice is the Hybrid OVS-IPTables driver, but you can also use the
Firewall-as-a-Service driver. Edit the /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini file:

[securitygroup]
Firewall driver for realizing neutron security group function.
firewall_driver = neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver

Warning

You must use at least the No-Op firewall. Otherwise, Horizon and other
OpenStack services cannot get and set required VM boot options.

10. Restart the OVS plug-in and make sure it starts on boot:

service neutron-plugin-openvswitch-agent restart

11. Now, return to the general OVS instructions.

Configure the Neutron OVS plug-in for GRE tunneling

1. Configure the OVS plug-in to use GRE tunneling, the br-int integration bridge, the
br-tun tunneling bridge, and a local IP for the DATA_INTERFACE tunnel IP. Edit the
/etc/neutron/plugins/openvswitch/ovs_neutron_plugin.ini file:

[ovs]
tenant_network_type = gre
tunnel_id_ranges = 1:1000
enable_tunneling = True
integration_bridge = br-int
tunnel_bridge = br-tun
local_ip = DATA_INTERFACE_IP

2. Return to the general OVS instructions.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

65

Configure the Neutron OVS plug-in for VLANs

1. Configure OVS to use VLANS. Edit the /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini file:

[ovs]
tenant_network_type = vlan
network_vlan_ranges = physnet1:1:4094
bridge_mappings = physnet1:br-DATA_INTERFACE

2. Create the bridge for DATA_INTERFACE and add DATA_INTERFACE to it:

ovs-vsctl add-br br-DATA_INTERFACE
ovs-vsctl add-port br-DATA_INTERFACE DATA_INTERFACE

3. Transfer the IP address for DATA_INTERFACE to the bridge in the same way that you
transferred the EXTERNAL_INTERFACE IP address to br-ex. However, do not turn
on promiscuous mode.

4. Return to the OVS general instruction.

Install networking support on a dedicated compute node

Note

This section details set up for any node that runs the nova-compute
component but does not run the full network stack.

1. Disable packet destination filtering (route verification) to let the networking services
route traffic to the VMs. Edit the /etc/sysctl.conf file and run the following
command to activate changes:

net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.default.rp_filter=0

sysctl -p

2. Install and configure your networking plug-in components. To install and configure the
network plug-in that you chose when you set up your network node, see the section
called “Install and configure Neutron plug-ins on a dedicated compute node” [66].

3. Configure the core components of Neutron. Edit the /etc/neutron/
neutron.conf file:

auth_host = controller
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS
auth_url = http://controller:35357/v2.0
auth_strategy = keystone
rpc_backend = neutron.openstack.common.rpc.impl_kombu
rabbit_host = controller
rabbit_port = 5672
Change the following settings if you're not using the default RabbitMQ
 configuration
#rabbit_userid = guest
rabbit_password = RABBIT_PASS

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

66

4. Edit the database URL under the [database] section in the above file, to tell
Neutron how to connect to the database:

[database]
connection = mysql://neutron:NEUTRON_DBPASS@controller/neutron

5. Edit the /etc/neutron/api-paste.ini file and add these lines to the
[filter:authtoken] section:

[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory
auth_host=controller
admin_user=neutron
admin_tenant_name=service
admin_password=NEUTRON_PASS

6. You must configure the networking plug-in.

Install and configure Neutron plug-ins on a dedicated compute node

Install the Open vSwitch (OVS) plug-in on a dedicated compute node

1. Install the Open vSwitch plug-in and its dependencies:

apt-get install neutron-plugin-openvswitch-agent openvswitch-switch
 openvswitch-datapath-dkms

2. Restart Open vSwitch:

service openvswitch-switch restart

3. You must set some common configuration options no matter which networking
technology you choose to use with Open vSwitch. You must add the br-int
integration bridge, which connects to the VMs.

ovs-vsctl add-br br-int

4. You must set some common configuration options. You must configure Networking
core to use OVS. Edit the /etc/neutron/neutron.conf file:

core_plugin = neutron.plugins.openvswitch.ovs_neutron_plugin.
OVSNeutronPluginV2

5. Configure the networking type that you chose when you set up the network node:
either GRE tunneling or VLANs.

6. You must configure a firewall as well. You should use the same firewall plug-in
that you chose to use when you set up the network node. To do this, edit /etc/
neutron/plugins/openvswitch/ovs_neutron_plugin.ini file and set the
firewall_driver value under the securitygroup to the same value used on the
network node. For instance, if you chose to use the Hybrid OVS-IPTables plug-in, your
configuration looks like this:

[securitygroup]
Firewall driver for realizing neutron security group function.
firewall_driver = neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

67

Warning

You must use at least the No-Op firewall. Otherwise, Horizon and other
OpenStack services cannot get and set required VM boot options.

7. After you complete OVS configuration and the core Neutron configuration after this
section, restart the Neutron Open vSwitch agent:

service neutron-plugin-openvswitch-agent restart

8. Now, return to the general OVS instructions.

Configure the Neutron OVS plug-in for GRE tunneling on a dedicated compute node

1. Tell the OVS plug-in to use GRE tunneling with a br-int integration bridge, a br-
tun tunneling bridge, and a local IP for the tunnel of DATA_INTERFACE's IP Edit the /
etc/neutron/plugins/openvswitch/ovs_neutron_plugin.ini file:

[ovs]
tenant_network_type = gre
tunnel_id_ranges = 1:1000
enable_tunneling = True
integration_bridge = br-int
tunnel_bridge = br-tun
local_ip = DATA_INTERFACE_IP

2. Now, return to the general OVS instructions.

Configure the Neutron OVS plug-in for VLANs on a dedicated compute node

1. Tell OVS to use VLANs. Edit the /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini file:

[ovs]
tenant_network_type = vlan
network_vlan_ranges = physnet1:1:4094
bridge_mappings = physnet1:br-DATA_INTERFACE

2. Create the bridge for the DATA_INTERFACE and add DATA_INTERFACE to it, the
same way you did on the network node:

ovs-vsctl add-br br-DATA_INTERFACE
ovs-vsctl add-port br-DATA_INTERFACE DATA_INTERFACE

3. Return to the general OVS instructions.

Install networking support on a dedicated controller node

Note

This is for a node which runs the control components of Neutron, but does not
run any of the components that provide the underlying functionality (such as
the plug-in agent or the L3 agent). If you wish to have a combined controller/
compute node follow these instructions, and then those for the compute node.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

68

1. Install the main Neutron server, Neutron libraries for Python, and the Neutron
command-line interface (CLI):

2. Configure the core components of Neutron. Edit the /etc/neutron/
neutron.conf file:

auth_host = controller
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS
auth_url = http://controller:35357/v2.0
auth_strategy = keystone
rpc_backend = YOUR_RPC_BACKEND
PUT_YOUR_RPC_BACKEND_SETTINGS_HERE_TOO

3. Edit the database URL under the [database] section in the above file, to tell
Neutron how to connect to the database:

[database]
connection = mysql://neutron:NEUTRON_DBPASS@controller/neutron

4. Configure the Neutron copy of the api-paste.ini at /etc/neutron/api-
paste.ini file:

[filter:authtoken]
EXISTING_STUFF_HERE
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS

5. Configure the plug-in you chose when you set up the network node. Follow the
instructions and return here.

6. Tell Nova about Neutron. Specifically, you must tell Nova that Neutron handles
networking and the firewall. Edit the /etc/nova/nova.conf file:

network_api_class=nova.network.neutronv2.api.API
neutron_url=http://controller:9696
neutron_auth_strategy=keystone
neutron_admin_tenant_name=service
neutron_admin_username=neutron
neutron_admin_password=NEUTRON_PASS
neutron_admin_auth_url=http://controller:35357/v2.0
linuxnet_interface_driver = nova.network.linux_net.LinuxOVSInterfaceDriver
firewall_driver=nova.virt.firewall.NoopFirewallDriver
security_group_api=neutron

Note

Regardless of which firewall driver you chose when you configured the
network and compute nodes, set this driver as the No-Op firewall. This
firewall is a Nova firewall, and because Neutron handles the Firewall, you
must tell Nova not to use one.

When Networking handles the firewall, the option firewall_driver
should be set according to the specified plugin. For example
with OVS, edit the /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini file:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

69

[securitygroup]
Firewall driver for realizing neutron security group function.
firewall_driver = neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver

If you do not want to use a firewall in Compute or Networking, set
firewall_driver=nova.virt.firewall.NoopFirewallDriver
in both config files, and comment out or remove
security_group_api=neutron in the /etc/nova/nova.conf file,
otherwise you may encounter ERROR: The server has either erred or is
incapable of performing the requested operation. (HTTP 500) when issuing
nova list commands.

7. Restart neutron-server:

service neutron-server restart

Install and configure the Neutron plug-ins on a dedicated controller
node

Install the Open vSwitch (OVS) plug-in on a dedicated controller node

1. Install the Open vSwitch plug-in:

apt-get install neutron-plugin-openvswitch-agent

2. You must set some common configuration options no matter which networking
technology you choose to use with Open vSwitch. You must configure Networking
core to use OVS. Edit the /etc/neutron/neutron.conf file:

core_plugin = neutron.plugins.openvswitch.ovs_neutron_plugin.
OVSNeutronPluginV2

3. Configure the OVS plug-in for the networking type that you chose when you
configured the network node: GRE tunneling or VLANs.

Note

The dedicated controller node does not need to run Open vSwitch or the
Open vSwitch agent.

4. Now, return to the general OVS instructions.

Configure the Neutron OVS plug-in for GRE tunneling on a dedicated controller node

1. Tell the OVS plug-in to use GRE tunneling. Edit the /etc/neutron/plugins/
openvswitch/ovs_neutron_plugin.ini file:

[ovs]
tenant_network_type = gre
tunnel_id_ranges = 1:1000
enable_tunneling = True

2. Return to the general OVS instructions.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

70

Configure the Neutron OVS plug-in for VLANs on a dedicated controller node

1. Tell OVS to use VLANS. Edit the /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini file, as follows:

[ovs]
tenant_network_type = vlan
network_vlan_ranges = physnet1:1:4094

2. Return to the general OVS instructions.

Create the base Neutron networks

Note

In these sections, replace SPECIAL_OPTIONS with any options specific to
your Networking plug-in choices. See here to check if your plug-in requires any
special options.

1. Create the ext-net external network. This network represents a slice of the outside
world. VMs are not directly linked to this network; instead, they connect to internal
networks. Outgoing traffic is routed by Neutron to the external network. Additionally,
floating IP addresses from the subnet for ext-net might be assigned to VMs so that
the external network can contact them. Neutron routes the traffic appropriately.

neutron net-create ext-net -- --router:external=True SPECIAL_OPTIONS

2. Create the associated subnet with the same gateway and CIDR as
EXTERNAL_INTERFACE. It does not have DHCP because it represents a slice of the
external world:

neutron subnet-create ext-net \
 --allocation-pool start=FLOATING_IP_START,end=FLOATING_IP_END \
 --gateway=EXTERNAL_INTERFACE_GATEWAY --enable_dhcp=False \
 EXTERNAL_INTERFACE_CIDR

3. Create one or more initial tenants. The following steps use the DEMO_TENANT tenant.

Create the router attached to the external network. This router routes traffic to the
internal subnets as appropriate. You can create it under the a given tenant: Append
--tenant-id option with a value of DEMO_TENANT_ID to the command.

neutron router-create ext-to-int

4. Connect the router to ext-net by setting the gateway for the router as ext-net:

neutron router-gateway-set EXT_TO_INT_ID EXT_NET_ID

5. Create an internal network for DEMO_TENANT (and associated subnet over an
arbitrary internal IP range, such as, 10.5.5.0/24), and connect it to the router by
setting it as a port:

neutron net-create --tenant-id DEMO_TENANT_ID demo-net SPECIAL_OPTIONS
neutron subnet-create --tenant-id DEMO_TENANT_ID demo-net 10.5.5.0/24 --
gateway 10.5.5.1

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

71

neutron router-interface-add EXT_TO_INT_ID DEMO_NET_SUBNET_ID

6. Check the special options page for your plug-in for remaining steps. Now, return to the
general OVS instructions.

Plug-in-specific Neutron network options

Open vSwitch Network configuration options

GRE tunneling network options

Note

While this guide currently enables network namespaces by default, you can
disable them if you have issues or your kernel does not support them. If you
disabled namespaces, you must perform some additional configuration for the
L3 agent.

After you create all the networks, tell the L3 agent what the external network
ID is, as well as the ID of the router associated with this machine (because you
are not using namespaces, there can be only one router for each machine). To
do this, edit the /etc/neutron/l3_agent.ini file:

gateway_external_network_id = EXT_NET_ID
router_id = EXT_TO_INT_ID

Then, restart the L3 agent:

service neutron-l3-agent restart

When creating networks, you should use the options:

--provider:network_type gre --provider:segmentation_id SEG_ID

SEG_ID should be 2 for the external network, and just any unique number inside the
tunnel range specified before for any other network.

Note

These options are not needed beyond the first network, as Neutron
automatically increments the segmentation id and copy the network type
option for any additional networks.

Now, return to the general OVS instructions.

VLAN network options

When creating networks, use these options:

--provider:network_type vlan --provider:physical_network physnet1 --
provider:segmentation_id SEG_ID

SEG_ID should be 2 for the external network, and just any unique number inside the vlan
range specified above for any other network.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

72

Note

These options are not needed beyond the first network, as Neutron
automatically increments the segmentation ID and copies the network type and
physical network options for any additional networks. They are only needed if
you wish to modify those values in any way.

Warning

Some NICs have Linux drivers that do not handle VLANs properly. See the
ovs-vlan-bug-workaround and ovs-vlan-test man pages for more
information. Additionally, you might try turning off rx-vlan-offload and
tx-vlan-offload by using ethtool on the DATA_INTERFACE. Another
potential caveat to VLAN functionality is that VLAN tags add an additional 4
bytes to the packet size. If your NICs cannot handle large packets, make sure
to set the MTU to a value that is 4 bytes less than the normal value on the
DATA_INTERFACE.

If you run OpenStack inside a virtualized environment (for testing purposes),
switching to the virtio NIC type (or a similar technology if you are not using
KVM/QEMU to run your host VMs) might solve the issue.

Neutron deployment use cases
This section describes how to configure the Networking service and its components for
some typical use cases.

Single flat network

This section describes how to install the OpenStack Networking service and its components
for a single flat network use case.

The following diagram shows the set up. For simplicity, all nodes should have one interface
for management traffic and one or more interfaces for traffic to and from VMs. The
management network is 100.1.1.0/24 with controller node at 100.1.1.2. The example uses
the Open vSwitch plugin and agent.

Note

You can modify this set up to make use of another supported plug-in and its
agent.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

73

The following table describes some nodes in the set up:

Node Description

Controller Node Runs the Networking service, Identity Service, and Compute services that are required to
deploy VMs (nova-api, nova-scheduler, for example). The node must have at least
one network interface, which is connected to the Management Network. The host name is
controller, which every other node resolves to the IP of the controller node.

Note
The nova-network service should not be running. This is replaced by
Networking. To delete a network, use nova-manage network delete:

nova-manage network delete --help
 Usage: nova-manage network delete <args> [options]

 Options:
 -h, --help show this help message and exit
 --fixed_range=<x.x.x.x/yy>
 Network to delete
 --uuid=<uuid> UUID of network to delete

Note that a network must first be disassociated from a project using the nova
network-disassociate command before it can be deleted.

Compute Node Runs the Networking L2 agent and the Compute services that run VMs (nova-compute
specifically, and optionally other nova-* services depending on configuration). The node must
have at least two network interfaces. The first communicates with the controller node through
the management network. The second interface handles the VM traffic on the data network.
The VM can receive its IP address from the DHCP agent on this network.

Network Node Runs Networking L2 agent and the DHCP agent. The DHCP agent allocates IP addresses
to the VMs on the network. The node must have at least two network interfaces. The first
communicates with the controller node through the management network. The second
interface handles the VM traffic on the data network.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

74

Node Description

Router Router has IP 30.0.0.1, which is the default gateway for all VMs. The router must be able to
access public networks.

The demo assumes the following prerequisites:

Controller node

1. Relevant Compute services are installed, configured, and running.

2. Glance is installed, configured, and running. Additionally, an image must be available.

3. OpenStack Identity is installed, configured, and running. A Networking user neutron is in
place on tenant service with password NEUTRON_PASS.

4. Additional services:

• RabbitMQ is running with default guest and its password.

• MySQL server (user is root and password is root).

Compute node

1. Compute is installed and configured.

Install

• Controller node - Networking server

1. Install the Networking server.

2. Create database ovs_neutron.

3. Update the Networking /etc/neutron/neutron.conf configuration file to
choose a plug-in and Identity Service user as necessary:

[DEFAULT]
core_plugin = neutron.plugins.openvswitch.ovs_neutron_plugin.
OVSNeutronPluginV2
control_exchange = neutron
rabbit_host = controller
rabbit_password = RABBIT_PASS
notification_driver = neutron.openstack.common.notifier.rabbit_notifier

[database]
connection = mysql://neutron:NEUTRON_DBPASS@controller/neutron

[keystone_authtoken]
admin_tenant_name=service
admin_user=neutron
admin_password=NEUTRON_PASS

4. Update the plug-in /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini configuration file:

[ovs]
network_vlan_ranges = physnet1
bridge_mappings = physnet1:br-eth0

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

75

5. Start the Networking service

• Compute node - Compute

1. Install the nova-compute service.

2. Update the Compute /etc/nova/nova.conf configuration file. Make sure the
following line is at the end of the file:

network_api_class=nova.network.neutronv2.api.API

neutron_admin_username=neutron
neutron_admin_password=NEUTRON_PASS
neutron_admin_auth_url=http://controller:35357/v2.0/
neutron_auth_strategy=keystone
neutron_admin_tenant_name=service
neutron_url=http://controller:9696/

libvirt_vif_driver=nova.virt.libvirt.vif.LibvirtHybridOVSBridgeDriver

3. Restart the Compute services

• Compute and Network node�L2 agent

1. Install and start Open vSwitch.

2. Install the L2 agent (Neutron Open vSwitch agent).

3. Add the integration bridge to Open vSwitch:

ovs-vsctl add-br br-int

4. Update the Networking /etc/neutron/neutron.conf configuration file:

[DEFAULT]
core_plugin = neutron.plugins.openvswitch.ovs_neutron_plugin.
OVSNeutronPluginV2
control_exchange = neutron
rabbit_host = controller
rabbit_password = RABBIT_PASS
notification_driver = neutron.openstack.common.notifier.rabbit_notifier

[database]
connection = mysql://neutron:NEUTRON_DBPASS@controller/neutron

5. Update the plug-in /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini configuration file:

[ovs]
network_vlan_ranges = physnet1
bridge_mappings = physnet1:br-eth0

6. Create the br-eth0 network bridge to handle communication between nodes using
eth0:

ovs-vsctl add-br br-eth0
ovs-vsctl add-port br-eth0 eth0

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

76

7. Start the OpenStack Networking L2 agent.

• Network node�DHCP agent

1. Install the DHCP agent.

2. Update the Networking /etc/neutron/neutron.conf configuration file:

[DEFAULT]
core_plugin = neutron.plugins.openvswitch.ovs_neutron_plugin.
OVSNeutronPluginV2
control_exchange = neutron
rabbit_host = controller
rabbit_password = RABBIT_PASS
notification_driver = neutron.openstack.common.notifier.rabbit_notifier

3. Update the DHCP /etc/neutron/dhcp_agent.ini configuration file:

interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver

4. Start the DHCP agent.

Configure logical network

Use the following commands on the network node.

Note

Ensure that the following environment variables are set. Various clients use
these variables to access the Identity Service.

export OS_USERNAME=admin
export OS_PASSWORD=adminpassword
export OS_TENANT_NAME=admin
export OS_AUTH_URL=http://127.0.0.1:5000/v2.0/

1. Get the tenant ID (Used as $TENANT_ID later):

keystone tenant-list
+----------------------------------+---------+---------+
| id | name | enabled |
+----------------------------------+---------+---------+
247e478c599f45b5bd297e8ddbbc9b6a	TenantA	True
2b4fec24e62e4ff28a8445ad83150f9d	TenantC	True
3719a4940bf24b5a8124b58c9b0a6ee6	TenantB	True
5fcfbc3283a142a5bb6978b549a511ac	demo	True
b7445f221cda4f4a8ac7db6b218b1339	admin	True
+----------------------------------+---------+---------+

2. Get the user information:

keystone user-list
+----------------------------------+-------+---------+-------------------+
| id | name | enabled | email |
+----------------------------------+-------+---------+-------------------+
| 5a9149ed991744fa85f71e4aa92eb7ec | demo | True | |
| 5b419c74980d46a1ab184e7571a8154e | admin | True | admin@example.com |

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

77

8e37cb8193cb4873a35802d257348431	UserC	True	
c11f6b09ed3c45c09c21cbbc23e93066	UserB	True	
ca567c4f6c0942bdac0e011e97bddbe3	UserA	True	
+----------------------------------+-------+---------+-------------------+

3. Create a internal shared network on the demo tenant ($TENANT_ID is
b7445f221cda4f4a8ac7db6b218b1339):

$ neutron net-create --tenant-id $TENANT_ID sharednet1 --shared --
provider:network_type flat \
 --provider:physical_network physnet1
Created a new network:
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	04457b44-e22a-4a5c-be54-a53a9b2818e7
name	sharednet1
provider:network_type	flat
provider:physical_network	physnet1
provider:segmentation_id	
router:external	False
shared	True
status	ACTIVE
subnets	
tenant_id	b7445f221cda4f4a8ac7db6b218b1339
+---------------------------+--------------------------------------+

4. Create a subnet on the network:

neutron subnet-create --tenant-id $TENANT_ID sharednet1 30.0.0.0/24
Created a new subnet:
+------------------+--+
| Field | Value |
+------------------+--+
allocation_pools	{"start": "30.0.0.2", "end": "30.0.0.254"}
cidr	30.0.0.0/24
dns_nameservers	
enable_dhcp	True
gateway_ip	30.0.0.1
host_routes	
id	b8e9a88e-ded0-4e57-9474-e25fa87c5937
ip_version	4
name	
network_id	04457b44-e22a-4a5c-be54-a53a9b2818e7
tenant_id	5fcfbc3283a142a5bb6978b549a511ac
+------------------+--+

5. Create a server for tenant A:

nova --os-tenant-name TenantA --os-username UserA --os-password password \
 --os-auth-url=http://localhost:5000/v2.0 boot --image tty --flavor 1 \
 --nic net-id=04457b44-e22a-4a5c-be54-a53a9b2818e7 TenantA_VM1

nova --os-tenant-name TenantA --os-username UserA --os-password password \
--os-auth-url=http://localhost:5000/v2.0 list
+--------------------------------------+-------------+--------
+---------------------+
| ID | Name | Status | Networks
 |

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

78

+--------------------------------------+-------------+--------
+---------------------+
| 09923b39-050d-4400-99c7-e4b021cdc7c4 | TenantA_VM1 | ACTIVE | sharednet1=
30.0.0.3 |
+--------------------------------------+-------------+--------
+---------------------+

6. Ping the server of tenant A:

ip addr flush eth0
ip addr add 30.0.0.201/24 dev br-eth0
$ ping 30.0.0.3

7. Ping the public network within the server of tenant A:

ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_req=1 ttl=64 time=1.74 ms
64 bytes from 192.168.1.1: icmp_req=2 ttl=64 time=1.50 ms
64 bytes from 192.168.1.1: icmp_req=3 ttl=64 time=1.23 ms
^C
--- 192.168.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 1.234/1.495/1.745/0.211 ms

Note

The 192.168.1.1 is an IP on public network to which the router connects.

8. Create servers for other tenants with similar commands. Because all VMs share the same
subnet, they can access each other.

Use case: single flat network

The simplest use case is a single network. This is a "shared" network, meaning it is visible
to all tenants via the Networking API. Tenant VMs have a single NIC, and receive a fixed IP
address from the subnet(s) associated with that network. This use case essentially maps to
the FlatManager and FlatDHCPManager models provided by Compute. Floating IPs are not
supported.

This network type is often created by the OpenStack administrator to map directly to
an existing physical network in the data center (called a "provider network"). This allows
the provider to use a physical router on that data center network as the gateway for
VMs to reach the outside world. For each subnet on an external network, the gateway
configuration on the physical router must be manually configured outside of OpenStack.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

79

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

80

Use case: multiple flat network

This use case is similar to the above single flat network use case, except that tenants can
see multiple shared networks via the Networking API and can choose which network (or
networks) to plug into.

Use case: mixed flat and private network

This use case is an extension of the above Flat Network use cases. In addition to being able
to see one or more shared networks via the OpenStack Networking API, tenants can also
have access to private per-tenant networks (only visible to tenant users).

Created VMs can have NICs on any of the shared or private networks that the tenant owns.
This enables the creation of multi-tier topologies that use VMs with multiple NICs. It also
enables a VM to act as a gateway so that it can provide services such as routing, NAT, and
load balancing.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

81

Provider router with private networks

This section describes how to install the OpenStack Networking service and its components
for a single router use case: a provider router with private networks.

This figure shows the set up:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

82

Note

Because you run the DHCP agent and L3 agent on one node, you must set
use_namespaces to True (which is the default) in the configuration files for
both agents.

The configuration includes these nodes:

Table 9.1. Nodes for use case

Node Description

Controller Runs the Networking service, Identity Service, and all
Compute services that are required to deploy a VM.

The service must have at least two network interfaces. The
first should be connected to the Management Network to
communicate with the compute and network nodes. The
second interface should be connected to the API/public
network.

Compute Runs Compute and the Networking L2 agent.

This node does not have access the public network.

The node must have a network interface that
communicates with the controller node through the
management network. The VM receives its IP address from
the DHCP agent on this network.

Network Runs Networking L2 agent, DHCP agent, and L3 agent.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

83

Node Description

This node has access to the public network. The DHCP
agent allocates IP addresses to the VMs on the network.
The L3 agent performs NAT and enables the VMs to access
the public network.

The node must have:

• A network interface that communicates with the
controller node through the management network

• A network interface on the data network that manages
VM traffic

• A network interface that connects to the external
gateway on the network

Install

Controller

To install and configure the controller node

1. Run this command:

apt-get install neutron-server

2. Configure Networking services:

• Edit the /etc/neutron/neutron.conf file and add these lines:

core_plugin = neutron.plugins.openvswitch.ovs_neutron_plugin.
OVSNeutronPluginV2
auth_strategy = keystone
fake_rabbit = False
rabbit_password = RABBIT_PASS

[database]
connection = mysql://neutron:NEUTRON_DBPASS@controller/neutron

• Edit the /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini file and add these lines:

[ovs]
tenant_network_type = vlan
network_vlan_ranges = physnet1:100:2999

• Edit the /etc/neutron/api-paste.ini file and add these lines:

admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS

3. Start the services:

service neutron-server restart

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

84

Network node

To install and configure the network node

1. Install the packages:

apt-get install neutron-plugin-openvswitch-agent \
neutron-dhcp-agent neutron-l3-agent

2. Start Open vSwitch:

service openvswitch-switch start

3. Add the integration bridge to the Open vSwitch:

ovs-vsctl add-br br-int

4. Update the OpenStack Networking /etc/neutron/neutron.conf configuration
file:

rabbit_password = guest
rabbit_host = controller
rabbit_password = RABBIT_PASS

[database]
connection = mysql://neutron:NEUTRON_DBPASS@controller:3306/neutron

5. Update the plug-in /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini configuration file:

[ovs]
tenant_network_type=vlan
network_vlan_ranges = physnet1:1:4094
bridge_mappings = physnet1:br-eth1

6. Create the br-eth1 network bridge. All VM communication between the nodes
occurs through br-eth1:

ovs-vsctl add-br br-eth1
ovs-vsctl add-port br-eth1 eth1

7. Create the external network bridge to the Open vSwitch:

ovs-vsctl add-br br-ex
ovs-vsctl add-port br-ex eth2

8. Edit the /etc/neutron/l3_agent.ini file and add these lines:

[DEFAULT]
auth_url = http://controller:35357/v2.0
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS
metadata_ip = controller
use_namespaces = True

9. Edit the /etc/neutron/api-paste.ini file and add these lines:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

85

[DEFAULT]
auth_host = controller
admin_tenant_name = service
admin_user = neutron
admin_password = NEUTRON_PASS

10. Edit the /etc/neutron/dhcp_agent.ini file and add this line:

use_namespaces = True

11. Restart networking services:

service neutron-plugin-openvswitch-agent start
service neutron-dhcp-agent restart
service neutron-l3-agent restart

Compute Node

To install and configure the compute node

1. Install the packages:

apt-get install openvswitch-switch neutron-plugin-openvswitch-agent

2. Start the OpenvSwitch service:

service openvswitch-switch start

3. Create the integration bridge:

ovs-vsctl add-br br-int

4. Create the br-eth1 network bridge. All VM communication between the nodes
occurs through br-eth1:

ovs-vsctl add-br br-eth1
ovs-vsctl add-port br-eth1 eth1

5. Edit the OpenStack Networking /etc/neutron/neutron.conf configuration file
and add this line:

rabbit_password = guest
rabbit_host = controller
rabbit_password = RABBIT_PASS

[database]
connection = mysql://neutron:NEUTRON_DBPASS@controller:3306/neutron

6. Edit the /etc/neutron/plugins/openvswitch/ovs_neutron_plugin.ini
file and add these lines:

[ovs]
tenant_network_type = vlan
network_vlan_ranges = physnet1:1:4094
bridge_mappings = physnet1:br-eth1

7. Restart the OpenvSwitch Neutron plug-in agent:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

86

service neutron-plugin-openvswitch-agent restart

Logical network configuration

Note

Run these commands on the network node.

Ensure that the following environment variables are set. Various clients use
these variables to access the Identity Service.

• Create a novarc file:

export OS_TENANT_NAME=provider_tenant
export OS_USERNAME=admin
export OS_PASSWORD=password
export OS_AUTH_URL="http://controller:5000/v2.0/"
export SERVICE_ENDPOINT="http://controller:35357/v2.0"
export SERVICE_TOKEN=password

• Export the variables:

source novarc echo "source novarc">>.bashrc

The admin user creates a network and subnet on behalf of tenant_A. A tenant_A user can
also complete these steps.

To configure internal networking

1. Get the tenant ID (Used as $TENANT_ID later).

keystone tenant-list
+----------------------------------+--------------------+---------+
| id | name | enabled |
+----------------------------------+--------------------+---------+
48fb81ab2f6b409bafac8961a594980f	provider_tenant	True
cbb574ac1e654a0a992bfc0554237abf	service	True
e371436fe2854ed89cca6c33ae7a83cd	invisible_to_admin	True
e40fa60181524f9f9ee7aa1038748f08	tenant_A	True
+----------------------------------+--------------------+---------+

2. Create an internal network named net1 for tenant_A ($TENANT_ID will be
e40fa60181524f9f9ee7aa1038748f08):

neutron net-create --tenant-id $TENANT_ID net1
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	e99a361c-0af8-4163-9feb-8554d4c37e4f
name	net1
provider:network_type	vlan
provider:physical_network	physnet1
provider:segmentation_id	1024
router:external	False
shared	False
status	ACTIVE

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

87

| subnets | |
| tenant_id | e40fa60181524f9f9ee7aa1038748f08 |
+---------------------------+--------------------------------------+

3. Create a subnet on the network net1 (ID field below is used as $SUBNET_ID later):

neutron subnet-create --tenant-id $TENANT_ID net1 10.5.5.0/24
+------------------+--+
| Field | Value |
+------------------+--+
allocation_pools	{"start": "10.5.5.2", "end": "10.5.5.254"}
cidr	10.5.5.0/24
dns_nameservers	
enable_dhcp	True
gateway_ip	10.5.5.1
host_routes	
id	c395cb5d-ba03-41ee-8a12-7e792d51a167
ip_version	4
name	
network_id	e99a361c-0af8-4163-9feb-8554d4c37e4f
tenant_id	e40fa60181524f9f9ee7aa1038748f08
+------------------+--+

A user with the admin role must complete these steps. In this procedure, the user is admin
from provider_tenant.

To configure the router and external networking

1. Create a router1 route. The ID is used as $ROUTER_ID later:

neutron router-create router1
+-----------------------+--------------------------------------+
| Field | Value |
+-----------------------+--------------------------------------+
admin_state_up	True
external_gateway_info	
id	685f64e7-a020-4fdf-a8ad-e41194ae124b
name	router1
status	ACTIVE
tenant_id	48fb81ab2f6b409bafac8961a594980f
+-----------------------+--------------------------------------+

Note

The --tenant-id parameter is not specified, so this router is assigned to
the provider_tenant tenant.

2. Add an interface to the router1 router and attach it to the subnet from net1:

neutron router-interface-add $ROUTER_ID $SUBNET_ID
Added interface to router 685f64e7-a020-4fdf-a8ad-e41194ae124b

Note

You can repeat this step to add more interfaces for other networks that
belong to other tenants.

3. Create the ext_net external network:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

88

neutron net-create ext_net --router:external=True
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	8858732b-0400-41f6-8e5c-25590e67ffeb
name	ext_net
provider:network_type	vlan
provider:physical_network	physnet1
provider:segmentation_id	1
router:external	True
shared	False
status	ACTIVE
subnets	
tenant_id	48fb81ab2f6b409bafac8961a594980f
+---------------------------+--------------------------------------+

4. Create the subnet for floating IPs.

Note

The DHCP service is disabled for this subnet.

neutron subnet-create ext_net \
--allocation-pool start=7.7.7.130,end=7.7.7.150 \
--gateway 7.7.7.1 7.7.7.0/24 --disable-dhcp
+------------------+--+
| Field | Value |
+------------------+--+
allocation_pools	{"start": "7.7.7.130", "end": "7.7.7.150"}
cidr	7.7.7.0/24
dns_nameservers	
enable_dhcp	False
gateway_ip	7.7.7.1
host_routes	
id	aef60b55-cbff-405d-a81d-406283ac6cff
ip_version	4
name	
network_id	8858732b-0400-41f6-8e5c-25590e67ffeb
tenant_id	48fb81ab2f6b409bafac8961a594980f
+------------------+--+

5. Set the gateway for the router to the external network:

neutron router-gateway-set $ROUTER_ID $EXTERNAL_NETWORK_ID
Set gateway for router 685f64e7-a020-4fdf-a8ad-e41194ae124b

A user from tenant_A completes these steps, so the credentials in the environment
variables are different than those in the previous procedure.

To allocate floating IP addresses

1. You can associate a floating IP address with a VM after it starts. Find the ID of the port
($PORT_ID) that was allocated for the VM, as follows:

nova list
+--------------------------------------+--------+--------+---------------+
| ID | Name | Status | Networks |

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

89

+--------------------------------------+--------+--------+---------------+
| 1cdc671d-a296-4476-9a75-f9ca1d92fd26 | testvm | ACTIVE | net1=10.5.5.3 |
+--------------------------------------+--------+--------+---------------+

neutron port-list -- --device_id 1cdc671d-a296-4476-9a75-f9ca1d92fd26
+--------------------------------------+------+-------------------
+---
+
| id | name | mac_address |
 fixed_ips
 |
+--------------------------------------+------+-------------------
+---
+
| 9aa47099-b87b-488c-8c1d-32f993626a30 | | fa:16:3e:b4:d6:6c |
 {"subnet_id": "c395cb5d-ba03-41ee-8a12-7e792d51a167", "ip_address": "10.
5.5.3"} |
+--------------------------------------+------+-------------------
+---
+

2. Allocate a floating IP (Used as $FLOATING_ID):

neutron floatingip-create ext_net
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
fixed_ip_address	
floating_ip_address	7.7.7.131
floating_network_id	8858732b-0400-41f6-8e5c-25590e67ffeb
id	40952c83-2541-4d0c-b58e-812c835079a5
port_id	
router_id	
tenant_id	e40fa60181524f9f9ee7aa1038748f08
+---------------------+--------------------------------------+

3. Associate the floating IP with the port for the VM:

neutron floatingip-associate $FLOATING_ID $PORT_ID
Associated floatingip 40952c83-2541-4d0c-b58e-812c835079a5

4. Show the floating IP:

neutron floatingip-show $FLOATING_ID
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
fixed_ip_address	10.5.5.3
floating_ip_address	7.7.7.131
floating_network_id	8858732b-0400-41f6-8e5c-25590e67ffeb
id	40952c83-2541-4d0c-b58e-812c835079a5
port_id	9aa47099-b87b-488c-8c1d-32f993626a30
router_id	685f64e7-a020-4fdf-a8ad-e41194ae124b
tenant_id	e40fa60181524f9f9ee7aa1038748f08
+---------------------+--------------------------------------+

5. Test the floating IP:

ping 7.7.7.131
PING 7.7.7.131 (7.7.7.131) 56(84) bytes of data.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

90

64 bytes from 7.7.7.131: icmp_req=2 ttl=64 time=0.152 ms
64 bytes from 7.7.7.131: icmp_req=3 ttl=64 time=0.049 ms

Use case: provider router with private networks

This use case provides each tenant with one or more private networks that connect to the
outside world through an OpenStack Networking router. When each tenant gets exactly
one network, this architecture maps to the same logical topology as the VlanManager in
Compute (although of course, Networking does not require VLANs). Using the Networking
API, the tenant can only see a network for each private network assigned to that tenant.
The router object in the API is created and owned by the cloud administrator.

This model supports assigning public addresses to VMs by using floating IPs; the router
maps public addresses from the external network to fixed IPs on private networks. Hosts
without floating IPs can still create outbound connections to the external network because
the provider router performs SNAT to the router's external IP. The IP address of the physical
router is used as the gateway_ip of the external network subnet, so the provider has a
default router for Internet traffic.

The router provides L3 connectivity among private networks. Tenants can reach instances
for other tenants unless you use additional filtering, such as, security groups). With a single
router, tenant networks cannot use overlapping IPs. To resolve this issue, the administrator
can create private networks on behalf of the tenants.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

91

Per-tenant routers with private networks

This section describes how to install the OpenStack Networking service and its components
for a use case that has per-tenant routers with private networks.

The following figure shows the setup:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

92

As shown in the figure, the setup includes:

• An interface for management traffic on each node.

• Use of the Open vSwitch plug-in.

• GRE tunnels for data transport on all agents.

• Floating IPs and router gateway ports that are configured in an external network, and
a physical router that connects the floating IPs and router gateway ports to the outside
world.

Note

Because this example runs a DHCP agent and L3 agent on one node, you must
set the use_namespace option to True in the configuration file for each
agent. The default is True.

This table describes the nodes:

Node Description

Controller Node Runs Networking, Identity Service, and all Compute services that are required to deploy VMs
(nova-api, nova-scheduler, for example). The node must have at least one network
interface, which connects to the Management Network. The host name is controlnode,
which other nodes resolve to the IP of the controller node.

Note
The nova-network service should not be running. This is replaced by
Networking.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

93

Node Description

Compute Node Runs the Networking L2 agent and the Compute services that run VMs (nova-compute
specifically, and optionally other nova-* services depending on configuration). The node must
have at least two network interfaces. One interface communicates with the controller node
through the management network. The other node is used for the VM traffic on the data
network. The VM receives its IP address from the DHCP agent on this network.

Network Node Runs Networking L2 agent, DHCP agent and L3 agent. This node has access to the external
network. The DHCP agent allocates IP addresses to the VMs on data network. (Technically,
the addresses are allocated by the Networking server, and distributed by the dhcp agent.)
The node must have at least two network interfaces. One interface communicates with the
controller node through the management network. The other interface is used as external
network. GRE tunnels are set up as data networks.

Router Router has IP 30.0.0.1, which is the default gateway for all VMs. The router must be able to
access public networks.

The use case assumes the following:

Controller node

1. Relevant Compute services are installed, configured, and running.

2. Glance is installed, configured, and running. In addition, an image named tty must be
present.

3. Identity is installed, configured, and running. A Networking user named neutron should
be created on tenant service with password NEUTRON_PASS.

4. Additional services:

• RabbitMQ is running with default guest and its password.

• MySQL server (user is root and password is root).

Compute node

Install and configure Compute.

Install

• Controller node�Networking server

1. Install the Networking server.

2. Create database ovs_neutron.

3. Update the Networking configuration file, /etc/neutron/neutron.conf, with
plug-in choice and Identity Service user as necessary:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

94

[DEFAULT]
core_plugin = neutron.plugins.openvswitch.ovs_neutron_plugin.
OVSNeutronPluginV2
control_exchange = neutron
rabbit_host = controller
rabbit_password = RABBIT_PASS
notification_driver = neutron.openstack.common.notifier.rabbit_notifier

[database]
connection = mysql://neutron:NEUTRON_DBPASS@controller:3306/neutron

[keystone_authtoken]
admin_tenant_name=service
admin_user=neutron
admin_password=NEUTRON_PASS

4. Update the plug-in configuration file, /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini:

[ovs]
tenant_network_type = gre
tunnel_id_ranges = 1:1000
enable_tunneling = True

5. Start the Networking server.

The Networking server can be a service of the operating system. The command to
start the service depends on your operating system. The following command runs
the Networking server directly:

neutron-server --config-file /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini \
 --config-file /etc/neutron/neutron.conf

• Compute node�Compute

1. Install Compute services.

2. Update the Compute /etc/nova/nova.conf configuration file. Make sure the
following line appears at the end of this file:

network_api_class=nova.network.neutronv2.api.API

neutron_admin_username=neutron
neutron_admin_password=NEUTRON_PASS
neutron_admin_auth_url=http://controlnode:35357/v2.0/
neutron_auth_strategy=keystone
neutron_admin_tenant_name=service
neutron_url=http://controlnode:9696/

libvirt_vif_driver=nova.virt.libvirt.vif.LibvirtHybridOVSBridgeDriver

3. Restart relevant Compute services.

• Compute and Networking node�L2 agent

1. Install and start Open vSwitch.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

95

2. Install the L2 agent (Neutron Open vSwitch agent).

3. Add the integration bridge to the Open vSwitch:

ovs-vsctl add-br br-int

4. Update the Networking configuration file, /etc/neutron/neutron.conf:

[DEFAULT]
core_plugin = neutron.plugins.openvswitch.ovs_neutron_plugin.
OVSNeutronPluginV2
control_exchange = neutron
rabbit_host = controller
rabbit_password = RABBIT_PASS
notification_driver = neutron.openstack.common.notifier.rabbit_notifier

[database]
connection = mysql://neutron:NEUTRON_DBPASS@controller:3306/neutron

5. Update the plug-in configuration file, /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini.

Compute node:

[ovs]
tenant_network_type = gre
tunnel_id_ranges = 1:1000
enable_tunneling = True
local_ip = 9.181.89.202

Network node:

[ovs]
tenant_network_type = gre
tunnel_id_ranges = 1:1000
enable_tunneling = True
local_ip = 9.181.89.203

6. Create the integration bridge br-int:

ovs-vsctl --may-exist add-br br-int

7. Start the Networking L2 agent

The Networking Open vSwitch L2 agent can be a service of operating system. The
command to start depends on your operating systems. The following command runs
the service directly:

neutron-openvswitch-agent --config-file /etc/neutron/plugins/
openvswitch/ovs_neutron_plugin.ini \
 --config-file /etc/neutron/neutron.conf

• Network node�DHCP agent

1. Install the DHCP agent.

2. Update the Networking configuration file, /etc/neutron/neutron.conf

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

96

[DEFAULT]
core_plugin = neutron.plugins.openvswitch.ovs_neutron_plugin.
OVSNeutronPluginV2
control_exchange = neutron
rabbit_host = controller
rabbit_password = RABBIT_PASS
notification_driver = neutron.openstack.common.notifier.rabbit_notifier
allow_overlapping_ips = True

Set allow_overlapping_ips because TenantA and TenantC use overlapping
subnets.

3. Update the DHCP /etc/neutron/dhcp_agent.ini configuration file:

interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver

4. Start the DHCP agent.

The Networking DHCP agent can be a service of operating system. The command to
start the service depends on your operating system. The following command runs
the service directly:

neutron-dhcp-agent --config-file /etc/neutron/neutron.conf \
 --config-file /etc/neutron/dhcp_agent.ini

• Network node�L3 agent

1. Install the L3 agent.

2. Add the external network bridge

ovs-vsctl add-br br-ex

3. Add the physical interface, for example eth0, that is connected to the outside
network to this bridge:

ovs-vsctl add-port br-ex eth0

4. Update the L3 configuration file /etc/neutron/l3_agent.ini:

[DEFAULT]
interface_driver=neutron.agent.linux.interface.OVSInterfaceDriver
use_namespaces=True

Set the use_namespaces option (it is True by default) because TenantA and
TenantC have overlapping subnets, and the routers are hosted on one l3 agent
network node.

5. Start the L3 agent

The Networking L3 agent can be a service of operating system. The command to
start the service depends on your operating system. The following command starts
the agent directly:

neutron-l3-agent --config-file /etc/neutron/neutron.conf \
--config-file /etc/neutron/l3_agent.ini

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

97

Configure logical network

You can run these commands on the network node.

Note

Ensure that the following environment variables are set. Various clients use
these to access the Identity Service.

export OS_USERNAME=admin
export OS_PASSWORD=adminpassword
export OS_TENANT_NAME=admin
export OS_AUTH_URL=http://127.0.0.1:5000/v2.0/

1. Get the tenant ID (Used as $TENANT_ID later):

keystone tenant-list
+----------------------------------+---------+---------+
| id | name | enabled |
+----------------------------------+---------+---------+
247e478c599f45b5bd297e8ddbbc9b6a	TenantA	True
2b4fec24e62e4ff28a8445ad83150f9d	TenantC	True
3719a4940bf24b5a8124b58c9b0a6ee6	TenantB	True
5fcfbc3283a142a5bb6978b549a511ac	demo	True
b7445f221cda4f4a8ac7db6b218b1339	admin	True
+----------------------------------+---------+---------+

2. Get user information:

keystone user-list
+----------------------------------+-------+---------+-------------------+
| id | name | enabled | email |
+----------------------------------+-------+---------+-------------------+
5a9149ed991744fa85f71e4aa92eb7ec	demo	True	
5b419c74980d46a1ab184e7571a8154e	admin	True	admin@example.com
8e37cb8193cb4873a35802d257348431	UserC	True	
c11f6b09ed3c45c09c21cbbc23e93066	UserB	True	
ca567c4f6c0942bdac0e011e97bddbe3	UserA	True	
+----------------------------------+-------+---------+-------------------+

3. Create the external network and its subnet by admin user:

neutron net-create Ext-Net --provider:network_type local --
router:external true
Created a new network:
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	2c757c9e-d3d6-4154-9a77-336eb99bd573
name	Ext-Net
provider:network_type	local
provider:physical_network	
provider:segmentation_id	
router:external	True
shared	False
status	ACTIVE
subnets	
tenant_id	b7445f221cda4f4a8ac7db6b218b1339
+---------------------------+--------------------------------------+

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

98

neutron subnet-create Ext-Net 30.0.0.0/24 --disable-dhcp
Created a new subnet:
+------------------+--+
| Field | Value |
+------------------+--+
allocation_pools	{"start": "30.0.0.2", "end": "30.0.0.254"}
cidr	30.0.0.0/24
dns_nameservers	
enable_dhcp	False
gateway_ip	30.0.0.1
host_routes	
id	ba754a55-7ce8-46bb-8d97-aa83f4ffa5f9
ip_version	4
name	
network_id	2c757c9e-d3d6-4154-9a77-336eb99bd573
tenant_id	b7445f221cda4f4a8ac7db6b218b1339
+------------------+--+

provider:network_type local means that Networking does not have to
realize this network through provider network. router:external true means
that an external network is created where you can create floating IP and router
gateway port.

4. Add an IP on external network to br-ex.

Because br-ex is the external network bridge, add an IP 30.0.0.100/24 to br-ex and
ping the floating IP of the VM from our network node.

ip addr add 30.0.0.100/24 dev br-ex
ip link set br-ex up

5. Serve TenantA.

For TenantA, create a private network, subnet, server, router, and floating IP.

a. Create a network for TenantA:

neutron --os-tenant-name TenantA --os-username UserA --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 net-create TenantA-Net
Created a new network:
+-----------------+--------------------------------------+
| Field | Value |
+-----------------+--------------------------------------+
admin_state_up	True
id	7d0e8d5d-c63c-4f13-a117-4dc4e33e7d68
name	TenantA-Net
router:external	False
shared	False
status	ACTIVE
subnets	
tenant_id	247e478c599f45b5bd297e8ddbbc9b6a
+-----------------+--------------------------------------+

After that, you can use admin user to query the provider network information:

neutron net-show TenantA-Net
+---------------------------+--------------------------------------+

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

99

| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	7d0e8d5d-c63c-4f13-a117-4dc4e33e7d68
name	TenantA-Net
provider:network_type	gre
provider:physical_network	
provider:segmentation_id	1
router:external	False
shared	False
status	ACTIVE
subnets	
tenant_id	247e478c599f45b5bd297e8ddbbc9b6a
+---------------------------+--------------------------------------+

The network has GRE tunnel ID (for example, provider:segmentation_id) 1.

b. Create a subnet on the network TenantA-Net:

neutron --os-tenant-name TenantA --os-username UserA --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 subnet-create TenantA-Net
 10.0.0.0/24
Created a new subnet:
+------------------+--+
| Field | Value |
+------------------+--+
allocation_pools	{"start": "10.0.0.2", "end": "10.0.0.254"}
cidr	10.0.0.0/24
dns_nameservers	
enable_dhcp	True
gateway_ip	10.0.0.1
host_routes	
id	51e2c223-0492-4385-b6e9-83d4e6d10657
ip_version	4
name	
network_id	7d0e8d5d-c63c-4f13-a117-4dc4e33e7d68
tenant_id	247e478c599f45b5bd297e8ddbbc9b6a
+------------------+--+

c. Create a server for TenantA:

$ nova --os-tenant-name TenantA --os-username UserA --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 boot --image tty --flavor 1
 \
 --nic net-id=7d0e8d5d-c63c-4f13-a117-4dc4e33e7d68 TenantA_VM1

$ nova --os-tenant-name TenantA --os-username UserA --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 list
+--------------------------------------+-------------+--------
+----------------------+
| ID | Name | Status |
 Networks |
+--------------------------------------+-------------+--------
+----------------------+
| 7c5e6499-7ef7-4e36-8216-62c2941d21ff | TenantA_VM1 | ACTIVE |
 TenantA-Net=10.0.0.3 |

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

100

+--------------------------------------+-------------+--------
+----------------------+

Note

It is important to understand that you should not attach the instance
to Ext-Net directly. Instead, you must use a floating IP to make it
accessible from the external network.

d. Create and configure a router for TenantA:

neutron --os-tenant-name TenantA --os-username UserA --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 router-create TenantA-R1
Created a new router:
+-----------------------+--------------------------------------+
| Field | Value |
+-----------------------+--------------------------------------+
admin_state_up	True
external_gateway_info	
id	59cd02cb-6ee6-41e1-9165-d251214594fd
name	TenantA-R1
status	ACTIVE
tenant_id	247e478c599f45b5bd297e8ddbbc9b6a
+-----------------------+--------------------------------------+

neutron --os-tenant-name TenantA --os-username UserA --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 router-interface-add \
 TenantA-R1 51e2c223-0492-4385-b6e9-83d4e6d10657

Added interface to router TenantA-R1

neutron --os-tenant-name TenantA --os-username UserA --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 \
 router-gateway-set TenantA-R1 Ext-Net

6. Associate a floating IP for TenantA_VM1.

a. Create a floating IP:

neutron --os-tenant-name TenantA --os-username UserA --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 floatingip-create Ext-Net
Created a new floatingip:
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
fixed_ip_address	
floating_ip_address	30.0.0.2
floating_network_id	2c757c9e-d3d6-4154-9a77-336eb99bd573
id	5a1f90ed-aa3c-4df3-82cb-116556e96bf1
port_id	
router_id	
tenant_id	247e478c599f45b5bd297e8ddbbc9b6a
+---------------------+--------------------------------------+

b. Get the port ID of the VM with ID 7c5e6499-7ef7-4e36-8216-62c2941d21ff:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

101

$ neutron --os-tenant-name TenantA --os-username UserA --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 port-list -- \
 --device_id 7c5e6499-7ef7-4e36-8216-62c2941d21ff
+--------------------------------------+------+-------------------
+---
+
| id | name | mac_address |
 fixed_ips
 |
+--------------------------------------+------+-------------------
+---
+
| 6071d430-c66e-4125-b972-9a937c427520 | | fa:16:3e:a0:73:0d |
 {"subnet_id": "51e2c223-0492-4385-b6e9-83d4e6d10657", "ip_address":
 "10.0.0.3"} |
+--------------------------------------+------+-------------------
+---
+

c. Associate the floating IP with the VM port:

$ neutron --os-tenant-name TenantA --os-username UserA --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 floatingip-associate \
 5a1f90ed-aa3c-4df3-82cb-116556e96bf1 6071d430-c66e-4125-
b972-9a937c427520
Associated floatingip 5a1f90ed-aa3c-4df3-82cb-116556e96bf1

$ neutron floatingip-list
+--------------------------------------+------------------
+---------------------+--------------------------------------+
| id | fixed_ip_address |
 floating_ip_address | port_id |
+--------------------------------------+------------------
+---------------------+--------------------------------------+
| 5a1f90ed-aa3c-4df3-82cb-116556e96bf1 | 10.0.0.3 | 30.0.0.2
 | 6071d430-c66e-4125-b972-9a937c427520 |
+--------------------------------------+------------------
+---------------------+--------------------------------------+

7. Ping the public network from the server of TenantA.

In my environment, 192.168.1.0/24 is my public network connected with my physical
router, which also connects to the external network 30.0.0.0/24. With the floating IP
and virtual router, you can ping the public network within the server of tenant A:

$ ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_req=1 ttl=64 time=1.74 ms
64 bytes from 192.168.1.1: icmp_req=2 ttl=64 time=1.50 ms
64 bytes from 192.168.1.1: icmp_req=3 ttl=64 time=1.23 ms
^C
--- 192.168.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 1.234/1.495/1.745/0.211 ms

8. Ping floating IP of the TenantA's server:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

102

$ ping 30.0.0.2
PING 30.0.0.2 (30.0.0.2) 56(84) bytes of data.
64 bytes from 30.0.0.2: icmp_req=1 ttl=63 time=45.0 ms
64 bytes from 30.0.0.2: icmp_req=2 ttl=63 time=0.898 ms
64 bytes from 30.0.0.2: icmp_req=3 ttl=63 time=0.940 ms
^C
--- 30.0.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 0.898/15.621/45.027/20.793 ms

9. Create other servers for TenantA.

You can create more servers for TenantA and add floating IPs for them.

10. Serve TenantC.

For TenantC, you create two private networks with subnet 10.0.0.0/24 and subnet
10.0.1.0/24, some servers, one router to connect to these two subnets and some
floating IPs.

a. Create networks and subnets for TenantC:

neutron --os-tenant-name TenantC --os-username UserC --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 net-create TenantC-Net1
neutron --os-tenant-name TenantC --os-username UserC --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 subnet-create TenantC-Net1
 \
 10.0.0.0/24 --name TenantC-Subnet1
neutron --os-tenant-name TenantC --os-username UserC --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 net-create TenantC-Net2
neutron --os-tenant-name TenantC --os-username UserC --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 subnet-create TenantC-Net2
 \
 10.0.1.0/24 --name TenantC-Subnet2

After that you can use admin user to query the network's provider network
information:

neutron net-show TenantC-Net1
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	91309738-c317-40a3-81bb-bed7a3917a85
name	TenantC-Net1
provider:network_type	gre
provider:physical_network	
provider:segmentation_id	2
router:external	False
shared	False
status	ACTIVE
subnets	cf03fd1e-164b-4527-bc87-2b2631634b83
tenant_id	2b4fec24e62e4ff28a8445ad83150f9d
+---------------------------+--------------------------------------+

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

103

neutron net-show TenantC-Net2
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	5b373ad2-7866-44f4-8087-f87148abd623
name	TenantC-Net2
provider:network_type	gre
provider:physical_network	
provider:segmentation_id	3
router:external	False
shared	False
status	ACTIVE
subnets	38f0b2f0-9f98-4bf6-9520-f4abede03300
tenant_id	2b4fec24e62e4ff28a8445ad83150f9d
+---------------------------+--------------------------------------+

You can see GRE tunnel IDs (such as, provider:segmentation_id) 2 and 3. And also
note the network IDs and subnet IDs because you use them to create VMs and
router.

b. Create a server TenantC-VM1 for TenantC on TenantC-Net1.

nova --os-tenant-name TenantC --os-username UserC --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 boot --image tty --flavor 1
 \
 --nic net-id=91309738-c317-40a3-81bb-bed7a3917a85 TenantC_VM1

c. Create a server TenantC-VM3 for TenantC on TenantC-Net2.

nova --os-tenant-name TenantC --os-username UserC --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 boot --image tty --flavor 1
 \
 --nic net-id=5b373ad2-7866-44f4-8087-f87148abd623 TenantC_VM3

d. List servers of TenantC.

nova --os-tenant-name TenantC --os-username UserC --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 list
+--------------------------------------+-------------+--------
+-----------------------+
| ID | Name | Status |
 Networks |
+--------------------------------------+-------------+--------
+-----------------------+
| b739fa09-902f-4b37-bcb4-06e8a2506823 | TenantC_VM1 | ACTIVE |
 TenantC-Net1=10.0.0.3 |
| 17e255b2-b14f-48b3-ab32-5df36566d2e8 | TenantC_VM3 | ACTIVE |
 TenantC-Net2=10.0.1.3 |
+--------------------------------------+-------------+--------
+-----------------------+

Note the server IDs because you use them later.

e. Make sure servers get their IPs.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

104

You can use VNC to log on the VMs to check if they get IPs. If not, you must make
sure that the Networking components are running correctly and the GRE tunnels
work.

f. Create and configure a router for TenantC:

neutron --os-tenant-name TenantC --os-username UserC --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 router-create TenantC-R1

neutron --os-tenant-name TenantC --os-username UserC --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 router-interface-add \
 TenantC-R1 cf03fd1e-164b-4527-bc87-2b2631634b83
neutron --os-tenant-name TenantC --os-username UserC --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 router-interface-add \
 TenantC-R1 38f0b2f0-9f98-4bf6-9520-f4abede03300

neutron --os-tenant-name TenantC --os-username UserC --os-password
 password \
 --os-auth-url=http://localhost:5000/v2.0 \
 router-gateway-set TenantC-R1 Ext-Net

g. Checkpoint: ping from within TenantC's servers.

Because a router connects to two subnets, the VMs on these subnets can ping
each other. And because the gateway for the router is set, TenantC's servers can
ping external network IPs, such as 192.168.1.1, 30.0.0.1, and so on.

h. Associate floating IPs for TenantC's servers.

Because a router connects to two subnets, the VMs on these subnets can ping
each other. And because the gateway interface for the router is set, TenantC's
servers can ping external network IPs, such as 192.168.1.1, 30.0.0.1, and so on.

i. Associate floating IPs for TenantC's servers.

You can use similar commands to the ones used in the section for TenantA.

Use case: per-tenant routers with private networks

This use case represents a more advanced router scenario in which each tenant gets at
least one router, and potentially has access to the Networking API to create additional
routers. The tenant can create their own networks, potentially uplinking those networks
to a router. This model enables tenant-defined, multi-tier applications, with each tier being
a separate network behind the router. Because there are multiple routers, tenant subnets
can overlap without conflicting, because access to external networks all happens through
SNAT or floating IPs. Each router uplink and floating IP is allocated from the external
network subnet.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

105

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

106

10. Add the Orchestration service

Table of Contents
Orchestration service overview .. 106
Install the Orchestration service ... 106
Verify the Orchestration service installation ... 108

Use the OpenStack Orchestration service to create cloud resources using a template
language called HOT. The integrated project name is Heat.

Orchestration service overview
The Orchestration service provides a template-based orchestration for describing a cloud
application by running OpenStack API calls to generate running cloud applications. The
software integrates other core components of OpenStack into a one-file template system.
The templates enable you to create most OpenStack resource types, such as instances,
floating IPs, volumes, security groups, users, and so on. Also, provides some more advanced
functionality, such as instance high availability, instance auto-scaling, and nested stacks.
By providing very tight integration with other OpenStack core projects, all OpenStack core
projects could receive a larger user base.

The service enables deployers to integrate with the Orchestration service directly or
through custom plug-ins.

The Orchestration service consists of the following components:

• heat command-line client. A CLI that communicates with the heat-api to run AWS
CloudFormation APIs. End developers could also use the Orchestration REST API directly.

• heat-api component. Provides an OpenStack-native REST API that processes API
requests by sending them to the heat-engine over RPC.

• heat-api-cfn component. Provides an AWS Query API that is compatible with AWS
CloudFormation and processes API requests by sending them to the heat-engine over
RPC.

• heat-engine. Orchestrates the launching of templates and provides events back to the
API consumer.

Install the Orchestration service
1. Install the OpenStack Orchestration service on the controller node:

apt-get install heat-api heat-api-cfn heat-engine

2. In the configuration file, specify the location of the database where the Orchestration
service stores data. These examples use a MySQL database with a heat user on the
controller node. Replace HEAT_DBPASS with the password for the database user:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

107

Edit /etc/heat/heat.conf and change the [DEFAULT] section.

[database]
The SQLAlchemy connection string used to connect to the database
connection = mysql://heat:HEAT_DBPASS@controller/heat
...

3. By default, the Ubuntu packages create an SQLite database. Delete the heat.sqlite
file that was created in the /var/lib/heat/ directory so that it does not get used by
mistake.

4. Use the password that you set previously to log in as root and create a heat
database user:

mysql -u root -p
mysql> CREATE DATABASE heat;
mysql> GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'localhost' \
IDENTIFIED BY 'HEAT_DBPASS';
mysql> GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'%' \
IDENTIFIED BY 'HEAT_DBPASS';

5. Create the heat service tables:

heat-manage db_sync

Note

Ignore DeprecationWarning errors.

6. The Ubuntu packages do not correctly set up logging. Edit the /etc/heat/
heat.conf file and change the [DEFAULT] section:

[DEFAULT]
...
Print more verbose output (set logging level to INFO instead
of default WARNING level). (boolean value)
verbose = True
...
(Optional) The base directory used for relative --log-file
paths (string value)
log_dir=/var/log/heat

7. Configure the Orchestration Service to use the RabbitMQ message broker.

Edit /etc/heat/heat.conf and modify the [DEFAULT] section:

rabbit_host = controller
rabbit_password = RABBIT_PASS

8. Create a heat user that the Orchestration service can use to authenticate with the
Identity Service. Use the service tenant and give the user the admin role:

keystone user-create --name=heat --pass=HEAT_PASS --email=heat@example.
com
keystone user-role-add --user=heat --tenant=service --role=admin

9. Edit the /etc/heat/heat.conf file to change the [keystone_authtoken] and
[ec2_authtoken] sections to add credentials to the Orchestration Service:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

108

[keystone_authtoken]
auth_host = controller
auth_port = 35357
auth_protocol = http
auth_uri = http://controller:5000/v2.0
admin_tenant_name = service
admin_user = heat
admin_password = HEAT_PASS
[ec2_authtoken]
auth_uri = http://controller:5000/v2.0
keystone_ec2_uri = http://controller:5000/v2.0/ec2tokens

10. Register the Heat and CloudFormation APIs with the Identity Service so that other
OpenStack services can locate these APIs. Register the service and specify the endpoint:

keystone service-create --name=heat --type=orchestration \
 --description="Heat Orchestration API"

11. Use the id property that is returned for the service to create the endpoint:

keystone endpoint-create \
 --service-id=the_service_id_above \
 --publicurl=http://controller:8004/v1/%\(tenant_id\)s \
 --internalurl=http://controller:8004/v1/%\(tenant_id\)s \
 --adminurl=http://controller:8004/v1/%\(tenant_id\)s

keystone service-create --name=heat-cfn --type=cloudformation \
 --description="Heat CloudFormation API"

12. Use the id property that is returned for the service to create the endpoint:

keystone endpoint-create \
 --service-id=the_service_id_above \
 --publicurl=http://controller:8000/v1 \
 --internalurl=http://controller:8000/v1 \
 --adminurl=http://controller:8000/v1

13. Restart the service with its new settings:

service heat-api restart
service heat-api-cfn restart
service heat-engine restart

Verify the Orchestration service installation
To verify that the Orchestration service is installed and configured correctly, make sure that
your credentials are set up correctly in the openrc file. Source the file, as follows:

source openrc

Next, create some stacks by using the samples.

Create and manage stacks

Create a stack from an example template file

1. To create a stack, or template, from an example template file, run the following
command:

https://github.com/openstack/heat-templates

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

109

$ heat stack-create mystack --template-file=/PATH_TO_HEAT_TEMPLATES/
WordPress_Single_Instance.template
 --parameters="InstanceType=m1.
large;DBUsername=USERNAME;DBPassword=PASSWORD;KeyName=HEAT_KEY;LinuxDistribution=
F17"

The --parameters values that you specify depend on the parameters that are
defined in the template. If a website hosts the template file, you can specify the URL
with the --template-url parameter instead of the --template-file parameter.

The command returns the following output:

+--------------------------------------+---------------
+--------------------+----------------------+
| id | stack_name | stack_status | creation_time
 |
+--------------------------------------+---------------
+--------------------+----------------------+
| 4c712026-dcd5-4664-90b8-0915494c1332 | mystack |
 CREATE_IN_PROGRESS | 2013-04-03T23:22:08Z |
+--------------------------------------+---------------
+--------------------+----------------------+

2. You can also use the stack-create command to validate a template file without
creating a stack from it.

To do so, run the following command:

$ heat stack-create mystack --template-file=/PATH_TO_HEAT_TEMPLATES/
WordPress_Single_Instance.template

If validation fails, the response returns an error message.

Get information about stacks

To explore the state and history of a particular stack, you can run a number of commands.

• To see which stacks are visible to the current user, run the following command:

$ heat stack-list
+--------------------------------------+---------------+-----------------
+----------------------+
| id | stack_name | stack_status | creation_time |
+--------------------------------------+---------------+-----------------
+----------------------+
| 4c712026-dcd5-4664-90b8-0915494c1332 | mystack | CREATE_COMPLETE |
 2013-04-03T23:22:08Z |
| 7edc7480-bda5-4e1c-9d5d-f567d3b6a050 | my-otherstack | CREATE_FAILED |
 2013-04-03T23:28:20Z |
+--------------------------------------+---------------+-----------------
+----------------------+

• To show the details of a stack, run the following command:

$ heat stack-show mystack

• A stack consists of a collection of resources.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

110

To list the resources and their status, run the following command:

$ heat resource-list mystack
+---------------------+--------------------+-----------------
+----------------------+
| logical_resource_id | resource_type | resource_status | updated_time
 |
+---------------------+--------------------+-----------------
+----------------------+
| WikiDatabase | AWS::EC2::Instance | CREATE_COMPLETE |
 2013-04-03T23:25:56Z |
+---------------------+--------------------+-----------------
+----------------------+

• To show the details for the specified resource in a stack, run the following command:

$ heat resource-show mystack WikiDatabase

Some resources have associated metadata which can change throughout the life-cycle of
a resource:

$ heat resource-metadata mystack WikiDatabase

• A series of events is generated during the life-cycle of a stack.

To display life-cycle events, run::

$ heat event-list mystack
+---------------------+----+------------------------+-----------------
+----------------------+
| logical_resource_id | id | resource_status_reason | resource_status |
 event_time |
+---------------------+----+------------------------+-----------------
+----------------------+
| WikiDatabase | 1 | state changed | IN_PROGRESS |
 2013-04-03T23:22:09Z |
| WikiDatabase | 2 | state changed | CREATE_COMPLETE |
 2013-04-03T23:25:56Z |
+---------------------+----+------------------------+-----------------
+----------------------+

• To show the details for a particular event, run the following command:

$ heat event-show WikiDatabase 1

Update a stack

• To update an existing stack from a modified template file, run a command like the
following command:

$ heat stack-update mystack --template-file=/path/to/heat/templates/
WordPress_Single_Instance_v2.template
 --parameters="InstanceType=m1.large;DBUsername=wp;DBPassword=
verybadpassword;KeyName=heat_key;LinuxDistribution=F17"
+--------------------------------------+---------------+-----------------
+----------------------+
| id | stack_name | stack_status | creation_time |
+--------------------------------------+---------------+-----------------
+----------------------+

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

111

| 4c712026-dcd5-4664-90b8-0915494c1332 | mystack | UPDATE_COMPLETE |
 2013-04-03T23:22:08Z |
| 7edc7480-bda5-4e1c-9d5d-f567d3b6a050 | my-otherstack | CREATE_FAILED |
 2013-04-03T23:28:20Z |
+--------------------------------------+---------------+-----------------
+----------------------+

Some resources are updated in-place, while others are replaced with new resources.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

112

11. Add the Telemetry service

Table of Contents
The Telemetry Service .. 112
Install the Telemetry service .. 113
Install the Compute agent for the Telemetry service .. 115
Add the Image Service agent for the Telemetry service .. 116
Add the Block Storage Service agent for the Telemetry service 116
Add the Object Storage agent for the Telemetry service .. 116
Verify the Telemetry Service installation ... 117

The OpenStack Telemetry service provides a framework for monitoring and metering the
OpenStack cloud. It is also known as the Ceilometer project.

The Telemetry Service
The OpenStack Telemetry service:

• Efficiently collects the metering data about the CPU and network costs.

• Collects data by monitoring notifications sent from services or by polling the
infrastructure.

• Configures the type of collected data to meet various operating requirements. Accessing
and inserting the metering data through the REST API.

• Expands the framework to collect custom usage data by additional plug-ins.

• Produces signed metering messages that cannot be repudiated.

The system consists of the following basic components:

• A compute agent (ceilometer-agent-compute). Runs on each compute node and
polls for resource utilization statistics. There may be other types of agents in the future,
but for now we will focus on creating the compute agent.

• A central agent (ceilometer-agent-central). Runs on a central management
server to poll for resource utilization statistics for resources not tied to instances or
compute nodes.

• A collector (ceilometer-collector). Runs on one or more central management
servers to monitor the message queues (for notifications and for metering data coming
from the agent). Notification messages are processed and turned into metering
messages and sent back out onto the message bus using the appropriate topic.
Telemetry messages are written to the data store without modification.

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

113

• An alarm notifier (ceilometer-alarm-notifier). Runs on one or more central
management servers to allow settting alarms based on threshold evaluation for a
collection of samples.

• A data store. A database capable of handling concurrent writes (from one or more
collector instances) and reads (from the API server).

• An API server (ceilometer-api). Runs on one or more central management servers
to provide access to the data from the data store. These services communicate using the
standard OpenStack messaging bus. Only the collector and API server have access to the
data store.

These services communicate by using the standard OpenStack messaging bus. Only the
collector and API server have access to the data store.

Install the Telemetry service
OpenStack Telemetry is an API service that provides a collector and a range of disparate
agents. Before you can install these agents on nodes such as the compute node, you must
use this procedure to install the core components on the controller node.

1. Install the Telemetry Service on the controller node:

apt-get install ceilometer-api ceilometer-collector ceilometer-agent-
central python-ceilometerclient

2. The Telemetry Service uses a database to store information. Specify the location of
the database in the configuration file. The examples use a MongoDB database on the
controller node:

apt-get install mongodb

3. Configure MongoDB to make it listen on the controller public IP address. Edit the /
etc/mongodb.conf file and modify the bind_ip key:

bind_ip = 192.168.0.10

4. Restart the MongoDB service to apply the configuration change:

service mongodb restart

5. Create the database and a ceilometer database user:

mongo
> use ceilometer
> db.addUser({ user: "ceilometer",
 pwd: "CEILOMETER_DBPASS",
 roles: ["readWrite", "dbAdmin"]
 })

6. Configure the Telemetry Service to use the database:

Edit the /etc/ceilometer/ceilometer.conf file and change the [database]
section:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

114

...
[database]
...
The SQLAlchemy connection string used to connect to the
database (string value)
connection = mongodb://ceilometer:CEILOMETER_DBPASS@controller:27017/
ceilometer
...

7. You must define an secret key that is used as a shared secret among Telemetry Service
nodes. Use openssl to generate a random token and store it in the configuration file:

openssl rand -hex 10

Edit the /etc/ceilometer/ceilometer.conf file and change the
[publisher_rpc] section. Replace ADMIN_TOKEN with the results of the openssl
command:

...
[publisher_rpc]
...
Secret value for signing metering messages (string value)
metering_secret = ADMIN_TOKEN
...

8. Configure the RabbitMQ access:

Edit the /etc/ceilometer/ceilometer.conf file and update the [DEFAULT]
section.

rabbit_host = controller
rabbit_password = RABBIT_PASS

9. Create a ceilometer user that the Telemetry Service uses to authenticate with the
Identity Service. Use the service tenant and give the user the admin role:

keystone user-create --name=ceilometer --pass=CEILOMETER_PASS --
email=ceilometer@example.com
keystone user-role-add --user=ceilometer --tenant=service --role=admin

10. Add the credentials to the configuration files for the Telemetry Service:

Edit the /etc/ceilometer/ceilometer.conf file and change the
[keystone_authtoken] section:

[keystone_authtoken]
auth_host = controller
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = ceilometer
admin_password = CEILOMETER_PASS

11. Register the Telemetry Service with the Identity Service so that other OpenStack
services can locate it. Use the keystone command to register the service and specify
the endpoint:

keystone service-create --name=ceilometer --type=metering \

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

115

 --description="Ceilometer Telemetry Service"

12. Note the id property that is returned for the service. Use it when you create the
endpoint:

keystone endpoint-create \
 --service-id=the_service_id_above \
 --publicurl=http://controller:8777/ \
 --internalurl=http://controller:8777/ \
 --adminurl=http://controller:8777/

13. Restart the services with their new settings:

service ceilometer-agent-central restart
service ceilometer-api restart
service ceilometer-collector restart

Install the Compute agent for the Telemetry
service

OpenStack Telemetry is an API service that provides a collector and a range of disparate
agents. This procedure details how to install the agent that runs on the compute node.

1. Install the Telemetry service on the Compute node:

apt-get install ceilometer-agent-compute

2. Edit the /etc/nova/nova.conf file and add the following lines to the [DEFAULT]
section:

...
[DEFAULT]
...
instance_usage_audit=True
instance_usage_audit_period=hour
notify_on_state_change=vm_and_task_state
notification_driver=nova.openstack.common.notifier.rpc_notifier
notification_driver=ceilometer.compute.nova_notifier

3. You must set the secret key that you defined previously. The Telemetry service nodes
share this key as a shared secret:

Edit the /etc/ceilometer/ceilometer.conf file and change these lines in the
[DEFAULT] section. Replace ADMIN_TOKEN with the admin token that you created
previously:

...
[publisher_rpc]
Secret value for signing metering messages (string value)
metering_secret = ADMIN_TOKEN
...

4. Restart the service with its new settings:

service ceilometer-agent-compute restart

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

116

Add the Image Service agent for the Telemetry
service

1. To retrieve image samples, you must configure the Image Service to send notifications
to the bus.

Edit /etc/glance/glance-api.conf and modify the [DEFAULT] section:

notifier_strategy = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

2. Restart the Image services with their new settings:

service glance-registry restart
service glance-api restart

Add the Block Storage Service agent for the
Telemetry service

1. To retrieve volume samples, you must configure the Block Storage Service to send
notifications to the bus.

Edit /etc/cinder/cinder.conf and add in the [DEFAULT] section:

control_exchange = cinder
notification_driver = cinder.openstack.common.notifier.rpc_notifier

2. Restart the Block Storage services with their new settings:

service cinder-volume restart
service cinder-api restart

Add the Object Storage agent for the Telemetry
service

1. To retrieve object store statistics, the Telemetry service needs access to Object Storage
with the ResellerAdmin role. Give this role to your os_username user for the
os_tenant_name tenant:

$ keystone role-create --name=ResellerAdmin
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
| id | 462fa46c13fd4798a95a3bfbe27b5e54 |
| name | ResellerAdmin |
+----------+----------------------------------+

$ keystone user-role-add --tenant service --user ceilometer \
 --role 462fa46c13fd4798a95a3bfbe27b5e54

2. You must also add the Telemetry middleware to Object Storage to handle incoming
and outgoing traffic. Add these lines to the /etc/swift/proxy-server.conf file:

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

117

[filter:ceilometer]
use = egg:ceilometer#swift

3. Add ceilometer to the pipeline parameter of that same file:

[pipeline:main]
pipeline = healthcheck cache authtoken keystoneauth ceilometer proxy-
server

4. Restart the service with its new settings:

service swift-proxy-server restart

Verify the Telemetry Service installation
To test the Telemetry Service installation, download an image from the Image Service, and
use the Telemetry Service to display usage statistics.

1. Use the ceilometer meter-list command to test the access to the Telemetry
Service:

$ ceilometer meter-list

+------------+-------+-------+--------------------------------------
+---------+----------------------------------+
| Name | Type | Unit | Resource ID | User
 ID | Project ID |
+------------+-------+-------+--------------------------------------
+---------+----------------------------------+
| image | gauge | image | 9e5c2bee-0373-414c-b4af-b91b0246ad3b | None
 | e66d97ac1b704897853412fc8450f7b9 |
| image.size | gauge | B | 9e5c2bee-0373-414c-b4af-b91b0246ad3b | None
 | e66d97ac1b704897853412fc8450f7b9 |
+------------+-------+-------+--------------------------------------
+---------+----------------------------------+

2. Download an image from the Image Service:

$ glance image-download "CirrOS 0.3.1" > cirros.img

3. Call the ceilometer meter-list command again to validate that the download
has been detected and stored by the Telemetry Service:

$ ceilometer meter-list

+----------------+-------+-------+--------------------------------------
+---------+----------------------------------+
| Name | Type | Unit | Resource ID |
 User ID | Project ID |
+----------------+-------+-------+--------------------------------------
+---------+----------------------------------+
| image | gauge | image | 9e5c2bee-0373-414c-b4af-b91b0246ad3b |
 None | e66d97ac1b704897853412fc8450f7b9 |
| image.download | delta | B | 9e5c2bee-0373-414c-b4af-b91b0246ad3b |
 None | e66d97ac1b704897853412fc8450f7b9 |
| image.serve | delta | B | 9e5c2bee-0373-414c-b4af-b91b0246ad3b |
 None | e66d97ac1b704897853412fc8450f7b9 |
| image.size | gauge | B | 9e5c2bee-0373-414c-b4af-b91b0246ad3b |
 None | e66d97ac1b704897853412fc8450f7b9 |

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

118

+----------------+-------+-------+--------------------------------------
+---------+----------------------------------+

4. You can now get usage statistics for the various meters:

$ ceilometer statistics -m image.download -p 60

+--------+---------------------+---------------------+-------
+------------+------------+------------+------------+----------
+----------------------------+----------------------------+
| Period | Period Start | Period End | Count | Min
 | Max | Sum | Avg | Duration | Duration Start
 | Duration End |
+--------+---------------------+---------------------+-------
+------------+------------+------------+------------+----------
+----------------------------+----------------------------+
| 60 | 2013-11-18T18:08:50 | 2013-11-18T18:09:50 | 1 | 13147648.0
 | 13147648.0 | 13147648.0 | 13147648.0 | 0.0 | 2013-11-18T18:09:05.
334000 | 2013-11-18T18:09:05.334000 |
+--------+---------------------+---------------------+-------
+------------+------------+------------+------------+----------
+----------------------------+----------------------------+

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

119

Appendix A. Community support

Table of Contents
Documentation ... 119
ask.openstack.org .. 120
OpenStack mailing lists .. 120
The OpenStack wiki ... 120
The Launchpad Bugs area ... 121
The OpenStack IRC channel ... 121
Documentation feedback .. 122
OpenStack distribution packages ... 122

To help you run and use OpenStack, many resources are available. Many OpenStack
community members can answer questions and help with bug suspicions. We are constantly
improving and adding to the main features of OpenStack, but if you have any problems,
do not hesitate to ask. Use the following resources to get OpenStack support and
troubleshoot your existing installations.

Documentation
For the available OpenStack documentation, see docs.openstack.org.

To provide feedback on documentation, join and use the
<openstack-docs@lists.openstack.org> mailing list at OpenStack Documentation
Mailing List, or report a bug.

The following books explain how to install an OpenStack cloud and its components:

• Installation Guide for Debian 7.0

• Installation Guide for openSUSE and SUSE Linux Enterprise Server

• Installation Guide for Red Hat Enterprise Linux, CentOS, and Fedora

• Installation Guide for Ubuntu 12.04 (LTS)

The following books explain how to configure and run an OpenStack cloud:

• Cloud Administrator Guide

• Configuration Reference

• Operations Guide

• High Availability Guide

• Security Guide

• Virtual Machine Image Guide

http://docs.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
https://bugs.launchpad.net/openstack-manuals/+filebug
http://docs.openstack.org/trunk/install-guide/install/apt-debian/content/
http://docs.openstack.org/trunk/install-guide/install/zypper/content/
http://docs.openstack.org/trunk/install-guide/install/yum/content/
http://docs.openstack.org/trunk/install-guide/install/apt/content/
http://docs.openstack.org/admin-guide-cloud/content/
http://docs.openstack.org/trunk/config-reference/content/
http://docs.openstack.org/ops/
http://docs.openstack.org/high-availability-guide/content/
http://docs.openstack.org/sec/
http://docs.openstack.org/image-guide/content/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

120

The following books explain how to use the OpenStack dashboard and command-line
clients:

• API Quick Start

• End User Guide

• Admin User Guide

The following documentation provides reference and guidance information for the
OpenStack APIs:

• OpenStack API Reference

• OpenStack Block Storage Service API v2 Reference

• OpenStack Compute API v2 and Extensions Reference

• OpenStack Identity Service API v2.0 Reference

• OpenStack Image Service API v2 Reference

• OpenStack Networking API v2.0 Reference

• OpenStack Object Storage API v1 Reference

ask.openstack.org
During set up or testing, you might have questions about how to do something or be in
a situation where a feature does not work correctly. Use the ask.openstack.org site to
ask questions and get answers. When you visit the http://ask.openstack.org site, scan the
recently asked questions to see whether your question was already answered. If not, ask
a new question. Be sure to give a clear, concise summary in the title and provide as much
detail as possible in the description. Paste in your command output or stack traces, link to
screen shots, and so on.

OpenStack mailing lists
A great way to get answers and insights is to post your question or scenario to the
OpenStack mailing list. You can learn from and help others who might have the same
scenario as you. To subscribe or view the archives, go to http://lists.openstack.org/cgi-bin/
mailman/listinfo/openstack. You might be interested in the other mailing lists for specific
projects or development, which you can find on the wiki. A description of all mailing lists is
available at http://wiki.openstack.org/MailingLists.

The OpenStack wiki
The OpenStack wiki contains content on a broad range of topics but some of it sits a bit
below the surface. Fortunately, the wiki search feature enables you to search by title or
content. If you search for specific information, such as about networking or nova, you can
find lots of content. More is being added all the time, so be sure to check back often. You
can find the search box in the upper right corner of any OpenStack wiki page.

http://docs.openstack.org/api/quick-start/content/
http://docs.openstack.org/user-guide/content/
http://docs.openstack.org/user-guide-admin/content/
http://api.openstack.org/api-ref.html
http://docs.openstack.org/api/openstack-block-storage/2.0/content/
http://docs.openstack.org/api/openstack-compute/2/content/
http://docs.openstack.org/api/openstack-identity-service/2.0/content/
http://docs.openstack.org/api/openstack-image-service/2.0/content/
http://docs.openstack.org/api/openstack-network/2.0/content/
http://docs.openstack.org/api/openstack-object-storage/1.0/content/
http://ask.openstack.org
http://ask.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack
http://wiki.openstack.org/MailingLists
http://wiki.openstack.org/MailingLists
http://wiki.openstack.org/

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

121

The Launchpad Bugs area
So you think you've found a bug. That's great! Seriously, it is. The OpenStack community
values your set up and testing efforts and wants your feedback. To log a bug, you must
sign up for a Launchpad account at https://launchpad.net/+login. You can view existing
bugs and report bugs in the Launchpad Bugs area. Use the search feature to determine
whether the bug was already reported (or even better, already fixed). If it still seems like
your bug is unreported, fill out a bug report.

Some tips:

• Give a clear, concise summary!

• Provide as much detail as possible in the description. Paste in your command output or
stack traces, link to screen shots, and so on.

• Be sure to include the software version that you are using, especially if you are
using a development branch, such as, "Grizzly release" vs git commit
bc79c3ecc55929bac585d04a03475b72e06a3208.

• Any deployment specific information is helpful, such as Ubuntu 12.04 or multi-node
install.

The Launchpad Bugs areas are available here:

• Bugs: OpenStack Compute (nova)

• Bugs : OpenStack Object Storage (swift)

• Bugs : OpenStack Image Service (glance)

• Bugs : OpenStack Identity (keystone)

• Bugs : OpenStack Dashboard (horizon)

• Bugs : OpenStack Networking (neutron)

• Bugs : OpenStack Orchestration (heat)

• Bugs : OpenStack Telemetry (ceilometer)

The OpenStack IRC channel
The OpenStack community lives and breathes in the #openstack IRC channel on the
Freenode network. You can hang out, ask questions, or get immediate feedback for urgent
and pressing issues. To install an IRC client or use a browser-based client, go to http://
webchat.freenode.net/. You can also use Colloquy (Mac OS X, http://colloquy.info/), mIRC
(Windows, http://www.mirc.com/), or XChat (Linux). When you are in the IRC channel and
want to share code or command output, the generally accepted method is to use a Paste
Bin. The OpenStack project has one at http://paste.openstack.org. Just paste your longer
amounts of text or logs in the web form and you get a URL you can paste into the channel.
The OpenStack IRC channel is: #openstack on irc.freenode.net. You can find a list
of all OpenStack-related IRC channels at https://wiki.openstack.org/wiki/IRC.

https://launchpad.net/+login
https://bugs.launchpad.net/nova
https://bugs.launchpad.net/swift
https://bugs.launchpad.net/glance
https://bugs.launchpad.net/keystone
https://bugs.launchpad.net/horizon
https://bugs.launchpad.net/neutron
https://bugs.launchpad.net/heat
https://bugs.launchpad.net/ceilometer
http://webchat.freenode.net
http://webchat.freenode.net
http://colloquy.info/
http://www.mirc.com/
http://paste.openstack.org
https://wiki.openstack.org/wiki/IRC

OpenStack Installation Guide for
Ubuntu 12.04 (LTS)

December 10, 2013 havana

122

Documentation feedback
To provide feedback on documentation, join and use the
<openstack-docs@lists.openstack.org> mailing list at OpenStack Documentation
Mailing List, or report a bug.

OpenStack distribution packages
The following Linux distributions provide community-supported packages for OpenStack:

• Debian: http://wiki.debian.org/OpenStack

• CentOS, Fedora, and Red Hat Enterprise Linux: http://openstack.redhat.com/

• openSUSE and SUSE Linux Enterprise Server: http://en.opensuse.org/Portal:OpenStack

• Ubuntu: https://wiki.ubuntu.com/ServerTeam/CloudArchive

http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-docs
https://bugs.launchpad.net/openstack-manuals/+filebug
http://wiki.debian.org/OpenStack
http://openstack.redhat.com/
http://en.opensuse.org/Portal:OpenStack
https://wiki.ubuntu.com/ServerTeam/CloudArchive

	OpenStack Installation Guide for Ubuntu 12.04 (LTS)
	Table of Contents
	Preface
	Document change history

	1. Architecture
	Conceptual architecture
	Logical architecture
	Sample architectures

	2. Basic operating system configuration
	Before you begin
	Networking
	Network Time Protocol (NTP)
	MySQL database
	OpenStack packages
	Messaging server

	3. Configure the Identity Service
	Identity Service concepts
	Install the Identity Service
	Define users, tenants, and roles
	Define services and API endpoints
	Verify the Identity Service installation

	4. Configure the Image Service
	Image Service overview
	Install the Image Service
	Verify the Image Service installation

	5. Configure Compute services
	Compute service
	Install Compute controller services
	Configure a Compute node
	Enable Networking
	Launch an instance

	6. Add the dashboard
	System requirements
	Install the dashboard
	Set up session storage for the dashboard
	Local memory cache
	Key-value stores
	Memcached
	Redis

	Initialize and configure the database
	Cached database
	Cookies

	7. Add the Block Storage Service
	Block Storage Service
	Configure a Block Storage Service controller
	Configure a Block Storage Service node

	8. Add Object Storage
	Object Storage service
	System requirements
	Plan networking for Object Storage
	Example Object Storage installation architecture
	Install Object Storage
	Before you begin
	General installation steps

	Install and configure storage nodes
	Install and configure the proxy node
	Start services on the storage nodes
	Object Storage post-installation tasks
	Verify the installation
	Add a proxy server

	9. Install the Networking service
	Networking considerations
	Neutron concepts
	Open vSwitch concepts

	Install Networking services
	Install Networking services on a dedicated network node
	Install and configure the Networking plug-ins
	Install the Open vSwitch (OVS) plug-in
	Configure the Neutron OVS plug-in for GRE tunneling
	Configure the Neutron OVS plug-in for VLANs

	Install networking support on a dedicated compute node
	Install and configure Neutron plug-ins on a dedicated compute node
	Install the Open vSwitch (OVS) plug-in on a dedicated compute node
	Configure the Neutron OVS plug-in for GRE tunneling on a dedicated compute node
	Configure the Neutron OVS plug-in for VLANs on a dedicated compute node

	Install networking support on a dedicated controller node
	Install and configure the Neutron plug-ins on a dedicated controller node
	Install the Open vSwitch (OVS) plug-in on a dedicated controller node
	Configure the Neutron OVS plug-in for GRE tunneling on a dedicated controller node
	Configure the Neutron OVS plug-in for VLANs on a dedicated controller node

	Create the base Neutron networks
	Plug-in-specific Neutron network options
	Open vSwitch Network configuration options
	GRE tunneling network options
	VLAN network options

	Neutron deployment use cases
	Single flat network
	Install
	Configure logical network
	Use case: single flat network
	Use case: multiple flat network
	Use case: mixed flat and private network

	Provider router with private networks
	Install
	Controller
	Network node
	Compute Node

	Logical network configuration
	Use case: provider router with private networks

	Per-tenant routers with private networks
	Install
	Configure logical network
	Use case: per-tenant routers with private networks

	10. Add the Orchestration service
	Orchestration service overview
	Install the Orchestration service
	Verify the Orchestration service installation
	Create and manage stacks
	Create a stack from an example template file
	Get information about stacks
	Update a stack

	11. Add the Telemetry service
	The Telemetry Service
	Install the Telemetry service
	Install the Compute agent for the Telemetry service
	Add the Image Service agent for the Telemetry service
	Add the Block Storage Service agent for the Telemetry service
	Add the Object Storage agent for the Telemetry service
	Verify the Telemetry Service installation

	Appendix A. Community support
	Documentation
	ask.openstack.org
	OpenStack mailing lists
	The OpenStack wiki
	The Launchpad Bugs area
	The OpenStack IRC channel
	Documentation feedback
	OpenStack distribution packages

