
THE ART OFCOMPUTER PROGRAMMINGPRE-FASCICLE 2B

A DRAFT OF SECTION 7.2.1.2:GENERATING ALL PERMUTATIONS

DONALD E. KNUTH Stanford University

ADDISON{WESLEY 677

-1

Internet page http://www-
s-fa
ulty.stanford.edu/~knuth/tao
p.html
ontains
urrent information about this book and related books.See also http://www-
s-fa
ulty.stanford.edu/~knuth/sgb.html for informationabout The Stanford GraphBase, in
luding downloadable software for dealing with thegraphs used in many of the examples in Chapter 7.See also http://www-
s-fa
ulty.stanford.edu/~knuth/mmixware.html for down-loadable software to simulate the MMIX
omputer.Copyright

 2002 by Addison{WesleyAll rights reserved. No part of this publi
ation may be reprodu
ed, stored in a retrievalsystem, or transmitted, in any form, or by any means, ele
troni
, me
hani
al, photo-
opying, re
ording, or otherwise, without the prior
onsent of the publisher, ex
eptthat the oÆ
ial ele
troni
 �le may be used to print single
opies for personal (not
ommer
ial) use.Zeroth printing (revision 12), 10 De
ember 2004

-2

PREFACE
I thought it worth a Dayes labour,to write something on this Art or S
ien
e,that the Rules thereof might not be lost and obs
ured.| RICHARD DUCKWORTH, Tintinnalogia (1668)

This booklet
ontains draft material that I'm
ir
ulating to experts in the�eld, in hopes that they
an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet for
ourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet rea
hed a very mature state. Beware: This material hasnot yet been proofread as thoroughly as the manus
ripts of Volumes 1, 2, and 3were at the time of their �rst printings. And those
arefully-
he
ked volumes,alas, were subsequently found to
ontain thousands of mistakes.Given this
aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be dis
ouraged from reading the material
arefully.I did try to make it both interesting and authoritative, as far as it goes. But the�eld is so vast, I
annot hope to have surrounded it enough to
orral it
ompletely.Therefore I beg you to let me know about any de�
ien
ies you dis
over.To put the material in
ontext, this is Se
tion 7.2.1.2 of a long, long
hapteron
ombinatorial algorithms. Chapter 7 will eventually �ll three volumes (namelyVolumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It willbegin with a short review of graph theory, with emphasis on some highlightsof signi�
ant graphs in The Stanford GraphBase (from whi
h I will be drawingmany examples). Then
omes Se
tion 7.1, whi
h deals with the topi
 of bitwisemanipulations. (I drafted about 60 pages about that subje
t in 1977, but thosepages need extensive revision; meanwhile I've de
ided to work for awhile onthe material that follows it, so that I
an get a better feel for how mu
h to
ut.) Se
tion 7.2 is about generating all possibilities, and it begins with Se
tion7.2.1: Generating Basi
 Combinatorial Patterns|whi
h, in turn, begins withSe
tion 7.2.1.1, \Generating all n-tuples." (Readers of the present booklet shouldhave already looked at Se
tion 7.2.1.1, a draft of whi
h is available as Pre-Fas
i
le 2A.) That sets the stage for the main
ontents of this booklet, Se
tion7.2.1.2: \Generating all permutations." Then will
ome Se
tion 7.2.1.3 (about
ombinations), et
. Se
tion 7.2.2 will deal with ba
ktra
king in general. Andso it will go on, if all goes well; an outline of the entire Chapter 7 as
urrentlyenvisaged appears on the tao
p webpage that is
ited on page ii.iii

-3

iv PREFACEEven the apparently lowly topi
 of permutation generation turns out to besurprisingly ri
h, with ties to Se
tions 1.2.9, 1.3.3, 2.2.3, 2.3.4.2, 3.4.2, 4.1, 5.1.1,5.1.2, 5.1.4, 5.2.1, 5.2.2, 5.3.1, and 6.1 of the �rst three volumes. There also ismaterial related to the MMIX
omputer, de�ned in Se
tion 1.3.10 of Fas
i
le 1.I strongly believe in building up a �rm foundation, so I have dis
ussed this topi
mu
h more thoroughly than I will be able to do with material that is newer orless basi
. To my surprise, I
ame up with 112 exer
ises, even though|believeit or not| I had to eliminate quite a bit of the interesting material that appearsin my �les.Some of the things presented are new, to the best of my knowledge, althoughI will not be at all surprised to learn that my own little \dis
overies" have beendis
overed before. Please look, for example, at the exer
ises that I've
lassed asresear
h problems (rated with diÆ
ulty level 46 or higher), namely exer
ises 71and 109; I've also impli
itly posed additional unsolved questions in the answersto exer
ises 28, 58, 63, 67, 100, 106, and 112. Are those problems still open?Please let me know if you know of a solution to any of these intriguing questions.And of
ourse if no solution is known today but you do make progress on any ofthem in the future, I hope you'll let me know.I urgently need your help also with respe
t to some exer
ises that I madeup as I was preparing this material. I
ertainly don't like to get
redit for thingsthat have already been published by others, and most of these results are quitenatural \fruits" that were just waiting to be \plu
ked." Therefore please tellme if you know who I should have
redited, with respe
t to the ideas found inexer
ises 6, 7, 20, 25, 41, 55, 60, 65, 66, 67, 69, 70, 76, 89, 99, 104, and/or 106.I shall happily pay a �nder's fee of $2.56 for ea
h error in this draft when it is�rst reported to me, whether that error be typographi
al, te
hni
al, or histori
al.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/
 ea
h. (Furthermore, ifyou �nd a better solution to an exer
ise, I'll a
tually reward you with immortalglory instead of mere money, by publishing your name in the eventual book:�)Cross referen
es to yet-unwritten material sometimes appear as `00'; thisimpossible value is a pla
eholder for the a
tual numbers to be supplied later.Happy reading!Stanford, California D. E. K.31 De
ember 2001

-4

7.2.1.2 GENERATING ALL PERMUTATIONS 1

Tin tan din dan bim bam bom bo|tan tin din dan bam bim bo bom|tin tan dan din bim bam bom bo|tan tin dan din bam bim bo bom|tan dan tin bam din bo bim bom|: : : . Tin tan din dan bim bam bom bo.| DOROTHY L. SAYERS, The Nine Tailors (1934)A permutation on the ten de
imal digits is simply a 10 digit de
imal numberin whi
h all digits are distin
t. Hen
e all we need to do is to produ
eall 10 digit numbers and sele
t only those whose digits are distin
t.Isn't it wonderful how high speed
omputing saves us fromthe drudgery of thinking! We simply program k + 1 ! kand examine the digits of k for undesirable equalities.This gives us the permutations in di
tionary order too!On se
ond sober thought : : : we do need to think of something else.| D. H. LEHMER (1957)7.2.1.2. Generating all permutations. After n-tuples, the next most im-portant item on nearly everybody's wish list for
ombinatorial generation is thetask of visiting all permutations of some given set or multiset. Many di�erentways have been devised to solve this problem. In fa
t, almost as many di�erentalgorithms have been published for unsorting as for sorting! We will study themost important permutation generators in this se
tion, beginning with a
lassi
almethod that is both simple and
exible:Algorithm L (Lexi
ographi
 permutation generation). Given a sequen
e of nelements a1a2 : : : an, initially sorted so thata1 � a2 � � � � � an; (1)this algorithm generates all permutations of fa1; a2; : : : ; ang, visiting them inlexi
ographi
 order. (For example, the permutations of f1; 2; 2; 3g are1223; 1232; 1322; 2123; 2132; 2213; 2231; 2312; 2321; 3122; 3212; 3221;ordered lexi
ographi
ally.) An auxiliary element a0 is assumed to be present for
onvenien
e; a0 must be stri
tly less than the largest element an.L1. [Visit.℄ Visit the permutation a1a2 : : : an.

1

2 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2L2. [Find j.℄ Set j n � 1. If aj � aj+1, de
rease j by 1 repeatedly untilaj < aj+1. Terminate the algorithm if j = 0. (At this point j is the smallestsubs
ript su
h that we have already visited all permutations beginning witha1 : : : aj . Therefore the lexi
ographi
ally next permutation will in
rease thevalue of aj .)L3. [In
rease aj .℄ Set l n. If aj � al, de
rease l by 1 repeatedly until aj < al.Then inter
hange aj $ al. (Sin
e aj+1 � � � � � an, element al is thesmallest element greater than aj that
an legitimately follow a1 : : : aj�1 in apermutation. Before the inter
hange we had aj+1 � � � � � al�1 � al > aj �al+1 � � � � � an; after the inter
hange, we have aj+1 � � � � � al�1 � aj >al � al+1 � � � � � an.)L4. [Reverse aj+1 : : : an.℄ Set k j + 1 and l n. Then, if k < l, inter
hangeak $ al, set k k + 1, l l� 1, and repeat until k � l. Return to L1.This algorithm goes ba
k to N�ar�ayan. a Pan.d. ita in 14th-
entury India (see Se
tion7.2.1.7); it also appeared in C. F. Hindenburg's prefa
e to Spe
imen Analyti
umde Lineis Curvis Se
undi Ordinis by C. F. R�udiger (Leipzig: 1784), xlvi{xlvii,and it has been frequently redis
overed ever sin
e. The parentheti
al remarks insteps L2 and L3 explain why it works.In general, the lexi
ographi
 su

essor of any
ombinatorial pattern a1 : : : anis obtainable by a three-step pro
edure:1) Find the largest j su
h that aj
an be in
reased.2) In
rease aj by the smallest feasible amount.3) Find the lexi
ographi
ally least way to extend the new a1 : : : aj to a
ompletepattern.Algorithm L follows this general pro
edure in the
ase of permutation generation,just as Algorithm 7.2.1.1M followed it in the
ase of n-tuple generation; we willsee numerous further instan
es later, as we
onsider other kinds of
ombinatorialpatterns. Noti
e that we have aj+1 � � � � � an at the beginning of step L4.Therefore the �rst permutation beginning with the
urrent pre�x a1 : : : aj isa1 : : : ajan : : : aj+1, and step L4 produ
es it by doing b(n� j)=2
 inter
hanges.In pra
ti
e, step L2 �nds j = n � 1 half of the time when the elements aredistin
t, be
ause exa
tly n!=2 of the n! permutations have an�1 < an. ThereforeAlgorithm L
an be speeded up by re
ognizing this spe
ial
ase, without makingit signi�
antly more
ompli
ated. (See exer
ise 1.) Similarly, the probabilitythat j � n� t is only 1=t! when the a's are distin
t; hen
e the loops in steps L2{L4 usually go very fast. Exer
ise 6 analyzes the running time in general, showingthat Algorithm L is reasonably eÆ
ient even when equal elements are present,unless some values appear mu
h more often than others do in the multisetfa1; a2; : : : ; ang.Adja
ent inter
hanges. We saw in Se
tion 7.2.1.1 that Gray
odes are ad-vantageous for generating n-tuples, and similar
onsiderations apply when wewant to generate permutations. The simplest possible
hange to a permutationis to inter
hange adja
ent elements, and we know from Chapter 5 that any

2

7.2.1.2 GENERATING ALL PERMUTATIONS 3permutation
an be sorted into order if we make a suitable sequen
e of su
hinter
hanges. (For example, Algorithm 5.2.2B works in this way.) Hen
e we
ango ba
kward and obtain any desired permutation, by starting with all elementsin order and then ex
hanging appropriate pairs of adja
ent elements.A natural question now arises: Is it possible to run through all permutationsof a given multiset in su
h a way that only two adja
ent elements
hange pla
esat every step? If so, the overall program that is examining all permutations willoften be simpler and faster, be
ause it will only need to
al
ulate the e�e
t ofan ex
hange instead of to repro
ess an entirely new array a1 : : : an ea
h time.Alas, when the multiset has repeated elements, we
an't always �nd su
ha Gray-like sequen
e. For example, the six permutations of f1; 1; 2; 2g are
on-ne
ted to ea
h other in the following way by adja
ent inter
hanges:1122 1212 21121221 2121 2211; (2)this graph has no Hamiltonian path.But most appli
ations deal with permutations of distin
t elements, and forthis
ase there is good news: A simple algorithm makes it possible to generateall n! permutations by making just n! � 1 adja
ent inter
hanges. Furthermore,another su
h inter
hange returns to the starting point, so we have a Hamiltonian
y
le analogous to Gray binary
ode.The idea is to take su
h a sequen
e for f1; : : : ; n � 1g and to insert thenumber n into ea
h permutation in all ways. For example, if n = 4 the sequen
e(123; 132; 312; 321; 231; 213) leads to the
olumns of the array1234 1324 3124 3214 2314 21341243 1342 3142 3241 2341 21431423 1432 3412 3421 2431 24134123 4132 4312 4321 4231 4213 (3)
when 4 is inserted in all four possible positions. Now we obtain the desiredsequen
e by reading downwards in the �rst
olumn, upwards in the se
ond, down-wards in the third, : : : , upwards in the last: (1234; 1243; 1423; 4123; 4132; 1432;1342; 1324; 3124; 3142; : : : ; 2143; 2134).In Se
tion 5.1.1 we studied the inversions of a permutation, namely the pairsof elements (not ne
essarily adja
ent) that are out of order. Every inter
hangeof adja
ent elements
hanges the total number of inversions by �1. In fa
t, whenwe
onsider the so-
alled inversion table
1 : : :
n of exer
ise 5.1.1{7, where
j isthe number of elements lying to the right of j that are less than j, we �nd thatthe permutations in (3) have the following inversion tables:0000 0010 0020 0120 0110 01000001 0011 0021 0121 0111 01010002 0012 0022 0122 0112 01020003 0013 0023 0123 0113 0103 (4)
And if we read these
olumns alternately down and up as before, we obtainpre
isely the re
e
ted Gray
ode for mixed radi
es (1; 2; 3; 4), as in Eqs. (46){(51)

3

4 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2of Se
tion 7.2.1.1. The same property holds for all n, as noti
ed by E. W. Dijkstra[A
ta Informati
a 6 (1976), 357{359℄, and it leads us to the following formulation:Algorithm P (Plain
hanges). Given a sequen
e a1a2 : : : an of n distin
telements, this algorithm generates all of their permutations by repeatedly inter-
hanging adja
ent pairs. It uses an auxiliary array
1
2 : : :
n, whi
h representsinversions as des
ribed above, running through all sequen
es of integers su
h that0 �
j < j for 1 � j � n. (5)Another array o1o2 : : : on governs the dire
tions by whi
h the entries
j
hange.P1. [Initialize.℄ Set
j 0 and oj 1 for 1 � j � n.P2. [Visit.℄ Visit the permutation a1a2 : : : an.P3. [Prepare for
hange.℄ Set j n and s 0. (The following steps determinethe
oordinate j for whi
h
j is about to
hange, preserving (5); variable sis the number of indi
es k > j su
h that
k = k � 1.)P4. [Ready to
hange?℄ Set q
j + oj . If q < 0, go to P7; if q = j, go to P6.P5. [Change.℄ Inter
hange aj�
j+s $ aj�q+s. Then set
j q and return to P2.P6. [In
rease s.℄ Terminate if j = 1; otherwise set s s+ 1.P7. [Swit
h dire
tion.℄ Set oj �oj , j j � 1, and go ba
k to P4.This pro
edure, whi
h
learly works for all n � 1, originated in 17th-
enturyEngland, when bell ringers began the delightful
ustom of ringing a set of bellsin all possible permutations. They
alled Algorithm P the method of plain
hanges. Figure 18(a) illustrates the \Cambridge Forty-Eight," an irregularand ad ho
 sequen
e of 48 permutations on 5 bells that had been used inthe early 1600s, before the plain-
hange prin
iple revealed how to a
hieve all5! = 120 possibilities. The venerable history of Algorithm P has been tra
ed toa manus
ript by Peter Mundy now in the Bodleian Library, written about 1653and trans
ribed by Ernest Morris in The History and Art of Change Ringing(1931), 29{30. Shortly afterwards, a famous book
alled Tintinnalogia, publishedanonymously in 1668 but now known to have been written by Ri
hard Du
kworthand Fabian Stedman, devoted its �rst 60 pages to a detailed des
ription of plain
hanges, working up from n = 3 to the
ase of arbitrarily large n.Cambridge Forty-eight, for many years,was the greatest Peal that was Rang or invented; but now,neither Forty-eight, nor a Hundred, nor Seven-hundred and twenty,nor any Number
an
on�ne us; for we
an Ring Changes, Ad in�nitum.: : : On four Bells, there are Twenty four several Changes,in Ringing of whi
h, there is one Bell
alled the Hunt,and the other three are Extream Bells;the Hunt moves, and hunts up and down
ontinually : : : ;two of the Extream Bells makes a Changeevery time the Hunt
omes before or behind them.| DUCKWORTH and STEDMAN, Tintinnalogia (1668)

4

7.2.1.2 GENERATING ALL PERMUTATIONS 5
(in
omplete)(a) The Cambridge Forty-Eight.

(b) Plain Changes.
(
) Grandsire Doubles.
(d) Stedman Doubles.Fig. 18. Four patterns used to ring �ve
hur
h-bellsin 17th-
entury England. Pattern (b)
orresponds toAlgorithm P.British bellringing enthusiasts soon went on to develop more
ompli
ateds
hemes in whi
h two or more pairs of bells
hange pla
es simultaneously. Forexample, they devised the pattern in Fig. 18(
) known as Grandsire Doubles,\the best and most ingenious Peal that ever was
omposed, to be rang on �vebells" [Tintinnalogia, page 95℄. Su
h fan
ier methods are more interesting thanAlgorithm P from a musi
al or mathemati
al standpoint, but they are less usefulin
omputer appli
ations, so we shall not dwell on them here. Interested readers
an learn more by reading W. G. Wilson's book, Change Ringing (1965); seealso A. T. White, AMM 103 (1996), 771{778.H. F. Trotter published the �rst
omputer implementation of plain
hangesin CACM 5 (1962), 434{435. The algorithm is quite eÆ
ient, espe
ially when itis streamlined as in exer
ise 16, be
ause n � 1 out of every n permutations aregenerated without using steps P6 and P7. By
ontrast, Algorithm L enjoys itsbest
ase only about half of the time.The fa
t that Algorithm P does exa
tly one inter
hange per visit means thatthe permutations it generates are alternately even and odd (see exer
ise 5.1.1{13). Therefore we
an generate all the even permutations by simply bypassingthe odd ones. In fa
t, the
 and o tables make it easy to keep tra
k of the
urrenttotal number of inversions,
1 + � � �+
n, as we go.Many programs need to generate the same permutations repeatedly, and insu
h
ases we needn't run through the steps of Algorithm P ea
h time. We
ansimply prepare a list of suitable transitions, using the following method:Algorithm T (Plain
hange transitions). This algorithm
omputes a table t[1℄,t[2℄, : : : , t[n! � 1℄ su
h that the a
tions of Algorithm P are equivalent to thesu

essive inter
hanges at[k℄ $ at[k℄+1 for 1 � k < n!. We assume that n � 2.T1. [Initialize.℄ Set N n!, d N=2, t[d℄ 1, and m 2.

5

6 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2T2. [Loop on m.℄ Terminate if m = n. Otherwise set m m + 1, d d=m,and k 0. (We maintain the
ondition d = n!=m!.)T3. [Hunt down.℄ Set k k+ d and j m� 1. Then while j > 0, set t[k℄ j,j j � 1, and k k + d, until j = 0.T4. [O�set.℄ Set t[k℄ t[k℄ + 1 and k k + d.T5. [Hunt up.℄ While j < m� 1, set j j+1, t[k℄ j, and k k+d. Returnto T3 if k < N , otherwise return to T2.For example, if n = 4 we get the table (t[1℄; t[2℄; : : : ; t[23℄) = (3; 2; 1; 3; 1; 2; 3; 1;3; 2; 1; 3; 1; 2; 3; 1; 3; 2; 1; 3; 1; 2; 3).Alphameti
s. Now let's
onsider a simple kind of puzzle in whi
h permutationsare useful: How
an the pattern SEND+ MOREMONEY (6)represent a
orre
t sum, if every letter stands for a di�erent de
imal digit?[H. E. Dudeney, Strand 68 (1924), 97, 214.℄ Su
h puzzles are often
alled\alphameti
s," a word
oined by J. A. H. Hunter [Globe and Mail (Toronto:27 O
tober 1955), 27℄; another term, \
ryptarithm," has also been suggested byS. Vatriquant [Sphinx 1 (May 1931), 50℄.The
lassi
 alphameti
 (6)
an easily be solved by hand (see exer
ise 21). Butlet's suppose we want to deal with a large set of
ompli
ated alphameti
s, someof whi
h may be unsolvable while others may have dozens of solutions. Then we
an save time by programming a
omputer to try out all permutations of digitsthat mat
h a given pattern, seeing whi
h permutations yield a
orre
t sum.[A
omputer program for solving alphameti
s was published by John Beidler inCreative Computing 4, 6 (November{De
ember 1978), 110{113.℄We might as well raise our sights slightly and
onsider additive alphameti
sin general, dealing not only with simple sums like (6) but also with examples likeVIOLIN+ VIOLIN+ VIOLA = TRIO+ SONATA:Equivalently, we want to solve puzzles su
h as2(VIOLIN) + VIOLA� TRIO� SONATA = 0; (7)where a sum of terms with integer
oeÆ
ients is given and the goal is to obtainzero by substituting distin
t de
imal digits for the di�erent letters. Ea
h letterin su
h a problem has a \signature" obtained by substituting 1 for that letterand 0 for the others; for example, the signature for I in (7) is2(010010) + 01000� 0010� 000000;namely 21010. If we arbitrarily assign the
odes (1; 2; : : : ; 10) to the letters(V; I; O; L; N; A; T; R; S; X), the respe
tive signatures
orresponding to (7) ares1 = 210000; s2 = 21010; s3 = �7901; s4 = 210; s5 = �998;s6 = �100; s7 = �1010; s8 = �100; s9 = �100000; s10 = 0: (8)

6

7.2.1.2 GENERATING ALL PERMUTATIONS 7(An additional letter, X, has been added be
ause we need ten of them.) Theproblem now is to �nd all permutations a1 : : : a10 of f0; 1; : : : ; 9g su
h thata � s = 10Xj=1 ajsj = 0: (9)There also is a side
ondition, be
ause the numbers in alphameti
s should nothave zero as a leading digit. For example, the sums7316+ 082308139 and 5731+ 064706378 and 6524+ 073507259 and 2817+ 036803185and numerous others are not
onsidered to be valid solutions of (6). In generalthere is a set F of �rst letters su
h that we must haveaj 6= 0 for all j 2 F ; (10)the set F
orresponding to (7) and (8) is f1; 7; 9g.One way to ta
kle a family of additive alphameti
s is to start by usingAlgorithm T to prepare a table of 10!�1 transitions t[k℄. Then, for ea
h problemde�ned by a signature sequen
e (s1; : : : ; s10) and a �rst-letter set F , we
anexhaustively look for solutions as follows:A1. [Initialize.℄ Set a1a2 : : : a10 01 : : : 9, v P10j=1(j � 1)sj , k 1, andÆj sj+1 � sj for 1 � j < 10.A2. [Test.℄ If v = 0 and if (10) holds, output the solution a1 : : : a10.A3. [Swap.℄ Stop if k = 10!. Otherwise set j t[k℄, v v � (aj+1 � aj)Æj ,aj+1 $ aj , k k + 1, and return to A2.Step A3 is justi�ed by the fa
t that swapping aj with aj+1 simply de
reases a � sby (aj+1 � aj)(sj+1 � sj). Even though 10! is 3,628,800, a fairly large number,the operations in step A3 are so simple that the whole job takes only a fra
tionof a se
ond on a modern
omputer.An alphameti
 is said to be pure if it has a unique solution. Unfortunately(7) is not pure; the permutations 1764802539 and 3546281970 both solve (9) and(10), hen
e we have both176478 + 176478 + 17640 = 2576 + 368020and 354652 + 354652 + 35468 = 1954 + 742818:Furthermore s6 = s8 in (8), so we
an obtain two more solutions by inter
hangingthe digits assigned to A and R.On the other hand (6) is pure, yet the method we have des
ribed will �ndtwo di�erent permutations that solve it. The reason is that (6) involves onlyeight distin
t letters, hen
e we will set it up for solution by using two dummysignatures s9 = s10 = 0. In general, an alphameti
 with m distin
t letters willhave 10�m dummy signatures sm+1 = � � � = s10 = 0, and ea
h of its solutionswill be found (10�m)! times unless we insist that, say, am+1 < � � � < a10.

7

8 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2A general framework. A great many algorithms have been proposed forgenerating permutations of distin
t obje
ts, and the best way to understandthem is to apply the multipli
ative properties of permutations that we studiedin Se
tion 1.3.3. For this purpose we will
hange our notation slightly, by using0-origin indexing and writing a0a1 : : : an�1 for permutations of f0; 1; : : : ; n� 1ginstead of writing a1a2 : : : an for permutations of f1; 2; : : : ; ng. More importantly,we will
onsider s
hemes for generating permutations in whi
h most of the a
tiontakes pla
e at the left, so that all permutations of f0; 1; : : : ; k � 1g will begenerated during the �rst k! steps, for 1 � k � n. For example, one su
hs
heme for n = 4 is0123; 1023; 0213; 2013; 1203; 2103; 0132; 1032; 0312; 3012; 1302; 3102;0231; 2031; 0321; 3021; 2301; 3201; 1230; 2130; 1320; 3120; 2310; 3210; (11)this is
alled \reverse
olex order," be
ause if we re
e
t the strings from rightto left we get 3210, 3201, 3120, : : : , 0123, the reverse of lexi
ographi
 order.Another way to think of (11) is to view the entries as (n�an) : : : (n�a2)(n�a1),where a1a2 : : : an runs lexi
ographi
ally through the permutations of f1;2; : : : ;ng.Let's re
all from Se
tion 1.3.3 that a permutation like � = 250143
an bewritten either in the two-line form� = �012345250143�or in the more
ompa
t
y
le form� = (0 2)(1 5 3);with the meaning that � takes 0 7! 2, 1 7! 5, 2 7! 0, 3 7! 1, 4 7! 4, and5 7! 3; a 1-
y
le like `(4)' need not be indi
ated. Sin
e 4 is a �xed point of thispermutation we say that \� �xes 4." We also write 0� = 2, 1� = 5, and so on,saying that j� is \the image of j under �." Multipli
ation of permutations, like� times � where � = 543210, is readily
arried out either in the two-line form�� = �012345250143��012345543210� = �012345250143��250143305412� = �012345305412�or in the
y
le form�� = (0 2)(1 5 3) � (0 5)(1 4)(2 3) = (0 3 4 1)(2 5):Noti
e that the image of 1 under �� is 1(��) = (1�)� = 5� = 0, et
. Warning:About half of all books that deal with permutations multiply them the other way(from right to left), imagining that �� means that � should be applied before �.The reason is that traditional fun
tional notation, in whi
h one writes �(1) = 5,makes it natural to think that ��(1) should mean �(�(1)) = �(4) = 4. However,the present book subs
ribes to the other philosophy, and we shall always multiplypermutations from left to right.The order of multipli
ation needs to be understood
arefully when permu-tations are represented by arrays of numbers. For example, if we \apply" there
e
tion � = 543210 to the permutation � = 250143, the result 341052 is not ��

8

7.2.1.2 GENERATING ALL PERMUTATIONS 9but ��. In general, the operation of repla
ing a permutation � = a0a1 : : : an�1by some rearrangement a0�a1� : : : a(n�1)� takes k 7! ak� = k��. Permutingthe positions by �
orresponds to premultipli
ation by �,
hanging � to ��;permuting the values by �
orresponds to postmultipli
ation by �,
hanging �to ��. Thus, for example, a permutation generator that inter
hanges a1 $ a2 ispremultiplying the
urrent permutation by (1 2), postmultiplying it by (a1 a2).Following a proposal made by �Evariste Galois in 1830, a nonempty set Gof permutations is said to form a group if it is
losed under multipli
ation, thatis, if the produ
t �� is in G whenever � and � are elements of G [see �E
ritset M�emoires Math�ematiques d'�Evariste Galois (Paris: 1962), 47℄. Consider, forexample, the 4-
ube represented as a 4� 4 torus0 1 3 24 5 7 6
 d f e8 9 b a (12)
as in exer
ise 7.2.1.1{17, and let G be the set of all permutations of the verti
esf0; 1; : : : ; fg that preserve adja
en
y: A permutation � is in G if and only ifu ��� v implies u� ��� v� in the 4-
ube. (Here we are using hexade
imaldigits (0; 1; : : : ; f) to stand for the integers (0; 1; : : : ; 15). The labels in (12)are
hosen so that u���v if and only if u and v di�er in only one bit position.)This set G is obviously a group, and its elements are
alled the symmetries or\automorphisms" of the 4-
ube.Groups of permutationsG are
onveniently represented inside a
omputer bymeans of a Sims table, introdu
ed by Charles C. Sims [Computational Methodsin Abstra
t Algebra (Oxford: Pergamon, 1970), 169{183℄, whi
h is a family ofsubsets S1, S2, : : : of G having the following property: Sk
ontains exa
tly onepermutation �kj that takes k 7! j and �xes the values of all elements greaterthan k, whenever G
ontains su
h a permutation. We let �kk be the identitypermutation, whi
h is always present in G; but when 0 � j < k, any suitablepermutation
an be sele
ted to play the role of �kj . The main advantage of aSims table is that it provides a
onvenient representation of the entire group:Lemma S. Let S1, S2, : : : , Sn�1 be a Sims table for a group G of permutationson f0; 1; : : : ; n� 1g. Then every element � of G has a unique representation� = �1�2 : : : �n�1; where �k 2 Sk for 1 � k < n. (13)Proof. If � has su
h a representation and if �n�1 is the permutation �(n�1)j 2Sn�1, then � takes n � 1 7! j, be
ause all elements of S1 [� � � [Sn�2 �x thevalue of n� 1. Conversely, if � takes n� 1 7! j we have � = �0�(n�1)j , where�0 = ���(n�1)jis a permutation of G that �xes n � 1. (As in Se
tion 1.3.3, �� denotes theinverse of �.) The set G0 of all su
h permutations is a group, and S1, : : : , Sn�2is a Sims table for G0; therefore the result follows by indu
tion on n.

9

10 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2For example, a bit of
al
ulation shows that one possible Sims table for theautomorphism group of the 4-
ube isSf = f(); (01)(23)(45)(67)(89)(ab)(
d)(ef); : : : ;(0f)(1e)(2d)(3
)(4b)(5a)(69)(78)g;Se = f(); (12)(56)(9a)(de); (14)(36)(9
)(be); (18)(3a)(5
)(7e)g;Sd = f(); (24)(35)(a
)(bd); (28)(39)(6
)(7d)g;S
 = f()g;Sb = f(); (48)(59)(6a)(7b)g;Sa = S9 = � � � = S1 = f()g;
(14)

here Sf
ontains 16 permutations �fj for 0 � j � 15, whi
h respe
tively takei 7! i � (15 � j) for 0 � i � 15. The set Se
ontains only four permutations,be
ause an automorphism that �xes f must take e into a neighbor of f; thus theimage of e must be either e or d or b or 7. The set S

ontains only the identitypermutation, be
ause an automorphism that �xes f, e, and d must also �x
.Most groups have Sk = f()g for all small values of k, as in this example; hen
e aSims table usually needs to
ontain only a fairly small number of permutationsalthough the group itself might be quite large.The Sims representation (13) makes it easy to test if a given permutation �lies in G: First we determine �n�1 = �(n�1)j , where � takes n� 1 7! j, and welet �0 = ���n�1; then we determine �n�2 = �(n�2)j0 , where �0 takes n� 2 7! j0,and we let �00 = �0��n�2; and so on. If at any stage the required �kj does notexist in Sk, the original permutation � does not belong to G. In the
ase of (14),this pro
ess must redu
e � to the identity after �nding �f, �e, �d, �
, and �b.For example, let � be the permutation (14)(28)(3
)(69)(7d)(be), whi
h
or-responds to transposing (12) about its main diagonal f0; 5; f; ag. Sin
e � �xes f,�f will be the identity permutation (), and �0 = �. Then �e is the member of Sethat takes e 7! b, namely (14)(36)(9
)(be), and we �nd �00 = (28)(39)(6
)(7d).This permutation belongs to Sd, so � is indeed an automorphism of the 4-
ube.Conversely, (13) also makes it easy to generate all elements of the
orre-sponding group. We simply run through all permutations of the form�(1;
1)�(2;
2) : : : �(n� 1;
n�1);where �(k;
k) is the (
k + 1)st element of Sk for 0 �
k < sk = jSkj and1 � k < n, using any algorithm of Se
tion 7.2.1.1 that runs through all (n� 1)-tuples (
1; : : : ;
n�1) for the respe
tive radi
es (s1; : : : ; sn�1).Using the general framework. Our
hief
on
ern is the group of all permuta-tions on f0; 1; : : : ; n�1g, and in this
ase every set Sk of a Sims table will
ontaink+1 elements f�(k; 0); �(k; 1); : : : ; �(k; k)g, where �(k; 0) is the identity and theothers take k to the values f0; : : : ; k�1g in some order. (The permutation �(k; j)need not be the same as �kj , and it usually is di�erent.) Every su
h Sims tableleads to a permutation generator, a

ording to the following outline:

10

7.2.1.2 GENERATING ALL PERMUTATIONS 11Algorithm G (General permutation generator). Given a Sims table (S1; S2;: : : ; Sn�1) where ea
h Sk has k + 1 elements �(k; j) as just des
ribed, thisalgorithm generates all permutations a0a1 : : : an�1 of f0; 1; : : : ; n � 1g, usingan auxiliary
ontrol table
n : : :
2
1.G1. [Initialize.℄ Set aj j and
j+1 0 for 0 � j < n.G2. [Visit.℄ (At this point the mixed-radix number �
n�1;n; :::;:::;
2;3;
12 � is the numberof permutations visited so far.) Visit the permutation a0a1 : : : an�1.G3. [Add 1 to
n : : :
2
1.℄ Set k 1. If
k = k, set
k 0, k k + 1,and repeat until
k < k. Terminate the algorithm if k = n; otherwise set
k
k + 1.G4. [Permute.℄ Apply the permutation �(k;
k)!(k � 1)� to a0a1 : : : an�1, asexplained below, and return to G2.Applying a permutation � to a0a1 : : : an�1 means repla
ing aj by aj� for0 � j < n; this
orresponds to premultipli
ation by � as explained earlier. Letus de�ne �(k; j) = �(k; j)�(k; j � 1)� for 1 � j � k; (15)!(k) = �(1; 1) : : : �(k; k): (16)Then steps G3 and G4 maintain the property thata0a1 : : : an�1 is the permutation �(1;
1)�(2;
2) : : : �(n� 1;
n�1), (17)and Lemma S proves that every permutation is visited exa
tly on
e.
000000 001 01010 011 02020 021 110100 101 11110 111 12120 121 220200 201 21210 211 22220 221 330300 301 31310 311 32320 321Fig. 19. Algorithm G impli
itly traverses this tree when n = 4.The tree in Fig. 19 illustrates Algorithm G in the
ase n = 4. A

ordingto (17), every permutation a0a1a2a3 of f0; 1; 2; 3g
orresponds to a three-digit
ontrol string
3
2
1, with 0 �
3 � 3, 0 �
2 � 2, and 0 �
1 � 1. Some nodesof the tree are labeled by a single digit
3; these
orrespond to the permutations�(3;
3) of the Sims table being used. Other nodes, labeled with two digits
3
2,
orrespond to the permutations �(2;
2)�(3;
3). A heavy line
onne
ts node
3to node
30 and node
3
2 to node
3
20, be
ause �(2; 0) and �(1; 0) are theidentity permutation and these nodes are essentially equivalent. Adding 1 to themixed-radix number
3
2
1 in step G3
orresponds to moving from one node ofFig. 19 to its su

essor in preorder, and the transformation in step G4
hangesthe permutations a

ordingly. For example, when
3
2
1
hanges from 121 to200, step G4 premultiplies the
urrent permutation by�(3; 2)!(2)� = �(3; 2)�(2; 2)��(1; 1)�;

11

12 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2premultiplying by �(1; 1)� takes us from node 121 to node 12, premultiplyingby �(2; 2)� takes us from node 12 to node 1, and premultiplying by �(3; 2) =�(3; 2)�(3; 1)� takes us from node 1 to node 2 � 200, whi
h is the preorder su
-
essor of node 121. Stating this another way, premultipli
ation by �(3; 2)!(2)�is exa
tly what is needed to
hange �(1; 1)�(2; 2)�(3; 1) to �(1; 0)�(2; 0)�(3; 2),preserving (17).Algorithm G de�nes a huge number of permutation generators (see exer-
ise 37), so it is no wonder that many of its spe
ial
ases have appeared in theliterature. Of
ourse some of its variants are mu
h more eÆ
ient than others,and we want to �nd examples where the operations are parti
ularly well suitedto the
omputer we are using.We
an, for instan
e, obtain permutations in reverse
olex order as a spe
ial
ase of Algorithm G (see (11)), by letting �(k; j) be the (j + 1)-
y
le�(k; j) = (k�j k�j+1 : : : k): (18)The reason is that �(k; j) should be the permutation that
orresponds to
n : : :
1in reverse
olex order when
k = j and
i = 0 for i 6= k, and this permutationa0a1 : : : an�1 is 01 : : : (k�j�1)(k�j+1) : : : (k)(k�j)(k+1) : : : (n�1). For exam-ple, when n = 8 and
n : : :
1 = 00030000 the
orresponding reverse
olexpermutation is 01345267, whi
h is (2 3 4 5) in
y
le form. When �(k; j) is givenby (18), Eqs. (15) and (16) lead to the formulas�(k; j) = (k�j k); (19)!(k) = (0 1)(0 1 2) : : : (0 1 : : : k) = (0 k)(1 k�1)(2 k�2) : : : = �(k); (20)here �(k) is the \(k+1)-
ip" that
hanges a0 : : : ak to ak : : : a0. In this
ase !(k)turns out to be the same as !(k)�, be
ause �(k)2 = ().Equations (19) and (20) are impli
itly present behind the s
enes in Algo-rithm L and in its reverse
olex equivalent (exer
ise 2), where step L3 essentiallyapplies a transposition and step L4 does a
ip. Step G4 a
tually does the
ip�rst; but the identity(k�j k)�(k � 1) = �(k � 1)(j�1 k) (21)shows that a
ip followed by a transposition is the same as a (di�erent) trans-position followed by the
ip.In fa
t, equation (21) is a spe
ial
ase of the important identity�� (j1 j2 : : : jt)� = (j1� j2� : : : jt�); (22)whi
h is valid for any permutation � and any t-
y
le (j1 j2 : : : jt). On theleft of (22) we have, for example, j1� 7! j1 7! j2 7! j2�, in agreement withthe
y
le on the right. Therefore if � and � are any permutations whatsoever,the permutation ���� (
alled the
onjugate of � by �) has exa
tly the same
y
le stru
ture as �; we simply repla
e ea
h element j in ea
h
y
le by j�.Another signi�
ant spe
ial
ase of Algorithm G was introdu
ed by R. J.Ord-Smith [CACM 10 (1967), 452; 12 (1969), 638; see also Comp. J. 14 (1971),

12

7.2.1.2 GENERATING ALL PERMUTATIONS 13136{139℄, whose algorithm is obtained by setting�(k; j) = (k : : : 1 0)j : (23)Now it is
lear from (15) that�(k; j) = (k : : : 1 0); (24)and on
e again we have!(k) = (0 k)(1 k�1)(2 k�2) : : : = �(k); (25)be
ause �(k; k) = (0 1 : : : k) is the same as before. The ni
e thing about thismethod is that the permutation needed in step G4, namely �(k;
k)!(k � 1)�,does not depend on
k:�(k; j)!(k � 1)� = (k : : : 1 0)�(k � 1)� = �(k): (26)Thus, Ord-Smith's algorithm is the spe
ial
ase of Algorithm G in whi
h step G4simply inter
hanges a0 $ ak, a1 $ ak�1, : : : ; this operation is usually qui
k,be
ause k is small, and it saves some of the work of Algorithm L. (See exer
ise 38and the referen
e to G. S. Kl�ugel in Se
tion 7.2.1.7.)We
an do even better by rigging things so that step G4 needs to do only asingle transposition ea
h time, somewhat as in Algorithm P but not ne
essarilyon adja
ent elements. Many su
h s
hemes are possible. The best is probablyto let �(k; j)!(k � 1)� = � (k 0); if k is even,(k j�1); if k is odd, (27)as suggested by B. R. Heap [Comp. J. 6 (1963), 293{294℄. Noti
e that Heap'smethod always transposes ak $ a0 ex
ept when k = 3, 5, : : : ; and the value of k,in 5 of every 6 steps, is either 1 or 2. Exer
ise 40 proves that Heap's methoddoes indeed generate all permutations.Bypassing unwanted blo
ks. One noteworthy advantage of Algorithm G isthat it runs through all permutations of a0 : : : ak�1 before tou
hing ak; then itperforms another k!
y
les before
hanging ak again, and so on. Therefore if atany time we rea
h a setting of the �nal elements ak : : : an�1 that is unimportantto the problem we're working on, we
an skip qui
kly over all permutations thatend with the undesirable suÆx. More pre
isely, we
ould repla
e step G2 by thefollowing substeps:G2.0. [A

eptable?℄ If ak : : : an�1 is not an a

eptable suÆx, go to G2.1. Oth-erwise set k k� 1. Then if k > 0, repeat this step; if k = 0, pro
eed tostep G2.2.G2.1. [Skip this suÆx.℄ If
k = k, apply �(k; k)� to a0 : : : an�1, set
k 0,k k + 1, and repeat until
k < k. Terminate if k = n; otherwise set
k
k + 1, apply �(k;
k) to a0 : : : an�1, and return to G2.0.G2.2. [Visit.℄ Visit the permutation a0 : : : an�1.Step G1 should also set k n � 1. Noti
e that the new steps are
areful topreserve
ondition (17). The algorithm has be
ome more
ompli
ated, be
ause

13

14 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2we need to know the permutations �(k; j) and �(k; k) in addition to the permu-tations �(k; j)!(k � 1)� that appear in G4. But the additional
ompli
ationsare often worth the e�ort, be
ause the resulting program might run signi�
antlyfaster.000 01010 011 02020 021 110100 101 11 12120 121 2 330300 301 31310 311 32320 321Fig. 20. Unwanted bran
hes
an be pruned from thetree of Fig. 19, if Algorithm G is suitably extended.For example, Fig. 20 shows what happens to the tree of Fig. 19 whenthe suÆxes of a0a1a2a3 that
orrespond to nodes 00, 11, 121, and 2 are nota

eptable. (Ea
h suÆx ak : : : an�1 of the permutation a0 : : : an�1
orrespondsto a pre�x
n : : :
k of the
ontrol string
n : : :
1, be
ause the permutations�(1;
1) : : : �(k � 1;
k�1) do not a�e
t ak : : : an�1.) Step G2.1 premultiplies by�(k; j) to move from node
n�1 : : :
k+1j to its right sibling
n�1 : : :
k+1(j+1),and it premultiplies by �(k; k)� to move up from node
n�1 : : :
k+1k to itsparent
n�1 : : :
k+1. Thus, to get from the reje
ted pre�x 121 to its preordersu

essor, the algorithm premultiplies by �(1; 1)�, �(2; 2)�, and �(3; 2), therebymoving from node 121 to 12 to 1 to 2. (This is a somewhat ex
eptional
ase,be
ause a pre�x with k = 1 is reje
ted only if we don't want to visit the uniquepermutation a0a1 : : : an�1 that has suÆx a1 : : : an�1.) After node 2 is reje
ted,�(3; 3) takes us to node 3, et
.Noti
e, in
identally, that bypassing a suÆx ak : : : an�1 in this extensionof Algorithm G is essentially the same as bypassing a pre�x a1 : : : aj in ouroriginal notation, if we go ba
k to the idea of generating permutations a1 : : : anof f1; : : : ; ng and doing most of the work at the right-hand end. Our originalnotation
orresponds to
hoosing a1 �rst, then a2, : : : , then an; the notationin Algorithm G essentially
hooses an�1 �rst, then an�2, : : : , then a0. Algo-rithm G's
onventions may seem ba
kward, but they make the formulas for Simstable manipulation a lot simpler. A good programmer soon learns to swit
hwithout diÆ
ulty from one viewpoint to another.We
an apply these ideas to alphameti
s, be
ause it is
lear for example thatmost
hoi
es of the values for the letters D, E, and Y will make it impossible forSEND plus MORE to equal MONEY: We need to have (D+ E� Y) mod 10 = 0 in thatproblem. Therefore many permutations
an be eliminated from
onsideration.In general, if rk is the maximum power of 10 that divides the signaturevalue sk, we
an sort the letters and assign
odes f0; 1; : : : ; 9g so that r0 �r1 � � � � � r9. For example, to solve the trio sonata problem (7), we
ould use(0; 1; : : : ; 9) respe
tively for (X; S; V; A; R; I; L; T; O; N), obtaining the signaturess0 = 0; s1 = �100000; s2 = 210000; s3 = �100; s4 = �100;s5 = 21010; s6 = 210; s7 = �1010; s8 = �7901; s9 = �998;

14

7.2.1.2 GENERATING ALL PERMUTATIONS 15hen
e (r0; : : : ; r9) = (1; 5; 4; 2; 2; 1; 1; 1; 0; 0). Now if we get to step G2.0 for avalue of k with rk�1 6= rk, we
an say that the suÆx ak : : : a9 is una

eptableunless aksk + � � �+ a9s9 is a multiple of 10rk�1 . Also, (10) tells us that ak : : : a9is una

eptable if ak = 0 and k 2 F ; the �rst-letter set F is now f1; 2; 7g.Our previous approa
h to alphameti
s with steps A1{A3 above used brutefor
e to run through 10! possibilities. It operated rather fast under the
ir
um-stan
es, sin
e the adja
ent-transposition method allowed it to get by with only6 memory referen
es per permutation; but still, 10! is 3,628,800, so the entirepro
ess
ost almost 22 megamems, regardless of the alphameti
 being solved.By
ontrast, the extended Algorithm G with Heap's method and the
uto�s justdes
ribed will �nd all four solutions to (7) with fewer than 128 kilomems! Thusthe suÆx-skipping te
hnique runs more than 170 times faster than the previousmethod, whi
h simply blasted away blindly.Most of the 128 kilomems in the new approa
h are spent applying �(k;
k)in step G2.1. The other memory referen
es
ome primarily from appli
ations of�(k; k)� in that step, but � is needed 7812 times while �� is needed only 2162times. The reason is easy to understand from Fig. 20, be
ause the \short
utmove" �(k;
k)!(k � 1)� in step G4 hardly ever applies; in this
ase it is usedonly four times, on
e for ea
h solution. Thus, preorder traversal of the tree isa

omplished almost entirely by � steps that move to the right and �� stepsthat move upward. The � steps dominate in a problem like this, where veryfew
omplete permutations are a
tually visited, be
ause ea
h step �(k; k)� ispre
eded by k steps �(k; 1), �(k; 2), : : : , �(k; k).This analysis reveals that Heap's method|whi
h goes to great lengths tooptimize the permutations �(k; j)!(k � 1)� so that ea
h transition in step G4is a simple transposition| is not espe
ially good for the extended Algorithm Gunless
omparatively few suÆxes are reje
ted in step G2.0. The simpler reverse
olex order, for whi
h �(k; j) itself is always a simple transposition, is now mu
hmore attra
tive (see (19)). Indeed, Algorithm G with reverse
olex order solvesthe alphameti
 (7) with only 97 kilomems.Similar results o

ur with respe
t to other alphameti
 problems. For ex-ample, if we apply the extended Algorithm G to the alphameti
s in exer
ise 24,parts (a) through (h), the
omputations involve respe
tively(551, 110, 14, 8, 350, 84, 153, 1598) kilomems with Heap's method;(429, 84, 10, 5, 256, 63, 117, 1189) kilomems with reverse
olex. (28)The speedup fa
tor for reverse
olex in these examples,
ompared to brute for
ewith Algorithm T, ranges from 18 in
ase (h) to 4200 in
ase (d), and it is about80 on the average; Heap's method gives an average speedup of about 60.We know from Algorithm L, however, that lexi
ographi
 order is easily han-dled without the
ompli
ation of the
ontrol table
n : : :
1 used by Algorithm G.And a
loser look at Algorithm L shows that we
an improve its behavior whenpermutations are frequently being skipped, by using a linked list instead of asequential array. The improved algorithm is well-suited to a wide variety ofalgorithms that wish to generate restri
ted
lasses of permutations:

15

16 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2Algorithm X (Lexi
ographi
 permutations with restri
ted pre�xes). This al-gorithm generates all permutations a1a2 : : : an of f1; 2; : : : ; ng that pass a givensequen
e of tests t1(a1); t2(a1; a2); : : : ; tn(a1; a2; : : : ; an);visiting them in lexi
ographi
 order. It uses an auxiliary table of links l0, l1,: : : , ln to maintain a
y
li
 list of unused elements, so that if the
urrentlyavailable elements aref1; : : : ; ng n fa1; : : : ; akg = fb1; : : : ; bn�kg; where b1 < � � � < bn�k, (29)then we havel0 = b1; lbj = bj+1 for 1 � j < n� k; and lbn�k = 0: (30)It also uses an auxiliary table u1 : : : un to undo operations that have beenperformed on the l array.X1. [Initialize.℄ Set lk k + 1 for 0 � k < n, and ln 0. Then set k 1.X2. [Enter level k.℄ Set p 0, q l0.X3. [Test a1 : : : ak.℄ Set ak q. If tk(a1; : : : ; ak) is false, go to X5. Otherwise,if k = n, visit a1 : : : an and go to X6.X4. [In
rease k.℄ Set uk p, lp lq, k k + 1, and return to X2.X5. [In
rease ak.℄ Set p q, q lp. If q 6= 0 return to X3.X6. [De
rease k.℄ Set k k� 1, and terminate if k = 0. Otherwise set p uk,q ak, lp q, and go to X5.The basi
 idea of this elegant algorithm is due to M. C. Er [Comp. J. 30 (1987),282℄. We
an apply it to alphameti
s by
hanging notation slightly, obtainingpermutations a0 : : : a9 of f0; : : : ; 9g and letting l10 play the former role of l0. Theresulting algorithm needs only 49 kilomems to solve the trio-sonata problem (7),and it solves the alphameti
s of exer
ise 24(a){(h) in(248, 38, 4, 3, 122, 30, 55, 553) kilomems; (31)respe
tively. Thus it runs about 165 times faster than the brute-for
e approa
h.Another way to apply Algorithm X to alphameti
s is often faster yet (seeexer
ise 49).
123 344 32 24 4 2 312 44 21 144 41 122

412 233 21 133 31 122Fig. 21. The tree impli
itly traversed by Algorithm X when n = 4, if all permu-tations are visited ex
ept those beginning with 132, 14, 2, 314, or 4312.

16

7.2.1.2 GENERATING ALL PERMUTATIONS 17*Dual methods. If S1, : : : , Sn�1 is a Sims table for a permutation group G,we learned in Lemma S that every element of G
an be expressed uniquely asa produ
t �1 : : : �n�1, where �k 2 Sk; see (13). Exer
ise 50 shows that everyelement �
an also be expressed uniquely in the dual form� = ��n�1 : : : ��2 ��1 ; where �k 2 Sk for 1 � k < n; (32)and this fa
t leads to another large family of permutation generators. In par-ti
ular, when G is the group of all n! permutations, every permutation
an bewritten �(n� 1;
n�1)� : : : �(2;
2)��(1;
1)�; (33)where 0 �
k � k for 1 � k < n and the permutations �(k; j) are the same asin Algorithm G. Now, however, we want to vary
n�1 most rapidly and
1 leastrapidly, so we arrive at an algorithm of a di�erent kind:Algorithm H (Dual permutation generator). Given a Sims table as in Algo-rithm G, this algorithm generates all permutations a0 : : : an�1 of f0; : : : ; n� 1g,using an auxiliary table
0 : : :
n�1.H1. [Initialize.℄ Set aj j and
j 0 for 0 � j < n.H2. [Visit.℄ (At this point the mixed-radix number �
1;2;
2;3; :::;:::;
n�1n � is the numberof permutations visited so far.) Visit the permutation a0a1 : : : an�1.H3. [Add 1 to
0
1 : : :
n�1.℄ Set k n�1. If
k = k, set
k 0, k k�1, andrepeat until k = 0 or
k < k. Terminate the algorithm if k = 0; otherwiseset
k
k + 1.H4. [Permute.℄ Apply the permutation �(k;
k)!(k + 1)� to a0a1 : : : an�1, asexplained below, and return to H2.Although this algorithm looks almost identi
al to Algorithm G, the permutations� and ! that it needs in step H4 are quite di�erent from those needed in step G4.The new rules, whi
h repla
e (15) and (16), are�(k; j) = �(k; j)��(k; j � 1); for 1 � j � k; (34)!(k) = �(n� 1; n� 1)��(n� 2; n� 2)� : : : �(k; k)�: (35)The number of possibilities is just as vast as it was for Algorithm G, so wewill
on�ne our attention to a few
ases that have spe
ial merit. One natural
ase to try is, of
ourse, the Sims table that makes Algorithm G produ
e reverse
olex order, namely �(k; j) = (k�j k�j+1 : : : k) (36)as in (18). The resulting permutation generator turns out to be very nearly thesame as the method of plain
hanges; so we
an say that Algorithms L and Pare essentially dual to ea
h other. (See exer
ise 52.)Another natural idea is to
onstru
t a Sims table for whi
h step H4 alwaysmakes a single transposition of two elements, by analogy with the
onstru
tionof (27) that a
hieves maximum eÆ
ien
y in step G4. But su
h a mission nowturns out to be impossible: We
annot a
hieve it even when n = 4. For if

17

18 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2we start with the identity permutation a0a1a2a3 = 0123, the transitions thattake us from
ontrol table
0
1
2
3 = 0000 to 0001 to 0002 to 0003 must movethe 3; so, if they are transpositions, they must be (3 a), (a b), and (b
) for somepermutation ab
 of f0; 1; 2g. The permutation
orresponding to
0
1
2
3 = 0003is now �(3; 3)� = (b
)(a b)(3 a) = (3 a b
); and the next permutation, whi
h
orresponds to
0
1
2
3 = 0010, will be �(2; 1)�, whi
h must �x the element 3.The only suitable transposition is (3
), hen
e �(2; 1)� must be (3
)(3 a b
) =(a b
). Similarly we �nd that �(2; 2)� must be (a
 b), and the permutation
orresponding to
0
1
2
3 = 0023 will be (3 a b
)(a
 b) = (3
). Step H4 is nowsupposed to
onvert this to the permutation �(1; 1)�, whi
h
orresponds to the
ontrol table 0100 that follows 0023. But the only transposition that will
onvert(3
) into a permutation that �xes 2 and 3 is (3
); and the resulting permutationalso �xes 1, so it
annot be �(1; 1)�.The proof in the pre
eding paragraph shows that we
annot use Algorithm Hto generate all permutations with the minimum number of transpositions. But italso suggests a simple generation s
heme that
omes very
lose to the minimum,and the resulting algorithm is quite attra
tive be
ause it needs to do extra workonly on
e per n(n� 1) steps. (See exer
ise 53.)Finally, let's
onsider the dual of Ord-Smith's method, when�(k; j) = (k : : : 1 0)j (37)as in (23). On
e again the value of �(k; j) is independent of j,�(k; j) = (0 1 : : : k); (38)and this fa
t is parti
ularly advantageous in Algorithm H be
ause it allows usto dispense with the
ontrol table
0
1 : : :
n�1. The reason is that
n�1 = 0 instep H3 if and only if an�1 = n � 1, be
ause of (32); and indeed, when
j = 0for k < j < n in step H3 we have
k = 0 if and only if ak = k. Therefore we
anreformulate this variant of Algorithm H as follows.Algorithm C (Permutation generation by
y
li
 shifts). This algorithm visitsall permutations a1 : : : an of the distin
t elements fx1; : : : ; xng.C1. [Initialize.℄ Set aj xj for 1 � j � n.C2. [Visit.℄ Visit the permutation a1 : : : an, and set k n.C3. [Shift.℄ Repla
e a1a2 : : : ak by the
y
li
 shift a2 : : : aka1, and return to C2if ak 6= xk.C4. [De
rease k.℄ Set k k � 1, and go ba
k to C3 if k > 1.For example, the su

essive permutations of f1; 2; 3; 4g generated when n = 4 are1234, 2341, 3412, 4123, (1234),2314, 3142, 1423, 4231, (2314),3124, 1243, 2431, 4312, (3124), (1234),2134, 1342, 3421, 4213, (2134),1324, 3241, 2413, 4132, (1324),3214, 2143, 1432, 4321, (3214), (2134), (1234),

18

7.2.1.2 GENERATING ALL PERMUTATIONS 19with unvisited intermediate permutations shown in parentheses. This algorithmmay well be the simplest permutation generator of all, in terms of minimumprogram length. It is due to G. G. Langdon, Jr. [CACM 10 (1967), 298{299;11 (1968), 392℄; similar methods had been published previously by C. Tompkins[Pro
. Symp. Applied Math. 6 (1956), 202{205℄ and, more expli
itly, by R. Seitz[Unternehmensfors
hung 6 (1962), 2{15℄. The pro
edure is parti
ularly wellsuited to appli
ations in whi
h
y
li
 shifting is eÆ
ient, for example when su
-
essive permutations are being kept in a ma
hine register instead of in an array.The main disadvantage of dual methods is that they usually do not adaptwell to situations where large blo
ks of permutations need to be skipped, be-
ause the set of all permutations with a given value of the �rst
ontrol entries
0
1 : : :
k�1 is usually not of importan
e. The spe
ial
ase (36) is, however,sometimes an ex
eption, be
ause the n!=k! permutations with
0
1 : : :
k�1 =00 : : : 0 in that
ase are pre
isely those a0a1 : : : an�1 in whi
h 0 pre
edes 1,1 pre
edes 2, : : : , and k � 2 pre
edes k � 1.*Ehrli
h's swap method. Gideon Ehrli
h has dis
overed a
ompletely di�erentapproa
h to permutation generation, based on yet another way to use a
ontroltable
1 : : :
n�1. His method obtains ea
h permutation from its prede
essor byinter
hanging the leftmost element with another:Algorithm E (Ehrli
h swaps). This algorithm generates all permutations of thedistin
t elements a0 : : : an�1 by using auxiliary tables b0 : : : bn�1 and
1 : : :
n.E1. [Initialize.℄ Set bj j and
j+1 0 for 0 � j < n.E2. [Visit.℄ Visit the permutation a0 : : : an�1.E3. [Find k.℄ Set k 1. Then if
k = k, set
k 0, k k+1, and repeat until
k < k. Terminate if k = n, otherwise set
k
k + 1.E4. [Swap.℄ Inter
hange a0 $ abk .E5. [Flip.℄ Set j 1, k k � 1. If j < k, inter
hange bj $ bk, set j j + 1,k k � 1, and repeat until j � k. Return to E2.Noti
e that steps E2 and E3 are identi
al to steps G2 and G3 of Algorithm G.The most amazing thing about this algorithm, whi
h Ehrli
h
ommuni
ated toMartin Gardner in 1987, is that it works; exer
ise 55
ontains a proof. A similarmethod, whi
h simpli�es the operations of step E5,
an be validated in the sameway (see exer
ise 56). The average number of inter
hanges performed in step E5is less than 0.18 (see exer
ise 57).As it stands, Algorithm E isn't faster than other methods we have seen. Butit has the ni
e property that it
hanges ea
h permutation in a minimal way, usingonly n� 1 di�erent kinds of transpositions. Whereas Algorithm P used adja
entinter
hanges, at�1 $ at, Algorithm E uses �rst-element swaps, a0 $ at, also
alled star transpositions, for some well-
hosen sequen
e of indi
es t[1℄, t[2℄, : : : ,t[n! � 1℄. And if we are generating permutations repeatedly for the same fairlysmall value of n, we
an pre
ompute this sequen
e, as we did in Algorithm T

19

20 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2for the index sequen
e of Algorithm P. Noti
e that star transpositions have anadvantage over adja
ent inter
hanges, be
ause we always know the value of a0from the previous swap; we need not read it from memory.Let En be the sequen
e of n!� 1 indi
es t su
h that Algorithm E swaps a0with at in step E4. Sin
e En+1 begins with En, we
an regard En as the �rstn!� 1 elements of an in�nite sequen
eE1 = 121213212123121213212124313132131312 : : : : (39)For example, if n = 4 and a0a1a2a3 = 1234, the permutations visited byAlgorithm E are 1234; 2134; 3124; 1324; 2314; 3214;4213; 1243; 2143; 4123; 1423; 2413;3412; 4312; 1342; 3142; 4132; 1432;2431; 3421; 4321; 2341; 3241; 4231: (40)
*Using fewer generators. After seeing Algorithms P and E, we might naturallyask whether all permutations
an be obtained by using just two basi
 operations,instead of n � 1. For example, Nijenhuis and Wilf [Combinatorial Algorithms(1975), Exer
ise 6℄ noti
ed that all permutations
an be generated for n = 4if we repla
e a1a2a3 : : : an at ea
h step by either a2a3 : : : ana1 or a2a1a3 : : : an,and they wondered whether su
h a method exists for all n.In general, if G is any group of permutations and if �1, : : : , �k are ele-ments of G, the Cayley graph for G with generators (�1; : : : ; �k) is the dire
tedgraph whose verti
es are the permutations � of G and whose ar
s go from �to �1�, : : : , �k�. [Arthur Cayley, Ameri
an J. Math. 1 (1878), 174{176.℄ Thequestion of Nijenhuis and Wilf is equivalent to asking whether the Cayley graphfor all permutations of f1; 2; : : : ; ng, with generators � and � where � is the
y
li
permutation (1 2 : : : n) and � is the transposition (1 2), has a Hamiltonian path.A basi
 theorem due to R. A. Rankin [Pro
. Cambridge Philos. So
. 44(1948), 17{25℄ allows us to
on
lude in many
ases that Cayley graphs with twogenerators do not have a Hamiltonian
y
le:Theorem R. LetG be a group
onsisting of g permutations. If the Cayley graphfor G with generators (�; �) has a Hamiltonian
y
le, and if the permutations(�; �; ���) are respe
tively of order (a; b;
), then either
 is even or g=a and g=bare odd.(The order of a permutation � is the least positive integer a su
h that �a is theidentity.)Proof. See exer
ise 73.In parti
ular, when � = � and � = � as above, we have g = n!, a = n, b = 2, and
 = n�1, be
ause ��� = (2 : : : n). Therefore we
on
lude that no Hamiltonian
y
le is possible when n � 4 is even. However, a Hamiltonian path is easy to

20

7.2.1.2 GENERATING ALL PERMUTATIONS 21
onstru
t when n = 4, be
ause we
an join up the 12-
y
les1234! 2341! 3412! 4312! 3124! 1243! 2431! 4231! 2314! 3142! 1423! 4123! 1234;2134! 1342! 3421! 4321! 3214! 2143! 1432! 4132! 1324! 3241! 2413! 4213! 2134; (41)
by starting at 2341 and jumping from 1234 to 2134, ending at 4213.Ruskey, Jiang, and Weston [Dis
rete Applied Math. 57 (1995), 75{83℄ un-dertook an exhaustive sear
h in the �{� graph for n = 5 and dis
overed thatit has �ve essentially distin
t Hamiltonian
y
les, one of whi
h (the \mostbeautiful") is illustrated in Fig. 22(a). They also found a Hamiltonian pathfor n = 6; this was a diÆ
ult feat, be
ause it is the out
ome of a 720-stagebinary de
ision tree. Unfortunately the solution they dis
overed has no apparentlogi
al stru
ture. A somewhat less
omplex path is des
ribed in exer
ise 70, buteven that path
annot be
alled simple. Therefore a �{� approa
h will probablynot be of pra
ti
al interest for larger values of n unless a new
onstru
tionis dis
overed. R. C. Compton and S. G. Williamson [Linear and MultilinearAlgebra 35 (1993), 237{293℄ have proved that Hamiltonian
y
les exist for all nif the three generators �, ��, and � are allowed instead of just � and � ; their
y
les have the interesting property that every nth transformation is � , and theintervening n� 1 transformations are either all � or all ��. But their method istoo
ompli
ated to explain in a short spa
e.Exer
ise 69 des
ribes a general permutation algorithm that is reasonablysimple and needs only three generators, ea
h of order 2. Figure 22(b) illustratesthe
ase n = 5 of this method, whi
h was motivated by examples of bell-ringing.

(a) Using only transitions (1 2 3 4 5) and (1 2).
(b) Using only transitions (1 2)(3 4), (2 3)(4 5), and (3 4).Fig. 22. Hamiltonian
y
les for 5! permutations.Faster, faster. What is the fastest way to generate permutations? This questionhas often been raised in
omputer publi
ations, be
ause people who examine n!possibilities want to keep the running time as small as possible. But the answershave generally been
ontradi
tory, be
ause there are many di�erent ways toformulate the question. Let's try to understand the related issues by studyinghow permutations might be generated most rapidly on the MMIX
omputer.Suppose �rst that our goal is to produ
e permutations in an array of n
onse
utive memory words (o
tabytes). The fastest way to do this, of all thosewe've seen in this se
tion, is to streamline Heap's method (27), as suggested byR. Sedgewi
k [Computing Surveys 9 (1977), 157{160℄.

21

22 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2The key idea is to optimize the
ode for the most
ommon
ases of steps G2and G3, namely the
ases in whi
h all a
tivity o

urs at the beginning of thearray. If registers u, v, and w
ontain the
ontents of the �rst three words, andif the next six permutations to be generated involve permuting those words inall six possible ways, we
an
learly do the job as follows:PUSHJ 0,VisitSTO v,A0; STO u,A1; PUSHJ 0,VisitSTO w,A0; STO v,A2; PUSHJ 0,VisitSTO u,A0; STO w,A1; PUSHJ 0,VisitSTO v,A0; STO u,A2; PUSHJ 0,VisitSTO w,A0; STO v,A1; PUSHJ 0,Visit (42)
(Here A0 is the address of o
tabyte a0, et
.) A
omplete permutation program,whi
h takes
are of getting the right things into u, v, and w, appears in exer-
ise 77, but the other instru
tions are less important be
ause they need to beperformed only 16 of the time. The total
ost per permutation, not
ounting the4� needed for PUSHJ and POP on ea
h
all to Visit,
omes to approximately2:77� + 5:69� with this approa
h. If we use four registers u, v, w, x, and ifwe expand (42) to 24
alls on Visit, the running time per permutation dropsto about 2:19� + 3:07�. And with r registers and r! Visits, exer
ise 78 showsthat the
ost is (2 + O(1=r!))(� + �), whi
h is very nearly the
ost of two STOinstru
tions.The latter is, of
ourse, the minimum possible time for any method thatgenerates all permutations in a sequential array. : : :Or is it? We have assumedthat the visiting routine wants to see permutations in
onse
utive lo
ations, butperhaps that routine is able to read the permutations from di�erent startingpoints. Then we
an arrange to keep an�1 �xed and to keep two
opies of theother elements in its vi
inity:a0a1 : : : an�2an�1a0a1 : : : an�2: (43)If we now let a0a1 : : : an�2 run through (n� 1)! permutations, always
hangingboth
opies simultaneously by doing two STO
ommands instead of one, we
anlet every
all to Visit look at the n permutationsa0a1 : : : an�1; a1 : : : an�1a0; : : : ; an�1a0 : : : an�2; (44)whi
h all appear
onse
utively. The
ost per permutation is now redu
ed to the
ost of three simple instru
tions like ADD, CMP, PBNZ, plus O(1=n). [See Varoland Rotem, Comp. J. 24 (1981), 173{176.℄Furthermore, we might not want to waste time storing permutations intomemory at all. Suppose, for example, that our goal is to generate all permuta-tions of f0; 1; : : : ; n � 1g. The value of n will probably be at most 16, be
ause16! = 20;922;789;888;000 and 17! = 355;687;428;096;000. Therefore an entirepermutation will �t in the 16 nybbles of an o
tabyte, and we
an keep it in asingle register. This will be advantageous only if the visiting routine doesn'tneed to unpa
k the individual nybbles; but let's suppose that it doesn't. Howfast
an we generate permutations in the nybbles of a 64-bit register?

22

7.2.1.2 GENERATING ALL PERMUTATIONS 23One idea, suggested by a te
hnique due to A. J. Goldstein [U. S. Patent3383661 (14 May 1968)℄, is to pre
ompute the table (t[1℄; : : : ; t[5039℄) of plain-
hange transitions for seven elements, using Algorithm T. These numbers t[k℄ liebetween 1 and 6, so we
an pa
k 20 of them into a 64-bit word. It is
onvenientto put the number P20k=1 23k�1t[20j + k℄ into word j of an auxiliary table, for0 � j < 252, with t[5040℄ = 1; for example, the table begins with the
odeword00j001j010j011j100j101j110j100j110j101j100j011j010j001j110j001j010j011j100j101j110j00:The following program reads su
h
odes eÆ
iently:Perm h Set register a to the �rst permutation i0H LDA p,T p address of �rst
odeword.JMP 3F1H hVisit the permutation in register a ih Swap the nybbles of a that lie t bits from the right iSRU
,
,3

� 3.2H AND t,
,#1
 t
 ^ (11100)2.PBNZ t,1B Bran
h if t 6= 0.ADD p,p,83H LDO
,p,0
 next
odeword.PBNZ
,2B (The �nal
odeword is followed by 0.)h If not done, advan
e the leading n� 7 nybbles and return to 0B i
(45)

Exer
ise 79 shows how to h Swap the nybbles : : : i with seven instru
tions, usingbit manipulation operations that are found on most
omputers. Therefore the
ost per permutation is just a bit more than 10�. (The instru
tions that fet
hnew
odewords
ost only (� + 5�)=20; and the instru
tions that advan
e theleading n�7 nybbles are even more negligible sin
e their
ost is divided by 5040.)Noti
e that there is now no need for PUSHJ and POP as there was with (42); weignored those instru
tions before, but they did
ost 4�.We
an, however, do even better by adapting Langdon's
y
li
-shift method,Algorithm C. Suppose we start with the lexi
ographi
ally largest permutationand operate as follows:GREG �0H OCTA #fed
ba9876543210&(1<<(4*N)-1)Perm LDOU a,0B Set a # : : : 3210.JMP 2F1H SRU a,a,4*(16-N) a ba=1616�n
.OR a,a,t a a _ t.2H hVisit the permutation in register a iSRU t,a,4*(N-1) t ba=16n�1
.SLU a,a,4*(17-N) a 1617�namod 1616.PBNZ t,1B To 1B if t 6= 0.hContinue with Langdon's method i
(46)

The running time per permutation is now only 5� +O(1=n), again without theneed for PUSHJ and POP. See exer
ise 81 for an interesting way to extend (46) toa
omplete program, obtaining a remarkably short and fast routine.

23

24 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2Fast permutation generators are amusing, but in pra
ti
e we
an usuallysave more time by streamlining the visiting routine than by speeding up thegenerator.Topologi
al sorting. Instead of working with all n! permutations of f1; : : : ; ng,we often want to look only at permutations that obey
ertain restri
tions. Forexample, we might be interested only in permutations for whi
h 1 pre
edes 3,2 pre
edes 3, and 2 pre
edes 4; there are �ve su
h permutations of f1; 2; 3; 4g,namely 1234; 1243; 2134; 2143; 2413: (47)The problem of topologi
al sorting, whi
h we studied in Se
tion 2.2.3 as a �rstexample of nontrivial data stru
tures, is the general problem of �nding a permu-tation that satis�esm su
h
onditions x1 � y1, : : : , xm � ym, where x � y meansthat x should pre
ede y in the permutation. This problem arises frequently inpra
ti
e, so it has several di�erent names; for example, it is often
alled the linearembedding problem, be
ause we want to arrange obje
ts in a line while preserving
ertain order relationships. It is also the problem of extending a partial orderingto a total ordering (see exer
ise 2.2.3{14).Our goal in Se
tion 2.2.3 was to �nd a single permutation that satis�esall the relations. But now we want rather to �nd all su
h permutations, alltopologi
al sorts. Indeed, we will assume in the present se
tion that the elementsx and y on whi
h the relations are de�ned are integers between 1 and n, andthat we have x < y whenever x � y. Consequently the permutation 12 : : : nwill always be topologi
ally
orre
t. (If this simplifying assumption is not met,we
an prepro
ess the data by using Algorithm 2.2.3T to rename the obje
tsappropriately.)Many important
lasses of permutations are spe
ial
ases of this topologi
alordering problem. For example, the permutations of f1; : : : ; 8g su
h that1 � 2; 2 � 3; 3 � 4; 6 � 7; 7 � 8are equivalent to permutations of the multiset f1; 1; 1; 1; 2; 3; 3; 3g, be
ause we
an map f1; 2; 3; 4g 7! 1, 5 7! 2, and f6; 7; 8g 7! 3. We know how to generatepermutations of a multiset using Algorithm L, but now we will learn another way.Noti
e that x pre
edes y in a permutation a1 : : : an if and only if a0x < a0y inthe inverse permutation a01 : : : a0n. Therefore the algorithm we are about to studywill also �nd all permutations a01 : : : a0n su
h that a0j < a0k whenever j � k. Forexample, we learned in Se
tion 5.1.4 that a Young tableau is an arrangement off1; : : : ; ng in rows and
olumns so that ea
h row is in
reasing from left to rightand ea
h
olumn is in
reasing from top to bottom. The problem of generating all3� 3 Young tableaux is therefore equivalent to generating all a01 : : : a09 su
h thata01 < a02 < a03; a04 < a05 < a06; a07 < a08 < a09;a01 < a04 < a07; a02 < a05 < a08; a03 < a06 < a09; (48)and this is a spe
ial kind of topologi
al sorting.

24

7.2.1.2 GENERATING ALL PERMUTATIONS 25We might also want to �nd all mat
hings of 2n elements, namely all ways topartition f1; : : : ; 2ng into n pairs. There are (2n�1)(2n�3) : : : (1) = (2n)!=(2nn!)ways to do this, and they
orrespond to permutations that satisfya01 < a02; a03 < a04; : : : ; a02n�1 < a02n; a01 < a03 < � � � < a02n�1: (49)An elegant algorithm for exhaustive topologi
al sorting was dis
overed byY. L. Varol and D. Rotem [Comp. J. 24 (1981), 83{84℄, who realized that amethod analogous to plain
hanges (Algorithm P)
an be used. Suppose wehave found a way to arrange f1; : : : ; n � 1g topologi
ally, so that a1 : : : an�1satis�es all the
onditions that do not involve n. Then we
an easily write downall the allowable ways to insert the �nal element n without
hanging the relativeorder of a1 : : : an�1: We simply start with a1 : : : an�1n, then shift n left one stepat a time, until it
annot move further. Applying this idea re
ursively yields thefollowing straightforward pro
edure.Algorithm V (All topologi
al sorts). Given a relation � on f1; : : : ; ng with theproperty that x � y implies x < y, this algorithm generates all permutationsa1 : : : an and their inverses a01 : : : a0n with the property that a0j < a0k wheneverj � k. We assume for
onvenien
e that a0 = 0 and that 0 � k for 1 � k � n.V1. [Initialize.℄ Set aj j and a0j j for 0 � j � n.V2. [Visit.℄ Visit the permutation a1 : : : an and its inverse a01 : : : a0n. Then setk n.V3. [Can k move left?℄ Set j a0k and l aj�1. If l � k, go to V5.V4. [Yes, move it.℄ Set aj�1 k, aj l, a0k j � 1, and a0l j. Go to V2.V5. [No, put k ba
k.℄ While j < k, set l aj+1, aj l, a0l j, and j j+1.Then set ak a0k k. De
rease k by 1 and return to V3 if k > 0.For example, Theorem 5.1.4H tells us that there are exa
tly 42 Young tableauxof size 3� 3. If we apply Algorithm V to the relations (48) and write the inversepermutation in array form a01a02a03a04a05a06a07a08a09 ; (50)
we get the following 42 results:123456789 123457689 123458679 123467589 123468579 124356789 124357689 124358679 124367589 124368579 125367489 125368479 125346789 125347689125348679 126347589 126348579 127348569 126357489 126358479 127358469 134256789 134257689 134258679 134267589 134268579 135267489 135268479145267389 145268379 135246789 135247689 135248679 136247589 136248579 137248569 136257489 136258479 137258469 146257389 146258379 147258369

25

26 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2Let tr be the number of topologi
al sorts for whi
h the �nal n� r elementsare in their initial position aj = j for r < j � n. Equivalently, tr is the numberof topologi
al sorts a1 : : : ar of f1; : : : ; rg, when we ignore the relations involvingelements greater than r. Then the re
ursive me
hanism underlying Algorithm Vshows that step V2 is performed N times and step V3 is performed M times,where M = tn + � � �+ t1 and N = tn: (51)Also, step V4 and the loop operations of V5 are performed N � 1 times; the restof step V5 is done M � N + 1 times. Therefore the total running time of thealgorithm is a linear
ombination of M , N , and n.If the element labels are
hosen poorly, M might be mu
h larger than N .For example, if the
onstraints input to Algorithm V are2 � 3; 3 � 4; : : : ; n� 1 � n; (52)then tj = j for 1 � j � n and we have M = 12 (n2 + n), N = n. But those
onstraints are also equivalent to1 � 2; 2 � 3; : : : ; n� 2 � n� 1; (53)under renaming of the elements; then M is redu
ed to 2n� 1 = 2N � 1.Exer
ise 89 shows that a simple prepro
essing step will �nd element labelsso that a slight modi�
ation of Algorithm V is able to generate all topologi
alsorts in O(N +n) steps. Thus topologi
al sorting
an always be done eÆ
iently.Think twi
e before you permute. We have seen several attra
tive algorithmsfor permutation generation in this se
tion, but many algorithms are known bywhi
h permutations that are optimum for parti
ular purposes
an be foundwithout running through all possibilities. For example, Theorem 6.1S showedthat we
an �nd the best way to arrange re
ords on a sequential storage simplyby sorting them with respe
t to a
ertain
ost
riterion, and this pro
ess takesonly O(n logn) steps. In Se
tion 7.5.2 we will study the assignment problem,whi
h asks how to permute the
olumns of a square matrix so that the sum ofthe diagonal elements is maximized. That problem
an be solved in at mostO(n3) operations, so it would be foolish to use a method of order n! unless nis extremely small. Even in
ases like the traveling salesrep problem, when noeÆ
ient algorithm is known, we
an usually �nd a mu
h better approa
h thanto examine every possible solution. Permutation generation is best used whenthere is good reason to look at ea
h permutation individually.EXERCISESx 1. [20 ℄ Explain how to make Algorithm L run faster, by streamlining its operationswhen the value of j is near n.2. [20 ℄ Rewrite Algorithm L so that it produ
es all permutations of a1 : : : an inreverse
olex order. (In other words, the values of the re
e
tions an : : : a1 should belexi
ographi
ally de
reasing, as in (11). This form of the algorithm is often simplerand faster than the original, be
ause fewer
al
ulations depend on the value of n.)

26

7.2.1.2 GENERATING ALL PERMUTATIONS 27x 3. [M21 ℄ The rank of a
ombinatorial arrangement X with respe
t to a generationalgorithm is the number of other arrangements that the algorithm visits prior to X.Explain how to
ompute the rank of a given permutation a1 : : : an with respe
t toAlgorithm L, if fa1; : : : ; ang = f1; : : : ; ng. What is the rank of 314592687?4. [M23 ℄ Generalizing exer
ise 3, explain how to
ompute the rank of a1 : : : an withrespe
t to Algorithm L when fa1; : : : ; ang is the multiset fn1 � x1; : : : ; nt � xtg; heren1 + � � �+ nt = n and x1 < � � � < xt. (The total number of permutations is, of
ourse,the multinomial
oeÆ
ient � nn1; : : : ; nt� = n!n1! : : : nt! ;see Eq. 5.1.2{(3).) What is the rank of 314159265?5. [HM25 ℄ Compute the mean and varian
e of the number of
omparisons made byAlgorithm L in (a) step L2, (b) step L3, when the elements fa1; : : : ; ang are distin
t.6. [HM34 ℄ Derive generating fun
tions for the mean number of
omparisons madeby Algorithm L in (a) step L2, (b) step L3, when fa1; : : : ; ang is a general multisetas in exer
ise 4. Also give the results in
losed form when fa1; : : : ; ang is the binarymultiset fs � 0; (n� s) � 1g.7. [HM35 ℄ What is the limit as t ! 1 of the average number of
omparisonsmade per permutation in step L2 when Algorithm L is being applied to the multiset(a) f2 � 1; 2 � 2; : : : ; 2 � tg? (b) f1 � 1; 2 � 2; : : : ; t � tg? (
) f2 � 1; 4 � 2; : : : ; 2t � tg?x 8. [21 ℄ The variations of a multiset are the permutations of all its submultisets. Forexample, the variations of f1; 2; 2; 3g are�; 1; 12; 122; 1223; 123; 1232; 13; 132; 1322;2; 21; 212; 2123; 213; 2132; 22; 221; 2213; 223; 2231; 23; 231; 2312; 232; 2321;3; 31; 312; 3122; 32; 321; 3212; 322; 3221:Show that simple
hanges to Algorithm L will generate all variations of a given multisetfa1; a2; : : : ; ang.9. [22 ℄ Continuing the previous exer
ise, design an algorithm to generate all r-variations of a given multiset fa1; a2; : : : ; ang, also
alled its r-permutations, namely allpermutations of its r-element submultisets. (For example, the solution to an alphameti
with r distin
t letters is an r-variation of f0; 1; : : : ; 9g.)10. [20 ℄ What are the values of a1a2 : : : an,
1
2 : : :
n, and o1o2 : : : on at the end ofAlgorithm P, if a1a2 : : : an = 12 : : : n at the beginning?11. [M22 ℄ How many times is ea
h step of Algorithm P performed? (Assume thatn � 2.)x 12. [M23 ℄ What is the 1000000th permutation visited by (a) Algorithm L, (b) Algo-rithm P, (
) Algorithm C, if fa1; : : : ; ang = f0; : : : ; 9g? Hint: In mixed-radix notationwe have 1000000 = [2;10; 6;9; 6;8; 2;7; 5;6; 1;5; 2;4; 2;3; 0;2; 01 ℄ = [0;1; 0;2; 1;3; 2;4; 3;5; 0;6; 2;7; 7;8; 1;9; 010 ℄.13. [M21 ℄ (Martin Gardner, 1974.) True or false: If a1a2 : : : an is initially 12 : : : n,Algorithm P begins by visiting all n!=2 permutations in whi
h 1 pre
edes 2; then thenext permutation is n : : : 21.14. [M22 ℄ True or false: If a1a2 : : : an is initially x1x2 : : : xn in Algorithm P, we alwayshave aj�
j+s = xj at the beginning of step P5.

27

28 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.215. [M23 ℄ (Selmer Johnson, 1963.) Show that the o�set variable s never ex
eeds 2 inAlgorithm P.16. [21 ℄ Explain how to make Algorithm P run faster, by streamlining its operationswhen the value of j is near n. (This problem is analogous to exer
ise 1.)x 17. [20 ℄ Extend Algorithm P so that the inverse permutation a01 : : : a0n is available forpro
essing when a1 : : : an is visited in step P2. (The inverse satis�es a0k = j if and onlyif aj = k.)18. [21 ℄ (Rosary permutations.) Devise an eÆ
ient way to generate (n�1)!=2 permu-tations that represent all possible undire
ted
y
les on the verti
es f1; : : : ; ng; that is,no
y
li
 shift of a1 : : : an or an : : : a1 will be generated if a1 : : : an is generated. Thepermutations (1234; 1324; 3124)
ould, for example, be used when n = 4.19. [25 ℄ Constru
t an algorithm that generates all permutations of n distin
t elementslooplessly in the spirit of Algorithm 7.2.1.1L.x 20. [20 ℄ The n-
ube has 2nn! symmetries, one for ea
h way to permute and/or
om-plement the
oordinates. Su
h a symmetry is
onveniently represented as a signedpermutation, namely a permutation with optional signs atta
hed to the elements. Forexample, 231 is a signed permutation that transforms the verti
es of the 3-
ube by
hanging x1x2x3 to x2x3x1, so that 000 7! 001, 001 7! 011, : : : , 111 7! 110. Designa simple algorithm that generates all signed permutations of f1; 2; : : : ; ng, where ea
hstep either inter
hanges two adja
ent elements or negates the �rst element.21. [M21 ℄ (E. P. M
Cravy, 1971.) How many solutions does the alphameti
 (6) havein radix b?22. [M15 ℄ True or false: If an alphameti
 has a solution in radix b, it has a solutionin radix b+ 1.23. [M20 ℄ True or false: A pure alphameti

annot have two identi
al signaturessj = sk 6= 0 when j 6= k.24. [25 ℄ Solve the following alphameti
s by hand or by
omputer:a) SEND + A+ TAD+ MORE = MONEY.b) ZEROES + ONES = BINARY. (Peter Ma
Donald, 1977)
) DCLIX + DLXVI = MCCXXV. (Willy Enggren, 1972)d) COUPLE + COUPLE = QUARTET. (Mi
hael R. W. Bu
kley, 1977)e) FISH + N+ CHIPS = SUPPER. (Bob Vinni
ombe, 1978)f) SATURN + URANUS + NEPTUNE + PLUTO = PLANETS. (Willy Enggren, 1968)g) EARTH + AIR+ FIRE + WATER = NATURE. (Herman Nijon, 1977)h) AN+ACCELERATING+INFERENTIAL+ENGINEERING+TALE+ELITE+GRANT+FEE+ET+ CETERA = ARTIFICIAL + INTELLIGENCE.i) HARDY + NESTS = NASTY + HERDS.x 25. [M21 ℄ Devise a fast way to
ompute min(a � s) and max(a � s) over all validpermutations a1 : : : a10 of f0; : : : ; 9g, given the signature ve
tor s = (s1; : : : ; s10) andthe �rst-letter set F of an alphameti
 problem. (Su
h a pro
edure makes it possibleto rule out many
ases qui
kly when a large family of alphameti
s is being
onsidered,as in several of the exer
ises that follow, be
ause a solution
an exist only whenmin(a � s) � 0 � max(a � s).)26. [25 ℄ What is the unique alphameti
 solution toNIIHAU � KAUAI � OAHU � MOLOKAI � LANAI � MAUI � HAWAII = 0?27. [30 ℄ Constru
t pure additive alphameti
s in whi
h all words have �ve letters.

28

7.2.1.2 GENERATING ALL PERMUTATIONS 2928. [M25 ℄ A partition of the integer n is an expression of the form n = n1+� � �+nt withn1 � � � � � nt > 0. Su
h a partition is
alled doubly true if �(n) = �(n1)+ � � �+�(nt) isalso a pure alphameti
, where �(n) is the \name" of n in some language. Doubly truepartitions were introdu
ed by Alan Wayne in AMM 54 (1947), 38, 412{414, where hesuggested solving TWENTY = SEVEN + SEVEN + SIX and a few others.a) Find all partitions that are doubly true in English when 1 � n � 20.b) Wayne also gave the example EIGHTY = FIFTY + TWENTY + NINE + ONE. Find alldoubly true partitions for 1 � n � 100 in whi
h the parts are distin
t, using thenames ONE, TWO, : : : , NINETYNINE, ONEHUNDRED.x 29. [M25 ℄ Continuing the previous exer
ise, �nd all equations of the form n1 + � � �+nt = n01 + � � � + n0t0 that are both mathemati
ally and alphameti
ally true in English,when fn1; : : : ; nt; n01; : : : ; n0t0g are distin
t positive integers less than 20. For example,TWELVE + NINE + TWO = ELEVEN + SEVEN + FIVE ;the alphameti
s should all be pure.30. [25 ℄ Solve these multipli
ative alphameti
s by hand or by
omputer:a) TWO� TWO = SQUARE. (H. E. Dudeney, 1929)b) HIP� HIP = HURRAY. (Willy Enggren, 1970)
) PI� R� R = AREA. (Brian Barwell, 1981)d) NORTH=SOUTH = EAST=WEST. (Nob Yoshigahara, 1995)e) NAUGHT � NAUGHT = ZERO � ZERO � ZERO. (Alan Wayne, 2003)31. [M22 ℄ (Nob Yoshigahara.) What is the unique solution to A=BC+D=EF+G=HI = 1,when fA; : : : ; Ig = f1; : : : ; 9g?32. [M25 ℄ (H. E. Dudeney, 1901.) Find all ways to represent 100 by inserting aplus sign and a slash into a permutation of the digits f1; : : : ; 9g. For example, 100 =91 + 5742=638. The plus sign should pre
ede the slash.33. [25 ℄ Continuing the previous exer
ise, �nd all positive integers less than 150 that(a)
annot be represented in su
h a fashion; (b) have a unique representation.34. [M26 ℄ Make the equation EVEN + ODD + PRIME = x doubly true when (a) x is aperfe
t 5th power; (b) x is a perfe
t 7th power.x 35. [M20 ℄ The automorphisms of a 4-
ube have many di�erent Sims tables, only oneof whi
h is shown in (14). How many di�erent Sims tables are possible for that group,when the verti
es are numbered as in (12)?36. [M23 ℄ Find a Sims table for the group of all automorphisms of the 4�4 ti
-ta
-toeboard 0 1 2 34 5 6 78 9 a b
 d e f ;
namely the permutations that take lines into lines, where a \line" is a set of fourelements that belong to a row,
olumn, or diagonal.x 37. [HM22 ℄ How many Sims tables
an be used with Algorithms G or H? Estimatethe logarithm of this number as n!1.38. [HM21 ℄ Prove that the average number of transpositions per permutation whenusing Ord-Smith's algorithm (26) is approximately sinh 1 � 1:175:

29

30 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.239. [16 ℄ Write down the 24 permutations generated for n = 4 by (a) Ord-Smith'smethod (26); (b) Heap's method (27).40. [M23 ℄ Show that Heap's method (27)
orresponds to a valid Sims table.x 41. [M33 ℄ Design an algorithm that generates all r-variations of f0; 1; : : : ; n � 1g byinter
hanging just two elements when going from one variation to the next. (Seeexer
ise 9.) Hint: Generalize Heap's method (27), obtaining the results in positionsan�r : : : an�1 of an array a0 : : : an�1. For example, one solution when n = 5 and r = 2uses the �nal two elements of the respe
tive permutations 01234, 31204, 30214, 30124,40123, 20143, 24103, 24013, 34012, 14032, 13042, 13402, 23401, 03421, 02431, 02341,12340, 42310, 41320, 41230.42. [M20 ℄ Constru
t a Sims table for all permutations in whi
h every �(k; j) andevery �(k; j) for 1 � j � k is a
y
le of length � 3.43. [M24 ℄ Constru
t a Sims table for all permutations in whi
h every �(k; k), !(k),and �(k; j)!(k � 1)� for 1 � j � k is a
y
le of length � 3.44. [20 ℄ When blo
ks of unwanted permutations are being skipped by the extendedAlgorithm G, is the Sims table of Ord-Smith's method (23) superior to the Sims tableof the reverse
olex method (18)?45. [20 ℄ (a) What are the indi
es u1 : : : u9 when Algorithm X visits the permutation314592687? (b) What permutation is visited when u1 : : : u9 = 314157700?46. [20 ℄ True or false: When Algorithm X visits a1 : : : an, we have uk > uk+1 if andonly if ak > ak+1, for 1 � k < n.x 47. [M21 ℄ Express the number of times that ea
h step of Algorithm X is performedin terms of the numbers N0, N1, : : : , Nn, where Nk is the number of pre�xes a1 : : : akthat satisfy tj(a1; : : : ; aj) for 1 � j � k.x 48. [M25 ℄ Compare the running times of Algorithm X and Algorithm L, in the
asewhen the tests t1(a1), t2(a1; a2), : : : , tn(a1; a2; : : : ; an) always are true.x 49. [28 ℄ The text's suggested method for solving additive alphameti
s with Algo-rithm X essentially
hooses digits from right to left; in other words, it assigns tentativevalues to the least signi�
ant digits before
onsidering digits that
orrespond to higherpowers of 10.Explore an alternative approa
h that
hooses digits from left to right. For example,su
h a method will dedu
e immediately that M = 1 when SEND + MORE = MONEY. Hint:See exer
ise 25.50. [M15 ℄ Explain why the dual formula (32) follows from (13).51. [M16 ℄ True or false: If the sets Sk = f�(k; 0); : : : ; �(k; k)g form a Sims table forthe group of all permutations, so also do the sets S�k = f�(k; 0)�; : : : ; �(k; k)�g.x 52. [M22 ℄ What permutations �(k; j) and !(k) arise when Algorithm H is used withthe Sims table (36)? Compare the resulting generator with Algorithm P.x 53. [M26 ℄ (F. M. Ives.) Constru
t a Sims table for whi
h Algorithm H will generateall permutations by making only n! +O((n� 2)!) transpositions.54. [20 ℄ Would Algorithm C work properly if step C3 did a right-
y
li
 shift, settinga1 : : : ak�1ak aka1 : : : ak�1, instead of a left-
y
li
 shift?55. [M27 ℄ Consider the fa
torial ruler fun
tion�!(m) = maxfk j mmod k! = 0g:

30

7.2.1.2 GENERATING ALL PERMUTATIONS 31Let �k and �k be permutations of the nonnegative integers su
h that �j �k = �k�jwhenever j � k. Let �0 and �0 be the identity permutation, and for m > 0 de�ne�m = ��m�1��!(m)�m�1�m�1; �m = ��!(m)�m�1:For example, if �k is the
ip operation (1 k�1)(2 k�2) : : : = (0 k)�(k) and if �k = (0 k),and if Algorithm E is started with aj = j for 0 � j < n, then �m and �m are the
ontents of a0 : : : an�1 and b0 : : : bn�1 after step E5 has been performed m times.a) Prove that �(n+1)!�(n+1)! = �n+1��n �n+1��n (�n!�n!)n+1.b) Use the result of (a) to establish the validity of Algorithm E.56. [M22 ℄ Prove that Algorithm E remains valid if step E5 is repla
ed byE50. [Transpose pairs.℄ If k > 2, inter
hange bj+1 $ bj for j = k � 2, k � 4, : : : ,(2 or 1). Return to E2.57. [HM22 ℄ What is the average number of inter
hanges made in step E5?58. [M21 ℄ True or false: If Algorithm E begins with a0 : : : an�1 = x1 : : : xn then the�nal permutation visited begins with a0 = xn.59. [M20 ℄ Some authors de�ne the ar
s of a Cayley graph as running from � to ��jinstead of from � to �j�. Are the two de�nitions essentially di�erent?x 60. [21 ℄ A Gray
y
le for permutations is a
y
le (�0; �1; : : : ; �n!�1) that in
ludesevery permutation of f1; 2; : : : ; ng and has the property that �k di�ers from �(k+1) mod n!by an adja
ent transposition. It
an also be des
ribed as a Hamiltonian
y
le on theCayley graph for the group of all permutations on f1; 2; : : : ; ng, with the n�1 generators((1 2); (2 3); : : : ; (n�1 n)). The delta sequen
e of su
h a Gray
y
le is the sequen
e ofintegers Æ0Æ1 : : : Æn!�1 su
h that�(k+1) mod n! = (Æk Æk+1)�k:(See 7.2.1.1{(24), whi
h des
ribes the analogous situation for binary n-tuples.) Forexample, Fig. 23 illustrates the Gray
y
le de�ned by plain
hanges when n = 4; itsdelta sequen
e is (32131231)3.a) Find all Gray
y
les for permutations of f1; 2; 3; 4g.b) Two Gray
y
les are
onsidered to be equivalent if their delta sequen
es
an beobtained from ea
h other by
y
li
 shifting (Æk : : : Æn!�1Æ0 : : : Æk�1) and/or reversal(Æn!�1 : : : Æ1Æ0) and/or
omplementation ((n�Æ0)(n�Æ1) : : : (n�Æn!�1)). Whi
h ofthe Gray
y
les in (a) are equivalent?

Fig. 23. Algorithm P tra
es outthis Hamiltonian
y
le on thetrun
ated o
tahedron of Fig. 5{1.

12342134 124321432314
3214 2341
3241

1324
3124 1342

3142
1423

1432
4132
4123

2413
2431

4231
4213

3421 34124321 4312

31

32 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.261. [21 ℄ Continuing the previous exer
ise, a Gray
ode for permutations is like a Gray
y
le ex
ept that the �nal permutation �n!�1 is not required to be adja
ent to the initialpermutation �0. Study the set of all Gray
odes for n = 4 that start with 1234.x 62. [M23 ℄ What permutations
an be rea
hed as the �nal element of a Gray
odethat starts at 12 : : : n?63. [M25 ℄ Estimate the total number of Gray
y
les for permutations of f1; 2; 3; 4; 5g.64. [23 ℄ A \doubly Gray"
ode for permutations is a Gray
y
le with the additionalproperty that Æk+1 = Æk � 1 for all k. Compton and Williamson have proved that su
h
odes exist for all n � 3. How many doubly Gray
odes exist for n = 5?65. [M25 ℄ For whi
h integers N is there a Gray path through the N lexi
ographi
allysmallest permutations of f1; : : : ; ng? (Exer
ise 7.2.1.1{26 solves the analogous problemfor binary n-tuples.)66. [22 ℄ Ehrli
h's swap method suggests another type of Gray
y
le for permutations,in whi
h the n � 1 generators are the star transpositions (1 2), (1 3), : : : , (1 n). Forexample, Fig. 24 shows the relevant graph when n = 4. Analyze the Hamiltonian
y
lesof this graph.

1234 2431 1423 2143 1342 23141432 2413 1243 2341 1324 21344132 3412 4213 3241 4321 31244312 3214 4231 3421 4123 3142
4231 3421 4123 3142 4312 3214 12342134 41323142 1342 2314 1234 2431 1423 2143

Fig. 24. The Cayley graph for permutations of f1; 2; 3; 4g, generated by thestar transpositions (1 2), (1 3), and (1 4), drawn as a twisted torus.67. [26 ℄ Continuing the previous exer
ise, �nd a �rst-element-swap Gray
y
le forn = 5 in whi
h ea
h star transposition (1 j) o

urs 30 times, for 2 � j � 5.68. [M30 ℄ (Kompel'makher and Liskovets, 1975.) Let G be the Cayley graph for allpermutations of f1; : : : ; ng, with generators (�1; : : : ; �k) where ea
h �j is a transpo-sition (uj vj); also let A be the graph with verti
es f1; : : : ; ng and edges uj ��� vjfor 1 � j � k. Prove that G has a Hamiltonian
y
le if and only if A is
onne
ted.(Figure 23 is the spe
ial
ase when A is a path; Figure 24 is the spe
ial
ase when Ais a \star.")x 69. [28 ℄ If n � 4, the following algorithm generates all permutations A1A2A3 : : : Anof f1; 2; 3; : : : ; ng using only three transformations,� = (1 2)(3 4)(5 6) : : : ; � = (2 3)(4 5)(6 7) : : : ; � = (3 4)(5 6)(7 8) : : : ;never applying � and � next to ea
h other. Explain why it works.Z1. [Initialize.℄ Set Aj j for 1 � j � n. Also set aj 2j for j � n=2 andan�j 2j + 1 for j < n=2. Then invoke Algorithm P, but with parametern� 1 instead of n. We will treat that algorithm as a
oroutine, whi
h should

32

7.2.1.2 GENERATING ALL PERMUTATIONS 33return
ontrol to us whenever it \visits" a1 : : : an�1 in step P2. We will alsoshare its variables (ex
ept n).Z2. [Set x and y.℄ Invoke Algorithm P again, obtaining a new permutationa1 : : : an�1 and a new value of j. If j = 2, inter
hange a1+s $ a2+s (therebyundoing the e�e
t of step P5) and repeat this step; in su
h a
ase we are at thehalfway point of Algorithm P. If j = 1 (so that Algorithm P has terminated),set x y 0 and go to Z3. Otherwise setx aj�
j+s+[oj=�1℄; y aj�
j+s�[oj=+1℄;these are the two elements most re
ently inter
hanged in step P5.Z3. [Visit.℄ Visit the permutation A1 : : : An. Then go to Z5 if A1 = x and A2 = y.Z4. [Apply �, then �.℄ Inter
hange A1 $ A2, A3 $ A4, A5 $ A6, : : : . VisitA1 : : : An. Then inter
hange A2 $ A3, A4 $ A5, A6 $ A7, : : : . Terminateif A1 : : : An = 1 : : : n, otherwise return to Z3.Z5. [Apply � , then �.℄ Inter
hange A3 $ A4, A5 $ A6, A7 $ A8, : : : . VisitA1 : : : An. Then inter
hange A2 $ A3, A4 $ A5, A6 $ A7, : : : , and returnto Z2.Hint: Show �rst that the algorithm works if modi�ed so that Aj n + 1 � j andaj j in step Z1, and if the \
ip" permutations�0 = (1 n)(2 n�1) : : : ; �0 = (2 n)(3 n�1) : : : ; � 0 = (2 n�1)(3 n�2) : : :are used instead of �, �, � in steps Z4 and Z5. In this modi�
ation, step Z3 should goto Z5 if A1 = x and An = y.x 70. [M33 ℄ The two 12-
y
les (41)
an be regarded as �{�
y
les for the twelve per-mutations of f1; 1; 3; 4g:1134! 1341! 3411! 4311! 3114! 1143! 1431! 4131! 1314! 3141! 1413! 4113! 1134:Repla
ing f1; 1g by f1; 2g yields disjoint
y
les, and we obtained a Hamiltonian path byjumping from one to the other. Can a �{� path for all permutations of 6 elements beformed in a similar way, based on a 360-
y
le for the permutations of f1; 1; 3; 4; 5; 6g?71. [48 ℄ Does the Cayley graph with generators � = (1 2 : : : n) and � = (1 2) have aHamiltonian
y
le whenever n � 3 is odd?72. [M21 ℄ Given a Cayley graph with generators (�1; : : : ; �k), assume that ea
h �jtakes x 7! y. (For example, both � and � in exer
ise 71 take 1 7! 2.) Prove that anyHamiltonian path starting at 12 : : : n in G must end at a permutation that takes y 7! x.x 73. [M30 ℄ Let �, �, and � be permutations of a set X, where X = A [B. Assumethat x� = x� when x 2 A and x� = x� when x 2 B, and that the order of ��� is odd.a) Prove that all three permutations �, �, � have the same sign; that is, they are alleven or all odd. Hint: A permutation has odd order if and only if its
y
les allhave odd length.b) Derive Theorem R from part (a).74. [M30 ℄ (R. A. Rankin.) Assuming that �� = �� in Theorem R, prove that aHamiltonian
y
le exists if and only if there is a number k su
h that 0 � k � g=
 andt + k ?
, where �g=
 =
t,
 = ���. Hint: Represent elements of the group in theform �j
k.

33

34 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.275. [M25 ℄ The dire
ted torus Cm�Cn has mn verti
es (x; y) for 0 � x < m, 0 � y <n, and ar
s (x; y)! (x; y)� = ((x+1) modm; y), (x; y)! (x; y)� = (x; (y+1) mod n).Prove that, if m > 1 and n > 1, the number of Hamiltonian
y
les of this digraph isd�1Xk=1�dk�[g
d((d� k)m;kn) = d ℄; d = g
d(m;n):76. [M31 ℄ The
ells numbered 0, 1, : : : , 63in Fig. 25 illustrate a northeasterly knight'stour on an 8 � 8 torus: If k appears in
ell(xk; yk), then (xk+1; yk+1) = (xk+2; yk+1)or (xk+1; yk+2), modulo 8, and (x64; y64) =(x0; y0). How many su
h tours are possibleon an m� n torus, when m;n � 3?
Fig. 25. A northeasterly knight's tour.

29 24 19 14 49 44 39 3458 53 48 43 38 9 4 6323 18 13 8 3 62 33 2852 47 42 37 32 27 22 5717 12 7 2 61 56 51 466 41 36 31 26 21 16 1135 30 1 60 55 50 45 400 59 54 25 20 15 10 5x 77. [22 ℄ Complete the MMIX program whose inner loop appears in (42), using Heap'smethod (27).78. [M23 ℄ Analyze the running time of the program in exer
ise 77, generalizing it sothat the inner loop does r! visits (with a0 : : : ar�1 in global registers).79. [20 ℄ What seven MMIX instru
tions will hSwap the nybbles : : : i as (45) requires?For example, if register t
ontains the value 4 and register a
ontains the nybbles#12345678, register a should
hange to #12345687.80. [21 ℄ Solve the previous exer
ise with only �ve MMIX instru
tions. Hint: Use MXOR.x 81. [22 ℄ Complete the MMIX program (46) by spe
ifying how to hContinue with Lang-don's method i.82. [M21 ℄ Analyze the running time of the program in exer
ise 81.83. [22 ℄ Use the �{� path of exer
ise 70 to design an MMIX routine analogous to (42)that generates all permutations of #123456 in register a.84. [20 ℄ Suggest a good way to generate all n! permutations of f1; : : : ; ng on p pro-
essors that are running in parallel.x 85. [25 ℄ Assume that n is small enough that n! �ts in a
omputer word. What's agood way to
onvert a given permutation � = a1 : : : an of f1; : : : ; ng into an integerk = r(�) in the range 0 � k < n!? Both fun
tions k = r(�) and � = r[�1℄(k) shouldbe
omputable in only O(n) steps.86. [20 ℄ A partial order relation is supposed to be transitive; that is, x � y and y � zshould imply x � z. But Algorithm V does not require its input relation to satisfy this
ondition.Show that if x � y and y � z, Algorithm V will produ
e identi
al results whetheror not x � z.87. [20 ℄ (F. Ruskey.) Consider the inversion tables
1 : : :
n of the permutationsvisited by Algorithm V. What noteworthy property do they have? (Compare withthe inversion tables (4) in Algorithm P.)

34

7.2.1.2 GENERATING ALL PERMUTATIONS 3588. [21 ℄ Show that Algorithm V
an be used to generate all ways to partition thedigits f0; 1; : : : ; 9g into two 3-element sets and two 2-element sets.x 89. [M30 ℄ Consider the numbers t0, t1, : : : , tn in (51). Clearly t0 = t1 = 1.a) Say that index j is \trivial" if tj = tj�1. For example, 9 is trivial with respe
t tothe Young tableau relations (48). Explain how to modify Algorithm V so that thevariable k takes on only nontrivial values.b) Analyze the running time of the modi�ed algorithm. What formulas repla
e (51)?
) Say that the interval [j : : k℄ is not a
hain if we do not have l � l+1 for j � l < k.Prove that in su
h a
ase tk � 2tj�1.d) Every inverse topologi
al sort a01 : : : a0n de�nes a labeling that
orresponds torelations a0j1 � a0k1 , : : : , a0jm � a0km , whi
h are equivalent to the original relationsj1 � k1, : : : , jm � km. Explain how to �nd a labeling su
h that [j : : k℄ is not a
hain when j and k are
onse
utive nontrivial indi
es.e) Prove that with su
h a labeling, M < 4N in the formulas of part (b).90. [M21 ℄ Algorithm V
an be used to produ
e all permutations that are h-orderedfor all h in a given set, namely all a01 : : : a0n su
h that a0j < a0j+h for 1 � j � n � h(see Se
tion 5.2.1). Analyze the running time of Algorithm V when it generates allpermutations that are both 2-ordered and 3-ordered.91. [HM21 ℄ Analyze the running time of Algorithm V when it is used with therelations (49) to �nd mat
hings.92. [M18 ℄ How many permutations is Algorithm V likely to visit, in a \random"
ase? Let Pn be the number of partial orderings on f1; : : : ; ng, namely the numberof relations that are re
exive, antisymmetri
, and transitive. Let Qn be the numberof su
h relations with the additional property that j < k whenever j � k. Expressthe expe
ted number of ways to sort n elements topologi
ally, averaged over all partialorderings, in terms of Pn and Qn.93. [35 ℄ Prove that all topologi
al sorts
an be generated in su
h a way that onlyone or two adja
ent transpositions are made at ea
h step. (The example 1 � 2, 3 � 4shows that a single transposition per step
annot always be a
hieved, even if we allownonadja
ent swaps, be
ause only two of the six relevant permutations are odd.)x 94. [25 ℄ Show that in the
ase of mat
hings, using the relations in (49), all topologi
alsorts
an be generated with just one transposition per step.95. [21 ℄ Dis
uss how to generate all up-down permutations of f1; : : : ; ng, namely thosea1 : : : an su
h that a1 < a2 > a3 < a4 > � � �.96. [21 ℄ Dis
uss how to generate all
y
li
 permutations of f1; : : : ; ng, namely thosea1 : : : an whose
y
le representation
onsists of a single n-
y
le.97. [21 ℄ Dis
uss how to generate all derangements of f1; : : : ; ng, namely those a1 : : : ansu
h that a1 6= 1, a2 6= 2, a3 6= 3, : : : .98. [HM23 ℄ Analyze the asymptoti
 running time of the method in the previousexer
ise.99. [M30 ℄ Given n � 3, show that all derangements of f1; : : : ; ng
an be generatedby making at most two transpositions between visits.100. [21 ℄ Dis
uss how to generate all inde
omposable permutations of f1; : : : ; ng,namely those a1 : : : an su
h that fa1; : : : ; ajg 6= f1; : : : ; jg for 1 � j < n.101. [21 ℄ Dis
uss how to generate all involutions of f1; : : : ; ng, namely those permu-tations a1 : : : an with aa1 : : : aan = 1 : : : n.

35

36 COMBINATORIAL ALGORITHMS (F2B) 7.2.1.2102. [M30 ℄ Show that all involutions of f1; : : : ; ng
an be generated by making atmost two transpositions between visits.103. [M32 ℄ Show that all even permutations of f1; : : : ; ng
an be generated by su
-
essive rotations of three
onse
utive elements.x 104. [M22 ℄ A permutation a1 : : : an of f1; : : : ; ng is well-balan
ed ifnXk=1 kak = nXk=1(n+ 1� k)ak:For example, 3142 is well-balan
ed when n = 4.a) Prove that no permutation is well-balan
ed when nmod 4 = 2.b) Prove that if a1 : : : an is well-balan
ed, so are its reversal an : : : a1, its
omplement(n+1�a1) : : : (n+1�an), and its inverse a01 : : : a0n.
) Determine the number of well-balan
ed permutations for small values of n.x 105. [26 ℄ A weak order is a relation � that is transitive (x � y and y � z impliesx � z) and
omplete (x � y or y � x always holds). We
an write x � y if x � y andy � x; x � y if x � y and y 6� x. There are thirteen weak orders on three elementsf1; 2; 3g, namely1 � 2 � 3; 1 � 2 � 3; 1 � 2 � 3; 1 � 2 � 3; 1 � 3 � 2; 1 � 3 � 2;2 � 1 � 3; 2 � 1 � 3; 2 � 3 � 1; 2 � 3 � 1; 3 � 1 � 2; 3 � 1 � 2; 3 � 2 � 1:a) Explain how to generate all weak orders of f1; : : : ; ng systemati
ally, as sequen
esof digits separated by the symbols � or �.b) A weak order
an also be represented as a sequen
e a1 : : : an where aj = k if jis pre
eded by k � signs. For example, the thirteen weak orders on f1; 2; 3g arerespe
tively 000, 001, 011, 012, 010, 021, 101, 102, 100, 201, 110, 120, 210 in thisform. Find a simple way to generate all su
h sequen
es of length n.106. [M40 ℄ Can exer
ise 105(b) be solved with a Gray-like
ode?x 107. [30 ℄ (John H. Conway, 1973.) To play the solitaire game of \topswops," startby shu�ing a pa
k of n
ards labeled f1; : : : ; ng and pla
e them fa
e up in a pile. Thenif the top
ard is k > 1, deal out the top k
ards and put them ba
k on top of the pile,thereby
hanging the permutation from a1 : : : an to ak : : : a1ak+1 : : : an. Continue untilthe top
ard is 1. For example, the 7-step sequen
e31452 ! 41352 ! 53142 ! 24135 ! 42135 ! 31245 ! 21345 ! 12345might o

ur when n = 5. What is the longest sequen
e possible when n = 13?108. [M27 ℄ If the longest n-
ard game of topswops has length f(n), prove that f(n) �Fn+1 � 1.109. [M47 ℄ Find good upper and lower bounds on the topswops fun
tion f(n).x 110. [25 ℄ Find all permutations a0 : : : a9 of f0; : : : ; 9g su
h thatfa0; a2; a3; a7g = f2; 5; 7; 8g;fa1; a4; a5g = f0; 3; 6g;fa1; a3; a7; a8g = f3; 4; 5; 7g;fa0; a3; a4g = f0; 7; 8g:Also suggest an algorithm for solving large problems of this type.

36

7.2.1.2 GENERATING ALL PERMUTATIONS 37x 111. [M25 ℄ Several permutation-oriented analogs of de Bruijn
y
les have been pro-posed. The simplest and ni
est of these is the notion of a universal
y
le of permu-tations, introdu
ed by B. W. Ja
kson in Dis
rete Math. 117 (1993), 141{150, namelya
y
le of n! digits su
h that ea
h permutation of f1; : : : ; ng o

urs exa
tly on
e as ablo
k of n � 1
onse
utive digits (with its redundant �nal element suppressed). Forexample, (121323) is a universal
y
le of permutations for n = 3, and it is essentiallythe only su
h
y
le.Find a universal
y
le of permutations for n = 4, and prove that su
h
y
les existfor all n � 2.x 112. [HM43 ℄ Exa
tly how many universal
y
les exist, for permutations of�9 obje
ts?

37

38 ANSWERS TO EXERCISES 7.2.1.2SECTION 7.2.1.21. [J. P. N. Phillips, Comp. J. 10 (1967), 311.℄ Assuming that n � 3, we
an repla
esteps L2{L4 by:L20. [Easiest
ase?℄ Set y an�1 and z an. If y < z, set an�1 z, an y,and return to L1.L2.10. [Next easiest
ase?℄ Set x an�2. If x � y, go on to step L2.20. Otherwiseset (an�2; an�1; an) (z; x; y) if x < z, (y; z; x) if x � z. Return to L1.L2.20. [Find j.℄ Set j n� 3 and y aj . If y � x, set j j � 1, x y, y aj ,and repeat until y < x. Terminate if j = 0.L30. [Easy in
rease?℄ If y < z, set aj z, aj+1 y, an x, and go to L4.10.L3.10. [In
rease aj .℄ Set l n�1; if y � al, repeatedly de
rease l by 1 until y < al.Then set aj al and al y.L40. [Begin to reverse.℄ Set an aj+1 and aj+1 z.L4.10. [Reverse aj+1 : : : an�1.℄ Set k j +2, l n� 1. Then, if k < l, inter
hangeak $ al, set k k + 1, l l � 1, and repeat until k � l. Return to L1.The program might run still faster if at is stored in memory lo
ation A[n � t℄ for0 � t � n, or if reverse
olex order is used as in the following exer
ise.2. Again we assume that a1 � a2 � � � � � an initially; the permutations generatedfrom f1; 2; 2; 3g will, however, be 1223, 2123, 2213, : : : , 2321, 3221. Let an+1 be anauxiliary element, larger than an.L1. [Visit.℄ Visit the permutation a1a2 : : : an.L2. [Find j.℄ Set j 2. If aj�1 � aj , in
rease j by 1 until aj�1 < aj . Terminateif j > n.L3. [De
rease aj .℄ Set l 1. If al � aj , in
rease l until al < aj . Then swapal $ aj .L4. [Reverse a1 : : : aj�1.℄ Set k 1 and l j � 1. Then, if k < l, swap ak $ al,set k k + 1, l l � 1, and repeat until k � l. Return to L1.3. Let C1 : : : Cn =
a1 : : :
an be the inversion table, as in exer
ise 5.1.1{7. Thenrank(a1 : : : an) is the mixed-radix number [C1;n; :::;:::; Cn�1;2; Cn1 ℄. [See H. A. Rothe, Samm-lung
ombinatoris
h-analytis
her Abhandlungen 2 (1800), 263{264; and see also thepioneering work of N�ar�ayan. a
ited in Se
tion 7.2.1.7.℄ For example, 314592687 hasrank [2;9; 0;8; 1;7; 1;6; 4;5; 0;4; 0;3; 1;2; 01 ℄ = 2 � 8! + 6! + 5! + 4 � 4! + 1! = 81577; this is the fa
torialnumber system featured in Eq. 4.1{(10).4. Use the re
urren
e rank(a1 : : : an) = 1nPtj=1 nj [xj <a1 ℄� nn1;:::;nt�+rank(a2 : : : an).For example, rank(314159265) is39� 92;1;1;1;2;1;1�+ 0 + 27� 71;1;1;2;1;1�+ 0 + 15� 51;2;1;1�+ 34� 41;1;1;1�+ 0 + 12� 21;1� = 30991:5. (a) Step L2 is performed n! times. The probability that exa
tly k
omparisons aremade is qk�qk+1, where qt is the probability that an�t+1 > � � � > an, namely [t�n℄=t!.Therefore the mean is P k(qk � qk+1) = q1 + � � �+ qn = bn! e
=n!� 1 � e� 1 � 1:718,and the varian
e isX k2(qk�qk+1)�mean2 = q1+3q2+� � �+(2n�1)qn�(q1+� � �+qn)2 � e(3�e) � 0:766:[For higher moments, see R. Kemp, A
ta Informati
a 35 (1998), 17{89, Theorem 4.℄

38

7.2.1.2 ANSWERS TO EXERCISES 39In
identally, the average number of inter
hange operations in step L4 is thereforePbk=2
(qk � qk+1) = q2 + q4 + � � � �
osh 1� 1 = (e+ e�1 � 2)=2 � 0:543, a result dueto R. J. Ord-Smith [Comp. J. 13 (1970), 152{155℄.(b) Step L3 is performed only n! � 1 times, but we will assume for
onvenien
ethat it o

urs on
e more (with 0
omparisons). Then the probability that exa
tly k
omparisons are made is Pnj=k+1 1=j! for 1 � k < n and 1=n! for k = 0. Hen
e themean is 12Pn�2j=0 1=j! � e=2 � 1:359; exer
ise 1 redu
es this number by 23 . The varian
eis 13Pn�3j=0 1=j! + 12Pn�2j=0 1=j!�mean2 � 56e� 14e2 � 0:418.6. (a) Let en(z) = Pnk=0 zk=k!; then the number of di�erent pre�xes a1 : : : aj isj! [zj ℄ en1(z) : : : ent(z). This is N = � nn1;:::;nt� times the probability qn�j that at leastn�j
omparisons are made in step L2. Therefore the mean is 1Nw(en1(z) : : : ent(z))�1,where w(Pxkzk=k!) = Pxk. In the binary
ase the mean is M=�ns� � 1, where M =Psl=0Pn�s+lk=l �kl� =Psl=0 �n�s+l+1l+1 � = �n+2s+1�� 1 = �ns�(2 + sn�s+1 + n�ss+1)� 1.(b) If fa1; : : : ; ajg = fn01 �x1; : : : ; n0t �xtg, the pre�x a1 : : : aj
ontributes altogetherP1�k<l�t(nk�n0k)[nl<n0l ℄ to the total number of
omparisons made in step L3. Thusthe mean is 1N P1�k<l�tw(fkl(z)), wherefkl(z) = � Y1�m�tm6=k;m6=l enm(z)
�� nkXr=0(nk � r)zrr!�enl�1(z)

= en1(z) : : : ent(z)(nk � z rk(z))rl(z); where rk(z) = enk�1(z)enk (z) :In the two-valued
ase this formula redu
es to 1Nw((ses(z) � zes�1(z))en�s�1(z)) =sN (�n+1s+1�� 1)� 1N (�n+1s+1�(s� s+1n�s+1)+ 1) = 1N (�s� 1 + �n+1s �) = n+1n�s+1 � s+1N .7. In the notation of the previous answer, the quantity 1Nw(en1(z) : : : ent(z))� 1 isn1 + � � �+ ntn + (n1n2 + n1n3 + � � �+ nt�1nt) + n1(n1�1) + � � �+ nt(nt�1)n(n� 1) + � � � � 1:One
an show using Eq. 1.2.9{(38) that the limit is �1 + expPk�1 rk=k, where rk =limt!1(nk1 + � � � + nkt)=(n1 + � � � + nt)k. In
ases (a) and (b) we have rk = [k=1℄,so the limit is e � 1 � 1:71828. In
ase (
) we have rk = 1=(2k � 1), so the limit is�1 + expPk�1 1=(k(2k � 1)) � 2:46275.8. Assume that j is initially zero, and
hange step L1 toL10. [Visit.℄ Visit the variation a1 : : : aj . If j < n, set j j + 1 and repeat thisstep.This algorithm is due to L. J. Fis
her and K. C. Krause, Lehrbu
h der Combinations-lehre und der Arithmetik (Dresden: 1812), 55{57.In
identally, the total number of variations is w(en1(z) : : : ent(z)) in the notationof answer 6. This
ounting problem was �rst treated by James Bernoulli in ArsConje
tandi (1713), Part 2, Chapter 9.9. R1. [Visit.℄ Visit the variation a1 : : : ar. (At this point ar+1 � � � � � an.)R2. [Easy
ase?℄ If ar < an, inter
hange ar $ aj where j is the smallest subs
riptsu
h that j > r and aj > ar, and return to R1.R3. [Reverse.℄ Set (ar+1; : : : ; an) (an; : : : ; ar+1) as in step L4.

39

40 ANSWERS TO EXERCISES 7.2.1.2R4. [Find j.℄ Set j r � 1. If aj � aj+1, de
rease j by 1 repeatedly untilaj < aj+1. Terminate if j = 0.R5. [In
rease aj .℄ Set l n. If aj � al, de
rease l by 1 repeatedly until aj < al.Then inter
hange aj $ al.R6. [Reverse again.℄ Set (aj+1; : : : ; an) (an; : : : ; aj+1) as in step L4, and returnto R1.The number of outputs is r! [zr℄ en1(z) : : : ent(z); this is, of
ourse, nr when the elementsare distin
t.10. a1a2 : : : an = 213 : : : n,
1
2 : : :
n = 010 : : : 0, o1o2 : : : on = 1(�1)1 : : : 1, if n � 2.11. Step (P1, : : : , P7) is performed (1; n!; n!; n! + xn; n!; (xn + 3)=2; xn) times, wherexn =Pn�1k=1 k!, be
ause P7 is performed (j � 1)! times when 2 � j � n.12. We want the permutation of rank 999999. The answers are (a) 2783915460, byexer
ise 3; (b) 8750426319, be
ause the re
e
ted mixed-radix number
orrespondingto [0;1; 0;2; 1;3; 2;4; 3;5; 0;6; 2;7; 7;8; 0;9; 910 ℄ is [0;1; 0;2; 1;3; 3�2;4; 3;5; 5�0;6; 2;7; 7;8; 8�0;9; 9�910 ℄ by 7.2.1.1{(50); (
) theprodu
t (0 1 : : : 9)9(0 1 : : : 8)0(0 1 : : : 7)7(0 1 : : : 6)2 : : : (0 1 2)1, namely 9703156248.13. The �rst statement is true for all n � 2. But when 2
rosses 1, namely when
2
hanges from 0 to 1, we have
3 = 2,
4 = 3,
5 = � � � =
n = 0, and the nextpermutation when n � 5 is 432156 : : : n. [See Time Travel (1988), page 74.℄14. True at the beginning of steps P4, P5, and P6, be
ause exa
tly j�1�
j+s elementslie to the left of xj , namely j � 1�
j from fx1; : : : ; xj�1g and s from fxj+1; : : : ; xng.(In a sense, this formula is the main point of Algorithm P.)15. If [bn�1;1; :::;:::; b0n ℄
orresponds to the re
e
ted Gray
ode [
1;1; :::;:::;
nn ℄, we get to step P6if and only if bk = k � 1 for j � k � n and Bn�j+1 is even, by 7.2.1.1{(50). Butbn�k = k � 1 for j � k � n implies that Bn�k is odd for j < k � m. Therefores = [
j+1= j ℄ + [
j+2= j + 1℄ = [oj+1< 0℄ + [oj+2< 0℄ in step P5. [See Math. Comp.17 (1963), 282{285.℄16. P10. [Initialize.℄ Set
j j and oj �1 for 1 � j < n; also set z an.P20. [Visit.℄ Visit a1 : : : an. Then go to P3.50 if a1 = z.P30. [Hunt down.℄ For j n � 1, n � 2, : : : , 1 (in this order), set aj+1 aj ,aj z, and visit a1 : : : an. Then set j n� 1, s 1, and go to P40.P3.50. [Hunt up.℄ For j 1, 2, : : : , n� 1 (in this order), set aj aj+1, aj+1 z,and visit a1 : : : an. Then set j n� 1, s 0.P40. [Ready to
hange?℄ Set q
j + oj . If q = 0, go to P60; if q > j, go to P70.P50. [Change.℄ Inter
hange a
j+s $ aq+s. Then set
j q and return to P20.P60. [In
rease s.℄ Terminate if j = 1; otherwise set s s+ 1.P70. [Swit
h dire
tion.℄ Set oj �oj , j j � 1, and go ba
k to P40.17. Initially aj a0j j for 1 � j � n. Step P5 should now set t j �
j + s,u j � q + s, v au, at v, a0v t, au j, a0j u,
j q. (See exer
ise 14.)But with the inverse required and available we
an a
tually simplify the algorithmsigni�
antly, avoiding the o�set variable s and letting the
ontrol table
1 : : :
n
ountonly downwards, as noted by G. Ehrli
h [JACM 20 (1973), 505{506℄:Q1. [Initialize.℄ Set aj a0j j,
j j � 1, and dj �1 for 1 � j � n. Alsoset
0 = �1.

40

7.2.1.2 ANSWERS TO EXERCISES 41Q2. [Visit.℄ Visit the permutation a1 : : : an and its inverse a01 : : : a0n.Q3. [Find k.℄ Set k n. Then if
k = 0, set
k k � 1, ok �ok, k k � 1,and repeat until
k 6= 0. Terminate if k = 0.Q4. [Change.℄ Set
k
k � 1, j a0k, and i = j + ok. Then set t ai, ai k,aj t, a0t j, a0k i, and return to Q2.18. Set an n, and use (n� 1)!=2 iterations of Algorithm P to generate all permuta-tions of f1; : : : ; n� 1g su
h that 1 pre
edes 2. [M. K. Roy, CACM 16 (1973), 312{313;see also exer
ise 13.℄19. For example, we
an use the idea of Algorithm P, with the n-tuples
1 : : :
n
hanging as in Algorithm 7.2.1.1H with respe
t to the radi
es (1; 2; : : : ; n). Thatalgorithm maintains the dire
tions
orre
tly, although it numbers subs
ripts di�erently.The o�set s needed by Algorithm P
an be
omputed as in the answer to exer
ise 15, orthe inverse permutation
an be maintained as in exer
ise 17. [See G. Ehrli
h, CACM16 (1973), 690{691.℄ Other algorithms, like that of Heap,
an also be implementedlooplessly.(Note: In most appli
ations of permutation generation we are interested in mini-mizing the total running time, not the maximum time between su

essive visits; fromthis standpoint looplessness is usually undesirable, ex
ept on a parallel
omputer. Yetthere's something intelle
tually satisfying about the fa
t that a loopless algorithmexists, whether pra
ti
al or not.)20. For example, when n = 3 we
an begin 123, 132, 312, 312, 132, 123, 213, : : : ,213, 213, : : : . If the delta sequen
e for n is (Æ1Æ2 : : : Æ2nn!), the
orresponding sequen
efor n + 1 is (�nÆ1�nÆ2 : : :�nÆ2nn!), where �n is the sequen
e of 2n � 1 operationsn n�1 : : : 1 � 1 : : : n�1 n; here Æk = j means aj $ aj+1 and Æk = � meansa1 �a1.(Signed permutations appear in another guise in exer
ises 5.1.4{43 and 44. Theset of all signed permutations is
alled the o
tahedral group.)21. Clearly M = 1, hen
e O must be 0 and S must be b� 1. Then N = E+ 1, R = b� 2,and D+ E = b+ Y. This leaves exa
tly max(0; b� 7� k)
hoi
es for E when Y = k � 2,hen
e a total ofPb�7k=2(b�7�k) = �b�82 � solutions when b � 8. [Math. Mag. 45 (1972),48{49. In
identally, D. Eppstein has proved that the task of solving alphameti
s witha given radix is NP-
omplete; see SIGACT News 18, 3 (1987), 38{40.℄22. (XY)b + (XX)b = (XYX)b is solvable only when b = 2.23. Almost true, be
ause the number of solutions will be even, unless [j 2F ℄ 6= [k2F ℄.(Consider the ternary alphameti
 X+ (XX)3 + (YY)3 + (XZ)3 = (XYX)3.)24. (a) 9283 + 7 + 473 + 1062 = 10825. (b) 698392 + 3192 = 701584. (
) 63952 +69275 = 133227. (d) 653924 + 653924 = 1307848. (e) 5718 + 3 + 98741 = 104462. (f)127503+502351+3947539+46578 = 4623971. (g) 67432+704+8046+97364 = 173546.(h) 59 + 577404251698 + 69342491650 + 49869442698 + 1504 + 40614 + 82591 + 344 +41 + 741425 = 5216367650 + 691400684974. [All solutions are unique. Referen
es for(b){(g): J. Re
reational Math. 10 (1977), 115; 5 (1972), 296; 10 (1977), 41; 10 (1978),274; 12 (1979), 133{134; 9 (1977), 207.℄(i) In this
ase there are 81010! = 2903040 solutions, be
ause every permutation off0; 1; : : : ; 9g works ex
ept those that assign H or N to 0. (A well-written general additivealphameti
 solver will be
areful to redu
e the amount of output in su
h
ases.)25. We may assume that s1 � � � � � s10. Let i be the least index =2 F , and setai 0; then set the remaining elements aj in order of in
reasing j. A proof like that

41

42 ANSWERS TO EXERCISES 7.2.1.2of Theorem 6.1S shows that this pro
edure maximizes a � s. A similar pro
edure yieldsthe minimum, be
ause min(a � s) = �max(a � (�s)).26. 400739 + 63930� 2379� 1252630 + 53430� 1390 + 738300.27. Readers
an probably improve upon the following examples: BLOOD + SWEAT +TEARS = LATER; EARTH + WATER + WRATH = HELLO + WORLD; AWAIT + ROBOT + ERROR =SOBER+WORDS; CHILD+THEME+PEACE+ETHIC = IDEAL+ALPHA+METIC. (This exer
isewas inspired by WHERE+ SEDGE+ GRASS+ GROWS = MARSH [A. W. Johnson, Jr., J. Re
r.Math. 15 (1982), 51℄, whi
h would be marvelously pure ex
ept that D and O have thesame signature.)28. (a) 11 = 3 + 3 + 2 + 2 + 1, 20 = 11 + 3 + 3 + 3, 20 = 11 + 3 + 3 + 2 + 1,20 = 11+3+3+1+1+1, 20 = 8+8+2+1+1, 20 = 7+7+6, 20 = 7+7+2+2+2,20 = 7+7+2+1+1+1+1, 20 = 7+5+5+2+1, 20 = 7+5+2+2+2+1+1, 20 =7+5+2+2+1+1+1+1, 20 = 7+3+3+2+2+1+1+1, 20 = 7+3+3+1+1+1+1+1+1+1,20 = 5+3+3+3+3+3. [These fourteen solutions were �rst
omputed by Roy Childsin 1999. The next doubly partitionable values of n are 30 (in 20 ways), then 40 (in 94ways), 41 (in 67), 42 (in 57), 50 (in 190 ways, in
luding 50 = 2 + 2 + � � �+ 2), et
.℄(b) 51 = 20 + 15 + 14 + 2, 51 = 15 + 14 + 10 + 9 + 3, 61 = 19 + 16 + 11 + 9 + 6,65 = 17 + 16 + 15 + 9 + 7 + 1, 66 = 20 + 19 + 16 + 6 + 5, 69 = 18 + 17 + 16 + 10 + 8,70 = 30+20+ 10+ 7+3, 70 = 20+ 16+12+ 9+7+6, 70 = 20+15+ 12+11+ 7+5,80 = 50+20+9+1, 90 = 50+12+11+9+5+2+1, 91 = 45+19+11+10+5+1. [Thetwo 51s are due to Steven Kahan; see his book Have Some Sums To Solve (Farmingdale,New York: Baywood, 1978), 36{37, 84, 112. Amazing examples with seventeen distin
tterms in Italian and �fty-eight distin
t terms in Roman numerals have been found byGiulio Cesare, J. Re
r. Math. 30 (1999), 63.℄Notes: The beautiful example THREE = TWO+ONE+ZERO [Ri
hard L. Breis
h, Re
re-ational Math. Magazine 12 (De
ember 1962), 24℄ is unfortunately ruled out by our
on-ventions. The total number of doubly true partitions into distin
t parts is probably �-nite, in English, although nomen
lature for arbitrarily large integers is not standard. Isthere an example bigger than NINETYNINENONILLIONNINETYNINESEXTILLIONSIXTYONE =NINETYNINENONILLIONNINETYNINESEXTILLIONNINETEEN+SIXTEEN+ELEVEN+NINE+SIX(suggested by G. Gonz�alez-Morris)?29. 10 + 7 + 1 = 9 + 6 + 3, 11 + 10 = 8 + 7 + 6, 12 + 7 + 6 + 5 = 11 + 10 + 9, : : : ,19 + 10 + 3 = 14 + 13 + 4 + 1 (31 examples in all).30. (a) 5672 = 321489, 8072 = 651249, or 8542 = 729316. (b) 9582 = 917764.(
) 96 � 72 = 4704. (d) 51304=61904 = 7260=8760. (e) 3285092 = 47613. [Strand 78(1929), 91, 208; J. Re
r. Math 3 (1970), 43; 13 (1981), 212; 27 (1995), 137; 31 (2003),133. The solutions to (b), (
), (d), and (e) are unique. With a right-to-left approa
hbased on Algorithm X, the answers are found in (14, 13, 11, 3423, 42) kilomems,respe
tively. Nob also noti
ed that NORTH=SOUTH = WEST=EAST has the unique solution67104=27504 = 9320=3820.℄31. 5=34 + 7=68 + 9=12(!). One
an verify uniqueness with Algorithm X using theside
ondition A < D < G, in about 265 K�. [Quark Visual S
ien
e Magazine, No. 136(Tokyo: Kodansha, O
tober 1993).℄ Curiously, a very similar puzzle also has a uniquesolution: 1=(3� 6) + 5=(8� 9) + 7=(2� 4) = 1; see S
ot Morris, Omni 17, 4 (January1995), 97.32. There are eleven ways, of whi
h the most surprising is 3 + 69258=714. [See TheWeekly Dispat
h (9 and 23 June 1901); Amusements in Mathemati
s (1917), 158{159.℄

42

7.2.1.2 ANSWERS TO EXERCISES 4333. (a) 1, 2, 3, 4, 15, 18, 118, 146. (b) 6, 9, 16, 20, 27, 126, 127, 129, 136, 145. [TheWeekly Dispat
h (11 and 30 November, 1902); Amusements in Math. (1917), 159.℄In this
ase one suitable strategy is to �nd all variations where ak : : : al�1=al : : : a9is an integer, then to re
ord solutions for all permutations of a1 : : : ak�1. There areexa
tly 164959 integers with a unique solution, the largest being 9876533. There aresolutions for all years in the 21st
entury ex
ept 2091. The most solutions (125) o

urwhen n = 6443; the longest stret
h of representable n's is 5109 < n < 7060. Dudeneywas able to get the
orre
t answers by hand for small n by \
asting out nines."34. (a) x = 105, 7378+155+92467 = 7178+355+92467 = 1016+733+98251 = 100000.(b) x = 47, 3036 + 455 + 12893 = 16384 is unique. The fastest way to resolve thisproblem is probably to start with a list of the 2529 primes that
onsist of �ve distin
tdigits (namely 10243, 10247, : : : , 98731) and to permute the �ve remaining digits.In
identally, the unrestri
ted alphameti
 EVEN + ODD = PRIME has ten solutions;both ODD and PRIME are prime in just one of them. [See M. Arisawa, J. Re
r. Math. 8(1975), 153.℄35. In general, if sk = jSkj for 1 � k < n, there are s1 : : : sk�1 ways to
hoose ea
h ofthe nonidentity elements of Sk. Hen
e the answer is Qn�1k=1 (Qk�1j=1 ssk�1j), whi
h in this
ase is 22 � 63 � 2415 = 436196692474023836123136.(But if the verti
es are renumbered, the sk values may
hange. For example,if verti
es (0; 3; 5) of (12) are inter
hanged with (e; d;
), we have s14 = 1, s13 = 6,s12 = 4, s11 = 1, and 45 � 2415 Sims tables.)36. Sin
e ea
h of f0; 3; 5; 6; 9; a;
; fg lies on three lines, but every other element lieson only two, it is
lear that we may let Sf = f(); �; �2; �3; �; ��; ��2; ��3g, where � =(03f
)(17e4)(2bd4)(56a9) is a 90Æ rotation and � = (05)(14)(27)(36)(8d)(9
)(af)(be)is an inside-out twist. Also Se = f(); �;
; �
g, where � = (14)(28)(3
)(69)(be) is atransposition and
 = (12)(48)(5a)(69)(7b)(de) is another twist; Sd = � � � = S1 = f()g.(There are 47 � 1 alternative answers.)37. The set Sk
an be
hosen in k!k�1 ways (see exer
ise 35), and its nonidentityelements
an be assigned to �(k; 1), : : : , �(k; k) in k! further ways. So the answer isAn =Qn�1k=1 k!k = n!(n2)=Qnk=1 k(k2). For example, A10 � 6:256� 10148. We haven�1Xk=1�k2� ln k = 12 Z n1 x(x� 1) lnx dx+O(n2 logn) = 16n3 lnn+O(n3)by Euler's summation formula; thus lnAn = 13n3 lnn+O(n3).38. The probability that �(k) is needed in step G4 is 1=k! � 1=(k + 1)!, for 1 �k < n; the probability is 1=n! that we don't get to step G4 at all. Sin
e �(k) doesdk=2e transpositions, the average is Pn�1k=1 (1=k! � 1=(k + 1)!)dk=2e = Pn�1k=1 (dk=2e �d(k � 1)=2e)=k!� d(n� 1)=2e=n! =Pk odd 1=k! +O(1=(n� 1)!).39. (a) 0123, 1023, 2013, 0213, 1203, 2103, 3012, 0312, 1302, 3102, 0132, 1032, 2301,3201, 0231, 2031, 3021, 0321, 1230, 2130, 3120, 1320, 2310, 3210; (b) 0123, 1023, 2013,0213, 1203, 2103, 3102, 1302, 0312, 3012, 1032, 0132, 0231, 2031, 3021, 0321, 2301,3201, 3210, 2310, 1320, 3120, 2130, 1230.40. By indu
tion we �nd �(1; 1) = (0 1), �(2; 2) = (0 1 2),�(k; k) = � (0 k)(k�1 k�2 : : : 1); if k � 3 is odd,(0 k�1 k�2 1 : : : k�3 k); if k � 4 is even;

43

44 ANSWERS TO EXERCISES 7.2.1.2also !(k) = (0 k) when k is even, !(k) = (0 k�2 : : : 1 k�1 k) when k � 3 is odd.Thus when k � 3 is odd, �(k; 1) = (k k�1 0) and �(k; j) takes k 7! j�1 for 1 < j < k;when k � 4 is even, �(k; j) = (0 k k�3 : : : 1 k�2 k�1)j for 1 � j � k.Notes: The �rst s
heme that
auses Algorithm G to generate all permutations bysingle transpositions was devised by Mark Wells [Math. Comp. 15 (1961), 192{195℄,but it was
onsiderably more
ompli
ated. W. Lipski, Jr., studied su
h s
hemes ingeneral and found a variety of additional methods [Computing 23 (1979), 357{365℄.41. We may assume that r < n. Algorithm G will generate r-variations for any Simstable if we simply
hange `k 1' to `k n� r' in step G3, provided that we rede�ne!(k) to be �(n� r; n� r) : : : �(k; k) instead of using (16).If n�r is odd, the method of (27) is still valid, although the formulas in answer 40need to be revised when k < n� r+2. The new formulas are �(k; j) = (k j�1 : : : 1 0)and !(k) = (k : : : 1 0) when k = n� r; �(k; j) = (k : : : 1 0)j when k = n� r + 1.If n� r is even, we
an use (27) with even and odd reversed, if r � 3. But whenr � 4 a more
omplex s
heme is needed, be
ause a �xed transposition like (k 0)
anbe used for odd k only if !(k � 1) is a k-
y
le, whi
h means that !(k � 1) must be aneven permutation; but !(k) is odd for k � n� r + 2.The following s
heme works when n � r is even: Let �(k; j)!(k � 1)� = (k k�j)for 1 � j � k = n� r, and use (27) when k > n� r. Then, when k = n� r+1, we have!(k � 1) = (0 1 : : : k�1), hen
e �(k; j) takes k 7! (2j � 1) mod k for 1 � j � k, and�(k; k) = (k k�1 k�3 : : : 0 k�2 : : : 1), !(k) = (k : : : 1 0), �(k+1; j) = (k+1 : : : 0)j .42. If �(k; j) = (k j�1) we have �(k; 1) = (k 0) and �(k; j) = (k j�1)(k j�2) =(k j�1 j�2) for 2 � j � k.43. Of
ourse !(1) = �(1; 1) = �(1; 1) = (0 1). The following
onstru
tion makes!(k) = (k�2 k�1 k) for all k � 2: Let �(k; j) = �(k; j)!(k�1)�, where �(2; 1) = (2 0),�(2; 2) = (2 0 1), �(3; 1) = �(3; 3) = (3 1), �(3; 2) = (3 1 0); this makes �(2; 2) = (0 2),�(3; 3) = (0 3 1). Then for k � 4, letk mod 3 = 0 kmod 3 = 1 kmod 3 = 2�(k; k�2) = (k k�2 0) or (k k�3 0) or (k k�1 0);�(k; k�1) = (k k�2 k�3) or (k k�3) or (k k�1 k�3);�(k; k) = (k k�2) or (k k�3 k�2) or (k k�2);this makes �(k; k) = (k�3 k k�2) as required.44. No, be
ause �(k; j) is a (k + 1)-
y
le, not a transposition. (See (19) and (24).)45. (a) 202280070, sin
e uk = max (f0; 1; : : : ; ak�1gnfa1; : : : ; ak�1g). (A
tually un isnever set by the algorithm, but we
an assume that it is zero.) (b) 425368917.46. True (assuming that un = 0). If either uk > uk+1 or ak > ak+1 we must haveak > uk � ak+1 > uk+1.47. Steps (X1;X2; : : : ;X6) are performed respe
tively (1; A;B;A�1; B�Nn; A) times,where A = N0 + � � �+Nn�1 and B = nN0 + (n� 1)N1 + � � �+ 1Nn�1.48. Steps (X2;X3;X4;X5;X6) are performed respe
tively An + (1; n!; 0; 0; 1) times,where An = Pn�1k=1 nk = n!Pn�1k=1 1=k! � n! (e � 1). Assuming that they
ost respe
-tively (1; 1; 3; 1; 3) mems, for operations involving aj , lj , or uj , the total
ost is about9e� 8 � 16:46 mems per permutation.Algorithm L uses approximately (e; 2+ e=2; 2e+2e�1� 4) mems per permutationin steps (L2;L3;L4), for a total of 3:5e+ 2e�1 � 2 � 8:25 (see exer
ise 5).

44

7.2.1.2 ANSWERS TO EXERCISES 45Algorithm X
ould be tuned up for this
ase by streamlining the
ode when k isnear n. But so
an Algorithm L, as shown in exer
ise 1.49. Order the signatures so that js0j � � � � � js9j; also prepare tables w0 : : : w9,x0 : : : x9, y0 : : : y9, so that the signatures fsk; : : : ; s9g are wxk � � � � � wyk . Forexample, when SEND + MORE = MONEY we have (s0; : : : ; s9) = (�9000; 1000;�900; 91;�90; 10; 1;�1; 0; 0) for the respe
tive letters (M; S; O; E; N; R; D; Y; A; B); also (w0; : : : ; w9) =(�9000;�900;�90;�1; 0; 0; 1; 10; 91; 1000), and x0 : : : x9 = 0112233344, y0 : : : y9 =9988776554. Yet another table f0 : : : f9 has fj = 1 if the digit
orresponding to wj
annot be zero; in this
ase f0 : : : f9 = 1000000001. These tables make it easy to
ompute the largest and smallest values ofskak + � � �+ s9a9over all
hoi
es ak : : : a9 of the remaining digits, using the method of exer
ise 25, sin
ethe links lj tell us those digits in in
reasing order.This method requires a rather expensive
omputation at ea
h node of the sear
htree, but it often su

eeds in keeping that tree small. For example, it solves the �rsteight alphameti
s of exer
ise 24 with
osts of only 7, 13, 7, 9, 5, 343, 44, and 89kilomems; this is a substantial improvement in
ases (a), (b), (e), and (h), although
ase (f)
omes out signi�
antly worse. Another bad
ase is the `CHILD' example ofanswer 27, where left-to-right needs 2947 kilomems
ompared to 588 for the right-to-left approa
h. Left-to-right does, however, fare better on BLOOD + SWEAT + TEARS (73versus 360) and HELLO + WORLD (340 versus 410).50. If � is in a permutation group, so are all its powers �2, �3, : : : , in
luding �m�1 =��, where m is the order of � (the least
ommon multiple of its
y
le lengths). And(32) is equivalent to �� = �1�2 : : : �n�1.51. False. For example, �(k; i)� and �(k; j)� might both take k 7! 0.52. �(k; j) = (k�j k�j+1) is an adja
ent inter
hange, and!(k) = (n�1 : : : 0)(n�2 : : : 0) : : : (k : : : 0) = �(n� 1)�(k � 1)is a k-
ip followed by an n-
ip. The permutation
orresponding to
ontrol table
0 : : :
n�1 in Algorithm H has
j elements to the right of j that are less than j,for 0 � j < n; so it is the same as the permutation
orresponding to
1 : : :
n inAlgorithm P, ex
ept that subs
ripts are shifted by 1.The only essential di�eren
e between Algorithm P and this version of Algorithm His that Algorithm P uses a re
e
ted Gray
ode to run through all possibilities of its
ontrol table, while Algorithm H runs through those mixed-radix numbers in as
ending(lexi
ographi
) order.Indeed, Gray
ode
an be used with any Sims table, by modifying either Algo-rithm G or Algorithm H. Then all transitions are by �(k; j) or by �(k; j)�, and thepermutations !(k) are irrelevant.53. The text's proof that n!�1 transpositions
annot be a
hieved for n = 4 also showsthat we
an redu
e the problem from n to n � 2 at the
ost of a single transposition(n�1 n�2), whi
h was
alled `(3
)' in the notation of that proof.Thus we
an generate all permutations by making the following transformationin step H4: If k = n � 1 or k = n � 2, transpose aj mod n $ a(j�1) mod n, wherej =
n�1�1. If k = n�3 or k = n�4, transpose an�1 $ an�2 and also aj mod (n�2) $a(j�1) mod (n�2), where j =
n�3� 1. And in general if k = n� 2t� 1 or k = n� 2t� 2,

45

46 ANSWERS TO EXERCISES 7.2.1.2transpose an�2i+1 $ an�2i for 1 � i � t and also aj mod (n�2t) $ a(j�1) mod (n�2t),where j =
n�2t�1 � 1. [See CACM 19 (1976), 68{72.℄The
orresponding Sims table permutations
an be written down as follows, al-though they don't appear expli
itly in the algorithm itself:�(k; j)� = � (0 1 : : : j�1 k); if n� k is odd;(0 1 : : : k)j ; if n� k is even.The value of aj mod (n�2t) will be n � 2t � 1 after the inter
hange. For eÆ
ien
y we
an also use the fa
t that k usually equals n � 1. The total number of transpositionsis Pbn=2
t=0 (n� 2t)!� bn=2
 � 1.54. Yes; the transformation
an be any k-
y
le on positions f1; : : : ; kg.55. (a) Sin
e �!(m) = �!(mmod n!) when n > �!(m), we have �!(n! + m) = �!(m)for 0 < m < n � n! = (n + 1)! � n!. Therefore �n!+m = ��!(n!+m) : : : ��!(n!+1)�n! =��!(m) : : : ��!(1)�n! = �m�n! for 0 � m < n � n!, and we have in parti
ular�(n+1)! = �n+1�(n+1)!�1 = �n+1�n!�1�nn! = �n+1��n �n+1n! :Similarly �n!+m = ��n!�m�n!�n! for 0 � m < n � n!.Sin
e �n!
ommutes with �n and �n+1 we �nd �n! = �n�n!�1, and�(n+1)! = �n+1�(n+1)!�1 = �n+1��n!�(n+1)!�1�n�n!�n! = � � �= �n+1��nn! �n!�1(�n!�n!)n= ��n�1n! �n+1��n (�n!�n!)n+1= ��(n+1)!�n+1��n �n+1��n (�n!�n!)n+1:(b) In this
ase �n+1��n = (n n�1 : : : 1) and �n+1��n = (n+1 n 0), and we have�(n+1)!�(n+1)! = (n+1 n : : : 0) by indu
tion. Therefore �jn!+m = ��jn! �m(n : : : 0)jfor 0 � j � n and 0 � m < n!. All permutations of f0; : : : ; ng are a
hieved be
ause��jn! �m �xes n and (n : : : 0)j takes n 7! n� j.56. If we set �k = (k�1 k�2)(k�3 k�4) : : : in the previous exer
ise, we �nd by indu
-tion that �n!�n! is the (n+1)-
y
le (0 n n�1 n�3 : : : (2 or 1) (1 or 2) : : : n�4 n�2).57. Arguing as in answer 5, we obtainPn�1k=2 [k odd℄=k!� (bn=2
�1)=n! = sinh 1�1�O(1=(n� 1)!).58. True. By the formulas of exer
ise 55 we have �n!�1 = (0 n)��n!(n : : : 0), andthis takes 0 7! n � 1 be
ause �n! �xes n. (Consequently Algorithm E will de�ne aHamiltonian
y
le on the graph of exer
ise 66 if and only if �n! = (n�1 : : : 2 1), andthis holds if and only if the length of every
y
le of �(n�1)! is a divisor of n. The latteris true for n = 2, 3, 4, 6, 12, 20, and 40, but for no other n � 250;000.)59. The Cayley graph with generators (�1; : : : ; �k) in the text's de�nition is isomorphi
to the Cayley graph with generators (��1 ; : : : ; ��k) in the alternative de�nition, sin
e� ! �j� in the former if and only if �� ! ����j in the latter.60. There are 88 delta sequen
es, whi
h redu
e to four
lasses: P = (32131231)3 (plain
hanges, represented by 8 di�erent delta sequen
es); Q = (32121232)3 (a doubly Grayvariant of plain
hanges, with 8 representatives); R = (121232321232)2 (a doubly Gray
ode with 24 representatives); S = 2�3�R, � = 12321312121 (48 representatives).Classes P and Q are
y
li
 shifts of their
omplements;
lasses P , Q, and S are shiftsof their reversals;
lass R is a shifted reversal of its
omplement. [See A. L. Leigh Silver,Math. Gazette 48 (1964), 1{16.℄

46

7.2.1.2 ANSWERS TO EXERCISES 4761. There are respe
tively (26; 36; 20; 26; 28; 40; 40; 20; 26; 28; 28; 26) su
h paths endingat (1243; 1324; 1432; 2134; 2341; 2413; 3142; 3214; 3421; 4123; 4231; 4312).62. There are only two paths when n = 3, ending respe
tively at 132 and 213.But when n � 4 there are Gray
odes leading from 12 : : : n to any odd permuta-tion a1a2 : : : an. Exer
ise 61 establishes this when n = 4, and we
an prove it byindu
tion for n > 4 as follows.Let A(j) be the set of all permutations that begin with j, and let A(j; k) bethose that begin with jk. If (�0; �1; : : : ; �n) are any odd permutations su
h that�j 2 A(xj ; xj+1), then (1 2)�j is an even permutation in A(xj+1; xj). Consequently, ifx1x2 : : : xn is a permutation of f1; 2; : : : ; ng, there is at least one Hamiltonian path ofthe form(1 2)�0���� � �����1���(1 2)�1���� � �����2���� � ����(1 2)�n�1���� � �����n;the subpath from (1 2)�j�1 to �j in
ludes all elements of A(xj).This
onstru
tion solves the problem in at least (n�2)!n=2n�1 distin
t ways whena1 6= 1, be
ause we
an take �0 = 21 : : : n and �n = a1a2 : : : an; there are (n�2)! waysto
hoose x2 : : : xn�1, and (n� 2)!=2 ways to
hoose ea
h of �1, : : : , �n�1.Finally, if a1 = 1, take any path 12 : : : n��� � � � ��� a1a2 : : : an that runs throughall of A(1), and
hoose any step �����0 with � 2 A(1; j) and �0 2 A(1; j0) for somej 6= j0. Repla
e that step by����(1 2)�1���� � �����2���� � ����(1 2)�n�1���� � �����n����0;using a
onstru
tion like the Hamiltonian path above but now with �1 = �, �n =(1 2)�0, x1 = 1, x2 = j, xn = j0, and xn+1 = 1. (In this
ase the permutations �1,: : : , �n might all be even.)63. Monte Carlo estimates using the te
hniques of Se
tion 7.2.3 suggest that the totalnumber of equivalen
e
lasses will be roughly 1:2 � 1021; most of those
lasses will
ontain 480 Gray
y
les.64. Exa
tly 2,005,200 delta sequen
es have the doubly Gray property; they belong to4206 equivalen
e
lasses under
y
li
 shift, reversal, and/or
omplementation. Nine
lasses, su
h as the
ode 2�2�R where� = 12343234321232121232321232121234343212123432123432121232321;are shifts of their reversal; 48
lasses are
omposed of repeated 60-
y
les. One of themost interesting of the latter type is �� where� = �2�4�4�4�4; � = 32121232123:65. Su
h a path exists for any givenN � n!: Let theNth permutation be � = a1 : : : an,and let j = a1. Also let �k be the set of all permutations � = b1 : : : bn for whi
h b1 = kand � � �. By indu
tion on N there is a Gray path P1 for �j . We
an then
onstru
tGray paths Pk for �j [�1 [� � � [�k�1 for 2 � k � j, su

essively
ombining Pk�1with a Gray
y
le for �k�1. (See the \absorption"
onstru
tion of answer 62. In fa
t,Pj will be a Gray
y
le when N is a multiple of 6.)66. De�ning the delta sequen
e by the rule �(k+1) mod n! = (1 Æk)�k, we �nd exa
tly 36su
h sequen
es, all of whi
h are
y
li
 shifts of a pattern like (xyzyzyxzyzyz)2 . (Thenext
ase, n = 5, probably has about 1018 solutions that are inequivalent with respe
tto
y
li
 shifting, reversal, and permutation of
oordinates, thus about 6�1021 di�erent

47

48 ANSWERS TO EXERCISES 7.2.1.2delta sequen
es.) In
identally, Igor Pak has shown that the Cayley graph generated bystar transpositions is an (n� 2)-dimensional torus in general.67. If we let � be equivalent to �(12345), we get a redu
ed graph on 24 verti
es that has40768 Hamiltonian
y
les, 240 of whi
h lead to delta sequen
es of the form �5 in whi
h� uses ea
h transposition 6 times (for example, � = 354232534234532454352452). Thetotal number of solutions to this problem is probably about 1016.68. If A isn't
onne
ted, neither is G. If A is
onne
ted, we
an assume that it is a freetree. Moreover, in this
ase we
an prove a generalization of the result in exer
ise 62:For n � 4 there is a Hamiltonian path in G from the identity permutation to any oddpermutation. For we
an assume without loss of generality that A
ontains the edge1���2 where 1 is a leaf of the tree, and a proof like that of exer
ise 62 applies.[This elegant
onstru
tion is due to M. T
huente, Ars Combinatoria 14 (1982),115{122. Extensive generalizations have been dis
ussed by Ruskey and Savage in SIAMJ. Dis
rete Math. 6 (1993), 152{166. See also the original Russian publi
ation inKibernetika 11, 3 (1975), 17{25; English translation, Cyberneti
s 11 (1975), 362{366.℄69. Following the hint, the modi�ed algorithm behaves like this when n = 5:123̂4 12̂43 1̂423 412̂3 4̂132 14̂32 134̂2 1̂324 312̂4 31̂42 3̂412 4312# " # " # " # " # " # "54321 24351 24153 54123 14523 14325 24315 24513 54213 14253 14352 5431212345 15342 35142 32145 32541 52341 51342 31542 31245 35241 25341 2134515342 12435 32415 35412 31452 51432 52431 32451 35421 31425 21435 2543123451 53421 51423 21453!25413 23415 13425 15423!12453 52413 53412 1345221543 51243 53241 23541 23145 25143 15243 13245 13542 53142 52143 1254334512 34215 14235 14532 54132 34152 34251 54231 24531 24135 34125 3452132154!35124 15324!12354 52314 32514 31524 51324 21354!25314 35214!3125445123 42153 42351 45321 41325 41523!42513 42315 45312 41352 41253 4521343215 43512 41532 41235 45231!43251 43152!45132 42135 42531 43521 4312551234 21534!23514 53214 13254 15234 25134 23154 53124 13524!12534 52134# " # " # " # " # " # "Here the
olumns represent sets of permutations that are
y
li
ally rotated and/orre
e
ted in all 2n ways; therefore ea
h
olumn
ontains exa
tly one \rosary permuta-tion" (exer
ise 18). We
an use Algorithm P to run through the rosary permutationssystemati
ally, knowing that the pair xy will o

ur before yx in its
olumn, at whi
htime � 0 instead of �0 will move us to the right or to the left. Step Z2 omits theinter
hange a1 $ a2, thereby
ausing the permutations a1 : : : an�1 to repeat themselvesgoing ba
kwards. (We impli
itly use the fa
t that t[k℄ = t[n! � k℄ in the output ofAlgorithm T.)Now if we repla
e 1 : : : n by 24 : : : 31 and
hange A1 : : : An to A1AnA2An�1 : : : ,we get the unmodi�ed algorithm whose results are shown in Fig. 22(b).This method was inspired by a (non
onstru
tive) theorem of E. S. Rapoport,S
ripta Math. 24 (1959), 51{58. It illustrates a more general fa
t observed by CarlaSavage in 1989, namely that the Cayley graph for any group generated by threeinvolutions �, �, � has a Hamiltonian
y
le when �� = �� [see I. Pak and R. Radoi�
i�
,\Hamiltonian paths in Cayley graphs," to appear℄.70. No; the longest
y
le in that digraph has length 358. But there do exist pairs ofdisjoint 180-
y
les from whi
h a Hamiltonian path of length 720
an be derived. For

48

7.2.1.2 ANSWERS TO EXERCISES 49example,
onsider the
y
les ���� and
�� where� = ��5��5��3��2��5��3��2��5��5��2��3��1��5��5��5��3��1��1��3��2��1��1;� = �3��5��2��2��5��2��3��1��1��5��1��3��5��5��3��2��1��2��3��1��1��3��2��4;
 = ���5��5��3��1��1��3��2��5��2��3��5��1��5��3��2��1��2��3��1��1��3��2��5��5��5��3��5��2��5��2��3��1��1��5��1��3��3��5��5��1��5��2��3��1��2:If we start with 134526 and follow ���� we rea
h 163452; then follow
�� and rea
h126345; then follow �
� and rea
h 152634; then follow ���, ending at 415263.71. Brendan M
Kay and Frank Ruskey have found su
h
y
les by
omputer whenn = 7, 9, and 11, but no ni
e stru
ture was apparent.72. Any Hamiltonian path in
ludes (n�1)! verti
es that take y 7! x, ea
h of whi
h (ifnot the last) is followed by a vertex that takes x 7! x. So one must be last; otherwise(n� 1)! + 1 verti
es would take x 7! x.73. (a) Assume �rst that � is the identity permutation (). Then every
y
le of � that
ontains an element of A lies entirely within A. Hen
e the
y
les of � are obtained byomitting all
y
les of � that
ontain no element of A. All remaining
y
les have oddlength, so � is an even permutation.If � is not the identity, we apply this argument to �0 = ���, �0 = (), and �0 = ���,
on
luding that �0 is an even permutation; thus � and � have the same sign.Similarly, � and � have the same sign, be
ause ��� = (���)� has the same orderas ���.(b) Let X be the verti
es of the Cayley graph in Theorem R, and let � be thepermutation of X that takes a vertex � into ��; this permutation has g=a
y
les oflength a. De�ne the permutation � similarly. Then ��� has g=

y
les of length
.If
 is odd, any Hamiltonian
y
le in the graph de�nes a
y
le � that
ontains all theverti
es and satis�es the hypotheses of (a). Therefore � and � have an odd number of
y
les, be
ause the sign of a permutation on n elements with r
y
les is (�1)n�r (seeexer
ise 5.2.2{2).[This proof, whi
h shows that X
annot be the union of any odd number of
y
les,was presented by Rankin in Pro
. Cambridge Phil. So
. 62 (1966), 15{16.℄74. The representation �j
k is unique if we require 0 � j < g=
 and 0 � k <
. Forif we had �j =
k for some j with 0 < j < g=
, the group would have at most j
elements. It follows that �g=
 =
t for some t.Let � be a Hamiltonian
y
le, as in the previous answer. If x� = x� then x
�must be x
�, be
ause x
� = �. And if x� = x� then x
�
annot be x
�, be
ausethat would imply x

� = x

�. Thus the elements x
k all have equivalent behaviorwith respe
t to their su

essors in �.Noti
e that if j � 0 there is a k � j su
h that x�j = x�k�j�k = x�j
k. Thereforex�g=
 = x
t+k is equivalent to x, and the same behavior will repeat. We return to xfor the �rst time in g steps if and only if t+ k is relatively prime to
.75. Apply the previous exer
ise with g = mn, a = m, b = n,
 = mn=d. The number tsatis�es t � 0 (modulo m), t + d � 0 (modulo n); and it follows that k + t ?
 if andonly if (d� k)m=d ? kn=d.Notes: The modular Gray
ode of exer
ise 7.2.1.1{78 is a Hamiltonian path from(0; 0) to (m�1; (�m) mod n), so it is a Hamiltonian
y
le if and only if m is a multipleof n. It is natural to
onje
ture (falsely) that at least one Hamiltonian
y
le existswhenever d > 1. But P. Erd}os and W. T. Trotter have observed [J. Graph Theory 2

49

50 ANSWERS TO EXERCISES 7.2.1.2(1978), 137{142℄ that if p and 2p+1 are odd prime numbers, no suitable k exists whenm = p(2p+ 1)(3p+ 1) and n = (3p+ 1)Q3pq=1 q[q is prime℄[q 6=p℄[q 6=2p+1℄.See J. A. Gallian, Mathemati
al Intelligen
er 13, 3 (Summer 1991), 40{43, forinteresting fa
ts about other kinds of
y
les in Cm � Cn.76. Wemay assume that the tour begins in the lower left
orner. There are no solutionswhen m and n are both divisible by 3, be
ause 2/3 of the
ells are unrea
hable in that
ase. Otherwise, letting d = g
d(m;n) and arguing as in the previous exer
ise but with(x; y)� = ((x+2) modm; (y+1) mod n) and (x; y)� = ((x+1) modm; (y+2) mod n),we �nd the answerd�1Xk=1�dk�[g
d((2d�k)m; (k+d)n) = d or (mn ? 3 and g
d((2d�k)m; (k+d)n) = 3d)℄:77. 01 * Permutation generator \`a la Heap02 N IS 10 The value of n (3 or more, not large)03 t IS $25504 j IS $0 8j05 k IS $1 8k06 ak IS $207 aj IS $308 LOC Data_Segment09 a GREG � Base address for a0 : : : an�110 A0 IS �11 A1 IS �+812 A2 IS �+1613 LOC �+8*N Spa
e for a0 : : : an�114
 GREG �-8*3 Lo
ation of 8
015 LOC �-8*3+8*N 8
3 : : : 8
n�1, initially zero16 OCTA -1 8
n = �1, a
onvenient sentinel17 u GREG 0 Contents of a0, ex
ept in inner loop18 v GREG 0 Contents of a1, ex
ept in inner loop19 w GREG 0 Contents of a2, ex
ept in inner loop20 LOC #10021 1H STCO 0,
,k B �A
k 0.22 INCL k,8 B �A k k + 1.23 0H LDO j,
,k B j
k.24 CMP t,j,k B25 BZ t,1B B Loop if
k = k.26 BN j,Done A Terminate if
k < 0 (k = n).27 LDO ak,a,k A� 1 Fet
h ak.28 ADD t,j,8 A� 129 STO t,
,k A� 1
k j + 1.30 AND t,k,#8 A� 131 CSZ j,t,0 A� 1 Set j 0 if k is even.32 LDO aj,a,j A� 1 Fet
h aj .33 STO ak,a,j A� 1 Repla
e it by ak.34 CSZ u,j,ak A� 1 Set u ak if j = 0.35 SUB j,j,8 A� 1 j j � 1.36 CSZ v,j,ak A� 1 Set v ak if j = 0.

50

7.2.1.2 ANSWERS TO EXERCISES 5137 SUB j,j,8 A� 1 j j � 1.38 CSZ w,j,ak A� 1 Set w ak if j = 0.39 STO aj,a,k A� 1 Repla
e ak by what was aj .40 Inner PUSHJ 0,Visit A... (See (42))55 PUSHJ 0,Visit A56 SET t,u A Swap u$ w.57 SET u,w A58 SET w,t A59 SET k,8*3 A k 3.60 JMP 0B A61 Main LDO u,A0 162 LDO v,A1 163 LDO w,A2 164 JMP Inner 178. Lines 31{38 be
ome 2r � 1 instru
tions, lines 61{63 be
ome r, and lines 56{58be
ome 3 + (r� 2)[r even℄ instru
tions (see !(r� 1) in answer 40). The total runningtime is therefore ((2r!+2)A+2B+r�5)�+((2r!+2r+7+(r�2)[r even℄)A+7B�r�4)�,where A = n!=r! and B = n!(1=r! + � � �+ 1=n!).79. SLU u,[#f℄,t; SLU t,a,4; XOR t,t,a; AND t,t,u; SRU u,t,4; OR t,t,u;XOR a,a,t; here, as in the answer to exer
ise 1.3.10{34, the notation `[#f℄' denotes aregister that
ontains the
onstant value #f.80. SLU u,a,t; MXOR u,[#8844221188442211℄,u; AND u,u,[#ff000000℄; SRU u,u,t;XOR a,a,u. This
heats, sin
e it transforms #12345678 to #13245678 when t = 4, but(45) still works.Even faster and tri
kier would be a routine analogous to (42): ConsiderPUSHJ 0,Visit; MXOR a,a,
1; PUSHJ 0,Visit; : : : MXOR a,a,
5; PUSHJ 0,Visitwhere
1, : : : ,
5 are
onstants that would
ause #12345678 to be
ome su

essively#12783456, #12567834, #12563478, #12785634, #12347856. Other instru
tions, exe-
uted only 1/6 or 1/24 as often,
an take
are of shu�ing nybbles within and betweenbytes. Very
lever, but it doesn't beat (46) in view of the PUSHJ/POP overhead.81. t IS $255 ;k IS $0 ;kk IS $1 ;
 IS $2 ;d IS $3SET k,1 k 1.3H SRU d,a,60 d leftmost nybble.SLU a,a,4 a 16amod 1616.CMP
,d,kSLU kk,k,2SLU d,d,kkOR t,t,d t t+ 16kd.PBNZ
,1B Return to main loop if d 6= k.INCL k,1 k k + 1.PBNZ a,3B Return to se
ond loop if k < n.82. �+ (5n!+11A� (n�1)!+6)� = ((5+10=n)�+O(n�2))n!, plus the visiting time,where A =Pn�1k=1 k! is the number of times the loop at 3H is used.83. With suitable initialization and a 13-o
tabyte table, only about a dozen MMIXinstru
tions are needed:

51

52 ANSWERS TO EXERCISES 7.2.1.2magi
 GREG #88442211884422110H h Visit register a iPBN
,SigmaTau MXOR t,magi
,a; ANDNL t,#ffff; JMP 1FSigma SRU t,a,20; SLU a,a,4; ANDNML a,#f001H XOR a,a,t; SLU
,
,12H PBNZ
,0B; INCL p,83H LDOU
,p,0; PBNZ
,0B84. Assuming that the pro
essors all have essentially the same speed, we
an let thekth pro
essor generate all permutations of rank r for (k � 1)n!=p � r < kn!=p, usingany method based on
ontrol tables
1 : : :
n. The starting and ending
ontrol tablesare easily
omputed by
onverting their ranks to mixed-radix notation (exer
ise 12).85. We
an use a te
hnique like that of Algorithm 3.4.2P: To
ompute k = r(�), �rstset a0aj j for 1 � j � n (the inverse permutation). Then set k 0, and for j = n,n � 1, : : : , 2 (in this order) set t a0j , k kj + t � 1, at aj , a0aj t. To
ompute r[�1℄(k), start with a1 1. Then for j = 2, : : : , n � 1, n (in this order) sett (kmod j)+1, aj at, at j, k bk=j
. [See S. Plesz
zy�nski, Inf. Pro
. Letters3 (1975), 180{183; W. Myrvold and F. Ruskey, Inf. Pro
. Letters 79 (2001), 281{284.℄Another method is preferable if we want to rank and unrank only the nm variationsa1 : : : am of f1; : : : ; ng: To
ompute k = r(a1 : : : am), start with b1 : : : bn b01 : : : b0n 1 : : : n; then for j = 1, : : : , m (in this order) set t b0aj , bt bn+1�j , and b0bt t;�nally set k 0 and for j = m, : : : , 1 (in this order) set k k� (n+1� j)+ b0aj � 1.To
ompute r[�1℄(k), start with b1 : : : bn 1 : : : n; then for j = 1, : : : , m (in this order)set t (k mod (n + 1 � j)) + 1, aj bt, bt bn+1�j , k bk=(n + 1 � j)
. (Seeexer
ise 3.4.2{15 for
ases with large n and small m.)86. If x � y and y � z, the algorithm will never move y to the left of x, nor z to theleft of y, so it will never test x versus z.87. They appear in lexi
ographi
 order; Algorithm P used a re
e
ted Gray order.88. Generate inverse permutations with a00 < a01 < a02, a03 < a04 < a05, a06 < a07, a08 < a09,a00 < a03, a06 < a08.89. (a) Let dk = maxfj j 0 � j � k and j is nontrivialg, where 0 is
onsiderednontrivial. This table is easily pre
omputed, be
ause j is trivial if and only if it mustfollow f1; : : : ; j�1g. Set k dn in step V2 and k dk�1 in step V5. (Assume dn > 0.)(b) Now M =Pnj=1 tj [j is nontrivial℄.(
) There are at least two topologi
al sorts aj : : : ak of the set fj; : : : ; kg, and eitherof them
an be pla
ed after any topologi
al sort a1 : : : aj�1 of f1; : : : ; j � 1g.(d) Algorithm 2.2.3T repeatedly outputs minimal elements (elements with noprede
essors), removing them from the relation graph. We use it in reverse, repeatedlyremoving and giving the highest labels to maximal elements (elements with no su

es-sors). If only one maximal element exists, it is trivial. If k and l are both maximal,they both are output before any element x with x � k or x � l, be
ause steps T5and T7 keep maximal elements in a queue (not a sta
k). Thus if k is nontrivial andoutput �rst, element l might be
ome trivial, but the next nontrivial element j will notbe output before l; and k is unrelated to l.(e) Let the nontrivial t's be s1 < s2 < � � � < sr = N . Then we have sj � 2sj�2,by (
). ConsequentlyM = s2+� � �+sr � sr(1+ 12+ 14+� � �)+sr�1(1+ 12+ 14+� � �) < 4sr.

52

7.2.1.2 ANSWERS TO EXERCISES 53(A sharper estimate is in fa
t true, as observed by M. Pe
zarski: Let s0 = 1, letthe nontrivial indi
es be 0 = k1 < k2 < � � � < kr, and let k0j = maxfk j 1 � k < kj ,k 6� kjg for j � 1. Then k0j � kj�1. There are sj topologi
al sorts of f1; : : : ; kj+1g thatend with kj+1; and there are at least sj�1 that end with k0j+1, sin
e ea
h of the sj�1topologi
al sorts of f1; : : : ; kj � 1g
an be extended. Hen
esj+1 � sj + sj�1 for 1 � j < r.Now let y0 = 0, y1 = F2 + � � �+ Fr, and yj = yj�2 + yj�1 � Fr+1 for 1 < j < r. ThenFr+1(s1 + � � �+ sr) + r�1Xj+1 yj (sr+1�j � sr�j � sr�1�j) = (F2 + � � �+ Fr+1)sr;and ea
h yj = Fr+1 � 2Fj + (�1)jFr+1�j is nonnegative. Hen
e s1 + � � � + sr �((F2 + � � � + Fr+1)=Fr+1)sr � 2:6sr. The following exer
ise shows that this bound isbest possible.)90. The number N of su
h permutations is Fn+1 by exer
ise 5.2.1{25. ThereforeM = Fn+1+ � � �+F2 = Fn+3�2 � �2N . Noti
e in
identally that all su
h permutationssatisfy a1 : : : an = a01 : : : a0n. They
an be arranged in a Gray path (exer
ise 7.2.1.1{89).91. Sin
e tj = (j � 1)(j � 3) : : : (2 or 1), we �nd M = (1 + 2=p�n+O(1=n))N .Note: The inversion tables
1 : : :
2n for permutations satisfying (49) are
hara
-terized by the
onditions
1 = 0, 0 �
2k �
2k�1, 0 �
2k+1 �
2k�1 + 1.92. The total number of pairs (R;S), where R is a partial ordering and S is a linearordering that in
ludes R, is equal to Pn times the expe
ted number of topologi
al sorts;it is also Qn times n!. So the answer is n!Qn=Pn.We will dis
uss the
omputation of Pn and Qn in Se
tion 7.2.3. For 1 � n � 12the expe
tation turns out to be approximately(1; 1:33; 2:21; 4:38; 10:1; 26:7; 79:3; 262; 950; 3760; 16200; 74800):Asymptoti
 values as n ! 1 have been dedu
ed by Brightwell, Pr�omel, and Steger[J. Combinatorial Theory A73 (1996), 193{206℄, but the limiting behavior is quitedi�erent from what happens when n is in a pra
ti
al range. The values of Qn were �rstdetermined for n � 5 by S. P. Avann [�quationes Math. 8 (1972), 95{102℄.93. The basi
 idea is to introdu
e dummy elements n + 1 and n + 2 with j � n + 1and j � n + 2 for 1 � j � n, and to �nd all topologi
al sorts of su
h an extendedrelation via adja
ent inter
hanges; then take every se
ond permutation, suppressingthe dummy elements. An algorithm similar to Algorithm V
an be used, but with are
ursion that redu
es n to n � 2 by inserting n � 1 and n among a1 : : : an�2 in allpossible ways, assuming that n� 1 6� n, o

asionally swapping n+ 1 with n+ 2. [SeeG. Pruesse and F. Ruskey, SICOMP 23 (1994), 373{386. A loopless implementationhas been des
ribed by Can�eld and Williamson, Order 12 (1995), 57{75.℄94. The
ase n = 3 illustrates the general idea of a pattern that begins with 1 : : : (2n)and ends with 1(2n)2(2n�1) : : : n(n+1): 123456, 123546, 123645, 132645, 132546,132456, 142356, 142536, 142635, 152634, 152436, 152346, 162345, 162435, 162534.Mat
hings
an also be regarded as involutions of f1; : : : ; 2ng that have n
y
les.With that representation this pattern involves two transpositions per step.Noti
e that the C inversion tables of the permutations just listed are respe
tively000000, 000100, 000200, 010200, 010100, 010000, 020000, 020100, 020200, 030200,030100, 030000, 040000, 040100, 040200. In general, C1 = C3 = � � � = C2n�1 = 0

53

54 ANSWERS TO EXERCISES 7.2.1.2and the n-tuples (C2; C4; : : : ; C2n) run through a re
e
ted Gray
ode on the radi
es(2n � 1; 2n � 3; : : : ; 1). Thus the generation pro
ess
an easily be made loopless ifdesired. [See Timothy Walsh, J. Combinatorial Math. and Combinatorial Computing36 (2001), 95{118, Se
tion 1.℄Note: Algorithms to generate all mat
hings go ba
k to J. F. Pfa� [AbhandlungenAkad. Wissens
haften (Berlin: 1814{1815), 124{125℄, who des
ribed two su
h pro
e-dures: His �rst method was lexi
ographi
, whi
h also
orresponds to lexi
ographi
order of the C inversion tables; his se
ond method
orresponds to
olex order of thosetables. Even and odd permutations alternate in both
ases.95. Generate inverse permutations with a01 < a0n > a02 < a0n�1 > � � � , using Algo-rithm V. (See exer
ise 5.1.4{23 for the number of solutions.)96. For example, we
an start with a1 : : : an�1an = 2 : : : n1 and b1b2 : : : bnbn+1 =12 : : : n1, and use Algorithm P to generate the (n � 1)! permutations b2 : : : bn off2; : : : ; ng. Just after that algorithm swaps bi $ bi+1, we set abi�1 bi, abi bi+1,abi+1 bi+2, and visit a1 : : : an.97. Use Algorithm X, with tk(a1; : : : ; ak) = `ak 6= k'.98. Using the notation of exer
ise 47, we have Nk = P�kj�(�1)j(n � j)k�j by themethod of in
lusion and ex
lusion (exer
ise 1.3.3{26). If k = O(logn) then Nn�k =(n!e�1=k!)(1 + O(logn)2=n); hen
e A=n! � (e � 1)=e and B=n! � 1. The number ofmemory referen
es, under the assumptions of answer 48, is therefore � A+ B + 3A+B �Nn + 3A � n! (9� 8e) � 6:06n!, about 16.5 per derangement. [See S. G. Akl, BIT20 (1980), 2{7, for a similar method.℄99. Suppose Ln generates Dn[Dn�1, beginning with (1 2 : : : n), then (2 1 : : : n), andending with (1 : : : n�1); for example, L3 = (1 2 3), (2 1 3), (1 2). Then we
an generateDn+1 as Knn, : : : , Kn2, Kn1, where Knk = (1 2 : : : n)�k(n n+1)Ln(1 2 : : : n)k; forexample, D4 is(1 2 3 4); (2 1 3 4); (1 2)(3 4); (3 1 2 4); (1 3 2 4); (3 1)(2 4); (2 3 1 4); (3 2 1 4); (2 3)(1 4):Noti
e that Knk begins with the
y
le (k+1 : : : n 1 : : : k n+1) and ends with(k+1 : : : n 1 : : : k�1)(k n+1); so premultipli
ation by (k�1 k) takes us from Knkto Kn(k�1). Also, premultipli
ation by (1 n) will return from the last element of Dn+1to the �rst. Premultipli
ation by (1 2 n+1) takes us from the last element of Dn+1 to(2 1 3 : : : n), from whi
h we
an return to (1 2 : : : n) by following the
y
le for Dnba
kwards, thereby
ompleting the list Ln+1 as desired.100. Use Algorithm X, with tk(a1; : : : ; ak) = `p > 0 or l[q℄ 6= k + 1'.Notes: The number of inde
omposable permutations is [zn℄ (1� 1=P1k=0 k!zk);see L. Comtet, Comptes Rendus A
ad. S
i. A275 (Paris, 1972), 569{572. It appearslikely that the inde
omposable permutations
an be generated by adja
ent transposi-tions; for example, when n = 4 they are 3142, 3412, 3421, 3241, 2341, 2431, 4231, 4321,4312, 4132, 4123, 4213, 2413.101. Here is a lexi
ographi
 involution generator analogous to Algorithm X.Y1. [Initialize.℄ Set ak k and lk�1 k for 1 � k � n. Then set ln 0, k 1.Y2. [Enter level k.℄ If k > n, visit a1 : : : an and go to Y3. Otherwise set p l0,uk p, l0 lp, k k + 1, and repeat this step. (We have de
ided to letap = p.)

54

7.2.1.2 ANSWERS TO EXERCISES 55Y3. [De
rease k.℄ Set k k� 1, and terminate if k = 0. Otherwise set q uk andp aq. If p = q, set l0 q, q 0, r lp, and k k + 1 (preparing to makeap > p). Otherwise set luk�1 q, r lq (preparing to make ap > q).Y4. [In
rease ap.℄ If r = 0 go to Y5. Otherwise set lq lr, uk�1 q, uk r,ap r, aq q, ar p, k k + 1, and go to Y2.Y5. [Restore ap.℄ Set l0 p, ap p, aq q, k k � 1, and return to Y3.Let tn+1 = tn + ntn�1, an+1 = 1 + an + nan�1, t0 = t1 = 1, a0 = 0, a1 = 1. (SeeEq. 5.1.4{(40).) Step Y2 is performed tn times with k > n and an times with k � n.Step Y3 is performed an times with p = q and an + tn times altogether. Step Y4 isperformed tn�1 times; step Y5, an times. The total number of mems for all tn outputsis therefore approximately 11an + 12tn, where an < 1:25331414tn. (Optimizations are
learly possible if speed is essential.)102. We
onstru
t a list Ln that begins with () and ends with (n�1 n), starting withL3 = (), (1 2), (1 3), (2 3). If n is odd, Ln+1 is Ln, KRn1, Kn2, : : : , KRnn, whereKnk = (k : : : n)�Ln�1(k : : : n)(k n+1). For example,L4 = (); (1 2); (1 3); (2 3); (2 3)(1 4); (1 4); (2 4); (1 3)(2 4); (1 2)(3 4); (3 4):If n is even, Ln+1 is Ln, Kn(n�1), KRn(n�2), : : : , Kn1, (1 n�2)LRn�1(1 n�2)(n n+1).For further developments, see the arti
le by Walsh
ited in answer 94.103. The following elegant solution by Carla Savage needs only n � 2 di�erent op-erations �j , for 1 < j < n, where �j repla
es aj�1ajaj+1 by aj+1aj�1aj when j iseven, ajaj+1aj�1 when j is odd. We may assume that n � 4; let A4 = (�3�2�2�3)3.In general An will begin and end with �n�1, and it will
ontain 2n � 2 o

urren
esof �n�1 altogether. To get An+1, repla
e the kth �n�1 of An by �nA0n�n, wherek = 1, 2, 4, : : : , 2n � 2 if n is even and k = 1, 3, : : : , 2n � 3, 2n � 2 if n isodd, and where A0n is An with its �rst or last element deleted. Then, if we beginwith a1 : : : an = 1 : : : n, the operations �n�1 of An will
ause position an to runthrough the su

essive values n ! p1 ! n ! p2 ! � � � ! pn�1 ! n, wherep1 : : : pn�1 = (n�1 � [n even℄) : : : 4213 : : : (n�1 � [n odd℄); the �nal permutation willagain be 1 : : : n.104. (a) A well-balan
ed permutation has Pnk=1 kak = n(n+ 1)2=4, an integer.(b) Repla
e k by ak when summing over k.(
) A fairly fast way to
ount, when n is not too large,
an be based on thestreamlined plain-
hange algorithm of exer
ise 16, be
ause the quantityP kak
hangesin a simple way with ea
h adja
ent inter
hange, and be
ause n � 1 of every n stepsare \hunts" that
an be done rapidly. We
an save half the work by
onsidering onlypermutations in whi
h 1 pre
edes 2. The values for 1 � n � 15 are 0, 0, 0, 2, 6, 0, 184,936, 6688, 0, 420480, 4298664, 44405142, 0, 6732621476.105. (a) For ea
h permutation a1 : : : an, insert � between aj and aj+1 if aj > aj+1;insert either � or � between them if aj < aj+1. (A permutation with k \as
ents"therefore yields 2k weak orders. Weak orders are sometimes
alled \preferential arrange-ments; exer
ise 5.3.1{4 shows that there are approximately n!=(2(ln 2)n+1) of them. AGray
ode for weak orders, in whi
h ea
h step
hanges � $ � and/or aj$ aj+1,
anbe obtained by
ombining Algorithm P with Gray binary
ode at the as
ents.(b) Start with a1 : : : anan+1 = 0 : : : 00 and a0 = �1. Perform Algorithm Luntil it stops with j = 0. Find k su
h that a1 > � � � > ak = ak+1, and terminate ifk = n. Otherwise set al ak+1 + 1 for 1 � l � k and go to step L4. [See M. Mor

55

56 ANSWERS TO EXERCISES 7.2.1.2and A. S. Fraenkel, Dis
rete Math. 48 (1984), 101{112. Weak ordering sequen
es are
hara
terized by the property that, if k appears and k > 0, then k � 1 also appears.℄106. All weak ordering sequen
es
an be obtained by a sequen
e of elementary oper-ations ai $ aj or ai aj . (Perhaps one
ould a
tually restri
t the transformationsfurther, allowing only aj $ aj+1 or aj aj+1 for 1 � j < n.)107. Every step in
reases the quantity Pnk=1 2k[ak = k ℄, as noted by H. S. Wilf, sothe game must terminate. At least three approa
hes to the solution are plausible: onebad, one good, and one better.The bad one is to play the game on all 13! shu�es and to re
ord the longest.This method does produ
e the
orre
t answer; but 13! is 6,227,020,800, and the averagegame lasts � 8:728 steps.The good one [A. Pepperdine, Math. Gazette 73 (1989), 131{133℄ is to playba
kwards, starting with the �nal position 1� : : : � where � denotes a
ard that is fa
edown; we will turn a
ard up only when its value be
omes relevant. To move ba
kwardfrom a given position a1 : : : an,
onsider all k > 1 su
h that either ak = k or ak = � andk has not yet turned up. Thus the next-to-last positions are 21� : : : �, 3�1� : : : �, : : : ,n� : : : �1. Some positions (like 6��213 for n = 6) have no prede
essors, even though wehaven't turned all the
ards up. It is easy to explore the tree of potential ba
kwardsgames systemati
ally, and one
an in fa
t show that the number of nodes with t �'s isexa
tly (n� 1)!=t!. Hen
e the total number of nodes
onsidered is exa
tly b(n� 1)! e
.When n = 13 this is 1,302,061,345.The better one is to play forwards, starting with initial position � : : : � and turningover the top
ard when it is fa
e down, running through all (n � 1)! permutations off2; : : : ; ng as
ards are turned. If the bottom n � m
ards are known to be equalto (m+1)(m+2) : : : n, in that order, at most f(m) further moves are possible; thus weneed not pursue a line of play any further if it
annot last long enough to be interesting.A permutation generator like Algorithm X allows us to share the
omputation for allpermutations with the same pre�x and to reje
t unimportant pre�xes. The
ard in posi-tion j need not take the value j when it is turned. When n = 13 this method needs to
onsider only respe
tively (1; 11; 940; 6960; 44745; 245083; 1118216; 4112676; 11798207;26541611; 44380227; 37417359) bran
hes at levels (1; 2; : : : ; 12) and to make a total ofonly 482,663,902 forward moves. Although it repeats some lines of play, the early
uto�sof unpro�table bran
hes make it run more than 11 times faster than the ba
kwardmethod when n = 13.The unique way to attain length 80 is to start with 2 9 4 5 11 12 10 1 8 13 3 6 7.108. This result holds for any game in whi
ha1 : : : an ! akap(k;2) : : : ap(k;k�1)a1ak+1 : : : anwhen a1 = k, where p(k; 2) : : : p(k; k� 1) is an arbitrary permutation of f2; : : : ; k� 1g.Suppose a1 takes on exa
tly m distin
t values d(1) < � � � < d(m) during a play ofthe game; we will prove that at most Fm+1 permutations o

ur, in
luding the initialshu�e. This assertion is obvious when m = 1.Let d(j) be the initial value of ad(m), where j < m, and suppose ad(m)
hanges onstep r. If d(j) = 1, the number of permutations is r + 1 � Fm + 1 � Fm+1. Otherwiser � Fm�1, and at most Fm further permutations follow step r. [SIAM Review 19(1977), 239{241.℄The values of f(n) for 1 � n � 16 are (0, 1, 2, 4, 7, 10, 16, 22, 30, 38, 51, 65, 80,101, 113, 139), and they are attainable in respe
tively (1, 1, 2, 2, 1, 5, 2, 1, 1, 1, 1, 1,

56

7.2.1.2 ANSWERS TO EXERCISES 571, 4, 6, 1) ways. The unique longest-winded permutation for n = 16 is9 12 6 7 2 14 8 1 11 13 5 4 15 16 10 3:109. The forward method of answer 107 suggests that f(n) probably grows at leastas fast as n logn (by
omparison with
oupon
olle
ting).110. For 0 � j � 9
onstru
t the bit ve
tors Aj = [aj 2S1 ℄ : : : [aj 2Sm ℄ and Bj =[j 2S1 ℄ : : : [j 2Sm ℄. Then the number of j su
h that Aj = v must equal the numberof k su
h that Bk = v, for all bit ve
tors v. And if so, the values faj j Aj = vg shouldbe assigned to permutations of fk j Bk = vg in all possible ways.For example, the bit ve
tors in the given problem are(A0; : : : ; A9) = (9; 6; 8; b; 5; 4; 0; a; 2; 0); (B0; : : : ; B9) = (5; 0; 8; 6; 2; a; 4; b; 9; 0);in hexade
imal notation; hen
e a0 : : : a9 = 8327061549 or 8327069541.In a larger problem we would keep the bit ve
tors in a hash table. It would bebetter to give the answer in terms of equivalen
e
lasses, not permutations; indeed, thisproblem has
omparatively little to do with permutations.111. In the dire
ted graph with n!=2 verti
es a1 : : : an�2 and n! ar
s a1 : : : an�2 !a2 : : : an�1 (one for ea
h permutation a1 : : : an), ea
h vertex has in-degree 2 and out-degree 2. Furthermore, from paths like a1 : : : an�2 ! a2 : : : an�1 ! a3 : : : an !a4 : : : ana2 ! a5 : : : ana2a1 ! � � � ! a2a1a3 : : : an�2, we
an see that any vertex isrea
hable from any other. Therefore an Eulerian trail exists by Theorem 2.3.4.2D, andsu
h a trail
learly is equivalent to a universal
y
le of permutations. The lexi
ograph-i
ally smallest example when n = 4 is (123124132134214324314234).112. By exer
ise 2.3.4.2{22 it suÆ
es to
ount the oriented trees rooted at 12 : : : (n�2),in the digraph of the pre
eding answer; and those trees
an be
ounted by exer
ise2.3.4.2{19. For n � 6 the numbers Un turn out to be tantalizingly simple: U2 = 1,U3 = 3, U4 = 27 � 3, U5 = 233 � 38 � 53, U6 = 2190 � 349 � 533. (Here we
onsider (121323)to be the same
y
le as (213231), but di�erent from (131232).)Mark Cooke has dis
overed the following instru
tive way to
ompute these valueseÆ
iently: Noti
e �rst that a universal
y
le of permutations is also equivalent to aHamiltonian
y
le on the Cayley graph with generators � = (1 2 : : : n) and � =(1 2 : : : n�1). For example, the
y
le in the previous answer for n = 4
orresponds tothe
y
le �3�2���2�2�3��2�2���2�.Now
onsider the n! � n! matrix M = 2I � R � S, where R��0 = [�0=��℄ andS��0 = [�0= �� ℄. There is a matrix H su
h that H�RH and H�SH ea
h have blo
kdiagonal form
onsisting of k�
opies of k��k� matri
es R� and S�, for ea
h partition �of n, where k� is n! divided by the produ
t of the hook lengths of shape � (Theorem5.1.4H), and where R� and S� are matrix representations of � and � based on Youngtableaux. [A proof
an be found in Bru
e Sagan, The Symmetri
 Group (Pa
i�
 Grove,Calif.: Wadsworth & Brooks/Cole, 1991).℄ For example, when n = 3 we have
R =

0BBBBB�
0 0 0 1 0 00 0 0 0 0 10 0 0 0 1 01 0 0 0 0 00 0 1 0 0 00 1 0 0 0 0

1CCCCCA ; S =
0BBBBB�
0 1 0 0 0 00 0 1 0 0 01 0 0 0 0 00 0 0 0 1 00 0 0 0 0 10 0 0 1 0 0

1CCCCCA ; H =
0BBBBB�
1 1 1 �1 1 01 1 �1 0 0 �11 1 0 1 �1 11 �1 �1 1 0 11 �1 1 0 1 �11 �1 0 �1 �1 0

1CCCCCA ;

57

58 ANSWERS TO EXERCISES 7.2.1.2
H�RH =

0BBBBB�
1 0 0 0 0 00 �1 0 0 0 00 0 0 1 0 00 0 1 0 0 00 0 0 0 0 10 0 0 0 1 0

1CCCCCA ; H�SH =
0BBBBB�
1 0 0 0 0 00 1 0 0 0 00 0 0 �1 0 00 0 1 �1 0 00 0 0 0 0 �10 0 0 0 1 �1

1CCCCCA
when rows and
olumns are indexed by the respe
tive permutations 1, �, �2, �, ��,��2; here k3 = k111 = 1 and k21 = 2. Therefore the eigenvalues of M are the union,over �, of k�-fold repeated eigenvalues of the k� � k� matri
es 2I � R� � S�. In theexample, the eigenvalues of (0), (2), and (2�2 03) twi
e are f0g, f2g, and f2; 3g twi
e.The eigenvalues of M are dire
tly related to those of the matrix A in exer
ise2.3.4.2{19. Indeed, ea
h eigenve
tor of A yields an eigenve
tor of M , if we equate the
omponents for permutations � and ����, be
ause rows � and ���� of R + S areequal. For example,A = 0� 2 �1 �1�1 2 �1�1 �1 2 1A has eigenve
tors 0� 1111A ;0� 1�10 1A ;0� 10�11A for eigenvalues 0, 3, 3,yielding the eigenve
tors (1; 1; 1; 1; 1; 1)T , (1;�1; 0; 0;�1; 1)T , (1; 0;�1;�1; 0; 1)T of Mfor the same eigenvalues. AndM has n!=2 additional eigenve
tors, with all
omponentszero ex
ept those indexed by � and ���� for some �, be
ause only rows ��� and ���of R+S have nonzero entries in
olumns � and ����; su
h ve
tors yield n!=2 additionaleigenvalues, all equal to 2.Therefore Un, whi
h is 2=n! times the produ
t of the nonzero eigenvalues of A,is 21�n!=2=n! times the produ
t of the nonzero eigenvalues of M .Unfortunately the small-prime-fa
tor phenomenon does not
ontinue; U7 equals212173123511975112843357320792110935, and U9 is divisible by 59229013196333168.At least one of these
y
les must almost surely be easy to des
ribe and to
ompute, as we did for de Bruijn
y
les in Se
tion 7.2.1.1. But no simple
onstru
tionhas yet been found.

58

INDEX AND GLOSSARYWhen an index entry refers to a page
ontaining a relevant exer
ise, see also the answer tothat exer
ise for further information. An answer page is not indexed here unless it refers to atopi
 not in
luded in the statement of the exer
ise.0-origin indexing, 8.4-
ube, 9{10.K�: seeKilomems.M�: seeMegamems.� (
ir
le ratio), 27, 30, 36.�{� path, 20{21, 33.�(k) permutation, 12{13, 31.Additive alphameti
s, 6{7, 14{15, 30.Adja
ent inter
hanges, 2{7, 31, 35, 54, 55.Akl, Selim George (Á¸« }�Ø~ ÍÛÀ�), 54.Alphameti
s, 6.additive, 6{7, 14{15, 30.doubly true, 29.multipli
ative, 29.pure, 7, 28{29.Alternating group, 5, 36.Analysis of algorithms, 26{31, 34{35.Applying a permutation, 8{10.Arisawa, Makoto (), 43.Arti�
ial intelligen
e, 28.As
ents, 55.Assignment problem, 26.Automorphisms, 9{10, 28, 29.Avann, Sherwin Parker, 53.Balan
ed permutation, 36.Barwell, Brian Robert, 29.Beidler, John Anthony, 6.Bell ringing, 1, 4{5, 21.Bernoulli, Ja
ques (= Jakob = James), 39.Breis
h, Ri
hard Lewis, 42.Brightwell, Graham Ri
hard, 53.Bruijn, Ni
olaas Govert de,
y
le, 37, 58.Bubble sort, 3.Bu
kley, Mi
hael R. W., 28.Bypassing blo
ks of permutations,13{16, 30, 54.Cambridge Forty-Eight, 4, 5.Can�eld, Earl Rodney, 53.Casting out nines, 43.Cayley, Arthur, 20.graphs, 20, 31{34, 48, 57.Cesare, Giulio (pen name of Dani Ferrari,Luigi Rafaiani, Luigi Morelli, andDario Uri), 42.Chain, 35.Change ringing, 1, 4{5, 21.Childs, Roy Sydney, 42.Colex order, 54; see also Reverse
olex order.Complete relation, 36.

Compton, Robert Christopher, 21, 32.Comtet, Louis, 54.Conjugate permutation, 12.Conway, John Horton, 36.Cooke, Raymond Mark, 57.Coroutine, 33.Coupon
olle
ting, 57.Cryptarithms, 6.Cy
le stru
ture of a permutation, 8, 12.Cy
le, undire
ted, 28.Cy
li
 permutation, 35.Cy
li
 shift, 18, 20, 23, 30.de Bruijn, Ni
olaas Govert,
y
le, 37, 58.Delta sequen
e, 31.Derangements, 35.Dijkstra, Edsger Wijbe, 4.Dire
ted torus, 34.Doubly Gray
ode, 32.Doubly true alphameti
, 29.Dual permutation generation, 17{19, 30.Du
kworth, Ri
hard, iii, 4.Dudeney, Henry Ernest, 6, 29, 43.Ehrli
h, Gideon (JILX� OERCB), 19, 32, 40, 41.swap method, 19{20, 31{32.Eigenvalues and eigenve
tors, 58.Enggren, Willy, 28, 29.Eppstein, David Arthur, 41.Er, Meng Chiau (), 16.Erd}os, P�al (= Paul), 49.Euler, Leonhard (E�ler�, Leonard�= ��ler, Leonard), summationformula, 43.Eulerian trails in a dire
ted graph, 57.Even permutation, 5, 36.Ex
lusive or, 51.Exponential series, partial sums of, 39.Extending a partial order, 24.Fa
torial number system, 38.Fa
torial ruler fun
tion, 30.Ferrari, Dani, 59.Fibona

i, Leonardo, of Pisa, numbers,36, 53.First-element swaps, 19{20, 32.Fis
her, Ludwig Joseph, 39.Five-letter words, 28.Flip operation, 12{13, 31, 33, 36, 45.Fraenkel, Aviezri S (LWPXT IXFRIA�), 56.59

59

60 INDEX AND GLOSSARYGallian, Joseph Anthony, 50.Galois, �Evariste, 9.Gardner, Martin, 19, 27.General permutation generator, 10{13,22{23, 29{30.Generating fun
tions, te
hniques forusing, 27, 39{40, 54.Goldstein, Alan Jay, 23.Gonz�alez-Morris, Germ�an Antonio, 42.Grandsire Doubles, 5.Gray, Frank, binary
ode, 3.Gray
ode for mat
hings, 53{54.Gray
ode for mixed radi
es, 3, 40,45, 49, 54.Gray
ode for permutations, 31{32, 53{55.Gray
ode for weak orders, 55{56.Group of permutations, 9{10, 20, 45.h-ordered permutation, 35.Hamilton, William Rowan,
y
le, 3,20{21, 31{34, 48, 57.path, 3, 20{21, 32{33, 47{48.Hawaii, 28.Heap, Brian Ri
hard, 13, 15, 21, 30, 34, 41.Hexade
imal digits, 9, 57.Hindenburg, Carl Friedri
h, 2.Hook lengths, 57.Hunter, James Alston Hope, 6.Identity permutation, 9.Image of an element, 8.In
lusion and ex
lusion, 54.Inde
omposable permutation, 35.Internet, ii, iii.Inverse permutation, 24{25, 28, 52.Inversion tables, 3, 38, 53.Inversions of a permutation, 3, 5.Involutions, 35{36, 48, 53.Ives, Frederi
k Mal
olm, 30.Ja
kson, Bradley Warren, 37.Jiang, Ming (), 21.Johnson, Allan William, Jr., 42.Johnson, Selmer Martin, 28.Kahan, Steven Jay, 42.Kemp, Rainer, 38.Kent Treble Bob Major, 1.Kilomem: One thousand memory a

esses.Kl�ugel, Georg Simon, 13.Knight's tour, northeasterly, 34.Knuth, Donald Ervin (), i, iv.Kompel'makher, Vladimir Leont'evi
h(Kompel~maher, VladimirLeont~eviq), 32.Krause, Karl Christian Friedri
h, 39.Langdon, Glen George, Jr., 19, 23, 34.Lehmer, Derri
k Henry, 1.Lexi
ographi
 order, 1, 8.

Lexi
ographi
 permutation generation,12, 15, 26{27.for involutions, 54.Lexi
ographi
 su

essor, 2.Linear embedding, 24.Linked lists, 15{16, 54.Lipski, Witold, Jr., 44.Liskovets, Valery Anisimovi
h (Liskove
,Valeri� Anisimoviq), 32.Loopless generation, 28, 41, 54.Ma
Donald, Peter S., 28.Mat
hings, 25, 35.Matrix tree theorem, 57.Maximal element, 52.M
Cravy, Edwin Parker, Jr., 28.M
Kay, Brendan Damien, 49.Megamem: One million memory a

esses.Minimal element, 52.Mixed-radix number, 17, 27, 38.MMIX
omputer , ii, iv, 21{23, 34.Modular Gray
ode for mixed radi
es, 49.Monte Carlo estimates, 47.Mor, Moshe (XEN DYN), 55.Morelli, Luigi, 59.Morris, Ernest, 4.Morris, S
ot Anderson, 42.Multinomial
oeÆ
ient, 27.Multipli
ation of permutations, 8.Multipli
ative alphameti
s, 29.Multisets, 1, 3, 24, 27, 33.Mundy, Peter, 4.MXOR (multiple ex
lusive-or), 34.Myrvold, Wendy Joanne, 52.n-
ube, 9{10, 28.N�ar�ayan.a Pan.d. ita (nArAyZ pE�Xt), 2, 38.Nijenhuis, Albert, 20.Nijon, Herman, 28.Northeasterly knight's tour, 34.NP-
omplete problem, 41.Nybble: A 4-bit quantity, 22{23.O
tahedral group, 41.Odd permutation, 5, 47{48.Ord-Smith, Ri
hard Albert James(= Jimmy), 12, 13, 18, 29, 30, 39.Order of a group element, 20, 45.Organ pipe order, 48, 55.Pak, Igor Markovi
h (Pak, Igor~Markoviq), 48.Pan-digital puzzles, 29.Parallel
omputation, 34, 41.Partial ordering, 24, 34, 35.Partitions of a number, 29, 57.Pe
zarski, Mar
in Piotr, 53.Pepperdine, Andrew Howard, 56.

60

INDEX AND GLOSSARY 61Permutation generation, 1{37.
y
li
 shift method, 18, 20, 23, 30.dual, 17{19, 30.Ehrli
h swap method, 19{20, 31{32.fastest, 21{24.general, 10{13, 22{23, 29{30.lexi
ographi
, 12, 15, 26{27.lexi
ographi
 with restri
ted pre�xes,16, 30, 53.plain
hanges, 4{7, 17, 23, 25,27{28, 33, 55.when to use, 26.Permutations, 1{37.applying, 8{10.
onjugate, 12.
y
les of, 8, 12.
y
li
, 35.derangements, 35.even, 5, 36.groups of, 9{10, 20, 45.Gray
odes for, 31{32, 53{55.h-ordered, 35.inde
omposable, 35.inverse, 24{25, 28, 52.inversions of, 3, 5.involutions, 35{36, 53.multipli
ation of, 8.notations for, 8.odd, 5, 47{48.of a multiset, 1{2, 24.r-element, 27, 30.rank of, 27, 34, 52.sign of, 5, 33.signed, 28.universal
y
le of, 37.up-down, 35.well-balan
ed, 36.Pfa�, Johann Friedri
h, 54.Phillips, John Patri
k Norman, 38.Pi (�), 27, 30, 36.Plain
hanges, 4{7, 17, 23, 25, 27{28, 33, 55.Plesz
zy�nski, Stefan, 52.Postmultipli
ation, 9.Preferential arrangements, 55.Premultipli
ation, 9, 11{12, 14, 54.Preorder in a tree, 11, 14.Pr�omel, Hans J�urgen, 53.Pruesse, Gara, 53.Pure alphameti
s, 7, 28{29.Queue, 52.Radoi�
i�
, Rado�s, 48.Rafaiani, Luigi, 59.Ranking a permutation, 27, 34, 52.Rankin, Robert Alexander, 20, 33, 49.Rapoport, Elvira Strasser, 48.Re
e
ted Gray
ode for mixed radi
es,3, 40, 45, 54.Reversal of a string, 31, 36.

Reverse
olex order, 8, 12, 15, 17, 26, 38.Reversing, 2, 38, 40, see also Flip operation.Roman numerals, 42.Rosary permutations, 28, 48.Rotem, Doron (MZEX OEXEC), 22, 25.Rothe, Heinri
h August, 38.Roy, Mohit Kumar (Ûm;iht k(m;r r;Y), 41.R�udiger, Christian Friedri
h, 2.Ruskey, Frank, 21, 34, 48, 49, 52, 53.Sagan, Bru
e Eli, 57.Savage, Carla Diane, 48, 55.Sayers, Dorothy Leigh, 1.Sedgewi
k, Robert, 21.Seitz, Ri
hard, 19.Sign of a permutation, 5, 33.Signature of an alphameti
, 6.Signed permutation, 28.Silver, Alfred Lindsey Leigh, 46.Sims, Charles CoÆn, 9.tables, 9{15, 17{18, 29{30.Skipping blo
ks of permutations,13{16, 30, 54.Stanford GraphBase, ii, iii.Star graph, 32.Star transpositions, 19{20, 32.Stedman, Fabian, 4.Doubles, 5.Steger, Angelika, 53.Swapping with the �rst element, 19{20, 32.Symmetries, 9{10, 28, 29.Tableaux, 24{25, 57.T
huente, Mauri
e, 47.Ti
-ta
-toe board, 29.Tompkins, Charles Brown, 19.Topologi
al sorting, 24{26, 34{35.Topswops, 36.Torus, 9.dire
ted, 34.twisted, 32.Total ordering, 24.Transitive relation, 34, 36.Transposing adja
ent elements, 2{7,31, 35, 54, 55.Traveling salesrep problem, 26.Trotter, Hale Freeman, 5.Trotter, William Thomas, 49.Twisted torus, 32.Two-line form of permutation, 8.Undire
ted
y
le, 28.Undoing, 16, 54.Universal
y
le of permutations, 37.Unranking a permutation, 27, 34, 52.Up-down permutation, 35.Uri, Dario, 59.Variations, 27, 30, 43, 52.Varol, Yaakov Leon (LEXE OE�L AWRI), 22, 25.Vatriquant, Simon, 6.Vinni
ombe, Robert Ian James, 28.

61

62 INDEX AND GLOSSARYWalsh, Timothy Robert Stephen, 54, 55.Wayne, Alan, 29.Weak orders, 36.Well-balan
ed permutation, 36.Wells, Mark Brimhall, 44.Weston, Andrew, 21.White, Arthur Thomas, II, 5.Wilf, Herbert Saul, 20, 56.
Williamson, Stanley Gill, 21, 32, 53.Wilson, Wilfrid George, 5.XOR (bitwise ex
lusive-or), 51.Yoshigahara, Nobuyuki (= Nob)(), 29, 42.Young, Alfred, tableaux, 24{25, 57.

62

