
Chapter Draft of February 8, 2001 3

CHAPTER 1 Compiler Challenges for High-Performance Architectures 17

1.1 Overview and Goals 17

1.2 Pipelining 21

1.2.1 Pipelined Instruction Units 21
1.2.2 Pipelined Execution Units 23
1.2.3 Parallel Functional Units 24
1.2.4 Compiling for Scalar Pipelines. 25

1.3 Vector Instructions 29

1.3.1 Vector Hardware Overview 29
1.3.2 Compiling for Vector Pipelines 30

1.4

Superscalar and VLIW Processors

32

1.4.1 Multiple-Issue Instruction Units 32
1.4.2 Compiling for Multiple-Issue Processors 33

1.5

Processor Parallelism

35

1.5.1 Compiling for Asynchronous Parallelism 37

1.6

Memory Hierarchy

39

1.6.1 Compiling for Memory Hierarchy 41

1.7

A Case Study: Matrix Multiplication

42

1.8

Advanced Compiler Technology

47

1.8.1 Dependence 48
1.8.2 Transformations 50

1.9

Chapter Summary

51

1.10

Case Studies

51

1.11

Historical Comments and References

52

1.12

Exercises

53

1.13

References

54

CHAPTER 2

Dependence: Theory and Practice

57

2.1

Introduction

57

2.2

Dependence and its Properties

58

2.2.1 Load-Store Classification 60
2.2.2 Dependence in Loops 61
2.2.3 Dependence and Transformations 63
2.2.4 Distance and Direction Vectors 68
2.2.5 Loop-carried and Loop-independent Dependences 72

2.2.5.1 Loop-Carried Dependence 72
2.2.5.2 Loop-Independent Dependences 76
2.2.5.3 Iteration Reordering 78

4

ADVANCED COMPILING FOR HIGH PERFORMANCE

2.3

Simple Dependence Testing

79

2.4

Parallelization and Vectorization

82

2.4.1 Parallelization 82
2.4.2 Vectorization 83
2.4.3 An Advanced Vectorization Algorithm 86

2.5

Chapter Summary

93

2.6

Case Studies

93

2.7

Historical Comments and References

94

2.8

Exercises

95

2.9

References

96

CHAPTER 3

Dependence Testing

99

3.1

Introduction

99

3.1.1 Background and Terminology 101

3.1.1.1 Indexes and Subscripts 101
3.1.1.2 Nonlinearity 101
3.1.1.3 Conservative Testing 102
3.1.1.4 Complexity 103
3.1.1.5 Separability 103
3.1.1.6 Coupled Subscript Groups 104

3.2

Dependence Testing Overview

106

3.2.1 Subscript Partitioning 106
3.2.2 Merging Direction Vectors 107

3.3

Single-Subscript Dependence Tests

108

3.3.1 ZIV Test 108
3.3.2 SIV Tests 108

3.3.2.1 Strong SIV Subscripts 109
3.3.2.2 Weak SIV Subscripts 110
3.3.2.3 Weak-zero SIV Subscripts 111
3.3.2.4 Weak-crossing SIV Subscripts 112
3.3.2.5 Complex Iteration Spaces 114
3.3.2.6 Symbolic SIV Dependence Tests 117
3.3.2.7 Breaking Conditions 119
3.3.2.8 An Exact SIV Test 121

3.3.3 Multiple Induction Variable Tests 122

3.3.3.1 GCD Test 124
3.3.3.2 Banerjee Inequality 124
3.3.3.3 Handling Symbolics in the Banerjee Inequality 130
3.3.3.4 Trapezoidal Banerjee Inequality 131
3.3.3.5 Testing for All Direction Vectors 139

3.4

Testing in Coupled Groups

140

Chapter Draft of February 8, 2001

5

3.4.1 The Delta Test 141

3.4.1.1 Constraints 143
3.4.1.2 Intersecting Constraints 144
3.4.1.3 Constraint Propagation 145
3.4.1.4 Precision and Complexity 149

3.4.2 More Powerful Multiple-Subscript Tests 150

3.5

An Empirical Study

151

3.6

Putting It All Together

154

3.7

Chapter Summary

160

3.8

Case Studies

162

3.9

Historical Comments and References

163

3.10

Exercises

164

3.11

References

165

CHAPTER 4

Preliminary Transformations

169

4.1

Introduction

169

4.2

Information Requirements

172

4.3

Loop Normalization

173

4.4

Data Flow Analysis

176

4.4.1 Definition-Use Chains 176
4.4.2 Dead Code Elimination 180
4.4.3 Constant Propagation 181
4.4.4 Static Single-Assignment Form 184

4.5

Induction-Variable Exposure

192

4.5.1 Forward Expression Substitution 192
4.5.2 Induction-Variable Substitution 196
4.5.3 Driving the Substitution Process 200

4.6

Chapter Summary

204

4.7

Case Studies

204

4.8

Historical Comments and References

206

4.9

Exercises

207

4.10

References

208

CHAPTER 5

Enhancing Fine-Grained Parallelism

211

5.1

Overview

211

5.2

Loop Interchange

213

6

ADVANCED COMPILING FOR HIGH PERFORMANCE

5.2.1 Safety of Loop Interchange 214
5.2.2 Profitability of Loop Interchange 218
5.2.3 Loop Interchange and Vectorization 219

5.2.3.1 A Code Generation Framework 223
5.2.3.2 General Loop Selection and Interchange 223

5.3

Scalar Expansion

226

5.4

Scalar and Array Renaming

236

5.5

Node Splitting

244

5.6

Recognition of Reductions

247

5.7

Index-set Splitting

251

5.7.1 Threshold Analysis 251
5.7.2 Loop Peeling 253
5.7.3 Section-based Splitting 254

5.8

Run-time Symbolic Resolution

256

5.9

Loop Skewing

258

5.10

Putting It All Together

263

5.11

Complications of Real Machines

270

5.12

Chapter Summary

274

5.13

Case Studies

275

5.14

Historical Comments and References

280

5.15

Exercises

281

5.16

References

282

CHAPTER 6

Creating Coarse-Grained Parallelism

285

6.1

Introduction

285

6.2

Single-Loop Methods

287

6.2.1 Privatization 287
6.2.2 Loop Distribution 292
6.2.3 Alignment 293
6.2.4 Code Replication 297
6.2.5 Loop Fusion 302

6.2.5.1 Typed Fusion 308
6.2.5.2 Unordered and Ordered Typed Fusion 316
6.2.5.3 Cohort Fusion 318

6.3

Perfect Loop Nests

320

6.3.1 Loop Interchange 320
6.3.2 Loop Selection 325

Chapter Draft of February 8, 2001

7

6.3.3 Loop Reversal 328
6.3.4 Loop Skewing 329
6.3.5 Unimodular Transformations 334
6.3.6 Profitability-Based Methods 335

6.4

Imperfectly Nested Loops 338

6.4.1 Multilevel Loop Fusion 339
6.4.2 A Parallel Code Generation Algorithm 342

6.5 An Extended Example 347

6.6 Packaging of Parallelism 350

6.6.1 Strip Mining 351
6.6.2 Pipeline Parallelism 352
6.6.3 Scheduling Parallel Work 355
6.6.4 Guided Self-Scheduling 357

6.7 Chapter Summary 360

6.8 Case Studies 361

6.9 Historical Comments and References 367

6.10 Exercises 368

6.11 References 369

CHAPTER 7 Control Dependence 373

7.1 Introduction 373

7.2 If Conversion 375

7.2.1 Definition 376
7.2.2 Branch Classification 377
7.2.3 Forward Branches 378
7.2.4 Exit Branches 382
7.2.5 Backward Branches 388
7.2.6 Complete Forward Branch Removal 391
7.2.7 Simplification 394
7.2.8 Iterative Dependences 399
7.2.9 IF Reconstruction 405

7.3 Control Dependence 406

7.3.1 Constructing Control Dependence 409
7.3.2 Control Dependence in Loops 412
7.3.3 An Execution Model for Control Dependences 413
7.3.4 Application of Control Dependence to Parallelization 417

7.3.4.1 Control Dependence and Transformations 417
7.3.4.2 Generating Code 424

7.4 Chapter Summary 434

8 ADVANCED COMPILING FOR HIGH PERFORMANCE

7.5 Case Studies 434

7.6 Historical Comments and References 436

7.7 Exercises 436

7.8 References 438

CHAPTER 8 Compiler Improvement of Register Usage 441

8.1 Introduction 441

8.2 Scalar Register Allocation 442

8.2.1 Data Dependence 444

8.3 Scalar Replacement 447

8.3.1 Loop Carried Dependences 447
8.3.2 Dependences Spanning Multiple Iterations 448
8.3.3 Eliminating Scalar Copies 449
8.3.4 Pruning the dependence graph 450
8.3.5 Moderation of Register Pressure 454
8.3.6 Scalar Replacement Algorithm 456
8.3.7 Experiments 460

8.4 Unroll-and-Jam 464

8.4.1 Effectiveness 472

8.5 Loop Interchange 475

8.5.1 Considerations for Loop Interchange 477

8.6 Loop Fusion 480

8.6.1 Alignment 484
8.6.2 Fusion Mechanics 489
8.6.3 A Weighted Loop Fusion Algorithm 495
8.6.4 Multiple-level Loop Fusion 513

8.7 Putting It All Together 516

8.7.1 Ordering The Transformations 516
8.7.2 An Example: Matrix Multiplication 516

8.8 Complex Loop Nests 519

8.8.1 Loops with If Statements 519
8.8.2 Trapezoidal Loops 522

8.8.2.1 Triangular Unroll-and Jam 522
8.8.2.2 Trapezoidal Unroll-and-Jam 525

8.9 Chapter Summary 527

8.10 Case Studies 528

8.11 Historical Comments and References 529

8.12 Exercises 530

Chapter Draft of February 8, 2001 9

8.13 References 530

CHAPTER 9 Cache Management 533

9.1 Introduction 533

9.2 Loop Interchange 536

9.3 Blocking 542

9.3.1 Unaligned Data 544
9.3.2 Legality of Blocking 545
9.3.3 Profitability of Blocking 547
9.3.4 A Simple Blocking Algorithm 548
9.3.5 Blocking with Skewing 550
9.3.6 Fusion and Alignment 553
9.3.7 Blocking in Combination with Other Transformations 555
9.3.8 Effectiveness 556

9.4 Cache Management in Complex Loop Nests 557

9.4.1 Triangular Cache Blocking 557
9.4.2 Special Purpose Transformations 558

9.5 Software Prefetching 561

9.5.1 A Software Prefetching Algorithm 562
9.5.1.1 Prefetch Analysis 566
9.5.1.2 Prefetch Insertion for Acyclic Name Partitions 568
9.5.1.3 Prefetch insertion for cyclic name partitions 570
9.5.1.4 Prefetching Irregular accesses 572

9.5.2 Effectiveness of Software Prefetching 573

9.6 Chapter Summary 574

9.7 Case Studies 575

9.8 Historical Comments and References 576

9.9 Exercises 577

9.10 References 578

CHAPTER 10 Scheduling 581

10.1 Overview 581

10.2 Instruction Scheduling 582

10.2.1 Machine Model 585
10.2.2 Straight-Line Graph Scheduling 586
10.2.3 List Scheduling 587
10.2.4 Trace Scheduling 590

10.2.4.1 Issues in Straight-line Scheduling 594

10 ADVANCED COMPILING FOR HIGH PERFORMANCE

10.2.5 Scheduling in Loops 595
10.2.5.1 Kernel Scheduling 595
10.2.5.2 A Kernel Scheduling Algorithm 599
10.2.5.3 Prolog and Epilog Generation 604
10.2.5.4 Register Resources 606
10.2.5.5 Control Flow 606

10.3 Vector Unit Scheduling 609

10.3.1 Chaining 609
10.3.2 Co-processors 613

10.4 Chapter Summary 616

10.5 Case Studies 616

10.6 Historical Comments and References 620

10.7 Exercises 621

10.8 Bibliography 622

CHAPTER 11 Interprocedural Analysis and Optimization 625

11.1 Introduction 625

11.2 Interprocedural Analysis 626

11.2.1 Interprocedural Problems 626
11.2.2 Interprocedural Problem Classification 633

11.2.2.1 A Problem Classification Table 637
11.2.3 Flow-Insensitive Side-Effect Analysis 637
11.2.4 Flow-Insensitive Alias Analysis 646
11.2.5 Constant Propagation 652
11.2.6 Kill Analysis 658
11.2.7 Symbolic Analysis 662
11.2.8 Array Section Analysis 666
11.2.9 Call Graph Construction 669

11.3 Interprocedural Optimization 673

11.3.1 Inline Substitution 673
11.3.2 Procedure Cloning 675
11.3.3 Hybrid Optimizations 676

11.4 Managing Whole-Program Compilation 676

11.5 Chapter Summary 680

11.6 Case Studies 681

11.7 Historical Comments and References 684

11.8 Exercises 686

11.9 References 687

Chapter Draft of February 8, 2001 11

CHAPTER 12 Other Applications of Dependence 693

12.1 Overview 693

12.2 Optimizing C 694

12.2.1 The Problems of C 694
12.2.2 Pointers 696
12.2.3 Naming and Structures 698
12.2.4 Loops 699
12.2.5 Scoping and Statics 700
12.2.6 Dialect 701
12.2.7 Miscellaneous 703

12.2.7.1 Volatile 703
12.2.7.2 Setjmp and Longjmp 704
12.2.7.3 Varargs and stdargs 704

12.2.8 Summary 705

12.3 Hardware Design 705

12.3.1 Overview 705
12.3.2 Hardware Description Languages 708
12.3.3 Optimizing simulation 712

12.3.3.1 Philosophy 712
12.3.3.2 Inlining modules 714
12.3.3.3 Execution ordering 715
12.3.3.4 Dynamic versus static scheduling 717
12.3.3.5 Fusing always blocks 718
12.3.3.6 Vectorizing always blocks 722
12.3.3.7 Two state versus four state 727
12.3.3.8 Rewriting block conditions 727
12.3.3.9 Basic Optimizations 728
12.3.3.10 Summary 729

12.3.4 Synthesis optimization 729
12.3.4.1 Overview 729
12.3.4.2 Basic Framework 731
12.3.4.3 Loop Transformations 735
12.3.4.4 Control and Data Flow 739
12.3.4.5 Pipelining and Scheduling 741
12.3.4.6 Memory Reduction 741
12.3.4.7 Summary 742

12.4 Chapter Summary 743

12.5 Case Studies 743

12.6 Historical Comments and References 743

12.7 Exercises 743

12.8 References 743

12 ADVANCED COMPILING FOR HIGH PERFORMANCE

CHAPTER 13 Compiling Array Assignments 745

13.1 Introduction 745

13.2 Simple Scalarization 746

13.3 Scalarization Transformations 751

13.3.1 Loop Reversal 751
13.3.2 Input Prefetching 752
13.3.3 Loop splitting 757

13.4 Multidimensional scalarization 761

13.4.1 Simple scalarization in Multiple Dimensions 761
13.4.2 Outer Loop Prefetching 763
13.4.3 Loop Interchange 765
13.4.4 General Multidimensional Scalarization 768
13.4.5 A Scalarization Example 773

13.5 Considerations for Vector Machines 775

13.6 Post-Scalarization Interchange and Fusion 776

13.7 Chapter Summary 779

13.8 Case Studies 779

13.9 Historical Comments and References 780

13.10 Exercises 780

13.11 References 781

CHAPTER 14 Compiling High-Performance Fortran 783

14.1 Introduction to HPF 783

14.2 HPF Compiler Overview 788

14.3 Basic Loop Compilation 793

14.3.1 Distribution Propagation and Analysis 793
14.3.2 Iteration Partitioning 795
14.3.3 Communication Generation 799

14.4 Optimization 805

14.4.1 Communication Vectorization 805
14.4.2 Overlapping Communication and Computation 811
14.4.3 Alignment and Replication 812
14.4.4 Pipelining 813
14.4.5 Identification of Common Recurrences 816
14.4.6 Storage Management 817

14.5 Handling Multiple Dimensions 821

14.6 Interprocedural Optimization 823

Chapter Draft of February 8, 2001 13

14.7 Chapter Summary 824

14.8 Case Studies 825

14.9 Historical Comments and References 827

14.10 Exercises 828

14.11 References 829

APPENDIX A Fundamentals of Fortran 90 831

14 ADVANCED COMPILING FOR HIGH PERFORMANCE

Chapter Draft of February 8, 2001 15

Authors’ Preface

This book is the product of a twenty-year resarch project at Rice Univer-
sity to develop fundamental compiler technologies for vector and parallel
computer systems. The effort was begun while one of the authors
(Kennedy) was on sabbatical at IBM Research at Yorktown Heights, New
York, in 1979 and 1980. There he developed a vectorization strategies for
a future IBM product which became the IBM Vector Feature. The first
versions of the compiler were based on the Parafrase system, a copy of
which was obtained from the University of Illinois, with the help of
David Kuck and Michael Wolfe.

When Kennedy returned to Rice in 1980, he brought the project with
him. It was soon decided that the design of Parafrase would not support
all of the optimizations that we wished to pursue. For that reason, we
developed an entirely new system, called the Parallel Fortran Converter
(PFC). This system was initially focused on vectorization and became the
model for the IBM Fortran vectorizing compiler which was released to
support the IBM Vector Feature. PFC was also the primary subject of the
Ph.D. thesis of one author (Allen).

16 ADVANCED COMPILING FOR HIGH PERFORMANCE

PFC, which was coded in PL/I and ran on IBM mainframes, was further
developed to support research on parallelization and compiler memory
hierarchy management. It also provided data dependence analysis sup-
port for the programming tools PTOOL and the ParaScope editor. It was
finally decommissioned when the last IBM mainframe at Rice was shut
down in 1997. All in all, it supported the research on 15 Ph.D. theses.

The authors went on to develop other systems based on PFC. Allen
directed the implementation of the Ardent Titan compiler and Kennedy
managed the development effort of the ParaScope parallel programming
system, and the Fortran D compiler effort. The work on PFC directly or
indirectly influenced the design of almost every commercial Fortran com-
piler for high performance computers.

Although we attempt to cover important work by many researchers, we
have naturally focused on the work that was done at Rice University over
the past two decades by the authors and their colleagues. We make no
apology for this focus, as our goal is to put into print the combined store
of knowledge from our twenty years of experience in this field. Thus this
work should not be treated as an exhastive survey of the literature but
rather as a pragmatic guide to developing compilers based on depen-
dence. As such it attempts to be tutorial in style, sometimes sacrificing
technical details for clarity of presentation. Our overall goal is to give the
reader a sufficient intuition that he or she could work effectively in this
exciting branch of compilation.

The material in the book is intended to be tutorial in style so that the
reader can gain enough intuition to be able work effectively in this excit-
ing branch of compilation.

Overview and Goals

Chapter Draft of February 8, 2001 17

CHAPTER 1 Compiler Challenges
for High-Performance
Architectures

1.1 Overview and Goals

The past two decades have been exciting ones for high performance com-
puting. Desktop personal computers today feature computing power
equivalent to the most powerful supercomputers in the late 1970’s. Mean-
while, through the use of parallelism and innovations in the memory hier-
archy, supercomputers have exceeded a sustained teraflop on real
applications and are now setting their sites on 10 to 100 teraflops. High-
end supercomputing systems can be seen as laboratories for software
research and development, because innovations developed on such sys-
tems eventually find their way to the desktop computer systems.

The phenomenal improvements in computer speeds have been the result
of two phenomena. First, the underling technology from which machines
are constructed have has seen remarkable advances on a pace predicted

Compiler Challenges for High-Performance Architectures

18 ADVANCED COMPILING FOR HIGH PERFORMANCE

by Moore’s law. However, technology by itself has not been enough.
Figure 1.1 plots the peak performance of the fastest supercomputer by
year from 1950 to 2000. The regression fit, which follows Moore’s law
quite well, indicates that supercomputer performance has increased by
two orders of magnitude every decade. However, the four outlined
regions show that differences in computer architecture—from scalar
through superscalar and vector to parallel—have been necessary to keep
performance on track. Clearly parallelism of one form or another is
essential to supercomputing.

FIGURE 1.1 Performance of the fastest supercomputers over 50 years.

But parallelism is not just for supercomputers anymore. Even though
today’s uniprocessors are faster than they have ever been, the growth of
image processing applications and multimedia on the desktop has created
an enormous thirst for more processing power. To keep up with this
demand, uniprocessor designs have included many features employing
parallelism, such as multiple functional units, multiple-issue instruction
processing, and attached vector units. Still, all the power added by these
strategies cannot satisfy the computational requirements for computation
servers, which generally employ modest numbers (4 to 32) of processors.
Clearly, parallelism has become a significant factor in the marketplace.

EDSAC 1
UNIVAC 1

IBM 7090

CDC 6600

IBM 360/195CDC 7600

Cray 1

Cray X-MP
Cray 2

TMC CM-2

TMC CM-5 Cray T3D

ASCI Red

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

1 KFlop/s

1 MFlop/s

1 GFlop/s

1 TFlop/s

Scalar

Superscalar

Vector

Parallel

Overview and Goals

Chapter Draft of February 8, 2001 19

Parallelism is not the only distinguishing factor in the design of high-per-
formance computers. Because of the rapidly growing processor speed
and the relatively slow pace of improvement of memory technology, most
of today’s processors have two or three levels of cache memory. These
caches are designed to hide the long latencies inherent in the mismatch
between processor speed and memory access time. They also improve
effective memory bandwidth for data that is reused from cache.

Advances in computing power have not come without problems, how-
ever. As the computing systems have grown more complex to keep apace
of Moore’s Law, they have become ever more difficult to program. Most
high-end application developers are painfully aware of the tricks needed
to explicitly manage memory hierarchies and communication in today’s
scalable parallel systems. In an effort to squeeze more performance out of
individual processors, programmers have even learned how to transform
their codes by hand to improve instruction scheduling on multiple-issue
uniprocessors.

It is our view that most of these hand transformations for high perfor-
mance computers should really be performed by the compiler, libraries,
and run-time system. The compiler must play a special role because of its
traditional responsibility for translating programs from a language suit-
able for use by human application developers to the native language of
the target machine. It is tempting to believe that compiler’s responsibility
ends with the production of a correct machine-language translation of the
source program. By itself, however, this is not enough. The compiler
must produce a suitably efficient program as well. If it fails to do so,
application developers may well abandon attempts to use the language.

The importance of efficiency in compiled code is not a recent observa-
tion—it has been implicit in the development of every successful com-
puter language beginning with the first version of Fortran.In the words of
John Backus, reflecting in 1978 on the Fortran I effort [7]:

It was our belief that if Fortran, during its first months, were to translate
any reasonable “scientific” source program into an object program only
half as fast as its hand-coded counterpart, then acceptance of our system
would be in serious danger. ...To this day I believe that our emphasis on
object program efficiency rather than on language design was basically
correct. I believe that had we failed to produce efficient programs, the
widespread use of languages like Fortran would have been seriously
delayed.

In fact, I believe that we are in a similar, but unrecognized, situation
today: in spite of all the fuss that has been made over myriad language

Compiler Challenges for High-Performance Architectures

20 ADVANCED COMPILING FOR HIGH PERFORMANCE

details, current conventional languages are still very weak program-
ming aids, and far more powerful languages would be in use today if
anyone had found a way to make them run with adequate efficiency.

These words are as true today as they were four decades ago, when For-
tran was first developed. In fact, compiler technology has become even
more important as machines have become more complex. The success of
each innovation in computer architecture has been contingent on the abil-
ity of compiler technology to provide efficient language implementations
on that architecture—in other words, the trend in modern machine archi-
tecture has been to shift the burden of achieving high performance from
the hardware to the software. In this task, compiler technology has been
only partially successful. Excellent techniques have been developed for
vectorization, instruction scheduling, and management of multilevel
memory hierarchies. Automatic parallelization, on the other hand, has
been successful only for shared-memory parallel systems with a few pro-
cessors—compiler parallelization for scalable machines remains an
unsolved problem to this day.

Fortunately, there is substantive commonality in the underlying analysis
structure needed to compile for the diverse collection of high perfor-
mance computer architectures available today. Most critical compilation
tasks can be handled by transformations that reorder the instances of
statements in the original program. To perform these transformations in a
way that preserves the original meaning of the program, modern compil-
ers employ the concept of dependence, which indicates when it is unsafe
to interchange the order of two statement instances. Dependence has
turned out to be an amazingly durable and broadly applicable concept. In
point of fact, this book might well be titled “Dependence-based compila-
tion: theory and practice,” because dependence is the unifying theme for
the entire volume.

It is the principal goal of this book to provide an introduction to depen-
dence and the many transformation strategies that it supports. These com-
piler technologies have been developed over the past two decades to deal
with machine complexity at the high end. Our aim is to provide a useful
resource for the student of advanced compilation and the practicing com-
piler developer alike. The remainder of this chapter consists of a brief
introduction to high-performance computer architectures followed in
each case by a discussion of the compiler strategies needed to deal with
them. The trade-offs among these strategies are illustrated by an extended
example in which the same program is shown optimized for different

Pipelining

Chapter Draft of February 8, 2001 21

machine organizations. Finally, we introduce the concept of dependence,
which will form the basis for most of this book.

1.2 Pipelining

One of the earliest applications of parallelism to improve the perfor-
mance of computer architectures was the use of pipelining. Pipelining
means subdividing a complex operation into a sequence of independent
segments so that, if the different segments use different resources, opera-
tions can be overlapped by starting an operation as soon as its predeces-
sor has completed the first segment.

1.2.1 Pipelined Instruction Units

Consider, as an example one of the earliest pipelines, the instruction exe-
cution pipeline. On the IBM 7094, a high-end scientific computer from
the mid nineteen-sixties, each instruction was executed in two phases: the
instruction fetch phase and the execute phase. Since the phases could be
arranged to fetch from different data banks, the instruction fetch for the
next instruction could often be overlapped with the execute phase of the
current one. The notion of an instruction execution pipeline was further
refined in the 1970s by the introduction, on the IBM 370 series, of a four-
stage pipelined execute phase.

FIGURE 1.2 DLX Instruction Pipeline [Hennessy-Patterson].

Instruction pipelines have become significantly more sophisticated over
the years. Figure 1.2 gives the instruction pipeline for the DLX machine,
used by Hennessy and Patterson to illustrate the principles of reduced
instruction set computer (RISC) architectures [12]. DLX resembles many

IF EX MEMID

c1 c2 c3 c4 c5 c6

WB

IF EX MEMID WB

IF EX MEMID WB

c7

Compiler Challenges for High-Performance Architectures

22 ADVANCED COMPILING FOR HIGH PERFORMANCE

modern RISC machines, including the MIPS architecture found in
machines manufactured by SGI.

On a modern RISC machine, typical instructions take on three forms:

• Register-to-register ALU operations. These include all arithmetic
operations such as integer and floating point addition, subtraction and
so on.

• Memory operations. These instructions require a memory access.
Load from memory into registers and store into memory are both of
this type.

• Branch instructions. These instructions change the location in mem-
ory from which the next instruction is to be executed, depending on
the value of a condition. If the condition is true, the program counter is
incremented by the immediate value in the instruction, otherwise the
PC is left pointing to the next instruction in memory. If

The DLX pipeline is designed to handle all three kinds of instructions.
The pipeline includes the following stages:

1. instruction fetch (IF),

2. instruction decode (ID)

3. execute (EX) and

4. memory access (MEM) and

5. write back (WB).

Instruction fetch and decode are self explanatory. For the purposes of
execution, the EX and MEM phases are grouped. If the instruction is a
register-to-register operation that can be performed in the arithmetic-log-
ical unit (ALU), the instruction is completed in the EX phase. If it is a
memory access, address calculation is performed in the EX phase and the
memory access actually takes place in the MEM phase. Note that if the
required memory location is not in cache, a miss occurs and the instruc-
tion will stall until the required block is brought into cache. If the instruc-
tion is a branch, the specified register is compared to zero in the
execution phase and the PC is set to the correct value in the MEM phase.
The WB phase is used to write data back to registers; it is not used in a
branch instruction.

If each pipeline stage uses different resources, the different stages of suc-
cessive instructions can be overlapped, as in the schedule of execution
shown in Figure 1.2, which is able to issue an instruction on every
machine cycle. In other words, the average number of cycles per instruc-

Pipelining

Chapter Draft of February 8, 2001 23

tion in this ideal schedule will be 1, not counting the time required to start
the pipeline. However, a number of conditions, called hazards can inter-
fere with achieving the ideal schedule. These will be discussed in
Section 1.2.4.

1.2.2 Pipelined Execution Units

Unfortunately, many operations will take much longer than a single one
of these shortened cycles. Most notable are the floating point operations,
which may take four or more cycles to complete. Consider, for example,
the steps in a typical floating point adder. Once both operands have been
fetched from memory, they must be normalized to have the same expo-
nent. Next, the two mantissas must be added together. Finally, the result-
ing addition may have to be renormalized before being stored into its
destination. Figure 1.3 illustrates this process.

FIGURE 1.3 Typical floating-point adder.

Since each segment in the addition unit is independent of the others, there
is no reason why each segment cannot be operating on different operands
simultaneously. Thus, if it is necessary to compute the sum of several
pairs of numbers, the computation can be accelerated by overlapping the
phases of the addition unit, as illustrated in Figure 1.4.

FIGURE 1.4 Snapshot of a pipelined execution unit computing ai=bi+ci.

Fetch
Operands

(FO)

Equate
Exponents

(EE)

Normalize
Mantissas

Add

(AM)

Result

(NR)
Inputs

Result

(EE) (NR)
b3
c3

(AM)

b2 + c2

(FO)
b4
c4

a1

b5

c5

Compiler Challenges for High-Performance Architectures

24 ADVANCED COMPILING FOR HIGH PERFORMANCE

If the time required by each segment to work on one pair of operands is
one cycle, then the time required to perform n additions without pipelin-
ing is 4n cycles. If the segments are overlapped so that the computation is
pipelined, the n additions require n+3 cycles, because once the pipe has
been filled, the adder produces a result every cycle. Thus, for an infinite
number of computations, the time to perform one addition is effectively
reduced from 4 cycles to 1 cycle by pipelining.

A pipelined functional unit is effective only when the pipe is kept full;
that is, only when there are operands available for operation on each seg-
ment clock cycle. Unfortunately, user computations rarely satisfy this
requirement. As a result, effectively utilizing a pipelined functional unit
requires that something (usually the compiler) reorder the user computa-
tion so that the necessary operands can be delivered fast enough to keep
the pipe full.

FIGURE 1.5 Multiple functional units.

1.2.3 Parallel Functional Units

By replicating functional units, instructions can be issued to more than
one functional unit, as depicted in Figure 1.5. When the execution unit
issues an instruction, it sends it to a free functional unit if one exists. Oth-
erwise it waits for a functional unit to become free. If there are n func-
tional units, each of which takes m cycles to complete its operation, the
machine is capable of issuing n/m operations per cycle on average. This
type of parallelism, also known as fine-grained parallelism, may appear
more attractive than pipelining at first glance, since it permits a wider
range of operational freedom. However, there are extra costs. First, a

b1 + c1

Adder 1

b2 + c2

Adder 2

b4 + c4

Adder 4

b3 + c3

Adder 3

b5
c5

Results

Pipelining

Chapter Draft of February 8, 2001 25

pipelined unit costs only a bit more than an nonpipelined unit1, whereas
multiple functional units cost much more than single functional units.
Second, functional unit parallelism requires significantly more sophisti-
cated execution logic than pipelined parallelism. Of course, it is possible
to use both pipelining and multiple functional units.

1.2.4 Compiling for Scalar Pipelines.

In pipelined architectures, the key performance barrier has been the exist-
ence of pipeline stalls. A stall occurs when a new set of inputs cannot be
injected into the pipeline because of a condition called a hazard. Hen-
nessy and Patterson [12] classify hazards into three categories:

1. Structural hazards, which occur because the machine resources do not
support all possible combinations of instruction overlap that might
occur;

2. Data hazards, which occur when the produced by one instruction is
needed by a subsequent instruction; and

3. Control hazards, which occur because of the processing of branches.

We will illustrate these three types of hazards with examples for the vari-
ous pipelines discussed earlier in this chapter.

FIGURE 1.6 Structural hazard on the DLX with one memory port.

A structural hazard can occur whenever the implementation of a particu-
lar architecture does not have sufficient resources to support overlap of
certain kinds. For example, if a machine has only one port to memory, it

1. Seymour Cray discovered this in the 1960s between the design for the Control Data
6600 (circa 1965), which used multiple units, and the Control Data 7600 (circa 1969),
which used pipelining.

IF EX MEMID WB

IF EX MEMID WB

IF EX MEMID WB

IF EX MEMID WB

Load

ALU

ALU

ALU
stall

Compiler Challenges for High-Performance Architectures

26 ADVANCED COMPILING FOR HIGH PERFORMANCE

cannot overlap the fetch of instructions with the fetch of data. Such a
restriction would essentially serialize the IBM 7094, reducing it to the
performance of its predecessors. On a DLX with only one memory port, a
stall would occur on the third instruction after every load because the
data and instruction fetches would conflict. A structural hazard of this
kind is cannot be avoided though compiler strategies on the DLX.

A data hazard can occur on any multistage pipeline such as the DLX. On
modern machines most stalls are avoided by forwarding results from the
ALU to the ALU for the next pipeline stage. Thus a sequence of instruc-
tions like

ADD R1,R2,R3
SUB R4,R1,R5

can be executed without delay because the result of the add is forwarded
immediately to the execution stage of the subtract, without waiting for a
writeback to registers. However, this is not possible in the following
sequence:

LW R1,0(R2)
ADD R3,R1,R4

because the result of the load is not available until after the memory
cycle. Thus we see a one-cycle stall, as depicted in Figure 1.7.

FIGURE 1.7 DLX data hazard requiring a stall.

Compiler scheduling can eliminate this problem by inserting an instruc-
tion that does not use the register being loaded between the load and the
add instructions above.

Pipelined functional units present a similar challenge for compiler:
scheduling because one instruction might need to wait for an input, com-
puted by a previous instruction, that is still in the execution unit pipeline.
On the DLX, multicycle operations have several execute stages, depend-
ing on the number of pipeline stages required to execute the operation.
Suppose we wish to execute the following Fortran expression:

IF EX MEMID WB

IF EX MEMID WB

LW R1,0(R2)

ADD R3,R1,R4 stall

Pipelining

Chapter Draft of February 8, 2001 27

A+B+C

on a machine where the pipeline for floating point addition requires two
stages. If the expression is evaluated in left-to-right order, the second
addition will have to wait for one cycle before executing, as depicted in
Figure 1.8.

FIGURE 1.8 DLX data hazard requiring a stall.

Once again, compiler scheduling can help avoid such stalls. For example,
suppose the expression to be evaluated is

A+B+C+D

Then each addition after the first will have to wait two cycles for the pre-
ceding addition to complete, requiring two stalls. On the other hand, if
the compiler is able to regroup the additions as below

(A+B)+(C+D)

the second addition can proceed one cycle after the first. There would still
be a stall in the third addition, but the total has been reduced by 1.

Control hazards occur because of branch instructions. On the DLX, a
control hazard can cause a stall of three cycles, as shown in Figure 1.9.
The processor begins fetching the instruction after the branch on the
assumption that the branch will not be taken. If this assumption proves
correct, then the pipeline will proceed without interruption. Whether the
branch is to be taken will not be known until after the MEM phase of the
branch instruction. If it is to be taken then the instruction processing must
restart at the new location and intermediate results from the instruction
after the branch must be thrown away before any store to memory or
write back to registers. Thus when the branch is taken, we get an effective
three-cycle stall.

IF EX1ID

IF ID

ADDD R3,R1,R2

ADDD R3,R3,R4 stall

MEM WBEX2

EX1 MEM WBEX2

Compiler Challenges for High-Performance Architectures

28 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 1.9 DLX control hazard on branch taken using naive implementation.

Since three cycles is a huge penalty, machine designers go to great
lengths to reduce this cost. One way to do this is by adding hardware to
make it possible to determine the output of the condition and the branch
target during the instruction decode (ID) stage. If the condition is simple,
such as a test for equality to zero, both of these can be done with only one
additional ALU. Thus for these simple branches the branch-taken pipe-
line stall can be reduced to a single cycle as shown in Figure 1.10. Note
that there is no stall if the branch is not taken.

FIGURE 1.10 Reduced pipeline stalls through early recognition of branch target.

On the DLX with this implementation, there is no way to avoid a one-
cycle stall on branch taken through programming or compiler optimiza-
tion. However, some RISC architectures provide a “branch-and-execute”
instruction, which always executes the next instruction in sequence
before performing the branch. This permits the compiler to rearrange
instructions so that the last operation in the loop body, often a data store,
is performed “under the branch.”

As we have seen through these examples, the principal compiler strategy
for overcoming the performance problems due to hazards is to rearrange
instructions so that the stalls—particularly those due to data hazards—
never occur. The discussion of this strategy, referred to as instruction
scheduling, will be postponed until Section 1.4.2, which covers supersca-
lar and VLIW architectures.

IF EX MEMID WB

IF EX MEMID WBIF ID EX

Conditional Branch

stall stall stall

IF EX MEMID WB

IF EX MEMID WB
stall

Conditional Branch

Vector Instructions

Chapter Draft of February 8, 2001 29

1.3 Vector Instructions

1.3.1 Vector Hardware Overview

By the 1970s, the task of keeping the pipeline full from a standard
instruction stream had become cumbersome. High-end supercomputers
were using hardware strategies to look ahead in the instruction stream for
operations that could be initiated without waiting for another operation to
complete. These strategies made the instruction fetch and issue logic
extremely complicated.

In an effort to simplify instruction processing, machine designers turned
in the mid 1970s to an alternative approach in which certain instructions,
called vector instructions, could fill floating pipelines all by themselves.
A typical vector instruction would initiate an elementwise operation on
two vector quantities in memory or in fixed-length vector registers,
which could be loaded from memory in a single operation. On the Cray I,
released in 1975, there were seven vector registers of 64 elements each.
Each vector operation, including the load, could produce a result per
cycle after a start-up delay equal to the length of the pipeline.

To avoid excessive start-up delays for linked vector instructions, many
processors supported chaining of vector operations. Chaining entailed
initiation of a vector operation waiting for an operand computed by a pre-
vious vector operation as soon as the first result was available. Thus the
instruction sequence

VLOAD VR1, M
VADD VR3, VR2, VR1

would begin delivering results to VR3 after a delay equal to the sum of the
start-up delays of vector load and vector add. Without chaining, the vec-
tor instruction would need to wait until the vector load completed before
initiating the vector add.

Vector instructions dramatically simplified the process of issuing enough
operations to keep the pipeline full. However, including these instructions
had several drawbacks. First, they required significantly increased pro-
cessor state for the vector registers. This increased the cost of processors
and made context switching more complicated. Second, they expanded
the total number of instructions in a machine by a significant amount,
complicating instruction decode. Finally, vector instructions complicated
the memory hierarchy design because they interfered with the operation
of caches. To avoid the problem of excessive cache evictions and to keep

Compiler Challenges for High-Performance Architectures

30 ADVANCED COMPILING FOR HIGH PERFORMANCE

bandwidth high, most vector machines bypassed the cache on vector
loads and stores. This introduced the problem of maintaining coherency
between memory and cache after vector operations. One company, Cray
Research, avoided this problem by not using cache at all, substituting a
collection of explicitly managed scalar temporary registers.

1.3.2 Compiling for Vector Pipelines

Although vector instructions simplify the task of filling instruction pipe-
lines, they create new problems for the compiler and programmer. Princi-
pal among these is ensuring that the vector instructions exactly
implement the loops that they are used to encode. The following
sequence of vector operations adds two 64-element vectors1 from A and
B and stores the result into C.

VLOAD V1,A
VLOAD V2,B
VADD V3,V1,V2
VSTORE C,V3

Note that most vector operations interlock on load-store conflicts at regis-
ters, but not at memory (unlike uniprocessors such as the DLX).

In order to illustrate the primary compiler problem for vector machines,
we introduce Fortran 90 vector notation. Vector operations in Fortran 90
have semantics that reflect those of most vector instruction sets. As such,
they provide an easier way of presenting compiler issues for vector
machines. The previous vector add operation would be written in Fortran
90 as

C(1:64) = A(1:64) + B(1:64)

Under the standard semantics for Fortran 90, an array assignment state-
ment must be implemented to behave as if every input on the right hand
side of the assignment is loaded from memory before any element of the
result is stored. In other words, all inputs mentioned on the right hand
side refer to their values before the statement is executed.

With these principles in mind, how can compilers utilize vector units on
source programs written in Fortran 77, which has no mechanism for

1. Throughout this book, when no specific hardware vector length is stated, 64 is
assumed, since that is the most common vector length.

Vector Instructions

Chapter Draft of February 8, 2001 31

specifying vector operations? The compiler will instead be presented
with simple loops like

DO I = 1, 64
C(I) = A(I) * B(I)

ENDDO

Before it can schedule this loop on vector hardware, the compiler must
determine whether the loop is semantically equivalent to the Fortran 90
array assignment above. If so, the assignment inside the loop can be vec-
torized by transliterating the references to the loop induction variable into
corresponding triplet notation. However, the issue is not a simple one,
because the loop performs all the loads and stores corresponding to one
iteration before beginning the next, while the array statement performs all
loads before any stores. In the case above, either execution order pro-
duces the same final results, so that the meaning is precisely the same—
hence the loop is referred to as vectorizable. However, a slightly different
case demonstrates a potential problem:

DO I = 1, 64
A(I+1) = A(I) + B(I)

ENDDO

Here each iteration of the Fortran 77 loop uses a result from the previous
iteration, unlike the transliterated Fortran 90 array statement:

A(2:65) = A(1:64) + B(1:64)

in which all inputs on the right are old values. Hence, this second exam-
ple is not vectorizable. Distinguishing between these two cases is the fun-
damental problem of vectorization, and was the motivation behind the
development of the theory of data dependence.

Given that the primary compiler problem for vector machines is uncover-
ing vector operations, it may appear that using a language that contains
explicit array operations (such as Fortran 90) would solve the problem of
vectorization. Unfortunately (or fortunately, if you make your livelihood
as a compiler writer!), explicit array operations have an analogous set of
compiling problems, as we shall see in Chapter 13.

Compiler Challenges for High-Performance Architectures

32 ADVANCED COMPILING FOR HIGH PERFORMANCE

1.4 Superscalar and VLIW Processors

1.4.1 Multiple-Issue Instruction Units

A major disadvantage of vector operations is that they complicate
instruction set design. In addition to a full complement of scalar instruc-
tions—hundreds on most modern machines—a vector processor must
support a correspondingly large set of vector instructions, including not
only instructions to perform computations, but also instructions to set up
vector operations and conditional instructions that operate under bit-vec-
tor masks.

This complexity can be avoided. On modern machines, normal unipro-
cessor instructions can be issued as fast as vector operations can process
operands. Thus, if we could issue one or more pipelined instructions on
each cycle, it might be possible to produce results at a rate comparable to
that of a vector processor. This is the basic idea behind superscalar and
VLIW processors. In each of these schemes, the processors are designed
to issue instructions as fast as possible, assuming all the inputs are ready.
These machines are typically able to issue more than one instruction per
cycle, up to some upper bound determined by the hardware.

Superscalar machines accomplish this by looking ahead in the instruction
stream for instructions that are ready to execute. Thus, a superscalar pro-
cessor can continue to issue instructions so long as each instruction it
encounters is “ready.” Some machines are even capable of issuing
instructions out of order.

A VLIW processor, on the other hand, issues multiple instructions by
executing a single “wide instruction” on each cycle. A wide instruction
holds several normal instructions, all of which are to be issued at the
same time. Typically each of these instructions corresponds to an opera-
tion on a different functional unit. Thus, if a VLIW machine has two
pipelined floating multiply units, it can issue two floating multiplications
per cycle. On a VLIW system, the programmer or the compiler is
expected to manage the execution schedule and pack the wide instruction
words correctly—that is, so that no instruction is issued until all its inputs
are ready. Thus, there is no need for special lookahead hardware on such
machines.

Although superscalar and VLIW architectures can achieve the speed of
vector execution, they have some disadvantages. First, they require sig-
nificantly more bandwidth for fetching instructions from memory, mak-

Superscalar and VLIW Processors

Chapter Draft of February 8, 2001 33

ing it imperative to have instruction caches large enough to hold all
instructions in a typical loop. In addition, data fetches typically use the
same memory hierarchy as simple processors, with all operands passing
through the cache, which creates problems when the cache size is limited
and operands are used only once. This was the reason that vector loads
were designed to bypass the scalar cache on most vector machines.

An additional problem caused by passing arguments through cache is that
stride-one data access becomes critical to good performance. If the
access pattern in a loop is not consecutive, much of the available memory
bandwidth between memory and cache will be wasted on operands that
are not immediately used. Given that bandwidth limitations are a major
problem on such machines, the issue is a serious one.

In the abstract, superscalar and VLIW machines can be thought of as vec-
tor processors because they can effectively exploit the parallelism
exposed by vectorization. Indeed, many modern microprocessors, such as
the Motorola G4 used in Apple Macintoshes, include “vector units” that
are really VLIW coprocessors.

1.4.2 Compiling for Multiple-Issue Processors

To achieve their full potential, superscalar and VLIW machines require
careful planning of operations so that the machine resources are used to
the fullest extent possible. Because most application developers do not
program in machine language, it is the task of the compiler to carry out
this planning process. This involves two challenges:

1. The compiler must recognize when operations are not related by
dependence so that each may be executed without regard for the
schedule of execution of the others.

2. The compiler must schedule instructions in the computation so that it
requires as few total cycles as possible.

The first challenge can be addressed by vectorization, because it exposes
many operations that can be executed in parallel. The second challenge,
on the other hand, requires a new compiler strategy called instruction
scheduling, which is a major topic in Chapter 10. In its simplest form,
instruction scheduling amounts to executing instructions as early as pos-
sible within the limits of processor resources and program dependence.

An often-repeated myth is that modern superscalar processors do not
need scheduling because of the aggressive and powerful lookahead strat-
egies they employ. Indeed, it is true that scheduling is less essential than

Compiler Challenges for High-Performance Architectures

34 ADVANCED COMPILING FOR HIGH PERFORMANCE

it is on VLIW processors. Nevertheless, superscalar systems all have
bounded-size windows for lookahead in the instruction stream and, as the
amount of hardware parallelism increases, the search for parallel opera-
tions will need to widen to well beyond the limits of instruction-stream
lookahead. Compilers can help by rearranging the instruction stream to
ensure that as much parallelism as possible fits within the lookahead win-
dow.

In this section, we concentrate on VLIW processors because they must be
explicitly scheduled, which makes the issues crystal clear. Furthermore, a
good schedule for a VLIW processor also provides a good schedule for a
superscalar with the same resources—listing the instructions in each
cycle from the first to the last cycle should yield a superscalar program
that does at least as well as the VLIW program from which it is gener-
ated.

To schedule straight line code, the compiler must understand which
instructions depend on other instructions and, for each dependence rela-
tion, how long a delay is required between the first and second instruc-
tion. To illustrate this, consider scheduling the following instruction
sequence for a machine capable of issuing one instruction per cycle:

LD R1,A
LD R2,B
FADD R3,R1,R2
STD X,R3
LD R4,C
FADD R5,R3,R4
STD Y,R5

If there is a 2-cycle delay for loads from cache—that is, any instruction
using the results of a load cannot issue until two cycles after the load is
issued—and there is also a two-cycle delay for floating addition, then the
scheduling of the sequence above can be improved by positioning the
load of C earlier and the store of X later in the sequence:

LD R1,A
LD R2,B
LD R4,C
FADD R3,R1,R2
FADD R5,R3,R4
STD X,R3
STD Y,R5

The first schedule takes 11 cycles to issue all instructions, because four
one-cycle delays must be inserted between instructions—one before each

Processor Parallelism

Chapter Draft of February 8, 2001 35

addition and each store. On the other hand, the second schedule takes
only 8 cycles to issue all instructions because the only required delay is
between the two additions.

The fragment above cannot be improved on a machine that can issue
more than one instruction per cycle, because there are too many depen-
dences between instructions. However, consider the following sequence,
which performs two independent additions:

LD R1,A
LD R2,B
FADD R3,R1,R2
STD X,R3
LD R4,C
LD R5,D
FADD R6,R4,R5
STD Y,R6

On a VLIW machine that can issue two loads and two adds per cycle, we
could completely overlap the computation of the second expression with
the computation of the first. On the other hand, if the machine can issue
two loads but only one addition per cycle, we require an extra cycle, as
the following schedule demonstrates:

Scheduling becomes more complicated in a loop, where the goal is to
construct an equivalent loop of minimum length by overlapping compu-
tations from different iterations of the original loop. This type of schedul-
ing, also known as “software pipelining,” is discussed in Chapter 10.

1.5 Processor Parallelism

While pipelining is an effective way to speed up the execution of a single
processor or functional unit, processor parallelism reduces the running
time of an application by carrying out different tasks, or the same task on
different data sets, simultaneously using multiple processors. There are

LD R1,A LD R4,C

LD R2,B LD R5,D

delay delay

FADD R3,R1,R2 dela:

STD X,R3 FADD R6,R4,R5

empty STD Y,R6

Compiler Challenges for High-Performance Architectures

36 ADVANCED COMPILING FOR HIGH PERFORMANCE

two commonly-used forms of processor parallelism, distinguished by
their granularity of synchronization.

1. Synchronous Processor Parallelism. This strategy replicates whole
processors, with each processor executing the same program on differ-
ent portions of the data space. Examples of this type of parallel system
are the Thinking Machines CM-2, the MasPar MP-2 and the AMT
DAP, all introduced in the late 1980s or the early 1990s. The main
advantage of a synchronous system is that synchronization operations
are cheap because the instructions are executed in lock step, so these
machines are capable of exploiting a much finer granularity of paral-
lelism. On the other hand, synchronous machines are not very efficient
on code with branches because they must execute the two sides of a
branch in sequence, with different processors disabled on each side.

FIGURE 1.11 Asynchronous shared-memory multiprocessor.

2. Asynchronous Processor Parallelism. This second form of parallelism
replicates whole processors, but allows each processor to execute dif-
ferent programs or different parts of the same program with coarse-
grained, explicit synchronization. Figure 1.11 shows the organization
of a typical asynchronous parallel machine with shared global mem-
ory. Processors using this design are called symmetric multiprocessors
(SMPs) and are available from a variety of vendors including Compaq,
Hewlett-Packard, IBM, Intel, Sequent, Silicon Graphics, and Sun
Microsystems. On these machines, if synchronization between proces-
sors is required, it must be explicitly specified. The problem with
asynchronous parallelism is the relatively high cost of starting up par-
allel tasks—a process must be spawned for each processor and proces-
sors must be synchronized before accessing any shared data. Because
of this, it is essential that parallel execution be used only if there is
enough work to compensate for the overhead.

p1

Memory

Bus

p2 p3 p4

Processor Parallelism

Chapter Draft of February 8, 2001 37

In spite of its advantages, parallelism presents many problems for hard-
ware and software designers. When a machine contains multiple proces-
sors, some mechanism is necessary to share the resources among the
different processors. The processors must also be able to communicate
with each other in order to pass data and coordinate computations, which
involves sophisticated hardware mechanisms. Finally, the software for
parallel machines is generally much more complicated than for scalar and
vector computers. For these reasons, parallel processing took much
longer to achieve widespread acceptance than vector processing. Never-
theless, as of the publication of this book, shared-memory parallel com-
puters with a modest numbers of processors have become the standard
for science and engineering workstations.

Although parallel processing in its various forms employed together in a
single system can achieve impressive speeds, fast hardware is only one
part of obtaining fast programs. Unless software is able to take effective
advantage of the parallelism present within a processor, the hardware
simply becomes a wasted, expensive resource. Accordingly, increasing
the effective computation rate for applications requires developing mech-
anism for exploiting parallelism at the language level.

1.5.1 Compiling for Asynchronous Parallelism

Although it might at first seem that compiling for asynchronous parallel-
ism should present roughly the same challenges that vectorization pre-
sents, there are some additional complexities. First, execution schedules
on parallel machines permit much more flexibility. To support our discus-
sion of this topic, we introduce a Fortran notation for parallel loops.

The PARALLEL DO statement, which is similar to constructs in use in a
number of dialects of Fortran, guarantees that there are no scheduling
constraints among its iterations. As a result, the different iterations may
be executed in parallel according to any schedule. In other words, the
statement is an assurance from the programmer to the system that it
should feel free to execute these iterations in parallel. In a 1966 paper,
Bernstein [10] established that two iterations I1 and I2 can be safely exe-
cuted in parallel if

1. iteration I1 does not write into a location that is read by iteration I2.

2. iteration I2 does not write into a location that is read by iteration I1.

3. iteration I1 does not write into a location that is also written into by
iteration I2.

Compiler Challenges for High-Performance Architectures

38 ADVANCED COMPILING FOR HIGH PERFORMANCE

As an illustration, consider the following example, which violates Bern-
stein’s conditions:

PARALLEL DO I = 1, N
A(I+1) = A(I) + B(I)

ENDDO

This simple case is analogous to the example used in vectorization. Here,
the store into A(I+1) on one iteration modifies the same location that is
loaded from A(I) on the next iteration. Because the schedule is unspeci-
fied, the result from the second of these iterations will differ, depending
on whether the store on iteration 1 takes place first, in which case it will
produce the same value as the sequential loop, or the load on iteration 2
occurs before the store on iteration 1, in which case the result will be dif-
ferent. Note that the answer may vary from execution to execution.

The following loop represents a more subtle case:

PARALLEL DO I = 1, N
A(I-1) = A(I) + B(I)

ENDDO

Here, the store is into a location used on the previous iteration. On most
vector architectures, this loop could be safely vectorized, but a paralleliz-
ing compiler must be more careful. Consider, for instance, the specific
iterations I=2 and I=3. In the sequential analog, the fetch of A(2) that
occurs on iteration 2 always precedes the store to A(2) on iteration 3. In
the parallel version, this fetch may come before or after the store, causing
the loop to compute different values for A.

Finally, consider a loop that violates the third Bernstein Condition.

PARALLEL DO I = 1, N
S = A(I) + B(I)

ENDDO

In the sequential analog, after execution of the loop, S always contains
the same value—the one assigned on iteration N. In the parallel version,
any iteration may be the last to execute, giving S a value that is highly
nondeterministic.

To ensure correctness, a modern parallelizing compiler converts a
sequential loop to a parallel one only when it is able to verify that none of
Bernstein’s conditions holds.

Memory Hierarchy

Chapter Draft of February 8, 2001 39

The second new problem introduced by asynchronous parallel machines
is that of granularity. Because asynchronous parallel processes have large
start-up and synchronization overhead, a parallel loop should not be initi-
ated unless there is enough work to compensate for this added cost. By
contrast, the synchronization overhead on vector units is small enough to
permit profitable vectorization of even single statement loops. Thus,
because of the high cost of synchronizing processors, a programmer
should attempt to minimize the frequency of synchronization generated
by a parallel loop, which is equivalent to increasing the granularity of the
parallel iterations.

For the compiler, the implication is that outer loops must be parallelized
rather than the inner loops (which is the choice in vectorization), so as to
minimize the number of times processors must be synchronized. Simi-
larly, a compiler must be able to parallelize loops with subroutine and
function calls, because subroutine invocations are good sources of com-
putation, and almost any loop with a lot of computation will contain
some calls. These considerations make the job of a parallelizing compiler
much harder than the job of a vectorizing compiler, because they obligate
it to analyze much larger regions, including regions that span multiple
procedures.

The final challenge faced by compilers for asynchronous parallel
machines arises from the need to access large global memories. Some of
the most historically important parallel systems (e.g., the Intel iPSC 860)
did not have globally shared memory. Instead, each processor could
access only the memory that was packaged with it. Such machines are
sometimes called multicomputers, to distinguish them from multiproces-
sors (which typically share memory). Today’s SMP clusters (e.g., the
IBM SP) share memory among a small number of processors on a single
node but cannot directly access the memory on a different node. Parallel-
izing compilers for multicomputers and SMP clusters must decide issues
such as which memories hold which variables and when communication
primitives are required to move data to a compute node that doesn’t own
it. These difficult issues are difficult to solve, and will be revisited in
Chapter 14.

1.6 Memory Hierarchy

One complicating aspect of every modern architecture is the memory
hierarchy. As processor speeds continue to improve faster than memory
speeds, the distance between main memory and processors (as measured

Compiler Challenges for High-Performance Architectures

40 ADVANCED COMPILING FOR HIGH PERFORMANCE

in cycles for a register load) becomes greater. Two decades ago, loads
from memory rarely took more than 4 cycles; today, load times in excess
of 50 cycles are common. This trend is especially obvious on parallel
machines, where complex interconnections are required to allow every
processor access to all of memory. On parallel processors, load times
may be as high as several hundred machine cycles. As a result, most
machines include features that can be used to ameliorate the performance
problems caused by long access times. Unfortunately, the ratio of proces-
sor speed to memory speed is unlikely to improve soon, because total
memory sizes are increasing as well, making a technology shift too
expensive to consider seriously.

There are two common measures of the performance of a memory sys-
tem:

1. Latency is the number of processor cycles required to deliver any sin-
gle data element from memory, and

2. Bandwidth is the number of data elements that can be delivered to the
processor from the memory system on each cycle.

For the purpose of analyzing performance, both measures are important.
Latency determines the time that the processor must wait for a value
requested from main memory. Many processors stall until a load from
main memory completes; on these processors, it is important to minimize
the number of requests to memory. Other processors will continue work
with an outstanding request to memory, but must stall when the results
are required in by another operation; on those processors, it is important
to try to schedule enough operations between a load and the use of its
results to keep the processor busy. Bandwidth determines how many
memory operations can be supported each cycle; the higher the band-
width, the more memory values that can be fetched at one time.

There are two ways to deal with processor latency: avoidance and toler-
ance. Latency avoidance refers to strategies that reduce the typical laten-
cies experienced in a computation. Memory hierarchies are the most
common mechanisms for latency avoidance. If values that are referenced
multiple times are stored in a fast intermediate memory, such as proces-
sor registers or cache, then references after the first will be much cheaper.
Latency avoidance techniques also improve the effective utilization of
memory bandwidth.

Latency tolerance means doing something else while data is being
fetched. The use of explicit prefetching or nonblocking loads are two

Memory Hierarchy

Chapter Draft of February 8, 2001 41

ways to tolerate latency. Another interesting latency tolerance mecha-
nism, called synchronous multithreading is employed on Cray/Tera MTA.
This machine provides a fast context switch that makes it possible to
change to a new execution stream every cycle. If enough streams are
active and control is continually switched from one stream to another in a
round-robin fashion, latencies will appear small to each stream.

In this book, we will concentrate on latency avoidance through memory
hierarchies and latency tolerance through cache line prefetching because
they are more common in current practice. Although the intent of mem-
ory hierarchies is to transparently provide the performance of the fastest
level of the hierarchy at roughly the cost of the slowest level, the extent to
which that goal is achieved depends on how effectively programs reuse
memory values in cache or registers. Restructuring programs to provide
more opportunity for reuse can often lead to dramatic improvements in
processor performance.

1.6.1 Compiling for Memory Hierarchy

Although memory hierarchies are intended overcome the poor relative
performance of system memory, they do not always succeed. When they
fail, the result is very poor performance because the processor is always
waiting for data. A common occurrence on machines with cache memory
is that programs achieve very high performance on small test problems
(which are those most commonly used to benchmark machines before
purchase), but perform very poorly when the problem is increased to a
realistic size. This usually means that the entire data set for the smaller
problem could fit into cache, but the larger problem could not. As a result,
a cache miss might occur on every data access for the large problem, but
only once per array element on the smaller one. A simple example will
serve to illustrate the problem.

DO I = 1, N
DO J = 1, M

A(I) = A(I) + B(J)
ENDDO

ENDDO

Assume that this loop nest is executed on a machine with one-word cache
blocks and a cache that always replaces the least recently used (LRU)
block when space is needed. Although the example code efficiently
accesses the elements of array A, incurring only one miss per element, it
will always miss on the access to B(J) if M is large enough. The crossover
from good to bad performance occurs when M grows larger than the size

Compiler Challenges for High-Performance Architectures

42 ADVANCED COMPILING FOR HIGH PERFORMANCE

of the cache in words. Because an element of B is not reused until all of
the M-1 other elements of B are used, when M is large enough, an LRU
cache will evict each element of B before it has a chance to be reused on
the next iteration of the I loop.

One way to alleviate this problem is to strip mine the inner loop to a size
that will fit in cache and interchange the “by-strip” loop to the outermost
position:

DO JJ = 1, M, L
DO I = 1, N

DO J = JJ, JJ+L-1
A(I) = A(I) + B(J)

ENDDO
ENDDO

ENDDO

Here, L must be smaller than the number of words in the cache. This sec-
ond example misses only once for each element of B, since an element of
B stays in the cache until all its uses are finished. The cost is an increase
in the number of misses on references to A. However the total number of
misses on references to A is approximately as opposed to
misses on references to B in the original code.

While programmers can make changes like this to their source programs,
doing so leads to machine-specific code that must be retargeted by hand
to each new machine. We believe this kind of machine-specific optimiza-
tion should be the job of the optimizing compiler. Later chapters will
show how compiler technology developed for vectorizing and paralleliz-
ing compilers can be adapted to optimizing use of memory hierarchy.

1.7 A Case Study: Matrix Multiplication

To illustrate how machine architecture affects the way a particular com-
putation should be programmed for highest efficiency, we now show
some different arrangements of the code for matrix multiplication, a com-
putation that is at the heart of many important scientific applications. A
typical Fortran loop nest to compute the product of two matrices A and B
is shown below.

DO I = 1, N
DO J = 1, N

C(J,I) = 0.0
DO K = 1, N

C(J,I) = C(J,I) + A(J,K) * B(K,I)

NM() L⁄ NM

A Case Study: Matrix Multiplication

Chapter Draft of February 8, 2001 43

ENDDO
ENDDO

ENDDO

This code fragment employs a simple strategy to compute the product
matrix C: the two outer loops select a specific element of the product
matrix to compute and the inner loop computes that element by taking the
inner product of the appropriate row of the first input and column of the
second. On a scalar machine (one supporting no parallel processing or
vector operations), this code makes excellent use of the hardware. Since
the inner loop accumulates products into C(J,I), there is no need to
access memory (either fetches or stores) for C during that loop. Instead,
the intermediate results can be kept in a scalar register until the loop has
completed, and then stored to memory. When presented with this frag-
ment, a good optimizing compiler should generate code that comes close
to the optimal performance possible on a scalar machine, although this
requires recognizing that the array quantity C(I,J) is invariant in the
inner loop and can be allocated to a register.

FIGURE 1.12 Matrix multiplication execution pipeline interlock.

On a scalar machine with a pipelined floating-point unit, the same code is
not likely to fare as well. The code runs efficiently on a non-pipelined
scalar machine because the result of one iteration of the innermost loop is
immediately used on the next, making it possible to reuse the result from
a register. On a pipelined machine, each iteration must wait until the final
addition on the previous iteration is available before it can begin its own
final addition (see Figure 1.12). One way to overcome this problem is to
work on four different iterations of an outer loop at the same time, thus
filling the four pipe stages with four independent computations, as shown
in Figure 1.12. The Fortran code to accomplish this is given below (here
N is assumed to be a multiple of 4).

DO I = 1, N,
DO J = 1, N, 4

C(J,I) = 0.0
C(J+1,I) = 0.0
C(J+2,I) = 0.0

A(1,1)*B(1,1)
C(1,1)+

A(1,2)*B(2,1)

Compiler Challenges for High-Performance Architectures

44 ADVANCED COMPILING FOR HIGH PERFORMANCE

C(J+3,I) = 0.0
DO K = 1, N

C(J,I) = C(J,I) + A(J,K) * B(K,I)
C(J+1,I) = C(J+1,I) + A(J+1,K) * B(K,I)
C(J+2,I) = C(J+2,I) + A(J+2,K) * B(K,I)
C(J+3,I) = C(J+3,I) + A(J+3,K) * B(K,I)

ENDDO
ENDDO

ENDDO

FIGURE 1.13 Pipeline filling via outer loop unrolling.

On a vector machine, the inner loop of the scalar matrix multiplication
cannot be vectorized because the computation is a recurrence—that is,
the interleaved load-store order of the scalar code is required to maintain
the meaning of the code (assuming that reassociation of the addition is
prohibited because of precision requirements). On a vector machine like
the Cray T90, which has vector length 64, we need to move 64-element
vector operations into the inner loop so that the vector registers on the
T90 can be reused on each iteration. Thus the best code for the T90 looks
like this:

DO I = 1, N
DO J = 1, N, 64

C(J:J+63,I) = 0.0
DO K = 1, N

C(J:J+63,I) = C(J:J+63,I) + A(J:J+63,K) * B(K,I)
ENDDO

ENDDO
ENDDO

This form of matrix multiplication extends the scalar register properties
of the first code to the vector registers of the Cray. The K-loop now per-
forms all computations necessary for one vector section of the product
matrix; as a result, that section may be accumulated in a vector register
just as the single element may be accumulated in the scalar form.

On a VLIW with 4-way simultaneous issue, 4 floating-point multiply-
adders and 4 pipeline stages, a good version might be:

A(1,1)*B(1,1)
C(1,1)+

A(1,2)*B(2,1) A(2,1)*B(1,1)
C(2,1)+

A(3,1)*B(1,1)
C(3,1)+

A(4,1)*B(1,1)
C(4,1)+

A Case Study: Matrix Multiplication

Chapter Draft of February 8, 2001 45

DO I = 1, N, 4
DO J = 1, N, 4

C(J:J+3,I) = 0.0
C(J:J+3,I+1) = 0.0
C(J:J+3,I+2) = 0.0
C(J:J+3,I+3) = 0.0
DO K = 1, N

C(J:J+3,I) = C(J:J+3,I) + A(J:J+3,K) * B(K,I)
C(J:J+3,I+1) = C(J:J+3,I+1) + A(J:J+3,K) * B(K,I+1)
C(J:J+3,I+2) = C(J:J+3,I+2) + A(J:J+3,K) * B(K,I+2)
C(J:J+3,I+3) = C(J:J+3,I+3) + A(J:J+3,K) * B(K,I+3)

ENDDO
ENDDO

ENDDO

Here the intent is that the four multiply-adds for C(J:J+3,I) would be
issued in the same cycle, followed by those indexed by I+1 and so on.
This version of the code should keep all four floating point units busy.

The considerations that must be taken into account on symmetric multi-
processors (SMPs) are different from those used for vector machines.
Since vector loops are executed “synchronously” by hardware, they must
be the innermost loops in a given nest. Parallel loops, on the other hand,
are executed asynchronously and therefore it is desirable to move them to
the outermost position to ensure that there is enough computation to com-
pensate for the start-up and synchronization overhead. Thus, on an SMP
like the Sun Starfire, the best formulation of matrix multiplication should
be:

PARALLEL DO I = 1, N
DO J = 1, N

C(J,I) = 0.0
DO K = 1, N

C(J,I) = C(J,I) + A(J,K) * B(K,I)
ENDDO

ENDDO
ENDDO

In this form, each processor can independently compute a column of the
product matrix, with no need to synchronize with other processors until
the product is complete. This form requires that all processors have
access to the entire A matrix and one column of the B matrix, which is
trivially true in SMPs, where memory is shared among all its processors.

On a scalar uniprocessor with an unpipelined floating point unit and a
cache that is large enough to hold more than 3L2 floating point numbers
without any cache conflicts (assume the cache is fully associative), we

Compiler Challenges for High-Performance Architectures

46 ADVANCED COMPILING FOR HIGH PERFORMANCE

may wish to block cache to multiply a submatrix at a time. In the follow-
ing code, assume that L divides evenly into N:

DO II = 1, N, L
DO JJ = 1, N, L

DO i = II, II+L-1
DO j = JJ, JJ+L-1

C(j,i) = 0.0
ENDDO

ENDDO
DO KK = 1, N , L

DO i = II, II+L-1
DO j = JJ, JJ+L-1

DO k = KK, KK+L-1
C(j,i) = C(j,i) + A(j,k) * B(k,i)

ENDDO
ENDDO

ENDDO
ENDDO

ENDDO
ENDDO

The idea here is that the first loop nest initializes an L by L block of C and
the second loop nest computes the values for that block. By blocking the
loop on K, we are able to get reuse of L by L blocks of both A and B. In
other words, on each iteration of the KK-loop we multiply an L by L block
of A and an L by L block of B and add the result to an L by L block of C.

Two important lessons should be evident from this study of matrix multi-
plication:

1. Explicit representation of parallelism in a source language is not suffi-
cient to guarantee optimal use of parallel hardware. Each of the six
machine types presented required a different representation of paral-
lelism—radically different in some cases. Furthermore, getting the
best form for a specific machine required detailed knowledge of the
machine's architecture. This observation suggests that explicitly paral-
lel programs need to be tailored for individual architectures; they lose
efficiency when ported from one machine to another.

2. While the best version of matrix multiplication is different for each
machine type, all of these forms can be derived from the initial non-
parallel source by relatively simple program transformations—most
can be obtained by simply interchanging the order in which the loops
are executed.

Advanced Compiler Technology

Chapter Draft of February 8, 2001 47

Given the increasing lifetime of software and the decreasing lifetime of
hardware, these lessons suggest that tailoring code to the specific
machine architecture is best left to the compiler. The next section intro-
duces the basic elements of a compiler technology designed to make this
goal achievable.

1.8 Advanced Compiler Technology

It is the job of the compiler to transform a computation from a high level
representation that is easy for a human to understand into a low level rep-
resentation that a machine can execute. The high level of the human rep-
resentation is rarely intended to accommodate details of machine
architecture, so a naive translation process may introduce inefficiencies
into the generated machine-level program. The goal of optimization
phases in compilers is to eliminate these inefficiencies, and to transform a
computational representation into one that is well-tuned for a given archi-
tecture.

A natural implication of the philosophy that compilers should be respon-
sible for tailoring programs to specific architectures is to make them
responsible for automatically transforming code to take advantage of par-
allelism. In this view, the source program is treated as a “specification,”
which defines the result the program is to compute. The compiler is free
to transform a program in any way that makes sense, so long as the trans-
formed program computes the same results as the original specification.
While this viewpoint seems natural enough, it is often met with skepti-
cism because of the radical transformations required to exploit parallel-
ism. For instance, matrix multiplication required loop interchange, loop
splitting, loop distribution, vectorization, and parallelization to achieve
optimal results across various parallel architectures. These transforma-
tions are not usually found in classical optimizers.

This book presents the theoretical and practical ideas behind a compiler
approach based upon the paradigm of aggressively transforming a
sequential specification. We focus primarily on methods for uncovering
parallelism in Fortran 77 programs, since Fortran is currently the lingua
franca of scientific computing. We will not argue the merits of this
approach versus that of starting from a parallel computation; both
approaches have strong arguments in their favor. However, we will note
that starting from a sequential language has the very practical advantage
that it targets the bulk of existing programs. In addition, the book will
demonstrate that the same theory used to uncover parallelism in sequen-

Compiler Challenges for High-Performance Architectures

48 ADVANCED COMPILING FOR HIGH PERFORMANCE

tial programs can also be applied to optimizing explicitly parallel pro-
grams.

1.8.1 Dependence

When a programmer writes a program in a sequential programming lan-
guage, the results that he expects the program to compute are those
obtained by first executing the initial program statement, then the second,
and so on, with appropriate exceptions for control flow constructs such as
branches and loops. In essence, the programmer has specified a detailed
ordering on the operations he expects the computer to execute. Obvi-
ously, exploiting parallelism directly from such a specification is impos-
sible, because parallelization changes the order of operations.

The fundamental challenge that an advanced compiler must meet is
determining when an execution order (one that includes parallel or vector
execution) that is different from the order specified by the programmer
will always compute the same results. In other words, sequential lan-
guages introduce constraints that are not critical to preserving the mean-
ing of a computation; the key to transforming such programs to parallel
form is finding minimal constraints needed to ensure that the transformed
program will produce the correct results on every input. If these con-
straints can be precisely characterized, then the compiler can be allowed
to reorder execution of the program in any way that does not change these
constraints.

In this book we develop a set of constraints, called dependences, that are
sufficient to ensure that program transformations do not change the
meaning of a program as represented by the results it computes. These
constraints are not precise—there are cases where they can be violated
without changing the program meaning. However, they capture an impor-
tant strategy for preserving correctness in imperative languages—they
preserve the relative order of loads and to each memory location in the
program. (They do not preserve the relative order of reads of the same
location, but this cannot affect a program’s meaning.) We will see that the
concept of dependence can be extended to preserve the effect of control
decisions on later actions.

Specifically, dependence is a relation on the statements on the program.
The pair 〈S1, S2〉 is in the relation if S2 is executed after S1 in the sequen-
tial program, and must be executed after S1 in any valid reordering of the
program if the order of access to memory is to be preserved. To illustrate
the concept of dependence, consider the following simple code fragment:

Advanced Compiler Technology

Chapter Draft of February 8, 2001 49

S1 PI = 3.14159
S2 R = 5
S3 AREA = PI * R ** 2

The results of this fragment are defined as being those that occur when
the execution order 〈S1,S2,S3〉 is taken. However, nothing in the code
requires that S2 be executed after S1—in fact, the execution order
〈S2,S1,S3〉 produces exactly the same results (i.e. the same value of the
variable AREA) as the original order. In contrast, the time at which S3 is
executed is critical; if it is executed before either S1 or S2 an incorrect
value of AREA will be computed because the input operands will not have
been set. In terms of dependence, the pairs 〈S1,S3〉 and 〈S2,S3〉 are in the
dependence relation of the fragment, but the pair 〈S1,S2〉 is not.

Dependence in straight-line code is an easy concept to understand.
Unfortunately, examination of straight-line code alone does not ensure
effective utilization of parallelism. To achieve the highest performance,
we must extend the concept of dependence to the most frequently exe-
cuted parts of the program by making it possible to handle loops and
arrays. The following example illustrates the complexities introduced by
these extensions:

DO I = 1, N
S1 A(I) = B(I) + 1
S2 B(I+1) = A(I) - 5

ENDDO

This loop exhibits the dependence 〈S1,S2〉, because on every iteration the
computed value of A is immediately used in S2, and the dependence
〈S2,S1〉, because every loop iteration other than the first uses a value of B
computed on the previous iteration. Detecting these dependences is diffi-
cult enough, since different loop iterations touch different elements of the
arrays. However, even that is only part of the problem; the cycle in the
dependence graph, indicating the cyclic nature of the loop, complicates
scheduling algorithms for utilizing parallelism.

Loops and arrays are only some of the constructs that the compiler must
learn to deal with. IF statements also introduce problems. The fact that
statements may be conditionally executed according to values available
only at run-time is a distinct complication in the transformation process.
For that matter, the dependences of a program may be conditioned upon
the values of certain key variables—information which is available only
at run-time.

Compiler Challenges for High-Performance Architectures

50 ADVANCED COMPILING FOR HIGH PERFORMANCE

Much of the first half of this book is devoted to the development of the
theory of dependences and methods for accurately constructing them in a
program.

1.8.2 Transformations

As described so far, dependence is only a passive guide for uncovering
implicit parallelism within a program. However, it is far more than that.
Because dependences specify how a program's execution may be reor-
dered, dependence can also form the basis for powerful transformation
systems that enhance the parallelism present within a program. For
instance, the simple exchange of two arrays

DO I = 1, N
T = A(I)
A(I) = B(I)
B(I) = T

ENDDO

cannot be directly vectorized because the scalar temporary T creates a
bottleneck to the vector computation—only one element can be trans-
ferred at a time in the program as specified. If the scalar temporary is
expanded into a vector temporary

DO I = 1, N
T(I) = A(I)
A(I) = B(I)
B(I) = T(I)

ENDDO

then the loop can be directly vectorized. The legality of transformations
like this one can be determined by examining the dependences of a pro-
gram. (This particular transformation, called scalar expansion, is dis-
cussed in Chapter 5.)

The material in Chapter 5, Chapter 6, and the second half of the book dis-
cusses the application of dependence to the support of program transfor-
mations. In order to illustrate the concepts of program transformations, it
is necessary to have a language in which examples can be presented.
Since Fortran is by far and away the most heavily used language on paral-
lel and vector computers today, the most logical choice of language is a
version of Fortran extended with vector and parallel operations. For this
purpose, we will use Fortran 90 with the addition of a parallel loop state-
ment. Appendix A on page 831 contains a simple introduction to the fea-
tures of Fortran 90.

Chapter Summary

Chapter Draft of February 8, 2001 51

1.9 Chapter Summary

This chapter has introduced the basic problems of compiling high-level
languages to code that achieves acceptable performance on high-perfor-
mance computer systems. It has surveyed important architectural fea-
tures, including pipelining, vector parallelism, VLIW and superscalar
processing, asynchronous parallelism and memory hierarchy. For each of
these we have introduced optimizations that are helpful in improving per-
formance. These strategies include instruction scheduling, automatic vec-
torization, automatic parallelization, and loop transformations to improve
reuse in the memory hierarchy.

Compiling systems that perform such transformations work by determin-
ing those execution orders within the total ordering that must be observed
in order to preserve the results of the computation. Those execution
orders are captured in a relation known as dependence—statement S2 is
said to depend upon statement S1 if S2 follows S1 in execution in the
sequential program, and it must follow S1 in any transformed program
that computes the same results. With this definition, a compiler is free to
reorder statement instances so long as it does not change the relative
order of any two statements involved in a dependences.

1.10 Case Studies

In each of the chapters in this book, we have included a section on “case
studies” which discusses the authors’ experiences with actual implemen-
tations of the concepts described in the chapter. Most of these experi-
ences focus on two major systems: PFC and the Ardent Titan compiler.

The PFC system was developed at Rice by the two authors under a major
research contract from IBM. Initially, PFC focused exclusively on vector-
ization and it served as a model for a later vectorizing compiler from
IBM. PFC was built from the ground up on the twin concepts of depen-
dence and program transformations, and it served as a framework for
investigations that addressed subjects far beyond vectorization, including
parallelization, memory hierarchy management, and interprocedural
analysis and optimization. It was the starting point for a series of related
research systems at Rice, including PTOOL, a program parallelization
tool that displayed dependences (races) preventing parallelism directly in
the source code, ParaScope, a parallel programming environment, and
the D System, a compiler and programming environment for HPF.

Compiler Challenges for High-Performance Architectures

52 ADVANCED COMPILING FOR HIGH PERFORMANCE

When Allen left Rice, he joined Ardent Computer Corporation to lead
their compiler development effort. There he constructed a commercial
quality compiler for the Titan series of computers. The Titan compiler
used many of the same algorithms that were employed in PFC. However,
where PFC was primarily a source-to-source translator the Titan compiler
generated machine language for a real computer with a number of unique
and challenging features. In addition, this compiler had to handle C as
well as Fortran which presents a special set of challenges that are dis-
cussed in Chapter 12.

These two systems provide a rich source of experiences that we hope will
illustrate and illuminate the discussion of basic principles found in the
main part of each chapter.

1.11 Historical Comments and References

The development of dependence as a basis for aggressive program trans-
formations has been the result of the work of many research efforts. Of
particular historical importance is the seminal work on automatic vector-
ization and parallelization done at Massachusetts Computer Associates,
later known as Compass. In the early 1970's, Compass created a transfor-
mation tool for the Illiac IV known as the Parallelizer. The key papers
describing the Parallelizer include theoretical technical reports by Lam-
port [13,14] and an elegant paper by Loveman espousing a philosophical
approach toward optimization [15].

The most influential ideas on automatic program transformations were
pioneered at the University of Illinois under the direction of David Kuck.
Illinois had been involved with parallelism at its very early stages via the
Illiac series of computers; the direction of research turned toward auto-
matic program transformations in the mid 1970's with the inception of
the Parafrase project. As can be surmised from its name, Parafrase
attempts to restate sequential programs as parallel and vector equivalents.
Among the many important papers produced in this project are papers on
dependence testing [9, 11, 20], loop interchange [19], auxiliary transfor-
mations [21, 18], and low level parallelism [16]. An outgrowth of the
Parafrase project was the Kuck and Associates, Inc., a commercial enter-
prise that markets advanced program transformation systems based on
dependence.

The Parallel Fortran Converter (PFC) project was begun at Rice in the
late 1970's under the direction of Ken Kennedy [5]. Initially, this project

Exercises

Chapter Draft of February 8, 2001 53

focused on extending Parafrase to add new capabilities. However, due to
limitations in the internal data representations, the Parafrase version was
dropped, and an entirely new system was implemented. Advances in PFC
include a distinct categorization of dependences that makes clear a num-
ber of areas to which dependence can be applied, efficient algorithms for
a number of transformations—particularly vector code generation and
loop interchange, methods for handling conditional statements within a
program, and new transformations for enhancing parallelism [1,4,6]. The
PFC project itself served as a prototype for the vectorizing compiler for
the IBM 3090 Vector Feature[17] and the Ardent Titan compiler [2]; the
theory underlying PFC was also the basis for the Convex vectorizing
compiler.

1.12 Exercises

1–1 Produce DLX code for the expression X*Y*2+V*W*3. Find the best sched-
ule for this code assuming that loads take 3 cycles, immediate loads take
1 cycle, floating addition takes 1 cycle and floating multiplication takes 2
cycles. Assume as many registers as you need, but there is only one load-
store unit and one floating-point arithmetic unit. All instructions are pipe-
lined but the machine can issue at most one instruction per cycle. What
strategy did you use to find the best schedule?

1–2 Redo Exercise 1–1 under the assumption that you can issue two instruc-
tions per cycle and there are two load-store units and two floating-point
arithmetic units.

1–3 Produce a version of the N by N matrix multiply example from this chap-
ter that would perform well on a parallel-vector machine, such as a T90
with 32 processors.

1–4 Produce a version of N by N matrix multiply that would perform well for
a symmetric multiprocessor in which each processor has an unpipelined
execution unit and a fully-associative cache with enough room to hold a
few more than 3L2 elements of a matrix, where L divides into N evenly.

1–5 For any shared-memory high-performance computer system available to
you, implement a version of 1000 by 1000 matrix multiply in Fortran or
C that achieves the highest possible performance. Pay special attention to
the memory hierarchy by trying to find the right block size for cache.

Compiler Challenges for High-Performance Architectures

54 ADVANCED COMPILING FOR HIGH PERFORMANCE

1.13 References

[1] J.R. Allen, Dependence analysis for subscripted variables and its application to program
transformations. Ph.D thesis, Department of Mathematical Sciences, Rice University,
May, 1983.

[2] J. R. Allen. Unifying vectorization, parallelization, and optimization: The Ardent com-
piler. In Proceedings of the Third International Conference on Supercomputing, L.
Kartashev and S. Kartashev, editors, Boston, MA, 1988.

[3] J. R. Allen, D. Bäumgartner, K. Kennedy, and A. Porterfield. PTOOL: A semi-automatic
parallel programming assistant. In Proceedings of the 1986 International Conference on
Parallel Processing, St. Charles, IL, August 1986. IEEE Computer Society Press.

[4] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form.
ACM Transactions on Programming Languages and Systems, 9(4):491–542, October
1987.

[5] J. R. Allen and K. Kennedy. PFC: A program to convert Fortran to parallel form. In K.
Hwang, editor, Supercomputers: Design and Applications, pages 186–203. IEEE Com-
puter Society Press, Silver Spring, MD, 1984.

[6] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control depen-
dence to data dependence. In Conference Record of the Tenth Annual ACM Symposium
on the Principles of Programming Languages, Austin, TX, January 1983.

[7] J. Backus. The history of FORTRAN I, II, and III. ACM SIGPLAN Notices 13(8): 165–
180, August 1978.

[8] V. Balasundaram, K. Kennedy, U. Kremer, K. S. McKinley, and J. Subhlok. The ParaS-
cope Editor: An interactive parallel programming tool. In Proceedings of Supercomput-
ing '89, Reno, NV, November 1989.

[9] U. Banerjee. Data dependence in ordinary programs. Master's thesis, Dept. of Computer
Science, University of Illinois at Urbana-Champaign, November 1976. Report No. 76-
837.

[10] A. J. Bernstein. Analysis of programs for parallel processing. IEEE Transactions on
Electronic Computers, 15(5):757–763, October 1966.

[11] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs and com-
piler optimizations. In Conference Record of the Eighth Annual ACM Symposium on the
Principles of Programming Languages, Williamsburg, VA, January 1981.

[12] J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantitative Approach,
Second Edition. Morgan Kauffman, San Francisco, CA, 1996.

[13] L. Lamport. The parallel execution of DO loops. Communications of the ACM,
17(2):83–93, February 1974.

[14] L. Lamport. The coordinate method for the parallel execution of iterative DO loops.
Technical Report CA-7608-0221, SRI, Menlo Park, CA, August 1976, revised October
1981.

[15] D. Loveman. Program improvement by source-to-source transformations. Journal of the
ACM, 17(2):121–145, January 1977.

References

Chapter Draft of February 8, 2001 55

[16] Y. Muraoka. Parallelism Exposure and Exploitation in Programs. PhD thesis, Dept. of
Computer Science, University of Illinois at Urbana-Champaign, February 1971. Report
No. 71-424.

[17] R. G. Scarborough and H. G. Kolsky. A vectorizing FORTRAN compiler. IBM Journal
of Research and Development, March 1986.

[18] R. A. Towle. Control and Data Dependence for Program Transformation. PhD thesis,
Dept. of Computer Science, University of Illinois at Urbana- Champaign, March 1976.

[19] M. J. Wolfe. Advanced loop interchanging. In Proceedings of the 1986 International
Conference on Parallel Processing, St. Charles, IL, August 1986.

[20] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cam-
bridge, MA, 1989.

[21] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
Redwood City, CA, 1996.

Compiler Challenges for High-Performance Architectures

56 ADVANCED COMPILING FOR HIGH PERFORMANCE

Introduction

Chapter Draft of February 8, 2001 57

CHAPTER 2 Dependence: Theory
and Practice

2.1 Introduction

As we learned in Chapter 1, optimization has an important function in the
acceptance of a programming language—if the compiler does not do a
good job, no one will use the language. As a result, optimization technol-
ogy has become quite sophisticated. However, most of the development
effort in optimization technology has focused on scalar machines. On
these machines, the principal optimizations are register allocation,
instruction scheduling, and reducing the cost of array address calcula-
tions.

Parallelism introduces much more complexity into the optimization pro-
cess. For parallel computers, the principle optimization becomes finding
parallelism in a sequential code and tailoring that parallelism to the target
machine, including its memory hierarchy. The principal strategy for seek-
ing out useful parallelism is to look for a data decomposition in which
parallel tasks perform similar operations on different elements of the data

Dependence: Theory and Practice

58 ADVANCED COMPILING FOR HIGH PERFORMANCE

arrays. In FORTRAN, this strategy naturally maps to running different iter-
ations of DO-loops in parallel. Data decomposition is effective on scien-
tific problems because it is scalable—as the problem size increases, so
does the available parallelism.

Given the focus in FORTRAN on loop iterations, an advanced compiler
must be able to determine whether Bernstein's conditions [8] (see
Section 1.5.1) are satisfied for every pair of iterations. Examining loop
iterations is complicated enough; adding to the complexity is the fact that
most code within a data-parallel loop will reference subscripted array
variables. As a result, the compiler must have the ability to analyze such
references to determine whether two different iterations access the same
memory location. Given the fact that one array contains multiple ele-
ments, it is not always obvious when two iterations or statements refer to
different elements of the same array. Because of this added complexity,
the simple definition of dependence presented in Chapter 1, while elegant
and easy to understand, is ineffective in the presence of loops and array
references.

The goal of this chapter is to elaborate the definition and properties of
dependence as a constraint system that preserves the order of data
accesses to memory with respect to loop nests. The chapter will also
establish fundamental results that form the basis for later chapters. A
principal goal will be to establish the applicability of dependence to auto-
matic parallelization and vectorization. As an illustration of the power of
dependence, the chapter concludes with a vectorization algorithm that is
at the heart of several commercial compilers.

2.2 Dependence and its Properties

Section 1.8 on page 47 outlined the fundamental approach taken in this
book to uncovering parallelism. The basis of this approach is a depen-
dence relation or dependence graph, that includes, for a given sequential
program, a collection of statement-to-statement execution orderings that
can be used as a guide to select and apply transformations that preserve
the meaning of the program. Each pair of statements in the graph is called
a dependence. Given a correct dependence graph for the program, any
ordering-based optimization that does not change the dependences of a
program will be guaranteed not to change the results of the program.

Dependences represent two different kinds of constraints on program
transformations. First there are constraints designed to ensure that data is

Dependence and its Properties

Chapter Draft of February 8, 2001 59

produced and consumed in the correct order. The dependences that arise
from these constraints are called data dependences. Revisiting the exam-
ple from Chapter 1:

S1 PI = 3.14
S2 R = 5.0
S3 AREA = PI * R ** 2

statement S3 cannot be moved before either S1 or S2 without producing
potentially incorrect values for the variables PI and R. To prevent this, we
will construct data dependences from statements S1 and S2 to statement
S3. No execution constraint between S1 and S2 is required because the
execution order S2, S1, S3 will produce exactly the same value for PI as
the execution order S1, S2, S3.

The other constraint that gives rise to dependences is control flow. For
example, in the following code

S1 IF (T .NE. 0.0) GOTO S3
S2 A = A / T
S3 CONTINUE

statement S2 cannot be executed before S1 in a correctly transformed pro-
gram, because the execution of S2 is conditional upon the execution of
the branch in S1. Executing S2 before S1 could cause a divide-by-zero
exception that would be impossible in the original version. A dependence
that arises because of control flow is called a control dependence.

Although both data and control dependences must be considered when
correctly parallelizing a program, the next few chapters will concentrate
exclusively on data dependences, which are simpler to understand and
illustrate most of the important principles. Chapter 7 will show how to
apply these principles to control dependences, either by converting them
to data dependences with a technique known as “IF-conversion” or by
extending the algorithms to take control dependences into account.

Returning to data dependence, if we are to ensure that data is produced
and consumed in the right order, we must make sure that we do not inter-
change loads and stores to the same location—otherwise the load may get
the wrong value. Furthermore, we must also make sure that two stores
take place in the correct order so that subsequent loads will get the right
value. Formalizing these notions produces the following definition of
data dependence.

Definition 2.1. There is a data dependence from statement S1 to
statement S2 (statement S2 depends on statement S1) if and only if

Dependence: Theory and Practice

60 ADVANCED COMPILING FOR HIGH PERFORMANCE

1) both statements access the same memory location and at least
one of them stores into it and

2) there is a feasible run-time execution path from S1 to S2.

The next few sections will discuss various properties by which depen-
dences can be classified. These properties are important for understand-
ing the algorithms presented later in the book.

2.2.1 Load-Store Classification

Expressed in terms of load-store order, there are three ways that a depen-
dence can arise in a program.

1. True dependence. The first statement stores into a location that is later
read by the second statement:
S1 X = ...
S2 ... = X

The dependence ensures that the second statement receives the value
computed by the first. This type of dependence is also known as a flow
dependence and is denoted S1δ S2 (read S2 depends on S1). The con-
vention for graphically displaying dependence is to depict the edge as
flowing from the statement that executes first (the source) to the one
that executes later (the sink).

2. Antidependence. The first statement reads from a location into which
the second statement later stores:
S1 ... = X
S2 X = ...

Here the dependence prevents the interchange of S1 and S2, which
could lead to S1 incorrectly using the value computed by S2. In
essence, this dependence is present to prevent a program transforma-
tion from introducing a new true dependence that did not exist in the
original program. An antidependence such as this one is denoted S1δ−
1S2. Antidependence is also denoted S1δ− S2 in some texts.

3. Output dependence. Both statements write into the same location
S1 X = ...
S2 X = ...

This dependence prevents an interchange that might cause a later
statement to read the wrong value. For example, in the code fragment:
S1 X = 1
S2 ...
S3 X = 2
S4 W = X * Y

Dependence and its Properties

Chapter Draft of February 8, 2001 61

statement S3 should not be allowed to move before statement S1 lest Y
be incorrectly multiplied by 1, rather than 2, in S4. This type of depen-
dence is called an output dependence and is denoted S1δοS2.

In the context of hardware design, dependences are often called hazards
or stalls, due to their effects on pipelines. A true dependence is the same
RAW (Read After Write) hazard; an antidependence is equivalent to a
WAR (Write After Read) hazard; and an output dependence is a WAW
(Write After Write) hazard [11].

2.2.2 Dependence in Loops

Extending the concept of dependence to loops requires some way to
parameterize statements by the loop iterations in which they are exe-
cuted. For example, in the simple loop nest:

DO I = 1, N
S1 A(I+1) = A(I) + B(I)

ENDDO

the statement S1 on any loop iteration depends on the instance of itself
from the previous iteration. The statement “S1 depends upon itself” is
true in this case, but is not precise. For instance, a simple change in a sin-
gle index can cause the statement to depend on the instance two iterations
previous:

DO I = 1, N
S1 A(I+2) = A(I) + B(I)

ENDDO

Thus, precise characterization of dependences in loops requires that
statements be parameterized by some representation of the loop iteration
in which the statement occurs. To do this we will construct a vector of
integers representing the iteration number of each loop in which the
statement is nested. For a simple loop

DO I = 1, N
...

ENDDO

the iteration number is exactly equal to the loop index—for the first itera-
tion the iteration number is equal to 1, on the second iteration the itera-
tion number is equal to 2 and so on. However, in the loop

DO I = L, U, S
...

ENDDO

Dependence: Theory and Practice

62 ADVANCED COMPILING FOR HIGH PERFORMANCE

The iteration number is 1 when I is equal to L, 2 when I is equal to L+S,
and so on1.

In some situations it is preferable to use a normalized version of the itera-
tion number in which the iterations run from 1 to some upper bound in
increments of 1. These notions are formalized in the following definition.

Definition 2.2. For an arbitrary loop in which the loop index I
runs from L to U in steps of S, the (normalized) iteration number i
of a specific iteration is equal to the value (I– L+1)/S, where I is
the value of the index on that iteration.

In a loop nest, the nesting level of a specific loop is equal to one more
than the number of loops that enclose it. That is, loops are numbered
from the outermost to innermost starting at 1. This leads to a natural defi-
nition of iterations in multiple loops.

Definition 2.3. Given a nest of n loops, the iteration vector i of a
particular iteration of the innermost loop is a vector of integers
that contains the iteration numbers for each of the loops in order
of nesting level. In other words, the iteration vector is given by
the following equation

i = {i1, i2, ..., in} (EQ 2.1)

where ik, 1 ≤ k ≤ n, represents the iteration number for the loop at
nesting level k.

A statement parameterized by a specific execution vector denotes the
instance of that statement executed when the loop induction variables
have the values in the execution vector. For example, S[(2,1)] in

DO I = 1, 2
 DO J = 1, 2
 S

ENDDO
ENDDO

represents the instance of statement S that occurs on the second iteration
of the I-loop and the first iteration for the J-loop. The set of all possible

1. Some texts define the iteration number as equal to the loop index I. However, this
causes problems when the step size is negative. In this book we will use the normalized
definition unless otherwise noted. In normalized loops, there is no difference between
the two.

Dependence and its Properties

Chapter Draft of February 8, 2001 63

iteration vectors for a statement is an iteration space. The iteration space
of S1 in the above example is {(1,1), (1,2), (2,1), (2,2)}.

Because of the importance of execution order to dependence, iteration
vectors need an ordering that corresponds to the execution order of their
loops. Assuming the notation that i is a vector, ik is the kth element of the
vector i, and i[1:k] is a k-vector consisting of the leftmost k elements of i,
we can define lexicographic order on iteration vectors of length n as fol-
lows:

Definition 2.4. Iteration i precedes iteration j, denoted i < j, if and
only if

1) i[1:n-1] < j[1:n-1] or

2) i[1:n-1] = j[1:n-1] and in < jn

In other words, an iteration vector i precedes another iteration vector j if
and only if any statement executed on the iteration described by i is exe-
cuted before any statement on the iteration described by j. The equality
relation on iteration vectors is easy to define—it corresponds to compo-
nentwise equality of iteration numbers. The relations ≤, >, and ≥ can also
be defined on iteration vectors by the natural extensions to lexicographic
ordering.

We now define dependence between statements in a common loop nest.

Theorem 2.1. Loop Dependence. There exists a dependence
from statement S1 to statement S2 in a common nest of loops if
and only if there exist two iteration vectors i and j for the nest,
such that (1) i < j or i = j and there is a path from S1 to S2 in the
body of the loop, (2) statement S1 accesses memory location M on
iteration i and statement S2 accesses location M on iteration j, and
(3) one of these accesses is a write.

This theorem follows directly from the definition of dependence. Condi-
tion (2) ensures that there is a path from the source to the sink of the
dependence.

2.2.3 Dependence and Transformations

Dependence in programs is intended to be a tool for determining when it
is safe to make certain program transformations. When we say that a
transformation is “safe,” we typically mean that the transformed program
has the same “meaning” as the original program. In other words, we are
not concerned with the correctness of the program originally presented to

Dependence: Theory and Practice

64 ADVANCED COMPILING FOR HIGH PERFORMANCE

the compiler, but whether the transformed program does the same thing
as the original.

But this raises the question: What program behaviors must be preserved?
Certainly we don’t need to preserve running time, since the entire point
of these transformations is to improve performance. Informally, preserva-
tion of the observable program effects, such as the values and order of the
outputs, seems to capture the essence of what we are trying to achieve.

Program Equivalence Under Transformations
Dependence is traditionally associated with imperative languages, in
which each statement reads from and stores into memory. In imperative
programs, meaning is most logically defined in terms of the state of the
computation. A state of a computation is the set of all values held in its
memory locations; each distinct set of values (and locations) comprises a
different state. Obviously, two computations that proceed through exactly
the same set of states are identical, but such a strong definition of equiva-
lence is too restrictive for optimizations, because it provides little flexi-
bility to rearrange the program steps. The real problem is that a program
state specifies all the values of a program simultaneously. That means
that programs that interchange the order of updates to different memory
locations is not permitted, even though this transformation would have no
effect on the outputs.

We need a definition of equivalence that is much more permissive in
terms of the transformations it permits, while maintaining what the pro-
grammer expects in terms of correctness. For example, if a different algo-
rithm that computes exactly the same answers could be substituted, that
should be acceptable. Thus it should be permissible to substitute any sta-
ble sorting algorithm for bubble sort.

To achieve this effect, we should concentrate on the consistency of the
observable program behavior. During most steps of a computation, inter-
nal state is externally invisible. Output statements exist precisely to make
the “interesting” aspects—that is, the things the programmer is trying to
compute—of internal state visible. Therefore, it is much more useful to
say the following:

Definition 2.5. two computations are equivalent if, on the same
inputs, they produce identical values for output variables at the
time output statements are executed and the output statements
executed in the same order.

Dependence and its Properties

Chapter Draft of February 8, 2001 65

This definition permits different instruction sequences, some of which are
more efficient than others, to compute the same outputs. Furthermore, it
captures the notion that the only aspects of a computation that must be
preserved by optimization are its outputs. If the term “output” is defined
broadly enough, this definition will suffice for the purposes of this book.

This discussion raises the question: What about side effects of a computa-
tion? An example of a side effect is an exception, particularly one that is
associated with an error. Such side effects have been a traditional source
of problems for optimizing compilers, giving rise to an extensive litera-
ture on the “safety” of transformations [12]. It is clear that a compiler
transformation should never introduce an error that would not have
occurred in the original program. However, should transformations that
eliminate error exceptions while maintaining the equivalence of outputs
be permitted? The conventional answer for Fortran is “yes,” but in lan-
guages like Java with stricter semantics and explicit exceptions, this may
be unacceptable. Since this book focuses on Fortran and similar lan-
guages, we will permit transformations that eliminate exceptions or
adjust the time at which those exceptions occur, so long as no transforma-
tion introduces an exception for a given input which would not have
occurred on the original program with the same input.

Correctness of Dependence-Based Transformations
With these notions of the correctness of transformations in hand we are
ready to address the role of dependence in establishing transformations
correct. Most optimizations discussed in this book are “reordering trans-
formations,” defined as follows.

Definition 2.6. A reordering transformation is any program trans-
formation that merely changes the order of execution of the code,
without adding or deleting any executions of any statements.

Since a reordering transformation does not delete any statement execu-
tions, any two executions that reference a common memory element
before a reordering transformation will also reference the same memory
element after that transformation. Hence, if there is a dependence
between the statements before the transformation, there will also be one
afterwards. Note, however, that the transformation may reverse the order
in which the statements reference the common memory location—
thereby reversing the dependence (i.e. S1 δ S2 before the transformation
and S2 δ S1 after the transformation). This will clearly lead to incorrect
behavior at run time.

Dependence: Theory and Practice

66 ADVANCED COMPILING FOR HIGH PERFORMANCE

Definition 2.7. A reordering transformation preserves a depen-
dence if it preserves the relative execution order of the source and
sink of that dependence.

Now we are ready to prove the central result concerning the role of
dependences in transformations.

Theorem 2.2. Fundamental Theorem of Dependence. Any
reordering transformation that preserves every dependence in a
program preserves the meaning of that program.

Proof. We begin by considering loop-free programs that contain no con-
ditional statements. Let {S1, S2, . . . , Sn} be the execution order in the
original program and {i1, i2, . . . , in} be a permutation of the statement
indices that represents the order of execution of statements in the reor-
dered program—i.e., {i1, i2, . . . , in} is a permutation of {1, 2, . . . , n}
corresponding to the reordering of the statements. Assume that depen-
dences are preserved, but that the meaning changes. This means that
some output statement produces a different result from the corresponding
output statement in the original program.

For the purposes of this discussion, we view output statements as simply
computing another result, namely the result being produced. In this
model, the sequence of statements in the transformed program contains at
least one statement, namely the output statement, that produces an
“incorrect” result in the sense that it is different from that produced by
the corresponding statement in the original program. Let Sk be the first
statement in the new order that produces an incorrect output. Because the
statement is exactly the same as the statement in the original program, it
must have found an incorrect value in one of its input memory locations.
Since all the statements that have executed before Sk produce the same
value they did in the original program, there are only three ways that Sk
can see an incorrect input in a specific location M:

1. A statement Sm that originally stored its result into M before it was
read by Sk, now stores into M after it is read by Sk. This would mean
that the reordering failed to preserve the true dependence Sm δ Sk in
the original program, contrary to assumption.

2. A statement Sm that originally storied into M after it was read by Sk ,
now writes M before Sk reads it. This would mean that the reordering
failed to preserve an antidependence (that of Sk δ−1 Sm), contrary to
assumption.

Dependence and its Properties

Chapter Draft of February 8, 2001 67

3. Two statements that both wrote into M before it was read by Sk in the
original order have had their relative order of execution reversed,
causing the wrong value to be left in M. This would mean that the
reordering failed to preserve an output dependence, contrary to
assumption.

Since this exhausts the ways that Sk can get the wrong value, the result is
proved by contradiction.

Loops. To extend this result to loops, simply note that the statement exe-
cutions in the list can be viewed as statement instantiations that are
indexed by the iteration vector. Then the same argument applies, provid-
ing that the correct loop iteration count is computed before any statement
in the loop body is executed. This is necessary to ensure that the entire
collection of statement instantiations is preserved. The normal conven-
tion for enforcing this restriction is to have a control dependence from a
loop header to each statement in the body of the loop.

Programs with conditionals. Because we do not yet have a definition of
reordering transformations in the presence of conditionals, we will
assume for now that a conditional is a single macro statement (i.e., an if-
then-else statement) that is treated as a unit by reordering transforma-
tions. The result will be extended to more general transformations in
Chapter 7. With that single limitation, the theorem is proved.

Theorem 2.2 leads us to the following definition.

Definition 2.8. A transformation is said to be valid for the pro-
gram to which it applies if it preserves all dependences in the pro-
gram.

It should be clear from this theorem and its proof that a collection of valid
transformations preserves the order of loads and stores to every memory
location in the program—only input accesses can be reordered. Thus
valid transformations preserve a condition that is stronger than equiva-
lence as specified by Definition 2.1, as the following example shows:

L0: DO I = 1, N
L1: DO J = 1,2
S0: A(I,J) = A(I,J) + B

ENDDO
S1: T = A(I,1)
S2: A(I,1) = A(I,2)
S3: A(I,2) = T

ENDDO

Dependence: Theory and Practice

68 ADVANCED COMPILING FOR HIGH PERFORMANCE

In this code, there is a dependence from S0 to each of S1, S2, and S3.
Thus, a dependence-based compiler would prohibit interchanging the
block of statements {S1, S2, S3} with loop L1, even though the inter-
change leaves the same values in the array A. To see this, note that both
A(I,1) and A(I,2) receive an identical update, so it does not matter
whether that update occurs before or after the swap.

From Theorem 2.2 we can immediately conclude that two statements in a
loop-free program can be run in parallel if there is no dependence
between them. This is because the absence of dependence means that rel-
ative ordering of the two statements is not important to the meaning of
the program as represented by the outputs it produces. Unfortunately, this
observation is not very helpful, since loop-free programs rarely have
enough computation to be interesting. To extend this notion to loops we
need to introduce concepts that help us reason about statement instances
in loop nests.

2.2.4 Distance and Direction Vectors

It is convenient to characterize dependences by the distance between the
source and sink of a dependence in the iteration space of the loop nest
containing the statements involved in the dependence. We express this in
terms distance vectors and direction vectors [25].

Definition 2.9. Suppose that there is a dependence from statement
S1 on iteration i of a loop nest and statement S2 on iteration j, then
the dependence distance vector d(i,j) is defined as a vector of
length n such that d(i,j)k = jk – ik..

In some situations it is useful to work with a distance vector that is
expressed in terms of the number of loop iterations that the dependence
crosses. For that purpose we can define a normalized distance vector as
dN(i j) as d(i,j)/s where s = {s1, s2,..., sn}, the vector of loop step sizes.
For the purposes of discussion in this chapter we will assume that all dis-
tance vectors are normalized. This implies that, given two iteration num-
bers i and j for statement instances involved in a dependence within a
loop nest, i < j if and only if d(i,j) > 0.

Distance vectors give rise to direction vectors as follows:

Definition 2.10. Suppose that there is a dependence from state-
ment S1 on iteration i of a loop nest of n loops and statement S2 on
iteration j, then the dependence direction vector is D(i,j) is
defined as a vector of length n such that

Dependence and its Properties

Chapter Draft of February 8, 2001 69

“<” if d(i,j)k > 0

D(i,j)k = “=” if d(i,j)k = 0

“>” if d(i,j)k < 0

One convenient mechanism for remembering the entries in direction vec-
tors is to treat “<” and “>” as arrows. With that treatment, the arrow
always points to the loop iteration, within a pair of iteration vectors the
source and sink of the dependence, that occurs first.

The direction vector for a dependence relates the iteration vector at the
source of a dependence to the iteration vector at the sink. For example, in
the loop

DO I = 1, N
DO J = 1, M

DO K = 1, L
S1 A(I+1,J,K-1) = A(I,J,K) + 10

ENDDO
ENDDO

ENDDO

statement S1 has a true dependence on itself with direction vector (<,=,>),
meaning that the outermost loop index at the source is less than the index
at the sink, the middle loop index is equal at source and sink, and the
innermost loop index is larger at the sink than at the source. Note that a
dependence cannot exist if it has a direction vector whose leftmost non-
“=” component is not “<” because that would mean that the sink of the
dependence occurs before the source, which is impossible.

The reason for limiting distance and direction vectors and difference vec-
tors to common loops is that these loops are the only ones that affect the
relative execution order of statements. If two statements instances are
contained in n common loops and the first n components of the two itera-
tion vectors for these statements are equal, then their relative execution
order is determined by textual position, regardless of any remaining com-
ponents of the vectors.

Direction Vectors and Transformations
Direction vectors can be used as a basis for understanding loop reorder-
ing transformations because they summarize the relationship between the
index vectors at the source and sink of a dependence. Chapter 5 will show
how it is possible to determine the effect of various transformations on
the direction vectors for dependences in the loop nest affected by the

Dependence: Theory and Practice

70 ADVANCED COMPILING FOR HIGH PERFORMANCE

transformation. The following theorem explains how direction vectors
can be used to test for legality of a transformation.

Theorem 2.3. Direction Vector Transformation. Let T be a
transformation that is applied to a loop nest and that does not rear-
range the statements in the body of the loop. Then the transforma-
tion is valid if, after it is applied, none of the direction vectors for
dependences with source and sink in the nest has a leftmost non-
“=” component that is “>”.

Proof. The theorem follows directly from Theorem 2.2, because all of the
dependences still exist and none of the dependences have been reversed
in sense.

The principal impact of Theorem 2.3 is that if we can show how a trans-
formation on a loop nest affects the direction vectors for dependences in
that loop, we can use the theorem to determine when the transformation
is legal. This will be used in Chapter 5 to establish correctness of loop
interchange and several other transformations.

The Number of Dependences
A question that often arises when dealing with dependences is: How
many dependences are there between a given pair of statements in a loop
nest? Technically, we must say that there is one dependence for each
statement instance that is the source of a dependence to another statement
instance in the same loop nest. Thus, in the loop below, there is one
dependence from statement S to itself for each iteration vector (i,j), such
that 1≤i≤9 and 1≤j≤10.

DO J = 1, 10
DO I = 1, 10

S: A(I+1,J) = A(I,J) + X
END DO

END DO

This is because statement S with index values I = i, and J = j, creates a
value in array A that is used in statement S when index I has the value i+1
and index J has the value j. Thus, there is no dependence originating at
statement instances on the last iteration of the I loop, because there is no
subsequent iteration to consume the value. As a result of this analysis, we
see that there are 90 distinct dependences in the loop.

In practice, no compiler can afford to keep track of this many depen-
dences for each statement in each loop nest. Thus, we must seek ways of
summarizing the dependences. For example, there is no difference

Dependence and its Properties

Chapter Draft of February 8, 2001 71

between dependences that arise in different iterations of the outer loop, so
long as it has at least one iteration. If we combine all the dependences for
all these iterations, we can reduce the number of dependences to 9. Next
we note that there is a great deal of symmetry of all these dependences—
each one produces a value on one iteration and consumes it on the next,
so all the dependences are true or flow dependences and all have a dis-
tance of 1. This suggests that we can reduce the number of dependences
by keeping track only of the distinct distance vectors for each distinct
dependence type. However, even this reduction can leave us with too
many dependences as the following loop nest illustrates:

DO J = 1, 10
DO I = 1, 99

S1: A(I,J) = B(I,J) + X
S2: C(I,J)= A(100-I,J) + Y

END DO
END DO

When I = 1, the loop stores into A(1,J) at statement S1. The same loca-
tion is later used on the last iteration of the inner loop when I = 99. Thus
there is a dependence from S1 to S2 of distance 98. When I = 2, it stores
into A(2,J), which is used when I = 98, yielding a distance of 96. Con-
tinuing in this manner we get even distances down to distance 0 on the
iteration when I = 50.

On the next iteration, I = 51 and the distance becomes a negative 2. How-
ever, we know that no legal dependence can have a negative distance
because this would indicate that the source of the dependence was exe-
cuted before the sink. What this means is that the dependences for itera-
tions where I is greater than 50 have their source and sink reversed—that
is they are antidependences from statement S2 to statement S1. Thus
there are antidependences in the loop with all even distances up to and
including 98. So there are a total of 50 different distances for true depen-
dences from S1 to S2 and 49 different distances for antidependences
from S2 to S1. Once again, this is too many.

To further reduce the number of distinct dependences that compiler must
keep track of, this book will adopt the convention that the total number of
dependences between a given pair of references is equal to the number of
distinct direction vectors, summed over all the types of dependences
between those references. This is sufficient because most of the transfor-
mations that will be applied can be handled solely with a knowledge of
direction vectors. To address transformations that require distances, we
will keep track of distances only in those cases where the distance does

Dependence: Theory and Practice

72 ADVANCED COMPILING FOR HIGH PERFORMANCE

not vary from iteration to iteration. In the last example above, there are
only two direction vectors—(=,<) and (=,=)—for the true dependence
from S1 to S2. The antidependence from S2 to S1 has (=,<) as its only
direction vector. Thus, by our convention, there are a total of three dis-
tinct dependences in the loop nest.

2.2.5 Loop-carried and Loop-independent Dependences

The theory of data dependence described so far imposes two require-
ments that must be met for a statement S2 to be data dependent on state-
ment S1:

1. There must exist a possible execution path such that statements S1 and
S2 both reference the same memory location M.

2. The execution of S1 that references M occurs before the execution of
S2 that references M.

In order for S2 to depend upon S1, it is necessary for some execution of
S1 to reference a memory location (as a store, if true dependence is con-
sidered) that is later referenced by an execution of S2 (as a use, for true
dependence). There are two possible ways that this pattern can occur:

1. S1 can reference the common location on one iteration of a loop; on a
subsequent iteration S2 can reference the same location.

2. S1 and S2 can both reference the common location on the same loop
iteration, but with S1 preceding S2 during execution of the loop itera-
tion.

The first case is an example of loop-carried dependence, since the depen-
dence exists only when the loop is iterated. The second case is an exam-
ple of loop-independent dependence, since the dependence exists because
of the position of the code within the loops. The following sections detail
these types of dependence.

2.2.5.1 Loop-Carried Dependence
A loop-carried dependence arises because of the iteration of loops. The
following Fortran segment demonstrates this idea:

DO I=1, N

S1 A(I+1) = F(I)

S2 F(I+1) = A(I)

ENDDO

On every iteration of the I-loop other than the first, S2 uses a value of A
that was computed on the previous iteration by S1; hence, statement S2

Dependence and its Properties

Chapter Draft of February 8, 2001 73

has a true dependence on statement S1. Likewise, statement S1 uses a
value of F computed by statement S2 on the previous iteration (except for
the first), and truly depends on statement S2. Both of these dependences
are carried by the loop. If any particular iteration of the loop is chosen
and executed alone, no dependence exists.

Definition 2.11. Statement S2 has a loop-carried dependence on
statement S1 if and only if S1 references location M on iteration
i, S2 references M on iteration j and d(i,j) > 0 (that is, D(i,j) con-
tains a “<” as leftmost non “=” component).

The appearance of a nonzero component in d(i,j) guarantees that the cor-
responding loop iterates at least once between the common references—
hence the name loop-carried dependence. It will be useful to classify car-
ried dependences according to the relative order in the loop body of the
statements involved.

Definition 2.12. A loop-carried dependence from statement S1 to
statement S2 is said to be backward if S2 appears before S1 in the
loop body or if S1 and S2 are the same statement. The carried
dependence is said to be forward if S2 appears after S1 in the loop
body.

An important property of loop-carried dependence is the level of a depen-
dence.

Definition 2.13. The level of a loop-carried dependence is the
index of the leftmost non-“=” of D(i,j) for the dependence.

In other words, the level of the dependence is the nesting level of the out-
ermost loop index that varies between the source and sink, where the out-
ermost loop is taken to be at nesting level 1. The level of all the
dependences in the previous example is 1, since D(i,j) is (<) for every
dependence. The level of the dependence in

DO I = 1, 10
DO J = 1, 10

DO K = 1, 10
S1 A(I,J,K+1) = A(I,J,K)

ENDDO
ENDDO

ENDDO

is 3 because D(i,j) is (=,=,<). Note that the dependence in this case is
actually a collection of dependences, one for every iteration vector in the
set {1:10,1:10,1:9}. In the future, we will associate a separate depen-

Dependence: Theory and Practice

74 ADVANCED COMPILING FOR HIGH PERFORMANCE

dence between each pair of different subscripted array references. We
will refer to all dependences for a single reference pair as being one
dependence, but that dependence may have many direction vectors.

Dependence level is a useful concept for many reasons. One reason is
that level very conveniently summarizes dependences. For example, the
last fragment contains 900 total dependences. Since every iteration vector
pair (i,j) that gives rise to a dependence has d(i,j) = (0,0,1), dependence
level conveniently characterizes all the dependences by a single property.

We can also use dependence level to help us choose which transforma-
tions to apply in a program and which to preclude. Sometimes we may
decide to preclude transformations of a particular type because this guar-
antees the validity of other transformations that we wish to make.

Definition 2.14. A dependence will be said to be satisfied if trans-
formations that fail to preserve it are precluded.

To see how this definition is useful, consider the case where we wish to
satisfy all dependences carried by the a particular loop level.

Theorem 2.4. Any reordering transformation that (1) preserves
the iteration order of the level-k loop (2) does not interchange any
loop at level < k to a position inside the level-k loop and (3) does
not interchange any loop at level > k to a position outside the
level-k loop, preserves all level-k dependences.

Proof: The direction vector D(i,j) for any level-k dependence must have
its leftmost “<” in the kth entry. That means that the directions in posi-
tions 1 through k–1 are all “=”. Thus the source and sink of a level-k
dependence are in the same iteration of loops 1 through k–1. Thus no
reordering of the iterations of any of those loops can change the sense of
the dependence, since these loops will remain at levels 1 through k–1 by
hypothesis. In addition, no loop that is originally inside the level-k loop
can become the carrier of one of its dependences because that would
require that it be interchanged to the outside of that loop, which is pre-
cluded by hypothesis.

Since the order of iterations at level k is preserved, the direction in the kth
position of D(i,j) will remain “<”. Thus the dependence must be pre-
served.

Discussion. Theorem 2.4 tells us that we can satisfy any level-k depen-
dence by declining to reorder the iterations of the level-k loop. This can

Dependence and its Properties

Chapter Draft of February 8, 2001 75

be used to establish the validity of some powerful transformations. For
example, the first fragment in its original form

DO I = 1, 10
S1 A(I+1) = F(I)
S2 F(I+1) = A(I)

ENDDO

is equivalent to

DO I = 1, 10
S2 F(I+1) = A(I)
S1 A(I+1) = F(I)

ENDDO

because all dependences are carried at level 1 and we retain the order of
iteration of the level-1 loop.

Theorem 2.4 also establishes that arbitrary transformations are valid if
they are made inside the deepest dependence level. For example, in the
following code fragment, we can perform loop rearrangement and loop
reversal on the inner two loops, once we have decided to run the outer
loop sequentially in the original order.

DO I = 1, 10
DO J = 1, 10

DO K = 1, 10
S A(I+1,J+2,K+3) = A(I,J,K) + B

ENDDO
ENDDO

ENDDO

The only dependence in this example is carried at level 1. Therefore the
code is equivalent to

DO I = 1, 10
DO K = 10, 1, -1

DO J = 1, 10
S A(I+1,J+2,K+3) = A(I,J,K) + B

ENDDO
ENDDO

ENDDO

obtained by interchanging the J and K loops and reversing the K loop,
because we maintain the order of iteration of the level-1 I-loop.

Given the importance of dependence level, we will use special notation—
a subscript on the dependence symbol—to represent it. That is, a level-l
dependence between S1 and S2 will be denoted S1 δl S2.

Dependence: Theory and Practice

76 ADVANCED COMPILING FOR HIGH PERFORMANCE

2.2.5.2 Loop-Independent Dependences
In contrast to loop-carried dependence, loop-independent dependences
arise as a result of relative statement position. Thus, loop-independent
dependences determine the order in which code is executed within a nest
of loops, while loop-carried dependences determine the order in which
loops must be iterated.

Definition 2.15. Statement S2 has a loop-independent depen-
dence on statement S1 if and only if there exist two iteration vec-
tors i and j such that:

1) Statement S1 refers to memory location M on iteration i, S2
refers to M on iteration j, and i = j.

2) There is a control flow path from S1 to S2 within the iteration.

Intuitively, Definition 2.15 states that a loop-independent dependence
exists when two statements reference the same memory location within a
single iteration of all their common loops. A very obvious example is

DO I = 1,10
S1 A(I) = ...
S2 ... = A(I)

ENDDO

On every iteration of the I loop, statement S2 uses the value just com-
puted by statement S1, thus creating a loop-independent dependence. A
less obvious example is

DO I = 1, 9
S1 A(I) =
S2 ... = A(10-I)

ENDDO

On the fifth iteration of the loop, statement S1stores into A(5) while
statement S2 fetches from A(5). That dependence is loop-independent.
All other dependences in the segment are carried by the loop. The reason
that separate iteration vectors i and j appear in the definition is illustrated
by the following:

DO I = 1, 10
S1 A(I) = ...

ENDDO
DO I = 1,10

S2 ... = A(20-I)
ENDDO

Dependence and its Properties

Chapter Draft of February 8, 2001 77

Statement S2 uses the value of A(10) computed by statement S1 on the
tenth iteration of the first loop, creating a loop-independent dependence.
No common loop is necessary for a loop-independent dependences, since
they arise from statement position.

Note that if we preserve the order of statements involved in loop indepen-
dent dependences, we guarantee that those dependences are satisfied.

Theorem 2.5. If there is a loop-independent dependence from S1
to S2, any reordering transformation that does not move statement
instances between iterations and preserves the relative order of S1
and S2 in the loop body preserves that dependence.

Proof: By definition, S2 and S1 reference a location M on iteration vec-
tors i and j such that i = j, and S2 follows S1. A reordering transformation
that maps i into i′ and j into j′ must have i′= j′. Since neither statement
can be moved out of its original loop iteration and since S2 follows S1,
then the criteria for a loop-independent dependence are still met.

To see why we need to prohibition of movement of statement iterations,
note that the following code:

DO I = 1, N
S1: A(I) = B(I) + C
S2: D(I) = A(I) + E

ENDDO

could be transformed to:

D(1) = A(1) + E
DO I = 2, N

S1: A(I-1) = B(I-1) + C
S2: D(I) = A(I) + E

ENDDO
A(N) = B(N) + C

This is still a reordering transformation since all instances of statements
S1 and S2 are executed. Furthermore the transformation preserves the
order of those two statements within the loop body. Nevertheless, by
moving statement instances out of the loop, it converts a loop-indepen-
dent true dependence to a backward carried antidependence, making the
transformation invalid.

Given the properties of loop-independent dependences established in
Theorem 2.5, the natural extension of level notation utilized in loop car-
ried dependence is to denote loop-independent dependence by an infinite

Dependence: Theory and Practice

78 ADVANCED COMPILING FOR HIGH PERFORMANCE

level (that is, S2 depends on S1 with a loop independent dependence is
denoted S1δ∞S2). That level indicates that no ordering of loops can pre-
serve the dependence. Note that the direction vector for a loop-indepen-
dent dependence has entries that are all “=”.

Theorem 2.4 and Theorem 2.5 illustrate clearly how loop-carried and
loop-independent dependences complement each other. A loop-carried
dependence is satisfied so long as certain loops are iterated in the original
order, regardless of the statement order within a specific iteration. A loop-
independent dependence is satisfied so long as the statement order is
maintained, regardless of the order in which the loops are iterated.

Loop-independent and loop-carried dependence partition all possible
data dependences. To see this, it is only necessary to note that the exist-
ence of a dependence S1δ S2 requires that S1 be executed before S2. This
can happen in only two instances

1. when the difference vector for the dependence is less than 0, or

2. when the difference vector equals 0 and S1 occurs before S2 textually.

These are precisely the criteria for loop-carried and loop-independent
dependences, respectively. If neither of these is the case and S1 and S2
reference a common memory element, then S2 is executed before S1, and
the dependence is actually S2 δ S1.

2.2.5.3 Iteration Reordering
We conclude this section with a result about when iteration reordering is
valid.

Theorem 2.6. Iteration Reordering. A transformation that reor-
ders the iterations of a level-k loop, without making any other
changes, is valid if the loop carries no dependence.

Proof. Assume that the level-k loop carries no dependence but some order
of its iterations fails to preserve a dependence in the original program.
Consequently, there must exist a dependence in the original program that
is reversed by this transformation. This cannot be a loop-independent
dependence, by Theorem 2.5. Therefore, it must be a carried dependence.
There are two cases:

1. The dependence is carried by a loop outside the loop in question. Thus
its level must be k–1 or less. Since reordering iterations at level k does
not affect loops at levels 1 to k–1, any dependence carried at those lev-
els must be preserved by Theorem 2.4. Thus the dependence cannot be
carried by an outer loop.

Simple Dependence Testing

Chapter Draft of February 8, 2001 79

2. The dependence is carried by a loop that is inside the loop in question.
Since the direction vector for the dependence must have an “=” in the
kth position, reordering the loop cannot change the direction. There-
fore, the direction vector must still have “<” in the leftmost position so
the transformation is valid by Theorem 2.3.

Thus the theorem is established by contradiction.

2.3 Simple Dependence Testing

In Chapter 3 we present an extended discussion of dependence testing
methods. However, to illustrate the examples that follow, we will provide
a brief introduction here. We begin by stating the general condition for
loop dependence in more concrete terms.

Theorem 2.7. Let α and β be iteration vectors within the iteration
space of the following loop nest:
DO i1 = L1, U1, S1

DO i2 = L2, U2, S2
...
DO in = Ln, Un, Sn

 S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...
 S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

 ENDDO
 ...

 ENDDO
 ENDDO

A dependence exists from S1 to S2 if and only if there exist values of
α and β such that (1) α is lexicographically less than or equal to β and
(2) the following system of dependence equations is satisfied:

fi(α) = gi(β) for all i, 1 ≤ i ≤ m (EQ 2.2)

Proof. This is a direct application of Theorem 2.1. If α < β condition(1)
in Theorem 2.1 holds. Otherwise if α = β, condition (1) holds because
there is clearly a path from S1 to S2 in the loop nest. Thus, condition (1)
in Theorem 2.7 is equivalent to condition (1) in Theorem 2.1.

Equation 2.2 means that the index values for the array A are equal on iter-
ations α and β, so these equations are equivalent to condition (2) of The-
orem 2.1. Since S1 is a write, condition (3) of Theorem 2.1 also holds so
the theorem must apply, establishing the desired result.

Dependence: Theory and Practice

80 ADVANCED COMPILING FOR HIGH PERFORMANCE

To reason about dependences, it is often useful to be able to determine
dependences by hand. To do this, we will adopt a ∆-notation for repre-
senting the index values at the source and sink. This notation is the basis
for the Delta test for dependences that will be discussed in Section 3.4.1.

Recall from the previous section that a dependence exists is there are iter-
ation vectors i and j, with one entry per loop index, that represent the
index values at the source and sink of the dependence, with the require-
ment that the source iteration vector be lexicographically less than the
sink. In this intuitive test, we will represent the iteration at the source by
the name of the loop index variable of the corresponding loop, sub-
scripted by 0 to denote that it is a symbolic constant. We will denote the
iteration at the sink of the dependence by the name of the loop index vari-
able plus the distance between the source and sink references in the loop
corresponding to the index. For example, in the loop below:

DO I = 1, N
S A(I+1) = A(I) + B

ENDDO

the iteration at the source of the dependence from statement S to itself
will be denoted I0, while the iteration at the sink will be denoted I0+∆I.
With this notation, we can view dependence testing as substituting these
notations for the index values at the source and sink respectively, forming
an equality of the resulting index expressions (following Equation 2.2),
and solving for the distances in each loop. Ideally, this will give specific
distances. In the example above, the dependence equation becomes:

I0+1 = I0+∆I

Simplifying, this yields: ∆I=1. In other words, there is a carried depen-
dence with distance vector (1) and direction vector (<).

In a case with multiple subscripts, such as this code fragment:

DO I = 1, 100
DO J = 1, 100

DO K = 1, 100
A(I+1,J,K) = A(I+1,J,K+1) + B

ENDDO
ENDDO

ENDDO

we get the index expression equations below:

I0+1=I0+∆I; J0=J0+∆J; K0=K0+∆K+1;

Simple Dependence Testing

Chapter Draft of February 8, 2001 81

The solutions to these equations are:

∆I=1; ∆J=0; ∆K=-1

and the corresponding direction vector is (<,=,>).For a slightly more
complex example, consider the following:

DO I = 1, 100
DO J = 1, 100

A(I+1,J) = A(I,5) + B
ENDDO

ENDDO

Solving the system of equations resulting from this loop gives

∆I = 1 and J0 = 5

The first result tells us that the dependence distance in the I dimension is
uniformly 1, for all values of I, since I is unconstrained. The second
result, on the other hand, tells us that at the source of the dependence J0
is a constant 5. Since the distance is unconstrained, we must assume that
any distance between -4 and 95 (the minimum and maximum permitted
by the loop bounds) is realized.

A side observation on this example is that any time a loop index does not
appear in any subscript at either the source or sink, its distance is uncon-
strained; that is, it can take on any legal distance. In particular, the direc-
tion corresponding to that index is “*”, which denotes the union of all
three directions. Thus in the following loop:

DO I = 1, 100
DO J = 1, 100

A(I+1) = A(I) + B(J)
ENDDO

ENDDO

the direction vector for the dependence carried by the I loop is (<,∗).

As a final note, it may happen that testing with the assumption that one
reference is the source and another is the sink may lead to the appearance
of a “>” in the leftmost direction vector position. This does not mean that
the dependence is illegal, but rather that there is a dependence of the
opposite type in the reverse direction. For example, if the code fragment
above had the J-loop outermost:

DO J = 1, 100
DO I = 1, 100

A(I+1) = A(I) + B(J)

Dependence: Theory and Practice

82 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO
ENDDO

testing would produce the direction vector (*,<) or {(<.<), (=,<), (>,<)}.
The first direction corresponds to a level-1 true dependence. The second
direction vector corresponds to a level-2 true dependence, and the third
corresponds to a level-1 antidependence with direction vector (<,>). This
exists because when J=1 and I=2 the statement reads A(2) and when J=2
and I=1, the statement stores into A(2).

2.4 Parallelization and Vectorization

We conclude the chapter with a discussion of the application of depen-
dence to automatic parallelization and vectorization. Although vectoriza-
tion can be viewed as a special case of parallelization, we will treat it
second because it involves the additional transformation of loop distribu-
tion.

2.4.1 Parallelization

The standard way to parallelize a loop is to convert each separate itera-
tion to a parallel thread and run these threads asynchronously. In some
sense, this is a reordering transformation in which the original order of
iterations can be converted into an undetermined order. Furthermore,
because the loop body is not an atomic operation, statements in two dif-
ferent iterations may run simultaneously. By Theorem 2.2, the parallel-
ization is valid if it does not reverse the sense of any dependence. The
only way we can ensure this, short of explicit synchronization is to pro-
hibit any dependences between the iterations we wish to run in parallel.

Theorem 2.8. Loop Parallelization. It is valid to convert a
sequential loop to a parallel loop if the loop carries no depen-
dence.

Proof. For the transformation to be valid, the transformed program must
be valid for any schedule of execution. From the Iteration Reordering
Theorem (Theorem 2.6) we know that, if the loop carries no dependence,
it is valid to arrange the iterations into any order. However, in the case of
parallelism it is possible to interleave individual statements in parallel
iterations. To establish the theorem, we must show that this cannot cause
a dependence to be reversed.

Parallelization and Vectorization

Chapter Draft of February 8, 2001 83

Assume that a dependence is reversed on some schedule of a parallel
loop. That means that the sink of the dependence occurs before the
source in that schedule. Clearly the dependence cannot be one that is
loop-independent or carried at a level within the parallel loop, because in
that case, the source and sink occur within a single iteration. Since that
iteration is executed by a single thread, the order of all statement
instances within it is preserved. Therefore, the dependence must be car-
ried by a loop outside the parallel loop. But by Theorem 2.4, this depen-
dence is preserved by any reordering transformation that does not affect
the order of the carrier loop. Thus the theorem is established.

2.4.2 Vectorization

Recall from Section 1.3.2 on page 30 that the task of vectorization is to
determine whether statements in an inner loop can be vectorized by
directly rewriting them in Fortran 90. Theorem 2.8 from the previous sec-
tion tells us that any single-statement loop that carries no dependence can
be directly vectorized, because that loop can be run in parallel. Thus the
following loop.

DO I=1,N
X(I) = X(I) + C

ENDDO

can be safely rewritten as:

X(1:N) = X(1:N) + C

On the other hand, in

DO I=1,N
X(I+1) = X(I) + C

ENDDO

which carries a dependence, the transformation to the statement

X(2:N+1) = X(1:N) + C

would be incorrect since, on each iteration, the sequential version uses a
value of X that is computed on the previous iteration, while the Fortran 90
statement uses only old values of X.

Given the Loop Parallelization Theorem (Theorem 2.8), a natural ques-
tion to ask is: “Can any statements in loops that carry dependences be
directly vectorized?” This question is motivated by the following exam-
ple:

D0 I = 1, N

Dependence: Theory and Practice

84 ADVANCED COMPILING FOR HIGH PERFORMANCE

S1 A(I+1) = B(I) + C
S2 D(I) = A(I) + E

ENDDO

This loop carries a dependence (S1 δ S2) because it stores into A on one
iteration and loads from A on the next. However, the direct transliteration
of the loop into Fortran 90 has the same meaning as the sequential loop.

S1 A(2:N+1) = B(1:N) + C
S2 D(1:N) = A(1:N) + E

The parallel version of the second statement uses elements A(2:N)
defined by the previous loop, as it does in the sequential loop. This appar-
ent contradiction can be explained by the fact that the process of vector-
ization incorporated an extra transformation, called loop distribution. The
effect is as if the loop were first transformed into two different loops:

DO I = 1, N
S1 A(I+1) = B(I) + C

ENDDO
DO I = 1, N

S2 D(I) = A(I) + E
ENDDO

each of which can be directly vectorized. In this case the carried depen-
dence was forward, but vectorization can take place even when the car-
ried dependence is backward, as the following example shows:

DO I = 1, N
S2 D(I) = A(I) + E
S1 A(I+1) = B(I) + C

ENDDO

Obviously, this loop can be vectorized if the statements in the loop body
are interchanged, because it then becomes identical to the previous case.
The interchange is legal, since there are no loop-independent depen-
dences between the statements.

On the other hand, if there is a backward carried dependence and a loop-
independent dependence between the statements, they cannot be vector-
ized because the interchange above is illegal:

DO I = 1, N
S1 B(I) = A(I) + E
S2 A(I+1) = B(I) + C

ENDDO

Parallelization and Vectorization

Chapter Draft of February 8, 2001 85

Here the backward loop carried dependence cannot be eliminated by dis-
tribution because we cannot interchange the statements in the loop body
due to the loop-independent dependence involving array B. This is intu-
itively consistent with our understanding of vectorization. To vectorize a
statement, we must be able to distribute the loop around it. To do that we
must be able to compute all inputs to any iteration of the distributed loop
before it is entered. The cycle of dependences makes this impossible.

These observations are formalized in the following theorem, which estab-
lishes the general conditions under which statements in a loop can be
vectorized.

Theorem 2.9. Loop Vectorization. A statement contained in at
least one loop can be vectorized by directly rewriting in Fortran
90 if the statement is not included in any cycle of dependences.

FIGURE 2.1 Simple vectorization.

procedure vectorize (L, D)

// L is the maximal loop nest containing the statement.
// D is the dependence graph for statements in L.

find the set {S1, S2, ... , Sm} of maximal strongly-connected
 regions in the dependence graph D restricted to L
(use Tarjan's strongly-connected components algorithm [22]);

construct Lπ from L by reducing each Si to a single node and
compute Dπ, the dependence graph naturally induced on
Lπ by D;

let {π1, π2, ... , πm} be the m nodes of Lπ numbered in an order
consistent with Dπ (use topological sort to do the ordering);

for i = 1 to m do begin

if πi is a dependence cycle then
generate a DO-loop around the statements in πi;

else
directly rewrite the single-statement πi in Fortran 90,

vectorizing it with respect to every loop containing it;

end
end

Dependence: Theory and Practice

86 ADVANCED COMPILING FOR HIGH PERFORMANCE

Proof. Assume that the statement is not included in any cycle. Then the
algorithm given in Figure 2.1 will correctly vectorize the statement.

Recalling earlier discussions, the key semantic difference between a
statement in a Fortran 77 DO-loop and its Fortran 90 vector analog is that
the vector version must fetch all inputs before storing any outputs, while
the DO-loop may intermix loads and stores. Thus, if a statement contained
in a loop has all its inputs available at the beginning of the loop, that
statement can be correctly rewritten as an array assignment in Fortran 90.

The algorithm in Figure 2.1 groups the statements in the same loop into a
totally ordered sequence of statement groups in which each statement is
either part of a cycle in a dependence graph (also called a recurrence) or
a single statement that is not part of a cycle. This reordering is equivalent
to distributing loops around dependence cycles and vectorizing state-
ments that are not part of any cycle. The distribution is correct, because
there can be no backward edges from later cycles to earlier ones (topo-
logical ordering guarantees that), so that all necessary inputs will be
available at the start of each distributed loop. The vectorization is legal
because all the input values needed by a group from outside the group are
available before the group begins executing, given that the ordering is
consistent with dependence. As a result, any vectorization performed by
the algorithm is correct.

Theorem 2.9 establishes a sufficient condition for vectorizability, but it is
much stronger than it needs to be, as we will see in the next section.

2.4.3 An Advanced Vectorization Algorithm

The problem with the simple vectorization algorithm in Figure 2.1 is that
it misses opportunities for vectorization. Consider the following simple
example:

DO I = 1, N
DO J = 1, M

S: A(I+1,J) = A(I,J) + B
ENDDO

ENDDO

If we construct the dependence graph using the intuitive approach from
Section 2.3, we see that there is a dependence from S to itself with the
distance vector (1,0) and direction vector (<,=). Thus, statement S is con-
tained in a dependence cycle, so the simple algorithm will not vectorize
it.

Parallelization and Vectorization

Chapter Draft of February 8, 2001 87

On the other hand, the self dependence is carried at level 1 in the nest.
Theorem 2.4 tells us that we can ensure that the dependence is preserved
by ensuring that no change of iteration order is made to the level 1 loop—
that is, running the outer loop sequentially is enough to ensure that the
dependence is preserved. This suggests that, once we have ensured that
the dependence will be satisfied, we can vectorize the inner loop to yield:

DO I = 1, N
S: A(I+1,1:M) = A(I,1:M) + B

ENDDO

In general, Theorem 2.4 tells us that a level-k dependence can be satisfied
by running all loops outside of and including the loop at level k sequen-
tially. Thus, even if a statement is in a recurrence, we may be able to vec-
torize it by running some loops sequentially.

These observations suggest a recursive approach to the problem of multi-
dimensional vectorization—first attempt to generate vector code at the
outermost loop level. If dependences prevent that, then run the outer loop
sequentially, thereby satisfying the dependences carried by that loop, and
try again one level deeper, ignoring dependences carried by the outer
loop. This approach is elaborated in the procedure codegen presented in
Figure 2.2 [13, 5].

Codegen is called initially on a whole program at level 1 (the outermost
level). The first step is to partition the program into piblocks, where a
piblock is a strongly connected region as defined by Tarjan's algorithm
[22]. The definition of a strongly-connected region permits both cyclic
and acyclic piblocks; however, any acyclic blocks are single statements
that do not depend upon themselves. Next, the strongly connected
regions are topologically sorted according to the dependence relation
[14]. Finally each region is examined in order. If the region is acyclic
(thus necessarily consisting of one statement), then a parallel form of the
statement is generated in the remaining dimensions. If the region is
cyclic, the level 1 DO-loop is generated for that region, the level 1 depen-
dences are deleted because they are guaranteed to be satisfied, and code-
gen is called recursively for the region with the set of dependences at
level 2 and deeper.

Dependence: Theory and Practice

88 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 2.2 Multi-level vector code generation algorithm.

procedure codegen(R, k, D)

// R is the region for which we must generate code.
// k is the minimum nesting level of possible parallel loops.
// D is the dependence graph among statements in R..

find the set {S1, S2, ... , Sm} of maximal strongly-connected
 regions in the dependence graph D restricted to R
(use Tarjan's algorithm);

construct Rπ from R by reducing each Si to a single node and
compute Dπ, the dependence graph naturally induced on
Rπ by D;

let {π1, π2, ... , πm} be the m nodes of Rπ numbered in an order
consistent with Dπ (use topological sort to do the numbering);

for i = 1 to m do begin

if πi is cyclic then begin

generate a level-k DO statement;

let Di be the dependence graph consisting of all
dependence edges in D that are at level k+1 or greater
and are internal to πi;

codegen (πi, k+1, Di);

generate the level-k ENDDO statement;
end

else

generate a vector statement for πi in ρ(πi)-k+1 dimensions,
where ρ (πi) is the number of loops containing πi;

end
end codegen

To illustrate the power of codegen, consider its application to the follow-
ing program fragment.

DO I = 1, 100
S1 X(I) = Y(I) + 10

DO J = 1, 100
S2 B(J) = A(J,N)

Parallelization and Vectorization

Chapter Draft of February 8, 2001 89

DO K = 1, 100
S3 A(J+1,K) = B(J) + C(J,K)

ENDDO
S4 Y(I+J) = A(J+1, N)

ENDDO
ENDDO

FIGURE 2.3 Example dependence graph.

The dependence graph for this program is given in Figure 2.3. The pro-
gram contains the following dependences:

• There is both a level one and a loop-independent true dependence
from S2 to S3 by virtue of the use of B(J) in both statements. To see
this we follow the simple dependence testing procedure in Section 2.3.
Since the index J does not occur in either subscript, the distance vec-
tor for the outer loop is unconstrained and the direction is “*”. On the
other hand, the references to J at the source and the sink give rise to
the equation J0 = J0+∆J. This implies that ∆J = 0 and the direction for
the J-loop is “=”. Thus the set of direction vectors associated with
B(J) is (*,=) or {(<,=), (=,=), (>,=)}. The first vector gives us the
level-1 true dependence and the second gives us the loop-independent
true dependence. The third direction corresponds to an antidepen-
dence in the opposite direction, discussed in the next paragraph.

S1

S2

S3

S4

δ1

δ1
ο

δ1
ο

δ1
ο

δ∞

δ∞

δ2,δ1,δ1
–1

δ1
-1

δ1

δ1
–1,δ1

Dependence: Theory and Practice

90 ADVANCED COMPILING FOR HIGH PERFORMANCE

• There is an antidependence from S3 to S2, carried by the I-loop,
because S3 uses B(J) before S2 stores into it on the next iteration of
the I-loop.

• There is a loop-independent true dependence from S3 to S4 by virtue
of the definition of A(J+1,K) in S3 and the use of A(J+1,N) in state-
ment S4. Dependence is presumed to exist because, in the absence of
other information about the value of N, it must be assumed that N can
lie in the range of K (between 1 and 100). Note that if we apply our
dependence testing procedure to this pair of statements with S3 as the
source, we get the set of directions, (*,=) or {(<,=), (=,=), (>,=)}. This
means that there is also a true dependence carried by the I-loop
between these two references and an antidependence in the reverse
direction, corresponding to the first and third direction vectors, respec-
tively. The antidependence is discussed in the next paragraph.

• There is an antidependence from S4 to S3, carried by the I-loop,
because S4 uses A(J+1,N) on one iteration of the I-loop; on a subse-
quent iteration of that loop (when the value of J is the same and K=N),
S3 stores into the same location. This corresponds to the third direc-
tion in the previous paragraph.

• There is a true dependence carried by the I-loop (level 1) from S4 to
S1 because S4 can store into Y(I+1) on one iteration and S1 reads from
it on the next iteration of the I-loop. Using our simple dependence
testing procedure with S4 as the source, we would get the equation

I0 + J = I0 + ∆I
which means that ∆I = J. Since J is always greater than 0, we have
the direction “<“ and the dependence is true.

• There is a true dependence carried by the J-loop (level 2) from S3 to
S2 because S3 stores into A(J+1,K) on one iteration of the J-loop and
reads from the same location via its access to A(J,N) on the next iter-
ation. Once again, it must be assumed that N is between 1 and 100. The
direction vector for this dependence is (*,<), which also gives rise to a
dependence and a reverse antidependence carried by the I-loop, which
are shown as extra labels in Figure 2.3.

• Statements S2, S3 and S4 all have output dependences upon themselves
because their left-hand sides have one fewer dimension than the num-
ber of loops containing them. Hence, the outer loop must cause stores
into the same array element on different iterations. In our simple
dependence testing procedure, we would see this because the direction
for the I-loop would be “*”.

Parallelization and Vectorization

Chapter Draft of February 8, 2001 91

Codegen called at the outermost level will produce two piblocks: one
cyclic piblock consisting of S2, S3 and S4, and one acyclic piblock con-
sisting of S1. As a result, S1 will be vectorized, but must follow the code
for the multi-statement piblock, due to topological ordering constraints.
Thus, the code produced at this level is:

DO I = 1, 100
codegen({S2, S3, S4}, 2})

ENDDO
X(1:100) = Y(1:100) + 10

In order to effect the call to codegen at level 2, all level-1 dependences
are stripped off, leaving the dependence graph depicted in Figure 2.4.

FIGURE 2.4 Dependence graph for {S2,S3,S4} after removing level-1 dependences.

Vector code can now be generated for S4, but S2 and S3 are still in a
recurrence. The code produced so far is:

DO I = 1, 100
DO J = 1, 100

codegen({S2, S3}, 3})
ENDDO
Y(I+1:I+100) = A(2:101,N)

ENDDO
X(1:100) = Y(1:100) + 10

The final call to codegen requires that level-2 dependence be removed,
leaving the graph in Figure 2.5.

S2

S3

S4

δ∞

δ∞

δ2

Dependence: Theory and Practice

92 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 2.5 Dependence graph for {S2,S3}after removing level-2 dependences.

Both remaining statements can be executed as vector operations. S2 has
no dimensions for the vector execution, so it will produces a simple sca-
lar statement. The final code is given below:

DO I = 1, 100
DO J = 1, 100

B(J) = A(J,N)
A(J+1,1:100) = B(J) + C(J,1:100)

ENDDO
Y(I+1:I+100) = A(2:101,N)

ENDDO
X(1:100) = Y(1:100) + 10

Even though codegen is a simple, elegant algorithm, it is able to effect
dramatic changes in a program. In the example above, all available vec-
torization has been exposed, requiring a fairly dramatic change in state-
ment order, by a straightforward application of the algorithm.

The correctness of procedure codegen follows quite easily from the theo-
rems in this chapter. If a region is cyclic, then Theorem 2.4 guarantees
that any level-k dependences will be satisfied by running the k loop (and
by the nature of the algorithm, loops 1 through k–1) sequentially. Thus,
the statements within the then-clause only ignore dependences that have
been satisfied by the sequential loops. Once a level has been reached
where all recurrences have been eliminated by sequentially executing DO
loops, Theorem 2.9 guarantees that the remaining loops may be correctly
run in parallel. Note that such a level must be reached (guaranteeing ter-
mination), since loop-independent dependences are inherently acyclic
and all loop-carried dependences will eventually be satisfied, even if only
by running all loops sequentially (thereby generating code that is parallel
in 0 dimensions). Finally, the topological sort guarantees that loop-inde-
pendent dependences will be preserved by virtue of Theorem 2.5.
Although it has not been explicitly proved, it is also true that loop-carried
dependences outside of a recurrence can be preserved by topological

S2

S3

δ∞

Chapter Summary

Chapter Draft of February 8, 2001 93

sorting without requiring that the statements be contained in common
loops.

It should be clear that, when codegen is applied to a loop nest, its effec-
tiveness is limited by the precision of the dependence graph. In
Chapter 3, we provide details on how to construct an effective and accu-
rate dependence testing procedure. We return to algorithm codegen in
Chapter 5.

2.5 Chapter Summary

Dependence is the principal tool used by compilers in analyzing and
transforming programs for execution on parallel and vector machines.
Any transformation that reorders the execution times of statements in the
program preserves correctness if the transformation preserves the order
of source and sink of every dependence in the program. This can be used
as an effective tool to determine when it is safe to parallelize or vectorize
a loop.

Dependences can be characterized by several different properties. The
type of a dependence—true, anti-, or output—tells whether it corresponds
to a write before a read, a read before a write, or a write before a write.
Dependences in loops have special properties. A dependence direction
vector describes the relationship (<, =, or >) between the values of the
loop indices for the nest at the source and sink of the dependence. The
distance vector gives the number of iterations crossed by the dependence
for each index in the loop nest. A dependence is said to be loop-indepen-
dent if its direction vector entries are all “=”. Otherwise it is loop-carried.
The level of a loop-carried dependence is the nesting level of the loop that
corresponds to the leftmost non-”=” direction in the direction vector.

The usefulness of these concepts is illustrated in a simple and efficient
algorithm for vectorization, shown in Figure 2.2. Methods for construct-
ing the dependence graph, introduced briefly in this chapter, are dis-
cussed in detail in Chapter 3.

2.6 Case Studies

Procedure codegen was originally designed to be at the heart of the PFC
vectorization system. It was implemented in PL/1 using a collection of
PL/1 preprocessor macros to implement the sets, so that the actual imple-
mentation resembled the sample code in Figure 2.2 quite closely. Over

Dependence: Theory and Practice

94 ADVANCED COMPILING FOR HIGH PERFORMANCE

the years, the procedure was generalized to include a number of the trans-
formations that will be presented in Chapter 5, although the basic struc-
ture was retained. The codegen structure was later adopted into both the
IBM VS Fortran Vectorizer [21] and the Ardent Titan Compiler [3].

The original implementation of PFC used a simplified representation of
dependence that did not include full direction vectors, but rather identi-
fied the level of each carried dependence in the program and distin-
guished carried dependence from loop-independent ones. This
representation is described in more detail in Section 3.8.

2.7 Historical Comments and References

The earliest expositions of data dependence and its application to vector-
ization and program transformations were by Lamport [18,19] and Kuck,
Muraoka, and Chen [17,20]. In the context of the Parallelizer system,
Lamport developed the concepts of iteration spaces, difference vectors,
and a notion similar to direction vectors. He also had notions similar to
true dependence, antidependence, and output dependence, although Kuck
[15] was the first to precisely characterize and name these. Statement
dependences were determined using simple but effective data depen-
dence tests. Lamport presents an algorithm for vectorization based on a
criterion that precisely partitions loops that can be correctly performed in
vector from those that cannot. This criterion, called “tree inconsistency”
is equivalent to the notion of cycles in the dependence graph, discussed in
Section 2.4.2.

In the Parafrase system, Kuck and his colleagues [17,20] developed a
notion of dependence that is much cleaner than that used in the Parallel-
izer: data dependences are clearly classified into true dependences, anti-
dependences, and output dependences, and sophisticated tests are used to
determine the presence or absence of dependence. Because of its clear
definition of dependence, Parafrase has a simple test for detecting vector
statements: any statement can be executed in vector so long as it does not
depend upon itself. As a result, a transitive closure of the dependence
graph is used to partition vectorizable and non-vectorizable statements.
Wolfe [28] developed the approach to direction vectors as presented in
this chapter, and applied them to a number of reordering transformations
including loop interchange and vectorization.

Kennedy was the first to note the importance of dependence levels and
the application of Tarjan’s algorithm to this problem; the two algorithms

Exercises

Chapter Draft of February 8, 2001 95

presented in this book are due to him [13]. Allen precisely characterized
reordering transformations as the range of transformations to which
dependence could be applied. Many researchers have developed specific
transformations based on dependence, including loop interchange [26, 6],
loop skewing [18, 27], parallelization [9, 4], node splitting [16], and loop
fusion [1, 24].

The characterization of loop-carried dependences and loop-independent
dependences was first noted by Allen and Kennedy [2,5]. The properties
of each classification, as well as the refined vectorization algorithm based
on the level of dependences, was also developed by Allen and Kennedy.

Dependence testing has been discussed by a number of authors
[5,7,28,29]. The informal testing strategy is from Goff, Kennedy and
Tseng [10]. Dependence testing is discussed in much more detail in
Chapter 3.

2.8 Exercises

2–1 Using the simple procedure for dependence construct all the dependences
for the loop nest below and provide (a) direction vector(s), (b) distance
vector(s) (c) loop level and (c) types, for each one.

DO K =1,100
DO J = 1, 100

DO I = 1, 100
A(I+1,J+2,K+1) = A(I,J,K+1) + B

ENDDO
ENDDO

ENDDO

2–2 Construct all direction vectors for the following loop and indicate the
type of dependence associated with each.

DO K =1,100
DO J = 1, 100

DO I = 1, 100
A(I+1,J,K) = A(I,J,5) + B

ENDDO
ENDDO

ENDDO

2–3 Can the loop in Exercise 2–2 be parallelized? If so give a parallel version.

2–4 Construct all the direction vectors for the dependences shown in
Figure 2.3 on page 89. For each direction that corresponds to a fixed dis-
tance, show that distance.

Dependence: Theory and Practice

96 ADVANCED COMPILING FOR HIGH PERFORMANCE

2–5 Consider the following loop:
DO K =1,100

DO J = 1, 100
S1: B(1,J,K) = A(1,J-1,K)

DO I = 1, 100
S2: A(I+1,J,K) = B(I,100-J,K) + B

ENDDO
ENDDO

ENDDO

Does statement S2 depend on statement S1? Does statement S1 depend
on statement S2? Give the dependence type, direction vector, and array
variable involved for each dependence that exists. What would procedure
codegen produce when applied to this nest?

2–6 Loop reversal is a transformation that reverses order of the iterations of a
given loop. In other words, loop reversal transforms a loop with header

DO I = L,H

to a loop with the same body but with header

DO I = H,L,-1

State and prove a sufficient condition for the validity of loop reversal.
Show that your condition is not necessary by giving an example loop that
violates the condition but nevertheless can be reversed without changing
the result.

2–7 Is loop reversal valid on the I loop in the following nest? Why or why
not?

DO J = 1,N
DO I = 1,M

A(I+1,J+1) = A(I,J) + C
ENDDO

ENDDO

2–8 The representative of a well-known parallel computing company was
fond of saying, “If you want to determine whether a given loop can be
parallelized, just reverse it—if you get the same answers, it can be safely
converted to a parallel DO.” Is this statement correct? Why or why not?

2.9 References

[1] W. Abu-Sufah. Improving the Performance of Virtual Memory Computers. Ph.D. thesis,
Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1979.

References

Chapter Draft of February 8, 2001 97

[2] J. R. Allen, Dependence analysis for subscripted variables and its application to pro-
gram transformations. Ph.D thesis, Department of Mathematical Sciences, Rice Univer-
sity, May, 1983.

[3] J. R. Allen. Unifying vectorization, parallelization, and optimization: The Ardent com-
piler. In Proceedings of the Third International Conference on Supercomputing, L.
Kartashev and S. Kartashev, editors, Boston, MA, 1988.

[4] R. Allen, D. Callahan and K. Kennedy. Automatic decomposition of scientific programs
for parallel execution. In Conf. Record of the Fourteenth ACM Symposium on Principles
of Programming Languages, Munich, Germany, January 1987.

[5] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form.
ACM Transactions on Programming Languages and Systems, 9(4):491–542, October
1987.

[6] J. R. Allen and K. Kennedy. Automatic loop interchange. In Proceedings of the SIG-
PLAN ’84 Symposium on Compiler Construction, Montreal, Canada, June 1984.

[7] U. Banerjee. Data dependence in ordinary programs. Master's thesis, Dept. of Computer
Science, University of Illinois at Urbana-Champaign, November 1976. Report No. 76-
837.

[8] A. J. Bernstein. Analysis of programs for parallel processing. IEEE Transactions on
Electronic Computers, 15(5):757–763, October 1966.

[9] D. Callahan, A Global Approach to the Detection of Parallelism, Ph.D. thesis, Rice Uni-
versity, Department of Computer Science, Houston, TX, March 1987.

[10] G. Goff, K. Kennedy, and C.-W. Tseng. Practical dependence testing. In Proceedings of
the SIGPLAN ’91 Conference on Programming Language Design and Implementation,
Toronto, Canada, June 1991.

[11] J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantitative Approach,
Second Edition. Morgan Kauffman, San Francisco, CA, 1996.

[12] K. Kennedy. Safety of code motion, International Journal of Computer Mathematics,
Gordon and Breach, Section A, 3:117–130, 1972.

[13] K. Kennedy. Automatic translation of Fortran programs to vector form. Technical
Report 476-029-4, Dept.of Mathematical Sciences, Rice University, October 1980.

[14] D. E. Knuth. Fundamental Algorithms. Addison Wesley, Reading, MA, 1968.

[15] D. Kuck. The Structure of Computers and Computations, Volume 1. Wiley, New York,
1978.

[16] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs and com-
piler optimizations. In Conference Record of the Eighth Annual ACM Symposium on the
Principles of Programming Languages, Williamsburg, VA, January 1981.

[17] D. Kuck, Y. Muraoka, and S. Chen. On the number of operations simultaneously execut-
able in Fortran-like programs and their resulting speedup. IEEE Transactions on Com-
puters, C-21(12):1293–1310, December 1972.

[18] L. Lamport. The parallel execution of DO loops. Communications of the ACM,
17(2):83–93, February 1974.

Dependence: Theory and Practice

98 ADVANCED COMPILING FOR HIGH PERFORMANCE

[19] L. Lamport. The coordinate method for the parallel execution of iterative {DO} loops.
Technical Report CA-7608-0221, SRI, Menlo Park, CA, August 1976, revised October
1981.

[20] Y. Muraoka. Parallelism Exposure and Exploitation in Programs. Ph.D. thesis, Dept. of
Computer Science, University of Illinois at Urbana-Champaign, February 1971. Report
No. 71-424.

[21] R. G. Scarborough and H. G. Kolsky. A vectorizing FORTRAN compiler. IBM Journal
of Research and Development, March 1986.

[22] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of Comput-
ing 1(2):146–160, 1972.

[23] R. A. Towle. Control and Data Dependence for Program Transformation. Ph.D. thesis,
Dept. of Computer Science, University of Illinois at Urbana- Champaign, March 1976.

[24] J. Warren. A hierarchical basis for program transformations. In Conf. Record of the
Eleventh ACM Symposium on Principles of Programming Languages, Salt Lake City,
UT, January 1984.

[25] M. J. Wolfe.Techniques for improving the inherent parallelism in programs. Master ’s
thesis, Dept.of Computer Science, University of Illinois at Urbana-Champaign, July
1978.

[26] M. J. Wolfe. Advanced loop interchanging. In Proceedings of the 1986 International
Conference on Parallel Processing, St. Charles, IL, August 1986.

[27] M. J. Wolfe. Loop skewing: The wavefront method revisited. International Journal of
Parallel Programming 15(4):279 –293, August 1986.

[28] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cam-
bridge, MA, 1989.

[29] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
Redwood City, CA, 1996.

Introduction

Chapter Draft of February 8, 2001 99

CHAPTER 3 Dependence Testing

3.1 Introduction

Dependence testing is the method used to determine whether depen-
dences exist between two subscripted references to the same array in a
loop nest. Calculating data dependence for arrays is complex because
arrays contain many different locations. This chapter provides detailed
descriptions of methods for high-precision dependence testing. For the
purposes of this explication, control flow (other than the loops them-
selves) is ignored.

Recall from Chapter 2 that dependence testing in its full generality can be
illustrated by the problem of determining whether a dependence exists
from statement S1 to statement S2 in the following model loop nest:

DO i1 = L1, U1
DO i2 = L2, U2

...
DO in = Ln, Un

 S1 A(f1(i1,...,in),...,fm(i1,...,in)) = ...
 S2 ... = A(g1(i1,...,in),...,gm(i1,...,in))

Dependence Testing

100 ADVANCED COMPILING FOR HIGH PERFORMANCE

 ENDDO
 ...

 ENDDO
 ENDDO

Let α and β be iteration vectors within the iteration space of the loop nest
described above. Thus, α and β are vectors of length n, the kth entry of
which is an integer value between the lower and upper bounds of the kth
loop in the nest. Recall from Definition 2.1 that two requirements must
be met for a data dependence to exist between two statements: the two
statements must both access some memory location, and there must exist
a feasible control flow path between the identical accesses. Expressed in
terms of this example, this definition says that a dependence exists from
S1 to S2 if and only if there exist values of α and β such that α is lexico-
graphically less than or equal to β (the control flow requirement) that sat-
isfies the following system of dependence equations (the common access
requirement):

fi (α) = gi (β) for all i, 1 ≤ i ≤ m (EQ 3.1)

Equation 3.1 is based on the simple observation that two array accesses
are to the same memory location if and only if each corresponding sub-
script entry is identical.1 Otherwise the two references are independent.

Dependence testing has two goals. The first goal (and the most desired
result) is to prove that no dependence exists between given pairs of sub-
scripted references to the same array variable. The mechanism used to
achieve this goal is to show that Equation 3.1 has no solutions in the
region of appropriate α and β. When it cannot achieve this goal, depen-
dence testing attempts to characterize the possible dependences in some
manner, usually as a minimal complete set of distance and direction vec-
tors. Throughout all of this, testing must be conservative; that is, it must
assume the existence of any possible dependence whose existence it can-
not explicitly disprove.

The remainder of this chapter discusses methods for automating the solu-
tion (or proving the absence of solutions) to Equation 3.1.

1. This statement is not true if a program makes an array access outside of stated array
bounds. Such accesses are illegal in FORTRAN; this book assumes only legal array ref-
erences.

Introduction

Chapter Draft of February 8, 2001 101

3.1.1 Background and Terminology

Before developing methods for determining the solutions or absence of
solutions to Equation 3.1, a modest amount of notation is necessary. Dis-
tance vectors, direction vectors, and their application to data dependence
have already been introduced in Chapter 2. That knowledge is assumed
throughout this chapter. The goal of dependence testing is to construct
the complete set of distance and direction vectors representing potential
dependences between an arbitrary pair of subscripted references to the
same array variable. Since distance vectors may be treated as precise
direction vectors, only direction vectors will be used throughout the
remainder of this chapter.

3.1.1.1 Indexes and Subscripts
For the purposes of dependence testing, the term index will be used to
mean the index variable for some loop surrounding both of the refer-
ences. Furthermore, it will be assumed that all auxiliary induction vari-
ables have been detected and replaced by linear functions of the loop
indexes (see Chapter 4 for more details).

The term subscript will be used to refer to one of the subscripted posi-
tions in a pair of array references. Since dependence tests always con-
sider a pair of array references, we will always use the term subscript to
refer to a pair of subscript positions. For example, in the pair of refer-
ences to array A in the following loop nest,

DO i
DO j

DO k
S1 A(i, j) = A(i, k) + C

ENDDO
ENDDO

ENDDO

index i occurs in the first subscript and indexes j and k occur in the sec-
ond subscript.

For the sake of simplicity, it will be assumed that all loops have a step of
1. Non-unit step values may be normalized on the fly as needed via meth-
ods discussed in Chapter 4.

3.1.1.2 Nonlinearity
In its full generality, dependence testing is obviously an undecidable
problem. Subscript values can be arbitrary expressions whose values are
not known until runtime, making compile-time determination of depen-
dence impossible. While some undecidable instances occur in real pro-

Dependence Testing

102 ADVANCED COMPILING FOR HIGH PERFORMANCE

grams (necessitating the conservative assumption that all possible
dependences exist), most subscripts are simpler—generally polynomials
of induction variables—and thus are subject to some form of compile-
time analysis. Even general polynomials are too complex to permit solu-
tion of Equation 3.1 using current mathematical theory. Therefore, we
will make one further simplification—unless otherwise stated, it will be
assumed that array subscripts are linear expressions of the loop index
variables. That is, all subscript expressions are of the form:

a1i1 + a2i2 +...+ anin + e (EQ 3.2)

where ik is the index for the loop at nesting level k; all ak, 1 ≤ k ≤ n, are
integer constants; and e is an expression possibly containing loop-invari-
ant symbolic expressions. Any subscript that does not conform to this
restriction will be classified as a nonlinear subscript, and will not be
tested. This restriction is not onerous in practice, as most subscripts
encountered in practice are linear. However, nonlinear subscripts occur
for a variety of reasons. For example, if a variable that is read from an
input medium within the loop appears in a subscript, the subscript will be
nonlinear. In addition, most dependence testers will treat any subscript
that contains another subscripted array reference as nonlinear. Since such
subscripts are common in “irregular” or “adaptive” numerical codes, this
can lead to overly conservative approximation to dependence.

3.1.1.3 Conservative Testing
With the linearity restriction, dependence testing is equivalent to the
problem of finding integer solutions to systems of linear Diophantine
equations, an NP-complete problem. Solving this problem exactly is
obviously very difficult; as a result, most dependence tests seek efficient
approximate solutions. In general, the most common approximation is to
test conservatively—a conservative test attempts to prove that there exists
no solution to the dependence equation (Equation 3.1). It does not
attempt to prove that a dependence actually exists. In other words, if a
conservative test determines that no dependence exists, a compiler can
rely on that conclusion. However, it may be the case that the references
are independent, but the conservative test is unable to prove otherwise.
Exact tests, on the other hand, are dependence tests that will detect
dependences if and only if they exist. Note that the imprecision due to
conservative dependence testing will never lead the compiler to generate
incorrect code, only code that is less than optimal.

Whenever a nonlinear subscript is encountered by a conservative depen-
dence tester, it will be assumed that the subscript expressions can be

Introduction

Chapter Draft of February 8, 2001 103

equal for arbitrary distances and directions. That is, a nonlinear subscript
cannot be used to refine dependence testing on any indexes that it con-
tains. Thus for the purposes of testing, a nonlinear subscript is treated as
one that effectively does not exist. Other subscripts can still be used to
refine the collection of directions that may occur in the dependence or
even prove independence.

3.1.1.4 Complexity
Complexity refers to the number of indexes appearing within a sub-
script—the more distinct loop indexes that appear within a subscript
position, the more complex dependence testing becomes. A subscript is
said to be ZIV (zero index variable) if the subscript position contains no
index in either reference. A subscript is said to be SIV (single index vari-
able) if only one index occurs in that position. Any subscript with more
than one index is said to be MIV (multiple index variable). For instance,
consider the following loop:

DO i
DO j

DO k
S1 A(5, i+1, j) = A(N, i, k) + C

ENDDO
ENDDO

ENDDO

When testing for a true dependence between the two references to A in
the sample fragment, the first subscript is ZIV, the second is SIV, and the
third is MIV. Remember again the convention that “subscript” in this
context means a pair of corresponding subscripts.

3.1.1.5 Separability
Separability describes whether a given subscript interacts with other sub-
scripts for the purpose of dependence testing. When testing multidimen-
sional arrays, a subscript position is said to be separable if its indexes do
not occur in the other subscripts [1,11]. If two different subscripts contain
the same index, they are coupled. For example, in the loop below,

DO i
DO j

DO k
S1 A(i, j, j) = A(i, j, k) + C

ENDDO
ENDDO

ENDDO

Dependence Testing

104 ADVANCED COMPILING FOR HIGH PERFORMANCE

the first subscript is separable, but the second and third are coupled
because they both contain the index j. ZIV subscripts are vacuously sep-
arable because they contain no loop indexes.

The term “separable” derives from linear algebra and differential equa-
tions, and applies to systems of equations with distinct variables that may
be solved independently. The independent solutions can then be merged
to form an exact solution set.

This independence property also holds for separable subscripts. If a sub-
script position is separable, the loop indexes it contains occur in no other
subscript. Therefore, the set of directions corresponding to those indexes
can be tested for independently by examining that subscript position and
no others. The resulting direction vectors can be merged on a positional
basis with full precision. For example, in the loop nest below,

DO i
DO j

DO k
S1 A(i+1, j, k-1) = A(i, j, k) + C

ENDDO
ENDO

ENDDO

the leftmost direction in the direction vector is determined by testing the
first subscript, the middle direction by testing the second subscript and
the rightmost direction by testing the third subscript. The resulting direc-
tion vector, (<,=,>), is precise. The same approach applied to distances
allow us to calculate the exact distance vector (1,0,-1).

When testing coupled groups on the other hand, we must take all the sub-
scripts in the group into account in order to get a precise set of directions.
Note that imprecision in testing here means that some directions that can-
not actually exist may be reported by the dependence tester.

3.1.1.6 Coupled Subscript Groups
As we indicated in the previous section, a subscript that is not separable
must contain an occurrence of an index that also occurs in at least one
other subscript of the same array reference pair. Any two subscripts con-
taining the same index are said to be coupled.

It is important to recognized coupling because multidimensional array
references with coupled subscripts can cause imprecision in dependence
testing. To see this, consider the following example loop

DO I = 1, 100

Introduction

Chapter Draft of February 8, 2001 105

S1 A(I+1, I) = B(I) + C
S2 D(I) = A(I, I) * E

ENDDO

If we examined the subscripted references to array A separately, we
would discover that we cannot eliminate the possibility of dependence of
statement S2 on statement S1. The first subscript at the store in S1 equals
the first subscript at the use in S2 one iteration later. The second subscript
at the store equals the second subscript on the same iteration. Thus nei-
ther subscript alone can be used to eliminate the dependence. However, if
we consider them together, we can see that no dependence can exist—the
dependence cannot be simultaneously loop-carried and loop independent.

It is fairly natural to see that coupling is a form of equivalence relation-
ship. Thus, we can define a (minimal) coupled group as a nontrivial
equivalence class under the coupling relation—a group of at least two
subscripts such that (1) each subscript is coupled with at least one other
subscript in the group and (2) the group cannot be partitioned into smaller
groups without putting two coupled subscripts into different subgroups.
The restriction to nontrivial equivalence classes is required because a
coupled group of size 1 is simply a separable subscript.

When testing for a dependence of statement S on itself in the example
below,

DO i
DO j

DO k
S A(i+1, j, k-1) = A(i, j+i, k) + C

ENDDO
ENDO

ENDDO

The first and second subscripts form a coupled group, while the third sub-
script is separable.

Coupled MIV subscripts of the form <a1i+c1, a2j+c2> are called
restricted double index variable (RDIV) subscripts. These subscripts are
similar to SIV subscripts, except that i and j are distinct indexes. The test-
ing of this special case will be discussed in Section 3.4.1.

Note that a coupled group of subscripts can be thought of as a separable
entity because it can be tested precisely for a set of directions correspond-
ing to the loop indexes appearing within the group. These directions can
then be merged with the directions arising from other tests in the same
way that directions coming from separable subscripts are merged.

Dependence Testing

106 ADVANCED COMPILING FOR HIGH PERFORMANCE

3.2 Dependence Testing Overview

Given the differing levels of complexity involved in testing various sub-
script classifications introduced in the previous section, a natural first step
is to partition subscripts according to their complexity, and test accord-
ingly. Doing so leads to a partition-based dependence testing procedure
for a pair of array references:

1. Partition the subscripts into separable and minimal coupled groups.

2. Classify each subscript as ZIV, SIV or MIV.

3. For each separable subscript, apply the appropriate single subscript
test (ZIV, SIV, MIV), based on the complexity of the subscript, to
either prove independence or produce direction vectors for the indexes
occurring in that subscript. If independence is proved, no further test-
ing is needed in other positions.

4. For each coupled group, apply a multiple subscript test to produce a
set of direction vectors for the indexes occurring within that group.

5. If any test yields independence, no further testing is needed because
no dependences exist.

6. Otherwise merge all the direction vectors computed in the previous
steps into a single set of direction vectors for the two references.

This algorithm takes advantage of separability by classifying all sub-
scripts in a pair of array references either as separable or as part of some
minimal coupled group. A coupled group is minimal if it cannot be parti-
tioned into two non-empty subgroups with distinct sets of indexes. Once
a partition is achieved, each separable subscript and each coupled group
have completely disjoint sets of indexes. Each partition may then be
tested in isolation and the resulting distance or direction vectors merged
with no loss of precision.

3.2.1 Subscript Partitioning

The first step, that of partitioning subscripts, is detailed in the algorithm
presented in Figure 3.1. Partition initially places each subscript pair in its
own partition, then merges together partitions that refer to the same loop
variable. While the algorithm may initially appear to be of time complex-
ity O(m2), it is actually linear when a data structure that permits constant
time unioning is used for partitions.

Dependence Testing Overview

Chapter Draft of February 8, 2001 107

FIGURE 3.1 Subscript Partitioning Algorithm

procedure partition(S,P, np)

// S is a set of m subscript pairs S1, S2, ...Sm for a single reference pair
// enclosed in n loops with indexes I1, I2, ... In,
// P is an output variable, containing the sets forming a partition of the
// subscripts into separable or minimal coupled groups
// np is the number of partitions.

np = m;
for i =1 to m do Pi ← {Si};

for i =1 to n do begin
 k ← <none>
 for each remaining partition Pj do

 if there exists s ε Pj such that s contains Ii then
 if k = < none > then k ← j;
 else begin Pk ← Pk ∪ Pj; discard Pj; np := np – 1; end

end
end partition

3.2.2 Merging Direction Vectors

The merge operation described in the test algorithm merits more explana-
tion. Since each separable and coupled subscript group contains a unique
subset of indexes, merge may be thought of as Cartesian product. In this
loop nest,

DO i
DO j

S1 A(i+1, j) = A(i, j) + C
ENDDO

ENDDO

the first position yields the direction vector (<) for the i loop, while the
second position yields the direction vector (=) for the j loop. The result-
ing Cartesian product is the single vector (<,=). A more complex example
is shown below:

DO i
DO j

S1 A(i+1, 5) = A(i, N) + C
ENDDO

ENDDO

Dependence Testing

108 ADVANCED COMPILING FOR HIGH PERFORMANCE

The first subscript yields the direction vector (<) for the i loop. Since
there is no variance on the j loop (j does not appear in any subscript and
N does not indirectly vary with j), both references to A access the same
memory location throughout each iteration of the j loop. Thus, if they
access a common memory element, all patterns of access to that element
occur. In other words, the full set of direction vectors {(<),(=),(>)} must
be assumed for the j-loop. The merge yields the following set of direction
vectors: {(<,<), (<,=), (<,>)}

Dependence test results for ZIV subscripts are treated specially. If a ZIV
subscript proves independence, the dependence test algorithm halts
immediately. If independence is not proved, the ZIV test does not pro-
duce direction vectors, so no merge is necessary.

3.3 Single-Subscript Dependence Tests

Once subscripts have been partitioned and classified, it is time to apply
specific tests to determine whether dependences exist and to characterize
those that do. This section develops the simplest tests available: those that
can be applied to single subscripts. Later sections will develop tests for
coupled groups.

3.3.1 ZIV Test

Since ZIV subscripts contain no references to any loop induction vari-
ables, they do not vary within any loop (assuming all symbolic terms are
loop invariant). Thus, if the two expressions can be proved not to be
equal, then the corresponding array references are independent. If the
expressions cannot be shown to be different, then the subscript does not
contribute to any direction vector (since it contains no loop induction
variable), and may be ignored. The ZIV test can be easily extended for
symbolic expressions by forming the expression representing the differ-
ence between the two subscript expressions. If the difference simplifies to
a non-zero constant, the subscripts are independent.

3.3.2 SIV Tests

The next step up in complexity from ZIV subscripts is obviously SIV
subscripts. SIV subscripts are the most commonly occurring in practice,
and a number of authors, notably Banerjee, Cohagan, and Wolfe
[8,13,49], have published a Single-Index exact test for linear SIV sub-
scripts. These methods are based on finding all solutions to a simple
Diophantine equation in two variables. The methods presented in this

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 109

section are somewhat simpler than the exact test listed above. The meth-
ods gain their simplicity by separating SIV subscripts into two catego-
ries: strong SIV and weak SIV.

FIGURE 3.2 Geometric View of Strong SIV Tests

3.3.2.1 Strong SIV Subscripts
 An SIV subscript for index i is said to be strong if it has the form <ai +
c1, ai' + c2>; i.e., if it is linear and the coefficients of the two occurrences
of the index i are constant and equal. Figure 3.2 gives a geometric picture
of the equations corresponding to a strong SIV pair. Since the loop coeffi-
cients are identical for each reference, a strong SIV pair maps into a pair
of parallel lines. The horizontal line marked A(m) indicates one point
where the two subscripts access the same element. Because of the paral-
lel nature of the lines, accesses to common elements will always be sepa-
rated by the same distance in terms of loop iterations. This distance,
called the dependence distance can be calculated by the following:

 (EQ 3.3)

A dependence exists between two references only if access to common
elements occur within the bounds set by the loop (given SIV, there must
be only one loop involved in the two references). This access will occur
only when d is an integer (if it is not an integer, references to the same
element cannot occur on a loop iteration for both subscripts) and

|d| ≤ U – L (EQ 3.4)

i

y

–c1/a1 –c2/a2

f(i)

g(i)

Ni

A(m)
d

d i' i–
c1 c2–

a
----------------= =

Dependence Testing

110 ADVANCED COMPILING FOR HIGH PERFORMANCE

where U and L are the loop upper and lower bounds (otherwise, at most
one reference can occur within the iteration space of the loop). These
facts provide for a very simple dependence test: calculate d; if it is an
integer and its absolute value falls within the range of the loop, there
exists a dependence whose direction can be determined by the sign of d.1
Otherwise, no dependence exists.

One advantage of the strong SIV test is that it can be easily extended to
handle loop-invariant symbolic expressions. The extension is to first eval-
uate the dependence distance d symbolically. If the result is a constant,
then the test may be performed as above. Otherwise, the difference
between the loop bounds can be calculated and also compared with d
symbolically. The following loop is an example of code that is not atypi-
cal of many programs:

DO i = 1, N
S1 A(i+2*N) = A(i+N) + C

ENDDO

The strong SIV test can evaluate the dependence distance d as 2N-N,
which simplifies to N. This is compared with the loop bounds symboli-
cally, proving independence since N > N-1.

3.3.2.2 Weak SIV Subscripts
In contrast to a strong SIV subscript, a weak SIV subscript has differing
coefficients on the loop induction variable, and thus takes the form <a1i
+c1, a2i'+c2>. As stated previously, weak SIV subscripts may be solved
using the Single-Index exact test. However, it also may be helpful to view
the problem geometrically, where the dependence equation:

a1i+c1 = a2i'+c2 (EQ 3.5)

describes a line in the two dimensional plane with i and i' as the axes
[11]. The weak SIV test can then be formulated as determining whether
the line derived from the dependence equation intersects with any integer
points in the space bounded by the loop upper and lower bounds, as
shown in Figure 3.3. There are two special cases that are advantageous to
identify.

1. One notable exception here is a distance of 0, which can only give rise to a loop inde-
pendent dependence. A zero distance between references within a single statement does
not indicate a dependence.

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 111

FIGURE 3.3 Geometric View of Weak SIV Subscripts

3.3.2.3 Weak-zero SIV Subscripts
If one of the two coefficients is 0 (i.e., a1 = 0 or a2 = 0), the subscript is a
weak-zero SIV subscript. If a2 is equal to zero, the dependence equation
reduces to

(EQ 3.6)

The reference in which the coefficient is zero references only one array
element during the loop (the horizontal line in Figure 3.4). Given that the
other coefficient is nonzero, the two lines can intersect at only one
point—that defined in Equation 3.6. Thus, the test consists merely of
checking that the computed value is an integer and is within the loop
bounds. A symmetric test applies when a1 is zero.

The weak-zero SIV test finds dependences caused by a particular itera-
tion. In scientific codes, this iteration is usually the first or last of the
loop, eliminating one possible direction vector for the dependence. More
importantly, weak-zero dependences caused by the first or last loop itera-
tion may be eliminated by loop peeling. Consider, for instance, the fol-
lowing simplified loop in the program tomcatv from the SPEC
benchmark suite:

DO i = 1, N
S1 Y(i, N) = Y(1, N) + Y(N, N)

ENDDO

i

y

–c1/a1 –c2/a2

f(i)

g(i)

Ni

A(m)

i
c2 c1–

a1
----------------=

Dependence Testing

112 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 3.4 Geometric View of Weak-zero SIV Subscripts

The weak-zero SIV test can determine that the use of Y(1,N) causes a
loop-carried true dependence from the first iteration to all other itera-
tions. Similarly, with aid from symbolic analysis, the weak-zero SIV test
can discover that the use of Y(N,N) causes a loop-carried antidependence
from all iterations to the last iteration. By identifying the first and last
iterations as the only cause of dependences, the weak-zero SIV test can
advise the user or compiler to peel the first and last iterations of the loop,
resulting in the following parallel loop:

Y(1, N) = Y(1, N) + Y(N, N)
DO i = 2, N-1

S1 Y(i, N) = Y(1, N) + Y(N, N)
ENDDO
Y(N, N) = Y(1, N) + Y(N, N)

3.3.2.4 Weak-crossing SIV Subscripts
Subscripts in which a2 = –a1 are called weak-crossing SIV. In these cases,
the important property that simplifies analysis is symmetry. Given that
the absolute values of the slopes of the lines are the same, they “move”
away from a given point at exactly the same rate, although one moves up
and the other moves down. As a result, the lines are symmetric about a
vertical line through their point of intersection (see Figure 3.5).

i

y

-c1/a1

f(i)

g(i)

Ni

A(m)

c2

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 113

FIGURE 3.5 Geometric View of Weak-crossing SIV Subscripts

Because of this symmetry, the ends of all dependences are on opposite
sides of a crossing point—the point where the lines intersect. One com-
mon example where weak-crossing SIV subscripts occur is in Cholesky
decomposition. To locate the crossing point, i is set to i' and the substitu-
tion of a2 = - a1 is made, deriving:

(EQ 3.7)

Since all dependences span the crossing point, determining whether
dependences exist is a simple check that the resulting i is within the loop
bounds and is either integer or has a non-integer part equal to 1/2. The
second part of the condition arises because each line moves symmetri-
cally from the crossing point; if that point is not halfway between two
integers, then the lines cannot intersect integers on the y-axis at integral
points on the x-axis. An example will serve to illustrate this. Suppose N is
equal to 4. Then we have the following values for i and N–i+1:

i

y

–c1/a1

f(i)

g(i)

Ni

A(m)

line of symmetry

i
c2 c1–

2a1
----------------=

i: 1

12

3

3

4

4N–i+1:

2

crossing point

Dependence Testing

114 ADVANCED COMPILING FOR HIGH PERFORMANCE

The crossing point must be exactly at 2.5 for the dependence to exist.

Weak-crossing SIV dependences may be eliminated by loop splitting. To
illustrate, consider the following loop from the Callahan-Dongarra-
Levine vector test suite [12]:

DO i = 1, N
S1 A(i) = A(N-i+1) + C

ENDDO

The weak-crossing SIV test determines that dependences exist between
the definition and use of A, and that they all cross iteration (N+1)/2 where
the semantics of Fortran require truncation of non-integral values. Split-
ting the loop at that iteration results in two parallel loops:

DO i = 1,(N+1)/2
A(i) = A(N-i+1) + C

ENDDO
DO i = (N+1)/2 + 1, N

A(i) = A(N-i+1) + C
ENDDO

Both forms of weak SIV tests are also useful for testing coupled sub-
scripts, described in Section 3.1.1. The exact SIV test, described in
Section 3.3.2.8 can be used for precise testing of any other SIV subscript.

3.3.2.5 Complex Iteration Spaces
SIV tests as described so far have been applied to rectangular iteration
spaces, where all loop bounds are independent of the loop values proper.
They do not apply directly to triangular loops (where one of the loop
bounds is a function of at least one other loop index) or trapezoidal loops
(where both bounds are functions of at least one other loop index). How-
ever, they can be extended to apply to such loops, with some loss of pre-
cision.

To understand how to do this, consider the special case of a strong SIV
subscript in a loop where the upper bound is a function of at most one
other loop index.

DO i = 1,N
DO j = L0 + L1*i, U0 + U1*i

S1 A(j + d) = ...
S2 ... = A(j) + B

ENDDO
ENDDO

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 115

By the strong SIV test, we can see that there is a dependence of statement
S2 on statement S1 carried by the J-loop if the dependence distance d is
smaller in absolute value than the distance from the loop lower bound to
the loop upper bound. In other words, there is a dependence if

|d| ≤ U0–L0+(U1–L1)I

Thus, we can assume a dependence if |d| is smaller than the largest value
for the quantity on the right hand side of the inequality. If U1–L1 is posi-
tive, this value occurs when I takes its maximum value; otherwise, it
occurs when I takes its minimum value.

But this does not tell the entire story, because the dependence might not
exist for every value of I. In particular, for the dependence to exist we
must have

(EQ 3.8)

For other values of I, the dependence does not exist. Unless it can be
shown that this inequality is violated for all values of I in its iteration
range, we must assume a dependence in the loop, because there will be
one for some value of I. In that sense, the dependence test is precise.

On the other hand, because the dependence does not occur for all values,
we can use the expression as a mechanism for index set splitting, dis-
cussed in Section 5.7. We can append the condition

(EQ 3.9)

as a breaking condition, which is a predicate that specifies the condition
or condition under which the dependence does not hold. The breaking
condition can be used to partially vectorize a statement. For example, in
the loop below

DO I = 1,100
DO J = 1, I

S1 A(J+20) = A(J) + B
ENDDO

ENDDO

the statement S1 can be vectorized for every value of I such that the
breaking condition below holds:

I
d U0 L0–()–

U1 L1–
-----------------------------------≥

I
d U0 L0–()–

U1 L1–
-----------------------------------<

Dependence Testing

116 ADVANCED COMPILING FOR HIGH PERFORMANCE

Thus the loop nest can be subdivided into two nests:

DO I = 1,20
DO J = 1, I

S1a A(J+20) = A(J) + B
ENDDO

ENDDO
DO I = 21,100

DO J = 1, I
S1b A(J+20) = A(J) + B

ENDDO
ENDDO

where the inner loop of the first nest can be vectorized. As we shall see in
Section 5.7.1, index set splitting can be used to vectorize the second loop
as well.

A similar analysis holds for the weak-zero test.

DO I = 1,N
DO J = L0 + L1*I, U0 + U1*I

S1 A(c) =
S2 = A(J) + B

ENDDO
ENDDO

Here we have a dependence only if c is within the loop bounds:

L0+L1I ≤ c ≤ U0 + U1I

The dependence exists for all values of I for which both inequalities
hold. However, we must report the dependence if the inequalities hold for
any values of I in the iteration range, even though it holds only within
non-empty loops for values of I given by the following inequality:

(EQ 3.10)

If the term in the denominator is 0 on either side of the inequality, we
assume that there is no bound on that side.

Technically, if the loop index variable in one loop has an upper or lower
bound that is the index for another loop that appears in another subscript

I
d U0 L0–()–

U1 L1–
-----------------------------------< 20 1–()–

1
----------------------- 21= =

c U0–

U1
--------------- I

c L0–

L1
--------------≤ ≤

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 117

in the same pair of references, the subscript positions are coupled. To see
why, consider this example.

DO I = 1,100
DO J = 1, I

S1 A(J+20,I) = A(J,19) + B
ENDDO

ENDDO

The first subscript, tested by the triangular strong SIV test, is just like our
earlier example—there can be no dependence unless I≥21. The weak-
zero test applied to the second test tells us that the subscripts can be equal
only when I=19. Thus there can be no dependence even though we would
assume a dependence if we tested the two subscripts separately.

An example of coupling with two SIV subscripts is as follows:

DO I = 1,100
DO J = I, I+19

S1 A(I+20,J) = A(I,J) + B
ENDDO

ENDDO

Independent SIV subscript testing indicates that there is a dependence
with a distance vector of (20,0). However, we note that the iteration
ranges for the J-loop at the source and sink of the dependence is non-
intersecting—when I=1, statement S1 stores into A(21,1:20), while at
the sink, statement S1 reads from A(21,21:40). Since there are no com-
mon memory locations in the two slices, there can be no dependence.

In practice, cases like these happen so rarely that they are not worth wor-
rying about. However, we shall see some more powerful tests for coupled
groups that can catch these cases easily.

3.3.2.6 Symbolic SIV Dependence Tests
Most of the dependence tests that have been presented so far are precise
when all terms involved are compile-time constants, but are unable to
cope well with symbolic quantities. There are a few exceptions—for
instance, loop-invariant symbolic additive constants have been treated by
assuming that the difference (c2 – c1) may be formed symbolically and
simplified, then used like a constant. Symbolic quantities appear fre-
quently in subscripts, arising from programming practices such as pass-
ing a multidimensional array to a procedure that only expects a singly-
dimensioned array. As a result, symbolic tests are important.

Dependence Testing

118 ADVANCED COMPILING FOR HIGH PERFORMANCE

This section describes a special test for independence between references
that are contained in two different loops at the same nesting level. For
instance, the test can be applied in the following pair of loops.

DO i = L1, U1
S1 A(a1*i + c1) = ...

ENDDO
DO j = L2, U2

S2 ... = A(a2*j + c2)
ENDDO

Assume for the sake of simplicity that a1 is greater or equal to zero. A
dependence exists if the following dependence equation is satisfied:

a1i – a2j = c2 – c1 (EQ 3.11)

for some value of i, L1≤ i ≤ U1, and j, L2 ≤ j ≤ U2. There are two cases to
consider. First, a1 and a2 may have the same sign. In this case, a1i – a2 j
assumes its maximum value for i = U1 and j = L2 and its minimum value
for i = L1 and j = U2 (remember, a1 and a2 are non-negative). Hence,
there is a dependence only if:

a1L1 – a2U2 ≤ c2 – c1 ≤ a1U1 – a2L2 (EQ 3.12)

If either inequality is violated, the dependence cannot exist.

In the second case, a1 and a2 have different signs. In this case, a1i – a2j
assumes its maximum for i = U1 and j = U2, so there is a dependence
only if:

a1L1 – a2L2 ≤ c2 – c1 ≤ a1U1 - a2U2 (EQ 3.13)

If either inequality is violated, the dependence cannot exist.

It should be noted that these inequalities are just special cases of the Ban-
erjee inequality. However, stated in this form, they obviously can be for-
mulated for symbolic values of c1, c2, L1, L2, U1 and U2. Furthermore,
this test may also be used to test for dependence in the same loop, with
L1 = L2 and U1 = U2.

As an example of symbolic testing, consider the following loop nest:

DO I = N+1, 2*N
S1 A(I + N) = A(I) + B

ENDDO

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 119

Substituting for the loop bounds in Equation 3.13, we get the following
symbolic inequality:

N+1 – 2N ≤ 0 – N ≤ 2N – (N+1)

which simplifies to

1 – N ≤ – N ≤ N – 1

If we assume the loop is executed for at least one iteration (otherwise the
issue is moot), 1–N is never smaller than –N, there is no dependence. A
good simplifier will catch this case and many more complicated cases.

3.3.2.7 Breaking Conditions
Another way to look at last example in the previous section is that the
dependence distance in the loop was the symbolic quantity N. To see this,
we can form the expression for dependence distance given by the strong
SIV test. It is possible to have a symbolic distance because the value of N
does not change in the loop.

Now let us consider a loop very similar to the one from the previous sec-
tion:

DO I = 1, L
S1 A(I + N) = A(I) + B

ENDDO

Since the variable N does not occur in the upper bound for the loop, we
cannot determine at compile time whether the dependence distance actu-
ally exists, so we must assume that it does. However, we know that it
would not exist if the loop upper bound L was no larger than the depen-
dence distance. In other words, if L<=N, then there is no dependence from
the statement S1 to itself. The predicate “L<=N” is called a breaking con-
dition for the dependence. Many dependence testers, when faced with
simple cases like this will annotate dependences that cannot be disproved
at compile time with breaking conditions in hopes that run-time testing or
input from the programmer can eliminate the dependence later.

In the above example, a vectorizer could generate alternative codes
depending on the run-time value of the breaking condition:

IF (L<=N) THEN
A(N+1:N+L) = A(1:L) + B

ELSE
DO I = 1, L

S1 A(I + N) = A(I) + B
ENDDO

Dependence Testing

120 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDIF

The code could be further improved by strip mining the loop in to strips
of exactly size N if the value of N is large enough to make vectorization
worthwhile.

Another interesting breaking condition arises from the weak-zero SIV
test, as demonstrated in the following example:

DO I = 1, N
S1 A(I) = A(L) + B

ENDDO

Assuming there is no known relationship between the values of N and L,
the weak zero test cannot prove that there is no self-dependence for state-
ment S1. However, the dependence tester can record a breaking condition
for this dependence:

(L < 1).OR.(L > N)

which can be used in turn to vectorize the loop conditionally.

IF ((L.LT.1).OR.(L.GT.N)) THEN
A(1:N) = A(L) + B

ELSE
DO I = 1, N

S1 A(I) = A(L) + B
ENDDO

ENDIF

As before, this can be further improved by strip mining the sequential
loop.

The ZIV test also provides many opportunities for the use of breaking
conditions. Consider the following loop:

DO I = 1, N
S1 A(L) = B(I) + C
S2 B(I+1) = A(L+K) + X(I)

ENDDO

Without knowledge of the values of L and K in this loop we cannot dis-
prove the assumption that statement S2 depends on statement S1. How-
ever it is clear that there can be no dependence unless K is zero. Therefore
the predicate K.NE.0 is a breaking condition for the dependence and
hence the recurrence.

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 121

Breaking conditions are especially useful in some libraries. For instance,
in the LAPACK linear algebra, one of the basic linear algebra libraries has
a loop fragment that looks like the following:

DO I = 1, N
S A(S*I) = A(S*I) + B(I)

ENDDO

Here the variable S holds a stride (≥0) for the loop that is passed into the
subroutine by a calling program. In most programs, this stride is 1. How-
ever, if in the degenerate case where S=0 the loop becomes a reduction. In
this example, the dependence tester must assume that there are three
dependences from statement S to itself—a true dependence, an antide-
pendence and an output dependence. However, these dependences all
have the same breaking condition: S.NE.0, which can be used to provide
alternative versions of the loop, one vector and one reduction, at run time.

3.3.2.8 An Exact SIV Test
An SIV subscript position in which the subscripts are of the form

a1i + a0 and b1i + b0

can be tested exactly by constructing all solutions of the linear diophan-
tine equation

a1x – b1y = b0 – a0 (EQ 3.14)

As pointed out earlier, this equation system has a solution if and only if
the greatest common denominator of a1 and b1 divides b0 – a0. It is well
known that the Euclidean algorithm for computing the greatest common
denominator can be extended to compute values na and nb such that

naa1 + nbb1 = gcd(a1,b1) (EQ 3.15)

Once these values are available, all solutions of the diophantine equations
are given by the following formulas.

(EQ 3.16)

xk na

b0 a0–

g
---------------- 

  k
b1

g
-----+=

yk nb

b0 a0–

g
---------------- 

  k
a1

g
-----+=

Dependence Testing

122 ADVANCED COMPILING FOR HIGH PERFORMANCE

Here (xk,yk) is a solution of a1x – b1y = b0 – a0 for every integral value of
k. Furthermore, for any solution (x, y) there exists a k such that x = xk and
y = yk.

Determining whether there exists a solution that implies dependence for a
particular direction vector and given loop bounds requires a search proce-
dure that is beyond the scope of this book.

3.3.3 Multiple Induction Variable Tests

When restricted to linear functions of loop induction variables, ZIV and
SIV subscripts are relatively simple linear mappings from Z (the set of
natural numbers) to Z. MIV subscripts are much more complicated, being
linear mappings from Zm to Z, where m is the number of loop induction
variables appearing in the subscript. This added complexity requires
more sophisticated mathematics in order to accurately determine depen-
dences. Accordingly, this section reviews the general dependence equa-
tions, recast in terms suitable to MIV subscripts, and the appropriate
mathematics as a prelude to the MIV tests proper.

To illustrate the issues, let us consider a general nest of loops:

DO i1 = L1, U1
DO i2 = L2, U2

...
DO in = Ln, Un

 S1 A(f(i1,...,in)) = ...
 S2 ... = A(g(i1,...,in))

 ENDDO
 ...

 ENDDO
 ENDDO

Determining whether there is a dependence with direction vector D =
(D1, D2,...,Dn) is equivalent to determining whether there exists an inte-
ger solution to the equation system

f(x1,x2,...,xn) = g(y1,y2,...,yn) (EQ 3.17)

in the space defined by

Li ≤ xi, yi ≤Ui, ∀i, 1 ≤ i ≤ n (EQ 3.18)

with the additional restriction due to the direction vector:

xi Di yi ∀i, 1 ≤ i ≤ n. (EQ 3.19)

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 123

(Recall that each entry of a direction vector is one of “<”, “=”, or “>”).
Let R denote the region defined by Equation 3.18 and Equation 3.19.
Then the equation has a solution if

h(x1,x2,...,xn,y1,y2,...,yn) = f(x1,x2,...,xn) – g(y1,y2,...,yn) = 0 (EQ 3.20)

has an integer solution somewhere inside the region R. Since integer
solutions are required, this problem lies in the theory of Diophantine
equations. As mentioned earlier, exactly solving Diophantine equations
in a restricted space is very difficult. As a result, finding simplifications
that are not exact but that provide reasonable precision is useful in a com-
piler. One such simplification is removing the restriction that the solu-
tions be integer, making the solution space continuous rather than
discrete. In other words, searching for real solutions (or, more precisely,
the absence of real solutions) to Equation 3.20 in the region R is useful. If
the equation does not have a real solution, then it cannot have an integer
solution, and accordingly, no dependence can exist. Assume for the
moment that the functions f and g are continuous in the region R. The fol-
lowing theorem follows directly from elementary analysis:

Theorem 3.1. If f and g are continuous functions on region R,
there exists a real solution to equation Equation 3.20 if and only if

 minR h ≤ 0 ≤ maxR h (EQ 3.21)

Proof. Immediate from the Intermediate Value Theorem1.

This theorem is the basis for the Banerjee Inequality and several other
tests.

The remainder of this chapter assumes that both f and g are affine func-
tions; that is, they have the form

f(x1,x2,...,xn) = a0 + a1x1 + ... + anxn (EQ 3.22)

g(y1,y2,...,yn) = b0 + b1y1 + ... + bnyn (EQ 3.23)

and that the dependence problem to be solved is to find solutions in the
region R to the linear diophantine equation

a0 – b0 + a1x1 – b1y1 + ... + anxn – bnyn = 0 (EQ 3.24)

1. Strictly speaking, the region R needs to be closed if max and min can be used in place
of inf and sup. For the applications in this book, all regions will be closed.

Dependence Testing

124 ADVANCED COMPILING FOR HIGH PERFORMANCE

3.3.3.1 GCD Test
Rearranging the terms of Equation 3.24 yields the following

a1x1 – b1y1 + ... + anxn - bnyn = b0 – a0 (EQ 3.25)

which is the standard form for a linear diophantine equation. Linear
diophantine equations have been the subject of extensive study for hun-
dreds of years. A fundamental theorem about these equations is the fol-
lowing:

Theorem 3.2. GCD Test. Equation 3.25 has a solution if and only
if gcd(a1,...,an,b1,...,bn) divides b0 – a0.

Thus, if the gcd of all the coefficients of loop induction variables does not
divide the difference of the two constant additive terms, there can be no
solution to the equation anywhere—hence, no dependence can exist. On
the other hand, if the gcd of the coefficients does divide b0 – a0, there is a
solution somewhere, although it need not be in the region of interest R.

When testing for a specific direction vector D = (D1,...,Dn), some of
whose directions are “=”, this condition can be tightened. Assume that
the direction vector for the dependence being tested is D, and has only
one “=” component, Di.. Then any acceptable solution must have xi = yi,
making the equation:

a1x1 – b1y1 + ... + (ai – bi)xi + ... + anxn – bnyn = b0 – a0 (EQ 3.26)

It is obvious that the gcd should include (ai – bi) and exclude both ai and
bi in this case, which is slightly more precise. In the general case, a simi-
lar replacement should be performed in any position where the direction
vector being tested is “=”.

With this observation, it should be clear that the strong SIV test described
in Section 3.3.2.1 is a special case of the GCD test in Theorem 3.2.

3.3.3.2 Banerjee Inequality
Although the GCD test is extremely useful in some cases, it is inadequate
as a general dependence test. The reason is the fact that the most common
gcd encountered in practice is 1, which divides everything. Furthermore,
the GCD test indicates dependence whenever the dependence equation
has an integer solution anywhere, not just the region R. The equations
that derive from common subscripts generally have integer solutions
somewhere, even if not in the region of interest. One test that eliminates
this problem by considering iteration limits is the Banerjee Inequality.

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 125

The Banerjee Inequality follows directly from Theorem 3.1 applied in the
case when f and g are affine functions:

h(x1,x2,...,xn,y1,y2,...,yn) = a0 - b0 + a1x1 - b1y1 + ... + anxn - bnyn (EQ 3.27)

Some preliminary definitions and notation are necessary before present-
ing the test itself.

Definition 3.1. Let hi
+= maxRi hi(xi,yi) and hi

– = minRi hi(xi,yi),
where

hi(xi,yi) = aixi - biyi (EQ 3.28)

 and the region Ri is defined by

Li ≤ xi, yi ≤ Ui and xi Di yi (EQ 3.29)

where Di is the direction vector element for the ith position.

In other words, hi
+ is the maximum value of the function hi over a region

and hi
– is the minimum value. For these values to be useful, there has to

be some way of calculating them. The following definitions help accom-
plish that.

Definition 3.2. Let a be a real number. The positive part of a,
denoted a+, is given by the expression

a+ = if a ≥ 0 then a else 0. (EQ 3.30)

The negative part of a, denoted a–, is given by

a– = if a ≥ 0 then 0 else –a. (EQ 3.31)

Both a+ and a– are positive and the following relationship holds

a = a+– a–
(EQ 3.32)

With these definitions, the following lemma can now be proved.

Lemma 3.1. Let t, s, and z denote real numbers. If 0 ≤ z ≤ s, then

–t–s ≤ tz ≤ t+s

Furthermore, there exist values z1, z2 such that

tz1 = –t–s and tz2 = t+s

Dependence Testing

126 ADVANCED COMPILING FOR HIGH PERFORMANCE

Proof. Case 1: t ≥0. In this case t+ = t and t– = 0. So the inequality is sat-
isfied because 0 ≤ tz = t+z ≤ t+s, since 0 ≤ z ≤ s. In this case z1 = 0 and
z2 = s.

Case 2: t < 0. In this case t+ = 0 and t– = –t. Thus, the inequality becomes
–t–s ≤ –t–z = tz ≤ 0 and we have z1 = s and z2 = 0.

The next step is to generalize this inequality to arbitrary bounds.

Lemma 3.2. Let t, l, u and z denote real numbers. If l ≤ z ≤ u, then

–t–u + t+l ≤ tz ≤ t+u – t–l

and there exist values z1, z2 such that

tz1 = –t–u + t+l and tz2 = t+u – t–l.

Proof. Assume l ≤ z ≤ u. Rearranging terms gives 0 ≤ z – l ≤ u – l.
Lemma 3.1 then gives us:

–t–(u – l) ≤ t(z – l) ≤ t+(u – l)

Rearranging terms again yields:

–t–u + (t + t–)l ≤ tz ≤ t+u – (t+ – t)l

Rearranging Equation 3.32 gives us

t+ = t + t– and t– = t+ – t

which proves the inequality. The existence of z1 and z2 follows directly
from Lemma 3.1.

This inequality provides the basis for proving an important result about
the minimum and maximum values of h. However, before we begin, we
need to introduce a little more terminology.

Definition 3.3. The quantities Hi
–(D) and Hi

+(D), where D is a
direction, are defined as follows:

Hi
–(<) = –(ai

– + bi)
+(Ui – 1) + [(ai

– + bi)
– + ai

+]Li – bi

Hi
+(<) = (ai

+ – bi)
+(Ui – 1) – [(ai

+ – bi)
– + ai

–]Li – bi

Hi
–(=) = –(ai – bi)

–Ui + (ai – bi)
+Li

Hi
+(=) = (ai – bi)

+Ui – (ai – bi)
–Li

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 127

Hi
–(>) = –(ai – bi

+)–(Ui – 1) + [(ai – bi
+)+ + bi

–]Li + ai

Hi
+(>) = (ai + bi

–)+ (Ui – 1) – [(ai + bi
–)– + bi

+]Li + ai

Hi
–(*) = –ai

–Ui
x + ai

+Li
x – bi

+Ui
y + bi

–Li
y

Hi
+(*) = ai

+Ui
x – ai

–Li
x + bi

–Ui
y – bi

+Li
y

where Li
x, Ui

x, Li
y and Ui

y are used in the last two equations to
handle the case where the source and sink of the dependence are
in different loops with different upper and lower bounds.

This use of different upper and lower bounds in the definition for direc-
tion “*” permits the handling of cases like the following:

DO I = 1, 100
DO J = 1, 50

S1 A(I,J) = B(I,J) + C
ENDDO
DO J = 51, 100

S2 A(I,J) = A(I,J) + D
ENDDO

ENDDO

Because of the nonintersecting iteration ranges of the first and second
loops, S1 and S2 are independent. Permitting the upper and lower bounds
to be different makes it possible to catch this case using the Banerjee Ine-
quality.

Lemma 3.3. Let hi(xi,yi) = aixi - biyi and let Ri be as described by
Equation 3.29: Li ≤ xi, yi ≤ Ui and xi Di yi. Then the minimum and
maximum values of hi are given by:

minR hi = hi
– = Hi

–(Di) (EQ 3.33)

maxR hi = hi
+ = Hi

+(Di) (EQ 3.34)

where the values of H are given by Definition 3.3.

Proof. Case 1: D= “=”. In this case Li ≤xi = yi ≤ Ui. Substituting xi for yi.
in the equations:

Li ≤ xi ≤ Ui

hi = aixi – biyi = (ai – bi)xi.

Dependence Testing

128 ADVANCED COMPILING FOR HIGH PERFORMANCE

One application of Lemma 3.2 yields the desired inequalities. Since
Lemma 3.2 guarantees that there exist points within R where the left and
right hand side values are obtained, the result is established.

Case 2: D= “<”. In this case Li ≤xi < yi ≤ Ui. To use Lemma 3.2, the ine-
quality needs to be translated to

Li ≤ xi ≤ yi – 1 ≤ Ui – 1.

Note that hi, (the quantity to minimized and maximized) is given by

hi = aixi – biyi = aixi – bi(yi – 1) – bi.

An application of Lemma 3.2 to Li ≤ xi ≤ yi – 1 can eliminate xi:

–ai
–(yi – 1) + ai

+Li – bi(yi – 1) – bi ≤ hi

≤ ai
+(yi – 1) – ai

–Li – bi(yi – 1) – bi.

Next Lemma 3.2 is applied to Li ≤ yi – 1 ≤ Ui – 1 to eliminate yi.

–(ai
– + bi)

+(Ui – 1) + (ai
– + bi)

–Li + ai
+Li – bi ≤ hi

≤ (ai
+ – bi)

+(Ui – 1) – (ai
+ – bi)

–Li – ai
–Li – bi

which establishes the result for this case. Once again, Lemma 3.1 guaran-
tees that there exist points within R where the minima and maxima occur.

Case 3: D = “>”. In this case Li ≤yi < xi ≤ Ui. First the inequality is trans-
lated to

Li ≤ yi ≤ xi – 1 ≤ Ui – 1.

Rearranging hi, yields

hi = aixi – biyi = ai(xi – 1) – biyi + ai.

Applying Lemma 3.2 eliminates yi:

ai(xi – 1) – bi
+(xi – 1) + bi

–Li + ai ≤ hi

≤ ai(xi – 1) + bi
–(xi – 1) – bi

+Li + ai.

A second application eliminates xi:

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 129

–(ai – bi
+)–(Ui – 1) + (ai – bi

+)+Li + bi
–Li + ai ≤ hi

≤ (ai + bi
–)+(Ui – 1) – (ai + bi

–)–Li – bi
+Li + ai,

which is the desired inequality.

Case 4: D= “*”. In this case Li
x
 ≤ xi ≤ Ui

x, Li
x
 ≤ yi ≤ Ui

y, with no implied
relationship between xi and yi. Two applications of Lemma 3.2 on the
expression hi = aixi – biyi, yield the inequality

Hi
–(*) ≤ hi ≤ Hi

+(*).

Since Lemma 3.2 guarantees that there exist points within R where the
minima and maxima occur, the result is established for this case.

Since each of the terms in h involves a different induction variable, each
term can be maximized and minimized independently. This yields the fol-
lowing important result.

Theorem 3.3. Banerjee Inequality. There exists a real solution
to h = 0 (Equation 3.20) for direction vector D = (D1, D2, ..., Dn)
if and only if the following inequality is satisfied on both sides:

(EQ 3.35)

Proof. The dependence equation provides the following formula for h:

Lemma 3.3 can then be applied to minimize and maximize h:

Substituting these formulas into the inequality from Equation 3.21 in
Theorem 3.1 and subtracting a0 – b0 from all three sides of the inequality
gives the desired result.

Hi
–

Di()
i 1=

n

∑ b0 a0– Hi
+

Di()
i 1=

n

∑≤ ≤

h a0 b0– hi
i 1=

n

∑+ a0 b0– aixi biyi–()
i 1=

n

∑+= =

minRh a0 b0– Hi
–

Di()
i 1=

n

∑+=

maxRh a0 b0– Hi
+

Di()
i 1=

n

∑+=

Dependence Testing

130 ADVANCED COMPILING FOR HIGH PERFORMANCE

3.3.3.3 Handling Symbolics in the Banerjee Inequality
In the previous section we introduced a method for dealing with symbolic
quantities in the simple SIV and ZIV tests. Here we will show how to
integrate symbolics into MIV testing using the Banerjee inequality. Our
principal concern will be the existence of symbolic upper and lower loop
bounds. In this task, we will make use of three principles:

1. Unless the step is explicitly specified as –1, we can assume that the
lower bound is no smaller than the upper bound. If this is not so, the
dependence test is moot.

2. The product of 0 times an unknown value (in this case a loop upper or
lower bound) is always 0.

3. If a loop upper bound or lower bound is not constrained by either of
the above rules, it must be assumed to take on any value. Therefore,
we can make the worst possible assumption for dependence testing.

In the dependence testing strategy we will use, the first principal will typ-
ically allow us to eliminate arbitrarily small values of the loop upper
bound or arbitrarily large values of the lower bound. For example, if we
have the loop:

DO I = 1, N
DO J = 1, M

DO K = 1, 100
A(I,K) = A(I+J,K) + B

ENDDO
ENDDO

ENDDO

we know that N and M must be at least equal to 1. Suppose that we are
testing for direction vector (=,*,*). Note that

a1 = 1; a2 = 0; b1 = 1; b2 = 1

Using these values in the Banerjee Inequality on the first subscript posi-
tion (we don’t need the K-loop because K does not appear in the subscript)
gives

H1
–(=) + H2

–(*)

= –(a1 – b1)–U1 + (a1 – b1)+L1 – (a2
– + b2

+)U2 + (a2
+ + b2

–)L2

= –(1–1)–N + (1–1)+1– (0+1)M + (0+0)1= –M

≤ b0 – a0 = 1 – 1 = 0

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 131

≤ H1
+(=) + H2

+(*)

= (a1 – b1)+U1 – (a1 – b1)–L1 + (a2
+ + b2

–)U2 – (a2
– + b2

+)L2

≤ (1–1)+N – (1–1)–1 + (0+0)M – (0+1)1= −1

The right inequality is violated; therefore there is no dependence. Note
that this result is achieved because of the second principal—both terms
involving symbolic upper bounds have coefficients of 0. On the left, we
must assume that the inequality holds because –M can become an arbi-
trarily large negative quantity but it must be no greater than –1.

3.3.3.4 Trapezoidal Banerjee Inequality
The Banerjee test presented in Section 3.3.3.2 assumes that the upper and
lower bounds of all the loops in the loop nest are independent of the val-
ues of other loop induction variables. Not all loops meet this requirement,
however, and it is common in practice to encounter loop nests where the
iteration range of the inner loops depends on the values of outer loop
indexes. The following is an example:

DO I = 1,100
DO J = 1, I-1

S1 A(J) = A(I+J–1) + C
ENDDO

ENDDO

In this case, no dependence can be carried by the inner loop because for a
given value of I, the references on the left hand side fall in the subarray
A(1:I-1)while the references on the right fall in the subarray A(I:I*2-
1). Since these two subarrays are nonintersecting, no dependence exists
with direction vector (=,*). However, if we substitute the coefficient val-
ues:

a1 = 0; a2 = 1; b1 = 1; b2 = 1

in the Banerjee Inequality, we get:

H1
–(=) + H2

–(*)

= –(a1 – b1)–U1 + (a1 – b1)+L1 – (a2
– + b2

+)U2 + (a2
+ + b2

–)L2

= –(0–1)–(100) + (0-1)+1– (0+1)(I-1) + (1+0)1= –I – 100

≤ b0 – a0 = 1 – 1 = 0

Dependence Testing

132 ADVANCED COMPILING FOR HIGH PERFORMANCE

≤ H1
+(=) + H2

+(*)

= (a1 – b1)+U1 – (a1 – b1)–L1 + (a2
+ + b2

–)U2 – (a2
– + b2

+)L2

≤ (0–1)+(100) – (0–1)–1 + (1+0)(I–1) – (0+1)1= Ι–3,

which can certainly be satisfied, since I takes on values greater than 3. As
a result, a dependence must be assumed.

The problem is that the Banerjee Inequality as currently formulated can-
not take advantage of knowledge about values of loop induction variables
in the upper bound expression. To alleviate this deficiency, we will derive
a special version of the Banerjee Inequality that we call the Trapezoidal
Banerjee Inequality, so named because it handles trapezoidal loops.

Let us start by assuming that the upper and lower bound expressions can
be rewritten as an affine combination of the loop induction variables:

(EQ 3.36)

The desired result is a modification of the Banerjee inequality that con-
siders these bound expressions. This result is not straightforward,
because the evaluation of minimum and maximum for each loop is no
longer independent of the other loops. For example, evaluating the mini-
mum and maximum at the innermost loop level can modify the coeffi-
cients associated with outer loops.

To understand how this happens, consider the evaluation of Hi
–(<). Mini-

mizing hi according to Lemma 3.2 yields

(EQ 3.37)

where ij can be either xj or yj, so long as it is uniformly one or the other in
a single summation. Following the proof in Lemma 3.3, case 2, the lower
bound of xi is introduced in the first step to eliminate xi and produce

Ui Ui0 Uiji j
j 1=

i 1–

∑+= Li Li0 Liji j
j 1=

i 1–

∑+=

Hi
–

<() ai
–

bi+()
+

– Ui0 1– Uiji j
j 1=

i 1–

∑+
 
 
 

=

+ ai
–

bi+()
–

ai
+

+[] Li0 Liji j
j 1=

i 1–

∑+
 
 
 

bi–

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 133

–ai
–(yi – 1) + ai

+Li – bi(yi – 1) – bi ≤ hi

≤ ai
+(yi – 1) – ai

–Li – bi(yi – 1) – bi.

Thus, the summation with xj should be used for the lower bound multi-
plied by ai

+ in the left hand side above and ai
– in the right hand side

above. When eliminating the remaining terms it is proper to use upper
and lower bounds for yi. Thus the final expression is

(EQ 3.38)

This means that the coefficients of xj and yj, for 1 ≤ j < i, used in minimiz-
ing hj must be adjusted by the appropriate term in the equation above. A
similar adjustment needs to be made to coefficients on the maximum side
of the inequality.

Figure 3.6 (along with Figure 3.7, Figure 3.8, Figure 3.9, and
Figure 3.10) contains the algorithm for evaluating the Trapezoidal Baner-
jee Inequality for any direction vector. Note that it evaluates the inequal-
ity starting at the innermost loop and moving outward. At each stage, it
updates the accumulated left and right hand sides of the inequality, then it
adjusts, as appropriate, the coefficients corresponding to outer loops.
These coefficients are held in the temporary arrays Al[] and Bl[], which
hold coefficients for the left hand inequality, and Ar[] and Br[], which
hold coefficients for the right hand inequality.

Note that the testing for direction “*” assumes that we may have different
loop bounds at the source and sink of the dependence. This arose from
the desire to eliminate dependences that have endpoints in separate loops
with nonintersecting iteration ranges. (See Section 3.3.3.2 for a discus-
sion.) In this case we assume that we have distinct upper and lower bound
expressions for each of the occurrences.

Hi
–

<() ai
–

bi+()
+

– Ui0 1– Uijy j
j 1=

i 1–

∑+
 
 
 

=

+ ai
–

bi+()
–

Li0 Lijy j
j 1=

i 1–

∑+
 
 
 

+ ai
+

Li0 Lijx j
j 1=

i 1–

∑+
 
 
 

bi–

Dependence Testing

134 ADVANCED COMPILING FOR HIGH PERFORMANCE

(EQ 3.39)

(EQ 3.40)

Of course, these values will be the same if the two occurrences are both
within the same loop.

FIGURE 3.6 Trapezoidal Banerjee Inequality Evaluation

boolean function Banerjee(D);

// Al[i] is the adjusted coefficient ai used on the minimum side
// Bl[i] is the adjusted coefficient bi used on the minimum side
// Ar[i] is the adjusted coefficient ai used on the maximum side
// Br[i] is the adjusted coefficient bi used on the maximum side
// Vmin is the accumulated Banerjee left hand side
// Vmax is the accumulated Banerjee right hand side

for i := 1 to n do begin
Al[i] := ai; Ar[i] := ai; Bl[i] := bi; Br[i] := bi;

end;

Vmin := 0; Vmax := 0;

for i := n to 1 do begin

if Di = “=” then
ComputePositionEqual(Vmin, Vmax, Al, Bl, Ar Br);

else if Di = “<” then
ComputePositionLessThan(Vmin, Vmax, Al, Bl, Ar Br);

else if Di = “>” then
ComputePositionGreaterThan(Vmin, Vmax, Al, Bl, Ar Br);

else if Di = “*” then
ComputePositionAny(Vmin, Vmax, Al, Bl, Ar Br);

end;
if Vmin ≤ b0 – a0 and b0 – a0 ≤ Vmax then return true else return false;

end Banerjee;

Ui
x

Ui0
x

Uij
x

x j
j 1=

i 1–

∑+= Li
x

Li0
x

Lij
x

x j
j 1=

i 1–

∑+=

Ui
y

Ui0
y

Uij
y

y j
j 1=

i 1–

∑+= Li
y

Li0
y

Lij
y

y j
j 1=

i 1–

∑+=

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 135

FIGURE 3.7 Trapezoidal Banerjee for Direction “=”.

procedure ComputePositionEqual(Vmin, Vmax, Al, Bl, Ar Br);

// Al[i] is the adjusted coefficient ai used on the minimum side
// Bl[i] is the adjusted coefficient bi used on the minimum side
// Ar[i] is the adjusted coefficient ai used on the maximum side
// Br[i] is the adjusted coefficient bi used on the maximum side
// Vmin is the accumulated Banerjee left hand side
// Vmax is the accumulated Banerjee right hand side

Vmin := Vmin – (Al[i] – Bl[i])
–Ui0 + (Al[i] – Bl[i])

+Li0;
Vmax := Vmax + (Ar[i] – Br[i])

+Ui0 – (Ar[i] – Br[i])
–Li0;

nU := 0; nL := 0;
// v(<) = –1, v(=) = 0 and v(>) = 1
for j := 1 to i–1 do begin

nL := nL + Lijv(Dj); nU := nU + Uijv(Dj)
end;
if nL ≤ 0 then

for j := 1 to i–1 do begin
// Signs reversed for updates to B
Bl[j] := Bl[j] – (Al[i] – Bl[i])

+Lij;
Br[j] := Br[j] + (Ar[i] – Br[i])

–Lij
end

else
for j := 1 to i–1 do begin

Al[j] := Al[j] + (Al[i] – Bl[i])
+Lij

Ar[j] := Ar[j] – (Ar[i] – Br[i])
–Lij

end
end
if nU ≤ 0 then begin

for j := 1 to i–1 do begin
Al[j] := Al[j] – (Al[i] – Bl[i])

–Uij
Ar[j] := Ar[j] + (Ar[i] – Br[i])

+Uij
end

else begin
for j := 1 to i–1 do begin

// Signs reversed for updates to B
Bl[j] := Bl[j] + (Al[i] – Bl[i])

–Uij;
Br[j] := Br[j] – (Ar[i] – Br[i])

+Uij
end

end
end ComputePositionLessThan

Dependence Testing

136 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 3.8 Trapezoidal Banerjee for Direction “<”.

procedure ComputePositionLessThan(Vmin, Vmax, Al, Bl, Ar Br);

// Al[i], Bl[i], Ar[i], Br[i] are the adjusted coefficients
// Vmin is the accumulated Banerjee left hand side
// Vmax is the accumulated Banerjee right hand side

Vmin := Vmin – (Al[i]
– + Bl[i])

+(Ui0 – 1)
+ ((Al[i]

– + Bl[i])
– + Al[i]

+)Li0 – Bl[i];
Vmax := Vmax + (Ar[i]

+ – Br[i])
+(Ui0 – 1)

 – ((Ar[i]
+ – Br[i])

– + Ar[i]
–)Li0 – Br[i];

for j := 1 to i–1 do begin
// Signs reversed for updates to B
Al[j] := Al[j] + Al[i]

+Lij;
Bl[j] := Bl[j] + (Al[i]

– + Bl[i])
+Uij –(Al[i]

– + Bl[i])
–Lij;

Ar[j] := Ar[j] – Ar[i]
–Lij;

Br[j] := Br[j] – (Ar[i]
+ – Br[i])

+Uij + ((Ar[i]
+ – Br[i])

–Lij
end

end ComputePositionLessThan

FIGURE 3.9 Trapezoidal Banerjee for Direction “>”.

procedure ComputePositionGreaterThan(Vmin, Vmax, Al, Bl, Ar Br);

// Al[i], Bl[i], Ar[i], Br[i] are the adjusted coefficients
// Vmin is the accumulated Banerjee left hand side
// Vmax is the accumulated Banerjee right hand side

Vmin := Vmin – (Al[i] – Bl[i]
+)–(Ui0 – 1)

+ ((Al[i] – Bl[i]
+)+ + Bl[i]

–)Li0 + Al[i];
Vmax := Vmax + (Ar[i] + Br[i]

–)+(Ui0 – 1)
 – ((Ar[i] + Br[i]

–)– + Br[i]
+)Li0 + Al[i];

for j := 1 to i–1 do begin
// Signs reversed for updates to B
Bl[j] := Bl[j] –Bl[i]

–Lij;
Al[j] := Al[j] – (Al[i] – Bl[i]

+)–Uij + (Al[i] – Bl[i]
+)+Lij;

Br[j] := Br[j] + Br[i]
+Lij;

Ar[j] := Ar[j] + (Ar[i] + Br[i]
–)+Uij – ((Ar[i] + Br[i]

–)–Lij
end

end ComputePositionGreaterThan

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001 137

FIGURE 3.10 Trapezoidal Banerjee for Direction “*”.

procedure ComputePositionAny(Vmin, Vmax, Al, Bl, Ar Br);

// Al[i], Bl[i], Ar[i], Br[i] are the adjusted coefficients
// Vmin is the accumulated Banerjee left hand side
// Vmax is the accumulated Banerjee right hand side

Vmin := Vmin – Al[i]
–Ui0

x + Al[i]
+Li0

x – Bl[i]
+Ui0

y + Bl[i]
–Li0

y;
Vmax := Vmax + Ar[i]

+Ui0
x – Ar[i]

–Li0
x+ Br[i]

–Ui0
y – Br[i]

+Li0
y

for j := 1 to i–1 do begin
// Signs reversed for updates to B
Al[j] := Al[j] – Al[i]

–Uij
x+ Al[i]

+Lij
x;

Bl[j] := Bl[j] + Bl[i]
+Uij

y – Bl[i]
–Lij

y;
Ar[j] := Ar[j] + Ar[i]

+Uij
x – Ar[i]

–Lij
x;

Br[j] := Br[j] – Br[i]
–Uij

y + Br[i]
+Lij

y

end
end ComputePositionAny

Correctness To show correctness of function Banerjee we must show
that the values of Vmin and Vmax computed by function Banerjee in
Figure 3.6 are such that:

Vmin+ a0 – b0 ≤ minR h and maxR h ≤ Vmax+ a0 – b0.

In other words, if Banerjee returns false, no dependence can exist. For the
cases Di= “<”, Di= “>” and Di= “*” this follows directly from the proof
of Theorem 3.3, with the adjustments being made to coefficients for outer
loops along the lines described in the discussion of Equation 3.37 and
Equation 3.38. In fact, the inequality is precise for those directions by
Lemma 3.3.

The only tricky case occurs when Di= “=”. In this case, the following
expansions for Hi

–(=) and Hi
+(=) are valid:

(EQ 3.41)

Hi
–

=() ai bi–()–
Ui0 Uiji j

j 1=

i 1–

∑+
 
 
 

– ai bi–()+
Li0 Liji j

j 1=

i 1–

∑+
 
 
 

+=

Hi
+

=() ai bi–()+
Ui0 Uiji j

j 1=

i 1–

∑+
 
 
 

ai bi–()–
Li0 Liji j

j 1=

i 1–

∑+
 
 
 

–=

Dependence Testing

138 ADVANCED COMPILING FOR HIGH PERFORMANCE

The problem is that the source and the sink of the dependence can have
different upper and lower bounds because the outer loop index values at
the source and sink are likely to be different (unless all outer loop direc-
tions are “=”. Since the requirement is that xi=yi, the dependence cannot
exist unless xi is greater than both lower bounds and less than both upper
bounds. Unfortunately, simply substituting the maximum of two summa-
tions back into the equation will not yield meaningful coefficients for the
outer loops. Hence, one of the lower bounds and one of the upper bounds
must be chosen, with a loss of precision.

Choosing the upper and lower bound that preserve as much precision as
possible requires an intelligent heuristic. Since the direction vector is
known, the following can be evaluated.

where

If nL ≤ 0 then it is likely that the lower bound for yi is greater than the one
for xi, so that lower bound in Equation 3.41 is used. Similarly, if nU ≤ 0,
the upper bound for xi is likely to be lower than the upper bound for yi, so
the upper bound for xi is used in Equation 3.41. This heuristic, which is
precise if there is only one nonzero Lij, is the source of the somewhat
branchy adjustment in the code for Banerjee.

Returning to the example, the key loop constants have the following val-
ues:

a1 = 0; a2 = 1; b1 = 1; b2 = 1

N10 = 99; N20 = –1; N21 = 1

We leave it to the reader to verify that the trapezoidal Banerjee Inequality
does not hold for this case.

nL Lijv D j()
j 1=

i 1–

∑= and nU U ij v D j ()

j

1=

i

1–

 ∑ =

v Di()

1 if D i – ‘<‘=

0 if D i ‘=‘=

1 if D i ‘>‘= 





=

Single-Subscript Dependence Tests

Chapter Draft of February 8, 2001

139

3.3.3.5 Testing for All Direction Vectors

For dependence testing to be useful, it should construct the entire set of
direction vectors for a dependence between a given pair of statements.
Burke and Cytron originated an efficient algorithm to perform this con-
struction [10], which is reproduced in Figure 3.12. The basic idea behind
the algorithm is to begin by testing for the most general set of direction
vectors then successively refine the test, pruning whenever it is shown
that an entire set of direction vectors cannot exist. The idea behind this
test is illustrated in Figure 3.11 below. Here the procedure establishes
that some dependence exists by testing for (*,*,*), then it refines the test
by testing separately for directions in the first position. If any of these
succeeds, it further refines the test by testing for different directions in the
second position and so on.

FIGURE 3.11

Testing for all direction vectors.

The test is implemented by a function

try

, which is called with a direction
vector of all “*”’s and an empty

dvlist

 (i.e.,

 D

 := (*,*,...,*);

dvlist

:=

try

(

D,

1,

∅

);). This function then recursively calls itself whenever a test is
successful.

(*,*,*)

(<,*,*) (=,*,*) (>,*,*)

(<,<,*) (<,=,*) (<,>,*)

(<,=,<) (<,=,=) (<,=,>)

Dependence Testing

140

ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 3.12

MIV Direction Vector Test

set function

try

(

D, k

,

dvlist

);

if not

Banerjee

(

D

)

then return

dvlist

if

k

=

n

then return

dvlist

∪

{

D

}

for

d

:= “<”, “=”, “>”

do begin

D

i

:=

d

;

dvlist

:=

try

(

D, k

+1,

dvlist

)

end
end

try

Although this procedure has the same asymptotic complexity as exhaus-
tive testing in the worst case, it can significantly reduce testing overhead
in the average case by pruning the tree whenever a test indicates that no
dependences exist along a particular branch.

3.4 Testing in Coupled Groups

The tests used for separable subscripts can also be used on each subscript
of a coupled group—if any test proves independence, then no depen-
dence exists. However, we have seen in Section 3.1.1.5 on page 103 that
subscript-by-subscript testing in a coupled group may produce false
dependences.

A slightly stronger approach to subscript-by-subscript testing is to test
each subscript separately and intersect the resulting sets of direction vec-
tors [48]. This is effective on the example from Section 3.1.1.5:

DO I = 1, 100
S1 A(I+1,I) = B(I) + C
S2 D(I) = A(I,I) * E

ENDDO

Here, testing the first subscript yields the direction vector (<), while test-
ing in the second position yields the direction vector (=). When we inter-
sect these directions, we discover that no dependence can exist.

This method permits simple and efficient testing, but in some cases also
provides a conservative approximation to the set of directions within a
coupled group. That is, it may yield direction vectors that do not exist.
For instance, consider the following loop:

DO I = 1, 100
S1 A(I+1, I+2) = A(I, I) + C

Testing in Coupled Groups

Chapter Draft of February 8, 2001 141

ENDDO

Subscript-by-subscript test with direction vector intersection would yield
the single direction vector (<,<). However, a careful examination of the
statement reveals that this direction vector is invalid, because no depen-
dence actually exists—the subscript pairs cannot be simultaneously
equal.

To address this problem we can strengthen the dependence test to inter-
sect distance vectors rather than direction vectors. When the SIV test is
applied to the above example, the two subscripts produce two different
distance vectors: (1) and (2). The intersection of these distance vectors is
clearly empty. This strategy is extremely effective because such a large
percentage of the dependence tests applied in practice are strong SIV
tests, which produce distances.

Many researchers have worked on multiple subscript tests [32,46,50].
Most of the work is focused on fast methods for determining whether
simultaneous linear diophantine equations can have a solution. An over-
view of this work is provided in Section 3.4.2.

3.4.1 The Delta Test

In this section we discuss a simple intuitive strategy called the Delta test.
for testing dependence in multiple subscripts. The Delta test is designed
to be exact yet efficient for common coupled subscripts. An overview of
the algorithm is given in Figure 3.13.

The main idea behind the Delta test is to build on the intuition behind
intersection of distance vectors. Since most subscripts found in practice
are SIV and since SIV tests are simple and exact in most cases, the infor-
mation gleaned from them can be used to simplify the testing of other
subscripts in the same coupled group. In the Delta test, we examine each
SIV subscript in the coupled group to produce constraints that can be
propagated into other subscripts in the same group. Usually this propaga-
tion results in a simplification that produces a precise set of direction vec-
tors. Since most coupled subscripts in scientific FORTRAN codes are SIV,
the Delta test is a practical, fast, and in most cases exact multiple sub-
script test.

The name “Delta test” derives from the informal usage of ∆I to represent
the distance between the source and sink index in the I-loop. Thus we
assume that the index at the source of a dependence is a specific value of

Dependence Testing

142 ADVANCED COMPILING FOR HIGH PERFORMANCE

I and the index at the sink is to the same value plus the distance: I+∆I.
To see how this works, consider a simple example:

DO J = 1, 100
DO I = 1, 100

S1 A(I+1,I+J) = A(I,I+J-1) + C
ENDDO

ENDDO

If we apply the SIV test to the first subscript, we get a distance of 1, that
is ∆I=1. From the second subscript we have the equation

I + J = I + ∆I + J + ∆J − 1

which is derived by substituting the incremented value of the indexes at
the source for the index at the sink. If we substitute ∆I=1 into this equa-
tion we get

I + J = I + 1 + J + ∆J − 1

We now simplify by eliminating the constant values I and J to get

∆J = 0

Thus the only legal direction vector is (0,1) and the only legal distance
vector is (=,<).

In essence, what we have done is to factor out the I in the dependence test
of the second subscript converting the test to the one for S1 below.

DO J = 1, 100
DO I = 1, 100

S1 A(I+1,J) = A(I, J) + C
ENDDO

ENDDO

Note that we have used a strong SIV subscript to reduce an MIV sub-
script to strong SIV form.

The Delta test can detect independence if any of its component SIV tests
detect independence. Otherwise, it converts all SIV subscripts into con-
straints, propagating them into MIV subscripts where possible. This pro-
cess repeats until no new constraints are found. Constraints are then
propagated into coupled RDIV subscripts. The remaining MIV subscripts
are tested and the results are intersected with existing constraints. The
following sections develop the Delta test in greater detail.

Testing in Coupled Groups

Chapter Draft of February 8, 2001 143

FIGURE 3.13 Delta Test Algorithm

procedure Delta_test(subscripts, DVset, dV)

// subscripts is a set of all coupled SIV and/or MIV subscripts
// DVset is an output parameter containing all direction vectors
// dV is an output parameter containing known distance vectors

 initialize elements of constraint vector C to < none >

 while ∃ untested SIV subscripts in subscripts do begin
 apply SIV test to all untested SIV subscripts,

 return independence or derive new constraint vector C';
 C' ← C ∩ C';
 if C' = ∅ then return independence;
 else if C ≠ C' then begin

C ← C';
 propagate constraint C into MIV subscripts,

 possibly creating new ZIV or SIV subscripts;
apply ZIV test to untested ZIV subscripts,
 return independence or continue;

 end
 end

 while ∃ untested RDIV subscripts do
 test and propagate RDIV constraints;

 test remaining MIV subscripts, and
 intersect resulting direction vectors with C;

 construct DVset and dV from C;
end Delta_test

3.4.1.1 Constraints
In the context of this book, constraints are assertions on indexes that
must hold for a dependence to exist. Given the tie to dependence, con-
straints are usually derived from subscripts. As an example, the depen-
dence equation applied to the subscript <a1i +c1, a2i'+c2> generates the
constraint a1i–a2i'=c2–c1 for index i. Another example of a simple con-
straint is a dependence distance.

The constraint vector C = (δ1, δ2, ..., δn) is a vector with one constraint
for each of the n indexes in the coupled subscript group. In the Delta test,
constraint vectors are used to store constraints generated from SIV tests.
Because of the simple nature of SIV subscripts, these constraints can be
easily converted to distance or direction vectors.

Dependence Testing

144 ADVANCED COMPILING FOR HIGH PERFORMANCE

A constraint δ may have the following form:

• dependence line — a line <ax + by = c> representing the dependence
equation

• dependence distance — the value <d> of the dependence distance; it
is equivalent to the dependence line <x – y = –d >.

• dependence point — a point <x, y> representing dependence from
iteration x to iteration y.

Dependence distances and lines derive directly from the strong and weak
SIV tests. Dependence points result from intersecting constraints, as
described in the next section.

3.4.1.2 Intersecting Constraints
Since dependence equations from all subscripts must simultaneously
have solutions for any dependences to exist, intersecting constraints from
each subscript can improve precision. If the intersection is the empty set,
no dependence is possible. This may seem a little counterintuitive,
because the term “constraint” usually implies a restriction or restraint,
and thus, the lack of constraints on indexes for dependences would seem
to imply that all dependences can exist. The important fact to remember
is that constraints are actually logical expressions guaranteed to be true
when some dependence exists. If there are no such logical expressions,
there can be no dependence. We have already seen constraint intersection
applied to both direction vectors and coupled SIV subscripts.

Dependence distances are the easiest to intersect, by simply comparing
the distances. If the distances are not all equal, then they cannot simulta-
neously hold, and no dependences exist. For example, as we saw in the
following loop nest from page 140:

DO I = 1,N
S1 A(I+1, I+2) = A(I, I) + C

ENDDO

The strong SIV test applied to the first subscript shows a dependence dis-
tance of 1; applied to the second subscript, it shows a distance of 2. Inter-
secting the two constraints is performed by comparing them. They are not
equal, producing the empty set as the constraint set and proving indepen-
dence. This reflects the fact that any value i' substituted into the sub-
scripts on the left side cannot simultaneously be both 1 and 2 less than
any value of i substituted into the subscripts on the right side.

Testing in Coupled Groups

Chapter Draft of February 8, 2001 145

Even complex constraints from SIV subscripts may be intersected
exactly. Since each dependence equation from a SIV subscript may be
viewed as a line in a two-dimensional plane, intersecting constraints from
multiple SIV subscripts corresponds to calculating the point(s) of inter-
section for lines in a plane. No dependence exists if the lines do not inter-
sect at a common point within the loop bounds, or if the coordinates of
this point do not have integer values. If all dependence equations inter-
sect at a single dependence point, its coordinates are the only two itera-
tions that actually cause dependence.

DO I = 1, N
S1 A(I, I) = A(1, I-1) + C

ENDDO

In this example loop, testing the first and second subscripts in the pair of
references to A derives the dependence lines <I=1> and <I=I'-1>,
respectively. These dependence lines intersect at the dependence point
<1,2>, indicating that the only dependence is from the first to the second
iteration. Since calculating the intersection of lines in a plane can be per-
formed precisely, constraint intersection is exact.

The full constraint intersection algorithm will not be given here, as it is
straightforward to derive.

3.4.1.3 Constraint Propagation

SIV Constraints A major contribution of the Delta test is its ability to
propagate constraints derived from SIV subscripts into coupled MIV sub-
scripts, usually with no loss of precision. The resulting constrained sub-
script can then be tested with greater efficiency and precision. Although
we will not present a full constraint propagation algorithm here, it is easy
to construct. The goal of such an algorithm is to utilize SIV constraints
for each index to eliminate instances of that index in the target MIV sub-
script. To make the algorithm more concrete, consider the following
example:

DO I
DO J

S1 A(I+1, I+J) = A(I, I+J)
ENDDO

ENDDO

Applying the strong SIV test to the first subscript of array A reveals a
dependence distance of <1> for index I. Propagating this constraint into
the second subscript to eliminate both occurrences of I results in the con-

Dependence Testing

146 ADVANCED COMPILING FOR HIGH PERFORMANCE

strained SIV subscript <J–1, J>. The strong SIV test applied to this sub-
script gives a distance of –1 on the J loop. Since this completes testing on
all subscripts, it also completes the Delta test. Merging the elements of
the constraint vector gives a dependence with distance vector (1, –1).

Constraint propagation in this example is exact, because both instances of
index I in the constrained subscript were eliminated. Empirical studies
[18] show that this is frequently the case for scientific codes. In general
the algorithm may only eliminate one occurrence of an index. This results
in improved precision when testing coupled groups, but is not exact. If
desired, additional precision may be gained by utilizing the constraint to
reduce the range of the remaining index, as in Fourier-Motzkin Elimina-
tion [40].

Multiple Passes The Delta test algorithm iterates if MIV subscripts are
reduced to SIV subscripts, since that action may produce new constraints.
The following loop nest provides an example:

DO I
DO J

DO K
S1 A(J-I,I+1,J+K) = A(J-I,I,J+K)

ENDDO
ENDDO

ENDDO

In the first pass of the Delta test, the second subscript is tested, producing
a dependence distance of < 1 > on the i loop. This constraint is then prop-
agated into the first subscript, resulting in the subscript < J+1, J >.

Since a new SIV subscript has been created, the algorithm repeats. On the
second pass, the new subscript is tested to produce a distance of 1 on the
J loop. This constraint is then propagated into the third subscript to
derive the subscript (K-1,K). The new SIV subscript causes another pass
that discovers a distance of -1 on the K loop. Since all SIV subscripts have
been tested, the Delta test halts at this point, returning the distance vector
(1, 1, -1).

Improved Precision The Delta test may improve the precision of other
dependence tests on remaining constrained MIV subscripts.

DO I = 1,100
DO J = 1,100

S1 A(I-1,2*I) = A(I,I+J+110)
ENDDO

ENDDO

Testing in Coupled Groups

Chapter Draft of February 8, 2001 147

Banerjee’s inequalities alone applied to the subscripts in this example
loop cannot prove independence. The Delta test improves on this result
by first converting the leftmost subscripts into a dependence distance
constraint of <–1>. This constraint is then propagated into the rightmost
subscripts to produce the constrained MIV subscript < 2, J-I+110 >,
which can be successfully handled (i.e. independence detected) by Ban-
erjee's inequalities.

DO I
DO J

S1 A(I,2*J+I) = A(I,2*J-I+5)
ENDDO

ENDDO

Similarly, in this example loop the GCD test shows integer solutions for
both subscripts. However, propagating the distance constraint < 0 > for I
from the first subscript into the second subscript yields the constrained
MIV subscript <2*J, 2*J-2*I+5>. The GCD test can now detect inde-
pendence since the GCD of the coefficients of all the indexes is 2, which
does not divide evenly into the constant term 5.

Distance Vectors The Delta test is particularly useful for producing dis-
tance vectors from MIV subscripts in coupled groups. The following loop
nest, which exhibits a pattern that is fairly common in numerical codes
after transformations to improve parallelism, is illustrative:

DO I = 1, N
DO J = I+1, I+N

S1 A(I,J-I) = A(I-1,J-I) + C
ENDDO

In this example, for instance, most dependence tests are unable to calcu-
late distance vectors due to the MIV subscript in the second position. The
Delta test, however, does permit accurate analysis of these subscripts.
The test propagates distance constraints for I from the first subscript into
the second subscript, deriving the distance vector (1, 1).

Restricted DIV Constraints The previous section showed how SIV con-
straints may be propagated. MIV constraints may also be propagated, but
are expensive to propagate in the general case. However, in the special
case of coupled RDIV subscripts (introduced in Section 3.1.1.6 on
page 104), we present a method to handle an important special case. For
simplicity, only the following types of array references are considered:

DO i
DO j

Dependence Testing

148 ADVANCED COMPILING FOR HIGH PERFORMANCE

S1 A(i1+c1, i2+c2) = A(i3+c3, i4+c4)
ENDDO

ENDDO

When i1 and i2 are both instances of index i, and i3 and i4 are both
instances of index j, a constraint between i and j is derived from the first
subscript. That constraint may be propagated into the second subscript
using the algorithms for SIV subscripts discussed previously. The only
additional consideration is that bounds for i and j may differ.

More commonly, i1 and i4 are both instances of index i, and i2 and i3
are both instances of index j. In this case, the following set of depen-
dence equations result:

i+c1 = j'+c3

j+c2 = i'+c4

Each dependence equation may be tested separately without loss of preci-
sion when checking for dependence. However, both equations must be
considered simultaneously when determining which distance or direction
vectors are possible.

These constraints can be propagated by considering instances of index i
in the second reference as i + ∆i, where ∆i is the dependence distance
between the two occurrences of i. The index j is treated in the same fash-
ion, producing following set of dependence equations:

i+c1 = j+∆j+c3

j+c2 = i+∆i+c4

Adding these equations together and rearranging terms slightly yields the
following equation:

∆i + ∆j = c1 + c2 – c3 – c4

This dependence equation can then be checked when testing for a specific
distance or direction vector.

To illustrate this more concretely, consider the following example loop:

DO I = 1,N
DO J = 1,N

S1 A(I,J) = A(J,I) + C
ENDDO

Testing in Coupled Groups

Chapter Draft of February 8, 2001 149

ENDDO

Propagating RDIV constraints results in the dependence equation ∆i + ∆j
= 0. As a result, distance vectors must have the form (d,-d), and the only
valid direction vectors are (<,>) and (=,=). All dependences are thus car-
ried on the outer loop; the inner loop may be executed in parallel.

3.4.1.4 Precision and Complexity
The precision of the Delta test depends on the nature of the coupled sub-
scripts being tested. The SIV tests applied in the first phase are exact. The
constraint intersection algorithm is also exact, since the intersection of
any number of lines in a plane can be calculated precisely. The Delta test
is thus exact for any number of coupled SIV subscripts.

In the constraint propagation phase, weak-zero SIV constraints and
dependence points may always be applied exactly, since they assign val-
ues to occurrences of an index in a subscript. Dependence distances
(from strong SIV subscripts) may also be propagated into MIV subscripts
without loss of precision when the coefficients of the corresponding
index are equal. Fortunately, this is frequently the case in scientific codes.

When constraints can be propagated exactly and all subscripts uncoupled
by eliminating shared indexes, the Delta test prevents loss of precision
due to multiple subscripts. At its conclusion, if the Delta test has tested
all subscripts using ZIV and SIV tests, the answer is exact. If only separa-
ble MIV subscripts remain, the Delta test is limited by the precision of
the single subscript tests applied to each subscript. Research has shown
that the Banerjee-GCD test is usually exact for single subscripts
[6,25,31], so the Delta test is also likely to be exact for these cases.

There are three sources of imprecision for the Delta test. First, constraint
propagation of dependence lines and distances may be imprecise if an
index cannot be completely eliminated from both references in the target
subscripts. Second, complex iteration spaces such as triangular loops
may impose constraints between subscripts not utilized by the Delta test.
Finally, the Delta test does not propagate constraints from general MIV
subscripts. As a result, coupled MIV subscripts may remain at the end of
the Delta test. More general but expensive multiple subscript dependence
tests such as the λ or Power tests may be used in these cases.

Since each subscript in the coupled group is tested at most once, the com-
plexity of the Delta test is linear in the number of subscripts. However,
constraints may be propagated into subscripts multiple times.

Dependence Testing

150 ADVANCED COMPILING FOR HIGH PERFORMANCE

3.4.2 More Powerful Multiple-Subscript Tests

Many of the earliest multiple subscript tests utilized Fourier-Motzkin
elimination, a linear programming method based on pair-wise compari-
son of linear inequalities. Kuhn [29] and Triolet et al [45] represent array
accesses in convex regions that may be intersected using Fourier-Motzkin
elimination. Regions may also be used to summarize memory accesses
for entire segments of the program. These techniques are flexible but
expensive. Triolet found that using Fourier-Motzkin elimination for
dependence testing takes from 22 to 28 times longer than conventional
dependence tests [44].

Li et al present the λ-test, a multidimensional version of Banerjee's ine-
qualities that checks for simultaneous constrained real-valued solutions
[32]. The λ-test forms linear combinations of subscripts that eliminate
one or more instances of indexes, then tests the result using Banerjee's
inequalities. Simultaneous real-valued solutions exist if and only if Ban-
erjee's inequalities finds solutions in all the linear combinations gener-
ated.

The λ-test can test direction vectors and triangular loops. Its precision
may be enhanced by also applying the GCD or Single-Index exact tests to
the pseudosubscripts generated. However, there is no obvious method to
extend the λ-test to prove the existence of simultaneous integer solutions.
The λ-test is exact for two dimensions if unconstrained integer solutions
exist and the coefficients of index variables are all 1, 0 or -1 [31]. How-
ever, even with these restrictions it is not exact for three or more coupled
dimensions.

The Delta test may be viewed as a restricted form of the λ-test that trades
generality for greater efficiency and precision.

Since testing linear subscript functions for dependence is equivalent to
finding simultaneous integer solutions within loop limits, one approach
has been to employ integer programming methods. However, these meth-
ods must be used with care because their high initialization costs and
implementation complexity—they are typically exponential in complex-
ity—make them less desirable for dependence testing in a production
system where the dependence test is applied many thousands of times
during a single compilation. Nevertheless, if used with careful screening
of special cases, they can be effective in eliminating more dependences
than simpler methods. Two early examples of such strategies are Wal-
lace’s Constraint-Matrix test, a simplex algorithm modified for integer
programming, and Banerjee's multidimensional GCD test, which applies

An Empirical Study

Chapter Draft of February 8, 2001 151

Gaussian elimination modified for integers to create a compact system
where all integer points provide integer solutions to the original depen-
dence system [8].

A third strategy for adding to the power of dependence testing is to com-
bine integer programming with Fourier-Motzkin elimination to determine
whether an integral solution to the dependence equations exists.Wolfe
and Tseng's Power applies loop bounds using Fourier-Motzkin elimina-
tion to the dense system resulting from the multidimensional GCD test
[50]. The Power test is expensive but well-suited for providing precise
dependence information such as direction vectors in imperfectly nested
loops, loops with complex bounds, and non-direction vector constraints.

Maydan, Hennessey and Lam [35] present a dependence test, that is
implemented in the SUIF system, that uses a cascade of special-case
exact tests based on integer programming methods. As a backup, they use
Fourier-Motzkin elimination if all special cases fail. To increase the effi-
ciency of this test, they maintain a table of previously-computed test
results so that duplicate tests can be recognized quickly.

Pugh’s Omega Test [38] is based on an extension of Fourier-Motzkin
elimination to integer programming. As such, it attempts to determine
whether there exists a solution to the dependence equations rather than
find all such solutions. Although the procedure is potentially exponential,
it has been shown to have low-order, polynomial complexity in many sit-
uations where cheaper methods are accurate. The Omega test can also be
used to project integer programming problems onto a subset of the vari-
ables, rather than just deciding them, which makes it possible to accu-
rately compute dependence direction and distance vectors. Over time, the
Omega test has evolved into a general purpose tool, called the Omega
Calculator, for simplifying and verifying Presburger formulas. This sys-
tem can be used to solve a variety of program analysis problems, includ-
ing the elimination of false dependences [39].

3.5 An Empirical Study

To help the reader understand some of the trade-offs to be considered in
real implementations of dependence testing, we present the results of a
major dependence testing study conducted by Goff, Kennedy, and Tseng
[18] using the dependence analysis system in PFC [4], the Rice program
analysis system.

Dependence Testing

152 ADVANCED COMPILING FOR HIGH PERFORMANCE

.

At the time of the test, PFC used the dependence analysis system
described in this chapter, including subscript partitioning and the follow-
ing dependence tests: ZIV (including symbolic), strong SIV (symbolic),
weak SIV tests with special cases (weak-zero, weak-crossing, exact),
MIV tests (GCD, Banerjee inequality with single-loop triangularity), and
the Delta test (with general constraint intersection but propagation of dis-
tance constraints only). The study measured the number times each
dependence test was applied by PFC when processing four groups of For-
tran programs: RiCEPS (Rice Compiler Evaluation Program Suite), the
Perfect and SPEC benchmark suites[15,42], and two math libraries, eis-
pack and linpack. These suites included 28 complete programs and two
large subroutine libraries, containing 986 subroutines and 99,440 lines of
Fortran 77 code. Table 3.1 summarizes the effectiveness of each depen-
dence test relative to other tests by presenting the percentage contribution
of each test to the total number of applications, successes, and indepen-
dences. For the purpose of this table, a “success” is any test application
that eliminates one or more directions. The percentages presented in this
table are the results of summing over all programs.

Also displayed in Table 3.1 is the absolute effectiveness of each test; i.e.,
the percentage of applications of each test that proved independence or
was successful in eliminating one or more direction vectors.

In this study, PFC applied dependence tests 74889 times (88% of all sub-
script pairs). Subscript pairs were not tested if they were nonlinear (6%),
or if tests on other subscripts in the same multidimensional array had
already proven independence. Over all array reference pairs tested, most

ZIV SIV MIV Delta
Sym-
bolic

strong
weak-
zero

weak-
cross other

used in
test

% of all tests 44.76 33.98 6.77 0.79 0.15 5.07 8.49

% of successful tests 30.97 51.88 7.64 0.60 0.20 2.63 6.07 28.52

% of proved independences 85.43 4.85 1.55 0.13 0 2.75 5.30 9.99

%success per application 43.99 97.08 71.77 47.96 87.72 33.04 45.46

%independent per app 43.99 3.29 5.28 3.92 0 12.49 14.38

TABLE 3.1 Frequency and effectiveness of dependence tests.

An Empirical Study

Chapter Draft of February 8, 2001 153

subscript pairs were ZIV (45%) or strong SIV (34%). Few of the sub-
scripts tested were MIV (5.1%). The ZIV and strong SIV tests combined
for most of the successful tests (83%). The ZIV test accounted for almost
all reference pairs proven independent (85%).

Goff, Kennedy, and Tseng also report that most subscripts in the pro-
grams were separable. Coupled subscripts (20% overall) were concen-
trated in a few programs, notably the eispack library, which accounted for
75% of all coupled subscripts. Most of the 8449 coupled groups found
were of size two; some coupled groups of size three were also encoun-
tered. The Delta test constraint intersection algorithm tested 6570 cou-
pled groups exactly (78% of all such groups). Propagation of distance
constraints was applied in 376 cases (4.4% of the coupled groups), con-
verting MIV subscripts into SIV form in all but 28 cases. The Delta test
thus managed to test 6918 coupled groups exactly (82%), using only con-
straint intersection and propagation of dependence distances.

The results show that the SIV and Delta tests tested most subscripts
exactly. MIV tests such as the Banerjee-GCD test are only needed for a
small fraction of all subscripts (5%), although they are important for cer-
tain programs. Many of the successful tests required PFC's ability to
manipulate symbolic additive constants(28.5%).

In related studies, Li et al showed that for coupled subscripts, multiple
subscript tests may detect independence in up to 36% more cases than
subscript-by-subscript tests in libraries such as EISPACK [32]. A compre-
hensive empirical study of array subscripts and conventional dependence
tests was performed by Shen et al [41].

From these statistics, several conclusions are obvious. First, within the
framework presented, the ZIV, strong SIV, weak-zero SIV, and MIV tests,
along with some form of coupled subscript test, are essential for accurate
dependence testing. The weak-crossing and exact SIV tests are almost
never used, but it has been shown that they catch important special cases
when they are invoked. However, they should be a lower priority in an
implementation of dependence testing. Since symbolic tests were used in
over 28% of the tests, not counting tests that permit symbolic loop
bounds (almost every loop), handling of symbolics is also essential.

A final observation is that the MIV and complex coupled subscript tests
are involved so seldom that it is reasonable to use a more powerful (and
more expensive) test of some sort, such as the multiple-subscript tests
discussed in Section 3.4.2.

Dependence Testing

154 ADVANCED COMPILING FOR HIGH PERFORMANCE

3.6 Putting It All Together

Figure 3.14 below contains a detailed version of the dependence testing
algorithm originally described in Section 3.2. There are several important
points to be made about this algorithm. First, this tester is called once for
each pair of array references that are being tested for dependence. An
assumption is made about which reference is the source and which refer-
ence is the sink. However, the dependence tester is fully capable of
reporting that there are direction vectors that have “>” as the leading
direction. In that case, the calling procedure will reverse the sense of the
dependence corresponding to that direction vector and reverse the direc-
tion of the dependence. To understand this idea, consider the following:

DO I = 1, N
S0 T = B(I,J)

DO J = 2, N
S1 A(J-1) = T
S2 T = A(J) + B(I,J)

ENDDO
S3 C(I) = C(I) + A(J)

ENDDO

If we examine the dependence of statement S2 on statement S1 due to the
array reference A, we might pass reference A(J-1) as R1, the assumed
source reference and reference A(J) as R2, the sink reference. When the
tester returns, it will produce the direction vector set (*,>). Thus the com-
plete set of direction vectors are (<,>), (=,>), and (>,>). The first direction
corresponds to a true dependence carried by the outer loop, while the last
two dependences correspond to antidependences carried by the inner and
outer loop respectively. After this result, the calling program would report
that the set of actual dependences are a true dependence with direction
vector (<,>), an antidependence with direction vector (=,<) and an antide-
pendence with direction (<,<). Note that all directions have been reversed
in the two antidependences, which is the correct action when the sense of
a dependence is reversed.

This strategy of producing and reporting all direction vectors, even illegal
ones, permits the tester to be called for each distinct pair of references
only once. Thus, if the set of references in the program is {R1,R2, ..., RN}
ordered by dependence, we might see the following loop in the driver:

for i := 1 to N do
for j := i to N do begin

depExists := test_dependence(Ri, Rj, L, n, DVset)
if depExists then begin

Putting It All Together

Chapter Draft of February 8, 2001 155

// record each distinct DV as a dependence in the graph
// reversing the sense of dependences with illegal DVs
...

end
end

Preliminary Analysis One of the first things done by test_dependence is
to reorganize the pair of references into a collection of subscript pairs,
one for each position in the references. Once this is done, the routine
analyze_subscript is called for each subscript position. This routine
essentially parses the subscript pair and determines whether the subscript
can be expressed as a linear combination of the indexes of the loops that
contain the pair of references

<a1i1 + a2i2 +...+ anin + a0, b1i1 + b2i2 +...+ bnin + b0>

For the subscript pair to be reported as linear, each of the values of ai and
bi for all i must be a constant or a symbolic expression whose value does
not vary in the loop nest. (Some dependence testers also require that only
a0 and b0 be symbolic.) If the subscripts cannot be put into the correct
form, analyze_subscript reports that the subscript is nonlinear and can
therefore not be tested. It does this by returning the value false.

The procedure analyze_subscript, which we will not detail here, requires
that the subscript expressions be parsed and factored. This can require a
substantive amount of work. In addition to the output boolean return
value, the procedure returns the number of loop indexes actually found in
the subscript, which is stored into nx[j], along with an array that is stored
into In[j][0:nx[j]] that contains the level numbers of the loop indexes
found. It also returns the actual values for the ai and bi found in the sub-
script in the arrays a[j][0:nx[j]] and b[j][0:nx[j]]. Thus, if the indexes for
levels 1, 3, and 4 are found in subscript position j, the coefficients a1, a3,
and a4, will be found in a[j][1], a[j][2], and a[j][3] respectively. Thus, the
representation is kept reasonably compact.

Dependence Testing

156 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 3.14 Complete dependence testing algorithm.

boolean procedure test_dependence(R1, R2, L, n, DVset)

// R1 and R2 are the source and sink array references
// enclosed in a collection of n loops.
// L is a collection of loop descriptors (LD1, LD2, ..., LDn) where
// each descriptor LDi is a quadruple (Ii, Li, Ui, si), representing
// the loop index, lower bound, upper bound, and step respectively
// DVset is an output variable representing the set of direction vectors
// for the dependences that are found between these two references.

let m be the number of subscript positions in the reference pair;
allocate S[1:m], an array of subscript pairs;
for j := 1 to m do S[j] := (R1[j], R2[j]);

for j := 1 to m do
linear[j] := analyze_subscript(S[j], nx[j], In[j][0:nx[j]],

a[j][0:nx[j]], b[j][0:nx[j]]);
// In is an output array such that In[i] is the set of loop indexes in S[j].

partition(S,P, np);
// P is an output variable containing a collection of partitions P[1:p]
// whre each P[k] is a set of subscripts in the partition

DVset := {(*,*,...,*)};

// First test all separable subscripts.
for k := 1 to np do

if ||P[k]|| = 1 then begin
depExists = test_separable(P[k], DVset);
if not depExists then return depExists;

 end

// Now iterate through the partitions again to test coupled groups.
for k := 1 to np do

if ||P[k]|| > 1 then begin
InP := ∅;
for all j ∈ P[k] do InP := InP ∪ In[j];
depExists = Delta_test(P[k], DV, dV);
if not depExists then return depExists;
else merge_vector_sets(InP, DVset, DV);

 end
return true;

end test_dependence

Putting It All Together

Chapter Draft of February 8, 2001 157

FIGURE 3.15 Separable subscript testing.

boolean procedure test_separable(P, DVset)

// P is the subscript partition, which must contain only one subscript
// DVset is the direction vector collection so far

let j be the single subscript position in P;
if linear[j] then begin

if nx[j] = 0 then depExists = ZIV_test(a[j][0],b[j][0]);
else if nx[j] = 1 then

depExists = SIV_test(In[j], a[j][0:1], b[j][0:1], DV, dV);
else

depExists =
MIV_test(In[j], a[j][0:nx[j]],b[j][0:nx[j]], DV, dV);

if not depExists then return depExists;
else begin

merge_vector_sets(In[j], DVset, DV);
return true;

end
end
else return true;

end test_separable

Once the subscripts are analyzed, then we call the procedure partition,
which is described in abstract form in Figure 3.1 on page 107. It should
be noted that partition needs to be implemented to return an array of par-
titions, each of which is a disjoint subset of subscript positions in the ref-
erence pair, where subscript positions are integers between 1 and m.

Finally, dependence testing begins in earnest. First, all the subscripts are
visited and linear, separable subscripts are tested using the ZIV and SIV
tests. If none of these tests yields independence, the coupled groups are
tested. Except for the ZIV test, each test that does not prove indepen-
dence produces the set of possible direction vectors DV. This set must
then be merged with the aggregate set for the dependence by the proce-
dure merge_vector_sets, given in Figure 3.16.

Direction Vector Merging The merging process is made easier by the
fact that each of the tests is applied to a single partition of the subscripts.
Recall that each partition contains a unique collection of the loop
indexes. That is, no partition contains a loop index that is found in any
other partition. Therefore, we can be sure that when we perform the

Dependence Testing

158 ADVANCED COMPILING FOR HIGH PERFORMANCE

merge, all direction vectors for the dependence have the entry “*” in
positions for the set of indexes found in the just-tested partition. There-
fore we can essentially take the cartesian product, producing a set of
direction vectors that is of size equal to the number of vectors for the par-
tition times the number of such vectors for the dependence to now.

FIGURE 3.16 Direction and distance vector merging.

procedure merge_vector_sets(In,DVset,DV)

// In is the list of indexes that are represented in the direction vectors
// DVset is the current direction vector set that will be augmented
// DV is the set of distance vectors for the indexes in In

// This routine is only called when the columns of
// all current direction vectors for the indexes in In are “*”.
// Thus we can simply replicate all current direction vectors to the
// cardinality of DV and fill in the directions for each new vector.

nV := || DV ||; nI := || In ||; nDVset := || DVset ||
newDVset := new DVarray[nDVset*nV];

lastNewDV := 0
for i := 1 to nV do begin

for j := 1 to nDVset do begin
thisDV := copy of DVset[j];
for k := 1 to nI do thisDV[In[k]] := DV[i][k];
lastNewDV := lastNewDV +1;
newDVset[lastNewDV] := thisDV;

end
end
free DVset;
DVset := newDVset;

end merge_vector_sets;

We can illustrate the merge procedure with an example. Suppose we have
the following code:

DO I = 1, N
DO J = 2, N

DO K = 1, N
S A(I,J+1,J+K) = A(I+1,J,J+K) + C

ENDDO
ENDDO

ENDDO

Putting It All Together

Chapter Draft of February 8, 2001 159

In testing the two references in statement S, we begin with the default
direction vector (*,*,*). The first subscript is separable, so the SIV test is
applied to it first. This returns the direction “>” and the distance –1. The
merge process simply inserts the direction into the position for I, the
outer loop index, to produce (>,*,*). Next the coupled group consisting
of subscripts 2 and 3 are tested. Applying the SIV test to the second sub-
script produces the direction “=” for the J-loop. This means that the value
of J is equal at the source and the sink. When this is substituted into the
third position, the values of J can be dropped from the equation and we
get the direction “=” for the K-loop as well.

Thus the direction vector for the partition, which consists of the J and K-
loops is (=,=). When this is merged with the current direction vector set
(>,*,*), the result is (>,=,=). From this we see that the self-dependence on
S is an antidependence with direction vector (<,=,=). Note that the merg-
ing always takes place into positions with “*” in the current direction
vector set.

Distances and Breaking Conditions Although we have discussed the
handling of direction vectors, we have not shown how these algorithms
can be extended to handle distances and other annotations such as cross-
ing thresholds and breaking conditions. In most dependence testers, these
quantities are added as annotations to the direction vectors. In the exam-
ple above, the only direction whose distance is unknown is the “>” asso-
ciated with a distance of –1. This information can be added as an
annotation to the direction by including a boolean variable indicating that
there is an associated distance, a type indicating the kind of distance, and
a value. So the direction vector would actually look something like this:

(>[fixed:–1],=,=)

Symbolic distance and breaking conditions could be handled similarly.
Note that the breaking condition for the dependence is the disjunction of
of the breaking conditions for all of the directions that have such condi-
tions. Of course, the ZIV test gives rise to breaking conditions that do not
relate to any specific direction. These can be attached to the direction
vector as a whole. This representation takes advantage of the fact that dis-
tances and breaking conditions are less common than directions, so space
need not be allocated for such annotations in every loop index position.

Scalar Dependences A final pragmatic issue is the representation of
dependences associated with scalar variables. To understand the problem,
consider the following example:

DO I = 1, N

Dependence Testing

160 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO J = 1, N
DO K = 1, N

S T = T + A(I,J,K)
ENDDO

ENDDO
ENDDO

Because the scalar variable T is not indexed by any variable, we can see
that it has a dependence carried by every one of the three loops. In fact
the two references to T give rise to three classes of dependence: output
dependences due to the left-hand-side occurrence of T, antidependences
from the right-hand-side occurrence to the left-hand side occurrence, and
true dependences from the left-hand-side occurrence to the right-hand-
side occurrence. The sets of direction vectors are as follows:

1. Output dependence: (<,*,<), (<,*,>), (=,<,<), (=,<,>)

2. Antidependence:(<,*,<), (<,*,>), (=,<,<), (=,<,>)

3. True dependence: (<,*,<), (<,*,>), (=,<,<), (=,<,>)

In other words, there are eight distinct direction vectors for each depen-
dence. If we record a distinct dependence for each of these direction vec-
tors as we do with dependences due to array references, the space
requirements will quickly become unmanageable. In fact, this happened
in an early version of PFC, in which a fairly small subroutine caused the
maximum of 64,000 entries in the dependence table to be exceeded.

To avoid problems of this sort, it is better to represent scalar dependences
in a summary form that indicates the set of loops that carry the depen-
dence and whether a loop-independent dependence is possible. For the
example above, we would record that all three loops can carry a depen-
dence but that loop independent dependences are not possible. This can
be represented as a range of loop levels plus a single boolean variable.

3.7 Chapter Summary

Dependence testing is the process of determining whether two references
to the same variable in a given set of loops might access the same mem-
ory location. If a dependence is possible, the testing procedure must iden-
tify the set of direction vectors, and in some cases the distances, that
describe all possible dependences between the given pair.

In the most general case, dependence testing amounts to determining
whether a system of diophantine equations has a solution within the

Chapter Summary

Chapter Draft of February 8, 2001 161

bounds of iteration of the loop nest in which the subscripted references
appear. In most cases, this problem is simplified by focusing only on sub-
scripts that can be described as affine combinations of the loop induction
variable. Even then, however, the problem is complicated by the exist-
ence of symbolic coefficients in the linear expressions.

In this chapter we have presented a dependence testing procedure that
uses a case-based analysis to ensure that the most frequent cases are han-
dled efficiently and accurately. This procedure consists of the following
steps:

1. Partition the subscripts, where a subscript is a matched pair of sub-
script positions in the pair of references, into separable and minimal
coupled groups. A subscript is separable if none of the induction vari-
ables that appear in it appear in any other subscript. A coupled group
is minimal if it cannot be partitioned into two non-empty subgroups
with distinct sets of indexes. Once a partition is achieved, each separa-
ble subscript and each coupled group have completely disjoint sets of
indexes. Each partition may then be tested in isolation and the result-
ing distance or direction vectors merged with no loss of precision.

2. Classify each subscript position as ZIV (containing zero induction
variables), SIV (containing a single induction variable) or MIV (con-
taining.

3. For each separable subscript, apply the appropriate single-subscript
test (ZIV, SIV, MIV) based on the complexity of the subscript. This
will produce independence or direction vectors for the indexes occur-
ring in that subscript. If independence is proved, no further testing is
needed in other positions.

4. For each coupled group, apply a multiple subscript test, such as the
Delta Test, to produce a set of direction vectors for the indexes occur-
ring within that group.

5. If any test yields independence, no further testing is needed as no
dependences exist. Otherwise merge all the direction vectors com-
puted in the previous steps into a single set of direction vectors for the
two references.

The chapter presents detailed descriptions of ZIV and SIV tests and dis-
cusses in detail the GCD test and Banerjee Inequality—a fast and accu-
rate pair of MIV tests. To be truly effective, any testing procedure must
handle symbolic coefficients and trapezoidal loops. Extensions to the
tests to handle these cases are also presented.

Dependence Testing

162 ADVANCED COMPILING FOR HIGH PERFORMANCE

3.8 Case Studies

Both the PFC and Ardent Titan compiler implemented dependence test-
ing along lines described in this chapter. The original PFC vectorizer
tested only for subscripts carried by one of the loop contained the depen-
dence pair. For example, if a pair were contained in three loops, it would
test for the following direction vectors:

1. (<,*,*) — carried by the outermost loop

2. (=,<,*) — carried by the next-to-outermost loop

3. (=,=,<) — carried by the innermost loop.

It would also construct threshold (distance) information for each carrier
loop and would test for whether interchanging the innermost with the
next-to-innermost loop was legal. In a nest of three loops, this consisted
of testing for the direction vector (=,<,>). All these tests were conducted
using the triangular Banerjee Inequality and the GCD test.

PFC was later enhanced to include the ZIV, all SIV, and the MIV test,
along with a restricted version of the Delta test, as described in this chap-
ter. The triangular Banerjee inequality was restricted to at most one outer
loop index included in any loop upper bound [23].

This second version of PFC computed complete direction vectors and,
where possible, also computed distance vectors. A symbolic expression
would be recorded as a distance if the symbolic quantities in the expres-
sion were invariant throughout the loop. These distances could be used in
symbolic dependence testing.

PFC also recorded breaking conditions and used them to insert run-time
dependence testing. These conditions were also used to eliminate depen-
dences in an interactive programming tool called PTOOL [2], which used
PFC as the dependence-testing engine. The ParaScope Editor [5,14,21]
also used PFC for testing dependence before incorporating its own test-
ing system.

An important feature of PFC was its support for interprocedural analysis
which made it possible to do interprocedural dependence testing along
the lines described in Chapter 11.

Historical Comments and References

Chapter Draft of February 8, 2001 163

3.9 Historical Comments and References

The earliest work on dependence tests concentrated on deriving distance
vectors from strong SIV subscripts [28,30,36]. Cohagan [13] described a
test that analyzes general SIV subscripts symbolically. Banerjee and
Wolfe [7,48] developed the current form of the Single-Index exact test.
Callahan describes the separability approach used in PFC [11].

For MIV subscripts, the GCD test may be used to check unconstrained
integer solutions [6,22]. Banerjee's inequalities provide a useful general
purpose single subscript test for constrained real solutions [7]. It has also
been adapted to provide many different types of dependence information
[3,8,10,22,23,48]. Research has shown that Banerjee's inequalities are
exact in many common cases [6,25,31], though results have not yet been
extended for direction vectors or complex iteration spaces.

The I-test developed by Kong et al integrates the GCD and Banerjee tests
and can usually prove integer solutions [26]. Gross and Steenkiste pro-
pose an efficient interval analysis method for calculating dependences for
arrays [19]. Unfortunately their method does not handle coupled sub-
scripts, and is unsuitable for most loop transformations since distance
and direction vectors are not calculated.

Lichnewsky and Thomasset describe symbolic dependence testing in the
VATIL vectorizer [33]. Haghighat and Polychronopoulos propose a flow
analysis framework to aid symbolic tests [20].

Execution conditions may also be used to refine dependence tests.
Wolfe's All-Equals test checks for loop-independent dependences invali-
dated by control flow within the loop [48]. Lu and Chen's subdomain test
incorporates information about indexes from conditionals within the loop
body [34]. Klappholz and Kong have extended Banerjee's inequalities to
do the same [24].

Early approaches to impose simultaneity in testing multidimensional
arrays include intersecting direction vectors from each dimension [48]
and linearization [10,16]; they proved inaccurate in many cases. True
multiple subscript tests provide precision at the expense of efficiency by
considering all subscripts simultaneously. These tests are discussed in
Section 3.4.2. The Delta test described in this chapter was developed by
Goff, Kennedy, and Tseng [18].

Dependence Testing

164 ADVANCED COMPILING FOR HIGH PERFORMANCE

3.10 Exercises

3–1 In each of the following examples, suppose you are testing for depen-
dence of statement S upon itself.Which subscript positions are separable?
Which are coupled?. Which dependence test would be applied to each
position by the dependence testing procedure described in this chapter?

a) DO K =1,100
DO J = 1, 100

DO I = 1, 100
S A(I+1, J+1, K+1) = A(I,J,1) + C

ENDDO
ENDDO

ENDDO

b) DO K =1,100
DO J = 1, 100

DO I = 1, 100
S A(I+1, J+K+1, K+1) = A(I,J,K) + C

ENDDO
ENDDO

ENDDO

c) DO K =1,100
DO J = 1, 100

DO I = 1, 100
S A(I+1, J+K+1, I) = A(I,J,2) + C

ENDDO
ENDDO

ENDDO

3–2 In the following example compute the entire set of direction vectors for
all potential dependences in the loop. Be specific about the type of depen-
dence in each case. Describe the tests that would be used by the depen-
dence tester in this chapter on this example.

DO K =1,100
DO J = 1, 100

DO I = 1, 100
S1 A(I+1, J+4, K+1) = B(I,J,K) + C
S2 B(I+J,5,K+1) = A(2,K,K) + D

ENDDO
ENDDO

ENDDO

3–3 For the following examples, construct valid breaking conditions.

a) DO I =1,100
S A(I+IX) = A(I) + C

ENDDO

References

Chapter Draft of February 8, 2001 165

b) DO K =1,100
DO J = 1, 100

DO I = 1, 100
S A(I+1, J+1, K+1) = A(I,JX,K) + C

ENDDO
ENDDO

ENDDO

c) DO K =1,100
DO J = 1, 100

DO I = 1, 100
S A(I+1, J+K+JX) = A(I,J) + C

ENDDO
ENDDO

ENDDO

3–4 Section 3.3.2.5 on page 114 considers the effect of a trapezoidal iteration
space on the strong SIV dependence test. Show what you would get on
the same example by applying the trapezoidal Banerjee Inequality from
Section 3.3.3.4 on page 131. Is it the same or different? Why?

3–5 Section 3.3.2.5 also considers the weak-zero SIV test in a trapezoidal
region of iteration. Is the result the same as you would get by applying
the trapezoidal Banerjee Inequality?

3–6 Using Lemma 3.2, show that in the region Li
x
 ≤ xi ≤ Ui

x, Li
x
 ≤ yi ≤ Ui

y

–ai
–Ui

x + ai
+Li

x – bi
+Ui

y + bi
–Li

y ≤ aixi – biyi

≤ ai
+Ui

x – ai
–Li

x + bi
–Ui

y – bi
+Li

y

(This is Case 4 in the proof of Lemma 3.3.)

3.11 References

[1] J.R. Allen, Dependence analysis for subscripted variables and its application to program
transformations. Ph.D thesis, Department of Mathematical Sciences, Rice University,
May, 1983.

[2] J. R. Allen, D. Bäumgartner, K. Kennedy, and A. Porterfield. PTOOL: A semi-automatic
parallel programming assistant. In Proceedings of the 1986 International Conference on
Parallel Processing, St. Charles, IL, August 1986. IEEE Computer Society Press.

[3] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form.
ACM Transactions on Programming Languages and Systems, 9(4):491–542, October
1987.

Dependence Testing

166 ADVANCED COMPILING FOR HIGH PERFORMANCE

[4] J. R. Allen and K. Kennedy. PFC: A program to convert Fortran to parallel form. In K.
Hwang, editor, Supercomputers: Design and Applications, pages 186–203. IEEE Com-
puter Society Press, Silver Spring, MD, 1984.

[5] V. Balasundaram, K. Kennedy, U. Kremer, K. S. McKinley, and J. Subhlok. The ParaS-
cope Editor: An interactive parallel programming tool. In Proceedings of Supercomput-
ing '89, Reno, NV, November 1989.

[6] U. Banerjee. Data dependence in ordinary programs. Master's thesis, Dept. of Computer
Science, University of Illinois at Urbana-Champaign, November 1976. Report No. 76-
837.

[7] U. Banerjee. Speedup of ordinary programs. Ph.D. thesis, Dept. of Computer Science,
University of Illinois at Urbana-Champaign, October 1979. Report No. 79-989.

[8] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Boston, MA, 1988.

[9] U. Banerjee. A theory of loop permutations. In D. Gelernter, A. Nicolau, and D. Padua,
editors, Languages and Compilers for Parallel Computing. The MIT Press, 1990.

[10] M. Burke and R. Cytron. Interprocedural dependence analysis and parallelization. In
Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, Palo Alto, CA,
June 1986.

[11] D. Callahan. Dependence testing in PFC: weak separability. Supercomputer Software
Newsletter 2, Dept.of Computer Science, Rice University, August 1986.

[12] D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: a test suite and results.
In Proceedings of Supercomputing ’88, Orlando, FL, November 1988.

[13] W. Cohagan. Vector optimization for the ASC. In Proceedings of the Seventh Annual
Princeton Conference on Information Sciences and Systems, Princeton, NJ, March
1973.

[14] K. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley, J. M. Mellor-Crum-
mey, L. Torczon, and S. K. Warren. The ParaScope parallel programming environment.
Proceedings of the IEEE, 81(2):244 –263, February 1993.

[15] G. Cybenko, L. Kipp, L.Pointer, and D. Kuck. Supercomputer performance evaluation
and the Perfect benchmarks. In Proceedings of the 1990 ACM International Conference
on Supercomputing, Amsterdam, The Netherlands, June 1990.

[16] M. Girkar and C. Polychronopoulos. Compiling issues for supercomputers. In Proceed-
ings of Supercomputing ’88, Orlando, FL, November 1988.

[17] G. Goff. Practical techniques to augment dependence analysis in the presence of sym-
bolic terms. Technical Report TR92-194, Dept. of Computer Science, Rice University,
October 1992.

[18] G. Goff, K. Kennedy, and C.-W. Tseng. Practical dependence testing. In Proceedings of
the SIGPLAN ’91 Conference on Programming Language Design and Implementation,
Toronto, Canada, June 1991.

[19] T. Gross and P. Steenkiste. Structured dataflow analysis for arrays and its use in an opti-
mizing compiler. Software—Practice and Experience 20(2):133–155, February 1990.

References

Chapter Draft of February 8, 2001 167

[20] M. Haghighat and C. Polychronopoulos. Symbolic dependence analysis for high-perfor-
mance parallelizing compilers. In Advances in Languages and Compilers for Parallel
Computing, Irvine, CA, August 1990. The MIT Press.

[21] M. W. Hall, T. Harvey, K. Kennedy, N. McIntosh, K. S. McKinley, J. D. Oldham, M.
Paleczny, and G. Roth. Experiences using the ParaScope Editor: an interactive parallel
programming tool. In Proceedings of the Fourth ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, San Diego, CA, May 1993.

[22] K. Kennedy. Automatic translation of Fortran programs to vector form. Technical
Report 476-029-4, Dept.of Mathematical Sciences, Rice University, October 1980.

[23] K. Kennedy. Triangular Banerjee inequality. Supercomputer Software Newsletter 8,
Dept.of Computer Science, Rice University, October 1986.

[24] D. Klappholz and X. Kong. Extending the Banerjee-Wolfe test to handle execution con-
ditions. Technical Report 9101, Dept.of EE/CS, Stevens Institute of Technology, 1991.

[25] D. Klappholz, K. Psarris, and X. Kong. On the perfect accuracy of an approximate sub-
script analysis test. In Proceedings of the 1990 ACM International Conference on
Supercomputing, Amsterdam, The Netherlands, June 1990.

[26] X. Kong, D. Klappholz, and K. Psarris. The I test: A new test for subscript data depen-
dence. In Proceedings of the 1990 International Conference on Parallel Processing, St.
Charles, IL, August 1990.

[27] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs and com-
piler optimizations. In Conference Record of the Eighth Annual ACM Symposium on the
Principles of Programming Languages, Williamsburg, VA, January 1981.

[28] D. Kuck, Y. Muraoka, and S. Chen. On the number of operations simultaneously execut-
able in Fortran-like programs and their resulting speedup. IEEE Transactions on Com-
puters, C-21(12):1293–1310, December 1972.

[29] R. Kuhn. Optimization and Interconnection Complexity for: Parallel Processors, Single-
Stage Networks, and Decision Trees. Ph.D. thesis, Dept.of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, February 1980.

[30] L. Lamport. The parallel execution of DO loops. Communications of the ACM,
17(2):83–93, February 1974.

[31] Z. Li and P. Yew. Some results on exact data dependence analysis. In D. Gelernter, A.
Nicolau, and D. Padua, editors, Languages and Compilers for Parallel Computing. The
MIT Press, 1990.

[32] Z. Li, P. Yew, and C. Zhu. Data dependence analysis on multi-dimensional array refer-
ences. In Proceedings of the 1989 ACM International Conference on Supercomputing,
Crete, Greece, June 1989.

[33] A. Lichnewsky and F. Thomasset. Introducing symbolic problem solving techniques in
the dependence testing phases of a vectorizer. In Proceedings of the Second Interna-
tional Conference on Supercomputing, St. Malo, France, July 1988.

[34] L. Lu and M. Chen. Subdomain dependence test for massive parallelism. In Proceed-
ings of Supercomputing ’90, New York, NY, November 1990.

Dependence Testing

168 ADVANCED COMPILING FOR HIGH PERFORMANCE

[35] D. Maydan, J. Hennessy, and M. Lam. Efficient and exact data dependence analysis. In
Proceedings of the SIGPLAN ’91 Conference on Programming Language Design and
Implementation, Toronto, Canada, June 1991.

[36] Y. Muraoka. Parallelism Exposure and Exploitation in Programs. Ph.D. thesis, Dept. of
Computer Science, University of Illinois at Urbana-Champaign, February 1971. Report
No. 71-424.

[37] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers.
Communications of the ACM, 29(12):1184–1201, December 1986.

[38] W. Pugh. A practical algorithm for exact array dependence analysis. Communications of
the ACM, 35(8):102–114, August 1992.

[39] W. Pugh and D. Wonnacott. Eliminating false data dependences using the Omega test.
In Proceedings of the SIGPLAN ’92 Conference on Programming Language Design and
Implementation, San Francisco, CA, June 1992.

[40] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, Chich-
ester, Great Britain, 1986.

[41] Z. Shen, Z. Li, and P. Yew. An empirical study on array subscripts and data depen-
dences. In Proceedings of the 1989 International Conference on Parallel Processing, St.
Charles, IL, August 1989.

[42] SPEC release 1.2, September 1990. Standards Performance Evaluation Corporation.

[43] R. A. Towle. Control and Data Dependence for Program Transformation. Ph.D. thesis,
Dept. of Computer Science, University of Illinois at Urbana- Champaign, March 1976.

[44] R. Triolet. Interprocedural analysis for program restructuring with Parafrase. CSRD
Rpt. No. 538, Dept.of Computer Science, University of Illinois at Urbana-Champaign,
December 1985.

[45] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of call statements. In Pro-
ceedings of the SIGPLAN '86 Symposium on Compiler Construction, SIGPLAN Notices
21(7), pages 176-185. ACM, July 1986.

[46] D. Wallace. Dependence of multi-dimensional array references. In Proceedings of the
Second International Conference on Supercomputing, St. Malo, France, July 1988.

[47] M. J. Wolfe. Advanced loop interchanging. In Proceedings of the 1986 International
Conference on Parallel Processing, St. Charles, IL, August 1986.

[48] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cam-
bridge, MA, 1989.

[49] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
Redwood City, CA, 1996.

[50] M. J. Wolfe and C.-W. Tseng. The Power test for data dependence. IEEE Transactions
on Parallel and Distributed Systems, 3(5):591–601, September 1992.

Introduction

Chapter Draft of February 8, 2001 169

CHAPTER 4 Preliminary
Transformations

4.1 Introduction

Most of the dependence tests presented Chapter 3 require that subscript
expressions be linear or affine functions of loop induction variables, with
known constant coefficients and at most a symbolic additive constant. If
these tests are to construct an accurate dependence graph, most of the
subscripts in a program must meet these constraints.

Unfortunately, programs are not typically written with dependence test-
ing in mind. Programmers tend to write code that exploits the quirks of
different versions of the FORTRAN language or its compilers. Further-
more, many idiosyncratic practices have been developed to overcome
weaknesses in compiler optimization strategies. The result is code that
often defeats the best dependence analyzer. The following example is
typical.

INC = 2
KI = 0

Preliminary Transformations

170 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO I = 1, 100
DO J = 1, 100

KI = KI + INC
U(KI) = U(KI) + W(J)

ENDDO
S(I)= U(KI)

ENDDO

Only two subscripts in this loop nest—W(J) and S(I)—are affine func-
tions of the loop induction variables. In particular, the expression U(KI)
(which is involved in every dependence test) cannot be tested in the form
written because KI varies within the loop. If the tests from Chapter 3 are
to be applied to this example, the code must be transformed.

To address problems of this sort, a number of transformations can be
applied prior to dependence testing with the goal of making testing more
accurate. As we shall see, these transformations can make many more
subscripts amenable to accurate testing as described in Chapter 3.

A critical transformation in this process is induction-variable substitu-
tion. In the example above, the variable INC is invariant within the inner
loop. Therefore, the assignment to KI within the J loop increments its
value by a constant amount on each loop iteration. This increment makes
KI an auxiliary induction variable; it is essentially another loop variable
that tracks along the regular loop index (J), but with a different increment
or starting point. Induction-variable substitution transforms every refer-
ence to an auxiliary induction variable into a direct function of the loop
index. Applying this transformation to the inner loop yields.

INC = 2
KI = 0
DO I = 1, 100

DO J = 1, 100
! Deleted: KI = KI + INC
U(KI + J*INC) = U(KI + J*INC) + W(J)

ENDDO
S1 KI = KI + 100 * INC

S(I)= U(KI)
ENDDO

The uses of KI within the loop have been changed to a function of the
loop induction variable; the increment has been deleted (changed to a
CONTINUE statement); and S1 has been inserted to set KI to the correct
value outside of the loop. Note that there is still a reference to KI in the
loop but it now contains the loop-invariant initial value for that variable.

Introduction

Chapter Draft of February 8, 2001 171

By inserting an increment of KI in the outer loop, the transformation has
made KI an auxiliary induction variable with respect to that loop. A sec-
ond application of induction-variable substitution is needed to com-
pletely eliminate KI as an auxiliary induction variable:

INC = 2
KI = 0
DO I = 1, 100

DO J = 1, 100
U(KI + (I-1)*100*INC + J*INC) = &

U(KI + (I-1)*100*INC + J*INC) + W(J)
ENDDO
! Deleted: KI = KI + 100 * INC
S(I)= U(KI + I * (100*INC))

ENDDO
KI = KI + 100*100*INC

Now all subscripts are affine functions of loop induction variables,
although the coefficients are all symbolic.

The next step in simplifying this program is to recognize that the values
of INC and KI used within the loops are actually just constant values.
Constant propagation of the values from outside the loop will eliminate
these symbolic quantities, yielding after simplification:

INC = 2
! Deleted: KI = 0
DO I = 1, 100

DO J = 1, 100
U(I*200 + J*2 - 200) = U(I*200 + J*2 - 200) + W(J)

ENDDO
S(I)= U(I*200)

ENDDO
KI =20000

Although this example is now in a form amenable to dependence testing,
it has some useless redundancy—some of the constant valued assign-
ments may never be used. In particular, the assignments to KI and INC are
needed only if they are used later in the program. Rather than wasting
code space and execution time for these assignments, we can discover
and delete them via dead code elimination. Assuming there are no uses of
KI or INC after the loop, this would yield:

DO I = 1, 100
DO J = 1, 100

U(I*200 + J*2 - 200) = U(I*200 + J*2 - 200) + W(J)
ENDDO
S(I)= U(I*200)

Preliminary Transformations

172 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO

In practice, many programs contain code similar to the example above.
Thus, the ability to transform code is important for dependence testing to
be successful. This chapter presents methods for performing preliminary
transformations on programs to make them fit the requirements of depen-
dence tests. These transformations become much more difficult in the
presence of control flow. However, we will delay discussion of these dif-
ficulties until Chapter 7.

4.2 Information Requirements

When discussing methods for dependence testing, Chapter 3 assumed a
number of properties for loops. For instance, most of the dependence
tests as stated assume that loops have a step size of 1. In order to imple-
ment these tests, it is necessary to gather information regarding which
loops meet these requirements and to do something about those that do
not. Furthermore, implementing the transformations described in the pre-
vious section requires knowledge about the structure and use of data
within a program. The necessary information includes:

1. Loop stride. Although dependence tests can be recast to accommodate
non-unit strides, they are easiest to implement if the stride is 1.

2. Loop-invariant quantities. Compilers must be able to recognized loop-
invariant variables and expressions if they are to recognized opportu-
nities for auxiliary induction variable substitution.

3. Constant-valued assignments. Recognition of constant-valued assign-
ments is a critical preliminary to constant propagation.

4. Usage of variables. Propagating a constant-valued assignment
requires knowing which statements use the variable defined by that
assignment. Similarly, dead code recognition involves identifying
statements whose outputs are never used.

The process of gathering this information involves well-known scalar
optimization techniques. In particular, the last three items are usually
computed by scalar data-flow analysis. The remainder of this chapter
provides a simple introduction to the program transformation and data
flow analysis strategies needed to compute the required information.

Loop Normalization

Chapter Draft of February 8, 2001 173

4.3 Loop Normalization

To make the dependence testing process as simple as possible, many
advanced compilers normalize all loops to run from a lower bound of 1 to
some upper bound with a stride of 1—basically making all loops “count
off” the iterations they execute, replacing references to the original loop
induction variables with affine functions of the new induction variables.
This transformation is called loop normalization.

As originally defined, the term “loop normalization” applied specifically
to this one transformation. However, dependence tests require a lot of
information about loops, e.g., which loops surround which statements;
which induction variables control which loops; and what bounds control
each loop. Since this information must be gathered sometime prior to
testing proper and since loop normalization must examine all loops any-
way, many compilers implement loop normalization as a general normal-
ization and information-gathering phase. As a result, the term is often
applied not only to the specific transformation, but also to a general phase
for gathering information about loops. We will use “loop normalization”
interchangeably for either the transformation or the phase; the context
should clarify the intended meaning.

FIGURE 4.1 Loop normalization algorithm.

procedure normalizeLoop(L0)
// L0 is the loop to be normalized

let i be a unique compiler-generated loop induction variable;

S1: replace the loop header for L0
DO I = L, U, S

with the adjusted loop header
DO i = 1, (U-L+S)/S;

S2: replace each reference to I within the loop by
i*S - S + L;

S3: insert a finalization assignment
I = i*S - S + L

immediately after the end of the loop;
end normalizeLoop

Figure 4.1 presents a simple algorithm for loop normalization that can be
applied to any Fortran 90 DO-loop with integer control parameters. It

Preliminary Transformations

174 ADVANCED COMPILING FOR HIGH PERFORMANCE

replaces the original loop index variable with one that is normalized and
substitutes an equivalent expression in the new index variable for refer-
ences to the original. Note that for simplicity we treat the lower case vari-
able i as a compiler-introduced variable that is different from the upper
case I even though most Fortran 90 implementations would make them
the same.

Correctness To show that normalizeLoop has the desired effect, we only
need to show that the loop bound computed in step S1, the substituted
index values computed in step S2, and the finalization value computed in
step S3 are correct. That is, the substituted loop has the same number of
iterations and the expressions substituted for the original loop induction
variable are equivalent.

In Fortran 90 loop, the loop index is set to the loop lower bound just out-
side the loop and tested to ensure that it is less than the upper bound. On
subsequent iterations the increment is added to the current index value,
and if the result is less than or equal to the upper bound, the loop body is
executed. Thus the body of the loop is executed for each value of the new
induction variable i such that

L + (i-1)*S ≤ U

In other words, it is executed for each value of i such that

i*S ≤ U - L + S

The largest value of i within the loop iteration range must therefore be
the greatest integer less than or equal to

(U - L + S)/S

where division is interpreted as producing a real number. However, inte-
ger division in Fortran produces the largest integer greater than the real
quotient. Therefore the loop count computed in Step 1 is correct.

Next we must prove that the value substituted for the original loop induc-
tion variable I has the same value as I on every iteration. Clearly the
value on the first iteration, when i = 1, is correct because that value is L.
If the value is correct on one iteration, it must be correct on the subse-
quent iteration because the substituted value on the subsequent iteration
is greater than the substituted value on the correct iteration by S, the loop
increment. Thus the substitutions in Step 2 are correct.

Loop Normalization

Chapter Draft of February 8, 2001 175

On exit from a Fortran loop, the loop induction variable takes on the
value of that variable on the last loop iteration incremented by the step
size S. By the reasoning above, this must be

i*S - S + L

where i is the exit value for the generated loop induction variable. Given
that all the subscript values are the same in the normalized loop, normal-
ization is always safe because it does not change the order of any state-
ments in the loop. Thus all dependences are preserved. Furthermore, the
values of the original induction variable after the loop are correctly
reconstructed. Therefore, the transformation preserves the meaning of the
original program.

Loop normalization offers a number of advantages. In addition to simpli-
fying dependence testing it creates a loop index that is equivalent to the
iteration count of the loop. This makes transformations like induction-
variable substitution easier to perform.

However, loop normalization also possesses some significant disadvan-
tages. The most prominent of these is the possibility of distorting the
properties dependences. The following loop nest illustrates this:

DO I = 1, M
DO J = I, N

S1 A(J,I) = A(J,I-1) + 5
ENDDO

ENDDO

The true dependence of S1 on itself has a direction vector of (<,=). When
the inner loop is normalized, the following code is produced:

DO I = 1, M
DO J = 1, N-I+1

S1 A(J+I-1,I) = A(J+I-1,I-1) + 5
ENDDO

ENDDO

Since this is a safe reordering transformation, the dependence must still
exist. However, the direction vector has been transformed from (<,=) into
(<,>). This transformation is not completely harmless. Consider, for
instance, attempting to interchange the I and J loops (loop interchange is
discussed fully in Section 5.2). The effect of loop interchange on direc-
tion vectors is to swap the entries corresponding to the interchanged
loops. As a result, loop interchange applied to the original direction vec-
tor of (<,=) yields a new direction vector of (=,<), which preserves the

Preliminary Transformations

176 ADVANCED COMPILING FOR HIGH PERFORMANCE

dependence and is obviously safe. Loop interchange applied to the nor-
malized direction vector of (<,>) yields a new direction vector of (>,<),
which reverses the dependence, and is obviously not safe. Thus normal-
ization has made this interchange invalid, although we shall see in that
this problem can be overcome via another transformation.

Normalization also creates problems when the step size in the original
loop is symbolic. In this case, normalization produces a symbolic coeffi-
cient in the expressions introduced for the original induction variable,
making it difficult to test for dependence in any subscript in which those
expressions appear. In such cases it is actually better to apply a simple
version of normalization that assumes the step size is exactly 1. This
loses precision but makes it possible to test the subscripts. In practice, the
run-time value of symbolic subscripts is often equal to 1, as in applica-
tions that use the LinPACK library, where the generality of a user-
selected stride is almost never needed.

In spite of these drawbacks, loop normalization is a useful transforma-
tion—it is applied in almost all vectorizing compilers. Although it is not
absolutely necessary, The examples in this book assume, for the most
part, that normalization has been performed. Note, however, that the
dependence tests in Chapter 3 all work with arbitrary lower bounds.

4.4 Data Flow Analysis

4.4.1 Definition-Use Chains

One ubiquitous need throughout all the described preliminary transfor-
mations was that of being able to easily get from a definition of a variable
to all locations that could consume that defined value. Definition-use
chains are a data structure designed precisely to ease that operation:

Definition 4.1. The definition-use graph is a graph that contains
an edge from each definition point in the program to every possi-
ble use of the variable at run time.

We use the term “definition-use graph” instead of the more traditional
“definition-use chains” because “graph” more correctly characterizes the
nature of the information it contains. The definition-use graph is essen-
tially the scalar version of the true dependences within a program.

Constructing definition-use edges within a single straight-line block1 of
code is very simple. One walks through each statement in order in the

Data Flow Analysis

Chapter Draft of February 8, 2001 177

basic block, noting the variables defined by each statement (also called its
definitions) as well as the variables used by each statement (its uses). For
each use, an edge is added to the use-definition graph for that use back to
the last exposed definition in the block of that variable—in other words,
to every definition that reaches the use. Whenever a new definition is
encountered for a variable, the new definition kills the existing definition,
so that later uses are linked only to the new definition, not to the old. At
the end of the block is reached, the local graph is complete.

In addition to the local graph, the basic block computation also produces
a number of useful sets that characterize the behavior of the block. These
include:

uses(b): the set of all variables used within the block b that have no prior
definitions within the block. In other words, these are uses that are not
“satisfied” within the block, so they are exposed to any definitions that
reach this block from previous blocks.

defsout(b): the set of all definitions within block b that are not killed
within the block. In other words, these are all the definitions that can
reach other blocks outside of b.

killed(b): the set of all definitions that define variables killed by other
definitions within block b. Any definitions from other blocks that try
to “reach through” b will be stopped by the killed set.

These sets provide the basic tools for constructing the definition-use
graph for the whole program, rather than individual blocks. Given these
local sets, the one missing set necessary for computation of global edges
is the set reaches(b)—the set of all definitions from all blocks (including
b) that can possibly reach b. For any given block b, all global definition-
use edges can be obtained by adding an edge for each element in
reaches(b) to all appropriate elements of uses(b). As a result, if we can
find a way to compute reaches for all blocks, we can build the definition-
use graph.

In order to understand how to compute reaches globally, it is first useful
to look at the problem on a very limited graph: one basic block b and
some number of predecessors, each of which can reach b via some form
of control flow. In this simple graph, reaches(b) along any one predeces-

1. Such blocks are also called basic blocks. A basic block is a maximal group of state-
ments such that one statement in the group is executed if and only if every statement is
executed. In other words, there is no control flow into or out of a basic block except at
its very beginning or its very end. For more information, see \cite Kenn80.

Preliminary Transformations

178 ADVANCED COMPILING FOR HIGH PERFORMANCE

sor p is the set of all definitions that reach p (reaches(p)) and that also are
not killed inside p (the negation of killed(p)), plus those definitions in p
that reach the exit of p (defsout(p)). Expressed more formally, reaches(b)
can be defined by the following equation:

(EQ 4.1)

This equation is obviously simple to solve over the limited graph
described above, but is not so simple over general control flow graphs.
The complication is that computing reaches for one block b may immedi-
ately change all other reaches (including that for b itself), since
reaches(b) is an input into other reaches equations. Achieving the correct
solution requires simultaneously solving all individual equations.

FIGURE 4.2 Iterative method for reaching definitions.

procedure iterate(G)
// G = (N,E) is the input control flow graph, where
// N is the set of basic blocks and
// E is the set of control flow edges
// defsout(b) is the set of definitions in b that reach the exit of b
// killed(b) is the set of definitions that cannot reach the end of b
// due to an intervening assignment
// reaches(b) is the set of definitions that reach block b

for each b ε G do reaches(b) = ∅;

// Iterate to a fixed point
changed := true;
while changed do begin

changed := false;
for each b ε N do begin

newreaches := reaches(b);
foreach p ∈ predecessors(b) do

newreaches := newreaches ∪ (defsout(p) ∪
(reaches(p) ∩ ¬killed(p)))

if newreaches ≠ reaches(b) then begin
reaches(b) := newreaches;
changed := true;

end
end

end
end iterate

reaches b() defsout p() reaches p() killed p()¬∩()∪()
pεP b()
∪=

Data Flow Analysis

Chapter Draft of February 8, 2001 179

Fortunately, the underlying mathematics of this problem guarantee that
iteratively applying Equation 4.1 at each node in the program will even-
tually terminate with a stable solution that is exactly the one obtained by
simultaneously solving all equations. That proof is beyond the scope of
this book1. However, the result yields the conceptually simple iterative
method for solving systems of data flow equations, presented in
Figure 4.2. Although this approach is the most straightforward to imple-
ment, its asymptotic worst-case bound is the most complex. The algo-
rithm begins with a naive initial approximation to the solution—all
reaches sets for inputs to Equation 4.1 are null. The method then repeat-
edly iterates over all vertices until it reaches a fixed point (a point where
each pass through the blocks produce no further changes). That solution
is the global solution.

In many cases the convergence is accelerated if the right order is chosen
for visiting the vertices in the control flow graph. The most commonly
used order is depth-first order—the order in which depth-first search
would visit the nodes if it starts at the program entry node.

Procedure iterate is not the only (or even the fastest, in the worst case)
method for building global reaches sets, and from there, definition-use
chains. In general it takes O((N+E)N) set operations, where N is the num-
ber of vertices and E is the number of edges in the graph G [Kennedy,
Kam and Ullman]. However, it is the simplest method to implement and
in practice it converges very rapidly2. The reader interested in other
methods for solving data flow problems should see the survey by
Kennedy [10] or Muchnick’s text[15].

Once the definition-use graph has been constructed, the problems of
induction-variable substitution, constant propagation, and dead code
elimination can be attacked. In a compiler, those problems are typically
attacked in that order. However, in terms of difficulty of understanding,
induction-variable substitution is the hardest to understand and dead code
elimination is the simplest. As a result, the remaining sections discuss
these problems in inverse chronological order.

1. See Kennedy [10] for more details.

2. To be precise, the algorithm actually requires O((N+E)D(G)), where D(G) is the
“loop connectedness” of a graph, which is related to the depth of loop nesting in the pro-
gram. For most programs D(G) is much smaller than N.

Preliminary Transformations

180 ADVANCED COMPILING FOR HIGH PERFORMANCE

4.4.2 Dead Code Elimination

Dead code is code whose results are never used in any useful statement.
“Useful statements”, at a first approximation, are simply output state-
ments since those are the only ones that perform any action directly seen
by the outside world. Of course, any statements that compute values used
by output statements are also useful, as are statements that compute val-
ues used by useful statements. This crude definition forms the basis of an
algorithm for dead code elimination, based on finding all useful state-
ments and eliminating all others. This algorithm, presented in Figure 4.3,
starts with a set worklist of all absolutely useful statements (i.e. output
statements, control flow statements, and input statements1). It then
repeatedly adds statements that are necessary to compute the current
members of worklist until no more statements are necessary. At that
point, worklist contains all useful statements from the program, and all
others may be removed.

FIGURE 4.3 Dead code elimination.

procedure eliminateDeadCode(P)

// P is the procedure in which constants are to be propagated
// Assume the availability of def-use chains for all the statements in P

let worklist:= {absolutely useful statements};

while worklist ≠ ∅ do begin
x := an arbitrary element of worklist;
mark x useful;
worklist := worklist – {x};
for all (y,x) ∈ defuse do

if y is not marked useful then worklist := worklist ∪ {y};
end
delete every statement that is not marked useful;

end eliminateDeadCode

The power of this algorithm is often demonstrated on carelessly-written
user benchmarks. In a benchmark, the programmer usually cares about
the time required by the computation, rather than the results of the com-
putation. In the past, some benchmark designers have remembered to

1. If any input statement is not executed, even if its results are not useful, other input†
statements can easily receive the wrong values.

Data Flow Analysis

Chapter Draft of February 8, 2001 181

print out the execution time, but forgotten to print out any results. When
processed by a compiler that performs dead code elimination, the entire
computation becomes dead, resulting in extremely fast execution times—
the generated code will typically read the clock once, read it again, take
the difference, and print it out.

It should be pointed out that dead code elimination algorithms like the
one in Figure 4.3 often have trouble with expressions that determine con-
trol flow. Even though these expressions do not produce values used in
other statements, they control the execution of every statement that can
be bypassed depending on the outcome of the test determining flow of
control. Simple dead code elimination systems mark every conditional
statement as absolutely useful, then delete conditionals if all statements
they control are deleted. A more sophisticated approach is to augment
definition use chains with control dependence edges, described in
Chapter 7. If this is done, the algorithm in Figure 4.3 will produce accu-
rate results. The next section presents a more complicated definition-use
based algorithm, constant propagation.

FIGURE 4.4 Constant propagation lattice.

4.4.3 Constant Propagation

Constant propagation attempts to replace all variables that it can prove
have constant values at runtime with those constant values. One way of
analyzing this problem is in terms of a lattice of constant values depicted
in Figure 4.4. The lattice represents the information that can be gathered
about variables. At the top level (“unknown”), no information is available
regarding a particular variable. The middle level represents a variable
having one known constant value—the situation desired by constant
propagation. Note that this level is infinitely wide, since any integral con-
stant (assuming we are propagating integers; we can equally well place
floating numbers in this level) can appear. The bottom level represents a
variable that is known to take on more than one value, or whose constant
value cannot be known at compile time. While this lattice has infinite

unknown

non-constant

••• -3 -2 -1 0 1 2 3 •••

Preliminary Transformations

182

ADVANCED COMPILING FOR HIGH PERFORMANCE

width, it has finite depth, since the longest downward chain has length
two.

FIGURE 4.5

Constant propagation algorithm.

procedure

propagateConst

(

P

)

// P is the procedure in which constants are to be propagated

// valin

(

w, s

)

is the best approximate value of input

w

to

s

//

valout

(

v, s

) is the best value of output

v

from

s

//

µ

(

s

)(inputs to

s

) is the result of symbolic interpretation of
// statement

s

 over the lattice values of its inputs. The
// output is the lattice value of the output of the statement

for all

statements s in the program do begin
for each output v of s do valout(v, s) := unknown;
for each input w of s do

if w is a variable then valin(w, s) := unknown;
else valin(w, s) := the constant value of w;

end;

worklist := {all statements of constant form, e.g., X = 5};

while worklist ≠ ∅ do begin
choose and remove an arbitrary statement x from worklist;
let v denote the output variable for x;

// Symbolic interpretation of the statement x
newval := µ(x)(valin(v, x), for all inputs v to x);
if newval ≠ valout(v, x) then begin

valout(x, v) := newval;
for all (x, y) ∈ defuse do begin

oldval := valin(v, y);
valin(v, y) := ;
if valin(v, y) ≠ oldval then worklist := worklist ∪ {x};

end
end

end
end propagateConst

The basic idea of the constant propagation algorithm is to begin with
each variable approximated by the top element of the lattice. Whenever a
statement with constant output is found, its output variable value is low-
ered to the constant value. Then, definition-use edges are employed to

oldval valout v x,()∧

Data Flow Analysis

Chapter Draft of February 8, 2001 183

locate all instructions that use the output value. At each use, the input
variable’s approximate value is adjusted by taking the meet of the old and
new value in the lattice. The full algorithm is given in Figure 4.5.

Intuitively, constant propagation starts with a set of all assignments that
set a variable to be a constant value. One element is selected from that
set; definition-use edges are used to find all inputs that the definition can
reach. For each of these inputs, the definition-use edges are traced back-
wards to find all definitions that can reach a specific input. If all defini-
tions have the same constant value, the input is replaced with that value;
otherwise, it is not known to be constant. If the input is replaced, that
may create a new constant assignment; if it does, the assignment is added
to the worklist set.

FIGURE 4.6 Definition-use example.

The time required by constant propagation is O(N+E) time, where N is
the number of statements in the program and E is the number of edges in
the definition-use graph. To see this, note that a statement can be put on
the worklist at most two times because it is only added to the worklist if
its output value is lowered in the lattice. Since the longest downward
chain has no more than two edges, the output value can be lowered at
most two times. Hence, the body of the main loop is executed O(N)
times. The innermost forall loop iterates over definition-use edges that
emanate from a single statement. In the aggregate, the body of this loop is
executed at most twice for each edge, since the source of the edge can be

X= X= X=

=X=X=X

S1

S4

S3S2

S5 S6 S7

Preliminary Transformations

184 ADVANCED COMPILING FOR HIGH PERFORMANCE

taken from the worklist no more than two times. Thus the innermost
forall body takes O(E) time and the entire procedure takes O(N+E).

4.4.4 Static Single-Assignment Form

One problem with the constant propagation algorithm in Figure 4.5 is the
fact that the number of definition-use edges can grow very large in the
presence of control flow. Figure 4.6 presents an example that illustrates
this problem. Statements S1, S2, and S3 all define the variable X. These
definitions all reach the uses in statements S5, S6, and S7 by passing
through statement S4. Because each definition can reach every use, the
number of definition-use edges is proportional to the square of the num-
ber of statements. In this particular case, there are nine edges: (S1,S5),
(S1,S6), (S1,S7), (S2,S5), (S2,S6), (S2,S7), (S3,S5), (S3,S6) and (S3,S7).
Since constant propagation takes time O(N+E) and since E can be pro-
portional to N2, the time required for the overall algorithm can be qua-
dratic in the number of statements.

One way to reduce this number of operations is to put a special pseudo-
operation in the node for statement S4:

X = X

Because this definition kills the values of X that are created in statements
S1, S2 and S3, the total number of definition-use edges in the modified
program is six: (S1,S4), (S2,S4), (S3,S4), (S4,S5), (S4,S6) and (S4,S6).

This idea can be combined with a method for providing unique names for
each scalar variable range to produce static single-assignment form
(commonly abbreviated SSA), a variation on the definition-use graph
with the following properties:

1. each assignment creates a different variable name

2. at points where control flow joins, a special operation is inserted to
merge different incarnations of the same variable.

The static single assignment graph for the example in Figure 4.6 is given
in Figure 4.7. It is no coincidence that this graph resembles the original
control flow graph, since merge nodes are inserted at points where con-
trol flow paths merge.

The static single-assignment form representation of the definition-use
graph has a number of advantages for analysis, the most important of
which is the improved performance of algorithms like constant propaga-
tion and the reduced size of the graph.

Data Flow Analysis

Chapter Draft of February 8, 2001 185

FIGURE 4.7 Static single-assignment form for Figure 4.6.

Construction of SSA typically proceeds in two major phases:

1. Identification of the points where merge functions, called φ-functions,
are needed and

2. Variable renaming to create a unique name for each definition point.

Before we can identify points where φ-functions are to be inserted we
need to consider our goals. To keep the graph small, we should introduce
a φ-function only at those points where it is essential for preserving
desired properties of the graph, the most important of which is that only
one definition reach each variable use. Thus we will want to insert a φ-
function for a given variable x at the beginning of a block that has more
than one predecessor if every path to one of those predecessors contains a
definition that some path to any of the other predecessors bypasses. A φ-
function for x is needed at the beginning of that block to ensure that sub-
sequent uses cannot be reached by more than one definition of x.

Dominance Frontiers. To identify the desired insertion points, we will
introduce the concepts of dominators and dominance frontiers.

Definition 4.2. A node x in directed graph G with a single exit
node predominates (or dominates) node y in G if any path from
the entry node of G to y must pass through x. Node x strictly dom-
inates y if x dominates y and x ≠ y.

X1= X2= X3=

=X4=X4=X4

S1

S4

S3S2

S5 S6 S7

X4=φ(X1,X2,X3)

Preliminary Transformations

186 ADVANCED COMPILING FOR HIGH PERFORMANCE

The problem of computing dominators in a directed graph has been
explored by a number of researchers [13,8]. The simplest way to compute
dominators is as a data-flow problem. Let dominators(b) be the set of ver-
tices that predominate the vertex b. By convention we will always assume
that

b ∈ dominators(b).

Then the following set of data-flow equations are sufficient to compute
dominators.

(EQ 4.2)

This can be solved by a variant of the iterative method presented in
Figure 4.2 on page 178, in which all the dominators sets are initialized to
the universal set so that a maximum fixed point is reached.

FIGURE 4.8 Iterative dominators construction.

procedure iterateDom(G)
//G = (N,E) is the input control flow graph, where
// N is the set of basic blocks and
// E is the set of control flow edges
// dominators(b) is the set of dominators for block b

foreach b ε N do dominators(b) = N;

changed := true;
while changed do begin

changed := false;
foreach b ε N do begin

newDoms := dominators(b);
foreach p ε predecessors(b) do

newDoms := newDoms ∩ dominators(p);
newDoms := newDoms ∪ {b};
if newDoms != dominators(b) then begin

dominators(b) := newDoms;
changed := true;

end
end

end
end iterateDom

dominators x() x{ } dominators y()
y preds x()∈

∩∪=

Data Flow Analysis

Chapter Draft of February 8, 2001 187

This algorithm inherits the asymptotic running time of the iterative
method—O((N+E)N) set operations. However, for the special case where
the control-flow graph is reducible, as most well structured graphs are, it
is easy to see that the algorithm converges in a single pass, assuming that
the vertices of the graph are processed in depth-first order. This is
because the dominator set for the source of a back edge in a reducible
graph is a superset of the dominators for the sink. Thus back edges do not
reduce the dominator sets of their sink nodes further. Hence, for reducible
graphs, this algorithm requires only O(N+E) set operations.

Definition 4.3. The immediate dominator of a given vertex x in
graph G is the vertex y ∈ dominators(x) – {x} such that if z ∈
dominators(x) – {x} then z ∈ dominators(y).

In other words, the immediate dominator of a vertex x must strictly dom-
inate x and it must be strictly dominated by every other dominator of x.

Once the dominators sets are available, it is straightforward to construct
the immediate-dominator tree. Observe that, since the immediate domi-
nator y of x must be dominated by every dominator of x except x itself,
then the immediate dominator of x must be the member of domina-
tors(x)– {x} that has the largest dominator set. Based on this observation,
we can construct a two pass procedure for constructing the immediate
dominator tree, in which each pass takes no more than O(N2) time.

1. Annotate every vertex x with the number of vertices in its dominator
set.

2. For each vertex x, set idom(x) to be the vertex in dominators(x)– {x}
that has the largest dominator set.

Lengauer and Tarjan have developed an algorithm that directly constructs
the immediate dominator relationship in O(Eα(N,E)) time in the worst
case, where N and E are the number of nodes and edges in the control
flow graph, respectively, and α is a very slowly growing function related
to an inverse of Ackerman’s function [13]. The function α grows so
slowly that this algorithm is effectively linear in the size of the input
graph. Harel has improved the algorithm to linear in the worst case [13].

Definition 4.4. The dominance frontier DF(x) for a given block x
is the set of blocks y such that some predecessor of y is dominated
in the control-flow graph by x, but y itself is not strictly dominated
by x.

Preliminary Transformations

188 ADVANCED COMPILING FOR HIGH PERFORMANCE

Figure 4.9 gives an algorithm for computing the dominance frontier for
every block in a control flow graph.

FIGURE 4.9 Dominance frontier construction algorithm.

procedure ConstructDF(G,DF)
// G is the input control flow graph
// DF(x) is the set of blocks in the dominance frontier of x
// idom(y) is the immediate dominator of block y in the
// control flow graph G.

L1: find the immediate dominator relation idom for the control-flow
graph G; (For a control-flow graph with a single entry, this
relation forms a tree, with the entry node as the root.)

let l be a reverse topological listing of the dominator tree such that,
if x dominates y, then x comes after y in l.

L2: while l ≠ ∅ do begin
let x be the first element of l;
remove x from l;

L3: for all control flow successors y of x do
if idom(y) ≠ x then DF(x) = DF(x) ∪ {y};

L4: for all z such that idom(z) = x do
for all y ∈ DF(z) do

if idom(y) ≠ x then DF(x) = DF(x) ∪ {y};
end

end ConstructDF

We must show that Algorithm ConstructDF correctly constructs the dom-
inance frontiers. That is, y ∈ DF(x) after execution of the algorithm if and
only if y is in the dominance frontier of x.

To see this, assume that y is in the dominance frontier of x. If it is a suc-
cessor of x, but not dominated by x, it is added to DF(x) in step L3.
Assume it is not a successor of x. Then there exists some sequence
{x1,x2,...,xn} of dominators in the dominator tree such that

x idom x1 idom x2 ...idom xn

where y is a successor of xn but x is not a strict dominator of y. Note that
none of the vertices xi can dominate y because then all the predecessors
of xi in the dominator tree, including x must dominate y, which contra-
dicts an assumption. Since the vertices are processed in reverse domina-

Data Flow Analysis

Chapter Draft of February 8, 2001 189

tor order, xn will be processed first and y will be added to DF(xn) by L3.
Subsequently, when other elements up the dominance chain are pro-
cessed, y will be added to each of their dominance frontiers by L4. Thus y
will eventually be added to DF(x).

On the other hand, if the algorithm adds a vertex to DF(x), that vertex
must be in the dominance frontier for x. Clearly this is true for statements
added in L3 because this loop simply implements the dominance frontier
definition. Suppose some vertex y is added incorrectly to DF(x) by step
L4. (We can assume that y is the first such vertex incorrectly added.)
Thus, there exists a z such that x idom z and y is in DF(z). Since z is pro-
cessed before x, y must have been correctly added to its dominance fron-
tier by assumption. But the only way that it could be incorrect to add y to
DF(x) would be if x idom y. However, if it does, it must be the immediate
dominator, since if any of the nodes between y and x dominated y, then y
could not be in the dominance frontier of z. But this cannot be, because if
x is the immediate dominator of y, then it is never added to DF(x) in L4.

Not counting the construction of predominators, algorithm ConstructDF
requires O(MAX(N+E, |DF|)) time in the worst case. To see this, observe
that the topological sort takes O(N+E) time, while the header of the loop
at label L2 is executed once for every node in the control flow graph or
O(N) times. The loop at L3 is entered once for each control flow succes-
sor of each node, for a total of O(E) times and, since its body can be
implemented in constant time, the total time required by the loop is O(E).

The loop at label L4 is more complicated. The loop is executed once for
each edge in the dominator tree, but since each node has at most one
immediate predominator, the loop header is executed only O(N) times.
The inner loop is executed at most once for each element of the domi-
nance frontier of the given node x, so the loop nest takes O(|DF|) time.

Note that ConstructDF takes time proportional to the size of the maxi-
mum of its input and output. Since an algorithm must take time that is at
least as great as either of these, this algorithm is optimal.

Determining Insertion Locations. Once we have dominance frontiers
available, we can determine all the locations for φ-functions by the fol-
lowing procedure. This algorithm is based upon the simple observation
that if block x contains a definition of variable y, then a φ-function for y
must be inserted at the head of every block in DF(x), because there is an
alternate path to each of those blocks that does not pass through x and
hence contains a different definition for y. Once a φ-function for y is

Preliminary Transformations

190 ADVANCED COMPILING FOR HIGH PERFORMANCE

inserted in a block z, then, by transitivity, we must also insert a φ-function
for y in every element of DF(z).

FIGURE 4.10 Determine locations for φ-functions.

procedure LocatePhi(G,DF,PutPhiHere)
// G is the input control flow graph
// DF is the dominator frontier graph, where
// DF(x) is the set of blocks in the dominance frontier of block x,
// i.e., the successors of x in the DF-graph.
// Def(x) is the set of variables defined in block x.
// PutPhiHere(x) is the set of variables for which φ-functions
// must be inserted at the beginning of block x.

find the set {S1, S2, ... , Sm} of maximal strongly-connected
 regions in the dominance frontier graph DF
(use Tarjan's depth-first search algorithm);

construct DFπ from DF by reducing each Si to a single node
an edge (x,y) in DF becomes an edge (Sx,Sy) in DFπ,
where Sx is the region containing x and
Sy is the region containing y;
(Note: delete edges that go from a region to itself.)

let {π1, π2, ... , πm} be the m nodes of DFπ numbered in an order
consistent with Dπ (use topological sort to do the ordering);

for i := 1 to m do begin
set Def(πi) to be the union of Def(x) for all x in πi;
set PutPhiHere(πi) to empty;

end

for i := 1 to m do
for each πj in DFπ(πi) do

PutPhiHere(πj) := PutPhiHere(πj) ∪ Def(πi);
for i := 1 to m do begin

if πi is a strongly-connected region or a self-loop then
PutPhiHere(πi) := PutPhiHere(πi) ∪ Def(πi);

for each x ∈ πi that has a predecessor outside πi do
PutPhiHere(x) := PutPhiHere(πi);

end
end LocatePhi

Data Flow Analysis

Chapter Draft of February 8, 2001 191

There is an additional observation that will make the algorithm more effi-
cient. It is possible for there to be a cycle in the DF-graph. The simplest
example is given by a two-vertex loop in which a single vertex outside
the loop branches directly to each vertex in the loop. Then each of the
vertices is in the dominance frontier of the other. Dealing with such loops
is simple, however, because if a φ-function must be placed in any node in
the loop, one must be placed in every node in the loop that is a loop entry,
by virtue of the transitivity requirement stated above. Thus we can treat
strongly-connected regions in the DF-graph as single vertices for the pur-
pose of propagation.

It should be clear from the observations, that this algorithm computes the
correct locations for φ-functions and takes time linear in the number of
nodes in the DF-graph. It should be observed that the DF-graph can be
considerably larger than the control flow graph. In fact, in the worst case
it can be proportional to the square of the size of the control flow graph,
although this behavior is rare [6]. Recently, it has been shown that the
locations of φ-functions can be determined in time proportional to the
size of the control flow graph [16].

It should be pointed out that the number of φ-functions can be signifi-
cantly reduced by not placing any such functions at the beginning of join
nodes where the target variable is dead. A straightforward enhancement
of the algorithm in 4.10, coupled with the construction of sets of live vari-
ables a each block through iterative analysis, will suffice to accomplish
this.

All that remains in the construction of the SSA form is to rename the
variables and build the SSA edges. This can be accomplished in a
straightforward manner by assigning a uniquely indexed name to the
value produced at each definition point, including φ-functions. Then an
application of the reaches propagation algorithm described in
Section 4.4.1 can determine which value reaches each use, because only
one definition can now reach any use once the φ-functions are inserted.

Although SSA form does not significantly modify the structure of the
dead code elimination and constant propagation algorithms described
earlier, the algorithms for forward substitution of expressions and induc-
tion-variable substitution, treated in the next section, will benefit signifi-
cantly from its special properties.

Preliminary Transformations

192 ADVANCED COMPILING FOR HIGH PERFORMANCE

4.5 Induction-Variable Exposure

Dead code elimination and constant propagation are both transformations
that rely on fairly simple patterns in the definition-use graph. Induction-
variable substitution is more complicated, and requires recognition of
fairly complex patterns. As a result, induction-variable substitution typi-
cally involves a sophisticated framework for analyzing a program. Given
the existence of this framework, as well as the fact that the original need
for induction-variable substitution arises from the necessity of transform-
ing common programming practices into a form more amenable for
dependence testing, an induction-variable substitution phase generally
does more than just replace auxiliary induction variables. One common
addition is forward substitution of region-invariant expressions into sub-
scripts.

In this section we will present algorithms for forward substitution and
loop induction-variable substitution. We will then tie the material
together with a discussion of how they can be made to work together.

4.5.1 Forward Expression Substitution

The following is an example where forward substitution is useful:

DO I = 1, 100
K = I+2

S1 A(K) = A(K) + 5
ENDDO

Here the programmer has done some of the work of the compiler by per-
forming common subexpression elimination on his code, compressing
the two subscript calculations into a single variable. Unfortunately, a
dependence tester will have problems calculating dependences arising
from the references to array A because of the use of K, which is not an
induction variable yet varies in the loop, in subscripts of A. Substituting K
forward to produce:

DO I = 1, 100
S1 A(I+2) = A(I+2) + 5

ENDDO

yields a form that dependence testing can easily handle. Furthermore, if
this example is being compiled for a vector machine, the generated code
will be much more efficient. Assuming the first form could be determined
to be vectorizable (it is), it would be vectorized by expanding K into a

Induction-Variable Exposure

Chapter Draft of February 8, 2001 193

temporary vector and using that temporary vector as a scatter-gather
index for A. The second form is yields a much simpler vector operation.

Performing induction-variable substitution and forward expression sub-
stitution requires not only definition-use edges but also some control flow
analysis. For a statement to define an induction variable, it must be exe-
cuted on every iteration of the loop. Similarly, before a definition can be
forward substituted, it is necessary to guarantee that the definition is
always executed on a loop iteration before the statement into which it is
substituted. These properties are easy to determine if we use the SSA
graph effectively and we have a simple procedure to determine which
statements are inside the given loop and which are not.

To determine whether a given statement is inside a given loop, we need to
maintain a separate data structure for each statement that determines the
collection of loops inside which the statement is nested. Then a statement
S is in a given loop L if L is in the nest of loops containing S. In particular,
if the level of the loop is k, we need only test whether the level-k loop
containing S is equal to L. This is easy to do if we maintain a stack of
loop identifiers containing each statement.

Using this mechanism, we can develop a simple procedure for forward
substitution that handles any expression involving only loop-invariant
quantities and the loop induction variable. The SSA graph makes it easy
to determine whether a given expression meets this requirement. Given a
statement S that is a candidate for forward substitution, we simply exam-
ine each SSA edge into S. If the edge comes from a statement in the loop,
then that statement must be the φ-node for the loop induction variable at
the beginning of the loop body. Otherwise, the quantity contains an
expression other than the loop induction variable that changes in the loop
and we must preclude forward substitution.

Actually the above statement is not precisely correct. There could be a
loop-invariant assignment before the actual use, as follows

DO I = 1, N
...

S1: IC = IB ! IB is loop invariant
...

S2: IX = IC + 5
...

ENDDO

The expression “IC + 5” can be forward substituted because IC is
assigned a loop-invariant value IB. However, the procedure we propose

Preliminary Transformations

194 ADVANCED COMPILING FOR HIGH PERFORMANCE

will avoid the stated problem by dealing with statements in the loop in
order. Thus the assignment to IC will be forward substituted into the
statement S2 before the right hand side of S2 is considered for forward
substitution.

Returning to the forward substitution algorithm, the following fragment
illustrates how the standard loop induction variable is incremented after a
DO-loop is expanded into simpler code:

DO I = 1, N
...

ENDDO

becomes:

I = 1
L: IF (I > N) GO TO E

...
I = I+1
GO TO L

E:

Thus the update of the induction variable occurs at the very end of the
loop, after all statements that use it. Therefore, every use of the standard
loop induction variable must have an edge from the φ-node that merges
values of that induction variable right after loop entry.

Once it is determined that a statement S can be forward substituted, the
procedure can be carried out by examining each edge out of the target
statement to another statement in the loop that is not a φ-node. For each
such edge, we substitute the right hand side of S for every occurrence of
the left hand side of S in the statement at the sink of the SSA edge.
Figure 4.11 presents an algorithm for forward expression substitution
that follows this approach.

As we indicated earlier, this algorithm must be applied to statements in
the loop in order from beginning to end. By doing this, chains of forward
substitutions can reduce the number of variables used in the loop, at the
expense of additional expression complexity in the loop. This ordered
application is a part of the transformation driver presented in Figure 4.16
on page 201.

Induction-Variable Exposure

Chapter Draft of February 8, 2001 195

FIGURE 4.11 Forward expression substitution algorithm.

boolean procedure ForwardSub(S, L)
// S, the candidate statement for forward substitution
// L is the loop within which the substitution is being performed
// Assume the SSA graph and information about statement nesting
// Returns true if substitution is not tried because S has loop-variant
// inputs, indicating that IV substitution should be tried

// ForwardSub carries out substitution of every statement in L
// whose right hand side variables include only
// the induction variable for L or variables that are invariant in L .

if S applies a φ-function or S has side_effects then return false;

// Determine loop invariance.
for each SSA edge e into S do begin

Ss = source_stmt(e);
if Ss is within loop L and

Ss defines a variable other than the induction variable for L
then return true; // cannot be loop invariant, but try IV-sub

end

// Substitute the statement into all qualified uses in the loop.
all_uses_gone = true;
all_loop_uses_gone = true;
for each SSA edge e emanating from S do begin

St = target_stmt(S);
if St is within loop L then

if operation(St) ≠ φ then begin
replace target(e) with rhs(S);
// update SSA edges
for each SSA edge ie into rhs(S) do

add new edge from source_stmt(ie) to St;
remove edge e;

end
else all_loop_uses_gone = false;

else all_uses_gone = false;
end

if all_uses_gone and all_loop_uses_gone then delete(S);
else if all_loop_uses_gone then move S outside loop;
return false;

end ForwardSub

Preliminary Transformations

196 ADVANCED COMPILING FOR HIGH PERFORMANCE

ForwardSub also requires one property of the SSA graph which is worth
noting. The first loop in the algorithm traces all edges coming into a
statement from outside. The second loop in the graph traces all edges
going out of a statement into other statements. Any data structure chosen
to implement the SSA graph must possess this bidirectional property for
this algorithm to work.

The return value is used to determine whether to try induction-variable
substitution on the statement. This return value will be of use in the driver
routine to be presented in Section 4.5.3. The return value will be true
only if forward substitution is not tried because some input to S is defined
in the loop. Note that the routine will never return true if the statement S
is deleted or moved.

4.5.2 Induction-Variable Substitution

Having dealt with forward substitution, it is now time to focus on induc-
tion-variable substitution. The first task is to recognize auxiliary induc-
tion variables.

Definition 4.5. An auxiliary induction variable in a DO loop
headed by

DO I = LB, UB, S

is any variable that can be correctly expressed as

cexpr * I + iexprL

at every location L where it is used in the loop, where cexpr and iex-
prL are expressions that do not vary in the loop, although different
locations in the loop may require substitution of different values of
iexprL.

In the simplest form, an auxiliary induction variable will be defined by a
statement like:

K = K ± cexpr (EQ 4.3)

where once again, cexpr is loop invariant.

Induction-variable recognition can be done with a great deal of general-
ity. Some programs define collections of induction variables, as the fol-
lowing example illustrates:

DO I = 1, N
J = K + 1

Induction-Variable Exposure

Chapter Draft of February 8, 2001 197

...
K = J + 2

ENDDO

Here both J and K are auxiliary induction variables of the loop.

We can use the procedure from Section 4.5.1 that determines whether a
statement is within a given loop L to help us determine whether a given
statement S defines an induction variable. Statement S may define an aux-
iliary induction variable for L if S is contained in a simple cycle of SSA
edges that involves only S and one other statement, a φ-node, in the loop.
This φ-node is required on loop entry to merge the values of the loop
induction variable initialized outside the loop with the values incre-
mented inside the loop. If the cycle contains other φ-nodes inside the
loop, it cannot be an induction variable, as it is not updated on every iter-
ation. As an example, consider the following loop.

DO I = 1, N
A(I) = B(K) +1
K = K + 4
...
D(K) = D(K) + A(I)

ENDDO

It has the SSA graph defined in Figure 4.12, in which the indexed vari-
able names have been omitted for simplicity. The figure shows only the
portion of the SSA graph involving definitions and uses of the variable K
within the loop. The cycle with a single φ-node is the telltale sign of an
auxiliary induction variable.

FIGURE 4.12 Sample SSA graph for induction-variable recognition.

If it satisfies the cycle condition, which assures that the induction variable
is defined on every iteration of the loop, the only remaining requirement
is that the defining expression be of the correct form. For the purposes of
this book, we will present a simple recognition algorithm that finds

φ

K = K + 4

D(K) = D(K) + A(I)

A(I) = B(K) + 1

Preliminary Transformations

198 ADVANCED COMPILING FOR HIGH PERFORMANCE

induction variables only of the form represented in Equation 4.3. This
recognition algorithm is given in Figure 4.13.

FIGURE 4.13 Induction-Variable Recognition

boolean procedure isIV(S, iV, cexpr, cexpr_edges, iV)

// S is the candidate statement that may define an auxiliary IV
// isIV returns true if the S defines an induction variable
// iV is the induction variable
// cexpr is an expression that is added to the induction variable in S
// cexpr_edges is the set of SSA edges from outside the loop to cexpr

// isIV examines assignment statement S to determine whether
// it defines an induction variable within the loop containing it.
// The procedure recognizes only induction variable updates
// of the form I = I ± cexpr, where cexpr is constant in the loop.

is_iv = false;
if S is part of a cycle in the SSA graph inside the loop

involving only itself and a φ-node in the loop header
then begin

let iV be the variable on the left hand side of S;
let cexpr be rhs(S) with iV eliminated;
if iV is added to rhs(S) and

cexpr is either added to or subtracted from rhs(S)
then begin

loop_invariant := true;
cexpr_edges := ∅;
or each edge e coming into cexpr do

if source(e) is inside the current loop
then loop_invariant := false;
else cexpr_edges := cexpr_edges ∪ {e};

if cexpr is subtracted from rhs(S) then cexpr := – cexpr;
if loop_invariant then is_iv := true;

end
end
return is_iv;

end isIV

Induction-Variable Exposure

Chapter Draft of February 8, 2001 199

FIGURE 4.14 Induction-variable substitution algorithm.

procedure IVSub(S,L)

// S is the candidate statement that may define an auxiliary IV
// L is the loop with respect to which the substitution is performed
// IVSub examines assignment statement S to determine whether
// it is an induction variable, and replaces it if so.

if not isIV(S, iV, cexpr, cexpr_edges) then return;
// iV is the auxiliary induction variable defined
// cexpr is the constant expression added to iV
// cexpr_edges is the set of edges that defined vars used in cexpr

let the header for the innermost loop containing S be:
DO I = L, U, S

let Sh denote the φ-node in the loop header for iV;

// SSA ensures that only one edge comes into Sh from outside the loop
let So denote the source of the single edge to Sh from outside the loop;

for each edge e out of Sh to a node in the same loop do begin
// target(e) comes before S in the loop body
replace target_expr(e) with

“target_expr(e) + ((I-L)/S)*cexpr”;
update_SSA_edges(e, cexpr_edges, So);

end

for each edge e out of S to a node in the same loop do begin
// target(e) comes after S in the loop body
replace target_expr(e) with

target_expr(e) + ((I-L+S)/S)*cexpr;
update_SSA_edges(e, cexpr_edges, So);

end

if there are edges from S to vertices outside the loop then begin
move S outside loop,

changing cexpr to ((U - L + S)/S) * cexpr;
add an edge from So to S; delete the edge from Sh to S;

end
else delete S and the edge from Sh to S;
delete Sh and the edge from So to Sh;
return;

end IVSub

Preliminary Transformations

200 ADVANCED COMPILING FOR HIGH PERFORMANCE

Procedure isIV begins by ensuring that the candidate statement S is exe-
cuted on every iteration of the loop (if it were not, it would be involved in
a cycle that included a φ-node at the end of the loop as well) and that the
variable it defines is updated on every loop iteration (the self-edge
requirement). Next, it ensures that the potential induction candidate is
added to the right hand side and does not have a multiplicative coefficient
and that a constant amount (cexpr) is either added to or subtracted from
the induction variable candidate on each iteration. If the loop-invariant
part is subtracted, it is negated, so that the substitution phase can assume
that addition is the controlling operation.

Figure 4.14 and Figure 4.15 present an algorithm for carrying out the
replacement of uses of an induction variable, once it is identified.

FIGURE 4.15 Update SSA graph after induction variable substitution.

procedure update_SSA_edges(e, cexpr_edges, So)

// e is the edge along which iV substitution has been performed
// cexpr_edges is the set of edges into the update expression
// from outside the loop
// So is the unique definition point of iV outside the loop.

for each edge ie ∈ cexpr_edges do
add a new edge from source(ie) to target(e);

add an edge from So to target(e);
delete edge e;

end update_SSA_edges

The substitution algorithm uses two different expressions for the auxil-
iary induction variable being replaced. For statements that occur prior to
S in the loop, the multiplier to be used is one less than the current itera-
tion number. For statements after S, the multiplier is the current iteration
number (I is the loop index; L is its lower bound; U is its upper bound;
and S is its stride).

4.5.3 Driving the Substitution Process

Having developed individual algorithms for applying forward substitu-
tion and induction-variable substitution, it is now time to develop a driv-
ing algorithm to tie the individual transformations together. There are a
couple of key considerations. First, since induction-variable substitution
performed on an inner loop may produce a new induction on an outer
loop (see, for instance, the examples in Section 4.1 on page 169), induc-

Induction-Variable Exposure

Chapter Draft of February 8, 2001 201

tion-variable substitution should be performed from the inside out. Sec-
ond, substituting loop-invariant expressions forward may create some
new inductions, meaning it should be performed first. These observations
are both encapsulated in the algorithm IVDrive, presented in Figure 4.16.

FIGURE 4.16 Induction-variable substitution driver.

procedure IVDrive(L)
// L is the loop being processed, assume SSA graph available
// IVDrive performs forward substitution and induction variable
// substitution on the loop L, recursively calling itself where
// necessary.

foreach statement S in L in order do
 case(kind(S))

assignment:
FS_not_done := ForwardSub(S,L);
if FS_not_done then IVSub(S,L);

DO-loop:
IVDrive(S);

default:
end case

end do
end IVDrive

There are two final comments worth noting on induction-variable substi-
tution. The first regards the interaction between loop normalization
(Section 4.3) and induction-variable substitution. When induction-vari-
able substitution is performed on an unnormalized loop, extremely ineffi-
cient code can result. Consider, for instance, the very general example
presented below

DO I = L, U, S
K = K + N
... = A(K)

ENDDO

Applying induction-variable substitution as described in Figure 4.14
yields

DO I = L, U, S
... = A(K + (I - L + S)/ S * N)

ENDDO
K = K + (U - L + S) / S * N

Preliminary Transformations

202 ADVANCED COMPILING FOR HIGH PERFORMANCE

Integer divides and multiplies are implemented in hardware on many
machines; even when they are, they are very inefficient instructions to
use. By introducing both an integer divide and an integer multiply in the
loop, induction-variable substitution has produced much less efficient
code. Normally, an optimization known as strength reduction is applied
to attempt to reduce most common uses of integer multiply, but the form
which appears inside the loop cannot be eliminated by this transforma-
tion. Furthermore, the nonlinear nature of the new subscript means that
dependence testing will fail for it. The summary is that it is fruitless to
apply induction-variable substitution to this loop.

However, if the loop is normalized prior to induction-variable substitu-
tion,

I = 1
DO i= 1, (U-L+S)/S, 1

K = K + N
... = A(K)
I = I + 1

ENDDO

the code resulting from induction-variable substitution is much more pal-
atable

I = 1
DO i= 1, (U-L+S)/S, 1

... = A(K + i*N)
ENDDO
K = K + (U-L+S)/S * N
I = I + (U-L+S)/S

This code has only one integer multiply within the loop, which strength
reduction can easily eliminate. Furthermore, the subscript can easily be
handled by dependence tests described in Chapter 3. The summary is that
loop normalization should be applied before induction-variable substitu-
tion to make the latter transformation more effective.

The second comment involves the simplicity of the induction-variable
substitution algorithm presented here. The algorithm presented in
Figure 4.14 is a simple version designed to demonstrate the general prin-
ciples involved. Often there will be more complicated auxiliary induction
variables in the loop, as demonstrated by the following example.

DO I = 1, N, 2
K = K + 1
A(K) = A(K) + 1
K = K + 1

Induction-Variable Exposure

Chapter Draft of February 8, 2001 203

A(K) = A(K) + 1
ENDDO

FIGURE 4.17 SSA graph for complex induction-variable substitution.

Induction-variable recognition in cases like this is still quite simple—the
statements involved in defining the induction variable will form an SSA-
graph cycle within the loop, as shown in Figure 4.17. The cycle will have
only one φ-node, the one that is obligatory at the beginning of the loop.
Of course, the regular restrictions apply—only addition and subtraction
of loop-invariant quantities are permitted. Note that, once again, the
indexed variable names, usual in SSA graphs, have been omitted in
Figure 4.17 for simplicity.

Once such variables are recognized, induction variable substitution is
easily adapted to handle the more complex case. First, the statements
defining the induction variable are numbered {S0, S1, ..., Sn} beginning
with the φ-node. Then, each is assigned a different substitution formula
depending on the aggregate value of the induction variable right after the
execution of the particular statement Si. The details of this implementa-
tion are straightforward.

An alternative strategy is to enhance forward substitution to recognize
region invariance. When this is done, the first assignment to K can be
propagated forward, yielding:

DO I = 1, N, 2
A(K+1) = A(K+1) + 1
K = K+1 + 1
A(K) = A(K) + 1

ENDDO

K = K + 1

K = K + 1

A(K) = A(K) + 1

A(K) = A(K) + 1

φ

Preliminary Transformations

204 ADVANCED COMPILING FOR HIGH PERFORMANCE

At this point, normal induction-variable substitution will complete elimi-
nation of K. The extensions to forward substitution to recognize this case
are straightforward [4].

4.6 Chapter Summary

We have presented a number of transformations that support dependence
testing by putting more subscripts into a standard form.

• Loop normalization is a transformation that makes a loop run from a
standard lower bound to an upper bound in steps of one. It is used in
many compilers to simplify dependence testing, although it has a
number of drawbacks.

• Constant propagation, replaces unknown variables with constants
known at compile time. It is performed by an algorithm on a graph
representation of data flow within the program.

• Induction-variable substitution, eliminates auxiliary induction vari-
ables, replacing them with linear functions of the standard loop induc-
tion variable. A simple variant of the induction-variable substitution
algorithm performs expression folding in loop nests.

These transformations are supported by a number of data flow analysis
strategies, including iterative solution of data flow algorithms and the
construction of use-definition chains or static single-assignment form
(SSA).

4.7 Case Studies

The original PFC implementation performed loop normalization on all
loop nests. Following that, it applied induction variable recognition, for-
ward substitution, and induction variable substitution, following the algo-
rithms presented in this chapter. Since the implementation predated the
development of SSA, all the algorithms employed definition-use chains.
This added a bit of extra complexity to some of the procedures but was
nevertheless effective.

PFC’s induction variable substitution phase was extremely systematic
and could handle multiple updates to the same induction variable within
the same loop. It processed loops from innermost to outermost, treating
the initialization and finalization statements generated by inner loop pro-
cessing as candidates for further substitution in outer loops. It turned out

Case Studies

Chapter Draft of February 8, 2001 205

that the induction variable substitution phase was critical to the success
of vectorization in general within the PFC system.

PFC also carried out systematic dead code elimination after each major
transformation phase. This made the code much cleaner and easier to
understand. Because the dead code eliminator did not include control
dependence edges, it marked all control structures as absolutely useful.
This made it necessary to include a post-pass that deleted loops and if
statements with empty clauses.

The Ardent Titan compiler used a similar set of algorithms for Fortran,
but had the additional burden of dealing with optimization of C. This put
additional burdens on induction variable substitution. Because the C front
end did not do a sophisticated analysis for side effects on expressions
with the ++ operator, the intermediate code it generated provided many
opportunities for induction variable substitution. For example, source
code such as”

while(n) {
*a++ = *b++;
n--;

}

would have been translated by the C front end into:

while(n) {
temp_1 = a;
a = temp_1 + 4;
temp_2 = b;
b= temp_2 + 4;
*temp_1 = *temp_2;
temp_3 = n;
n = temp_3 - 1;

}

This loop is easy to vectorize (it is, after all, only a vector copy) once all
the garbage is cleared away. Before this can happen, the key assignment
must be converted into a form like

*(a + 4*i) = *(b + 4*i);

where i is the generated loop induction variable. The problem is that this
form can be produced only by substituting the assignments to temp_1 and
temp_2 forward into the star assignment. This substitution cannot be
made, however, until the updates to a and b are moved forward. As a
result, naive techniques cannot handle this loop.

Preliminary Transformations

206 ADVANCED COMPILING FOR HIGH PERFORMANCE

Although the theory has produced very general techniques for handling
this problem—strategies that employ partial redundancy elimination, for
example[14,5]—for pragmatic reasons, particularly space concerns, the
Titan compiler designers chose not to use them. Instead the compiler
used a simple heuristic solution: whenever a statement is rejected for sub-
stitution only because a later statement redefines a variable used by that
statement, the later statement is marked as “blocking” the first statement.
When a blocking statement is substituted forward, al the statements it
blocks are reexamined for substitution. Thus, backtracking is only
required when it is guaranteed to yield some substitution. Furthermore,
most of the analysis necessary to substitute the statement need not be
repeated. As a result, backtracking is rarely invoked, but when it is
invoked, it is extremely efficient.

An extensive discussion of transformations (especially vectorization) in
C is postponed until Chapter 12.

4.8 Historical Comments and References

Loop normalization was performed by many vectorizing compilers start-
ing with the Parafrase system developed under the leadership of Kuck
[12]. (Did Compass do it?). There is an enormous literature of data flow
analysis [1,7.9,10,11,15,17]. The construction of definition-use chains,
along with the constant propagation and dead code elimination algo-
rithms described here were conceptually developed by John Cocke. The
formulation used here is due to Kennedy [10], as modified by Wegman
and Zadeck [18].

The data-flow approach to dominator construction is a traditional
approach (see Muchnick [15], for example). The algorithm for construc-
tion of immediate dominators from dominator sets, however, is new and
asymptotically superior to the method presented by Muchnick. However,
the Lengauer-Tarjan [13] and Harel [8] methods for direct construction of
the immediate dominator relationship are asymptotically more efficient
than the methods described here.

The construction of SSA form is due to Cytron, Ferrante, Rosen Weg-
man, and Zadeck [6], although the formulation of the computation of
locations for insertion of φ-functions based on the DF-graph is a variant
of their approach. A linear time algorithm for SSA construction has been
developed by Sreedhar and Gao [16].

Exercises

Chapter Draft of February 8, 2001 207

Induction-variable substitution in various forms has been in every vector-
izing compiler. The induction-variable substitution algorithm presented
here is adapted to SSA form from the PFC system as described by Allen,
Kennedy, and Callahan [2,3,4]. A more sophisticated approach has been
presented by Wolfe[20,21].

4.9 Exercises

4–1 Based on the testing strategies from Chapter 3, which property of an
unnormalized loop causes the most difficulty—the nonunit starting index
or the nonunit stride. Why?

4–2 Normalize the following loop by hand:
DO I = 1000, 1, -2

A(I) = A(I) + B
ENDDO

4–3 Apply normalization, induction variable substitution and constant folding
by hand to the following loop:

IS = 5
DO I = 1, 100

IS = IS + 10
DO J = 2, 200, 3

A(IS) = B(I) + C(J)
IS = IS + 1

ENDDO
ENDDO

4–4 Develop data flow equations similar to those in Equation 4.1 for the live
analysis problem. The goal is to compute the set live(b) of variables that
are “live” on entry to basic block b, for every block b in the program. A
variable is live at a point in the program if there is a control flow path
from that point to a use of the variable, which path contains no definition
of the variable prior to its use. Hint: consider two cases—the case of vari-
ables that are live because of a use in the same block and the case of vari-
ables that are live due to a use in some later block.

4–5 Consider the loop nest, where L1, L2. H1, and H2 are all unknown:

DO J = L1,H1,7
DO I = L2,H2,10

S: A(I+J+3) = A(I+J) + C
ENDDO

ENDDO

Preliminary Transformations

208 ADVANCED COMPILING FOR HIGH PERFORMANCE

What are the prospects of eliminating direction vectors, other than (=,=)
associated with dependences from statement S to itself? Why? Hint: what
happens if you normalize and use MIV tests from Chapter 3?

4.10 References

[1] F. E. Allen and J. Cocke. A program data flow analysis procedure. Communications of
the ACM 19(3):137–147, March 1976.

[2] J.R. Allen, Dependence analysis for subscripted variables and its application to program
transformations. Ph.D thesis, Department of Mathematical Sciences, Rice University,
May, 1983.

[3] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form.
ACM Transactions on Programming Languages and Systems, 9(4):491–542, October
1987.

[4] J. R. Allen and K. Kennedy. PFC: A program to convert Fortran to parallel form. In K.
Hwang, editor, Supercomputers: Design and Applications, pages 186–203. IEEE Com-
puter Society Press, Silver Spring, MD, 1984.

[5] F. Chow. A portable machine-independent global optimizer—design and measurements.
TR 83-254, Dept. of Electrical Engineering and Computer Science, Stanford, Dec.
1983.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently com-
puting static single assignment form and control dependence graph. ACM Transactions
on Programming Languages and Systems., 13(4):452–490, October 1991.

[7] S. L. Graham and M. Wegman. A fast and usually linear algorithm for global flow anal-
ysis. Journal of the ACM 32(1):172–202, January 1976.

[8] D. Harel. A linear-time algorithm for finding dominators in flow graphs and related
problems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of
Computing, 185–194, Providence, Rhode Island, May 1985.

[9] J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algorithms. Journal
of the ACM 32(1):158–171, January 1976.

[10] K. Kennedy. A survey of data-flow analysis techniques. In S. S. Muchnick and N. D.
Jones, editors, Program Flow Analysis: Theory and Applications, pages 1–51. Prentice-
Hall, New Jersey, 1981.

[11] G. A. Kildall. A unified approach to global program optimization. In Conference Record
of the First ACM Symposium on the Principles of Programming Languages, 194–206,
Boston, MA, October 1973.

[12] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs and com-
piler optimizations. In Conference Record of the Eighth Annual ACM Symposium on
the Principles of Programming Languages, Williamsburg, VA, January 1981.

[13] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph.
ACM Transactions on Programming Languages and Systems 1(1):121–141, July 1979.

References

Chapter Draft of February 8, 2001 209

[14] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies.
Communications of the ACM, 22(2):96–103, February 1979.

[15] S. S. Muchnick. Compiler Design and Implementation. Morgan-Kaufmann, San Fran-
cisco, CA, 1997.

[16] V. C. Sreedhar and G. R. Gao. A linear time algorithm for placing φ-nodes. In Confer-
ence Record of the 22nd Annual ACM Symposium on the Principles of Programming
Languages, 62-73, San Francisco, CA, January 1995.

[17] J. D. Ullman. Fast algorithms for the elimination of common subexpressions. Acta
Informatica 2(3):191-213, July 1973.

[18] M. Wegman and K. Zadeck. Constant propagation with conditional branches. In Confer-
ence Record of the Twelfth Annual ACM Symposium on the Principles of Programming
Languages, 291-299, January 1985.

[19] M. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cambridge,
MA, 1989.

[20] M. Wolfe. Beyond induction variables. In Conference Record of the 19th Annual ACM
Symposium on the Principles of Programming Languages, 162–174, San Francisco,
CA, June 1992.

[21] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, Red-
wood City, CA, 1996.

Preliminary Transformations

210 ADVANCED COMPILING FOR HIGH PERFORMANCE

Overview

Chapter Draft of February 8, 2001 211

CHAPTER 5 Enhancing Fine-
Grained Parallelism

5.1 Overview

This chapter and the next cover the use of dependence to automatically
parallelize sequential code. Following the historical development, we
begin with parallelism that has no minimum granularity. This kind of par-
allelism is useful in vector machines, and machines with instruction-level
parallelism, such as VLIW and superscalar processors. Because most of
the theory was developed first on vector machines, most of the discussion
will concentrate on vectorization. The discussion of granularity-sensitive
parallelism will be postponed until Chapter 6.

In Chapter 2, we presented the parallelization algorithm codegen, shown
in Figure 2.2 on page 88, for automatically finding fine-grained parallel-
ism in a Fortran program. That algorithm finds essentially all the parallel-
ism possible using only the transformations of loop distribution and
statement reordering. In this chapter, we will expand on the basic code
generation algorithm by exploring other transformations, such as loop

Enhancing Fine-Grained Parallelism

212 ADVANCED COMPILING FOR HIGH PERFORMANCE

interchange, needed to increase the amount of fine-grained parallelism to
a level that makes automatic vectorization practical and effective.

We will illustrate the power of two of these advanced transformations on
a fairly typical sequential coding of matrix multiplication:

DO J = 1, M
DO I = 1, N

T = 0.0
DO K = 1,L

T = T + A(I,K) * B(K,J)
ENDDO
C(I,J) = T

ENDDO
ENDDO

When codegen is applied to this loop nest, it will uncover no vector oper-
ations, even though matrix multiplication can be easily parallelized by
hand. The problem in this case is the use of the scalar temporary T, which
introduces several dependences carried by each of the loops in the nest.
Most of these dependences can be eliminated by scalar expansion, in
which the scalar T is replaced by an array temporary T$:

DO J = 1, M
DO I = 1, N

T$(I) = 0.0
DO K = 1,L

T$(I) = T$(I) + A(I,K) * B(K,J)
ENDDO
C(I,J) = T$(I)

ENDDO
ENDDO

The I-loop can now be fully distributed around the statements it contains:

DO J = 1, M
DO I = 1, N

T$(I) = 0.0
ENDDO
DO I = 1, N

DO K = 1,L
T$(I) = T$(I) + A(I,K) * B(K,J)

ENDDO
ENDDO
DO I = 1, N

C(I,J) = T$(I)
ENDDO

ENDDO

Loop Interchange

Chapter Draft of February 8, 2001 213

Finally, the I and K loops are interchanged to move the vector parallelism
to the innermost position. After this interchange, all of the inner I-loops
can be vectorized to produce:

DO I = 1, L
T$(1:N) = 0.0
DO K = 1,N

T$(1:N) = T$(1:N) + A(1:N,K) * B(K,J)
ENDDO
C(1:N,J) = T$(1:N)

ENDDO

The transformations of scalar expansion and loop interchange have cre-
ated parallelism where there none previously existed. Experience has
shown that without transformations like these, automatic parallelization
cannot be made effective enough to be practical.

5.2 Loop Interchange

Loop interchange—switching the nesting order of two loops in a perfect
nest—is one of the most useful transformations available for the support
of parallelization and memory hierarchy management. An example of its
value in vectorization is given by the following:

DO I = 1, N
DO J = 1, M

S A(I,J+1) = A(I,J) + B
ENDDO

ENDDO

The innermost loop in this example carries a true dependence from S to
itself. As a result, the vector code generation algorithm codegen given in
Figure 2.2 on page 88 would fail to produce any vectorization. If the
loops are interchanged, however:

DO J = 1, M
DO I = 1, N

S A(I,J+1) = A(I,J) + B
ENDDO

ENDDO

the dependence is carried by the outer loop, leaving the inner loop depen-
dence-free. When codegen is applied to this nest, the inner loop will vec-
torize to produce the result below.

DO J = 1, M
S A(1:N,J+1) = A(1:N,J) + B

Enhancing Fine-Grained Parallelism

214 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO

In this example, loop interchange enhances vectorization by moving a
vectorizable loop to the innermost position. For coarse-grained parallel-
ization, discussed in Chapter 6, this process can be easily reversed, mov-
ing a parallel loop to the outermost position to increase granularity and
decrease synchronization overhead.

To see that loop interchange is a reordering transformation, think of a
loop as creating parameterized instances of the statements within it. Loop
interchange changes the order in which the parameterized instances are
executed but does not create any new instances. In the code below, let
S(I,J) denote the instance of statement S with parameters I and J. In
other words, S(I,J) is the instance of S executed on the iteration with
iteration vector (I,J).

DO J = 1, M
DO I = 1, N

S
ENDDO

ENDDO

Using the new notation, we can see that S(1,2)is executed after S(2,1)
in the code as written, but will be executed before S(2,1) if the loops are
interchanged. Thus, it is indeed a reordering transformation. Because it is
a reordering transformation, the legality of loop interchange can be deter-
mined by using data dependence—any loop interchange that reorders the
endpoints of some dependence is illegal.

5.2.1 Safety of Loop Interchange

Not all loop interchanges are legal, as the following example illustrates:

DO J = 1, M
DO I = 1, N

A(I,J+1) = A(I+1,J) + B
ENDDO

ENDDO

In the original execution order, A(2,2)is assigned when I=2 and J=1; it
is used one iteration of the J-loop later, when I=1 and J=2. If the loops
are interchanged, A(2,2)is assigned on the second iteration of the outer
loop (iteration vector (2,1)) after being used on the first (iteration vector
(1,2)). As a result, loop interchange in this example violates a depen-
dence by causing the use of A(2,2)to get the wrong value.

Loop Interchange

Chapter Draft of February 8, 2001 215

FIGURE 5.1 Legality of Loop Interchange.

This kind of violation is illustrated graphically in Figure 5.1.This dia-
gram shows various kinds of dependences that can arise from statement
S(2,1). The arrows emanating from that statement go to statements that
execute after it. The gray arrow represents the dependence described pre-
viously that is reversed by loop interchange; if the J-loop is run as the
inner loop, the tail of that edge is executed before the source. The black
arrows depict dependences that are preserved regardless of the order in
which the loops are iterated.

Two classes of dependences relevant to the safety of loop interchange are
defined below.

Definition 5.1. A dependence is interchange-preventing with
respect to a given pair of loops if interchanging those loops would
reorder the endpoints of the dependence.

Definition 5.2. A dependence is interchange-sensitive if it is car-
ried by the same loop after interchange. That is, an interchange-
sensitive dependence moves with its original carrier loop to the
new level.

In Figure 5.1, the gray dependence is interchange-preventing; the hori-
zontal and vertical arrows represent interchange-sensitive dependences.
Regardless of which loop is iterated “faster”, the horizontal dependence

J = 1

J = 2

J = 3

J = 4

I = 1 I = 2 I = 3 I = 4

S(1,1) S(2,1) S(3,1) S(4,1)

S(1,4)

S(1,3)

S(1,2) S(2,2) S(3,2) S(4,2)

S(2,3) S(3,3) S(4,3)

S(2,4) S(3,4) S(4,4)

Enhancing Fine-Grained Parallelism

216 ADVANCED COMPILING FOR HIGH PERFORMANCE

will be carried by the I loop and the vertical dependence will be carried
by the J loop. The remaining arrow (that from S(2,1) to S(3,2)) represents
a dependence that is always carried by the outer loop in the pair. Such
dependences are often called interchange-insensitive.

Direction vectors are an important tool for reasoning about the effects of
loop interchange, because of the following result.

Theorem 5.1. Let D(i,j) be a direction vector for a dependence in
a perfect nest of n loops. Then the direction vector for the same
dependence after a permutation of the loops in the nest is deter-
mined by applying the same permutation to the elements of D(i,j).

Proof. By Definition 2.9 and Definition 2.10 on page 68, the components
of the direction vector are determined by the relative values of the com-
ponents of the iteration vectors i and j at the source and the sink of the
dependence, according to the following equation:

Since the loop permutation simply permutes the components of the itera-
tion vectors, then the corresponding direction vector must be permuted in
exactly the same way.

From Theorem 5.1 and the fact that interchange-preventing dependences
are reversed by interchange, it is easy to see that the direction vector cor-
responding to an interchange-preventing dependence is (<,>). After inter-
change, such a dependence becomes (>,<), which clearly accesses data in
a different order. To extend these observations to interchange testing for a
loop nest containing several dependences, we need one more definition.

Definition 5.3. The direction matrix for a nest of loops is a matrix
in which each row is a direction vector for some dependence
between statements contained in the nest and every such direction
vector is represented by a row.

Note that this definition permits identical direction vectors to be repre-
sented by a single row. We illustrate this definition with the following
loop nest:

D i j,()
“<” if ik jk<

“=” if ik jk=

“>” if ik jk>








=

Loop Interchange

Chapter Draft of February 8, 2001 217

DO I = 1, N
DO J = 1, M

DO K = 1, L
A(I+1,J+1,K) = A(I,J,K) + A(I,J+1,K+1)

ENDDO
ENDDO

ENDDO

The direction matrix is

The first row in this matrix represents the true dependence from
A(I+1,J+1,K) to A(I,J,K); the second row is the true dependence into
A(I,J+1,K+1).

It is easy to see how to extend Theorem 5.1 to direction matrices. Since
the effects of permuting loops on a particular dependence can be reflected
by permuting the entries in the direction vector, the effects of the same
permutation on all dependences can be reflected by permuting columns in
the direction matrix. For instance, if the outermost loop in the example is
moved to the innermost position, letting the other two loops drift outward
accordingly, the following direction matrix results:

The second row in the matrix now has a “>” as the leftmost non-“=” sym-
bol. This dependence is illegal, reflecting the fact that the described trans-
formation is invalid.

Theorem 5.2. A permutation of the loops in a perfect nest is legal
if and only if the direction matrix, after the same permutation is
applied to its columns, has no “>” direction as the leftmost non–
“=” direction in any row.

This theorem, which follows directly from Theorem 5.1 and Theorem 2.3
on page 70, provides a simple and effective procedure for testing the
safety of any loop interchange—construct direction vectors for all depen-
dences in the loop nest. enter them into a direction matrix; and perform
the desired permutation to see if it yields an illegal direction matrix.

< < =

< = >

< = <

= > <

Enhancing Fine-Grained Parallelism

218 ADVANCED COMPILING FOR HIGH PERFORMANCE

5.2.2 Profitability of Loop Interchange

The vectorization algorithm codegen presented in Figure 2.2 works by
vectorizing all loops that are nested inside the loop carrying the inner-
most dependence cycle. For loop interchange to enhance the vectoriza-
tion uncovered by that algorithm, it should increase the number of loops
inside that cycle. In other words, to be effective loop interchange must
change the dependence pattern in loop nests to which it is applied.

Theorem 5.2 tells us that the effects of a specific loop interchange on
dependences in the loop nest can be seen by modifying the direction
matrix—in other words, the resulting dependence pattern can be deter-
mined without having to modify the program itself. Therefore, to estab-
lish profitability, we can analyze potentially profitable loop permutations
and then check to see if they are legal by permuting the direction matrix.

The architecture of the target machine is usually the principal factor in
determining the most profitable interchange pattern. Thus the right loop
nesting cannot be determined in a machine-independent fashion. To see
how the best interchange pattern varies with target architectures, consider
the following example:

DO I = 1, N
DO J = 1, M

DO K = 1, L
S A(I+1,J+1,K) = A(I,J,K) + B

ENDDO
ENDDO

ENDDO

S has a true self-dependence with direction vector (<,<,=). If this nest is
processed by codegen from Figure 2.2, the inner two loops will be vec-
torized (the dependence is carried by the outer loop). The resulting For-
tran 90 code is:

DO I = 1, N
S A(I+1,2:M+1,1:L) = A(I,1:M,1:L) + B

ENDDO

This form may be effective for SIMD machines with a large number of
synchronous functional units (e.g. the Connection Machine), but it is not
the most effective for vector register machines. This is because the vector
register size is typically less than the iteration count of a single loop so
that vectorizing more than one loop produces little added benefit. On the
other hand, choosing the right memory access pattern can make a big dif-
ference on these machines.

Loop Interchange

Chapter Draft of February 8, 2001 219

On most vector machines, it is best to vectorize loops with stride-one
memory access because memory technology is most efficient at deliver-
ing blocks of contiguous data. Since Fortran stores arrays in column-
major order (the leftmost dimension is the one with contiguous memory
access), this means that it is best to vectorize the first dimension—the I-
loop in the current example. If the I-loop is shifted to the innermost posi-
tion while keeping the relative order of the other two loops, the resulting
direction vector is (<,=,<). The I-loop in this form carries no dependence,
and codegen vectorizes it to produce:

DO J = 1, M
DO K = 1, L

S A(2:N+1,J+1,K) = A(1:N,J,K) + B
ENDDO

ENDDO

If the target is an MIMD parallel machine with vector execution units,
this loop ordering is good, but not the best possible. The I-loop is still the
best vector loop, but the K-loop, which is the only remaining possibility
for parallel execution, is not in the optimal position. If it is moved to the
outermost position, yielding a direction vector of (=,<,<), it can be run in
parallel, and will cut down synchronization costs by a factor of M. The
resulting code is:

PARALLEL DO K = 1, L
DO J = 1, M

A(2:N+1,J+1,K) = A(1:N,J,K) + B
ENDDO

END PARALLEL DO

It should be evident from these examples, that the direction matrix can be
used to determine the best loop permutation for a particular target
machine. However, exhaustively trying all permutations is usually not the
most efficient approach—it is much better to predict the best ordering for
the given target, then use the direction matrix to confirm the safety of that
ordering. Such a “predictive approach” turns out to be beneficial not just
in loop interchange, but also in other transformations as well. The follow-
ing section shows how loop interchange can be incorporated into the
codegen algorithm and tuned to vector machines.

5.2.3 Loop Interchange and Vectorization

For vectorization, a simple observation leads to a powerful and practical
loop interchange scheme. The observation is this: a loop that carries no
dependences cannot carry any dependences that prevent interchange with
other loops nested inside it. Furthermore, such a loop cannot possibly

Enhancing Fine-Grained Parallelism

220 ADVANCED COMPILING FOR HIGH PERFORMANCE

carry any dependences that are sensitive to the interchange. The absence
of interchange-preventing dependences implies that shifting that loop to a
position at a deeper nesting level is always legal—the absence of depen-
dences at the original level guarantees that the loop will not carry any
dependences in its new, more deeply nested position. As a result, this pro-
cess of inward shifting can be continued until the loop is in the innermost
position with the assurance that it will not carry any dependences there.
Since a dependence-free loop is also a recurrence-free loop, and since the
goal of vectorization is to have recurrence-free inner loops, this method
of interchange is ideal for vectorization algorithms. The following theo-
rem states these observations more formally.

Theorem 5.3. In a perfect loop nest, if loops at level i, i+1,...,i+n
carry no dependence—that is, all dependences are carried by
loops at level less than i or greater than i+n—it is always legal to
shift these loops inside of loop i+n+1. Furthermore, these loops
will not carry any dependences in their new position.

Proof. To establish the truth of this theorem we consider two cases. First,
if the dependence is carried by the outer loop, as shown in the first two
rows of the direction matrix below, then no matter what permutation is
applied to the inner columns, the transformation is legal because the out-
ermost “<” will still ensure that the source is executed before the sink.

On the other hand, if the dependence is carried by an inner loop as shown
in the last two rows of the illustration, then the entries in all columns cor-
responding to levels i to i+n must all be“=” directions, because the outer-
most non-“=” is at a level greater than i+n. Once again, these loops can
be shifted to the inside and the carrier loop will be preserved.

Theorem 5.3 provides a basis for moving a block of loops to the inner-
most position. Because this form of interchange basically “shifts” a block
inside another loop, it is known as a loop shift. An excellent example of

< = < = = =

= < > < < =

= = = = < <

= = = = = <

Carried by
outer loops

Carried by
inner loops

Loops
i to i+n

Loop Interchange

Chapter Draft of February 8, 2001 221

how this result can be used to carry out loop interchange is given by the
following common encoding of matrix multiplication:

DO I = 1, N
DO J = 1, N

DO K = 1, N
S A(I,J) = A(I,J) + B(I,K)*C(K,J)

ENDDO
ENDDO

ENDDO

Statement S has true, anti-, and output dependences on itself, all carried
by the K-loop and all with direction vector (=,=,<). If codegen is applied
directly to this loop nest, it will produce no vectorization, because the
recurrence exists at the innermost loop. At each stage, starting with the
outermost loop, the recursive code generator will discover that the cur-
rent level carries a recurrence, thus requiring a sequential DO, even though
the outer two loops carry no dependence.

However, based on the observations at the beginning of the section, it is
easy to see that, since the outermost dependence is carried at level 3,
loops 1 and 2 carry no dependences and can be shifted inside of 3 where
they will still carry no dependences. The resulting loop nest,

DO K= 1, N
DO I = 1, N

DO J = 1, N
S A(I,J) = A(I,J) + B(I,K)*C(K,J)

ENDDO
ENDDO

ENDDO

has the direction vector (<,=,=). When codegen is applied to this nest, it
will find that the inner two loops are free of both dependences and recur-
rences, and thus can be vectorized in two dimensions:

DO K = 1, N
FORALL J=1,N

A(1:N,J) = A(1:N,J) + B(1:N,K)*C(K,J)
END FORALL

ENDDO

The FORALL loop is used here for clarity. While the two dimensional vec-
tor statement can be written in Fortran 90 without use of the FORALL con-
struct, the resulting code is difficult to understand.

Enhancing Fine-Grained Parallelism

222 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 5.2 Code generation framework with loop selection and recurrence breaking.

procedure codegen (R, k, D)

// R is the region for which code must be generated.
// k is the minimum nesting level of possible parallel loops
// D is the dependence graph among statements in R

find the set {S1, S2, ... , Sm} of maximal strongly-connected
 regions in the dependence graph D restricted to R
(use Tarjan's algorithm);

construct Rπ from R by reducing each Si to a single node and
compute Dπ, the dependence graph naturally induced on
Rπ by D;

let {π1, π2, ... , πm} be the m nodes of Rπ numbered in an order
consistent with Dπ (use topological sort to do the numbering);

for i = 1 to m do

if πi is cyclic then

if k is the deepest loop in πi
then try_recurrence_breaking(πi, D, k)
else begin

select_loop_and_interchange(πi, D, k);

generate a level-k DO statement;

let Di be the dependence graph consisting of all
dependence edges in D that are at level k+1
or greater and are internal to πi;

codegen (πi, k+1, Di);

generate the level-k ENDDO statement
end

end

else
generate a vector statement for πi in ρ(πi)-k+1 dimensions,

where ρ (πi) is the number of loops containing πi
end codegen

recurrence
breaking

loop selection

Loop Interchange

Chapter Draft of February 8, 2001 223

This observation can be incorporated into the algorithm codegen in
Figure 2.2 on page 88 by a simple device—instead of generating a
sequential do for the loop at level k, shift the outermost remaining loop
that carries a dependence to level k, then generate the sequential loop for
that loop. This is always legal by Theorem 5.3. In the next section we will
present a revised version of codegen that incorporates this modification in
a more general framework.

5.2.3.1 A Code Generation Framework
Figure 5.2 shows a generalized parallel code generation algorithm that
incorporates both loop shifting and recurrence breaking. It will be used as
the framework for code generation in most of the rest of this chapter.

This version contains two changes from the original. First, if a region is
cyclic, there is a test to see if this is the innermost loop in the nest. If it is,
then recurrence breaking is attempted. Otherwise, it attempts to select a
loop for sequentialization in the routine select_loop_and_interchange.
Recall that in the original algorithm, the outermost loop of a cyclic nest
was always selected. However, in this version, we could implement the
loop shifting heuristic by using the procedure in Figure 5.3.

FIGURE 5.3 Loop selection to implement simple loop-shifting interchange.

procedure select_loop_and_interchange(πi, D, k)

if the outermost carried dependence in πi is at level p>k then
shift loops at level k,k+1,...,p–1 inside the level-p loop,
making it into the level-k loop;

return;
end select_loop_and_interchange

This procedure would achieve the desired result on the example pre-
sented earlier in this section.

5.2.3.2 General Loop Selection and Interchange
In practice, the loop shifting algorithm presented in Figure 5.10 is very
effective. Not only is it simple to implement, usually requiring only a
small number of lines of code, but it is also does best on codes that
employ the most common style for coding subscripts. However, the algo-
rithm is not perfect—it would, for instance, miss the vectorization oppor-
tunity in

DO I = 1, N
DO J = 1, M

Enhancing Fine-Grained Parallelism

224 ADVANCED COMPILING FOR HIGH PERFORMANCE

S A(I+1,J+1) = A(I,J) + A(I+1,J)
ENDDO

ENDDO

In this example, there are two true dependences of S on itself, with the
direction matrix

Since both loops carry dependences, the loop shifting algorithm will fail
to uncover any vector loops. However, a brief examination of the direc-
tion matrix will show that interchanging the two loops frees the new inner
loop of carried dependences, allowing it to be vectorized. The resulting
vector code is

DO J = 1, M
A(2:N+1,J+1) = A(1:N,J) + A(2:N+1,J)

ENDDO

Furthermore, this vector loop runs over contiguous memory, which has
the benefits discussed previously. Given the difference in execution
speeds between the interchanged, vectorized version and the non-inter-
changed, non-vectorized version, modifications to codegen to handle
cases such as this are extremely useful.

As mentioned previously, one obvious although not necessarily efficient
way of handling any loop interchange is to examine all legal permuta-
tions of the direction matrix for the optimal form and then generate a loop
ordering corresponding to that permutation. This approach will be recon-
sidered later, when the full context of all transformations has been pre-
sented. For vectorization, the desired result is to achieve an algorithm that
obtains more vectorization than obtained by loop shifting, but with less
work than examining all permutations.

A general scheme for doing this is to replace the loop-shift code in
Figure 5.10 with general loop selection:

Select a loop at nesting level p ≥ k that can be safely moved outward to
level k and shift the loops at level k,k+1,...,p–1 inside it;

For this strategy to be effective, there needs to be some rationale for
selecting the loop at level p. In particular, it should at least carry a depen-
dence. There are many different heuristics that have been tried in addition
to loop selection. In this section, we will discuss a heuristic that does

< <

= <

loop selection

Loop Interchange

Chapter Draft of February 8, 2001 225

slightly better than loop shifting by examining the direction matrix. The
basic strategy is as follows:

1. If the level-k loop carries no dependence, then let p be the smallest
integer such that the level-p loop carries a dependence. (This case has
the same effect as the loop-shifting heuristic.)

2. If the level-k loop carries a dependence, let p be the outermost loop
that can be shifted outward to position k and that carries a dependence
d whose direction vector contains an “=” in every position but the pth.
If no such loop exists, let p = k.

The advantage of this heuristic is that it will sequentialize any loop that
must be sequentialized anyway because it carries a dependence that can-
not be satisfied by sequentializing some other loop. Thus it will correctly
handle the example above on which simple loop shifting fails. Figure 5.4
shows the code that implements this more complicated heuristic.

FIGURE 5.4 Loop selection heuristic.

procedure select_loop_and_interchange(R, k)
// k is the current nesting level in region R
// R is strongly-connected when only edges at level k
// and deeper are considered.

let N be the deepest loop nesting level;
let p be the level of the outermost carried dependence;
if p = k then begin

not_found = true;
while(not_found and p ≤ N) do

if the level-p loop can be safely shifted outward to level k and
there exists a dependence d carried by the loop such that
the direction vector for d has “=” in every position but p

then not_found := false;
else p := p + 1;

end
if p > N then p = k;

end

if p > k then shift loops at level k,k+1,...,p–1 inside the level-p loop;
end select_loop_and_interchange

Having fully explored loop interchange with respect to vectorization, we
turn to recurrence-breaking in codegen.

Enhancing Fine-Grained Parallelism

226 ADVANCED COMPILING FOR HIGH PERFORMANCE

5.3 Scalar Expansion

As the original coding of matrix multiplication on page 212 showed, For-
tran 77 programs frequently use scalar temporaries in computations
involving vectors and arrays. A typical example is the following fragment

DO I = 1, N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T

ENDDO

which swaps the contents of two vectors. The dependence graph for this
loop, shown in Figure 5.6, reveals that this loop is not vectorizable as is.

FIGURE 5.5 Dependence graph for vector swap.

By its very nature a vector swap must read elements of an array and then
overwrite the same elements. Therefore, the loop-independent antidepen-
dences (S1 δ∞

-1 S2 and S2 δ∞
-1 S3) due to arrays A and B cannot be elimi-

nated. The other dependences all arise because of the scalar T. Since T is
used to hold a value while its original location is being overwritten, the
true loop-independent dependence will be difficult to remove or change.
However, the other scalar dependences all arise because the same loca-
tion is used as temporary storage on different iterations. In particular, the
loop-carried true dependence S1 δ1 S3 is present because of the inclusive
nature of the definition of dependence given in Section 2.2 on page 58—
S1 stores into a location read by S2 on a later iteration. If each iteration
has a separate location to use as a temporary, these dependences disap-
pear, leaving the obviously vectorizable dependence graph in Figure 5.6.

S1

S3

S2

δ1

δ1

ο

–1

δ∞
–1

δ∞
–1

δ∞

δ1

Scalar Expansion

Chapter Draft of February 8, 2001 227

FIGURE 5.6 Revised dependence graph for vector swap.

To transform the program so that it corresponds to this loop nest, refer-
ences to the scalar T must be replaced with references to a compiler-gen-
erated temporary array T$ that has a separate location for each loop
iteration. This transformation, known as scalar expansion, produces the
following code.

DO I = 1, N
S1 T$(I) = A(I)
S2 A(I) = B(I)
S3 B(I) = T$(I)

ENDDO
T = T$(N)

The the assignment to T after the loop captures the “last” value of T$
computed in the loop. Codegen applied to this loop yields

S1 T$(1:N) = A(1:N)
S2 A(1:N) = B(1:N)
S3 B(1:N) = T$(1:N)

T = T$(N)

In Section 6.2.1 we will discuss privatization, a slightly different way to
achieve the same result by declaring the location T to be private to each
iteration of a parallel loop. Neither scalar expansion or scalar privatiza-
tion are cost-free, since extra memory is required and more complex
addressing is necessary. As a result, neither transformation should be
used unless it increases the amount of vectorization or parallelization
uncovered.

S1

S3

S2

δ∞
–1

δ∞
–1

δ∞

Enhancing Fine-Grained Parallelism

228 ADVANCED COMPILING FOR HIGH PERFORMANCE

To illustrate that scalar expansion (like vectorization) is not always profit-
able, consider the following code fragment, typical of many loops
encountered in finite difference computations:

DO I = 1, N
T = T + A(I) + A(I+1)
A(I) = T

ENDDO

Because there is a use of T before the first assignment to it, the scalar
expansion algorithm must be careful to insert initialization code (sym-
metric to the finalization in the previous example). Correctly expanded,
the code becomes

T$(0) = T
DO I = 1, N

S1 T$(I) = T$(I-1) + A(I) + A(I+1)
S2 A(I) = T$(I)

ENDDO
T = T$(N)

The dependence graph for this fragment is presented in Figure 5.7. Even
with the scalar expanded, no vectorization is possible.

FIGURE 5.7 Dependence graph where expansion is not profitable

It should be obvious to the reader from these two examples that scalar
expansion can always be safely carried out. The actual process of expan-
sion, which we will describe shortly is a straightforward and somewhat
tedious procedure that can be applied to any loop nest. As we have seen
however, scalar expansion is not always profitable, and the principal chal-
lenge is determining when it is worth the costs incurred.

One obvious approach is to expand all scalars, generate the optimal vec-
torization, then shrink all unnecessarily expanded scalars. While this
approach is feasible, it would be better to avoid the unnecessary work of

S1

δ1

δ1
–1

δ∞
–1

S2

δ∞

Scalar Expansion

Chapter Draft of February 8, 2001 229

expanding, testing, and shrinking scalars by determining when the trans-
formation is guaranteed to be profitable. As with loop interchange, we
will attempt instead to predict the effects of scalar expansion on the
dependence graph before actually transforming the program. By doing
so, the benefits can be computed prior to the expensive process of modi-
fying loops, saving the work of undoing unnecessary transformations.

A method for determining the effects of scalar expansion on dependences
follows directly from the observations at the beginning of this section.
Some dependences arise from the reuse of memory locations, whereas
others arise from the reuse of values. Dependences due to the reuse of
values must always be preserved, since any transformation that removes
one of those will change the results of a computation. Dependences that
arise from the reuse of memory locations, on the other hand, can be
deleted by expanding the corresponding scalar. If the edges that are dele-
table by scalar expansion can be determined in advance, then scalar sca-
lar expansion can be carried out by removing deletable edges, computing
the strongly connected regions in the new graph, and expanding scalars
only if the new graph has vectorizable statements.

A critical concept for determining deletable edges is introduced by the
following definition.

Definition 5.4. A definition X of a scalar S is a covering definition
for loop L if a definition of S placed at the beginning of L reaches
no uses of S that occur past X. Whenever there are multiple cover-
ing definitions of a loop, the term “covering definition” will refer
to the earliest.

In the following, S1 is a covering definition for T in the loop:

DO I = 1, 100
S1 T = X(I)
S2 Y(I) = T

ENDDO

Any definition of T placed at the beginning of the loop is immediately
killed by S1, so that the use in S2 can never be reached. Similarly, S1 is
also a covering definition in the following example

DO I = 1, 100
IF (A(I) .GT. 0) THEN

S1 T = X(I)
S2 Y(I) = T

ENDIF
ENDDO

Enhancing Fine-Grained Parallelism

230 ADVANCED COMPILING FOR HIGH PERFORMANCE

Even though the assignment to T may not be executed on every iteration
of the loop, it is executed on every iteration that uses T. As a result, any
definition placed at the beginning of the loop cannot reach past S1. A cov-
ering definition does not always exist:

DO I = 1, 100
IF (A(I) .GT. 0) THEN

S1 T = X(I)
ENDIF

S2 Y(I) = T
ENDDO

Since S2 is executed unconditionally and S1 is executed conditionally, a
definition placed at the loop start always has a chance of reaching S2. As
a result T has no covering definition. In terms of static, single-assignment
form, discussed in Section 4.4.4, there exists a no covering definition for
a variable T if the edge out of the first assignment to T goes to a φ-func-
tion later in the loop that merges its values with those for another control
flow path through the loop.

For the purpose of scalar expansion, it will be useful to consider a more
general interpretation of covering definition which extends to a collection
of definitions along different paths going through the loop. We will say
that there is a collection C of covering definitions for the T in a given loop
if either (1) there exists no φ-function at the beginning of the loop that
merges versions of T from outside the loop with versions are defined
within the loop or (2) the φ-function within the loop has no SSA edge to
any φ-function, including itself. An example of this kind of loop is as fol-
lows.

DO I = 1, 100
IF (A(I) .GT. 0) THEN

S1 T = X(I)
ELSE

S2 T = -X(I)
ENDIF

S3 Y(I) = T
ENDDO

Here S1 and S2 form a collection of covering definitions because there is
no φ-function required at the beginning of the loop, although one is
required just prior to statement S3.

With this expanded definition, any single loop with a definition of T can
be converted to one with a collection of covering definitions by inserting
dummy assignments along paths where T is uncovered, according to the

Scalar Expansion

Chapter Draft of February 8, 2001 231

following procedure on the SSA graph, which also computes the collec-
tion C of covering definitions.

1. Let S0 be the φ-function for T at the beginning of the loop, if there is
one, and null otherwise. Make C empty and initialize an empty stack.

2. Let S1 be the first definition of T in the loop. Add S1 to C.

3. If the SSA successor of S1 is a φ-function S2 that is not equal to S0,
then push S2 onto the stack and mark it;

4. While the stack is non-empty,

a. pop the φ-function S from the stack;

b. add all SSA predecessors that are not φ-functions to C;

c. if there is an SSA edge from S0 into S, then insert the assignment
T=T as the last statement along that edge and add it to C;

d. for each unmarked φ-function S3 (other than S0) that is an SSA pre-
decessor of S, mark S3 and push it onto the stack;

e. for each unmarked φ-function S4 that can be reached from S by a
single SSA edge and which is not predominated by S in the control
flow graph mark S4 and push it onto the stack.

This procedure simply continues looking for parallel paths to a φ-func-
tion following the first assignment, until no more exist. However, in Step
4d, it avoids adding φ-functions to the stack that are dominated by the
current φ-function because there can be no unconsidered path to such a
node.

When applied to the earlier loop that had no covering example, this
would produce

DO I = 1, 100
IF (A(I) .GT. 0) THEN

S1 T = X(I)
ELSE

S2 T = T
ENDIF

S3 Y(I) = T
ENDDO

Covering definitions are important because they determine the way that
scalars are expanded and therefore which edges are deletable. Here is a
procedure for carrying out scalar expansion for T in a normalized loop,
once covering definitions have been identified.

1. Create an array T$ of appropriate length

Enhancing Fine-Grained Parallelism

232 ADVANCED COMPILING FOR HIGH PERFORMANCE

2. For each S in the covering definition collection C, replace the T on the
left-hand side by T$(I).

3. For every other definition of T and every use of T in the loop body
reachable by SSA edges that do not pass through S0, the φ-function at
the beginning of the loop, replace T by T$(I).

4. For every use prior to a covering definition (direct successors of S0 in
the SSA graph), replace T by T$(I-1).

5. If S0 is not null, then insert T$(0) = T before the loop.

6. If there is an SSA edge from any definition in the loop to a use outside
the loop, insert T = T$(U) after the loop, were U is the loop upper
bound.

The early examples in this chapter showed how expressions with cover-
ing definitions would be expanded. The following is an expansion for the
previous loop, which originally had no covering definition:

DO I = 1, 100
IF (A(I) .GT. 0) THEN

S1 T$(I) = X(I)
ELSE

T$(I) = T$(I-1)
ENDIF

S2 Y(I) = T$(I)
ENDDO

Given this definition of covering definitions, we can now identify all
deletable dependences.

Theorem 5.4. If all uses of a scalar T before any member of the
collection of covering definitions are expanded as T$(I-1) and
all other uses and definitions are expanded as T$(I), then the
edges that will be deleted with the scalar expansion are (1) back-
ward carried antidependences, (2) all carried output dependences,
loop-independent antidependences prior to the covering defini-
tion, and (3) redundant forward carried true dependences.

To establish this result we examine each dependence classes in turn:

1. Backward carried antidependences. Every member of the collection
of covering definitions is upwards exposed in the loop body, all carried
antidependences must have one of these covering definitions or a later
definition as a target. Likewise, since the antidependence is backward,
its source also occurs after the covering definitions. Thus the endpoint
references are both expanded as T$(I) but since each iteration uses a

Scalar Expansion

Chapter Draft of February 8, 2001 233

different location, the endpoints use different locations within the
array and the dependence is broken.

2. Backward carried output dependences. By a minor change to the pre-
vious argument.

3. Forward carried output dependences. Since all definitions occur after
one or more of the covering definitions, all definitions are expanded as
T$(I) and the reuse across loop iterations is broken. Note that this
case includes the self output dependence of the covering definition.

4. Loop-independent antidependences into the covering definition. The
use prior to the covering definition will be expanded as T$(I-1); the
covering definition will be expanded as T$(I). Since the references no
longer occur on the same iteration, the loop-independent antidepen-
dence is broken.

5. Loop-carried true dependences from a covering definition to a use
after the covering definition. The covering definitions kill any inter-
iteration value transfer.

To illustrate these principles more concretely, consider again the depen-
dence graph for the vector swap presented in Figure 5.6. Figure 5.8 pre-
sents that dependence graph with the deletable edges clearly marked with
“D”’s. Edge D1 is a backward carried antidependence, and is deletable
according to the first case. Edge D2 is a forward carried output depen-
dence, and is deletable by the third case. Edge D3 is a forward carried
true dependence, deletable by the fifth case.

FIGURE 5.8 Deletable edges in vector swap

The fourth principle is not intuitive from the previous examples, but a
new one should clarify it.

S1

S3

S2

δ1

δ1

ο

–1

δ∞
–1

δ∞
–1

δ∞

D2

δ1
D1

D3

Enhancing Fine-Grained Parallelism

234 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO I = 1, 100
S1 A(I) = T
S2 T = B(I) + C(I)

ENDDO

FIGURE 5.9 Loop-independent deletable edges

The dependence graph for this fragment, with deletable edges marked, is
shown in Figure 5.8. Edge D1 is a forward loop-independent antidepen-
dence, which disappears according to case 4. The code after scalar expan-
sion is

T$(0) = T
DO I = 1, 100

S1 A(I) = T$(I-1)
S2 T$(I) = B(I) + C(I)

ENDDO
T = T$(100)

The antidependence has disappeared, since the store is always one itera-
tion ahead of the use. With statement reordering, this example can in fact
be vectorized (just as the transformed graph indicates) as

T$(0) = T
S2 T$(1:100) = B(1:100) + C(1:100)
S1 A(1:100) = T$(0:99)

T = T$(100)

It is worth noting that Theorem 5.4 applies only when scalars are
expanded in one loop. It can be extended to accommodate expansion in
multiple loops, but this process is more complicated and provides far less
benefit than the initial expansion in one loop.

With the ability to predict the results of scalar expansion in the depen-
dence graph, codegen is easily modified to expand scalars. Figure 5.10
contains a version of the procedure try_recurrence_breaking, which is
invoked from the code generation framework given in Figure 5.2. It is
worth noting that the only scalars that must be expanded in the step

S1 S2

δ1

δ1

ο

–1

δ∞
–1

D2

D1

Scalar Expansion

Chapter Draft of February 8, 2001 235

“expand scalars indicated by deletable edges” are those indicate by dele-
table edges that either cross into or cross out of a vector pi-block.

FIGURE 5.10 Recurrence breaking via scalar expansion at the deepest nesting level.

procedure try_recurrence_breaking(πi, D, k)

if k is the deepest loop in πi then begin
remove deletable edges in πi;
find the set {SC1, SC2, ..., SCn} of maximal strongly-

connected regions in D restricted to πi;

if there are vector statements among SCi then begin
expand scalars indicated by deletable edges;
codegen(πi, k, D restricted to πi);

end try_recurrence_breaking

One obvious drawback of scalar expansion is an increase in the memory
requirements for the program. If not carefully managed, this penalty can
overcome the benefits gained by vectorization and parallelism. Fortu-
nately, there are several techniques that can ameliorate storage problems
caused by scalar expansion. One is to simply expand scalars in a single
loop, gaining the greatest marginal benefit for the least cost. Expanding
in more than one loop greatly increases memory requirements, with only
a small additional payoff in performance. The second technique is to strip
mine the loop before scalar expansion, and to only expand the strip loop.
For instance, strip mining the following

DO I = 1, N
T = A(I) + A(I+1)
A(I) = T + B(I)

ENDDO

for a vector register machine with a register size of 64 (and assuming that
N is an even multiple of 64) yields

DO I = 1, N, 64
DO i = 0, 63

T = A(I+i) + A(I+i)
A(I+i) = T + B(I+i)

ENDDO
ENDDO

Expanding in the strip loop is much more manageable, and gives

DO I = 1, N, 64
DO i = 0, 63

Enhancing Fine-Grained Parallelism

236 ADVANCED COMPILING FOR HIGH PERFORMANCE

T$(i) = A(I+i) + A(I+i)
A(I+i) = T$(i) + B(I+i)

ENDDO
ENDDO

The size of the temporary is now small, and known at compile-time. Fur-
thermore, given that the vector register size is 64, T$ can be allocated to a
vector register, requiring no extra memory whatsoever. Essentially, the
scalar temporary that was intended to be allocated to a scalar register has
been expanded to a vector temporary allocated to a vector register.

The third technique for alleviating storage requirements is forward sub-
stitution. Returning to the previous example, another method for elimi-
nating any extra storage (and also the need for scalar expansion) is to
forward substitute T forward into its only use, yielding

DO I = 1, N
A(I) = A(I) + A(I+1) + B(I)

ENDDO

In this example, forward substitution is obviously a desirable approach,
since there is only one use of the temporary. In general, however, a trade-
off must be made: as the temporary is used more, the cost of memory to
hold the expanded scalar must be measured against the extra computation
required to recompute the substituted expression. This type of substitu-
tion can be easily accommodated during induction variable substitution
(See “Induction-Variable Exposure” on page 192.).

5.4 Scalar and Array Renaming

Scalar expansion effectively eliminates some dependences that arise from
reuse of memory locations, albeit at the cost of extra memory. In fact,
reuse of memory locations, while permitting effective compilers leads to
many “artificial” dependences that can be eliminated by utilizing extra
memory. The following fragment provides another example of scalar
dependences that can be eliminated:

DO I = 1, 100
S1 T = A(I) + B(I)
S2 C(I) = T + T
S3 T = D(I) - B(I)
S4 A(I+1) = T * T

ENDDO

Scalar and Array Renaming

Chapter Draft of February 8, 2001 237

If the dependence graph is naively constructed, the dependence S1 δ S4
may appear. Furthermore, even a sophisticated construction will add the
output dependence S1 δο S3 which cannot be broken by scalar expansion.
Although the first dependence exists according to the definition of depen-
dence, this dependence cannot correspond to the passing of a value
because S3 always blocks the output of S1 from reaching S4. The second
dependence exists only because the memory location was reused. The
second dependence really indicates that there are really two separate vari-
ables that just happen to inhabit the same memory location. If they are
placed in separate memory locations as in

DO I = 1, 100
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1
S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2

ENDDO
T = T2

the artificial dependences disappear, permitting the loop to be completely
vectorized

S3 T2$(1:100) = D(1:100) - B(1:100)
S4 A(2:101) = T2$(1:100) * T2$(1:100)
S1 T1$(1:100) = A(1:100) + B(1:100)
S2 C(1:100) = T1$(1:100) + T1$(1:100)

T = T2$(100)

To see that scalar renaming, rather than scalar expansion, has enabled the
vectorization, consider the unrenamed fragment with scalars expanded:

DO I = 1, 100
S1 T$(I) = A(I) + B(I)
S2 C(I) = T$(I) + T$(I)
S3 T$(I) = D(I) - B(I)
S4 A(I+1) = T$(I) * T$(I)

ENDDO

The dependence graph for this example, presented in Figure 5.8, is still
cyclic.

Enhancing Fine-Grained Parallelism

238 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 5.11 Recurrence not broken by scalar expansion alone.

The definition-use graph can be used as a basis for scalar renaming.
Figure 5.12 describes an algorithm that partitions scalars into different
equivalence classes, each of which can be renamed to a different value.
Simply stated, the algorithm repeatedly picks a definition, adds in all uses
that it reaches, adds in all definitions that reach any of those uses, and so
on until a fixed point is reached. In the worst case, all definitions and uses
end up in the same partition, meaning that no renaming can be done.

FIGURE 5.12 Scalar renaming.

procedure rename(S, D)

// S is the scalar that is being considered for renaming
// D is the definition-use graph for the loop
// rename partitions all definitions and uses of S into equivalence
// classes, each of which can occupy different memory locations.

partitions = ∅;
defs_to_examine = ∅;
let unmarked_defs = all definitions of S;

while (unmarked_defs != ∅) do begin
choose and remove an element s of unmarked_defs:;
add s to defs_to_examine;
create a new partition p;

while (defs_to_examine != ∅) do begin
choose and remove an element s of defs_to_examine;
add s to p;

for each use u reached by s do begin
add u to p;

for each def d ∈ unmarked_defs that reaches u do begin
remove d from unmarked_defs;

S1 S2

δ1

S3 S4

δ∞ δ∞
–1 δ∞

Scalar and Array Renaming

Chapter Draft of February 8, 2001 239

add d to defs_to_examine;
end

end
name all elements of p the same;

end
end

end rename

This algorithm assumes that if the same variable appears on both the left
and right hand side of an assignment, the definition on the left is distinct
from the use on the right. Note that a slightly different version of this
algorithm works on SSA form (see Section 4.4.4 on page 184). In this
case a φ-node would be treated as both a definition and use of the same
variable. All other instructions that define and use the same variable
would be treated as a distinct definition and use.

Having established an algorithm that safely renames scalars, the last issue
to consider is when scalar renaming is profitable. In general, scalar
renaming will break recurrences in situations that are similar to the one
presented in Figure 5.12, where a loop-independent output dependence
or antidependence is a critical element of a cycle. However, scalar renam-
ing is essentially free of bad side-effects; the amount of increased mem-
ory is very small at worst, and is typically non-existent, since each named
scalar will likely be allocated to a register. Furthermore, the essential
operations of scalar renaming are usually performed by most optimizing
compilers while determining liveranges for register allocation.

While scalar renaming is essentially free, the analogous transformation
of array renaming, is not. Just as scalar memory locations are sometimes
reused for different values, array locations are sometimes reused, creating
unnecessary antidependences and output dependences. Consider, for
instance,

DO I = 1, N

ENDDO

A(I) = A(I-1) + X

Y(I) = A(I) + Z

A(I) = B(I) + C

δ∞

δ∞
δ1

δ∞
–1

o

Enhancing Fine-Grained Parallelism

240 ADVANCED COMPILING FOR HIGH PERFORMANCE

This loop contains a recurrence, and thus does not vectorize using the
algorithm described so far. The recurrence here is similar to the one in the
scalar renaming example: A(I) is used for two different things within the
loop. The definition in the last statement and the use in the first statement
involve one “value,” while the definition in the first statement and the use
in the second involve another. If A(I) is replaced by A$(I) in the latter
value set, the code computes equivalent results and becomes:

DO I = 1, N

ENDDO

Just as in the scalar renaming case, the critical antidependence and output
dependence have been eliminated. This breaks the recurrence, allowing
vectorization of the loop.

A(1:N) = B(1:N) + C
A$(1:N) = A(0:N-1) + X
Y(1:N) = A$(1:N) + Z

Obviously, both the safety and the profitability of array renaming are
more complex than in the case of scalar renaming. Scalar renaming can
be accomplished in the presence of control flow with relative ease
because scalar “kills” can be identified—identifying array kills is more
complicated. Moreover, array renaming appears to require extra memory
proportional to the size of the array (although we will shortly show how
to avoid that extra cost)— a cost that can severely impact a program’s
performance. As a result, array renaming requires a more careful imple-
mentation.

As far as vectorization is concerned, the benefit provided by array renam-
ing is the removal of loop-independent antidependences and loop-inde-
pendent output dependences between the renamed references and the
array proper. When one of those dependences is critical to the existence
of a cycle, array renaming breaks that cycle, possibly producing vector
statements.

A$(I) = A(I-1) + X

Y(I) = A$(I) + Z

A(I) = B(I) + C

δ∞
δ1

Scalar and Array Renaming

Chapter Draft of February 8, 2001 241

Ideally, the profitability of array renaming could be determined in
advance by examining the dependence graph and determining the mini-
mal set of “critical edges” that break a recurrence and that also can be
removed by array renaming. Unfortunately, this problem as stated is NP-
complete, and is thus not amenable to an exact, efficient solution. How-
ever, just as with scalar expansion, if the edges that are removed by array
renaming can be identified, the effects of array renaming can be predicted
by examining the dependence graph without actually carrying out the
change in the program itself, which is the expensive part of the transfor-
mation.

Just as with scalar renaming, array renaming is effective at increasing
parallelism when the same array location is redefined within a loop.
Array renaming is more complicated because determining that two array
references access the same element is difficult even in the absence of con-
trol flow, and is very difficult when control flow changes occur.

FIGURE 5.13 Partitioning algorithm for array renaming in simple loops.

procedure array_partition(l, D, A)

// l is the loop under consideration
// D is the dependence graph
// array_partition identifies collections of references to array A
// that refer to the same value,
// making all output and antidependences deletable.

let {d1, d2,...,dn} be the collection of definitions of the array A;
let the artificial definition d0 represent all definitions outside the loop;
treat the dependence graph as a collection of individual references;
nameSpace(d0) := {all references that are not the sink of a dependence

with source within the loop};
for each definition di do begin

nameSpace(di) := {di};
for each true dependence δ out of di within the loop do begin

let u be the sink reference of δ;
if there exists no path in the dependence graph from di to u that

traverses an output dependence or an antidependence
(loop independent or carried by loop l)

then add u to nameSpace(di);
end

end
end array_partition;

Enhancing Fine-Grained Parallelism

242 ADVANCED COMPILING FOR HIGH PERFORMANCE

Fortunately, in the absence of control flow, the dependence graph can be
used to partition array references (where possible) into renameable
regions. Figure 5.14 presents an algorithm for partitioning the graph into
renameable regions under the following simplifying assumptions:

1. There is no control flow in the loop body.

2. Each reference or use of the array A is of the form A(I+c) where c is a
constant.

The actual name space construction can be handled by a fusion algorithm
such as the one that will be presented in Section 6.2.5.

To establish that this algorithm works, we must show that each use u =
A(i+cu) is assigned to exactly one name space. In particular, it is
assigned to the name space associated with the definition that is “closest”
to the u in the iteration space of the loop. Let dx = A(I+cx)be the defini-
tion such that the distance cx-cu is minimized. If this distance is 0, then
dx must appears before u in the loop body. If more than one definition has
the same minimal distance, pick the definition that is later in the loop
body (or closest to u in the loop body if the distance is 0). We claim that
there cannot be a dependence path from dx to u through some other defi-
nition dy because the dependence from dy to u would either have a smaller
distance or dy would come after dx in the loop, contrary to assumption.
Thus, each use in the loop is in the name space for the closest preceding
definition, or it is in the default nameSpace(d0).

Once name spaces are available, code generation is straightforward. Each
name space is given a separate name, with one of the name spaces retain-
ing the original array name. However, one problem remains: How do we
get the final values back into the original array? The trick is to minimize
the amount of copying at the beginning or the end. The strategy we use is
to pick the name space for the definition that will assign most of the loca-
tions last and use the original name for that. This may result in a number
of copies being generated at the beginning. We will also use the original
name for the default name space, although this will leave some antide-
pendences in the code. Here is a rough outline of the procedure:

1. Let {c1, c2,...,cm} be the additive constants that are found in defini-
tions within the loop, in increasing order, with no duplicates and let
{e1, e2,...,en} be the additive constants that are found in uses within
the loop, in increasing order with no duplicates. Let ek be the first con-
stant in a use such that either ek>cm or ek=cm and there is a use of
A(I+ek) before any definition of A(I+cm). Then let nameSpace(d0)
consist of {A(I+ek), A(I+ek+1),...,A(I+en)}.

Scalar and Array Renaming

Chapter Draft of February 8, 2001 243

2. Let d1 be the last dependence in the loop body with the constant c1.
Associate the original array name with nameSpace(d1)—because no
other definition overwrites the value written by d1, this ensures that
the maximum number of values are written out to the correct array.
Choose arbitrary names for each of the other name spaces associated
with definitions in the loop.

3. Also use the original array name for nameSpace(d0) because the refer-
emces in this name space can never be part of a true recurrence carried
by the loop. However, node splitting may be needed to eliminate some
antidependences (see next section).

4. Insert finalization code for each value in the original array that is not
assigned to the original array. If we adopt the convention that di is the
definition associated with the last assignment to A(I+ci) and A$i, is
the name associated with nameSpace(di), then we need to insert a
sequence of loops for i = 2 to m at the end of the loop as follows:

DO j = ci-1+1,ci
A(U+j) = A$i(U+j)

ENDDO

where U is the original loop upper bound.

5. Finally, we need to insert initialization code for any uses in the name
spaces for any of the final definitions {di} that occur on subsequent
iterations. Let A(I+gi), where gi<ci be the use in the name space for
A(I+ci) with the smallest additive coefficient. Then we need to insert
the loop:

DO j = gi+1,ci
A$i(j) = A(j)

ENDDO

We illustrate these points with an example:

DO I = 1, 100
S1 A(I+2) = A(I+1) + B1
S2 A(I+1) = A(I+3) + B2
S3 A(I-1) = A(I) + B3

ENDDO

Here the name space for the definition of A(I+2) in S1 includes the use of
A(I+1) in the same statement; the name space for the definition of
A(I+1) in S2 includes the use of A(I) in S3; and the name space for the
definition of A(I-1) in S3 contains only itself. The default name space
for inputs to the loop includes only the use of A(I+3) in S2. If we follow
the algorithm and use the original array name for the definition in S3 and
the use in S2, we will get transformed code, including initializations that
look like this, after reducing single-iteration loops to single statements

Enhancing Fine-Grained Parallelism

244 ADVANCED COMPILING FOR HIGH PERFORMANCE

A$1(1) = A(1)
A$2(2) = A(2)
DO I = 1, 100

S1 A$2(I+2) = A$1(I+1) + B1
S2 A$1(I+1) = A(I+3) + B2
S3 A(I-1) = A$2(I) + B3

ENDDO
DO j = 0, 1

A(100+j) = A$1(100+j)
ENDDO
A(102) = A$2(102)

5.5 Node Splitting

There are special cases when, after applying the renaming algorithm in
the previous section, we are still unable to eliminate a critical antidep-
dence. This is because, in the interest of avoiding copying, we have two
different name spaces with the same name in the same statement. Con-
sider the following example:

DO I = 1, N

ENDDO

If the renaming algorithm is applied to this loop, the two different refer-
ences to X in the first statement are in two different name spaces, because
the first reference refers to values of X on loop entry (e.g., X(I+1)) and
the second (e.g., X(I)) to values that are computed within the loop,
except on the first iteration. Furthermore, our naming algorithm attempts
to give both name spaces the name of the original array. This leaves the
antidependence and the recurrence intact.

When a recurrence contains a such a critical antidependence—that is, an
antidependence without which the recurrence would not exist—it may be
broken through a technique known as node splitting. Node splitting cre-
ates a copy of a node from which an antidependence emanates; if there
are no dependences coming into the node, the recurrence will be broken.
Node splitting makes a copy of the X array to provide access to the old
values, permitting the statements to be reordered. (This optimization can
be performed automatically in the renaming operation when needed by

A(I) = X(I+1) + X(I)

X(I+1) = B(I) + 10
δ∞–1δ1

Node Splitting

Chapter Draft of February 8, 2001 245

simply giving the default nameSpace(d0) a generated name and initializ-
ing it outside the loop.)

DO I = 1, N

ENDDO

When codegen is applied to the transformed code, it can now linearize
the dependences (since the cycle has been broken), yielding the following
vector code.

X$(1:N) = X(2:N+1)
X(2:N+1) = B(1:N) + 10
A(1:N) = X$(1:N) + X(1:N)

Carrying out the node splitting transformation is straightforward, once
the antidependence to be broken has been identified. The only require-
ment for the antidependence is that the source reference must only use
“old” values of the array. Antidependences with constant thresholds
always meet this requirement. Figure 5.14 lists a straightforward algo-
rithm for splitting a node, given the antidependence to be deleted. This
algorithm just replaces the reference with a scalar (assuming that scalar
expansion will be called later) and updates the dependence graph to
reflect the program changes.

FIGURE 5.14 Node splitting.

procedure node_split(D)

// node_split takes a constant, loop-independent antidependence
// splits the node associated with it, and adjusts the dependence
// graph accordingly.

let T$ be a new scalar not already used in the program;
create a new assignment x: T$ = source(D); and

insert it before source(D);
replace source(D) with T$;
add a loop-independent true dependence from x to source(D);
change source(D) to be x;

end node_split

A(I) = X$(I) + X(I)

X(I+1) = B(I) + 10

δ∞–1δ1

X$(I) = X(I+1)

Enhancing Fine-Grained Parallelism

246 ADVANCED COMPILING FOR HIGH PERFORMANCE

It should be easy to see that node_split eliminates the antidependence by
moving the source to a statement that cannot possibly be involved in any
recurrence cycle. Even though node splitting can be implemented by a
kind of array renaming, it can often be applied to more general loops than
renaming. For example, consider a variant of our original example:

DO I = 1, N

ENDDO

The array renaming algorithm in Section 5.4 cannot be applied here
because of the reference to X(2), yet node splitting works well.

While node splitting is straightforward to apply, it is not easy to deter-
mine that it is profitable in a specific situation. The following example
shows that node splitting does not always break a recurrence:

DO I = 1, N

ENDDO

Applying the transformation from Figure 5.14 yields:

DO I = 1, N

ENDDO

Scalar expansion will enable the generated assignment to X$ to be vector-
ized, but the remaining statements are still bound in a recurrence. The
problem here is that the antidependence was not critical to the recurrence.
For node splitting to generate effective vectorization, the dependence that
is split must be “critical” to the recurrence; that is, breaking that depen-
dence must break the recurrence. Unfortunately, the problem of deter-
mining a minimal set of such critical dependences in a given recurrence

A(I) = X(I+1) + X(2)

X(I+1) = B(I) + 10
δ∞–1δ1

A(I) = X(I+1) + X(I)

X(I+1) = A(I) + 10
δ∞–1δ1 δ∞

A(I) = X$ + X(I)

X(I+1) = A(I) + 10

δ∞
–1

δ1

X$ = X(I+1)

Recognition of Reductions

Chapter Draft of February 8, 2001 247

is NP-complete. Therefore, there are no efficient methods for finding an
optimal solution. In other words, doing a perfect job of node splitting is
probably too ambitious for a compiler writer to undertake in a production
compiler.

Fortunately, a perfect job is probably unnecessary given the approach of
Figure 5.14, because the major expense of the transformation occurs
when the temporary scalars are expanded. If scalar expansion is per-
formed only when profitable vectorization is guaranteed and if the profit-
ability algorithm knows that artificially generated assignments do not
create profitable vectorization, then node splitting can be performed
wherever possible with little danger of degrading performance.

These observations suggest a simple strategy for node splitting: Select
antidependences in a recurrence, delete them and see if the result is acy-
clic. If so, apply node-splitting to eliminate those antidependences.

We leave as an exercise for reader (Exercise 5–4) to establish the correct-
ness of node splitting—i.e., that when node splitting is applied along an
antidependence critical to a recurrence, the recurrence will be broken. It
is important to note, however, that even though the recurrence is broken,
it is possible that no vectorization will result because the recurrence may
simply break into a group of smaller recurrences.

5.6 Recognition of Reductions

Many operations that are not directly vectorizable occur commonly
enough in programs to merit the use of special hardware in a vector archi-
tecture. For instance, summing the elements of a vector or array is an
extremely common operation, but is not directly vectorizable. The pro-
cess of obtaining a single element by combining the elements of a vector
is known as reduction—because the operation reduces the vector to one
element. Summing a vector is known as a sum reduction; finding the
maximum/minimum element in a vector is a max /min reduction; count-
ing the number of true elements in a vector is a count reduction. Because
reductions occur in many important programs, many machines have spe-
cial hardware or software procedures to compute them. For example,
consider sum reduction:

S = 0.0
DO I = 1, N

S = S + A(I)
ENDDO

Enhancing Fine-Grained Parallelism

248 ADVANCED COMPILING FOR HIGH PERFORMANCE

If floating point addition is assumed to be both commutative and associa-
tive (an assumption which is almost never strictly true, but which is usu-
ally close enough to not upset programmers too much), the reduction can
be rearranged as a number of parallel partial sums followed by a final
addition. On a target machine with a four-stage addition pipeline, a natu-
ral transformation is to decompose the reduction into four separate sum
reductions:

S = 0.0
DO k = 1, 4

SUM(k) = 0.0
DO I = k, N, 4

SUM(k) = SUM(k) + A(I)
ENDDO
S = S + SUM(k)

ENDDO

Distributing the k loop breaks the reduction naturally into three parts: ini-
tialization, computation, and finalization.

S = 0.0
DO k= 1, 4

SUM(k) = 0.0
ENDDO
DO k = 1, 4

DO I = k, N, 4
SUM(k) = SUM(k) + A(I)

ENDDO
ENDDO
DO k = 1, 4

S = S + SUM(k)
ENDDO

Given that the target has a four stage pipeline, we want to interchange the
loops in the computation nest, yielding

DO I = 1, N, 4
DO k = I, min(I+3,N)

SUM(k-I+1) = SUM(k-I+1) + A(I)
ENDDO

ENDDO

The inner loop does not carry a dependence, and can be vectorized to
produce

DO I = 1, N, 4
SUM(1:4) = SUM(1:4) + A(I:I+3)

ENDDO

Recognition of Reductions

Chapter Draft of February 8, 2001 249

If a vector computation is viewed abstractly as occurring simultaneously
(which is not the way it actually occurs), this form simultaneously adds
four elements of A to four different partial sums. These partial sums are
accumulated throughout the outer loop (usually into a set of special regis-
ters called accumulators). Figure 5.15 displays this graphically, in terms
of a four stage pipeline.

FIGURE 5.15 Pipeline for Sum Reduction.

Even with the short vector length, this form is a speedup over the analo-
gous scalar computation. However, notice that if the result for SUM(1)
can be fed back into the pipeline as soon as it is available (as is depicted
at the left of Figure 5.15), the computation can be run at essentially vec-
tor speed—as soon as results come out of one end of the pipeline, they
are fed into the beginning. Once the four partial sums are available in
SUM(1:4)the total sum can be computed by three floating point additions,
two of which may be overlapped. Similar techniques can be used to com-
pute product, min/max, and other reductions.

The Fortran 90 intrinsic function SUM is intended to provide the fastest
possible sum reduction permitted by commutativity and associativity.
Thus, if the compiler recognizes the sum reduction loop and replaces it
with the appropriate intrinsic call

S = SUM(A(1:N))

efficient code should result on any machine with sum reduction hard-
ware. The Fortran 90 intrinsic functions PRODUCT, MINVAL, and MAXVAL
play the same role for multiplication, minimum, and maximum, respec-
tively.

The problem for the writer of advanced compilers, then, is to recognize
and replace reductions where possible with the equivalent fast intrinsic
routine. Reductions have three essential properties:

1. They reduce the elements of some vector or array dimension down to
one element.

SUM(4)
+

A(I+3)

SUM(3)
+

A(I+2)

SUM(2)
+

A(I+1)

SUM(1)
+

A(I)A(I+4)

SUM(1)

Enhancing Fine-Grained Parallelism

250 ADVANCED COMPILING FOR HIGH PERFORMANCE

2. Only the final result of the reduction is used later; use of an intermedi-
ate result voids the reduction.

3. There is no variation inside the intermediate accumulation; that is, the
reduction operates on the vector and nothing else.

Fortunately, these properties are easily determined from dependence
graphs. Consider the following dependence graph for the sum reduction
loop presented earlier.

DO I = 1, N

ENDDO

This pattern of self true dependence, output dependence, and antidepen-
dence is necessary for a reduction to exist. The true dependence reflects
the fact that the statement adds to the partially accumulated result on each
iteration; the output dependence reflects the fact that only the last value is
used; and the antidependence reflects the fact that the partial accumula-
tions are going to be rewritten. These dependences all are necessary to
satisfy the first property of a reduction.

The second and third properties are indicated by the absence of other true
dependences. To illustrate a fragment that does not meet these require-
ments, consider the following:

DO I = 1, N
S1 S = S + A(I)
S2 T(I) = S

ENDDO

Intermediate values of the reduction are used by S2—values which can-
not be obtained if the reduction is performed as a single operation. The
third aspect is symmetric to use of intermediate values, but has to do with
values feeding into the reduction. This condition is satisfied by the
absence of true dependences feeding into the reduction.

The simplest way of verifying the second and third properties is to iden-
tify reductions as loops are being distributed. If both requirements are
met, a reduction will fall out as a single statement recurrence when loop
distribution is applied. If either requirement is violated, the reduction, by
nature of its accumulation into a single element, will pull other state-
ments into a recurrence with it.

S = S + A(I)

δ

δ−1δo

Index-set Splitting

Chapter Draft of February 8, 2001 251

Because reductions rarely take full advantage of vector hardware, some
care has to be taken when recognizing reductions to ensure that recogniz-
ing the reduction does not obscure a more efficient form for the loop.
Consider the following example:

DO I = 1, N
DO J = 1, M

S(I) = S(I) + A(I,J)
ENDDO

ENDDO

The inner loop is a sum reduction and the code could be replaced by

DO I = 1, N
S(I) = S(I) + SUM (A(I,1:M))

ENDDO

However, the outer loop performs the reduction across all elements of S.
As a result, it can be directly vectorized with loop interchange, giving

DO J = 1, M
S(1:N) = S(1:N) + A(1:N,J)

ENDDO

This form will be more efficient on most vector machines, assuming
proper scalarization and memory optimizations are performed as
described in Chapter 13 and Chapter 8. Thus, it is important not to indis-
criminately transform code by inserting equivalent reductions early in the
vector code generation process. Instead, insertion of reductions should
wait until all other options are understood.

5.7 Index-set Splitting

There are a number of situations where a loop contains a recurrence that
cannot be broken by the methods we have discussed so far, but where the
dependence pattern holds for only part of the range of iteration of the
loop. When this happens, an index-set splitting transformation, which
subdivides the loop into different iteration ranges, may be used to achieve
partial parallelization. In this section we will discuss several such trans-
formations.

5.7.1 Threshold Analysis

Recall that the threshold of a dependence is the value of its leftmost non-
zero distance. In other words, the threshold is the number of iterations of
the carrier loop that occur between the access to the source of the depen-

Enhancing Fine-Grained Parallelism

252 ADVANCED COMPILING FOR HIGH PERFORMANCE

dence and the access to the sink of the dependence. Since both accesses
must be made for the dependence to exist, one method for generating
vector code is to break loops into sizes that are smaller than the thresh-
olds of the dependences. For example, the following loop does not carry a
dependence because its upper bound is right at the threshold of the
dependence:

DO I = 1, 20
A(I+20) = A(I) + B

ENDDO

As a result, it can be directly rewritten as a vector statement.

A(21:40) = A(1:20) + B

If the number of iterations is increased, however, the dependence materi-
alizes, and the loop cannot be vectorized, as in the following version:
Thus, if the upper bound is increased

DO I = 1, 100
A(I+20) = A(I) + B

ENDDO

This problem can be easily overcome if we strip mine the loop into sec-
tions no larger than twenty:

DO I = 1, 100, 20
DO i = I, I+19

A(i+20) = A(i) + B
ENDDO

ENDDO

Because of the threshold effect, the inner loop is dependence-free; the
outer loop carries all dependences. Accordingly, the inner loop can be
vectorized.

DO I = 1, 100, 20
A(I+21:I+40) = A(I:I+19) + B

ENDDO

Unfortunately, this transformation is not very useful in practice because
dependences in real programs typically have small thresholds—in partic-
ular, the most common threshold is one iteration. Nevertheless, the analy-
sis is useful in some special classes of programs—for example, programs
that simulate dynamic storage allocation by assigning different abstract
arrays to different sections of one major array and subroutines that
receive multi-dimensional arrays as one-dimensional vectors.

Index-set Splitting

Chapter Draft of February 8, 2001 253

Although constant thresholds are the most common, crossing thresholds,
occur in practice with a frequency that makes them worth analyzing.
Crossing thresholds, briefly introduced in Section 3.3.2.4 on page 112,
occur in dependences in which the distance varies, but all dependences
cross a single specific iteration. The following loop is an example.

DO I = 1, 100
S1 A(101-I) = A(I) + B

ENDDO

The dependence of S1 upon itself varies in distance from 99 at I=1 down
to 1 at I=50. After that the references cross, and the true dependence
becomes an antidependence. All dependences, whether true dependences
or antidependences, have their source before iteration 50 and their sink
after iteration 50. As a result, if the loop is strip mined at length 50, all
dependences will remain with the outer loop, leaving a recurrence-free
inner loop.

DO I = 1, 100, 50
DO i = I, I+49

A(101-i) = A(i) + B
ENDDO

ENDDO

When codegen is applied to the transformed loop, the following vector
code results:

DO I = 1, 100, 50
A(101-I:51-I) = A(I:I+49) + B

ENDDO

Crossing thresholds can be computed in a natural way by the dependence
analyzer, as shown in Section 3.3.2.4 on page 112.

Given the ease with which these simple cases can be implemented and
the small amount of compile-time required to test for them, some amount
of index splitting based on thresholds is practical in a production com-
piler, even though the occasions on which it can be profitably applied will
be few. In particular, later chapters will show practical applications of
threshold analysis in contexts other than vectorization.

5.7.2 Loop Peeling

A more frequent occurrence is a loop with a carried dependence whose
source is a single iteration.

DO I = 1, N
A(I) = A(I) + A(1)

Enhancing Fine-Grained Parallelism

254 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO

The computation on each iteration uses the value of A(1) computed on
the first iteration. This carried dependence can be converted into a loop-
independent dependence originating outside the loop by peeling the first
iteration into the loop prologue:

A(1) = A(1) + A(1)
DO I = 2, N

A(I) = A(I) + A(1)
ENDDO

The resulting loop carries no dependence and can be directly vectorized:

A(1) = A(1) + A(1)
A(2:N) = A(2:N) + A(1)

Loop peeling can involve iterations other than the first and last; in such
cases, the loop must be split across the iteration that causes the depen-
dence. For instance, assuming that N is exactly divisible by 2 in the fol-
lowing:

DO I = 1, N
A(I) = A(N/2) + B(I)

ENDDO

The desire is to use loop peeling to convert the loop carried dependence
into a loop-independent one between two loops. Doing so yields

M = N/2
DO I = 1, M-1

A(I) = A(N/2) + B(I)
ENDDO
A(M) = A(N/2) + B(I)
DO I = M+1, N

A(I) = A(N/2) + B(I)
ENDDO

This is clearly another form of crossing threshold and the loop size can be
easily determined at dependence testing time. In this case, the test that
determines the transformation is the weak-zero test, described in
Section 3.3.2.3 on page 111.

5.7.3 Section-based Splitting

A variation on loop peeling is illustrated the following loop nest, where
once again, we assume that N is exactly divisible by 2:

DO I = 1, N

Index-set Splitting

Chapter Draft of February 8, 2001 255

DO J = 1, N/2
S1 B(J,I) = A(J,I) + C

ENDDO
DO J = 1, N

S2 A(J,I+1) = B(J,I) + D
ENDDO

ENDDO

There are two dependences of interest in this example: a loop-indepen-
dent dependence from S1 to S2 (due to B) and a dependence from S2 to S1
carried by the I-loop (due to A). As a result, the J-loops can be vector-
ized, but the outer loop is bound in a recurrence. Since S1 only defines a
portion of B (B(1:N/2)), a natural way of breaking the loop-independent
dependence is to partition the second loop into a loop that uses the results
of S1 and a loop that does not. The following illustrates such a partition.

DO I = 1, N
DO J = 1, N/2

S1 B(J,I) = A(J,I) + C
ENDDO
DO J = 1, N/2

S2 A(J,I+1) = B(J,I) + D
ENDDO
DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D
ENDDO

ENDDO

S3 is now independent of the other two statements, so codegen will dis-
tribute the I-loop and move S3 to the beginning.

DO I = 1, N
DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D
ENDDO

ENDDO
DO I = 1, N

DO J = 1, N/2
S1 B(J,I) = A(J,I) + C

ENDDO
DO J = 1, N/2

S2 A(J,I+1) = B(J,I) + D
ENDDO

ENDDO

This permits vectorization of S3 in two dimensions, while the remainder
will vectorize only in the J-dimension:

M = N/2

Enhancing Fine-Grained Parallelism

256 ADVANCED COMPILING FOR HIGH PERFORMANCE

S3 A(M+1:N,2:N+1) = B(M+1:N,1:N) + D
DO I = 1, N

S1 B(1:M,I) = A(1:M,I) + C
S2 A(1:M,I+1) = B(1:M,I) + D

ENDDO

This kind of transformation requires sophisticated knowledge and analy-
sis of array sections flowing along dependence edges. For instance, this
example was predicated on the knowledge that only a portion of B was
defined and used within the I-loop. As with thresholds, this analysis is
probably too complex and costly to be applied to all loops. However, in
the context of procedure calls, such analysis can be worthwhile.
Chapter 11 will illustrate the development of this type of analysis for
determining interprocedural effects.

5.8 Run-time Symbolic Resolution

In many codes, symbolic variables complicate dependence testing by
appearing in subscripts. In those cases, a dependence analyzer must make
conservative assumptions. For instance, in

DO I= 1, N
A(I+L) = A(I) + B(I)

ENDDO

the unknown variable L prevents vectorization. If L is greater than zero,
the statement contains a self true dependence, and obviously cannot be
vectorized. However, if L is less than or equal to zero, the statement con-
tains either no dependence or a self antidependence, which does not pre-
clude vectorization. Since it is very possible that L is set at run-time,
making compile-time determination impossible, a restructuring phase
will normally have to assume that both the true dependence and the anti-
dependence exist. One way to temper this conservatism is to annotate
dependence edges with breaking conditions, which are logical expres-
sions that will break the dependence if true. For instance, in the example,
the true dependence has a breaking condition (L.LE.0) and the antide-
pendence has a breaking condition (L.GT.0).

When breaking conditions are present in a loop, the loop can often be
vectorized by making the vector version conditional by enclosing it in an
IF statement that guarantees enough dependences do not exist to break
the recurrence. In the example above, breaking the true dependence is
enough to break the recurrence, so that the loop can be vectorized as fol-
lows:

Run-time Symbolic Resolution

Chapter Draft of February 8, 2001 257

IF (L.LE.0) THEN
A(L:N+L) = A(1:N) + B(1:N)

ELSE
DO I= 1, N

A(I+L) = A(I) + B(I)
ENDDO

ENDIF

One very common application of breaking conditions is in computations
with variable strides. These strides are particularly prevalent in very gen-
eral library packages, such as LINPACK [6], that support operations on
arbitrary arrays. For instance, the following is similar to DAXPY (a com-
mon linear algebra operation that forms the basis of LINPACK).

DO I = 1, N
A(I*IS-IS+1) = A(I*IS-IS+1) + B(I)

ENDDO

If IS happens to be zero (which is virtually never true in practice), the
loop is a reduction, and has a loop carried true dependence, output depen-
dence, and antidependence. If IS is anything other than zero, there are no
dependences and the loop can be completely vectorized. This type of
construct is easy to detect in dependence analyzers, and produces the fol-
lowing code when breaking conditions are examined:

M = N*IS-IS+1
IF (IS.NE.0) THEN

A(1:M:IS) = A(1:M:IS) + B(1:N)
ELSE

A(1) = A(1) + SUM(B(1:N))
ENDIF

In this case, the breaking condition allows vector code to be generated in
both its true and false form, since the loop becomes a sum reduction
when the dependences are known to exist.

In general, a loop can contain an arbitrary number of breaking conditions.
Just as identifying a minimal number of dependences that will break a
recurrence with array renaming is NP-complete, identifying the minimal
number of breaking conditions necessary to break a recurrence is also
NP-complete. As a result, attempting to handle very general cases of
breaking conditions is probably impractical in a production compiler.
However, the simple examples presented in this section are extracted
from important numerical packages, justifying an approach that handles
at least these cases. Thus we recommend an analysis similar to the one

Enhancing Fine-Grained Parallelism

258 ADVANCED COMPILING FOR HIGH PERFORMANCE

presented for node splitting to identify when a critical dependence can be
conditionally eliminated via a breaking condition.

5.9 Loop Skewing

All the program transformations presented so far have focused on uncov-
ering parallel loop iterations. While most programs have very regular par-
allelism that can be expressed in terms of parallel loops, several
important examples do not. Loop skewing is a transformation that
reshapes an iteration space to make it possible to express the existing par-
allelism with conventional parallel loops. Consider, for example, the fol-
lowing loop:

DO I = 1, N
DO J = 1, N

ENDDO
ENDDO

Even a simple glance at the dependences reveal that neither loop can be
run in parallel; both the I and the J loops carry dependences. However,
the fragment does contain parallelism, which is most easily visualized
graphically. Figure 5.1 displays the dependences for this example spread
across the iteration space. Obviously, neither loop can be run in parallel,
since dependence arcs span both axes—any attempt to move a line of par-
allelism down either axis will fail, since the dependences force sequential
execution on any line parallel to an axis. However, there are diagonal
lines of parallelism, proceeding from the upper left to the lower right. For
instance, iterations S(1,2) and S(2,1) can be run in parallel, once iteration
S(1,1) completes. Similarly, S(1,3), S(2,2) and S(3,1) can be executed in
parallel, once S(1,2) and S(2,1) complete. In other words, a diagonal line
of parallelism can be moved up the iteration space, starting from the
lower left and proceeding up to the upper right. The problem is that this
parallelism does not directly to either loop.

One way to rotate the diagonal line of parallelism into one that tracks a
loop is to remap the iteration space, much as eigenvalues are uncovered
in linear algebra. A mapping that works in this example is to create a new
index variable j as follows:

j = J + I

A(I,J) = A(I-1,J) + A(I,J-1)

(=,<)

(<,=)

S:

Loop Skewing

Chapter Draft of February 8, 2001 259

FIGURE 5.16 Dependence pattern prior to loop skewing.

Using j to replace J given the inverse mapping

J = j - I

yields the following, when substituted in the original example

DO I = 1, N
DO j = I+1, I+N

ENDDO
ENDDO

Note that the change in iteration space affects the direction vector for the
dependence carried by the I-loop, depicted as the lower dependence in
the example. In order for the left subscript positions to be equal, the value
of I used in the store must be one less than the value used ion the right.
When this constraint is propagated into the right subscript positions, it
forces j to be one greater in the use than in the store, making the direc-
tions “<” for both loops. In terms of delta notation

J = 1

J = 2

J = 3

J = 4

I = 1 I = 2 I = 3 I = 4

S(1,1) S(2,1) S(3,1) S(4,1)

S(1,4)

S(1,3)

S(1,2) S(2,2) S(3,2) S(4,2)

S(2,3) S(3,3) S(4,3)

S(2,4) S(3,4) S(4,4)

Parallel iterations

A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

(=,<)

(<,<)

S:

Enhancing Fine-Grained Parallelism

260 ADVANCED COMPILING FOR HIGH PERFORMANCE

∆I = 1 and j-I = j+∆j-I-∆I

therefore, ∆j = ∆I = 1.

The new dependence pattern, mapped into the new shape for the iteration
space, is depicted in Figure 5.1.

FIGURE 5.17 Dependence pattern after loop skewing.

Since both loops still carry dependences, it is not yet clear that loop
skewing has done anything more than confuse naive readers. However,
by noting that the dependence carried by the outer loop is now inter-
change-sensitive (the diagonally-oriented dependences in the figure), a
parallel loop can be found. Interchanging the two loops pulls all depen-
dences to the new outer loop, leaving the inner loop dependence-free.
The example after loop interchange becomes:

DO j = 2, N+N
DO I = max(1,j-N), min(N,j-1)

A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)
ENDDO

ENDDO

I = 1

I = 2

I = 3

I = 4

j = 2 j = 3 j = 4 j = 5

S(1,2) S(1,3) S(1,4) S(1,5)

S(2,1) S(2,2) S(2,3)

S(3,1) S(3,2)

S(4,1)

Parallel iterations

Loop Skewing

Chapter Draft of February 8, 2001 261

The loop bounds that result after loop interchange in this example are
typical of those created by loop skewing and loop interchange; the
skewed loop produces a trapezoidal iteration space which yields complex
loop bounds after interchange. When this form is presented to codegen,
the following vector code results.

DO j = 2, N+N
FORALL I = max(1,j-N), min(N,j-1)

A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)
END FORALL

ENDDO

The FORALL statement is required because the vector statement is not
directly expressible in triplet notation.

While the vectorization gained through loop skewing in this example
probably improves performance, this form of vector code has some dis-
advantages. The primary disadvantage is the varying vector length—the
vector length starts at one, runs up to N, the back down to one, for an
average length of N/2. If the vector start-up time is large and N is small,
this vector form could easily run slower than the scalar. Another disad-
vantage is that the vector bounds must be recomputed on each iteration of
the outer loop.

To apply loop skewing more generally, assume that we have a loop nest
in which both the outer loop on index I and the inner loop on index J are
normalized. We wish to skew the inner loop so that the distances of
dependences carried by the inner loop position are k more than in the
original loop. To do this, we introduce a new inner loop index

j = J + k*I (EQ 5.1)

and transform the loop to use this value. This means that the loop bounds
must be changed and instances of J in the original loop be replaced by
instances of the expression j-k*I. The safety of this transformation fol-
lows from the fact that we are not reordering any computation—we are
only relabelling the iteration space. The proof that this transformation
achieves the desired effect on direction vectors will be left as an exercise.

The effect of skewing a loop on J with respect to a loop on K by a factor
of k is to modify the dependence distances corresponding to loop J. Spe-
cifically, if a given dependence has a distance ∆I corresponding to the
loop on I and distance ∆J corresponding to the loop on J and both of
these distances are constant throughout the loop, then the dependence
distance ∆j of the inner loop after skewing is given by

Enhancing Fine-Grained Parallelism

262 ADVANCED COMPILING FOR HIGH PERFORMANCE

∆j = ∆J + k*∆I (EQ 5.2)

To see this, let f1(I,J) be the (multidimensional) subscript expression at
the source of the dependence and f2(I,J) be the expression at the sink. We
know that

f1(I,J) = f2(I+∆I,J+∆J)

substituting j-k*I for J on all sides of the equation, we get

f1(I,j-k*I) = f2(I+∆I,j-k*I-k*∆I+∆j)

But since the distance is consistent for every value of I and J, we know
that the difference between the second parameter to f2 and the second
parameter to f1 must be exactly ∆J. Thus

∆J = ∆j – k*∆I

from which Equation 5.2 follows immediately.

Equation 5.2 tells us that loop skewing can be used to produce a depen-
dence-free loop out of two loops that each carry dependences, so long as
all dependences have a consistent distance. To do so, apply the method
described earlier in this chapter—skew the inner loop with respect to the
outer loop so that the dependences carried by the outer loop have dis-
tances of at least 1 in the inner loop position. This may involve skewing
by a large constant, if some dependences carried by the outer loop start
out with negative distances in the position corresponding to the inner
loop. Once all the distances for the inner loop are positive, exchange this
loop to the outside and it will now carry all dependences, permitting the
new inner loop to be parallelized. One final example will illustrate the
complexity:

DO I = 1, N
DO J = 1, N

A(I,J) = A(I-1,J) + A(I,J-1) + A(I-1,J+1)
ENDDO

ENDDO

This differs from the example at the beginning of this section by the addi-
tion of the third reference on the right hand side, which gives rise to a
dependence with direction vector (<,>) and distance vector (1,-1). In
order to be able to interchange the inner and outer loops after skewing we
must skew by 2 in order to make the distance of this third dependence
positive in the position corresponding to J.

Putting It All Together

Chapter Draft of February 8, 2001 263

DO I = 1, N
DO j = 2*I+1, 2*I+N

A(I,j-2*I) = A(I-1,j-2*I) + A(I,j-2*I-1) $
+ A(I-1,j-2*I+1)

ENDDO
ENDDO

As we have already seen, loop skewing is not without cost. The loops that
result from this transformation are highly trapezoidal. The penalties aris-
ing from such an irregular loop are greatest on vector machines; they are
less problematic on asynchronous multi-processors. However, even on
those architectures, loop skewing must be applied with care to avoid sig-
nificant load imbalances.

5.10 Putting It All Together

This chapter has presented a number of transformations for uncovering or
enhancing parallelism: loop interchange, scalar expansion, scalar renam-
ing, array renaming, node splitting, reduction recognition, index set split-
ting, symbolic resolution, and loop skewing. The positive aspect of
having such a large number of transformations is that they provide sev-
eral alternatives for exploiting parallelism. The negative side is that it is a
complex task to choose the right transformation from among so many
choices—automating the transformation selection process is even harder.
There are at least two considerations that must be addressed in choosing
transformations: making sure that the selected transformation actually
improves the program over its original form, and making sure that
selected transformation does not conflict or interfere with other transfor-
mations that offer more overall benefit for the program.

Many examples of the first problem have been presented throughout this
chapter. Virtually every transformation has been dealt with from two per-
spectives: establishing when the transformation is safe and establishing
that the transformation is profitable. Safety has always been definitively
established. Profitability, on the other hand, has been somewhat more dif-
ficult, because determining the most profitable transformation often
requires the solution of an NP-complete problem.

However, when dealing with vector machines, one clear test for profit-
ability has always been available: pick the transformation that results in
the most vectorization. This is determined by carrying out the transfor-
mation—preferably just in the graph, but if necessary in the program as
well—and repartitioning the dependence graph into strongly-connected

Enhancing Fine-Grained Parallelism

264 ADVANCED COMPILING FOR HIGH PERFORMANCE

regions. In the abstract, more vectorization is always better. However, in
practice, real machine architectures always have problem areas that cloud
this determination (See Section 5.11 for some examples).

The second problem—that of avoiding interference between transforma-
tions—is more complicated. One example of such an interference was
presented in Section 5.6 on page 247, where premature insertion of a sum
reduction blocked loop interchange. Loop skewing abounds with exam-
ples of interference: the complexity of the loop interchange on page 259
is an excellent example. One final example that illustrates why naive
approaches to program transformation will not work is provided by the
following simple sum reduction:

DO I = 1, N
S = S + A(I)

ENDDO

In this form, this loop is easily reduced to a sum reduction call, which
should be optimal on any architecture. However, a naive compiler might
attempt scalar expansion before reduction recognition (even though
Section 5.3 would show this expansion to be pointless), producing the
following code:

S$(0) = S
DO I = 1, N

S$(I) = S$(I-1) + A(I)
ENDDO
S = S$(N)

This loop is still a reduction, but it is much harder to recognize as a sum
reduction. In this form, it is more likely to be recognized as a simple lin-
ear recurrence and replaced with a solving subroutine. While this result is
better than scalar code, it is less efficient than direct substitution of a sum
reduction.

In developing an algorithm to tie all the transformations together, two
points must be considered. First, any approach to generating effective
code must view the transformed code globally, not just locally. That is, it
is difficult (if not impossible) to decide when considering a transforma-
tion on one loop whether that transformation is in fact the most effective
to apply. That determination requires knowledge of at least the whole
loop nest. The following provides an example of the type of scope
required:

DO I = 1, M
DO J =1, N

Putting It All Together

Chapter Draft of February 8, 2001 265

A(I,J) = A(I-1,J-1) + B(INDEX(I),J)
ENDDO

ENDDO

Loop interchange can be used to vectorize either loop, but not both—one
must be run in scalar. When focused on either loop, a transformation
algorithm can easily determine whether that loop can be vectorized.
However, it is difficult to determine that vectorizing one loop precludes
vectorization of the other. In this example, the J loop is the more profit-
able loop to vectorize, even though the I loop is stride one, because the
gather operation required on B to vectorize the I loop is inefficient on
most machines.

This principle extends well beyond vector machines—determining the
best code to generate is difficult enough when a global view is taken. It is
downright impossible with a purely a local approach.

Second, determining which transformations are best for a given program
requires knowledge of the architecture of the target machine. On a highly
parallel machine such as the Connection Machine, extracting all possible
parallelism is essential, and the focus must be on transforming the pro-
gram to create as many parallel loops as possible. On less parallel sys-
tems, such as a single CPU superscalar architecture, choosing one
appropriately parallel loop is far more important than generating a large
number of parallel loops. It is impossible to give one strategy for tying
program transformations together that satisfy both extremes (or most of
the points in between).

In order to illustrate the principles involved in a global transformation
strategy, this section examines an algorithm tuned for vector register
architectures. For illustration purposes, these architectures have the clear
advantages of possessing moderate parallelism whose benefits are usu-
ally easy to determine and which can be easily represented at source level
as Fortran 90 vector operations. We will assume that finding one good
vector loop is the principal goal; the benefits of vectorizing additional
loops are too small to justify the effort. This assumption is true for most
vector register architectures in commercial use today.

Given the target architecture, the process of generating vector code from
a scalar source program falls naturally into three phases:

1. Detection: finding all loops for each statement that can be run in vec-
tor.

Enhancing Fine-Grained Parallelism

266 ADVANCED COMPILING FOR HIGH PERFORMANCE

2. Selection: choosing from among viable candidates the best loop for
vector execution for each statement.

3. Transformation: carrying out the transformations necessary to vector-
ize the selected loop.

This strategy fits in well with the transformations presented in this chap-
ter. The detection phase involves modifying the dependence graph to
reflect all possible transformations, without carrying them out in the pro-
gram proper. Since the transformations described here only enhance par-
allelism (no transformation blocks parallelism), modifying the
dependence graph in this fashion has no detrimental effects. The selec-
tion phase is highly machine dependent and involves detailed analysis of
the subscripts and loops. The final transformation phase uses the original
dependence graph to drive the program modifications necessary to
achieve the best vector loops.

FIGURE 5.18 Vector loop detection

procedure mark_loop(S, D)

// mark_loop takes a set of statements S and the associated
// dependence graph D (with all deletable edges marked) and
// marks all loops on all possible vector statements

for each edge e in D that is deletable by array renaming, scalar
renaming, node splitting, or symbolic resolution do begin
add e to list deletable_edges;
delete e from D;

end

mark_gen(S,1,D);

for each statement x in S that has no vector loops marked do
attempt index set splitting and loop skewing, marking vector

loops found;

foreach edge e in deletable_edges do
restore e to D;

end mark_loop

The detection phase is more fully detailed in the procedure mark_loop, in
Figure 5.18. This algorithm deletes all dependences from the graph that
may be removed by scalar expansion, array renaming, node splitting, and
symbolic resolution. Loop interchange is handled by searching for loops

Putting It All Together

Chapter Draft of February 8, 2001 267

that carry no dependences. Index set splitting and loop skewing are saved
as final resorts—they are applied when no other vectorization can be
found. Reductions are recognized during the marking process, since they
are most easily found after loop distribution has been performed.

After these changes are made in the dependence graph, a variant of code-
gen, called mark_gen, is invoked on the result. However, rather than gen-
erating vector code or performing loop interchange, mark_gen simply
marks loops detected as vector, and all statements involved.

FIGURE 5.19 Variant of codegen to mark vector loops and statements.

procedure mark_gen(S,k,D)

find the set {S1, S2, ... , Sm} of maximal strongly-connected
 regions in the dependence graph D restricted to R
(use Tarjan's algorithm);

for i = 1 to m do begin

if Si is cyclic then

if the outermost carried dependence is at level p>k then
mark all loops at level k,k+1,...,p–1 as vector for all

statements in Si;

else if Si is a reduction then begin
mark loop k as vector for Si;
mark statements in Si as being reductions at level k;

end

else begin
let Di be the dependence graph consisting of all

dependence edges in D that are at level k+1 or greater
and are internal to πi;

mark_gen(Si, k+1, Di);
end

else
mark statements in Si as vector for loops k and deeper;

end
end mark_gen

Enhancing Fine-Grained Parallelism

268 ADVANCED COMPILING FOR HIGH PERFORMANCE

This procedure uses simple loop shifting as its interchange strategy.
However, it can easily be adapted to employ a more sophisticated loop
selection heuristic such as the one described in Figure 5.2 and Figure 5.4.

The second phase of the global code generation algorithm selects the best
vector loop for each statement from among all possible vector loops for
that statement. This phase involves examining each statement locally for
machine-specific criteria such as those discussed Section 5.11. However,
some non-local analysis is necessary to ensure that the transformations
are applied consistently. For example, in scalar expansion a single scalar
must be expanded across the same loop for each renamed partition. While
it might be tempting to expand the following example

DO I = 1, M
DO J = 1, N

T = A(I,J) + B(I,J)
C(J,I) = T + B(J,I)

ENDDO
ENDDO

as follows (which maximizes results for the individual statements by cre-
ating stride one access)

DO I = 1, M
DO J = 1, N

T$(I) = A(I,J) + B(I,J)
C(J,I) = T$(J) + B(J,I)

ENDDO
ENDDO

the results are obviously incorrect. If the statements are examined indi-
vidually with no global perspective, this type of code can easily be the
result.

Once a consistent set of best vector loops has been found for each state-
ment, the task remaining is to carry out the transformations in the pro-
gram—in other words, to make the program correspond to the
dependence graph. The dependence graph provides a simple mechanism
for efficiently uncovering a simple path to recognizing the proper trans-
formations to vectorize the selected loops. The original graph is restored
(that is, deletable edges are restored), and codegen is reinvoked. When-
ever codegen finds a “best vector” loop that does not vectorize, then it
knows it must invoke a transformation. Because the transformation is
known, the edges that identify the potential program transformation are
easy to locate during this process. As a result, codegen can efficiently
search for the proper set of transformations that yield the desired result.

Putting It All Together

Chapter Draft of February 8, 2001 269

Figure 5.10 details a version of codegen that implements this process; it
is initially invoked at the outmost loop level. If it returns with no vector
code generated, but best vector loops have been marked, then loop skew-
ing or index set splitting is necessary.

FIGURE 5.20 Driver for program transformations.

procedure transform_code(R, k, D)

find the set {S1, S2, ... , Sm} of maximal strongly-connected
 regions in the dependence graph D restricted to R
(use Tarjan's algorithm);

construct Rπ from R by reducing each Si to a single node and
compute Dπ, the dependence graph naturally induced on
Rπ by D;

let {π1, π2, ... , πm} be the m nodes of Rπ numbered in an order
consistent with Dπ (use topological sort to do the numbering);

for i = 1 to m do

if k is the best vector loop for some statement in πi then
if πi is cyclic then begin

select_and_apply_tranformation(πi,k,D);
// retry the vectorization on new dependence graph
transform_code(πi,k,D);

end
else

generate a vector statement for πi in loop k;
else begin

generate a level-k DO statement;

let Di be the dependence graph consisting of all
dependence edges in D that are at level k+1 or greater
and are internal to πi;

transform_code(πi, k+1, Di);

generate the level-k ENDDO statement
end

end transform_code

Enhancing Fine-Grained Parallelism

270 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 5.21 Selection of transformations.

procedure select_and_apply_tranformation(πi, k, D)

if loop k does not carry a dependence in πi then
shift loop k to innermost position;

else if πi is a reduction at level k then
replace with reduction and remove edges

associated with the reduction;
else // transform and adjust dependences

if array renaming is possible then
apply array renaming and adjust dependences,

employing node splitting where needed;
else if node splitting is possible then

apply node splitting and adjust dependences;
else if scalar expansion is possible then

apply scalar expansion and adjust dependences;
else

apply skewing or index set splitting
and adjust dependences;

end select_and_apply_tranformation

5.11 Complications of Real Machines

While the selection phase of vector code generation, which determines
the best vector loop, may appear to be the simplest of the phases, in fact,
it is one of the more difficult ones, because it must include considerations
about the architecture of the target machine. When generating code for a
fine-grained parallel machine, a major concern is ensuring that the opera-
tions selected in the innermost loop match the functional units available.
When targeting coarse-grained multiprocessors, ensuring that the parallel
decomposition provides enough computation to overcome synchroniza-
tion overhead while keeping the load balanced is a difficult problem.

Given these problems, one might assume that vector machines are the
simplest to target, and that the small discussion provided in the previous
section more than covers the topic. In fact, the opposite is true; determin-
ing the best vector loop (or even one that is guaranteed to execute faster
after vectorization) is a very difficult proposition. This section presents a
number of issues that must be considered when trying to determine the
best vector loop for a particular machine. These considerations are typi-

Complications of Real Machines

Chapter Draft of February 8, 2001 271

cal of the kinds of issues that arise when targeting real, rather than ideal,
machines.

Memory-stride access. One of the difficult balances to achieve in
machines architectures is that of CPU performance versus memory per-
formance. This balance is especially tricky in vector machines, where
heavily pipelined CPUs can require operands every clock cycle for the
number of cycles necessary to complete a (possibly long) vector opera-
tion. Memory components that are fast enough to feed such a CPU are far
more expensive than the CPU logic, and are hard to justify given that vec-
tor machines do far more than just vector memory operations.

To avoid incurring prohibitive costs, system designers commonly use
components that are not as fast as the CPU but are designed to provide
equivalent speed on most operations. Two standard architectural features
include multiple memory banks and prefetching. With memory banks, all
of memory is partitioned into some number (usually a small power of
two—eight and sixteen are common) of banks. While an access within a
single bank will take longer than a single cycle, accesses to different
banks may be overlapped, providing an operand every cycle after the
startup delay (much the same way that pipelined functional units oper-
ate). Of course, this rate of access can only be sustained when successive
accesses are made to different banks—repeatedly accessing the same
memory bank produces the analog of pipeline interlock, with the equiva-
lent slowdown in access rate. Since contiguous memory addresses are
usually assigned to banks in round-robin fashion (that is, address x is
placed in bank 0; address x+1 is placed in bank 1; and so on), Stride-one
access is guaranteed to perform well on such a system, because each suc-
cessive access is guaranteed to go to a different bank. On the other hand,
vector accesses with strides equal to the memory bank size perform very
poorly, since they repeatedly access the same memory bank. On a system
that uses memory banks in this way, it is critical to vectorize operations in
a way that avoids bank conflicts. Note that making the stride equal to one
does not always guarantee the absence of bank conflicts; if memory is
banked along word boundaries, vector accesses to halfword elements per-
form better with a stride of two.

When hardware prefetching is employed, an access to a particular word
causes some number of following words to be accessed as well. With unit
vector strides, this technique automatically pulls the next few operands
from memory, allowing the processing unit to proceed at full speed.
Prefetching is less effective with nonunit strides, since only part (or none)

Enhancing Fine-Grained Parallelism

272 ADVANCED COMPILING FOR HIGH PERFORMANCE

of the prefetched operands are used. When choosing a best vector loop,
prefetching definitely favors small vector strides.

Scatter-gather. One memory factor that is closely related to stride is
scatter-gather operation. A gather occurs when a program uses a vector
index to gather sparse operands together, as in

DO I = 1, N
A(I) = B(INDEX(I))

ENDDO

Analogously, a scatter spreads compressed operands out to uncom-
pressed memory locations:

DO I = 1, N
A(INDEX(I)) = B(I)

ENDDO

Since gathers and scatters both involve varying, unknown strides, they
are always less efficient that direct memory access, for the same reasons
that strides other than one are problematic. Scatter-gather is very com-
mon in scientific codes, so vectorizing such constructs is important; how-
ever, it is also important to recognize that vectorized scatter or gather
loops usually execute much less efficiently than direct memory access.

Loop length. All vector units incur some overhead in initially filling the
pipeline and, accordingly, require some number of operations for the seg-
mented execution speedup to overcome startup cost. The longer the vec-
torized loop (when only one is vectorized), the more effectively the
vector unit is able to amortize the startup overhead. When loop lengths
are all known at compile-time (a situation which is rarely true), the com-
piler can evaluate the vectorized efficiency of each loop. When loop
bounds are symbolic, trading off loop lengths versus strides and other
parameters is very difficult. With no additional input from the program-
mer, compilers must generally assume that all loops with unknown
bounds are long enough for efficient vector execution. This assumption
can provide very unpleasant inefficiencies in many areas. For instance,
graphics programs often have loops of length four; physics and chemistry
codes often have loops of length three (one for x, y, and z directions).
When such programs are naively vectorized, the resulting transformed
code often runs much slower than the original program.

Operand reuse. The best method for optimizing memory access is to
minimize the number of accesses to memory. Vectorizing so that oper-
ands are reused from registers is one obvious way of achieving this goal.

Complications of Real Machines

Chapter Draft of February 8, 2001 273

Some examples of this consideration have presented in this chapter;
many more will be presented in Chapter 8 and Chapter 13.

Non-existent vector operations. Not all arithmetic operations can be
effectively segmented, and not all architectures provides support for vec-
tor versions of all instructions. One common example of an arithmetic
operation that is difficult to pipeline is a floating point divide. A floating
point divide is a very complex instruction, requiring many iterations of a
basic instruction sequence. Because of this iterative process, divides
rarely speed up when vectorized, and many architectures do not waste
instruction bits supporting vectorized divides. As a result, vectorizing a
loop that performs a vector divide is something a compiler must carefully
consider. In the following example

DO I = 1, M
DO J = 1, N

A(I,J) = B(J) / C(I)
ENDDO

ENDDO

the J-loop is the preferred vector loop on most machines, despite stride
and memory considerations. When the J-loop is vectorized, the divide
can be efficiently performed by computing the scalar inverse and chang-
ing the divide into a multiply (assuming the programmer is willing to
accept a small inaccuracy in his result):

DO I = 1, M
T = 1.0 / C(I)
DO J = 1, N, 32

A(I,J:J+31) = B(J:J+31) * T
ENDDO

ENDDO

If the I-loop is vectorized, most machines will show no speedup.

Conditional execution. Because vector units continually repeat the same
operation, they perform best when working on a regular series of oper-
ands. Disrupting that regularity by introducing conditionals (so that some
operations are skipped) greatly decreases vector efficiency. Most vector
units are able to execute conditional operations via a set of mask registers
that control whether the result of an individual operation overwrites the
result register. However, even mask registers rarely permit conditional
setting (that is, mask registers cannot be set under the control of mask
registers), so that only a single level of IF nesting is supported. Even a
single level of conditional execution is less efficient than pure vector exe-
cution, and should be avoided where possible. Thus, in the following

Enhancing Fine-Grained Parallelism

274 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO I = 1, M
DO J = 1, N

IF (A(J) .GT. 0) THEN
B(J,I) = B(J,I) + 1.0

ENDIF
ENDDO

ENDDO

the better loop to vectorize is probably the I-loop, since it can be trans-
formed into

DO J= 1, N
IF (A(J) .GT. 0) THEN

DO I= 1, M
B(J,I) = B(J,I) + 1.0

ENDDO
ENDIF

ENDDO

removing the conditional execution from the vector pipeline.

As these examples indicate, even the apparently simple task of selecting a
best vector loop is not easy. When this task is further complicated by the
presence of coarse parallelism (in the form of multiple cpu’s) or by the
presence of less regular fine-grained parallelism, the job of the compiler
becomes very difficult indeed.

5.12 Chapter Summary

This chapter has developed the theory behind a number of dependence-
based transformations designed to enhance the parallelism found in a
program. These transformations, all of which are loop-oriented, focus
either on rearranging a program to obtain better parallelism or on break-
ing recurrences to create parallelism:

• Loop interchange, which is critical not only to vectorization but to
most of the methods presented in this book, adjusts the nesting order
of loops so as to get parallel loops into the optimal position. Because
sequentializing an outer loop makes more vectorization possible in
inner loops, the essence of a good loop interchange strategy is to select
the right outer loop for sequentialization.

• Scalar expansion removes dependences by expanding a scalar into a
vector, permitting parallelism when scalar bottlenecks restrict execu-
tion order, at the expense of additional memory.

Case Studies

Chapter Draft of February 8, 2001 275

• Array renaming, scalar renaming, and node splitting likewise delete
dependences by the use of additional memory.

• Reductions form an important part of many codes, causing reduction
recognition to be an integral part of any advanced compiler.

• Index set splitting, symbolic resolution, and loop skewing are other
parallelism-exposing techniques applicable to special cases.

These transformations must be applied carefully in the context of other
operations in the same loop nest to ensure that the maximum amount of
parallelism is achieved. The chapter presents a driving procedure for
these transformations on vector machines. The procedure consists of
three phases: identification of loops that can be vectorized, selection of
the best loop for vectorization, and transformation of the code to vector-
ize the selected loops. The chapter concludes with a discussion of aspects
of real vector machines that should be considered in selecting the best
vector loop for each statement.

5.13 Case Studies

PFC
The PFC system, developed at Rice by the authors, vectorized code using
the loop shifting strategy of Figure 5.2 and Figure 5.3. If no vectorization
was found by the time codegen reached the innermost level, it would
attempt general loop interchange of the two innermost loops. Instead of
having to compute and examine the entire direction matrix, this approach
can be implemented by attributing dependence edges with a single prop-
erty—that of being interchange preventing (or not) with the next inner
loop. This attribute is easily calculated during dependence testing by
looking for the explicit direction pair “<,>” at the level of the loop carrier
and the loop just inside it.

To expose more vectorization, PFC did a reasonably complete job of sca-
lar expansion, scalar renaming, and node splitting. It employed reason-
ably sophisticated versions of index-set splitting, including threshold
analysis, crossing thresholds, and peeling. It also included a simple form
of run-time resolution. It did not attempt either loop skewing or array
renaming.

Given that the PFC system produced Fortran 90 rather than code for any
target machine, specific machine considerations were not integral to its
functioning. Therefore, the selection of transformations to apply was
done by ad-hoc methods. Specifically, if codegen produced no vectoriza-

Enhancing Fine-Grained Parallelism

276 ADVANCED COMPILING FOR HIGH PERFORMANCE

tion by the time it reached the innermost loop and interchanging the inner
loops did not help, transformations would be attempted to break depen-
dences, in a specific order, beginning with scalar expansion.

Ardent Titan Compiler
The flexibility of the vector register file on the Ardent Titan allowed for a
wide range of vectorization strategies. At one extreme, the register file
could be treated as 4 vector registers of length 2K. Using that paradigm,
the Titan would have essentially been a vector-memory machine, and the
proper strategy would have been to vectorize as many loops to create the
longest possible vector operations.

The alternative chosen was more reasonable and allowed for the potential
of vector register reuse—something the 4 vector registers does not allow.
The Ardent compiler partitioned the vector register file into roughly 641
vector registers each of length 32. This length was long enough to amor-
tize the vector start-up costs but allowed an ample number of registers for
reuse, and left some room for the operating system to make context
switching more efficient.

The small vector start-up costs and the short vector lengths allowed an
important simplification in the Titan vectorization strategy. Rather than
trying to vectorize the maximum possible number of loops, the Ardent
compiler focused on running only one loop in vector. There were several
reasons behind this decision:

1. Given the decision to set the length of the vector registers to 32, the
odds were good that vectorizing one loop would provide enough oper-
ations to fill the vector unit.

2. Given the asynchronicity of the vector unit, scheduling a large number
of small vector operations could be accomplished just as quickly as
firing off one longer vector operation, with the right compiler schedul-
ing. As a result, even if one vectorized loop happened not to fill the
vector registers, there would be little loss of performance.

3. Vectorizing only one loop simplified a lot of representation problems.
When only one loop is vectorized, the resulting linearized vector oper-
ation can always be represented simply as a triple. Not all multiply-
vectorized loops can, and deciding on one loop meant the optimizer
could avoid a lot of expensive analysis determining whether a state-
ment could be correctly vectorized in multiple loops or not.

1. There is some fudging here because scalar registers got special treatment.

Case Studies

Chapter Draft of February 8, 2001 277

4. Limiting vectorization to only one loop would simplify a lot of com-
pile time search issues regarding optimal loop order. Many of the
problems involving ordering vector loops are exponential in the num-
ber of loops. Even though loop nests tend not to be very deep, even a
small nesting depth can cause potential compile time problems with
an exponential solution. These problems don’t arise when the limit on
the exponent is one.

With this strategic decision, the philosophy behind the Ardent optimizer
became one of vectorizing the best loop, as opposed to the philosophy of
vectorizing the most loops. This shift led to variations in virtually all of
the code generation algorithms. Specifically it produced the code genera-
tion strategy described in Section 5.10.

While a concern at the time was that limiting vectorization to one loop
might negatively impact later retargets to other vector machines, this
turned out not to be the case. The Ardent optimizer was later retargeted to
an architecture that was essentially a vector memory architecture, and the
resulting code was excellent.

The last key decision in terms of vectorization strategy involved the over-
all approach to vectorization. The algorithms presented in this book
approach vectorization from a purely semantic point of view, determining
when a vector operation is semantically equivalent to its scalar analog.
Unfortunately, that is not sufficient for most real machines, since it is also
necessary that the machine be able to execute the vector operation. The
Titan I, for instance, did not have a vector divide instruction, so while it
was nice from a theoretical point of view when the compiler vectorized a
divide, it did not result in any program speedup1.

Faced with the hard realities of fixed hardware, the Titan vectorizer either
1) had to avoid vectorizing operations that were not available on the hard-
ware, or 2) convert such vectorized operations into a sequence of accept-
able operations. The approach taken was the second one: vectorize loops
from a purely semantic viewpoint, then have a machine-dependent “de-
vectorization” pass following that converted non-existent vector opera-
tions into valid instructions. The reasoning at the time was that compiler
would eventually be retargeted to other architectures, and performing a
clean vectorization (parameterized according to machine constraints such

1. In the sense that the executable immediately dumped core when CPU attempted to
execute the vector divide, it did speed up.

Enhancing Fine-Grained Parallelism

278 ADVANCED COMPILING FOR HIGH PERFORMANCE

as strip size and available parallelism) followed by a less-clean devector-
ization was the easiest way to retarget. As it turned out, this was also the
most efficient approach in other ways, particularly in terms of final code.
For instance, even though the Titan did not have a vector divide, it could
in some cases essentially vectorize a divide of a vector by a scalar by
computing the inverse of the scalar and then doing a vector multiply of
the result times the vector (assumes that x/a == x * 1/a).1 This type of
transformation is difficult to recognize in a prevectorization pass, since
one does not know whether the divisor is a scalar until one knows which
loop has vectorized. It is trivial to implement in a postvectorization pass.

Vectorization Performance
To illustrate the performance of the vectorization technologies used in
PFC and described in this chapter, we present a study of the effectiveness
of various compilers on the Callahan-Dongarra-Levine benchmark suite,
a collection of loops that exercise various capabilities of vectorizing com-
pilers. The tests are grouped into four categories:

1. Dependence, which explores the precision of dependence testing;

2. Vectorization, which tests for the presence of various vectorizing
transformations, such as loop distribution, loop interchange, scalar
expansion, and crossing thresholds;

3. Idioms, which tests how well each compiler recognizes common
reductions, packing, searches, and some specialized recurrences; and

4. Completeness, which tests the handling of complex language con-
structs such as flow of control, equivalencing, and intrinsics.

The actual performance of PFC and a large variety of commercial com-
pilers is given in Table 5.1. The PFC experiments were conducted by
Ervan Darnell of the PFC project, while all other data is from the paper
by Callahan, Dongarra, and Levine [5]. Among the commercial compil-
ers, the Ardent Titan compiler, the Convex C series compiler, and the
IBM 3090 VF compiler [13] were all directly based on the methods and
algorithms from PFC. Within each group, three columns are shown: The
column labeled “V” indicates the number of loops that were completely
vectorized; the column labeled “P” gives the number of loops partially
vectorized, while “N” indicates the number of loops that were not vector-
ized.

1. Numerical purists will readily recognize that without some guarantees on the scalar,
the results are not exactly equivalent.

Case Studies

Chapter Draft of February 8, 2001 279

As Table 5.1 shows, PFC did very well on the vectorization and com-
pleteness groups, due to the systematic approach it took to program trans-
formations (e.g., array renaming, and crossing thresholds), handling of
conditional statements (see Chapter 7), and interprocedural analysis (see
Chapter 11). In the dependence analysis group, PFC did moderately well,
but at the time of the experiment, it did not employ the full suite of tests
described in Chapter 3. By contrast, PFC performed rather poorly on the
idioms. This was due to a design decision on the PFC project not to invest
substantive resources on the special case pattern matching required to do
well here.

The compilers directly based on PFC—from Ardent, Convex, and IBM—
also did relatively well, although the IBM vectorizer suffered in depen-

Vectorizing

Compiler

Total Dependence Vectorization Idioms Completeness

V P N V P N V P N V P N V P N

PFC 70 6 24 17 0 7 25 4 5 5 0 10 23 2 2

Alliant FX/8, Fortran V4.0 68 5 27 19 0 5 20 5 9 10 0 5 19 0 8

Amdahl VP-E, Fortran 77 62 11 27 16 1 7 21 8 5 11 1 3 14 1 12

Ardent Titan-1 62 6 32 18 0 6 19 5 10 9 0 6 16 1 10

CDC Cyber 205, VAST-2 62 5 33 16 0 8 20 5 9 7 0 8 19 0 8

CDC Cyber 990E/995E 25 11 64 8 0 16 6 8 20 3 1 11 8 2 17

Convex C Series, FC 5.0 69 5 26 17 0 7 25 4 5 11 0 4 16 1 10

Cray series, CF77 V3.0 69 3 28 20 0 4 18 3 13 9 0 6 22 0 5

CRAX X-MP , CFT V1.15 50 1 49 16 0 8 12 1 21 10 0 5 12 0 15

Cray Series, CFT77 V3.0 50 1 49 17 0 7 8 1 25 7 0 8 18 0 9

CRAY-2, CFT2 V3.1a 27 1 72 5 0 19 3 1 30 8 0 7 11 0 16

ETA-10, FTN 77 V1.0 62 7 31 18 0 6 18 7 9 7 0 8 19 0 8

Gould NP1, GCF 2.0 60 7 33 14 0 10 19 7 8 8 0 7 19 0 8

Hitachi S-810/820, 67 4 29 14 0 10 24 4 6 14 0 1 15 0 12

IBM 3090/VF, VS Fortran 52 4 44 12 0 12 19 3 12 5 1 9 16 0 11

Intel iPSC/2-VX, VAST-2 56 8 36 15 0 9 17 8 9 6 0 9 18 0 9

NEC SX/2, F77/SX 66 5 29 17 0 7 21 5 8 12 0 3 16 0 11

SCS-40, CFT x13g 24 1 75 7 0 17 6 1 27 5 0 10 6 0 21

Stellar GS 1000, F77 48 11 41 14 0 10 20 9 5 4 1 10 10 1 16

Unisys ISP, UFTN 4.1.2 67 13 20 21 3 0 19 8 7 10 2 3 17 0 10

TABLE 5.1 Performance on Callahan-Dongarra-Levine tests.

Enhancing Fine-Grained Parallelism

280 ADVANCED COMPILING FOR HIGH PERFORMANCE

dence testing because it performed this test on low-level intermediate
code rather than on source programs.

All in all these results demonstrate that the transformations and testing
described in this book provide fairly comprehensive coverage of the chal-
lenges facing vectorizing compilers. There is, however, another message
in the Callahan-Dongarra-Levine tests. The compilers that did best were
those that paid meticulous attention to details. The idioms are an example
of this, but we present one other example—test 171, a test that PFC failed
but most compilers handled correctly:

subroutine s171(a,b,n)
 integer n
 real a(*),b(*)
 do 1030 i = 1,n
 a(i*n) = a(i*n) + b(i)
 1030 continue

PFC failed this test because of its poor handling of symbolic coefficients
in subscripts. It did not vectorize the loop because of the possibility that
n=0. However, it missed the fact that, because n is also the loop upper
bound, the loop will we degenerate in that case. This and other examples
illustrate that, even with the right framework, success depends on system-
atic pursuit of the special cases that occur in practice. A goal of this chap-
ter is to provide a general framework that significantly simplifies that
pursuit.

5.14 Historical Comments and References

The earliest papers on dependence-based program transformations
include papers by Lamport [8,9] and Kuck [7]. Lamport developed a
form of loop interchange for use in vectorization, as well as the wavefront
method for parallelization, an early form of loop skewing. Lamport also
discussed the importance of scalar expansion, although he provided no
method for implementing it. Loop interchange was further developed by
Wolfe [15,17,18]; the extensions described in this chapter are due to
Allen and Kennedy [1, 3, 2]. The use of the direction matrix to drive
interchange is new to this book but is essentially a variant of the use of
direction vectors by Wolfe [17] and the distance matrix approach used by
Lamport and further developed by Wolf and Lam [14].

Wolfe’s masters thesis [15] discusses a mechanism for scalar expansion.
His technique mechanically expands all scalars, regardless of profitabil-
ity, and relies on later passes to contract out unprofitable expansion. A

Exercises

Chapter Draft of February 8, 2001 281

Ph.D. dissertation by Pieper [12] surveys a number of different
approaches to scalar expansion, and compares their efficacy in real pro-
grams.

The various techniques for renaming to eliminate dependences are dis-
cussed in general in a number of places [2], as is index splitting. In partic-
ular, Padua’s thesis provides a precise algorithm for scalar renaming [10].
The algorithms for array renaming and node splitting are drawn from a
paper by Allen and Kennedy [4], but modified for this book. Loop skew-
ing in its current form was introduced by Wolfe [16] as a practical way of
performing Lamport’s wavefront transformation. Useful surveys of pro-
gram transformations include those by Padua and Wolfe[11], Kuck et. al.
[7], Wolfe’s Ph.D. dissertation [18] and a subsequent textbook by
Wolfe[19].

The strategies for global selection of vector transformations presented
here were developed by Allen as a part of his work on the Ardent Titan
compiler.

5.15 Exercises

5–1 Apply the loop-shifting code generation heuristic to the following exam-
ple:

DO I = 1, N
DO J = 1, N

DO K = 1, N
A(I,J+1) = A(I,J) + B(K,J)

ENDDO
ENDDO

ENDDO

5–2 Adapt the array renaming algorithm from Section 5.4 to handle code with
control flow in the loop body. Hint: take advantage of a method similar to
the one for scalar expansion to ensure that a definition occurs on all
branches.

5–3 Prove that the loop skewing substitution in Equation 5.1 has the desired
effect of adding k to the inner loop distance for dependences carried by
the outer loop. What effect does it have on dependences carried by the
inner loop?

5–4 Show that the node splitting algorithm of Figure 5.14, when presented
with a critical antidependence, breaks the dependence cycle after scalar
expansion is applied.

Enhancing Fine-Grained Parallelism

282 ADVANCED COMPILING FOR HIGH PERFORMANCE

5–5 Apply the code generation algorithm of Section 5.10 to the following
loop nest.

DO I = 1, N
DO J = 1, N

DO K = 1, N
T = A(K,J) + A(K+1,J)
A(K+1,J) = T + B(K)
A(K+1,J) = A(K+1,J) + C(K)

ENDDO
ENDDO

ENDDO

Which transformations does it employ?

5–6 What vector code should be generated for the following loop?
DO I = 1, 100

A(I) = B(K) + C(I)
B(I+1) = A(I) + D(I)

ENDDO

5.16 References

[1] J.R. Allen, “Dependence analysis for subscripted variables and its application to pro-
gram transformations,” Ph.D dissertation, Department of Mathematical Sciences, Rice
University, May, 1983.

[2] J. R. Allen and K. Kennedy. PFC: a program to convert Fortran to parallel form. In
Supercomputers: Design and Applications, K. Hwang, editor, pages 186–203. IEEE
Computer Society Press, August 1984.

[3] J. R. Allen and K. Kennedy. Automatic loop interchange. In Proceedings of the SIG-
PLAN ’84 Symposium on Compiler Construction, Montreal, Canada, June 1984.

[4] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form.
ACM Transactions on Programming Languages and Systems, 9(4):491–542, October
1987.

[5] D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: A test suite and results.
In Proceedings of Supercomputing ‘88, Orlando, FL, 1988.

[6] J. Dongarra and J. Bunch and C. Moler and G. Stewart. LINPACK User's Guide. SIAM
Publications, Philadelphia, PA, 1979

[7] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs and com-
piler optimizations. In Conference Record of the Eighth Annual ACM Symposium on
the Principles of Programming Languages, Williamsburg, VA, January 1981.

[8] L. Lamport. The parallel execution of DO loops. Communications of the ACM,
17(2):83–93, February 1974.

[9] L. Lamport. The coordinate method for the parallel execution of iterative {DO} loops.
Technical Report CA-7608-0221, SRI, Menlo Park, CA, August 1976, revised October
1981.

References

Chapter Draft of February 8, 2001 283

[10] D. A. Padua. Multiprocessors: discussion of some theoretical and practical problems.
Ph.D. Thesis, Report 79-990, Department of Computer Science, University of Illinois at
Urbana Champaign, November, 1979.

[11] D. A. Padua and M. J. Wolfe.Advanced compiler optimizations for supercomputers.
Communications of the ACM, 29(12):1184–1201, December 1986.

[12] K. Pieper. Parallelizing compilers: implementation and effectiveness. Ph.D. thesis, Stan-
ford Computer Systems Laboratory, June, 1993.

[13] R. G. Scarborough and H. G. Kolsky. A vectorizing FORTRAN compiler. IBM Journal
of Research and Development, March 1986.

[14] M. E.Wolf and M. Lam.A loop transformation theory and an algorithm to maximize
parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452 –
471,October 1991.

[15] M. J. Wolfe.Techniques for improving the inherent parallelism in programs. Master’s
thesis, Dept.of Computer Science, University of Illinois at Urbana-Champaign, July
1978.

[16] M. J. Wolfe. Loop skewing: The wavefront method revisited. International Journal of
Parallel Programming 15(4):279 –293, August 1986.

[17] M. J. Wolfe. Advanced loop interchanging. In Proceedings of the 1986 International
Conference on Parallel Processing, St. Charles, IL, August 1986.

[18] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cam-
bridge, MA, 1989.

[19] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
Redwood City, CA, 1996.

Enhancing Fine-Grained Parallelism

284 ADVANCED COMPILING FOR HIGH PERFORMANCE

Introduction

Chapter Draft of February 8, 2001 285

CHAPTER 6 Creating Coarse-
Grained Parallelism

6.1 Introduction

Chapter 5 discusses program transformations designed to enhance the
parallelism in inner loops. Those transformations improve performance
on vector and superscalar architectures, where parallelism is fine-grained
and found primarily in innermost loops. In this chapter we turn to the
problem of finding parallelism for multiple asynchronous processors with
a shared global memory. These processors are typified by the symmetric
multiprocessor (SMP)—found in workstations from companies like Sun,
Silicon Graphics, and Compaq—and the distributed shared memory
(DSM) systems typified by the SGI Origin 2000 and the HP/Convex SPP-
2000.

Coarse-grained parallelism at the level of multiple processors requires a
different focus; on such architectures, parallelism is employed by creat-
ing a thread on each of the processors, executing in parallel for a period
of time with occasional synchronization, and synchronization via a bar-

Creating Coarse-Grained Parallelism

286 ADVANCED COMPILING FOR HIGH PERFORMANCE

rier at the end. The key to achieving high performance on such systems is
to find and package parallelism with a granularity large enough to com-
pensate for the overhead of parallelism initiation and synchronization. As
a result, the focus is to find parallel loops with significant amounts of
computation within their bodies. This usually means parallelization of
outer loops rather than inner loops, and it often means parallelization of
loops with subroutine calls, a subject discussed in Chapter 11.

When generating parallel code for coarse-grained architectures, many
delicate trade-offs must be managed. One of the most difficult is mini-
mizing communication and synchronization overhead while balancing
the load evenly across all the processors. At one extreme, the absolute
minimal overhead is accomplished when the entire program is run on one
processor—since there is no parallelism, there is no overhead involved in
interprocessor communication and synchronization. Of course, the load
balance and corresponding parallel speedup are very poor. At the other
extreme, the best load balance is obtained when a program is decom-
posed into the smallest possible parallel elements, with the elements dis-
tributed evenly among the idle processors. With very small parallel
program elements, no processor is stuck working on one large element
while other processors are idle, awaiting work. However, the synchroni-
zation and communication overhead is maximized in this case. This over-
head almost always outweighs the benefits obtained by the perfect load
balance. Somewhere in between these two extremes lies the most effec-
tive parallel decomposition—a parallelizing compiler is faced with the
challenge of locating that sweet spot.

Chapter 1 introduced the PARALLEL DO statement (see Section 1.5.1 on
page 37), which represents a loop whose iterations can be correctly run in
any order. The literature has also called this type of loop a DOALL. An
alternate form of coarsely parallel loop is a DOACROSS, which pipelines
parallel loop iterations (basically using multiple processors as a high
level vector processor) with cross-iteration synchronization.This chapter
will focus on the generation of PARALLEL DO loops, because any loop that
can utilize parallelism effectively as a DOACROSS loop can be distributed
into a series of PARALLEL DO loops, although the pipeline parallelism
may be lost. Section 6.6.2 discusses the introduction of pipeline parallel-
ism in more detail.

The remainder of this chapter describes transformations that can be
applied to programs to create new opportunities for parallelism, thus
enhancing this simple code generation algorithm into a sophisticated,
aggressive code generation strategy. Many of these transformations have

Single-Loop Methods

Chapter Draft of February 8, 2001 287

already been presented in the context of vectorization; this chapter pre-
sents the (often minor) adaptations necessary for coarse-grained parallel-
ism.

6.2 Single-Loop Methods

When attempting to enhance the parallelism extracted from a single loop,
there are two general strategies that should be tried. If the loop is a
sequential loop (i.e. it carries a dependence), finding some way to make it
parallel is the obvious way to enhance parallelism. Any transformation
that eliminates loop-carried dependences (e.g. loop distribution) can be
used to achieve this goal. Once a loop is parallel, increasing the granular-
ity of the exposed parallelism is generally useful. This section discusses
various transformations for achieving each of these goals.

6.2.1 Privatization

Section 5.3 on page 226 introduced the transformations of scalar expan-
sion and scalar privatization. Scalar expansion is effective in vectoriza-
tion because it eliminates many dependences—both loop-carried and
loop independent—associated with the original scalar. Since deleting
loop-carried dependences can convert sequential loops into parallel
loops, both scalar expansion and scalar privatization are important trans-
formations in increasing coarse-grained parallelism.

The mechanics of scalar expansion and the conditions for determining its
safety were discussed in Section 5.3. These are the same regardless of
whether they are applied to vectorization or to parallelization. In this sec-
tion we will concentrate on privatization, which determines that a vari-
able assigned within the loop is used only in the same iteration in which
it is assigned. Such variables can be replicated across the iterations, elim-
inating carried dependences that might superficially bar parallelization.

As an example, consider the simple example from Section 5.3 in which
the values in two arrays are exchanged.

DO I = 1, N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T

ENDDO

Creating Coarse-Grained Parallelism

288 ADVANCED COMPILING FOR HIGH PERFORMANCE

The dependence pattern for this loop is given in Figure 6.1. Because of
the carried anti- and output dependences, the loop is not parallelizable as
it is currently formulated.

FIGURE 6.1 Dependence graph for array swap.

Fortunately, all of the carried dependences are due to assignments and
uses of the scalar variable T. As we pointed out in Section 5.3, all of these
carried dependences go away if each iteration has its own copy of the
variable T, as in the transformed and parallelized code below:

PARALLEL DO I = 1, N
PRIVATE t

S1 t = A(I)
S2 A(I) = B(I)
S3 B(I) = t

END PARALLEL DO

In the example above, making the transformation so that each iteration
has a private copy of T is correct because all uses of T within the body of
the loop get a value that is assigned earlier in the same iteration—in other
words, there are no upwards-exposed uses in the loop body. This condi-
tion is made formal by the following definition.

Definition 6.1. A scalar variable x defined within a loop is said to
be privatizable with respect to that loop if and only if every path
from the beginning of the loop body to a use of x within that body
must pass through a definition of x before reaching that use.

S1

S3

S2

δ1

δ1

ο

–1

δ∞
–1

δ∞
–1

δ∞

δ1

Single-Loop Methods

Chapter Draft of February 8, 2001 289

Privatizability can be determined by standard data-flow analysis as
described in Section 4.4. First we solve a set of data flow equations on the
loop body to determine the variables up(x) that are upwards-exposed at
the beginning of each block x:

(EQ 6.1)

where use(x) is the set of variables that have upwards-exposed uses in
block x and def(x) is the set of variables that are not defined in block x. If
b0 is the entry block of the loop body, then a variable defined in the loop
is privatizable if and only if it is not in up(b0). The set of all privatizable
variables in a loop body B is given by:

(EQ 6.2)

An alternative method for determining whether a specific scalar variable
is privatizable is provided by the SSA graph discussed in Section 4.4.4 on
page 184.

Theorem 6.1. A variable x defined in a loop may be made private
if and only if the SSA graph for the variable does not have a φ-
node at the entry to the loop.

This statement is true because the standard SSA construction inserts a
dummy initialization to a variable that is not explicitly assigned in the
program. Therefore we can assume that every scalar variable is assigned
outside the loop body. If a given variable x has an upwards exposed use
then both the definition outside the loop can reach that use. In addition,
any definition inside the loop can also reach that use by a path that
crosses iterations. Thus the values created by two distinct definitions
must be resolved by the insertion of a φ-node during SSA construction
for the loop. Clearly φ-node is not needed if there is no upwards-exposed
use in the body. Thus there is a φ-node at the beginning of the loop if and
only if there is an upwards-exposed use.

If all the dependences carried by a given loop, involve a privatizable vari-
able, then the loop can be parallelized by making all those variables pri-
vate.

Although privatization is clearly preferable to scalar expansion for elimi-
nating carried dependences in coarse-grained loops, scalar expansion can
help in some cases where privatization is not applicable. One such situa-
tion is demonstrated by the following example:

up x() use x() d¬ ef x() up y()
y succs x()∈

∪∩()∪=

private B() up b0()¬ def y()
y B∈
∪()∩=

Creating Coarse-Grained Parallelism

290 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO I = 1, N
T = A(I) + B(I)
A(I-1) = T

ENDDO

Because there are loop-carried dependences due to both T and A, privati-
zation will not produce any parallelism. However, expanding T allows the
loop to be distributed, yielding two parallel loops with a barrier in
between.

PARALLEL DO I = 1, N
T$(I) = A(I) + B(I)

ENDDO
PARALLEL DO I=1, N

A(I-1) = T$(I)
ENDDO

Scalar expansion applied in this manner can require a large amount of
storage (particularly if expansion is applied in multiple loops), necessitat-
ing some discretion in its use.

Good privatization is critical to the task of parallelizing most applica-
tions. Many applications cannot be parallelized without privatizing arrays
as well as scalars. Consider the problem of array privatization for arrays
of a single dimension. Since we do not construct SSA graphs for sub-
scripted variables, the simple test for privatizability given by
Theorem 6.1 cannot be used for arrays. Unfortunately, the existence of a
carried dependence is not sufficient to establish that an array is not priva-
tizable as the following example shows:

DO I = 1, 100
S0 T(1) = X
L1 DO J = 2, N
S1 T(J) = T(J-1) + B(I,J)
S2 A(I,J) = T(J)

ENDDO
ENDDO

Although it may not be immediately obvious, every use of a location in
the array T in the body of the I-loop is preceded by an assignment in that
same loop. However, a standard dependence analyzer will construct a
dependence carried by the I-loop from statement S1 to itself, because the
T(J-1) refers to the same location as T(J) on different iterations of the
I-loop. Thus, in order to privatize the array T, we must determine that
there is no upwards-exposed use of any location in T.

Single-Loop Methods

Chapter Draft of February 8, 2001 291

If we are dealing with a single loop, we can perform the analysis in a
manner similar to the data-flow analysis for scalars. Suppose we treat all
the distinct references the subscripted variable T as individual scalar ref-
erences. Thus, T(1) would be treated as distinct from T(J) and T(J-1).
If we then solve the upwards-exposed use problem for the loop body, the
result will be those references that we must assume are used before being
defined in the loop body. If this method is applied to the inner loop of the
example above:

L1 DO J = 2, N
S1 T(J) = T(J-1) + B(I,J)
S2 A(I,J) = T(J)

ENDDO

it determines that the reference T(J-1) is upwards exposed. Note that
B(I,J) is also upwards exposed in the loop but we will focus exclusively
on T for the moment since it is the only variable both used and defined in
the entire loop nest.

To extend this analysis to nests of loops, we need some way of determin-
ing the set of references that are upwards exposed in an inner loop. To
compute this, we construct a representation of which variables are
upwards exposed from the loop due to iteration J of the loop. The set of
variables upwards exposed on iteration J is simply the set of variables
that are upwards exposed from the body of the loop on iteration J less the
set of variables that are defined on some previous iteration.

For the inner loop above, we have already seen that T(J-1) is upwards
exposed on iteration J. Clearly the set of variables defined on some previ-
ous iteration is given by the union of the definition sets of all previous
iterations. In the case above this is clearly T(2:J). The union of these
differences for all values of J gives the entire set of upwards-exposed
locations in T.

It is easy to see that the expression T(J-1)-T(2:J) is empty except when
J is equal to 2. Thus the entire set of upwards-exposed locations for the
inner loop is {T(1)}.

Once the subloops have been handled, the algorithm for determining
which variables are privatizable operates using the single-loop method,
with the inner loop serving as a single statement that uses every variable

up L1() T(J-1){ } T(2:J)–
J 2=

N

∪=

Creating Coarse-Grained Parallelism

292 ADVANCED COMPILING FOR HIGH PERFORMANCE

in its upwards-exposed list before defining every variable that must be
defined on some iteration of the loop. In our example, L1 defines
T(2:N).

The end result of this analysis applied to the example is that T(1) is
defined in the statement just prior to L1, so there are no upwards-exposed
locations in the outer loop. Thus the entire array can be made private in
the I-loop and the outer loop can be parallelized:

PARALLEL DO I = 1, 100
PRIVATE t

S0 t(1) = X
L1 DO J = 2, N
S1 t(J) = t(J-1) + B(I,J)
S2 A(I,J) = t(J)

ENDDO
ENDDO

Note that this code assumes there is no use of the array T after the loop. If
there is such a use, the privatization transformation needs to insert a con-
ditional assignment to copy the value of the private version to the global
value on exit from the loop. In the example, this would yield:

PARALLEL DO I = 1, 100
PRIVATE t(N)

S0 t(1) = X
L1 DO J = 2, N
S1 t(J) = t(J-1) + B(I,J)
S2 A(I,J) = t(J)

ENDDO
IF (I==100) T(1:N) = t(1:N)

ENDDO

6.2.2 Loop Distribution

The fine grained parallelization algorithm codegen (Figure 2.2 on
page 88) depends implicitly on loop distribution to transform carried
dependences into loop independent dependences. For example, when the
J loop is distributed across the carried dependence from statement S1 to
statement S2 in

DO I = 1, 100
DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)
S2 D(I,J) = A(I,J-1)*2.0

ENDDO
ENDDO

Single-Loop Methods

Chapter Draft of February 8, 2001 293

the nest becomes

DO I = 1, 100
DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)
ENDDO
DO J = 1, 100

S2 D(I,J) = A(I,J-1)*2.0
ENDDO

ENDDO

In the original code, the dependence from S1 to S2 due to array A crosses
iterations of the J-loop, and is thus carried by the loop. With loop distri-
bution, the dependence is no longer carried by any loop.

Because loop distribution eliminates loop carried dependences, it can be
used to convert a sequential loop to multiple parallel loops. However, this
transformation implicitly inserts a synchronization barrier between the
dependence endpoints (at the end of the first parallel loop). This
decreases the granularity of parallelism and creates extra communication
and synchronization overhead. Thus, it is worth attempting other trans-
formations that can eliminate dependences without decreasing granular-
ity before resorting to loop distribution. In the next several sections we
will discuss some of these transformations.

6.2.3 Alignment

Loop distribution eliminates loop carried dependences by executing the
sources of all dependences before executing any sinks. Before distribu-
tion, values were computed on one iteration of a loop and used on a later
iteration. After distribution, the values are computed in one loop and used
in a different loop. An alternate approach to achieve the same effect is to
realign the loop to compute and use the values on the same iteration. The
following example, adapted from the distribution example in
Section 6.2.2, illustrates this idea.

DO I= 2, N
A(I) = B(I) + C(I)
D(I) = A(I-1)*2.0

ENDDO

This loop cannot be run in parallel, because the value of A computed on
iteration I is used on iteration I+1. The two statements can be aligned to
compute and use the values in the same iteration by adding an extra itera-
tion and adjusting the indices of one of the statement to produce:

DO i = 1, N+1

Creating Coarse-Grained Parallelism

294 ADVANCED COMPILING FOR HIGH PERFORMANCE

IF (i.GT.1) A(i) = B(i) + C(i)
IF (i.LE.N) D(i+1) = A(i)*2.0

ENDDO

The resulting loop carries no dependences so it can be run in parallel.
This transformation is called loop alignment. The idea of loop alignment
can be illustrated by the simple cartoon in Figure 6.2.

FIGURE 6.2 Illustration of Loop Alignment

More generally, loop alignment is carried out by increasing the number
of loop iterations and executing the statements on slightly different sub-
sets of those iterations, so that the carried dependence becomes a loop
independent dependence. Loop alignment does incur some overhead—
one extra loop iteration and extra work required to test the conditionals.
This overhead can be reduced by executing the last iteration of the first
statement with the first iteration of the second statement, i.e.

DO i = 2, N
j = MOD(i+N-4,N-1)+2
A(j) = B(j) + C
D(i) = A(i-1) *2.0

ENDDO

After alignment:

Expanded Iteration Set

S1

S2

S2

S1

Single-Loop Methods

Chapter Draft of February 8, 2001 295

For every iteration other than the first, j is one less than i, so that the
assignment to A is for the ith location. On the first iteration, j=N-1 so
that j+1=N, and the assignment to the last location of A is correctly exe-
cuted. As a result, the total number of loop iterations is restored to its
original count, but there is still the overhead of the MOD calculation.

Alternatively, the conditional statements can be eliminated without add-
ing calls to MOD by peeling off the first and last executions for each of the
statements, yielding

D(2) = A(1) * 2.0
DO I= 2, N-1

A(I) = B(I) + C(I)
D(I+1) = A(I)*2.0

ENDDO
A(N) = B(N) + C(N)

This form permits efficient parallelism with the added overhead of two
statements, one before and one after the loop, that cannot be executed in
parallel.

Is it possible to use alignment to eliminate all carried dependences in a
loop? Clearly, the answer is no if the carried dependence is involved in a
recurrence, as the following example shows:

DO I = 1, N
A(I) = B(I) + C
B(I+1) = A(I) + D

ENDDO

In this example, the references to B create a carried dependence. For
alignment to be successful in this case, we would need to interchange the
order of the two statements in the loop body. However, the loop-indepen-
dent dependence involving A prevents interchanging the statements
before alignment, so our hope is that we can do the alignment and state-
ment interchange in a single step to eliminate the carried dependence:

DO I = 1, N+1
IF (I .NE. 1) B(I) = A(I-1) + D
IF (I .NE. N+1) A(I) = B(I) + C

ENDDO

Although B is now aligned, the references to A are misaligned, creating a
new carried dependence. Looking at this example, it is reasonable to
believe that loop alignment cannot eliminate carried dependences in a
recurrence. That result is established in the following lemma:

Creating Coarse-Grained Parallelism

296 ADVANCED COMPILING FOR HIGH PERFORMANCE

To argue more formally that this is the case, let us suppose that we have a
recurrence and we wish to transform the program to eliminate all carried
dependences. For the transformation to be valid, every dependence must
be preserved in the transformed code. This means that each statement in
the recurrence must have a dependence from it to some other statement in
the recurrence, and, by the statement of the lemma, that dependence must
be loop independent. This requirement clearly cannot hold for the final
statement in the reordered code, since any dependence from it must be
backward, and therefore cannot be loop independent.

Intuitively, it is fairly clear why a recurrence is a problem for alignment.
Each recurrence has a fixed aggregate threshold, that is, each statement in
the recurrence is involved in the computation of the instance of it self a
fixed number iterations forward in the loop. Decreasing the thresholds of
forward dependences within the body of the loop must necessarily
increase the thresholds of backward carried dependences. Thus the
thresholds of all dependences in the loop cannot simultaneously reduce
the thresholds to zero.

But what about carried dependences that are not involved in a recur-
rence? Can they always be eliminated by alignment without introducing
new carried dependences? The answer is again no, because of the possi-
bility of an alignment conflict—two or more dependences that cannot be
simultaneously aligned. Consider the following example:

DO I = 1, N
A(I+1) = B(I) + C
X(I)= A(I+1) + A(I)

ENDDO

This loop contains two dependences involving the array A, one loop-inde-
pendent dependence and a loop-carried dependence. If the statements are
aligned to eliminate the carried dependence, the following code results:

DO I = 0, N
IF (I .NE. 0) A(I+1) = B(I) + C
IF (I .NE. N) X(I+1)= A(I+2) + A(I+1)

ENDDO

The original loop-carried dependence has been eliminated, but the pro-
cess of eliminating it has transformed the original loop-independent
dependence into a loop-carried dependence. The loop still cannot be cor-
rectly run in parallel. Fortunately, another transformation—code replica-
tion—can be used to eliminate alignment conflicts in many cases.

Single-Loop Methods

Chapter Draft of February 8, 2001 297

6.2.4 Code Replication

An alignment conflict occurs because two or more dependences, or
chains of dependences, emanating from the same source and entering the
same sink have different thresholds. Whenever the source or sink is
adjusted to align one of the dependences, the others are offset by its
threshold, ensuring that they will be misaligned.

If the dependences in an alignment conflict can be adjusted to have differ-
ent sources or different sinks, then the individual dependences can be
separately aligned without conflict. One way to split a dependence source
is to replicate the computation at that source. For instance, in the align-
ment conflict example from the previous section, the value of A(I) used
in the second statement on every iteration after the first comes from the
first statement (hence the loop carried dependence). Since the input oper-
ands to the first statement do not change inside the loop, it is possible to
recompute the value of A(I) on the iteration needed. The following revi-
sion of the alignment conflict example eliminates the carried dependence
through replication:

DO I = 1, N
A(I+1) = B(I) + C

! Replicated statement
IF (I.EQ.1) THEN

t = A(I)
ELSE

t = B(I-1) + C
END IF

X(I) = A(I+1) + t
ENDDO

The first iteration has to be separated, since A(1) comes from the values
extant before loop entry rather than from any statement in the loop. This
loop has no carried dependences and can be run in parallel, assuming that
the variable t is privatized. Since the essential aspect of the transforma-
tion applied here involves redundantly repeating some computation, the
transformation is called code replication.

Is the combination of code replication, loop alignment, and statement
reordering sufficient to eliminate all carried dependences in non-recur-
rence loops? The following theorem shows that the answer is “yes”.

Theorem 6.2. Alignment, replication and statement reordering
are sufficient to eliminate all carried dependences in a single loop

Creating Coarse-Grained Parallelism

298 ADVANCED COMPILING FOR HIGH PERFORMANCE

that contains no recurrence and in which the distance of each
dependence is a constant independent of the loop index.

We will establish this theorem by constructing an algorithm to produce
the desired result. Given the fact that the loop is free of any cycles, its
dependence graph can be represented as a directed acyclic alignment
graph G=(V, E). The vertices (V) represent statements; the edges (E) rep-
resent dependences and are labeled with the dependence distance.

In an alignment graph, the alignment of any statement at any point in
time is held in an offset, which represents the number of iterations
between the statement’s current alignment and its original placement in
the loop. An example should clarify this concept.

DO I = 1, N
S1 A(I+2) = B(I) + C
S2 X(I+1) = A(I) + D
S3 Y(I) = A(I+1) + X(I)

ENDDO

The initial alignment graph for this example is shown in Figure 6.3. The
dependence distances are represented in the d fields; the offsets (which
are all zero before any transformations are effected) are held in o fields.
Before demonstrating the effects of alignment, a definition is useful:

Definition 6.2. If o(v) denotes the offset of vertex v, and d(e) the
distance for dependence edge e, an alignment graph G=(V,E) is
said to be carry-free if for each edge e=(v1,v2)

o(v1) + d(e) = o(v2)

FIGURE 6.3 An alignment graph.

The alignment graph in Figure 6.3 is not carry-free. Since the overall goal
is to create a parallel loop, the goal of an alignment and replication algo-
rithm is to produce, through offset adjustment and vertex replication, a

S1

S2

S3

d=2
d=1

d=1o=0

o=0

o=0

Single-Loop Methods

Chapter Draft of February 8, 2001 299

carry-free alignment graph. Given such a graph, generating code for the
adjusted loop is straightforward.

FIGURE 6.4 Alignment and replication algorithm.

procedure Align(V, E, d, o)

// V and E are the vertex and edge sets, respectively
// d is the dependence distance table
// o is the offset table, an output variable
// W is a work list for the algorithm

while V ≠ ∅ do begin
select and remove an arbitrary element v0 from V;
W := {v0}; o(v0) := 0;

while W≠ ∅ do begin
select and remove an arbitrary element v from W;
for each edge e incident on v do

if e = (w,v) then
if w∈V then
beginW := W ∪ {w}; o(w) := o(v) – d(e); end
else if o(w) ≠ o(v) – d(e) then begin// conflict

create a new vertex w’;
replace the edge e = (w,v) with e’ = (w’,v);
for each edge into w do

replicate the edge, replacing w with w’;
W := W ∪ {w’}; o(w’) := o(v) – d(e)

end
else // e = (v,w)

if w∈V then
begin W := W ∪ {w}; o(w) := o(v) + d(e); end
else if o(w) ≠ o(v) + d(e) then begin// conflict

// always replicate the upstream vertex
create a replicated vertex v’;
replace the edge e = (v,w) with e’ = (v’,w);
foreach edge into v do

replicate the edge, replacing v with v’;
W := W ∪ {v’}; o(v’) := o(w) – d(e);

end
end

end
end align

Creating Coarse-Grained Parallelism

300 ADVANCED COMPILING FOR HIGH PERFORMANCE

The basic approach of the alignment and replication algorithm presented
in Figure 6.4 is as follows.

1. Create a worklist initially containing an arbitrary unvisited vertex in
the graph,

2. While the worklist is nonempty repeat the following three steps:

a. pick and remove a node from the worklist

b. align with that node any nodes that are adjacent to it in the align-
ment graph, replicating code when different alignments are
required.

c. put each of these nodes on the worklist.

3. If there are other unvisited vertices, return to step 1.

If we apply this algorithm to the alignment graph in Figure 6.3 on
page 298, choosing S3 as the root, we get the modified graph in
Figure 6.5.

FIGURE 6.5 Modified alignment graph.

All that remains is to show how code is generated from an alignment
graph. Note that the offset indicates where in the alignment space each
statement should start. Here is a naive alignment for the loop that gener-
ated Figure 6.3.

DO I = 1, N+3
S1 IF(I.GE.4) A(I-1) = B(I-3) + C
S1’ IF(I.GE.2 .AND. I.LE.N+1) THEN

t = B(I-1) + C
ELSE

t = A(I+1)
ENDIF

S2 IF(I.GE.2 .AND.I.LE.N+1) X(I) = A(I-1) + D
S3 IF(I.LE.N) Y(I) = t + X(I)

ENDDO

S1 S2

S3

d = 2

d = 1

d = 1

o = –3

o = –1

o = 0
S1’

o = –1

Single-Loop Methods

Chapter Draft of February 8, 2001 301

FIGURE 6.6 Generation of aligned and replicated code.

procedure GenAlign(V, E, o)

// V and E are the vertex and edge sets, respectively
// o is the offset table, an output variable

hi := maximum offset of any vertex in V;
lo := minimum offset of any vertex in V;
let Ivar be the original loop induction variable;
let Lvar be the original loop lower bound;
let Uvar be the original loop upper bound;

generate the loop statement DO Ivar = Lvar–hi, Uvar+lo;

topologically sort the vertices of V, breaking ties by taking the vertex
with smallest offset first;

for each v ∈V in sorted order do begin
if o(v) = lo then

prefix the statement associated with v with:
“IF (Ivar.GE.Lvar–o(v))”;

else if o(v) = hi then
prefix the statement associated with v with:

“IF (Ivar.LE.Uvar–o(v))”;
else

prefix the statement associated with v with
“IF (Ivar.GE.Lvar-o(v) .AND. Ivar.LE.Uvar-o(v))”;

if v is a replicated node then begin
replace the statement S after the IF by

THEN

tv = RHS(S) with Ivar+o(v) substituted for Ivar
ELSE

tv = LHS(S) with Ivar+o(v) substituted for Ivar
ENDIF

where tv is a unique scalar variable;
replace the reference at the sink of every dependence from

v by the variable tv;
end

end

generate the loop ending statement ENDDO
end GenAlign

As with an earlier example, we can repack this code as follows:

Creating Coarse-Grained Parallelism

302 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO I = 1, N
i1 = MOD(I-4,N)+1

S1 A(i1+2) = B(i1) + C
i2 = MOD(I-2,N)+1

S1’ IF(i2.GE.2) THEN
t = A(i2) + D

ELSE
t = X(I)

ENDIF
S2 X(i2+1) = A(i2) + D
S3 Y(I) = t + X(I)

ENDDO

Figure 6.6 gives the algorithm to generate the unpacked version of the
aligned code. We leave as an exercise the adaptation of this algorithm to
produce the packed form using the MOD function to compute loop indices.

6.2.5 Loop Fusion

To this point, we have developed mechanisms for transforming a loop to
increase parallelism without resorting to loop distribution. As we dis-
cussed in Section 6.2.2, we are reluctant to distribute because it results in
finer granularity and more synchronization overhead. But what if a loop
has some statements that can be run in parallel but others that cannot? We
need to explore ways to restructure existing loops to separate potentially
parallel code from code that must be sequentialized. Loop distribution is
such a mechanism. This raises two issues:

1. How can we effectively select the portion of the loop to run in parallel
and separate that from the sequential code?

2. How can we avoid losing too much granularity of parallelism.

When we considered fine-grained parallelism, we had the luxury of using
maximal loop distribution, which attempts to put each statement in a loop
to itself. After loop distribution, some loops can be run in parallel and
others cannot because they are part of a recurrence. When we are generat-
ing code for asynchronous parallelism, this approach is problematic
because the granularity of the generated loops will be too fine. On the
other hand, it neatly separates the parallel from the sequential code. One
way to recover granularity is to recombine, or “fuse,” the parallel loops
into larger parallel loops. This idea can be illustrated on the following
example:

DO I = 1, N
S1 A(I) = B(I) + 1
S2 C(I) = A(I) + C(I-1)

Single-Loop Methods

Chapter Draft of February 8, 2001 303

S3 D(I) = A(I) + X
ENDDO

Since there is a carried dependence from S2 to itself, alignment, replica-
tion, or skewing cannot parallelize the loop. Loop distribution converts
the loop into three separate loops:

L1: DO I = 1, N
A(I) = B(I) + 1

ENDDO
L2 DO I = 1, N

C(I) = A(I) + C(I-1)
ENDDO

L3 DO I = 1, N
D(I) = A(I) + X

ENDDO

It is easy to see that loops L1 and L3 carry no dependence and therefore
can be made parallel. However, since each is a single-statement loop, it is
unlikely that the resulting parallelism will be beneficial unless the loop
upper bounds are large enough to make it worthwhile to aggregate groups
of iterations by strip mining.

To increase the granularity of parallelism, we will attempt to merge
merge different parallel regions into a larger loop. To visualize how this
might be done, we will represent the loops resulting from full distribution
as a directed graph in which vertices represent loops and edges represent
dependences between statements in different loops. Figure 6.7 illustrates
this abstraction for the previous example.In this diagram the double cir-
cles are used to indicate parallel subloops that arise from distribution, and
single circles indicate sequential subloops.

FIGURE 6.7 Inter-loop dependence graph.

From Figure 6.7 it is evident that loops L1 and L3 can be merged to
increase the granularity of parallelism because they were originally in the

L1

L2 L3

Creating Coarse-Grained Parallelism

304 ADVANCED COMPILING FOR HIGH PERFORMANCE

same loop and there is no dependence from L2 to L3 which would prevent
the merger. The following parallel code results from merging L1 and L3:

L1: PARALLEL DO I = 1, N
A(I) = B(I) + 1

L3: D(I) = A(I) + X
ENDDO

L2 DO I = 1, N
C(I) = A(I) + C(I-1)

ENDDO

This transformation is known as loop fusion. As usual with reordering
transformations, there are instances where loop fusion is invalid. In par-
ticular, just as there are interchange-preventing dependences, there are
also fusion-preventing dependences—dependences that are reversed
when two loops are fused. Such dependences cannot arise from subloops
created from loop distribution, since it must obviously be valid to fuse
such subloops (they were originally one loop, so it cannot be illegal to
remerge them into one loop). However, such dependences are possible in
originally distinct loops, as the following example demonstrates.

DO I = 1, N
S1 A(I) = B(I) + C

ENDDO
DO I = 1, N

S2 D(I) = A(I+1) + E
ENDDO

The dependence from S1 to S2 due to A is loop independent—all values
of A used in S2 are created by statement S1, with sole exception of the
one used on the last iteration. If the loops are fused,

DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I+1) + E

ENDDO

the loop-independent dependence has become a backward loop-carried
antidependence. As evidence of this fact, none of the values of A used by
S2 are created by S1in the fused loops.

As discussed in Section 6.2.2, loop distribution converts some loop-car-
ried dependences into loop-independent dependences. Since it seems rea-
sonable that loops created by distribution can be correctly remerged, the
loop-independent dependences that are converted from loop-carried
dependences during distribution cannot prevent fusion—they will be cor-
rectly reconverted to loop-carried dependences by fusion. What distin-

Single-Loop Methods

Chapter Draft of February 8, 2001 305

guishes these from the carried dependence in the example above is that
they are all forward carried dependences. If the two loops in the example
were as follows:

DO I = 1, N
S1 A(I) = B(I) + C

ENDDO
DO I = 1, N

S2 D(I) = A(I-1) + E
ENDDO

they could be correctly fused to produce

DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I-1) + E

ENDDO

because in both cases S1 creates all values of A used in S2 except for the
first.

The problem with the earlier fusion example was that fusing the two
loops converted a forward true dependence to a backward carried antide-
pendence. In other words, the source and sink of the dependence was
reversed. This is clearly a violation of the ordering constraint given by the
Fundamental Theorem of Dependence (Theorem 2.2 on page 66). Thus,
any forward loop-independent dependence that becomes carried and
reverses endpoints after fusion is said to be fusion-preventing.

Definition 6.3. An loop-independent dependence between state-
ments in two different loops (i.e., from S1 to S2) is fusion-pre-
venting if fusing the two loops causes the dependence to be
carried by the combined loop in the reverse direction (from S2 to
S1).

Obviously, fusion-preventing and parallelization-inhibiting dependences
represent safety and profitability considerations that must be factored into
a general code generation algorithm for parallelism. Another safety con-
sideration is ordering: it must be possible to combine the loops r without
violating any ordering constraints implied by dependences. The follow-
ing modification to the original example illustrates this condition.

DO I = 1, N
S1 A(I) = B(I) + 1
S2 C(I) = A(I) + C(I-1)
S3 D(I) = A(I) + C(I)

ENDDO

Creating Coarse-Grained Parallelism

306 ADVANCED COMPILING FOR HIGH PERFORMANCE

Once again, distributing loops as fully as possible will create three sub-
loops. However, the inter-loop dependence graph has changed, and is
shown in Figure 6.8. Fusing loops L1 and L3 must cause either L3 to be
executed before L2 (if the fused loops are executed first) or L1 to be exe-
cuted after L2 (if the fused loops are executed second). Either ordering
violates a dependence. The topological ordering imposed by dependences
must be obeyed both in fusion and in distribution.

FIGURE 6.8 A fusion prevented by the ordering constraint.

Summarizing, there are two safety constraints for loop fusion:

1. Fusion-Preventing Dependence Constraint. Two loops cannot be val-
idly fused if there exists a fusion-preventing dependence between
them.

2. Ordering Constraint. Two loops cannot be validly fused if there exists
a path of loop-independent dependences between them that contains a
loop or statement that is not being fused with them.

While it will not be explicitly proved, those two constraints constitute the
only safety considerations necessary for loop fusion (other than the
minor, but obvious requirements that the loops have the same bounds,
etc.).

While fusion-prevention and ordering constraints are the primary deter-
mination of safety of loop fusion, they are not sufficient to guarantee
profitability. A minimal requirement for profitability that should be valid
across any machine architecture is that fusion should not destroy parallel-
ism—there should be at least as many parallel statements after loop
fusion as before, or the fusion is not profitable. Such a requirement might
appear to be trivially met by fusion; in fact, that is not the case.

As an example where fusion decreases parallelism, consider the follow-
ing pair of loops:

L1

L2 L3

Single-Loop Methods

Chapter Draft of February 8, 2001 307

L1: DO I = 1, N
A(I) = B(I) + 1

ENDDO
L2: DO I = 1, N

C(I) = A(I) + C(I-1)
ENDDO

L1 contains no carried dependences and may be run in parallel; L2 is a
recurrence and must be run sequentially. The two loops may be legally
fused, but since L2 must be run sequentially, fusing the loops forces L1 to
be run sequentially, eliminating the opportunity for parallelism. Any time
a sequential loop is fused into a parallel loop, parallelism is lost, prompt-
ing the following constraint on fusion:

1. Separation Constraint. A sequential loop should not be fused with a
parallel loop because the result would necessarily be sequential,
reducing the total amount of parallelism.

However, the separation constraint alone is not sufficient to guarantee the
profitability of fusion in the context of parallelism. It is possible to fuse
two parallel loops and end up with a sequential loop, as in the following
example:

DO I = 1, N
S1 A(I+1) = B(I) + C

ENDDO
DO I = 1, N

S2 D(I) = A(I) + E
ENDDO

Either loop can be run alone in parallel, but if the loops are fused together

DO I = 1, N
S1 A(I+1) = B(I) + C
S2 D(I) = A(I) + E

ENDDO

the merged loop carries a dependence, which inhibits parallelism.
Although, these dependences can be handled by alignment and replica-
tion (since there cannot possibly be a recurrence or the fusion would have
been invalid), we will assume for the sake of simplicity that fusion should
be prevented in this case.Thus introduce a new definition to cover this
case.

Definition 6.4. An edge between statements in two different loops
is said to be parallelism-inhibiting if, after fusing the two loops,
the dependence would be carried by the combined loop.

Creating Coarse-Grained Parallelism

308 ADVANCED COMPILING FOR HIGH PERFORMANCE

This definition is the basis of the second profitability constraint:

2. Parallelism-Inhibiting Dependence Constraint. Two parallel loops
should not be fused if there exists a parallelism-inhibiting dependence
between them.

Having spent a lot of time discussing how fusion cannot be used for
exploiting parallelism, it is now time to formulate a fusion procedure that
shows how fusion can be used.

6.2.5.1 Typed Fusion
We will begin with a code generation model that maintains a strict sepa-
ration between parallel and sequential code—in other words, it attempts
to create the largest possible parallel loops via loop fusion, but does not
attempt to determine when sequential loops might be run in parallel with
other sequential loops or with parallel loops. In this model, each parallel
loop would be terminated by a barrier and all sequential code that must
follow that parallel loop or precede the next would appear immediately
after the barrier. In this model, the central task of code generation can be
stated in abstract terms:

Given a graph in which the edges represent dependences and the
vertices represent loops, use correct and profitable loop fusion to
produce an equivalent program with the minimal number of par-
allel loops.

We can generalize this problem to the problem of typed fusion:

Definition 6.5. A typed fusion problem is a quintuple P = (G,T, m,
B, t0), where

1. G = (V,E) is a graph;

2. T is a set of types;

3. m:V→T is a mapping such that m(v) for v∈V is the type of v,

4. B⊆E is a set of bad edges, and

5. t0∈T is the objective type.

A solution to the typed fusion problem P is a graph G' = (V',E') where
V' is derived from V by fusing vertices of the distinguished type t0
subject to these constraints:

1. Bad Edge Constraint: no two vertices joined by a bad edge may be
fused, and

2. Ordering Constraint: no two vertices joined by a path containing a
vertex of type t≠t0 may be fused.

Single-Loop Methods

Chapter Draft of February 8, 2001 309

An optimal solution to the typed fusion problem has a minimal num-
ber of edges.

It is easy to see that typed fusion is a model for the parallel fusion prob-
lem, with vertices corresponding to loops, edges corresponding to depen-
dences, types corresponding to parallel and sequential, bad edges
corresponding to fusion-preventing or parallelism-inhibiting edges, and
the distinguished type parallel. An optimal solution to the problem has
the smallest number of parallel loops and therefore the coarsest granular-
ity possible.

In Figure 6.9, we present the algorithm TypedFusion, due to Kennedy and
McKinley [16], that produces an optimal greedy fusion of the nodes of a
given type t0 in a graph that contains bad edges and nodes of several
types. This algorithm is fast in that it takes O(N+E) steps in the worst
case, where N is the number of vertices and E is the number of vertices in
the graph G. Since any algorithm must traverse the graph at least once,
this is clearly the minimum possible.

The basic idea of this algorithm is that, as each node is visited for the first
time, the algorithm determines in constant time the exact node of the
same type into which it would be fused by the greedy algorithm. If no
such node exists, the node is assigned a separate node number. In
essence, the algorithm in Figure 6.9 carries out greedy fusion for the sin-
gle selected type.

Definition 6.6. We define a bad path for type t to be a path that
begins with a node of type t and either contains a bad edge
between two nodes of type t, or a node of type different from t.

The algorithm treats a bad path as if it were a bad edge. Only nodes of the
same type are considered for fusion. The principal data structure used for
this computation is maxBadPrev[n], computed for each vertex n in the
graph. For a given vertex n in the original graph, maxBadPrev[n] is the
vertex number in the fused graph of the highest numbered vertex of the
same type as n that cannot be fused with n because there is a bad path
from that vertex (or some vertex in the collection it represents) to n.
Obviously, n cannot fuse with maxBadPrev[n]. We will show that it also
cannot fuse with any node numbered lower than maxBadPrev[n]. There-
fore the first node it can fuse with is the first node of the same type as n
that comes after maxBadPrev[n] in the reduced graph numbering. By
always fusing n with this node, TypedFusion, implements a greedy strat-
egy.

Creating Coarse-Grained Parallelism

310 ADVANCED COMPILING FOR HIGH PERFORMANCE

In addition to maxBadPrev[n], the algorithm uses the following interme-
diate quantities:

• num[n] is the number of the first visit to a node in the collection of
nodes that n is fused with t0. In other words, it is the numbering of the
fused node containing n in the output graph.

• node[i] is an array that maps numbers to nodes such that node[i] is the
representative node of the ith collection in the output graph. Note:
node[num[x]] = x.

• lastnum is the most recently assigned node number.

• fused is the number of the first node of type t0 in the graph.

• lastfused is the number of the most recently visited node of type t0
• next[i], where i is the number of a node on the fused list, is the number

of the next node in the fused list.

• W is a working set of nodes ready to be visited.

The algorithm works a bit like topological sort. It begins by initializing
all these data structures, putting nodes with no predecessors on the
worklist W. Then in loop L1, it repeatedly removes a node from the
worklist. If that node is not of the desired type t0, it simply creates a new
node for the output graph. On the other hand, if it is of type t0, the algo-
rithm finds the earliest node to fuse it with by the algorithm described
earlier or, if no such node exists, it creates a new fusion group and adds
that group to the end of the list of fused nodes.

As each node is processed, all the dependence successors are visited (in
the routine update_successors) so that the maxBadPrev values are
updated for those successors. This procedure also adds a successor to the
worklist W whenever it detects that all its predecessors have been pro-
cessed.

TypedFusion achieves an optimal O(E+V) time bound by choosing, as
each new node of the selected type is visited, the correct node with which
to fuse in constant time. This occurs in statement S1. If we can show that
this chooses the correct node to fuse with, an analysis similar to that used
for topological sort will establish the desired time bound.

Single-Loop Methods

Chapter Draft of February 8, 2001 311

FIGURE 6.9 Typed fusion algorithm.

procedure TypedFusion (G, T, type, B, t0)
// G = (V,E) the original typed graph
// T is a set of types
// type(n) is a function that returns the type of a node
// B is the set of bad edges
// t0 is a specific type for which we will find a minimal fusion

// Initialization
lastnum := 0; lastfused := 0; count[*] := 0; fused := 0; node[*]:= 0;
for each edge e = (m,n) ∈ E do count[n] := count[n] + 1;
for each node n ∈ V do begin

maxBadPrev[n] := 0; num[n] := 0; next[n] := 0;
if count[n] = 0 then W := W ∪ {n};

end

// Iterate over working set, visiting nodes, fusing nodes of type t0
while W ≠ ∅ do begin

let n be an arbitrary element in W; W := W–{n}; t := type(n);
L1: if t = t0 then begin// A node of the type being worked on

// Compute node to fuse with.
S1: if maxBadPrev[n] = 0 then p := fused;

else p := next[maxBadPrev[n]];
if p ≠ 0 then begin // Fuse with node at p

x := node[p]; num[n] := num[x];
update_successors(n,t); // visit successors before fusing
fuse x and n and call the result n,

making all edges out of either be out of n;
end
else begin // Make this the first node in a new group

create_new_fused_node(n);
update_successors(n,t);

end
end
else begin // t ≠ t0

create_new_node(n)
update_successors(n,t);

end;
end;

end TypedFusion

Creating Coarse-Grained Parallelism

312 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 6.10 Create a new node in the reduced graph.

procedure create_new_node(n)
lastnum := lastnum + 1;
num[n] := lastnum;
node[num[n]] := n;

end create_new_node

FIGURE 6.11 Create and initialize a new fusion group.

procedure create_new_fused_node(n)

create_new_node(n);

// append node n to the end of fused
if lastfused = 0 then begin

fused := lastnum;
lastfused := fused;

end
else begin

next[lastfused] := lastnum;
lastfused := lastnum;

end
end create_new_fused_node

FIGURE 6.12 Visit successors, add to worklist, and update MaxBadPrev.

procedure update_successors(n,t)

l2: for each node m such that (n,m) ∈ E do begin
count[m] := count[m] –1;
if count[m] = 0 then W := W ∪ {m};

if t ≠ t0 then
maxBadPrev[m] := MAX(maxBadPrev[m], maxBadPrev[n]);

else // t = t0
if type(m) ≠ t0 or (n,m)∈B then // bad edge

 maxBadPrev[m] := MAX(maxBadPrev[m], num[n]);
else // equal types and not fusion preventing

maxBadPrev[m] :=
MAX(maxBadPrev[m], maxBadPrev[n]);

end
end update_successors

Single-Loop Methods

Chapter Draft of February 8, 2001 313

Correctness. To establish correctness, we must show that the constraints
in the problem definition are observed. First, the algorithm clearly fuses
only nodes of the distinguished type t0. To show that it obeys the bad-
edge constraint, we must establish that it never fuses two nodes joined by
a bad edge. To show that it satisfies the ordering constraint, we must
show that it never fuses two nodes joined by a path that passes through a
node of different type.These will both be established by the correctness
of the selection procedure—if maxBadPrev[n] is correctly computed, we
will never fuse with a node from which there is a bad path (containing a
node of a different type or a bad edge). A careful examination of the rou-
tine update_successors in Figure 6.12 reveals that at every successor m of
a vertex n that is visited, maxBadPrev[m] is computed as the maximum of
its existing value and maxBadPrev[n] or, if type(n)=t0 and (n,m) is a bad
edge or type(m)=t0, the number of the fused node n. This clearly produces
the correct value.

To establish that the algorithm produces the greedy solution we must
show that it merges a vertex n of type t0 with the earliest fused node it can
be merged with. This is so because there must be a bad path to n from any
fused node of type t0 prior to maxBadPrev[n]. Clearly there is a bad path
from maxBadPrev[n] to n. Let x be some fused node of type t0 prior to
maxBadPrev[n]. Then there must be a bad path from x node to maxBad-
Prev[n] because otherwise those two could have been fused. Since n
fuses with the first node after maxBadPrev[n] in the list of fused node,
that must be the first node it can fuse with.

Optimality. To show that the algorithm produces a solution with the few-
est possible fused nodes, we must show that the greedy solution has this
property. Although we will not prove this result formally, we will outline
an informal argument. Suppose there is a collection C of fusion groups
that satisfies the problem specification but which has fewer fusion groups
than the greedy collection CG computed by TypedFusion. Then there
must be a first group in C that differs from the correspondingly numbered
group in CG. This group must be a subset of the greedy group, because
we put everything in the greedy group that could not be fused with an
earlier group. Thus we could move all vertices in the greedy group into
the corresponding group in C to make some later group in C be the first
that differs from CG. If we continue this process we can only reduce the
size of C to be the same as CG because we are moving elements from
later groups in C to earlier ones. Thus C cannot be smaller than CG.

Complexity. As we said before, the complexity of this algorithm is
O(E+V) where E is the number of edges in the original graph and V is the

Creating Coarse-Grained Parallelism

314 ADVANCED COMPILING FOR HIGH PERFORMANCE

number of edges. This can be seen by an analysis similar to that for topo-
logical sort. Each vertex is taken off the worklist W at most once, so all
the constant-time work in the routine and calls to other routines within
loop L1 will take O(N) time. The only place where non-constant time is
taken is in update_successors, where each successor of a given node is
visited. Since each edge is traversed at most once over the entire calcula-
tion, the total amount of work taken by this process is bounded by the
number of calls O(N) plus the number of edges in the graph O(E). Thus
the asymptotic time bound is O(N+E).

FIGURE 6.13 An example subloop graph.

To see how this partitioning algorithm works, consider the example in
Figure 6.13. When the algorithm is applied to the nodes of type parallel,
indicated by the double circle, it produces the intermediate annotations
shown in Figure 6.14. Each parallel node is annotated by a tuple of the
form

(maxBadPrev, p) → num

where p is as computed in the algorithm and num is the final number
assigned to the node. The vertices of the original graph represented by a
node are shown in the circle. Nodes of type sequential are annotated with
a singleton, as computed by the algorithm for nodes of type other than t0:

(maxBadPrev) → num

3

1 2

4

5 6

7 8

Single-Loop Methods

Chapter Draft of February 8, 2001 315

FIGURE 6.14 Annotated version of the example graph for t0 = parallel.

The result after fusion is shown in Figure 6.15, with new node numbers
show to the side.

FIGURE 6.15 Example after fusing parallel loops.

Note that we could now apply the algorithm TypedFusion a second time
with t0 = sequential to fuse all of the sequential loops. We do not neces-

3

1 2

4

5 6

7 8

(0,0) → 1

(0,1) → 1

(1,0) → 4

(1,4) →4

(0) → 2

(1) → 5

(1) → 3

(4) → 6

1,3 2

4

5,8 6

7

1 2

4 5

6

3

Creating Coarse-Grained Parallelism

316 ADVANCED COMPILING FOR HIGH PERFORMANCE

sarily need to fuse them, but it is useful to know how many sequential
“epochs” are needed. The final result is shown in Figure 6.16.

FIGURE 6.16 Example after fusing sequential loops.

The desired schedule is:

1. Parallel loop containing original loops 1 and 3;

2. Sequential loop containing original loops 2, 4 and 6;

3. Parallel loop containing original loops 5 and 8; and

4. Sequential loop containing the original loop 7.

6.2.5.2 Unordered and Ordered Typed Fusion
Once we have developed the notion of typed fusion, we can envision
many applications for it. An important example will be given later in the
chapter. For now consider the problem of dealing with incompatible loop
headers. It may not be convenient or profitable to go to the trouble to fuse
two loops that have loop headers that are not compatible because they
have different iteration ranges. If we let each loop header be a different
type, we can restrict fusion to compatible loop headers by applying algo-
rithm TypedFusion once for each type.

It is natural to ask: does this always produce the minimum total number
of nodes. To understand this issue, consider the simple dependence graph
in Figure 6.17, which illustrates a type conflict. Although we can fuse
either type separately, we cannot fuse both types because the fusion of

1.3

2,4,6

5,8

7

Single-Loop Methods

Chapter Draft of February 8, 2001 317

one type creates a bad path for the other type. Thus we must select which
of the two types we wish to fuse.

FIGURE 6.17 A type conflict.

The example in Figure 6.18 shows how order can make a difference in
the quality of the fusion. If we were to choose to fuse type 1 before either
type 0 or type 2, we would create bad paths for both types 0 and 2, pre-
venting all other fusions. However, if we choose to fuse type 0 first, we
will create a bad path only for type 1, permitting the two type 2 nodes to
fuse as well. The first approach yields a total of 5 nodes, while the second
yields 4, a clearly better result.

FIGURE 6.18 An order-sensitive fusion problem.

Is there any way to determine the order in which to fuse types that are
otherwise undistinguished. The answer is yes, but it is costly. Kennedy

1 2

3 4

type 0 type 1

1 2

4 5

type 0 type 1

3

6

type 2

Creating Coarse-Grained Parallelism

318 ADVANCED COMPILING FOR HIGH PERFORMANCE

and McKinley have proved that the problem is NP-hard in the number of
types [15,16]. Fortunately, type conflicts are fairly rare, so a good heuris-
tic for choosing order may be effective.

The situation is much simpler for the ordered typed fusion problem, in
which the types can be prioritized according to some criterion, so that it
is always more important to minimize the number of nodes of a higher-
priority type, no matter how many bad paths for lower-priority types are
created. In this case a simple algorithm which calls TypedFusion for each
type in descending priority order will produce an “optimal” result—one
that, for each type, is the as good as possible given the fusions for higher
priority types.

An important ordered typed fusion problem that occurs frequently in
practice has vertices representing three types of constructs:

1. a parallel loop

2. a sequential loop

3. a single statement not contained in any loop

Obviously, it is always best to fuse parallel loops. Since there is no gain
in “fusing” two statements, which simply means putting them together,
and there is a reduction in overhead for fusing two sequential loops, fus-
ing of loops is always to be preferred. Thus there is a clear priority order
for these three types.

In reality, total orders for types are hard to come by. It is far more typical
to find a partial order for types. In other words, in fusion problems that
arise in practice there will usually be only a few priority rules that favor
one type over another. We can deal with these problems by using topolog-
ical sort to establish a total priority order for the graph and then calling
TypedFusion in descending priority order.

6.2.5.3 Cohort Fusion
A somewhat different problem is presented if you wish to not only paral-
lelize loops but may also run two sequential loops in parallel or a sequen-
tial loop in parallel with a parallel loop. In a sense, the problem here is to
find all the loops that can be run in parallel with one another either by
fusion or because they have no dependences between them. This model
combines some of the features of data and task parallelism.

The principal idea behind the algorithm is to identify at each stage a
cohort, which is a collection of loops that can be run in parallel. This col-
lection may contain a number of parallel loops, all of which can be fused

Single-Loop Methods

Chapter Draft of February 8, 2001 319

into a single parallel loop, along with some number of sequential loops
that can be run at the same time as the parallel loop.

Definition 6.7. A parallel cohort is a collection of sequential and
parallel loops that satisfies two conditions: (1) there are no fusion-
preventing or parallelism-inhibiting edges between any two paral-
lel loops in the cohort and (2) there are no execution constraints
(i.e. dependence edges) existing between any parallel loop and
any sequential loop in the cohort.

In other words, the only inter-loop dependence edges that can exist in a
cohort are edges between two sequential loops and edges between two
parallel loops that are neither fusion-preventing nor parallelism-inhibit-
ing. If one sequential loop in the cohort depends on another, it can be
fused with its predecessor so long as the edge joining them is not fusion-
preventing.

In general, fusing sequential loops in a cohort is probably not desirable
unless the loops are connected by a dependence. If there are no execution
constraints between two sequential loops, they may be run in parallel (as
a whole) with each other. Fusing the loops forces the pair to be executed
on the same processor at the same time, resulting in a loss of parallelism.
If there is a dependence edge between two sequential loops, then fusing
the two loops may save some execution time due to memory hierarchy
(see Chapter 8) or from simplified execution control. However, the time
saved is probably relatively small.

This problem can be solved by two applications of TypedFusion. In the
first, all nodes are treated as a single type and the following edges are
defined to be bad:

1. fusion-preventing edges

2. parallelism-inhibiting edges

3. edges that have a parallel loop at one endpoint and a sequential loop at
the other

This pass will produce a minimal number of cohorts, and thus a mini-
mum number of barriers. A second application of TypedFusion can be
used to fuse all of the parallel loops within each cohort, although this is
overkill, since the parallel loops in a cohort can all be fused by definition.

Although this method minimizes the number of barriers, it could be
unsatisfactory because of the handling of sequential loops in the system.
It is possible that a very large sequential loop would dominate a cohort

Creating Coarse-Grained Parallelism

320 ADVANCED COMPILING FOR HIGH PERFORMANCE

generated by this algorithm, when a better load balance would be
achieved by splitting the sequential loop between two cohorts, dividing
iterations in the right proportion.

6.3 Perfect Loop Nests

So far, this chapter has presented several techniques for uncovering paral-
lelism in a single loop and one technique (loop interchange) for arranging
the order of loops to enhance parallelism. This section will begin to com-
bine these techniques, with the aim of developing a general algorithm for
uncovering parallel loops in arbitrary loop nests. The first step towards
that goal is the development of techniques for handling perfect loop
nests.

6.3.1 Loop Interchange

Because of its ability to radically affect the execution order of a large
number of statements at one time, loop interchange is a valuable transfor-
mation. Parallelization presents a different set of problems for loop inter-
change (and transformations in general), as pointed out in Section 1.5.1.
Specifically, the need to balance parallelism versus communication and
synchronization costs requires that parallel regions possess sufficient
granularity to overcome the overheads of starting and synchronizing par-
allel computation. In other words, a successful parallel decomposition
must be of fine enough granularity to provide reasonable load balance,
but with communication and synchronization costs reduced enough to
avoid dominating the resultant parallelism.

Since loops generally execute enough times to provide reasonable load
balance, applying this principle to loop nests generally implies paralleliz-
ing outer loops. The implication of this principle with respect to loop
interchange is that dependence-free loops should be moved to the outer-
most possible position, so long as doing so does not cause them to carry a
dependence. This is in stark contrast to vectorization, where the goal is to
move dependence-free loops to the innermost position. The following
example should illustrate the distinction.

DO I = 1, N
DO J = 1, M

A(I+1,J) = A(I,J) + B(I,J)
ENDDO

ENDDO

Perfect Loop Nests

Chapter Draft of February 8, 2001 321

The outer (I) loop carries a recurrence, while the inner (J) loop is free of
dependences. For vectorization, this loop ordering is reasonable, since it
permits the inner loop to be vectorized. For coarse grained parallelism,
however, this ordering is problematic, because only the inner loop can be
parallelized, which could require N barrier synchronizations at run
time—one for each iteration of the sequential outer loop. On the other
hand, if the parallel loop is interchanged to the outermost position (where
it still remains free of dependences):

PARALLEL DO J = 1, M
DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)
ENDDO

END PARALLEL DO

only one synchronization will be required during execution of the loop
nest. Of course, it is not always possible to move a parallel loop outwards
and have it remain free of dependences. For instance, if this example is
changed slightly

DO I = 1, N
DO J = 1, M

A(I+1,J+1) = A(I,J) + B(I,J)
ENDDO

ENDDO

(making the direction vector of the dependence (<,<) rather than (<,=)),
loop interchange will not be effective. The dependence in this modified
example is not interchange sensitive, and the outer loop will still carry the
dependence after interchange. Without the aid of additional transforma-
tions, inner loop parallelism, along with the resulting number of synchro-
nizations, is the best we can do.

DO I = 1, N
PARALLEL DO J = 1, M

A(I+1,J+1) = A(I,J) + B(I,J)
END PARALLEL DO

ENDDO

We have seen in Chapter 5 that loop skewing combined with loop inter-
change can produce inner loop parallelism on this example but inner loop
parallelism will not be satisfactory for coarse-grain parallelism unless we
have enough loop iterations in the inner loop to have each processor run a
large block of iterations.

Creating Coarse-Grained Parallelism

322 ADVANCED COMPILING FOR HIGH PERFORMANCE

The question that naturally follows from these examples is: When can a
loop be moved to the outermost position in a nest and be guaranteed to be
parallel? This question is answered by the following theorem.

Theorem 6.3. In a perfect nest of loops, a particular loop can be
parallelized at the outermost level if and only if the column of the
direction matrix for that nest contains only “=” entries.

Proof. If. Clearly a loop with all “=” entries in its direction matrix column
can be parallelized at the outermost level—it can be moved to the outer-
most position because the loops inside it will remain in the same relative
order and thus all direction vectors in the matrix will still have all “<”
entries in their outermost non-”=” positions. Since it has only “=” entries,
this loop will carry no dependences at any level, including the outermost.
Thus it can be parallelized by Theorem 2.8.

Only if. Now we must show that these are the only loops that can be par-
allelized at the outermost level. Consider any other case. If that entry is
“>”, the loop cannot be moved to the outmost position, because the
dependence in that row will be reversed (see Theorem 5.2). If the column
contains a “<,” it cannot be parallelized at the outermost level because it
will always carry a dependence at that level. Since there are no other pos-
sible entries, it must be the case that a loop can be moved to the outer-
most position and parallelized only if its column contains only “=”
entries.

This theorem suggests a general code generation strategy for perfect loop
nests based on the direction matrix:

1. While the direction matrix contains columns with only “=” entries,
choose any loop that has such a column (the outermost such loop is a
logical selection, but any will do), move it to the outmost position and
parallelize it, then eliminate its column from the direction matrix.
Continue this process until all such columns have been removed.

2. Once all equality columns have been eliminated, pick the loop with
the greatest number of “<” entries, move it to the outermost remaining
position, and generate a sequential loop for it. Eliminate this column;
also eliminate any rows that represent dependences carried by this
loop (these rows will be the ones containing “<” entries in the newly
outermost position). The row elimination may create new all-“=” col-
umns, so repeat the algorithm starting with step 1.

Section 6.3 will generalize this algorithm substantially. However, this
simple version illustrates the operation model of all algorithms we will

Perfect Loop Nests

Chapter Draft of February 8, 2001 323

present: repeated selection of a loop (either parallel or sequential) to be in
the outermost position. If a sequential loop is selected, it should be the
loop that uncovers the most parallelism in the remaining loops.

The following three-loop nest illustrates this approach:

DO I = 1, N
DO J = 1, M

DO K = 1, L
A(I+1,J,K) = A(I,J,K) + X1
B(I,J,K+1) = B(I,J,K) + X2
C(I+1,J+1,K+1) = C(I,J,K) + X3

ENDDO
ENDDO

ENDDO

The direction matrix for this nest is

Since there are no columns with all “=” entries, none of the loops can be
parallelized at the outermost level. Both the I and the K loops will carry
two dependences in the outermost position, so either loop can logically
be selected to be run sequentially in the outermost position. Choosing the
I loop leaves a direction matrix [= <], which permits the loop on J to be
parallelized and forces the K loop to be sequential.

DO I = 1, N
PARALLEL DO J = 1, M

DO K = 1, L
A(I+1,J,K) = A(I,J,K) + X1
B(I,J,K+1) = B(I,J,K) + X2
C(I+1,J+1,K+1) = C(I,J,K) + X3

ENDDO
END PARALLEL DO

ENDDO

While this simple algorithm uncovers a reasonable amount of parallel-
ism, it should be obvious that additional transformations such as loop dis-
tribution can increase the total parallelism available. For example, if the
loop nests were distributed into three separate loops, each loop would
have two dimensions of parallelism. The profitability of such a distribu-
tion depends on the minimum effective granularity for the target

< = =

= = <

< < <

Creating Coarse-Grained Parallelism

324 ADVANCED COMPILING FOR HIGH PERFORMANCE

machine. Single loop transformations that can enhance parallelism are
discussed in the next section.

FIGURE 6.19 Algorithm to parallelize a loop nest.

procedure parallelizeNest (N, success)

// N is the loop nest to be parallelized
// success is returned as true if at least one loop is parallelized
// M is the direction matrix for the loop nest
// L is a worklist of the (perfectly nested) loops in N

compute the direction matrix M for the nest;
let L be a list of the loops in the nest N;

success := false:

while L ≠ Ø do begin
while there exist columns in M with all “=” directions do begin

success := true;
l := loop corresponding to the outermost all-“=” column;
remove l from L;
generate a parallel loop for l at the outermost position;
eliminate the column corresponding to l from M;

end;

if L ≠ Ø and ¬success then begin
// select a loop (heuristically) to sequentialize.
// it must be movable to the outermost position and
// it should lead to the uncovering of parallelism

S: select_loop_and_interchange(L);

let l be the outermost loop in L; remove l from L;
generate a sequential loop for l;
remove the column corresponding to l from M;
remove all rows corresponding to dependences carried by

loop l from M;
end

end
if ¬success then restore the original loop; // try again in Parallelize

end parallelizeNest

Perfect Loop Nests

Chapter Draft of February 8, 2001 325

6.3.2 Loop Selection

Given a perfect loop nest, the principal challenge with respect to genera-
tion of parallelism is to generate the most parallelism with adequate gran-
ularity. The key to meeting that challenge is selecting the proper loops to
run in parallel. Section 6.3.1 provided an introduction to that challenge
by showing how loop interchange could be used to enhance parallelism.
This section will extend the methods developed there, and demonstrate
how difficult the problem of loop selection is.

Recall the informal parallel code generation strategy from Section 6.3.1:

1. while there are loops that can be run in parallel, move them to the out-
ermost position and parallelize them, then

2. select a sequential loop, run it sequentially, and find what new paral-
lelism may have been revealed.

Figure 6.19 provides a more formal specification of this approach.

The key step that determines the success of this algorithm is step S: the
heuristic selection of the loop to be run sequentially. To illustrate the
importance of this selection, consider the following example:

DO I = 2, N+1
DO J = 2, M+1

DO K = 1, L
A(I,J,K+1) = A(I,J-1,K)+ A(I-1,J,K+2)

ENDDO
ENDDO

ENDDO

which has the direction matrix:

No column contains only “=” entries, so no loop can be immediately run
in parallel. In addition the inner loop has a “>” direction, which prevents
it from moving to the outermost position. As a result, the selection heuris-
tic must be invoked as the first step in parallelizing this nest. In this case
the choice is clear—the outermost loop must be sequentialized at some
point because it must cover the “>” entry for the inner loop. Once this is
done, neither of the remaining loops can be immediately parallelized,
causing another invocation of the selection heuristic. Running either of

= < <

< = >

Creating Coarse-Grained Parallelism

326 ADVANCED COMPILING FOR HIGH PERFORMANCE

these loops sequentially will permit the other to be run in parallel, so one
parallel loop will eventually result.

DO I = 2, N+1
DO J = 2, M+1

PARALLEL DO K = 1, L
A(I,J,K+1) = A(I,J-1,K)+ A(I-1,J,K+2)

ENDDO
ENDDO

ENDDO

Is it possible to derive a selection heuristic that provides optimal code?
Deriving such an heuristic is probably not possible, as it is not very diffi-
cult to show that selecting the proper loop is an NP-complete problem
(see Exercise 6–2). For the moment, assume the simple approach of
selecting the loop with the most “<” directions, on the theory that such a
loop eliminates the maximum number of rows from the direction matrix.
Applying such a strategy to the following direction matrix would fail.

Even though the outer loop carries the most dependences, it will do no
good to sequentialize it, because the three inner loops will need to be
sequentialized as well. However, if the three inner loops are sequential-
ized, the outer loop can be moved to the innermost position and parallel-
ized.

One way to avoid the problem highlighted by the example is to favor the
selection of loops that must be sequentialized before parallelism can be
uncovered. Thus, if there exists a loop that can legally be moved to the
outermost position and there is a dependence for which that loop has the
only “<” direction, sequentialize that loop. If there are several such loops,
they will all need to be sequentialized at some point in the process.

To show that loop selection is NP-complete, it is useful to visualize the
loops as bit vectors with a “1” in each position corresponding to a depen-

< < = =

< = < =

< = = <

= < = =

= = < =

= = = <

Perfect Loop Nests

Chapter Draft of February 8, 2001 327

dence that would be carried by this loop in the outermost position. Illus-
trating with the direction matrix above

Then the problem of loop selection corresponds to finding a minimal
basis among the loops, with “logical or” as the combining operation. In
turn, this is the same as the minimum set cover problem, which is known
to be NP-complete. This is the reason that loop selection is best done by a
heuristic.

We conclude this section with a simple example to illustrate some of the
principals involved in heuristic loop selection. Consider the code below,
which is intended to resemble a stencil calculation:

DO I = 2, N
DO J = 2, M

DO K = 2, L
A(I,J,K) = A(I,J-1,K)+ A(I-1,J,K-1) &

+ A(I,J+1,K+1) + A(I-1,J,K+1)
ENDDO

ENDDO
ENDDO

This code has four dependences, one for each of the right-hand-side-ref-
erences. Note that the third reference gives rise to an anti-dependence.
The direction matrix is given below, where the dependence vectors for
the right hand side are in order from top to bottom:

The interesting thing to observe about this example is that the innermost
loop cannot be moved to the outermost position because it has a “>”

1 1 0 0

1 0 1 0

1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

= < =

< = <

= < <

< = >

Creating Coarse-Grained Parallelism

328 ADVANCED COMPILING FOR HIGH PERFORMANCE

entry. Therefore, this entry must be covered by some entry in an outer
sequential loop. This will necessitate that the outermost loop be sequen-
tialized. In addition, the next outermost loop must also be sequentialized,
because the first row of the direction matrix represents a dependence that
cannot be satisfied by sequentializing any other loop. Any heuristic
should be designed to discover these facts. In this case, the heuristic
described earlier would select the J-loop for sequentialization because
the first direction vector has its only “=” in that loop. Then it will select
the I-loop to cover the inner loop. The result is:

DO J = 2, M
DO I = 2, N

PARALLEL DO K = 2, L
A(I,J,K) = A(I,J-1,K)+ A(I-1,J,K-1) &

+ A(I,J+1,K+1) + A(I-1,J,K+1)
ENDDO

ENDDO
ENDDO

It should be clear that this level of complexity would be difficult for a
hand programmer to manage.

6.3.3 Loop Reversal

Consider a variation on the example at the beginning of Section 6.3.2 on
page 325:

DO I = 2, N+1
DO J = 2, M+1

DO K = 1, L
A(I,J,K) = A(I,J-1,K+1)+ A(I-1,J,K+1)

ENDDO
ENDDO

ENDDO

This code has a direction vector in which all the directions in the inner-
most loop are “>”:

This provides an opportunity to improve the parallelization. Although we
cannot immediately move the inner loop to the outermost loop position,
we can reverse direction of iteration of the inner loop (i.e. run from L to 1
by -1), which reverses the directions for that loop in every dependence.
Once this transformation, known as loop reversal, is performed, we can

= < >

< = >

Perfect Loop Nests

Chapter Draft of February 8, 2001 329

move the loop to the outermost position, resulting in the following direc-
tion matrix:

Since all dependences are now carried by the outer loop, running it
sequentially allows the two inner loops to be run in parallel. The code
that results is

DO K = L, 1, -1
PARALLEL DO I = 2, N+1

PARALLEL DO J = 2, M+1
A(I,J,K) = A(I,J-1,K+1)+ A(I-1,J,K+1)

END PARALLEL DO
END PARALLEL DO

ENDDO

This example shows that loop reversal can increase the range of options
available to the loop selection heuristic—it is no longer forced to cover
every “>” direction if it can change these directions by reversing the loop.

6.3.4 Loop Skewing

In Chapter 5, loop skewing was used to create inner loop parallelism by
converting “=” directions to “<” directions. This conversion can also be
beneficial when generating asynchronous parallelism. Consider the fol-
lowing example.

DO I = 2, N+1
DO J = 2, M+1

DO K = 1, L
A(I,J,K) = A(I,J-1,K)+ A(I-1,J,K)
B(I,J,K+1) = B(I,J,K) + A(I,J,K)

ENDDO
ENDDO

ENDDO

The direction matrix for this example is

< = <

< < =

= < =

< = =

= = <

= = =

Creating Coarse-Grained Parallelism

330 ADVANCED COMPILING FOR HIGH PERFORMANCE

Expressing the dependences more precisely as a distance matrix produces

Since every loop carries a dependence, there is no obvious way to imme-
diately generate parallelism. Loop skewing, described in Section 5.9 on
page 258, can be used to convert “=” directions to “<” on an inner loop.
When the inner loop is then moved to the outside and sequentialized, it
may make many other loops parallel.

The innermost loop in the example can be skewed with respect to the two
outer loops by using the substitution

k = K+I+J

which yields the code:

DO I = 2, N+1
DO J = 2, M+1

DO k = I+J+1, I+J+L
A(I,J,k-I-J) = A(I,J-1,k-I-J) + A(I-1,J,k-I-J)
B(I,J,k-I-J+1) = B(I,J,k-I-J) + A(I,J,k-I-J)

ENDDO
ENDDO

ENDDO

The transformed direction matrix for this code is

Note that the innermost loop now consists of “<” entries in every position
corresponding to a carried dependence, so that if it is moved to the outer-
most position and sequentialized, it will leave the inner loops with no car-
ried dependences. Applying this transformation to the code yields a nest
in which both inner loops can be parallelized:

DO k = 5, N+M+1
DO I = MAX(2,k-M-L-1), MIN(N+1,k-L-2)

0 1 0

1 0 0

0 0 1

0 0 0

= < <

< = <

= = <

= = =

Perfect Loop Nests

Chapter Draft of February 8, 2001 331

DO J = MAX(2,k-I-L), MIN(M+1,k-I-1)
A(I,J,k-I-J) = A(I,J-1,k-I-J) + A(I-1,J,k-I-J)
B(I,J,k-I-J+1) = B(I,J,k-I-J) + A(I,J,k-I-J)

ENDDO
ENDDO

ENDDO

As we shall see, skewing has two properties that are critical to paralleiza-
tion. First, it can be used to transform the skewed loop into one that can
be interchanged to the outermost position without changing the meaning
of the program. Second, it can be used to transform the skewed loop in
such a way that, after outward interchange, it will carry all dependences
formerly carried by the loop with respect to which it is skewed.

Both of these properties hold for the same reason. We know from previ-
ous discussion that a loop can be moved to the outermost position if all
the direction matrix entries in its column are either “=” or “<”. If a loop
has a “>” direction in some dependence, then that dependence must be
carried by an outer loop. Therefore, if we skew the target loop with
respect to that outer loop by a sufficiently large constant k we can convert
the direction to one that is “=” or “<”, which establishes the first property.

The second property follows from the same argument. For each depen-
dence that is carried by some outer loop, there is a positive distance in the
column for the carrier loop. Skewing by a large enough factor with
respect to that carrier loop ensures that the distance matrix column for the
skewed loop will contain only entries that are greater than 0. Hence, this
loop will carry all dependences when it is moved to the outermost posi-
tion.

These observations lead us to a selection heuristic for algorithm Parallel-
ize in Figure 6.19 that incorporates loop skewing. The strategy employed
in this heuristic is to try to sequentialize at most one outer loop to find
parallelism in the next loop. Furthermore, it attempts to parallelize the
loop in the outermost position if possible. This is accomplished by first
trying to find a loop that covers the current outermost loop and which can
be interchanged to the outermost position. If such a loop can be found it
can be sequentialized to make parallelization of the current outer loop
possible on the next step.

If the first attempt fails, then we will try skewing. If we can skew some
loop with respect to the outer loop and interchange it to the outermost
position, we will do so. If not, we try to find a pair of loops that can move
to the two outermost positions where the inner loop can be skewed with

Creating Coarse-Grained Parallelism

332 ADVANCED COMPILING FOR HIGH PERFORMANCE

respect to the outer loop. Finally, if this fails, we choose to sequentialize
the loop that can be moved to the outermost position and covers the most
other loops. This selection heuristic is presented in Figure 6.20.

FIGURE 6.20 Selection heuristic with loop skewing.

procedure select_loop_and_interchange(L)

// L is the input loop nest
// upon return the outermost loop is selected for sequentialization

let {l1, l2, ..., lk} be a collection of remaining loops in L;

if any of l2, ..., lk (say lp) can be moved to the outermost position
and lp covers l1 in that position

then interchange lp to the outermost position;
else if l1 covers one of l2, ..., lk then leave l1 in the outermost position;

else begin
let lt and ls be the outermost pair of loops such that

(1) lt may be legally moved to the outermost position
(2) ls may be legally moved to the next outermost

position (within lt)
(3) both lt and ls have only constant distances in the

distance matrix;

if such a pair exists then begin // try skewing
interchange lt to the outermost position;
skew ls with respect to lt in such a way that

(a) ls may be interchanged outside of lt and
(b) each entry in the distance matrix for ls

corresponding to loops that lt carries in the
outermost position is at least 1;

 interchange ls to the outermost position;
end
else begin // find a covering loop for sequentialization

// select a loop that has a chance of uncovering parallelism
l := the outermost loop that

(a) can be moved to the outermost position and
(b) must be sequentialized (if such a loop exists) and
(c) has the most “<” directions in its column

interchange l to the outermost position;
end

end select_loop_and_interchange

Perfect Loop Nests

Chapter Draft of February 8, 2001 333

Note that select_loop and interchange does not attempt skewing with
respect to more than one loop, but it can be easily extended to do this.
How skewing is applied by the algorithm can be illustrated on the follow-
ing code:

DO K = 1, L
DO J = 1, M

DO I = 1, N
A(I+1,J+1,K+1) = A(I,J,K+1)+ A(I,J+1,K) &

+ A(I+1,J+1,K)
ENDDO

ENDDO
ENDDO

The direction matrix for this loop is:

Clearly all distances are constant (1 or 0). The outermost loop covers nei-
ther of the other loops, so we chose to skew the middle loop with respect
to the outer loop by making the substitution

j = J+K

All references to J in the loop will be replaced by

j-K

After these substitutions, the transformed loop nest becomes:

DO K = 1, L
DO j = K+1, K+M

DO I = 1, N
A(I+1,j-K+1,K+1) = A(I,j-K,K+1) + &

A(I,j-K+1,K) + A(I+1,j-K+1,K)
ENDDO

ENDDO
ENDDO

The revised direction matrix for this loop is:

= < <

< = <

< = =

= < <

< < <

< < =

Creating Coarse-Grained Parallelism

334 ADVANCED COMPILING FOR HIGH PERFORMANCE

When this is interchanged to the outermost position, both inner loops can
be parallelized, although the inner loop may be left sequential to optimize
for memory-hierarchy performance, as we will see in the next section.

DO j = 2, L+M
PARALLEL DO K = MAX(1,j-M), MIN(L,j-1)

DO I = 1, N
A(I+1,j-K+1,K+1) = A(I,j-K,K+1) + &

A(I,j-K+1,K) + A(I+1,j-K+1,K)
ENDDO

ENDDO
ENDDO

While the loop selection heuristic in Figure 6.20 finds parallelism in the
next to outermost loop, the resulting parallelism is not necessarily well
balanced. In our example, the loop on K executes a variable number of
iterations between one and L. However, in the case of asynchronous par-
allelism, this is not so great a problem as it was with vector parallelism
because most parallel loops are self scheduled and can deal with varying
amounts of work. We shall return to this subject in Section 10.5.

6.3.5 Unimodular Transformations

Loop interchange, loop skewing, and loop reversal are all examples of a
very general set of transformations known as unimodular transforma-
tions. The term “unimodular” is borrowed from linear algebra, where it
describes a mapping (or matrix) that permutes its domain without chang-
ing the size of the domain.

Definition 6.8. A transformation represented by a matrix T is uni-
modular if

1. T is square

2. all the elements of T are integral and

3. the absolute value of the determinant of T is 1.

If matrices T1 and T2 are both unimodular, then their products T1·T2 is
also unimodular (the product of two square matrices is square; both must
have integral elements, and the sum and product of integers is integral;
and the determinant of the product of two matrices is the product of the
determinants of the matrices). In other words, any composition of unimo-
dular transformations is unimodular.

Unimodular transformation theory has been used to support powerful
goal-directed parallelization strategies (see Banerjee [5] and Wolf and
Lam [25]). Many of these strategies are more formal versions of the

Perfect Loop Nests

Chapter Draft of February 8, 2001 335

methods that use the direction matrix, so we will not discuss them further
here.

6.3.6 Profitability-Based Methods

Because of the need for a minimum granularity for parallelism to be prof-
itable and because there are many alternatives to be considered in parallel
code generation, practical methods must employ some method for esti-
mating the cost of different code arrangements. One study we conducted
at Rice used a particularly effective strategy for discovering parallelizable
loops in a Fortran. The strategy succeeded on loops that could not be par-
allelized by existing commercial compilers. Unfortunately, once these
loops were parallelized, the code ran substantially slower than before,
because of insufficient granularity of parallelism.

Therefore, some form of performance estimation will be needed to make
parallel code generation effective. We will consider the use of a static
performance estimation function that can be applied to any code frag-
ment to estimate the running time of that fragment. It is not so important
that such a function be accurate, but rather that it be good for selecting
the better of two alternative code arrangements. In developing a static
estimator, key considerations will be the cost of memory references in the
code fragment and whether the granularity associated with a parallel loop
is sufficient to make parallelization profitable.

One way to use such a cost function in code generation for a loop nest is
to consider all possible permutations and parallelizations and pick the
best one. This is impractical for two reasons. First, the total number of
alternatives is exponential in the number of loops in a nest and the cost of
evaluating the cost estimate is usually significant, which would make this
strategy unacceptably slow. Second, many of the loop upper bounds in a
loop nest will not be known at compile time. Thus, it may be impossible
to precisely estimate the running time. This might be overcome by gener-
ating a variety of loop arrangements and selecting the best one at run
time, but the number of such arrangements is likely to cause an explosion
in code size.

For these reasons, it is common to consider only a subset of the possible
code arrangements, based on properties of the cost function itself. As an
illustration, we present a code-generation heuristic that uses the cost of
memory references as the primary consideration in selecting the right
permutation for a perfect loop nest. This method is based on work by
Kennedy and McKinley [14].

Creating Coarse-Grained Parallelism

336 ADVANCED COMPILING FOR HIGH PERFORMANCE

We begin by developing a measure CL of the cost of a particular loop
when it is innermost in the nest. This cost is essentially an upper bound
on the number of cache misses generated by the loop when it is inner-
most. We shall call this measure loop cost. To evaluate loop cost for a
given loop, we perform three steps.

1. Subdivide all the references in the loop body into reference groups.
Two references are in the same reference group if there is a loop inde-
pendent dependence or a constant-distance carried dependence from
one to the other. Intuitively, a cache miss for the first of two references
in the same reference group will be the only one experienced by the
group because the second reference will find the desired line in cache.

2. For each reference group, determine whether subsequent accesses to
the same reference are (a) loop invariant, (b) unit stride or (c) non-unit
stride. For case (a) assign the group a reference cost of 1, because only
one cache miss will be experienced for the entire loop. For case (b)
assign the group a reference cost of equal to the number of iterations
of the loop divided by the cache line size (in data items of the type ref-
erenced) because of reuse within the cache line. For case (c), assume
no reuse within a cache line and assign a cost equal to the number of
iterations in the loop.

3. Assign the loop a cost equal to the sum of the reference costs times the
aggregate number of times the loop will be executed if it is innermost
in the loop nest. This is essentially equal to the product of the loop
bounds for the outer loops.

As an example, consider the matrix multiplication inner loop.

DO I = 1, N
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

ENDDO
ENDDO

ENDDO

When the K-loop is innermost the reference cost for C is 1 because it is
loop invariant. The reference cost for A is N, because it is non-unit stride
and the reference cost for B is N/L, where L is the cache line size, because
of the unit stride. Hence the total loop cost for the K-loop is N3(1+1/

L)+N2. When the J-loop is innermost, the cost is 2N3+N2, because the C
and B references are non-unit stride and the A reference is invariant. When
the I-loop is innermost, we have two unit-stride reference groups and one
invariant for a cost of 2N3/L+N2. Thus, the I-loop has the lowest loop cost

Perfect Loop Nests

Chapter Draft of February 8, 2001 337

and is the preferred innermost loop, from the perspective of cache reuse.
Of course, this comparison of symbolic values assumes that the upper
bounds are large. (Otherwise, the number of iterations would be small
and thus the loop ordering would be unimportant.) The following table
summarizes the loop costs:

To find a best total order, we simply order the loops from innermost to
outermost by increasing loop cost, on the theory that inner loop reuse
could also be outer loop reuse if the cache is big enough. This would
imply that the following loop order should be selected for best cache per-
formance:

DO J = 1, N
DO K = 1, N

DO I = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

ENDDO
ENDDO

ENDDO

Even if the outer loop cache reuse is not achieved, it might be induced by
strip mining.

FIGURE 6.21 Selecting a nearby permutation.

procedure select_permutation(O,P)

// Input: A desired loop permutation order O = (i1,i2,...,in) and
// the original direction matrix D for the loop.
// Output: A nearby permutation P.

P := Ø;
for i := 1 to n do begin

select the leftmost loop l in O such that (P1,P2,...,Pi–1,l) has no
illegal direction vector prefixes;

remove l from O;
append l to the end of P, so that it becomes Pi;

end
end select_permutation

Inner loop index Cost

I 2N3/L+N2

J 2N3+N2

K N3(1+1/L)+N2

Creating Coarse-Grained Parallelism

338 ADVANCED COMPILING FOR HIGH PERFORMANCE

Once a desired loop order is established by the loop cost heuristic, the
next step is to put the loops into a permutation that is as close as possible
to the desired order, although it may not be possible to achieve exactly
the desired loop order because some permutations will be illegal. An
algorithm for doing this is given in Figure 6.21

It is easy to show that if any legal permutation has the desired innermost
loop in the innermost position, this algorithm will find a permutation
which has the desired loop innermost [15]. This memory-based loop
interchange algorithm is but one heuristic approach to folding profitabil-
ity information into a code generation scheme without suffering expo-
nential execution time. Experiments have shown that it is quite effective
in practice [15].

Once we have the loops in an optimal memory order, a parallel code gen-
eration system may wish to mark the inner loop sequential if it would
perform very well in cache—i.e., it shows stride-one access that would be
lost if it were parallelized. This marking would prevent the loop from
being parallelized and moved away from the innermost position. If this is
the only parallel loop, a compromise might be to strip mine the loop and
interchange the iterate-by-strip loop to the outside for parallel execution.
Of course this will only work if the loop has enough iterations to simulta-
neously exploit stride-one access and provide a sufficient degree of paral-
lelism to obtain significant speedup.

It is fairly easy to see how to adapt the code generation algorithm Paral-
lelizeNest to incorporate this strategy so we will not present a revised
algorithm here.

6.4 Imperfectly Nested Loops

When loops are imperfectly nested at the outermost level and the outer-
most loop cannot be directly parallelized, maximal loop distribution can
be an effective transformation because it produces a collection of loops,
each of which may be perfectly nested. In the case where an imperfectly
nested loop is produced, it is because of a tight recurrence involving a
statement and an inner loop, in which case it may simply be better to
sequentialize the outer loop and move on.

In this section, we consider code generation strategies in which maximal
loop distribution is tried first and then multilevel loop fusion is used to
increase granularity.

Imperfectly Nested Loops

Chapter Draft of February 8, 2001 339

6.4.1 Multilevel Loop Fusion

The problem of fusion becomes even more difficult when dealing with
loop nests because each loop nest could have a different optimal permuta-
tion. If we assume that we will only fuse loops that were originally fused
in the loop nest before distribution, then different loop permutations can
interfere with loop fusion. For example, consider the following loop nest:

DO I = 1, N
DO J = 1, M

A(I,J+1) = A(I,J) + C
B(I+1,J) = B(I,J) + D

ENDDO
ENDDO

After distribution, it is clear that each statement will do better with a dif-
ferent outer loop as shown here:

PARALLEL DO I = 1, N
DO J = 1, M

A(I,J+1) = A(I,J) + C
ENDDO

END PARALLEL DO

PARALLEL DO J = 1, M
DO I = 1, N

B(I+1,J) = B(I,J) + D
ENDDO

END PARALLEL DO

Although each nest has outer loop parallelism, the two nests are trickier
to fuse because the outer loops have different headers with different loop
iteration bounds. In addition, because the subscript positions for the loop
indices differ, it may be unwise to fuse the nests because of memory-hier-
archy considerations.

It has been shown that loop fusion in the presence of loop interchange is
NP-Complete [6] in the number of loops. The following loop illustrates
one of the reasons that this problem is so hard.

DO I = 1, N
DO J = 1, M

A(I,J) = A(I,J) + X
B(I+1,J) = A(I,J) + B(I,J)
C(I,J+1) = A(I,J) + C(I,J)
D(I+1,J) = B(I+1,J) + C(I,J) + D(I,J)

ENDDO
ENDDO

Creating Coarse-Grained Parallelism

340 ADVANCED COMPILING FOR HIGH PERFORMANCE

This nest distributes over all four statements to yield the four loops:

DO I = 1, N ! Can be parallel
DO J = 1, M ! Can be parallel

A(I,J) = A(I,J) + X
ENDDO

ENDDO

DO I = 1, N ! Sequential
DO J = 1, M ! Can be parallel

B(I+1,J) = A(I,J) + B(I,J)
ENDDO

ENDDO

DO I = 1, N ! Can be parallel
DO J = 1, M ! Sequential

C(I,J+1) = A(I,J) + C(I,J)
ENDDO

ENDDO

DO I = 1, N ! Sequential
DO J = 1, M ! Can be parallel

D(I+1,J) = B(I+1,J) + C(I,J) + D(I,J)
ENDDO

ENDDO

The problem with this loop can be illustrated by the graph in Figure 6.22.

FIGURE 6.22 Two-level fusion example.

In this diagram, each subloop is represented by a node labeled by the
variable that is assigned in that subloop. Inside each node the loop indi-
ces of the loops that can be parallel are listed.

I,J

J

A

B C

D

I

J

Imperfectly Nested Loops

Chapter Draft of February 8, 2001 341

The problem is to determine which loop to fuse the A-loop with. The A-
loop produces values which are used in both the B- and C-loops. Hence
we would like to fuse with each of those loops. However we cannot fuse
with both without giving up parallelism. If we fuse the A-loop with the B-
loop, we will need to make the loop on J parallel in the resulting nest. But
then a subsequent fusion with the C-loop would force both the I- and J-
levels of the result to be sequential. So we must choose.

The problem is that we cannot determine the optimal choice by simply
examining the successors. Although they both look equally good at this
point, it is definitely advantageous to fuse with the C-loop. To see why,
suppose we fuse with the B-loop instead. The resulting loop could not be
fused with the C-loop for the reason we just described. Furthermore, it
cannot be fused with the D-loop because we cannot fuse two loops if there
is a path in the dependence graph from one to the other that passes
through a loop that is not fused into the group. In this case, the path
through the C-loop forces us to keep the D-loop separate. The result has
two barriers and three parallel loops:

PARALLEL DO J = 1, M
DO I = 1, N

A(I,J) = A(I,J) + X
B(I+1,J) = A(I,J) + B(I,J)

ENDDO
END PARALLEL DO

PARALLEL DO I = 1, N
DO J = 1, M

C(I,J+1) = A(I,J) + C(I,J)
ENDDO

END PARALLEL DO

PARALLEL DO J = 1, M
DO I = 1, N

D(I+1,J) = B(I+1,J) + C(I,J) + D(I,J)
ENDDO

END PARALLEL DO

On the other hand, if we fuse the A- and C-loops, we can then fuse the B-
and D-loops, which would leave only one barrier and two loop nests.

PARALLEL DO I = 1, N
DO J = 1, M

A(I,J) = A(I,J) + X
C(I,J+1) = A(I,J) + C(I,J)

ENDDO
END PARALLEL DO

Creating Coarse-Grained Parallelism

342 ADVANCED COMPILING FOR HIGH PERFORMANCE

PARALLEL DO J = 1, M
DO I = 1, N

B(I+1,J) = A(I,J) + B(I,J)
D(I+1,J) = B(I+1,J) + C(I,J) + D(I,J)

ENDDO
END PARALLEL DO

This version is clearly superior in terms of its data reuse and number of
processors. The problem is that lookahead is required to determine what
to do in situations where fusion decisions need to be made. As it happens,
lookahead of arbitrary length can be required.

Because of these problems, most parallel code generation systems use
some heuristic to determine how to fuse loops with multiple levels. An
interesting heuristic is to fuse with the loop that cannot be fused with one
of its successors. The rationale behind this heuristic, which incidentally
solves the example problem, is that if a successor cannot be fused with its
successor, then you are going to need at least one barrier anyway. So why
immediately chose to have two by putting another barrier in front of that
successor. This heuristic was used in the parallel code generation system
for PFC.

6.4.2 A Parallel Code Generation Algorithm

In this section we develop a code generation algorithm for the general
case—a loop nest with hierarchy. The main problem here is to decide
when to use loop distribution and fusion and which loops to fuse once
parallelization of the separate nests is done.

As usual, we begin with a top-down scheme that attempts to parallelize
the outermost loop nest. If it succeeds in finding sufficient parallelism, no
further effort is required. Otherwise, the outer loops are distributed in an
attempt to find more parallelism on inner loops. The resulting routine—
Parallelize—is shown in Figure 6.23. To handle perfect nests, it employs
the routine ParallelizeNest presented in Figure 6.19, with the loop selec-
tion heuristic from Figure 6.20. We assume that ParallelizeNest is modi-
fied to reorder loops to improve memory hierarchy performance as
discussed in Section 6.3.6 and marks inner loops sequential if the loop
needs to run on a single processor to use cache effectively.

Parallelize first invokes ParallelizeNest to attempt perfect-nest strategies
discussed in Section 6.3. If this fails, it tries distributing the loop into a
collection of subnests, parallelizing each one recursively, and fusing as
many of the resulting nests as possible. If the loop cannot be distributed,

Imperfectly Nested Loops

Chapter Draft of February 8, 2001 343

it sequentializes the outermost loop and calls itself recursively on all top-
level loops in the body of that loop. When this process is complete, it
attempts to merge as many of the resulting nests as possible.

FIGURE 6.23 A general code generation algorithm.

procedure Parallelize(l,Dl)

// l is the loop nest to be parallelized
// Dl is the dependence graph restricted to statements in l;

ParallelizeNest(l, success);
if ¬success then begin

if l can be distributed then begin
distribute l into loop nests l1,l2,...,ln;
for i := 1 to n do begin

let Di be the set of dependences between statements in li
Parallelize(li, Di);

end
Merge({l1,l2,...,ln});

end

else begin
// either l carries a recurrence or it encloses a single statement
// that must run on one processor for memory performance

// Note that ParallelizeNest has generated a sequential loop
// for each statement in the nest. However, it has not tried to
// distribute the loop immediately inside the outer loop;

for each outer loop lo nested in l do begin
let Do be the set of dependences between statements in lo

less dependences carried by l;
Parallelize(lo,Do);

end
let S be the set of outer loops and statements loops left in l;
if ||S||>1 then Merge(S);

end
end

end Parallelize

A key component of this algorithm is the routine Merge, which fuses the
parallelized loops back together whenever possible. Merge uses a method
similar to the one used in the algorithm for sequential–parallel fusion

Creating Coarse-Grained Parallelism

344 ADVANCED COMPILING FOR HIGH PERFORMANCE

given in Figure 6.9. The basic idea is to classify the various loop nests by
type, where each type represents the outermost loop in the original nest
that can be made outermost in the distributed nest without changing one
of the critical performance factors, such as parallelism, granularity or
memory performance in the innermost position. Furthermore, two loops
are of different types if the canonical outermost loop in one is parallel
and the sequential in the other. As an example, consider the loop nest
below. As an example, consider the loop nests below.

DO J = 1, M
DO I = 1, N

A(I+1,J+1) = A(I+1,J) + C
X(I,J) = A(I,J) + C

ENDDO
ENDDO

Neither loop in this nest can be parallelized, so it is distributed:

DO J = 1, M
DO I = 1, N

A(I+1,J+1) = A(I+1,J) + C
ENDDO

ENDDO

DO J = 1, M
DO I = 1, N

X(I,J) = A(I,J) + C
ENDDO

ENDDO

Each of these loops can be parallelized, the second in two dimensions,
although the code generator is likely to sequentialize the inner loop of the
second nest to ensure that it has acceptable memory performance:

PARALLEL DO I = 1, N
DO J = 1, M

A(I+1,J+1) = A(I,J+1) + C
ENDDO

ENDDO

PARALLEL DO J = 1, M
DO I = 1, N ! Left sequential for memory hierarchy

X(I,J) = A(I,J) + C
ENDDO

ENDDO

The type of the first loop nest is (I–loop, parallel). The type of the second
loop nest is (J–loop, parallel). Thus these loops have different types and
cannot be merged at the outermost level.

Imperfectly Nested Loops

Chapter Draft of February 8, 2001 345

FIGURE 6.24 Loop fusion for a collection of loop nests.

procedure Merge(S)

// S is the set of loop nests to be fused
// Note: single statements may be considered loops of a special type

let {t1, t2,...,tm} be the collection of loop types;
fuse the outermost loops in S of each type in order

using TypedFusion as given in Figure 6.9 on page 311;
for each fused group G do begin

let {l1,l2,...,lk} be the loop nests inside fused group G;
Merge({l1,l2,...,lk})

end;
end Merge

A slightly more complicated nest is the following, which is similar to the
example from Section 6.4.1:

DO J = 1, M
DO I = 1, N

A(I,J) = A(I,J) + X
B(I+1,J) = A(I,J) + B(I,J)
C(I,J+1) = A(I,J) + C(I,J)
D(I+1,J) = B(I+1,J) + C(I,J) + D(I,J)

ENDDO
ENDDO

After distribution and parallelization, this becomes:

L1 PARALLEL DO J = 1, M
DO I = 1, N ! Sequentialized for memory hierarchy

A(I,J) = A(I,J) + X
END PARALLEL DO

ENDDO

L2 PARALLEL DO J = 1, M
DO I = 1, N

B(I+1,J) = A(I,J) + B(I,J)
ENDDO

END PARALLEL DO

L3 PARALLEL DO I = 1, N
DO J = 1, M

C(I,J+1) = A(I,J) + C(I,J)
ENDDO

END PARALLEL DO

L4 PARALLEL DO J = 1, M

Creating Coarse-Grained Parallelism

346 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO I = 1, N
D(I+1,J) = B(I+1,J) + C(I,J) + D(I,J)

ENDDO
ENDDO

The first second and fourth loops will be classified as a single type. The
fusion graph is shown in Figure 6.25.

FIGURE 6.25 Parallel and sequential subgraphs.

A greedy fusion algorithm will merge loops L1 and L2, leaving loop L4
separate. In addition, the recursive call to Merge will also fuse the inner
sequential loops. The result is:

L1 PARALLEL DO J = 1, M
DO I = 1, N

A(I,J) = A(I,J) + X
B(I+1,J) = A(I,J) + B(I,J)

ENDDO
END PARALLEL DO

L3 PARALLEL DO I = 1, N
DO J = 1, M

C(I,J+1) = A(I,J) + C(I,J)
ENDDO

END PARALLEL DO

L4 PARALLEL DO J = 1, M
DO I = 1, N

D(I+1,J) = B(I+1,J) + C(I,J) + D(I,J)
ENDDO

ENDDO

As we pointed out in Section 6.4.1 on page 339, it is possible to have
fewer parallel loops on this example. However, we are prepared to live

2

1

4

3

An Extended Example

Chapter Draft of February 8, 2001 347

with this result because it has better memory performance and the prob-
lem of minimizing the number of parallel loops is NP-complete.

There are two final points to be made about Parallelize. First, it is often
useful to apply it to a collection of loop nests at the outermost level in a
given program or procedure. To do this, a simple driver is needed, which
could be included at the top level of Parallelize or left to stand alone. The
driver is shown in Figure 6.26. This driver will be important in the
extended example in Section 6.5.

FIGURE 6.26 Driver for parallelization process on a set of loops and statements.

procedure DriveParallelize(L,D)
// L is a list of loop nests (and single statements) at the outermost level
// D is the dependence graph for the collection of statement in L
for each loop nest l ∈ L do begin

let Dl be the set of dependences between statements in l;
Parallelize(l,Dl);

end
if ||L||>1 then Merge(L);

end DriveParallelize

The second observation is that Parallelize, as written, always favors par-
allelizing a whole loop, even if it is not the outermost loop, before trying
any kind of distribution. This may not turn out to be the optimal strategy
on every machine. It is possible that a better result could be obtained by
trying both strategies, scoring them according to some metric and then
choosing the best one. We leave it as an exercise (Exercise 6–4) to revise
Parallelize to accomplish this.

6.5 An Extended Example

We will conclude the treatment of code generation in loop nests with a
discussion of a particular sample code. The code we choose is a subrou-
tine of ERLEBACHER, a NASA differential equation solver written by Tho-
mas M. Eidson. The original code is given in Figure 6.27. Notice that the
loops are already maximally distributed.

Creating Coarse-Grained Parallelism

348 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 6.27 Subroutine tridvpk from ERLEBACHER.

L1 DO J = 1, JMAXD
DO I = 1, IMAXD

F(I,J,1) = F(I,J,1)*B(1)
ENDDO

ENDDO

L2 DO K = 2, N–1
DO J = 1, JMAXD

DO I = 1, IMAXD
F(I,J,K)=(F(I,J,K)–A(K)*F(I,J,K–1))*B(K)

ENDDO
ENDDO

ENDDO

L3 DO J = 1, JMAXD
DO I = 1, IMAXD

TOT(I,J) = 0.0
ENDDO

ENDDO

L4 DO J = 1, JMAXD
DO I = 1, IMAXD

TOT(I,J) = TOT(I,J)+D(1)*F(I,J,1)
ENDDO

ENDDO

L5 DO K = 2, N–1
DO J = 1, JMAXD

DO I = 1, IMAXD
TOT(I,J) = TOT(I,J)+D(K)*F(I,J,K)

ENDDO
ENDDO

ENDDO

If we apply the general multilevel code generation algorithm in
Figure 6.23 on page 343 to each of these nests, the J-loop will be paral-
lelized in each of the nests, while the loops on index I will be left serial
to ensure that sequential access takes place on a single processor. Since
the outermost loops that result are all compatible—they are all parallel
and run from J=1 to JMAXD—the outer loops will all be merged by the
first application of TypedFusion to produce the code in Figure 6.28.

An Extended Example

Chapter Draft of February 8, 2001 349

FIGURE 6.28 Subroutine tridvpk from ERLEBACHER after single-nest parallelization.

L1 PARALLEL DO J = 1, JMAXD
DO I = 1, IMAXD

F(I,J,1) = F(I,J,1)*B(1)
ENDDO

L2 DO K = 2, N–1
DO I = 1, IMAXD

F(I,J,K)=(F(I,J,K)–A(K)*F(I,J,K–1))*B(K)
ENDDO

ENDDO

L3 DO I = 1, IMAXD
TOT(I,J) = 0.0

ENDDO

L4 DO I = 1, IMAXD
TOT(I,J) = TOT(I,J)+D(1)*F(I,J,1)

ENDDO

L5 DO K = 2, N–1
DO I = 1, IMAXD

TOT(I,J) = TOT(I,J)+D(K)*F(I,J,K)
ENDDO

ENDDO
ENDDO

FIGURE 6.29 Fusion graph for ERLEBACHER.

TypedFusion is then applied to the loops at the next level, all of which are
sequential. This produces the fusion graph shown in Figure 6.29.Here
loops L1, L3 and L4 (with the outer loop on I) are assigned one type and
loops L2 and L5 (with the outer loop on J) are assigned another. This sec-

L1 L2

L4

L5

L3

Creating Coarse-Grained Parallelism

350 ADVANCED COMPILING FOR HIGH PERFORMANCE

ond pass produces the final program shown in Figure 6.30, with a single
parallel loop at the outermost position and all inner loops using stride 1
access of the key arrays.

FIGURE 6.30 Final code for subroutine tridvpk from ERLEBACHER.

PARALLEL DO J = 1, JMAXD
DO I = 1, IMAXD

F(I,J,1) = F(I,J,1)*B(1)
TOT(I,J) = 0.0
TOT(I,J) = TOT(I,J)+D(1)*F(I,J,1)

ENDDO

DO K = 2, N–1
DO I = 1, IMAXD

F(I,J,K)=(F(I,J,K)–A(K)*F(I,J,K–1))*B(K)
TOT(I,J) = TOT(I,J)+D(K)*F(I,J,K)

ENDDO
ENDDO

ENDDO

6.6 Packaging of Parallelism

Often the performance of parallelized code depends not only on how
much parallelism is found but also on how it is packaged. We have
already seen in Section 6.3.6 one trade-off between parallelism and per-
formance of the memory hierarchy. In this section we consider trade-offs
between parallelism and granularity of synchronization. As we said in the
introduction, there is a cost, which varies from machine to machine, asso-
ciated with every synchronization operation. If there were no costs for
initiation and synchronization of parallel threads, then it would always be
best to package the parallelism at the finest granularity. Then the zero-
cost scheduler would always keep all processors busy until all the work
was done. The maximum load imbalance would be equal to the largest
granule of work executed on the parallel processor and the amount of
time spent in overhead would be zero.

Because the cost of thread initiation and synchronization is greater than
zero on every real system, the trade-off becomes more complicated.
Larger granularity work units mean that scheduling and synchronization
need to be done less frequently at the cost of less parallelism and often
poorer load balance. These trade-offs need to be managed by the com-
piler differently for each different target platform.

Packaging of Parallelism

Chapter Draft of February 8, 2001 351

In this section we will discuss two tools for managing the trade-off
between parallelism and synchronization. Strip mining is a strategy for
increasing granularity directly by reducing the total number of available
parallel processes. Pipelining, on the other hand, presents a way to
achieve parallelism through explicit synchronization, when no other
method is available. As we will see, pipelining involves yet another trade-
off between granularity and parallelism.

6.6.1 Strip Mining

Many dependence-free loops whose iterations can be correctly executed
in parallel may not be efficiently executed in parallel if naively scheduled.
Quite commonly, there may not be enough work in a single loop iteration
to justify scheduling that iteration as a single entity. In such a case,
grouping the iterations into sets, each of which is treated as a schedulable
unit, will provide more efficient use of parallelism. The analogous trans-
formation for vectorization is strip mining—converting the available par-
allelism into a form more suitable for the hardware. The following simple
loop will illustrate the advantages of this transformation for parallelism.

DO I = 1, N
A(I) = A(I) + B(I)

ENDDO

If there are exactly P processors available to execute the loop, then the
best load balance and synchronization minimization is achieved by:

k = CEIL(N/P)
PARALLEL DO I = 1, N, k

DO i = I, MIN(I+k-1,N)
A(i) = A(i) + B(i)

ENDDO
END PARALLEL DO

In loops such as this one, where each iteration clearly requires the same
amount of computation, finding the proper balance is easy once the num-
ber of loop iterations and the number of available processors are known.
Since those values are frequently not known until run time, this strip min-
ing is often done by special hardware (as was the case on the Convex C2
and C3).

In cases where execution time varies among iterations, such as in the fol-
lowing,

DO I = 1, N
DO J = 2, I

A(I,J) = A(I,J-1) + B(I)

Creating Coarse-Grained Parallelism

352 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO
ENDDO

providing an effective balance is much more difficult. Rather than strip
mining the parallel (outer, in this case) to an exact division among pro-
cessors, it is usually preferable to choose a smaller block size. By doing
so, processors that do less work (and thus finish quicker) can pick up
some of the excess while more heavily loaded processors are still work-
ing, thereby providing some load balance. Smaller blocks sizes are also
advantageous when processors begin work at staggered times, since that
permits processors that begin work first to pick up more of the load. Sev-
eral different schemes for dynamic scheduling of parallel processes have
been proposed. These techniques will be discussed further in Chapter 10.

6.6.2 Pipeline Parallelism

An alternate form of coarsely parallel loop is a DOACROSS, which pipe-
lines parallel loop iterations (basically using multiple processors as a
high level vector processor) with cross iteration synchronization. For
instance, the following loop:

DOACROSS I=2, N
S1 A(I) = B(I) + C(I)

POST(EV(I))
IF (I .GT. 2) WAIT(EV(I-1)

S2 C(I) = A(I-1) + A(I)
ENDDO

can perform all instantiations of S1 in parallel just as with a PARALLEL
DO, but pipelines individual iterations of S2 as the necessary results
become available. In this example POST(EV(I)) signals that the event
EV(I) has occurred and WAIT(EV(I)) blocks until the event is posted. By
convention, all events are initialized to the non-posted state.

A more elaborate example is the pipelined version of the wavefront paral-
lelization of finite difference relaxation. The sequential version of this
loop nest is:

DO I= 2, N-1
DO J = 2, N-1

A(I,J) = 0.25*(A(I-1,J) + A(I,J-1) &
+ A(I+1,J) + A(I,J+1))

ENDDO
ENDDO

We have already seen how to parallelize this using loop skewing, which
can be thought of as a way of implementing pipelining. Now we will

Packaging of Parallelism

Chapter Draft of February 8, 2001 353

show how to implement it via a DOACROSS loop. In this implementation,
we will run the outer loop in parallel and the inner loop sequentially. The
important thing is to ensure that we do not begin to compute A(I+1,J)
until we have computed A(I,J). As above, we will use an array of events
to ensure that the computation is correctly synchronized.

DOACROSS I= 2, N-1
POST (EV(1))
DO J = 2, N-1

WAIT(EV(J-1))
A(I,J) = 0.25*(A(I-1,J) + A(I,J-1) &

+ A(I+1,J) + A(I,J+1))
POST (EV(J))

ENDDO
ENDDO

The execution of this parallel loop is depicted in Figure 6.32. Note that
the arrows in this diagram represent a post-wait synchronization on a
common event.

FIGURE 6.31 Pipelined parallelism.

If there is substantial overhead involved in the synchronization, we may
wish to group iterations together to reduce the frequency of synchroniza-
tion. For example, if we wanted to synchronize less often we could group
the iterations into pairs as follows:

I = 2

I = 3

I = 5

I = 4

J = 2

J = 3 J = 2

J = 2

J = 2

J = 7

J = 4

J = 6

J = 5 J = 3

J = 3

J = 3

J = 4

J = 4

J = 4

J = 5

J = 5J = 6

Event synchronization

Creating Coarse-Grained Parallelism

354 ADVANCED COMPILING FOR HIGH PERFORMANCE

DOACROSS I= 2, N-1
POST (EV(1))
K = 0
DO J = 2, N-1, 2

K = K+1
WAIT(EV(K))
DO j = J, MAX(J+1,N-1)

A(I,J) = 0.25*(A(I-1,J) + A(I,J-1) &
+ A(I+1,J) + A(I,J+1)

ENDDO
POST (EV(K+1))

ENDDO
ENDDO

FIGURE 6.32 Pipelined parallelism with coarse granularity.

I = 2

I = 3

I = 5

I = 4

J = 2

J = 3

J = 2

J = 2

J = 2

J = 7

J = 4

J = 6

J = 5

J = 3

J = 3

J = 3

J = 4

J = 4

J = 4

J = 5

J = 5

J = 6

Event synchronization

Packaging of Parallelism

Chapter Draft of February 8, 2001 355

Notice that we have paid for the lower frequency of synchronization by
reducing the degree of parallelism. The difference can be seen in the dia-
gram in Figure 6.32. Although the last iteration of the I-loop starts much
later, in this example, if the synchronization cost is large, the reduced
synchronization frequency could pay for the cost in starting time delay.

Because the value of DOACROSS is highly machine dependent (its execu-
tion efficiency relies heavily on processor synchronization), it should be
used only when pipeline parallelism is the only possible way to improve
performance.

6.6.3 Scheduling Parallel Work

Scheduling parallel loop iterations across multiple processors success-
fully is difficult, and has been one of the major barriers to general accep-
tance of parallel programming. At one level, most of the primitives
necessary are simple and already implemented on many operating sys-
tems. On Unix machines, for instance, all that is necessary is a light-
weight thread (usually obtained by a variant of the system fork call) that
shares address, data space, and stack, but has its own “thread-local” stor-
age (usually created in the paging mechanism using copy-on-write
semantics). The lightweight thread must be able to create its own stack to
support subroutine calls; this is often done out of thread-local storage.

A fairly standard technique for scheduling parallel loop iterations in such
an environment is to keep the loop variable in a synchronized, shared
location. Loop iterations are dispensed to individual processors as the
processors become free, in much the same fashion as customers are
served in a “take-a-number” bakery (hence the name “bakery-counter”
scheduling). Under such a scheme, a parallel program at startup time exe-
cutes a system call that procures the processors available for work at that
time. As it obtains the processors, the program sends all but the “chief
processor” (the startup processor) into a low priority idle pen, waiting for
work. The chief processor then continues executing the serially through
the program. Upon finding a parallel loop, the chief process initializes the
loop variable and sets a jump vector for the idle pen that frees the con-
tained processors by sending them to the start of the appropriate parallel
loop (each thread has the same copy of the code space). Each processor
goes to the bakery counter via synchronization to obtain a loop iteration
to perform. This continues round robin until all work is done, at which
point the slave processors reenter the idle loop and the chief processor
continues through the serial regions. In general, the bakery counter
method provides reasonable balance between reducing synchronization

Creating Coarse-Grained Parallelism

356 ADVANCED COMPILING FOR HIGH PERFORMANCE

overhead and balancing work across processors. However, there are cases
when it can be very inefficient—for instance, if a processor assigned to
an iteration is interrupted by the operating system for a long time to do
other work. In such a case, that one iteration will hold up the rest of the
computation.

The bakery counter algorithm illustrates the fundamental conflict
involved in successfully scheduling parallelism—achieving the proper
resolution between load balance and synchronization. To achieve the best
load balance, the work in a parallel process should be broken into the
smallest possible units (the finest granularity) possible. That way, there
are the maximal number of units to dispense at any given time, maximiz-
ing the probability that processors will find new work to do as they com-
plete tasks. This decreases the chance that one processor will get bogged
down completing a task while others are waiting idly for work. There is a
cost involved in decreasing the granularity of parallelism however; that
cost is synchronization overhead. Dispensing a unit of work to a proces-
sor involves some synchronization—in the bakery counter scheme, that
synchronization is the lock on the shared loop variable. As the granularity
is made finer, there are more units to be dispensed; each time a unit is dis-
pensed, more synchronization overhead is introduced. Obviously, execut-
ing a parallel process as one single thread (sequential execution)
introduces no overhead; executing every instruction in a parallel process
as an independent thread obviously introduces the maximal amount of
overhead. Strictly minimizing overhead would argue for sequential exe-
cution, which, of course, provides the worst load balance. In other words,
the lowest overhead is achieved at the point where the load balance is the
worst, and the best load balance is achieved at the point of highest over-
head. Somewhere in between are the points which make effective use of
processors without introducing too much overhead; finding those points
is the key to effective parallel scheduling.

To illustrate concretely how critical this balance is, consider the follow-
ing parallel triangular matrix operation:

DO PARALLEL I = 1, 100
DO J = 2, I

A(J,I) = A(J-1,I) * 2.0
ENDDO

ENDDO

The first parallel loop iteration performs no multiplications; the second
performs one; the third performs two; and so on, with the last iteration
doing N multiplications. If one were to schedule this on a machine with

Packaging of Parallelism

Chapter Draft of February 8, 2001 357

four processors, one way to achieve the minimal synchronization over-
head would be to do the parallel loop in four chunks, each doing N/4 iter-
ations. The problem, of course, is that the first processor will do roughly
N/8 multiplies, the second processor will do roughly 3/8 N multiplies; the
third will do 5/8 N multiplies; and the last will do 7/8 N multiplies. In
other words, the first three processors will sit idle while the last processor
does most of the work. Breaking to the finest granularity—each proces-
sor doing one loop iteration at a time—provides the best load balance, but
also the maximal synchronization overhead.

Balancing these two conflicting effects is the key to useful parallelism.
As a general rule, any effective system for achieving this balance is going
to involve dynamic scheduling of processors (as opposed to static sched-
uling), since the amount of parallelism and availability of processors is
known only at runtime. The bakery counter algorithm is an example of
dynamic scheduling; it is also an example of self-scheduling, in that each
processor determines what task to execute next (as opposed to having one
global control unit control execution). Dynamic, self-scheduling algo-
rithms are essential for achieving load balance without creating too much
overhead. Guided self-scheduling—the one dynamic self-scheduled
approach which has been put forth with the goal of achieving this bal-
ance—is discussed in the next section.

6.6.4 Guided Self-Scheduling

As noted earlier, the key tension in effectively scheduling loop-level par-
allelism is balancing the load so as to keep all processors busy while not
incurring enough overhead to destroy the benefits of parallelism. There
are a number of sources of overhead in parallel computations, including
accesses to loop variables, synchronized accesses to global variables, and
extra cache misses required for auxiliary processors. It is very easy for
this overhead to dominate any benefits derived from parallel execution.
For instance, making the simple assumption that overhead is a constant
factor σ0 per processor (leading to a total overhead of p*σ0 for p proces-
sors) shows that parallel execution will always be slower than serial exe-
cution if

(EQ 6.3)

where N is the number of loop iterations and B is the time it takes for one
iteration to execute. In other words, just the overhead of firing up p pro-
cessors with a per-processor overhead of 1/p times the total execution
time leads to an execution time greater than that obtained serially, mean-

σ0 NB() p⁄≥

Creating Coarse-Grained Parallelism

358 ADVANCED COMPILING FOR HIGH PERFORMANCE

ing no benefit is possible from parallelism. It is not difficult at all to incur
overheads of this magnitude, particularly as the number of processors p
increases.

Guided self-scheduling (GSS) incorporates some level of static schedul-
ing to guide dynamic self-scheduling. Fundamentally, GSS attempts to
do two things: a) minimize the amount of synchronization overhead and
b) keep all processors busy at all times. GSS reduces synchronization
overhead by scheduling groups of iterations to a processor, rather than
single iterations as in the bakery counter method. However, while parcel-
ing out a group of iterations to one processor, it tries to ensure there is
enough work left to keep all other processors busy until the scheduled
processor completes its task. The result is a dynamic load balance where
in the early stages of processing a parallel region, large chunks of work
are dispensed to processors; towards the end of a parallel region, small
chunks are dispensed. The hope is that none of the early chunks are so
large as to distort the load balance beyond the repair of later iterations.

More formally, GSS proceeds by first invoking loop transformations such
as loop interchange and loop coalescing to obtain the largest possible par-
allel loop. It then repeats dispensing ranges of iterations to processors in
a bakery counter fashion, where the number of iterations dispensed at
time t is

(EQ 6.4)

and Nt+1 is set to Nt -x. That is, each processor takes 1/p’th of the remain-
ing iterations at any given time, getting a reasonable chunk to work on,
but leaving enough to ensure that other processors will remain busy while
it works. Using GSS to scheduling a loop that takes 20 iterations on a
machine with 4 processors would result in the allocation shown in
Table 6.1.

The processors specified and the time taken assumes that all loop itera-
tions take exactly the same amount of time to complete and that there are
no external interruptions. With those assumptions, P1 performs 6 itera-
tions, P2 performs 5 iterations, P3 performs 4 iterations, and P4 performs
5 iterations—not quite a perfect balance, but given that in reality there
will be some spreading due to synchronization overhead, a good balance.

x
Nt

p
------=

Packaging of Parallelism

Chapter Draft of February 8, 2001 359

The total number of synchronizations executed will be 9, as opposed to
the 20 required by the bakery counter.

FIGURE 6.33 Guided Self-Scheduling

// Given an arbitrarily nest of loops L with at least one DOALL
// to be scheduled for p processors.

Distribute the loops in L wherever possible.
Interchange DOALLs to outmost position possible.
Coalesce all inner loops into the outer, where possible.

Schedule each parallel loop as follows:
Nt := N; // The total number of parallel loop iterations
while Nt > 0 do begin

if there is an idle processor then begin
schedule it for x := (Nt + p – 1)/p iterations
Nt := Nt – x;

end
end

A formal description of GSS is given in Figure 6.33. The algorithm per-
forms a number of static preliminary transformations (loop coalescing,
loop interchange, loop distribution) to make the parallel loop as large as
possible, then sets up the static information necessary for run-time allo-
cation. Obviously, GSS does not (and cannot) produce an optimal sched-

Step(t) Processor
No.

Remaining
No.

Allocated
Iterations

Done

1 P1 20 5 1-5

2 P2 15 4 6-9

3 P3 11 3 10-12

4 P4 8 2 13,14

5 P4 6 2 15,16

6 P3 4 1 17

7 P2 3 1 18

8 P4 2 1 19

9 P1 1 1 20

TABLE 6.1 Iteration allocation under GSS.

Creating Coarse-Grained Parallelism

360 ADVANCED COMPILING FOR HIGH PERFORMANCE

ule for every possible variant of a parallel loop—for instance, in the
example illustrated in Table 6.1, if the first 5 loop iterations are all very
long in executing and the remaining iterations are very short, it would
obviously be better to parcel them out individually. However, with rea-
sonable bounds as to what “optimal” means, GSS can be shown to obtain
the optimal schedule and the minimum number of synchronization points
under any initial processor configuration.

The ceiling operator has been rewritten as (Nt + p – 1)/p, which is equiv-
alent. Note that the last four allocations are all for a single loop iteration.
This is not just coincidence in this particular case; GSS in its simplest
form (also called GSS(1)) guarantees that the last p–1 allocations will all
be single loop iterations. These allocations can be eliminated by minor
changes to the basic GSS algorithm. Specifically, if the number of itera-
tions parceled out at each synchronization step is made (Nt +2* p – 1)/p
then the iteration flow becomes (6,5,4,3,2) for the example. This variation
is known as GSS(2); in general, GSS(k) guarantees that there are no
blocks of iterations of size less than k handed out. The basic GSS algo-
rithm can be converted into GSS(k) by adjusting the coefficient of p in
formula for the number of iterations parceled out. Some minor adjust-
ments are also necessary for the termination condition, as only GSS(1) is
guaranteed to exactly hit zero iterations remaining; others may overshoot.

Guided Self-Scheduling provides an excellent balance between static and
dynamic scheduling by using compile-time information to guide schedul-
ing at runtime. In particular, the compiler can adjust the value of k for dif-
ferent loops according to the number of iterations and expected run time
of each iteration—the larger the ratio of the number of iterations to the
number of processors, the higher k should be. While no general method
can schedule for an arbitrary parallel loop perfectly, GSS does provide
the balance of the bakery counter algorithm with much less synchroniza-
tion overhead.

6.7 Chapter Summary

In preparing programs for execution on symmetric multiprocessors, the
principal challenge is to manage the trade-off between parallelism and
granularity. If there is insufficient parallelism, the processors will not be
effectively used. On the other hand, if the computation is too fine-
grained, the start-up and synchronization costs of parallel execution will
outweigh the performance gains. Thus the challenge is to find parallelism
at the coarsest possible granularity.

Case Studies

Chapter Draft of February 8, 2001 361

We have presented mechanisms for addressing this problem in three con-
texts.

• In single loops, a number of transformations, including privatization,
alignment, and replication, can be used to eliminate carried depen-
dences and thereby obviate the need for loop distribution, which
reduces granularity. If loop distribution is needed, it can be followed
by aggressive loop fusion to minimize the impact of granularity reduc-
tion.

• In perfect loop nests, loop interchange, loop reversal, and loop skew-
ing can be used to uncover parallelism and move it to the outermost
position possible. In many cases the decisions on how organize the
loops for optimal performance are driven not only by the goal of max-
imizing parallelism but also by concerns for architectural issues such
as performance of the memory hierarchy.

• In general loop nests, which are not necessarily perfectly nested, mul-
tilevel loop distribution, followed by parallelization of the resulting
loop nests and aggressive application of loop fusion can be used to
extract the parallelism available and package it for high efficiency.

In a truly effective compiler, all of these strategies will be needed, and the
must collaborate with other strategies for performance improvement,
especially memory hierarchy management.

6.8 Case Studies

PFC and ParaScope
The PFC system performed parallelization along the lines described in
this chapter. For nested loops it would attempt to get the parallel loop to
the outermost possible position. Inner loops or loops that were not per-
fectly nested would be distributed, parallelized, and then fused together
again as described in Section 6.2.5. Typed fusion was not employed for
this task, however.

Because PFC was constructed originally as a vectorizer, it did not carry
out dependence analysis outside of loop nests. This was a problem for
parallelization, where it was important to consider dependences across
loop nests within a subroutine. Over the years, this problem was amelio-
rated by treating the subroutine as having a single loop around the entire
body for the purposes of dependence analysis, but never testing for
dependences carried by that loop.

Creating Coarse-Grained Parallelism

362 ADVANCED COMPILING FOR HIGH PERFORMANCE

In support of her dissertation, Kathryn McKinley carried out experiments
using the ParaScope system, a successor of PFC that used the depen-
dence information from PFC to determine safety and profitability of
transformations [21]. The driver for the transformations was fairly close
to the one in Figure 6.23 on page 343 and was fully automated, as were
the legality and safety tests. However, the transformations themselves
were carried out by hand following the instructions produced by the
driver, using the Parascope Editor, an interactive transformation system.
Thus the results closely simulate what a fully automatic system might
achieve. In McKinley’s tests, the automatic system was compared to
speedups obtained on 19 processors of a Sequent Symmetry SMP by
hand code from users experienced in parallel programming, none of
whom were members of the PFC or ParaScope implemetation teams. The
results are shown in Figure 6.34

Note that there was no hand parallelization for the Linpack D bench-
marks at the time of the experiment. The speeduls for the benchmark
“Control” were obtained on a configuration with only 8 processors. For
further details on this experiment, see McKinley’s dissertation [21].

FIGURE 6.34 Parallelization speedups on the Sequent Symmetry using PFC/Parascope.

Seismic Erlebacher BTN Interior Direct ODE Control Multi LinpackD
0

4

8

12

16

S
p

ee
d

u
p

Application

9.1

12.3
13.2

14.2

3.2
4.1

6.9 6.9

2.4 2.4

3.4 3.4
3.8 3.8

5.3

1

9.2

Hand

Auto

Case Studies

Chapter Draft of February 8, 2001 363

Figure 6.34 shows that, without significant algorithmic changes, the auto-
matic parallelization strategies described in this section are competitive
with hand coding by moderately sophisticated users on symmetric multi-
processors of modest size. The one major failure occurred on benchmark
“Multi,” where the user employed a critical section to synchronize
updates to a shared variable. The automatic system was unable to discern
that this would produce the same results, because it is technically a viola-
tion of dependence.

Ardent Titan Compiler
The Ardent Titan had multiple vector processors. For simplicity, it would
attempt to vectorize only one loop and parallelize only one loop. Once
this decision was made, loop interchange became a somewhat simpler
matter. In the ideal case (that as, in a loop nest that yields a vector loop
and a parallel loop), the goals of loop interchange on the Titan were:

1. Move the vector loop to the innermost position. By the definition of
vectorization, this transformation was guaranteed to be legal. Also,
since this loop would be “tripled” during parallel code generation, it
would disappear during codegen.

2. Move the parallel loop to the outermost possible position.

3. Move the best loop for obtaining reuse just outside the “tripled”
loop—the real innermost position in the generated code. Given that
the vector register file was the only form of “cache” on the vector unit,
the goal was to get vector registers reused where possible. This was
the biggest win on the Titan, and the remaining second order effects of
getting other loops in the right position weren’t considered important
enough to justify the compile time cost.

Focusing on this strategy simplified both dependence testing and code
generation. This limited form of loop interchange did not require full
dependence matrices. To determine whether a given outer loop could be
vectorized, the Ardent compiler would use only the simple innermosting
test—a loop that carried no dependence could always be innermosted and
vectorized. Moving the parallel loop to the outermost position was
accomplished by repeatedly exchanging the parallel loop with the loop
just outside it, where legal—this was simple to incorporate into the code
generation process. As a result, the test for outermosting became simply
an interchange inward test. If the next loop outside did not carry a depen-
dence, it could obviously be moved inward. If it did carry a dependence,
the important criterion was that it carried the dependence with it as inter-
changed inward (since otherwise the parallelism would be destroyed with
the outward move).Thus, the important criterion for outermosting was

Creating Coarse-Grained Parallelism

364 ADVANCED COMPILING FOR HIGH PERFORMANCE

that if the outer loop contained a dependence, the dependence would
move inward with an interchange. This was exactly the same criterion
required for the third condition above—getting a loop that fostered reuse
into the innermost position. As a result, the only special testing required
for loop interchange was one of “interchange-inhibiting” in the vectoriza-
tion sense, although those were exactly the dependences the Titan opti-
mizer would interchange.

Many of the loop transformations that are employed in parallelization are
things that users can perform. For instance, loop distribution is easy to
perform at a source level, and most sophisticated users can recognize
when they can safely distribute loops. Loop fusion is a transformation
that users tend to naturally implement—when they write a loop, they put
as much into it as possible. Relying on this view, the Ardent team decided
not to implement loop fusion in the Ardent compiler. The factors in this
decision included:

1. Size of the dependence graph. To perform arbitrary loop fusion,
dependence graphs have to be calculated across non-overlapping loop
nests as well as intervening statements. This can get to be very large
very quickly.

2. Simplicity and speed of dependence tests. Many decisions regarding
loop interchange and scalar expansion had already simplified the
properties of dependence that the compiler required. Removing the
requirement for calculating fusion-prevention eliminated one more.

3. Applicability. As stated earlier, the expectation was the loop fusion
applied to general programs would probably provide little benefit, as
the natural inclination for most programmers is to fuse.1 In the one
occasion where we did expect to fuse disjoint loops (unroll and jam),
the safety could be dynamically calculated as necessary.

It is important to note that this restriction was not avoiding loop fusion
altogether, but simply fusion of loops that were originally disjoint. The
Ardent optimizer expected to fuse loops that had been distributed from
the same loop, as occurs in codegen, but this type of fusion does not
require any safety calculations. The fact that the loops were originally
one guarantees that they can be safely merged. Note also, that the Ardent

1. This, of course, did not consider the possibility of machine-generated code, which
violates all known sanity requirements and is the bane of compiler-writers everywhere.
It is also true that there are always some programmers that violate all reasonable pro-
gramming practices.

Case Studies

Chapter Draft of February 8, 2001 365

compiler did not support Fortran 90, which requires fusion to achieve
performance from array statements.

The overall parallel code generation strategy for the Ardent Titan com-
piler can be summarized by two principles:

1. Vectorize at most one loop and parallelize at most one loop.

2. Effect no auxiliary transformation (e.g. scalar expansion, if conver-
sion, loop interchange) unless the transformation is guaranteed to
enhance vectorization, parallelism, or memory reuse.

The first principle implied that the code generation algorithm had to
focus on finding the best vector and parallel loops, rather than all vector
and parallel loops. The second principle implied that code generation had
to drive auxiliary transformations on a demand basis, implementing the
transformations only when required. While these two principles may at
first appear difficult to incorporate into the general codegen algorithm,
they in fact blend in easily to the general scheme with only minor modifi-
cations. The resulting overall approach taken by the Ardent optimizer
became:

1. All dependence edges were attributed with a “deletability” property,
extending the notion introduced for scalar expansion. When this prop-
erty was true, it implied that the edge could be removed by some
transformation.

2. Control edges were explicitly in the graph for control flow, and back
edges were inserted as well to force all statements in a control region
to remain together throughout codegen. The loops produced by distri-
bution were attributed with the separate properties of being “parallel-
izable” and being “vectorizable” at a given level. When evaluating
“parallelizable” in Tarjan’s algorithm, carried control edges were
ignored.

3. A first pass of code generation was made to find all possible vector
and parallel loops. This information was gathered by temporarily
removing all deletable edges from the graph, calling the codegen algo-
rithm, and rather than generating parallel or vector code at any step,
merely recording that the loop at the level could or could not be run in
vector or in parallel. This pass essentially evaluated the effects of all
possible recurrence-breaking transformations, but by implementing
them only in the graph, rather than in the source.

4. After determining all possible parallel and vector loops, code genera-
tion scored the loops to determine the best vector and parallel loop.

Creating Coarse-Grained Parallelism

366 ADVANCED COMPILING FOR HIGH PERFORMANCE

Considerations included stride-one access, lack of scatter-gathers,
loop length, and global consistency.

5. Code generation was effected with a final codegen pass, focused on
the best vector and parallel loop. When this codegen encountered a
best vector or parallel loop that did not vectorize or parallelize, it
knew it had to effect some recurrence-breaking transformation, and it
could choose appropriately. Similarly, fusing like regions was simple
in this scheme.

Figure 6.35 contains a high level algorithmic overview of the code gener-
ation strategy employed Ardent optimizer.

FIGURE 6.35 Ardent Titan code generation overview.

procedure generate(T)

// Tis the intermediate representation which is to be parallelized

compute the dependence graph D for T making deletable(e) true
for all edges e that can be broken by some transformation;

compute Dd from D by removing all edges e such that deletable(e)
is true;

mark(Dd, S); // Store in S all loops for all statements that can be
// done in vector or in parallel/

score(Dd, S); // Store best vector and parallel loops for each stmt

codegen(D, S, T); // Actually generate code
end generate

As a simple example of the effectiveness of this strategy, consider matrix
multiplication. The standard coding found in textbooks on linear algebra
puts the sum reduction loop in the innermost position, as shown in the
code below.

DO I = 1, 512
DO J = 1, 512

C(I,J) = 0.0
DO K = 1, N

C(I,J) = C(I,J) + A(I,K) * B(K,J)
ENDDO

ENDDO
ENDDO

Historical Comments and References

Chapter Draft of February 8, 2001 367

All other things being equal, the Ardent compiler would choose the I
loop because it ensures that the vector statement will have a stride of 1,
which has best possible load/store performance on the Titan. Because the
Titan has vector registers of length 32, it will strip that loop to length 32
and move it to the innermost position. The only other loop that is fully
parallel is the J loop, which would be moved to the outermost position.
The resulting code, shown below is extremely well match to the Titan
architecture.

PARALLEL DO J = 1, 512
DO I = 1, 512, 32

C(I,J) = 0.0
DO K = 1, N

C(I:I+31,J) = C(I:I+31,J) + A(I:I+31,K)*B(K,J)
ENDDO

ENDDO
ENDDO

6.9 Historical Comments and References

Scalar privatization was introduced by Cytron and Ferrante and Allen et.
al. in the context of the PTRAN automatic parallelization project [9,1].
The need for array privatization was established in a study of the Perfect
benchmark suite by Eigenmann et. al. [10] and methods for performing
the optimization were described by Li [19]. The original treatment of
alignment and distribution was due to Allen, Callahan, and Kennedy [2].

Loop interchange methods have been widely used. The treatment by
Wolfe introduced the use of direction vectors for this purpose [27]. The
topic was further explored by Allen and Kennedy [3]. The formulation
based on the direction matrix is new, but can be viewed as a variant of
unimodular transformations, as discussed by Wolf and Lam [25]. Loop
skewing is a variant of the wavefront method introduced by Lamport
[18]. The transformation itself was introduced by Wolfe [26].

Loop fusion for optimization of array and stream operations has a long
history [12,11,13]. Methods combining loop distribution and fusion were
originally discussed by Allen, Callahan, and Kennedy [2]. The typed
fusion algorithm and its application to single-level multilevel loop paral-
lelization are due to Kennedy and McKinley [15]. Kennedy and McKin-
ley also described strategies for managing the trade-off between memory
hierarchy performance and parallelism presented in Section 6.3.6 [14].

Creating Coarse-Grained Parallelism

368 ADVANCED COMPILING FOR HIGH PERFORMANCE

Cytron developed the notion of DOACROSS and the treatment of pipeline
parallelism in the context of the Cedar project [7,8]. The bakery-counter
algorithm for multiprocessor scheduling is a venerable strategy that has
been widely cited in the operating systems literature. Guided self-sched-
uling is due to Polychronopoulos and Kuck [24,23].

Excellent general treatments of the subject of dependence and parallel-
ization can be found in the works by Allen et. al. [1], Amarasinghe et. al.
[4]., Kuck et. al. [17], and Wolfe [28,29].

6.10 Exercises

6–1 Construct the direction matrix for the following loop nests and show how
each should be parallelized to achieve maximum granularity. Describe
the transformations that will lead to this parallelization.

a) DO J = 1, M
DO I = 1, N

A(I+1,J+1) = A(I,J+1) + C
B(I+1,J+1) = B(I,J+1) + A(I+1,J) + D

ENDDO
ENDDO

b) DO K = 1, L
DO J = 1, M

DO I = 1, N
A(I+1,J+1,K+1) = A(I,J+1,K+1) + A(I+1,J-1,K) &

+ A(I+1,J,K+1)
ENDDO

ENDDO
ENDDO

c) DO K = 1, L
DO J = 1, M

DO I = 1, N
A(I+1,J+1,K+1) = A(I,J+1,K+1) + A(I+1,5,K)

ENDDO
ENDDO

ENDDO

6–2 Show that the following problem is NP-complete: Given a direction
matrix for a nest with N loops and M>N dependences, find the minimal
number of loops that covers all remaining loops.

6–3 Show how to incorporate loop reversal into the routine ParallelizeNest
given in Figure 6.19 with the selection heuristic from Figure 6.20.

References

Chapter Draft of February 8, 2001 369

6–4 Develop a version of the routine Parallelize that tries both whole-loop
parallelization (without finalizing transformations) and outer loop distri-
bution (if whole-loop parallelization does not produce a parallel outer
loop), then chooses the best one according to some scoring metric. The
metric need not be shown.

6–5 Adaptive scheduling partitions the amount of computation to achieve
load balancing. An orthogonal direction is the partitioning of data. For
example, a parallel web server receives requests for a large number of
data files. Can you extend the idea of adaptive scheduling to partition
data among parallel server machines?

6.11 References

[1] F. Allen, M. Burke, R. Cytron, J. Ferrante, W. Hsieh, and V. Sarkar. A framework for
determining useful parallelism. In Proceedings of the 1968 ACM International Confer-
ence on Supercomputing, 207-215, St. Malo, France, July 1988.

[2] R. Allen, D. Callahan and K. Kennedy. Automatic decomposition of scientific programs
for parallel execution. In Conf. Record of the Fourteenth ACM Symposium on Principles
of Programming Languages, Munich, Germany, January 1987.

[3] J. R. Allen and K. Kennedy. Automatic loop interchange. In Proceedings of the SIG-
PLAN ’84 Symposium on Compiler Construction, Montreal, Canada, June 1984.

[4] S. Amarasinghe, J. Anderson, M. Lam, and C.-W. Tseng. An overview of the SUIF com-
piler for scalable parallel machines. In Proceedings of the Seventh SIAM Conference on
Parallel Processing for Scientific Computing, San Francisco, CA, February 1995.

[5] U. Banerjee. Unimodular transformations of double loops. In A. Nicolau and D. Gelern-
ter and T. Gross and D. Padua, editors, Advances in Languages and Compilers for Par-
allel Computing. MIT Press, August 1990.

[6] D. Callahan, A Global Approach to the Detection of Parallelism, Ph.D. thesis, Rice Uni-
versity, Department of Computer Science, Houston, TX, March 1987.

[7] R. Cytron. Compile-time Scheduling and Optimization for Asynchronous Machines.
Ph.D. thesis, Dept.of Computer Science, University of Illinois at Urbana-Champaign,
October 1984.

[8] R.Cytron. Doacross: Beyond vectorization for multiprocessors. In Proceedings of the
1986 International Conference on Parallel Processing, St. Charles, IL, August 1986.

[9] R. Cytron and J. Ferrante. What’s in a name? or the value of renaming for parallelism
detection and storage allocation.

[10] R. Eigenmann, J. Hoeflinger, Z. Li, andD.Padua. Experience in the automatic parallel-
ization of four Perfect benchmark programs. In U.Banerjee, D.Gelernter, A.Nicolau,
and D.Padua, editors, Languages and Compilers for Parallel Computing, Fourth Inter-
national Workshop, Santa Clara, CA, August 1991. Springer-Verlag.

Creating Coarse-Grained Parallelism

370 ADVANCED COMPILING FOR HIGH PERFORMANCE

[11] G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for array contrac-
tion. In Proceedings of the Fifth Workshop on Languages and Compilers for Parallel
Computing, New Haven, CT, August 1992.

[12] A. Goldberg and R. Paige. Stream processing. In Conference Record of the 1984 ACM
Symposium on Lisp and Functional Programming, 228–234, August 1984.

[13] D.-C. Ju, C.-L. Wu, and P. Carini. The classification, fusion, and parallelization of array
language primitives. IEEE Transactions on Parallel and Distributed Systems 5(10):1113
–1120, October 1994.

[14] K. Kennedy and K. McKinley. Optimizing for parallelism and data locality'. In Proceed-
ings of the 1992 ACM International Conference on Supercomputing, 323-334, Washing-
ton, DC, July 1992.

[15] K. Kennedy and K. McKinley. Maximizing loop parallelism and improving data locality
via loop fusion and distribution. In Languages and Compilers for Parallel Computing,
(U.~Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors), Lecture Notes in Com-
puter Science, Number 768, Springer--Verlag, Berlin, (1993), pages~301-320.

[16] K. Kennedy and K. McKinley. Typed fusion with applications to parallel and sequential
code generation. Technical Report CRPC-TR94646, Center for Research on Parallel
Computation, Rice University, 1994.

[17] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs and com-
piler optimizations. In Conference Record of the Eighth Annual ACM Symposium on
the Principles of Programming Languages, Williamsburg, VA, January 1981.

[18] L. Lamport. The parallel execution of DO loops. Communications of the ACM,
17(2):83–93, February 1974.

[19] Z. Li. Array privatization for parallel execution of loops. In Proceedings of the 1992
ACM International Conference on Supercomputing, Washington, DC, July 1992.

[20] D. Loveman. Program improvement by source-to-source transformations. Journal of the
ACM, 17(2):121–145, January 1977.

[21] K. S. McKinley. Automatic and Interactive Parallelization. Ph.D. thesis, Dept.of Com-
puter Science, Rice University, April 1992.

[22] Y. Muraoka. Parallelism Exposure and Exploitation in Programs. Ph.D. thesis, Dept. of
Computer Science, University of Illinois at Urbana-Champaign, February 1971. Report
No. 71-424.

[23] C. D. Polychronopoulos. Parallel Programming and Compilers. Kluwer Academic Pub-
lishers, Norwell, MA, 1988.

[24] C. D.Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practical scheduling
scheme for parallel supercomputers. IEEE Transactions on Computers 36(12):1425–
1439, 1987.

[25] M.E.Wolf and M.Lam.A loop transformation theory and an algorithm to maximize par-
allelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452 –471,Octo-
ber 1991.

[26] M. J. Wolfe. Loop skewing: The wavefront method revisited. International Journal of
Parallel Programming 15(4):279 –293, August 1986.

References

Chapter Draft of February 8, 2001 371

[27] M. J. Wolfe. Advanced loop interchanging. In Proceedings of the 1986 International
Conference on Parallel Processing, St. Charles, IL, August 1986.

[28] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cam-
bridge, MA, 1989.

[29] M. J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
Redwood City, CA, 1996.

Creating Coarse-Grained Parallelism

372 ADVANCED COMPILING FOR HIGH PERFORMANCE

Introduction

Chapter Draft of February 8, 2001 373

CHAPTER 7 Control Dependence

7.1 Introduction

To this point in the book, we have focused on transformations of pro-
grams that have no control flow other than loops. In other words, we have
ignored the problems created by conditional branches. These problems
are extremely difficult to deal with because control flow creates a new
type of constraint on program transformations—one that is not handled
by data dependence.

To illustrate the execution constraints imposed by control flow, consider
the following loop:

DO 100 I = 1, N
S1 IF (A(I-1).GT. 0.0) GO TO 100
S2 A(I) = A(I) + B(I)*C
100 CONTINUE

If we consider only data dependences, we see that S1has a loop carried
dependence upon S2, due to the reference to A and no other data depen-
dences. As a result, data dependence alone would indicate that both state-

Control Dependence

374 ADVANCED COMPILING FOR HIGH PERFORMANCE

ments could be vectorized. However, since we do not know how to
vectorize an IF with a go to, we will implement that as a loop, yielding:

S2 A(1:N) = A(1:N) + B(1:N)*C
DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100
100 CONTINUE

Here the loop with the IF statement must come after the vector statement
because of the dependence from S2 to S1 in the original code.

It is easy to see that this code is not correct. In the original version, state-
ment S2 executes only on iterations where A(I-1) is greater than zero;
in the transformed version, the statement executes unconditionally. Obvi-
ously we have missed some constraint that would prevent us from inter-
changing the order of S1 and S2. Let us examine this issue by attempting
to determine what would be needed to prevent this erroneous transforma-
tion. According to Theorem 2.8, statements can be vectorized so long as
they are not part of a cycle in the dependence graph. Therefore, we must
have omitted a dependence from S1 to S2. That dependence—a control
dependence—arises because S2 is conditionally executed depending on
the outcome of S1.

In this chapter we will develop the notion of control dependence and
extend the results of previous chapters to programs that include condi-
tional control. The chapter also presents mechanisms for computing and
handling control dependences.

Basically there are two principal strategies for dealing with control. The
first is to eliminate control dependences by converting them to data
dependences. This is the strategy that was generally adopted for auto-
matic vectorization. The mechanism for accomplishing this transforma-
tion, known as if conversion, will be discussed in the next section.

The second strategy is to deal with control dependence as an extension of
data dependence and to include control dependence edges in the depen-
dence graph. This strategy, which has been adopted for automatic paral-
lelization, primarily because it leads to simpler code, is described in
Section 7.3. Although this strategy attempts to avoid systematic if con-
version, we will see that situations arise requiring an analogue of if con-
version to generate correct code.

If Conversion

Chapter Draft of February 8, 2001 375

7.2 If Conversion

The problem described in the introductory section becomes much easier
to deal with if we rewrite the example problem without the use of a GOTO:

DO I = 1, N
IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I)*C

ENDDO

In this form, the conditional guard can be viewed as another input to the
statement, making the recurrence obvious. If we look at a slightly more
complicated example:

DO 100 I = 1, N
S1 IF (A(I-1).GT. 0.0) GO TO 100
S2 A(I) = A(I) + B(I) * C
S3 B(I) = B(I) + A(I)
100 CONTINUE

Once again, it is fairly difficult to tell whether anything can be done to
vectorize either S2 or S3 in this example. But if we convert the example
to conditional assignment statements:

DO 100 I = 1, N
S2 IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I) * C
S3 IF (A(I-1).LE. 0.0) B(I) = B(I) + A(I)
100 CONTINUE

an analysis of the data dependences tells us that the second statement can
be vectorized. We will rewrite the example in vectorized form using the
Fortran 90 WHERE statement:

DO 100 I = 1, N
S2 IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I) * C
100 CONTINUE
S3 WHERE (A(0:N-1).LE. 0.0) B(1:N) = B(1:N) + A(1:N)

Given the simplicity and clarity introduced by the transformation from
branches to conditional execution, a natural question to ask is whether
this transformation can be generalized to apply to all forms of statements
and program constructs. In other words, can control dependence be con-
verted into data dependence by converting statements to a guarded form
where the conditionals controlling a statement’s execution are considered
as inputs to the statement? As this chapter will demonstrate, the answer is
“yes”. The resulting transformation, known as if conversion, is widely
used in vectorizing compilers. If conversion provides a theoretically ele-
gant method for handling control dependences by converting all such

Control Dependence

376 ADVANCED COMPILING FOR HIGH PERFORMANCE

dependences into data dependences, necessitating only one form of
dependence.

7.2.1 Definition

Section 7.1 introduced the concept of if conversion with a simple exam-
ple. Succinctly stated, if conversion is the process of removing all
branches from a program. Of course, branches cannot simply be removed
without replacing them with something else, if correct execution is to be
maintained. If conversion assumes a target notation of guarded execution,
in which every statement implicitly contains a logical expression control-
ling its execution. The statement is executed only if its guard evaluates to
true.

To illustrate guarded execution, consider again the first example in this
chapter, but without the loop:

S1 IF (A(I-1).GT. 0.0) GO TO 100
S2 A(I) = A(I) + B(I)*C
100 CONTINUE

Expressed in guarded notation, with branches removed, this fragment
becomes

S1 M = A(I-1).GT. 0.0
S2 IF (.NOT. M) A(I) = A(I) + B(I)*C
100 CONTINUE

The guard on the second statement (.NOT. M) is most naturally expressed
in FORTRAN as an IF statement. When no guard is explicitly stated, the
assumption is that the guard is true and the statement is always executed.

The goal of if conversion is to remove all branches from a program by
replacing the statements in the program with an equivalent set of guarded
statements. Given the Fortran 90 WHERE statement, if conversion is obvi-
ously valuable in vectorization, since guarded execution translates natu-
rally into WHERE statements so long as data dependences permit.

While if conversion in the simple example above is a fairly straightfor-
ward process, it can become extremely complex. In order to present the
process clearly, it is useful to categorize branches into different classifica-
tions.

If Conversion

Chapter Draft of February 8, 2001 377

7.2.2 Branch Classification

For the purpose of analysis, every branch can be categorized as one of
three types:

1. a forward branch transfers control to a target that occurs after the
branch but at the same loop nesting level;

2. a backward branch transfers control to a statement occurring lexically
before the branch but at the same level of nesting; and

3. an exit branch terminates one or more loops by transferring control to
a target outside a loop nest.

The first example in this chapter illustrates a forward branch. Backward
branches are similar, but going backward to implicitly create a loop
rather than forward. Backward branches are often used in FORTRAN 66
and Fortran 77 to encode while loops, as in

10 I = NEXT(I)
A(I) = A(I) + B(I)
IF (I.LT.1000) GO TO 10

The defining property of exit branches, and that property which most
determines how they are removed, is the fact that the branch exits a loop.
It does not matter in which direction the branch exits the loop (that is,
whether the branch exits in a forward direction or in a backward direc-
tion). Exit branches are often used in “search loops”, such as the follow-
ing:

DO I = 1, N
IF (ABS(A(I)-B(I)).LE.DEL) GO TO 200

ENDDO
...

200 CONTINUE

In this “search loop”, the exit occurs when a pair of values from the
arrays A and B is found to be sufficiently close together in value.

The one category not covered in this taxonomy are branches that jump
into loops. While technically illegal in FORTRAN, they can arise in C and
other languages. These branches will be ignored for the moment; later
sections will show how to use the transformations developed for forward
branches, backward branches, and exit branches to remove jumps into
loops.

If conversion is actually a composition of two different transformations:

Control Dependence

378 ADVANCED COMPILING FOR HIGH PERFORMANCE

1. Branch relocation moves branches out of loops until the branch and its
target are nested in the same number of DO-loops—the procedure
converts each exit branch into either a forward branch or a backward
branch.

2. Branch removal eliminates forward branches by computing guard
expressions for action statements under their control and conditioning
execution on those expressions.

The following sections present these two techniques in more detail.

7.2.3 Forward Branches

The simplest transformation in if conversion is branch removal, which
eliminates forward branches within a loop by inserting the appropriate
guards. The basic idea behind branch removal is to sweep through a pro-
gram, maintaining a Boolean expression that represents the logical condi-
tions that must be true for the current statement to be executed. When a
new branch is encountered, its controlling expression is conjoined into
the current logical guard. When the target of a branch is encountered, its
controlling expression is disjoined into the current logical guard.

Earlier examples have illustrated very simple branch removal, involving
only one goto. Branch removal in general can be quite complex, as the
following example shows.

DO 100 I = 1,N
C1 IF (A(I).GT.10) GO TO 60
20 A(I) = A(I) + 10
C2 IF (B(I).GT.10) GO TO 80
40 B(I) = B(I) + 10
60 A(I) = B(I) + A(I)
80 B(I) = A(I) - 5

ENDDO

In order to perform branch removal on this loop, it is necessary to deter-
mine the guarding condition that holds at every assignment statement.
Statement 20 is clearly executed if and only if the conditional in C1 is
false. Similarly, statement 40 is executed if and only if both the condi-
tionals from C1 and C2 are false. Statements 60 and 80 are not so simple.
Statement 60 can be reached by direct fall-through (C1 and C2 both false)
or by transfer from statement C1 (C1 true). Statement 80 can be reached
by fall-through from 60 (hence under the same conditions) or by direct
transfer from C2 (C1 false and C2 true). Correct branch removal should
thus produce the following:

If Conversion

Chapter Draft of February 8, 2001 379

DO 100 I = 1,N
m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10
IF(.NOT.m1) m2 = B(I).GT.10

40 IF(.NOT.m1.AND..NOT.m2)
B(I) = B(I) + 10

60 IF(.NOT.m1.AND..NOT.m2.OR.m1)
A(I) = B(I) + A(I)

80 IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1
.AND.m2)

B(I) = A(I) - 5
ENDDO

On first glance, the guarding conditions at the end of the loop appear
complicated. However, when the conditions are simplified symbolically,
the control flow becomes more apparent and much less complex. State-
ment 80 is in fact unconditionally executed, and statement 60 is executed
if the first branch is taken or if the second branch is not. After simplifica-
tion, the loop looks like this:

DO 100 I = 1,N
m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10
IF(.NOT.m1) m2 = B(I).GT.10

40 IF(.NOT.m1.AND..NOT.m2)
B(I) = B(I) + 10

60 IF(m1.OR..NOT.m2)
A(I) = B(I) + A(I)

80 B(I) = A(I) - 5
ENDDO

This form vectorizes trivially, once data dependences are calculated and
scalar expansion (Section 5.3 on page 226) is applied. The result repre-
sented in Fortran 90 WHERE statements:

m1(1:N) = A(1:N).GT.10
20 WHERE(.NOT.m1(1:N)) A(1:N) = A(1:N) + 10

WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10
40 WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N))

B(1:N) = B(1:N) + 10
60 WHERE(m1(1:N).OR..NOT.m2(1:N))

A(1:N) = B(1:N) + A(1:N)
80 B(1:N) = A(1:N) - 5

There are a couple of points worth noting in this example. First, a close
examination of the transformed loop seems to indicate that the uninitial-
ized values of the variable m2 can be used in statements 40 and 60. That
is, in fact, true; however, the uninitialized values cannot have any adverse

Control Dependence

380 ADVANCED COMPILING FOR HIGH PERFORMANCE

effect. On any specific iteration, m2 is not set when m1 is true. Statement
40 can be executed only when m1 is false and m2 is true. Since m1 being
false forces m2 to be correct set, there is no possibility of statement 40
being executed incorrectly due to an uninitialized setting of m2. Simi-
larly, statement 60 is executed when m1 is true or m2 is false. If m1 is
true, m2 is not set, but the statement should be executed regardless of the
value of m2. If m1 is false, so that m2 alone controls the statement’s exe-
cution, m2 is correctly initialized.

The second point involves the complexity of the Boolean guards. Obvi-
ously some form of Boolean simplification is important to obtain reason-
able code. Simplification will be discussed in Section 7.2.7 on page 394.

FIGURE 7.1 Forward branch removal.

procedure remove_branches(B)

// Input: a single loop with a list of body statements B
// Output: A loop without conditional transfers.

current := “.TRUE.”;
for each labeled statement S in B do cond(S) := “.FALSE.”;

for each statement S in B in order do begin
if S is labelled

then current := Simplify (current || “.OR.” || cond(S));
if S is a conditional transfer: IF(C) GO TO L
then begin

let SL be the statement labelled by L
let m be a new compiler-generated logical variable,

initialized to true;
convert it to “IF(current) m := C”;
cond(SL) := cond(SL) || “.OR.” || current || “.AND.m”)
current := current || “.AND..NOT.m”

end
else if S is of the form: IF(C)S, where S is not a transfer

then convert it to “IF(C.AND.current) S”;
else

convert S to “IF(current)S”;
end remove_branches

Figure 7.1 provides a more formal specification of forward branch
removal. It does not discuss block IF-THEN-ELSEs, under the assumption
that those are easily removed, and it assumes that only labeled statements

If Conversion

Chapter Draft of February 8, 2001 381

can be reached with a branch. In the notation used in the algorithm, con-
ditions are strings in Fortran 90 notation. This is to ensure that the reader
keeps in mind that the conditions are ones that will be used to modify the
program at compile time by generating textual code after simplification.

Correctness We now turn to a discussion of the correctness of branch
removal. Recall that in Section on page 65, we defined a transformed
program to be equivalent to an original program if (1) the value of output
variables in both programs is identical at the point of output, (2) the out-
put statements are executed in the same order, and (3) the transformed
program introduces no error exceptions that would not have occurred in
the original program. Under this definition. we must establish three
things to show correctnes

1. the guard for statement instance in the new program is true if and only
if the corresponding statement in the old program is executed, unless
the statement has been introduced to capture a guard variable value,
which must be executed at the point the conditional expression would
have been evaluated;

2. the order of execution of statements in the new program with true
guards is the same as the order of execution of those statements in the
original program.

3. Any expression with side effects is evaluated exactly as many times in
the new program as in the old program.

The first of these conditions can be established by an induction on state-
ment order. Our goal is to establish that the guard at each statement
expresses exactly the set of conditions under which the statement in the
original program would be executed. At the first statement, the empty
guard is trivially correct. Suppose the guards at all previous statements
are correct. We must show that the guards at the current statement are
correct. The guard at the current statement is formed by taking the dis-
junction of the terms attached to it by virtue of previous branches—
cond(SL)—and the current condition passed by the previous statement.
This reflects the fact that control may reach this statement either by a
branch or from the previous statement.

Each of the conditions attached to the statement due to branches must be
correct because each such condition is the conjunction (and) of the cur-
rent condition for that branch, which is correct by induction, and the vari-
able that is used to capture the value of the conditional expression
controlling the branch. Therefore, cond(SL), the disjunction of all such

Control Dependence

382 ADVANCED COMPILING FOR HIGH PERFORMANCE

conditions is true if and only if some statement for which the guard con-
dition is true branches to SL.

Thus we need only show that the fall-through current condition is correct.
By induction the current condition at the previous statement is correct.
Therefore, unless that statement is a conditional branch, the current con-
dition is the same at the current statement and must also be correct. If it is
a conditional branch, then the fall-through current condition is simply the
conjunction of the current condition and the negation of the variable that
captures the condition controlling the branch. Thus the current condition
passed to the current statement from the previous statement is the con-
junction of the current condition at that statement and the negation of the
variable that captures the value of the expression controlling the branch.
Thus that current condition is true if and only if the previous statement is
executed and the branch is not taken, which is clearly correct.

The second condition above is trivially true, because no reordering of
statements is done. The third condition is established by the first plus the
observation that the conditions controlling each conditional branch are
each evaluated once at the point where the branch would have been
located. All other statements are executed exactly in the same position
and iteration that they would be in the original program.

Note that unconditional forward branches can be handled in the above
code by simply treating them as conditional branches with constant con-
dition true.

7.2.4 Exit Branches

Exit branches are more complicated to eliminate than are forward
branches. The reason is that forward branches only affect the guarding
condition of statements following the branch; exit branches affect both
statements that follow and statements that precede the branch. Consider
the following simple fragment:

DO I = 1, N
S1
IF (p(I)) GO TO 100
S2

ENDDO
100 S3

If the first loop iteration on which p(I) is true is I0, then execution of the
loop is effectively terminated at that point. When the loop is converted to
guarded execution, the DO loop proper will execute all iterations, includ-

If Conversion

Chapter Draft of February 8, 2001 383

ing the one for I0 and beyond, since there cannot be a branch to prema-
turely terminate the loop. In this form, S2 will not be executed for
iterations i through N and S1 will not be executed for iterations i+1
through N. The fact that exit branches affect all statements within a loop
makes their elimination more complicated than simple forward branches.

Since the most complicated aspect of exit branches is the fact that they
terminate a loop, eliminating that property is the key to obtaining guarded
execution. If the branch can be relocated outside of all loops that it termi-
nates, the resulting branch becomes a simple forward branch. To illustrate
how this relocation can be performed, consider the following example:

DO J = 1, M
DO I = 1, N

A(I,J) = B(I,J) + X
S IF (L(I,J)) GO TO 200

C(I,J) = A(I,J) + Y
ENDDO
D(J) = A(N,J)

200 F(J) = C(10,J)
ENDDO

The branch of interest, statement S, exits one loop. If S can be converted
from an exit branch to a forward branch, a transformation that yields
something similar to the following must be carried out:

DO J = 1, M
DO I = 1, N

IF (C1) A(I,J) = B(I,J) + X
Sa Code to set C1 and C2

IF (C2) C(I,J) = A(I,J) + Y
ENDDO

Sb IF (.NOT.C1.OR..NOT.C2) GO TO 200
D(J) = A(N,J)

200 F(J) = C(10,J)
ENDDO

In this form, the original exit branch has been moved out of the loop to
become statement Sb. It now is a simple forward branch, which can be
removed using the algorithm listed in Figure 7.1. The problem, then is to
find the proper conditions to guard the statements inside the inner loop.

Simply stated, the statements in the inner loop are going to be executed
only if the exit branch was not taken on any previous iteration. In other
words, once an iteration is executed on which the condition guarding the
exit branch is true, no future iterations are executed. Thus, we need to
iteratively compute a variable that becomes false on any iteration on

Control Dependence

384 ADVANCED COMPILING FOR HIGH PERFORMANCE

which the guard on the exit branch becomes true and stays false after that.
That variable is the correct guard for all other statements in the loop.
Such a variable is trivial to compute—it is simply the “and” of the nega-
tion of the guard on the exit branch for all previous iterations:

(EQ 7.1)

When this transformation is applied to the previous example, the follow-
ing code results:

DO J = 1, M
lm = .TRUE.
DO I = 1, N

IF (lm) A(I,J) = B(I,J) + X
IF (lm) m1 = .NOT. L(I,J)
lm = lm .AND. m1
IF (lm) C(I,J) = A(I,J) + Y

ENDDO
m2 = lm
IF (m2) D(J) = A(N,J)

200 F(J) = C(10,J)
ENDDO

Note that the variable m1 is introduced to ensure that the evaluation of the
condition L(I,K) which might have side effects, is done only if the origi-
inal program would have performed the evaluation. Forward substituting
the variable m2 and expanding lm to a two-dimensional array yields:

DO J = 1, M
lm(0,J) = .TRUE.
DO I = 1, N

IF (lm(I-1,J)) A(I,J) = B(I,J) + X
IF (lm(I-1,J)) m1 = .NOT.L(I,J)
lm(I,J) = lm(I-1,J) .AND. m1
IF (lm(I,J)) C(I,J) = A(I,J) + Y

ENDDO
IF (lm(N,J)) D(J) = A(N,J)

200 F(J) = C(10,J)
ENDDO

When codegen is applied to this fragment, the following vectorized loops
result:

DO J = 1, M
lm(0,J) = .TRUE.
DO I = 1, N

IF (lm(I-1,J)) m1 =.NOT.L(I,J)

lm L k J,()¬
k 1=

I

∩=

If Conversion

Chapter Draft of February 8, 2001 385

lm(I,J) = lm(I-1,J) .AND. m1
ENDDO

ENDDO
WHERE(lm(0:N-1,1:M)) A(1:N,1:M)=B(1:N,1:M)+X
WHERE(lm(0:N-1,1:M)) C(1:N,1:M)=A(1:N,1:M)+Y
WHERE(lm(N,1:M)) D(1:M) = A(N,1:M)

200 F(1:M) = C(10,1:M)

Such an aggressive approach produces four vectorized loops, which may
appear to be extremely efficient. However, it is not the most efficient
result possible. Instead of expanding lm in both loops, a more efficacious
approach expands it only in the inner loop:

DO J = 1, M
lm(0) = .TRUE.
DO I = 1, N

IF (lm(I-1)) A(I,J) = B(I,J) + X
IF (lm(I-1)) m1 =.NOT.L(I,J)
lm(I) = lm(I-1) .AND. m1
IF (lm(I)) C(I,J) = A(I,J) + Y

ENDDO
IF (lm(N)) D(J) = A(N,J)

200 F(J) = C(10,J)
ENDDO

After vectorization this becomes:

DO J = 1, M
lm(0) = .TRUE.
DO I = 1, N

IF (lm(I-1)) m1 =.NOT.L(I,J)
lm(I) = lm(I-1) .AND. m1

ENDDO
WHERE (lm(0:N-1)) A(1:N,J) = B(1:N,J) + X
WHERE (lm(1:N)) C(1:N,J) = A(1:N,J) + Y
IF (lm(N)) D(J) = A(N,J)

200 F(J) = C(10,J)
ENDDO

An intelligent reduction recognition algorithm will realize that the
remaining I loop is actually a “FirstTrue” reduction—that is, a function
that finds index of the first true element of a vector. On a machine with
the appropriate hardware (which is typically very simple and easy to
add), the following code is appropriate:

DO J = 1, M
n = FirstTrueX(L(1:N,J)) - 1
A(1:n+1,J) = B(1:n+1,J) + X
C(1:n,J) = A(1:n,J) + Y

Control Dependence

386 ADVANCED COMPILING FOR HIGH PERFORMANCE

IF (n.GT.N) D(J) = A(N,J)
200 F(J) = C(10,J)

ENDDO

where the built-in vector function FirstTrueX returns the index in the
logical parameter array of the first .TRUE. value or, if there are no true
values, the length of the parameter array plus 1. This code is much more
effective on most vector machines than the two dimensional vectorized
version. The reason is that the two dimension form works on varying
length vectors—i.e., the WHERE statements operate over the entire length
of the I loop, while in actuality, the vectors can be scheduled densely
(that is, executed unconditionally) over the loop until the point where the
exit branch is taken, then skipped entirely after that.

FIGURE 7.2 Branch relocation algorithm.

procedure relocate_branches(l)

// l is the DO statement for the loop
// lg is the loop guard expression that will be used to guard each
// statement within the loop.

S1: for each DO statement d in the loop l do
relocate_branches(d);

set lg = null;

S2: for each exit branch “IF(p) GO TO S” do begin
create a new loop exit flag x;
insert the assignment “x = .TRUE.” prior to l;
if lg= null then lg := “x”; else lg := lg || “.AND.x”;
insert the branch “IF (.NOT.x) GO TO S” after the loop;
create a new Boolean varaible m and replace the exit branch

by the pair of statements
“m = .NOT.p” followed by “x = x.AND.m”;

end

for each non-DO statement s in the loop l do
if guard(s) = null begin

if the variable assigned in s is not a flag in lg
then guard(s) := lg;

end
else guard(s) := guard(s) .AND.lg

end relocate_branches

If Conversion

Chapter Draft of February 8, 2001 387

The basic procedure used in branch relocation, as in forward branch
elimination, is to compute the precise Boolean guard expression that gov-
erns the execution of each statement in the loop from which the exit
branch is to be eliminated. The algorithm is given in Figure 7.2. Note that
the computation of the exit branch x in the loop is left unguarded so that
when it is expanded to a vector or an array, the result will be correct, as in
the examples. This cannot cause a difference in meaning because the stat-
ment itself is designed to have no side effects.

The procedure relocate_branches eliminates exit branches both within
the loop on which it is called and also on any contained loops. The key to
interior elimination is the recursive call in statement S1, where the proce-
dure removes exit branches from contained loops. This recursive call
must be executed before the body of code starting at statement S2. The
reason is that an interior branch that exits multiple loops may exit the
loop l as well, and thus must be removed by the body of code at statement
S2.

Correctness For the algorithm relocate_branches from Figure 7.2 to be
useful, it must be the case that 1) an application of the algorithm to a loop
does not change the meaning of the program—that is, it does not reorder,
add, or delete statement instances—and 2) the algorithm eliminates all
exit branches from a loop on which it is called.

First we establish that relocate_branches removes all exit branches,
which is the simpler clause. By definition, the loop at statement S2
locates all exit branches within the loop proper and replaces those
branches with assignments. The new branches that are created by the
algorithm are created outside the examined loop, so they cannot be exit
branches for that loop. The recursive call to relocate_branches has
removed all exit branches within inner loops by simple induction. As a
result, there can be no exit branches within any loop on which
relocate_branches has been called.

Establishing that the meaning is preserved requires more effort. Since no
statements are added or deleted within the loop, establishing correctness
requires showing that statements within the loop are executed in the same
order up until the time the exit branch would have been taken and not
executed after that. On any iteration on which the condition controlling
an exit branch becomes true, the guard variable x corresponding to that
branch is set to false at the exact point where the exit branch was origi-
nally located. Since the loop guard expression is simply the conjunction
of the exit guard variables corresponding to exit branches in the loop, the

Control Dependence

388 ADVANCED COMPILING FOR HIGH PERFORMANCE

loop guard expression becomes false as soon as any variable becomes
false and it stays that way. Because the loop guard expression is con-
joined to the guard of every statement in the loop body, the guard expres-
sion of every statement becomes false at the same point, so no more
statements within the loop will be executed. Since the statements within
the loop are all executed in the same order, and conditions within exit
branches are evaluated at exactly the points where they would be evalu-
ated in the original program, the statement execution order within the
loop is preserved and exactly the same statements are executed.

There remains the issue of whether the conditional branches at the end of
the loop are correct. Note that only one exit branch guard variable can be
set to false, because as soon as one is set, none of the others can be
assigned due to the loop guard expression being false. Therefore, only
one of the conditional branches immediately after the loop can be exe-
cuted. If none of the conditions was true then execution will fall through
to the statement that was originally the first one after the loop. This com-
pletes the argument for correctness.

This argument for correctness does not apply to the value of the induction
variable that controls the exited loop—if the exit branch is taken, the loop
induction variable will contain a different value after application of
relocate_branches. To handle this situation correctly (which is necessary,
since exit branches are often used to terminate search loops with the loop
variable holding the located value), the loop induction variable I can be
replaced by a compiler generated variable i in the loop control expres-
sions. Then the statement that replaces the loop guard:

IF(lg) x =.NOT.p

could be replaced by the block conditional

IF(lg) THEN
x =.NOT.p
I = i

ENDIF

so that the last value of the loop induction variable is captured. This also
requires that the value be captured after all the moved branches inserted
immediately after the loop by relocate_branches.

7.2.5 Backward Branches

So far, two types of forward branches have been covered—those that exit
loops and those that do not. The one remaining possibility—those that

If Conversion

Chapter Draft of February 8, 2001 389

enter loops—is essentially forbidden by the FORTRAN standard. As a
result, it might seem that Section 7.2.4 completes handling of all forward
branches and that the last remaining type of branch to be covered is back-
ward branches. However, backward branches complicate the handling of
forward branches, by creating the remaining possibility of forward
branches into loops. In general, backward branches are complicated for at
least two reasons:

1. They create implicit loops. Backward control flow is the basic element
of a loop, and loops cannot be simulated by simple guards (as simple
forward branches can). Removing backward branches requires some
other mechanism for representing backward control flow.

2. They complicate the removal of forward branches by creating loops
into which forward branches may jump. The following example illus-
trates this complication:

IF (P) GO TO 200
...

100 S1
...

200 S2
...
IF (Q) GO TO 100

Applying the forward if conversion algorithm in Figure 7.1 on
page 380 would produce

m1 = .NOT. P
...

100 IF (m1) S1
...

200 S2
...
IF (Q) GO TO 100

If the forward branch to 200 is taken followed by the backward branch
to 100, the guard variable m1 will be .FALSE., thereby preventing exe-
cution of statements until 200 is reached again. However, those state-
ments would be executed in the original program.

Because of these complications, backwards branches cannot be simply
handled in isolation. Instead, they must be transformed in conjunction
with the forward branches that impinge upon their control flow. The sim-
plest approach is to isolate backward branches and leave all code under
their control (known as implicitly iterative regions) untouched. Such an
approach prevents removal of forward branches into an implicitly itera-
tive region, a severe limitation. As a result, this approach is probably too

Control Dependence

390 ADVANCED COMPILING FOR HIGH PERFORMANCE

simple to be effective in a production compiler that is focused on Fortran
77.

In a 1983 paper, Allen, Kennedy, Porterfield, and Warren demonstrated
how to eliminate all backward branches from a Fortran program through
a variant of if conversion [1]. Although the details of this procedure are
beyond the scope of this book, we will present the basic idea here.

The key problem in the previous example is the guard for statement S1.
To be correct, that guard must reflect two facts:

1. S1 is executed on the first pass through the code only if P is false.

2. S1 is always executed when the backward branch is taken.

Because the first pass through the code is singled out, it is clear that one
set of conditions must be used to guard the first pass through an implic-
itly-iterative region and a different set used to guard subsequent passes.
One way to do this is to introduce a backward branch guard bb, which is
true when its associated backward branch is taken. Illustrating in the pre-
vious example:

m = P
...
bb = .FALSE.

100 IF (.NOT.m .OR (m.AND.bb)) S1
...

200 S2
...
IF (Q) THEN

bb = .TRUE.
GO TO 100

ENDIF

The backward branch variable bb becomes true only when the backward
branch is taken. S1 is executed whenever

1. the forward branch is not taken, so that m is .FALSE.

2. the backward branch is taken. If the forward branch was not taken, the
first condition will hold regardless of how bb is set. If the forward
branch was taken, both bb and m will be .TRUE. causing the guarding
condition to be true.

In general, there are two ways that the target of a backward branch can be
reached from the start of a program:

If Conversion

Chapter Draft of February 8, 2001 391

1. It can fall through from the previous statement, in which case the con-
dition for execution is encoded by the current condition from the pre-
decessor, or

2. It can branch around the statement and then reach it via a backward
branch, in which case the correct guard is the logical conjunction of
the condition for branching around and the condition for branching
back.

Thus, if the current condition just prior to target y is denoted by cc, the
branch condition denoted by m and the backward branch condition
denoted by bb, the guard at y should be

cc.OR.(m1.AND.bb)

This condition is identical to that presented in the example.

The paper by Allen, Kennedy, Porterfield, and Warren goes on to discuss
how to deal with forward branches into implicitly-iterative regions
caused by backward branches [1]. It also shows how to convert implicitly
iterative regions to Fortran 90 WHILE loops. However, modern program-
ming practice discourages the use of GOTO statements, particularly for the
creation of implicitly iterative regions. Furthermore, Fortran 90 includes
WHILE loops, which obviate the need for many implicitly iterative con-
structs. For these reasons, this book will henceforth assume that the only
control flow constructs in programs presented to the compiler are explicit
loops and forward unconditional or conditional branches. This assump-
tion significantly simplifies the compiler’s task.

7.2.6 Complete Forward Branch Removal

We are now ready to present a complete forward branch removal algo-
rithm. This procedure, which is given in detail in Figure 7.3, processes
the statements in its input statement list in order of appearance in the list
of statements presented to it and maintains the current condition, which
is to be used to guard the statement currently being processed.

At each statement, depending on the type of statement the algorithm will
perform the following steps:

1. If the statement is a branch target, the current condition must be com-
puted in simplified form. To do that, it must combine the set of condi-
tions associated with branches to that target with the current condition
passed from the lexical predecessor of the statement. This is done by

Control Dependence

392 ADVANCED COMPILING FOR HIGH PERFORMANCE

the simplification algorithm discussed in the next section. Processing
of the statement then proceeds to step 2 below.

2. If the current statement is of any type except DO, ENDDO, and CON-
TINUE, which if conversion leaves unguarded, the current condi-
tion—either as computed in step 1 above or inherited from the
lexically previous statement in case the current statement is not a
branch target—is conjoined to the guard for the current statement. If
the current statement is unguarded, the current condition becomes its
guard.

3. If the current statement is a DO, first invoke relocate_branches on the
loop to eliminate any exit branches it may contain. This may generate
some statements before the loop which should be guarded by the cur-
rent condition. In addition, this may cause new statements to be
inserted in the statement list after the revised loop. The branch
removal procedure is applied recursively to the body of the loop that
emerges after branch relocation.

4. If the current statement is a conditional branch, two copies of the cur-
rent condition are made. The compiler-generated variable associated
with the new condition is conjoined to the beginning of one of these
copies and the result is appended to the list associated with the branch
target statement. The negation of the variable is conjoined onto the
beginning of the other condition, which becomes the current condition
for the next statement in the program.

5. If the current statement is an unconditional branch, the current condi-
tion is appended to the list of conditions for the branch target state-
ment. The current condition for the next statement is set to empty
(false). If that statement is not a branch target, it cannot be reached.

6. Continue processing at step 1 with the next statement.

The correctness of this procedure follows directly from the correctness of
the algorithms for forward branch removal (Figure 7.1) and branch relo-
cation (Figure 7.2). along with a simple induction on the recursion. All
that remains to complete the algorithm is the simplification procedure,
which is discussed in the next section.

If Conversion

Chapter Draft of February 8, 2001 393

FIGURE 7.3 Complete forward branch removal.

procedure remove_branches (R, current)
// R is the collection of statements under consideration
// current is the current condition at the beginning of the list

for each statement S in R that is a potential branch target do
cond(S) := “.FALSE.”;

S1: for each loop l in R do relocate_branches(l);

for each statement S in R do begin
if S is a branch target then

current := Simplify (current || “.OR.” || cond(S));

case statement_type(S) in
If: begin // IF (P) GOTO L — forward

let m be a new compiler-generated logical variable,
initialized to true;

insert the assignment “IF(current) m := P”;
let SL denote the statement at label L;
cond(SL) := cond(SL) || “.OR.” || current || “.AND.m”;
current := current || “.AND..NOT.m”;
delete statement S;

end;
Goto: begin // GOTO L

let SL denote the statement at label L;
cond(SL) := cond(SL) || “.OR.” || current ;
current := “.FALSE.”;
delete statement S;

end;
Loop: begin // DO B ENDDO — a loop

remove_branches(B, current);
// Because relocate_branches was applied first, the current
// condition after the loop will be the same as before it

end;
Other: begin // All other statement types except continue

if S is of the form “IF (P) S1” then
replace it with “IF (current.AND.P) S1”;

else replace it with “IF (current) S”;
end

end case;
end

end remove_branches

Control Dependence

394 ADVANCED COMPILING FOR HIGH PERFORMANCE

7.2.7 Simplification

As has been evidenced in several of the examples presented so far, sim-
plification of statement guards is an important aspect of if conversion.
Straightforward application of the algorithms presented results in clumsy,
complex guarding conditions, and since the guards are repeatedly evalu-
ated at runtime, simplifying them as much as possible at compile time is
obviously important. Unfortunately, it is not difficult to show that Bool-
ean simplification is NP-complete. Given a Boolean simplification proce-
dure that reduces expressions to simplest terms, a general Boolean
expression will be unsatisfiable if and only if it simplifies to false. As a
result, satisfiability can be reduced to simplification, and satisfiability is
known to be NP-complete. It is also easy to show that if conversion can
produce arbitrary expressions, so there are no shortcuts available for sim-
plifying the output of conversion algorithms.

Since the Boolean simplifier is called each time a potential branch target
processed, efficiency is an important consideration. While control flow
within normal programs is rarely complex, it can be deep enough (partic-
ularly with Fortran assigned goto’s) to cause exponential simplification
times even in small programs. Note that the complexity of guard expres-
sions at a particular statement is proportional to the number of branches
that can affect the execution of that statement.

The most widely used simplification procedure, due to Quine and
McCluskey[17,15], operates in three phases:

1. It reduces the original logical expression to a disjunction of minterms,
each of which is a conjunction including every logical variable in the
original expression in either negated or non-negated form.

2. It computes a collection of prime implicants, terms that exactly repre-
sent a disjuction of minterms in the original expression but are not
contained in any other implicant. The strategy for computing impli-
cants is to combine pairs of minterms that are identical in every factor
except for a single variable that appears negated in one of the min-
terms and unnegated in the other.

3. It selects a minimal legal subset of the prime implicants, where a sub-
set is legal only if it covers the original expression. That is, the dis-
junction of a legal selection of prime implicants is true if and only if
the original Boolean expression is true.

To illustrate this process, we introduce an example that we will use
throughout this section:

If Conversion

Chapter Draft of February 8, 2001 395

DO I = 1, N
1 IF (P) GO TO 10
2 A(I) = B(I)
3 IF (Q) GO TO 20
10 C(I) = 0
20 A(I) = A(I) + C(I)

ENDDO

After if conversion with no simplification, this becomes:

DO I = 1, N
1 m1 = P
2 IF(.NOT.m1) A(I) = B(I)
3 IF(.NOT.m1) m2 = Q
10 IF((.NOT.m2.AND..NOT.m1).OR.m1) C(I) = 0
20 IF(((.NOT.m2.AND..NOT.m1).OR.m1).OR.m2) &

A(I) = A(I) + C(I)
ENDDO

Let us begin by applying the Quine-McCluskey procedure to statement
20. The first stage reduces the guard to a collection of minterms:

To find the prime implicants, we successively reduce terms. The second
and third minterms can be reduced to m1,
while the first and last minterms can be
reduced to ¬m1. In turn, these can be reduced to the single prime impli-
cant .TRUE. which represents the entire expression. Therefore, the guard
on statement 20 is empty. A similar analysis will show that the guard on
statement 10 can be reduced to a pair of prime implicants:

Unfortunately, Quine-McCluskey algorithm is known to be exponential
in the size of the original expression, making it impractical for general if
conversion. However, we will show that by redefining the simplification
problem to meet the minimal needs of if conversion, the exponential
behavior can be eliminated.

A faster algorithm can be derived by sacrificing economy of representa-
tion and instead concentrating on the real reason for simplification: the
determination of when a compiler-generated branch variable can be fac-
tored out of the current guard condition. To illustrate the difference, let us
return to our example. If we simplify the guard expressions for both state-
ment 10 and statement 20 using Quine-McCluskey, we get:

m2¬ m1¬∧〈 〉 m2 m1∧〈 〉 m2¬ m1∧〈 〉 m2 m1¬∧()∨ ∨ ∨

m2 m1∧〈 〉 m2¬ m1∧〈 〉∨
m2¬ m1¬∧〈 〉 m2 m1¬∧()∨

m2¬ m1¬∧〈 〉 m2 m1∧〈 〉 m2¬ m1∧〈 〉∨ ∨ m2¬ m1∨=

Control Dependence

396 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO I = 1, N
1 m1 = P
2 IF(.NOT.m1) A(I) = B(I)
3 IF(.NOT.m1) m2 = Q
10 IF(.NOT.m2.OR.m1) C(I) = 0
20 A(I) = A(I) + C(I)

ENDDO

Here it should be clear that the simplification of the guard on statement
20 is much more important than the simplification of the guard on state-
ment 10 because we eliminate variables from the guard expression at
statement 20, while at statement 10 we have a simpler expression in
exactly the same variables. If we decline to simplify at statement 10, we
get the slightly more complicated form:

DO I = 1, N
1 m1 = P
2 IF(.NOT.m1) A(I) = B(I)
3 IF(.NOT.m1) m2 = Q
10 IF((.NOT.m2.AND..NOT.m1).OR.m1) C(I) = 0
20 A(I) = A(I) + C(I)

ENDDO

The significant aspect of this example is the fact that variable m1 does not
simplify out of the guard until the branch target for m2 is reached, even
though the branch target for variable m1 is reached at statement 10. In
general, logical branch variables can only be simplified out of an expres-
sion in the reverse order that they are introduced by the algorithm. In
other words, the most recently introduced logical variable will simplify
out first. Thus, m1 cannot be eliminated until statement 20 (the branch tar-
get for m2) is reached. At that time, both variables can be eliminated by
simplification and the resulting statement is unguarded.

This discussion suggests that a good way to streamline simplification is
to worry only about simplifying the variable that has been most recently
introduced. That is, rather than attempting to simplify all variables in the
current condition at a given statement, the simplifier should instead con-
centrate on eliminating the last variable introduced. This form of simplifi-
cation would result in the last version of the example—the more complex
guard on statement 10 in that example illustrates the price paid for the
streamlining. The main difference is that the streamlined algorithm sim-
plifies only when it is possible to eliminate a variable from a guard and
hence eliminate an input to the guarded statement. This is the critical task
for simplification in support of if conversion.

If Conversion

Chapter Draft of February 8, 2001 397

With this observation, it is now possible to specify a fast simplification
algorithm. This algorithm will maintain conditions as a disjunction of
terms, each of which represents a conjunction of factors, where a factor is
a variable that may or may not be negated. Within a term, the factors will
appear in inverse order of introduction, so that the most recently intro-
duced variable will appear first in the term. The most recently introduced
factor is called the key factor—it contains the variable that must be sim-
plified out of the term before any other variables can be considered for
elimination.

The simplification algorithm, which is given in detail in Figure 7.4, is
designed under the assumption that it is used in the procedure
remove_branches given in Figure 7.3. Recall that remove_branches pro-
cesses the statements in order of appearance in the program and main-
tains a current condition, which is the condition that should be used to
guard the current statement.

The simplifier is called only when a potential branch target is encoun-
tered. It must combine the set of conditions associated with branches to
that target with the current condition passed from the lexical predecessor
of the statement. These conditions can be collected into a set of terms,
each of which as a key factor. If there exists a pair of terms whose key
factors contain the same variable, it must be the case that the two terms
are identical except for that factor, where the variable must be negated in
one term and not in the other. (To see this, remember that the two terms
represent distinct paths in which the last branch was on the variable in the
key factor—since the paths are distinct, the two paths must have gone in
different directions at that branch.) If such a pair can be found, the terms
are replaced in the collection by a single term consisting of either of the
original terms with the key factor stripped off. In other words, the key
factor has been eliminated. The first factor in the new term becomes the
new key factor. This step is repeated until no two terms contain the same
variable in their key factors.When this happens, the disjunction of the
collection of terms remaining is the new current condition.

To illustrate this algorithm more concretely, consider again the previous
example. At the time statement 1 is processed, the current condition is
.TRUE.,which is represented by an empty condition. After statement 1 is
processed, statement 10 has the condition “m1” on its target list and the
current condition is “.NOT.m1”. At statement 3, the condition

m2.AND..NOT.m1

is added to the list for statement 20 and

Control Dependence

398 ADVANCED COMPILING FOR HIGH PERFORMANCE

.NOT.m2.AND..NOT.m1

becomes the new current condition. As a result, as statement 10 is pro-
cessed (invoking statement 4 of the algorithm), the two conditions to con-
sider are the current condition and the condition on the target, i.e.

.NOT.m2.AND..NOT.m1 and

 m1

These two conditions are disjoined to create the new current condition.
Since the key variables are different, no further simplification is possible.
Finally, we reach statement 20, with the terms:

m2.AND..NOT.m1,

.NOT.m2.AND..NOT.m1 and

m1

The first two terms have the same variable in their key factors, and are
combined to yield:

.NOT.m1 and

m1

which have the same variable in their key factors. The result simplifies to
.TRUE., which is the desired result. Note that no simplification is per-
formed on statement 10.

The streamlined simplification algorithm for use in the forward if conver-
sion procedure is given in Figure 7.4.

At each branch target, this algorithm does an amount of work propor-
tional to the number of terms in the current condition. To see this, note
that the outer loop is executed once for each term in the current condition.
At each step of the inner loop one term of the current condition is elimi-
nated, so the total number of iterations of the inner loop over the entire
algorithm is limited by the number of terms in the original current condi-
tion as well.

Note that the number of terms in the current condition is roughly propor-
tional to the number of control flow paths past the current point in the
program—the number of edges severed by a cut through the control flow
graph at this point. If we are applying if conversion only to forward
branches, this number is bounded by the proportional to the number of

If Conversion

Chapter Draft of February 8, 2001 399

statements in the program. Thus, for the case of forward branches, the
total cost of simplification over the entire program is no worse than
O(N2), where N is the number of statements in the program.

FIGURE 7.4 Simplification.

procedure Simplify(cond)
// cond is a disjunction of terms, each term having a key variable
// seen is a set of variables that have been seen as key variables
// in the current condition
// sofar is the set of terms that have been added so far to the list
// for the output condition.
// worklist is the collection of terms currently under consideration for
// the output current condition.

seen := Ø; sofar := Ø;
worklist := the set of terms in cond;
while worklist≠Ø do begin

let t be an arbitrary element of worklist;
worklist := worklist – {t};
let k be the variable in the key factor for t;
while k ∈ seen do begin

take the term q corresponding to k from sofar;
sofar := sofar – {q};
 t := the term resulting when the key factor is stripped from q;
k := the variable in the key factor at the beginning of p;

end
sofar := sofar ∪{t};
seen := seen ∪{k}

end
return the disjunction of terms in sofar;

end Simplify

7.2.8 Iterative Dependences

Once if conversion has been applied to a program, all dependences due to
action statements, branch statements and placeholder statements are rep-
resentable as data dependences. However, those statements do not
account for all control dependences. Iterative statements can also create
control dependences, as the next example illustrates.

 20 DO I = 1, 100
 40 L = 2*I
 60 DO 100 J= 1,L

Control Dependence

400 ADVANCED COMPILING FOR HIGH PERFORMANCE

 80 A(I,J) = 0
ENDDO

ENDDO

If the assumption is made that the iterative statements do not carry any
control dependences, the example could be incorrectly vectorized as:

 20 DO I = 1, 100
 40 L = 2*I
100 CONTINUE
 80 A(1:100,1:L) = 0

The original example zeroes out a triangular section of the result array.
The vectorized example zeroes out a rectangular section. The vectorized
result fails to duplicate the variant boundary based on the outer loop. This
variance is overlooked because there are dependences that are missing
from the dependence graph. These dependences must capture the notion
that a DO statement controls the number of times a particular statement is
executed. To model this, we will introduce the notion that each statement
in a loop has an implicit iteration range input which will be represented
in the example code by inclusion in parentheses at the end. Thus,

A(I,J) (irange2)

denotes that the statement is controlled by iteration range irange2,
which is a compiler generated scalar designed to hold the iteration range
for the level-2 loop.

The iteration range variable for a given loop will be assigned at a point
corresponding to the point where the iteration range would be evaluated
in the original program. In Fortran, the loop bounds are evaluated just
prior to entering the loop, so the assignment should be nested just outside
the loop it controls. In the case of a conditional loop, such as a WHILE
loop, the control condition is evaluated on each pass through the loop;
therefore, the assignment for a WHILE loop should be nested at the same
level as the statements within the loop.

Using this strategy, the example that started this discussion would be con-
verted to:

 20 irange1 = (1,100)
DO I = irange1

 40 L = 2*I (irange1)
 60 irange2 = (1,L) (irange1)

DO J = irange2
 80 A(I,J) = 0 (irange2)

ENDDO

If Conversion

Chapter Draft of February 8, 2001 401

ENDDO

Before determining dependences, the compiler should forward substitute
any constants and loop-independent variables, using methods similar to
those in chapter 4. This would reduce the program to:

 20 DO I = 1,100
 40 L = 2*I (1,100)
 60 DO J = 1,L (1,100)
 80 A(I,J) = 0 (1,L) (1,100)

ENDDO
ENDDO

FIGURE 7.5 Iterative dependence example.

For the purposes of dependence testing, constant inputs are ignored. so
the dependence pattern constructed would be the one given in Figure 7.5
below. Note that the antidependences carried by the level-1 loop are due
to the fact that the scalar upper bound L of the inner loop is used implic-
itly by both the loop statement and the assignment at statement 80.

When the standard vectorization procedure is applied to this dependence
graph, it produces the following code:

 20 DO I = 1, 100
 40 L = 2*I
 80 A(I,1:L) = 0

ENDDO

in which the inner loop is eliminated because it is empty.

20 40

80

δ∞
δ1

-1

δ1
-1

60
δ∞

Control Dependence

402 ADVANCED COMPILING FOR HIGH PERFORMANCE

To achieve maximum performance, it is desirable to move the range com-
putations out of as many loops as possible and to forward substitute
whenever we can. This is demonstrated by the following example.

10 READ 5, L,M
DO I = 1, L

20 N = 2*I
DO J = 1, M

DO K = 1, N
30 A(I,J,K) = 0.0

ENDDO
ENDDO

ENDDO

After conversion, this becomes:

10 READ 5, L,M
irange1 = (1,L)
DO I = irange1

20 N = 2*I (irange1)
irange2 = (1,M) (irange1)
DO J = irange2

irange3 = (1,N) (irange2)
DO k = irange3

30 A(I,J,K) = 0.0 (irange3)
ENDDO

ENDDO
ENDDO

When forward substitution is performed following the methods in
Figure 4.5.1, we get the following code:

10 READ 5, L,M
DO I = 1,L

20 N = 2*I (1,L)
DO J = (1,M), (1,L)

DO k = (1,N) (1,M) (1,L)
30 A(I,J,K) = 0.0 (1,N) (1,M) (1,L)

ENDDO
ENDDO

ENDDO

The dependence graph for this example is given in Figure 7.6.

If Conversion

Chapter Draft of February 8, 2001 403

FIGURE 7.6 Iterative dependence example.

When the vectorization algorithm is applied to this example, it will pro-
duce:

READ 5, L,M
DO I = 1, L

N = 2*I
A(I,1:M,1:N) = 0.0)

ENDDO

Iterative dependences arising from while loops can be handled similarly,
except that the condition is evaluated within the loop. For example:

DO I = 1, L
M = I*2
J = 0
DO WHILE (J.LT.M)

J = J + 1
A(I,J) = 0

ENDDO
ENDDO

The conversion in this case would produce

irange1 = (1,L)
DO I = irange1

M = I*2 (range1)
J = 0 (irange1)
irange2 = (J.LT.M) (irange1)
DO jtemp = 1, nolimit WHILE (irange2)

irange2 = (J.LT.M) (irange2)
J = J + 1 (irange2)
A(I,J) = 0 (irange2)

ENDDO

10

30

δ∞δ1
-1

20

δ∞

δ∞

Control Dependence

404 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO

Because the condition irange2 is recomputed each time the inner loop is
executed, no vectorization is possible without further modifications. In an
effort to convert the inner while loop to an iterative loop, we introduce
the compiler-generation induction variable jtemp:

irange1 = L
DO I = irange1

M = I*2 (range1)
J = 0 (irange1)
irange2 = (0.LT.M) (irange1)
DO jtemp = 1, nolimit WHILE (irange2)

irange2 = (J.LT.M) (irange2)
J = J + 1 (irange2)
A(I,J) = 0 (irange2)

ENDDO
ENDDO

Now induction variable substitution and forward expression folding will
yield the following code:

DO I = 1,L
M = I*2 (1,L)
J = 0 (1,L)
irange2 = (0.LT.M) (1,L)
DO jtemp = 1, nolimit WHILE (irange2)

irange2 = ((jtemp-1).LT.M) (irange2)
A(I,jtemp-1) = 0 (irange2)

ENDDO
ENDDO

Now irange2, which controls the inner loop statements, is simply the
test (jtemp-1.LT.M), which can be folded back into the loop control
condition to produce a completely iterative loop:

DO I = 1,L
M = I*2 (1,L)
J = 0 (1,L)
irange2 = (1,M+1) (1,L)
DO jtemp = 1, M+1

A(I,jtemp-1) = 0 (irange2)
ENDDO

ENDDO

This version of the loop can vectorized in the second dimension, produc-
ing:

DO I = 1,L
M = I*2 (1,L)

If Conversion

Chapter Draft of February 8, 2001 405

DO jtemp = 1, M+1
A(I,0:M) = 0

ENDDO

In addition to illustrating how to deal with iterative dependences for
while loops, this example shows a general procedure for converting while
loops to iterative loops using transformations that are variants of those
discussed in Chapter 4.

7.2.9 IF Reconstruction

While if conversion is an extremely useful transformation, it has negative
performance implications when vectorization is not possible. Consider,
for instance, the following example:

DO 100 I = 1, N
IF (A(I) .GT. 0) GOTO 100
B(I) = A(I) * 2.0
A(I+1) = B(I) + 1

100 CONTINUE

After if conversion, the loop becomes

DO 100 I = 1, N
m1 = (A(I) .GT. 0)
IF (.NOT. m1) B(I) = A(I) * 2.0
IF (.NOT. m1) A(I+1) = B(I) + 1

100 CONTINUE

Because of a recurrence, this loop cannot be correctly vectorized. In the
untransformed example, there is only one conditional evaluation. Based
on the results of that evaluation, either a branch is taken or the two
assignments are unconditionally executed. In the transformed example,
the one conditional is again evaluated, but in addition, conditionals are
executed before each assignment. On loop iterations where the branch
would not be taken, the transformed example incurs extra overhead eval-
uating conditionals before each assignment. On loop iterations where the
branch would be taken, the transformed code executes a sequence of
branches where the original code would execute one. That is, when exe-
cuted on a typical machine (where “typical machine” is one that does not
have conditional execution but does have branches), the transformed
example would transform to assembly code roughly as follows:

DO 100 I = 1, N
m1 = (A(I) .GT. 0)
IF (m1) GOTO 10

B(I) = A(I) * 2.0
10 IF (m1) GOTO 20

Control Dependence

406 ADVANCED COMPILING FOR HIGH PERFORMANCE

A(I+1) = B(I) + 1
20 CONTINUE
100 CONTINUE

Because of the extra overhead associated with the guarded execution, if
conversion will degrade the performance of this example. To avoid this
degradation in loops that do not vectorize, we can apply an inverse trans-
formation pass known as if reconstruction. Simply stated, if reconstruc-
tion converts guarded execution into a sequence of conditional branches.

The goal of if reconstruction is to replace sections of guarded code with a
minimal set of branches that enforce the guarded execution. If the order
of statements out of codegen in a non-vectorized loop is the same as the
input order, then reconstructing a set of branches no worse than the origi-
nal loop is fairly easy. However, codegen often changes the order of state-
ments. Furthermore, programmers do not always use a minimal number
of branches when coding. Both of these mean that more intelligent meth-
ods are necessary to determine sections of code controlled by equivalent
conditions. Forward branches can be handled by a simple topological
walk through the dependence graph, maintaining like guards as long as
possible. Exit branches have the property of locking statements tightly in
a recurrence, so that regions are easily found. However, many common
recurrences that can be handled by vector hardware are often coded as
exit branches (for instance, searches for first and last elements that are
true in a conditional vector). An important part of the reconstruction pro-
cess is recognizing these recurrences, and converting them to code that
effectively uses the vector unit. This kind of recurrence recognition was
discussed in Section 7.2.4.

While if reconstruction can remove most of the inefficiencies introduced
by if conversion, the process of if conversion, Boolean simplification, and
if reconstruction represents a substantive amount of work by the com-
piler—useless work when no vectorization results. Moreover, some form
of control dependence is necessary for transformations such as scalar
expansion. These disadvantages make an alternative to if conversion
desirable. The next section explores a general control dependence notion
as an alternative to if conversion.

7.3 Control Dependence

Although if conversion neatly solves the problem of vectorization in the
presence of conditional branches, it has a number of undesirable side
effects. The most problematic of this is that it unnecessarily complicates

Control Dependence

Chapter Draft of February 8, 2001 407

the code when vectorization is not possible. It would be much more
desirable to analyze the code to determine that vectorization or parallel-
ization is possible, then convert IF statements only when it is required to
generate parallel code. Unfortunately, this cannot be done with if conver-
sion, because the transformation must be done in advance to ensure that
data dependences characterize all of the constraints that must be met to
preserve correctness.

In this section we explore a different approach in which the constraints
established by control flow are characterized by a different class of
dependence called “control dependence.” Intuitively, a control depen-
dence exists if the statement at the source of the dependence is a condi-
tional branch that can determine whether or not the statement at the sink
of the dependence is executed. In the remainder of this section we will
formalize this intuitive definition and show how it can be used in vector-
ization and parallelization.

We begin with a concrete definition of control dependence:

Definition 7.1. A statement y is said to be control dependent on
another statement x if

(1) there exists a non-trivial path from x to y such that every state-
ment z≠x in the path is postdominated by y and

(2) x is not postdominated by y.

The intuition behind this definition is that x must be a conditional branch
such that, if the branch is taken in one direction, y must be executed,
while if it goes the other way, control can avoid y.

Because a basic block is defined as the maximal group of statements such
that all are executed if and only if any one is executed, it is convenient to
discuss control dependence as being a property of basic blocks. There is
no change in control flow within a basic block, so every statement in a
block has the same control dependences. Consider the example in
Figure 7.7.

Control Dependence

408 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 7.7 Control dependence example.

FIGURE 7.8 Quadratic growth of the control dependence graph..

In this figure, each node represents a basic block and each edge repre-
sents a possible transfer of control. The set of blocks on which a given
block is control dependent is specified by each node. It is interesting to
note that neither block 4 or block 5 depends on block 1, because 1 cannot

32

1

5

4

6

7

ø

{1}

{2}

{1}

{2,3}

{1,2}

ø

32

1

2n 2n+1

2n+2

ø

{1}

{2n-2}

{1,2}

{1,2,4,...,2n}

ø

54

... ...

{1,2,4}{2}

Control Dependence

Chapter Draft of February 8, 2001 409

force execution of either block by transferring to one of its successors.
Furthermore, block 6 does not depend on block 3 because there is no way
to avoid executing block 6 once control reaches block 3.

Control dependence graphs (that is, graphs that represent the control
dependences between blocks) can be much larger than their associated
control flow graphs, as shown in Figure 7.8. In this example, each node
on the left hand sided of the diagram is control dependent on only one
other node. However, each node on the right hand side is control depen-
dent on node 1 plus every even-numbered node that can reach it. Thus the
total number of control dependences for a graph with 2n+2 nodes is n for
the left hand side plus

For a total of

or O(n2) control dependences.

7.3.1 Constructing Control Dependence

Before a control dependence graph can be used in vectorization, it must
be constructed. The algorithm ConstructCD in Figure 7.10, due to Cytron
et. al. [6], is the fastest known method for the general construction of a
control dependence graph from a control flow graph.

Algorithm ConstructCD depends on the construction of a postdominator
tree.

Definition 7.2. A node x in directed graph G with a single exit
node postdominates node y in G if any path from y to the exit
node of G must pass through x.

Figure 7.9 contains the postdominator tree for the control flow graph
shown in Figure 7.7. Note that all vertices are postdominated by the exit
vertex 7.

i 1+()
i 1=

n

∑ n n 1+()
2

-------------------- n+=

n n 1+()
2

-------------------- 2n+ n n 5+()
2

--------------------=

Control Dependence

410 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 7.9 Postdominator tree for Figure 7.7.

FIGURE 7.10 Control dependence construction algorithm.

procedure ConstructCD(G,CD)

// G is the input control flow graph
// CD(x) is the set of blocks on which x is control dependent
// ipostdom(x) is the immediate postdominator of block x in the
// control flow graph G.

L1: find the immediate postdominator relation ipostdom for the control
flow graph G; (For a control flow graph with a single exit, this
relation forms a tree, with the exit node as the root.)

let l be a topological listing of the postdominator tree such that,
if x postdominates y, then x comes after y in l.

L2: while l ≠ ∅ do begin
let x be the first element of l;
remove x from l;

L3: for all control flow predecessors y of x do
if ipostdom(y) ≠ x then CD(x) = CD(x) ∪ {y};

L4: for all z such that ipostdom(z) = x do
for all y ∈ CD(z) do

if ipostdom(y) ≠ x then CD(x) = CD(x) ∪ {y};
end

end ConstructCD

32

1

5 6

7

{2}

4

Control Dependence

Chapter Draft of February 8, 2001 411

The problem of computing postdominators in a directed graph has been
explored by a number of researchers. The commonly-used Lengauer-Tar-
jan algorithm [13] requires O(Eα(N,E)) time in the worst case, where N
and E are the number of nodes and edges in the control flow graph,
respectively, and α is a very slowly growing function related to an inverse
of Ackerman’s function. In fact, α grows so slowly that for all practical
effects, this algorithm is effectively linear in the size of the input graph.
More recently, Harel has published an algorithm that achieves a linear
time bound [11]. We prefer using the iterative algorithm given in
Figure 4.8 on page 186, modified to compute postdominators. Cooper,
Harvey, and Kennedy have shown that this is highly efficient on graphs
arising from real programs if the set data structures are implemented
cleverly [5].

Correctness To prove that Algorithm ConstructCD correctly constructs
the control dependence relation, we must show that, after execution, y ∈
CD(x) if and only if x is control dependent on y.

Note that the algorithm processes nodes in an order that is consistent with
the postdominator relationship. This ensures that if x postdominates z,
then z will have been processed before x is processed. Thus we can prove
the theorem by an induction that assumes that when x is processed, the
property is true for all vertices that it postdominates. The completion of
this proof is left to the reader as Exercise 7–2.

Complexity Not counting the construction of postdominators, algorithm
ConstructCD requires O(MAX(N+E, |CD|)) time in the worst case. To see
this, note that the topological sort takes O(N+E) time, while the header of
the loop at label L2 is executed once for every node in the control flow
graph or O(N) times. The loop at label L3 is entered once for each control
flow predecessor of each node, for a total of O(E) times, and since its
body can be implemented in constant time, the total time required by the
loop is O(E).

The loop at label L4 is more complicated—it is executed once for each
edge in the postdominator tree, but since each node has only one post-
dominator, the loop header is executed only O(N) times. The inner loop is
executed at most once for each edge in the control dependence graph, so
the loop nest takes O(|CD|) time. The overall time bound follows imme-
diately.

Control Dependence

412 ADVANCED COMPILING FOR HIGH PERFORMANCE

Since this time bound is the maximum of the size of its input and its out-
put, there can be no algorithm that is asymptotically better in perfor-
mance.

7.3.2 Control Dependence in Loops

Although loops can be handled by the standard algorithm by converting
them to a control flow graph and then applying Construct CDG, there are
advantages in treating them as a special case. For instance, it is some-
times useful to have a loop control node to which we can attach informa-
tion about the iteration of the loop. This node can the be used to represent
the loop in all sorts of transformation. For example, loop distribution can
be handled by cloning the loop node.

In the representation we employ here, we will use a loop control node to
represent the loop. We can think of this node as evaluating the loop con-
trol expression that determines the next iteration. The question immedi-
ately arises: Which statements in the program are control dependent on
the loop control node? Recall that a control dependence exists from S1 to
S2 if one branch out of S1 forces execution of S2 and the other does not.
Clearly the loop control node forces execution of one iteration of the loop
body, so all statements within the loop that are not control dependent on
another statement in the loop are clear candidates. In general, there
should be an edge from the loop control vertex to every vertex in the loop
that will be executed if the loop body is executed.

This is illustrated by the following example:

10 DO I = 1, 100
20 A(I) = A(I) + B(I)
30 IF (A(I).GT.0) GO TO 50
40 A(I) = -A(I)
50 B(I) = A(I) + C(I)

ENDDO

The control dependence graph for this loop is given in Figure 7.11. The
false label attached to the control dependence between statement 30 and
40 is used to indicate that the statement is forced if the if condition is
false. We note that by analogy with the while statement the loop control
dependences are annotated with true, indicating that the while condition
is true. Thus if the while condition is false, the statements are not exe-
cuted.

Control Dependence

Chapter Draft of February 8, 2001 413

FIGURE 7.11 Control dependence example.

The thing that is special about the loop control statement is that it estab-
lishes a collection of statement instances that can be executed. In the case
of a DO loop with a fixed iteration range from 1 to 100 by 1, the loop con-
trol variable can be though of as spawning 100 instances of each state-
ment in the loop body. The correct execution of those statement instances
is discussed in the next section.

7.3.3 An Execution Model for Control Dependences

In the following sections we will argue that the transformations involving
control dependence are correct. However, to address the problem of cor-
rectness, we must have an execution model for a program annotated with
control and data dependences and we must show that this model is cor-
rect. We have seen that data dependence indicates that statements must be
executed in a particular order. Control dependence essentially says the
same thing, however it is a bit more complicated because it also tells us
whether a statement is executed.

Recall that in Chapter 2, we developed a model that allowed us to reorder
statements or statement instances if it did not reverse the order of the
source and sink of the dependence. Without flow of control, there were
only statements and loops. We could therefore think of the program exe-
cution as a collection of statement instances S(i), each of which is
indexed by iteration vector i for the nest of loops containing the state-
ment. In this model S(i) could be executed whenever every statement
instance that it depended on had already been executed. In other words if
S(i) depended on S0(j), where j ≤ i, then S0(j) must execute before S(i).
We can think of this as an execution model in which a statement can be
executed at any time after all it depends on have been executed.

3020

10

50

40

f

Control Dependence

414 ADVANCED COMPILING FOR HIGH PERFORMANCE

Control dependence introduces the extra possibility that S2 could depend
on S1 but S1 is never executed. In the execution model above, S2 would
not be able to execute either. This situation is illustrated by the following
pseudocode:

DO I = 1, N
S0: IF (P) GO TO 100

S1
100 S2

ENDDO

On those iterations where the branch is taken, execution of S2(I) should
not wait until S1(I) has been executed, because that will never happen.
Although the dependence is real on other iterations, the path from S1(I) to
S2(I) is not executed on those iterations, so there is no dependence.

We can address this problem by thinking of each statement instance as
having an execution variable S(i).doit. Statement instances that are not
control dependent on any other statement instances have their doit flags
initialized to true. The doit flags for all other statements are initially set to
false. Then we can execute a statement instance S(i) if its doit flag is set
to true and every statement instance it depends upon either has a false
doit flag or has been executed.

In this model, how does a doit flag for a statement get set to true? The
rule is simple: All those statements that are control dependent on the con-
ditional and whose execution is forced by the sense of the condition have
their doit flags set to true.

This leads us to annotate control dependence with the truth value of the
condition that forces execution. All those statements that are control
dependent on a conditional and have their execution forced if the condi-
tion is true have their control dependence edge annotated with true and
all those forced by a false condition have their edge annotated with false.
Thus the control dependences in the previous example loop body are
shown in .Figure 7.12

We observe that if the doit flag for a given statement S is set true, then
there exists a sequence of control statements S0, S1, ..., Sm = S such that
S0 is not control dependent on any other statement and hence, is executed
unconditionally in the original program and that the decision taken at Sk
forces the execution of Sk+1 for each k, 0≤k<m. Thus the sequence of
control dependences defines a unique execution path that must have been
taken in the original program.

Control Dependence

Chapter Draft of February 8, 2001 415

FIGURE 7.12 Control dependence example.

All that remains to the specification of the execution model is to define
the behavior of loop control nodes in the execution of a control depen-
dence graph. We begin with the simple case of a loop node that is not
contained in a control or data dependence cycle carried by the loop it
heads. If this is the case, then when the doit flag for the loop node is set
true, the range of iteration of the loop can be completely evaluated. When
this happens, the execution of the loop header creates a collection of
statement instances, one for each statement on each iteration of the loop.
It then sets the doit flags of every statement instance that represents a
statement that is control dependent on the loop header to true. The doit
variables of all other statement instances on this step are set to false.
Statement instances with true doit flags are eligible for execution as
before.

In the case where there is a dependence cycle, where the evaluation of the
iteration range depends on quantities computed in the loop, the execution
of the DO node is more complex. If the range of iteration is non-empty, it
creates a new statement instance of itself adjusting the range to be the
remainder of the iterations. That DO node is given a doit flag of true if the
dependence back to the DO node is a data dependence and false if it is a
control dependence. It then creates statement instances for each state-
ment in the loop, setting the doit flags for all statements control depen-
dent on the loop header to true, and the others to false. Execution then
proceeds normally.

The correctness of this model is given by the following:

Theorem 7.1. Dependence graphs that are executed according to
the execution model given in this section are equivalent in mean-
ing to the programs from which they are created.

S0

DO

S2

S1

f

Control Dependence

416 ADVANCED COMPILING FOR HIGH PERFORMANCE

Proof. Note that the execution model requires that no statement instance
executes before a statement that it depends upon. Thus, we need only
concern ourselves with the additional complexities of control depen-
dences. The essence of this proof is to establish that the dependence
graph executed under the graph execution model executes exactly the
same set of statements as the original program. To do this, we must show
that a statement in the graph has its doit flag set to true if and only if it is
executed in the original program.

Assume the contrary, that some statement instance Sx(i0) that gets the
wrong doit flag. Then there exists some sequence of statement instances
S0, S1, ..., Sm, such that S0, is control dependent on no other statement
(and therefore always executed) and Sm = Sx(i0). Furthermore, assume
without loss of generality that Sm is the first statement in the sequence to
get the wrong doit flag. Further assume without loss of generality that
this is the shortest sequence leading to a wrong doit flag. The sequence
therefore represents a sequence of control decisions that along an execu-
tion path in the original program leading to Sm= Sx(i0). Since all of the
decisions on the path are the same except the last one, made at Sm–1, we
must consider the decision made at Sm–1. Given that all the data depen-
dences are honored, all statements that Sm–1 depends upon, either directly
or indirectly, along the execution path must have already been executed
by the time the decision at Sm–1 is made—their doit flags must all have
been set correctly because otherwise, there would have been a sequence
of decisions of length m–1 leading to a statement with the wrong doit
flag, contradicting the assumption that the shortest such path is of length
m.

By a similar argument, no statement that is not executed in the original
program can be executed in the graph and affect the control decision at
Sm–1, because it would also to have a wrong flag and the sequence of
decisions leading to it would be shorter than m, contradicting the assump-
tion. Therefore, the decision made at statement Sm–1must be identical to
the one in the original program.

This proof carries through to graphs including DO nodes without any
change so long as you note that statements in the above proof can be
statement instances.

This theorem gives us a tool to establish that transformations that pre-
serve data and control dependences are correct. In addition, it will serve
as the basis for a code generation procedure for dependence graphs.

Control Dependence

Chapter Draft of February 8, 2001 417

7.3.4 Application of Control Dependence to Parallelization

Having the capability of creating a control dependence graph, the next
problem is how to apply it to parallel code generation. More specifically,
there are two concrete problems that have to be solved:

1. Adapting the transformations used in code generation (i.e. loop distri-
bution, loop fusion, loop interchange) to work with control depen-
dence.

2. Converting the abstraction of statements, data dependence, and con-
trol dependence back into executable code. In other words, recon-
structing the control flow from the control dependence graph.

The following sections discuss each of these issues.

7.3.4.1 Control Dependence and Transformations
When examining control dependence, it is useful to start by restricting
consideration to loop-independent control dependences—that is, those
that arise due to forward branches within a loop. Backward branches cre-
ate implicit loops, which are transformed separately, and exit branches
create a complex series of loop-carried dependences as discussed in
Section 7.2.4. For simplicity, this section discusses only forward
branches, which create only loop-independent control dependences, and
control dependences due to loops.

As we learned in Chapter 2, most loop transformations are unaffected by
loop independent dependences, regardless of whether the dependence is a
data dependence or a control dependence. Loop reversal, for instance, has
no effect on a loop independent dependence. Similarly, loop skewing,
strip mining, index-set splitting, and loop interchange do not affect loop
independent dependences. The two loop-based transformations that do
affect loop-independent dependences are loop fusion and loop distribu-
tion. Loop fusion is invalid when it converts a loop-independent depen-
dence between two loops into a loop-carried dependence within one.
However, when exit branches are excluded, this type of dependence is not
possible (the branch must exit one loop to enter the other). This leaves
loop distribution as the one which can invalidly impact control depen-
dences. If the source and target of a loop-independent control dependence
are distributed into two separate loops, the loop-independent dependence
will invalidly become loop-carried.For example, in the code below

DO I = 1, N
S1 IF (A(I).LT.B(I)) GOTO 20
S2 B(I) = B(I) + C(I)
20 CONTINUE

Control Dependence

418 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO

The only dependence in this loop is a control dependence from S1 to S2.
Distributing the two statements into separate loops is clearly wrong,

DO I = 1, N
S1 IF (A(I).LT.B(I)) GOTO 20

ENDDO

DO I = 1, N
S2 B(I) = B(I) + C(I)

ENDDO

20 CONTINUE

since it is clearly incorrect to skip all iterations of S2 simply because one
iteration of S1 happens to take the branch. The situation is analogous to
splitting a scalar dependence across two loops without expanding the sca-
lar.

Given that the central element of all code generation algorithms pre-
sented so far was maximally distributing a single loop into the finest
granularity possible, handling loop distribution correctly is critical if con-
trol dependence is to be successfully incorporated into that framework.

Loop distribution can be thought of as cloning a loop control statement
and partitioning the statements that were control-dependent on the origi-
nal into two groups, one for each of the new loops. Since any group of
statements involved in a recurrence cannot be split between the two
resulting loops, we have a clear condition for when it is legal. The tricky
part is what to do when a control dependences that cross between distrib-
uted loops. Of course, you could clone the conditional statement, but this
runs the risk that you might evaluate the same expression, with associated
duplication of side effects, twice. What is really needed is some mecha-
nism for capturing the doit flags for the controlled statements in some
representation for use across the arrays. To put it another way, since it is
possible to have a loop-independent control dependence span two mini-
mal distributed loops, one of which can be vectorized and one of which
cannot, the essential transformation required is the ability to save the
results of a conditional computation until they are needed—just as with
scalars and scalar expansion.

This suggests a transformation similar to if conversion which would save
the result of the conditional expression evaluation in a logical array that
could be interrogated later. For instance, assuming that one desired to dis-

Control Dependence

Chapter Draft of February 8, 2001 419

tribute the previous example (more likely, one would not), it could be
correctly accomplished as

DO I = 1, N
S1 e(I) = A(I).LT.B(I)

ENDDO

DO I = 1, N
S2 IF (e(I).EQ..FALSE.) B(I) = B(I) + C(I)

ENDDO

While the basic transformation applied here is the same as if conversion,
there is an important difference involving how it is applied. if conversion
blindly converts all control dependences, resulting in a uniform data
dependence representation during loop distribution. This transformation
is applied after loops have been fully distributed and refused, to patch up
control dependences broken by the transformation process.

A more complex illustration of the problem that control dependences
present for loop distribution is provided by the example code in
Figure 7.13.

FIGURE 7.13 An example for loop distribution in the presence of control dependence.

DO I = 1, N
1 IF (A(I).NE.0) THEN
2 IF (B(I)/A(I).GT.1) GOTO 4

ENDIF
3 A(I) = B(I)

GOTO 8
4 IF (A(I).GT.T) THEN
5 T = (B(I) - A(I)) + T

ELSE
6 T = (T + B(I)) – A(I)
7 B(I) = A(I)

ENDIF
8 C(I) = B(I) + C(I)

ENDDO

The control flow graph for this example is given in Figure 7.14 and the
corresponding control dependence graph is shown in Figure 7.15. When
data dependences are added, marked by the dotted arrows in Figure 7.16,
the breakdown into piblocks becomes apparent.

Control Dependence

420 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 7.14 Control flow graph for Figure 7.13.

FIGURE 7.15 Control dependence graph for Figure 7.13.

3

2

1

5

4

6

78

t

f

t

tf

f

32

1

5

4

6

7

8
ft

ft

f

f
t

Control Dependence

Chapter Draft of February 8, 2001 421

FIGURE 7.16 Control and data dependence graph for Figure 7.13.

The dashed regions in Figure 7.16 indicate the loop structure suggested
by full distribution, followed by fusion into maximal “like” regions. Loop
1 is a parallel loop, Loop 2 is sequential, and Loop 3 is parallel. To cor-
rectly effect this transformation, the control flow edges that cross the par-
tition boundaries must be transformed into a persistent form. This
persistence can be created by using arrays called execution variables to
capture the branch decisions made at the source of loop-crossing arcs.
The example above requires two execution variables: E2(I), to hold the
result of branches at statement 2, and E4(I), to hold the result of
branches at statement 4. To understand the values that an execution vari-
able may take on, consider the cases that may hold at each of these two
statements. At statement 2, three cases may hold:

1. statement 2 is executed and the true branch to statement 4 is taken,

2. statement 2 is executed and the false branch to statement 3 is taken, or

3. statement 2 is never executed because the false branch is taken at
statement 1.

These three conditions can hold at any statement that is the source of a
loop-crossing control dependence. This corresponds to the requirement in
our execution model that three conditions must hold for a doit variable to
be set for a given statement S—a control dependence exists from some

32

1

5

4

6

7

8

Loop 1

Loop 2

Loop 3

t

t

ft

f

Control Dependence

422 ADVANCED COMPILING FOR HIGH PERFORMANCE

statement S0 to S, S0 has its doit flag set, and the value of the conditional
expression is the label on the branch to S, i.e., it forces execution of S.

FIGURE 7.17 Execution variable and guard creation.

procedure DistributeCDG(G,Gcd,P)
// G is the input control flow graph
// Gcd is the input control dependence graph
// P = {P1,P2, ...,Pk} is a list of partitions corresponding to loops
// after distribution
// Output: modified Gcd with execution variables

L1: for each partition Pi do begin
for each n ∈ Pi such that there exists an edge (n,o)l ∈ Gcd, where

l is the true/false label of the control dependence edge, such
that o ∉ Pi

do begin
insert “EV(I)= ” into Pi at the beginning;
let test be the branch condition for n;
if there exists an edge (n,m)l ∈ Gcd, where m ∈ Pi then

replace n with
“EVn(I) = test”
“IF (EVn(I).EQ..TRUE.)”
// Conditions now depend on this latter test

else
replace n with “EVn(I) = test”;

for each Pk ≠ Pi containing a successor of n do begin
create a new, unique statement N:

“IF (EVn(I).EQ.l)”;
add N to Pk;
insert data dependences for EVn;
for each (n,q)l such that q ∈ Pk do begin

// Update control dependences
delete (n,q)l from Gcd;
add (N,q)true to Gcd;

end
end

end
end
make a copy of the original DO-node copying all dependences in and

insert a control dependence edge from this new DO node to every
statement in Pi;

end DistributeCDG

⊥

Control Dependence

Chapter Draft of February 8, 2001 423

Therefore, it seems natural to model these conditions by using three val-
ues for an execution variable element: true, false or undefined (some-
times represented by the symbol “ ”), corresponding to the three
conditions above. Once it is determined which execution variables will be
needed, all such variables are initialized to . Then the program is con-
verted to set the execution variables at appropriate places in the code. The
algorithm in Figure 7.17 performs the conversion. Note that this algo-
rithm does not generate parallel code, but selectively converts control
dependences to data dependences, changing some statements in the pro-
cess.

Correctness To establish correctness of Algorithm DistributeCDG in
Figure 7.17, we must show that it produces a dependence graph that has
the same meaning as the original graph. This follows directly from the
correctness of the execution model established in Theorem 7.1 and from
the observation that the doit flag in the new graph for a statement after
distribution will be set if and only if it was set in the original program. To
establish this, we observe that the only problem is when a control depen-
dence crosses partition boundaries. In that case, there is one doit flag per
statement instance in the loop. Since the statement instances in the two
loops are identical, we must show that the execution variable array cor-
rectly captures the correct doit flags for the statement indices controlled
by the control dependence edge that crosses the loops.

Thus, our goal is to show that in the revised program, the doit flag for
each corresponding instance of S will be set if and only if the doit flag for
S is set in the original, non-distributed version of the loop. First note that
the two loop control statements have exactly the same sets of control pre-
decessors, so that both loops are executed if the original loop would have
been executed. Furthermore, the two sets of statement instances gener-
ated by the two loops are identical.

If. Assume that on iteration i, the control predecessor Sc is executed in the
original program. Then its doit flag will be set to true and as will the doit
flags of all the control successors that are forced by the label equal to the
condition controlling the branch. In the transformed graph, the label will
be captured in the execution variable EV(i) and passed to another condi-
tional, which tests for the correct truth value before setting the doit flag of
the controlled statement. Thus the doit flag for statement S will be set
correctly in the transformed program.

Only if. If the control predecessor Sc did not execute in the original pro-
gram on iteration i, the execution array element EV(i) will be set to and

⊥

⊥

⊥

Control Dependence

424 ADVANCED COMPILING FOR HIGH PERFORMANCE

the comparison test on that variable in the second loop of the transformed
program will always produce false, ensuring that the statement will not
be executed. On the other hand, if the wrong truth value is produced by
the evaluation of the conditional, then the test for that truth value in the
other loop will fail and the doit flag for the statement will not be set. This
completes the argument.

Applying the algorithm DistributeCDG to the example in Figure 7.13
with appropriate code generation yields the program shown in
Figure 7.18.

FIGURE 7.18 Example code from Figure 7.13 after loop distribution.

PARALLEL DO I = 1, N
E2(I) = ;

1 IF (A(I).NE.0) THEN
2 E2(I) = (B(I)/A(I).GT.1)

ENDIF
3 IF(E2(I).NE..TRUE.) A(I) = B(I)

ENDDO
DO I = 1, N

E4(I) = ;
IF (E2(I).EQ..TRUE.) THEN

E4(I) = (A(I).GT.T)
4 IF (E4(I).EQ..TRUE.) THEN
5 T = (B(I) - A(I)) + T

ELSE
6 T = (T + B(I)) – A(I)

ENDIF
ENDIF

ENDDO
PARALLEL DO I = 1, N

IF (E4(I).EQ..FALSE.) THEN
7 B(I) = A(I)

ENDIF
8 C(I) = B(I) + C(I)

ENDDO

The “appropriate code generation” is the subject of the next section.

7.3.4.2 Generating Code
While control dependence graphs can represent arbitrary control flow,
real machines can only execute a fairly limited set of control flow opera-
tions. It is not obvious that, once loop distribution and other transforma-
tions have been carried out, a dependence graph with control dependence
can be mapped back into an executable form. To illustrate how difficult

⊥

⊥

Control Dependence

Chapter Draft of February 8, 2001 425

this problem can be, assume for the moment a target machine that can
execute Fortran’s control flow operations, so that the target language is
Fortran. The following example

DO I = 1, N
S1 IF (p1) GOTO 3

S2
GOTO 4

3 IF (p3) GOTO 5
4 S4
5 S5

ENDDO

creates the control dependence graph shown in Figure 7.19. This figure
also shows the partitions desired after distribution and fusion.

FIGURE 7.19 Control dependence graph for sample code fragment after distribution.

FIGURE 7.20 Control dependence graph for sample code fragment.

2

1 5

t

f

43
f

f

2

1 5
f

43
f

f

1a

t

1b

Control Dependence

426 ADVANCED COMPILING FOR HIGH PERFORMANCE

Loop distribution according to the partitions in Figure 7.19 produces the
control dependence graph in Figure 7.20. Nodes 1a and 1b are two new
nodes, data dependent on node 1, generated in the second partition by the
distribution algorithm.

When code is generated for these two partitions, the first partition
becomes:

DO I = 1, N
E1(I) = p1
IF (E1(I).EQ.FALSE) THEN

S2
ENDIF
S5

ENDDO

The second partition is not so simple. Statement 4 is control dependent
on two different conditional nodes, so it cannot be put in a single struc-
tured conditional statement without some transformation. A simple way
to solve this problem is to use a variant of if conversion. The only non-
conditional statement in the graph for the second partition is statement 4.
If we compute the set of conditions on which it depends in the manner of
if conversion, we would get the following code:

DO I = 1, N
IF((E1(I).EQ..TRUE.).AND..NOT.p3).OR.

(E1(I).EQ..FALSE.)) THEN
S4

ENDIF
ENDDO

However, things are not always this straightforward. Consider a simple
variant of the same original loop.

DO I = 1, N
S1 IF (p1) GOTO 3

S2
GOTO 5

3 IF (p3) THEN
S4
GO TO 6

ENDIF
5 S5
6 S6

ENDDO

Control Dependence

Chapter Draft of February 8, 2001 427

The control dependence graph after distribution (according to the dashed
lines in the diagram) is given in Figure 7.21. Suppose further that there is
a data dependence from S4 to statement S5. Code generation for this case
harder, because we can generate a structured if statement for S4 but not
for S5. To solve this problem we will use a variant of if-conversion that
generates a separate IF statement for each statement that has multiple
control dependence predecessors. The code resulting from this strategy
might be as follows:

DO I = 1, N
P1a3 = (E1(I).EQ..TRUE.).AND..NOT.p3
IF(P1a3) S4
IF (P1a3.OR.(E1(I).EQ..FALSE.)) S5

ENDDO

FIGURE 7.21 Control dependence graph for sample code fragment.

It should be easy to see that generating code for graphs in which every
vertex has at most one control dependence predecessor is easy—simply
generate each statement in the true or false branch of the controlling con-
ditional. To exploit this observation, our general code generation algo-
rithm for loop-free dependence graphs with control dependences will
operate in two phases. The first phase will transform the control depen-
dence graph into a canonical form consisting of a set of control depen-
dence trees having the following properties:

1. each statement is control dependent on at most one other statement,
i.e., each statement is a member of at most one tree, and

2

1 6
f

53
f

f

1a

t

1b

4

f

Control Dependence

428 ADVANCED COMPILING FOR HIGH PERFORMANCE

2. the trees can be ordered so that all data dependences between trees
flow from trees earlier in the order to trees that are later in the order.

In phase two, we will apply a simple recursive procedure that generates
code for a canonical-form collection of trees.

We will motivate the discussion with the dependence graph shown in
Figure 7.22. In this diagram, the solid lines represent control depen-
dences and the dashed lines represent data dependences. We assume that
each node from which control dependences emanate is an IF statement
that evaluates some predicate and the other nodes are simple statements.
In each case the node label is the statement number.

FIGURE 7.22 An example control dependence graph.

From the diagram in Figure 7.22, several things are clear. First, state-
ments 3 and 7 have multiple control dependence predecessors. These ver-
tices must first be separated out so that their trees are in order. The
desired effect is shown in Figure 7.23, in which initialization statements
1a, 5a, 6a and 8a have been generated to capture the result of evaluating
the predicates in statements 1, 5, 6, and 8. This strategy is used to avoid
duplicate predicate evaluations. Each of these initialization assignments
will have a compiler-generated logical variable on the left hand side.

2

1

6

t

5

t

3

4

t

7

9

8
t

10

t

t
t

t

t

Control Dependence

Chapter Draft of February 8, 2001 429

FIGURE 7.23 Example control dependence graph after splitting out vertices.

The new vertices “1|5&6” and “5&6|8” are the composite nodes control-
ling vertices 3 and 7, which previously had multiple control dependence
predecessors. Note also that node 6 has no statement under its control so
it can be deleted. Node 5, on the other hand, cannot be deleted because it
now contains the initialization statement for the predicate in node 6.

FIGURE 7.24 Example control dependence graph after splitting for data dependence.

The next step is to see if the trees can be linearly ordered. As it happens,
this cannot be done because of the data dependences from statement 2 to

1a

1

6

t

3

4
t

8

10

t

t

1|5&6

2

5a

6a

t

t

7

5&6|8

t

9

8a

5

t

1a

1

t

3

8

10

t

1|5&6

2

5a

6a

t

t

7

5&6|8

t

9

8a

1b

4

t

5

t

Control Dependence

430 ADVANCED COMPILING FOR HIGH PERFORMANCE

statement 3 and from statement 3 to statement 4. This requires further
splitting of the trees to create separate trees for statements 2 and 4. The
result of doing this is shown in Figure 7.24, which is in the desired
canonical form. Code can now be generated for the trees in an order con-
sistent with data dependence: 1a, 1, 5a, 5, 1|5&6, 1b, 8a, 5&6|8, and 8.

FIGURE 7.25 Control dependence splitting algorithm.

procedure CDGsplit(Gcd,P)

// Gcd is the input control dependence graph
// P is the collection of statements in the loop body

for each vertex v in P that has multiple CDG predecessors do begin
let {c1, c2, ..., cm} be the set of CDG predecessors for v;
create an initialization vertex ei for each condition ci for which

an initialization does not exist and insert it into
the dependence graph at the level of the original predicate;

create a new vertex w labeled by the condition c1|c2|...|cm, if one
does not already exist, otherwise let w be that vertex
(create the vertex as a child of the deepest common ancestor);

insert a data dependence edge from each ei to w;
make v a control dependence successor of w;

end

delete all conditional vertices that have no remaining successors
(iterate to eliminate vertices whose successors are deleted);

for each vertex v hat is the control dependence successor of
some other vertex w in the graph do
make the type of v be (cw,lwv), where cw is the condition

associated with w and lwv is the label of the edge
between w and v;

for each distinct type t do begin
apply typed fusion to the graph for type t;
if there is more than one cluster of type t then

create a new tree for each cluster after the first,
generating new condition evaluation nodes as needed,
along with appropriate data dependences
(create each new tree at the deepest possible level);

end
end CDGsplit

Control Dependence

Chapter Draft of February 8, 2001 431

One remaining issue is how to do the second splitting step, where control
dependence successors of control statements are organized into groups of
statements that can be part of the same conditional statement. Statements
can be grouped together if there is no dependence path between them that
passes through a statement that is not a child of the same conditional
node with the same label. From this description, it is easy to see that
grouping is a typed fusion problem, which can be solved using the typed
fusion algorithm from Section 6.2.5.1 on page 308 if each statement is
typed by a pair (p, l) where p is its unique control dependence predeces-
sor and l is the truth label of the edge from p to the statement.

The code for the control dependence splitting pass is given in
Figure 7.25. Once this pass is complete, we have a control dependence
graph consisting of an ordered collection of trees in which each vertex
has at most one control dependence predecessor.

We can now use a simple recursive procedure for code generation. These
procedures are given in Figure 7.26 and Figure 7.27. This collection of
procedures generates code for each of the subtrees forming the control
dependence graph in an order consistent with data dependence. The rou-
tine to generate code for a set of statements that are control dependent o a
given vertex with the same label is shown in Figure 7.27. Since there is
only one control dependence predecessor per statement in the canonical
form, the control dependence predecessor of the set is ignored and the
procedure simply calls gencode recursively for each statement in the set.

We make two final points about the code generation algorithm. First, the
running time of the code generation process should be roughly linear in
the size of the original dependence graph, including both data and control
dependences. The only portion of the algorithm which is not strictly lin-
ear is the repeated application of typed fusion which could take time pro-
portional to the size of the split graph (which can only be a linear factor
larger than the original) times the number of distinct types. The number
of types can be reduced by only using fusion on types that correspond to
more than one statement.

Control Dependence

432 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 7.26 Code generation from control dependence graphs.

procedure CDGgenCode(Gcd,P)

// Gcd is the input control dependence graph in canonical form
// P is the collection of statements in the loop body

let S be the set of statements in P that have no control or data
dependence predecessors;

while S ≠ ∅ do begin
let n be an arbitrary element of S;
delete n from S;
gencode(n);
add to S any vertex that has no control dependence predecessors

and all of whose data dependence predecessors
have been processed by gencode;

end

end CDGgenCode

procedure gencode(n)
if n is of the form IF(p) then begin

let T be the set of statements m such that (n,m)true ∈ Gcd;
let F be the set of statements m such that (n,m)false ∈ Gcd;
if T ≠ ∅ then begin

generate “IF (p) THEN”;
genset(T, n);
if F ≠ ∅ then begin

generate “ELSE”;
genset(F,n);

end
generate “ENDIF”;

end
else if F ≠ ∅ then begin

generate “IF (.NOT. p) THEN”
genset(F, n);
generate “ENDIF”

end
end

else // n is not a conditional
generate n;

end gencode;

Control Dependence

Chapter Draft of February 8, 2001 433

FIGURE 7.27 Procedure to generate code for a set of nodes from structured code.

procedure genset(S,n); // version for structured code

// Generate code for each statement in set S, in order
// n, the control dependence predecessor, is ignored
while S ≠ ∅ do begin

let m be any element of S such that
code has already been generated for all its data dependence
predecessors;

delete m from S;
gencode(m);

end
end genset

As a second observation, this algorithm attempts to do a limited amount
of if conversion to generate code. In implementing it we must be careful
not to do brute-force if conversion if the result is to be satisfactory. This
explains why, in the splitting algorithm, we must attempt to create dupli-
cate nodes at the deepest possible level in the control dependence trees.
When we generate a new condition to control a vertex that previously had
multiple CDG predecessors, we attempt to generate that vertex as a child
of the deepest common ancestor of those predecessors. When we apply
typed fusion, we should generate copies of a condition as children of the
least common ancestor of the original and any vertex on a path between
the original vertex and the duplicate. This least common ancestor can be
computed by a straightforward modification to the typed fusion algo-
rithm.

We illustrate the code generation procedure by presenting an outline of
the code that would be generated by this procedure for the control flow
graph of Figure 7.24:

p1 = pred1
IF (pred1) S2
p5 = pred5
IF (p5) p6 = pred6
IF (p1.OR.(p5.AND.p6)) S3
IF (p1) S4
p8 = pred8
IF ((p5.AND.p6).OR.p8) S7
IF (p8) THEN

S9
S10

ENDIF

Control Dependence

434 ADVANCED COMPILING FOR HIGH PERFORMANCE

In this code, the italicized pred variables represent predicate expressions.
Each expression is evaluated exactly once. Note that in the interests of
brevity simple if statements have been used where only one statement is
controlled by a condition.

7.4 Chapter Summary

Two distinct approaches to handling control flow in loops were pre-
sented:

1. If conversion eliminates all branches by converting every statement in
the program to a guarded conditional statement, where the guard
reflects the exact set of conditions under which the statement will be
executed. If the guards are viewed as inputs, this has the effect of con-
verting control dependences to data dependences, making it possible
to apply the code generation procedures from previous chapters to
code with branches in a straightforward way. This transformation was
effective in vectorizing compilers.

2. Control dependence is a variant of dependence arising from control
flow. A statement S is control dependent on a statement S0 if S0 is a
conditional branch and the decision at S0 can force the execution of S
in one direction and bypass it in the other. Control dependence can be
used in analysis algorithms just like data dependence. However, it
complicates the code generation process.

Code generation in the presence of conditional branches was a major
topic in this chapter.

7.5 Case Studies

The original versions of both PFC and the Ardent Titan Compiler used
systematic if conversion to handle control flow in loops. The PFC system
implemented the complete if conversion strategy discussed in this chap-
ter, including the conversion of implicit loops to while loops. The success
was mixed. PFC was able to vectorize extensively in loops where the
only control flow was forward and within the loop. In other cases, not
much benefit was achieved.

Two later versions of PFC, intended for parallelization introduced if
reconstruction and then the execution variable scheme described here,
although distribution was never implemented in its full generality.

Case Studies

Chapter Draft of February 8, 2001 435

If conversion can consume lots of compile time. First there is the cost of
the conversion itself—the fast simplification algorithm described in
Section 7.2.7 was the result of a bad experience in which the exponential
behavior of the Quine-McCluskey procedure was realized. Even with that
code installed in PFC, if conversion was slow. In addition, conditional
operations, once vectorized, require a choice of execution form (execute
the operation conditionally under masked hardware or compress the
operands into a dense vector); and conditional vector operations can eas-
ily run slower than the scalar equivalent, depending on how many ele-
ments are actually executed. Furthermore, loads and stores of guard
variables and arrays, along with the implicitly created vector masks, can
cause memory hierarchy and storage problems.

Masked vector operations are not always easy or fast to perform on vec-
tor machines—mask hardware may make it easy to set or test mask bits,
but usually provide no support for loads and stores or logical operations
that directly operate on masks. For instance, the masks controlling the
Titan vector unit were a special set of bits that could not be directly
accessed via any instruction. The results of appropriately flagged vector
compares and logical operations would set the mask bits; subsequent
flagged vector operations would use them. To save a vector mask to
memory, it was necessary to do a conditional vector move of a vector of
all ones to a zeroed register (so that one’s popped into the register where
the mask was true) and store that to memory. Similarly, restoring a vector
mask meant loading the values from memory and doing a compare
against a vector of all ones. Once the vector operation that set a mask was
gone, the mask could not be directly reset by another logical operation—
instead it had to be pulled out into a vector register, and operated on
there. The result was that conjunction or disjunction of guard variables
were very expensive to implement as vector operations

Given all these considerations, plus the fact that the Titan had multiple
processors for effectively speeding up conditional code, the Ardent com-
piler performed very limited if conversion. Basically, only well-struc-
tured IF-THEN-ELSE’s or branch patterns that formed structured IF-
THEN-ELSEs were converted to guarded form. Any proper nesting of these
was converted as well, although this turned out to be useless on the
Titan—once the guard condition represented more than one IF, the result-
ing execution, even if perfectly vectorized, was always slower than scalar.
Since only structured conditionals were converted, simplification was not
necessary, and IF reconstruction was trivial. All other branching con-
structs (including jumps into loops, which are permitted in C) were han-
dled with a variant of control dependence that is described in Chapter 12.

Control Dependence

436 ADVANCED COMPILING FOR HIGH PERFORMANCE

7.6 Historical Comments and References

The first handling of control flow changes for vector machines was by
Towle and involved maintaining a conservative set of bit vectors to
approximate simple control flow. if conversion and the Boolean simplifi-
cation scheme described in this chapter were developed by Allen,
Kennedy, Porterfield, and Warren [1]; the key observations involved in
Boolean simplification were developed by Warren and Kennedy for PFC.
Besaw [3] implemented if converstion with a similar Boolean simplifier
in the Univac vectorizing compiler. Limited forms of if conversion were
the basis for conditional handling in many vectorizating compilers
[19,12].

Control dependence has a long history in compiler literature, although
the primary development of it in terms of program transformations began
with a paper by Ferrante, Ottenstein, and Warren [10]. The algorithm for
construction is due to Cytron et al. [6].

The algorithms for distributing loops in presence of control flow was
developed by Kennedy and McKinley [14,16] improving on earlier work
by Callahan and Kalem [4] and Dietz [7]. Towle [18] and Baxter and
Bauer [2] build condition arrays from a form of control dependence in
vectorization. The code generation algorithm presented here is based on
one by Kennedy and McKinley [14,16], but generates structured code
and overcomes a shortcoming that would produce incorrect code in some
cases. The problem of “restructuring” unstructured code has been
attacked by many researchers, including Ferrante, Mace, and Simons
[8,9], who discuss loop fusion, dead code elimination, ad branch deletion
in the presence of control dependence.

7.7 Exercises

7–1 Construct the control dependence graph corresponding to the control
flow graph given in Exercise 7.28.

Exercises

Chapter Draft of February 8, 2001 437

FIGURE 7.28 Control flow graph for Exercise 7–1.

7–1 The loop distribution transformation in the presence of control depen-
dence uses execution variables that can take one of the three values: true,
false, and undefined. Why are all three conditions needed instead of just
true and false? Give an example where the value undefined is needed for
correctness.

FIGURE 7.29 Control dependence graph for Exercise 7–1.

7–1 Consider the control dependence graph given in Figure 7.29, where the
dashed regions indicate the desired regions after distribution. Show the
control dependence graph after distributing the statements into two loops

32

1

5 6

7

t

t

t

f

f

f

1

f

2
t

43 5

f
f

t

Control Dependence

438 ADVANCED COMPILING FOR HIGH PERFORMANCE

and the code that would be generated for the resulting loops by the proce-
dure described in Section 7.3.4.2.

7–2 Prove that Algorithm ConstructCD in Figure 7.10 on page 410, correctly
constructs the control dependence relationship. That is, after execution, y
∈ CD(x) if and only if x is control dependent on y. Hint: The proof should
be carried out by an induction on the order of processing of vertices in the
algorithm, which ensures that, before a vertex x is processed, all its post-
dominators have been processed.

7.8 References

[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control depen-
dence to data dependence. In Conference Record of the Tenth Annual ACM Symposium
on the Principles of Programming Languages, Austin, TX, January 1983.

[2] W. Baxter and H. R. Bauer III. The program dependece graph and vectorization. In Pro-
ceedings of the Sixteenth Annual ACM Symposium on Principles of Programming Lan-
guages, Austin, TX January 1989.

[3] K. V. Besaw, "Advanced techniques for vectorizing dusty decks. In Proceedings of the
Second International Conference on Supercomputing, May, 1987.

[4] D. Callahan and M. Kalem. Control dependences. Supercomputer Software Newsletter
15, Dept. of Computer Science, Rice University, October 1987.

[5] K. Cooper, T. Harvey, and K. Kennedy. A Simple, Fast Dominance Algorithm, draft,
Computer Science Department, Rice University, November 2000.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently com-
puting static single assignment form and control dependence graph. ACM Transactions
on Programming Languages and Systems 13(4):452–490, October 1991.

[7] H. Dietz. Finding large-grain parallelism in loops with serial control dependences. In
Proceedings of the 1988 International Conference on Parallel Processing, August 1988.

[8] J.Ferrante and M.Mace. On linearizing parallel code. In Conference Record of the
Twelfth Annual ACM Symposium on the Principles of Programming Languages, New
Orleans, LA, January 1985.

[9] J. Ferrante, M. Mace, and B. Simons. Generating sequential code from parallel code. In
Proceedings of the Second International Conference on Supercomputing, St.Malo,
France, July 1988.

[10] J.Ferrante, K.Ottenstein, and J.Warren. The program dependence graph and its use in
optimization. ACM Transactions on Programming Languages and Systems 9(3):319 –
349, July 1987.

[11] D. Harel. A linear-time algorithm for finding dominators in flow graphs and related
problems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of
Computing, 185–194, Providence, Rhode Island, May 1985.

References

Chapter Draft of February 8, 2001 439

[12] L. Lamport. The coordinate method for the parallel execution of iterative DO loops.
Technical Report CA-7608-0221, SRI, Menlo Park, CA, August 1976, revised October
1981.

[13] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flow graph.
ACM Transactions on Programming Languages and Systems 1(1):121–141, July 1979.

[14] K. Kennedy and K. McKinley. Loop distribution with arbitrary control flow'. Proceed-
ings: Supercomputing `90, 407–416, New York, NY, November 1990.

[15] E. J. McCluskey. Minimization of Boolean functions. Bell System Technical Journal
35(5):1417--1444, November 1956},

[16] K. S. McKinley. Automatic and Interactive Parallelization. Ph.D. thesis, Dept.of Com-
puter Science, Rice University, April 1992.

[17] W. V. Quine. The problem of simplifying truth functions. Am. Math. Monthly 59(8):521-
-531, October 1952.

[18] R. A. Towle. Control and data dependence for program transformation. PhD thesis,
Dept. of Computer Science, University of Illinois at Urbana-Champaign, October 1982.

[19] D. Wedel. FORTRAN for the Texas Instruments ASC system. SIGPLAN Notices 10(3),
March 1975, 119-132.

Control Dependence

440 ADVANCED COMPILING FOR HIGH PERFORMANCE

Introduction

Chapter Draft of February 8, 2001 439

CHAPTER 8 Compiler Improvement
of Register Usage

8.1 Introduction

Increasingly, the performance of a modern computer system is deter-
mined by the performance of its memory hierarchy. While on-chip opera-
tion speeds have been dramatically improving, the performance of
memory has not. Thus, as the processor cycle times come down the laten-
cies to main memory have been increasing. These latencies must be ame-
liorated if the machine performance is to keep pace with the performance
of the processor.

In this chapter, we will discuss the first of several ways to improve per-
formance of the memory hierarchy through compiler transformations.
Every computer system currently in use has some kind of processor reg-
ister set. Registers are particularly important on RISC architectures,
where all operations except loads and stores require that the operands be
taken from processor registers and all results be assigned to registers.

Compiler Improvement of Register Usage

440 ADVANCED COMPILING FOR HIGH PERFORMANCE

Most modern machines also feature some sort of cache memory. How-
ever, some machines do not. Examples include vector processors and the
Tera MT series of processors, where each thread has its own register set.
Therefore, we will postpone the discussion of compiler management of
cache until Chapter 9.

8.2 Scalar Register Allocation

In most compiler courses, we teach students that the problem of scalar
register allocation has essentially been solved by the register coloring
techniques pioneered by Chaitin and his colleagues at IBM research
[13,14] and refined by Chow and Hennessy at Stanford [15] and by
Briggs, Cooper, Kennedy and Torczon at Rice [7].

These techniques attempt to allocate all of the uses of each scalar variable
in single “live range”—a program region in which the given variable is
live throughout—to a register. To accomplish this, the compiler typically
carries out the following steps:

1. it identifies the live ranges of variables and gives each a unique name,

2. it builds an interference graph to model which pairs of live ranges can-
not be assigned to the same register,

3. using a fast heuristic coloring algorithm, it attempts to color the result-
ing interference graph with a number of colors equal to the number of
registers available, and

4. if the coloring fails, it forces at least one live range out of registers and
repeats the attempt to color beginning at step 3.

This approach is used in the C and Fortran compilers for every RISC pro-
cessor that the authors are aware of. In practice, this method is very effec-
tive. In most small routines it produces a perfect allocation, in which
every non-array variable is assigned to a register throughout every one of
its live ranges. Thus, conventional wisdom says that nothing more can to
be done to improve register usage on a uniprocessor.

However, conventional wisdom is wrong because it fails to consider
floating-point registers, which are typically used to hold temporarily indi-
vidual elements of array variables. You can think of a floating-point regis-
ter as holding a very small window of information, equal to one word, in
the array it represents. To achieve the highest performance, we must try
to make as much use as possible of the data in the window before moving
on to another element, because each reuse of the element in the window

Scalar Register Allocation

Chapter Draft of February 8, 2001 441

eliminates the need for a load instruction that might take tens or even
hundreds of cycles.

To see the importance of these techniques, consider a simple example
which can be viewed as an abstraction of he calculation that occurs in
matrix multiplication.

DO I = 1, N
DO J= 1, M

A(I) = A(I) + B(J)
ENDDO

ENDDO

Before this example was widely understood, almost every industrial com-
piler would fail to recognize that A(I) can be left in a register throughout
the inner loop, even though it is very easy to see that the address of A(I)
does not change in that loop. The reason for this failure is that uniproces-
sor compilers only do a good job allocating scalar variables to registers—
an array access is treated as an expression to be evaluated on each itera-
tion of the loop. Even though the compiler can use strength reduction to
recognize that the address does not change, few compilers extend
strength reduction to eliminate the load instruction.

Now consider a slight variation of the program above:

DO I = 1, N
T = A(I)
DO J= 1, M

T = T + B(J)
ENDDO
A(I) = T

ENDDO

This version uses a scalar variable as a temporary resting place for the
value of A(I) during the execution of the inner loop. All compilers that
use a coloring scheme of any kind will properly assign this scalar vari-
able to a register. Thus, the second loop will be much faster than the first,
even though it differs only superficially.

This observation led to the development of an optimization, known as
scalar replacement that converts array references to scalar references to
improve the effectiveness of the compiler’s coloring-based register allo-
cator. Although it is designed as a compiler optimization, scalar replace-
ment can be understood and evaluated as a source-to-source
transformation.

Compiler Improvement of Register Usage

442 ADVANCED COMPILING FOR HIGH PERFORMANCE

In the next few sections, we will present a number of such source-to-
source transformations that improve the performance of a uniprocessor
memory hierarchy, along with algorithms for implementing them.

8.2.1 Data Dependence

There are two applications of dependence in memory hierarchy transfor-
mations. The first is a familiar one—to determine the correctness of dif-
ferent transformations. The second role is a new one—the determination
of transformations to improve the performance of particular accesses. We
will need to adjust the dependence graph to play this second role, which
arises because a dependence tells us that two memory references are to
the same memory location. We begin by reviewing the different types of
dependences and how they can affect memory hierarchy management.

• A true or flow dependence indicates that a register load can be saved if
the value loaded at the source of the dependence can be kept in a regis-
ter until the sink of the dependence. Similarly, a cache miss can be
saved if the block containing the referenced location stays in cache
until the sink.

• An antidependence, in which the use of a variable precedes the assign-
ment to it, does not have an application to improvement of register
allocation. However, it can save a cache miss if the block that is
brought in at the source stays in cache until the sink.:

• An output dependence can also be useful in cache management, but it
has a special use in register usage improvement as well. Consider:
S1 A(I) =

...
S2 = A(I)

...
S3 A(I) =

Here there is an output dependence between S1 and S3, along with a
true dependence between S1 and S2.The true dependence allows us to
eliminate a load in statement S2 but the output dependence tells us
that, after the use in S2, the value of A(I) is dead and need not be
stored.

• For the purposes of memory hierarchy, we will use a fourth kind of
dependence, called input dependence, in which the source and sink
both use the same location.
S1 = A(I)

...
S2 = A(I)

Scalar Register Allocation

Chapter Draft of February 8, 2001 443

The input dependence from S1 to S2 clearly indicates the opportunity
to eliminate a load at the second reference. It is straightforward to
modify a standard dependence-testing procedure to compute input
dependence.

Loop-independent dependences are clearly useful in eliminating memory
accesses, but what about loop-carried dependences? Recall that each car-
ried dependence has a threshold, which is the dependence distance for the
loop that carries the dependence. This threshold is said to be consistent if
it is constant throughout the loop—that is, the threshold is the same on
each iteration. A loop-carried dependence with a consistent threshold is
called a consistent dependence. To be useful for memory management, a
carried dependence must be consistent. In practice, carried dependences
with thresholds that are small compile-time constants are the best candi-
dates for elimination of memory references, because they require the
fewest registers to hold the value between source and sink of the depen-
dence.

Earlier in this section, we indicated that the dependence graph would
need to be modified for use in memory hierarchy management, at least
for use in identifying transformation opportunities. To see this, consider
the following example:

S1 A(I) =
...

S2 = A(I)
...

S3 = A(I)

There are three dependences for A(I) in this code fragment—the true
dependences from S1 to S2 and S3, along with the input dependence from
S2 to S3. However, it is not possible to save three memory references,
because both of the dependences into S3 correspond to elimination of the
load at S3. To ensure that we do not overcount when evaluating optimiza-
tion opportunities, the dependence graph should be pruned to eliminate
dependences like the one from S2 to S3. Pruning algorithms are well-
understood [6,12,9]. However, they are not adequate for handling condi-
tional code, so we will present an alternative strategy to overcome this
problem.

A particularly important use of dependence information occurs in sum
reduction loops similar to our earlier example:

DO I = 1, N
DO J= 1, M

Compiler Improvement of Register Usage

444 ADVANCED COMPILING FOR HIGH PERFORMANCE

A(I) = A(I) + B(J)
ENDDO

ENDDO

Here we find a true dependence and an output dependence from the state-
ment to itself, both arising from the reference to A(I) and both carried by
the J-loop. In addition, there is an antidependence from the statement to
itself, also carried by the J-loop. Finally, there is an input dependence
arising from the reference to B(J) carried by the J loop. These depen-
dences are depicted in Figure 8.1.

FIGURE 8.1 Reduction example with dependences.

In this example, the true dependence carried by the J-loop indicates that a
load can be saved if A(I) is kept in a register until the next loop iteration,
while the output and antidependence show that both the initial load and
the store on each iteration may be moved out of the loop entirely.

The loop that results after this transformation would require only one
load per iteration, for B(J):

DO I = 1, N
T = A(I)
DO J= 1, M

T = T + B(J)
ENDDO
A(I) = T

ENDDO

As indicated earlier, we use assignment of subscripted array variables to
scalars to represent loads, because most scalar register allocation proce-
dures would put such variables in registers, at least within a single sub-
routine.

DO I = 1, N

DO J= 1, M

ENDDO

ENDDO

A(I) = A(I) + B(J)δο
J

δ−1
J

δJ

δi
I

Scalar Replacement

Chapter Draft of February 8, 2001 445

8.3 Scalar Replacement

We now turn to the development of a general procedure for scalar
replacement. We begin with a pruned dependence graph, developed as
described in Section 8.2.1. In this graph, each true or input dependence
represents an opportunity for eliminating exactly one load or store. If the
dependence is loop-independent, there is typically no problem replacing
the second reference with a reference to a generated scalar. For example,
in the following code, the transformation is straightforward.

DO I = 1, N
A(I) = B(I) + C
X(I) = A(I)*Q

ENDDO

In the pruned dependence graph, there will be a loop-independent depen-
dence edge from the first statement in the loop body to the second. In this
case, scalar replacement will require capturing the result of the computa-
tion in the first statement in a scalar t1, inserting a copy from the scalar to
A(I), and replacing the reference to A(I) in the second statement by a
reference to t, to produce:

DO I = 1, N
t = B(I) + C
A(I) = t
X(I) = t*Q

ENDDO

If t is assigned to a register in this loop, as we would expect with most
compilers, there will be one less load on each iteration than in the origi-
nal.

8.3.1 Loop Carried Dependences

This general procedure will work for any dependence or collection of
dependences that spans less than a single loop iteration—the first and last
statement in the collection are either on the same iteration or, if they are
on two successive iterations, the last statement does not occur lexically
after the first statement in the collection. As an example, consider the fol-
lowing:

DO I = 1, N
A(I) = B(I-1)

1. In the discussion that follows we will always denote compiler-introduced scalar vari-
ables intended for assignment to a register by a lower-case scalar variable such as t.

Compiler Improvement of Register Usage

446 ADVANCED COMPILING FOR HIGH PERFORMANCE

B(I) = A(I) + C(I)
ENDDO

Introducing two scalars, tA and tB, and inserting an initialization of tB
before the loop, we get the following result.

tB = B(0)
DO I = 1, N

tA = tB
A(I) = tA
tB = tA + C(I)
B(I) = tB

ENDDO

Note that the scalars tA and tB would be combined by a good scalar reg-
ister allocator into a single register. However, we will let the scalar com-
piler make that decision because it may be tied up with timing issues that
are too machine specific to address here.

8.3.2 Dependences Spanning Multiple Iterations

Scalar replacement becomes more complicated if the generating depen-
dence crosses one or more full loop iterations:

DO I = 1, N
A(I) = B(I-1) + B(I+1)

ENDDO

In this example, there is an input dependence from B(I+1) to B(I-1)
because the same memory location referenced as B(I+1) on one iteration
is referenced two iterations later as B(I-1). Thus, the distance for the
dependence is 2 iterations.

The problem with the dependences that span more than a single iteration
is that eliminating the load will require more than one temporary vari-
able. This is because the value computed on any particular iteration will
need to be preserved in a register beyond the point where the correspond-
ing value for the next iteration is first referenced. In the current example,
which spans two iterations, we will use three different scalar temporaries
defined as follows:

t1 = B(I-1)
t2 = B(I)
t3 = B(I+1)

Scalar Replacement

Chapter Draft of February 8, 2001 447

These relations may be thought of as “loop invariants” which must hold
on each iteration of the loop. Now we are ready to consider the code that
should be generated to eliminate the load at the dependence sink.

t1 = B(0)
t2 = B(1)
DO I = 1, N

t3 = B(I+1)
A(I) = t1 + t3
t1 = t2
t2 = t3

ENDDO

8.3.3 Eliminating Scalar Copies

While this code achieves the desired reduction in loads, it does so at the
expense of introducing two scalar copy instructions which will be trans-
lated to register-register copies by the compiler. While such copies are
fairly cheap, they do require instruction issue slots degrading perfor-
mance unnecessarily. Since these copies implement a permutation of val-
ues on machine registers, we can eliminate the need for copies by
unrolling to the cycle length of the permutation, which would produce the
code in below.

t1 = B(0)
t2 = B(1)
mN3 = MOD(N,3)
DO I = 1, mN3

t3 = B(I+1)
A(I) = t1 + t3
t1 = t2
t2 = t3

ENDDO
DO I = mN3+1, N, 3

t3 = B(I+1)
A(I) = t1 + t3
t1 = B(I+2)
A(I+1) = t2 + t1
t2 = B(I+3)
A(I+2) = t3 + t2

ENDDO

The first loop above, which is called a preloop, ensures that the number
of iterations remaining when the main loop is entered is a multiple of 3,
so that no special testing for loop ending conditions are needed in the
main loop. The preloop is exactly the same as the naive solution dis-
cussed earlier. Now, however, the main loop is entered after at most two
iterations of the preloop and requires no register-register copies while

Compiler Improvement of Register Usage

448 ADVANCED COMPILING FOR HIGH PERFORMANCE

performing fewer loop-ending tests. It is fairly straightforward to prove
that the final loop calculates the desired answer.

8.3.4 Pruning the dependence graph

In this section we will present an algorithm for pruning the dependence
graph so that each dependence edge represents a possible elimination of a
load or a store. The problem is illustrated by the following code

DO I = 1, N
S1 A(I+1) = A(I-1) + B(I-1)
S2 A(I) = A(I) + B(I) + B(I+1)

ENDDO

The dependence patterns for both A and B in this example are both inter-
esting. The assignment to A(I+1) in statement S1 reaches the use of A(I)
in statements S2 but not the use in statement S1 because it is killed by the
assignment in statement S2. The location used in S2 at the reference to
B(I+1) is reused in S2 an iteration later and again in S1 on a third itera-
tion.

The dependences before and after pruning are shown in Figure 8.2. The
edges remaining after pruning are shown as solid lines. The dashed edges
would be produced by dependence testing the normal way, but would not
remain after pruning.

It is important to notice that each reference has at most one predecessor
in the pruned graph and each edge represents a potential memory access
savings. The source of all edges in a group is called the generator of that
group. The three generators in this example are the two left hand sides of
the assignment statements and the use of B(I+1) in statement S2.

FIGURE 8.2 Effect of pruning

DO I = 1, N

A(I+1) = A(I-1) + B(I-1)

A(I) = A(I) + B(I) + B(I+1)

ENDDO

S1

S2

Scalar Replacement

Chapter Draft of February 8, 2001 449

If we assign all the references associated with a generator to a unique
temporary, we will get the following code after scalar replacement:

t0A = A(0); t1A0 = A(1); tB = B(0)
DO I = 1, N

S1 t1A1 = t0A + tB1
tB3 = B(I+1)

S2 t0A = t1A0 + tB3 + tB2
A(I) = t0A;
t1A0 = t1A1; tB1 = tB2; tB2 = tB3

ENDDO
A(N+1) = t1A1

This code has only one load and one store in the main loop. The original
code had five use references all but one of which is eliminated because of
the three edges in the pruned graph. In addition, a store has been elimi-
nated because of the output dependence from A(I+1) to A(I) which
makes a store of A(I+1) necessary only after the last iteration.

To prune the graph as depicted in Figure 8.2, we must eliminate two
kinds of edges:

1. Flow and input dependence edges that do not represent a potential
reuse because the value at the source is killed by an intervening
assignment to the same location. The flow dependence from A(I+1) to
A(I-1) in statement S2 is an example of this kind of pruned depen-
dence.

2. Input dependence edges that are redundant because of another refer-
ence, usually the generator, that has input dependences to both end-
points. The input dependence from B(I) in S2 to B(I–1) in S1 is an
example of this second type of pruned dependence.

This suggests a three-phase algorithm for pruning edges.

1. Phase 1: Eliminate killed dependences. In this phase all dependences
with a store to the location involved in the dependence between the
endpoints of the dependence. If the dependence to be pruned is a flow
dependence, a killing store can be identified by the existence of an
output dependence from the source of the dependence to an assign-
ment from which there is a flow dependence to the sink of the depen-
dence.

S1 A(I+1) =
...

S2 A(I) =
...

S3 ... = A(I)

Compiler Improvement of Register Usage

450 ADVANCED COMPILING FOR HIGH PERFORMANCE

Here the flow dependence from S1 to S3 should be pruned.

If the dependence to be pruned is an input dependence, it will have an
antidependence from the source to an assignment from which there is
a flow dependence to the sink.

S1 ... = A(I+1) =
...

S2 A(I) =
...

S3 ... = A(I-1)

Here the input dependence from S1 to S3 should be pruned.

2. Phase 2: Identify generators. In this phase all generators are identi-
fied. In the pruned graph, a generator is any assignment reference with
at least one flow dependence emanating from it to another statement in
the loop or a use reference with at least one input dependence emanat-
ing from it and with no input or flow dependence into it.

3. Phase 3: Find name partitions and eliminate input dependences.
Starting at each generator mark each reference reachable from the
generator by a flow or input dependence as part of the name partition
for that variable. A name partition is a set of references that can be
replaced by a reference to a single scalar variable. Any input depen-
dences between two elements of the same name partition may be elim-
inated unless the source of the dependence is the generator itself.

A somewhat surprising consequence of this analysis is that the entire pro-
cess of finding name partitions can be mapped to a typed fusion problem
(Section 6.2.5.1 on page 306) if we treat each reference as a vertex and
each edge as joining two references. In this formulation, we use the name
of the array in the reference as the type and define output dependences
and antidependences as bad edges. Once the typed fusion algorithm is
run, each fused node represents a distinct name partition and the initial
node added to the fused node is the generator.

There are two additional complications that must be dealt with in this
framework. First, there may be some references that are within a depen-
dence cycle in the loop. Note that the distinction here between references
and statements is important. Here is an example:

DO I = 1, N
A(J) = B(I) + C(I,J)
C(I,J) = A(J) + D(I)

ENDDO

Scalar Replacement

Chapter Draft of February 8, 2001 451

In this example, the typed fusion algorithm will not visit reference A(J)
because it is in a cycle of dependences as shown below

To deal with this, we note that the references in any such cycle can all be
assigned to a single scalar throughout the loop. No replicated scalars are
required

DO I = 1, N
tA = B(I) + C(I,J)
C(I,J) = tA + D(I)

ENDDO
A(J) = tA

The assignment can be moved out of the loop because of the output
dependence of the assignment on itself. If there were an upwards exposed
use of A(J), an assignment to tA, would need to be inserted before the
loop.

The second complication is the possibility of an inconsistent dependence.
For a dependence to represent reuse, it must be consistent, in that it a con-
stant threshold throughout the iteration of the loop. Here is an example
illustrating dependences that are not consistent.

DO I = 1, N
S A(2*I) = A(I) + B(I)

ENDDO

Even though there is a flow dependence from S to itself due to the refer-
ences on A, these threshold changes on each iteration so the dependence
is inconsistent and not suitable for reuse. Inconsistent dependences can
be handled by marking them as bad edges in the typed fusion framework
above. This will force a store and a load along any inconsistent depen-
dence between references to the same array. Similarly, in references in a
dependence cycle, the cycle should be broken by a bad edge, forcing a
store and load. For example, consider the following loop.

DO I = 1, N
S1 A(I) = A(I-1) + B(I)
S2 A(J) = A(J) + A(I)

DO I = 1, N

A(J) = B(I) + C(I,J)

C(I,J) = A(J) + D(I)

ENDDO

δ δ−1
δο

δι

Compiler Improvement of Register Usage

452 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO

Here the reference to A(I) in S1 can be replaced by a scalar, but the refer-
ence to A(I-1) must be loaded because it must be assumed that the store
to A(J) kills A(I). This results in the following code:

DO I = 1, N
S1 tAI = A(I-1) + B(I)

A(I) = tAI
S2 A(J) = A(J) + tAI

ENDDO

This code could be improved substantially by index set splitting:

tAI = A(0); tAJ = A(J)
JU = MAX(J-1,0)
DO I = 1, JU

S1 tAI = tAI + B(I); A(I) = tAI
S2 tAJ = tAJ + tAI

ENDDO
IF (J.GT.0.AND.J.LE.N) THEN

tAI = tAI + B(I); A(I) = tAI
tAJ = tAI ! can be forward substituted
tAJ = tAJ + tAI; tAI = tAJ

ENDIF
DO I = JU+1, N

tAI = tAI + B(I); A(I) = tAI
tAJ = tAJ + tAI

ENDDO
A(J) = tAJ

The second code has two fewer loads and one less store per iteration.

The name partitions are the principle input to scalar replacement. How-
ever, before we present that algorithm, we present a practical refinement
designed to overcome the limitations of existing scalar register allocators.

8.3.5 Moderation of Register Pressure

Ideally, the scalar replacement procedure should be applied systemati-
cally to all name partitions in a loop. In practice, however, such an appli-
cation will produce many scalar quantities that compete for a limited set
of floating-point registers. This can cause an overload that many scalar
register allocators are unable to deal with. As a result, it is often better for
the scalar replacement system to limit the number of scalars to less than
the number of available scalar registers.

Scalar Replacement

Chapter Draft of February 8, 2001 453

To accomplish this, the system can attach two parameters to each name
partition R:

1. the value of the name partition v(R), which is simply the number of
memory loads or stores saved by replacing every reference in R with
references to register-resident scalars, and

2. the cost of the name partition c(R), which is the number of registers
needed to hold all the scalar temporary values that would be required
to eliminate the references in R.

Given the number of available registers n, the desired solution is the sub-
collection of reference sets {R1, R2,...,Rm} such that

that maximizes the total number of memory accesses

that are eliminated. It is easy to see that this is an instance of the classical
bin-packing problem. It its most general form the bin packing is NP-com-
plete. However, the 0-1 bin packing problem can be solved in polynomial
time by a dynamic programming algorithm as shown in Figure 8.3.

FIGURE 8.3 Register Pressure Moderation

procedure Pack (v, c, M, n, L, m)

// v[1:M] is the set of values for each of the M name partitions.
// c[1:M] is the set of costs for each of the M name partitions.
// n is the number of registers available for array quantities.

// L[1:m] lists the indices of name partitions in the best packing.

// BP[0:n,0:M] is a profitability matrix such that
// BP[i,j] is the value of the best possible packing of a bin of
// size i using only reference sets 1 to j;

for j := 0 to M do begin BP[0,j] := 0; last[0,j] := 0 end
for i := 1 to n do begin BP[i,0] := 0; last[i,0] := 0 end

for j := 1 to M do begin

c Ri()
i 1=

m

∑ n≤

v Ri()
i 1=

m

∑

Compiler Improvement of Register Usage

454 ADVANCED COMPILING FOR HIGH PERFORMANCE

for i := 1 to n do begin
BP[i,j] := BP[i,j–1]; last[i,j] := last[i,j–1]
if i – c[j] ≥ 0 then

if BP[i,j–1] < BP[i–c[j], j] + v[j] then begin
BP[i,j] := BP[i–c[j], j] + v[j];
last[i,j] := j

end
end

end

// Now unpack the list of included indices and save in l

l := last[n,M]; m := 0; isize = M
while l ≠ 0 do begin

m := m + 1; L[m] := l;
sizeleft := sizeleft – c[l]
l := last[sizeleft,l–1]

end

end Pack

It is well known that this procedure takes O(nM) steps. However, if this
is too time consuming to include in a compiler, a good heuristic exists. If
we order the reference sets in decreasing order of the ratio v(R)/c(R) of
value to cost, we can select elements from the beginning of the list until
the registers are full. In practice, the heuristic does extremely well.

8.3.6 Scalar Replacement Algorithm

We are now ready to present a simple scalar replacement algorithm for
loops that do not include conditional flow of control. This algorithm can
be roughly divided into five phases as follows:

1. First use typed fusion to find the collection of name partitions as
described in Section 8.3.4. All the references in a collection will be
replaced by a single temporary, or a set of temporaries replicated to
cover multiple iterations.

2. Apply register pressure moderation to select the name partitions that
fit into the available registers and maximize the number of saved
memory references. This can be done by bin packing or by using the
related heuristic as described in Section 8.3.5.

3. Replace each selected name partition with references to a scalars,

a. if it is a non-cyclic partition, replace using a collection of unique
temporaries, one per iteration spanned by the set as seen in

Scalar Replacement

Chapter Draft of February 8, 2001 455

Section 8.3.2. Output dependences are used to move stores out of
loops where possible.

b. if it is a cyclic partition simply replace all references with a single
temporary

c. for each inconsistent dependence, either use index-set splitting to
ensure that the right values are passed or insert loads and stores
within the loop.

4. Finally, unroll the loop to the least common multiple of the number of
iterations spanned by sets in the selected group to eliminate register-
to-register copies as shown in Section 8.3.2.

FIGURE 8.4 Scalar Replacement

procedure ScalarReplace (L, G, n)

// L is the loop nest over which we must generate code.
// G is the augmented dependence graph among statements in L.
// n is the number of registers available for array quantities.

apply typed fusion to the dependence graph,
with output dependences antidependences and
inconsistent dependences marked as bad edges
to produce a collection P of name partitions;

use bin packing to choose the subset {p1, p2, ... , pm} of P
to maximize the number of memory references saved
while using no more than n registers;

for i = 1 to m do begin
if pi is a non-cyclic partition then

ScalarReplacePartition(pi, ki);
else begin

ScalarReplaceCyclicPartition(pi);
ki = 1;

end
for each inconsistent dependence δ in the loop do

InsertMemoryRefs(δ);
end

// ki is the number of temporaries introduced by scalar replacement
let K be the least common multiple of {k1,k2,...,km};
// unroll the loop to K loop bodies to eliminate scalar copies
UnrollLoop(K);

Compiler Improvement of Register Usage

456 ADVANCED COMPILING FOR HIGH PERFORMANCE

end ScalarReplace

FIGURE 8.5 Scalar Replacement of a set of dependences.

procedure ScalarReplacePartition (g,k)

// g is the set of dependences in the name partition.

let k be the total number of iterations spanned by the set g;
introduce unique temporary variables {t1, t2, ... , tk};

let I be the index of the loop to which replacement is being applied;
let R(I + l) denote the reference in the group with subscript I + l

in the position with the index I;
let j be the largest additive value to I for a subscripted reference in g;

// this means that j–k+1 is the smallest additive value

for each subscripted reference R(I + l) in g do begin
replace the subscripted reference by tj–k+l;
if the reference is on the left hand side of an assignment then

if there is no output dependence to another assigned
reference in the loop then
insert the assignment “R(I + l) = tj–k+l” as the statement

after the one containing the reference;
else begin // there is an output dependence

let R(I + q) be the sink reference of the output dependence;
if q<l then begin

for i = q+1 to l do
insert the assignment “R(N+i) = tj–k+i”

after the loop; // N = loop upper bound
end

end
end

let l be the largest additive value to I in a subscripted reference
in the group to which there is a flow dependence
from outside the loop;

for i = 1 to j–k+l do
insert “ti = R(i)” before the beginning of the loop;

for i = 1 to k–1 do
insert “ti = ti+1” just before the end of the loop;

end ScalarReplacePartition

Scalar Replacement

Chapter Draft of February 8, 2001 457

FIGURE 8.6 Scalar Replacement of a set of dependences.

procedure ScalarReplaceCyclicPartition (g)

// g is the set of dependences in the name partition.

if the reference involved g is not loop invariant then
return without doing any replacement;

let R be the loop-invariant reference for the name partition /
let t be a unique temporary variable;
for each subscripted reference R in g do

replace the subscripted reference by t;
if at least one reference is on the left hand side of an assignment then

insert “R = t” right after the loop;
if there is an upwards exposed use of R in the loop then

insert “t = R” right before the loop;

end ScalarReplaceCyclicPartition

FIGURE 8.7 Inserting memory references for inconsistent dependences.

procedure InsertMemoryRefs(δ)

// δ is the inconsistent dependence
if δ links a loop-variant name partition with a loop-invariant one then
begin // use index set splitting to eliminate the problem

split the loop into three parts:
a) the iterations up to but not including the iteration

containing the loop-invariant reference involved in δ
b) the iteration containing the reference
c) the iterations after the one containing the reference.

scalar replace the resulting three loops;
end
else if the dependence is a flow dependence then begin

insert a store of the temporary for the source
into the corresponding reference;

let R be the earliest reference in the name partition of the sink
that follows the source in the loop;

insert a load of the temporary for R from R just before the ref
if there is not one there already;

end
else if the dependence is an input dependence then begin

let R2 be the first reference to the sink after the current source ref;

Compiler Improvement of Register Usage

458 ADVANCED COMPILING FOR HIGH PERFORMANCE

let R1 be the last reference to the source before R2;
insert a store of the temporary for R1 to R1 right after R1

if there is not one there already
insert a load of the temporary for R2 from R2 before R2

if there is not one there already;
end

end InsertMemoryRefs

FIGURE 8.8 Unrolling to eliminate copies.

procedure UnrollLoop (K)

// K is the unroll factor
split the loop into two loops, a preloop:

DO I = 1, MOD(N,K)
and a main loop:

DO I = MOD(N,K)+1, N;

eliminate all register-to-register copies from the main loop;
unroll the main loop to contain K copies of the body and have it

step by K:
DO I = MOD(N,K)+1, N, K;

// As in all unrolling index I is replaced by I+p in the pth copy
// of the loop body

replace each reference to a unique generated constant ti in the qth
copy of the loop body, where the first loop body is the 0th copy,
by a reference to tMOD(i+q–1,k)+1 where k is the maximum index
for the temporary group of which ti is a member;

end UnrollLoop

8.3.7 Experiments

To illustrate the effectiveness of scalar replacement, we report on the
results of its application to a number of popular benchmark kernels and
programs. The results shown here are from Carr’s dissertation [9,12]. In
his experiments, he ran two versions of the program—the original and the
version produced by scalar replacement applied to the original. Both ver-
sions were compiled and run on an IBM RS6000 Model 540. Speedup is
computed by dividing the running time of the original by the running
time of the version after scalar replacement.

Scalar Replacement

Chapter Draft of February 8, 2001 459

FIGURE 8.9 Scalar Replacement on Livermore Loops.

The first chart, in Figure 8.9., shows the speedups achieved on the well-
known Livermore loops. The chart shows only the loops for which a
speedup occurred—for all other loops, there was no change. We can see
that the improvements range from a modest 1.03 to an astounding 2.67,
all over a compiler with a very good register allocator.Note that, unless
the compiler on the target machine is exceedingly naive, scalar replace-
ment can never result in a loss of performance.

Carr also tested scalar replacement on a number of well-known kernel
programs, including LU decomposition as implemented in LAPACK [5],
several of the NAS kernels and some kernels he found locally at Rice.
The results shown in Figure 8.10, include kernels for LU decomposition
with and without pivoting and cover both the point algorithm and a
blocked version. Each of these kernels contains invariant array references
that require dependence analysis to detect, so these speedups would not
be possible with a scalar-only compiler. The two exceptional perfor-
mances, on SEVAL and SOR, were due to almost all of the running time

LL 1 LL 5 LL 6 LL 7 LL 8 LL 11 LL 12 LL 13 LL 18 LL 20 LL 23
1

1.5

2

2.5

3

S
p

ee
d

u
p

Kernel

1.34

2.24

1.35

1.95

1.1

2.67

1.2
1.08 1.03 1.03

1.14

Compiler Improvement of Register Usage

460 ADVANCED COMPILING FOR HIGH PERFORMANCE

being concentrated in a single computation-intensive loop, which scalar
replacement successfully optimized.

FIGURE 8.10 Scalar replacement on linear algebra kernels.

Carr also ran scalar replacement on a number of benchmark applications.
These programs were taken from the well-known suites SPEC and Perfect,

Suite Kernel Description

Lin Alg MM Matrix multiplication

LU LU decomposition

LUP LU decomposition with pivoting

BLU Block LU decomposition

BLUP Block LU Decomposition with pivoting

NAS Vpenta Pentadiagonal matrix inversion

Emit Vortex creation

Gmtry Gaussian elimination for vortex solution

Geophysics Fold Convolution

Afold Convolution

Local Seval B-spline evaluation

Sor successive over-relaxation

TABLE 8.1 Test kernels for memory transformations.

LU LUP BLU BLUP Emit Gmtry Seval Sor
1

1.1

1.2

1.3

1.4

1.5

S
p

ee
d

u
p

Kernel

1.11 1.1

1.45
1.42

1.04
1.01

1.11

1.46

Scalar Replacement

Chapter Draft of February 8, 2001 461

along with RICEPS, a suite of compiler benchmarks collected at Rice Uni-
versity and three applications from Rice that are not part of RICEPS.

The performance of these applications after scalar replacement is
depicted in Figure 8.11. Scalar replacement achieves only modest
improvements on these applications (cases with no improvement are not
shown), although some loops within them achieved dramatic speedups.

FIGURE 8.11 Scalar Replacement on benchmark applications.

Suite Application Description

SPEC Matrix300 matrix multiplication

Tomcatv mesh generation

Perfect Adm pseudospectral air pollution

Arc2D 2D fluid-flow solver

Flo52 trans-sonic inviscid flow

RiCEPS Onedim time-independent Schrödinger equation

Shal weather prediction

Simple 2D hydrodynamics

Sphot particle transport

Wave electromagnetic particle simulation

Local CoOpt oil exploration

TABLE 8.2 Test applications for memory transformations.

Adm Arc2D CoOpt Flo52 Shal Simple Sphot Wave
1

1.05

1.1

1.15

1.2

S
p

ee
d

u
p

Application

1.03

1.01
1.02

1.04 1.04
1.03

1.02
1.03

Compiler Improvement of Register Usage

462 ADVANCED COMPILING FOR HIGH PERFORMANCE

8.4 Unroll-and-Jam

We now return to a version of the example of Figure 8.1 on page 444 and
ask whether we can achieve some reuse associated with the input depen-
dence on array B.

DO I = 1, N*2
DO J= 1, M

A(I) = A(I) + B(J)
ENDDO

ENDDO

As the loop is currently structured, it is unlikely that we can achieve any
reuse, because a particular value of B(J) must stay in a register through-
out the iteration of the J-loop until the next iteration of the I-loop. Since
N—the number of iterations of the J-loop—is unknown, we must assume
that any given machine will not have enough registers to get much reuse
for B. However, if we make a simple transformation, called unroll-and-
jam, we can bring pairs of iterations closer together:

DO I = 1, N*2, 2
DO J= 1, M

A(I) = A(I) + B(J)
A(I+1) = A(I+1) + B(J)

ENDDO
ENDDO

The essence of this transformation is to unroll the outer loop to multiple
iterations and then to fuse the copies of the inner loop. By performing
this transformation, we have brought two uses of B(J) together so that
the new version of the loop performs only one load of B(J) for each two
uses. If we use two scalars to hold the two values A(I) and A(I+1) and
one to hold the value of B(J), we will need three registers throughout the
inner loop:

DO I = 1, N*2, 2
s0 = A(I)
s1 = A(I+1)
DO J= 1, M

t = B(J)
s0 = s0 + t
s1 = s1 + t

ENDDO
A(I) = s0
A(I+1) = s1

ENDDO

Unroll-and-Jam

Chapter Draft of February 8, 2001 463

The inner loop now requires only one load for every two floating point
additions. Although the inner loop still requires a total of M loads, it is
only executed half as often, so the overall cost of the computation mea-
sured in number of loads is only half as much as the original. Further sav-
ings can be achieved by unrolling to factors greater than 2.

Unroll-and-jam also improves the efficiency of pipelined functional units.
As an example, consider the following loop:

DO J = 1, M*2
DO I = 1, N

A(I,J) = A(I+1,J) + A(I-1,J)
ENDDO

ENDDO

Here the value computed on one iteration of the inner I-loop is an input to
the calculation on the next iteration. This provides good reuse, but causes
a problem with the execution pipeline. If the functional unit pipeline is
two stages long, the next iteration must wait for two cycles after the cur-
rent one is started before it may begin. Thus the total time to execute this
loop nest can be no better than 2*M*N cycles. On the other hand, if we use
unroll-and-jam on the same example, we get

DO J = 1, M*2, 2
DO I = 1, N

S1 A(I,J) = A(I+1,J) + A(I-1,J)
S2 A(I,J+1) = A(I+1,J+1) + A(I-1,J+1)

ENDDO
ENDDO

In this case, we have two independent recurrences sharing the same func-
tional unit. Therefore, the functional unit can alternate work on these two
recurrences, launching the addition for statement S2 on the cycle after the
execution of S2. In this way, both recurrences can be done in the time
required to compute one of them in the original loop. Thus, the loop nest
takes half the time to execute, since the outer loop has only half as many
iterations. After scalar replacement the code looks like this:

DO J = 1, M*2, 2
s0 = A(0)
s1 = A(1)
DO I = 1, N

S1 s0 = A(I+1,J) + s0
S2 s1 = A(I+1,J+1) + s1

A(I,J) = s1
A(I+1,J) = s0

ENDDO
ENDDO

Compiler Improvement of Register Usage

464 ADVANCED COMPILING FOR HIGH PERFORMANCE

The inner loop has two loads and two stores for each pair of floating point
operations.

We now turn to the question of the legality of unroll-and-jam. Clearly, the
transformations above are legal. Is it ever illegal? Consider the following
loop:

DO I = 1, N*2
DO J = 1, M

A(I+1,J-1) = A(I,J) + B(I,J)
ENDDO

ENDDO

The dependence pattern for this loop is shown in Figure 8.12. Note that if
the J loop is the inner loop, the instance of the statement for I=1 and J=2
is executed before the instance of the statement for I=2 and J=1 because
all instances for I=1 are executed before any instance with I=2.

FIGURE 8.12 Legality of unroll-and-jam

FIGURE 8.13 If we perform unroll-and-jam on this loop, unrolling to a factor of 2, we
get:

DO I = 1, N*2, 2
DO J = 1, M

A(I+1,J-1) = A(I,J) + B(I,J)
A(I+2,J-1) = A(I+1,J) + B(I+1,J)

ENDDO
ENDDO

I=1

I=2

I=3

I=4

J=1 J=2 J=3 J=4

S(1,1) S(1,2) S(1,3) S(1,4)

S(4,1)

S(3,1)

S(2,1) S(2,2) S(2,3) S(2,4)

S(3,2) S(3,3) S(3,4)

S(4,2) S(4,3) S(4,4)

Unroll-and-Jam

Chapter Draft of February 8, 2001 465

FIGURE 8.14 Legality of unroll-and-jam.

In the transformed loop we are executing two iterations of the I-loop, rep-
resented by the box around S(1,1) and S(2,1) in Figure 8.14, for each
value of J. These two iterations are executed before the iteration contain-
ing S(2,1) and S(2,2). Hence, the dependence originates in a statement
that executes after the statement at which it terminates. This is clearly
illegal, and means that the unroll-and-jam does not preserve the original
meaning of the program.

You might notice that the dependence in this loop has direction vector
(<,>), which makes loop interchange illegal. It is not too surprising there-
fore that unroll-and-jam is illegal, because you can think of it as a loop
interchange, followed by unrolling the inner loop (always legal), fol-
lowed by another loop interchange. Should we then assume that loop
unroll-and-jam is illegal whenever loop interchange is illegal? Consider
the following variation on our example loop:

DO I = 1, N*2
DO J = 1, M

A(I+2,J-1) = A(I,J) + B(I,J)
ENDDO

ENDDO

The sink of the dependence is now two iterations of the I-loop away, so
the dependence pattern is as shown in Figure 8.15.

I=1

I=2

I=3

I=4

J=1 J=2 J=3 J=4

S(1,1) S(1,2) S(1,3) S(1,4)

S(4,1)

S(3,1)

S(2,1) S(2,2) S(2,3) S(2,4)

S(3,2) S(3,3) S(3,4)

S(4,2) S(4,3) S(4,4)

Compiler Improvement of Register Usage

466 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 8.15 Legality of unroll-and-jam.

If we unroll once to get two copies of the statement in the inner loop, we
are still guaranteed that the source of each dependence will be executed
before the sink. On the other hand, unrolling to three copies, would
reverse the dependence making that transformation illegal.

We are now ready to state the conditions under which unroll-and-jam is
illegal.

Definition 8.1. An unroll-and-jam to factor n consists of unrolling
the outer loop n-1 times to create n copies of the inner loop and
fusing those copies together.

Theorem 8.1. An unroll-and-jam to factor n is legal if and only if
there exists no dependence with direction vector (<,>) such that
the distance for the outer loop is < n.

Proof. From the discussion above, the transformation is clearly illegal if
such a dependence exists. What if no such dependence exists. Then there
are two cases. If no dependence with direction vector (<,>) exists, then
loop interchange is legal and unroll-and-jam must be as well. On the
other hand, if such a dependence exists it must have distance n or greater.
Then, the dependence has its origin in one iteration of the original loop
and end in an iteration that is at least n iterations later. These two itera-
tions cannot be in the same iteration group after unroll-and-jam because
the factor is n—two iterations in the same group can be at most n itera-
tions apart.

I=1

I=2

I=3

I=4

J=1 J=2 J=3 J=4

S(1,1) S(1,2) S(1,3) S(1,4)

S(4,1)

S(3,1)

S(2,1) S(2,2) S(2,3) S(2,4)

S(3,2) S(3,3) S(3,4)

S(4,2) S(4,3) S(4,4)

Unroll-and-Jam

Chapter Draft of February 8, 2001 467

Note here that when we are testing for correctness of unroll-and-jam, we
must use the full dependence graph and not the pruned version we use for
scalar replacement. This is because, we need to be conservative in pre-
serving the correctness of the program, while we wish to find only the
dependences that might correspond to systematic reuse when considering
scalar replacement.

We are now ready to present an algorithm for scalar replacement. The
procedure here assumes that the unroll factor m, the number of copies of
the loop body after unrolling, has been decided by another procedure,
which will be discussed later.

FIGURE 8.16 Algorithm for unroll-and-jam.

procedure UnrollAndJam (L, m);

// L is the loop nest to be addressed;
//
// m is the unroll factor
let the outer loop header be

DO I = 1, N;

split the outer loop into two loops, a preloop:
DO I = 1, MOD(N,m)

and a main loop:
DO I = MOD(N,m)+1, N

with identical copies of the body;

unroll the main outer loop to contain m copies of the body and have it
step by m:

DO I = MOD(N,m)+1, N, m;

// As in all unrolling index I is replaced by I+p in the pth copy
// of the loop body

let G' be the dependence graph for the loop adjusted in the natural way
to include the statements and loops in the multiple loop bodies and
to eliminate dependences carried by the outer loop;

use the algorithm TypedFusion (Figure 6.9 on page 309) on G'
to fuse the loops within the body of the unrolled outer loop,
with different types assigned to loops with different loop headers
and a separate type assigned to statements not in loops;

recursively apply TypedFusion in the same manner
to the bodies of loops that are fused in the step above;

Compiler Improvement of Register Usage

468 ADVANCED COMPILING FOR HIGH PERFORMANCE

for each loop L' that results after fusion of the outer loops do
pick an unroll amount m';
UnrollAndJam(L', m')

end

To see the effect of this algorithm on loops that are not perfectly nested,
consider the following loop nest:

DO I = 1, N
DO K = 1, N

A(I) = A(I) + A(K)
ENDDO
DO J = 1, M

DO K = 1, N
B(J,K) = B(J,K) + A(I)

ENDDO
ENDDO
DO J = 1, M

C(J,I) = B(J,N)/A(I)
ENDDO

ENDDO

First we apply unroll-and-jam to the outer I loop to get two copies of the
loop body concatenated end-to-end. This includes two copies of each of
the original loops within the I-loop. We then apply typed fusion recur-
sively to merge compatible loops, even though they are not located
together. In this case the J loops are compatible because they run from 1
to M, while the K loops run from 1 to N. This yields:

DO I = mN2+1, N, 2
DO K = 1, N

A(I) = A(I) + X(I,K)
A(I+1) = A(I+1) + X(I,K)

ENDDO
DO J = 1, M

DO K = 1, N
B(J,K) = B(J,K) + A(I)
B(J,K) = B(J,K) + A(I+1)

ENDDO
C(J,I) = B(J,N)/A(I)
C(J,I+1) = B(J,N)/A(I+1)

ENDDO
ENDDO

Next we repeat this process—unroll-and-jam followed by recursive typed
fusion —on the inner J loop:

Unroll-and-Jam

Chapter Draft of February 8, 2001 469

DO I = mN2+1, N, 2
DO K = 1, N

A(I) = A(I) + X(I,K)
A(I+1) = A(I+1) + X(I,K)

ENDDO
mM2 = MOD(M,2)
DO J = 1, mM2

DO K = 1, N
B(J,K) = B(J,K) + A(I)
B(J,K) = B(J,K) + A(I+1)

ENDDO
C(J,I) = B(J,N)/A(I)
C(J,I+1) = B(J,N)/A(I+1)

ENDDO
DO J = mM2+1, M, 2

DO K = 1, N
B(J,K) = B(J,K) + A(I)
B(J,K) = B(J,K) + A(I+1)
B(J+1,K) = B(J+1,K) + A(I)
B(J+1,K) = B(J+1,K) + A(I+1)

ENDDO
C(J,I) = B(J,N)/A(I)
C(J,I+1) = B(J,N)/A(I+1)
C(J+1,I) = B(J+1,N)/A(I)
C(J+1,I+1) = B(J+1,N)/A(I+1)

ENDDO
ENDDO

Scalar replacement then yields:

DO I = mN2+1, N, 2
tA0 = A(I); tA1 = A(I+1)
DO K = 1, N

tX = X(I,K); tA0 = tA0 + tX; tA1 = tA1 + X(I,K)
ENDDO
A(I) = tA0; A(I+1) = tA1
mM2 = MOD(M,2)
DO J = 1, mM2

DO K = 1, N
tB0 = B(J,K); tB0 = tB0 + tA0
tB0 = tB0 + tA1; B(J,K) = tB0

ENDDO
C(J,I) = tB0/tA0; C(J,I+1) = tB0/tA1

ENDDO
DO J = mM2+1, M, 2

DO K = 1, N
tB0 = B(J,K); tB0 = tB0 + tA0
tB0 = tB0 + tA1; B(J,K) = tB0
tB1 = B(J+1,K); tB1 = tB1 + tA0
tB1 = tB1 + tA0; B(J+1,K) = tB1

Compiler Improvement of Register Usage

470 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO
C(J,I) = tB0/tA0; C(J,I+1) = tB0/tA1
C(J+1,I) = tB1/tA0; C(J+1,I+1) = tB1/tA1

ENDDO
ENDDO

It is clear that a remarkable number of array references have been con-
verted to scalar uses which are assignable to registers. Yet the total num-
ber of floating-point registers required is only 5.

8.4.1 Effectiveness

In this section, we present some of Carr’s results on the effectiveness of
unroll-and-jam and scalar replacement [9,12]. In each of the tests below,
the original Fortran was run through the experimental loop restructurer
developed by Carr at Rice to produce a transformed version. For the pur-
poses of the experiments quoted in this section, the restructurer used only
the unroll-and-jam and scalar replacement transformations. Then both the
original and transformed versions were compiled and run on an IBM RS/
6000, model 540. Speedups were obtained by dividing the running time
of the original by that of the transformed version.

FIGURE 8.17 Unroll and jam with scalar replacement on kernels.

The two LAPACK kernels, BLU (block LU) and BLUP (block LU with piv-
oting) achieved the stated speedup on 500 by 500 matrices with a block
size of 32 elements. The three NAS kernels, Vpenta, Emit, and Gmtry, all
showed speedups ranging from modest for Vpenta to spectacular for
Gmtry. Gmtry and Emit both involved key computational loop nests with

MM BLU BLUP Vpenta Emit Gmtry Afold Fold Seval Sor
1

2

3

4

5

6

7

S
p

ee
d

u
p

Kernel

1

3.
07

1.
45

2.
8

1.
42

2.
52

1 1.
08

1.
04

1.
43

1.
01

5.
98

1

1.
87

1

1.
91

1.
11

1.
11 1.

46

1.
46

SR

SR+UJ

Unroll-and-Jam

Chapter Draft of February 8, 2001 471

outer-loop reductions that were subject to unroll-and-jam. Finally, two
geophysical kernels, Afold and Fold, involved the computation of convo-
lutions, which are also nice subjects for unroll-and-jam.

Carr also tested the methods on a number of applications from the collec-
tion of benchmarks described in Section 8.3.7 on page 458. Performance
improvements for entire applications are relatively modest in general
because the effect on any single loop are counterbalanced by code in
which the optimization is not applicable.

The diagrams in Figure 8.17 and Figure 8.18 are laid out to illustrate the
marginal improvement of unroll-and-jam over scalar replacement. Any
kernel or application that is not shown achieved no speedup with either
technique.

Not shown is the matrix multiplication program Matrix300, which was
part of the original SPEC benchmark suite and used a standard imple-
mentation with the sum reduction in the innermost loop. When applied to
a matrix of size 500 by 500, unroll-and-jam with scalar replacement pro-
duced a speedup of 4.58. The dramatic improvement for Matrix300,
which was reproduced by the Kuck and Associates’ front end for the IBM
RS/6000 compiler using a similar algorithm, was one of the primary rea-
sons for dropping Matrix300 from the SPEC benchmark suite.

FIGURE 8.18 Unroll-and-jam with scalar replacement on applications.

Clearly, unroll-and-jam, when it is applicable, can be a powerful tool for
optimizing the performance of scalar floating-point calculations on

Adm Arc2D CoOpt Flo52 Onedim Shal Simple Sphot Wave Tomcatv
1

1.04

1.08

1.12

1.16

1.2

S
p

ee
d

u
p

Application

1.
03

1.
03

1.
01 1.

02

1.
02

1.
05

1.
04

1.
04

1

1.
11

1.
04

1.
04

1.
03 1.

04

1.
02

1.
02 1.

03

1.
03

1

1.
01

SR

SR+UJ

Compiler Improvement of Register Usage

472 ADVANCED COMPILING FOR HIGH PERFORMANCE

today’s uniprocessors. However, one of its most important applications
may be in saving effort on the part of programmers. As an illustration, we
present the following code fragment:

J = MOD(N2,2)
IF (J .GE. 1) THEN

DO 10 I = 1, N1
Y(I) = (Y(I)) + X(J)*M(I,J)

10 CONTINUE
ENDIF

J = MOD(T2,4)
IF (J .GE. 2) THEN

DO 20 I = 1, N1
Y(I) = ((Y(I)) + X(J–l)*M(I,J–1)) + X(J)*M(I,J)

20 CONTINUE
ENDIF

J = MOD(N2,8)
IF (J .GE. 4) THEN

DO 30 I = 1, N1
Y(I) = ((((Y(I)) &

+ X(J–3)*M(I,J–3)) + X(J–2)*M(I,J–2)) &
+ X(J–1)*M(I,J–1)) + X(J) *M(I,J)

30 CONTINUE
ENDIF

J = MOD(N2,16)
IF (I .GE. 8) THEN

DO 40 T = 1, N1
Y(I) = ((((((((Y(I)) &

+ X(J–7)*M(I,J–7)) + Z(J–6)*M(I,J–6)) &
+ X(J–6)*M(I,J–5)) + X(J–4)*M(I,J–4)) &
+ X(J–3)*M(I,J–3)) + X(J–2)*M(I,J–2)) &
+ X(J–l)*M(I,J–1)) + X(J) * M(I,J)

40 CONTINUE
ENDIF

JMIN = J+16
DO 60 J = JMIN , N2, 16

DO 50 I = 1, N1
Y(I) = ((((((((((((((((Y(I)) &

+ X(J–l5)*M(I,J–16)) + X(J–14)*M(I,J–14)) &
+ X(J–13)*M(I,J–13)) + X(J–12)*M(I,J–12)) &
+ X(J–ll)*M(I,J–11)) + X(J–lO)*M(I,J–10)) &
+ X(J– 9)*M(I,J– 9)) + X(J– 8)*M(I,J– 8)) &
+ X(J– 7)*M(I,J– 7)) + X(J– 6)*M(I,J– 6)) &
+ X(J– 5)*M(I,J– 5)) + X(J– 4)*M(I,J– 4)) &
+ X(J– 3)*M(I,J– 3)) + X(J– 2)*M(I,J– 2)) &
+ X(J– 1)*M(I,J- 1)) + X(J) *M(I,J)

Loop Interchange

Chapter Draft of February 8, 2001 473

50 CONTINUE
60 CONTINUE

Although this code appears to have been written by a computer program
using transformations like unroll-and-jam, it was in fact written by hand
by Jack Dongarra and his colleagues as a part of the LINPACKD bench-
mark. This code was laboriously produced to make good use of machines
with cache and registers. Note that the elements X(J:J+16) will remain
in cache (or floating-point registers, if there are more than 16) throughout
the execution of the loop on index I.

This code was reworked from the following fragment of DMXPY in
LINPACKD, which is clearly much simpler and easier to understand:

DO 20 J = 1, N2
DO 10 I = 1, N1

Y(I) = Y(I) + X(J)*M(I,J)
10 CONTINUE
20 CONTINUE

Unfortunately, when the simpler code was executed on the MIPS M120,
it required 28 seconds of execution time as opposed to 18.5 seconds for
the Dongarra version.

One of the goals of compiler optimization is to free the programmer from
having to code highly machine-dependent and complex code like the
Dongarra example above. The good news is that when the simpler ver-
sion of the code was processed by the Carr and Kennedy unroll-and-jam
plus scalar replacement package, the resulting code ran in only 17.5 sec-
onds, just beating the Dongarra version. This implies that techniques like
unroll-and-jam may make it unnecessary for programmers to hand code
for better performance in the memory hierarchy.

8.5 Loop Interchange

In the material so far, we have not considered the impact of loop order on
register reuse. Although most users would write loops that allocate poten-
tial reuse to the innermost loop, there are cases where the best loop order
is not obvious. For the programmer, the problem is complicated by the
need to present the computation clearly. It may also be complicated by
interactions with other parts of the memory hierarchy, such as cache (see
Chapter 9). Finally, the code being compiled may not be generated by a
compiler. Instead it may have come from a preprocessor, such as one that
translates Fortran 90 array statements to loops (see Chapter 13).

Compiler Improvement of Register Usage

474 ADVANCED COMPILING FOR HIGH PERFORMANCE

Consider, for instance, the following loop containing a Fortran 90 vector
statement

DO I = 2, N
A(1:M, I) = A(1:M, I-1)

ENDDO

which might be used to initialize a matrix. The DO loop “carries” the val-
ues in the first column across the entire matrix. As we shall see in
Chapter 13, the above loop will be converted to a scalar loop as follows.

DO I = 2, N
DO J = 1, M

A(J,I) = A(J,I-1)
ENDDO

ENDDO

The straightforward implementation will produce

 DO I = 2, N
DO J = 1, M

R1 = A(J,I-1)
A(J,I) = R1

ENDDO
ENDDO

In this form, the code propagates every element of the first column to the
second column, then propagates the second column to the third and so on.
The total number of loads and stores is (N–1)M. Even though the same
value is stored in every element of a row, we must still load the value
before every store. However, if we interchange the scalarization loop
with the outer loop, the matrix will be initialized one row at a time, mak-
ing it possible to keep the current row value in a register throughout the
computation. In other words, the nest after interchange

DO J = 1, M
DO I = 2, N

A(J,I) = A(J,I-1)
ENDDO

ENDDO

can be implemented

DO J = 1, M
R1 = A(J,1)
DO I = 2, N

A(J,I) = R1
ENDDO

ENDDO

Loop Interchange

Chapter Draft of February 8, 2001 475

This version still requires (N–1)M stores but the number of loads is
reduced to M. Thus we would expect the loop to be twice as fast as the
naive version.

Since memory accesses are typically long, even when they hit in cache,
transformations like this one that improve register reuse are extremely
important. In the following sections, we discuss the conditions under
which such transformations should be applied and present algorithms for
implementing them.

8.5.1 Considerations for Loop Interchange

The basic idea behind loop interchange is to get the loop that carries the
most dependences to the innermost position through the use of loop inter-
change. This will make it possible to reuse values by keeping them in
registers. during the iteration of the loop. Although reuse can still be
achieved for dependences carried by the outer loop, the benefit will be
limited by register resources.

The conventional direction matrix for a loop nest (see Definition 5.3 on
page 214) can be very helpful in determining which loop to move to the
innermost position. First, the only loops that we might wish to move to
the innermost position are those that will carry a true or input dependence
in that position. After interchange, the dependence vector must have “=”
in the position for every outer loop and a “<” in the position for the inner-
most loop. This means that we should search the dependence matrix for
rows corresponding to true or input dependences that have only one “<”,
with the remainder of the positions containing “=”. The loops that carry
the dependences corresponding to these rows are the best candidates for
moving to the innermost position.

DO J = 1, N
DO K = 1, N

DO I = 1, 256
A(I,J,K) = A(I,J-1,K) + &

A(I,J-1,K-1) + A(I,J,K-1)
ENDDO

ENDDO
ENDDO

There are three true dependences in this nest, which give rise to the fol-
lowing direction matrix.

Compiler Improvement of Register Usage

476 ADVANCED COMPILING FOR HIGH PERFORMANCE

The first row contains a single “<” as does the third. Since the second row
contains two “<” symbols, the dependence represented by that row can
never be carried by the innermost loop, since the outermost “<” corre-
sponds to the carrier. Hence, if we move the outermost loop to the inner-
most position, the dependence corresponding to the first row may lead to
reuse. If the second outermost loop is exchanged with the innermost, the
dependence corresponding to the third row may lead to reuse.

Suppose we choose the outermost loop in this example, then the nest
becomes

DO K = 1, N
DO I = 1, 256

DO J = 1, N
A(I,J,K) = A(I,J-1,K) + &

A(I,J-1,K-1) + A(I,J,K-1)
ENDDO

ENDDO
ENDDO

and we can eliminate a load of the first operand on the right hand side in
each execution of the J-loop. Reuse can be further enhanced in this exam-
ple by interchanging the two outer loops and then applying unroll-and-
jam from Section 8.4 on page 462:

DO I = 1, 256
DO K = 1, N, 2

DO J = 1, N
A(I,J,K) = A(I,J-1,K) + &

A(I,J-1,K-1) + A(I,J,K-1)
A(I,J,K+1) = A(I,J-1,K+1) + &

A(I,J-1,K) + A(I,J,K)
ENDDO

ENDDO
ENDDO

This causes the elimination of several loads as can be seen in the code
after scalar replacement is performed:

DO I = 1, 256
DO K = 1, N, 2

r1 = A(I,0,K)
r2 = A(I,0,K+1)

< = =

< < =

= < =

Loop Interchange

Chapter Draft of February 8, 2001 477

DO J = 1, N
r0 = r1 + A(I,J-1,K-1) + A(I,J,K-1)
A(I,J,K) = r0
r2 = r2 + r1 + r0
A(I,J,K+1) = r2
r1= r0

ENDDO
ENDDO

ENDDO

Note that the unroll-and-jam has uncovered not only the reuse due to the
dependence that had only one “<” in its row but also the one that had two.

Up to this point, we have implicitly assumed that each dependence had
constant unit threshold. If a dependence has a variable threshold, it
should be eliminated from consideration for register reuse. On the other
hand, if the variable has a constant threshold greater than one, it can still
lead to reuse through unrolling or loop splitting. These are discussed in
future sections.

The remaining issue to be discussed is one of profitability: which loop
should be moved to the innermost position when there are multiple possi-
bilities. For example, in the following:

DO I = 1, 100
DO J = 1, 50

DO K = 1, N
A(K,J,I) = A(K,J,I-1) + B(K,I)

ENDDO
ENDDO

ENDDO

the I loop carries a true dependence, and the J loop carries an input
dependence.

Either of these loops can be moved to the innermost position.Which loop
gives better performance as an inner loop? In this case, the answer is the I
loop. Since it iterates 100 times, having it as the innermost loop reduces
the number of fetches of A required from 100 to 1, thereby saving 99
fetches. (the section of A involved need be fetched only once at the begin-
ning of the loop).

= < =

< = =

Compiler Improvement of Register Usage

478 ADVANCED COMPILING FOR HIGH PERFORMANCE

If the J loop is moved to the innermost position, the number of fetches of
B is reduced from 50 to 1, saving only 49 fetches. In general, it is very
easy to select the optimal loop, since the savings accrued is roughly pro-
portional to the number of iterations of the loop times the number of
dependences carried by that loop.

With these considerations in mind, we can informally state the algorithm
for choosing the innermost loop to improve register allocation.

1. Form the direction matrix for the loop nest and use it to identify the
loops other than the scalarization loop that can legally be moved to the
innermost position.

2. For each such loop l, let count(l) be the number of rows of the direc-
tion matrix that have “<” in the position corresponding to l and “=” in
every other position.

3. Pick the loop l that maximizes the product of count(l) and the iteration
count of loop l.

Of course, some simplifying assumptions must be made in the case that
the upper bounds are variables whose values are unknown at compile
time.

On machines with cache memories, this interchange strategy must be
weighed against the need to have stride-one access to arrays in the inner-
most loop. This subject will be discussed in Chapter 9.

8.6 Loop Fusion

Although most programmers would naturally write loop nests that
achieve a high degree of reuse, there are many situations in which fusion
of loop nests might produce good results. An important example is when
the loop nests are produced as a result of some form of preprocessing,
such as when Fortran 90 array statements are converted to scalar loops as
discussed in Chapter 13.

Consider the following Fortran 90 example:

A(1:N) = C(1:N) + D(1:N)
B(1:N) = C(1:N) - D(1:N)

In this case both statements use identical sections of C and D. It is clear
from these statements that the comment elements should be reused from
registers. Certainly, if we had a machine with vector registers of length
256, it should be relatively straightforward for a compiler to retain the

Loop Fusion

Chapter Draft of February 8, 2001 479

operands in registers. However, when these statements are converted to
scalar form in a naive way, the common operands move apart:

DO I = 1, N
A(I) = C(I) + D(I)

ENDDO

DO I = 1, N
B(I) = C(I) - D(I)

ENDDO

In this form, the common operands have been separated; the first loop
runs through all elements of C and D before the second loop accesses the
any element of either array. Thus, every element of C and D must be
loaded again in the second loop

Loop fusion, which was originally discussed in Section 6.2.5 on
page 300, will bring the references back together so the operands can be
reused:

DO I = 1, 256
A(I) = C(I) + D(I)
B(I) = C(I) - D(I)

ENDDO

The appropriate sections of C and D need be fetched only once for the
two statements, rather than twice as in the original scalarized code.

Recall that two loops may be safely fused so long as there are no fusion-
preventing dependences between them. In addition, some technical con-
ditions, such as the loops having the same bounds, are desirable
[AbuS^78].

Just because loop fusion is safe does not mean it is profitable, however.
When safe loop fusion is performed along a loop independent depen-
dence, one of two types of dependence may result: a loop independent
dependence or a forward loop carried dependence. It is easy to see how
reuse is enhanced by fusion that results in a loop independent depen-
dence. However, a forward loop carried dependence is more complicated.
For example, consider the following nest:

DO J = 1, N
DO I = 1, M

A(I,J) = C(I,J) + D(I,J)
ENDDO
DO I = 1, M

B(I,J) = A(I,J-1) - E(I,J)
ENDDO

Compiler Improvement of Register Usage

480 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO

There is the possibility of reusing the registers that hold the elements of
A, provided that the J-loop can be moved to the innermost position. To
make this possible, however, requires fusing the loops.

DO J = 1, N
DO I = 1, 256

A(I,J) = C(I,J) + D(I,J)
B(I,J) = A(I,J-1) - E(I,J)

ENDDO
ENDDO

Next, the J-loop can be moved to the innermost position to yield

DO I = 1, M
DO J = 1, N

A(I,J) = C(I,J) + D(I,J)
B(I,J) = A(I,J-1) - E(I,J)

ENDDO
ENDDO

At first glance, this appears to require two registers to achieve reuse,
because the lifetime of the register crosses the definition point in the next
iteration of the J-loop. Recall, however, that statement order is not a fac-
tor in preserving loop-carried dependences. As a result, nothing prohibits
reversing the order of the two statements to yield

DO I = 1, M
DO J = 1, N

B(I,J) = A(I,J-1) - E(I,J)
A(I,J) = C(I,J) + D(I,J)

ENDDO
ENDDO

Now A(I,J) can be saved in a register for use on the next iteration of the
J-loop—no memory access is required to fetch A (other than the initial
load at the start of each iteration of the I-loop).

Unfortunately, it is not always possible to perform statement reversal in
this fashion. Suppose the example above were changed slightly.

DO J = 1, N
DO I = 1, M

A(I,J) = C(I,J) + D(I,J)
ENDDO

DO I = 1, M
C(I,J) = A(I,J-1) - E(I,J)

Loop Fusion

Chapter Draft of February 8, 2001 481

ENDDO
ENDDO

After fusion and loop interchange, this becomes

DO I = 1, M
DO J = 1, N

A(I,J) = C(I,J) + D(I,J)
C(I,J) = A(I,J-1) - E(I,J)

ENDDO
ENDDO

Now statement reversal is prohibited because of the loop-independent
antidependence on C. In cases like these, we can always use an additional
register, as described in Section 8.3 on page 445, to overcome the depen-
dence overlap:

DO I = 1, 256
t0 = A(I,0)
DO J = 1, N

t1 = C(I,J) + D(I,J)
A(I,J) = t1
C(I,J) = t0 - E(I,J)
t0 = t1

ENDDO
ENDDO

The register copy can then be eliminated by unrolling.

Thus, the loop independent dependences between two loop nests fall into
one of three categories as far as loop fusion is concerned:

1. They may be fusion preventing, which means that the loops cannot be
correctly fused. These dependences will also be called blocking
dependences.

2. They may remain loop independent when the loops are fused. These
dependences may provide for profitable reuse of a register within a
loop iteration if fusion is performed.

3. They may become forward loop carried dependences. These depen-
dences may provide profitable reuse of a register across loop itera-
tions, if the two statements involved in the dependence are reversed,
possibly by using input prefetching, and the loop carrying the depen-
dence can be moved to the innermost position.

Dependences that fall into the second and third categories will be called
profitable dependences, since they provide for some reuse of registers if
fusion is performed along them. All other dependences (antidependences

Compiler Improvement of Register Usage

482 ADVANCED COMPILING FOR HIGH PERFORMANCE

and loop-independent dependences where the alignment is not exact) do
not directly affect loop fusion, but must be considered when deciding
upon the order in which loops should be fused. In the following section,
we show how to incorporate these observations into a loop fusion algo-
rithm. Note that we can mark all profitable loop carried dependences by a
straightforward traversal of the dependence graph.

8.6.1 Alignment

Blocking dependences cause problems for loop fusion, as the following
example shows.

DO I = 1, M
DO J = 1, N

S1 A(J,I) = B(J,I) + 1.0
ENDDO
DO J = 1, N

S2 C(J,I) = A(J+1,I) + 2.0
ENDDO

ENDDO

We cannot achieve any reuse through by fusing the two inner loops
directly, because a backward carried antidependence would be intro-
duced, thus causing the transformed nest to give incorrect results.

However, this problem can be overcome by a simple transformation
called loop alignment. In the above example, we wish to align the results
so that after fusion, the creation of the result A(I,J) in statement S1 is on
the same iteration as the use of the same value in statement S2. The strat-
egy is to align the iteration range of the first loop with that of the second.
In this case, we will add one to the loop index I in each instance where it
appears in the first loop, while compensating by subtracting one from the
upper and lower bounds:

DO I = 1, M
DO J = 0, N-1

S1 A(J+1,I) = B(J+1,I) + 1.0
ENDDO
DO J = 1, N

S2 C(J,I) = A(J+1,I) + 2.0
ENDDO

ENDDO
DO I = 1, M

Now we have seemingly traded one problem for another, as the iteration
ranges of the two loops are no longer aligned. However, we will solve
this problem by fusing the loop in the common iteration range. In this

Loop Fusion

Chapter Draft of February 8, 2001 483

case that will mean peeling a single iteration from the beginning of the
first loop and one iteration from the end of the second, to produce the fol-
lowing:

The iteration ranges of these two loops can then be aligned to permit
fusion:

DO I = 1, M
S0 A(1,I) = B(1,I) + 1.0

DO J = 1, N-1
S1 A(J+1,I) = B(J+1,I) + 1.0

ENDDO
DO J = 1, N-1

S2 C(J,I) = A(J+1,I) + 2.0
ENDDO

S3 C(N,I) = A(N+1,I) + 2.0
ENDDO

These loops may now be legally fused to achieve reuse of values of A.

Unlike the case of parallelization discussed in Section 6.2.3 on page 291,
it should always be possible to achieve an effective alignment of two
loops by simply aligning the array access that would cause the backward
carried dependence with the largest threshold. Consider the following
example:

DO I = 1, N
S1 A(I) = B(I) + 1.0

ENDDO
DO I = 1, N

S2 C(I) = A(I+1) + A(I)
ENDDO

The fusion preventing dependence from A(I+1) in statement S2 to A(I)
in statement S1, can be eliminated by alignment. This does not create any
new fusion-preventing dependence:

DO I = 0, N-1
S1 A(I+1) = B(I+1) + 1.0

ENDDO
DO I = 1, N

S2 C(I) = A(I+1) + A(I)
ENDDO

These loops can be fused using the same procedure, with peeling:

A(1) = B(1) + 1.0
DO I = 1, N-1

S1 A(I+1) = B(I+1) + 1.0

Compiler Improvement of Register Usage

484 ADVANCED COMPILING FOR HIGH PERFORMANCE

S2 C(I) = A(I+1) + A(I)
ENDDO
C(N) = A(N+1) + A(N)

Scalar replacement of this loop would produce:

tA0 = B(1) + 1.0
A(1) = tA0
DO I = 1, N-1

tA1 = B(I+1) + 1.0
S1 A(I+1) = tA1
S2 C(I) = tA1 + tA0

tA0 = tA1
ENDDO
tA1 = A(N+1) + tA0
C(N) = tA1

which would be unrolled to avoid register copies. The result achieves
optimal register use in the inner loop.

The one potential disadvantage of this procedure is that the fused loops
may have fewer iterations, thus producing a smaller advantage for the
method. However, as the case above illustrates, if the scalar replacement
is properly extended to the prologue and epilog code, there is no loss of
potential reuse. The reason for this is that the iterations lost at the begin-
ning and end had no potential for reuse in the first place, because they
were computing the wrong quantities.

We now turn to the task of formalizing these ideas into an alignment
algorithm for groups of loops that are candidates for fusion. The key idea
is to associate an alignment threshold with each edge with a source and
sink in different loops.

Definition 8.2. Given a dependence δ that has a source in one
loop and a sink in another loop, the alignment threshold of the
dependence is defined as follows:

a. if the dependence would be loop independent after the two loops
were fused, the alignment threshold is 0.

b. if the dependence would be forward loop carried after fusion of the
loops, the alignment threshold is the negative of the threshold of
the resulting carried dependence.

c. if the dependence is fusion-preventing—that is, the dependence
would be backward carried after fusion—the alignment threshold is
defined as the threshold of the backward carried dependence.

Loop Fusion

Chapter Draft of February 8, 2001 485

For the purposes of the definition, fusion means pushing the two bodies
together with no adjustment of the index expressions, which may imply
strip mining to a common iteration set. As an illustration of the definition
of alignment thresholds, consider the following pair of loops:

DO I = 1, N
S1 A(I) = B(I) + 1.0

ENDDO
DO I = 1, N

S2 C(I) = A(I+1) + A(I-1)
ENDDO

There are two forward dependences from S1 to S2 in these loops. If the
loops are fused in the naive fashion, without concern for fusion-prevent-
ing dependences, these two dependences would become:

1. A forward carried dependence with threshold 1 from S1 to S2 due to
the reference A(I-1) in S2. Thus the corresponding dependence from
S1 to S2 before fusion has an alignment threshold of –1.

2. A backward carried antidependence from S2 to S1 involving reference
A(I+1) with threshold 1. Thus the alignment threshold of the corre-
sponding forward dependence before fusion is 1.

Once the alignment thresholds are known, alignment is straightforward—
simply align each loop by the largest threshold. Here alignment involves
adjusting the iteration range of the source by adding an amount equal to
the alignment threshold to each instance of the loop index and subtracting
an amount equal to the alignment threshold from the upper and lower
bound of the iteration range. Here we are assuming that the loops have
been normalized to go in the same direction in steps of one. In the case of
the example above we get:

DO I = 0, N-1
S1 A(I+1) = B(I+1) + 1.0

ENDDO
DO I = 1, N

S2 C(I) = A(I+1) + A(I-1)
ENDDO

These loops can now be fused naturally after peeling. Note that if the
largest alignment threshold is negative, the algorithm still works cor-
rectly. For example,

DO I = 1, N
A(I) = B(I) + 1.0

ENDDO
DO I = 1, N

Compiler Improvement of Register Usage

486 ADVANCED COMPILING FOR HIGH PERFORMANCE

C(I) = A(I-1) + 2.0
ENDDO

has an alignment threshold of –1. After alignment, this becomes

DO I = 2, N+1
A(I-1) = B(I-1) + 1.0

ENDDO
DO I = 1, N

C(I) = A(I-1) + 2.0
ENDDO

These loops can be fused by peeling the last iteration of the first loop and
the first iteration of the last loop:

DO I = 2, N
A(I-1) = B(I-1) + 1.0

ENDDO
A(N) = B(N) + 1.0
C(1) = A(0) + 2.0
DO I = 2, N

C(I) = A(I-1) + 2.0
ENDDO

which can be fused because the statement peeled from the front of the
first loop can move to the beginning and the statement peeled from the
end of the second loop can move to the end:

C(1) = A(0) + 2.0
DO I = 2, N

A(I-1) = B(I-1) + 1.0
C(I) = A(I-1) + 2.0

ENDDO
A(N) = B(N) + 1.0

FIGURE 8.19 Alignment for Reuse

procedure AlignLoops(G)
// The parameter G is a collection of loops that contain that have
// dependences that involve potential reuse but which may have
// fusion-preventing dependences

// remove all consistently-generated fusion-preventing
// dependences with a small constant threshold
// by the following procedure:

let S be a the set of loops with no good edges out, where a good

Loop Fusion

Chapter Draft of February 8, 2001 487

edge is defined as one that can be removed by alignment;
let P be the set of loops not in S such that

all good edges out of a loop in P have a loop in S as a sink;

while P ≠ ∅ do begin
select and remove an arbitrary loop l from P;
let k be the largest threshold associated with a good edge

out of l; Note: k could be negative.
align the loop by k iterations as follows:

replace the lower bound L by L–k,
replace the upper bound N by N–k,
replace every instance of the loop induction variable I by I+k;

end
end AlignLoops

This algorithm is correct by virtue of the fact that it does not alter the
order of the source and sink of any two dependences.

After the algorithm finishes, all dependences between loops have a
source that is in an iteration whose index value is the same as or smaller
than the index value of the sink in the other loop. This will be important
for the correctness of the strip-mining fusion algorithm we will show
shortly.

8.6.2 Fusion Mechanics

Once we have identified a collection of loops to be fused and aligned
those loops using the method of Section 8.6.1, we need to actually per-
form the fusion itself. The principal problem that we must address in fus-
ing a collection of loops is how to deal with mismatches in the upper and
lower bounds of the loops. For simplicity, we begin with the assumption
that all the loops have been normalized to iterate by steps of one. How-
ever, we make no assumption about the relative values of the upper and
lower bounds.

As we have seen, alignment is one way to introduce mismatches in the
iteration ranges of loops that can be fused. However, mismatches may
occur in many different ways and a good fusion algorithm should be able
to deal with them in a general way.

To illustrate the problems that may be encountered in practice, we present
an example of only moderate complexity:

L1: DO I = 1, 1000

Compiler Improvement of Register Usage

488 ADVANCED COMPILING FOR HIGH PERFORMANCE

A(I) = X(I) * D
ENDDO

L2: DO I = 2, 999
A(I) = (A(I-1) + A(I+1))*.5

ENDDO
L3: DO I = 1, 1000

X(I) = A(I) * E
ENDDO

This is intended to represent in abstract form a relaxation calculation that
is common in scientific computing. After alignment this becomes:

L1: DO I = -1, 998
A(I+2) = X(I+2) * D

ENDDO
L2: DO I = 1, 998

A(I+1) = (A(I) + A(I+2))*.5
ENDDO

L3: DO I = 1, 1000
X(I) = A(I) * E

ENDDO

Note that loop L2 has been aligned with L3 so that the uses of A(I) will
be on the same iteration after fusion. Because these two references are
related only by input dependence, this was not strictly necessary. We
could have aligned the assignment in L2 with the use in L3 and still been
correct. However, we will strictly follow the algorithm as stated in
Figure 8.19. The iteration ranges of the three loops after alignment are
graphically depicted in

FIGURE 8.20 Mismatched iteration ranges.

The iteration ranges after fusion are depicted by the diagram in
Figure 8.21. Here loop L1 has been split into two loops: L1a with two
iterations and L1b with 998. Similarly L3 has been split into L3a with
998 iterations and L3b with 2. Finally loops L1b, L2, and L3a have been
fused into a single loop.

–1

1

1

998

998

1000

L1

L2

L3

Loop Fusion

Chapter Draft of February 8, 2001 489

FIGURE 8.21 Mismatched iteration ranges after fusion.

The actual code for the result is shown below:

L1a: DO I = -1, 0
A(I+2) = X(I+2) * D

ENDDO
L123: DO I = 1, 998

A(I+2) = X(I+2) * D
A(I+1) = (A(I) + A(I+2))*.5
X(I) = A(I) * E

ENDDO
L3b: DO I = 999, 1000

X(I) = A(I) * E
ENDDO

The middle loop after scalar replacement becomes

tA0 = A(I)
tA1 = A(I+1)

L123: DO I = 1, 998
tA2 = X(I+1) * D
A(I+2) = tA2
tA1 = (tA0 + tA2)*.5
A(I+1) = tA1
X(I) = tA0 * E
tA0 = tA1

ENDDO

If scalar replacement were extended to L1a and L3b, the result after
unrolling would be

tA0 = X(1) * D
A(1) = tA0
tA1 = X(2) * D

–1 0

1 998

1000

L1a

L3b

L1b-L2-L3a

999

Compiler Improvement of Register Usage

490 ADVANCED COMPILING FOR HIGH PERFORMANCE

A(1) = tA1 = A(I+1)
L123: DO I = 1, 998, 2

tA2 = X(I+2) * D
A(I+2) = tA2
tA1 = (tA0 + tA2)*.5
A(I+1) = tA1
X(I) = tA0 * E
tA0 = X(I+3) * D
A(I+3) = tA0
tA2 = (tA1 + tA0)*.5
A(I+2) = tA2
X(I) = tA1 * E

ENDDO
X(999) = tA1 * E
X(1000) = tA0 * E

This version achieves optimal register reuse for the loop, saving approxi-
mately a third percent of the memory operations of the naive version after
scalar replacement.

We now present a general algorithm for fusing a collection of loops with
known iteration range mismatches. The basic idea is to sort the lower
bounds into a nondecreasing sequence {L1,L2,...,Ln} and sort the upper
bounds into a nondecreasing sequence {H1,H2,...,Hn}. Then three groups
of loops are output.

1. A sequence of loops with lower bounds L1,L2,...,Ln–1 and upper
bounds L2–1,L3–1,...,Ln–1, such that the body of the output loop with
upper bound Lk–1 has the bodies of the input loops with lower bounds
L1,L2,...,Lk–1, listed in sequence.

2. The central fused loop with lower bound Ln and upper bound H1 con-
taining all the bodies in sequence.

3. A sequence of loops with lower bounds H1+1,H2+1,...,Hn–1 and upper
bounds H2,H3,...,Hn, such that the body of the output loop with upper
bound Hk has the bodies of the input loops with upper bounds
Hk,Hk+1,...,Hn, listed in sequence.

The algorithm, presented in Figure 8.22, uses the general procedure
shown in Figure 8.23 to generate both the sequence of preloops and the
sequence of postloops.

Loop Fusion

Chapter Draft of February 8, 2001 491

FIGURE 8.22 Fuse a collection of loops.

procedure FuseLoops(n, C);
// n is the number of loops to be fused
// C(1:n) is the collection of loops in order that they should be output

let L(1:n) be the set of lower bounds for the loops, in order;
let H(1:n) is the set of upper bounds for the loops, in order;
let B(1:n) is the set of loop bodies for the loops, in order;

// Method: generate the sequence of fused loops starting with the
// lowest lowerbound and continuing to the largest upperbound.

// First determine two index arrays: iL(1:n) and iH(1:n)
// iL(i) is the index of the loop with the ith lowest lowerbound
// iH(1:n) is the order of loops sorted by nondecreasing upper bound

sort the lowerbounds L(1:n) to produce iL(1:n);
sort the upperbounds H(1:n) to produce iH(1:n);

indexset := {lastindex}; doingPreloops := true;
GeneratePreOrPostLoops(doingPreloops, iL, L, indexset);

// Now generate the central fused loop
lastindex := iL(n); thisindex := iH(1);
if L(lastindex) = H(thisindex) then // no surrounding loop

for j := 1 to n do generate B(j);
else begin

generate DO i = L(lastindex), H(thisindex);
for j := 1 to n do generate B(j);
generate ENDDO;

end

indexset := indexset – {lastindex};
GeneratePreOrPostLoops(¬doingPreloops, iH, H, indexset);

end FuseLoops

The basic idea of the algorithm is to sort the lower bounds and generate a
sequence of preloops in order of increasing lowerbounds, each of which
includes the bodies of all the loops in the fusion group whose bounds
intersect with the bounds of the preloop being generated. Each of these
loops has a larger collection of statements than the previous loop. After
the central fused loop, the algorithm reverses the process, generating a
sequence of postloops that has fewer and fewer of the statements con-
tained in the central fused loop.

Compiler Improvement of Register Usage

492 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 8.23 Procedure to generate preloops and postloops

procedure GeneratePreOrPostLoops(low, iX, X, indexset)

// low is true if we are generating preloops, false if postloops
// iX = iL if we are generating preloops, iH otherwise
// X = L if we are generating preloops, H otherwise

lastindex = iX(1);
for i = 2 to n do begin

thisindex := iX(i);
if X(lastindex) = X(thisindex) – 1 then // no surrounding loop

for j = 1 to n do if j ∈ indexset then generate B(j);
else if X(lastindex) < X(thisindex) – 1 then begin

if low
then generate DO i = X(lastindex), X(thisindex) - 1;
else generate DO i = X(lastindex) + 1, X(thisindex);

for j = 1 to n do if j ∈ indexset then generate B(j);
generate ENDDO

end
else; // empty loop, do nothing

lastindex := thisindex;
if low

then indexset := indexset ∪ {thisindex};
else indexset := indexset – {thisindex};

end

Correctness This algorithm generates correct code because of the
assumption of alignment. After alignment, every forward loop-crossing
dependence that has a source in iteration i of one loop has a sink in some
iteration with index j≥i. The fusion algorithm in Figure 8.22 moves itera-
tions of a later loop that have upper bound N before iterations of an ear-
lier loop that have indices no less than N+1. The concern is that this move
might violate a dependence. But the assumption of alignment assures that
it does not. Coupled with the fact that alignment removes all fusion-pre-
venting dependences, this establishes the correctness of the procedure.

Although it is stated in terms of constant lower and upper bounds, the
fusion algorithm in Figure 8.22 works for any collection of loops in
which the relative ordering of the loop upper and lower bounds are
known at compile time. Thus it can be used to handle loops with sym-
bolic lower and upper bounds of the following kind:

Loop Fusion

Chapter Draft of February 8, 2001 493

L1 DO I = L+3, N+5
B1

ENDDO
L2 DO I = L, N-1

B2
ENDDO

L3 DO I = L-2, N+1
B3

ENDDO
L4 DO I = L+1, N+2

B4
ENDDO

Even though all the loops have symbolic upper and lower bounds, it is
easy to sort the upper and lower bounds into ascending order. Thus the
same algorithm can be used.

However, if the relationship between symbolic lower bounds or symbolic
upper bounds cannot be determined, some form of dynamic code choice
will be needed to resolve the situation. This might involve generating the
code for different orderings of upper and lower bounds and then selecting
the right code after the ordering is known. Since N loops can have N!
orderings, this approach is likely to be substantially more expensive in
time and code space. In the worst case O(N log N) run-time tests will be
needed and O(2N) alternative code sequences will be produced.

8.6.3 A Weighted Loop Fusion Algorithm

Now that we have algorithms to align and fuse a collection of loops, we
need a procedure that selects collections of loops to which fusion can be
profitably applied. We begin by considering the problem of fusing a col-
lection of loops at one level of the loop nesting tree. From this perspec-
tive the region of the program under consideration will look like a
collection of loops and single statements intermixed with one another.

The purpose of a one-level fusion algorithm is to use the dependences
among statements within the program to select collections of loops that
can be legally fused. In designing such an algorithm we will be driven by
the goal of maximizing the reuse achieved through fusion.

To accomplish this goal, we will begin with a graph in which vertices
represent loops and edges represent dependences between the loops,
where there exists a dependence between two loops if there is a depen-
dence between the statements in the bodies of those two loops. We could
use the typed fusion algorithm that we developed in Section 6.2.5 to

Compiler Improvement of Register Usage

494 ADVANCED COMPILING FOR HIGH PERFORMANCE

solve this problem. However, because that algorithm weights all depen-
dence edges equally, it is not suitable for situations where different fusion
choices have substantially different benefits. In fusing loops to maximize
reuse of data, each dependence will have a different weight reflecting the
amount of reuse to be gained through fusing the loops at its endpoints.
For example, two different fusion choices might have different iteration
ranges:

L1: DO I = 1, 1000
A(I) = B(I) + X(I)

ENDDO

L2: DO I = 1, 1000
C(I) = A(I) + Y(I)

ENDDO

S: Z = FOO(A(1:1000))

L3 DO I = 1, 500
A(I) = C(I) + Z

ENDDO

In this example, statement S, which cannot be fused with any loop, must
come after loop L1 but before L3 because there is a true dependence from
loop L1 to statement S and a true dependence from S to L3. Thus, L1 and
L3 cannot be fused. Similarly, loop L2 must come between loops L1 and
L3 because of similar dependence patterns. However, since there is only
an input dependence between L2 and S, they may occur in any order.
Therefore, loop L2 can fuse with either L1 (if it stays before S) or L3 if it
is moved after S. The dependence pattern for this loop is shown in
Figure 8.24 below. Note that an undirected edge is used to represent the
input dependence between statements L2 and S.

The diagram in Figure 8.24 makes it clear that L2 may not fuse with both
L1 and L3 because that would introduce a cycle in the dependence graph
through statement S, so a choice must be made about which fusion to
select. Here the choice favors fusing the loops with the largest iteration
ranges: L1 and L2.

Loop Fusion

Chapter Draft of February 8, 2001 495

FIGURE 8.24 Weighted dependences for the fusion example.

A slight variation on this example illustrates another way that different
fusion opportunities may differ in value.

L1: DO I = 1, 1000
A(I) = B(I) + X(I)

ENDDO

L2: DO I = 1, 1000
C(I) = A(I) + Y(I)

ENDDO

S: Z = FOO(A(1:1000))

L3 DO I = 1, 1000
A(I) = C(I+500) + Z

ENDDO

In this case the loop iteration ranges are the same, but when L2 is aligned
with L3, there are only 500 iterations on which there is reuse.

In order to construct an algorithm to address the weighted fusion prob-
lem, we must assign to each loop-crossing dependence d in the program a
weight W(d) that measures the benefit to be gained if its source and sink
were located in the same iteration of the same loop. In other words, if the
loops containing the source and sink were to be fused, W(d) memory
operations (loads and stores) would be saved over the version of the pro-
gram where the endpoints remain in different loops. The numeric labels
on edges in Figure 8.24 represent the weights.

L1

L2

L3

S

1000
1000

1000

500
500

Compiler Improvement of Register Usage

496 ADVANCED COMPILING FOR HIGH PERFORMANCE

The Weighted Fusion Problem
Assume that we have a collection of weighted dependence edges and a
collection of fusible loops, along with a collection of statements that can-
not be fused with any loop. In the discussion to follow, we will refer to
these non-fusible statements as bad vertices. The statement invoking
function FOO in our earlier example would be a bad vertex. In addition,
assume that we may have certain edges, called bad edges, along which
fusion is not possible. For example, a fusion-preventing dependence,
defined in Section 6.2.5, would be a bad edge. Although such depen-
dences are less important for memory hierarchy management because we
can eliminate them via alignment, we include them in the problem model
for the sake of generality.

We begin by mapping loop fusion onto an abstract problem. First we
begin with the definition of a special kind of graph that contains both
directed and undirected edges. In our problem, the undirected edges will
be used to model input dependences.

Definition 8.3. A mixed-directed graph is defined to be a triple

M = (V, Ed, Eu)

where (V,Ed) forms a directed graph and Eu is a collection of undi-
rected edges between vertices in V. By convention, no pair of vertices
can be joined by both a directed and an undirected edge—that is,
Ed∩Eu=∅.

Definition 8.4. A mixed-directed graph is said to be acyclic if
Gd=(V,Ed) is acyclic. A vertex w is said to be a successor of vertex
v if there is a directed edge from v to w, i.e., (v,w) ∈ Εd. In this
case, vertex v is a predecessor of vertex w. A vertex v is said to be
a neighbor of vertex w if there is an undirected edge between
them. From above, note that a neighbor of vertex v cannot also be
a successor or a predecessor of v.

Definition 8.5. Given an acyclic mixed-directed graph M =
(V, Ed, Eu), a weight function W defined over the edges in Ed∪Eu,
a collection of bad vertices B⊂V that cannot be fused with any
other vertex in V, and a collection of bad edges Eb⊂Ed that pre-
vent fusion of their endpoints, the weighted loop fusion problem
is the problem of finding a collection of vertex sets {V1, V2, ...,Vn}
such that

a. The collection covers all vertices in the graph, i.e., .V i
i 1=

n

∪ V=

Loop Fusion

Chapter Draft of February 8, 2001 497

b. The vertex sets form a partition of V, i.e.,
;

c. Each set contains either no bad vertices or a single bad vertes, i.e.,
;

d. For any i, there is no directed path (all edges in Ed) between two
vertices in Vi that passes through a vertex not in Vi.

e. If each of the vertex sets Vi is reduced to a single vertex with the
corresponding natural edge reduction, the resulting graph is acy-
clic.

f. For any i, there is no bad edge between two vertices in Vi.

g. The total weight of edges between vertices in the same vertex set,
summed over all vertex sets is maximized.

Note that condition (c) implies that bad vertices are never fused, either
with normal vertices or other bad vertices.

Fast Greedy Weighted Fusion
Finding the optimal solution to the weighted fusion problem has been
shown to be NP-hard [22], so we will need resort to heuristic approaches
if we want to be able to solve really large problems. One heuristic that
has proved highly effective for problems of this sort is the greedy strat-
egy, which iteratively selects the edge of highest weight and fuses the
endpoints of that edge, along with all edges on a path between them into
the same vertex set. The greedy weighted fusion problem is to find a solu-
tion that the greedy heuristic would find.

In the remainder of this section we will present called developed by
Kennedy[20], that produces a solution to this problem in O(EV + V2)
time. Because the implementation of this algorithm is complicated and
has many details, we will present only enough to illustrate the basic
ideas. We will begin with an outline of the implementation to illuminate
some of the algorithmic issues. The algorithm can be thought of as pro-
ceeding in six stages:

1. Initialize all the quantities and compute initial successor, predecessor,
and neighbor sets. This can be implemented in O(V+E) time.

2. Topologically sort the vertices of the directed acyclic graph. This takes
O(Ed + V) time.

3. Process the vertices in V to compute for each vertex the set path-
From[v], which contains all vertices that can be reached by a path
from vertex v and the set badPathFrom[v], a subset of pathFrom[v]
that includes the set of vertices that can be reached from v by a path

i j 1 i,j n V i V j∩() ∅≠ i→,≤ ≤,,∀ j=

i 1 i n V i B∩ V i=() V i b{ } b B∈,=()∨(),≤ ≤,∀

Compiler Improvement of Register Usage

498 ADVANCED COMPILING FOR HIGH PERFORMANCE

that contains a bad vertex. This phase can be done in time O(Ed + V)
set operations, each of which takes O(V) time.

4. Invert the sets pathFrom and badPathFrom respectively to produce the
sets pathTo[v] and badPathTo[v] for each vertex v in the graph. The set
pathTo[v] contains the vertices from which there is a path to v; the set
badPathTo[v] contains the vertices from which v can be reached via a
bad path. This can be done in O(V2) time.

5. Insert each of the edges in E = Ed∪Eu into a priority queue edgeHeap
by weight. If the priority queue is implemented as a heap, this takes
O(ElgE) time. Note that since lgE ≤ lgV2= 2lgV, the complexity of this
stage can be rewritten as O(ElgV).

6. While edgeHeap is non-empty, select and remove the heaviest edge
(v,w) from it. If w ∈ badPathFrom[v] then do not fuse—repeat step 6.
Otherwise, do the following:

a. Collapse v, w, and every edge on a directed path between them into
a single node.

b. After each collapse of a vertex into v, adjust the sets pathFrom,
badPathFrom, pathTo, and badPathTo to reflect the new graph.
That is, the composite node will now be reached from every vertex
that reaches a vertex in the composite and it will reach any vertex
that is reached by a vertex in the composite.

c. After each vertex collapse, recompute successor, predecessor and
neighbor sets for the composite vertex and recompute weights
between the composite vertex and other vertices as appropriate.

A more detailed version of the algorithm is given in Figure 8.25. Note
that phases 1 through 5 can be implemented in O(EV + V2 + ElgV) =
O(EV + V2) time. It would be good if the total time for phase 6 could be
limited to this asymptotic bound as well. To understand whether this is
possible, we need to examine the steps in these phases more carefully.

FIGURE 8.25 Greedy weighted fusion.

procedure WeightedFusion(M, B, W)

// M = (V,Ed,Eu) is an acyclic mixed-directed graph
// B is the set of bad vertices
// W is the weight function

// pathFrom[v] contains all vertices reachable from v;
// badPathFrom[v] contains vertices reachable from v
// by a path containing a bad vertex

Loop Fusion

Chapter Draft of February 8, 2001 499

// edgeHeap is a priority queue of edges

P1: InitializeGraph(V, Ed, Eu);

topologically sort the vertices using directed edges;

edgeHeap := ∅;
P2: InitializePathInfo(V, edgeHeap);

L1:while edgeHeap ≠ ∅ do begin
select and remove the heaviest edge e = (v,w) from edgeHeap;
if v ∈ pathFrom[w] then swap v and w;
if w ∈ badPathFrom[v] then

continue L1; // cannot or need not be fused

// Otherwise fuse v, w, and vertices between them
P3: worklist := ∅; R := ∅; // R is the collapse region
L2: for each x ∈ successors[v] do

if w ∈ pathFrom[x] then worklist := worklist ∪ {x};
if worklist = ∅ then add w to worklist; // (v,w) undirected

L3: while worklist ≠ ∅ do begin
extract a vertex x from worklist; R := R ∪ {x};
if x ≠ w then

for each y ∈ successors[x] do begin
if w ∈ pathFrom[y] and y ∉ worklist.ever then

worklist := worklist ∪ {y};
end

end L3

Collapse(v,R); // perform all updates to data structures as well
end L1

end WeightedFusion

Initialization. Code for the initialization routines is given in Figure 8.26
and in Figure 8.27. Note that we are computing not only pathFrom and
badPathFrom sets but also the inverse sets pathTo and badPathTo, where
x ∈ pathTo[y] if and only if y ∈ pathFrom[x]. These sets are needed for
the update operations that will be performed after collapses.

FIGURE 8.26 Initialize predecessors, successors and neighbors.

procedure InitializeGraph(V, Ed, Eu)

for each v ∈ V do begin
successors[v] := ∅;

Compiler Improvement of Register Usage

500 ADVANCED COMPILING FOR HIGH PERFORMANCE

predecessors[v] := ∅;
neighbors[v] := ∅;

end

for each (x,y) ∈ Ed do
successors[x] := successors[x] ∪ {y};
predecessors[y] := predecessors[y] ∪ {x}

for each (x,y) ∈ Eu do begin
neighbors[x] := neighbors[x] ∪ {y};
neighbors[y] := neighbors[y] ∪ {x};

end
end InitializeGraph

FIGURE 8.27 Initialize path sets.

procedure InitializePathInfo(V, edgeHeap)

// v is the vertex into which merging is taking place
// x is the vertex currently being merged.

L1: for each v∈V in reverse topological order do begin
rep[v] := v;
pathFrom[v] := {v};
if v∈B then badPathFrom[v] = {v} else badPathFrom[v] := ∅;
for each w ∈ successors[v] do begin

pathFrom[v] := pathFrom[v] ∪ pathFrom[w];
badPathFrom[v] := badPathFrom[v] ∪ badPathFrom[w];
if (v,w) is a bad edge or w ∈ B then

badPathFrom[v] := badPathFrom[v] ∪ pathFrom[w];
add (v,w) to edgeHeap;

end
for each w ∈ neighbors[v] do

if w ∈ pathFrom[v] then begin
delete w from neighbors[v];
delete v from neighbors[w];
successors[v] := successors[v] ∪ {w};

end
add (v,w) to edgeHeap;

end
invert pathFrom to compute pathTo;
invert badPathFrom to computer badPathTo;

end InitializePathInfo

Loop Fusion

Chapter Draft of February 8, 2001 501

Collapsing a Region to a Single Node. Once it has selected an edge
(v,w) along which to collapse, the greedy weighted fusion algorithm must
perform the collapse. The code in loops L2 and L3 in Figure 8.25 deter-
mine the region R that must be collapsed. To do this it must identify every
vertex that is on a path from v to w. As we see in the algorithm in
Figure 8.25, this is done by performing the following steps:

1. Let worklist initially contain all successors x of v such that w ∈ path-
From[x].

2. While worklist is not empty, remove the first vertex x from it and add x
to the collapse region R. In addition add to worklist all successors y of
x such that w ∈ pathFrom[y], unless one of those vertices has already
been added to R. (Note that the implementation of the membership
test in worklist.ever, which determines if a vertex has ever been in the
worklist, will be described in conjunction with the fast set implemen-
tation below.)

The complexity of the overall process is easiest to understand if we
divide the cost into traversals of edges within the region of collapse R and
traversals of edges to vertices outside of R. Suppose we charge the cost of
traversing the edge (x,y) to the vertex y if y ∈ R. Since each vertex can be
merged into another at most once, the total cost of such edge traversals is
O(V) over the entire program. Next consider those vertices y that are suc-
cessors of some node in the region of collapse, but are not themselves in
that region. Such vertices become successors of the composite region
represented by v. If we charge the cost of traversing edges out of x to such
an outside vertex y to the edge (x,y), an edge can accumulate O(V)
charges over the course of the algorithm. Thus the total cost of outside
edge traversals over the course of the algorithm is O(EV).

FIGURE 8.28 Collapse a region into a vertex

procedure Collapse(v,R)

topologically sort R with respect to edges in R ∪ {v};

L4: for each x ∈ R in topological order do begin
// fuse x into v;
rep[x] = v;

// update pathFrom and pathTo sets
UpdatePathInfo(v,x);

// update the graph representation

Compiler Improvement of Register Usage

502 ADVANCED COMPILING FOR HIGH PERFORMANCE

UpdateSuccessors(v,x,R);
UpdatePredecessors(v,x,R);
UpdateNeighbors(v,x,R);

// delete vertex x
delete x, predecessors[x], successors[x],

neighbors[x], pathFrom[x], badPathFrom[x],
pathTo[x], and badPathTo[x];

delete x from successors[v];
end L4

end Collapse

Finally, the procedure Collapse, shown in Figure 8.28, is called for that
region R. It merges all vertices in R into the source vertex v. This is
accomplished by performing the following steps:

1. Topologically sort the vertices using only the edges internal to the
region of collapse.

2. For each vertex in topological order, do the following:

a. Merge x into v;

b. Reconstruct pathFrom, badPathFrom, pathTo, and badPathTo sets
for the entire graph. Note that if some vertex u reaches x and v
reaches another vertex z, then, after merging x into v, u reaches z..

c. Create a new successor, predecessor, and neighbor lists for the
composite v by merging successors[x], predecessors[x], and neigh-
bors[x] into successors[v], predecessors[v]. and neighbors[v] as
appropriate.

The topological sort takes time linear in the number of vertices and edges
in R, so its cost is bounded by O(E+V) over the entire program.

The total number of times a vertex can be collapsed into another vertex is
bounded by V–1, so the trick to getting the time bound we want will be
bounding the work in the update steps 2b and 2c. For the purposes of this
discussion, we will consider these steps in reverse order.

Updating Successors, Predecessors, and Neighbors. First, let us con-
sider the cost of updating successors. The code for this operation is given
in Figure 8.29. This procedure is invoked once for each vertex x that is
collapsed into another vertex v. Thus, it can be invoked at most O(V)
times during the entire run of the algorithm. For each such vertex, the
procedure visits each successor. Since no vertex is ever collapsed more
than once, the total number of successor visits is bounded by E. All oper-

Loop Fusion

Chapter Draft of February 8, 2001 503

ations in the visit take constant time, except for the reheap operation on
edgeHeap, which takes lgE = lgV time.

One wrinkle that must be dealt with is the case where the edge from x to
y is not deleted but rather moved so that it now connects v to y. This is the
third case in the if statement within UpdateSuccessors. If we are not care-
ful, it is possible that the same edge will be visited many times as col-
lapses are performed. However, note that the third case does no
reweighting and no reheaping is required to deal with it. Therefore the
total cost contributed by the third case in the if statement is at most
O(EV). The cost of operations in the other two cases can be charged to
the edge being deleted, so the total cost is bounded by O(ElgV).

Thus the cost associated with all invocations of UpdateSuccessors is
O(EV + ElgV + V) = O(EV). UpdatePredecessors and UpdateNeighbors
are similar in structure and analysis [21].

FIGURE 8.29 Update successors.

procedure UpdateSuccessors(v,x)

// v is the vertex into which merging is taking place
// x is the vertex currently being merged.

// Make successors of x be successors of v and reweight
for each y ∈ successors[x] do begin

if y ∈ successors[v] then begin
W(v,y) = W(v,y) + W(x,y) // charge to deleted edge (x,y)
reheap edgeHeap;
delete (x,y) from edgeHeap and reheap;

end
else if y ∈ neighbors[v] then begin

successors[v] = successors[v] ∪ {y};
W(v,y) = W(v,y) + W(x,y); // charge to deleted edge (x,y)
reheap edgeHeap;
delete (x,y) from edgeHeap and reheap;
delete y from neighbors[v];
delete x from neighbors[y];

end
else begin // y has no relationship to v

successors[v] = successors[v] ∪ {y};
replace (x,y) with (v,y) in edgeHeap; // no charge

end

Compiler Improvement of Register Usage

504 ADVANCED COMPILING FOR HIGH PERFORMANCE

delete x from predecessors[y];
end

end UpdateSuccessors

Updating Path Information. We now turn to the problem of updating
pathFrom, badPathFrom, pathTo, and badPathTo sets (Step 2c) after a
collapse. This step must be performed before the successor, predecessor
and neighbor sets are updated because it uses the old relationships to per-
form the update.

The key difficulty with this step is that any vertex that reaches the vertex
x that is being collapsed into v, now transitively reaches any vertex
reached by v. This problem is illustrated by the diagram in Figure 8.30.

FIGURE 8.30 Illustration of the path update problem.

If we were to recompute the pathFrom sets from scratch after each col-
lapse, it would take a total of O(EV2+ V3) time, since a single application
of the pathFrom computation takes O(EV + V2) time.

To reduce this time bound we must ensure that we do no more work than
is required. The basic strategy is to compute newPathSinks, the set of ver-
tices reached from v but not from x, and newPathSources, the set of verti-
ces that reach x but not v.

Once we have these sets, we will update the pathFrom sets for every ver-
tex in newPathSources and we will update the pathTo set of every vertex
in newPathSinks.

One way to do this would be the following:

w

x

v

z

Collapse

Loop Fusion

Chapter Draft of February 8, 2001 505

for each b ∈ newPathSources do
pathFrom[b] := pathFrom[b] ∪ newPathSinks;

for each b ∈ newPathSinks do
pathTo[b] := pathTo[b] ∪ newPathSources;

The problem with this approach is that it might take O(V2) time because
there could be O(V) vertices in newPathSinks ∪ newPathSources and the
set operations each take O(V) time. Thus the total time would be bounded
by O(V3), making it more expensive than any other part of the algorithm.

One reason the cost is high is the possibility that we are doing unneces-
sary work. Since we only increase the size of the pathTo and pathFrom
sets, if we use bit matrices of size V2 to represent these sets and we only
turn on bits once, we will limit the total amount of work to O(V2). How-
ever, in the strategy above, we may attempt to turn on the same bit many
times. This is because vertices in newPathSources might already reach
vertices in newPathSinks if there is an edge between the two sets that
bypasses v and x.

FIGURE 8.31 Solving the path update problem.

To avoid such redundant work we will back up through the vertices in
newPathSources taking care not to turn on any pathTo bit more than once.
Similarly, we will move down through newPathSinks to turn on pathFrom
bits at most once. The key procedure is UpdateSlice, shown in
Figure 8.32.

Note that UpdateSlice is designed to be used to update both the pathFrom
and badPathFrom information on separate calls, by passing a different

w

x

v

z

newPathSources

newPathSinks

Compiler Improvement of Register Usage

506 ADVANCED COMPILING FOR HIGH PERFORMANCE

parameter to pathFrom. In addition, UpdateSlice can be called compute
pathTo and badPathTo by changing the definition of cesors and pcesors
(reversing the graph and the roles of most of the sets). Thus, in each call,
the parameter pathFrom can represent pathFrom (or badPathFrom) or
pathTo (or badPathTo) sets, depending on the direction of the traversal. It
can be shown that at most 8 calls to UpdateSlice are needed to update all
of the path information. For collapses along directed edges, four calls
will suffice.

Since the effect of the calls in different directions is symmetric, we will
analyze the cost of a single call to update all the pathFrom sets in new-
PathSources. For each vertex w in the slice, represented by newPath-
Sources, we will compute a set newPathFrom[w] that represents the set of
new vertices reached from w after the collapse. As each vertex is pro-
cessed, we will visit all its predecessors. At each predecessor y, we will
examine each vertex z in newPathFrom[w] to see if it is in pathFrom[y]. If
z is not in pathFrom[y], we will add it to pathFrom[y] and to newPath-
From[y]. The algorithm is given in Figure 8.32.

FIGURE 8.32 Update pathFrom sets for a slice of vertices reaching or reached from x.

procedure UpdateSlice(x, pathFrom, newPathSources, newPathSinks,
cesors, pcesors)

// x is the vertex that is being collapsed
// pathFrom is the set that is being updated
// newPathSources is the set of vertices that can reach x
// but not the vertex it is being collapsed into
// newPathSinks is the set of vertices reachable from the vertex being
// collapsed into but not from x
// cesors is the successor set (if traversing backward from x)
// pcesors is the predecessor set (if traversing backward from x)

// Update pathFrom sets backing up from x in newPathSources
// adding vertices in newPathSinks

S0: newPathFrom[x] := newPathSinks;
L1: for each b ∈ newPathSources– {x} do newPathFrom[b] := ∅;

worklist := {x};
L2:while worklist ≠ ∅ do begin

pick an element w from the front of worklist and remove it;
L3: for each y ∈ pcesors[w] such that y ∈ newPathSources do begin

if y ∉ worklist.ever then add y to worklist;
L4: for each z ∈ newPathFrom[w] do

Loop Fusion

Chapter Draft of February 8, 2001 507

S1: if z ∉ pathFrom[y] then begin
pathFrom[y] := pathFrom[y] ∪ {z};
newPathFrom[y] := newPathFrom[y] ∪ {z};

end
end

end
end UpdateSlice

Correctness The correctness of procedure UpdateSlice can be estab-
lished by induction on the order in which elements are removed from
worklist. Since the first element off the worklist is x, we are certain that
its newPathFrom set is correctly computed because it must be the original
newPathSinks by the way we have computed it. Now assume that path-
From[b] and newPathFrom[b] are computed correctly for every vertex
that comes off the worklist before vertex w. Furthermore, assume that
vertex w has an incorrect pathFrom set when it comes off the worklist.
This can only be because pathFrom[w] has some bit off that should be on.
This bit must correspond to some vertex in newPathSinks. But this means
that none of the successors of w have that bit turned on in either their
pathFrom or newPathFrom sets, but since there must be a path from w to
the vertex represented by that bit, then some predecessor, which neces-
sarily came off the worklist before w, must have the bit for that vertex set
incorrectly as well, a contradiction.

Complexity To show that the algorithm stays within the desired time lim-
its, we must consider several aspects of the implementation. First, we will
describe in the paragraph below entitled “A Fast Set Implementation”
how to represent sets of integers so that membership testing, insertion,
and initialization take constant time (initialization is the hard part). If we
use this representation, we can initialize each newPathFrom set and the
worklist to the empty set in constant time. Since the procedure is entered
at most O(V) times and there are at most O(V) vertices in a slice, the cost
of loop L1 is bounded by O(V2). By the same reasoning, since each ver-
tex in newPathSources is put on the worklist at most once, the body of
loop L2 is executed at most O(V2) times. Loop L3 visits each predecessor
of a vertex, so its body should be executed at most O(EV) times.

Unfortunately the work done in the body of L3 includes the loop L4. We
must have some way of bounding the work done by the body of loop L4,
which consists of a single if statement S1. The true branch of the if state-
ment is taken only if the collapse has made y reach z and this is the first
time that fact is noticed. We charge the constant time of this branch to the
entry in the pathFrom matrix that is being set to true. Thus the true

Compiler Improvement of Register Usage

508 ADVANCED COMPILING FOR HIGH PERFORMANCE

branch of the if statement can be executed only O(V2) times over the
entire algorithm.

This leaves the false branch. Although this branch is empty, the test itself
represents a constant time cost for the false branch. How many times can
the test be executed with the false outcome? Since z ∈ newPathFrom[w],
it means that the immediate successor w of y within the newPathFrom set,
has just had its pathFrom bit for z set to true. Thus we will charge this test
to the edge between y and w. Since a given pathFrom bit can be set at
most once in the algorithm, each edge can be charged at most V times,
once for each vertex that can be reached from the sink of that edge. Thus,
the total cost of the charges for the false test over the entire algorithm is
O(EV).

These considerations establish that pathFrom and badPathFrom can be
updated in O(EV + V 2) time over the entire algorithm. An identical anal-
ysis establishes the same time bound for the updates to pathTo and bad-
PathTo.

A Fast Set Implementation. A naive implementation of this algorithm
might use a list and associated bit vector for all sets. Unfortunately, ini-
tialization of the bit vector to represent the empty sets would require
O(V) time. This is unacceptable in the procedure UpdateSlice because it
would make the total cost of loop L1 be O(V3), which would dominate
the algorithm. Thus we need to find a representation that permits a con-
stant-time initialization while keeping constant-time membership and
insertion. In addition we would like to be able to iterate over the entire set
in time proportional to its size.

These goals can be achieved by using a well-known but rarely-discussed
strategy for avoiding the initialization costs for a set represented by an
indexed array. The trick, which was included in the book by Aho,
Hopcroft and Ullman as an exercise [1], is to use two integer arrays of
length V for the set representation. The array Q will contain all the verti-
ces in the queue in order from element Q[next] to element Q[last]. The
array In will serve as the bit array for element testing—In[v] will contain
the location in Q of vertex v.

To enter a new vertex y at the end of the queue requires the following
steps:

last = last + 1; Q[last] = y; In[y] = last;

Loop Fusion

Chapter Draft of February 8, 2001 509

Note that this leaves the element In[y] pointing to a location in Q that is
within the range [0:last] and contains y; Thus the test whether a vertex z
is a member of the Queue is:

next ≤ In[z] ≤ last and Q[In[z]] = z;

and the test, required in Figure 8.25, of whether z has ever been a mem-
ber of Q is:

0 ≤ In[z] ≤ last and Q[In[z]] = z;

Figure 8.33 gives a graphical description of the queue representation.
Note that vertex 4 cannot be mistaken for a member because no element
of Q in the right range points back to 4.

FIGURE 8.33 Fast queue representation

Using this representation we can perform all queue operations in constant
time including initialization. This data structure will be used for many of
the set representations in the algorithm.

Final Observations. To sum up, the total cost of the algorithm is O(EV +
V 2) for the first five phases, O(EV) for phase 6a and O(EV + V 2) for
phase 6b. Thus the entire algorithm takes time O(EV + V 2).

A critical aspect of any fusion algorithm is the recomputation of weights.
between a collapsed vertex and some successor or predecessor. In the
algorithm as presented the cost of a combined edge is computed by add-
ing the costs of the edges incident on the two original vertices. In many
cases this is not the best method. For example, in the fusion for reuse

In Q

next

last

20

2

4

1

5

3

0

5

1

3

Compiler Improvement of Register Usage

510 ADVANCED COMPILING FOR HIGH PERFORMANCE

problem. We might have a use of the same array variable in three differ-
ent loops. Suppose that the loops each execute 100 iterations. The graph
for the three loops might look like the one in Figure 8.34.

FIGURE 8.34 Weight computation example.

In this example, If vertices x and y are merged, reweighting by addition
would compute an aggregate weight of 200 between x and z, when the
total additional reuse available after merging is 100. In this case, using
maximum as the reweighting operation would be more appropriate.

A nice feature of the algorithm presented is that edge reweighting is done
at most O(E) times. This means we can use a relatively expensive
reweighting algorithm without substantively affecting the asymptotic
time bound. For example, suppose there are A different arrays in the pro-
gram. If we associate a length A array with each vertex that indicates the
volume of usage of each array in that loop, then reweighting could be
done by taking the maximum of the usage counts of the arrays in the two
vertices being collapsed and then summing the minimums of the weights
between corresponding arrays in each successor of the composite vertex.
This array-by-array computation could be done in O(A) time. So the
entire fusion algorithm would take time O((E +V)(V+A)). If A = O(V)
then the algorithm has the same asymptotic time bound as the fusion
algorithm that uses addition for reweighting.

A(I)=

=A(I)

100

100

x

y

z

=A(I)

100

Loop Fusion

Chapter Draft of February 8, 2001 511

FIGURE 8.35 Non-optimality of greedy weighted fusion.

Although the algorithm should produce good answers in practice, the dia-
gram in Figure 8.35 shows that it will not always produce the optimal
result. In this case the highest weight edge is (a,f), with a weight of 11. If
we collapse this edge, the final merge set will be {a, b, c, d, f} and the
total weight of all edges will be 16. However, by merging c and d with b,
we have precluded merging c and d with e because of the bad vertex on a
path from b to e. If we merged c and d with e and f instead, the total
weight saved would be 22, a better result.

8.6.4 Multiple-level Loop Fusion

Next we turn to the multiple-loop nesting problem. The basic strategy for
multilevel fusion is to fuse at the outermost level first, then recursively
fuse the bodies of the resulting loops.

This exceedingly simple approach has one important complication. When
aligning loops for fusion at an outer loop level, we must align only the
indices containing the outer loop index, under the assumption that the
inner loop index will be aligned separately.

To illustrate this principal, consider the following example, which is
intended to represent a two-dimensional relaxation.

DO J = 1, 1000
DO I = 1, 1000

A(I,J) = B
ENDDO

ENDDO

11

1

10 10

1

1

1bad
vertex

ab

c d

e f

1

Compiler Improvement of Register Usage

512 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO J = 2, 999
DO I = 2, 999

A(I,J) = A(I+1,J)+A(I-1,J)+A(I,J+1)+A(I,J-1)
ENDDO

ENDDO

Alignment of the outer loop should consider only the indices where J
appears. Thus, the alignment would produce:

DO J = 0, 999
DO I = 1, 1000

A(I,J+1) = B
ENDDO

ENDDO
DO J = 2, 999

DO I = 2, 999
A(I,J) = A(I+1,J)+A(I-1,J)+A(I,J+1)+A(I,J-1)

ENDDO
ENDDO

After fusion, this becomes:

DO J = 0, 1
DO I = 1, 1000

A(I,J+1) = B
ENDDO

ENDDO
DO J = 2, 999

DO I = 1, 1000
A(I,J+1) = B

ENDDO
DO I = 2, 999

A(I,J) = A(I+1,J)+A(I-1,J)+A(I,J+1)+A(I,J-1)
ENDDO

ENDDO

Now, when alignment is applied to the body of the second loop, the only
reference we need to be concerned about is A(I,J+1), so no alignment is
needed. After fusion this becomes:

DO J = 0, 1
DO I = 1, 1000

A(I,J+1) = B
ENDDO

ENDDO
DO J = 2, 999

A(0,J+1) = B
DO I = 2, 999

Loop Fusion

Chapter Draft of February 8, 2001 513

A(I,J+1) = B
A(I,J) = A(I+1,J)+A(I-1,J)+A(I,J+1)+A(I,J-1)

ENDDO
A(1000, J+1) = B

ENDDO

After scalar replacement, the inner loop will become

DO J = 2, 999
tA1 = tB ! moved into a register earlier
A(0,J+1) = tA1
tA0 = A(1,J)
DO I = 2, 999

tA1 = tB
A(I,J+1) = tA1
tA0 = A(I+1,J) + tA0 + tA1 + A(I,J-1)
A(I,J) = tA0

ENDDO
A(1000, J+1) = B

ENDDO

This code has a savings of two references on each iteration (out of a total
of 6) so the code should run 1.5 times faster than naive code. Half of the
improvement is due to the two-level loop fusion. Of course, unroll-and-
jam can produce further improvements.

We now present the complete fusion algorithm.

FIGURE 8.36 Multilevel loop fusion.

procedure CompleteFusion(R);
// The parameter R is a region of code that contains some loops
// and some assignment statements contained in no loop.

if there are no loops in R then return;

use WeightedFusion to select sets of loops for fusion;
for each set S in the collection do begin

align the loops in S along the indices of the outer loops;
use FuseLoops to produce a collection of fused loops;

end

for each loop l in R after fusion do CompleteFusion(body(l));
end CompleteFusion

Compiler Improvement of Register Usage

514 ADVANCED COMPILING FOR HIGH PERFORMANCE

8.7 Putting It All Together

8.7.1 Ordering The Transformations

Before turning to an extended example of the register improvement strat-
egies, we should comment on the order of transformations discussed in
this chapter. In most cases we should assume that the code as presented
by the programmer, or perhaps a preprocessor, should be changed as little
as possible. For example, the loop order would typically be chosen for
some reason, say improvement of cache performance. However, in some
cases, we may wish to rearrange the code to take advantage of a register
opportunity. In so doing we should do the minimal amount necessary to
achieve the desired results.

That having been said, we present the recommended order of transforma-
tions for register allocation:

1. Loop interchange. Loop interchange should be done first because it
brings reuse to the innermost loop, which should be a priority. Fusion
might interfere with this process.

2. Loop alignment and fusion. This can achieve extra reuse across loops,
particularly when compiling code generated by a preprocessor, such
as a Fortran 90 front end (see Section 13.2).

3. Unroll-and-jam. This achieves outer loop reuse when there are depen-
dences carried by other than the inner loop after interchange is fin-
ished.

4. Scalar replacement. This sets up the standard coloring-based register
allocator by replacing array references that can be reused with scalar
variables.

The use of all four of these steps will be illustrated on the example in the
next section.

8.7.2 An Example: Matrix Multiplication

We will illustrate the use of the register allocation transformations on
matrix multiplication, one of the most commonly used examples in scien-
tific computing. We will begin with a version of the algorithm that is well
suited to vector machines. Code that has been rearranged to vectorize
well is very common in scientific programs. These codes are rarely
rewritten to take advantage of the newer scalar uniprocessors when they
are moved to those machines.

DO I = 1, N

Putting It All Together

Chapter Draft of February 8, 2001 515

DO J = 1, N
S0: C(J,I) = 0.0

ENDDO
DO K = 1, N

DO J = 1, N
S1: C(J,I) = C(J,I) + A(J,K) * B(K,I)

ENDDO
ENDDO

ENDDO

This code achieves long vector operations in both nests by having the
loop with index J, which iterates over successive column elements, in the
innermost position.

The dependences involving the two statements in this loop are illustrated
in Figure 8.37. As we see from this diagram, the loop on K carries the
most dependences involving statement S1.

FIGURE 8.37 Matrix multiplication dependences.

Clearly we should interchange the K loop to the innermost position
around statement S1, to produce:

DO I = 1, N
DO J = 1, N

C(J,I) = 0.0
ENDDO
DO J = 1, N

DO K = 1, N
C(J,I) = C(J,I) + A(J,K) * B(K,I)

ENDDO
ENDDO

ENDDO

Now we use loop fusion on the body of the I-loop to produce:

DO I = 1, N

C(J,I) = 0

C(J,I) = C(J,I) + A(J,K) * B(K,I)

δΚ
ο

δΚ

δΚ
−1

δ∞

δΙ
Ι

δJ
Ι

Compiler Improvement of Register Usage

516 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO J = 1, N
C(J,I) = 0.0
DO K = 1, N

C(J,I) = C(J,I) + A(J,K) * B(K,I)
ENDDO

ENDDO
ENDDO

Next we apply unroll-and-jam with a factor of 2 to each of the outer
loops, we get the following code:

DO I = 1, N, 2
DO J = 1, N, 2

C(J,I) = 0.0
C(J+1,I) = 0.0
C(J,I+1) = 0.0
C(J+1,I+1) = 0.0
DO K = 1, N

C(J,I) = C(J,I) + A(J,K) * B(K,I)
C(J+1,I) = C(J+1,I) + A(J+1,K) * B(K,I)
C(J,I+1) = C(J,I+1) + A(J,K) * B(K,I+1)
C(J+1,I+1) = C(J+1,I+1) + A(J+1,K) * B(K,I+1)

ENDDO
ENDDO

ENDDO

With scalar replacement this becomes:

DO I = 1, N, 2
DO J = 1, N, 2

s0 = 0.0; s1 = 0.0; s2 = 0.0; s3 = 0.0
DO K = 1, N

r1 = A(J,K); r2 = B(K,I)
r3 = A(J+1,K); r4 = B(K,I+1)
s0 = s0 + r1 * r2; s1 = s1 + r3 * r2
s2 = s2 + r1 * r4; s3 = s3 + r3 * r4

ENDDO
C(J,I) = s0; C(J+1,I) = s1
C(J,I+1) = s2; C(J+1,I+1)= s3

ENDDO
ENDDO

If each of the scalar variables is assigned to a register, eight registers are
required, but the computation requires four loads for eight flops in the
inner loop. In addition, there are enough operations to fill an addition
pipeline of up to four stages. In general, if the unroll factor is m, this
strategy achieves a rate of m2 flops to 2m loads in the inner loop.

Complex Loop Nests

Chapter Draft of February 8, 2001 517

8.8 Complex Loop Nests

In practice, loops in real programs are often much more complicated than
the ones used as examples in this chapter so far. For example, to do a
good job on dense linear algebra, a transformation system will need to
handle loops that contain IF statements, triangular and trapezoidal loops
and specialized loop nests such as those found in LU decomposition.

In this section, we describe some of the methods for handling such loop
nests.

8.8.1 Loops with If Statements

Unfortunately the strategy for scalar replacement described in
Section 8.3 on page 445 does not extend naturally to conditional code.
Consider the following example:

DO I = 1, N
5 IF (M(I).LT.0) A(I) = B(I) + C
10 D(I) = A(I) + E

ENDDO

The true dependence from statement 5 to statement 10 due to the assign-
ment and use of A(I) does not reveal that the assignment to A(I) is con-
ditional. Using only dependence information, a naive scalar replacement
scheme might produce the following code:

DO I = 1, N
5 IF (M(I).LT.0) THEN

a0 = B(I) + C
A(I) = a0

ENDIF
10 D(I) = a0 + E

ENDDO

This code is erroneous because, if the result of the predicate were false,
no definition of a0 would take place, resulting in an incorrect value of a0
at statement 10.

The solution to this problem is fairly straightforward: We can ensure that
a0 has the proper value by inserting a load of a0 from A(I) on the false
branch of the if statement, as shown below:

DO I = 1, N
5 IF (M(I).LT.0) THEN

a0 = B(I) + C
A(I) = a0

Compiler Improvement of Register Usage

518 ADVANCED COMPILING FOR HIGH PERFORMANCE

ELSE
a0 = A(I)

ENDIF
10 D(I) = a0 + E

ENDDO

The danger of inserting instructions in this manner is that it might
increase running time on some paths through the program. In this case,
however, this is not a problem—if the true branch is taken, a load of A(I)
is avoided, while if the false branch is taken a load is inserted and another
is eliminated. In either case, running time is not increased.

A goal of our algorithm will be to produce no increase in running time as
a result of these transformations. One optimization strategy that has a
similar goal is partial redundancy elimination, which seeks to eliminate
the latter of two identical computations performed on a given execution
path. A computation is redundant if, on every path leading to it, an identi-
cal computation occurs earlier. In this case we say that it is anticipated on
every path. It is partially redundant if the computation is anticipated only
on some of the execution paths leading to it. To remove a partially redun-
dant calculation e, the compiler must replicate it along every path to e on
which it is not anticipated. An essential property of partial redundancy
elimination as described in the literature [24] is that it can be carried out
in a way that is guaranteed not to increase the number of computations
along any path.

In adapting partial redundancy elimination to scalar replacement, we are
really interested in inserting initializations for variables that are uninitial-
ized on every path to a use. To do this we see that, at a given point p in the
program, a variable is potentially uninitialized if it is live—there is an
assignment-free path to a use—and there exists a path from the entry
block of the program that does not contain an initialization. Our goal is to
insert an initialization expression on every path that does not contain one.
Furthermore, we will insert the initialization at the end of the last block
that is not on any path that has been initialized.

Assume for the sake of simplicity that each if statement in the program
has a (possibly-empty) else branch. This artificial condition can be forced
by inserting empty nodes when building the control flow graph for the
loop. We introduce the following variables:

• liveout(b) is the set of temporaries that are live on exit from block b.
livein(b) is the set of variables that are live on entry to b.

Complex Loop Nests

Chapter Draft of February 8, 2001 519

• aliveout(b) is the set of variables that are absolutely live, that is live on
every path from the exit of b to the exit node of the graph.alivein(b)
contains the set of variables that are absolutely live on entry to b.

• initin(b) is the set of variables that have always been initialized on
entry to b. initout(b) is the set of variables that have always been ini-
tialized on exit from b.

• pinitin(b) is the set of variables that have been initialized on some path
leading to the entry of b. pinitout(b) is the set of variables that have
been initialized on some path to the exit of b.

We wish to insert an initialization in any block in which the variable is
not partially available, but is partially available at a successor. Further-
more, the variable should be absolutely live on exit from the block. These
conditions ensure that we never insert a load at a point where it will be
redundant on any path.

The following equations define the variables alive, init, and pinit.

(EQ 8.1)

(EQ 8.2)

(EQ 8.3)

Now we can state the conditions for insertion. The set insertout(b) is the
set of temporaries whose initializations must be inserted at the end of b.
The set insertin(b) is the set of variable initializations that must be
inserted at the beginning of b. First, we must insert a variable at the
beginning of the block if it is used in the block but is not initialized on
any path to the block:

(EQ 8.4)

We will insert an initialization at the end of a block if the variable has not
been initialized on any path to the block, is absolutely live on exit from
the block, and at some successor to the block it is partially available.

aliveout b() alivein c()
c succ b()∈

∩=

alivein b() aliveout b() killed b()–() used b()∪=

initin b() initout a()
a pred b()∈

∩=

initout b() initin b() assigned b()∪=

pinitin b() pinitout a()
a pred b()∈

∪=

pinitout b() pinitin b() assigned b()∪=

insertin b() used b() pinitin b()–=

Compiler Improvement of Register Usage

520 ADVANCED COMPILING FOR HIGH PERFORMANCE

(EQ 8.5)

At each insert point, we insert the assignment to the temporary of the
subscripted reference that corresponds to the temporary. This reference
can be saved during the original scalar replacement.

8.8.2 Trapezoidal Loops

8.8.2.1 Triangular Unroll-and Jam
Both unroll-and-jam and loop blocking can be applied to trapezoidal
loops using the techniques of previous sections if we partition these loops
appropriately. For example, consider the following example loop:

DO I = 2, 99
DO J = 1, I-1

A(I,J) = A(I,I) + A(J,J)
ENDDO

ENDDO

We would like to transform this loop using unroll-and-jam so that we can
get reuse not only of the current value of A(I,I) but also of A(J,J). The
problem is that unroll-and-jam cannot be directly used with a triangular
loop.

If we do the outer loop unroll by a factor of 2 we get:

DO I = 2, 99, 2
DO J = 1, I-1

A(I,J) = A(I,I) + A(J,J)
ENDDO
DO J = 1, I

A(I+1,J) = A(I+1,I+1) + A(J,J)
ENDDO

ENDDO

We now notice that we can jam the first two loops together if we peel out
the last iteration of the second inner nest. This would produce:

DO I = 2, 99, 2
DO J = 1, I-1

A(I,J) = A(I,I) + A(J,J)
A(I+1,J) = A(I+1,I+1) + A(J,J)

ENDDO
A(I+1,I) = A(I+1,I+1) + A(I,I)

ENDDO

If we now perform scalar replacement, we get

insertout b() aliveout b() pinit b() pinit b()
c succ b()∈

∪()∩¬∩=

Complex Loop Nests

Chapter Draft of February 8, 2001 521

tI = A(2,2)
DO I = 2, 99, 2

tI1 = A(I+1,I+1)
DO J = 1, I-1

tJ = A(J,J)
A(I,J) = tI + tJ
A(I+1,J) = tI1 + tJ

ENDDO
A(I+1,I) = tI + tI1; tI = tI1

ENDDO

which requires a load and two stores on each iteration of the inner loop—
an improvement over the naive version of 2 loads per iteration, assuming
that the reuse of A(J,J) in the inner loop is detected even by the naive
allocator. The strategy we are using can be illustrated by the diagram in
Figure 8.38. Here we see that the triangular loop is being chopped up into
rectangular blocks of two J-loop iterations per block and triangular loops
of fewer than 2 iterations (i.e., 1 iteration).

FIGURE 8.38 Triangular unroll-and-jam.

This approach can be generalized to unroll amounts of more than 2, but
the code is more complex. It is illustrative to look at the result of an
outer-loop unroll amount of 3. Here we have adjusted the loop bounds to
be evenly divisible by 3, knowing that this will be taken care of by a pre-
loop in practice.

J

I

2

1

one iteration
after

unroll-and-jam

Compiler Improvement of Register Usage

522 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO I = 2, 100
DO J = 1, I-1

A(I,J) = A(I,I) + A(J,J)
ENDDO

ENDDO

If we unroll to three iterations of the outer loop, we get

DO I = 2, 100, 3
DO J = 1, I-1

A(I,J) = A(I,I) + A(J,J)
ENDDO
DO J = 1, I

A(I+1,J) = A(I+1,I+1) + A(J,J)
ENDDO
DO J = 1, I+1

A(I+1,J) = A(I+1,I+1) + A(J,J)
ENDDO

ENDDO

Fusing again, we get

DO I = 2, 100, 3
DO J = 1, I-1

A(I,J) = A(I,I) + A(J,J)
A(I+1,J) = A(I+1,I+1) + A(J,J)
A(I+2,J) = A(I+2,I+2) + A(J,J)

ENDDO
DO J = I, I

A(I+1,J) = A(I+1,I+1) + A(J,J)
ENDDO
DO J = I, I+1

A(I+2,J) = A(I+2,I+2) + A(J,J)
ENDDO

ENDDO

Unrolling the last two inner loops, we get

DO I = 2, 100, 3
DO J = 1, I-1

A(I,J) = A(I,I) + A(J,J)
A(I+1,J) = A(I+1,I+1) + A(J,J)
A(I+2,J) = A(I+2,I+2) + A(J,J)

ENDDO
A(I+1,I) = A(I+1,I+1) + A(I,I)
A(I+2,I) = A(I+2,I+2) + A(I,I)
A(I+2,I+1) = A(I+2,I+2) + A(I+1,I+1)

ENDDO

The resulting code after scalar replacement would be

Complex Loop Nests

Chapter Draft of February 8, 2001 523

tI = A(2,2); tI1 = A(3,3)
DO I = 2, 100, 3

tI2 = A(I+2,I+2)
DO J = 1, I-1

tJ = A(J,J); A(I,J) = tI + tJ
A(I+1,J) = tI1 + tJ; A(I+2,J) = tI2 + tJ

ENDDO
A(I+1,I) = tI1 + tI;
A(I+2,I) = tI2 + tI
A(I+2,I+1) = tI2 + tI1
tI = tI1; tI1 = tI2

ENDDO

which saves three loads per iteration of the inner loop.

8.8.2.2 Trapezoidal Unroll-and-Jam
To understand how to extend the methods of the previous section to trap-
ezoidal loops, let us consider an important example—simple convolution.
This loop appears in many seismic analysis applications particularly in
the oil industry. The following version was taken from an actual code for
geophysical seismic analysis and constituted the bulk of the running time
for that code:

DO I = 0, N3
DO J = I, MIN(N1, I+N2)

F3(I) = F3(I) + F1(J)*W(I-J)
ENDDO
F3(I) = F3(I) * DT

ENDDO

Clearly, the variable F3(I) will be held in a register throughout the itera-
tions of the inner loop. Also, it is pretty easy to see the reuse of the vari-
able F1(J) that can be achieved through the use of unroll-and-jam.
However, unroll-and-jam can also provide reuse of the variable W(I-J).

Before we apply unroll-and-jam to this loop nest, we partition it into two
parts—the part in which I+N2≤N3 and the rest—so that the inner loop in
each loop nest has a consistent upper bound:

DO I = 0, N3-N2
DO J = I, I+N2

F3(I) = F3(I) + F1(J)*W(I-J)
ENDDO
F3(I) = F3(I) * DT

ENDDO
DO I = N3-N2+1, N3

DO J = I, N1
F3(I) = F3(I) + F1(J)*W(I-J)

Compiler Improvement of Register Usage

524 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO
F3(I) = F3(I) * DT

ENDDO

The second of these loop nests is no longer trapezoidal, since the upper
bound is simply N3. Therefore, we will henceforth restrict our attention to
the first loop nest. Unrolling the outer loop once, we get:

DO I = 0, N3-N2, 2
DO J = I, I+N2

F3(I) = F3(I) + F1(J)*W(I-J)
ENDDO
F3(I) = F3(I) * DT
DO J = I+1, I+N2+1

F3(I+1) = F3(I+1) + F1(J)*W(I-J+1)
ENDDO
F3(I+1) = F3(I+1) * DT

ENDDO

Fusion of the common iterations of the inner loop then produces

DO I = 0, N3-N2, 2
F3(I) = F3(I) + F1(I)*W(0)
DO J = I+1, I+N2

F3(I) = F3(I) + F1(J)*W(I-J)
F3(I+1) = F3(I+1) + F1(J)*W(I-J+1)

ENDDO
F3(I+1) = F3(I+1) + F1(I+N2+1)*W(-N2-1)
F3(I) = F3(I) * DT
F3(I+1) = F3(I+1) * DT

ENDDO

Scalar replacement on this loop will then yield

DO I = 0, N3-N2, 2
f3I = F3(I); f3I1 = F3(I+1)
f1I = F1(I); wIJ0 = W(0)
f3I = f3I + f1I*wIJ0
DO J = I+1, I+N2

f1J = F1(J); wIJ1 = W(I-J)
f3I = f3I + f1J*wIJ1
f3I1 = f3I1 + f1J*wIJ0
wIJ0 = wIJ1

ENDDO
f1J = F1(I+N2+1); wIJ1 = W(-N2-1)
f3I1 = f3I1 + f1J*wIJ1
F3(I) = f3I * DT; F3(I+1) = f3I1 * DT

ENDDO

Chapter Summary

Chapter Draft of February 8, 2001 525

Note that the reuse of W(I-J) takes place in the next iteration on the sec-
ond statement instance because loop index J is subtracted in the subscript
expression.

In experiments on a MIPS M120, conducted by Carr and Kennedy, the
improved code achieved the timings shown in Table 8.3 on arrays of only
100 elements.

8.9 Chapter Summary

We have shown a variety of dependence-based techniques to increase the
reuse of array values in uniprocessor CPU registers on modern unipro-
cessors. These methods are particularly useful for floating-point registers
because these are often used to hold single elements from array data
structures. Therefore, traditional coloring-based register allocation strate-
gies are ineffective for these registers. The methods include

• Scalar Replacement, which exposes reuse of subscripted variables to
scalar compilers with good register allocation;

• Unroll-and-Jam, which transforms programs to exploit register reuse
in outer loops;

• Loop Interchange, to shift loops carrying the most reuse to the inner-
most position, and

• Loop Fusion with Alignment, to bring uses from different loops in a
program together in a single loop.

These techniques have been shown to be applicable to loops that include
control flow and have trapezoidal iteration ranges. An important contribu-
tion of this chapter is the introduction of a fast algorithm that uses the
greedy heuristic to solve the weighted fusion problem, which naturally
arises from profitability concerns for loop fusion.

Original code 15.59 sec

Transformed code 7.02 sec

Speedup 2.22

TABLE 8.3 Convoution timing

Compiler Improvement of Register Usage

526 ADVANCED COMPILING FOR HIGH PERFORMANCE

8.10 Case Studies

The original implementation of the strategies developed by Carr, Calla-
han, and Kennedy [8,9,1012] was carried out in the PFC system and later
migrated to ParaScope. All of the effectiveness studies presented in
Section 8.3.7 and Section 8.4.1 were done within this infrastructure. The
principal implementation concern was the inclusion of testing for input
dependence. Although the testing itself is easy to do using a straightfor-
ward modification of dependence analysis, the total number of input
dependences is likely to be large enough to cause problems for the com-
piler. Scalar dependences in particular can cause huge blowups in the size
of the dependence graph because they can be carried at every level of a
loop nest. In PFC, we ameliorated this problem by using a summary rep-
resentation for scalar dependences that summarized all levels in a single
edge representation. This strategy can be extended to summarize all the
direction vectors quite easily. With these changes, the dependence graphs
were still large, but the size was manageable.

Scalar replacement and the related transformations were particularly
important on the original Ardent Titan because floating point operations
were carried out in the vector unit, which bypassed cache for all loads
and stores. In other words, floating-point quantities were never cached, so
it was critical to make effective use of registers. The compiler imple-
mented a scalar replacement pass along the lines described in this chapter
except that it did not construct input dependence, so it missed a substan-
tive number of opportunities for improvement. Nevertheless, the Titan
compiler’s scalar replacement phase, along with unroll-and-jam and store
elimination based on output dependences, yielded spectacular results.
Table 10.1 on page 616 presents a study of the leverage from dependence
analysis on the Livermore loops. On the six kernels where scalar replace-
ment was a key optimization, the marginal improvements with depen-
dence, and hence scalar replacement, turned on ranged from 7.4 percent
all the way up to 200 percent. These results, and the specific kernels
improved, correlate well with the PFC results on the Livermore loops
reported in Figure 8.9 on page 459.

Neither the original PFC implementation or the Ardent Titan compiler
performed loop fusion with alignment to improve register allocation.
Although alignment and fusion have been studied as a cache improve-
ment strategy[16,17], we are aware of no study that isolates the improve-
ment solely due to better scalar replacement.

Historical Comments and References

Chapter Draft of February 8, 2001 527

8.11 Historical Comments and References

Allen and Kennedy pioneered the use of dependence for optimization of
register use on vector machines in the paper “Vector register allocation”
[4] and in Allen’s dissertation [2]. John Cocke proposed the technique of
unroll-and-jam for use in the RS6000, one of the first machines with
extremely long latencies for cache misses. The idea was first published in
the original paper by Callahan, Cocke, and Kennedy [8]. The idea of
using scalar replacement to achieve register reuse on uniprocessors was
due to Carr and Kennedy [12]. Carr implemented scalar replacement and
unroll-and-jam and reported on its effectiveness in a series of papers with
Callahan and Kennedy [10,11]. Handling of complex loop nests was also
due to Carr and Kennedy [11,12].

Loop alignment was originally discussed by Allen, Callahan, and
Kennedy as a way to eliminate carried dependences in parallelization [3].
The applicability of alignment to improve opportunities for register reuse
after fusion is new, although it has been studied as a mechanism for cache
reuse improvement [16,17].

The greedy weighted fusion algorithm presented in this chapter is due to
Kennedy [20,21]. Kennedy and McKinley [22] developed the original
proof that weighted fusion is NP-complete and presented a heuristic strat-
egy based on repetitive application of Goldberg and Tarjan’s maximum
flow algorithm for networks [22]. The resulting algorithm takes time
O(kEVlg(V2/E)), where k≤V is the number of required applications of the
max-flow algorithm. It is not clear whether the solutions it produces are
better or worse than those produced by greedy weighted fusion. Gao,
Olsen, Sarkar, and Thekkath [18] produced a solution to the 0-1 fusion
problem in which the only weights for edges are 0 or 1. This approach,
designed to support the locality optimization of array contraction [25],
used an O(EV) prepass to reduce the size of the graph then successively
applied max-flow on the reduced graph GR = (ER,VR). The overall algo-
rithm takes time O(EV+VR

2ERlgVR). Thus the Gao algorithm produces a
heuristic solution to a subproblem of weighted fusion in a time which is
asymptotically worse than greedy weighted fusion. However, it is diffi-
cult to compare these algorithms because the solutions they produce may
differ due to the different heuristics used. Meggido and Sarkar have
experimented with an optimal algorithm for loop fusion, showing that it
has reasonable running times for small examples [23]. All of the alterna-
tive algorithms to greedy weighted fusion use addition as the reweighting
operator, which makes them less attractive for memory hierarchy where
more complex algorithms are desirable.

Compiler Improvement of Register Usage

528 ADVANCED COMPILING FOR HIGH PERFORMANCE

8.12 Exercises

8–1 Hand tans form the following program with scalar replacement. Suppose
array A is used only in this loop. Does the program need array A after sca-
lar replacement? Can you formulate the conditions when an array can be
removed from a program?

DO I = 1, N
A(I) = B(I) + 3.0
SUM = SUM + A(I)

ENDDO

8–2 Hand transform the loop nest below to achieve high register reuse. What
transformations did you use? What is the ration of floating point opera-
tions to loads before and after the transformation. How many registers
did you assume?

DO I = 1, N
DO J = 1, N

A(I+1,J+1) = A(I,J+1) + A(I+1,J) + B(J)
ENDDO

ENDDO

8–3 Run the loop nest from Exercise 8–2 on your favorite machine (using the
Fortran compiler) for different values of N, including some that are
extremely large (larger than cache). Report and explain the results.

8–4 Can two loops that access the same array A(1:N), always be fused using
loop alignment? If yes, prove it. If no, give a counter example.

8–5 Consider a simple algorithm for greedy weighted fusion that iteratively
selects the heaviest edge and then traces forward along all paths from the
sink to the source to determine if fusion is legal. What is the asymptotic
complexity of this algorithm, i.e., why is it not just as good as the fast
greedy weighted fusion algorithm presented in Section 8.6.3?

8.13 References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Design and Analysis of Computer Algo-
rithms. Exercise 2.12. Addison Wesley, Reading, MA, 1974.

[2] [J.R. Allen, “Dependence analysis for subscripted variables and its application to pro-
gram transformations,” Ph.D dissertation, Department of Mathematical Sciences, Rice
University, May, 1983.

[3] R. Allen, D. Callahan and K. Kennedy. Automatic decomposition of scientific programs
for parallel execution. In Conf. Record of the Fourteenth ACM Symposium on Principles
of Programming Languages, Munich, Germany, January 1987.

[4] J. R. Allen and K. Kennedy, “Vector register allocation, IEEE Transactions on Comput-
ers 41, 10, October 1992, 1290-1317.

References

Chapter Draft of February 8, 2001 529

[5] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide
(Second Edition). SIAM Publications, Philadelphia, 1995.

[6] T. Brandes. The importance of direct dependences for automatic parallelization. In Pro-
ceedings of the Second International Conference on Supercomputing, St.Malo, France,
July 1988.

[7] P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon, “Coloring heuristics for register
allocation,” Proceedings of the SIGPLAN `89 Conference on Programming Language
Design and Implementation, SIGPLAN Notices 24, 7, July 1989, 275–284.

[8] D. Callahan, J. Cocke, and K. Kennedy, “Estimating Interlock and improving balance
for pipelined machines,” Journal of Parallel and Distributed Computing 5, 4, August
1988, 334-358.

[9] S. Carr. Memory hierarchy management. Ph.D. thesis, Department of Computer Sci-
ence, Rice University, September 1992.

[10] S. Carr, D. Callahan and K. Kennedy, “Improving Register Allocation for Subscripted
Variables”, In Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation, White Plains NY, June 1990.

[11] S. Carr and K. Kennedy, “Compiler Blockability of Numerical Algorithms”, In Proceed-
ings of Supercomputing'92, Minneapolis MN, November 1992.

[12] S. Carr and K. Kennedy, “Scalar Replacement in the Presence of Conditional Control
Flow”, Software - Practice & Experience 24(1), January 1994.

[13] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J.Cocke, M.E.Hopkins, P.W. Markstein,
“Register allocation via coloring,” Computer Languages 6, 1981, 47-57.

[14] G.J. Chaitin, “Register allocation and spilling via graph coloring,” Proc. SIGPLAN 82
Symposium on Compiler Construction, SIGPLAN Notices 17, 6, June 1982, 98-105.

[15] F. Chow and J. Hennessy, “Register allocation by priority-based coloring,” Proc. SIG-
PLAN 84 Symposium on Compiler Construction, SIGPLAN Notices 19, 6, June 1984,
222-232.

[16] C. Ding. Improving effective bandwidth through compiler enhancement of global and
dynamic cache reuse, Ph.D. thesis, Department of Computer Science, Rice University,
January 2000.

[17] C. Ding and K. Kennedy. Improving effective bandwidth through compiler enhance-
ment of global cache reuse. In Proceedings of the 2001 International Parallel and Dis-
tributed Processing Symposium, San Francisco, April 2001.

[18] G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for array contrac-
tion. In Proceedings of the Fifth Workshop on Languages and Compilers for Parallel
Computing, New Haven, CT, August 1992.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., San Francisco, CA, 1979.

[20] K. Kennedy. Fast greedy weighted fusion. In Proceedings of the 2000 ACM Interna-
tional Conference on Supercomputing, Santa Fe, NM, May 2000.

[21] K. Kennedy. Fast greedy weighted fusion: the complete algorithm. TR??

Compiler Improvement of Register Usage

530 ADVANCED COMPILING FOR HIGH PERFORMANCE

[22] K. Kennedy and K. McKinley. Maximizing loop parallelism and improving data locality
via loop fusion and distribution. In Languages and Compilers for Parallel Computing,
(U.~Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors), Lecture Notes in Com-
puter Science, Number 768, 301-320, Springer--Verlag, Berlin, 1993.

[23] N. Megiddo and V. Sarkar. Optimal Weighted Loop Fusion for Parallel Programs. In
Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and Architec-
tures, Newport, Rhode Island, June 1997.

[24] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies.
Communications of the ACM, 22(2):96–103, February 1979.

[25] V. Sarkar and G. Gao. Optimization of array accesses by collective loop transforma-
tions. In Proceedings of the 1991 ACM International Conference on Supercomputing,
Cologne, Germany, June 1991.

Introduction

Chapter Draft of February 8, 2001 533

CHAPTER 9 Cache Management

9.1 Introduction

Although there are many commonalities between register reuse and
cache reuse, there are significant differences as well. First, there is a dif-
ference in the atomicity of storage. A register contains exactly one word,
while caches are organized into blocks (or lines) that usually contain
multiple words. Thus, reuse in registers arises from subsequent accesses
to the same data item. This kind of reuse, often referred to as temporal
reuse, also helps in cache management. On the other hand, when a cache
block is loaded, misses are not required for accesses to different items in
the same block. This kind of reuse—of items located close enough to one
another to occupy the same cache block—is called spatial reuse.

A second class of differences between enhancing register and cache reuse
arises because of the way caches are implemented. For example, on most
caches, a store into an uncached block generates a cache miss, forcing the
referenced block to be loaded into cache before the store can complete. A
store into a register requires no such load. An immediate consequence of
this property is that antidependences are important for enhancing cache

Cache Management

534 ADVANCED COMPILING FOR HIGH PERFORMANCE

reuse—if the use can be brought close enough to the subsequent store,
the cache miss on store may be avoided.

Finally, cache operations were originally intended to be synchronous;
that is, the processor stalled while waiting for a miss to be serviced. This
could severely impact performance if several misses were experienced in
sequence. This has led machine designers to make it possible for many
cache operations to be simultaneously active. A common way to imple-
ment this is by providing a prefetch operation that can be invoked as a
machine instruction. Prefetch instructions do not block the processor
unless there is a reference to the referenced cache block before loading
has completed. Prefetch operations only provide opportunities for perfor-
mance improvement—it is up to the compiler to generate prefetches at
the right moment to actually capitalize on those opportunities. This is the
topic of Section 9.5.

The two types of cache reuse, temporal and spatial, give rise to two gen-
eral strategies for performance improvement. Spatial reuse is highest
when iterations of a loop are accessing memory sequentially—that is,
when each iteration of a loop accesses a memory location that is adjacent
to location used in the previous iteration. Thus, having the right loop
within a nest as the inner loop is critical to good cache performance for
machines with long cache blocks. For example, in the Fortran loop below

DO I = 1, N
DO J = 1, M

A(I,J) = A(I,J) + B(I,J)
ENDDO

ENDDO

the inner loop iterates over rows. In Fortran, arrays are stored in column-
major order, so successive accesses to A(I,J) for J fixed and I incre-
mented by 1on each step will be to adjacent memory locations. There-
fore, performance on machines with multiword cache blocks should be
improved by interchanging the two loops:

DO J= 1, M
DO I = 1, N

A(I,J) = A(I,J) + B(I,J)
ENDDO

ENDDO

Usually, the correct choice for an inner loop is not so clear-cut. In
Section 9.2, we will discuss strategies for loop interchange to enhance
spatial reuse.

Introduction

Chapter Draft of February 8, 2001 535

A somewhat different problem arises in the case of temporal reuse. Let us
assume for the moment that we are dealing with a machine on which each
data item occupies a single cache line. On such a machine, temporal
reuse is the only type of reuse. Now consider again our standard example
loop:

DO I= 1, N
DO J = 1, M

A(I) = A(I) + B(J)
ENDDO

ENDDO

If we concentrate on cache effects we can see that references to A(I)
cause a single cache miss—on the first access—for each distinct value of
I. On the other hand, for M large enough, every access to B(J) will cause
a miss, because almost every cache uses a “least recently used” replace-
ment strategy. The implication is that if M is larger than the number of
words in the entire cache, then A(1) is likely to be evicted from cache by
accesses that occur in late iterations of the loop. In this case, the total
number of misses caused by the loop nest is N*M.

Performance can be improved by strip mining the inner loop so that a sin-
gle strip of length S that fits in cache and then moving the loop that iter-
ates over the strips to the outermost position. The result is:

DO J = 1, M, S
DO I = 1, N

DO jj = J, MIN(M, J+S-1)
A(I) = A(I) + B(jj)

ENDDO
ENDDO

ENDDO

If S is small enough, the inner loop above will give rise to no misses on
accesses to B(J) except for the first, for a total of M misses. However, we
now have additional misses for A(I)—one miss for each element of A for
each iteration of the J-loop, for a total of N*M/S misses, which is far
fewer than the number of misses in the original loop for any reasonable
value of S.

This transformation is known as strip-mine-and-interchange, and the
general approach is called cache blocking. Section 9.3 discusses blocking
strategies in more detail.

Cache Management

536 ADVANCED COMPILING FOR HIGH PERFORMANCE

9.2 Loop Interchange

Consider a perfectly-nested loop nest with at least two loops. A central
issue is: Which loop in the nest should be innermost? This is important
because the innermost loop determines which array dimension is
accessed sequentially. When we discussed loop interchange for enhanc-
ing register reuse in Section 8.5, we simply tried to get the most depen-
dences in the inner loop. For cache, however, the problem is complicated
by spatial reuse—generally, the best results are achieved by getting
stride-one access to sequential storage locations.

In Fortran, arrays are stored in column-major order so if the loop iterating
over a column is at the innermost position, accesses to the array will ben-
efit from spatial locality, reducing the miss rate to one per cache line even
without any transformation to enhance temporal reuse. As an example
consider the following loop:

DO I = 1, N
DO J = 1, M

A(I,J) = B(I,J) + C
ENDDO

ENDDO

As it stands, the loop nest will result in a miss on every access to A and
every access to B, for a total of 2NM misses, because the innermost loop is
striding over the noncontiguous dimension. If the loops are interchanged:

DO J = 1, M
DO I = 1, N

A(I,J) = B(I,J) + C
ENDDO

ENDDO

the number of misses will be reduced by a factor of b, the length of a
cache line in words, for a total of 2NM/b misses.

Unfortunately, the situation is often not so clear-cut, as the following
code demonstrates:

DO I = 1, N
DO J = 1, M

D(I) = D(I) + B(I,J)
ENDDO

ENDDO

This loop nest will miss on accesses to the array D at most once for each
of the iterations of the outer loop. In fact, since D(I) is accessed on each

Loop Interchange

Chapter Draft of February 8, 2001 537

iteration of the inner loop, it and the entire cache line it occupies will
remain in cache until the next iteration of the outer loop. Therefore, the
actual number of misses is N/b where b is the length of a cache line in
words. On the other hand, the same loop nest will suffer NM misses for
accesses to array B.

To reduce this, we might try interchanging the loops. This would lose the
natural locality in array D, so that it would now incur a miss every b
accesses. However it would reduce the number of misses for B to NM/b.
As a result the total number of misses for the revised loop would be 2NM/
b. If we compare these two, we see that the interchanged loop will be bet-
ter if

N/b + NM - 2NM/b > 0

which reduces to

Nl + 1> 2M

Thus, if N and M are roughly equal in size, interchange is profitable if the
cache line size in words is at least 2.The value of M would need to be
more than b/2 times bigger than N for the interchange not to be profitable.

Although a detailed analysis of all possible permutations of loops would
be expensive, a simple heuristic approach to establishing loop order for
maximum temporal reuse will often yield excellent results. The following
approach evaluates the memory cost of each loop in a nest as if it were
the innermost loop in the nest. This evaluation is done without regard to
whether loops can be moved to the innermost position, so a later rear-
rangement phase attempts to align the loops into an order close to the
order suggested by the heuristic.

The basic idea of the approach is to attach a cost to each reference in the
loop nest under the assumption that the loop evaluated is positioned
innermost. Given a loop nest {L1, L2, ..., Ln}, we will define the inner-
most memory cost function CM(Li) for each loop Li in the nest in three
stages. First we will identify the references in the loop nest and assign a
memory cost in terms of cache misses that each reference would incur if
it were situated in only the given loop:

1. A reference that does not depend on the loop induction variable is
assigned a cost of 1.

Cache Management

538 ADVANCED COMPILING FOR HIGH PERFORMANCE

2. A reference in which the induction variable of the given loop strides
over a non-contiguous dimension is given a cost N, equal to the num-
ber of iterations of the loop.

3. A reference in which the induction variable strides over a contiguous
dimension in small steps of size s is assigned a cost of

where N is the loop trip count and b is the cache line size.

Once these costs are established, the costs are multiplied by factors asso-
ciated with each of the other loops as follows:

1. For a reference that does not vary with the loop index of the given
loop, the cost is left unchanged (multiplied by 1).

2. For a reference that varies with the loop index of the given loop the
cost is multiplied by the trip count of the loop.

Once the cost is established for each reference, the innermost memory
cost for the given loop is computed by summing the individual costs for
each reference.

For this scheme to work, we need to carefully define what we mean by a
reference, to avoid overcounting for multiple references to the same
cache line. Thus, we will treat two references r1 and r2 as part of the same
reference group with respect to a given inner loop L if either of the fol-
lowing two conditions holds:

1. There is a loop independent dependence between the two reference or
a dependence carried by loop L that has a small threshold, say less
than or equal to 2. This condition will ensure that we do not overcount
for references that will hit the same cache line due to temporal reuse.

2. If the two references are to the same array and differ only by a small
constant in the contiguous dimension, where small means less than the
size of the cache line. This is to avoid overcounting of references to
the same cache line due to temporal reuse. In general, this condition
must be generalized to start a new reference group when two reference
differ in the contiguous dimension by more than a cache line. Thus if
the cache line is 4 elements and there are references to A(I), A(I+2)
and A(I+4) in the same loop body, these must be treated as two refer-
ence groups.

N

l
s
-- 

 
-------- Ns

l
------=

Loop Interchange

Chapter Draft of February 8, 2001 539

With this modification the cost function remains the same, except costs
are computed for a single reference in each reference group and summed
to determine the inner most cost for a given loop.

Once the innermost memory cost is computed for each of the loops in the
nest, a desired loop order is established by putting the loop with the low-
est innermost memory cost at the innermost position, contained by each
of the other loops from innermost to outermost in order of increasing
innermost loop cost.

As an example of the application of this heuristic, consider the cost asso-
ciated with our example loop.

DO I = 1, N
DO J = 1, M

D(I) = D(I) + B(I,J)
ENDDO

ENDDO

There are two reference groups, one for D(I) and one for B(I,J). We
consider the costs for each loop separately:

1. When the J loop is innermost, we have a cost of 1 for D(I) and a cost
of M for B(I,J), which costs are both multiplied by N to arrive at a
total cost after summing of:

N + MN

2. If the I loop is innermost we have a cost of M/b for each of the two ref-
erence groups, which costs are both multiplied by N for the outer loop
to yield a total cost of:

2MN/b

If cache lines are more than 2 words long, the second ordering, with the I
loop innermost, should be chosen, which is the outcome produced by our
deeper analysis. Note that the heuristic overcounts the number of misses
for the first case because it fails to note that the constant reference in the
innermost loop will get spatial reuse in the next innermost if that loop is
over the contiguous dimension.

Once we have established a desired order O = {σ(1), σ(2), ..., σ(n)},
where Lσ(i) is the loop that is desirable for the ith outermost position
according to our heuristic, we need to rearrange the loops to conform to
the desired order. To do this we make use of the observation that if one
loop achieves more reuse than another loop in the innermost position, it is

Cache Management

540 ADVANCED COMPILING FOR HIGH PERFORMANCE

likely to achieve more reuse in outer positions as well. Thus we want to
place the loop in an order closest to the one found most desirable by the
heuristic.

To do this we will follow the procedure given in Figure 9.1, which repeat-
edly shifts to the current position in P the outermost remaining loop in
the desired order which would be legal in that position. This approach
clearly results in a legal loop order, because that property is maintained
throughout the algorithm.

FIGURE 9.1 Algorithm for loop permutation.

procedure PermuteLoops(N, O, n, P)

// N = {L1, L2, ..., Ln} is the loop nest to be permuted
// O = {σ(1), σ(2), ..., σ(n)} are the loop indices in the desired order
// n is the number of loops in the nest
// P = {P1, P2, ..., Pn}is the final loop nest after permutation

j := 1; // the index of the current position to be filled in P
P := L; // start with the original permutation.
while O ≠ ∅ do begin

let k be the leftmost element of O such that Lk can be shifted to
position j within P without introducing any illegal direction
vectors in the direction matrix for the nest;

remove k from O;
shift Lk to Pj;
j := j + 1;

end PermuteLoops

This procedure has the property that if there exists a legal permutation of
the loops in N where Lσ(n) is in the innermost position, then Permute-
Loops will produce a permutation with Lσ(n) innermost. To see this, note
that if the original loop is legal, each step of the algorithm produces a
legal ordering because a loop is shifted only if the column of the direction
matrix has a ‘<’ in the position corresponding to every non-‘=’ direction
that is not covered by a direction in the same row for a loop that was pre-
viously shifted to an outer loop position. Suppose that PermuteLoops
does not choose Lσ(n) as the innermost loop, but instead shifts it out to
position Pm, where m < n. Then it must have passed over every loop that
is outside Lσ(n) in the desired order, which can only happen if each of
those were illegal to shift into position m in P. In other words each of the
loops outside of Lσ(n) contain a “>” direction in some position where

Loop Interchange

Chapter Draft of February 8, 2001 541

Lσ(n) has a “<” and none of the loops selected to be outside of position m
covers. But this cannot be true, because then there could be no legal per-
mutation with Lσ(n) innermost—it would always need to be outside all
those loops.

From this observation we can that PermuteLoops places in the innermost
position the loop that carries the most reuse, as measured by the cost, that
can legally be placed there. This means that, if the cost model is accurate,
it is choosing the optimal legal inner loop.

To illustrate the method, we return once again to matrix multiplication as
presented in many of the textbooks:

DO I = 1, N
DO J = 1, N

C(I,J) = 0
DO K = 1, N

C(I,J) = C(I,J) + A(I,K) * B(I,J)
ENDDO

ENDDO
ENDDO

This code would be distributed into two loop nests:

DO I = 1, N
DO J = 1, N

C(I,J) = 0
ENDDO

ENDDO
DO I = 1, N

DO J = 1, N
DO K = 1, N

C(I,J) = C(I,J) + A(I,K) * B(K,J)
ENDDO

ENDDO
ENDDO

In the initialization loop nest, the cost for the current configuration is N2,
while the cost with the I loop innermost would be N2/b. Thus the initial-
ization would be permuted to:

DO J = 1, N
DO I = 1, N

C(I,J) = 0
ENDDO

ENDDO

Cache Management

542 ADVANCED COMPILING FOR HIGH PERFORMANCE

In the body of the computation, there are three reference groups, one for
C, one for A and one for B. Table 9.1 gives the costs for running each of
these loops in the innermost position.

This analysis leads us to select the I loop as the innermost loop, the K
loop as next innermost and the J loop as outermost:

DO J = 1, N
DO K = 1, N

DO I = 1, N
C(I,J) = C(I,J) + A(I,K) * B(K,J)

ENDDO
ENDDO

ENDDO

In experiments run on the three different machines—a Sun Sparc 2, an
Intel i860, and an IBM RS/6000, the permuted loop above was over two
times faster than the original N = 512 [11]. On the RS/6000, on which
latencies are similar to those expected on future machines, the improve-
ment was nearly a factor of 10.

9.3 Blocking

Once loop interchange has selected the best loop ordering, we can
attempt to improve performance by blocking (sometimes called tiling)
some of the loops. Consider the example from the previous section after
loop interchange is performed:

DO J = 1, M
DO I = 1, N

D(I) = D(I) + B(I,J)
ENDDO

ENDDO

As pointed out previously, this loop will incur 2NM/b misses. The perfor-
mance can be further improved by strip-mine-and-interchange (intro-
duced in Section 9.1), as the following shows:

Loop C(I,J) A(I,K) B(K,J) Total

I N3/b N3/b N2 2N3/b + N2

J N3 N2 N3 2N3 + N2

K N2 N3 N3/b N3(1+1/b) + N2

TABLE 9.1 Memory analysis of matrix multiplication.

Blocking

Chapter Draft of February 8, 2001 543

DO I = 1, N, S
DO J = 1, M

DO i = I, MAX(I+S-1,N)
D(i) = D(i) + B(i,J)

ENDDO
ENDDO

ENDDO

Assume for the moment that each column of B begins on a new cache
line. Then if S is chosen to be a multiple of b, accesses to B(i,J) will
achieve full spatial reuse, missing NM/b times. Assume also that storage
for D begins on a new cache line. Then if S is chosen small enough so that
the line containing D(i) stays in cache between separate iterations of the
J loop, accesses to B will benefit from both spatial locality and temporal
locality, producing a total of N/b misses. Under these assumptions, the
total number of misses is:

which should be fairly close to NM/b for large M.

Consider now what happens if we strip mine the outer loop and inter-
change inward the loop that iterates over a single strip. This corresponds
to performing strip-mine-and-interchange on the outer loop:

DO J = 1, M, T
DO I = 1, N

DO jj = J, MAX(J+T-1,M)
D(I) = D(I) + B(I,jj)

ENDDO
ENDDO

ENDDO

Assume once again that each column of B begins on a new cache line. If T
is chosen small enough so that the cache line containing B(I,jj) stays in
cache between separate iterations of the I loop, accesses to B will benefit
from spatial locality so that the total number of misses is again NM/b.
However, the number of misses on D will be different because there will
be one miss per cache line, or N/b misses, during the execution of the
inner two loops. Since these loops are executed a total of M/T times, the
total miss count for D is NM/(bT), a factor of T better than the unblocked
version. Thus the total time for the blocked version is:

1 1
M
---+ 

  NM
b

Cache Management

544 ADVANCED COMPILING FOR HIGH PERFORMANCE

Since we expect that M will be much larger than T, this is greater than the
cost for the previous inner-loop strip mine under the same assumption of
aligned rows.

9.3.1 Unaligned Data

The analysis of these two cases is quite different, if columns of B do not
begin on new cache lines. Assume that whole arrays are allocated starting
at the beginning of cache lines, but multidimensional arrays are contigu-
ous, so each new column may begin anywhere in a cache line. In the orig-
inal blocking:

DO I = 1, N, S
DO J = 1, M

DO ii = I, MAX(I+S-1,N)
D(ii) = D(ii) + B(ii,J)

ENDDO
ENDDO

ENDDO

the inner loop over contiguous sections of B may incur one additional
miss per iteration, because the row might begin late in a cache line and
end early in the last cache line. Therefore, the total number of additional
misses on accesses to B is at most one per column for each iteration of the
outer I loop or NM/S. The total number of misses is therefore no greater
than:

(1 + 1/M + b/S)NM/b

In the second blocking:

DO J = 1, M, T
DO I = 1, N

DO jj = J, MAX(J+T-1,M)
D(I) = D(I) + B(I,jj)

ENDDO
ENDDO

ENDDO

dropping the column alignment assumption produces at most one extra
miss on B for each iteration of the loop on I, for a total of M/T extra
misses. Thus the overall miss total for this version is:

1 1
T
---+ 

  NM
b

Blocking

Chapter Draft of February 8, 2001 545

Since T is chosen to be a multiple of b and M is much larger than T, the
third term in parentheses is far smaller than the second term, so the result
is fairly close to

Thus, if the block size S for the first case is approximately the same as the
block size T for the second case, the first case no longer exhibits superior
performance. However, an examination of the code shows that in the first
approach the cache must hold S/b different blocks of D, while in the sec-
ond case a cache of the same size must be able to hold T different blocks
of B. This implies that S can be a factor of b larger than T, so the revised
cost for the first alternative is

If N and M are comparable in size then this is slightly worse than the per-
formance of the second alternative. In other words, alignment consider-
ations have led us to switch our preference to the second alternative.

These considerations illustrate the complexity of choosing the optimal
loop order when blocking is also being done—the best loop order for
interchange solution may not be the best order from the perspective of
blocking. The specific lesson from this example is that if columns of mul-
tidimensional arrays are not aligned with cache boundaries, it may pay to
have the constant access innermost after blocking rather than the contigu-
ous access, because this moves the extra misses out of the inner loop.

In the next few sections we will explore several strategies for blocking a
nested loop. However, we will first explore the answers to two questions:

1. When is blocking legal? and

2. When is it profitable?

9.3.2 Legality of Blocking

The basic algorithm for blocking is called strip-mine-and-interchange.
Basically, it consists of strip-mining a given loop into two loops, one that

1 1
T
--- b

TN
------+ + 

  NM
b

1 1
T
---+ 

  NM
b

1 1
M
--- 1

T
---+ + 

  NM
b

Cache Management

546 ADVANCED COMPILING FOR HIGH PERFORMANCE

iterates within contiguous strips and an outer loop that iterates strip-by-
strip, then interchanging the by-strip loop to the outside of other contain-
ing loops. The basic algorithm is given in Figure 9.2.

FIGURE 9.2 Algorithm for strip-mine-and-interchange.

procedure StripMineAndInterchange (L, m, k, o, S)

// L = {L1, L2, ..., Lm}is the loop nest to be transformed
// Lk is the loop to be strip mined
// Lo is the outer loop which is to be just inside the by-strip loop
// after interchange
// S is the variable to use as strip size; it’s value must be positive

let the header of Lk be
DO I = L, N, D;

split the loop into two loops, a by-strip loop:
DO I = L, N, S*D

and a within-strip loop:
DO i = I, MAX(I+S*D-D,N), D

around the loop body;

interchange the by-strip loop to the position just outside of Lo;

end StripMineAndInterchange

It is clear that the strip-mining step is always legal, because it does not
change the execution order in any way. However, the interchange of the
by-strip loop must be legal. Conditions for the legality of loop inter-
change are described in Section 5.2.1 on page 214. Basically, the inter-
change is legal if every direction vector for a dependence carried by any
of the loops Lo...Lk+1 has either an “=” or a “<” in the kth position, so that
the direction matrix after shifting is still legal.

In fact, this legality test is overly conservative, because strip-mine-and-
interchange can be applied in certain circumstances where interchange
would be illegal, as the diagram in Figure 9.3 illustrates. If the strip size
is less than or equal to threshold of the dependence that might prevent
interchange, then the strip-mine-and-interchange is legal, even though the
interchange would not be. In Figure 9.3, there is an interchange prevent-
ing dependence carried by the outer J loop with a distance of 3, which
would not prevent strip-mine-and-interchange with a strip size of 3 or
less. However, given that dependence distances tend to be much shorter

Blocking

Chapter Draft of February 8, 2001 547

than useful strip sizes, it is simpler and just as effective to use the conser-
vative test.

FIGURE 9.3 Legality of strip-mine-and interchange.

9.3.3 Profitability of Blocking

In general, blocking is profitable if there is reuse between iterations of a
loop that is not the innermost loop. If the reordering described in
Section 9.2 is applied, it is likely that the search for reuse can be carried
out by starting from the next-to-innermost loop and working outward.

Reuse in an outer loop occurs under two circumstances:

1. There is a small-threshold dependence of any type, including input,
carried by the loop or,

2. The loop index appears, with small stride, in the contiguous dimen-
sion of a multidimensional array and in no other dimension.

In the first case, the reduction in misses for each reference that is the tar-
get of at least one carried dependence is proportional to N, the trip count
of the loop. In the second case, if the reference is not the target of any
dependence covered by the first case, the reduction in misses is propor-
tional to b, the cache line size.

There is also a cost associated with strip-mine-and-interchange, as there
will be misses introduced in the by-strip loop. There are two kinds of
possible costs in each reference group:

I=1

I=2

I=3

I=4

J=1 J=2 J=3 J=4

S(1,1) S(1,2) S(1,3) S(1,4)

S(4,1)

S(3,1)

S(2,1) S(2,2) S(2,3) S(2,4)

S(3,2) S(3,3) S(3,4)

S(4,2) S(4,3) S(4,4)

Cache Management

548 ADVANCED COMPILING FOR HIGH PERFORMANCE

1. For each reference that was the target of a dependence carried by the
inner loop, M/S misses may be introduced where M is the inner loop
count and S is the strip size. (We assume that S is an integral multiple
of b.)

2. For each reference that was not the target of carried dependence but
included the inner loop index in the contiguous dimension, M/S misses
may be introduced because of the possibility that strip boundaries are
not aligned with cache lines. (If strip boundaries are aligned with
cache, no extra misses are introduced).

Thus, the total number of extra misses introduced is approximately R0M/
S where R0 is the number of independent references in the inner loop.
The total savings is

where R1 is the number of references that are targets of a dependence car-
ried by the outer loop and R2 is the number of references that are contig-
uous but not targets of any carried dependence. If N and M are
comparable in size, then the total number of references that incur savings
at the outer loop level would need to be smaller that the number of sav-
ings-carrying references at the innermost level by a factor comparable to
the strip size for strip-mine-and-interchange to fail the profitability test.
Hence, many researchers propose to strip mine to improve reuse in any
loop where it is possible [15].

9.3.4 A Simple Blocking Algorithm

The observations of the previous section lead us to a very simple block-
ing algorithm, given in Figure 9.4. Essentially, this algorithm simply con-
tinues applying strip-mine-and-interchange until there are no more of the
original loops carrying any reuse.

FIGURE 9.4 Simple blocking.

procedure BlockLoops(L, m);

// L = {L1, L2, ..., Lm}is the loop nest to be transformed,
// arranged into the best memory order using the algorithm
// of Section 9.2;

for i := m+1 to 1 by -1 do begin

R1N R2N 1 1
b
---+ 

 + R1 R2+()N
R2N

b
-----------–=

Blocking

Chapter Draft of February 8, 2001 549

if there is reuse in Li then
let o≥i–1 be the index of the outermost loop

beyond which Li–1 can be shifted;
if o≥i then

let Si–1 be a new variable;
StripMineAndInterchange(L, m, i–1, o, Si–1);

endif
endif

end

end BlockLoops

Lets see how this algorithm performs on the inner loop of matrix multi-
plication after loop interchange:

DO J = 1, N
DO K = 1, N

DO I = 1, N
C(I,J) = C(I,J) + A(I,K) * B(K,J)

ENDDO
ENDDO

ENDDO

After the innermost loop is chosen, it is clear that the next innermost—
the loop on K—also carries reuse because of the reuse of C(I,J) and the
contiguous reference to B(K,J). We therefore strip mine the I loop mov-
ing the by strip loop all the way to the outside:

DO I = 1, N, S
DO J = 1, N

DO K = 1, N
DO ii = I, MAX(I+S-1,N)

C(ii,J) = C(ii,J) + A(ii,K) * B(K,J)
ENDDO

ENDDO
ENDDO

ENDDO

The J loop also carries a small amount of reuse due to the self input
dependence on A(ii,K). This can be exposed by applying strip-mine-
and-interchange to the K loop:

DO K = 1, N, T
DO I = 1, N, S

DO J = 1, N
DO kk = K, MAX(K+T-1,N)

DO ii = I, MAX(I+S-1,N)
C(ii,J) = C(ii,J) + A(ii,k) * B(kk,J)

Cache Management

550 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO
ENDDO

ENDDO
ENDDO

ENDDO

The total number of misses in this loop can be estimated using variants of
the cost formulas from Section 9.2. In the inner loop, we have a total of S/
b misses for C and A and 1 miss for B. Assuming S is small enough, the K
loop multiplies the number of misses for C by 1, the number of misses for
A by T, and the number of misses for B by T/b. The J loop multiplies the
number of misses for C and B by N and the number of misses for A by 1.
The outer two loops multiply miss counts by N2/ST. The total misses for
the three reference groups is summarized in:.

If S = T this is an improvement over the best interchanged version, which
suffered approximately 2N3/b + N2 misses, by a factor of S. Furthermore,
this is asymptotically the best possible complexity for a cache that can
hold an S×S block.

9.3.5 Blocking with Skewing

There are occasions when you cannot tile a loop because interchange is
not possible. Here is a simple example:

DO I = 1, N
DO J = 1, M

A(J+1) = (A(J) + A(J+1))/2
ENDDO

ENDDO

The direction matrix for this loop is as follows

Loop C(I,J) A(I,K) B(K,J) Total

i S/b S/b 1 2S/b + 1
k S/b ST/b T/b S/b + ST/b + T/b
J NS/b ST/b NT/b NS/b + ST/b + NT/b
I N2/b NT/b N2T/(Sb) N2/b + NT/b + N2T/(Sb)
K N3/(Tb) N2/b N3/(Sb) N3/(Tb)+N3/(Sb)+N2/b

TABLE 9.2 Memory analysis of blocked matrix multiplication.

Blocking

Chapter Draft of February 8, 2001 551

This produces a pattern of dependences shown in Figure 9.5.

FIGURE 9.5 Dependence pattern in example.

The loop permutation procedure leaves the loops as they are, but they
cannot be blocked because the loops cannot be interchanged. If we wish
to increase the amount of reuse in this nest, the inner loop can be skewed
with respect to the outer loop:

DO I = 1, N
DO j = I, M+I-1

A(j-I+2) = (A(j-I+1) + A(j-I+2))/2
ENDDO

ENDDO

which makes it possible to interchange the loops. Therefore strip-mine
and interchange can also be applied. This is the loop after the strip-mine
step:

DO I = 1, N

=

=

=

<

<

<

=

<

< >

I = 1

I = 2

I = 3

I = 4

J = 1 J = 2 J = 3 J = 4

S(1,1) S(1,2) S(1,3) S(1,4)

S(4,1)

S(3,1)

S(2,1) S(2,2) S(2,3) S(2,4)

S(3,2) S(3,3) S(3,4)

S(4,2) S(4,3) S(4,4)

Cache Management

552 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO j = I, M+I-1, S
DO jj = j, MAX(j+S-1,M+I-1)

A(jj-I+2) = (A(jj-I+1) + A(jj-I+2))/2
ENDDO

ENDDO
ENDDO

Interchanging the by-strip loop outward produces:

DO j = 1, M+N-1, S
DO I = MAX(1,j-M+1), MIN(j,N)

DO jj = j, MAX(j+S-1,M+I-1)
A(jj-I+2) = (A(jj-I+1) + A(jj-I+2))/2

ENDDO
ENDDO

ENDDO

FIGURE 9.6 Dependence pattern after skewing and blocking.

This form takes advantage of reuse in the outer loop. While the original
loop nest generated MN/b misses, the revised version generates something
approximating

(S/b +1)(M+N)/S = (M+N)(1/b +1/S)

S(1,1) S(1,2) S(1,3) S(1,4)

S(2,2) S(2,3) S(2,4)

S(3,3) S(3,4)

S(4,4)

S(2,5)

S(3,5)

S(4,5)

S(3,6)

S(4,6) S(4,7)

I = 1

I = 2

I = 3

I = 4

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

S = 2

Blocking

Chapter Draft of February 8, 2001 553

which is an order of magnitude improvement. The effect of blocking is
illustrated in the modified dependence diagram in Figure 9.6.

In practice, opportunities for the use of skewing for the purpose of block-
ing are rarely seen [17], although it can be very profitable when applica-
ble. We suggest that skewing be used in those situations where no
blocking is possible to get reuse in a second dimension. This is the
approach is taken in the algorithm of Figure 9.7.

FIGURE 9.7 Blocking with skewing.

procedure BlockLoopsWithSkewing(L, m)

// L = {L1, L2, ..., Lm}is the loop nest to be transformed,
// arranged into the best memory order using the algorithm
// of Section 9.2;

for i := m+1 to 1 by -1 do begin
if there is reuse in Li then begin

let o≥i–1 be the index of the outermost loop
beyond which Li–1 can be shifted;

if o≥i then begin
let Si–1 be a new variable;
StripMineAndInterchange(L, m, i–1, o, Si–1);

else if i = m+1 then begin // use skewing
skew Li–1 with respect to Li;
let Si–1 be a new variable;
StripMineAndInterchange(L, m, i–1, o, Si–1);

end
end

end

end BlockLoopsWithSkewing

9.3.6 Fusion and Alignment

Loop fusion, which was discussed in depth in Section 8.6, is also
extremely useful in conjunction with cache blocking to improve memory
hierarchy management. In many cases, two loops, each of which can be
blocked to improve memory hierarchy performance, can be fused first
and then blocked, sometimes doubling the performance in the process.

As shown in Section 9.3.6, alignment can be used to increase the oppor-
tunities for fusion. We illustrate this with a simple example, intended to

Cache Management

554 ADVANCED COMPILING FOR HIGH PERFORMANCE

represent an unitization of a two dimensional array, followed by a relax-
ation on the interior.

DO I = 1, N
DO J = 1, N

S1 A(J,I) = AINIT(J,I)
ENDDO

ENDDO
DO I = 2,N-1

DO J = 2, N-1
S2: A(J,I) = (A(J+1,I+1) + A(J-1,I-1))*0.5

ENDDO
ENDDO

Following the alignment strategy from Section 9.3.6, we can fuse the two
loops so that the second reference in statement S2 aligns with the assign-
ment in statement S1:

DO I = 2, N+1
DO J = 2, N+1

S1 A(J-1,I-1) = AINIT(J,I)
ENDDO

ENDDO
DO I = 2,N-1

DO J = 2, N-1
S2: A(J,I) = (A(J+1,I+1) + A(J-1,I-1))*0.5

ENDDO
ENDDO

Now we can legally fuse the two loop nests to get.

DO I = 2, N-1
DO J = 2, N-1

S1 A(J-1,I-1) = AINIT(J-1,I-1)
S2: A(J,I) = (A(J+1,I+1) + A(J-1,I-1))*0.5

ENDDO
A(N,I-1) = AINIT(N,I-1)
A(N+1,I-1) = AINIT(N+1,I-1)

ENDDO
DO I = N, N+1

DO J = 2, N+1
A(I-1,J-1) = AINIT(I-1,J-1)

ENDDO
ENDDO

When the inner loop is blocked, there is only one cache miss for every
cache block in A, while the original suffered from two cache misses per
iteration.

Blocking

Chapter Draft of February 8, 2001 555

9.3.7 Blocking in Combination with Other Transformations

Blocking with Register Usage Enhancement. The blocking transforma-
tions described here are fairly easy to combine with scalar replacement
and unroll-and-jam described earlier in this chapter. Because register
management can only make use of temporal locality, it is more special-
ized than cache management, which also includes non-temporal spatial
locality. Furthermore, cache management takes more dependences into
account than register management—for example, an antidependence
gives rise to cache reuse (in most cache designs) but not register reuse.
Thus register management should be applied to the loops that remain
after cache management has been completed. Nevertheless, because
cache management attempts to optimize both temporal and spatial local-
ity, the loops that are useful for register management should be near the
innermost position after the cache management transformations have
been completed.

Multiple Levels of Memory Hierarchy. In addition to registers, it is
common to find multiple levels of cache in a modern computing system.
Furthermore, different memories may have widely varying access times.
Parallel computer systems, discussed in the next subsection, are a major
source of “non-uniform” memory access times. On a typical parallel
computer system, access times to remote memories can take integral fac-
tors longer than accesses to local memory. For example, on a 64-node,
128 processor SGI Origin 2000, access to a remote memory takes three
times as long as access to a local memory on the average [14]. In such sit-
uations, it may be useful to block cache for more than one level of cache.
However, unless the fastest level of cache is not much faster than the next
level or the fastest level is too small to be useful, it is essential that block-
ing first target the fastest cache, then attach other cache levels. In this
case, a by-strip loop resulting from strip-mine-and-interchange might be
strip mined to get further reuse in a large secondary cache. Alternatively,
if the primary cache were too small to effectively achieve reuse in each
dimension, The larger cache could then be used to capture some of the
unexploited reuse.

It is also possible to view secondary storage as part of the memory hierar-
chy. Experiments have shown that using transformations similar to the
ones described for optimizing cache, a typical out-of-core computation
can be improved by a factor of 200 or more [8].

Blocking with Parallelization. There are two key issues that arise when
cache management and parallelization are combined.

Cache Management

556 ADVANCED COMPILING FOR HIGH PERFORMANCE

1. If the dimension of parallelism is the dimension of sequential access,
increasing parallelism may interfere with the performance of the
memory hierarchy.

2. If the data to be used by each processor is not properly aligned on a
cache line boundary, two or more processors may contend for a cache
line that contains data that both need to use, even though the proces-
sors are not actually accessing the same data. This phenomenon is
referred to as false sharing and is a significant problem for shared-
memory parallel machines.

Since poor single-node performance is one of the most frequently cited
reasons for inadequate performance on a parallel machine, it seems pru-
dent that enhancing data locality be given a high priority in generating
code for parallel computers. This suggests that, if multiple dimensions of
parallelism are available, the dimension of stride-one access should be
avoided when parallelizing.

If the semantics of the language permit it, false sharing can also be
reduced by noncontiguous allocation of data. For example, in multidi-
mensional arrays, if the columns are to be used on different processors, it
will help to ensure that each column begins on a new cache line. This vio-
lates sequence and storage association restrictions in Fortran, but those
features are, by all accounts, on their way out of the language.

If the stride-one dimension must be chosen for parallelization, then the
computation should be blocked on cache line boundaries to avoid false
sharing. HPF-style CYCLIC(k) distributions should only be used if k
specifies a number of words that is an integral multiple of the cache line
size.

In the future, it is likely that parallelism will make the memory hierar-
chies deeper, which will increase the overall importance of the kinds of
transformations discussed in this chapter.

9.3.8 Effectiveness

In general, blocking to improve cache performance, where it can be
applied, can be remarkably effective in practice. Porterfield reported that
for matrix multiplication, a single strip-mine-and-interchange reduced
the number of cache misses from 932,576 to 40,000, almost completely
eliminating evictions in the program [16]. Wolf reports similar improve-
ments for the same program.

Cache Management in Complex Loop Nests

Chapter Draft of February 8, 2001 557

The problem is applicability of the transformation in real programs. Both
Porterfield and Wolf report that simple impediments to blocking transfor-
mations often foiled their systems, leaving many programs that should be
blockable with no benefits at all. The good news is that for applications
where it works, it works very well indeed. For example, on the NASA
kernel GMTRY, discussed in Section 8.3.7, Wolf’s tiling algorithm
achieved a factor of 3 improvement, while on VPENTA it realized a 50
percent improvement.

Porterfield also reports that fusion with alignment can be extremely pow-
erful, even without blocking. On the program WANAL1, a wave analysis
application, the combination of loop interchange, alignment, and fusion
eliminated nearly half the misses. More recently, Ding has shown dra-
matic improvements through fusion on bandwidth-limited machines [6].

These successes indicate that blocking and fusion are promising ways to
improve cache performance. However, a compiler must have a complete
arsenal of transformations to use them effectively.

9.4 Cache Management in Complex Loop Nests

9.4.1 Triangular Cache Blocking

This same general procedure can be applied to strip mining to improve
cache performance for triangular loops. For example, suppose that we
wish to strip-mine the outer loop of the same example by a factor of K
where K divides the number of iterations in the outer loop evenly (once
again this situation can be brought about by the use of a preloop).

DO I = 2, N
DO J = 1, I-1

A(I,J) = A(I,I) + A(J,J)
ENDDO

ENDDO

After strip mining, we get:

DO I = 2, N, K
DO ii = I, I+K-1

DO J = 1, ii-1
A(ii,J) = A(ii,I) + A(ii,J)

ENDDO
ENDDO

ENDDO

Cache Management

558 ADVANCED COMPILING FOR HIGH PERFORMANCE

Now if we interchange the middle loop to the innermost position (using
triangular loop interchange), we get:

DO I = 2, N, K
DO J = 1, I+K-1

DO ii = MAX(J+1,I), I+K-1
A(ii,J) = A(ii,I) + A(ii,J)

ENDDO
ENDDO

ENDDO

Which would have good cache performance, assuming that K was chosen
carefully.

9.4.2 Special Purpose Transformations

Many of the kinds of programs that arise in linear algebra, are fairly
unique. Nevertheless, much can be learned from studying them. We begin
with an analysis of LU decomposition, the most frequently used algo-
rithms for the solution of linear systems of equations.

Most versions of LU decomposition use some form of pivoting to ensure
stability. However, pivoting presents special problems, which will be dis-
cussed later. Therefore, we begin our discussion with a version of the
algorithm without pivoting.

In LU decomposition without pivoting, the central loop nest is as follows:

DO K = 1, N-1
! the pivot is always A(K,K)

DO I = K+1, N
S1 A(I,K) = A(I,K) / A(K,K)

ENDDO
DO J= K+1, N

DO I = K+1, N
S2 A(I,J) = A(I,J) - A(I,K) * A(K,J)

ENDDO
ENDDO

ENDDO

The problem with this code is that the second part of the loop nest gets no
reuse of either A(I,K) or A(K,J) on the right hand side, assuming that N
is large enough. To achieve reuse, you would like to strip-mine the outer
loop on K and interchange the strip loop inside the loops on J and I in the
second nest. Performing the strip mining, we get

DO K = 1, N-1, S
DO kk = K, K+S-1

Cache Management in Complex Loop Nests

Chapter Draft of February 8, 2001 559

! the pivot is always A(kk,kk)
DO I = kk+1, N

S1 A(I,kk) = A(I,kk) / A(kk,kk)
ENDDO
DO J= kk+1, N

DO I = kk+1, N
S2 A(I,J) = A(I,J) - A(I,kk) * A(kk,J)

ENDDO
ENDDO

ENDDO
ENDDO

In order to interchange the kk loop inward, we must first distribute it over
the two loop nests. However, this is not permissible because there is a
recurrence involving statements S1 and S2. The loop independent depen-
dence due to the two occurrences of A(I,kk) seems obvious. What is not
so obvious is that, since J>kk, the store into A(I,J) in S2 is to a location
that is read in a later iteration of the kk loop.

It seems as if the blocking we desire is not possible. However, if we
notice that on each iteration of the K loop, statement S2 produces

A(K+1:N,K+1:N)

while statement S1 uses

A(K+1:N,K:K+S-1)

The implication is that outside the range of iterations in which the output
of S2 is used, there is no recurrence. Thus if we use index set splitting to
divide the inner loop nest around S2 into two so that the second of these
nests produces no values used in S1:

DO K = 1, N-1, S
DO kk = K, K+S-1

! the pivot is always A(kk,kk)
DO I = kk+1, N

S1 A(I,kk) = A(I,kk) / A(kk,kk)
ENDDO
DO J= kk+1, K+S-1

DO I = kk+1, N
S2 A(I,J) = A(I,J) - A(I,kk) * A(kk,J)

ENDDO
ENDDO
DO J= K+S, N

DO I = kk+1, N
S3 A(I,J) = A(I,J) - A(I,kk) * A(kk,J)

ENDDO
ENDDO

Cache Management

560 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO
ENDDO

The kk loop can now be distributed to produce a nest containing S1 and
S2 and one containing S3:

DO K = 1, N-1, S
DO kk = K, K+S-1

! the pivot is always A(kk,kk)
DO I = kk+1, N

S1 A(I,kk) = A(I,kk) / A(kk,kk)
ENDDO
DO J= kk+1, K+S-1

DO I = kk+1, N
S2 A(I,J) = A(I,J) - A(I,kk) * A(kk,J)

ENDDO
ENDDO

ENDDO
DO kk = K, K+S-1

DO J= K+S, N
DO I = kk+1, N

S3 A(I,J) = A(I,J) - A(I,kk) * A(kk,J)
ENDDO

ENDDO
ENDDO

ENDDO

Finally the kk loop can be moved to the inside of the I and J loops in the
final nest:

DO J= K+S, N
DO I = K+1, N

DO kk = K, MIN(I-1,K+S-1)
S3 A(I,J) = A(I,J) - A(I,kk) * A(kk,J)

ENDDO
ENDDO

ENDDO

The cache reuse is much improved in this inner loop.

Software Prefetching

Chapter Draft of February 8, 2001 561

In experiments on a MIPS M120, conducted by Carr and Kennedy, the
improved code achieved the timings shown in Table 9.2 on arrays of 100
elements.

We note that the automatic method produced a different and slightly bet-
ter version that the hand code for this problem produced by Dan Sorensen
as part of the LAPACK implementation effort. In addition, the applica-
tion of triangular unroll-and-jam to the result, which in all fairness could
also have been applied to the Sorensen version, produced a total speedup
of 2.35.

9.5 Software Prefetching

As effective as program reorganization is, it cannot eliminate some kinds
of cache misses:

1. misses on data that is being used for the first time, and

2. misses on data that is being reused in a way that cannot be predicted at
compile time.

The following loop contains an example of each of kind of miss:

DO I = 1, N
A(I) = B(LOC(I))

ENDDO

The store into A(I) will miss on each new cache line, because this is the
first use of A(I) in the nest. If duplicate values are stored in LOC(I),
there may be a great deal of temporal reuse of B(LOC(I)). However, it is
difficult to reorganize the loop nest to exploit it at compile time, because
the values of LOC(I) are unknown at that point.

In order to help ameliorate these problems, machine designer in the late
1980s and early 1990s introduced prefetch instructions into modern pro-

Original code 8.36 sec

Transformed code 6.40 sec

Hand coded by Sorensen 6.69 sec

After unroll-and-jam 3.55 sec

Speedup 2.35

TABLE 9.3 LU decomposition timing.

Cache Management

562 ADVANCED COMPILING FOR HIGH PERFORMANCE

cessors. A prefetch instruction is typically implemented like a load,
except that it does not cause a value to be put in a register. Instead, it
causes the cache line that contains the target address in memory specified
by the instruction to be preloaded into cache. A second difference is that
prefetch operations do not typically cause processor stalls—if the desired
datum is not in cache, the containing block is loaded into cache in paral-
lel with other operations. Thus prefetch instructions provide one mecha-
nism for overlapping memory accesses with other processor instructions.

To use prefetch instructions available on the processor, the programmer
or compiler must generate them—the process of doing this is called soft-
ware prefetching. If the compiler is able to insert a prefetch instruction
for each line used in the loop far enough ahead, all miss latencies can be
eliminated (assuming a large enough cache). The value of prefetching is
clear here, because program reorganization has no effect on this loop by
itself.

In spite of its obvious advantages, however, prefetching has some signifi-
cant disadvantages:

1. It increases the number of instructions that must be executed, requir-
ing one instruction for the prefetch itself and possibly other instruc-
tions for the calculation of the prefetch address;

2. It can result in the premature eviction of useful cache lines; and

3. It can bring lines to cache that are evicted before use or never used,
needlessly increasing memory traffic.

To minimize the impact of these three disadvantages, we must carefully
design the prefetching algorithm, so that the number of prefetches is
close to what is needed, so that the prefetches do not arrive too early, and
so that prefetches are rarely invoked for references that do not need them.

In the following sections we present a prefetching algorithm based on the
work of Callahan, Kennedy, and Porterfield [3] and of Mowry [12]. The
effectiveness of software prefetching will then be discussed in the light of
experimental results presented by these research groups.

9.5.1 A Software Prefetching Algorithm

Generally a prefetching algorithm will attempt to generate prefetch
instructions for references that are a loop. References to subscripted vari-
ables are especially appealing targets because the same source references
causes accesses to different memory locations. However, because cache
blocks are typically longer than a single word, the prefetching algorithm

Software Prefetching

Chapter Draft of February 8, 2001 563

must be careful to generate only prefetches for the first reference to a new
cache block, lest it produce lots of useless prefetch operations. Thus, the
critical steps in an effective prefetching algorithm are:

1. accurate determination of the references requiring prefetching, so
needless prefetching is minimized, and

2. insertion of the prefetching instructions far enough in advance so that
the data arrives neither too late nor too soon.

The first of these is referred to as prefetch analysis, while the second is
prefetch insertion. These two phases will be discussed separately in the
following subsections.

The analysis phase must accurately determine which references are in
need of prefetching and transform the program so that it distinguishes
instances where a prefetch is required from those in which it is not. For
example, consider the following loop nest:

DO I = 1, N
DO J = 2, M

A(J,I) = A(J,I) + B(J)*A(J-1,I)
ENDDO

ENDDO

The reference to A(J,I) will generate a miss once for each cache line,
since the accesses are sequential in memory. The reference to B(J) will
also miss once every cache line multiplied by the number of times the J-
loop in executed.

This means that, even though values of B(J) are reused in each iteration
of the I-loop, none of that reuse is realized if the loop upper bound M is
large enough. We can achieve that reuse if strip-mine-and-interchange is
applied to the J-loop, but the size of the strip loop must be carefully cho-
sen so as not to exceed cache as described in Section 9.3. Let us assume
that this is done and the following code results:

DO J = 2, M, S
JU = MIN(J+S-1,M)
DO I = 1, N

DO jj = J, JU
A(jj,I) = A(jj,I) + B(jj)*A(jj-1,I)

ENDDO
ENDDO

ENDDO

Once this transformation is completed, we have removed latency for
B(jj) except for the first iteration of each instantiation of the I-loop.

Cache Management

564 ADVANCED COMPILING FOR HIGH PERFORMANCE

However there are still a number of misses due to A(jj,I) and A(jj-
1,I), that can be ameliorated by prefetching. The goal of analysis is to
determine which iterations of the loop nest require a prefetch of A and
which require a prefetch of B. The next section will discuss how the
prefetches can be scheduled.

As we have previously indicated, there are two general types of locality
in the program. Temporal locality occurs when there is reuse of the same
memory location and spatial locality occurs when two references are to
the same cache line. In the example above, the references to A(jj-1,I)
and A(jj,I) exhibit temporal locality because they reference the same
location on subsequent iterations of the loop. however, there is spatial
locality for the references to A(jj,I) on subsequent iterations of the jj-
loop. If the cache line length is L words, then a cache miss would be
incurred on the reference A(jj,I) every L iterations.

If we perform an analysis similar to the analysis for temporal locality to
improve the performance of register allocation in Section 8.3, we would
discover that references to A(jj,I), both the read and write, and A(jj-
1,I) form a single name partition and hence represent a temporal reuse
group. Furthermore, A(jj,I) would be identified as the generator of that
group. As a result, the goal would be to determine the iterations on which
to prefetch A(jj,I). Note that the reference to A(jj-1,I) would require
a prefetch only on the first iteration of the jj-loop.

Assuming for the moment that A(1,I) is lined up on a cache line bound-
ary for each value of I and that S is a multiple of the cache line size L, we
can see that a prefetch of A(jj,I) is needed on iterations of the jj-loop
where MOD(jj-J,L) = L-1 or on iterations J+L-1, J+2*L-1, J+3*L-1,
and so on.

What about the reference to B(jj)? If we assume that B(1) is aligned on
a cache boundary, then on the first iteration of the I-loop we will need a
prefetch for B before the first iteration and on each iteration of the jj-
loop where MOD(jj-J,L) = L-1 or on iterations J+L-1, J+2*L-1, etc.
However, since S has been chosen so that all the values in B(J:JU) fit
into cache, we can prefetch all of them prior to the j-loop. The imple-
mentation of this observation is called prefetch vectorization.

To summarize the prefetch requirements:

1. prefetch B(jj), for I=1 and jj=J+k*L-1, 0≤k≤(JU-J)/L. In other
words, on the first iteration of the I-loop, prefetch B(J-1:JU:L).

Software Prefetching

Chapter Draft of February 8, 2001 565

2. prefetch A(jj-1,I), for all I and for jj=J.

3. prefetch A(jj,I) for all I and for all jj=J+k*L-1, 1≤k≤(JU-J)/L.

Determining the iterations on which prefetching is required in this fash-
ion is the goal of prefetch analysis.

Once the iterations requiring prefetches are determined, we can partition
the iteration space of the loop to ensure that prefetches occur only for the
references requiring them. The prefetches for B, all of which should hap-
pen on the first iteration of the I-loop, can be handled by peeling that iter-
ation off and inserting the prefetch in the peeled iteration. In this case
however, the same effect can be achieved by simply hoisting the
prefetches for B out of the I-loop.

To isolate the prefetches for A, we need to strip mine the jj-loop into
blocks of length L, after a preliminary block of length L-1. Assuming for
the moment that A(1,I) is lined up on a cache line boundary for each
value of I, we can see that the following set of loops will achieve the
desired result:

DO J = 2, M, S
JU = MIN(J+S-1,M)
! prefetch here for B
DO I = 1, N

! prefetch here for A(J,I)
! preloop to align prefetches
DO jk = J, MIN(J+L-2,JU)

A(jk,I) = A(jk,I) + B(jk)*A(jk-1,I)
ENDDO
DO jj = J, JU, L

jju = MIN(jj+L-1,JU)
! prefetch here for A(j,I)
DO jk = jj,jju

A(jk,I) = A(jk,I) + B(jk)*A(jk-1,I)
ENDDO

ENDDO
ENDDO

ENDDO

Assuming that each prefetch is to be placed immediately before the refer-
ence that it relates to, the following placement of prefetches would result:

DO J = 2, M, S
JU = MIN(J+S-1,M)
DO jj = J-1, JU, L

prefetch(B(jj))
ENDDO

Cache Management

566 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO I = 1, N
prefetch(A(J,I))
! preloop to align prefetches
DO jk = J, MIN(J+L-2,JU)

A(jk,I) = A(jk,I) + B(jk)*A(jk-1,I)
ENDDO
DO jj = J, JU, L

jju = MIN(jj+L-1,JU)
prefetch(A(jj,I))
DO jk = jj,jju

A(jk,I) = A(jk,I) + B(jk)*A(jk-1,I)
ENDDO

ENDDO
ENDDO

ENDDO

At this stage, we have identified the latest points at which the prefetch
can be issued if it is to take place before the data being prefetched are
actually accessed. However, a good placement algorithm will move the
prefetches to points early enough in the program to ensure that they are
complete before the data is used. This will require moving the prefetches
across several iterations in many cases.

In the remainder of this section, we will discuss algorithms to perform
the analysis and placement needed to achieve these results.

9.5.1.1 Prefetch Analysis
The analysis phase of our prefetching algorithm consists of determining
which iterations will suffer a prefetch miss. To do this, we will make use
of the dependence analysis strategy described in Section 8.3. Recall that
graph analysis routines were used to determine name partitions and gen-
erators. Unlike that case, stores will not kill a name partition when deal-
ing with cache, because a cache handles stores much like loads on most
machines—if the cache block being stored into is not found in cache, a
cache miss is taken. Therefore, there will be no bad edges in the graph
except those that correspond to inconsistent dependences.

On the other hand, for this approach to work we must ensure that every
edge that is unlikely to correspond to reuse is eliminated from the graph
so that the target of the edge is assumed to correspond to a miss, except
when it is saved by temporal locality.

We assume that the analysis phase begins after the loop nest has been
strip-mined and interchanged to increase locality. This process will entail
moving the loops with the best spatial locality to the innermost possible

Software Prefetching

Chapter Draft of February 8, 2001 567

positions. (Note previous locality algorithm.) The algorithm then
traverses the loops from innermost to outermost to determine which
dependences must be marked “ineffective” because reuse is not possible.
Reuse is not possible whenever the amount of data accessed by the code
between the source and sink exceeds the assumed cache size. (In this
algorithm the cache is typically assumed to be substantially smaller than
its actual size to compensate for mapping effects.)

To carry out this analysis, Porterfield [16] estimated the amount of data
that was used by each iteration and then determined the overflow itera-
tion, which is one more than the number of iterations whose data can be
accommodated in cache at the same time. Any dependence with a thresh-
old equal to or greater than the overflow iteration is then deemed to be
ineffective for the purposes of reuse.

Once all ineffective edges have been identified and eliminated, we iden-
tify all points where misses might take place, and hence prefetching is
required. To accomplish this, we must account for two cases:

1. If the group generator is not contained in a dependence cycle, a miss is
expected on each iteration unless references to the generator on subse-
quent iterations display temporal locality (in other words, if the
accesses to the generating references are sequential locations in mem-
ory). In this case a miss is expected on every iteration that begins on a
cache line.

2. If the group generator is contained in a dependence cycle carried by
some loop, then a miss is expected only on the first few iterations of
the carrying loop, depending on the distance of the carrying depen-
dence. In this case, a prefetch to the reference can be placed before the
loop carrying the dependence.

A simple example will clarify these two cases:

DO J = 1, M
DO I = 1, 32

A(I+1,J) = A(I,J) + C(J)
ENDDO

ENDDO

The reference to A(I,J) is the generator for a group of references that
also includes A(I+1,J). Since these references are not part of a depen-
dence cycle carried by either loop, they fall into case 1 above and will
generate a miss on every iteration of the inner loop that hits a new cache
line. On the other hand, the reference to C(J) is involved in an input

Cache Management

568 ADVANCED COMPILING FOR HIGH PERFORMANCE

dependence carried by the inner loop so its prefetch could be placed
before the entrance to the inner loop.

Note that there is a special consideration in the second case above. If the
dependence edge is carried by an outer loop and the generator reference
for the name partition is indexed by the inner loop, then the entire vector
of references represented by that generator can be prefetched. If there
were not room enough in the cache, the carrying edge would have been
marked “ineffective” by the cache size analysis. As an example, consider
the following loop nest:

DO J = 1, M
DO I = 1, 32

A(I,J) = A(I,J) + B(I)*C(I,J)
ENDDO

ENDDO

There is an input dependence involving B(I) carried by the outer loop. If
the cache size analysis determines that B(1:32) can fit entirely in cache,
the edge involving B(I) will be marked “effective” and the prefetches for
B(1:32) can be placed outside the J-loop. This corresponds to prefetch
vectorization as described in the introduction to Section 9.5.1.

Note that in this example, the prefetches for A(I,J) and C(I,J) should
be placed inside the I-loop, at least until scheduling is completed.

9.5.1.2 Prefetch Insertion for Acyclic Name Partitions
We begin with a discussion of placement for name partitions that do not
form a strongly connected region. Let us begin by considering the case
where there is a single name partition with a single generator that needs
to be prefetched in the loop. There are two cases to be considered:

1. If the references to the generator do not iterate sequentially in cache
with in the loop—i.e., there is no spatial reuse of the reference in the
loop—then simply insert a prefetch before each reference to the gen-
erator. The actual positioning of the prefetch will be generated by the
scheduler.

2. If the references to the generator have spatial locality within the loop,
then determine the index i0 of the first iteration after the initial itera-
tion that causes a miss on the access to the generator and the iteration
interval l between misses in the cache. Note that the interval l can be
shorter than the length of a cache line if the stride is greater than one.
Note also that i0 ≤ l+1, because we have define the initial index in such
a way that it cannot be the first iteration.

Software Prefetching

Chapter Draft of February 8, 2001 569

a. Partition the loop into two parts: an initial subloop running from 1
to i0–1 and the remainder running from i0 to the end.

b. Strip mine the second loop to have subloops of length l. Insert a
prefetch of the generator prior to each subloop.

c. Insert all prefetches needed to avoid misses in the initial subloop
prior to that loop. Note that a prefetch of the line containing the
generator reference in the first iteration is not sufficient if there is a
carried data dependence in the name partition and the reference of
the sink of that dependence is in an earlier cache line than the gen-
erator reference.

d. Eliminate any very short loops by unrolling. Here “very short” may
depend on machine-specific parameters, but clearly a loop with a
single iteration is very short.

As an example of this procedure, consider the following loop

DO I = 1, M,
A(I,J) = A(I,J) + A(I-1,J)

ENDDO

The name partition involving references to A(I,J) and A(I-1,J) has the
store into A(I,J) as its generator. If we assume that A(0,J) begins a new
cache line and the lines are four words in length, then i0 = 5 and l = 4.

Thus the initial subloop, or preloop, consists of three iterations, and the
remaining iterations can be strip-mined to a size of 4.

DO I = 1, 3
A(I,J) = A(I,J) + A(I-1,J)

ENDDO
DO I = 4, M, 4

IU = MIN(M, I+4)
DO ii = I, IU

A(I,J) = A(I,J) + A(I-1,J)
ENDDO

ENDDO

Clearly a prefetch of A(I,J) is needed before every iteration of the inner
loop, but what needs to be prefetched before the preloop? Clearly A(0,J)
must be prefetched and this will also bring in A(1,J), since they are on
the same cache line. After inserting this prefetch, the code becomes:

prefetch(A(0,J)
DO I = 1, 3

A(I,J) = A(I,J) + A(I-1,J)
ENDDO

Cache Management

570 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO I = 4, M, 4
IU = MIN(M, I+3)
prefetch(A(I,J))
DO ii = I, IU

A(ii,J) = A(ii,J) + A(ii-1,J)
ENDDO

ENDDO

Note that the set of lines that must be prefetched before the first loop is
the set of lines containing all references in the first iteration of the pre-
loop. This can typically be determined by inspection.

How can this procedure be extended to handle multiple name partitions
with different generators? The extension is straightforward: Simply
determine the initial miss index for each of the name partitions, use the
smallest one as the actual i0, and insert prefetches for the other misses
directly in the body of an unrolled version of the strip loop.

To illustrate this extension, we present another example, assuming that
A(0,J) and B(0,J) start a cache line:

DO I = 1, M,
A(I,J) = A(I-1,J) + B(I+2,J)

ENDDO

The reference to B(I+2,J) will have an initial miss when I=2 while the
initial miss index for A(I,J) is 4. Using the smaller index 2, we get the
following loop after unrolling and inserting prefetches:

prefetch(A(0,J)
prefetch(B(0,J))
A(1,J) = A(0,J) + B(3,J)
DO I = 2, M, 4

prefetch(B(I+2,J))
A(I,J) = A(I-1,J) + B(I+2,J)
A(I+1,J) = A(I,J) + B(I+3,J)
A(I+2,J) = A(I+1,J) + B(I+4,J)
prefetch(A(I+3,J))
A(I+3,J) = A(I+2,J) + B(I+5,J)

ENDDO

This code is correct under the assumption that MOD(M-1,4)=0. If this is
not so, the loop on I will require a postloop of up to three iterations,
which is straightforward to generate.

9.5.1.3 Prefetch insertion for cyclic name partitions
For those name partitions that are cyclic, the prefetch instruction is
inserted just prior to the loop carrying the cycle. In the case of an inner-

Software Prefetching

Chapter Draft of February 8, 2001 571

most loop, this is fairly straightforward, since the generator reference (in
this case the target of the carried dependence) is simply repeated in the
prefetch instruction.

However, in the case where the loop carrying the dependence is an outer
loop, the prefetch can be vectorized. The following procedure accom-
plishes this:

1. Begin by placing prefetch loop nest outside the loop carrying the
backward dependence of a cyclic name partition. The prefetch loop
should include copies of the loop headers of the loops containing the
generator reference, using the same iteration ranges.

2. Rearrange the loop nest so that the loop iterating sequentially over
cache lines is innermost.

3. Split the innermost loop into two loops—a preloop up to the first itera-
tion of the innermost loop that contains a generator reference that
begins on a new cache line (the preloop may be empty) and a main
loop that begins with the iteration containing the new cache reference.
Replace the preloop by a prefetch of the first generator reference. Set
the stride of the main loop to the interval between new cache refer-
ences.

To illustrate this process, we present the following example loop

DO J = 1, M
DO I = 2, 33

A(I,J) = A(I,J) * B(I)
ENDDO

ENDDO

The prefetches for A(I,J) are straightforward, and will simply be pre-
sented in the body of the example. Because the input dependence involv-
ing B(I) is carried by the J-loop, the prefetches for B will be placed
outside that loop. Assuming that B(1) and A(1,J) are aligned with cache
line boundaries and cache lines are of length 4, the first prefetch will be
of B(2), with subsequent prefetches of B(5), B(9), etc.

prefetch (B(2))
DO I = 5, 33, 4

prefetch(B(I))
ENDDO
DO J = 1, M

prefetch(A(2,J))
DO I = 2, 4

A(I,J) = A(I,J) * B(I)
ENDDO

Cache Management

572 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO I = 5, 33, 4
prefetch(A(I,J))
A(I,J) = A(I,J) * B(I)
A(I+1,J) = A(I+1,J) * B(I+1)
A(I+2,J) = A(I+2,J) * B(I+2)
A(I+3,J) = A(I+3,J) * B(I+3)

ENDDO
prefetch(A(33,J))
A(33,J) = A(33,J) * B(33)

ENDDO

Note that the prefetches of B before the outer loop are arranged so that no
prefetch is issued for a reference that does not occur in the body of the
computation loop, and all lines referenced in the body are prefetched.
This is accomplished by the loop splitting strategy used in the algorithm.

9.5.1.4 Prefetching Irregular accesses
Irregular accesses present special problems because they typically consist
of an array access in which a subscripted variable appears in one of the
subscript positions:

A(IX(I),J)

In these cases, we assume that no spatial locality exists for the outer
array, so we prefetch each reference. Spatial locality can exist, however,
for the index array, so it is treated as a normal prefetch. The standard
prefetch algorithms can then be applied.

Consider an example:

DO J = 1, M
DO I = 2, 33

A(I,J) = A(I,J) * B(IX(I),J)
ENDDO

ENDDO

Here the prefetching of A will be like previous examples, but B will be
prefetched on each iteration. The prefetches of IX, which might normally
appear right before the prefetch of B can in this case be moved outside the
J-loop to yield the following code:

prefetch (IX(2))
DO I = 5, 33, 4

prefetch(IX(I))
ENDDO
DO J = 1, M

prefetch(A(2,J))

Software Prefetching

Chapter Draft of February 8, 2001 573

DO I = 2, 33
prefetch(B(IX(I),J))
A(I,J) = A(I,J) * B(IX(I),J)

ENDDO
DO I = 5, 32

prefetch(A(I,J))
prefetch(B(IX(I),J))
A(I,J) = A(I,J) * B(IX(I),J)
prefetch(B(IX(I+1),J))
A(I+1,J) = A(I+1,J) * B(IX(I+1),J)
prefetch(B(IX(I+2),J))
A(I+2,J) = A(I+2,J) * B(IX(I+2),J)
prefetch(B(IX(I+3),J))
A(I+3,J) = A(I+3,J) * B(IX(I+3),J)

ENDDO
prefetch(A(33,J))
prefetch(B(IX(33),J))
A(33,J) = A(33,J) * B(IX(33),J)

ENDDO

A problem with prefetching indirect references is that if the index array is
modified in the loop, the prefetch address might be invalid at the time of
the prefetch, which could result in a prefetch to an illegal address [12].
Since prefetches do not take memory exceptions on most machines, this
does not generally result in unsafe code. However, if we attempt to
prefetch through two levels of indirection, we may attempt to load from
an illegal address. To avoid this problem, we limit prefetching to a single
level of indirection.

9.5.2 Effectiveness of Software Prefetching

Mowry examined the effectiveness of a selective prefetching similar to
the one described above a variety of kernel programs and showed that the
method achieves substantive speedups ranging from 1.05 to 2.08 over the
same programs without prefetching [12]. These results are reproduced in
Figure 9.8. These results were achieved simulating a 100 Mhz MIPS
R4000 with a primary cache of 8K bytes and a secondary cache of 256
Kbytes. The penalty for a primary cache miss to secondary cache is 12
cycles and the total penalty for a miss that goes all the way to memory is
75 cycles.

Mowry’s speedups include the costs of executing the extra instructions
required by prefetching. In some cases these extra instructions may need
to recompute prefetch addresses, so the instruction execution overhead
can be as high as 15 percent in some cases. However, these overheads are
far outweighed by the savings from reduced memory access stalls.

Cache Management

574 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 9.8 Speedups from Software Prefetching.

These results show that prefetching is an important optimization on
machines with modern memory architectures.

9.6 Chapter Summary

In dealing with cache memories, two different types of reuse are impor-
tant. Temporal reuse occurs when two different memory operations
access the same data element. This kind of reuse was studied in
Chapter 8. Spatial reuse, which is unique to cache, occurs when two dif-
ferent accesses are to memory locations close enough together to occupy
the same cache block. In this chapter we have considered two strategies
for increasing both temporal and spatial reuse:

• Loop Interchange, to improve the utilization of long cache lines in
inner loops both by achieving short-stride access (spatial reuse) in the
inner loop and by reducing the distance between accesses to the same
memory location (temporal reuse); t

• Cache Blocking, which transforms programs to exploit reuse in outer
loops in a manner similar to unroll-and-jam from Chapter 8;

These techniques have been shown to be applicable to loops that include
control flow and have trapezoidal iteration ranges. Their effectiveness can

M
xM

C
F

F
T

2D

C
ho

ls
ky

B
tr

ix

G
m

tr
y

E
m

it

V
pe

nt
a

T
om

ca
tv

O
ce

an IS C
G

E
P

M
G

1

1.5

2

2.5

3

S
p

ee
d

u
p

Kernel

1.23

1.72
1.64

1.45

2.08

1.05

2

1.19 1.14 1.18

1.82

1.12 1.12

Case Studies

Chapter Draft of February 8, 2001 575

be enhanced by the application of previously-studied transformations
such as loop fusion with alignment.

In addition, the chapter has introduced software prefetching, a transfor-
mation designed to hide the latency of accesses to main memory by asyn-
chronously preloading cache blocks specified by special prefetch
instructions.

9.7 Case Studies

In support of his dissertation research, Porterfield extended the PFC sys-
tem at Rice to carry out strip-mine-and-interchange as described in this
chapter. In addition, he implemented a rudimentary form of fusion.
Rather than using alignment as described here, that implementation
looked for opportunities to apply a second transformation called peel-
and-jam whenever the alignments made direct fusion impractical. Peel-
and-jam is similar to fusion with alignment in that it peels of iterations of
one loop before carrying out fusion in order to effect an alignment. How-
ever, Porterfield did not drive the search process by a general fusion algo-
rithm, so he was able to find only a few opportunities for using it.
Nevertheless, peel-and-jam was critical to successfully improving some
important programs—it accounted for about a quarter of the improve-
ment via transformation on WANAL1, reported in Section 9.3.8. On
SIMPLE, a major hydrodynamics benchmark, peel-and-jam eliminated
about half the misses in the loops to which it could be applied, although
these loops represented a fraction of the computational load so that the
aggregate increase in hit ratio was only 1 percent—from 77 percent to 78
percent. Porterfield also described the combination of skewing with
blocking but found no applications for it in his study.

Porterfield evaluated the performance of codes before and after transfor-
mation by integrating a cache model into PFC to yield an event-driven
simulation facility called PFC-Sim, in which the simulation ran concur-
rently with the program execution, reducing the need for large data stor-
age facilities to hold detailed trace information. This required that every
statement that accessed cache memory be annotated with a call to the
cache model. Because this work was done on a machine with limited
computational power, most experiments only monitored accesses to sub-
scripted array variables. The inaccuracies introduced by this simplifica-
tion were fairly minor as the number of scalar variables in any given
routine is quite small.

Cache Management

576 ADVANCED COMPILING FOR HIGH PERFORMANCE

Porterfield also used PFC to conduct studies on the efficacy of software
prefetching. For this study he assumed a cache in which each floating
point quantity occupied a single cache line. This permitted a simpler
prefetching algorithm that the one presented in this chapter, which
attempts to reduce the number of needless prefetches due to long cache
lines. Nevertheless, it showed the promise of prefetching, particularly for
indirect references of the sort found in irregular computations, for which
the prefetching algorithm was basically the same as the one used by
Mowry, Lam and Gupta [13,12]. Porterfield’s study was the earliest
known investigation of software prefetching.

The ParaScope system, a successor to PFC, included facilities for block-
ing cache and carrying out loop interchange to improve reuse. These
facilities were used by Kennedy and McKinley [9] and by McKinley,
Carr, and Tseng [11] for experiments on the effectiveness of loop inter-
change combined with blocking to improving cache utilization. The strat-
egies described in this chapter are derived from that work.

More recently, Chen Ding extended the D system, a later version of Para-
Scope, to do aggressive multilevel loop fusion to reduce memory band-
width consumption of applications [6]. This system incorporated loop
alignment in a global algorithm similar to the one described in Chapter 8
and used in this chapter.

The Ardent Titan had a cache, but did not use it for floating point quanti-
ties because all floating point operations carried out in the vector unit
which bypassed cache for loads and stores. For this reason, the Titan
compiler implemented the register usage improvement operations
described in Chapter 8 and included no cache management strategies.

9.8 Historical Comments and References

The techniques of blocking for cache have been known in practice for
many years. Abu-Sufah, working with Kuck, produced one of the first
published treatments of dependence-based program transformation [1].
Building on the work of Abu-Sufah, several researchers produced papers
on management of cache by compilers including Gannon et. al., and Cal-
lahan, Kennedy and Porterfield [3,16]. The treatment by Wolf and Lam
[15] featured multidimensional tiling and showed that performance
scaled much better with problem size after tiling. McKinley, Carr. and
Tseng [11] integrated techniques of cache blocking and loop interchange.

Exercises

Chapter Draft of February 8, 2001 577

Because cache blocking is so profitable on modern machines, it is worth
expending significant effort to produce good tilings. Examples of more
powerful and sophisticated techniques have been presented by Wolfe [18]
and by Kodukula, Ahmed, and Pingali [10].

Recent work by Ding and Kennedy [6,7] has demonstrated the effective-
ness of multi-level fusion and alignment in improving cache reuse and
hence reducing memory bandwidth requirements. The implementation
fuses loops of different shapes and nesting levels, on the observation that
cost of a few extra conditionals is more than compensated for by
increases in reuse and associated improvements in effective bandwidth to
memory.

Software prefetching has been a subject of much speculation over the
years as a way of improving cache performance. The term was coined by
Callahan, Kennedy, and Porterfield [3,16] in their original paper, which
also presented a compiler algorithm for its implementation and simula-
tion results demonstrating its promise. The technique of selective
prefetching described in this chapter was developed by Mowry, Lam, and
Gupta as part of Mowry’s dissertation [13,12].

9.9 Exercises

9–1 The algorithm for loop ordering in Figure 9.1 permutes loops in order to
reduce the stride of access to memory. Will it work for imperfectly nested
loops?

9–2 Determine the memory ordering of loops for the following code:
DO I = 1, N

DO J = 2, M
A(I,J) = A(I,J-1) + B(I,J) + C(J)

ENDDO
ENDDO

9–3 When simulating a changing system, many programs use a time step loop
as in the following example.

DO TIME = 1, N
DO I = 1, N

POSITION(I) = F(POSITION(I))
ENDDO

ENDDO

Can you improve cache performance of this loop using any of the tech-
niques discussed in this chapter?

Cache Management

578 ADVANCED COMPILING FOR HIGH PERFORMANCE

9–4 Memory access is slow because of not only high latency but also low
bandwidth. What is the effect of prefetching on the bandwidth constraint?
Give at least two reasons why software prefetching may cause unneces-
sary memory transfer?

9–5 Determine the memory ordering of loops for the following code:
DO I = 1, N

DO J = 2, M
A(I,J) = A(I,J-1) + B(I,J) + C(J)

ENDDO
ENDDO

9.10 References

[1] W. Abu-Sufah. Improving the Performance of Virtual Memory Computers. Ph.D. thesis,
Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1979.

[2] D. Callahan, J. Cocke, and K. Kennedy, “Estimating Interlock and improving balance
for pipelined machines,” Journal of Parallel and Distributed Computing 5, 4, August
1988, 334-358.

[3] D. Callahan, K. Kennedy, and A. Porterfield, “Software Prefetching,” Proceedings of the
Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems, SIGPLAN Notices 26, 4, April 1991, 40-52.

[4] S. Carr, D. Callahan and K. Kennedy, “Improving Register Allocation for Subscripted
Variables”, In Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation, White Plains NY, June 1990.

[5] S. Carr and K. Kennedy, “Compiler Blockability of Numerical Algorithms”, In Proceed-
ings of Supercomputing'92, Minneapolis MN, November 1992.

[6] C. Ding. Improving effective bandwidth through compiler enhancement of global and
dynamic cache reuse, Ph.D. thesis, Department of Computer Science, Rice University,
January 2000.

[7] C. Ding and K. Kennedy. Improving effective bandwidth through compiler enhance-
ment of global cache reuse. In Proceedings of the 2001 International Parallel and Dis-
tributed Processing Symposium, San Francisco, April 2001.

[8] K.Kennedy, C. Koelbel and M. Paleczny. Compiler Support for Out--of--Core Arrays on
Parallel Machines. Proceedings of the Fifth Symposium of the Frontiers of Massively
Parallel Computation, McLean, VA, February 1995.

[9] K. Kennedy and K. McKinley. Optimizing for parallelism and data locality'. In Proceed-
ings of the 1992 ACM International Conference on Supercomputing, 323-334, Washing-
ton, DC, July 1992.

[10] I. Kodukula, N. Ahmed and K. Pingali. Data-centric multi--level blocking. In Proceed-
ings of the SIGPLAN `97 Conference on Programming Language Design and Imple-
mentation, June 1997.

[11] K. McKinley, S. Carr, and C.-W. Tseng, “Improving data locality with loop transforma-
tions,” ACM Transactions on Programming Languages and Systems 18(4), July 1996.

References

Chapter Draft of February 8, 2001 579

[12] T. C. Mowry, “Tolerating latency through software-controlled data prefetching,” Ph.D.
Dissertation, Department of Electrical Engineering, Stanford University, March 1994.

[13] T. C. Mowry, M. S. Lam, and A. Gupta. Design and Evaluation of a Compiler Algorithm
for Prefetching. In Proceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, April 1991.

[14] Silicon Graphics, Inc. Performance Tuning Optimization for Origin2000 and Onyx.
Technical Report. http://techpubs.sgi.com/libary/manuals/3000/007-3511-001/html.

[15] M. E. Wolf and M. S. Lam. A Data Locality Optimizing Algorithm. Proceedings of the
ACM SIGPLAN '91 Conference on Programming Language Design and Implementa-
tion, June, 1991.

[16] A. Porterfield, “Software Methods for improving cache performance on supercomputer
applications, Ph.D. Dissertation, Department of Computer Science, Rice University,
1989.

[17] M. E. Wolf, “Improving Locality and Parallelism in Nested Loops,” Ph.D. Dissertation,
Department of Computer Science, Stanford University, August 1992.

[18] M. Wolfe. Iteration space tiling for memory hierarchies. In Proceedings of the Third
SIAM Conference on Parallel Processing for Scientific Computing, December 1987.

Cache Management

580 ADVANCED COMPILING FOR HIGH PERFORMANCE

Overview

Chapter Draft of February 8, 2001 581

CHAPTER 10 Scheduling

10.1 Overview

Much of this book has focused on finding parallelism in a program, using
the theory of dependence as a fundamental tool. In this chapter we exam-
ine how the same theory can be used to support the mapping of parallel-
ism to the available machine resources on a computer system with
limited parallel resources. This problem is generally referred to as sched-
uling, because the principal strategy used is to sacrifice some execution
time in order to fit a given program within the available resources. The
essence of the scheduling problem is to minimize the amount of time that
must be sacrificed. As we shall see, good scheduling can have a dramatic
effect on the performance of compiled programs on high-performance
computers.

We examine two different variants of the scheduling problem: instruction
scheduling and vector operation scheduling.

1. Instruction scheduling is the process of specifying the order in which
instructions will be executed—an important optimization on all archi-
tectures. At the uniprocessor level, instruction scheduling requires a

Scheduling

582 ADVANCED COMPILING FOR HIGH PERFORMANCE

careful balance of the resources required by various instructions with
the resources available within the architecture. The key goal is to min-
imize the length of the critical path through an instruction sequence.

2. The goal of vector operation scheduling is to make the most effective
use of the instructions and capabilities of a vector unit. It requires both
pattern recognition and synchronization minimization.

Multiprocessor scheduling, which distributes work to asynchronous par-
allel coprocessors in an attempt to balance the load and minimize running
time, was discussed in Section 6.6.

Although this chapter covers both scheduling problems, the bulk of the
treatment focuses on simple instruction scheduling. As transistor sizes
have shrunk, the amount of available functionality on chips has increased
tremendously, and to date, most designers have focused that available
functionality on fine-grained parallelism. As a result, instruction schedul-
ing has grown from an optimization that was nice to do if the compiler
writer had the time to one that is critical for a successful compiler-hard-
ware system.

10.2 Instruction Scheduling

All modern machine architectures have the capability of issuing several
instructions on each cycle, and thereby have the theoretical capability of
achieving a high degree of fine-grained parallelism. Effectively utilizing
that capability requires that instructions be presented in an order that
allows the processor to find and issue those instructions that can be exe-
cuted in parallel. There are two principal impediments to achieving that
goal: (a) dependences between instructions that force a sequential order-
ing, and (b) resource limitations that force serialization of instructions
that need the same resource. The goal of instruction scheduling for uni-
processors is to generate instructions in an order that places dependent
instructions far enough apart so that the dependence does not cause
delays and to ensure that as many functional units as possible are busy on
each cycle.

Most processors that support fine-grained parallelism fall into two cate-
gories: superscalar and VLIW. Superscalar processors—the most com-
mon—have multiple functional units controlled and scheduled by the
hardware, which means that the instruction decode unit reads a group of
instructions (usually a cache-word size and on cache-word boundaries) at
the same time and determines the hazards (or dependences) between

Instruction Scheduling

Chapter Draft of February 8, 2001 583

them. The unit then schedules the instructions across multiple functional
units if there are free resources for doing the work and the instructions
can be safely scheduled in parallel. Superscalar processors generally pro-
vide hazard protection by either stalling execution or using register
renaming to avoid executing an instruction whose operands are not quite
ready. It’s fairly easy to see why superscalar execution has been popu-
lar—because the instruction unit reads existing binaries, a superscalar
machine can provide some speedup without the need to recompile.

Less common, but enjoying a recent resurgence, are VLIW (Very Long
Instruction Word) architectures. In contrast to superscalar architectures,
where the bulk of the work is placed on the hardware designer, VLIW
architectures place most of the burden of achieving high performance on
the compiler. A VLIW architecture uses a long instruction word that con-
tains a field controlling each available functional unit. As a result, one
instruction can cause all functional units to execute. In a VLIW, the com-
piler must explicitly specify the parallelism, and must be more observant
of hazards, since VLIW architectures typically provide no protection
against using results that are not yet available. One major drawback of
VLIW machines is their lack of binary compatibility; since the instruc-
tion length is proportional to the number of functional units, newer
machines with a different number of functional units cannot run existing
binaries without invoking some form of translation. The practical result is
that users and software vendors must recompile their source code for
each different version of a VLIW machine.

With both superscalar and VLIW architectures, the key to effective paral-
lelism is ordering the instruction stream so that as many functional units
as possible are being used on every cycle. The standard approach taken
by compilers to achieve that goal is to first issue a sequential stream of
instructions, known to be correct, and then reorder that stream to more
effectively utilize available parallelism. That reordering, of course, must
not violate the dependences present in the original instruction stream.
However, one of the key problems in instruction scheduling is that the
very act of creating a sequential stream must consider the available
resources and by doing so, may create some artificial dependences that
are not present in the higher level computation. Registers are the most
common example. For example, one possible instruction stream for the
code fragment:

a = b + c + d + e;

is (assuming that all variables are in registers called by the same name):

Scheduling

584 ADVANCED COMPILING FOR HIGH PERFORMANCE

add a,b,c
add a,a,d
add a,a,e

This instruction stream as written cannot be reordered to take advantage
of multiple adders, because each instruction depends on the results of the
previous one. These dependences are purely artificial, however, and arise
because the intermediate results were all accumulated into the same reg-
ister. If a different register allocation is used, such as

add r1,b,c
add r2,d,e
add a,r1,r2

then the first two additions can be done in parallel. The original instruc-
tion stream was designed to minimize the number of registers used; by
doing so, it also minimized the available parallelism. Antidependences at
this level are all due to reuse of resources.

The previous example illustrates one of the fundamental conflicts in
instruction scheduling: obtaining the original instruction stream. If the
original instruction stream takes into account the resources available on
the machine (registers, in particular), then it is probably going to intro-
duce artificial dependences based on resource reuse. On the other hand, if
the original stream does not consider available resources but instead
treats them symbolically, then there may not be enough resources in the
machine to execute the rescheduled stream correctly. For instance, the
second version above could not be executed on an architecture with only
5 registers, since executing the two adds in parallel requires 6 registers, if
we cannot destroy the contents of any input. This is an example of the
general trade-off between parallelism and storage.

This section presents methods for scheduling instructions on single-pro-
cessor machines that can issue several instructions on each cycle,
whether superscalar or VLIW. The focus is on arranging the instructions
of the object program in such a way as to take maximum advantage of the
parallelism in the machine architecture—parallelism in instruction pro-
cessing and function execution—without compromising the meaning of
the program. The assumption is that some sets of resources, registers in
particular, have already been allocated. Other resources, function units in
particular, have not.

In order to provide a general treatment of scheduling, we will define an
abstract machine model that will be used as the target for the strategies
developed in this chapter. The machine will have an arbitrary number of

Instruction Scheduling

Chapter Draft of February 8, 2001 585

functional units and the capability of issuing one or more instructions of
each functional type on each machine cycle. This machine model should
be reasonably close to the practical machine designs that will be found in
new computers for some time.

10.2.1 Machine Model

The basic assumption is that a machine contains a number of issue units,
of various types. Each issue unit corresponds to a machine resource such
as an integer or floating point arithmetic unit. Each issue unit will be able
to issue one operation per cycle on the functional unit it controls,
assumed to be pipelined. Each issue unit will have an associated type,
which specifies the kind of resource it controls, and a delay, which is the
number of cycles required before the result of an operation, once issued,
are available.

Issue units are indexed by two integers: the unit type and the index of the
particular unit within that type. The notation

will be used to denote the jth unit of type k. The number of units of type k
is mk. Thus the total number M of issue units in the machine is

(EQ 10.1)

where l is the number of issue-unit types available in the machine. Since
each issue unit can issue one operation per cycle, the peak issue rate of
the machine is M operations per cycle.

For the purpose of exposition, the model is assumed to be a VLIW archi-
tecture in which each wide instruction consists of M subinstructions (one
for each issue unit). The job of the compiler is to select, for each cycle, a
set of ≤ M operations to be included in the wide instruction, such that the
number of operations of type k is ≤ mk. Assume that, if the number of
instructions of type k is strictly less than mk, the operation for each
unused instruction issue slot is a no-op. Code can be generated for an
equivalent superscalar version by listing the instructions that can be
scheduled together in a straight line.

I j
k

M mi
i 1=

l

∑=

Scheduling

586 ADVANCED COMPILING FOR HIGH PERFORMANCE

A scheduling problem will be represented in this model as a graph in
which the vertices represent instructions of a given type and the edges
represent dependences with a given delay equal to the delay for the type
of operation at the source vertex of the edge.

10.2.2 Straight-Line Graph Scheduling

The simplest scheduling problems is that of scheduling a basic block, or
straight-line code. As might be expected, a fundamental requirement is a
dependence graph, annotated with extra information required for sched-
uling. This graph, called a scheduling graph, has four components:

G = (N, E, type, delay) (EQ 10.2)

where N is the set of instructions in the code. Each n ∈ N has a type given
by type(n) and a delay given by delay(n). An edge exists between two
instructions if the second must await completion of the first due to a
shared register—the concepts of true dependence (usually called a Read
After Write or RAW hazard in this context), antidependence (Write After
Read) and output dependence (Write After Write) are all important here.

A correct schedule is a mapping S from vertices in the graph to nonnega-
tive integers, representing cycle number such that:

1. S(n) ≥ 0 for all n∈N,

2. If (n1,n2) ∈ E, S(n1) + delay(n1) ≤ S(n2), and

3. For any type t, no more than mt vertices of type t are mapped to a
given integer.

Intuitively, condition 1 guarantees that all instructions are executed at
some point; condition 2 guarantees that no dependences are violated; and
condition 3 guarantees that only the available resources are in use during
any cycle.

The length of the schedule S, denoted L(S), is defined as follows

(EQ 10.3)

The goal of straight-line scheduling is to find a shortest possible correct
schedule, where a straight-line schedule S is said to be optimal if

L(S) ≤ L(S1)

L S() max
n N∈

S n() delay n()+()=

Instruction Scheduling

Chapter Draft of February 8, 2001 587

for any other correct schedule S1 for the same graph. Obviously, the
shortest schedule is the one that takes the least time to execute.

10.2.3 List Scheduling

The simplest way to schedule a straight-line graph is to use a variant of
topological sort that builds and maintains a list of instructions that have
no predecessors in the graph. Any instruction in this list can be scheduled
without violating any dependences, and scheduling an instruction will
allow new instructions (successors of the scheduled instruction) to be
entered into the list. This algorithm, known naturally enough as list
scheduling, is given in Figure 10.1.

The basic idea is to schedule an instruction at the first opportunity after
all its dependent operations have completed. The count array is used to
determine when the final predecessor has been scheduled and the earliest
array is used to determine the earliest possible scheduling time for a
given instruction. When an instruction’s last predecessor has been sched-
uled, its earliest value is just late enough to insure that all inputs to the
instruction will be available. This value is then used to determine which
of the worklists will hold the instruction. Enough worklists are necessary
to ensure that no instruction will be scheduled ahead of an instruction
upon which it depends. A number of worklists guaranteed to satisfy this
condition is the largest delay plus one. Thus, if the earliest cycle on
which an instruction could be scheduled is c, we will put it on worklist
W[mod(c,MaxC)].

The algorithm in Figure 10.1 is a fairly standard topological sort-based
algorithm. One of the typical characteristics of such algorithms is that
they select randomly from the worklist. Random selection does not mat-
ter when all the instructions on the worklist for a cycle can be scheduled
in that cycle, but it can matter when there are not enough resources to
schedule all possible instructions. In this case, all nonscheduled instruc-
tions are placed on the worklist for the next cycle; if one of the delayed
instructions is on the critical path, the schedule length is increased. To
illustrate with a simple example:

mul c,a,b
mul f,d,e
add f,f,g
add f,f,h
add f,f,c

Scheduling

588 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 10.1 Naive list scheduling algorithm

procedure list_schedule(G, instr)

// G = (N,E, type, delay) is the scheduling graph
// instr[c] is the output table that maps cycles to sets of instructions
// W[MaxC] is an array of worklists to hold ready instructions
// MaxC is 1 greater than the largest delay of any instruction

for each n ∈N do begin count[n] := 0; earliest[n] = 0 end
for each (n1,n2) ∈E do begin

count[n2] := count[n2] + 1;
successors[n1] := successors[n1] ∪ {n2};

end
for i := 0 to MaxC – 1 do W[i] := ∅;
Wcount := 0;
for each n ∈N do

if count[n] = 0 then
begin W[0] := W[0] ∪ {n}; Wcount := Wcount + 1; end

c := 0; instr[c] := ∅; // c is the cycle number
cW := 0; // cW will be the number of the worklist for cycle c
while Wcount > 0 do begin

while W[cW] = ∅ do begin
c := c + 1; instr[c] := ∅; cW := mod(cW+1,MaxC);

end
nextc := mod(c+1,MaxC);
while W[cW] ≠≠≠≠ ∅ do begin

select and remove an arbitrary instruction x from W[cW];
if there are free issue units of type(x) on cycle c then begin

instr[c] := instr[c] ∪ {x}; // schedule the instruction
Wcount := Wcount – 1;
for each y ∈ successors[x] do begin

count[y] := count[y] – 1;
earliest[y] := max(earliest[y], c +delay(x));
if count[y] = 0 then begin

loc := mod(earliest[y],MaxC);
W[loc] := W[loc] ∪ {y}; Wcount := Wcount + 1;

end
end

else W[nextc] := W[nextc] ∪ {x};
end

end
end list_schedule

Instruction Scheduling

Chapter Draft of February 8, 2001 589

If this sequence is scheduled on a machine with only one multiply unit,
the scheduling algorithm must choose one of the two multiplies to exe-
cute in the first cycle. The second one is the correct choice; the first one
will increase the length of the schedule by delaying evaluation of critical
additions. The correct choice can be ensured by altering the algorithm to
make a preliminary pass through the graph, determining minimum num-
ber of cycles that remain after each instruction (a standard algorithm
from project scheduling). Such a backward sweep through the graph is
shown in Figure 10.2

FIGURE 10.2 Determining critical instructions.

procedure find_remaining(G, remaining)

// G = (N,E, type, delay) is the scheduling graph
// remaining[x] is an output variable containing the number of cycles
// remaining on a critical path from instruction x
// to the last instruction depending directly or indirectly on x

for each n ∈N do begin count[n] := 0; remaining[n] := delay(n); end
for each (n1,n2) ∈E do begin

count[n1] := count[n1] + 1;
predecessors[n1] := predecessors[n1] ∪ {n2};

end
W := ∅;
for each n ∈N do if count[n] = 0 then W := W ∪ {n};
while W ≠ ∅ do begin

select and remove an arbitrary instruction x from W;
r := remaining[x];
for each y ∈ predecessors[x] do begin

count[y] := count[y] – 1;
remaining[y] := max(remaining[y], r +delay(y));
if count[y] = 0 then W := W ∪ {y};

end
end

end find_remaining

Critical path information can be incorporated into list scheduling by
selecting the instruction with the highest remaining value as opposed to a
random instruction. Such a selection requires organizing the worklist as a
priority queue, which can insert a logarithmic factor in the time complex-
ity. This approach is referred to in the literature as the highest levels first
(HLF) heuristic.

Scheduling

590 ADVANCED COMPILING FOR HIGH PERFORMANCE

10.2.4 Trace Scheduling

List scheduling produces an excellent schedule within a basic block, but
does not do so well at transition points between basic blocks. Because it
does not look across block boundaries, a list scheduler must insert
enough instructions at the end of a basic block to ensure that all results
are available before scheduling the next block. Given the number of basic
blocks within a typical program, these shutdown instructions can create a
significant amount of overhead. One way to eliminate this overhead is to
create a very long basic block, called a trace, to which list scheduling can
be applied. Simply stated, a trace is a collection of basic blocks that form
a single path through all or part of a program. Trace scheduling schedules
instructions for an entire trace at a time, assuming that control flow fol-
lows the basic blocks in the trace. Of course, this means that some fixup
code must be inserted at points where control flow can enter or exit the
trace. In the ideal, the first trace selected for scheduling represents the
most frequently executed path through the program, so that the resulting
schedule is optimal for the most common case. Because trace scheduling
uses basic block scheduling techniques, it cannot schedule cyclic graphs.
Loops must either be unrolled or the body must be scheduled as one basic
block, with fixup code at the boundaries.

Given a directed acyclic scheduling graph, the first step in trace schedul-
ing is to divide the graph into a collection of traces. The first trace chosen
is what is hoped to be the most probable path through the graph.This
trace is scheduled as one large basic block. Next, the most probable path
through the remaining unscheduled blocks is chosen as a trace, and this is
scheduled. At any point where this second trace may branch into the first,
fixup code is inserted to satisfy the resource assumptions present in the
first trace. Similarly, at any point where the first trace may branch into the
second, fixup code is inserted between the jump and the start of the sec-
ond trace to satisfy the resource assumptions present there. This process
is repeated until all basic blocks in the program have been scheduled.

Summarizing, trace scheduling can be described as the repeated applica-
tion of three distinct steps:

1. Select a trace through the program. Trace selection is not quite so easy
as it might initially appear, even when profile information is available.

2. Schedule the trace.

3. Insert fixup code. Since this fixup code is new code outside of the
scheduled trace, it creates new blocks that must be fed back into the
trace schedule.

Instruction Scheduling

Chapter Draft of February 8, 2001 591

The third step is the most interesting aspect of trace scheduling. To illus-
trate the types of code fixups required, consider the following simple
example:

The trace is designated by the blocks down the left side of the figure. If
this trace happens to get scheduled as

j=j+1
if e1
i=i+2

then the assignment to i has moved below the split, which will cause the
assignment to k to receive the wrong results. This problem can be fixed
by duplicating the assignment to i along the split edge in the control
graph.

The newly inserted instruction will be scheduled either as its own trace or
as part of a trace involving the block with the assignment to k. In general,
moving operations below a split in a trace or above a join in a trace will
require fixup code similar to that listed above. Trace scheduling avoids
moving operations above splits or below joins unless it can prove via
dependence analysis that other instructions will not be adversely affected.

j = j + 1

i = i + 2

if e1 k = i + 3

j = j + 1

i = i + 2

if e1 k = i + 3i = i + 2

Scheduling

592 ADVANCED COMPILING FOR HIGH PERFORMANCE

Given the fact that scheduling one trace can cause new traces to appear, a
natural question to ask is “Will trace scheduling converge?” That is, is it
possible for trace scheduling to reach a state where it is continually
inserting as many or more new traces as it is scheduling during a given
step? Fortunately, the answer is no; trace scheduling is guaranteed to con-
verge. However, in the worst case, that convergence may result in a very
large amount of inserted fixup code. The following example from Ellis’
dissertation [9] illustrates the worst case:

Trace scheduling can move branches above blocks as well as operations,
so that one possible schedule that could result from this trace is the
branches scheduled in inverse order:

Cn
An
Cn-1
An-1
...
C1
A1

C1 B1

A1

C2 B2

A2

Cn Bn

An

Instruction Scheduling

Chapter Draft of February 8, 2001 593

Such a scheduling would require the following fixup code. Every offtrace
edge requires a duplicate of all the other blocks except the one control-
ling the edge.

Cn A1 C2 A2C1 Cn-1 An-1 Bn

A1 C2 A2C1 Cn-2 An-2 Bn-1

An

Cn-1

An-1 Cn

An

A1 B2C1

C3

A3

C4

A4

Cn

An

C2

C1

A2

A1

B1

Scheduling

594 ADVANCED COMPILING FOR HIGH PERFORMANCE

The total number of operations has increased to roughly O(nn!) which is
roughly O(nen). While such extreme cases have not been seen in practical
implementations of trace scheduling, it is certainly easy to construct rea-
sonable test cases similar to the one above. Given that trace scheduling
handles loops by unrolling them, a simple inner loop that contains only a
conditional could meet the pattern shown above, if the loop is unrolled
enough times.

One of the key pieces of information conveyed by looping structures in
programming languages is the indication that the body of the loop will be
executed many times. Dependence analysis and vectorization both
exploit that fact by focusing on the iterative nature of the body, and
attempting to analyze and schedule the body in terms of loop iterations.
One of the drawbacks of trace scheduling is that it is unable to treat loops
in this manner; instead it converts them into straightline code. Later sec-
tions will introduce scheduling methods that focus on the iterative nature
of loops; however, before doing so, it is worthwhile to introduce the key
issues associated with straight-line scheduling.

10.2.4.1 Issues in Straight-line Scheduling
From the discussion presented so far, instruction scheduling has appeared
no more complicated than project management—build a PERT chart and
topologically sort. In fact, most of the sophisticated analysis required for
instruction scheduling has been hidden as detail underneath the funda-
mental algorithms. This section exposes that detail in more depth.

One key machine resource that has been ignored so far in the discussion
of instruction scheduling has been registers. To this point, each algorithm
presented has assumed that registers had already been allocated before
instruction scheduling had been invoked. While this simplifies instruction
scheduling greatly by restricting one set of resources, it also restricts the
amount of parallelism that results. Once a variable has been confined to a
particular register, artificial dependences can easily arise due to other
unrelated variables being allocated to the same register. These depen-
dences, in turn, may prevent two instructions from being executed con-
currently when in fact there is nothing in the program proper forcing
sequentiality. The relative ordering of register allocation and instruction
scheduling is a question debated among many computer scientists.

A second effect that results from register allocation is a disguising of the
real dependence analysis necessary for effective scheduling. When vari-
ables are reduced to registers, it is easy to assume that dependence graphs
are easy to construct, since registers are well-defined scalar quantities.

Instruction Scheduling

Chapter Draft of February 8, 2001 595

For registers proper, this is true; however, one of the things that this over-
looks is memory loads and stores. Loads from memory tend to be very
slow if the load misses cache, and most computations must wait for loads
of needed values to complete. As a result, scheduling memory loads as
early as possible is critical for an effective instruction ordering. Depen-
dence analysis is necessary in these cases, since loads cannot be moved
above stores to the same location. Without fairly sophisticated analysis,
almost no movement is possible among memory references, and the
result will be a poor scheduling.

10.2.5 Scheduling in Loops

10.2.5.1 Kernel Scheduling
As was mentioned earlier, one of the major drawbacks of straightline
scheduling and trace scheduling is the fact that their treatment of loops is
inelegant at best. Their general approach is to unroll loops, making the
body as large as possible, and then try to schedule that body as effectively
as possible. This approach ignores parallelism across loop iterations. An
alternative approach is to try to maximize the parallelism across loop iter-
ations, rather than focusing on straightline techniques. Given that loops
represent computations that are executed repeatedly, this approach
focuses more attention on the areas that are likely to be the hot spots in
execution time.

More specifically, a more direct scheduling of loops would focus on
scheduling loops in three parts:

1. a kernel, which includes the code that must be executed on every cycle
of the loop, once it has reached steady state;

2. a prologue, which includes the code that must be performed before
steady state can be reached and

3. an epilogue, which contains the code that must be executed to finish
the loop once the kernel can no longer be executed.

The goal in this case is to minimize the execution time required for the
kernel, since it represents the repeated portion of the loop. The prologue
and epilog portions merely set up execution of the kernel proper. Given
the focus on the kernel leads to the following definition.

Definition 10.1. The kernel scheduling problem seeks to find a
minimal-length kernel for a given loop.

Scheduling

596 ADVANCED COMPILING FOR HIGH PERFORMANCE

Does minimizing the kernel guarantee an optimal schedule for the loop?
For loops with large iteration counts, the answer is obviously yes. For
loops with small iteration counts (zero being the worst case because any
prologue code represents a slowdown), the answer is not clear. However,
since loops with small iteration counts probably do not represent a large
fraction of execution time, their scheduling usually is not significant. As a
result, the assumption throughout the rest of this chapter is that an opti-
mal kernel schedule represents an optimal loop schedule.

Definition 10.2. A kernel scheduling problem is a graph

G = (N,E, delay, type, cross)

where cross(n1,n2), defined for each edge in E is the number of
iterations crossed by the dependence relating n1 and n2.

Again, an edge exists between two nodes if a dependence exists between
the two, and cross simply represents the threshold (distance) of the
dependence. Thresholds of loop independent dependences are 0.

The goal of kernel scheduling is to focus on temporal movement of
instructions through loop iterations rather than focusing of spatial move-
ment within a single loop iteration. This means that critical instructions
whose results are needed early are moved to earlier loop iterations, so
that their results become available within the current iteration just as they
are needed. Similarly, instructions at the tail end of the critical path are
moved to future iterations so as to shorten completion of the current iter-
ation. In other words, the body of one loop iteration is pipelined across
multiple iterations, in order to take fullest advantage of available
resources within one iteration. This process, commonly known as soft-
ware pipelining, is more formally defined as follows.

Definition 10.3. A solution to the kernel scheduling problem is a
pair of tables (S,I), where the schedule S maps each instruction n
to a cycle within the kernel and the iteration I maps each instruc-
tion to an iteration offset from zero, such that:

S[n1]+delay(n1) ≤ S[n2]+(I[n2]–I[n1]+cross(n1,n2))Lk(S) (EQ 10.4)

for each edge (n1,n2) in E, where Lk(S) is the length of the kernel
for S.

(EQ 10.5)Lk S() max
n N∈

S n[]()=

Instruction Scheduling

Chapter Draft of February 8, 2001 597

This concept should become clearer with a simple example. Assume that
we are scheduling the following loop body:

ld r1,0
ld r2,400
fld fr1, c

l0 fld fr2,a(r1)
l1 fadd fr2,fr2,fr1
l2 fst fr2,b(r1)
l3 ai r1,r1,8
l4 comp r1,r2
l5 ble l0

Similarly, assume that there are three units in the machine: a load/store
unit, an integer unit and a floating-point unit. All loads have a delay of 2
cycles; stores have a delay of 1 cycle; and floating point addition has a
delay of 3 cycles. The integer unit handles all branch instructions with a
delay of 1 cycle on the branch taken side for “blt.” All other integer
instructions have a delay of 1 cycle. For the instructions in the loop, the
following is a legal schedule with three cycles in the kernel:

S[10] = 0; I[l0] = 0;
S[l1] = 2; I[l1] = 0;
S[l2] = 1; I[l2] = 1;
S[l3] = 0; I[l3] = 0;
S[l4] = 2; I[l4] = 0;
S[l5] = 2; I[l5] = 0;

This schedule, depicted graphically in Figure 10.3, specifies that on first
cycle of a given iteration, the floating load and the increment are per-
formed; the comparison is performed on the second; and the branch,
floating add, and floating store are performed on the third.

FIGURE 10.3 Example kernel schedule.

Load/Store Integer Floating PtUnit

Cycle 1

Cycle 2

Cycle 3

fld a(r1)

fst fr2,b-16(r1)

ai r1,r1,8

fadd fr2

comp r1,r2

ble

Scheduling

598 ADVANCED COMPILING FOR HIGH PERFORMANCE

Note that this schedule is illegal with the instructions as written in the
original program; it is necessary to change the instructions somewhat to
obtain correct results. For instance, the floating store is executed one iter-
ation ahead, after r1 has been incremented twice and after the next itera-
tion’s floating load has already overwritten the results. This means that
the store must be adjusted for r1, and that an extra floating point register
is needed hold the result of the floating point addition until the store is
ready to execute. Assuming fr3 is available for this purpose, we are left
with the following correct kernel:

k1 fld fr2,a(r1); ai r1,r1,8
k2 comp r1,r2
k3 fst fr3,b-16(r1); blek1; fadd fr3,fr2,fr1

Of course, this code is incorrect on the first iteration, since it assumes that
fr3 and r1 has been set by previous iterations. This means that one execu-
tion of the loop (minus the code that depends on a previous iteration hav-
ing completed) must be executed prior to entering the kernel, setting up
the appropriate initialization.

ld r1,0
ld r2,400
fld fr1, c

p1 fld fr2,a(r1); ai r1,r1,8
p2 comp r1,r2
p3 beq e1; fadd fr3,fr2,fr1

Finally, the results of the last iteration are never stored away. This
requires another few instructions of epilog:

e1 nop
e2 nop
e3 fst fr3,b-8(r1)

The schedule for the entire loop is given below. The length of the kernel
is 3 cycles, and given that the integer unit is busy on every cycle, no
shorter schedule is possible.

ld r1,0
ld r2,400
fld fr1, c

p1 fld fr2,a(r1); ai r1,r1,8
p2 comp r1,r2
p3 beq e1; fadd fr3,fr2,fr1
k1 fld fr2,a(r1); ai r1,r1,8
k2 comp r1,r2
k3 fst fr3,b-16(r1); blek1; fadd fr3,fr2,fr1
e1 nop

Instruction Scheduling

Chapter Draft of February 8, 2001 599

e2 nop
e3 fst fr3,b-8(r1); bltl0; fadd fr3,fr2, fr1

Instructions p1–p3 form the prologue, k1–k3 the kernel, and e1–e3 the
epilogue.

Definition 10.4. Let N be the loop upper bound. Then the sched-
ule length L(S) is given by

(EQ 10.6)

This definition leads us to the observations that for very large N, mini-
mizing the length of the kernel minimizes the length of the schedule.
Since N will usually be unknown at compile time and since loops with
small iteration counts usually have little effect on the overall execution
time regardless of how they are scheduled, it seems reasonable to assume
that N is large and thereby try to construct the shortest possible kernel.

10.2.5.2 A Kernel Scheduling Algorithm
Is there an optimal kernel scheduling algorithm? In order to answer that
question, it is necessary to establish a reasonable lower bound for how
well scheduling can do. In fact, we can derive two different lower bounds
based on different kinds of analysis.

Resource usage constraint. Assume that there is no recurrence
inside the loop. Let #t denote the number of instructions in each itera-
tion that must issue in a unit of type t. Then,

(EQ 10.7)

In other words, if you can only issue mt operations of type t on each
cycle, then you need at least cycles to issue n instructions. Thus
the kernel can be no shorter than the max over all operation types of these
lower bounds.

We can show that, for a loop with no recurrence and no control flow
changes, there exists a schedule S such that

. (EQ 10.8)

In other words, it is always possible in the absence of recurrences to find
a kernel schedule of optimal length. To establish this result, we construct

L S() N Lk S() max
n N∈

S n[] delay n() I n[] 1–()Lk S()+ +()+=

Lk S() max
t

#t
mt
-----≥

n mt⁄

Lk S() max
t

#t
mt
-----=

Scheduling

600 ADVANCED COMPILING FOR HIGH PERFORMANCE

an algorithm, shown in that finds the kernel schedule for the given length
L. Note that this algorithm expect L to satisfy the inequality in
Equation 10.7.

FIGURE 10.4 Find a minimum-length kernel in a loop with no dependence cycles.

procedure loop_schedule(G, L, S, I)

// G is the schedule graph for the loop body
// S and I define the resulting kernel is the resulting schedule
// L is the number of instructions into which the loop is scheduled
// — at least the minimum schedule length given by Equation 10.8;

topologically sort G;
for each instruction x in G in topological order do begin

earlyS := 0; earlyI := 0;
for each predecessor y of x in G do

thisS := S[y] + delay(y); thisI := I[y];
if thisS ≥ L then begin

thisS := mod(thisS,L); thisI := thisI + ;
end
if thisI > earlyI or thisS> earlyS then begin

earlyI := thisI; earlyS := thisS;
end

end
starting at cycle earlyS, find the first cycle c0

where the resource needed by x is available,
wrapping to the beginning of the kernel if necessary;

S[x] := c0;
if c0 < earlyS then I[x] := earlyI +1 else I[x] := earlyI;

end
end min_loop_schedule

The algorithm is essentially a list scheduler augmented with scoreboard-
ing to track the use of resources across loop iterations. As the scheduler
assigns each instruction an issue slot, it also marks the corresponding
resource on the scoreboard for the time it is busy. The one modification to
the scheduler occurs when it attempts to issue an instruction n at a time
that would fall after the end of the kernel of length specified by
Equation 10.8. Rather than doing that, the scheduler wraps to the begin-
ning and increases the value of I[n], thereby moving the instruction to a
later iteration. Since the schedule length is set by the most tightly con-

thisS L⁄

Instruction Scheduling

Chapter Draft of February 8, 2001 601

strained resource, all other instruction types will fit into this schedule
trivially. For the most tightly constrained resource, shifting instructions
into future iterations (possible because there are no recurrences) ensures
that we will eventually be able to find a an empty slot in the kernel into
which the instruction can be placed, because there are exactly as many
such slots as we need. There may well be an impact on registers, but the
assumption is that there are enough, so the kernel is guaranteed to fit in
the given length.

To illustrate this approach, consider scheduling the following somewhat
nonsensical sequence on a machine with three integer units and two load-
store units:

l0 ld a,x(i)
l1 ai a,a,1
l2 ai a,a,1
l3 ai a,a,1
l4 st a,x(i)

The theorem states that there exists a kernel schedule of length one—
three integer instructions divided by three integer units. A normal list
scheduler could not find such a schedule, since each instruction in this
sequence depends on the previous one, thereby requiring 5 cycles to com-
plete.

Scheduling the first instruction is simple, leading to the following
resource utilization.

Normal scheduling of the second instruction would push it past the end of
the schedule, so it instead gets wrapped around to the next iteration:

The process will repeat similarly for each of the remaining instructions,
leading to a final resource utilization of

Memory1 Integer 1 Integer 2 Integer 3 Memory 2

l0: S=0; I=0

Memory1 Integer 1 Integer 2 Integer 3 Memory 2

l0: S=0; I=0 l1: S=0; I=1

Memory1 Integer 1 Integer 2 Integer 3 Memory 2

l0: S=0; I=0 l1: S=0; I=1 l2: S=0; I=2 l3: S=0; I=3 l4: S=0; I=4

Scheduling

602 ADVANCED COMPILING FOR HIGH PERFORMANCE

This schedule is of length one; interestingly enough, on every cycle, each
unit is working on a different iteration of the loop. This fact means that
the sequence cannot be executed as originally written, since each unit
now needs a different register for its iteration. The final code would have
to be transformed into something similar to

l0 ld a,x(i)
l1 ai b,a,1
l2 ai c,b,1
l3 ai d,c,1
l4 st d,x(i)

This example illustrates the major problem with the result: it does not
address the question of whether there are enough machine registers. This
issue will be further discussed in Section 10.2.5.4.

The benefit of restricting recurrences from consideration in
Equation 10.8 was the guarantee that an instruction could always be
scheduled as soon as a resource was available. A recurrence can push that
across more iterations, lengthening the size of the minimal schedule, as
the following constraint demonstrates.

Cyclic data dependence constraint. Given a cycle of dependences
(n1, n2,...,nk) then

(EQ 10.9)

Hence,

(EQ 10.10)

where c ranges over all dependence cycles in the loop.

The quantity in the numerator of Equation 10.9 is the number of machine
cycles required to execute a single traversal of the recurrence, while the
denominator counts the number of loop iterations crossed by the recur-

Lk S()

delay ni()
i 1=

k

∑

cross ni ni 1+,()
i 1=

k

∑
---≥

Lk S() max
c

≥

delay ni()
i 1=

k

∑

cross ni ni 1+,()
i 1=

k

∑
---()

Instruction Scheduling

Chapter Draft of February 8, 2001 603

rence. Thus the right hand side of Equation 10.9 measures the number of
cycles per iteration required to compute the recurrence. Clearly, no cor-
rect kernel can have fewer cycles per iteration and compute a correct
value for the recurrence.

FIGURE 10.5 Algorithm for kernel scheduling.

procedure kernel_schedule(G, S, I)

// G is the schedule graph for the loop
// sched is the output schedule

use the all-pairs shortest path algorithm to find the cycle in the
schedule graph G with the greatest slope;

designate all cycles with this slope as critical cycles;
mark every instruction in the G that is on a critical cycle as a

critical instruction;

compute the lower bound LB for the loop as the maximum of the slope
of the critical recurrence given byEquation 10.10 and
the hardware constraint as given in Equation 10.7.

N := the number of instructions in the original loop body;
let G0 be G with all cycles broken by eliminating edges into the
earliest instruction in the cycle within the loop body;
failed := true;
for L := LB to N while failed do begin

// try to schedule the loop to length L
loop_schedule(G0, L, S, I);

// test to see if the schedule succeeded
allOK := true;
for each dependence cycle C while allOK do begin

for each instruction v that is a part of C while allOK do begin
if I[v] > 0 then allOK := false;
else if v is the last instruction in the cycle C and

v0 is the first instruction in the cycle and
mod(S[v] + delay(v), L) > S[v0]
then allOK = false;

end
end
if allOK then failed := false;

end
end kernel_schedule

Scheduling

604 ADVANCED COMPILING FOR HIGH PERFORMANCE

Definition 10.5. The quantity of the right hand side of
Equation 10.9 is called the slope of the recurrence.

These two constraints, specified by Equation 10.7 and Equation 10.10,
form the basis for a kernel scheduling algorithm for loops with recur-
rences, shown in Figure 10.5. The algorithm begins by computing the
minimum size for the kernel schedule using Equation 10.7 and
Equation 10.10. It then attempts to find a schedule of that length, using
the algorithm loop_schedule in Figure 10.4 on page 600. Since this algo-
rithm always finds a schedule in the kernel of length L so long as L satis-
fies the inequality in Equation 10.7, we must ask, what constitutes
failure? In this case, we fail to get a satisfactory schedule if the length of
any recurrence increases because this will increase the total number of
times the kernel must be iterated to complete the computation. This is
tested by seeing if any instruction in a recurrence slips an iteration or if a
schedule slip causes the last instruction in a recurrence to produce an out-
put too late for the first instruction in the next iteration of the recurrence.

If the algorithm fails to find a suitable schedule, it increments the mini-
mum length schedule for which it is searching and tries again, until it
finally succeeds. Note that it must eventually succeed because the loop
can always be scheduled into a kernel the length of the loop body. Even if
the algorithm succeeds, it may require more registers than the machine
has.

The effectiveness of the kernel scheduling algorithm in Figure 10.5 can
be improved by a slight modification to loop_schedule from Figure 10.4
similar to the improvement in the list scheduling algorithm discussed ear-
lier. When selecting the next instruction to be scheduled, if more than one
instruction is ready, the algorithm should select one that is on a critical
dependence cycle first or any recurrence second before scheduling an
instruction that is not part of any dependence cycle. This modification is
straightforward.

The algorithms in this section compute the kernel schedule for a loop, but
the prolog and epilog generation still remains. The next section describes
these details.

10.2.5.3 Prolog and Epilog Generation
In earlier, simple kernel scheduling examples, the key information
required to generate prolog and epilog code was the number of iterations
required to set up steady state computation. That same information is

Instruction Scheduling

Chapter Draft of February 8, 2001 605

necessary in these examples, and is known as the range of an iteration of
the schedule:

(EQ 10.11)

Thus defined, the range of a schedule is the number of iterations required
for all the instructions corresponding to a single iteration of the original
loop to issue.

Range provides the number of loop iterations that must be executed to
gear up the loop into steady state (priming the pipeline) as well as the
number of iterations required wind down the loop after steady state
(draining the pipeline). Getting a full kernel, with actual copies of each of
the instructions in steady state, requires instructions from range(S) differ-
ent iterations, including the one currently starting. Thus if r = range(S),
the first complete iteration to execute is the rth, making the length of the
prolog

(r – 1)Lk(S)

With this information, the prolog can be created by laying out r – 1 cop-
ies of the kernel, with any instruction n such that I[n] = i < r – 1, replaced
by a no-op in copies 1 through i. Without no-op insertion, the prolog can-
not be rescheduled effectively (it is guaranteed optimal), but when no-ops
are inserted, it may be possible to compress the prolog significantly. In
those cases, rescheduling the prolog with a list scheduling algorithm is
beneficial, and may reduce the length of the prolog

We can use a similar method to get a bound on the length of the epilog.
Once the last full iteration of the kernel is complete (this is the iteration
on which instructions on the last iteration of the original code begin to
issue) it can be completed in r – 1 iterations. However, this is not enough.
Unlike the prolog case, the epilog requires some extra time for the last
instructions to complete, to ensure that all hazards with code outside the
loop are accommodated. For instance, if the last instruction in a schedule
is a store, and stores take 5 cycles to complete, the epilog code must con-
tain an extra 5 no-ops to ensure the store has finished so that no following
loads retrieve an invalid value. The additional time needed for epilog
code is:

(EQ 10.12)

range S() max
n N∈

I n[]() 1+=

S()∆ max
n N∈

I n[] 1–()Lk S() S n[] delay n()+ +() rLk S()–()+
=

Scheduling

606 ADVANCED COMPILING FOR HIGH PERFORMANCE

where the superscript “+” denotes the positive part of the expression
defined in Chapter 3 to be equal to the quantity to which it applies if that
quantity is greater than zero and zero otherwise.

Thus the length of the epilogue has the following upper bound:

(r – 1)Lk(S) +∆(S)

As in the case of the prologue, the length of the epilogue can be reduced
by list scheduling.

Thus, to generate code for the epilogue, simply lay out r – 1 copies of the
kernel, replacing any instruction n such that I[n] = i < r – 1 with a no-op
in copies i +1 to r – 1.

10.2.5.4 Register Resources
So far, the discussion of software pipelining has noted the problem of
increased register requirements due to pipelining, but has deferred dis-
cussion of any solution to the problem. It would be nice to say that the
discussion was deferred so as to present a general software pipelining
algorithm that elegantly solves the problem. The truth is that there is no
overriding, elegant solution to the problem. When a pipelined schedule
requires more registers than a machine has available, either registers must
be spilled or the code must be rescheduled. A number of heuristic tech-
niques have been advanced for solving this problem, but no completely
satisfactory solution has yet been developed. Assuming register overflow
is relatively infrequent (which seems like a reasonable assumption)
inserting memory spills and rescheduling when there are too few regis-
ters for an optimal schedule seems reasonable.

Lack of registers is not the only problem faced by software pipelining,
however. Even when there are enough registers, there can be a name
clash between existing registers. Such clashes are caused by trying to use
the same register to hold two different values on different original itera-
tions whose live ranges overlap. However, as we saw in Chapter 8, nam-
ing problems of this sort can often be resolved by loop unrolling.

10.2.5.5 Control Flow
So far, software pipelining has been discussed only in terms of loops that
have no control flow. Such loops present regular, predictable execution
that can be scheduled with relative certainty of improving results. Control
flow complicates software pipelining in two ways:

Instruction Scheduling

Chapter Draft of February 8, 2001 607

1. Because there are different control flow paths of different schedule
lengths, it is no longer possible to assume that the same number of
cycles will be required on every iteration.

2. Instructions that execute conditionally under the guard of control flow
must be issued before control flow joins back together—instructions
from different iterations cannot be allowed to freely intermix. If a con-
ditional instruction is not issued before the join, some mechanism of
saving control flow decisions must be implemented, and these are nei-
ther easy nor efficient.

The result is that control flow is difficult to handle in software pipelining,
because the loop is less predictable and there is less room for moving
instructions. One alternative is to use trace scheduling on the loop body;
doing so is basically betting on the more likely control flow path.

A second approach is frequently used on machines with hardware sup-
port for predicated execution. If we employ if conversion as described in
Section 7.2, we can eliminate every forward branch by converting
instructions under branches to predicated form. To be most effective, the
algorithms from that section will need to be modified to minimize the
number of conditional values to be evaluated. However, such modifica-
tions are straightforward.

An alternative strategy for predicated hardware is to construct control
dependences as described in Section 7.3, schedule using the control
dependences, and then use the code generation algorithm in Figure 7.25
and Figure 7.26 to produce the final code, predicating every instruction
by the boolean variable produced through evaluation of the most immedi-
ate condition controlling it. This strategy is being pursued by at least one
group generating code for the Intel IA-64 architecture [8].

A final approach for incorporating control flow into software pipelining,
suggested by Lam [17], is to schedule control flow regions first, using a
non-pipelining approach, then treat those regions as black boxes when
pipelining. In other words, the control flow regions are assumed to be a
single macro-instruction that requires all resources for some number of
cycles. The instructions outside the control flow region can be scheduled
before or after the region using software pipelining. This strategy is illus-
trated in Figure 10.6.

Scheduling

608 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 10.6 Software pipelining in the presence of control flow.

Each of the paths in the control flow region is scheduled independently,
then the entire control flow region is reduced to a superinstruction, taking
all resources for a number of cycles equal to the length of the longest
path. Once this is completed, the preflow region, superinstruction and
postflow region are scheduled using standard software pipelining.

An improvement to this strategy is to refine the view of the superinstruc-
tion as having different delays for different outputs. That is, the superin-
struction is still issued as one instruction in a single output, but its outputs
become available at different times and it releases some resources prior to
the superinstruction completion. Doing this could permit some instruc-
tions in the postflow region to be scheduled into all paths of the control
flow region, shortening the length of the kernel.

A similar strategy can be used to shorten the preflow region. A depen-
dence with delay d between an instruction i1 in the preflow region and an
instruction i2 in the control flow region may not require that i1 issue d
cycles before the superinstruction. If i2 has been scheduled on the kth
cycle of the superinstruction, then i1 can be issued as few as d–k+1 cycles
before the superinstruction. If d–k+1 is negative, i1 can be overlapped
with the superinstruction if empty resources are available on both paths.

Control Flow Region

Preflow Region

Postflow Region

Vector Unit Scheduling

Chapter Draft of February 8, 2001 609

10.3 Vector Unit Scheduling

As a general rule, scheduling vector instructions is a much simpler task
than scheduling an instruction unit. First, a vector instruction by defini-
tion involves the execution of many scalar instructions, all of which are
pipelined as efficiently as possible through the hardware. As a result, just
issuing a vector instruction already represents a significant speedup and
efficient reordering. Secondly, a vector instruction generally takes so long
to execute that it is impossible to keep all other execution units busy. The
vector instruction is an umbrella whose cost hides all other instruction
costs.

Nevertheless, there is some room for instruction scheduling on most vec-
tor processors. Most vector processors support operation chaining in
hardware; on such processors a small amount of time spent reordering
instructions can yield a tremendous improvement in the execution time of
the program. Similarly, vector processors often operate as a memory-
mapped coprocessor. Such coprocessors can often be sped up by careful
scheduling of synchronization instructions.This section briefly discusses
some important aspects of these scheduling opportunities.

10.3.1 Chaining

Given the length of time that a typical vector operation takes to complete
plus the fact that vector units tend to have a number of separate execution
units, a common optimization available on many vector units is chaining.
Chaining is a hardware mechanism that recognizes when the output of
one vector operation serves as the input to a different vector operation. In
those cases, chaining hardware will cause the output of the first operation
to feed directly to the execution unit for the second operation, essentially
overlapping execution of the two instructions. To give a simple example:

vload t1,a
vload t2,b
vadd t3,t1,t2
vstore t3,c

This fragment loads two vectors from memory, sums them, and stores the
result to memory. The assumption is that there are two load pipes from
memory, a and b (as indicated in the load instructions), and that each
operates independently of the other. If each vector instruction is naively
assumed to take 64 cycles and if the two loads are assumed to initiate
simultaneously, a non-chained execution of this fragment will take 192
cycles: 64 to load the two vector registers; 64 to do the add; and 64 to do

Scheduling

610 ADVANCED COMPILING FOR HIGH PERFORMANCE

the store. A chained equivalent would take 66 cycles, almost 3 times as
fast. Chained execution would have the vector add start on cycle 1
(assuming that the first elements from the vector load arrived in one
cycle) and start the vector store on cycle 2 (assume the first add com-
pleted in one cycle). The loads, add, and store would all overlap execu-
tion in pipelined fashion.

Given that most vector units that implement chaining maintain a full
scoreboard covering the vector registers and operation units, the burden
of recognizing chaining opportunities generally falls upon the hardware
(much as the burden of recognizing superscalar opportunities falls upon
the hardware). However, some form of support is necessary from the
compiler as well. In the worst case, the compiler must set special bits in
instruction opcodes to notify the hardware that two operations are to be
chained. Generally, however, it is only necessary to move the operations
close enough together for the scoreboard to recognize the chaining
opportunity.

When proximity is all that is required, generating chaining opportunities
is simply a minor modification of instruction scheduling, upgraded with
the capability of recalling and recognizing patterns that satisfy chaining
constraints. Hazard detection at this point obviously requires full depen-
dence analysis, since vectors rather than scalars are involved.

It might appear on first glance that obtaining an optimal use of chaining
is trivial. In most practical cases, it is true that an optimal chaining tends
to fall out from simple instruction scheduling. This is not guaranteed,
however, as the following example illustrates:

1: vload a,x(i)
2: vload b,y(i)
3: vadd t1,a,b
4: vload c,z(i)
5: vmul t2,c,t1
6: vmul t3,a,b
7: vadd t4,c,t3

Assume that this code is executed on a vector unit with two load pipes,
one addition pipe and one multiplication pipe. As written, the first add
will chain with the loads, the first multiply will chain with the third load,
and the last add will chain with the last multiply. The overall computation
will require three full vector operations. This is pretty good, but it is pos-
sible to do better by rearranging the code:

Vector Unit Scheduling

Chapter Draft of February 8, 2001 611

vload a,x(i)
vload b,y(i)
vadd t1,a,b
vmul t3,a,b
vload c,z(i)
vmul t2,c,t1
vadd t4,c,t3

In this version, the number of full vector operations has been reduced to
two. The trick is to cluster any operations that rely on the same operation
as input.

The chaining problem can be solved by using a variant of the weighted
fusion algorithm introduced in Section 8.6.3. Ding and Kennedy [7] have
introduced a version of this algorithm that takes resource constraints into
account. This variant make it possible to determine at every fusion step
whether the fusion will create a group that requires too many resources.
In the case of fusion, we want to group all the vector instructions that can
be chained so long as we have enough resources to run the operations
simultaneously in chained mode. For example, on a machine that has two
load pipes, one store pipe, two addition units, and one multiplication unit,
we would not want to try to chain more than two loads, two additions,
one multiplication, and one store.

A useful property that is shared by the fusion algorithm in Section 8.6.3
and the constrained version is that after fusion, weights are recomputed
dynamically. This means that if an addition and multiplication are
selected for chaining, a second load that is input to both the addition and
multiplication will be given a higher weight after fusing those two
instructions.

Using this strategy, the algorithm goes as follows:

1. Construct a dependence graph for the straight-line code to which
chaining is to be applied.

2. Weight each edge with the length of the vector it represents. If this
cannot be determined use the full vector register length.

3. Apply the constrained weighted fusion algorithm to determine maxi-
mum fusion groups. At each step where the next fusion edge is
selected, if several edges are tied for the heaviest weight, select one
that is incident on the most recent fusion group, favoring the edge with
the source and sink that are earliest in the original order.

Scheduling

612 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 10.7 Dependence graph for chaining example.

FIGURE 10.8 Dependence graph after partial chaining.

vload a,x(i) vload b,y(i)

vadd t1,a,b

vmul t4,c,t3

vload c,z(i)

vmul t3,a,bvmul t2,c,t1

1 2

3
4

5 6

7

vload a,x(i)

vload b,y(i)

vadd t1,a,b

vmul t4,c,t3

vload c,z(i)

vmul t3,a,bvmul t2,c,t1

1,2,3

4

5 6

7

Double-weight edge

Vector Unit Scheduling

Chapter Draft of February 8, 2001 613

If we apply this algorithm to the example at the beginning of this section,
we begin by constructing the dependence graph shown in Figure 10.7, in
which all edges have equal weight. Then fusion begins.

Initially, the algorithm chooses to group instruction 1 and instruction 3. It
then groups instruction 2 with the first two to produce the graph in
Figure 10.8. Note that reweighting after fusion has doubled the weight of
the edge between the fusion group with statements 1, 2 and 3 and instruc-
tion 6, because that instruction takes two inputs from the same group.
Thus it will be chosen over instruction 5 to fuse next with the first group,
which fills out all the resources for that group. The other three instruc-
tions will then be fused into a second group to produce the desired result.

10.3.2 Co-processors

With many specialized applications, it is common to “attach” a processor
tailored to accelerate specific parts of the application code. For instance,
graphics co-processors exist for many personal computers to offload ren-
dering and other basic graphic computations from the main processor,
simultaneously accelerating its performance. Before floating point and
integer processors were integrated onto one chip, vector and floating
point co-processors that were attached to standard machines were com-
mon. Currently, FPGA technology makes it possible to dynamically cre-
ate co-processors specialized for key parts of any computation.

At one level, scheduling for co-processors is similar to scheduling for
VLIW or superscalar architectures. The co-processor is just another func-
tional unit which has a broader range of capabilities than the typical
adder or multiplier unit used in fine-grained machines. As a general rule,
the functions of the co-processor are well defined, and it is easy to know
which code should go onto the co-processor and which should stay on the
main processor—a graphics co-processor, for instance, is generally
expected to do graphics operations. However, there is one nuance that
complicates the scheduling of co-processors. Co-processors are com-
monly attached to the system bus, and main processors generally invoke
them via a “memory-mapped” interface. That is, the main processor sig-
nals the co-processor of work to be done by storing magic values to
magic memory locations; the co-processor reads these values off the sys-
tem bus to determine the work it is supposed to do. The co-processor has
access to main memory and values on the system bus, but the only inter-
nals it sees from the main processor are those the main processor sends it.

Scheduling

614 ADVANCED COMPILING FOR HIGH PERFORMANCE

Because memory caches are attached to the central processor, the co-pro-
cessor cannot see into them, and similarly, the caches do not usually
know of the existence of the co-processor. As a result, when a co-proces-
sor stores a computed value to memory, the updated value may not be
immediately reflected into the caches on the central processor. Likewise,
a store from the central processor may not immediately appear in main
memory, which can cause the co-processor to read an invalid value. One
way of fixing this problem is to provide a special set of memory synchro-
nization instructions that guarantee the memory is consistent with caches.
One such instruction generally stalls the central processor until all writes
it has issued have made it into main memory; another invalidates the
caches so that new values are read from memory. Not so obviously, the
scheme also requires an instruction to force a stall until reads are com-
plete on each processor, because a co-processor may issue a read before
the main processor issues a corresponding write, but the write gets
through first. All of these instructions can be expensive, so using a mini-
mal number of them is essential for fast execution.

Data dependence can be used to determine where wait instructions are
required. When the source of a data dependence is executed on one pro-
cessor and the sink is executed on the other, some form of memory syn-
chronization is needed in between. If the dependence is a true
dependence, then the main processor must ensure that all stores have
completed on the source processor before the sink processor reads mem-
ory; if the dependence is an antidependence, the main processor must
ensure that all reads have completed on the source processor before the
write is issued on the sink processor; if the dependence is an output
dependence, the central processor must ensure that the second store com-
pletes after the first. Since these waits are expensive, the compiler must
minimize the number of them that appear in the instruction stream. The
positioning of operations also important, since many architectures guar-
antee that stores will make their way to memory within a given number of
clocks. As a result, if the source and sink can be separated by enough
other instructions, the correctness of the memory accesses can be guaran-
teed without an intervening wait.

Instruction position is important for a second reason: it can reduce the
number of waits necessary. Consider the example in Figure 10.9. The first
dependence can be covered with a wait in region 1 or in region 2; the sec-
ond dependence can be covered with a wait in region 2 or in region 3. A
naive placement would result in waits in both region 1 and region 3; an
intelligent placement would result in a single wait in region 2, just before
the load of A(I).

Vector Unit Scheduling

Chapter Draft of February 8, 2001 615

FIGURE 10.9 Minimizing generated waits

Within a basic block, minimizing waits is simple and can be done in a
single pass. Starting at the beginning of the block, sources of edges are
noted as instructions are examined. When the target of an uncovered edge
is reached, a wait is inserted, and all edges whose sources have been seen
so far are marked as covered, since the wait will protect all those edges.
This algorithm is guaranteed to protect all edges within the basic block,
since all sources and targets will be seen, thereby causing all edges to be
covered.

It is not too difficult to see that this algorithm produces a minimal number
of waits. The proof, only outlined here, involves attempting to remove
one wait and rearrange the others to cover the exposed edges. Any motion
that covers the exposed edge will uncover another edge. While the mini-
mal number of waits produced is minimal, the placement is not unique,
and there are usually many solutions that produce the minimal number of
waits. For instance, a symmetric solution is possible by starting at the end
of the block and working upward, inserting waits at exposed sources as
they are encountered. The advantage of moving downward is that it gives
the greatest possible time between an offending memory access and its
wait, thereby decreasing the possibility that the wait will be needed in
architectures that guarantee a time limit on memory stores.

While a fairly simple algorithm will produce the minimal number of
waits in the absence of control flow, minimizing waits in the presence of
control flow is NP-complete. Thus a compiler must use a heuristic algo-
rithm to produce a good solution.

The issue of synchronization between processors over memory accesses
occurs in parallel processors as well as with co-processors—symmetric,
shared-memory multiprocessors are just a collection of equivalent co-
processors. Explicit scheduling for memory access is less of a concern to
the compiler-writer in those systems, however. Since hardware designers
recognize that such systems will support multiple processors (they do not

store A(I)
... region 1
store B(I)
... region 2
load coprocessor A(I)
... region 3
load coprocessor B(I)

Scheduling

616 ADVANCED COMPILING FOR HIGH PERFORMANCE

always know about co-processors), they generally build support into the
system bus to avoid many of these problems. Furthermore, barriers are
always present on entering and exiting parallel regions, providing clear
points where synchronization can be inserted. However, a number of
strategies have been proposed for minimizing the amount of synchroniza-
tion needed in parallel loops [2,18].

10.4 Chapter Summary

In this chapter we have examined two problems associated with schedul-
ing that can be attacked with the help of dependence.

1. Instruction scheduling on uniprocessors involves minimizing the num-
ber of cycles used by a VLIW or superscalar processor to perform a
given set of operations. It is typically performed by constructing a
dependence graph among the instructions and applying a scheduling
algorithm to the resulting graph. Three different approaches were pre-
sented in the chapter. List scheduling attempts to find the best schedule
for a single block of straight-line code. Trace scheduling extends list
scheduling to code with control flow by scheduling single control flow
paths, called traces, one at a time and inserting code to fix the result-
ing interface problems. Kernel scheduling or software pipelining
attempts to minimize the running time of loops by minimizing the
number of cycles in the computational kernel that executes the body of
the loop once steady-state execution is achieved.

2. Vector instruction scheduling attempts to minimize the impact of
delays due to vector start-up time by overlapping vector instructions
with one another wherever possible. The chapter presents an algorithm
for vector chaining that uses a variant of weighted fusion to accom-
plish the maximum overlap.

All of these problems are NP-complete under fairly simple assumptions
so the algorithms presented are heuristics.

10.5 Case Studies

Since it was primarily a source-to-source transformation system, PFC did
not perform any kind of instruction scheduling. The Ardent Titan Com-
piler, on the other hand, produced code for a RISC processor and an asso-
ciated vector unit.

Case Studies

Chapter Draft of February 8, 2001 617

One of the major challenges for the original Titan architecture was float-
ing point execution, both scalar and vector. Because the floating point
unit on the Titan 2000 was an asynchronous, memory-mapped co-proces-
sor, it faced exactly the challenges listed in Section 10.3.2. The compiler
was responsible for inserting wait instructions to synchronize memory
access between the floating point unit and scalar unit for both vector and
scalar floating point instructions. The compiler also had to synchronize
memory access between loads and stores within the floating point unit
proper. The algorithms used to insert the waits are basically the ones
described in this chapter.

The original choice to do scalar floating point operations inside the vector
unit was not an easy decision, and was dictated by a number of consider-
ations, most of which involved the hardware design. At the time the
design decision was made, the belief was synchronization between the
floating point unit and the scalar unit would be an issue only with vector
instructions, since the belief was that data accessed as floating would not
be accessed as integers. Memory synchronization involving scalar float-
ing point loads and stores outside of loops were believed to be infrequent
enough to not be an issue.

The decision to do all floating point operations in the co-processor turned
out to be one that met with mixed success. Inside loops, where the control
and data flow were clearly understood by the compiler, the decision was a
clear win. Table 10.1 shows the results of the Titan compiler on the Liver-
more loops, which are a mixture of scalar and vector computations repre-
sentative of the workload at Livermore. The vector kernels are identified
in the next to last column—when vectorization was turned on, it achieved
dramatic speedups on the Titan. However, Table 10.1 is intended to show
that even the scalar kernels show a significant speedup on the Titan sys-
tem. The Titan compilers supported an option that invoked dependence
analysis in the support of scalar optimization but suppressed vector code
generation. The columns labelled “O1 Megaflops” and “O1 with Depen-
dence” show the achieved megaflops on each kernel for scalar optimiza-
tions with and without dependence. With dependence off, the principal
scalar optimizations were strength reduction and co-processor instruction
scheduling as described in Section 10.3.2. When dependence was not
available, wait minimization was restricted to loads and stores of scalars.
With dependence turned on, this optimization was extended to array vari-
ables. In addition, the compiler was able to use scalar replacement tech-
niques from Section 8.3 to hike most memory references into registers,
significantly reducing the number of waits required to synchronize the
memory access. As a result, both the integer and the floating point unit

Scheduling

618 ADVANCED COMPILING FOR HIGH PERFORMANCE

were able to run asynchronously at full speed, producing near vector
speeds on non-vectorizable kernels.

Kernel O1
Megaflops

O1 Plus
Dependence

Percent
Improved

Vectoriz-
able?

Key Opts

11 0.4514 1.3558 200.1 No SR,IS

12 0.4397 1.2560 185.6 Yes IS

5 0.7301 1.9633 168.9 No SR,IS

10 0.5136 1,3211 157.2 Yes IS

21 0.6787 1.6991 150.3 Yes STR,IS

6 0,6894 1,7203 149.5 Yes SR,IS

1 1.2589 2.1979 74.5 Yes IS

13 0.2954 0.4237 43.4 Yes STR,IS

23 1.8059 2.4598 36.2 No SR,IS

2 1.1035 1.4349 30.0 Yes IS

9 1.5206 1.7720 16.5 Yes IS

20 1.6663 1.8809 12.9 No SR,1S

7 2.3657 2,6227 10.9 Yes IS

19 1.6792 1.9030 7.4 No SR

14 0,4565 0.4775 4.6 Yes IS

15 0.7601 0.7908 4.0 Yes LI

18 1.8216 1.8262 0.3 Yes

3 1.9713 1.9684 -0.1 Yes

24 0,3825 0.3828 -0.1 Yes

17 0.9663 0.9644 -0.1 No

22 0.4924 0.4914 -0.2 Yes

4 1.8936 1.8873 -0.3 Yes

16 0.8522 0.8479 -0.5 No

8 2.0733 1.9089 -7.9 Yes

Mean 1.1195 1.4773 32.0

Geometric 0.9346 1.2959 38.7

Harmonic 0.7T24 1.0786 39.6

Median 0.9093 1.7097 88.0

TABLE 10.1 Scalar performance improvements on Titan due to dependence.

Case Studies

Chapter Draft of February 8, 2001 619

For the kernels with significant improvements using dependence, the last
column indicates which optimizations were critical to the improvement,
where “SR” denotes scalar replacement, “IS” denotes instruction sched-
uling, STR denotes strength reduction, and LI denotes loop invariance
recognition—an optimization that eliminates loops around statements
that perform the same computation, storing into the same memory loca-
tion, on each iteration (opportunities for use of this optimization occur
with surprising frequency).

Despite these results, the synchronization issue was a big one in the Titan
system. The belief that data was only accessed as either integer or float-
ing point was wrong—particularly within mathematical libraries, where
floating point numbers are commonly dissected into exponent and man-
tissa. Also, synchronization between scalar floating point accesses out-
side of loops was a significant issue in many codes. Without the
dependence analysis available for loops, the code generator basically
assumed that all floating point accesses could be dependent, and the
resulting wait insertion significantly degraded program performance.
Another issue not fully appreciated at the beginning was the time and
effort required to debug programs that were missing necessary waits. The
behavior of such programs was highly dependent on the machine load
and memory context, so typically they would run correctly nine times out
of ten. Getting the correct wait insertion eventually involved the develop-
ment of a number of tools to support the debugging effort of finding
missing waits in compiled programs.

Because of these issues and because of changes in hardware design, the
second generation Titan architecture, the Titan 3000, did scalar floating
point in the integer unit, thereby requiring waits only for synchronizing
vector instructions. The result was an extremely efficient compiler-hard-
ware system, as indicated by the Livermore loop results in Table 10.1.
Since waits were only necessary in vector loops where the compiler had
full knowledge of the control and data flow, the resulting performance
was good across the spectrum of loop kernels.

The Titan compiler implemented two other interesting optimizations for
scheduling instructions. One was necessitated specifically by the memory
banking structure inside the Titan. The Titan was heavily geared towards
floating point operations, and the load-store architecture was focused on
64 bit quantities, being banked at that size. Since integers were only 32
bits long, a contiguous vector integer load or store was a bad thing to do
on the Titan, because the memory bank was still busy with the first of a
pair of integers at the time the load or store for the second was issued. As

Scheduling

620 ADVANCED COMPILING FOR HIGH PERFORMANCE

a result, the hardware would stall until the bank had completed its opera-
tion, causing a contiguous vector integer load or store to run 3-5 times
slower than the equivalent double precision load or store. The compiler
addressed this issue by splitting vector loops involving contiguous inte-
ger operations into two loops involving stride 2 operations, where this
split was safe. The safety of this operation was easily determined based
on the dependences in the loop, and when it was permissible, resulted in a
factor of 3 speedup in vector integer code.

The second optimization, which has more general applicability, involved
reduction operations. On the Titan, and on most other architectures that
support vector reduction operations, the results of a reduction went into a
set of accumulators. Before the reduction was initiated, it was necessary
to initialize the accumulators to the proper values, and at the end of the
reduction, it was necessary to move the results of the reduction out of the
accumulators.

Experience with the Titan compilers establishes the value of dependence
as a vehicle for summarizing execution constraints and as an indicator of
the memory locations that will be most frequently referenced in the pro-
gram. The value of this analysis has long been recognized for vector and
parallel machines. The Titan also showed that these concepts are also
valuable for less radical machines—those with floating-point coproces-
sors, unsynchronized memory accesses, and deep memory hierarchies.
Given the prevalence of new microprocessor designs with similar fea-
tures—the Sony Playstation 2 and the Motorola PowerPC G4 to name
just two—it is clear that dependence will continue to be a useful tool into
the foreseeable future.

10.6 Historical Comments and References

List scheduling as an instruction scheduling mechanism has a long his-
tory in the computer science literature. It has been studied in the context
of microcode compaction, instruction scheduling, and task scheduling.
This work is effectively summarized in Fisher’s Ph.D. thesis [10], which
also presents the highest levels first (HLF) heuristic described in
Section 10.2.3. This heuristic was also discussed by Adam, Chandy, and
Dickson [1]. Basic block schedulers that use list scheduling have been
described by Touzeau [24], Gibbons and Muchnick[13], and Warren [25].
A proof that list scheduling is NP-complete appears in the book by Garey
and Johnson [12]. An excellent overview of scheduling strategies can be
found in the book by Muchnick [19].

Exercises

Chapter Draft of February 8, 2001 621

Trace scheduling was developed by Fisher [10,11]. It was first imple-
mented comercially in the Multiflow compiler, which was based on a
Ph.D. dissertation by Ellis [9], carried out under the supervision of Fisher
at Yale.

Kernel scheduling, also known as software pipelining [3] or cyclic sched-
uling, was originally developed by Rau and his colleagues [21,22], draw-
ing on earlier work by Davidson and others [4,5,6] on the design of
hardware pipelines. This original formulation included the concepts of
minimum iteration interval based on the lower bounds due to resource
constraints and data dependence cycles. These ideas were later refined by
Hsu [14,15], Lam [16,17], and Su and Wang[23]. Hsu and Lam indepen-
dently proved that the problem of scheduling with resource constraints on
loops with arbitrary recurrences is NP-complete [14,16].

Rau and Fisher [20] provide an excellent overview of instruction-level
parallelism and software approaches to scheduling.

10.7 Exercises

10–1 Construct an example where simple list scheduling, with the highest lev-
els first heuristic improvement of always favoring a pre-computed critical
path, produces a sub-optimal result.

10–2 Instruction scheduling is performed at the assembly-code level after code
generation. Why is it not a good idea to schedule at the source level and
then generate code?

10–3 Dependence analysis for array accesses needs to know the shape of array
references and their enclosing loop nests. Without such source-level
information, how can you determine data dependences among memory
loads and stores? What are the problems of inaccurate dependence analy-
sis?

10–4 Kernel scheduling needs to find the largest slope of all dependence cycles
of a loop. The algorithm in Figure 10.4 uses all-pairs shortest path algo-
rithm. How does it find the largest slope? Can you think of another
method to find the largest slope? Can you find an efficient way to find the
dependence cycle that has the smallest slope? What is the complexity of
these methods?

10–5 On modern processors with multiple levels of cache, the latency of a
memory reference varies depending on whether the data is in cache and
which level cache it is in. What are the problems if the varied memory

Scheduling

622 ADVANCED COMPILING FOR HIGH PERFORMANCE

latency is not taken into account in scheduling? How could a compiler
determine the likely latency for a memory reference?

10–6 Instruction scheduling works well when the latency for memory opera-
tions is small. Will it still work well if the latency is large, for example,
over 200 machine cycles for a memory load? What remedy do you sug-
gest?

10.8 Bibliography

[1] T. L. Adam, K. M. Chandy, and J. R. Dickson, A comparison of list schedules for paral-
lel processing systems. Communications of the ACM 17(12): 685–690, December 1974.

[2] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchronization in a paral-
lel programming tool. In Proceedings of the Second ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Seattle, March 1990.

[3] A. E. Charlesworth. An approach to scientific array processing: the architectural design
of the AP-120B/FPS-164 family. Computer 14(9):18–27, 1981.

[4] E. S. Davidson. Design and control of pipelined function generators. In Proceedings of
the 1971 International IEEE Conference on Systems, Networks, and Computers, 19–21,
Oaxtepec, Mexico, January 1971.

[5] E. S. Davidson. Scheduling for pipelined processors. In Proceedings of the 7th Hawaii
Conference on Systems Sciences, 58–60, 1974.

[6] E. S. Davidson, D. Landskov, B. D. Schriver, and P. W. Mallett. Some experiments in
local microcode compaction for horizontal machines. IEEE Transactions on Computers
C-30(7):460–477.

[7] C. Ding and K. Kennedy. Resource-Constrained Loop Fusion. Technical Report, Rice
University Computer Science Department, November 2000.

[8] C. Dulong, R. Krishnayer, D. Kulkarni, D. Lavery, W. Li, J. Ng, and D Sehr. An over-
view of the Intel IA-64 compiler. Intel Technology Journal, Q4, 1999.

[9] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD Thesis, Dept. of Computer
Science, Yale University, 1985.

[10] J. A. Fisher. The Optimization of Horizontal Microcode Within and Beyond Basic
Blocks: An Application of Processor Scheduling with Resources. PhD thesis, Depart-
ment of Computer Science, New York University, New York, 1979.

[11] J. A. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE
Transactions on Computers. C-30(7):478–490, July 1981.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., San Francisco, CA, 1979.

[13] P. A. Gibbons and S. S. Muchnick. Efficient instruction scheduling for a pipelined pro-
cessor. In Proceedings of the SIGPLAN ‘86 Symposium on Compiler Construction, Palo
Alto, CA, July 1986.

Bibliography

Chapter Draft of February 8, 2001 623

[14] P. Y. T. Hsu. Highly concurrent scalar processing. Ph.D. thesis, University of Illinois at
Urbana-Champaign, 1986.

[15] P. Y. T. Hsu and E. S. Davidson. Highly concurrent scalar processing. In Proceedings of
the Thirteenth Annual International Symposium on Computer Architecture, 386–395,
1986.

[16] M. Lam. A systolic array optimizing compiler. Ph.D. thesis, Carnegie Mellon Univer-
sity, Pittsburgh, PA, 1987.

[17] M. Lam. Software pipelining: An effective scheduling technique for VLIW machines. In
Proceedings of the SIGPLAN ’88 Conference on Programming Language Design and
Implementation, Atlanta, GA, June 1988.

[18] S. Midkiff and D. Padua. Compiler algorithms for synchronization. IEEE Transactions
on Computer Systems C-36(12):1485--1495, December 1987.

[19] S. S. Muchnick. Compiler Design and Implementation. Morgan Kaufmann, San Fran-
cisco, 1997.

[20] B. R. Rau and J. A. Fisher. Instruction-level parallel processing: history, overview and
perspective. The Journal of Supercomputing 7: 9–50, 1993.

[21] B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing. In Proceedings of the
Fourteenth Annual Workshop on Microprogramming, 183–198, October 1981.

[22] B. R. Rau, C. D. Glaeser, and R. L. Picard. Efficient code generation for horizontal
architectures. In Proceedings of the Ninth Annual International Symposium on Com-
puter Architecture, 131–139, April 1982.

[23] B. Su and J. Wang. GUPR*: a new global software pipelining algorithm. In Proceedings
of the 24th Annual International Symposium on Microarchitecture, 212–216, Albuquer-
que, NM, November 1991.

[24] R. F. Touzeau. A Fortran compiler for the FPS-164 scientific computer. In Proceedings
of the SIGPLAN ‘84 Symposium on Compiler Construction, Montreal, Quebec, June
1984.

[25] H. S. Warren. Instruction scheduling for the IBM RISC System/6000. IBM Journal of
Research and Development 34(1):85–92, January 1990.

Scheduling

624 ADVANCED COMPILING FOR HIGH PERFORMANCE

Introduction

Chapter Draft of February 8, 2001 625

CHAPTER 11 Interprocedural
Analysis and
Optimization

11.1 Introduction

As machines and languages have become more complicated, compiler
technology has necessarily become more sophisticated. With the advent
of vector and parallel computers, single-procedure analysis will no
longer be enough to produce high-quality parallelized code. In this chap-
ter we introduce some of the problems that can be solved with the help of
an interprocedural analysis and optimization system. We also present
methods for the solution of these problems, summarizing research on
interprocedural compilation over the past 15 years.

We begin with a definition of the terms interprocedural analysis and
interprocedural optimization. Interprocedural analysis refers to gathering
information about the entire program instead of a single procedure. This
is usually comparable to the sort of information that a single procedure

Interprocedural Analysis and Optimization

626 ADVANCED COMPILING FOR HIGH PERFORMANCE

data-flow analysis system would collect. Examples of interprocedural
analysis problems are determining the variables that are modified as side
effect of a procedure call and finding whether a given pair of variable
might be aliased to one another on entry to a given procedure.

An interprocedural optimization is a program transformation that
involves more than one procedure in a program. The most familiar exam-
ple is inlining, by which the body of a procedure is substituted at the
point of invocation. Although interprocedural optimizations typically
modify more than one subroutine, it is reasonable to view any optimiza-
tion that is based on interprocedural knowledge—gathered by an inter-
procedural analysis phase—as an interprocedural optimization. However,
for the purposes of this chapter we will adhere to the narrower view.

11.2 Interprocedural Analysis

To illustrate the need for interprocedural analysis methods we will intro-
duce several important problems through a series of examples.

11.2.1 Interprocedural Problems

Modification and Reference Side Effects
We begin with a simple vectorization problem. Suppose we have the fol-
lowing code fragment:

COMMON X, Y
...
DO 100 I = 1, N

S0 CALL S
50 X(I) = X(I) + Y(I)
100 CONTINUE

Without some sort of interprocedural optimization, it is impossible to
vectorize the call, but might it be possible to vectorize the assignment at
statement 50? Since both X and Y are in COMMON, we must be concerned
with side effects to these variables due to the call at S0. A statement can
be vectorized if it is legal to distribute the loop around the two statements
S0 and 50. In turn, this is possible if there is no cycle of dependences
involving both statements.We can be sure that there is no such depen-
dence cycle if the call meets the following criteria:

1. it neither uses nor modifies X and

2. it does not modify Y.

Interprocedural Analysis

Chapter Draft of February 8, 2001 627

The first condition ensures that there can be no dependence cycle involv-
ing both the call and statement 50 due to variable X. The second condition
rules out a dependence cycle due to Y.

To address this problem, we introduce the interprocedural MOD and REF
problems.

Definition 11.1. At a given call site s the modification side effect
set MOD(s) is the set of all variables that may be modified as a
side effect of the call at s. The reference side effect set REF(s) is
the set of all variables that may be referenced as a side effect of
the call at s.

With these definitions, we can now formally restate the condition under
which the assignment statement above can be vectorized, namely:

X∉REF(S0) and X∉MOD(S0) and Y∉MOD(S0).

Alias Analysis
Suppose we have the following subroutine:

In compiling this loop for any machine, it would be efficient to keep both
variables X and Y in registers throughout the duration of the loop, without
storing X until the loop is completed. This looks straightforward, but what
if subroutine S is invoked by “CALL S(A,Y,N)”? In this case Y is aliased
to X, so by not storing X on every iteration, we may be overlooking
required updates to the variable Y within the loop1.

To avoid problems like the compiler must determine when two variables
might be aliased to one another on entry to a given subroutine.

1. Knowledgable readers will comment that the Fortran standard defines this usage to
be illegal, saying that if two variables are aliases on entry to a loop then the program is
not standard-conforming if the subroutine stores into either. Although this is an easy
escape from the specific problem presented, it only works for Fortran, as C has no such
prohibition.

SUBROUTINE S(A,X,N)
REAL A(*), X, Y
COMMON Y
DO 100 I = 1, N

S0 X = X + Y*A(I)
100 CONTINUE

END

Interprocedural Analysis and Optimization

628 ADVANCED COMPILING FOR HIGH PERFORMANCE

Definition 11.2. For a procedure p and a formal parameter x
passed to p, the alias set ALIAS(s,x), is the set of variables that
may refer to the same location as x on entry to s.

In the example above, X and Y may be kept in registers without storing to
memory if Y∉ALIAS(S,X).

Call Graph Construction
The call graph of a program is a graph that models the calling relation-
ships between procedures in a program.

Definition 11.3. The call graph of a program is a graph G = (N,E)
where the vertices in N represent procedures in the program and
the edges in E represent possible calls.

It is common for each distinct call site in a program to be represented by
a distinct edge, in which case the call graph is actually a multigraph. We
will adopt this convention in the remainder of the chapter.

The accuracy of the call graph directly affects the precision of the data-
flow information produced. However, construction of a precise call graph
is in itself an interprocedural analysis problem. In a language in which
each call must be to a named constant procedure, the call graph is easy to
construct—you need only examine the body of each procedure p, enter-
ing for each call site s in p an edge (p,q) to the procedure q called at s.

However, a precise call graph is more difficult to construct in a language
that permits procedure variables. Even in Fortran, where there are no
assignable procedure variables, problems arise due to procedure parame-
ters—formal parameters which may be bound to procedure names at the
point of call. Consider the following example:

The question is: What procedure or procedures may be called at state-
ment S0? In other words, what values can P have at this call site? We
could attempt to answer this question by examining the actual parameters
at all the call sites for subroutine S, but any actual parameter could itself
be a procedure parameter. Thus we must propagate procedure constants
through the call graph before we can finish building it.

SUBROUTINE S(X,P)
S0 CALL P(X)

RETURN
END

Interprocedural Analysis

Chapter Draft of February 8, 2001 629

Definition 11.4. For a given procedure p and call site s within p,
the call set CALL(s) is the set of all procedures that may be
invoked at s.

Although it is stated as a property of call sites, CALL(s) is not a side-
effect problem. It is really asking what procedures can be passed to for-
mal parameters on entry to the procedure containing s. Because it
depends on the context in which the procedure containing s is invoked, it
resembles alias analysis more closely than any side effect problem.

Live and Use Analysis
An important data-flow problem that has been studied extensively in the
literature is the analysis of live variables. A variable x is said to be live at
a given point s in a program if there is a control-flow path from s to a use
of x that contains no definition of x prior to the use.

One important application of live analysis is in determining whether a
private variable in a parallel loop needs to be assigned to a global variable
at the end of the loop’s execution. Consider the following code fragment:

DO I = 1, N
T = X(I)*C
A(I) = T + B(I)
C(I) = T + D(I)

ENDDO

This loop can be parallelized by making T a local variable in the loop.
However, if T is used later in the program before being redefined, the par-
allelized program must assign the last value of the local version of T to
the global version of T. In other words, the code must be transformed as
follows:

PARALLEL DO I = 1, N
LOCAL t
t = X(I)*C
A(I) = t + B(I)
C(I) = t + D(I)
IF (I.EQ.N) T = t

ENDDO

Here we are using the typographic convention that variables introduced
in small letters are compiler-generated.

This code could be simplified if we could determine that variable T is not
live on exit from the original loop. In this case, the conditional at the end
of the loop could be eliminated to produce:

Interprocedural Analysis and Optimization

630 ADVANCED COMPILING FOR HIGH PERFORMANCE

PARALLEL DO I = 1, N
LOCAL t
t = X(I)*C
A(I) = t + B(I)
C(I) = t + D(I)

ENDDO

Although live analysis can itself be viewed as an interprocedural prob-
lem, it is conveniently dealt with in terms of another interprocedural
problem. Use analysis is the problem of determining whether there is an
upwards-exposed use of a variable on some path through a procedure
invoked at a particular call site s. An upwards exposed use is one that is
not preceded by a definition of the variable on some path to the use from
the point of invocation.

Definition 11.5. For a given call site s, which invokes procedure
p, the use side effect set USE(s) is the set of variables that have an
upwards-exposed use in p.

Given this definition, we can give a more formal specification of when a
variable is live. A variable x is live at a call site s if x∈USE(s) or if there is
a path through the procedure called at s that does not assign a new value
to x and x is live at some control-flow successor of s.

Kill Analysis
Problems like REF, MOD and USE ask questions about what might happen
on some path through a called subprocedure. It is often useful to ask
about what must happen on every path through a procedure. The follow-
ing example illustrates this:

L DO I = 1, N
S0 CALL INIT(T,I)

T = T + B(I)
A(I) = A(I) + T

ENDDO

There are two problems that might keep this loop from being correctly
parallelized. First, not knowing what the subroutine INIT does, we must
assume that it assigns variables in a way that creates a cycle of depen-
dences. One way to do this would be to use then assign a variable that is

Interprocedural Analysis

Chapter Draft of February 8, 2001 631

global to the program. For example, if INIT were defined as in the fol-
lowing code, parallelization would be precluded:

Here INIT creates a cycle of dependences involving the COMMON array
X, with respect to the loop in the calling program.

However, even if we can prove that the loop does not modify any global
variables or even any static local (i.e., “SAVE”) variables, the call presents
a more subtle problem. If this loop is to be parallelized, it must be possi-
ble to recognize that variable T can be made private to each iteration. This
is possible, for example, if subroutine INIT is simply there for the pur-
pose of initializing T, as in:

SUBROUTINE INIT(T,I)
REAL T
INTEGER I
COMMON X(100)
T = X(I)

END

Here T is initialized before being used on every iteration of the loop.
Thus it is not involved in any kind of carried dependence within the loop
and may be made private.

How can we discover this fact? Certainly, MOD can tell us that no global
variables are modified within the subroutine and we assume that a similar
analysis could be used to preclude the possibility that any static local
variable in INIT is used before being modified. Therefore, the key to
determining that the loop can be parallelized is to establish that variable T
is assigned before being used on every path through INIT.

The problem of discovering whether a variable is assigned on every path
through a called procedure is known as KILL, because an assignment is
said to “kill” a previous value of the variable.

Definition 11.6. For a given call site s, the kill side effect set
KILL(p) is the set of variables that are assigned on every path

SUBROUTINE INIT(T,I)
REAL T
INTEGER I
COMMON X(100)
T = X(I)
X(I+1) = T + X(1)

END

Interprocedural Analysis and Optimization

632 ADVANCED COMPILING FOR HIGH PERFORMANCE

through the procedure p invoked at s and procedures invoked
from within p.

Assuming that there are no global variables in MOD(p) and that p does not
use any static local variables before they are assigned, then the loop L can
be parallelized if variable T is killed on every path through the procedure
called at S0 and there is no path into that procedure on which a use
appears before any kill. This can be expressed formally as

T ∈ (KILL(S0) ∩ ¬USE(S0)).

Assuming that call site s is in a block by itself, it is possible to define
LIVE(s) within the procedure containing s as follows:

(EQ 11.1)

This generalizes the live computation to the interprocedural case if we
know, by some additional analysis, the set of variables that are live on
exit from the procedure.

Constant Propagation
Constant propagation, one of the most important problems in single-pro-
cedure data-flow analysis, is also an important interprocedural problem.
Consider the following program, which is abstracted from code in LIN-

PACK:

SUBROUTINE S(A,B,N,IS,I1)
REAL A(*), B(*)

L DO I = 0, N-1
S0 A(IS*I + I1) = A(IS*I + I1) + B(I+1)

ENDDO
END

If we wish to vectorize loop L in this subroutine, a problem arises
because the variable IS might take on the value 0. If that is so, there is an
output dependence. In that case statement S0 is actually a reduction and
cannot be vectorized using the usual techniques. Although we could test
for this situation at run time, we can avoid it entirely if we can determine
that, on every invocation of subroutine S in the program containing it, the
value of IS is always 1 (the most common case).1

1. Barring that, it would be vectorizable if it can be established that IS≠0 every time
the loop is entered. Analysis of predicates like this can also be handled by a variation of
constant propagation.

LIVE s() USE s() KILL s()¬ LIVE b()
b succ s()∈

∪∩()∪=

Interprocedural Analysis

Chapter Draft of February 8, 2001 633

Definition 11.7. Given a program and a procedure p within that
program, the set of interprocedural constants CONST(p) contains
the variables that have known constant values on every invocation
of p. For a variable x∈CONST(p), valin(x,p) is a function returning
the value of x on entry to p.

Although even the single-procedure constant propagation problem is
intractable, approximate solutions in single procedures have been shown
to be effective [73]. Similarly, approximate solutions of the interproce-
dural constant propagation problem have been shown to determine many
facts that are useful for optimization and parallelization [37,43].

11.2.2 Interprocedural Problem Classification

We will now explore various classifications of interprocedural data-flow
problems. These classifications are useful, because problems in the same
class can generally be solved by the same algorithmic approach.

May and Must Problems
We have already seen that there is a distinction between problems that
ask whether some event “may” happen or “must” happen. MOD, REF and
USE are may problems because they compute sets of variables that may be
modified, may be referenced or may be used before being defined,
respectively. On the other hand, KILL is a must problem because it com-
putes a set of variables that must be killed.

Although this distinction has been extensively discussed in the literature,
it is not a deep one because the converse of every may problem is a must
problem and vice versa. For example, ¬MOD(s) is the set of all variables
that are not in MOD(s). Therefore, the ¬MOD problem seeks to find those
variables that must not be modified as a side effect of a given call site.
Thus ¬MOD is a must problem. Similarly, ¬REF is also a must problem.
On the other hand, ¬KILL seeks to find for each call site s in the program
the set of variables that may not be modified on some path through the
procedure being invoked. Thus the converse of KILL, a must problem, is a
may problem. Since the solution to any set problem may be converted to
the solution of its converse by subtraction from the universal set (usually
bit vector complementation), which takes time linear in the number of
answer sets, there is no difference in complexity of a must problem and
its corresponding may problem.

Flow-Sensitive and Flow-Insensitive Problems
Banning introduced a seemingly related notion of flow-sensitive and
flow-insensitive problems. Intuitively, a flow-sensitive problem is one

Interprocedural Analysis and Optimization

634 ADVANCED COMPILING FOR HIGH PERFORMANCE

whose solution requires tracing individual control-flow paths through the
body of the subroutine being called. A flow-insensitive problem, on the
other hand can be solved by examination of the body of called subrou-
tines without regard to control flow. Thus, MOD and REF are flow-insensi-
tive problems because, assuming all code in a subroutine is reachable,
any modification of a variable x in the body of a subroutine p means that
x∈MOD(s) for any call site s that invokes p. On the other hand, KILL is a
flow-sensitive problem because, for a given variable x, its solution
requires checking every path through the procedure body to ensure that it
contains a definition of x.

Banning [6] presents a more formal definition of flow-sensitive and flow-
insensitive problems based on how solutions on subregions of a call
graph would be composed into solutions for a larger region. Consider the
two call graph regions depicted in Figure 11.1.

FIGURE 11.1 Call graph subregions.

Suppose we have MOD for each subregion A and B of regions R1 and R2.
Then we can compose these into solutions for the whole regions as fol-
lows:

MOD(R1) = MOD(A) ∪ MOD(B)

MOD(R2) = MOD(A) ∪ MOD(B)

This is because in either decomposition, a variable may be modified if it
may be modified in either subregion. There is a similar pair of equations
for REF:

REF(R1) = REF(A) ∪ REF(B)

REF(R2) = REF(A) ∪ REF(B)

A

B

B

A

Region R2Region R1

Interprocedural Analysis

Chapter Draft of February 8, 2001 635

Now let us carry out the same exercise for KILL. In the case of region R1,
a variable is killed if it is killed in the first region or if it is killed in the
second region:

KILL(R1) = KILL(A) ∪ KILL(B)

In the case of region R2, a variable must be killed in both regions, to be in
KILL(R2):

KILL(R2) = KILL(A) ∩ KILL(B)

The equations for USE are equally easy to develop:

USE(R1) = USE(A) ∪ (¬KILL(A) ∩ USE(B))

USE(R2) = USE(A) ∪ USE(B)

Only this second equation is the same as the corresponding equation for
MOD and REF.

In examining these equations, we notice that the equations for MOD and
REF use only set union as a connector, while the equations for KILL and
USE are more complicated, using other connectors and often other local
sets. This leads us to the following definition.

Definition 11.8. An interprocedural data-flow problem is flow-
insensitive if and only if, on the parameter-free version of the
problem, the value of the solution on both sequentially and alter-
natively composed regions (R1 and R2 of Figure 11.1) is deter-
mined by taking the union of the solutions for the subregions.

The literature on optimization sometimes refers to flow-insensitive analy-
sis of a flow-sensitive problem. Our interpretation of this term is that it
refers to approximating a flow-sensitive problem with a flow-insensitive
one. As an example, suppose you wished to approximate a solution to the
USE problem with the solution to one or more flow-insensitive problems.
Note that most optimizations will be performed when it is known that a
variable is not in USE(p) for a particular procedure p called from within
the procedure being optimized. Therefore, we wish any approximation
APUSE to be conservative in the sense that it contain all of USE:

USE(p) ⊆ APUSE(p) or ¬APUSE(p) ⊆ ¬USE(p)

If this is the case we will never depend on an untrue fact. One possible
approximation is given by:

Interprocedural Analysis and Optimization

636 ADVANCED COMPILING FOR HIGH PERFORMANCE

APUSE(p) = REF(p)

which is clearly a superset of USE(p) and can be computed by solving a
flow-insensitive problem. This might be useful because, as we shall see,
flow-insensitive problems are easier to solve than flow-sensitive ones.
However, we do not recommend the use of approximations like this one
because more precise approximations can be computed in reasonable
time using flow-sensitive analysis.

Side Effect Problems versus Propagation Problems
A final classification of interprocedural problems is by direction of data
flow. Some interprocedural problems ask what may or must happen as a
side effect of a procedure call that is about to be made. This class, which
we refer to as side-effect problems, includes MOD, REF, KILL, and USE.
Problems of this sort are analogous to the backward data-flow problems
of single-procedure analysis.

A second class of problems asks what conditions may or must hold upon
entry to the current procedure (which presumably we are interested in
optimizing). We call these propagation problems. They include ALIAS,

CALLS and CONST. The method we developed for classifying side-effect
problems as flow-sensitive or flow-insensitive will not work for propaga-
tion problems, because these problems look back up the call chain. How-
ever, it is generally agreed that the ALIAS problem for Fortran is flow-
insensitive since aliases can only be introduced through the use of refer-
ence formal parameters. Thus, flow through a subroutine to a call site is
unimportant because aliases can only be introduced at procedure invoca-
tion.

On the other hand, the constant propagation problem for Fortran is flow-
sensitive because, for a constant to propagate to a called procedure, the
variable must receive the same constant value on every path through
every procedure in the call chain. By the same argument, alias analysis
for languages like C with pointer assignment is also flow-sensitive.

problem type propagation side effect

flow-insensitive ALIAS, CALLS MOD, REF

flow-sensitive CONST KILL, USE

TABLE 11.1 Interprocedural problem classification

Interprocedural Analysis

Chapter Draft of February 8, 2001 637

11.2.2.1 A Problem Classification Table
The breakdown of problems in the two dimensions is summarized in
Table 11.1. The classification into flow-sensitive and flow-insensitive is
an important one because Banning established, by providing an algo-
rithm, that flow-insensitive problems can be solved in time that is polyno-
mial in the size of the call graph [6], while Myers showed that flow-
sensitive problems are intractable in the presence of aliasing and arbitrary
nesting [57].

11.2.3 Flow-Insensitive Side-Effect Analysis

We now turn to the solution of the flow-insensitive side-effect analysis
problems. Throughout this section, we use the modification side-effect
analysis (MOD) problem as our example. The reference side-effect analy-
sis (REF) problem can be solved using exactly the same approach.

Assumptions
We begin by establishing a set of assumptions that are representative
characteristics of Fortran and, in some cases, C. First, we assume that
there is no procedure nesting—that is, variables are subdivided into local
and global sets. Local variables are known only within their home proce-
dure and global variables are known in every procedure. Although this
might seem restrictive, the methods we will introduce here have easy
extensions to the case of general nesting.

A second assumption, already hinted at, is that all parameters are passed
by reference and that there are no pointer variables. The purpose of this
restriction is to simplify the aliasing patterns that the algorithms must
deal with. Under this restriction, aliases can only be introduced at call
sites. Although both Fortran 90 and C have pointer variables, this
assumption is valid for Fortran 77, which is the input language for most
automatic parallelization systems.

Even though Fortran 77 does not support recursion, the algorithms pre-
sented here work correctly in the presence of recursive procedure calls.
We do however make an assumption about the size of parameter lists to
procedures, namely that the maximum number of formal parameters to a
procedure does not grow with the size of the program. In other words,
programmers do not typically deal with the increasing complexity of a
large program by increasing the complexity of the procedure interfaces.
Thus we will assume that there exists a constant µ, such that the number
of formal parameters in any procedure p is less than or equal to µ.

Interprocedural Analysis and Optimization

638 ADVANCED COMPILING FOR HIGH PERFORMANCE

MOD Problem Formulation
The goal is to compute, for each call site s in the program, the set MOD(s)
that contains every variable that may be modified as a side effect of the
procedure call at s. Our first step is to note that we can simplify the prob-
lem by disregarding potential aliases. Specifically, we will compute the
set DMOD(s), the direct modification side-effect set, which contains all
variables visible at s that are directly modified as a side effect of the call.
DMOD(s) may be smaller than MOD(s) because it does not take into
account the fact that a variable x that is directly modified as a side effect
may have several possible aliases at the point of call. Each of these
aliases must be in the final MOD(s) if the solution is to be precise. How-
ever, once DMOD(s) has been computed it can be updated to MOD(s) with
the help of the ALIAS sets described in Section . Recall that for a given
procedure p, ALIAS(p,x) contains the set of all variables that may be
aliased to x on entry to p. Given these sets, we can update DMOD(s) to
MOD(s) according to the following formula:

(EQ 11.2)

where p is the procedure containing call site s. Construction of
ALIAS(p,x) will be discussed in Section 11.2.4.

We will compute DMOD(s) for each call site by first computing, for each
procedure p in the program, the set GMOD(p), called the general modifi-
cation side effect. GMOD(p) contains the set of global variables and for-
mal parameters of p that are modified, either directly or indirectly as a
result of the invocation of p. Once these sets are available, we can com-
pute DMOD(s) by the following formula:

, (EQ 11.3)

where means that at call site s actual parameter v is bound to for-
mal parameter w of the called procedure or v and w are references to the
same global variable. (In other words, in this formulation, a global vari-
able is viewed as a kind of parameter to a called procedure.) We can illus-
trate the definitions of DMOD and GMOD by an example. If we have a call
site

S0 CALL P(A,B,C)

where subroutine P is defined

SUBROUTINE P(I,J,K)

MOD s() DMOD s() ALIAS p x,()
x DMOD s()∈

∪∪=

DMOD s() v s invokes p, v
s

w→ and w GMOD p()∈{ }=

v
s

w→

Interprocedural Analysis

Chapter Draft of February 8, 2001 639

INTEGER X,Y,Z
X = X*Z
Y = Y*Z

END

then the GMOD(P) = {X,Y} and DMOD(S0) = {I,J}.

Equation 11.3 reduces the DMOD problem to computing, for every proce-
dure p in the program, the set GMOD(p) of variables that may be changed
as a side effect of invoking p. Generally, GMOD(p) will contain two types
of variables:

1. those that are explicitly modified in the body of procedure p and

2. those that are modified as a side effect of some procedure invoked in
the body of p.

Let IMOD(p), the immediate modification side-effect set, denote the set of
variables explicitly modified in p. Then the following formula holds:

(EQ 11.4)

Note that the union is over all call sites s within p.

Problem Decomposition
The system of data-flow equations in Equation 11.4 can be solved by the
iterative method of data-flow analysis. However, the solution may take a
long time because the system does not satisfy the conditions under which
the iterative method can be guaranteed to converge rapidly [58]. Further-
more it is not formulated in a way that permits the use of a fast elimina-
tion method [36]. Fast solution methods rely on being able to limit the
number of times that the analysis must traverse a loop in the problem
graph. For flow-insensitive interprocedural analysis, the problem graph is
the call graph, so convergence problems are limited to recursive regions.

A closer examination of the problem with recursion reveals that it is
related to reference formal parameters. Consider the following example:

SUBROUTINE P(F0,F1,F2,...,Fn)
INTEGER X,F0,F1,F2,...,Fn
...

S0 F0 = some expression
...

S1 CALL P(F1,F2,...,Fn,X)
...

END

GMOD p() IMOD p() z z
s

w→ and w GMOD q()∈{ }
s p q,()=
∪∪=

Interprocedural Analysis and Optimization

640 ADVANCED COMPILING FOR HIGH PERFORMANCE

In this example it is possible to see why, in the general case, an analysis
routine must iterate around the recursive cycle an unbounded number of
times. The question being asked is: How many of the parameters of sub-
routine P may be modified as a side effect of invoking P? Clearly, F0 can
be modified at statement S0, but we have to examine the recursive call at
S1 to discover that F1 is passed to F0, so it too can be modified. One more
time around the recursive loop reveals that F2 can also be modified. This
procedure continues until it is discovered that Fn—the last parameter—
may also be modified. If n is unbounded, the number of iterations over
the recursive cycle is unbounded as well.

These observations make it clear why we wished to assume an upper
bound on the number of parameters to any subroutine—it permits us to
establish a constant upper bound on the number of iterations required for
the process to converge. However, we can achieve a better time bound by
decomposing the problem further, treating side effects to reference
parameters separately from side effects to global variables. This is
achieved by introducing an extended version of the immediate modifica-
tion side effect set IMOD(p), called IMOD+(p), which will contain all of
IMOD(p) plus all those variables that may be modified as a result of side
effects to reference formal parameters of procedures invoked from within
p. In other words, a variable x is in IMOD+(p) if

1. x ∈ IMOD(p) or

2. and z ∈ GMOD(q), where s=(p,q).

If we can compute IMOD+(p) for every procedure p in the program, we
can solve for GMOD(p) using the following simple system of equations:

(EQ 11.5)

where LOCAL is the set of all local variables in the program, so its com-
plement is the set of all global variables. Since all side effects to refer-
ence formal parameters of p are reflected in IMOD+(p), we need only be
sure that all side effects to global variables are added by the union of the
GMOD sets for successors. If a global variable is modified as a side effect
of invoking p it must be modified directly in the text of the subroutine, in
which case it is in IMOD(p) ⊆ IMOD+(p), or it is passed as an actual
parameter to another subroutine where it is modified, in which case it is
in IMOD+(p) by definition, or it is modified as a global by some subrou-
tine called directly or indirectly from p, in which case it must be in
GMOD(q) for some successor q of p, which establishes Equation 11.5.

x
s

z→

GMOD p() IMOD
+ p() GMOD q() LOCAL¬∩

s p q,()=
∪∪=

Interprocedural Analysis

Chapter Draft of February 8, 2001 641

We have thus decomposed the problem into two parts:

1. the computation of IMOD+(p) for every procedure p in the program
and

2. the propagation of global modification according to Equation 11.5.

We will cover these calculations in the next two subsections.

Solving for IMOD+

We construct a special data structure, called the binding graph, as fol-
lows:

1. construct a vertex for each formal parameter f of every procedure in
the program

2. construct a directed edge from formal parameter f1 of procedure p to
formal parameter f2 of procedure q if f1 is bound to f2 at a call site
s=(p,q) in p.

A preliminary question we might ask is: How large is the binding graph?
If N is the number of vertices in the call graph and E is the number of
edges, then the number of vertices in the binding graph can be no more
than µN, where µ is the upper bound on the number of parameters to any
procedure in the program. This is true because there can be no more ver-
tices than the number of formal parameters in the entire program, which
is clearly bounded by µN. Similarly, each call graph edge can give rise to
no more than µ edges, since no more than one formal reference parameter
can appear in a single actual parameter position. Thus the total number of
edges in the binding graph is no larger than µE and the binding graph is
no more than a constant factor greater in size than the call graph; that is,
its size is O(N+E).

Let RMOD(p) be the set of formal parameters in procedure p that may be
modified in p, either directly or by assignment to a reference formal
parameter of q as a side effect of a call to q from within p. Clearly, the
following formula, which is a direct analog of Equation 11.4, holds:

(EQ 11.6)

Thus we need only construct RMOD(p) for every procedure in the pro-
gram, and then apply Equation 11.6, to construct IMOD+(p).

To construct RMOD(p), we will use a simple marking algorithm on the
binding graph, in which each vertex is annotated with a logical mark

IMOD
+ p() IMOD p() z z

s
w→ and w RMOD q()∈{ }

s p q,()=
∪∪=

Interprocedural Analysis and Optimization

642 ADVANCED COMPILING FOR HIGH PERFORMANCE

implementable with a single bit. Initially, all the marks are set false, then
the marks for formals of any procedure p that are in IMOD(p) are set true.
True bits are propagated around the graph using the rule that any formal
f1 that is bound to formal f2 with a true mark must also be marked true.
When no more propagation is possible, RMOD(p) is the set of formals of p
that are marked true. The algorithm is given in Figure 11.2.

FIGURE 11.2 Algorithm for constructing RMOD sets.

procedure computeRmod(P, NB, EB, IMOD, proc, RMOD)
// P is the collection of procedures in the program
// NB is the collection of formal parameters in the binding graph
// EB is the collection of edges in the binding graph
// mark[f] maps formal parameters to their mark values
// proc[f] maps a parameter to its procedure
// IMOD[p] maps a procedure to its immediate mod side effect set
// RMOD[p] is the collection of output sets
// worklist is a working set of formal parameters

L1 for each f∈NB do mark[f] := false;
worklist := ∅;

L2 for each f∈NB such that f∈IMOD[proc[f]] do begin
S1 mark[f] := true;

worklist := worklist ∪ {f};
end

L3 while worklist ≠≠≠≠ ∅ do begin
f := an arbitrary element in worklist;
worklist := worklist – {f};

L4 for each v such that (v,f) ∈ EB do begin
S2 if mark[v] = false then begin
S3 mark[v] := true;

worklist := worklist ∪ {v}
end

end
end

L5 for each p ∈ P do RMOD[p] := ∅;
L6 for each f∈NB do

if mark[f] then RMOD[proc[f]] := RMOD[proc[f]] ∪ {f};

end computeRmod

Interprocedural Analysis

Chapter Draft of February 8, 2001 643

Correctness. To show that Algorithm computeRmod in Figure 11.2 cor-
rectly computes the RMOD sets, we must show that on exit we have f∈R-

MOD[proc[f]] if and only if f may be modified as a side effect of invoking
the procedure p = proc[f].

If. Assume that f may be modified. Then either it is modified in the proce-
dure to which it is a parameter, in which case it is marked true in state-
ment S1, or there is a path in the binding graph to a formal parameter f0
which is in IMOD[proc[f0]]. Thus f0 is marked true and added to the
worklist in loop L1. Let f = fn, fn-1,..., f1, f0 be the sequence of parameters
in the binding graph that constitute the path from f to f0. Suppose f = fn is
never marked true. Then there must be a minimum k such that fk is never
marked true by the algorithm but fk-1 is marked true. But since fk-1 is put
on the worklist when it is marked true and it is taken off the worklist
eventually and every incoming edge to fk-1 is examined at that time, fk
must be marked true, a contradiction. Thus every parameter that may be
modified as a side effect of invoking proc[f] is put into RMOD[proc[f]].

Only if. Suppose f is a parameter that is marked true but cannot be modi-
fied. The algorithm only marks formal parameters true if they are modi-
fied within the body of their procedure or if there is a path in the binding
graph to another parameter which is modified in its procedure. Since the
binding graph has an edge only if the corresponding procedure call is
possible, it must be the case that the original parameter f may be modi-
fied.

Complexity. Algorithm computeRmod operates in worst case O(N+E)
steps, where N and E are the number of vertices and edges in the call
graph. This is because its running time is proportional to the size of the
binding graph. Let NB and EB be the number of vertices and edges,
respectively in the binding graph. From the discussion in Section on
page 641 we know that NB ≤ µN and EB ≤ µE

All that remains is to show that the algorithm runs in time proportional to
the size of the binding graph, we will have established the result. Clearly
loop L1 requires NB steps. Assuming that IMOD is implemented so that
membership testing can be done in constant time (i.e. via a bit vector)
loop L2 also runs in NB steps. Loop L5 takes time proportional to the
number of procedures in the program times the time to initialize the
RMOD sets. If these sets are implemented as bit vectors of length µ then
this takes O(NB) time. Loop L6 takes O(NB) assuming that adding to
RMOD takes constant time, as it would with a bit vector implementation.

Interprocedural Analysis and Optimization

644 ADVANCED COMPILING FOR HIGH PERFORMANCE

All that remains is to analyze the running time of loops L3 and L4. If we
assume that the worklist is implemented as a linked list so that taking an
arbitrary element from the front takes constant time, the body of the loop
will be executed no more than NB times, since a vertex is put onto the
worklist no more than once. Let us assume that, as in topological sort
algorithms, the edges are arranged as predecessor lists, so that all prede-
cessors of a particular vertex can be found in time proportional to the
number of predecessors. Then the body of the loop is executed once for
each predecessor of each vertex in the program, for a total of EB times.

Thus, we have established that the algorithm takes O(NB+EB)=O(N+E)
steps in the worst case.

To expand RMOD to IMOD+ requires that we visit each call site in the pro-
gram and each parameter at that call site to determine if it is bound to a
variable in RMOD(p) for the called procedure p. If the RMOD sets are rep-
resented as bit vectors this determination takes constant time, so the con-
version to IMOD+ takes O(N+E) time. This assumes that IMOD+ can be
initialized in O(N+E) time. If IMOD+(p) is represented as a bit vector, it
must have length proportional to the number V of global variables in the
program plus the number of formal parameters to p. Since the number of
such parameters is ≤µ, the time to initialize the bit vector set for each pro-
cedure is O(V+µ) = O(V). Since this is done once for each procedure the
initialization time is O(NV). Thus the computation of IMOD+ takes
O(NV+E) time, if we include the initializations.

Solving for GMOD
Once we have constructed IMOD+(p) for each procedure p in the program,
we must use it to compute GMOD(p) according to Equation 11.5, which
we repeat here:

This equation implies that a variable x is in GMOD(p) if it is in IMOD+(p)
or x is global and there is a nonempty path in the control-flow graph from
p to procedure q where x∈IMOD+(q). In other words we have reduced the
problem to a variant of the reachability problem in the call graph. It is
well known that reachability can be solved in time linear in the size of the
problem graph using a depth-first search algorithm based on Tarjan’s
algorithm for finding strongly-connected components of a directed graph.
Algorithm findGmod in Figure 11.3 accomplishes this.

GMOD p() IMOD
+ p() GMOD q() LOCAL¬∩

s p q,()=
∪∪=

Interprocedural Analysis

Chapter Draft of February 8, 2001 645

FIGURE 11.3 Algorithm for propagation of global modification side effects.

procedure findGmod(N, E, n, IMOD+, LOCAL)

integer dfn[n], lowlink[n], nexdfn, p, q, d,
IMOD+[n], GMOD[n], LOCAL;

integer stack Stack;

procedure search(p);
dfn[p] := nexdfn; nexdfn:= nexdfn + 1;
GMOD[p] := IMOD+[p]; lowlink[p] := dfn[p];
push p onto Stack;

for each q adjacent to p do begin
if dfn[q] = 0 then begin// tree edge

search(q);
lowlink[p] := min(lowlink[p], lowlink[q]);

end

if dfn[q] < dfn[p] and q∈Stack then
lowlink[p] := min(dfn[q], lowlink[q]);

else // apply equation
GMOD[p] := GMOD[p] ∪ (GMOD[q] ∩ ¬LOCAL);

end

// test for root of strong component
if lowlink[p] = dfn[p] then begin

// adjust GMOD sets for each member of the SCR
repeat

pop u from Stack;
GMOD[u] := GMOD[u] ∪ (GMOD[p] ∩ ¬LOCAL)

until u = p
end

end search;

// subroutine body
nexdfn := 1; dfn[*] := 0; Stack := ∅;
search(1); // by convention root = 1

end findGmod

Complexity. Since this is a direct adaptation of depth-first search it runs
in O(N+E) steps, where each step may involve a bit-vector operation of
length V, the number of variables in the program. Thus the algorithm
takes O((N+E)V) elementary steps in the worst case.

Interprocedural Analysis and Optimization

646 ADVANCED COMPILING FOR HIGH PERFORMANCE

Correctness. We now show that Algorithm findGmod in Figure 11.3 cor-
rectly computes the GMOD(p) for every procedure p in the program. The
algorithm is a direct adaptation of Tarjan’s algorithm for finding strongly-
connected components. However, as the algorithm backs up in reverse
invocation order, instead of collecting a set of strongly connected regions,
it updates the GMOD(p) computation at each node. When it reaches the
head of a strongly-connected component, it updates GMOD(u), for every u
in the component, to include the nonlocal part of the GMOD set for the
head. Thus, the global parts of GMOD(u) for every procedure u in the
SCR are identical, as they should be. The GMOD sets for nodes that are
not in loops are correct by virtue of the order of visit and the GMOD sets
for nodes that are in loops are correct because of the updates of all proce-
dures in the cycle.

Taken together the results from this section and the previous one establish
that the entire computation can be done in O((N+E)V) steps. Since DMOD
can be computed from GMOD in O(NV+E) time, the complete computa-
tion of DMOD also takes O((N+E)V) steps. This is the best possible time
bound as you must evaluate Equation 11.5 at least once at every node in
the call graph, which would require O((N+E)V) time.

FIGURE 11.4 Naive alias update of DMOD to produce MOD.

procedure findMod(N, E, n, IMOD+, LOCAL)

L1 for each call site s do begin
S1 MOD[s] := DMOD[s];
L2 for each x ∈ DMOD[s] do
L3 for each v ∈ ALIAS[p,x] do
S2 MOD[s] := MOD[s] ∪ {v};

end
end findMod

11.2.4 Flow-Insensitive Alias Analysis

Update of DMOD to MOD
Once the direct modification side effect sets have been computed, there
still remains the problem of factoring in aliasing. We can illustrate the
issue by showing an example with three procedures:

SUBROUTINE P
INTEGER A

S0 CALL S(A,A)
END

Interprocedural Analysis

Chapter Draft of February 8, 2001 647

SUBROUTINE S(X,Y)
INTEGER X,Y

S1 CALL Q(X)
END
SUBROUTINE Q(Z)

INTEGER Z
Z = 0

END

We are interested in computing the set MOD(S1). Our analysis to date
gives us GMOD(Q) = {Z}, which yields, after back translation to the call
site, DMOD(S1) = {X}. But to truly determine which variables might be
modified at S1 we must be aware that X could be aliased to Y at the point
of call because of call site S0, which passes the same variable to both
parameters—this aliasing information yields MOD(S1) = {X,Y}.

Recall the formula from Equation 11.2, which we repeat here.

A naive algorithm for implementing this conversion is shown in
Figure 11.4. Let us analyze the complexity of this loop nest. The loop L1
is executed O(E) times, where E is the number of edges in the call graph.
The assignment in statement S1 takes time proportional to the length of
the bit vector representation or O(V) steps, where V is the number of vari-
ables in the program. Since this is done O(E) times, the running time
attributable to this statement is O(EV). For each iteration of L1, L2 is exe-
cuted once for each variable in DMOD(s). Since this could be essentially
all the variables O(V), this loop is entered an aggregate of O(EV) times.
Finally, L3 is entered O(EV) times and, each time, it executes one itera-
tion for each element of ALIAS(p,x). If we assume that ALIAS(p,x) might
contain every variable in the program, the loop body could be executed
O(EV2) times. Finally, statement S2 takes constant time, if we use a bit
vector implementation. Thus the total running time for the update proce-
dure is O(EV2).

If we cannot improve the running time of alias analysis, it may dominate
the running time of the entire side effect analysis, making it impractical
for use on programs with nontrivial aliasing patterns. However, we can
achieve a significant improvement by carefully classifying aliasing pat-
terns that may arise. First, we note that, in a two-level naming hierarchy,
containing only global and local variables, two global variables can never
be aliases of one another. They can only be aliased to reference formal
parameters. Thus, for a global variable x, ALIAS(p,x) can only contain ref-

MOD s() DMOD s() ALIAS p x,()
x DMOD s()∈

∪∪=

Interprocedural Analysis and Optimization

648 ADVANCED COMPILING FOR HIGH PERFORMANCE

erence formal parameters of procedure p. This means that ALIAS(p,x) can
be no larger than µ entries, where µ is the maximum number of formal
parameters of any procedure in the program.

On the other hand, for a given formal parameter f of procedure p,
ALIAS(p,f) may contain any global or any other formal parameter. Thus,
it may be of size O(V).

These observations suggest that we break down the update of DMOD to
MOD into two cases: one for formal parameters and the other for global
variables. When considering the aliases of a particular variable x ∈
DMOD(s),

1. if x is a global variable, we will add a very small set (≤µ elements) to
MOD(s), but we may need to do this O(V) times, and

2. if x is a formal parameter of the procedure p containing s, we will add
up to O(V) elements to MOD(s), but we will only do this a small num-
ber of times (≤µ).

In either case, the amount of work is O(V), not O(V2). The entire algo-
rithm is given in Figure 11.5 below.

FIGURE 11.5 Fast combination of side-effect and alias information.

procedure updateMODwithAlias

for each call site s in the program do

t := ∅; // t is a temporary bit vector of length µ
for each global variable x ∈ DMOD(s) do // O(V) iterations

t := t ∪ {x}; // constant time
t := t ∪ ALIAS[p,x] // O(µ) time

end

MOD[s] := MOD[s] ∪ t; // O(V) time

for each formal parameter f ∈ DMOD[s] do begin // O(µ) iterations
MOD[s] := MOD[s] ∪ {f}; // constant time
MOD[s] := MOD[s] ∪ ALIAS(p,f); // O(V) time

end
end

end updateMODwithAlias

It should be clear from the previous discussion that the overall running
time of the combining strategy in Figure 11.5 is O(V) per call site for a

Interprocedural Analysis

Chapter Draft of February 8, 2001 649

total of O(EV) time. This is promising because, if we can compute the
ALIAS in O((N+E)V), the time bound for the entire MOD computation will
be O((N+E)V).

Computing Aliases
We now turn to the problem of computing the sets ALIAS(p,x) for each
procedure p and each variable x that is either global or a parameter of
some procedure. To do this as rapidly as possible, we will once again take
advantage of the observation that globals can only be aliases of formal
parameters. We first compute, for each formal parameter in the program,
an intermediate quantity A(f), which is defined to be the set of global vari-
ables that may be aliased to a formal parameter f through a sequence of
parameter bindings in the binding graph:

g→f0→f1→f2→...→fn-1→fn=f

To compute A(f), we will use a forward propagation on a variation of the
binding graph in which cycles have been reduced to single nodes. Note
that A(f) is an approximation to ALIAS(p,f), containing all the global vari-
ables in that set. The algorithm for computing A(f) for each formal
parameter in the program is given in Figure 11.6 below. In this algorithm,
the set A(f) will be represented by a bit vector of length O(V).

FIGURE 11.6 Algorithm for computing approximate alias sets for formal parameters.

procedure computeA(N, E, NB, EB, A)

for each formal parameter f∈NB do A[f] := ∅;
for each call site s∈N do begin

for each global g mapped to formal parameter f at s do
A[f] := A[f] ∪ {g};

end

replace every cycle in the binding graph with a single node,
reducing the graph to a directed, acyclic form;

for each f in the reduced graph in topological order do

;

for each cycle in the original binding graph do begin
let C be the reduced binding graph node for the cycle;
for each f ∈C do A[f] := A[C];

end
end computeA

A f[]:= A f[] A f 0[]
f 0 f,() EB∈

∪∪

Interprocedural Analysis and Optimization

650 ADVANCED COMPILING FOR HIGH PERFORMANCE

It is easy to see that the forward propagation phase of this algorithm
requires O(NV) steps in the worst case and updating the sets in a cycle
can also be done O(NV) steps.

Once the sets A(f) are available for every formal parameter in the pro-
gram, the alias sets for every global variable can be computed by a simple
inversion, as shown in Figure 11.7. This computation can be subdivided
into two components: initializing the alias sets and computing the inver-
sion. Recall that we can represent an alias set for a global variable within
a given procedure as a bit vector of length µ. Therefore the initializations
in step S0 of Figure 11.7 take no more than O(NVµ) = O(NV) time. How-
ever, since an update can be done in constant time, the total cost of the
updates in statement S1 is also O(NV).

FIGURE 11.7 Inversion to compute ALIAS(g) for each global variable g.

procedure computeAlias

for each procedure p do
for each global variable g do

S0 ALIAS[p,g] := ∅;

for each formal parameter f in the program do begin
let p be the procedure for parameter f;
for each g ∈Α[f] do

S1 ALIAS[p,g] := ALIAS[p,g] ∪ {f}
end

end computeAlias

All that remains is the computation of aliases for formal parameters. Note
that Α(f) is an approximation for ALIAS(p,f), containing all the global
aliases of f. To expand Α(f) to ALIAS(p,f), we need only add the formal
parameters that may be aliased to f. In the simple two-level language we
are considering, the only formals that may be aliased to f are other param-
eters of the same procedure. Thus there can be no more than µ(µ +1)/2
formal pairs in any given procedure.

To compute the formals that may be aliased to one another, the algorithm
computePairs in Figure 11.8 keeps track of the set FPAIRS(p) of pairs of
formal parameters that may be aliased to one another in a given proce-
dure p. After initializing all the FPAIRS sets to the empty set, we examine
each call site for alias introductions, occurring when the same variable is
passed to two different parameters. Whenever one is found, we add the

Interprocedural Analysis

Chapter Draft of February 8, 2001 651

formal parameter pair in the alias to a worklist. Then we iterate over the
worklist looking for possible alias propagations, which occur when two
parameters that may be aliased are both passed to another procedure. If
the resulting pair of formals in the called procedure is not already in the
FPAIRS set, the pair is added to the worklist. This procedure continues
until the worklist is empty.

Let us now analyze the running time of algorithm computePairs. Note
that there can be no more than µ(µ+1)/2 parameter pairs in any subrou-
tine. The initialization loop L1 takes O(N) time, since it is constant time
for each procedure. Since it must look at each call site, the loop at L2
takes O(E) time, but the operations are all constant-time, assuming we
use some sort of linked structure for both W and FPAIRS. Loop L3 is
entered once for each pair that is put on the worklist. Since there can be at
most µ(µ+1)/2 pairs for each call site, the total number of times L3 is
entered is less than or equal to µ(µ+1)N/2, so L3 is entered O(N) times.
Similarly, each call site in the program is examined no more than µ(µ+1)/
2 times, so loop L4 is entered O(E) times. Since the body of L4 takes con-
stant time, the entire process takes O(N+E) time.

FIGURE 11.8 Algorithm to compute formal parameter pairs that may be aliased.

procedure computePairs
W := ∅;

L1 for each procedure p in the program do FPAIRS[p] := ∅;
L2 for each alias introduction site (e.g., “CALL P(X,X)”) do

insert the resulting formal pair in FPAIRS[p] and
in the worklist W;

L3 while W ≠ ∅ do begom
remove 〈f1,f2〉 from W;

L4 for each call site s in procedure p passing both f1 and f2 do begin
let q be the procedure invoked at s;
if f1 and f2 are passed to f3 and f4 at s and

〈f3,f4〉 ∉ FPAIRS[q] then begin
FPAIRS[q] := FPAIRS[q] ∪ {〈f3,f4〉};
W := W ∪ {〈f3,f4〉};

end
end

end
end computePairs

Interprocedural Analysis and Optimization

652 ADVANCED COMPILING FOR HIGH PERFORMANCE

Thus, we have established that alias analysis can be done in O((N+E)V)
time, which means that the entire MOD solution can be completed in this
time.

11.2.5 Constant Propagation

Constant propagation is an important data-flow analysis problem that
improves the performance of a variety of optimizations [37,43]. Unfortu-
nately the problem is difficult even in a single procedure—obtaining a
precise solution has been shown unsolvable [59]. Even the usual single-
procedure approximate problem is flow-sensitive in the interprocedural
setting, hence intractable [57].

One important reason for the difficulty is that constants propagated into a
program region can make it possible to evaluate program expressions in
that region, yielding new constants on exit. An example illustrating the
interprocedural case is shown below.

SUBROUTINE PHASE(N)
INTEGER N,A,B
CALL INIT(A,B,N)
CALL PROCESS (A,B)

END

SUBROUTINE INIT(A,B,N)
INTEGER A,B,N
A = N+1
B = (N*A)/2

END

The purpose of subroutine INIT is to initialize the variables A and B.
Thus if N is a constant 10 on entry to procedure PHASE, A will be a con-
stant 11 and B will be a constant 55 on exit from INIT. Hence these con-
stant values will be available on entry to PROCESS. This section will
develop an approach to determine these facts.

A single-procedure constant propagation algorithm was presented in
Section 4.4.3 on page 181. This algorithm, which is shown in Figure 4.5
on page 182, uses an iterative process on the use-definition graph or the
static single assignment (SSA) form [33]. The iterative method is guaran-
teed to converge because it is based on a constant propagation lattice
shown in Figure 11.9. Furthermore, the algorithm is linear in the size of
the base graph upon which it operates, because an instruction can have its
output value lowered in the lattice at most twice and, hence, it is put on
the worklist at most twice.

Interprocedural Analysis

Chapter Draft of February 8, 2001 653

FIGURE 11.9 Constant propagation lattice.

Our strategy is to develop an interprocedural analog of the iterative single
procedure constant propagation. In fact, we hope to use the same algo-
rithm, but on a different use-definition graph that we call the interproce-
dural value propagation graph. In this graph, the vertices represent
“jump functions” that compute values out of a given procedure from
known values into a procedure. Jump functions are analogous to “transfer
functions” from intraprocedural and interprocedural interval analysis
[44].

Let s be a call site within procedure p and x a formal parameter of the
procedure q called at s. The jump function for x at s, denoted , deter-
mines the value of x in terms of the values of inputs to the procedure p
containing s. The support of is the set of inputs actually used in the
evaluation of . Jump functions can be computed in a preliminary phase
that examines the individual procedures of the program.

We now return to the construction of the interprocedural value graph.
Here are the steps:

1. construct a node for each forward jump function

2. if x∈support(), where t is a call site in the procedure called at s,
then construct an edge from to .

The iterative constant propagation algorithm can be applied to the result-
ing graph.

We now present a simple example of this process. Consider the program
shown in Figure 11.10. From this example we can easily derive the jump
functions:

 = {1}; = {2}

unknown

non-constant

••• -3 -2 -1 0 1 2 3 •••

Js
x

Js
x

Js
x

Js
x

Jt
y

Js
x

Jt
y

Jα
X

Jα
Y

Interprocedural Analysis and Optimization

654

ADVANCED COMPILING FOR HIGH PERFORMANCE

 = {

X+Y

}; = {

X–Y

}

The call graph and the resulting interprocedural value propagation graph
are shown in Figure 11.11.

FIGURE 11.10

Interprocedural constant propagation example.

PROGRAM MAIN
INTEGER A,B
A = 1
B = 2

α

CALL S(A,B)
END

SUBROUTINE S(X,Y)
INTEGER X,Y,Z,W
Z = X + Y
W = X – Y

β

CALL T(Z,W)
END

SUBROUTINE T(U,V)
PRINT U,V

END

FIGURE 11.11

Interprocedural value propagation graph example.

Jβ
U

Jβ
V

MAIN

S

T

α: A→X
 B→Y

β: Z→U
 W → V

J

α

X

J

β

 V
J

β

 U

J

α

Y

Call Graph Interprocedural
Value Propagation Graph

Interprocedural Analysis

Chapter Draft of February 8, 2001

655

It can easily be seen that the constant propagation algorithm applied to
the interprocedural value propagation graph in Figure 11.11 will quickly
converge to the constant assignments:

X=1; Y=2; U=3; V=-1

To estimate the total cost of the algorithm, recall that the cost of the itera-
tive constant propagation algorithm on which this is based is proportional
to the number of vertices and the number of edges in the graph, assuming
the jump function evaluations can be done in constant time. However, it
is unrealistic to expect every jump function to be evaluated in constant
time because, as we shall see, different strategies for constructing jump
functions produce functions of varying execution costs.

Thus, we must argue about the number of times that a jump function is
evaluated. A jump function

J

has

support

(

J

) inputs, each of which can be
lowered at most twice. Thus a jump function

J

 can be evaluated no more
than times. Let

cost

(

J

) denote the cost of executing
jump function

J

. For each jump function the total cost of execution will
be . Therefore the total cost of executing the
interprocedural constant propagation algorithm is

(EQ 11.7)

where

s

 ranges over the call sites in the program and

x

 ranges over the
input parameters to the subroutine.

Construction of Jump Functions

Jump functions can vary widely in precision and cost of the approxima-
tion. A jump function could involve full symbolic interpretation of the
procedure it represents. On the other end of the spectrum, it could evalu-
ate only the assignments that are on every path through the subroutine
and not contained in any loop. In this case, variables assigned on optional
control paths or in loops would receive the value (bottom) in the con-
stant lattice.

One major problem is how to construct jump functions for procedures
that have function calls within their bodies. Consider the example in
Figure 11.12. To build a jump function for

T

 at call site

γ

, we need to
know what action will be taken by subroutine

INIT

 invoked at call site

β

.
We address this problem by defining “return jump functions,” which
summarize the constants propagated out of a subprogram when it is
called with a particular set of inputs.

O support J()()

O support J() cost J()⋅()

O support Js
x

() cost Js
x

()⋅
x

∑
s

∑ 
 

⊥

Interprocedural Analysis and Optimization

656

ADVANCED COMPILING FOR HIGH PERFORMANCE

If

x

 is an output of the procedure

p

, the

return jump function

 deter-
mines the value of

x

 on return from an invocation of

p

 in terms of the val-
ues of input parameters to

p

. The

support

 of

 is the same as the support
of a forward jump function. In the simple case of the subroutine

INIT

shown in Figure 11.12 above, we have the following return jump func-
tion:

 = {

2*Y

}

and in the case of

SOLVE

, we have:

 = {

T*10

}

FIGURE 11.12

A complex interprocedural constant folding example.

We can use return jump functions in the normal jump functions for con-
stant propagation. For example, the jump function for call site

γ

 is as fol-
lows

Rp
x

Rp
x

RINIT
X

RSOLVE
C

PROGRAM MAIN
INTEGER A

α CALL PROCESS(15,A)
PRINT A

END

SUBROUTINE PROCESS(N,B)
INTEGER N,B,I

β CALL INIT(I,N)
γ CALL SOLVE(B,I)

RETURN
END

SUBROUTINE INIT(X,Y)
INTEGER X,Y
X = 2*Y
RETURN

END

SUBROUTINE SOLVE(C,T)
INTEGER C,T
C = T*10
RETURN

END

Jγ
T

 = {if I∈MOD(β) then else undefined-const}RINIT
X

N()

Interprocedural Analysis

Chapter Draft of February 8, 2001 657

where undefined-const is used to signify a special value given to unini-
tialized variables. To round out the example, we present the remainder of
the jump functions:

 and

One important jump function remains to be determined, namely the
return jump function for subroutine PROCESS, which is the key to deter-
mining whether a constant can be substituted for the variable A in the
print statement in the main program. This return jump function must
invoke the return jump function for both INIT and SOLVE but the call to
the return jump function for INIT will be automatic if we use the forward
jump function to determine the value of the input formal parameter T of
SOLVE. The resulting function is given below:

Using these jump functions we can see that the value of the variable A on
exit from the procedure PROCESS is given by

 = (2*(15))*10 = 300

The study of scientific Fortran programs by Grove and Torczon [37] sug-
gests that MOD should be computed prior to computing jump functions
and prior to performing a global constant propagation to initialize the
interprocedural propagation, because in any case where a variable is not
in MOD for a given call site, the return jump function is simply the iden-
tity. In these cases, a return jump function is not needed, which simplifies
the construction of other jump functions for the same variable whose
scope includes the given call site. This is the single most useful type of
return jump function. The same study also established that:

1. simple jump functions get almost all the constants in scientific For-
tran, and

2. return jump functions only infrequently deliver new constants but,
when they do, the payoff is high.

Jα
N

15{ }= Jβ
Y

N{ }=

RPROCESS
B

 =

{if C∈MOD(γ)

 then

 else undefined-const}

RSOLVE
C

Jγ
T

N()()

RPROCESS
B

Interprocedural Analysis and Optimization

658 ADVANCED COMPILING FOR HIGH PERFORMANCE

11.2.6 Kill Analysis

We can adapt some of the ideas used to solve the MOD and constant prop-
agation problems to deal with kill analysis as well. Recall that KILL(p) is
the set of all variables that must be modified on every path through proce-
dure p. For convenience in the algorithm formulation, we will compute
NKILL(p) = ¬KILL(p), the set of all variables that are not killed as a side
effect of calling procedure p. A method similar to the one presented here
can be used to compute USE(p) for every procedure p in the program.

Let us begin by considering how we would solve the single-procedure
NKILL problem. Suppose we have, for each extended basic block b and
each successor c of b, the set THRU(b,c) of all variables that are not killed
on some path through b to c. Then the following set of data-flow equa-
tions can be used to solve for NKILL(b):

(EQ 11.8)

If e is the exit node for the procedure then

NKILL(e) = Ω (EQ 11.9)

where Ω denotes the set of all variables. This set of equations can be
solved using the simple iterative method of data-flow analysis.

An analogous process can compute NKILL(p) for every procedure p in the
program. First we need a formula for computing NKILL(p) for a single
procedure. This is more complicated than the case for single blocks,
because it depends on procedure-specific control flow. To carry out the
computation, we will first construct the reduced control-flow graph
GTHRU for a procedure. GTHRU is a graph in which each vertex is a call
site, the entry node or the exit node for the procedure. Every every edge
(x,y) in GTHRU is annotated by the set THRU(x,y) of variables that are not
killed on some path from x to y not containing a call site. GTHRU is con-
structed by the algorithm in Figure 11.13.

It is easy to see that the algorithm in Figure 11.13 can be implemented in
time linear in the size of the control flow graph using a variant of topo-
logical sort.

Once we have the reduced control-flow graph, the algorithm shown in
Figure 11.14 can be used to compute NKILL(p) for a procedure p given
NKILL values for all procedures that can be called from within p.

NKILL b() THRU b c,() NKILL c()∩
c succ b()∈

∪=

Interprocedural Analysis

Chapter Draft of February 8, 2001 659

FIGURE 11.13 Algorithm for constructing the reduced control-flow graph.

A simple iterative data-flow analysis algorithm, employing the procedure
in Figure 11.14, can be used to compute NKILL, assuming that all vari-
ables in the program are global. Although this algorithm can take O(N2V)
time in the worst case, if the call graph is reducible, the algorithm will
require only O((N+E)d) bit-vector steps, where d is the maximum num-
ber of back edges in any noncircular path in the call graph [48]. The total
time required in this case is O((N+E)dV). In practice, iterative methods
are very fast.

procedure ComputReducedCFG(G)
remove all back edges from the control-flow graph G;
let b0 denote the procedure entry node;
mark b0 processed;
worklist := ∅;
for each s∈successors(b0) do worklist := worklist ∪ {(b0,s)};

while worklist ≠≠≠≠ ∅ do begin
take an arbitrary element (b,s) from the worklist,

such that all predecessors of s have already been processed
or merged into b;

if s is a call site then begin
for each t ∈successors(s) do

worklist := worklist ∪ {(s,t)};
mark s as processed;

end
else if s is the exit node then do nothing
else begin// s is normal node
merge s into b;

for each t ∈successors(s) do
if THRU[b,t] is undefined then

THRU[b,t] := THRU[b,s] ∩ THRU[s,t];
else

THRU[b,t] := THRU[b,t] ∪ (THRU[b,s] ∩ THRU[s,t])
end

end
end ComputReducedCFG

Interprocedural Analysis and Optimization

660 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 11.14 Computing NKILL(p).

The algorithm described so far can compute NKILL(p) rapidly only if
there are no reference formal parameters in the program. If there are ref-
erence formal parameters, the algorithm can be adapted to produce the
correct answers if the appropriate actual-to-formal mappings are
observed. However, it may take significantly longer to converge because
of the possibility of “shift-register effect” in which parameters are passed
to other parameters in a recursive loop. This is the same problem we
observed in dealing with the MOD problem in Section 11.2.3 on
page 637.

Fortunately, we can use the same general technique—use of a formal
parameter binding graph—to ameliorate this problem. We will construct
a binding graph and mark it as shown in Figure 11.15.

procedure ComputeNKILL(p)

for each b in GTHRU(p) in reverse topological order do begin
if b is the exit node then NKILL[b] := Ω;
else if b is a call site then begin

NKILL[b] := ∅;
for each successor s of b in GTHRU(p) do

NKILL[b] := NKILL[b] ∪ (NKILL[s] ∩ THRU[b,s]);
NKILL[b] := NKILL[b] ∩ NKILL[q],

where q is the procedure called at b;
end
else begin // b is the entry node for GTHRU(p)

NKILL[b] := ∅;
for each successor s of b in GTHRU(p) do

NKILL[b] := NKILL[b] ∪ (NKILL[s] ∩ THRU[b,s]);
NKILL[p] := NKILL[b];

end
end

end ComputeNKILL

Interprocedural Analysis

Chapter Draft of February 8, 2001 661

FIGURE 11.15 Construct and mark the binding graph for NKILL.

procedure BindingComputeNKILL(P)

initially, let the binding graph consist of a vertex
for each formal parameter in the program P;

worklist := ∅;

for each procedure p in the program do begin
let NKILL0[p] be the result of applying the algorithm in

Figure 11.14 on page 660 with NKILL[q] = Ω(q)
for each successor q of p,
where Ω(q) denotes the set of formal parameters of q;

NKILL[p] := NKILL0(p);
for each formal parameter f of p do begin

if f ∈ NKILL0[p] then
killed(f) := false;
for each formal parameter g to which f is passed

at a call site within p do
add an edge (f,g) to the binding graph;

end
else begin

killed(f) := true; worklist := worklist ∪ {f};
end

end
end

while worklist ≠ ∅ do begin
select an arbitrary element f ∈ worklist;
worklist := worklist – {f};
for each g such that there is an edge (g,f) in the binding graph

and killed(g) = false do begin
let q be the procedure of which g is a formal;
NKILL[q] := the result of applying the algorithm in

Figure 11.14 with the current NKILL sets
for its successors;

if g ∉ NKILL[q] then begin
killed(g) := true; worklist := worklist ∪ {g};

end
end

end
end BindingComputeNKILL

Interprocedural Analysis and Optimization

662 ADVANCED COMPILING FOR HIGH PERFORMANCE

This algorithm is simply a variation on the iterative algorithm, except that
we update NKILL(p) for a procedure only if we discover that the status of
one of its parameters might have changed to “killed” because a parameter
that it is passed at some call site has changed its status. Since each param-
eter can be added to the worklist only once and since the algorithm visits
each predecessor of a parameter taken from the worklist, the total number
of NKILL updates is limited to O(EB+NB) = O(E+N), where EB and NB
are the number of edges and vertices in the binding graph, respectively
and E and N are the number of edges and vertices in the call graph. The
number of updates can be further reduced by carefully selecting the order
of extraction of elements from the worklist.

We note that the kill sets computed by this process are not precise
because they do not take aliasing into account. Suppose we know that on
every visit to a procedure p the variables x1, x2,...,xn must all refer to the
same location, then a variable is in KILL(s) if one of the aliases is killed
on every path through the procedure called at s and any procedures
invoked from within it. In other words, we may be able to increase the
size of the KILL sets by taking aliasing into account. However, this will be
computationally expensive, because it requires computing the set of all
tuples of variables that refer to the same location on some invocation of
the procedure, which could take time that is exponential in the number of
variables used as parameters in the program.

11.2.7 Symbolic Analysis

In addition to the basic analysis problems discussed so far, successful
program parallelization requires that some more sophisticated interproce-
dural problems be solved. Two that are especially important are symbolic
analysis and array section analysis [47,43].

Although constant propagation provides valuable information about vari-
ables on entry to a procedure, it is usually not possible to establish that a
given variable is constant because, in most cases, it is not. However, it
may not be necessary to prove a variable constant to improve global pro-
gram analysis. It may be enough to establish bounds on its values or to
prove that its value can be expressed as a function of the values of other
variables at the same point in the program. Such symbolic relationships
can be used to prove facts, such as the absence of a dependence. For
example, consider the sample code below:

SUBROUTINE S(A,N,M)
REAL A(N+M)
INTEGER N, M
DO I = 1, N

Interprocedural Analysis

Chapter Draft of February 8, 2001 663

A(I+M) = A(I) + B
ENDDO

END

If we could prove that N=M on entry to S, we could show that the loop
within the subroutine carries no dependence.

The goal of interprocedural symbolic analysis is to prove facts about the
values of variables that may hold on entry to a given subroutine or on
return from a given call site. There are three types of symbolic analyses
that are often carried out:

1. symbolic expression analysis, which seeks to determine a symbolic
expression for the value of a variable in terms of the values of other
variables at the same point in the program;

2. predicate analysis, which seeks to establish a relationship between
values that a pair of variables may have at a given point in the program
and

3. range analysis, which seeks to establish a range of values with known
constant lower and upper bounds (and possibly strides) that a variable
may take on at a given point in the program.

Often, the results of these analyses can be substituted for one another. For
example, the fact that M=N in the example above, could be established by
either symbolic expression analysis or predicate analysis. The distinction
between the two is that expression analysis can produce values that
involve many other values, while predicate analysis typically relates only
pairs of variables. On the other hand, the analysis that produces symbolic
expressions can be more complicated than the analysis required for sim-
ple predicates.

Range analysis can be used effectively in program analysis to rule out
certain possibilities. For example, consider the subroutine:

SUBROUTINE S(A,N,K)
REAL A(0:N)
INTEGER N, K
DO I = 2, N

A(I) = A(I) + A(K)
ENDDO

END

If we can prove that K ∈ [0:1] on entry to the subroutine, we can establish
that the loop carries no dependence.

Interprocedural Analysis and Optimization

664 ADVANCED COMPILING FOR HIGH PERFORMANCE

Within a single procedure, symbolic expression analysis is typically per-
formed using some form of value numbering [5,61], which uniquely
numbers each expression so that expressions with equal value numbers at
a given point will have equal values at run time. Since global program
value numbering is likely to be complex, it is typically used only within a
procedure. Interprocedurally, a restricted set of relationships, such as
those represented by predicates involving only two variables, are propa-
gated across procedure boundaries [46].

It is easy to see that range analysis and symbolic expression analysis can
be handled by variations on the constant propagation algorithm from
Section 11.2.5. To use this algorithm, we will need to define three things:

1. the process by which new symbolic information is introduced in a pro-
gram;

2. jump functions which produce information at a call site from informa-
tion at the entry to a procedure containing that call site; and

3. return jump functions which determine the relationships on output
from a procedure given the relationships that hold on entry.

Let us consider how these three functions could be put together to com-
pute range information. Range information is typically introduced at con-
trol-flow points in the program. For example, in a loop headed by

DO I = 1,N

it is safe to assume that I ∈ [1:N]. Similarly, conditional statements
introduce partial ranges that can be composed to produce full ranges.

In all the symbolic analysis methods, jump functions compute values in
lattices that are significantly more complex than the simple constant
propagation lattice. For example, in the case of range analysis, we might
use a lattice in which the meet operation picks the larger upper and
smaller lower bound of the pair of ranges on the two joining control-flow
branches. A fragment from such a lattice is depicted in Figure 11.16. If
we bound the number of times that an upper bound can be increased
before being taken as ∞ and we similarly bound the number of times a
lower bound can be decreased, this lattice can be used anywhere a finite
descending chain lattice is required, such as in an iterative algorithm.

Interprocedural Analysis

Chapter Draft of February 8, 2001 665

FIGURE 11.16 Simple value lattice for range analysis.

Symbolic predicate analysis is more complicated than range analysis
because it examines the relationship between a pair of variables. For
example, it is useful to know whether two variables x and y are related by
equality or are offset from one another by a constant. This might be rep-
resented as

x – y = c

where c is a compile-time constant. A more general linear relationship
between variables can be characterized as:

c1x + c2y = c0

where c0, c1 and c2 are all constants. Note that this relationship is transi-
tive—if variables y and z are related by

d1y + d2z = d0

then we can find constants e0, e1 and e2 such that

e1x + e2 z = e0

In particular,

c1d1x – c2d2z = c0d1–c2d0

Thus, at any point in the program, we can find groups of variables that are
linearly related to one another. The goal of symbolic predicate analysis is
to propagate these sets throughout the program. This can also be done by
employing a variant of interprocedural constant propagation.

⊥

[-∞:60] [50:∞][1:100]

[-∞:100] [1:∞]

[-∞,∞]

Interprocedural Analysis and Optimization

666 ADVANCED COMPILING FOR HIGH PERFORMANCE

11.2.8 Array Section Analysis

The analysis presented so far does not help much with one of the most
important problems we need to solve if we are to automatically parallel-
ize programs—namely, how to analyze dependences in loops that contain
procedure calls. Consider the following code:

SUBROUTINE S
DIMENSION A(100,100)
...
DO I = 1,N

S1 CALL SOURCE(A,I) ! assigns to A
S2 CALL SINK(A,I) ! uses A

ENDDO
RETURN

END

If we wish to parallelize the loop in this subroutine, we must determine
whether any dependence is carried by the loop. Interprocedural informa-
tion of the sort described in previous sections is of little use, telling us
only that array A is modified by SOURCE and used by SINK. With no better
information than that, we must assume that there is an assignment in
SOURCE to a location that is used by SINK on a later iteration of the
loop—in other words, we must assume that the loop carries a dependence
and cannot be parallelized.

The situation would be different if we were able to show that the accesses
to A in both routines are confined to the Ith column, which is suggested
by the use of I as a parameter to both routines. Then we know that differ-
ent iterations of the loop deal with distinct portions of the array, so no
carried dependence is possible. We would like to refine interprocedural
analysis methods to be able to establish conditions like this, which means
that our analysis needs to be able to recognize subarrays of the whole
array.

Suppose that we are able to compute the set MA(I) of locations within the
array that may be modified within SOURCE on the Ith iteration of the loop
and the set UA(I) of locations that may be used in SINK on iteration I.
These quantities might by computed by array versions of MOD and USE
respectively. Then the loop carries true dependence if and only if there
exist indices I1 and I2, 1≤I1<I2≤N, such that

M A I1() U A I2()∩ ∅≠

Interprocedural Analysis

Chapter Draft of February 8, 2001 667

In order to reason about subarrays, we need a method of representing
them. The representation should be such that unions and intersections are
reasonably easy to represent as well.

It is straightforward to extend the standard data-flow algorithms, which
work on vectors of bits in which each bit can represent only two states
(e.g., may be modified or must be preserved), to vectors of more general
lattice elements. If we can find a lattice that represents subarrays accu-
rately enough, we can use this lattice in our interprocedural data-flow
analysis routines to determine side effects to subarrays.

Some important properties that a lattice representation should have are as
follows:

1. the representation should be as accurate as possible;

2. the meet operation, which is invoked whenever two control-flow paths
merge, must be efficient;

3. the dependence test, which usually involves intersection of region rep-
resentations should also be efficient;

4. it should be possible to handle recursion in the analysis framework,
which implies that the lattice should have the finite descending chain
property—that is, every descending chain in the lattice must reach a
lattice minimum after a finite number of steps; and

5. it should be possible to deal with the parameter transformations that
occur at call sites.

FIGURE 11.17 Simple regular section lattice.

Let us consider one possible lattice for subarrays, depicted in
Figure 11.17, that satisfies a number of these requirements. The elements
of this lattice are referred to as simple regular sections because they can
represent a very limited number of regular subarrays, namely points,

⊥

A(I,L) A(K,J)A(I,J)

A(I,*) A(*,J)

A(*,*)

Interprocedural Analysis and Optimization

668 ADVANCED COMPILING FOR HIGH PERFORMANCE

rows, columns and the entire matrix. Note that this lattice may extend to
an infinite size because we can use arbitrary variables and constants in
the subscripts. However, it has the finite descending chain property
because no element in the lattice can be “lowered” more than three times.

Evaluating this lattice representation, we find that meet, which represents
union in a case like the MOD calculation, has the following properties:

1. The depth of the lattice is k+1, where k is the number of subscript
positions in the array represented.

2. The cost of a meet operation, which means “union” in the MOD calcu-
lation, is O(k), because each subscript position must be examined and
compared for the two references to determine what the meet must be.

3. Intersection, which is essential to the dependence test, is a limited
form of unification, which can also be done in linear time in the num-
ber of subscripts.

To see the truth of this last claim, note that each subscript position in the
lattice is either a symbolic expression or a constant or “*”, which repre-
sents an entire row or column. Thus, if the two subscripts are symbolic
expressions then the result subscript should be the same expression if
they are equal and “*” otherwise. If one is an expression and the other is
“*”, the result subscript should be“*”.

One question remains: How accurate is this representation? It turns out
that in practice this representation is too simple because it does not allow
subarrays whose extents are bounded. Thus in an array A(100,100) the
best approximation to subarray A(1:10,1:10) is A(*,*). A much better
representation is bounded regular sections, in which upper and lower
bounds for each dimension are permitted. These can be thought of as any
section represented by Fortran 90 triplet notation in which the stride is 1.
Widely-used extensions include arbitrary stride triplet notation and trian-
gular subarrays.

Interprocedural algorithms like the MOD solution can be directly adapted
to deal with vectors of lattice elements, so long as the lattice has the finite
descending chain property. The component of the MOD algorithm on the
binding graph will converge because no formal parameter can be put on
the worklist more than k times, where k is the maximum depth of the lat-
tice. The reachability portion of the algorithm converges because, when a
strongly-connected region is found, the element-vector for each element
of the region is set to the minimum lattice element in the region.

Interprocedural Analysis

Chapter Draft of February 8, 2001 669

Note that in the four side-effect problems described so far—MOD, REF,
NKILL and USE—we always want to over-approximate the array section
involved because we will optimize only when we know a variable cannot
be in one of those sets for the call site in question. Consider the privatiza-
tion example on page 630. We will be able to make a variable P private to
a loop if we discover that, for the call site S0 at the beginning of the loop:

P ∈ (KILL(S0) ∩ ¬USE(S0)).

In other words, we optimize when

P ∉(NKILL(S0) ∪ USE(S0))

so we must overestimate rather than underestimate those sets to ensure
that inaccuracy results only in missed opportunities, not in incorrect
code.

11.2.9 Call Graph Construction

So far, we have assumed a precise call graph on which to solve interpro-
cedural data-flow analysis problems. At first blush, it seems easy to con-
struct such a graph—simply examine each procedure in the program and,
for each call site, construct an edge from the calling procedure to the
called procedure. This simple approach works well, so long as there are
no procedure parameters. On the other hand, if there are procedure
parameters, we can have code like this:

SUBROUTINE SUB1(X,Y,P)
INTEGER X, Y

S0 CALL P(X,Y)
RETURN

END

The problem here is determining what the called procedure might be at
call site S0. If there is only one invocation sequence for SUB1 it may be
simple to follow the call chain back to determine the procedure passed to
parameter P. However, we cannot assume that a single chain exists,
because procedure parameters were added to the language to ensure that
many different procedures could be passed to P, even in the same pro-
gram.

To solve this problem, we must be able to determine, for each procedure
parameter P, the names of procedures that may be passed to P, directly or
indirectly. However, we must be careful to avoid loss of precision in

Interprocedural Analysis and Optimization

670 ADVANCED COMPILING FOR HIGH PERFORMANCE

cases where more than one procedure parameter is passed. Consider the
following example:

SUBROUTINE SUB2(X,P,Q)
INTEGER X

S1 CALL P(X,Q)
RETURN

END

Suppose we have the following two calls:

CALL SUB2(X,P1,Q1)
CALL SUB2(X,P2,Q2)

where P1 and P2 simply invoke their procedure parameter on their integer
parameter and return:

SUBROUTINE P1(X,Q)
INTEGER X

S2 CALL Q(X)
RETURN

END

Then at call site S1 in subroutine SUB2, we can pass procedure Q1 to pro-
cedure P1 or we can pass procedure Q2 to procedure P2. We can never
pass Q1 to P2 or Q2 to P1. In other words, P1 can only call Q1 and P2 can
only call Q2 in this program. However a naive procedure-tracking scheme
that simply maintains lists of procedures that could be passed to a given
parameter might report edges from P1 to Q2 and from P2 to Q1 because
the list for possible procedures passed to parameter Q in P1 includes both
Q1 and Q2.

To overcome this problem, a precise call graph construction algorithm
must keep track of which pairs of procedure parameters may be simulta-
neously passed to the procedure formal parameters in S2. This suggests a
general algorithm for call graph construction.

Suppose we collect, for every procedure p that accepts procedure param-
eters, a set PROCPARMS(p) of tuples of procedure names that may simul-
taneously be passed to p, where the order of the procedure names in the
tuple corresponds to the order of the procedure parameters in the parame-
ter list of p. Then the iterative algorithm in Figure 11.18 can be used to
determine the correct set of procedure parameter tuples passed at each
call site.

Interprocedural Analysis

Chapter Draft of February 8, 2001 671

FIGURE 11.18 Algorithm for computing procedure parameter tuples.

procedure ComputeProcParms

for each procedure p in the program do PROCPARMS(p) := ∅;
W := ∅;
for each call site s in the program do begin

if the call site passes procedure names to all procedure
parameters of the called procedure do begin
let t = 〈N1,N2,...,Nk〉 be the tuple of procedure names passed

in order of the parameters to which they are passed;
W := W ∪ {〈t,p〉}, where p is the procedure called

end
end

while W ≠≠≠≠ ∅ do begin
let 〈t = 〈N1,N2,...,Nk〉,p〉 be an arbitrary element of W;
W := W – {〈t,p〉};
PROCPARMS[p] := PROCPARMS[p] ∪ {t};
let 〈P1,P2,...,Pk〉 be the set of procedure parameters to which

the elements of the tuple t = 〈N1,N2,...,Nk〉 are mapped;
for each call site s within p where Pi for some i, 1≤i≤k,

is passed as a procedure parameter do begin
let u=〈M1,M2,...,Mk〉 be the set of procedure names

passed to the procedure q called at s, where each Mi is
either the procedure name in the ith position or
 Nj if Pj is passed in the ith position;

if u∉PROCPARMS[q] then W := W ∪ {〈u,q〉};
end

end
end ComputeProcParms

Correctness. To show that procedure ComputeProcParms in
Figure 11.18 produces the correct result, we must show that the iteration
terminates and, for every procedure p in the program, it computes PROC-

PARMS(p) such that 〈N1,N2,...,Nk〉 ∈ PROCPARMS(p) if and only if there
exists a call chain that passes parameter names N1,N2,...,Nk, in that order,
to the corresponding procedure parameter positions for p.

Termination. If, for each procedure p, νp is the limit on the number of
parameters and if NP is the total number of procedure names passed as
parameters in the program, then the total number of possible tuples in the
program is

Interprocedural Analysis and Optimization

672 ADVANCED COMPILING FOR HIGH PERFORMANCE

 (EQ 11.10)

which is clearly finite. Since no tuple is put on the worklist more than
once and there can be only a finite number of tuples and one tuple is pro-
cessed on each iteration of the while-loop, the algorithm must terminate.

If. Suppose there exists a call chain p0,p1,...,pl such that p0 is the main
program and pl = p that passes N1,N2,...,Nk to the procedure parameters of
p and suppose that 〈N1,N2,...,Nk〉 ∉ PROCPARMS(p). At each pi in the
chain, there must be a tuple ti of procedure names. Assume without loss
of generality that p = pl is the first procedure in the chain for which the
input tuple is not in PROCPARMS. That is, ti ∈ PROCPARMS(pi) for all i
such that 0≤i<l. If l = 1, then the parameters N1,N2,...,Nk are names that
are explicitly passed to p in the main program (which can have no proce-
dure parameters). In this case, 〈N1,N2,...,Nk〉 is added to PROCPARMS(p)
by the initialization loop. As this would be a contradiction of our assump-
tion, it must be the case that l>1. Therefore tl–1 = 〈M1,M2,...,Mj〉 must be
taken from the worklist and put into PROCPARMS(pl–1) at some point in
the execution of the algorithm. At that point 〈N1,N2,...,Nk〉 must be put on
the worklist for the call site invoking p because each Ni passed to p must
either be an explicit procedure name or Mn, where n is the index of the
procedure parameter of pl–1 that is passed in the ith position to p.

Only if. Suppose 〈N1,N2,...,Nk〉 ∈ PROCPARMS(p). Either N1,N2,...,Nk are
all explicit procedure names, in which case they are passed directly to p
at some call site s (which would establish the result), or there is at least
one procedure parameter name in the list. In the latter case, 〈N1,N2,...,Nk〉
must have been added to PROCPARMS(p) when 〈〈N1,N2,...,Nk〉,p〉 was
taken from the worklist W. This must have been put on to the worklist
because there exists a procedure q that calls p with N1,N2,...,Nk as param-
eters when q is invoked with M1,M2,...,Mj and 〈M1,M2,...,Mj〉∈PROC-

PARMS(q). Since there can only be a finite number ≤Nµ of different tuples
of procedure names and since each tuple may be put on the worklist at
most once, we must eventually work back to a call with explicit proce-
dure names. Then the sequence of procedures visited during this process,
taken in reverse order, form the call chain. This establishes the result.

Complexity. We saw above that the number of tuples is given by the
summation in equation Equation 11.10. Let and let
NC be the number of procedures with at least one procedure parameter
and let NP be the number of procedure names in that are passed to a pro-

NP
νp

p
∑

νmax maxp νp()=

Interprocedural Optimization

Chapter Draft of February 8, 2001 673

cedure somewhere in the program. Then the running time can be approx-
imated as

 (EQ 11.11)

where N is the number of procedures in the program. In the special case
where there is no more than one procedure parameter to any procedure in
the program, the running time is O(N2). In typical Fortran usage, the run-
ning time will not be a significant factor, because the use of procedure
parameters is limited. However, for languages with more complex usage
patterns, there exist approximate algorithms that run in linear or near-lin-
ear time in the size of the call graph [40,39].

11.3 Interprocedural Optimization

11.3.1 Inline Substitution

The most familiar interprocedural optimization is inline substitution, by
which the text of a subroutine is substituted at the point of call, with for-
mal parameters replaced by actual parameters in the substituted text.

An example of inline substitution is presented in the example below:

PROGRAM MAIN
REAL A(100)
CALL INPUT(A,N)
DO I = 1,N

CALL PROCESS(A,I)
ENDDO
CALL REPORT(A,N)

END
SUBROUTINE PROCESS(X,K)

REAL X(*)
X(K) = X(K) + K
RETURN

END

If we inline subroutine PROCESS, substituting A and I for X and K respec-
tively, we get the following code:

PROGRAM MAIN
REAL A(100)
CALL INPUT(A,N)
DO I = 1,N

A(I) = A(I) + I

NP

νp

p
∑ O NCNP

νmax() O NN
νmax()≤ O N

νmax 1+
()= =

Interprocedural Analysis and Optimization

674 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO
CALL REPORT(A,N)

END

This code illustrates several well-known advantages of inline substitu-
tion:

1. procedure call overhead can be eliminated;

2. procedure body code can be tailored to the environment at the point of
call, for example by using the index variable I from a register rather
than memory; and

3. optimizations that would not be possible before substitution can be
carried out—in this case, the loop can be vectorized.

The advantages of inlining are so compelling that many have suggested it
as a generalized alternative to interprocedural analysis methods—if all
the procedures in a program are inlined, ordinary single-processor analy-
sis methods can be used to optimize the result.

However, overuse of inlining can cause a number of problems:

1. The massive substitution required can overwhelm the compilation sys-
tem, since procedures after substitution might grow to unmanageable
size, straining the capabilities of single-module compilers. In one
notable example, a program resulting from systematic inlining took 95
hours to compile [24].

2. The object code generated from an inlined program may run slower
because optimizing compilers do not handle codes resulting from sys-
tematic inlining well [24].

3. Any code that is changed inside an inlined subroutine will force the
recompilation of every procedure into which it has been substituted. In
the limit, any change could require recompilation of the entire pro-
gram.

4. Some subroutines are difficult to inline because of problems in substi-
tuting actual parameters for formals. This is illustrated by the ugly, but
legal, example below:

PROGRAM MAIN
REAL A(100, 100)
...
CALL S(A(26,2),N)
...

END
SUBROUTINE S(X,M)

REAL X(*)
DO I = 1, M

Interprocedural Optimization

Chapter Draft of February 8, 2001 675

X(I) = X(I) + M
ENDDO
RETURN

END

The difficulty in this example is caused by the treatment of the two-
dimensional actual parameter A as a single-dimensional array in subrou-
tine S. We could introduce an equivalence between array A in the main
program and a single-dimensional array, to produce the following code:

PROGRAM MAIN
REAL A(100, 100), a$(10000)
EQUIVALENCE (A(1,1),a$(1))
...
DO I = 1, N

a$(I+125) = a$(I+125) + N
ENDDO
...

END

The main problem with this approach is that it loses the information
about the independence of different rows and columns, which can be crit-
ical to dependence analysis. Furthermore, this fix would not be available
to us if the call to S were in another procedure which was passed A as a
parameter.

Instead of systematic inlining, we recommend a selective, goal-directed
inlining that uses global program analysis to determine when inlining
would be profitable [8].

11.3.2 Procedure Cloning

Often the main benefit of inlining is the ability to take advantage of some
specific optimizations that are possible at some but not every call site for
that procedure. Consider the following example:

PROCEDURE UPDATE(A,N,IS)
REAL A(N)
INTEGER N, IS
DO I = 1,N

A(I*IS–IS+1) = A(I*IS–IS+1) + PI
ENDDO

END

At first glance, this code looks vectorizable and it would be were it not
for the possibility that the step size IS=0, in which case the computation
would become a sum of N*PI into A(1).

Interprocedural Analysis and Optimization

676 ADVANCED COMPILING FOR HIGH PERFORMANCE

The obvious solution to this problem is to tailor the code to different spe-
cific versions based on the value of A. This could be done by a run-time
test, but if we know the value of IS at compile time in every calling con-
text, we can produce two versions of the program, one for the case IS≠0
and another for the case IS=0. The compiler would be able to replace the
call to UPDATE at the point of call with a call to one of the cloned proce-
dures whenever it could determine the value at compile time.

Cloning is a particularly useful way to enhance the impact of constant
propagation by treating parameters that are called with different constant
values as constants in different clones of the original version of the proce-
dure. This is the goal of cloning in the Convex Applications Compiler, the
only commercial compiler we know that performs this optimization [56].

11.3.3 Hybrid Optimizations

There are cases where transformations involving more than one proce-
dure can be used to gain some of the benefits of inlining without suffering
the disadvantages. One such hybrid optimization is loop embedding, in
which a loop is moved from one procedure to another [41].

Consider the original example for inlining in Section 11.3.1. If we inter-
changed the loop into subroutine PROCESS, we would get the following
code inside that routine, which would vectorize well:

SUBROUTINE PROCESS(X,N)
REAL X(*)
DO K = 1,N

X(K) = X(K) + K
ENDDO
RETURN

END

Note that the subroutine interface has changed to include the loop upper
bound as a parameter instead of the loop index.

Interprocedural optimizations like this have been found useful in a num-
ber of cases, although there is as yet limited evidence as to their general-
ity.

11.4 Managing Whole-Program Compilation

One of the problems presented by interprocedural compilation is the dif-
ficulty it causes for compilation management. In a conventional compila-

Managing Whole-Program Compilation

Chapter Draft of February 8, 2001 677

tion system, the object code for any single procedure is a function only of
the source code for that procedure. In an interprocedural compilation sys-
tem, the object code for a procedure may depend on the source code for
the entire program. This is a problem because it means that a change in
source code could force recompilation of every procedure. Users will be
unhappy if a large program needs to be completely recompiled after
every small change.

We might expect that the interprocedural effects of changes made during
the maintenance phase of a program, would be somewhat limited. Thus,
global program analysis methods that can examine the effects of interpro-
cedural information flow might be useful in reducing the amount of
recompilation.

We begin by subdividing the procedural compilation into two distinct
phases, one that depends on interprocedural information and one that
does not. The first of these phases, which we shall call local analysis,
includes many of the usual compilation tasks—lexical analysis, parsing,
semantic analysis. At the same time, it examines the procedure for input
to interprocedural analysis, determining the local sets used in each of the
interprocedural analysis algorithms, such as the IMOD sets in MOD analy-
sis. With this subdivision, the compilation process is structured as shown
in Figure 11.19.

FIGURE 11.19 Interprocedural compilation process.

Although this organization permits interprocedural compilation, it still
does not solve the recompilation problem. However, if intermediate rep-
resentations are saved, the local analysis phase will not need to be rein-
voked for any unchanged procedures.

Local
Analysis

Inter-

Analysis
Optimizationprocedural

Once for each
procedure

Once for each
procedure

Once for
program

Interprocedural Analysis and Optimization

678 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 11.20 Interprocedural compilation system.

To address the recompilation problems more directly, we could organize
our compilation system as shown in Figure 11.20. In this scheme, the job
of lexical analysis is performed by a separate system component, which
could reside in the module editor or in an importing tool. Information
about each source procedure is stored in an intermediate representation
that includes the parsed source. Programs are defined in this system by
specification of a program composition via a composition editor, which
can be viewed as a editor for lists of procedure names. Note that a pro-
gram composition could be as simple as an input file to the Unix utility
make. The program compiler is the system component responsible for the
compilation of the whole program. It reads all the local information for
procedures in the program and carries out the various interprocedural
analyses and optimizations required by the user. Once all interprocedural
information is available, the module compiler, which is just a sophisti-
cated optimization system, carries out the optimizing transformations on
each procedure. Note that by separating the local analysis from the opti-
mization, we have eliminated compilation-order dependencies between
the various procedures in the program.

This system, by itself, does not solve the recompilation problem. It must
be coupled with a feedback system from the individual module compila-
tions that indicate which interprocedural analysis facts have been relied

Module
Importer

Program
Compiler

Module
Compiler

Composition
Editor

IMOD list of procedures

MOD

Managing Whole-Program Compilation

Chapter Draft of February 8, 2001 679

upon by the module compiler. To illustrate this process, consider the
interprocedural recomputation of MOD sets, depicted in Figure 11.21.

FIGURE 11.21 Recompilation analysis.

We define the set MUSTNOTMOD(p,s) to contain all the variables that
must not be modified as a side effect of the procedure call at site s within
p if the code generated for procedure p is to remain correct. Thus if the
source code of procedure q called at s is modified so that a variable in
MUSTNOTMOD(p,s) is changed in q, then p must be recompiled. Think of
MUSTNOTMOD(p,s) as a recording of the actions of the optimizing mod-
ule compiler when it was last invoked on p. Whenever the optimizer used
the fact that a variable was not modified at call site s to perform some
optimization, it entered that variable into MUSTNOTMOD(p,s).

In focusing on MUSTNOTMOD, we are relying on the observation that an
optimizer will make program transformations based upon information
only when it is sure that an undesirable event that would invalidate the
optimization is not possible. Thus optimizations are based upon the
absence of variables from MOD(s) because that absence means that the
variable cannot possibly be modified as a side effect of the call. Similarly,
optimizations would be based on the absence of a variable from REF(s),
so MUSTNOTREF(p,s) would be the corresponding recompilation set of
interest. On the other hand, we will make optimizations like privatization
based on the knowledge that a variable must be killed by a procedure call
so MUSTKILL(p,s) could be used to hold recompilation information.

Module
Importer

Program
Compiler

Module
Compiler

Composition
Editor

MUSTNOTMOD

Interprocedural Analysis and Optimization

680 ADVANCED COMPILING FOR HIGH PERFORMANCE

In the case of MOD, let us consider what must be done by the program
compiler to ensure correctness after a change to some procedure in the
program.

1. First, the program compiler must recompute the MOD sets for every
call site in the program.

2. For each call site s∈p in the program, if

MUSTNOTMOD(p,s) ∩ MOD(s) ≠ ∅
then recompile procedure p.

The computation of MUSTNOTMOD sets is dependent on the optimiza-
tions used in the module compiler, which may be burdensome to collect
accurately. However, simple approximation methods often work well in
practice. Here are two such approximations for MUSTNOTMOD:

1. MUSTNOTMOD(p,s) = ¬MOD(s) on the most recent compilation of p.
Certainly, the module compiler cannot have depended on anything that
was not true at the last compile.

2. MUSTNOTMOD(p,s) = ¬MOD(s) ∩ REF(p). This approximation goes
one step farther than the previous one in that it does not force recompi-
lation as a result of changes in status to variables that are merely
passed through p.

The second of these approximations was used by the designers of the Rn
programming environment [18,12].

11.5 Chapter Summary

Although interprocedural analysis has limited applicability in optimizing
code for uniprocessors, it is important for automatic parallelization sys-
tems. To be totally effective, a variety of analysis problems must be
addressed. These include two types of problems:

1. forward propagation problems that determine the context in which a
given procedure is called and

2. backward propagation problems which determine side effects of pro-
cedure calls.

In addition, interprocedural analysis problems can be classified as:

1. flow-insensitive problems, for which a precise solution does not
require tracing control-flow through the procedures down the call
chain, and

Case Studies

Chapter Draft of February 8, 2001 681

2. flow-sensitive problems, which require control-flow tracing for a pre-
cise solution.

It has been shown that flow-insensitive forward and backward problems
can be solved in O((N+E)V) time, where N is the number of procedures in
the program, E is the number of call sites and V is the number of global
variables and parameters in the program.

In the most general case, flow-sensitive problems have been shown to be
intractable. However, for typical programming languages, good approxi-
mations can be achieved in time that is polynomial in the size of the call
graph. In practice, these algorithms perform in near linear time.

Interprocedural problems for single variables can be extended in a natural
way to handle analysis of value ranges and symbolic values. In addition
they can also be extended to analyze side effects to regular sections of
array variables. In both cases, the running time will be expanded by a fac-
tor proportional to the maximum depth of the lattice of approximations
used.

To be usable, an interprocedural analysis system needs to minimize the
number of procedures that must be recompiled as a result of local pro-
gram changes. Users will not tolerate a recompilation system that
requires recompiling an entire program after a simple change to one pro-
cedure. The functions required to do this may be best embedded in a
more general program management system.

11.6 Case Studies

The authors are aware of or have been personally involved with several
interprocedural compilation systems:

1. The vectorization and parallelization system PFC [4], developed at
Rice University, used interprocedural constant propagation and array
side effect analysis to improve its dependence analysis. The results of
dependence analysis could be displayed in a special browser called
PTOOL. PFC was also used as a dependence server by later systems,
including ParaScope described below.

2. The Ardent Titan compiler, which will be discussed further below.

3. The Rn programming environment [18,29,31], also developed at Rice,
was the first one designed to support interprocedural analysis in a
practical compilation system. Recompilation analysis, discussed in

Interprocedural Analysis and Optimization

682 ADVANCED COMPILING FOR HIGH PERFORMANCE

Section 11.4 was first tried in the Rn system, which implemented con-
stant propagation, ALIAS, MOD and REF.

4. ParaScope [20], a successor to Rn, was designed to use interproce-
dural information in program parallelization. The FIAT interproce-
dural analysis framework [42] was originally developed for
ParaScope, before being adapted into the SUIF compiler (see below).
Although it computed solutions to several interprocedural problems,
ParaScope initially used PFC as a server for interprocedural array sec-
tion analysis.

5. The D System [1], which was initially based on ParaScope, is
intended to support programming in High Performance Fortran. It
includes a framework that extends FIAT to perform interactive recom-
pilation of interprocedural information when the user is editing in the
context of a given program. In addition to classical analyses and opti-
mizations, the D System propagates array distribution information
interprocedurally to support compilation of Fortran D and High Per-
formance Fortran [20].

6. The Stanford SUIF compiler was constructed with the aid of the inter-
procedural framework FIAT, a tool that facilitates rapid prototyping of
interprocedural systems [42]. It performs a complete set of interproce-
dural analyses including constant propagation, kill analysis for arrays
and live analysis. In a recent experiment, programs from the NAS,
Spec-92 and Perfect benchmark suites were run through the compiler
without any modification to the original source code. For this total of
27 programs, 16 of them yielded more parallel loops as a result of
interprocedural optimization. For 4 of these, significant speedups have
been obtained only as a result of interprocedural optimization [44].

7. The Convex Application Compiler [56], which was modeled after the
Rn and ParaScope systems, was the first commercial system to per-
form interprocedural analysis on whole programs represented by mul-
tiple files. The Application Compiler did a complete job of
interprocedural analysis and optimization for parallelization, comput-
ing the solutions to flow-sensitive interprocedural problems, cloning
based on interprocedural constants, and employing array section anal-
ysis.

In addition to these, a number of commercial and research systems
employ interprocedural information.

The Ardent Titan compiler was designed for interprocedural analysis and
optimization from the outset. Given that the primary target applications
for the Titan I were scientific floating point and graphics, the compiler

Case Studies

Chapter Draft of February 8, 2001 683

designers felt that some form of interprocedural analysis would be essen-
tial. Graphics code tends to use lots of small C kernels: 3x3 and 4x4
matrix multiplications are extremely common and very important.
Because C does not provide the aliasing restrictions that Fortran does
(see Chapter 12), the calling context had to be known by the optimizer in
order to safely vectorize these kernels. Large scientific codes, particularly
vectorizable ones, also tend to be built around a small set of vectorizable
Fortran kernels—in early vector machines with weak compilers, these
kernels were often replaced with assembly if the compiler was unable to
vectorize them.

While there was no doubt that the Ardent compiler would be able to vec-
torize the kernels, there was a lot of doubt that it could effectively paral-
lelize these codes. These kernels are typically single loop, which meant
that without interprocedural analysis, the compiler would have to paral-
lelize and vectorize the same loop. Given that one processor in vector
mode could saturate the memory bus, the feeling (which turned out to be
true) was that such parallel loops would run slower than the non-parallel
version. However, it is also true that many of these kernels are called
from within loops—loops that can be easily and effectively parallelized
when interprocedural information is available.

Having decided that interprocedural analysis was a requirement, the next
decision was what form of analysis to implement. The compiler designers
decided on two forms:

1. Procedure inlining. As discussed earlier, the biggest bang for the buck
is clearly inlining.

2. User input. For parallel subroutines where inlining was inappropriate,
we decided to provide a set of directives for a user to declare parallel-
safe routines with appropriate storage control. In those cases (and only
those cases) the compiler would parallelize a loop containing a sub-
routine call.

The decision to do inlining had wide-ranging effects, some of which were
anticipated and some of which were surprises. One of the main surprises
was the large number of places in the optimizer that had to be tuned for
inlining, particularly when inlining a C function into a Fortran function.
One of the effects we correctly anticipated was the impact on the inter-
mediate representation.When doing inlining and other forms of interpro-
cedural analysis, the compiler must visit and revisit compilation units (or
procedures). Scanning and parsing the source on each visit is obviously
not desirable. A better solution is to allow the intermediate representation

Interprocedural Analysis and Optimization

684 ADVANCED COMPILING FOR HIGH PERFORMANCE

to “persist” in a nonintrusive form so that the compiler can quickly inte-
grate it with other procedures at the level of intermediate code.

The Ardent compiler supported a facility that permitted the creation of
libraries of procedures to be inlined. Procedures that the user might often
wish to inline, such as the BLAS from LinPACK or short, frequently-
used graphics routines, could be stored into a library in a “precompiled”
format that permitted easy inlining even when the original source was not
available. The user could invoke these library procedures by naming the
library file on the compiler command line. As an example, consider the
simple routine for computing the hypotenuse of a triangle

REAL FUNCTION HYPOT(X,Y)
HYPOT = X**2 + Y**2
RETURN

END

If this were compiled into a library and that library were to be named on
the command line invoking a compilation containing the following loop,
which processes an array of triangles:

DO I = 1, N
A(I) = HYPOT(B(I),C(I))

ENDDO

the Ardent compiler would generate the loop

DO I = 1, N
A(I) = B(I)**2 + C(I)**2

ENDDO

which would be vectorized and parallelized on the Titan to achieve near
optimal performance.

11.7 Historical Comments and References

Interprocedural analysis was introduced in a number of works published
in the 1970s. Allen showed how interprocedural data-flow analysis could
be carried out on programs without recursion [2]. In an unpublished
abstract, Allen and Schwartz later extended these techniques to programs
with recursion. Spillman [68] described the interprocedural analysis that
was available in the IBM PL/I compiler for procedures in a single file. A
principle goal of this implementation was analysis of pointer targets.

Barth [7] was the first published paper to discuss may and must prob-
lems. Banning [6] introduced the notion of flow-sensitive and flow-insen-

Historical Comments and References

Chapter Draft of February 8, 2001 685

sitive problems and presented a polynomial-time algorithm for solving
such problems. Myers [57] presented a general algorithm for flow-insen-
sitive problems, which he proved to be Co-NP Complete in the presence
of aliasing.

Algorithms for flow-sensitive analysis have been described by Myers
[57], Sharir and Pnueli [67], Harrison [45], Landi and Ryder [54], Choi,
Burke and Carini [32] and Hall, Murphy and Amarasinghe [43]. The
algorithm for flow-insensitive interprocedural analysis presented in
Section 11.2.3 is due to Cooper and Kennedy [25,26,28,27] as is the alias
analysis algorithm in Section 11.2.4 [28]. The flow-sensitive constant
propagation algorithm presented in Section 11.2.5, is based on the work
of Callahan, Cooper, Kennedy and Torczon [16]. The flow-sensitive kill
analysis algorithm is modeled after an algorithm proposed by Callahan
[14], although this particular formulation is new.

Interprocedural symbolic analysis has been discussed by a number of
researchers, including Haghighat and Polychronopoulos [38], Irigion,
Jouvelot, and Triolet [51], and Hall, Murphy, and Amarasinghe [43]. The
treatment in Section 11.2.7 follows Havlak [46].

Array section analysis, discussed in Section 11.2.8, has been the subject
of work by a number of authors including Triolet, Irigoin and Feautrier
[69], Burke and Cytron [10], Callahan and Kennedy [17,13], Li and Yew
[55], Havlak and Kennedy [47], Irigoin, Jouvelot, and Triolet [51] and
Hind, Burke, Carini, and Midkiff [49]. Several researchers have devel-
oped algorithms for flow-sensitive array analysis, including Irigion [52],
IItsuka [50], Tu and Padua [70], and Hall, Murphy and Amarasinghe
[43].

Call graph analysis has been studied by Walter [71], Weihl [74], Spillman
[68], Burke [11] and Shivers[64,65,66].The call graph construction algo-
rithm in Section 11.2.9 is based on an algorithm due to Ryder [63]. The
proof that the same algorithm converges in the recursive case is due to
Callahan, Carle, Hall and Kennedy [15]. An algorithm that is not precise
but which generates its approximation in time linear in the size of the
resulting call graph is given by Hall and Kennedy [40,39].

Inline substitution has been widely studied[35,60]. Cooper, Hall and
Torczon noted its disadvantages [24]. The inlining facility in the Ardent
Titan compiler were described by Allen [3]. Cloning was studied by Coo-
per, Hall and Kennedy [19,21,22]. Hybrid optimizations have been stud-
ied by Hall, Kennedy, and McKinley [41]. Techniques and algorithms

Interprocedural Analysis and Optimization

686 ADVANCED COMPILING FOR HIGH PERFORMANCE

closely related to cloning as described in this paper have been studied by
Wegman [72] for intraprocedural analysis, Bulyonkov [9] and Ruf and
Weise [62] for partial evaluation, Johnston [53] for dynamic compilation
of APL, and Chambers and Ungar [34] for the language SELF.

The approach to program management described in Section 11.4 was
pioneered in the Rn programming environment [18,26,27]. Recompila-
tion analysis was developed by Burke, Cooper, Kennedy and Torczon
[30,12].

The treatment in this chapter is derived from the tutorial survey by Coo-
per, Hall, Kennedy and Torczon [23].

11.8 Exercises

11–1 Compare call graphs with binding graphs. Give a formula for the size of
both types of graphs for a given program.

11–2 Suppose you are implementing an optimization that changes the layout of
data arrays. One problem of data transformation is illustrated in the
example below:

SUBROUTINE DATA1()
 INTEGER A(M,N)
 CALL FOO(A)

END

SUBROUTINE DATA2()
INTEGER B(M,N)
CALL FOO(B)

END

SUBROUTINE FOO(T)
 INTEGER T(M,N)

...
END

If we decide to change the layout of A to be A(N,M) but keep the array B
unchanged, then we will run into a problem in subroutine FOO because its
formal parameter can be of two data formats. Can you design an interpro-
cedural analysis to detect such problems?

11–3 In programming languages like Pascal, scopes are nested where functions
can be defined inside another function, and the local data of the parent
function is visible to children functions. Give an algorithm for MOD anal-
ysis for such languages.

References

Chapter Draft of February 8, 2001 687

11–4 Grove and Torczon [37] found that the construction of return jump func-
tions is faster after MOD analysis. Give a plausible explanation for this
result.

11.9 References

[1] V. Adve, A. Carle, E. Granston, S. Hiranandani, C. Koelbel, J. Mellor-Crummey, C.
Tseng and S.K. Warren. The D System: support for data-parallel programming. Techni-
cal Report CRPC-TR94-378, Rice University, Center for Research on Parallel Compu-
tation, January 1994.

[2] F. E. Allen. Interprocedural data flow analysis. In Proceedings of the IFIP Congress
1974, pages 398-402, Amsterdam, 1974. North Holland.

[3] J. R. Allen. Unifying vectorization, parallelization, and optimization: The Ardent com-
piler. In Proceedings of the Third International Conference on Supercomputing, L.
Kartashev and S. Kartashev, editors, Boston, MA, 1988.

[4] J. R. Allen and K. Kennedy. PFC: a program to convert Fortran to parallel form. In
Supercomputers: Design and Applications, K. Hwang, editor, pages 186–203. IEEE
Computer Society Press, August 1984.

[5] B. Alpern and M. N. Wegman and F. K. Zadeck. Detecting equality of variables in pro-
grams. In Conference Record of the Fifteenth ACM Symposium on the Principles of Pro-
gramming Languages. ACM, 1988.

[6] J. P. Banning. An efficient way to find the side effects of procedure calls and the aliases
of variables. In Proceedings of the Sixth Annual Symposium on Principles of Program-
ming Languages. ACM, January 1979.

[7] J. M. Barth. A practical interprocedural data flow analysis algorithm. Communications
of the ACM, 21(9):724-736, September 1978.

[8] P. Briggs, K. D. Cooper, M. Hall and L. Torczon. Goal-directed interprocedural optimi-
zation, Technical Report TR90-148, Department of Computer Science, Rice University,
November 1990.

[9] M. A. Bulyonkov. Polyvariant mixed computation for analyzer programs. Acta Infor-
matica, 21:473-484, 1984.

[10] M. Burke and R. Cytron. Interprocedural dependence analysis and parallelization. In
Proceedings of the SIGPLAN '86 Symposium on Compiler Construction. ACM, June
1986.

[11] M. Burke. An interval-based approach to exhaustive and incremental interprocedural
analysis. Research Report RC 12702, IBM Yorktown Heights, September 1987.

[12] M. Burke and L. Torczon. Interprocedural optimization: eliminating unnecessary
recompilation. ACM Transactions on Programming Languages and Systems 15(3):367–
399, July 1993.

[13] D. Callahan, A Global Approach to the Detection of Parallelism, Ph.D. thesis, Rice Uni-
versity, Department of Computer Science, Houston, TX, March 1987.

Interprocedural Analysis and Optimization

688 ADVANCED COMPILING FOR HIGH PERFORMANCE

[14] D. Callahan. The program summary graph and flow-sensitive interprocedural data flow
analysis. In Proceedings of the SIGPLAN '88 Conference on Programming Language
Design and Implementation, SIGPLAN Notices 23(7):47-56. ACM, July 1988.

[15] D. Callahan, A. Carle, M.W. Hall, and K. Kennedy. Constructing the procedure call
multigraph. IEEE Transactions on Software Engineering, SE-16(4):483-487, April
1990.

[16] D. Callahan, K. D. Cooper, K. Kennedy, and L. Torczon. Interprocedural constant
propagation. In Proceedings of the SIGPLAN '86 Symposium on Compiler Construction,
SIGPLAN Notices 21(7):152-161. ACM, July 1986.

[17] D. Callahan and K. Kennedy. Analysis of interprocedural side effects in a parallel pro-
gramming environment. In Proceedings of the First International Conference on Super-
computing. Springer-Verlag, Athens, Greece, June 1987.

[18] A. Carle, K.D. Cooper, R.T. Hood, K. Kennedy, L. Torczon and S. K. Warren. A practi-
cal environment for Fortran programming. IEEE Computer 20(11): 75–89, November
1987.

[19] K. D. Cooper. Interprocedural Data Flow Analysis in a Programming Environment,
Ph.D. Thesis, Rice University, Computer Science Department, Houston, TX, April,
1983.

[20] K. D. Cooper, M. Hall, R. T. Hood, K. Kennedy, K. McKinley, J. Mellor-Crummey, L.
Torczon and S.K. Warren. The ParaScope parallel programming environment. Proceed-
ings of the IEEE 81(2): 244–263, February 1993.

[21] K. D. Cooper, M. W. Hall and K. Kennedy. Procedure cloning. In Proceedings of the
IEEE International Conference on Computer Languages, pages 96–105. IEEE, April
1992.

[22] K. D. Cooper, M. W. Hall and K. Kennedy. A methodology for procedure cloning. Com-
puter Languages 19(2), 1993.

[23] K. D. Cooper, M. W. Hall, K. Kennedy and L. Torczon. Interprocedural analysis and
optimization. To appear in The Communications in Pure and Applied Mathematics.

[24] K. D. Cooper, M. W. Hall and L. Torczon. An experiment with inline substitution. Soft-
ware—Practice and Experience 21(6):581–601, June 1991.

[25] K. D. Cooper and K. Kennedy. Efficient computation of flow-insensitive interprocedural
summary information. In Proceedings of the SIGPLAN '84 Symposium on Compiler
Construction, SIGPLAN Notices 19(6):247-258. ACM, June 1984.

[26] K. D. Cooper and K. Kennedy. Efficient computation of flow-insensitive interprocedural
summary information—a correction. SIGPLAN Notices 23(4):35-42. ACM, April 1988.

[27] K. D. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear time.In Pro-
ceedings of the SIGPLAN ‘88 Conference on Programming Language Design and
Implementation, SIGPLAN Notices 23(7):57-66. ACM, July 1988.

[28] K.D. Cooper and K. Kennedy. Fast interprocedural alias analysis. In Conference Record
of the Sixteenth Annual ACM SIGACT/SIGPLAN Symposium on Principles of Program-
ming Languages, pages 49-59, Austin, TX, January 1989.

References

Chapter Draft of February 8, 2001 689

[29] K. Cooper, K. Kennedy and L. Torczon. The impact of interprocedural analysis and
optimization on the design of a software development environment. In Proceedings of
the SIGPLAN 85 Symposium on Compiler Construction. ACM, June 1985.

[30] K. D. Cooper, K. Kennedy, and L. Torczon. Interprocedural optimization: eliminating
unnecessary recompilation. In Proceedings of the SIGPLAN `86 Symposium on Com-
piler Construction, SIGPLAN Notices 21(7):58-67, July 1986.

[31] K. Cooper, K. Kennedy and L. Torczon. The impact of interprocedural analysis and
optimization in the Rn environment. ACM Transactions on Programming Languages
and Systems 8(4):491–523, October 1986.

[32] J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In Conference Record of the Twentieth Annual
Symposium on Principles of Programming Languages. ACM, January 1993.

[33] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. K. Zadeck. An efficient method of
computing static single assignment form. In Conference Record of the Sixteenth Annual
Symposium on Principles of Programming Languages, June 1989.

[34] C. Chambers and D. Ungar. Customization: optimizing compiler technology for SELF,
a dynamically-typed object-oriented programming language. In Proceedings of the
SIGPLAN '89 Conference on Programming Language Design and Implementation,
SIGPLAN Notices 24(7): 146-160. ACM, July 1989.

[35] J. Davidson and A. Hollar. A study of a C function inliner. Software—Practice and
Experience 18(8):775–790, August 1988.

[36] S. L. Graham and M. Wegman. A fast and usually linear algorithm for global data flow
analysis. Journal of the ACM 23(1):172–202, 1976.

[37] D. Grove and L. Torczon. Interprocedural constant propagation: A study of jump func-
tion implementations. In Proceedings of the SIGPLAN '93 Conference on Programming
Language Design and Implementation. ACM, June 1993.

[38] M. Haghighat and C. Polychronopoulos. Symbolic analysis: A basis for parallelization,
optimization, and scheduling of programs. In Proceedings of the Sixth Workshop on
Languages and Compilers for Parallel Computing, Portland, OR, August 1993.

[39] M. W. Hall. Managing Interprocedural Optimization. Ph.D. thesis, Rice University,
Department of Computer Science, Houston, TX, April 1991.

[40] M. W. Hall and Ken Kennedy. Efficient call graph analysis. ACM Letters on Program-
ming Languages and Systems 1(3), September 1992.

[41] M. W. Hall, K. Kennedy, and K. S. McKinley. Interprocedural transformations for paral-
lel code generation. In Proceedings of Supercomputing '91, Albuquerque, NM, Novem-
ber 1991.

[42] M. W. Hall, J. Mellor-Crummey, A. Carle and R. Rodriguez. FIAT: a framework for
interprocedural analysis and transformation,” In Proceedings of the Sixth Workshop on
Languages and Compilers for Parallel Computing, Portland, OR, August, 1993.

[43] M. W. Hall, B. R. Murphy, and S. P. Amarasinghe. Interprocedural analysis for parallel-
ization: A case study. In Proceedings of the Seventh SIAM Conference on Parallel Pro-
cessing for Scientific Computing, San Francisco, CA, February 1995.

Interprocedural Analysis and Optimization

690 ADVANCED COMPILING FOR HIGH PERFORMANCE

[44] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, M. S. Lam. Interprocedural analysis for
parallelization: preliminary results. Stanford Computer Systems Laboratory Technical
Report, CSL-TR-95-665, March, 1995.

[45] W. L. Harrison. The interprocedural analysis and automatic parallelization of Scheme
programs. Lisp and Symbolic Computation, 2(3/4):179-396, October 1989.

[46] P. Havlak. Interprocedural symbolic analysis. Ph.D. thesis, Rice University, Dept. of
Computer Science, May 1994.

[47] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular sec-
tion analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350 360,
July 1991.

[48] M. Hecht and J. D. Ullman. A simple algorithm for global data flow analysis of pro-
grams. SIAM Journal of Computing 4: 519–532.

[49] M. Hind, M. Burke, P. Carini, and S. Midkiff. An empirical study of precise interproce-
dural array analysis. Scientific Programming, 3(3):255-271, 1994.

[50] T. IItsuka. Flow-sensitive interprocedural analysis method for parallelization. In IFIP
TC10/WG10.3 Working Conference on Architectures and Compilation Techniques for
Fine and Medium Grain Parallelism, January 1993.

[51] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: An
overview of the PIPS project. In Proceedings of the 1991 ACM International Confer-
ence on Supercomputing, Cologne, Germany, June 1991.

[52] F. Irigoin. Interprocedural analyses for programming environments. In NSF-CNRS
Workshop on Environments and Tools for Parallel Scientific Programming, September
1992.

[53] R. L. Johnston. The dynamic incremental compiler of APL\3000. In Proceedings of the
APL '79 Conference, pages 82-87. ACM, June 1979.

[54] W. Landi and B. G. Ryder. A safe approximate algorithm for interprocedural pointer
aliasing. In SIGPLAN '92 Conference on Programming Language Design and Imple-
mentation, SIGPLAN Notices 27(7):235-248, July 1992.

[55] Z. Li and P. Yew. Efficient interprocedural analysis for program restructuring for parallel
programs. In Proceedings of the ACM SIGPLAN Symposium on Parallel Programming:
Experience with Applications, Languages, and Systems (PPEALS), New Haven, CT,
July 1988.

[56] R. Metzger and S. Stroud. Interprocedural constant propagation: an empirical study.
ACM Letters on Programming Languages and Systems, 1(3), December 1992.

[57] E. Myers. A precise inter-procedural data flow algorithm. In Conference Record of the
Eighth Annual Symposium on Principles of Programming Languages. ACM, January
1981.

[58] J. Kam and J. D. Ullman. Global data flow analysis and iterative algorithms. Journal of
the ACM 23(1):159–171, January 1976.

[59] J. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta Informatica
7(3): 305–318, 1977.

[60] S. Richardson and M. Ganapathi. Interprocedural analysis versus procedure integration.
Information Processing Letters 321(3), August 1989

References

Chapter Draft of February 8, 2001 691

[61] B. K. Rosen and M. Wegman and F. K. Zadeck. Global value numbers and redundant
computations.In Conference Record of the Fifteenth ACM Symposium on the Principles
of Programming, ACM, 1988.

[62] E. Ruf and D. Weise. Using types to avoid redundant specialization. In Proceedings of
the PEPM '91 Symposium on Partial Evaluation and Semantics-Based Program Manip-
ulation, SIGPLAN Notices 26(9), pages 321-333. ACM, September 1991.

[63] B. Ryder. Constructing the call graph of a program. IEEE Transactions on Software
Engineering, SE-5(3):216-225, 1979.

[64] O. Shivers. Control flow analysis in Scheme. In Proceedings of the SIGPLAN '88 Con-
ference on Programming Language Design and Implementation, SIGPLAN Notices
23(7):164-174. ACM, July 1988.

[65] O. Shivers. Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis, Carnegie
Mellon University, School of Computer Science, Pittsburgh, PA, May 1991.

[66] O. Shivers. The semantics of scheme control flow analysis. In Proceedings of the Sym-
posium on Partial Evaluation and Semantics-Based Program Manipulation, SIG PLAN
Notices 26(9), pages 190-198, September 1991.

[67] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.
Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and Applications.
Prentice Hall, 1981.

[68] T. C. Spillman. Exposing side-effects in a PL/I optimizing compiler. In Proceedings of
the IFIP Congress 1971, pages 376-381. North Holland, 1971.

[69] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of call statements. In Pro-
ceedings of the SIGPLAN '86 Symposium on Compiler Construction, SIGPLAN Notices
21(7), pages 176-185. ACM, July 1986.

[70] P. Tu and D. Padua. Automatic array privatization. In Proceedings of the Sixth Workshop
on Languages and Compilers for Parallel Computing, Portland, OR, August 1993.

[71] K. Walter. Recursion analysis for compiler optimization. Communications of the ACM,
19(9):514-516, 1976.

[72] M. Wegman. General and Efficient Methods for Global Code Improvement. Ph.D. the-
sis, University of California, Berkeley, CA, December 1981.

[73] M. Wegman and K. Zadeck.Constant propagation with conditional branches.Technical
Report CS-89-36,Dept. of Computer Science, Brown University, May 1989.

[74] W. E. Weihl. Interprocedural data flow analysis in the presence of pointers, procedure
variables, and label variables. In Conference Record of the Seventh Symposium on Prin-
ciples of Programming Languages. ACM, January 1980.

Interprocedural Analysis and Optimization

692 ADVANCED COMPILING FOR HIGH PERFORMANCE

Overview

Chapter Draft of February 8, 2001 693

CHAPTER 12 Other Applications of
Dependence

12.1 Overview

The focus of this book so far has been has been on the use of dependence
analysis to optimize programs written in Fortran, with an orientation
towards vector and parallel architectures. This direction is natural, as it
follows the historical development of the concepts. However, this direc-
tion tends to imply that the only applications of dependence are to For-
tran programs written for parallel and vector architectures. This
implication grossly understates the power of dependence, as dependence
analysis applies to any language and any translation context where arrays
and loops are useful.

This chapter expands the horizon of dependence analysis by extending it
to handle languages more complicated than Fortran and by applying it in
contexts other than compiling for parallel and vector machines. From its
inception, Fortran was designed to be a language amenable to high opti-
mization of “Formula Translation”. The simple input and problem

Other Applications of Dependence

694 ADVANCED COMPILING FOR HIGH PERFORMANCE

domain originally envisioned for Fortran, the strong requirement for opti-
mization, and the early development of the language all result in an
absence of many of the language features common to more modern lan-
guages, such as pointers and structures. The first section of this chapter
presents some of the issues involved in extending dependence analysis to
handle more modern languages such as C and C++.

The second section introduces some of the applications of dependence
analysis to hardware design. Modern hardware design is generally done
using a language-based approach, where higher level languages similar to
general purpose programming languages are used to describe the device
being designed. That description is then translated by tools (essentially
compilers) into a lower level description that permits actual chip produc-
tion. Dependence analysis is a potent technique for enhancing the tools
used in that design flow.

12.2 Optimizing C

12.2.1 The Problems of C

The designers of Fortran were strongly focused on performance; their
belief was that the language would be accepted by users only if Fortran
compilers generated code that performed within a factor of two of what
an expert human could achieve with tuned assembly code. Because of
this, the Fortran language is oriented more towards the constructs that can
be automatically optimized and less towards constructs that represent
computations in more human-understandable form. Later languages
tended to focus more on the human side of programming, however, and
introduced concepts that made programs easier to develop, with the con-
sequence of increasing the challenges for compilers. The C language is
an excellent example of this. C was initially developed as a “typed assem-
bly language” that permitted a sophisticated programmer to specify at a
relatively high level pretty much the precise hardware operations desired.
Pre-increments and post-increments, for instance, have natural analogs in
the instruction sets that were prominent during C’s early development.
The “register” variable declaration, now in relatively disuse, really meant
use a hardware register in the early days of C.

Given the correspondence between C constructs and native hardware, the
philosophy of C in many contexts was that not only was optimization not
required, it was in many cases not desired. Consider, for instance, operat-
ing systems, an area where C is popular. Operating systems commonly

Optimizing C

Chapter Draft of February 8, 2001 695

access external devices (such as a keyboard) by reading and writing spe-
cial memory addresses, leading to code similar to

while (!(t=*p));

Such a fragment might be used to continue polling a keyboard until a
character is entered (p in this case would contain the address of the mem-
ory location that maps to the keyboard). An optimizer would move the
read of the contents of p outside the loop since it appears loop invariant
(at least in the absence of a “volatile” declaration). As a result, the key-
board would never be read, leading to a hung system. This type of con-
struct was prevalent in the early uses of C,

Because of this early use and philosophy, C was initially targeted more
towards usability than towards optimization. C++ continued this trend by
adding in features that simplified program development, at the expense of
optimizability. Despite this trend in language direction, however, optimi-
zation did become important for both languages. Machine architectures
underwent a shift away from instruction sets that permit a direct mapping
from C source constructs, and the use of C and C++ expanded into areas
where optimization is both desired and required. As a result, even though
C was not designed with optimization in mind, optimization is an impor-
tant part of any successful C compiler.

To illustrate some of the challenges that C poses for optimization on
advanced architectures, consider the following simple routine:

void vadd(double *a, double *b, double *c, int n) {
while(n--)

*a++ = *b++ + *c++;
}

This routine is a simple vector add, which would be easily vectorized and
optimized if written as equivalent Fortran. The C version, on the other
hand, is difficult to vectorize or optimize. Some of the problems include

1. Pointers. Which memory locations are accessed by the C pointers is
not immediately clear, particularly since the pointers are passed as
subroutine parameters. The equivalent code in Fortran would use eas-
ily determinable arrays. Arrays could be used in the C version, but
pointers are the classic C way of writing such code.

2. Aliasing. Closely related to the problem of pointers is the problem of
aliasing. The Fortran standard guarantees that arrays that are passed
into subroutines as pointers do not overlap in storage in any way that
can provide a hazard in vectorizing. The C standard provides no such

Other Applications of Dependence

696 ADVANCED COMPILING FOR HIGH PERFORMANCE

guarantee. As a result, a C optimizer cannot directly vectorize the loop
above, even if it can figure out the memory accessed through the
pointers.

3. Side-effect operators. As noted in earlier chapters, induction variable
substitution is essentially the inverse of the classic optimization
strength reduction. C’s side effect operators, particularly its pre and
post increment, encourage a style in which array operations are
strength-reduced by the programmer. Because of this, C optimizers
must focus extra effort on transformations such as induction variable
substitution, in order to explicitly expose the implicitly strength-
reduced addressing. Side effect operators such as pre and post incre-
ment encourage this style of programming.

4. Loops. The Fortran DO loop provides exactly the values needed for
dependence analysis, and supports a number of restrictions (such as
not permitting jumps into loops) that simplify optimization. C has no
restrictions on loops, and the values necessary for dependence analy-
sis are rarely explicitly available.

This section provides an overview of these and other problems that C
poses for advanced optimization. In most cases, the theory developed in
previous chapters for Fortran can be easily extended to handle the addi-
tional challenges introduced by C and similar languages.

12.2.2 Pointers

Without a doubt the most difficult challenge that C presents to optimiza-
tion is the unrestrained use of pointers. Pointers introduce two fundamen-
tal problems:

1. A pointer variable can point to different memory locations during its
use. Determining which memory location is accessed by a pointer
indirection at any given time is a difficult problem.

2. A given memory location can be accessed by more than one pointer
variable at any given time, creating aliases for the location. Not only
does this mean that different pointer variables may in fact point to the
same location, but it also means that when testing an array reference in
C, it is necessary to test that reference against all pointers that could
possibly alias the same memory.

In other words, pointers not only access different variables, they also
allow the same variable to be accessed by different names. The result is
that dependence testing becomes a much more difficult and expensive
process.

Optimizing C

Chapter Draft of February 8, 2001 697

In a separate compilation paradigm, the problem of pointers is unsolv-
able. Without knowing all possible addresses a pointer can reference
(knowledge which is obtainable only when the entire program is ana-
lyzed together), compilers must conservatively assume that any refer-
ences between two different pointers or between a pointer and any non-
local array are dependent. In practice, this assumption means that all pos-
sible references are dependent and no rearrangement of pointer indirec-
tions or array references is feasible.

While strictly automatic analysis in a separate compilation paradigm is
infeasible, there are practical compromises. In the worst case (which is
the case a compiler must assume in the absence of knowledge to the con-
trary), pointers can wreak complete havoc within a program; in most real-
istic cases, pointers tend to be used in a well-behaved, regular fashion
that is understood by the programmers (if the usage is too complex and
not understood by the programmers, the program probably doesn’t work
anyway). As a general (but not immutable) rule, an array usually pointed
at by only one pointer at a time, and pointers passed as function argu-
ments generally point to independent storage elements. This type of
usage can be summarized by two pragmas or compiler options:

1. Safe parameters. All pointer parameters to a function are guaranteed to
point to independent storage.

2. Safe pointers. All pointer variables (whether parameter, local, or glo-
bal) are guaranteed to point to independent storage.

These pragmas are generally true in most programs (and when they are
not, programmers are generally aware of that fact) and they provide
enough information to the compiler to permit effective optimization.

While the problem of pointers is insolvable in a separate compilation par-
adigm, the problem is merely difficult (but not unsolvable) when the
entire program can be analyzed. With knowledge of all calling proce-
dures, a compiler can determine all possible variables that a pointer may
reference. This brings the problem into the realm of the solvable,
although the solutions to date are still less than satisfactory. The simplest
approach is to use techniques similar to interprocedural constant propa-
gation to propagate addresses forward as far as possible and to build sets
of variables that pointer variables may access in given routines. This pro-
vides a worst case bound on the variables that may be accessed, but this is
usually insufficient; once a pointer can reference more than one variable,
the resulting dependences will usually block any rearrangement. Much
research has been undertaken to improve the level of analysis of pointers

Other Applications of Dependence

698 ADVANCED COMPILING FOR HIGH PERFORMANCE

in C [see ...], but the problem still does not have a satisfactory solution.
As a result, the use of pragmas is still the most common solution.

12.2.3 Naming and Structures

A problem closely related to the presence of pointers involves “naming”.
In Fortran (or at least in all variants of Fortran that do not include a
“pointer” statement), a block of storage can be uniquely identified by a
single name, providing an easy basis for calculating dependences. Even
when EQUIVALENCE and COMMON statements are involved, array
references can be statically reduced to an offset from the base segment
storage for the COMMON block or the variables equivalenced together.
Such a reduction is not always possible in C, and that fact provides com-
plications in the process of building a dependence graph.

Consider the storage reference by the following constructs in C:

p;
*p;
**p;
*(p+4);
*(&p +4);

In the first case, the memory location referred to by the pointer p is clear
and easy to name -- it refers to a cell in program memory that, if desired,
can be precisely identified. In the second case, the memory location refer-
enced is not clear and is difficult to name. “*p” is actually an alias for
some storage in the program that is “named” or created by another vari-
able. Determining which variables p can be aliased to in this case is cer-
tainly one problem that must be solved, as discussed in Section 12.2.2.
However, a second problem is what name to use for testing the storage
using the algorithms for dependence testing. For efficiency, those algo-
rithms are all based on partitioning references into buckets based on vari-
able names -- the assumption being that barring aliasing, things within a
bucket can only depend on the other things within the bucket. “*p” can-
not be placed within the p bucket, since p refers to storage that is totally
different from that referred to by the address in that storage. The assump-
tion is that p’s value cannot be uniquely determined at the point of test-
ing, since if that were true its value can be used and there is no need for
the pointer. Given that lack of a unique value, the result is that a new
name must be created for testing “*p”, and given that the testing drives
off the symbol table, a symbol for that new name needs to be entered in
the table. This need tends to be overlooked the first time one implements
testing for pointers, as it’s very easy to assume that the bucket for p can

Optimizing C

Chapter Draft of February 8, 2001 699

be used for both p and *p. The same concept applies again for the third
example: a new name is needed for **p to distinguish storage that can be
referenced there from storage referenced by *p and p. Note that the cre-
ation of the name alone is not enough; in the fourth example, for testing
to be successful, it is essential that the reference resolve to be *p bucket
rather than any other; that reference should be tested against all things
that *p can refer to and no others. This means that intelligence is needed
to parse out expressions underlying * operators to partition into the
appropriate buckets. The need for that intelligence is further reinforced
by the fifth example: that should correctly simplify to

p[1];

and test against the p bucket rather than any other.

Because of these complexities, the dependence testing framework for C
requires some beefing up over that required for Fortran. A powerful
expression simplifier that places expressions into a well-defined canoni-
cal form is essential, as is strong understanding of the contents of expres-
sions underlying the * operator.

Another complication in C is the presence of structures. Each member of
a structure is essentially its own little array; unions allow aliases to exist
for that array. These again create some naming problems (what is the
name of “a.b”?), as well as some problems in testing. In particularly,
since unions can use different sized objects to overlap the same storage, it
is necessary to reduce references to the same common unit of the smallest
storage possible -- either bytes or (if bit fields are to be supported for
dependence testing) bits. If a structure element can be referenced via a
union as both a byte array and a integer array, then the 4’th element of the
byte array does conflict with the 1’st element of the integer array,
although a naive implementation would not detect that. The easiest way
to manage that is to decompose the integer reference into 4 one-byte ref-
erences, testing each.

12.2.4 Loops

While C contains a “for” loop, its use is far less restricted than a corre-
sponding Fortran DO loop. In C, a “for” loop can have jumps into its
body; the induction variable (if there even is an induction variable) can be
modified in the body of the loop; the loop increment value may be
changed within the loop; and the conditions controlling the initiation,
increment, and termination of the loop have essentially no constraints on
their form. In other words, someone who expects to be able to look at an

Other Applications of Dependence

700 ADVANCED COMPILING FOR HIGH PERFORMANCE

arbitrary C “for” loop and immediately uncover a loop variable, a starting
value, an ending value, and a concrete increment is going to be disap-
pointed. Because of this lack of constraint, trying to vectorize C “for”
loops directly is generally not worthwhile. For that matter, having a sepa-
rate representation in the intermediate language for “for” loops is also not
worthwhile. Front ends can easily translate incoming “for” loops into a
“while” loop representation, and since analysis is required anyway to
determine whether loops are viable as DO loops, having a single “while”
loop format simplifies the analysis and transformation.

In order to be rewritten as a DO loop, a “while” loop must meet the fol-
lowing conditions:

1. It must have one clearly identifiable induction variable.

2. That variable must be initialized with the same value on all paths into
the loop.

3. The variable must have one and only one increment within the loop.

4. That increment must be executed on every iteration through the loop;
there can be no paths that bypass the increment.

5. The termination condition in the “while” loop must match that
expected by a DO loop.

6. There can be no jumps from outside the body of the “while” loop into
the body.

Obviously, determining whether a loop meets these conditions is not
something that can be done with simple pattern matching, but instead
requires a combination of control and data analysis. Items 2 and 4 require
both data flow analysis in order to identify the increment locations as
well as control flow analysis to ensure that assignments do dominate the
execution of the loop header. Item 6 requires a simple check of the con-
trol flow graph. The other items require some amount of data flow analy-
sis for locating the appropriate assignments as well as pattern matching to
ensure that the assignments meet the requirements. The quick summary
is that “for” loops cannot be converted into DO loops prior to building up
scalar data flow information on the program. While somewhat compli-
cated, this conversion pass can be relatively easily inserted into the opti-
mization flow described earlier without too many contortions.

12.2.5 Scoping and Statics

C’s scoping rules and support of file-static variables in conjunction with
the address operator also create extra aliasing problems that must be con-
sidered. The scoping rules generally get handled by the front end with the

Optimizing C

Chapter Draft of February 8, 2001 701

creation of unique symbols for variables that have the same name but lie
within different scopes. If that approach is taken, then such variables are
correctly handled by the remainder of the dependence testing framework
with no modifications. However, it is worth noting that users frequently
misuse such variables in a “use before def” fashion. In those cases, opti-
mization may often change the values seen in undefined use, leading to
perceived compiler bugs which are in fact user problems. Explaining
those problems is difficult and well worth avoiding if possible.

Static variables have the same property as Fortran variables that they can
be modified by procedure calls. However, the rules are more complicated,
in that the variables can only be modified by certain procedures that can
see the declaration of the variable. Determining these can usually be done
easily from the scope information that should be present in a C symbol
table.

Statics in conjunction with the address operator create one nuance which
is often overlooked by compilers. When the address of a variable is
passed as a parameter into a procedure call, it is possible (and in areas
such as graphics and windowing systems, it is likely) that the procedure
stores the address inside a static or external variable. Once that happens,
any number of procedures can modify the contents of the original vari-
able by indirecting through the static variable. This case is easy to over-
look in an optimizer.

12.2.6 Dialect

The hardest single part of optimizing C is the typical dialect that has been
developed over 20 years of C usage. It is possible in C to write loops and
array references that are very Fortran-like in appearance, and with some
allowances for the greater range of aliasing permitted by C, such refer-
ence are easy to optimize and vectorize. However, the historical usage of
C has been such that no one writes with that style. More common is the
use of pointers, side effect operators, and abbreviated code as in the
example in Section 12.2.1. One of the major challenges of optimizing C
is to separate the regular, predictable computations that could have been
written in Fortran from the messy, junky, applications that have limited
potential for optimization regardless.

Most of the obscurity introduced by C “dialectic” usage results from
three constructs:

Other Applications of Dependence

702 ADVANCED COMPILING FOR HIGH PERFORMANCE

1. Use of pointers rather than arrays. C programmers have historically
strength reduced their own array references, using pointers to sweep
through arrays rather than subscripted references proper.

2. Use of side effect operators. Side effect operators save typing and at
the type of C’s invention, mapped directly to instructions on machines
in common use. By injecting changes in the middle of an expression,
they complicate the work of optimizers; additionally, they are often
used to strength reduce array references into pointers.

3. Use of address and dereference operators. Use of these operators fall
naturally out of the first two constructs.

Of the three constructs, side effect operators are the major concern. If the
intermediate representation is allowed to support a notation for side effect
operators, the work of the optimizer is enormously complicated. Before
an expression can be substituted forward, it has to be checked for side
effects; before two statements can be reordered, they have to be checked
for side effects, and so on. Remembering to do all these checks is diffi-
cult, and leads to tedious, hard-to-find bugs. A much simpler, more reli-
able optimizer results if the intermediate representation does not support
a notation for side effect operators, but instead forces their decomposition
into more atomic elements.

This was the approach taken in the Titan C compiler. The front end
removed all side effect operators during the parsing process, converting
operations such as

x++;

into

t = x;
x = t + 1;

with the temporary t being introduced to avoid some of the problems that
arise due to volatiles (Section 12.2.7.1), The intermediate form beyond
the parser allowed no way of changing values other than through assign-
ment statements.

With the removal of side effect operators from the intermediate represen-
tation, C’s traditional dialect can be canonicalized, although it requires
enhancements in a number of transformations, including:

1. Constant propagation. Because of the ambiguity that results from
pointer references, it’s essential to remove as many as possible. As
result, treating address operators as constants and propagating them

Optimizing C

Chapter Draft of February 8, 2001 703

where possible is essential; replacing a generic pointer inside a deref-
erence with an actual address enhances optimization opportunities
enormously.

2. Expression simplification and recognition. As noted in Section 12.2.3,
C’s dialect forces stronger recognition within expressions of which
variable is actually the “base variable”.

3. Conversion into array references. As part of the previous item, it is
useful to directly convert pointer references into array references
where possible. That requires not only good recognition but also
strengthened induction variable substitution.

4. Induction variable substitution. C’s natural dialect strength reduces
arrays references before the optimizer can see them, something which
has already been shown to thwart dependence analysis. Induction vari-
able substitution has to be enhanced to “unreduce” these. Note that
expanding out side effect operators also requires changes to induction
variable substitution, since these forms, which don’t fit “traditional”
auxiliary induction variables, have to be recognized and removed.

These enhancements are all straightforward, although induction variable
removal requires some significant improvement in terms of tracking and
incrementally updating use-def information for side effect variables. A
backtracking algorithm is also necessary in that context, as the form of C
side effect operators cause some induction variables to be “uncovered”
after others are removed.

12.2.7 Miscellaneous

In addition to the general hazards present in C, there are a number of spe-
cific hazards that arise from the history and general use of C in the past.
Unfortunately, with most of these, little if any optimization is possible.

12.2.7.1 Volatile
One of the constructs introduced into C from its operating system heri-
tage is the notion of “volatile” variables. Variables declared with the “vol-
atile” description in C are forbidden from being optimized; the
programmer has declared that such variables are special cases such as the
keyboard interface mentioned earlier in this chapter and that the compiler
should not optimize their use in any way. While such variables can be
handled individually inside an advanced optimization system, it’s proba-
bly not worth the effort to do so. Optimizing an entire function without
affecting individual volatile variables is a process that can be prone to
mistakes (for instance, the order of references of two different volatile
variables must be kept the same, so that code rearrangement or schedul-

Other Applications of Dependence

704 ADVANCED COMPILING FOR HIGH PERFORMANCE

ing may easily cause problems) and code that uses volatile variables is
usually neither a good candidate for optimization nor a desired target of
optimization. One prominent example from our past experience involved
a code fragment that initialized the vector unit for a machine. That code
had many ripe vector loops that vectorized optimally when optimized.
However, since the function of the code was to initialize the vector unit,
using the vector unit to effect the code was not only a bad thing to do, but
also a painful problem to track down. Most code that uses volatile vari-
ables falls into this category, and it’s usually better just to bypass these
functions with the optimizer.

12.2.7.2 Setjmp and Longjmp
Setjmp and longjmp are two special C library calls, usually implemented
directly in the compiler, that are primarily designed to facilitate error
handling. When setjmp is called, it causes the current context to be saved
in a buffer. Longjump can then be called from deeper in the calling chain;
when called with a context, it will immediately bypass the calling chain
and act as though the corresponding setjmp had just returned (with a spe-
cial return code indicating that the return is a longjmp return and not the
setjmp return). The pair setjmp-longjmp can be used when error condi-
tions are encountered deep in a call chain to avoid having to check return
codes in each routine in the call chain.

Setjmp and longjmp not only create unusual control flow; they also
require that the state of the computation be preserved at a setjmp call and
restored when longjmp is executed. Preserving and restoring the state is
difficult and complex when optimization is performed and variables are
allocated to registers. It is relatively simple when no optimization is per-
formed and variables are simply allocated to memory locations. As a
result, not optimizing routines containing setjmp calls is a reasonable,
simple, and effective strategy.

12.2.7.3 Varargs and stdargs
One handy facility in C and C++ is the ability to declare functions such
as “printf” that accept a variable number of arguments, depending on the
circumstances at the call site. The interface for using this facility is a set
of macros contained in the header files “varargs.h” (older version) and
“stdargs.h” (newer, more portable version). In either case, the macros
expand out to directives that tell the compiler to save all register parame-
ters to the stack in predetermined locations and that manipulate a pointer
variable through the stack to access the variable argument list. The
pointer variables is obviously an alias for many different parameters in
the program, and as such, is a complication for optimization. As such, not

Hardware Design

Chapter Draft of February 8, 2001 705

optimizing programs that contain a variable argument directive is general
a good strategy for compilers.

Unfortunately, this is not the end of the story. Machine architectures that
were prevalent during the early days of C use tended to have a predictable
stack layout and passed arguments only on the stack without using regis-
ters. Given this predictability, programmers often created their own vari-
able argument lists by taking the address of a passed-in parameter and
using it to access other parameters--essentially a home-brewed varargs.
As with regular varargs, the aliasing created by this access makes optimi-
zation essentially useless, and turning off optimizations in such proce-
dures is generally the most effective approach. If backwards
compatibility is important, then the compiler should also save all register
parameters to stack in the prolog to such procedures.

Note that even though varargs procedures make use of implicit knowl-
edge about the stack layout, correct handling of pointers during depen-
dence construction will enable correct optimization of varargs functions.
However, the resulting dependence graph will most likely be large and
complex, inhibiting most optimization, and even in the best case such
functions can usually be only slightly optimized. As a result, an optimizer
is usually better off ignoring such procedures and focusing its time and
effort on procedures that will yield more optimization with less effort.

12.2.8 Summary

C presents a lot of challenges with respect to advanced optimization,
including the use of lots of small procedures, the dialect and lack of alias-
ing restrictions, and side effect operators. Fortunately, however, the
framework which has been presented in this book has been adapted to C
successfully before, demonstrating most importantly that optimization
can be a function of the compiler proper that is not necessarily tied to the
input language.

12.3 Hardware Design

12.3.1 Overview

As is the case with many disciplines that have become automated, hard-
ware design has evolved radically over the past two decades. In the early
80’s, hardware design was typically done at the gate or transistor level
with designers explicitly specifying gates and connecting wires using
graphical entry. Today, most hardware design is language-based. Design-

Other Applications of Dependence

706 ADVANCED COMPILING FOR HIGH PERFORMANCE

ers textually describe hardware in languages that are similar to those used
to develop software. The abstraction level of the description can vary
over a wide range: at the lowest levels, designers still specify gates and
connections (usually by listing all connections in a netlist format), while
at the highest levels, designers specify operations such as addition and
multiplication, relying on tools to substitute in the appropriate gates. The
level of abstraction that is suitable for a given design depends on a num-
ber of factors, including the criticality of time, area, and power con-
straints, the comfort level of the designer, time-to-market considerations,
and the implementation process that will be used to fabricate the design.
Regardless of all other factors, however, the level of design abstraction
has been in general moving away from detailed implementation towards
behavioral specification. A key factor in enabling and continuing that
trend is the ability of compiler technology to support efficient implemen-
tations from high level specifications.

Hardware design is commonly classified into four levels of design
abstraction: circuit level (or more commonly today, the physical level),
logic level, register transfer level (RTL), and system level. At the circuit
level, designs are usually expressed in terms of schematic diagrams and
are composed of transistors, capacitors, and resistors. Physical layout
information is also important at this level. At the logic level, designs are
specified in terms of boolean equations; the level of implementation is
gates and flip-flops. Even though logic-level designs are specified in
terms of gates, the gates that are implemented in silicon are often differ-
ent from those specified in the design. The difference arises because tech-
nology libraries do not implement a common set of functionality across
different technologies. Thus, if a design that specifies an AND gate but
uses a technology library that does not provide AND gates, that gate will
have to be converted into a NAND and a NOT gate (or some other logi-
cally equivalent set of gates). Technology mapping is the process of doing
that mapping, and technology mappers may also optimize the result gates
for timing, area, or power. RTL designs specify control state transitions
and data transfers between registers in terms of arithmetic units, multi-
plexers (MUXs), registers1, and memories. These designs usually specify
a state machine that controls execution of a number of functional units,
registers to hold values across clock cycle, and a notion of timing in

1. “Registers” as used in this section does not mean the high speed access registers in a
processor. Instead, the term “register” in hardware refers to a storage element which
retains a value through a clock cycle, as opposed to a wire (or not), which passes a value
only when driven.

Hardware Design

Chapter Draft of February 8, 2001 707

terms of clock cycles per state. Synthesis is the process of converting an
RTL design into a functionally equivalent set of gates and flip-flops, and
optimizing those gates for a specified technology. Finally system level
design specified a design more by its behavior than by its implementa-
tion. Variables are used, but they are not bound to either registers or
memories; timing is specified only to the degree of the order of variable
assignments are executed. System level designs are converted into imple-
mentable designs by behavioral synthesis. Behavioral synthesis chooses
resources (arithmetic units -- a half adder, a ripple-carry adder, a carry-
save adder, etc.) for implementing the design, schedules operations onto
the resources, and imposes a notion of timing onto the behavior.

As is probably evident from the discussion above, behavioral synthesis is
really a compilation problem, and synthesis is close to compilation. Com-
pilers translate a problem description from a representation that is at a
human level down to a representation that is executable on a given archi-
tecture. The resources available for the compiler are the processors, regis-
ters, and memories of the given architecture; the compiler schedules
those operations onto those resources using the instruction set of the
machine. Behavioral synthesis does much the same process, except that
is not given a target architecture or set of resources ahead of time; it must
choose resources, balancing the area and power required by extra
resources against the time saved. Once the resources are chosen, the
problems of allocation and scheduling are similar in both domains.

Regardless of the level of abstraction of the design, hardware develop-
ment always involves two fundamental tasks: verification and implemen-
tation, more typically called simulation and synthesis. Verification is the
process of ensuring that the description of desired hardware behavior
does in fact do what it is intended to do. Verification is most often accom-
plished by simulating the hardware description in software on a general
purpose computer. Implementation is the process of automatically con-
verting the hardware description into a form that can be masked into sili-
con. Since RTL is the most commonly used level of abstraction today,
implementation generally involves the process of synthesis.

Simulators and synthesizers (particularly higher level synthesizers) are
basically compilers at heart. And in both cases, optimization is a critical
component of the process. Since simulation involves executing a descrip-
tion in software of a hardware device on a computer, it is inherently
slower (by orders of magnitude) than the device proper. Unlike software,
once its manufactured, hardware is immutable; as a result, there are never
enough simulation cycles available. Similarly, the cycle time, area, and

Other Applications of Dependence

708 ADVANCED COMPILING FOR HIGH PERFORMANCE

power are critical aspects of hardware devices, and any transformation
that reduces the time, area, or power of the final implementation
increases the value of the resulting device. As a result, optimization is a
critical aspect of tools supporting hardware design.

The remainder of this section details some applications of dependence
analysis and advanced optimizations to hardware simulation and synthe-
sis. Before describing any optimizations proper, it is first necessary to
briefly tour hardware description languages to provide a common basis
for introducing optimizations. After that, the basic ideas behind simula-
tion transformations are presented, followed by transformations for
higher level synthesis.

12.3.2 Hardware Description Languages

There are two primary hardware description languages (HDLs) in use
today: Verilog and VHDL. Verilog first came into use in the early 1980’s,
and at the coarsest level, can be viewed as C extended with extra primi-
tives necessary to describe hardware. While it was initially developed and
marketed primarily by one company, the IEEE produced a standard for
the language in 1994, and it is now supported by a number of vendors.
VHDL, on the other hand, is extremely similar to Ada and can be viewed
as Ada extended with extra primitives to describe hardware. As with Ada,
VHDL was developed by committee, and has been supported by a num-
ber of vendors since its inception in 1984.

Because Verilog is so similar to C which has been used in other sections
of this book, Verilog will be used to express examples written later in this
section. The primitives and extensions used for hardware description pro-
vide the same basic functionality in both languages. In Verilog, these
extensions include:

1. Multi-valued logic. Unlike C, where bits can only take the binary val-
ues 0 and 1, bits in Verilog can take on four values: 0, 1, x, and z. The
extra values are used to represent unknown or conflicting hardware
states: “x” indicates a value in an unknown state (either 0 or 1), while
“z” typically indicates a conflict in driving a bus. For example, divi-
sion by zero in Verilog produces x as a result. All higher level data
types (such as the Verilog “integer” which corresponds to a C “int”)
are vectors of these multivalued bits (also called “scalars”). As a
result, simulation cannot always directly map arithmetic operations to
existing machine instructions. An addition of two integers in Verilog,
for instance, will result in x’s in the result if there are x’s in the inputs,
and thus cannot be directly executed as a straightforward add.

Hardware Design

Chapter Draft of February 8, 2001 709

2. Reactivity. One of the characteristics of hardware is that changes in a
signals value are propagated automatically to the devices it’s con-
nected to in a very dataflow like manner. This is obviously in stark
contrast to C, which relies on a strictly procedural execution model.
Reactive behavior is described in Verilog primarily by a combination
of the “always” statement and the “@” operators. The “always” state-
ment is essentially a “forever” statement; it causes a block to be con-
tinually executed. The “@” operator blocks execution until on of its
operands makes a specified change in value. When combined, as in

always @(b or c)
a = b + c;

the result is to cause a new result value to be computed whenever any
of the inputs change. In the example, any change to b or c automati-
cally causes a to be updated with the new sum. There are other ways
of representing this type of behavior in Verilog, but they can all be
canonically reduced to this form.

3. Objects. In C, functions are one of the main mechanisms for abstract-
ing behavior and parameters are the main methods of communicating
information into and out of functions. Unfortunately, this functionality
is not powerful enough to adequately describe hardware. The object of
interest in hardware is a section of a chip; because it is a specific area
of silicon, it has its own registers and state. These semantics are signif-
icantly different from those of a function call--function calls represent
a single code location that may retain state from calls from different
locations. Since each instance of the same hardware object is a com-
pletely separate area on the chip, no state can be (or at least should be)
retained between different objects, and each object retains its own
state between calls. Because of this difference, the primary object for
data encapsulation in Verilog is the “module”, which is similar in
many ways to C++ classes.

4. Connectivity. In addition to requiring modules to represent different
instances on a chip, hardware also requires connections into objects.
Parameters to C functions are transitory mechanisms for briefly pass-
ing information in and out of functions; modules are going to have
physical wires connecting them to each other that continuously pass
information in and out. Verilog supports this functionality with “ports”
to a module: an input port continually passes information in from an
outside source while an output port continually passes information out
to an outside target. Thus, if we were to encapsulate the adder pre-
sented previously into a module, we would make the following decla-
ration:

Other Applications of Dependence

710 ADVANCED COMPILING FOR HIGH PERFORMANCE

module add(a,b,c)
output a;
input b, c;
integer a,b,c;

always @(b or c)
a = b + c;

endmodule

This module declares an object that performs 32-bit addition (integers
are always 32 bits wide in Verilog). Any changes to the variables con-
nected to the input ports would automatically update the variable con-
nected to the output port with the new sum.

5. Instantiation. Declaring objects is of little use unless there is a way of
creating instances of objects. In Verilog (as in C++) a new instance of
an object is created by instantiation. Unlike C++, Verilog allows only
static (and not dynamic) instantiation of modules. Modules are instan-
tiated by declaring a new instance:

integer x,y,z;
add adder1(x,y,z);

This declaration creates a new adder called “adder1”. The variables
x,y, and z are connected to the ports a,b, and c in the module “add”, so
that any time y or z change in value, x will be invisibly updated to be
their new sum. Each instantiation of the module “add” corresponds to
a different location in silicon, so that internal variables to the module
(which are always declared static as opposed to automatic in Verilog)
are unique to each instantiation. Thus, each instance of the module
retains internal state between changes, but there is no preserved state
to the module declaration.

6. Vector operations. Given its scalar orientation and its view of other
data structures as being collections or vectors of scalars, it is very nat-
ural for Verilog to support simple vector operations. Single bits can be
extracted using the bit select operator (e.g. A[1]); vectors can be
extracted via part selects (e.g. A[3:4} -- no stride other than one is per-
mitted); and vectors can be concatenated together ({A[0], A[1:15]}
yields the leftmost 16 bits of A).

Verilog contains a number of other primitives and extensions for describ-
ing timing of operations and the context in which modules should be gen-
erated, but the features described above provide enough context for this
discussion. Verilog contains language support for all levels from the very
lowest (circuit) to the very highest level (system). Practically, however, it
tends to be used most often for gates and RTL. Circuit level tends to be

Hardware Design

Chapter Draft of February 8, 2001 711

too detailed for most designers, and the system level support in Verilog
gets clouded by the lower level support. For instance, the fact that all
variables are four-state leads to slower simulation at the system level,
where unknowns are typically unimportant.

From an optimization point of view, Verilog has a number of desirable
properties. First, there is essentially no aliasing in Verilog. Since compil-
ers have to be able to figure out where wires go if they’re going to gener-
ate hardware and connect it, the language definition has no way (outside
of one fairly explicit construct) to alias a value. Second, vectors are
extensively used in designs, and the language restricts the form of sub-
scripts to a form that permits easy analysis. Finally, due to historical rea-
sons, Verilog requires that the entire hardware design be presented to the
compiler at one time; separate compilation is not supported. As a result,
effective interprocedural analysis is possible in Verilog compilers.

However, Verilog (or more precisely hardware designs) also provide a
number of twists for optimizers. The first is the non-procedural continua-
tion semantics introduced by always blocks and the introduction of time.
Control flow no longer flows smoothly and predictably from basic block
to basic block. Instead, a change in one variable will trigger the activation
of another always block, which may in turn trigger other activations, and
so on. Second is a lack of loops. While Verilog does provide looping con-
structs as well as vectors, in practice loops are only used at the system
level. Looping constructs are executed at lower levels, but the loops are
implicitly represented through always blocks and the scheduler rather
than explicitly represented in the source. As a result, identifying repeated
parts of the computation is much more difficult than in procedural lan-
guages. Finally, there is the matter of size. Hardware designs are large,
and the requirement that the entire design be presented to the compiler at
one time has bad as well as good implications. Memory utilization and
compilation time are critical considerations for compilers and optimizers
in this area. Even a synthesizer that has had an anal focus on memory uti-
lization and compile time takes days and gigabytes to compile a mod-
estly-sized hardware design. A synthesize that has any sloppiness in these
areas will be unusable.

Given this introduction to Verilog and hardware designs, the following
sections will present some of the challenges faced in simulation and syn-
thesis and how optimization techniques such as dependence analysis can
be applied to help meet them.

Other Applications of Dependence

712 ADVANCED COMPILING FOR HIGH PERFORMANCE

12.3.3 Optimizing simulation

12.3.3.1 Philosophy
In simulation, the goal for the compiler (which is all a good simulator
really is) is to map the hardware description to the instruction set of the
processor on which the design is to be simulated. Described to this level
of detail, this problem is a straightforward compiler problem, and simula-
tion done only to this level of detail is not a difficult proposition. How-
ever, this level of detail completely misses the real problem in simulation
as well as the real opportunity for optimization. To see the real problem,
consider the following behavioral level adder:

module adder(a,b,c)
input b[0:3], c[0:3];
output a[0:3];
always @(b or c)

a = b + c;
endmodule

Given this input, a reasonable compiler should recognize that so long as
no unknowns are involved, the addition can be performed as a single
instruction on any machine that contains a 32 bit adder (as virtually all
machines today do) -- 28 bits of the result are unused, but the fastest exe-
cution is map the operation to a native add, with a preceding check that
there are no unknowns. Since unknowns generally should not appear in a
hardware design once it has gotten past reset conditions, in steady state
computation the operation will always be performed as the single addi-
tion.

However, this behavioral form is not the only one the adder may take. It
is also very likely that the simulator may be presented with

module adder(a,b,c)
input b[0:3], c[0:3];
output a[0:3];
wire carry;

add2 add_l(a[0:1],0,b[0:1],c[0:1],carry);
add2 add_r(a[2:3},carry,b[2:3],c[2:3],0);

endmodule

module add2(sum, c_out, op1, op2, c_in)
output sum[0:1], c_out;
input op1[0:1], op2[0:1], c_in;
wire carry;

Hardware Design

Chapter Draft of February 8, 2001 713

add1 add_r(sum[0],carry,op1[0],
op2[0],c_in);

add1 add_l(sum[1],c_out,op1[1],
op2[1],carry);

endmodule

module add1(sum, c_out, op1, op2, c_in)
input op1, op2, c_in;
output sum c_out;
always @(op1 or op2 or c_in) begin

sum = op1 ^ op2 ^ c_in;
c_out = (op1 & op2) | (op2 & c_in) |

(c_in & op1);
end

endmodule

This fragment performs exactly the same function as the behavioral level
adder. However, a direct mapping of this to typical instruction sets is
going to simulate more slowly than the first example. The reason is the
level of detail. The behavioral example maps directly to the single add
instruction; the lower level example explicitly states all the details going
on in the add instruction (which is of course required in hardware). A
straightforward simulation is going to execute all of the detail in different
machine instructions rather than recognizing that the entire fragment can
be pulled into one machine instruction.

These two fragments illustrate the real crux of optimizing hardware sim-
ulations. Outside of taking care of the details of good scheduling and use
of two-state rather than four-state logic where possible, compiling behav-
ioral level code for simulation is pretty much a standard compiler prob-
lem: the level of the code is relatively close to the level of the target
instruction set. As a result, simulation of behavioral designs is fast -- typ-
ically close to the speed of compiled code. Lower level designs however,
insert details that consume simulation time and obscure the behavioral
level functionality. As a result, simulation speed is very slow. The key to
obtaining optimal simulation speeds is to recognize the intended func-
tionality in lower level designs and map it to the less detailed functional-
ity available in machine instruction sets.

Another way of saying this is that simulation speed is related to the level
of abstraction of the simulated design more than anything else -- the
higher the level, the faster the simulation. Given that higher level designs
tend to simulate efficiently given reasonable optimization techniques, one
of the prime optimization techniques for a good simulator is to rederive
or abstract the higher level functionality from a lower level design. Doing

Other Applications of Dependence

714 ADVANCED COMPILING FOR HIGH PERFORMANCE

so enables good simulation performance at all design levels. Performance
across all levels is important, because even though designers are moving
up in the level of abstraction at which they design, designs are often sim-
ulated after synthesis. Hardware engineers, being justifiably paranoid,
quite often simulate synthesis results to ensure that the synthesis tools
have not made a mistake. Also, the nature of hardware often forces some
lower level decisions. For instance, hardware is eventually implemented
as single bit gates, even though in conglomeration a group of gates may
compose an adder. As a result, descriptions similar to the second example
are not unusual; when expressed that way, it is easy to swap out the low-
est level modules for a new technology.

Fortunately, the techniques introduced in earlier chapters form a good
basis for rederiving the higher level functionality of lower level designs,
as well as improving the scheduling of designs at lower or higher levels.
The next few sections illustrate how those techniques can be used to
improve simulation.

12.3.3.2 Inlining modules
As should be obvious from the examples above, a fundamental optimiza-
tion required for simulators is the ability to inline modules. While data
encapsulation is a good programming technique for hiding unnecessary
details from programmers, it has the side effect of hiding information
necessary for optimization from the compiler. This is particularly true
when the goal is to rederive basic functionality of an operation that has
been divided into a number of modules.

Fortunately, HDLs have two properties that make module inlining a rela-
tively simple process:

1. The entire design is presented to the simulator at one time. This means
that the source to all modules can always be found.

2. Recursion is not permitted (recursive hardware is a somewhat fright-
ening thought). As a result, a topological ordering can always be
imposed on the instance graph (the “module” equivalent of a call
graph) and inlining can be performed in linear time with no fear of
infinite recursion.

Deciding when to stop inlining requires some careful thought, since it is
usually fruitless to inline up above the level of functional units.

Revisiting the second example again, here is the result after inlining all
modules:

Hardware Design

Chapter Draft of February 8, 2001 715

module adder(a,b,c)
input b[0:3], c[0:3];
output a[0:3];
wire carry, temp, temp1;

always @(b[1] or c[1] or carry) begin
a[1] = b[1] ^ c[1] ^ carry;
temp = (b[1] & c[1]) | (c[1] & carry) | (carry &

b[1]);
end
always @(b[0] or c[0] or temp) begin

a[0] = b[0] ^ c[0] ^ temp;
0 = (b[0] & c[0]) | (c[0] & temp) | (temp & b[0]);

end

always @(b[3] or c[3] or 0) begin
a[3] = b[3] ^ c[3] ^ 0;
temp1 = (b[3] & c[3]) | (c[3] & 0) | (0 & b[3]);

end
always @(b[2] or c[2] or temp1) begin

a[2] = b[2] ^ c[2] ^ temp1;
carry = (b[2] & c[2]) | (c[2] & temp1) | (temp1 &

b[2]);
end

endmodule

12.3.3.3 Execution ordering
A familiar refrain in this book has been the statement that the order in
which statements are executed can have a dramatic effect on the effi-
ciency with which they are executed. This statement is as true in the
world of hardware simulation as it is anywhere else. Consider, for
instance, the inlined example in the previous section, and assume that the
value of c changes from 0 to 1 and that b has the binary value 1111. All of
the result bits are obviously going to ripple in a change from 1 to 0. Hard-
ware for this simple adder will effect the change efficiently: the change in
c causes the third always block to activate. Its execution causes the value
of temp1 to change from 0 to 1. This change, in turn, activates the fourth
block, which changes the value of carry from 0 to 1. This process contin-
ues, next activating the first block and finally the second. The triggering
of current flows in real hardware efficiently follows the ideal activation
model.

While resulting hardware will execute efficiently, a software simulation
of the hardware may not execute so efficiently. The key to efficiency in
the hardware comes from triggering on changes in individual bits, which

Other Applications of Dependence

716 ADVANCED COMPILING FOR HIGH PERFORMANCE

occurs naturally given the wires connecting up the gates of the adder.
Software cannot always afford the convenience of tracking individual
bits, however, as doing so can require an inordinate amount of memory.
Instead, a software simulator may be forced in some cases to associate
one “change” bit with each entity. For instance in the example above,
rather than having individual change bits for a[0], a[1], a[2], and a[3], a
simulator may well have just one bit that represents any change in the
value of a, ignoring the specific bit that changes. The situation is equiva-
lent to data flow analysis in compilers, where arrays are not “killed” and
where a change in value of any element of the array is indicated as a
change in all elements of the array.

When individual change bits are not possible, execution ordering
becomes a major factor in the simulation efficiency of the adder above.
Consider the execution for the same input changes as before with change
bits only for the array entities, and not their individual elements. The
change in c, even though only one bit, causes all the always blocks to be
scheduled. Assuming they execute in lexical order, the first and second
always blocks will execute, but cause no change in outputs. When the
third block executes, it will cause a[3] to change from 1 to 0 and set the
carry bit “temp1” to be 1, activating changes based on it. The only block
dependent on temp1 is block 4, which was already scheduled for execu-
tion from the original change. Block 4 then executes, causing a[2] and
carry to change, which reactivates block 1. Block 1 will then ripple the
carry through block 2, and the result will have stabilized. This ordering is
clearly not as efficient as the underlying hardware, and can be quadratic
in the worst case (particularly if the carry bits are represented in a single
array rather than as individual variables).

The solution for efficiency here is obvious: execute the blocks in a topo-
logical order based on the dependence graph of individual array ele-
ments. When the blocks are reordered topologically

module adder(a,b,c)
input b[0:3], c[0:3];
output a[0:3];
wire carry, temp, temp1;

always @(b[3] or c[3] or 0) begin
a[3] = b[3] ^ c[3] ^ 0;
temp1 = (b[3] & c[3]) | (c[3] & 0) | (0 & b[3]);

end
always @(b[2] or c[2] or temp1) begin

a[2] = b[2] ^ c[2] ^ temp1;
carry = (b[2] & c[2]) | (c[2] & temp1) | (temp1 &

Hardware Design

Chapter Draft of February 8, 2001 717

b[2]);
end
always @(b[1] or c[1] or carry) begin

a[1] = b[1] ^ c[1] ^ carry;
temp = (b[1] & c[1]) | (c[1] & carry) | (carry &

b[1]);
end
always @(b[0] or c[0] or temp) begin

a[0] = b[0] ^ c[0] ^ temp;
0 = (b[0] & c[0]) | (c[0] & temp) | (temp & b[0]);

end

endmodule

data changes flow through the block in the same direction as the lexical
execution. The result is simulation that is as efficient as having individual
change bits, but without the memory overhead.

Since explicit loops are nonexistent in simulations at this level and there
is no aliasing, computing the dependence graph is a simple proposition
based on the index values. However, the topological sort is not com-
pletely straightforward, as the dependence graph may contain cycles. Just
as with Fortran call graphs, these cycles should only be static (a dynamic
cycle implies very unsettled hardware). As a result, a procedure similar to
the parallel codegen algorithm is necessary for ordering the blocks. This
procedure is somewhat more complicated than codegen. With codegen,
the properties of loop-carried dependences ensure that recursive calls will
break all cycles. There is no analogous concept with hardware. As a
result, picking the appropriate edges to break the cycles is a sophisticated
process and is the key part of the algorithm.

12.3.3.4 Dynamic versus static scheduling
As is evident in the previous section, one of the key issues in hardware
simulation is scheduling. Emulating hardware’s natural dataflow execu-
tion efficiently in deterministic software involves difficult trade-offs that
are hard to evaluate a priori. The most difficult trade-off is that of
dynamic versus static scheduling.

The most natural way of simulating hardware’s dataflow execution is to
dynamically track changes in values and propagate those changes along
the connected wires to affected computation units. This approach is
known as dynamic scheduling. If this model is adopted, every time the
simulator computes a value for an object, it compares it to the existing
value. If the object has changed in value, the simulator schedules all con-
nected objects to be updated with the new value. If the object’s value is

Other Applications of Dependence

718 ADVANCED COMPILING FOR HIGH PERFORMANCE

unchanged, the simulator does nothing. As is evident in the previous
example, the advantages of such an approach (so long as it computes
changes at the bit level) are that it exactly mimics hardware execution
and computes only changed values. The disadvantage is the overhead of
the change checks. This overhead can dominate the computation time,
particularly when the checks are performed on every bit.

An alternative that avoids the overhead of change checks is to statically
schedule simulation, following the topological mode, introduced in the
previous section. Under this model, the simulator never checks whether
objects change in value; instead, it blindly (or obliviously, the more com-
mon phrase used technically) sweeps through the simulation computing
values for all objects regardless of whether there are actually any changes
to propagate. The advantage is that all change checks are avoided. Purely
static scheduling can only be used with designs that introduce no evalua-
tion cycles in the dependence graph. While this restriction eliminates
some designs from consideration, the design style that it enforces is one
that is generally supported by hardware designers.

The key determinant as to which of dynamic or static scheduling is the
more efficient approach is the level of circuit activity. If relatively few
elements of a circuit change during each time step, then the change
checks scheduled dynamically tend to quickly locate the changed ele-
ments and bring the circuit to quiescence without evaluating unchanged
areas of the circuit. On the other hand, if the circuit is highly active,
oblivious updating all portions of the circuit is more efficient than per-
forming change checks that are almost always true. It is difficult to know
in advance whether a circuit (or whether portions of a circuit) are highly
active or dormant for a particular set of test vectors, making it difficult to
know whether static or dynamic scheduling will be the more effective
approach. Regardless of which is the more effective approach for a spe-
cific design, using static analysis to improve the order in which things are
dynamically scheduled always improves simulation performance, usually
by factors of 4-5x.

Our experience has shown that in hardware simulation (as well as in par-
allel execution) using dynamically scheduling guided by static analysis
provides the best results in general. The remainder of this section
assumes such a scheduling algorithm.

12.3.3.5 Fusing always blocks
Given that one of the major overheads in dynamic scheduling is evalua-
tion and propagation of change checks, one of the simplest optimizations

Hardware Design

Chapter Draft of February 8, 2001 719

to perform is fusing always blocks that have the same triggering condi-
tions. Fusing blocks increases the amount of computation performed per
unit of overhead, resulting in more efficient simulation.

Fusing always blocks is particularly important in synchronous designs,
where events are triggered off changes in a system clock. Most modules
in a synchronous design take a form similar to

module add1(sum, c_out, op1, op2, c_in, clk)
input op1, op2, c_in, clk;
output sum c_out;
always @(posedge(clk)) begin

sum = op1 ^ op2 ^ c_in;
c_out = (op1 & op2) | (op2 & c_in) |

(c_in & op1);
end

endmodule

The rising edge of the clock is used to update the sum, regardless of
changes in input values. When this synchronous adder is used in place of
the asynchronous (triggers only according to input values independent of
any system clock) adder listed previously to create a 4-bit adder, the fol-
lowing results after module inlining:

module adder(a,b,c, clk)
input b[0:3], c[0:3], clk;
output a[0:3];
wire carry, temp, temp1;

always @(posedge(clk)) begin
a[3] = b[3] ^ c[3] ^ 0;
temp1 = (b[3] & c[3]) | (c[3] & 0) | (0 & b[3]);

end
always @(posedge(clk)) begin

a[2] = b[2] ^ c[2] ^ temp1;
carry = (b[2] & c[2]) | (c[2] & temp1) | (temp1 &

b[2]);
end
always @(posedge(clk)) begin

a[1] = b[1] ^ c[1] ^ carry;
temp = (b[1] & c[1]) | (c[1] & carry) | (carry &

b[1]);
end
always @(posedge(clk)) begin

a[0] = b[0] ^ c[0] ^ temp;
0 = (b[0] & c[0]) | (c[0] & temp) | (temp & b[0]);

end

endmodule

Other Applications of Dependence

720 ADVANCED COMPILING FOR HIGH PERFORMANCE

Since the blocks all trigger off the same condition, this can be more effi-
ciently executed as:

module adder(a,b,c, clk)
input b[0:3], c[0:3], clk;
output a[0:3];
wire carry, temp, temp1;

always @(posedge(clk)) begin
a[3] = b[3] ^ c[3] ^ 0;
temp1 = (b[3] & c[3]) | (c[3] & 0) | (0 & b[3]);
a[2] = b[2] ^ c[2] ^ temp1;
carry = (b[2] & c[2]) | (c[2] & temp1) | (temp1 &

b[2]);
a[1] = b[1] ^ c[1] ^ carry;
temp = (b[1] & c[1]) | (c[1] & carry) | (carry &

b[1]);
a[0] = b[0] ^ c[0] ^ temp;
0 = (b[0] & c[0]) | (c[0] & temp) | (temp & b[0]);

end

endmodule

invoking the overhead of scheduling a block once rather than four times.
While the overhead of scheduling a block is not that high, avoiding it
enough times can lead to a significant savings in simulation time.

In general, an always block can be fused into a prior block when the con-
dition controlling the execution of the prior block implies that the condi-
tion of the fused block will be true. This assumes that the condition of the
prior block is used to control execution of the fused block, and permits
fusion in such common cases as

always @(posedge(clk)) begin
blk1

end
always @(posedge(reset) or posedge(clk)) begin

blk2
end

Fusion in this case requires some code duplication, yielding the following
as the fused result.

always @(posedge(clk)) begin
blk1
blk2

end
always @(posedge(reset)) begin

blk2

Hardware Design

Chapter Draft of February 8, 2001 721

end

While fusing always blocks with common or implied controlling condi-
tions is a straightforward optimization, it is not quite so straightforward
as it initially appears. The primary problem involves the nondeterminism
inherent in parallel languages. Fusing always blocks can change the out-
put of a design. Even though the change is valid given the semantics of
the language, seeing program output change under optimization does not
usually make for a happy designer. While many output changes such as
this indicate buggy designs which should be fixed, others are annoyances
that are known by designers to be OK. Simulators cannot easily distin-
guish between the two cases, making the safest course being one that
avoids any output changes.

To see how block fusion can change a design’s output, consider again the
original synchronous adder with all one bit adders inlined. Without
fusion, the final result depends on the order in which the always blocks
are triggered. If triggered in the order in which they are lexically listed in
the program, the simulation will produce the expected results for an
adder and fusion does not change the results. If they are triggered in
reverse lexical order (the order in which blocks are triggered in this case
is not guaranteed by Verilog, and the design is in this case incorrect), then
the original design does not produce correct results for an adder until 3
clocks after inputs change, since it takes that long for the carry to ripple
from the first bit to the last bit. However, fusion will change the results,
by combining the individual blocks (where execution order is indetermi-
nate) into one block (where execution order is determinate). This change
can be avoided by not fusing blocks that are connected by true depen-
dence edges and by not fusing blocks that will result in a block moving
across a dependence edge into it.

Synchronous logic usually contains a reset condition as well as a clock
edge controlling its always blocks. An extremely common template is

always @(posedge(clk) or reset) begin
if reset then

// Code to perform hardware reset
else

// True block functionality
end

Since reset code is rarely executed, the block is almost always taken on
the posedge condition. In cases like this, it is always beneficial to split the
block into two:

Other Applications of Dependence

722 ADVANCED COMPILING FOR HIGH PERFORMANCE

always @(posedge(clk)) begin
if reset then

// Code to perform hardware reset
else

// True block functionality
end
always @(reset) begin

if reset then
// Code to perform hardware reset

else
// True block functionality

end

and then, recognizing that the changed controls will always imply that
only one branch is executed in each block,

always @(posedge(clk)) begin
// True block functionality

end
always @(reset) begin

// Code to perform hardware reset
end

Block fusion after this will pull all the reset code into one block which is
rarely executed and all the typical code into a block which is commonly
executed.

12.3.3.6 Vectorizing always blocks
In gate level simulation, a major goal of the simulator is where possible
to recover the higher level abstraction that was the original intent of the
gates to be simulated. Given that one of the main transformations done by
hardware design tools and hardware designers is breaking the abstract
operations done into single bit operations, an important transformation
for a hardware simulator is to regroup those operations back together.
This regrouping is nothing more than vectorization.

While vectorization is an important optimization for hardware simula-
tion, the way in which it is performed differs from the techniques used in
compilers. The reason comes from the nature of hardware description and
the input language. Consider again the inlined asynchronous adder pre-
sented earlier:

module adder(a,b,c)
input b[0:3], c[0:3];
output a[0:3];
wire carry, temp, temp1;

always @(b[3] or c[3] or 0) begin

Hardware Design

Chapter Draft of February 8, 2001 723

a[3] = b[3] ^ c[3] ^ 0;
temp1 = (b[3] & c[3]) | (c[3] & 0) | (0 & b[3]);

end
always @(b[2] or c[2] or temp1) begin

a[2] = b[2] ^ c[2] ^ temp1;
carry = (b[2] & c[2]) | (c[2] & temp1) | (temp1 &

b[2]);
end
always @(b[1] or c[1] or carry) begin

a[1] = b[1] ^ c[1] ^ carry;
temp = (b[1] & c[1]) | (c[1] & carry) | (carry &

b[1]);
end
always @(b[0] or c[0] or temp) begin

a[0] = b[0] ^ c[0] ^ temp;
0 = (b[0] & c[0]) | (c[0] & temp) | (temp & b[0]);

end

endmodule

This version has been slightly optimized by propagating in the carry-in
value of 0 and noting that the carry-out bit is not used. If we remove those
optimizations and do scalar expansion on the individual elements repre-
senting the carries:

module adder(a,b,c)
input b[0:3], c[0:3];
output a[0:3];
wire carry[0:3]

always @(b[3] or c[3] or carry[3]) begin
a[3] = b[3] ^ c[3] ^ carry[3];
carry[2] = (b[3] & c[3]) | (c[3] & carry[3]) |

(carry[3] & b[3]);
end
always @(b[2] or c[2] or carry[2]) begin

a[2] = b[2] ^ c[2] ^ carry[2];
carry[1] = (b[2] & c[2]) | (c[2] & carry[2]) |

(carry[2] & b[2]);
end
always @(b[1] or c[1] or carry[1]) begin

a[1] = b[1] ^ c[1] ^ carry[1];
carry[0] = (b[1] & c[1]) | (c[1] & carry[1]) |

(carry[1] & b[1]);
end
always @(b[0] or c[0] or carry[0]) begin

a[0] = b[0] ^ c[0] ^ carry[0];
cout = (b[0] & c[0]) | (c[0] & carry[0]) |

(carry[0] & b[0]);

Other Applications of Dependence

724 ADVANCED COMPILING FOR HIGH PERFORMANCE

end

endmodule

Each block is now an exact replicate of the same thing, but with slightly
different parameters. This is to be expected, since the blocks were created
by inlining the same module into different contexts. While there are
dependences between the blocks, the blocks can be merged into

always @(b[3] or c[3] or carry[3] or b[2] or c[2]
or carry[2] or b[1] or c[1] or carry[1] or b[0] or c[0] or
carry[0]) begin

a[3] = b[3] ^ c[3] ^ carry[3];
carry[2] = (b[3] & c[3]) | (c[3] & carry[3]) |

(carry[3] & b[3]);
a[2] = b[2] ^ c[2] ^ carry[2];
carry[1] = (b[2] & c[2]) | (c[2] & carry[2]) |

(carry[2] & b[2]);
a[1] = b[1] ^ c[1] ^ carry[1];
carry[0] = (b[1] & c[1]) | (c[1] & carry[1]) |

(carry[1] & b[1]);
a[0] = b[0] ^ c[0] ^ carry[0];
cout = (b[0] & c[0]) | (c[0] & carry[0]) |

(carry[0] & b[0]);
end

Following the dependences, these can be rearranged into

always @(b[3] or c[3] or carry[3] or b[2] or c[2]
or carry[2] or b[1] or c[1] or carry[1] or b[0] or c[0] or
carry[0]) begin

carry[2] = (b[3] & c[3]) | (c[3] & carry[3]) |
(carry[3] & b[3]);

carry[1] = (b[2] & c[2]) | (c[2] & carry[2]) |
(carry[2] & b[2]);

carry[0] = (b[1] & c[1]) | (c[1] & carry[1]) |
(carry[1] & b[1]);

cout = (b[0] & c[0]) | (c[0] & carry[0]) |
(carry[0] & b[0]);

a[3] = b[3] ^ c[3] ^ carry[3];
a[2] = b[2] ^ c[2] ^ carry[2];
a[1] = b[1] ^ c[1] ^ carry[1];
a[0] = b[0] ^ c[0] ^ carry[0];

end

and given that there are no dependences among the last four statements,
this can be further reduced into

always @(b[3] or c[3] or carry[3] or b[2] or c[2]

Hardware Design

Chapter Draft of February 8, 2001 725

or carry[2] or b[1] or c[1] or carry[1] or b[0] or c[0] or
carry[0]) begin

carry[2] = (b[3] & c[3]) | (c[3] & carry[3]) |
(carry[3] & b[3]);

carry[1] = (b[2] & c[2]) | (c[2] & carry[2]) |
(carry[2] & b[2]);

carry[0] = (b[1] & c[1]) | (c[1] & carry[1]) |
(carry[1] & b[1]);

cout = (b[0] & c[0]) | (c[0] & carry[0]) |
(carry[0] & b[0]);

a = b ^ c ^ carry;
end

At this point, the original addition has been not been fully recovered, but
the exclusive or producing the sum can be done as a single, unmasked
machine instruction, rather than as a series of masked, individual instruc-
tions. This code will simulate fairly well because once it’s entered, it will
sweep through once to the end of the block; at the end of that sweep, all
variables will have their correct updated values and no other sweeps are
necessary. However, the bitwise operations computing the carry array
will be slow. For the average case execution, performance can probably
be enhanced by vectorizing the carry operations:

always @(b or c or carry) begin
carry[0:2] = (b[1:3] & c[1:3]) | (c[1:3] &

carry[1:3]) | (carry[1:3] & b[1:3]);
cout = (b[0] & c[0]) | (c[0] & carry[0]) |

(carry[0] & b[0]);
a = b ^ c ^ carry;

end

From a strict semantics point of view, this vectorization is incorrect.
However, in this context it is correct because the change propagations for
carry will cause the block to be reactivated until the fixed point value of
carry is reached. With some static control over the scheduling, this could
most efficiently be converted into

always @(b or c) begin
carry[0:2] = (b[1:3] & c[1:3]) | (c[1:3] &

carry[1:3]) | (carry[1:3] & b[1:3]);
cout = (b[0] & c[0]) | (c[0] & carry[0]) |

(carry[0] & b[0]);
end
always @(carry) begin

carry[0:2] = (b[1:3] & c[1:3]) | (c[1:3] &
carry[1:3]) | (carry[1:3] & b[1:3]);

cout = (b[0] & c[0]) | (c[0] & carry[0]) |

Other Applications of Dependence

726 ADVANCED COMPILING FOR HIGH PERFORMANCE

(carry[0] & b[0]);
end
always @(b or c or carry) begin

a = b ^ c ^ carry;
end

Assuming the blocks are scheduled so that the first block is the initial one
triggered after any changes, the second is then continually triggered until
carry stabilizes, and only then the final block is executed, this schedule
will require a minimal amount of computation. Alternatively, dependence
analysis can be used to determine that the carry recurrence will converge
in at most three iterations, and the recurrence block can be statically
unrolled to avoid the necessity of change checks. Regardless of whether
the block is statically or dynamically scheduled, the critical transforma-
tion is to distribute the recurrence into one block and the non-recurrence
into a different block.

As a final comment, once the blocks have been vectorized and the param-
eters from the instantiation substituted forward

always @(b or c or carry) begin
carry[0:2] = (b[1:3] & c[1:3]) | (c[1:3] &

{carry[1:2],0}) | ({carry[1:2],0} & b[1:3]);
0 = (b[0] & c[0]) | (c[0] & carry[0]) | (carry[0]

& b[0]);
a = b ^ c ^ carry;

end

and then simplified into

always @(b or c or carry) begin
carry[0:2] = (b[1:3] & c[1:3]) | (c[1:3] &

{carry[1:2],0}) | ({carry[1:2],0} & b[1:3]);
a = b ^ c ^ carry;

end

it becomes feasible to use pattern matching to recognize the sequence of
operations as a simple addition with a carry-in of 0. Given that the carry-
out bit and none of the carry intermediates are used again elsewhere, this
can be rewritten simply as

always @(b or c) begin
a = b + c;

end

regenerating the designer’s original thought. The code will not quite sim-
ulate as a single add instruction, as some masking is necessary to reduce
the 32 bit result down to 4 bits, but this will simulate within factors of the

Hardware Design

Chapter Draft of February 8, 2001 727

designed hardware rather than orders of magnitude slower as will be the
case with the gate level representation.

12.3.3.7 Two state versus four state
Given that four-valued logic incurs extra overhead as compared to two-
valued logic, plus the fact that few people want to buy hardware that
enters unknown states, an obvious improvement to simulation perfor-
mance is to utilize two-valued logic where possible. A four-valued logic
operation is usually most quickly performed as a table lookup, requiring
roughly five instructions with the possibility of a cache miss. The two-
valued analog is usually only one instruction. That one instruction can
perform 32 operations, however, when the two-valued analog is vector-
ized. As a result, simulation using two valued logic can be between 3-5x
faster than the same simulation run in four-value logic.

Unfortunately, utilizing two state logic is not so simple. Even though
unknowns should not been seen past power-up except in rare cases of bus
contention or possible cache initializations, isolating portions of a design
that can only see two state logic is difficult. The existence of all source
and the use of interprocedural analysis provides a theoretical basis for
uncovering regions with no unknowns, but the fact that unknowns can
result from virtually all operations usually limits severely the regions that
can be executed purely in two state.

However, given the large efficiency of two state execution over four state,
plus the fact that the test for detecting unknowns is usually only 2-3
instructions, a reasonable approach is to check for unknowns but default
quickly to two state execution. Such an approach provides a modest
speedup in all cases, with no loss of generality.

12.3.3.8 Rewriting block conditions
The semantics of synchronous blocks are that changes are updated regu-
larly on the change of a system clock. Verilog that describes synchronous
blocks appears as though results are recomputed every time the clock
ticks. For instance, the previously described synchronous adder as writ-
ten

always @(posedge(clk)) begin
sum = op1 ^ op2 ^ c_in;
c_out = (op1 & op2) | (op2 & c_in) |

(c_in & op1);
end

has sum and c_out being recomputed on every rising edge of the clock.
This recomputation is extra simulation that is not done in the resultant

Other Applications of Dependence

728 ADVANCED COMPILING FOR HIGH PERFORMANCE

hardware. Hardware computation units change results only when input
values change; clocking is simply a matter of gating the results through a
register where they are made available outside. If the input operands have
not changed between two clock cycles, no recomputation will be done;
the same results will simply continue flowing through the register.

This same behavior can be achieved in a simulator, thereby saving simu-
lation overhead, by rewriting the block as

always @(op1 or op2 or c_in) begin
t_sum = op1 ^ op2 ^ c_in;
t_c_out = (op1 & op2) | (op2 & c_in) |

(c_in & op1);
end
always @(posedge(clk)) begin

sum = t_sum;
c_out = t_c_out;

end

Computations are done whenever input values change (presumably less
frequently than every clock tick), and the results are released to the out-
put registers on the clock tick. Most hardware designers will design with
this style, but when they don’t, this transformation can improve simula-
tion performance.

12.3.3.9 Basic Optimizations
While the most effective optimizations for simulators are those geared
towards reconstructing high level intent and that thereby raise the level of
abstraction, the compiler optimizations described in this book are also
important for improving simulation performance. There are both low-
level and high-level designs, and optimizations geared towards recover-
ing high level intent provide little benefit for designs that are already
expressed at a high level. Standard compiler optimizations improve the
performance of high level designs, regardless of how the level was
achieved, although not nearly so dramatically as optimizations that
reconstruct higher levels of abstraction.

Outside of module inlining which is basically the equivalent of procedure
inlining, global compiler optimizations are not effective for improving
simulation performance. The reasons are easy to understand. Given the
asynchronous, activate-on-change semantics of always blocks, the con-
trol flow graph for a design is a huge morass of edges that represents the
potential of control flow from any block to any other block. As a result,
focusing on optimizations within an always block is the most effective

Hardware Design

Chapter Draft of February 8, 2001 729

strategy. If blocks have been previously fused and vectorized, the result-
ing blocks are large sources of computation.

High level designs do on occasion use loops, so vectorization is a valu-
able optimization for simulation. Given the restricted form of subscripts
supported by hardware description languages, vectorizing loops is a
straightforward process. Other useful optimizations include constant
propagation and dead code elimination. Both of these derive their utility
from the reusability of hardware: designers reuse modules and compo-
nents where possible, thereby leading to general components being tai-
lored specifically at instantiation sites. Things such as carry-in bits that
are zero are picked up by constant propagation and things such as carry-
out bits that are not used are eliminated by dead-code elimination.

Probably the most beneficial optimization, however, is common subex-
pression elimination. Even in highest level designs, bits and parts of vec-
tors are accessed and set. This leads to a large number of redundant
masking and shifting operations in even simple code fragments. Common
subexpression elimination detects and removes this redundancy.

12.3.3.10Summary
In simulation, the overriding goal is where possible to recover the
designer’s original intent so as that the intent and not the detail can be
simulated. Given that hardware design naturally decomposes things into
bitwise operations, vectorization is a natural technique for recovering the
original abstract intent. However, the implicit looping of always blocks
imposes a different design structure for the optimization phases that
depends strongly on a globally oriented dependence graph rather than a
loop-oriented graph.

12.3.4 Synthesis optimization

12.3.4.1 Overview
In simulation, the goal is to “undo” much of the detail inserted by a
designer in the process of creating hardware to perform certain function-
ality. The goal in high level synthesis is just the opposite; it is to automat-
ically insert that detail for the designer, allowing the human to focus on
the functionality while the synthesizer focuses on the details. This goal is
analogous to standard compilers, where the human describes the desired
functionality and the compiler takes care of mapping that functionality to
the underlying machine architecture. As a result, it is natural to expect
that synthesis would rely heavily on compiler techniques.

Other Applications of Dependence

730 ADVANCED COMPILING FOR HIGH PERFORMANCE

While that expectation is true in many respects, synthesis has one compli-
cation which makes it a significantly harder problem than any faced by
standard compilers. As a general rule (retargetable compilers are an
exception), compilers are designed towards a fixed, well-understood
architecture usually with the single goal of minimizing execution time.
High level synthesis, on the other hand, is not targeted towards a fixed,
well-understood target -- part of the goal of high level synthesis is to
determine the range of architectures that fit the problem and what the per-
formance can be on those architectures. Similarly, there is not a single
goal for synthesis. Most often, minimizing cycle time (that is, the speed
at which the piece of hardware executes) is the key consideration for
hardware design, but the area of the resulting implementation is also a
key consideration (far more often than the memory footprint of a com-
piled executable) and power consumption is critical in some applications.
In other words, a synthesizer is nothing more than a compiler with an
undefined target architecture and with a set of goals that shift among
cycle time, area, and power consumption. This lack of clarity with
respect to target definition makes synthesis a complicated process. Imag-
ine a compiler that must while doing register allocation decide on the
number of registers it has based on getting the best performance but with-
out going over limits on area and power. Register allocation for a fixed
number of registers is difficult enough.

Despite this complexity introduced with synthesis, it is very much a com-
piler problem and there are definite ways in which the techniques
described in this book provide a strong basis for synthesis technology.
These techniques will not completely automate high level synthesis in the
near future, as the ill-defined nature and wide range of optimization crite-
ria will require human guidance. However, these techniques can certainly
optimize a resulting implementation along any of the metrics of timing,
area, or power, even if it is not yet to accurately gauge the interaction
among the mixtures. Furthermore, many of the key algorithms that
designers wish to synthesize are precisely those algorithms which are
well-suited to the analysis presented in this book: matrix multiplication,
dot products, and other vector computations.

The current state of high level synthesis mirrors in many ways the state of
compilers for parallel architectures in the late 1970’s. High level synthe-
sizers currently focus exclusively on maximizing the parallelism
exploited within a basic block, ignoring the flow of data across loop iter-
ations. The main techniques current synthesizers posses for increasing
the amount of available parallelism are techniques that increase the size
of basic blocks. Loop unrolling is the primary method and is the only

Hardware Design

Chapter Draft of February 8, 2001 731

way currently used for handling loops. While such an approach generates
good hardware for loops with small iteration counts, it does not work
well for loops with large iteration counts. Effectively handling large
loops requires (just as it does in standard compilation) scheduling the
computation as a real loop, pipelining the computation based on analysis
of the values that pass across loop iterations. And that, of course, requires
data dependence.

As you might expect, the optimization techniques presented in this book
are directly applicable to hardware synthesis of loop oriented comput-
tions. The remainder of this section details ways in which compiler tech-
niques and optimizations can be applied to hardware synthesis of loop
oriented algorithms. “Hardware synthesis” is a term which encompasses
a wide range of technologies. At lower levels, designers specify computa-
tions in terms of gates and the synthesizer remaps and optimizes those
gates for the design technology. At intermediate levels, the designer spec-
ifies the computation in terms of clocks and cycle times and allows the
synthesizer to optimize to those constraints. At the highest level, the
design is specified purely in terms of its functional behavior, leaving all
control of clock periods and cycle times to the synthesizer. This is the
level considered through the rest of this section. Since designers specify
only the behavior of the computation at this level, C will be used as the
language of representation for most examples.

This section attempts only to present a number of ideas about how opti-
mization techniques may be applied to high level synthesis; it’s not
attempting to present a concise algorithm for performing high level syn-
thesis. High level synthesis algorithms are themselves book-level topics.

12.3.4.2 Basic Framework
At the fundamental level, the problem of hardware synthesis is one of
reducing a computation such as a simple dot product

for(i=0; i<100; i++)
t = t + a[i]*b[i];

down to a series of gates -- and’s, or’s, not’s, etc. The simplest approach
to solving this problem is to straightforwardly convert the multiplication
into gates, straightforwardly convert the addition into gates, and then try
to optimize the result to reduce area, time, and possibly power. In the
ideal world, this approach would probably work; in the practical world, it
does not. The reason is that the process of reducing an operation such as
multiplication or addition into gates introduces some assumptions and
constraints into the result--assumptions and constraints that are not easily

Other Applications of Dependence

732 ADVANCED COMPILING FOR HIGH PERFORMANCE

removed afterwards by optimization. One option for multipliers, for
instance, is to pipeline them across cycle boundaries so that one multipli-
cation takes multiple clocks to complete. If the multiplication is con-
verted into a pipelined multiplier, the back-end process may as part of its
optimization need to reduce or totally eliminate the pipelining -- some-
thing that is difficult to do automatically. Similarly, if a non-pipelined
multiplier is inserted, it may be necessary to pipeline it. Given the large
number of gates in a multiplier, the number of possible pipelinings is
huge and difficult to exploit automatically. As a result, this parameter is
difficult to exploit automatically as well. This parameter is only one
degree of one component that can be explored; there are many other
degrees. Adders, for instance, can be carry lookahead, ripple-carry, carry-
save, half, full, or other variations. Each varies slightly in its functionality
in ways that are optimal in different contexts. Converting from the gate
level representation of one form to another automatically is difficult pre-
cisely because each of these has slightly different semantics which hap-
pen to include addition as one aspect. The complexity increases
exponentially when multiple components are considered: the combina-
tion of adders and multipliers into a highly efficient multiply-accumulate
unit (MAC) provides just one example. While it would be great if one
output mass of gates could be automatically optimized to the most appro-
priate of all of the possible variations, in practice the search space is too
large -- particularly given the fact that components are often comprised of
hundreds or thousands of gates.

As a result, the strategy of optimizing a simple conversion to gates is not
effective in high level synthesis. That implies that one of the key aspects
of getting good synthesis results is the selection of components. Getting a
good selection requires two things: having a rich library of highly tuned
components from which to select and selecting the optimal component
for each operator or set of operators in its context. Generating a good
library of components is straightforward for an experienced designer in
conjunction with a good low level synthesis tool. Selecting the optimal
set of components is not straightforward, however. To illustrate some of
the difficulties, consider the possibilities for the dot product sample at the
beginning of this section. If pipelined components are temporarily
ignored and it is assumed that both array references can be obtained from
memory every iteration, then the simplest selection is to use a multiplier
to do the multiplication chained into a full adder to complete the compu-
tation. Using function calls to represent the functional units, this would
result in

t = ADD(t, MULTIPLY(LOAD(a[i], LOAD(b[i])));

Hardware Design

Chapter Draft of February 8, 2001 733

Assuming all the functional units make their results available one cycle
after the inputs are present, this naive approach would take 3 cycles to
add a new value to t (ignoring the obvious pipelining possibility). How-
ever, MACs were designed exactly to speed up this type of computation,
by passing the values from the multiplier directly into the adder. Using a
MAC would give

t = MAC(t, LOAD(a[i]), LOAD(b[i]));

which takes only 2 cycles per naively scheduled update. In other words,
this very simplest of computations has at least two different viable selec-
tions. This simplest form is most likely not going to be the one used, pri-
marily because it does not have obvious pipelining scheduled and it
assumes the capability of loading two operands from memory. Memory
bandwidth in particular is an issue that cannot be ignored.

More likely, component selection is going to be based on an unrolled ver-
sion similar to

for(i=0; i<100; i=i+4)
t = t + a[i]*b[i] + a[i+1]*b[i+1] +

a[i+2]*b[i+2] + a[i+3]*b[i+3];

Here the large number of possibilities become immediately clearer. There
are 5 additions and 4 multiplications for each loop iteration; one obvious
selection is to use 5 adders and 4 multipliers. Four MACs will also work
equally well. However, multi-input MACs are commonly used, so
another alternative is to use either one 4-input MAC or two 2-input
MACs connected with an adder. If the additions can be reassociated
(which is true for fixed point), then the expression can be reformed so as
to utilize half-adders rather than full adders, saving time and area. MACs
that are unused during given cycles can also be used to perform additions
or multiplications. In other words, component selection in this example
and in most cases is a complicated process.

While the process is complicated, it does have an exact well-studied anal-
ogy in compiler technology. That analogy is instruction selection for
Complex Instruction Set Computers (CISC). CISC architectures were the
dominant architectures in the 1960’s and 1970’s and had complex
instructions that did memory-to-memory arithmetic operations as well as
multiple arithmetic operations. On CISCs, instruction selection is far
more critical to performance than instruction scheduling, and accord-
ingly, instruction selection was thoroughly researched in compiler com-
munity. The result of that research is a body of tree matching algorithms
that can generate optimal instruction selections under reasonable sets of

Other Applications of Dependence

734 ADVANCED COMPILING FOR HIGH PERFORMANCE

constraints and optimization criteria. These algorithms are directly appli-
cable to component selection.[NEED TO INSERT REFERENCES
HERE].

The existence of fast effective tree matching algorithms provide the basis
of a simple framework for high level synthesis and optimization. At the
coarsest level, high level synthesis can be described as select compo-
nents, allocate operations to components (resource allocation), then
schedule what operations occur when. Although described as distinct, the
last two steps (as with regular compilers) are closely intertwined, since
binding operations to components restricts when the operations can be
executed. The analogous compiler framework presented in this book has
been perform high level optimization followed by a reduction to a lower
level representation, register allocation, and instruction scheduling. Ide-
ally, high level optimization can be placed in the same position in synthe-
sis as in compilers: as a precursor to register allocation and scheduling
that improves “performance” and provides useful information. This
placement is not so obvious for synthesis, since 1) there are multiple opti-
mization criteria in synthesis rather than the single one of execution time
in compilers and 2) there is not a clearly defined target of a machine’s
instruction set and registers when synthesizing. Fortunately, fast tree
matching algorithms alleviate the second problem, since they allow quick
adaptation to a currently “optimal” architecture. A few simplifying
assumptions eliminates the other problem, permitting such a placement.

The simplifying assumptions required involve constraints. Lower level
synthesis accepts constraints on the maximum time allowed for signals to
propagate certain paths and how much area is allowed for certain compo-
nents. Such constraints clearly do not fit the requirements of high level
synthesis, where only functionality is defined. Some form of constraint is
necessary at the behavioral level, however, since otherwise solutions
quickly gravitate to a fairly useless global minimum. For instance, if told
to minimize time without any maximum bound on area, a high level syn-
thesis tool should legitimately generate a separate functional unit for each
operation in the computation that can be done in parallel -- maximal par-
allelism. The resulting mass of hardware will be fast, but it will also be
wasteful and largely unused. Similarly, told to minimize area which no
maximum bounds on time, a high level synthesize should legitimately
generate only one functional unit per unique operation, basically serializ-
ing the computation as much as possible. This again, is a wasteful
extreme. The most useful solutions are between these two, but without
some form of constraint to force the optimizer into this central space,
only the extremes will be returned.

Hardware Design

Chapter Draft of February 8, 2001 735

The form of high level constraint that does support a push into this space
is a constraint on the number and types of functional units required --
essentially an area constraint. Numbers of functional units is something
well understood by high level designers, and when combined with a
directive to minimize time given constraints on the units available, allows
a reasonable exploration of the design space. Furthermore, it puts the
high level optimizer back in the design space with which it is familiar:
minimizing execution time on a fixed set of functional resources, and
minimizing resource use (such as registers and memory access) after that.
In this space, the paradigm of high level optimization, followed by com-
ponent selection, allocation, and scheduling makes sense. Loop-based
transformations are predictable in terms of monotonically decreasing
execution time, at the possible expense of creating the need for new func-
tional units. These units, however, will only be of the same type as that
currently used within the loop, so numbers constraints will in the worst
case cause operations to simply be scheduled on top of existing units,
thereby not decreasing execution time.

Moreover, the difference in compile time requirements for synthesizers
versus compilers permits a stronger approach than this. Ideally, a com-
piler would optimize and generate code, execute that code on a reason-
able input, profile the results, and use the feedback from that to repeat the
optimization and generation process. That ideal model is not followed in
practice during development, primarily because of the turnaround time
required. However, a similar model is possible in a synthesis framework.
While it’s not realistic to “execute” resulting gates, it is certainly feasible
to optimize a computation, select components, allocate and schedule,
then given feedback on the expected execution time and area, repeat the
optimization sequence. In essence, this approach allows investigation of
how well the problem maps to different architectures. Such an approach
is viable in high level synthesis, where the fact that hardware is coming
out the other end alleviates the requirement of rapid compile times.

The rest of this section assumes a framework along the lines of that
described so far: perform high level optimizations directed towards
reducing execution time subject to a bound on functional units, followed
by component selection, allocation, and scheduling. Moreover, the
assumption is that tree matching is fast enough that the process can be
repeated as necessary to reject or explore alternative solutions.

12.3.4.3 Loop Transformations
Just as changes in execution order can affect execution speed, such
changes can also affect functional unit utilization, which in turn affects

Other Applications of Dependence

736 ADVANCED COMPILING FOR HIGH PERFORMANCE

the amount of time required for a synthesized piece of hardware to com-
plete a computation. In other words, loop-based transformations such as
loop interchange and loop distribution can affect the efficiency of synthe-
sized hardware.

To provide a concrete example, consider the following fairly common
example.

for (i=0; i<100; i++) {
t[i] = 0;
for(j=0; j<3; j++)

t[i] = t[i] + (a[i-j] >> 2);
}
for(i=0; i<100; i++) {

o[i] = 0;
for(j=0; j<100; j++)

o[i] = o[i] + m[i][j] * t[j];
}

This fragment takes a set of input data a, smooths it using a FIR filter into
a temporary t, then remaps that data via a matrix m into an output vector
o. This type of transformation is extremely common in the digital signal
processing (DSP) world. Assuming enough memory and functional units
to do the add, shift, and MAC all at once (actually a pretty unreasonable
assumption, as that would take a lot of area), this would take on the order
of 10,300 cycles to complete.

If we first distribute loops, we get

for (i=0; i<100; i++)
t[i] = 0;

for (i=0; i<100; i++)
for(j=0; j<3; j++)

t[i] = t[i] + (a[i-j] >> 2);
for(i=0; i<100; i++)

o[i] = 0;
for(i=0; i<100; i++)

for(j=0; j<100; j++)
o[i] = o[i] + m[i][j] * t[j];

Rearranging the order topologically so that things with no dependences
are first pulls the initializations to the top

for (i=0; i<100; i++)
t[i] = 0;

for(i=0; i<100; i++)
o[i] = 0;

for (i=0; i<100; i++)

Hardware Design

Chapter Draft of February 8, 2001 737

for(j=0; j<3; j++)
t[i] = t[i] + (a[i-j] >> 2);

for(i=0; i<100; i++)
for(j=0; j<100; j++)

o[i] = o[i] + m[i][j] * t[j];

So far, there’s been no improvement in execution. There are several
opportunities for loop fusion, which is generally a useful thing to do so
long as no functional units are overloaded. That can be accomplished if
the two major loops are fused; they cannot be as written, but if the last
two loops are interchanged:

for (i=0; i<100; i++)
t[i] = 0;

for(i=0; i<100; i++)
o[i] = 0;

for (i=0; i<100; i++)
for(j=0; j<3; j++)

t[i] = t[i] + (a[i-j] >> 2);
for(j=0; j<100; j++)

for(i=0; i<100; i++)
o[i] = o[i] + m[i][j] * t[j];

then fusion can be applied to give

for(i=0; i<100; i++)
o[i] = 0;

for (i=0; i<100; i++)
t[i] = 0;
for(j=0; j<3; j++)

t[i] = t[i] + (a[i-j] >> 2);
for(j=0; j<100; j++)

o[j] = o[j] + m[j][i] * t[i];

Simple scalar replacement on t yields

for(i=0; i<100; i++)
o[i] = 0;

for (i=0; i<100; i++)
t = 0;
for(j=0; j<3; j++)

t = t + (a[i-j] >> 2);
for(j=0; j<100; j++)

o[j] = o[j] + m[j][i] * t;

Following this by exploiting the input dependence on a carried by the i
loop gives

for(i=0; i<100; i++)
o[i] = 0;

Other Applications of Dependence

738 ADVANCED COMPILING FOR HIGH PERFORMANCE

a0 = a[0];
a1 = a[-1];
a2 = a[-2];
a3 = a[-3];
for (i=0; i<100; i++) {

t = 0;
t = t + (a0 >> 2) + (a1 >> 2) + (a2 >> 2) +

(a3 >> 2);
a3 = a2;
a2 = a1;
a1 = a0;
a0 = a[i+1];
for(j=0; j<100; j++)

o[j] = o[j] + m[j][i] * t;
}

This form will easily execute in 10,000 cycles, as the demands on mem-
ory and the operational units have been greatly reduced. With any reason-
able pipelining across the loop iterations, the amount of time required
will drop drastically.

Some of the loop-based transformations that make sense in terms of
increasing execution efficiency include

1. Loop fusion. When two loops are performing different operations that
don’t utilize the same functional units, the loops can be pipelined
together by fusing them so that the second does not have to wait for
the first to complete.

2. Loop distribution. Loop distribution can be used to separate opera-
tions that are using the same functional units. Doing so may increase
parallelism by allowing overlap of different, non-conflicting opera-
tions with each of those in the distributed loops.

3. Vectorization. When a given functional unit is known to be pipelined
(something that can be figured out by actually doing component selec-
tion), one of the easiest ways to guarantee that the component is fully
utilized is to vectorize the operation that uses it. The exploitation of
the input dependence on the i loop above was essentially vectorizing
the j loop.

4. Loop interchange. Loop interchange can be used directly to increase
parallelism by creating new opportunities for pairings such as MACs.
However, it is probably more effective by increasing the opportunities
for other transformations, such as the use to enhance fusion in the
example above.

Hardware Design

Chapter Draft of February 8, 2001 739

Table 12.1 illustrates more specifically the types of efficiency improve-
ments that are possible using loop transformations. The table contains the
execution time in nanoseconds as well as the number of transistors
required for a pair of combined matrix multiplications. This pairing pro-
vides the core of a Discrete Cosine Transformation (DCT) module, which
in turn is one of the computationally intensive parts of MPEG and JPEG.
The basic loop transformations used in this book in combination with
reasonable scheduling techniques provided roughly a factor of 10 speed
improvement with only a modest increase in area. The greatest improve-
ment was obtained by pipelining the results across iterations -- a transfor-
mation that will also be discussed in scheduling.

12.3.4.4 Control and Data Flow
One element of component selection that involves more than just tree
matching involves the difference between control and data flow. In von
Neumann architectures, data flow primarily involves the movement of
data among memory and registers, while control flow is encapsulated in
the program counter and effected with branches. In synthesized hard-
ware, however, data flow involves the movement of data among the vari-
ous functional units while control flow involves specifying which units
should be active on what data at what time steps. Control flow in this con-
text is much more complicated: at each time step it has to make sure that
the right data is routed to the appropriate functional units and that units
are active or inactively accordingly. This extra control requires a state

Design Latency (ns) Area(transistors)

Sequential 37684 25K

Loop unrolling once 23552 44K

Loop unrolling/chaining 18842 41K

Loop unrolling/multicycle 14131 42K

Pipelining processes 18842 50K

Loop fusion/pipeline 9476 26K

Loop and FU pipeline 4040 30K

TABLE 12.1 Effects of loop optimizations on DCT corea.

a. Used with permission from “Exploring DCT Imple-
mentations” by G. Aggarwal and D. Gajski, Technical
Report UCS-ICS 98-10, Department of Information and
Computer Science, University of California, Irvine, Ca.
94697-3425, March 1998, page 23.

Other Applications of Dependence

740 ADVANCED COMPILING FOR HIGH PERFORMANCE

machine, where the states are the basic blocks of the original computa-
tion and the transitions are governed by the control flow among the basic
blocks. Outside of this state machine derivation, control and data flow
analysis is the same in compilers as it is in hardware.

However, there are a few other wrinkles in hardware involving commonly
used components. Consider the following simple fragment:

if (a)
o = b;

else
o = c;

If a is non-zero, the output o is set to b; otherwise it is set to c. This could
be treated correctly as multiple basic blocks and embedded as such into
the state machine. However, such a selection is very common and has a
common component that effects this function -- a mux, or selector. A mux
is a three (or more) input function that uses the value of one input to
determine which of the remaining input values to pass through. As such,
it can be treated as a single basic block.

Muxes appear extremely similar to the selector function ϕ in SSA for
good reason: they are exactly the same thing. The ϕ function is used to
represent selection when different values may join together along variant
control paths; this is the same point in hardware where muxes are
required. As a result, using SSA as an internal representation has the
added benefit of making it easy to detect and insert muxes.

There are a few other special hardware constructs that need accommoda-
tion as well. Hardware is complicated by the presence of a clock, which
in turn introduces time into a computation. This creates four different
classes of variable kinds:

1. Wires. Wires represent actual hardware wires and simply connect one
unit to another. As a result, the results are available immediately, and
do not have to hold values across clock cycles. These are the hardware
equivalent of compiler temporaries.

2. Latches. Latches represent values that have to be held constant
throughout one clock cycle, but not beyond. They typically are wires
where the input to the wire may change in mid cycle, but the output
must remain constant to the units it drives. There is no direct C analog.

3. Registers. Registers represent static variables in C; they have to hold
values across one or more clock cycles. A register is needed when a

Hardware Design

Chapter Draft of February 8, 2001 741

value for a variable comes in from another state; it is easily detected
by upwardly exposed uses.

4. Memories. Memories are special cases of registers that are large (and
thus cannot be accessed as a scalar) and that have an indeterminately
long life time. Every array reference in C is typically assumed to come
from an external memory.

Wires and registers are easy to detect from live analysis; the algorithms
are similar to those used to detect which scalars are live across loop itera-
tions. Latches cannot occur in a strictly behavioral specification, and
memories are easily detected as array references. Dataflow analysis needs
to detect and mark each of these classes of variables, as each requires
very different hardware treatment.

Outside of the recognition of special hardware constructs and the conver-
sion of the control graph into a state machine, control flow analysis and
data flow analysis for hardware is exactly the same as for software. While
it is common in hardware to combine the control graph and the dataflow
graph into a single Control Data Flow Graph (CDFG), there is no real
advantage to doing so. In fact, state machine generation is usually sim-
pler when the graphs are kept separate.

12.3.4.5 Pipelining and Scheduling
The next step after selecting components (including muxes) is to sched-
ule the selection. Scheduling does not have to completely occur after
selection; for instance, preparing the input to selection by using software
pipelining while dependence information is available can simplify the
task of scheduling after components are selected. Of course, having
information about the actualAfter components (including muxes) have
been selected, Needs help here.....

The usual stuff. Poiint out that incoming representation can have schedu-
lin built into it to a large extent, and that too many units, if scheduled and
reexamined, will come back so they can be thrown out.

12.3.4.6 Memory Reduction
As is the case in compilation, one of the most critical factors to achieving
optimal execution speed is operands at the right place at a fast enough
rate to keep the execution units running at full speed. This is important in
compilers generating code for processors; it is essential for synthesizer
when feeding custom units from external memories. Memory access is
typically very slow compared to unit speeds, so minimizing memory
access is critical.

Other Applications of Dependence

742 ADVANCED COMPILING FOR HIGH PERFORMANCE

Fortunately, this problem maps exactly into the analogous compiler prob-
lem, and that problem has been thoroughly analyzed in Chapter 8 and
Chapter 9. All of the techniques described in those chapters apply to this
problem including

1. Loop interchange. Loop interchange can adjust the order of execution
so that operands are reused, thereby allowing them to be kept in regis-
ters rather than in memories.

2. Loop fusion. Loop fusion can be used to increase the number of times
an operand is reused within a single loop, thereby reducing the num-
ber of fetches required.

3. Scalar replacement. Scalar replacement, while more a source transfor-
mation than an actual technique, does permit the easy recognition of
memory locations that are reused throughout a loop, so that they may
be maintained in registers rather than memories.

4. Strip mining. Memory units can return more than one value at a time;
typically a cache line size is fetched out of the memory. This means
that strip mining, blocking, and even simple vectorization can all be
used to work on operands that are obtained “for free”.

5. Unroll and jam. Unroll and jam reduces memory traffic, which is good
for hardware or software.

6. Prefetching.To the extent that loads can be predicted, load times can
be reduced by prefetching operands well ahead of their use.

Details on these and other transformations are available in [PRAS-
HANTS THESIS]

12.3.4.7 Summary
This section has provided an overview of some of the ways in which
dependence analysis and advanced optimization techniques can be
applied to the problem of high level synthesis. High level synthesis is at
its most basic level a compiler problem, although greatly complicated by
the lack of a fixed target architecture and variable optimization criteria.
Component selection simplifies the problem considerably and can be
effected by use of CISC tree matching techniques. Scheduling across
loop iterations rather than through single blocks is one of the key advan-
tages garnered by the use of dependence analysis, but others include bet-
ter cycle times, increased memory efficiency, and decreased need for
temporaries. There are still many difficult problems to be solved in this
area, but advanced optimizations have shown significant improvements in
key loop-oriented benchmarks.

Chapter Summary

Chapter Draft of February 8, 2001 743

12.4 Chapter Summary

This chapter has shown the application of dependence in three very dif-
ferent contexts: in compiling C, in simulating hardware written in a Hard-
ware Description Language, and in synthesizing hardware from a high
level description. This is by no means a complete compendium of all uses
of dependence, but it is enough to demonstrate that dependence is a use-
ful concept in its own right, and not something that is tied to strictly par-
allel and vector machines. Similarly, many of the applications described
in this chapter are in early research stages, and have room for more and in
depth application of dependence and dependence-based transformations.

12.5 Case Studies

12.6 Historical Comments and References

12.7 Exercises

12–1

12.8 References

[1]

Other Applications of Dependence

744 ADVANCED COMPILING FOR HIGH PERFORMANCE

Introduction

Chapter Draft of February 8, 2001 745

CHAPTER 13 Compiling Array
Assignments

13.1 Introduction

Array assignments and expressions have become an important language
construct because of the emergence of Fortran 90. Although the Fortran
90 definition took over 13 years and the language was slow to gain wide-
spread acceptance, it is now beginning to replace Fortran 77 as the lan-
guage of choice for scientific programming.

One reason that the scientific computing community did not immediately
embrace Fortran 90 was the slow emergence of mature compiler technol-
ogy. The language added many new features that presented real problems
for the implementer. As a result, Fortran 90 compilers must do much
more work to achieve the same relative level of performance as compilers
for Fortran 77.

This chapter is intended as a simple introduction to some of the complex-
ities of compiling a single new feature of Fortran 90: the array assign-

Compiling Array Assignments

746 ADVANCED COMPILING FOR HIGH PERFORMANCE

ment statement. Although this statement was originally intended to
provide a direct mechanism for specifying parallel or vector execution, it
must still be carefully implemented for the specific hardware available
for execution. In particular, to implement the array assignment on a uni-
processor, the statement must be converted to a scalar loop. This conver-
sion, which is referred to as scalarization, must be done in a way that
makes efficient use of the memory hierarchy, no matter what the final tar-
get architecture is.

At first glance, scalarization seems simple—simply replace each array
assignment by a DO loop whose induction variable iterates over the range
of the array triplet in one of the subscripts. However, the problem is com-
plex for two reasons. First, we wish to avoid the excessive storage
requirements and array copying operations that are needed if we must use
a compiler-generated array temporary as large as the array value being
assigned. Furthermore, the naive scalarization strategy above will pro-
duce a single-statement loop for each array assignment statement, so an
important optimization is fusing as many of these loops as possible to
increase reuse of quantities in registers. As we shall see, the theory of
dependence plays a key role in implementing these strategies.

In summary, there are two principal goals for a good scalarization
scheme, in addition to producing a correct translation:

1. Avoiding the necessity for generating array temporaries of unbounded
size, and

2. Producing scalarized loops that can be optimized to exhibit a good
memory hierarchy performance using the techniques described in
Chapter 8 and Chapter 9.

We begin with a treatment of correct scalarization and minimization of
the size of temporaries

13.2 Simple Scalarization

The obvious strategy for scalarization is to replace any single vector
statement by a loop iterating over the elements of the vectors. Consider
the following example loop.

A(1:200) = 2.0 * A(1:200)

A scalar implementation would be as follows.

S1 DO I = 1, 200
S2 A(I) = 2.0 * A(I)

Simple Scalarization

Chapter Draft of February 8, 2001 747

ENDDO

Here S1, the loop, iterates from 1 to the length of the complete operation.
The scalar statement, S2, can be implemented by single-element opera-
tions on any scalar machine. Note that there is a direct translation of the
iteration space in the vector operations to the iteration space of the result-
ing loop.

Recall that the semantics of Fortran 90 require that the vector statement
behave as if all inputs to the statement are fetched before any results are
stored. This is not only natural, it also accurately reflects the vector hard-
ware on vector register machines, where sections of arrays are loaded and
stored in single operations. However, this differs from the semantics of
sequential loops where loads and stores are interleaved on an iteration-
by-iteration basis. This difference causes no problems when scalarizing
array statements like the following variant of our original example:

A(2:201) = 2.0 * A(1:200)

Here, the simple translation strategy produces:

DO i = 1, 200
A(i+1) = 2.0 * A(i)

ENDDO

This version produces different answers from the original because the
value computed on each iteration is used on the next iteration, whereas
the vector statement must be implemented so that the values used on the
right hand side are those that exist before any stores take place.

This example illustrates that the implementation of vector statements on
scalar hardware can be tricky. Problems arise because the registers can
hold only a single value rather than all the values needed on the right-
hand side. Errors of the sort illustrated in the example, where the mean-
ing of statements are changed by the scalarization process, are called sca-
larization faults.

Figure 13.1 contains an informal specification of a procedure SimpleSca-
larize that carries out the naive translation from a one-dimensional array
assignment statement to a simple scalar loop. In the input program, the
range of a vector operation is specified by triplets or vector specifiers of
the form (lower bound : upper bound : increment) found in subscripts
within the statement. The scalarization is determined by examining the
triplet on the left hand side of the assignment.

Compiling Array Assignments

748 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 13.1 Scalarizing a single vector operation.

procedure SimpleScalarize(S)

// S is the statement to be scalarized;

let V0 = (L0:U0:D0) be the vector iteration specifier on left side of S;

// Generate the scalarizing loop
let I be a new loop index variable;
generate the statement DO I = L0,U0,D0;

for each vector specifier V = (L:U:D) in S do
replace V with (I+L-L0);

generate an ENDDO statement;
end SimpleScalarize

It is easy to see how scalarization faults arise from the method presented
in Figure 13.1. The sequence of scalar operations may not preserve the
semantics of the original vector statement, because the original statement
requires that all results be stored after all values from the right-hand side
have been fetched, while the sequence of scalar operations may interleave
loads and stores. Thus, if one scalar operation stores a value that is
fetched by a later operation, a scalarization fault will occur. Fortunately,
this situation can be accurately detected using dependence analysis.

Principle 13.1. A vector assignment generates a scalarization
fault if and only if the scalarized loop carries a true dependence.

To see the truth of this principal, recall that the array assignment executes
by loading all values on the right before performing any stores on the
left-hand side of the assignment. The only possible fault, then, is for one
iteration of the scalarized loop to store into a memory location that a later
iteration fetches. This is precisely the definition of a loop-carried true
dependence.

This principal provides a precise mechanism for distinguishing vector
statements that create scalarization faults from those that do not. Since
true dependences carried by the scalarization loop create such faults,
these dependences are known as scalarization dependences.

To preserve the correct execution of a program, the compiler must never
generate a scalarization dependence. This objective can be accomplished
in a simple-minded way by using temporary storage [11] as the following
example illustrates.

Simple Scalarization

Chapter Draft of February 8, 2001 749

A(2:201) = 2.0 * A(1:200)

The above statement can be split into two vector statements

T(1:200) = 2.0 * A(1:200)
A(2:201) = T(1:200)

(where T is a compiler-generated temporary) and then scalarized using
SimpleScalarize from Figure 13.1 to produce the following code.

DO I = 1, 200
T(I) = 2.0 * A(I)

ENDDO

DO I = 2, 201
A(I) = T(I-1)

ENDDO

This method of scalarization is guaranteed to avoid a scalarization depen-
dence because T is a new array that cannot overlap any storage for the
program's data arrays. In other words, a scalarization fault is avoided
because the entire result vector is stored into a temporary array and then
copied to the result array only after all the operations on the right hand
side, including loads, are complete.

FIGURE 13.2 Safe scalarization

procedure SafeScalarize(S)

if S has no scalarization dependence
then SimpleScalarize (S);
else begin

let T be a new temporary array long enough to hold all
elements computed by S.

split S into S1 and S2 using temporary storage T so that
in S1, T is assigned the right hand side of S and
in S2, T is assigned to the left hand side of S;

SimpleScalarize (S1);
SimpleScalarize (S2);

end
end SafeScalarize

Unfortunately, the cost of this approach is high for two reasons:

• It requires a substantial increase in memory because T (which has
length that may be hard to predict at compile time) must be in mem-

Compiling Array Assignments

750 ADVANCED COMPILING FOR HIGH PERFORMANCE

ory. Furthermore, the cost of dynamic allocation of the array T may be
substantial.

• It requires that each element in the result vector be stored, then loaded,
then stored again. This represents two more memory operations per
vector element than would be required if the temporary array were not
needed. It would be far more efficient if it were possible to keep the
temporary array elements in registers.

Because of these drawbacks, the use of full-length temporary storage is
best left as a last resort.

Note that the drawbacks of temporary storage can be avoided by “fusing”
loops afterwards, where possible [11]. The conditions under which the
two loops can be safely fused are precisely those under which a single
statement scalarization is safe by the principle above—that is, if the two
loops may be legally fused, then the original statement could have been
safely scalarized. Hence, we prefer to use a direct test to avoid generating
the temporary whenever possible. Note that loop fusion can still be effec-
tive as a scalarization optimization. This subject is discussed in
Section 13.6.

Figure 13.2 shows an improved scalarization procedure, SafeScalarize,
that avoids generating scalarization faults by using the test in
Principle 13.1. Initially, a full dependence graph involving all loops (not
just scalarization loops) is computed for each vector statement. If the
statement has no scalarization dependence on itself, then it is scalarized
using SimpleScalarize; otherwise, temporary storage is used to ensure
safety. Although it is not evident from Figure 13.2 why the full depen-
dence graph should be constructed (and not just the true dependences,
which are the only ones that can create scalarization faults), later sections
will make this point clear.

SafeScalarize is guaranteed to generate a correct scalarization for every
vector statement. However, given the performance penalties associated
with large array temporaries, it is best to avoid executing the else clause
of statement 2 whenever possible. The next section introduces transfor-
mations that can eliminate scalarization faults without using temporary
storage.

Scalarization Transformations

Chapter Draft of February 8, 2001 751

13.3 Scalarization Transformations

Procedure SafeScalarize in Figure 13.2 resorts to an expensive solution
whenever naive simple scalarization would result in a true dependence
carried by the scalarization loop. The expense can often be avoided by
transforming the code to eliminate such dependences. The next few sec-
tions present several transformations that can be used to eliminate scalar-
ization dependences. Although it may seem counterintuitive that
achieving correctness means eliminating true dependences from the pro-
gram, keep in mind that the true dependences in question are ones that
have been incorrectly introduced by the scalarization algorithm. In mak-
ing these transformations we are merely returning the program to its orig-
inal meaning.

13.3.1 Loop Reversal

Consider the vector statement.

A(2:256) = A(1:255) + 1.0

SimpleScalarize in Figure 13.1 will produce a scalarization fault for this
example because each output is stored into the location of the input to the
next iteration of the scalar loop. However, it is easy to see a simple but
elegant solution in this case—we simply run the scalarization loop back-
ward, eliminating the carried true dependence.

 DO I = 256, 2, -1
 A(I) = A(I+1) + 1.0

ENDDO

In this case the array elements stored on the left-hand side overwrite
array elements that have already been loaded—the desired result. This
familiar transformation, known as loop reversal [10], was introduced in
Chapter 6.

In order to apply loop reversal to scalarization, a vector statement is first
scalarized, and then the scalarization loop is reversed. From the above
discussion, it should be easy to see that loop reversal converts true depen-
dences carried by a scalarization loop into antidependences. Thus, it
appears ideal for scalarization.

Unfortunately, the transformation also maps antidependences into true
dependences. As a result, loop reversal will not correct a scalarization
fault when the scalarization loop also carries an antidependence, as in the
following vector statement:

Compiling Array Assignments

752 ADVANCED COMPILING FOR HIGH PERFORMANCE

A(2:257) = (A(1:256) + A(3:258)) / 2.0

which yields the straightforward scalarization loop:

DO I = 2, 257
A(I) = (A(I-1) + A(I+1)) / 2.0

ENDDO

This loop carries both a true dependence (due the first operand on the
right hand side) and an antidependence (due to the second operand). If
the scalarization loop is reversed,

DO I = 257, 2
A(I) = (A(I-1) + A(I+1)) / 2.0

ENDDO

the first operand now gives rise to a carried antidependence and the sec-
ond operand yields a carried true dependence. The lesson of this example
can be summarized in a simple observation: Loop reversal will eliminate
scalarization faults carried by a loop if and only if the loop carries no
antidependences.The proof of this result is left as an exercise to the
reader.

The implication of this observation is that more sophisticated techniques
are required when the scalarization loop carries both true and antidepen-
dences. Input prefetching is one such transformation.

13.3.2 Input Prefetching

Let us consider the example of the previous section in more detail.

A(2:257) = (A(1:256) + A(3:258)) / 2.0

The scalarization loop produced by SimpleScalarize carries both a true
dependence and an antidependence, so there is a scalarization fault no
matter which order is used for loop iteration. The problem is that the
input vectors overlap with the output vector and with each other. This
causes the naive scalarization loop

DO I = 2, 257
A(I) = (A(I-1) + A(I+1)) / 2.0

ENDDO

to store into the first element of the left-hand input to the next iteration.

Since the scalarization dependence has a threshold of one iteration, we
might seek to keep the result in temporary storage until the input for the
next iteration is loaded. Let T1 be used to hold an element of the first

Scalarization Transformations

Chapter Draft of February 8, 2001 753

input array and let T2 be used to hold an element of the output array. A
naive use of T1 and T2 in this context would be as follows.

DO I = 2, 257
T1 = A(I-1)
T2 = (T1 + A(I+1)) / 2.0
A(I) = T2

ENDDO

Although this loop has the same scalarization problem, we can now cor-
rect it by migrating the assignment to T1 into the previous iteration, just
before the store of T2. The overlap is thus eliminated.

T1 = A(1)
DO I = 2, 256

T2 = (T1 + A(I+1)) / 2.0
T1 = A(I)
A(I) = T2

ENDDO
T2 = (T1 + A(257)) / 2.0
A(I) = T2

Notice that an initialization has been inserted before the loop and that the
assignment to T1 has been rewritten to load the value for the next itera-
tion. In addition, we have peeled the last iteration to avoid the extra
access to A.

This approach, called input prefetching, is superior to the naive use of
temporary storage because it only requires temporaries of length one.
Because these temporaries will be assigned to registers by a good scalar
register allocation scheme, the resulting code avoids all the disadvantages
of full-length array temporaries.

Input prefetching is more generally applicable than loop reversal because
it can be used in many situations where reversal fails to eliminate all sca-
larization dependences. The question now arises: how general is it? Input
prefetching causes the inputs for the next iteration to be loaded before the
outputs of the current iteration are stored to avoid having those outputs
overwrite the inputs. But what if the outputs might overwrite inputs to the
iteration after the next, as in the following example?

 DO I = 2, 257
 A(I+2) = A(I) + 1.0

ENDDO

Here input prefetching becomes more complicated, because we now must
to prefetch two iterations ahead. This means that we must always have

Compiling Array Assignments

754 ADVANCED COMPILING FOR HIGH PERFORMANCE

two copies of the input in temporaries. Suppose we define the quantities
T1, T2 and T3 as follows: at the point where the output of the current iter-
ation is stored, T1 holds the input to the next iteration, T2 holds the input
to the iteration after next and T3 holds the output to be stored. Then the
following code can be used to eliminate the scalarization dependences.

T1 = A(1)
T2 = A(2)
DO I = 2, 255

T3 = T1 + 1.0 ! the operation
 T1 = T2 ! copy input to next iteration
 T2 = A(I+2) ! load for iteration after next
 A(I+2) = T3 ! now it is safe to store
 ENDDO

T3 = T1 + 1.0
T1 = T2
A(258) = T3
T3 = T1 + 1.0
A(259) = T3

Although this form has fewer accesses to main memory than the code
generated by Algorithm 2, it has drawbacks—it involves a register-to-reg-
ister copy and it requires a significant number of scalar registers. How-
ever, as we saw in Section 8.3 on page 447, the copies can be eliminated
by unrolling the scalarization loop, at no additional cost in scalar regis-
ters.

In general, input prefetching can be used to eliminate any scalarization
dependence for which the threshold is known at compile time. It requires
one register temporary and one extra copy operation for each iteration
beyond the first. With this restriction, the condition for applying input
prefetching can be simply stated.

Principle 13.2. Any scalarization dependence with a threshold
known at compile time can be corrected by input prefetching.

This follows directly from the definition of threshold. Since a threshold
of one means that the fetch occurs on the iteration immediately following
the store, and since input prefetching inserts the load for the next iteration
before the store for the current iteration, it necessarily corrects the fault.

The following input prefetching algorithm works for prefetch distances
of length 1. It can be generalized to greater thresholds by using methods
similar to those in Section 8.2.

Scalarization Transformations

Chapter Draft of February 8, 2001 755

FIGURE 13.3 Input Prefetching Algorithm.

procedure InputPrefetch (S_loop, D)

// S_loop = DO I = L, U, INC; S; ENDDO is the scalarization loop.
// It is assumed that the need for prefetching has already been
// established and that the statement has been scalarized
// using SimpleScalarize.
// D is the graph that represents the scalarization dependences of the
// scalar statement.
// Every edge e in D maps a section reference source(e)
// to another reference target(e). The threshold is always 1
// Input prefetching is only applied to true dependences,
// so source(e) is always the left-hand side of S

for each edge e ∈ D do begin

create a new temporary called T0; /* Presumably a register */

// Two assignments must be generated:
// one initialization before the scalarization loop and
// a prefetch of the input for the next iteration
// after the vector statement S */

create the initialization statement T0 = init_reference where
init_reference can be generated by replacing all instances of the
scalarization loop variable I in target(e) with L, the lower bound of
the original scalarization loop;

insert the update statement T0 = update_reference after S in the
scalarization loop, where update_reference can be generated by
replacing all instances of the scalarization loop variable I
in target(e) by I+INC;

replace target(e) in S by T0;
end

// Now we generate the temporary that holds the output of the current
// iteration, along with the appropriate assignments.

create a new temporary T1;
insert the assignment source(e) = T1 at the end of the scalarization
loop;
replace source(e) in S, the left-hand side of S, with T1

end InputPrefetch

Compiling Array Assignments

756 ADVANCED COMPILING FOR HIGH PERFORMANCE

InputPrefetch is a procedure to eliminate scalarization dependences of
threshold one. The algorithm, a straightforward adaptation of previous
comments, takes time linear in the number of scalarization dependence
edges.

Although the prefetching algorithm can be extended to cases with thresh-
old greater than one, the implementation cost and the demands on regis-
ters grow quite rapidly. An alternative approach is to use loop splitting to
reduce the complexity.

There are a number of situations in which a scalarization dependence
does not have a constant threshold, but in which input prefetching can be
beneficial. To illustrate this situation, consider the Fortran 90 statement:

A(1:N) = A(1:N) / A(1)

This would be naively scalarized as

DO i = 1, N
A(i) = A(i) / A(1)

ENDDO

This has a carried dependence from the first iteration to itself and an anti-
dependence from the first iteration to every other iteration, all due to the
use of the reference A(1). In the Fortran 90 semantics, the value of A(1)
should be the value that existed before any iteration of the loop. Thus this
case can be handled by prefetching the single value needed prior to enter-
ing the scalarization loop.

tA1 = A(1)
DO i = 1, N

A(i) = A(i) / tA1
ENDDO

This strategy works correctly even if the single constant value is not used
on the first iteration. A second example illustrates a more complex ver-
sion of this situation.

A(1:N, 1:M) = A(1:N, 1:M) / SPREAD(X(1:M), 1, N)

The SPREAD intrinsic replicates N copies of the vector X(1;M) to produce
a matrix of the appropriate size. The naive scalarized version of this code
would be

DO j = 1, M
DO i = 1, N

A(i,j) = A(i,j) / X(j)

Scalarization Transformations

Chapter Draft of February 8, 2001 757

ENDDO
ENDDO

Here the input prefetching should be done just before the inner loop.

DO j = 1, M
tX = X(j)
DO i = 1, N

A(i,j) = A(i,j) / tX
ENDDO

ENDDO

13.3.3 Loop splitting

The basic problem with applying InputPrefetch to scalarization depen-
dences with thresholds greater than one is that temporary values must be
saved for each iteration of the scalarization loop up to the threshold. If
this can be avoided, prefetching becomes more practical. Loop splitting
is one way to do this. Consider the problem of scalarizing the following
vector statement:

A(3:6) = (A(1:4) + A(5:8)) / 2.0

The scalarization loop carries both true and antidependences, each with a
threshold of two.

 DO I = 3, 6
 A(I) = (A(I-2) + A(I+2)) / 2.0
 ENDDO

Extension of InputPrefetch to handle this example would require tempo-
raries for two elements of A. However, since both the true dependence
and the antidependence have a threshold of two, we could actually
rewrite the scalarization loop as two independent loops that do not inter-
act with one another.

 DO I = 3, 5, 2
 A(I) = (A(I-2) + A(I+2)) / 2.0

ENDDO
 DO I = 4, 6, 2
 A(I) = (A(I-2) + A(I+2)) / 2.0

ENDDO

The scalarization dependences for each of these loops cross only one iter-
ation, so simple input prefetching can be used to eliminate them. Notice
that the division would produce incorrect results if the antidependence
had a threshold that was not divisible by 2, because then the first loop

Compiling Array Assignments

758 ADVANCED COMPILING FOR HIGH PERFORMANCE

might store into a location loaded as A(I+2) by the second. As a stylistic
convention, we will always write the splitting as a nested pair of loops.

 DO i1 = 3, 4
 DO i2 = i1, 4, 2
 A(i2) = (A(i2-2) + A(i2+2)) / 2.0

ENDDO
 ENDDO

In split form, the inner loop (SI2) carries a scalarization dependence with
threshold 1, while the outer loop carries no dependences. Input prefetch-
ing can now be directly applied to the inner loop, yielding

DO i1 = 1, 2
 T1 = A(i1)
 DO i2 = i1, 4, 2
 T2 = (t1 + A(i2 + 4)) / 2.0
 T1 = A(i2 + 2)
 A(i2) = T2

ENDDO
 ENDDO

FIGURE 13.4 Loop Splitting Algorithm

procedure SplitLoop (S_loop, D)
// S_loop = DO I = L, U, INC; S; ENDDO is the loop to be split.
// the graph D contains all scalarization dependences for this loop

let e be any true dependence edge in D;
T := threshold(e);
all_the_same := true;

for each dependence edge e in D while all_the_same do
if e represents a true dependence and threshold(e) ≠ T

or e represents an antidependence
and T does not divide threshold(e)

then all_the_same := false;

if all_the_same then begin
replace the scalarization loop with a new loop nest:
S1 DO i1 = L, L+T*INC, INC
S2 DO i2 = i1, U, T*INC

S

ENDDO

ENDDO;

let D2 be the scalarization dependences for loop S2;

Scalarization Transformations

Chapter Draft of February 8, 2001 759

InputPrefetch(S, D2);

end
end SplitLoop

By creating a loop with a unitary scalarization dependence, loop splitting
reduces the number of registers required to carry out prefetching.

Although loop splitting can be applied to a loop carrying multiple depen-
dences each with a different threshold [7, 2], it will not produce a loop in
which all dependences have a threshold of 1 unless the thresholds are
identical. Thus, vector operations such as

 A(128:392) = A(1:191) + A(65:255) + $
A(256:512) + A(392:512)

in which there are true dependences with constant thresholds of one and
two regardless of the direction in which the loop is iterated, cannot easily
be scalarized with this method. Also, dependences which do not have
constant thresholds cannot be accommodated.

The value of input prefetching and loop splitting can be summarized as
follows:

Principle 13.3. Any scalarization loop in which all true depen-
dences have the same constant threshold T and all antidepen-
dences have a threshold that is divisible by T can be transformed,
using input prefetching and loop splitting, so that all scalarization
dependences are eliminated.

A proof of this principle can be found in Allen’s dissertation [2].

Loop reversal, loop alignment, and loop splitting provide relatively inex-
pensive alternatives to the large temporary arrays required by procedure
SafeScalarize in the Figure 13.2. Figure 13.5 presents a revised scalariza-
tion algorithm, called FullScalarize, that incorporates these transforma-
tions. Although FullScalarize cannot section all possible Fortran 90
statements without the use of temporary storage, it can successfully sec-
tion most of the statements that should be encountered in practice.

FullScalarize will work well with all statements containing a single
dimension of vectorization. Fortran 90, however, allows for multiple
dimensions of vectorization. Multiple vector dimensions provide oppor-
tunities for new strategies, discussed in Section 13.4.

Compiling Array Assignments

760 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 13.5 Revised scalarization Algorithm.

procedure FullScalarize

for each vector statement S do

compute the dependences of S on itself
as though S had been scalarized;

if S has no scalarization dependences upon itself
then SimpleScalarize(S);

else if S has scalarization dependences,
but no self antidependences

then begin
SimpleScalarize(S);
reverse the scalarization loop;

end

else if all scalarization dependences have a threshold of 1
then begin

SimpleScalarize(S);
InputPrefetch(S);

end

else if all scalarization dependences for S
have the same constant threshold T
and all antidependences have thresholds that are divisible by T

then SplitLoop(S);

else if all antidependences for S
have the same constant threshold T and
all true dependences have thresholds that are divisible by T

then begin
reverse the loop;
SplitLoop(S);

end

else SafeScalarize(S, SL);
end

end FullScalarize

Multidimensional scalarization

Chapter Draft of February 8, 2001 761

13.4 Multidimensional scalarization

So far, all the methods presented have dealt with only one vector dimen-
sion. However, vector statements in Fortran 90 are not limited to single
dimensions of vectorization. For instance, the following statement

A(1:100,1:100) = A(1:100,1:100) + 1.0

has vector iterators in more than one subscript on both the left and right-
hand side of a vector assignment. When this happens, the dimensions are
assumed to correspond from left to right. For example, the statement

A(1:100, 1:100) = B(1:100, 1, 1:100)

should have the same effect as the loop

DO J = 1, 100
A(1:100, J) = B(1:100, 1, J)

ENDDO

The introduction of multiple dimensions of vectorization creates many
new possibilities as well as many new problems in scalarization. In the
simplest case, the multiple dimensions may be collapsed into a single
vector operation. More complicated cases may require sophisticated
transformations such as loop interchange in order to achieve a safe sca-
larization. The following sections discuss these transformations and their
application to scalarization of multiple-dimension vector statements.

13.4.1 Simple scalarization in Multiple Dimensions

Scalarization in multiple dimensions means simply converting each itera-
tor to a corresponding loop. For example, in the following statement,

A(1:100, 1:100) = 2.0 * A(1:100, 1:100)

this approach would yield:

DO J = 1, 100, 1
DO I = 1, 100, 64

A(I,J) = 2.0 * A(I,J)
ENDDO

ENDDO

When viewed in this manner, the central issue of safely scalarizing multi-
ple vector dimensions is clear—as each scalarization loop corresponds to
a different vector iterator, any scalarization loop that carries a true depen-
dence changes the semantics of the original statement. Thus, the same
transformations (loop reversal, loop alignment, etc.) for correcting single

Compiling Array Assignments

762 ADVANCED COMPILING FOR HIGH PERFORMANCE

vector operations can be applied to each scalarization loop, although the
expense may be significantly greater than in the single-dimension case.

An obvious question is: what should the order of the loops be after scalar-
ization? In general, the answer to this question depends on the target
machine. For example, on most machines, the most important goal is to
get stride-one access in the innermost loop. However, on a vector
machine like the Cray T90, the innermost loop is likely to be vectorized
and, since vector loads of almost any stride can be performed efficiently
because of interleaved memory1, the innermost loop should be one that
can be vectorized to high efficiency.

While it is possible to accommodate machine dependencies by defining
an objective function score that indicates the speed with which given vec-
tor operations will execute on particular hardware, a much simpler model
will suffice for this chapter. We will assume that shorter strides are
always better, so the optimal choice for the innermost position is the one
that runs along a column with a stride of 1. Thus, the leftmost vector iter-
ator in a set of multiple iterators should be correspond to the innermost
loop.

With these assumptions, the extension of the results of Section 13.3 to
multiple dimensions is straightforward. Each vector iterator can be sca-
larized individually. The scalarization loop for the leftmost vector iterator
in any reference (which, by our assumptions, should be the most profit-
able) becomes the innermost loop; the rest, taken from left to right, corre-
spond to scalarization loops beginning at the next innermost position and
moving outward.

Once an initial loop order is available, for each scalarization loop starting
from the outermost to the innermost, do the following:

1. Test to see if the loop carries a scalarization dependence. If not, then
proceed to the next loop.

2. If the scalarization loop carries only true dependences, reverse the
loop and proceed to the next loop.

3. Apply input prefetching, with loop splitting where appropriate, to
eliminate dependences to which it applies. At first, this might seem
undesirable outside the inner loop because registers would be quickly
exhausted. Observe, however, that in outer loops, prefetching is done

1. Certain vector strides can cause memory bank conflicts, degrading performance.

Multidimensional scalarization

Chapter Draft of February 8, 2001 763

for a single submatrix (the remaining dimensions). This is always
superior to generating a temporary for the whole matrix, as illustrated
in the next section.

4. Otherwise, the loop carries a scalarization fault that requires tempo-
rary storage. Generate a scalarization that utilizes temporary storage
and terminate the scalarization test for this loop, since temporary stor-
age will eliminate all scalarization faults.

Although this simple strategy will work reasonably well in most cases, it
does not take advantage of an important opportunity. When there are
multiple scalarization loops, the order in which they are executed may
affect not only the scalarization dependences, but also the cost of other
transformations.

13.4.2 Outer Loop Prefetching

The effectiveness of input prefetching in an outer loop can be illustrated
by the following example.

A(1:N, 1:N) = (A(0:N-1, 2:N+1) + A(2:N+1, 0:N-1)) / 2.0

If we attempt to section the column accesses to vector register length, two
scalarization dependences are generated. First, there is a true scalariza-
tion dependence with direction vector “(<,>)” involving the second input
on the right hand side. Second, there is an antidependence with direction
vector “(>,<)” involving the first input on the right hand side. Hence, we
cannot use loop reversal on the outer loop.

However, it is possible to use input prefetching on the outer loop. If we
do this, the temporaries will not be single variables, but temporary arrays
as in the following output code.

T0(1:N) = A(2:N+1, 0)
DO j = 1, N-1

T1(1:N) = (A(0:N-1, j+1) + T0(1:N)) / 2.0
T0(1:N) = A(2:N+1, j)
A(1:N, j) = T1(1:N)

ENDDO
T1(1:N) = (A(0:N-1, N) + T0(1:N)) / 2.0
A(1:N, N) = T1(1:N)

The total amount of temporary space required is equal to two rows of the
original matrix, which is much smaller than the storage required for a
complete copy of the result matrix. At first glance, however, it appears
that the total number of loads and stores in this example is greater than
that required by the naive approach. This is because each iteration of the

Compiling Array Assignments

764 ADVANCED COMPILING FOR HIGH PERFORMANCE

j-loop copies one row of the input into T0, one row of the output to T1
and one row of T1 to the output matrix—two loads and two stores more
per element than if we could have scalarized it directly and one load and
one store more per element than required by the naive scalarization using
temporaries.

However, this analysis is misleading. Consider what happens when we
scalarize the inner loop.

T0(1) = A(2,0)
DO j = 1, N-1

DO i = 1, N
T1(i) = (A(i-1,j+1) + T0(i)) / 2.0

ENDDO
DO i = 1, N

T0(i) = A(i+1,j)
ENDDO
DO i = 1, N

 A(i,j) = T1(i)
ENDDO

ENDDO
DO i = 1, N

T1(i) = (A(i-1,N+1) + T0(i)) / 2.0
ENDDO
DO i = 1, N
 A(i,j) = T1(i)
ENDDO

There are no scalarization dependences in any of the inner loops and, as
we shall see in section 7, we can merge all three loops into a single sca-
larization loop.

T0(1) = A(2,0)
DO j = 1, N-1

DO i = 1, N
T1(i) = (A(i-1,j+1) + T0(i)) / 2.0
T0(i) = A(i+1,j)

 A(i,j) = T1(i)
ENDDO

ENDDO
DO i = 1, N

T1(i) = (A(i-1,N+1) + T0(i)) / 2.0
 A(i,j) = T1(i)
ENDDO

Now it should be clear that the temporary T1 does not carry useful values
across loop boundaries and can be replaced by a register. Hence, the final

Multidimensional scalarization

Chapter Draft of February 8, 2001 765

code will look something like the following (where V1 represents a vector
register of length 64).

T0(1) = A(2,0)
DO j = 1, N-1

DO i = 1, N
V1 = (A(i-1,j+1) + T0(i)) / 2.0
T0(i) = A(i+1,j)

 A(i,j) = V1
ENDDO

ENDDO
DO i = 1, N

V1 = (A(i-1,N+1) + T0(i)) / 2.0
 A(i,j) = V1
ENDDO

This code uses the same number of loads and stores as the naive scalar-
ization, with far less temporary storage (one row of A).

Note that once we have applied outer-loop prefetching to eliminate the
two scalarization dependences, these dependences cannot appear in the
inner loop. Hence, it can be scalarized trivially. In general, applying outer
loop prefetching will eliminate from consideration only those depen-
dences that are carried by the outer loop. Prefetching in the inner loop
may still be required to eliminate dependences that are carried by that
loop.

13.4.3 Loop Interchange

Although the chosen loop ordering may be optimal from an execution
point of view, it may not always be optimal from a scalarization point of
view. Consider, for instance

A(2:100, 3:101) = A(3:101, 1:201:2)

Scalarization in the prescribed order would yield

DO I = 3, 101
DO 100 J = 2, 100

A(J,I) = A(J+1,2*I-5)
ENDDO

ENDDO

The outer loop carries a true dependence, and hence a scalarization fault.
Neither loop input prefetching nor loop reversal will eliminate this fault,
because the loop also carries antidependences, and the thresholds of the
dependences are irregular. Thus, the dependence of the statement upon
itself is really two dependences with direction vectors “(<,>)” (when I=3

Compiling Array Assignments

766 ADVANCED COMPILING FOR HIGH PERFORMANCE

the loop stores into A(*,3) and it loads from the same column when I=4)
and “(>,>)” (when I=6 the loop loads from A(*,7) and subsequently
stores into the same column when I=6.

However, if we interchange the two loops, we get direction vectors
“(>,<)” and “(>,>)”. Now the outer loop carries two antidependences and
can be trivially scalarized to a length of 1. This eliminates the two depen-
dences from consideration in the inner loop and it, too, can be easily sca-
larized.

DO J = 2, 100
DO I = 3, 101

A(J,I) = A(J+1,2*I-5)
ENDDO

ENDDO

While this ordering may not make optimal use of strided memory access,
it is far more efficient than using temporary storage.

At first glance, it may appear that the interchange of scalarization loops
should be illegal because one of the scalarization dependences is con-
verted from a true dependence to an antidependence. However, keep in
mind that we are looking for a scalarization that has no true scalarization
dependences carried by the scalarization loop. Any scalarization that has
such a dependence is incorrect. By that criterion, the original scalariza-
tion is incorrect but the final one is correct. In general, we are free to
choose any order for the scalarization loops, and any direction for each
loop, so long as none of the resulting loops carries a scalarization depen-
dence. We will use this principle to derive a general algorithm for scalar-
ization.

Even when loop interchange does not remove a scalarization fault, it can
still be a useful transformation for reducing the size of temporaries. Sup-
pose we wish to section the following statement, making the column iter-
ators correspond to the inner loop.

A(1:128, 1:128) = A(1:128, 0:127)

In the straightforward scalarization of the outer loop

DO i = 1, 128
A(1:128, i) = A(1:128, i-1)

ENDDO

the outer loop carries a true dependence, which could be eliminated by
outer-loop prefetching.

Multidimensional scalarization

Chapter Draft of February 8, 2001 767

T0(1:128) = A(1:128, 0)
DO i = 1, 128

T1(1:128) = T0(1:128)
T0(1:128) = A(1:128, i)
A(1:128,i) = T1(1:128)

ENDDO
T1(1:128) = T0(1:128)
A(1:128,i) = T1(1:128)

After scalarization of the column iterators, and fusing the statements
where possible (see Section 13.6), this becomes

DO j = 1, 128
T0(j) = A(j, 0)

ENDDO
DO i = 1, 128

DO j = 1, 128
T1(j) = T0(j)
T0(j) = A(j, i)
A(j,i) = T1(j)

ENDDO
ENDDO
DO j = 1, 128

T1(j) = T0(j)
A(j,i) = T1(j)

ENDDO

Because the load of A in the loop is now from column i, the only depen-
dence involving A has direction vector “(=,=)”. Thus the loops can be
interchanged to yield

DO j = 1, 128
T0(j) = A(j, 0)

ENDDO
DO j = 1, 128

 DO i = 1, 128
T1(j) = T0(j)
T0(j) = A(j, i)
A(j,i) = T1(j)

ENDDO
ENDDO
DO j = 1, 128

T1(j) = T0(j)
A(j,i) = T1(j)

ENDDO

The resulting outer loops can now be fused to yield

DO j = 1, 128
T0(j) = A(j, 0)

Compiling Array Assignments

768 ADVANCED COMPILING FOR HIGH PERFORMANCE

 DO i = 1, 128
T1(j) = T0(j)
T0(j) = A(j,i)
A(j,i) = T1(j)

ENDDO
T1(j) = T0(j)
A(j,i) = T1(j)

ENDDO

We can now notice that values of T0 and T1 are never reused across differ-
ent iterations of the j-loop, we can reduce them to scalar variables.

DO j = 1, 128
T0 = A(j, 0)

 DO i = 1, 128
T1 = T0
T0 = A(j,i)
A(j,i) = T1

ENDDO
T1 = T0
A(j,i) = T1

ENDDO

By interchanging loops, we have eliminated all temporary storage and all
superfluous loads and stores.

Notice that we could have made the decision to move the input prefetch
operation to the inner loop when the order of scalarization was deter-
mined. In general, it is always better to interchange so input prefetching
is applied to the innermost loop because it minimizes the temporary stor-
age needed while improving performance by ensuring that the temporar-
ies can be stored in registers rather than stored back to memory. Of
course, these must be weighed against the cost of non-unit stride access
to A in the i-loop.

General methods for improving register usage by loop interchange and
loop fusion are the subject of Section 13.6.

13.4.4 General Multidimensional Scalarization

Our general approach to multidimensional scalarization will involve con-
struction of a special data structure called the scalarization direction
matrix for the scalarization loop nest. Assume we wish to section a single
statement that has m vector dimensions. Suppose (l1,l2, ... , lm) represents
the ideal order of scalarization loops from outermost to innermost, as
determined by some cost-benefit analysis. Let d1,d2 , ... , dn be the direc-
tion vectors for all true and antidependences of the statement upon itself

Multidimensional scalarization

Chapter Draft of February 8, 2001 769

carried by some loop in the loop nest, in which the directions are reversed
in a direction vector for each antidependence. The scalarization direction
matrix for the statement is an n × m matrix of elements “<”, > or =
formed by making the kth row be dk for all k, 1≤k≤n. For example, in the
statement

A(1:N, 1:N, 1:N) = A(0:N-1, 1:N, 2:N+1) + &
A(1:N, 2:N+1, 0:N-1)

if we choose the loop order that has the innermost loop iterating over a
column, we get the following scalarization direction matrix:

If we examine any column of the direction matrix, we can immediately
see if the corresponding loop can be safely scalarized as the outermost
loop of the nest:

• If all entries of the column are “=” or “>”, it can be safely scalarized
as the outermost loop without loop reversal.

• If all entries are “=” or “<”, it can be safely scalarized with loop rever-
sal.

• If it contains a mixture of “<” and “>”, it cannot be scalarized by sim-
ple means.

In the example above, the proposed outer loop cannot be scalarized by
simple means, but each of the other two loops could be if they were
moved to the outermost position.

Once a loop has been selected for scalarization, the dependences carried
by that loop—any dependence whose direction vector does not contain a
“=” in the position corresponding to the selected loop—may be elimi-
nated from further consideration. The scalarization of the inner loops
may then restrict consideration to a submatrix of the direction matrix
from which the selected column, and any rows that had a symbol other
than “=” in that column, have been eliminated. In our example, we could
choose the second column for scalarization as the outer loop. If we move
this column to the outside, the scalarization matrix becomes:

> = <

< > =

= > <

> < =

Compiling Array Assignments

770 ADVANCED COMPILING FOR HIGH PERFORMANCE

scalarization in this way will eliminate the second row from further con-
sideration, reducing the scalarization matrix to

The leftmost column, corresponding to the previous outer dimension, can
now be scalarized without reversal. Once this is done, all dependences
are gone, and the inner dimension can be scalarized easily. On the exam-
ple, this results in the following code.

DO j = 1, N
DO k = 1, N

DO i = 1, N, 64
A(i, j, k) = A(i-1, j, k+1) + A(i, j+1, k-1)

ENDDO
ENDDO

ENDDO

The algorithm in Figure 13.6 is a more formal presentation of this
approach. It assumes that the vector operations have been initially
ordered from outermost to innermost according to the optimal execution
ordering in the list loop_list. It attempts to maintain this ordering if possi-
ble without the use of temporary storage.

FIGURE 13.6 A Complete scalarization Algorithm.

procedure CompleteScalarize(S, loop_list)

// Scalarize attempts to section a vector operation
// without use of temporary storage.
// S is the statement to be scalarized;
// loop_list is a list of the vector operations ordered
// in “optimal” execution order.

let M be the scalarization direction matrix
resulting from scalarization S to loop_list;

while there are more loops to be scalarized do begin

let l be the first loop in loop list that can be simply scalarized
with or without loop reversal (determine this by examining the
columns of M from left to right);

if there is no such l then begin
let l be the first loop on loop_list;
section l by input prefetching

> <

Multidimensional scalarization

Chapter Draft of February 8, 2001 771

if the previous step fails
then section S using the naive temporary method and exit;

end

else // make l the outermost loop
section l directly or with loop reversal, depending on the

entries in the column of M corresponding to l
(if l is the last loop use hardware section length);

remove l from loop_list;
let M' be M with the column corresponding to l and the

rows corresponding to non-“=” entries
in that column eliminated;

M := M';
end;

end CompleteScalarize

Variations on CompleteScalarize can accommodate various machine
types. For machines where temporary storage reduction is not worth
changing the vector dimension, the algorithm is adjusted to preclude
selecting the inner loop before all other loops are scalarized.

The time complexity of this algorithm is no worse than O(m2n), where m
is the number of loops and n is the number of dependences. To see this,
observe that a scan for the next column that can be scalarized takes no
more than O(mn) time, because it must look at each element no more
than once. Since there are m loops, we need do this no more than m times.

For a given statement S and loop list, Scalarize produces a correct scalar-
ization with the following properties:

1. input prefetching is applied to the innermost loop possible, and

2. the order of scalarization loops is the closest possible to the order
specified on input among scalarizations with property (1).

Correctness follows from the definition of the direction matrix. Since we
are free to choose, as the outermost scalarization loop, any loop that does
not introduce a scalarization fault, we need only find some loop for which
all carried dependences will be antidependences or true dependences. In
the first case, the scalarization loop is iterated normally, and in the sec-
ond, the scalarization loop is iterated in reverse.

Once the outermost scalarization loop is selected, the dependences car-
ried by that loop cannot be scalarization dependences for an inner loop

Compiling Array Assignments

772 ADVANCED COMPILING FOR HIGH PERFORMANCE

because the value of the outer loop index at the source and target of such
a dependence must not be equal. For a scalarization fault to occur at an
inner loop it must be possible for two different values of the inner loop
index to access the same memory location for the same value of the outer
index. This is only possible if the dependence has a “=” symbol in the
position for the outer loop. Hence, eliminating dependences that are car-
ried by the outer loop is correct.

Once the matrix contains only columns with both “<” and “>”, input
prefetching is applied. Once applied, the dependences carried by the loop
to which it applies can be eliminated (by the argument above) and the
process continued.

To establish property (1), we must show that there cannot exist a
sequence of loop selections different from the one selected by the algo-
rithm that requires input prefetching only at a deeper nesting level than
the sequence selected by CompleteScalarize. In other words, at some
stage in constructing a nest of scalarization loops, there may be more
than one choice for the next outer loop. Is it possible that the wrong
selection will permit one additional loop selection before input prefetch-
ing? The answer is no if the process of loop selection has the finite
Church-Rosser property [1, 9], which holds if any sequence of selections
arrive at the same limit. In the loop selection system, finiteness follows
from the fact that there are only a finite number of loops, and one is
selected at each stage. Thus, every selection sequence terminates with the
loop list exhausted or in a situation where input prefetching would be
required.

To establish that the selections always arrive at the same limit, we must
define what we mean by the “same”. For our purposes, a problem config-
uration is defined by the direction matrix. Two configurations will be the
same if they have the same number of columns (loops remaining) and the
rows are the same, but possibly permuted. Sethi has proved that a
replacement system has the finite Church-Rosser property if it satisfies
two properties, named P1 and P3 [9]:

P1) If any transformation (loop selection) step is made, then there is a
sequence of steps that takes the original configuration to a limit and a
sequence of steps that takes the new configuration to the same limit.

P3) If two different transformation steps are made from an original
configuration, then there exist sequences of transformations that take
each of the resulting configurations to the same limit.

Multidimensional scalarization

Chapter Draft of February 8, 2001 773

Property P1 is trivial in our system, because we can take the new configu-
ration as the limit and reach it in a single step from the original by select-
ing the same loop. Property P3 is almost as easy. Suppose we begin in
configuration c0 and select loop l1 to arrive at c1 in one case and select l2
to arrive at c2 in the other. Since l2 is eligible for selection in c1, we can
now select it to arrive in c3. Similarly, we can select l1 in c2 to arrive at c4.
Now the direction matrix for c3 is different from c0 in that it has exactly
those rows which contained a “=” in column l1 or l2 and it is missing
those columns. But the direction matrix for c4 has exactly the same rows
and columns. Thus, the configurations are the same, establishing P3 and
the finite Church-Rosser property.

Thus, no matter how we select eligible columns, we always arrive at the
same limit. Hence the selection order in Scalarize cannot be improved
upon, establishing property (1). But since the first (outermost) eligible
loop is always selected, the order of scalarization loops that results is the
closest possible to the desired one, establishing property (2).

Although CompleteScalarize provides scalarization for a loop nest that
might be called optimal in a restricted sense, it is still possible to improve
register reuse by interchanging the scalarization loops with loops that
surround the original vector statement and by fusing the scalarization
loops of adjacent vector statements. This is the subject of the
Section 13.6.

13.4.5 A Scalarization Example

The previous sections have described a number of dependence-based
techniques for scalarizing vector code. In this section we illustrate the
effectiveness of these transformations on a common example from scien-
tific computing—finite-difference relaxation solutions for differential
equations. A Fortran 90 version of this algorithm is:

DO J = 2, N-1
A(2:N-1,J) = A(1:N-2,J) + A(3:N,J) + &

A(2:N-1,J-1) + A(2:N-1,J+1)/4.
ENDDO

Roughly speaking, this fragment sets the value of every point to be the
average of the four surrounding points. As a result, there are many con-
flicts between memory locations, leading to a concentrated dependence
graph. Figure 13.7 illustrates the dependences for this fragment, assum-
ing that the vector operation is done by a scalar loop on index variable i.

Compiling Array Assignments

774 ADVANCED COMPILING FOR HIGH PERFORMANCE

FIGURE 13.7 Dependence Graph for Finite-Difference Loop.

This example contains a scalarization dependence (the true dependence
on the scalarization loop δi) as well as a dependence that prevents loop
reversal (the antidependence on the scalarization loop). As a result, a
naive compiler would use temporary storage to correctly scalarize the
statement, yielding the following:

DO J = 2, N-1
DO i = 2, N-1

T(i-1) = (A(i-1,J) + A(i+1,J) + &
A(i,J-1) + A(i,J+1))/4

ENDDO
 DO i = 2, N-1

A(i,J) = T(i-1)
ENDDO

ENDDO

A(i,J)

A(i,J+1)

A(i-1,J)

A(i,J-1)

A(i+1,J)
δi

-1

δJ
-1

δJ

δi

δi
1–

Considerations for Vector Machines

Chapter Draft of February 8, 2001 775

The references to T require 2(N-2)2 accesses to memory (half to store and
the other half to fetch).

Because the dependences carried by the scalarization loop are regular
dependences with a constant threshold of one, the analysis described in
section 5 would reveal this statement to be a candidate for input prefetch-
ing. Straightforward application of input prefetching would yield the fol-
lowing:

DO J = 2, N-1
tA0 = A(1, J)
DO i = 2, N-2

tA1 = (tA + A(i+1,J) + A(i,J-1) + A(i,J+1)) /4
tA0 = A(i-1, J)
A(i,J) = tA1

ENDDO
tA1 = (tA0 + A(N,J) + A(N-1,J-1) + A(N-1,J+1)) /4
A(N-1,J) = tA1

ENDDO

If the temporary variables are allocated to registers, this version requires
no additional memory references above what the original Fortran 90 pro-
gram required. The cost is the allocation of two registers during execu-
tion of the loop. Given the relative costs of register operations and
memory accesses, the transformed code should perform much better on
most machines.

13.5 Considerations for Vector Machines

When generating code for a vector machine, the compiler should use a
variation of scalarization which generates vector operations in the inner
loop that are matched to the size of the vector register on the target
machine. Doing this is straightforward in general, but may require some
extra code to ensure that vector lengths work out correctly. To illustrate
the issues, we revisit a simple scalarization example, with unknown
bounds

A(1:N) = A(1:N) + 1.0

As we saw in Section 13.2, scalarization of this loop is straightforward.
However, if we are to produce operations of length matched to the native
vector length of the target machine, say 64 elements, we must be careful
to correctly handle cases where N is not an even multiple of 64. The strat-
egy we recommend is to begin with a short vector operation of length

Compiling Array Assignments

776 ADVANCED COMPILING FOR HIGH PERFORMANCE

mod(N,64), which will ensure that all the remaining vector sections can
be exactly length 64.

VL = MOD(N,64)
IF (VL.GT.0) A(1:VL) = A(1:VL) + 1.0
DO I = VL +1, N, 64

A(I:I+63) = A(I:I+63) + 1.0
ENDDO

With these modifications, all the scalarization strategies described in this
section can be extended to vector machines.

13.6 Post-Scalarization Interchange and Fusion

The scalarization strategies described in this chapter do a good job of
generating code for an individual statement. However, scalarization gen-
erally produces numerous individual loops. Furthermore these loops
carry no dependences, so reuse of quantities in registers is not common.
To overcome these problems, it is essential that the techniques of loop
interchange, loop fusion, unroll-and-jam, and scalar replacement,
described in Chapter 8, be applied to the results of scalarization.

The following example, abstracted from a linear equation solver illus-
trates some of these issues:

DO K = 1, N
S1: M(K, K:N+1) = M(K, K:N+1)/M(K,K)
S2: M(K+1:N, K+1:N+1) = M(K+1:N, K+1:N+1) -

SPREAD (M(K,K+1:N+1), 1, N-K) * &
SPREAD (M(K+1:N,K), 2, N-K+1)

ENDDO

We have seen the SPREAD intrinsic previously in Section 13.3.2. To cor-
rectly scalarize statement S1, we note that even though there is a scalar-
ization dependence involving M(K,K), it can be eliminated by a
degenerate form of input prefetching. The scalarization loop becomes

tM = M(K,K)
DO j = K, N+1

M(K,j) = M(K,j)/tM
ENDDO

The statements S2 is complicated because it is a two-dimensional array
statement that uses the SPREAD intrinsic, which simply replicates the
array found in the first parameter by the number of copies specified by
the third parameter, repeating them in the dimension specified by its sec-

Post-Scalarization Interchange and Fusion

Chapter Draft of February 8, 2001 777

ond parameter. The effect of the usage in the example above is simply to
take the outer product of the two vectors specified in the first parameters
of the spread. The naive scalarization of this statement would be:

DO j = K+1, N+1
DO i = K, N+1

M(i,j) = M(i,j) - M(K,j) * M(i,K)
ENDDO

ENDDO

However, the i loop carries a scalarization dependence due to the use of
M(j,K) on the right hand side, which incorrectly uses the value of M com-
puted on the first iteration. This too, can be eliminated with input
prefetching.

DO j = K+1, N+1
tMKj = M(K,j)
DO i = K, N+1

M(i,j) = M(i,j) - tMKj * M(i,K)
ENDDO

ENDDO

Note that there is no problem with the reference to M(i,K) because j
begins at iteration K+1. Now we can present the entire scalarization.

DO K = 1, N

tM = M(K,K)
DO j = K, N+1

M(K,j) = M(K,j)/tM
ENDDO

DO j = K+1, N+1
tMKj = M(K,j)
DO i = K, N+1

M(i,j) = M(i,j) - tMKj * M(i,K)
ENDDO

ENDDO
ENDDO

Since interchange is precluded in this nest, loop fusion is tried first. After
alignment, the two j loops can be fused to produce:

DO K = 1, N
tM = M(K,K)
M(K,K) = tM/tM
DO j = K+1, N+1

M(K,j) = M(K,j)/tM
tMKj = M(K,j)

Compiling Array Assignments

778 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO i = K, N+1
M(i,j) = M(i,j) - tMKj * M(i,K)

ENDDO
ENDDO

ENDDO

Next, unroll-and-jam is applied to the j loop to take advantage of the
opportunity to reuse M(i,K). In this case, we use a factor of two, but
much larger factors are possible. After rearranging and fusing the inner
loops this becomes:

DO K = 1, N
tM = M(K,K)
M(K,K) = tM/tM
DO j = K+1, N+1, 2

M(K,j) = M(K,j)/tM
tMKj = M(K,j)
M(K,j+1) = M(K,j+1)/tM
tMKj1 = M(K,j+1)
DO i = K, N+1

M(i,j) = M(i,j) - tMKj * M(i,K)
M(i,j+1) = M(i,j+1) - tMKj1 * M(i,K)

ENDDO
ENDDO

ENDDO

Finally, we apply scalar replacement along with some further rearrange-
ment to get the result:

DO K = 1, N
tM = M(K,K)
M(K,K) = tM/tM
DO j = K+1, N+1, 2

tMKj = M(K,j)/tM
M(K,j) = tMKj
tMKj1 = M(K,j+1)/tM
M(K,j+1) = tMKj1
tMiK = M(i,K)
DO i = K, N+1

M(i,j) = M(i,j) - tMKj * tMiK
M(i,j+1) = M(i,j+1) - tMKj1 * tMiK

ENDDO
ENDDO

ENDDO

This form achieves four flops for every five memory operations. With
additional use of unroll and jam, it can be made to approach one flop per
memory operation.

Chapter Summary

Chapter Draft of February 8, 2001 779

13.7 Chapter Summary

This chapter has addressed the problem of generating good code for For-
tran 90 array assignments. The principle strategy in this process is the
conversion of array assignments to nests of sequential loops that correctly
implement the semantics of the original statement. This process would be
easy if it were not for the goal of avoiding the use of large, compiler-gen-
erated temporary arrays.

The chapter presents a variety of strategies for reducing the amount of
temporary storage required including loop reversal, input prefetching,
and loop splitting. For multidimensional array statements, picking the
correct loop order may also be used to avoid generation of temporaries.

It is important to note that these techniques are also required for efficient
implementations of Fortran 90 on vector machines, for which the inner-
most loop should be strip mined to the size of native vector operations.

A second problem addressed is how to improve the performance of sca-
larized code after it has been generated. It is shown that by judicious use
of the techniques of scalar register allocation given in Chapter 8, it is pos-
sible to produce code that approaches best that can be done by hand opti-
mization.

13.8 Case Studies

Neither PFC nor the Ardent Titan ever implemented Fortran 90, so the
scalarization strategies described here were unnecessary. Recently, these
strategies have been implemented in the context of the dHPF compiler at
Rice by Yuan Zhao. In addition to the strategies that are described in this
chapter, Zhao’s implementation included a major improvement—it used
alignment in conjunction with temporary array contraction to further
reduce the amount of temporary array storage needed in loops generated
by Fortran 90. Although this might seem like a minor advance, it had
deep implications for the cache behavior of the resulting programs. In
one case, SOR using a nine-point stencil written as a single HPF pro-
gram, Zhao’s alignment strategy led to an integer factor speedup in the
performance of the code on a single processor SGI using the native For-
tran 90 compiler. The technical report arising from this work also sug-
gests that, in some cases, loop skewing can be used to reduce the
temporary storage required for scalarization loops generated from For-
tran 90 statements [12].

Compiling Array Assignments

780 ADVANCED COMPILING FOR HIGH PERFORMANCE

13.9 Historical Comments and References

Wolfe introduced the notion of scalarization and stated that the simple
algorithm (Figure 13.2) can always be applied [11]. He observed that
loop fusion, where it is legal, can be used to eliminate the temporary stor-
age. He also observed the importance of keeping loop-invariant vectors,
such as the result vector in matrix multiplication, in a register during a
loop.

The scalarization algorithms in this Chapter are taken from the paper
“Vector register allocation,” by Allen and Kennedy [3], and from Allen’s
dissertation [2]. Recently Zhao and Kennedy have improved on these
strategies by using alignment and loop skewing [12].

In his dissertation and associated papers, Roth [8,4,5,6] proposed a com-
pilation strategy that would analyze Fortran 90 at the whole-array level
and perform preliminary transformations to reduce the cost of imple-
menting it on specific parallel machines. Roth’s strategy was particularly
effective for reducing communication in stencils written for the Thinking
Machines CM-5 in CM Fortran, which included many different shift
operations for the same array.

13.10 Exercises

13–1 What is a scalarization fault? Can a scalarization fault always be elimi-
nated?

13–2 Prove that loop reversal will eliminate scalarization faults carried by a
loop if and only if the loop carries no antidependences.Why are output
dependences are not mentioned in this proposition? Will they be a prob-
lem in scalarization?

13–3 Prove the proposition that any scalarization loop in which all true depen-
dences have the same constant threshold T and all antidependences have
a threshold that is divisible by T can be transformed, using input
prefetching and loop splitting, so that all scalarization dependences are
eliminated.

13–4 Compare array syntax with PARALLEL DO loop of the sort introduced in
Chapter 1. Do they have exactly the same meaning? That is, can a state-
ment in array syntax always be translated into a PARALLEL DO loop, and
can a single-statement PARALLEL DO loop always be translated into array
syntax?

References

Chapter Draft of February 8, 2001 781

13.11 References

[1] A.V. Aho, R. Sethi and J.D. Ullman, “Code optimization and finite Church-Rosser sys-
tems”, in Design and Optimization of Compilers, (R. Rustin, ed.), Prentice-Hall, 1972.

[2] J.R. Allen, “Dependence analysis for subscripted variables and its application to pro-
gram transformations,” PhD dissertation, Department of Mathematical Sciences, Rice
University, May, 1983.

[3] J.R. Allen and K. Kennedy. Vector register allocation. IEEE Transactions on Computers,
41(10):1290–1317, October 1992.

[4] K. Kennedy and G. Roth. Context optimization for SIMD execution. In Proceedings of
the Scalable High Performance Computing Conference, Knoxville, TN, May 1994.

[5] K. Kennedy, J. Mellor-Crummey, and G. Roth. Optimizing Fortran 90 shift operations
on distributed--memory multicomputers. In Proceedings of the 8th International Work-
shop on Languages and Compilers for Parallel Computing (LCPC '95), Columbus, OH,
August 1995.

[6] K. Kennedy and G. Roth. Dependence analysis of Fortran90 array syntax. In Proceed-
ings of the International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA '96), August 1996.

[7] D.A. Padua. Multiprocessors: discussion of some theoretical and practical problems. TR
UIUCDCS-R-79-90, University of Illinois at Urbana-Champaign, Urbana, IL, Novem-
ber 1979.

[8] G. Roth. Optimizing Fortran 90D/HPF for distributed–memory computers. PhD disser-
tation, Department of Computer Science, Rice University, 1997.

[9] R. Sethi, “Testing for the Church-Rosser property”, JACM 21, 4, October 1974.

[10] D. Wedel. FORTRAN for the Texas Instruments ASC system. SIGPLAN Notices 10(3),
March 1975, 119-132.

[11] M. Wolfe. Optimizing supercompilers for supercomputers. PhD Dissertation, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, November,
1982.

[12] Y. Zhao and K. Kennedy. Scalarizing Fortran 90 array syntax. Technical Report, Depart-
ment of Compuer Science, Rice University, Houston, February 2001.

Compiling Array Assignments

782 ADVANCED COMPILING FOR HIGH PERFORMANCE

Introduction to HPF

Chapter Draft of February 8, 2001 783

CHAPTER 14 Compiling High-
Performance Fortran

14.1 Introduction to HPF

At the end of the 1980s, high-end parallelism made the transition from
bus-based shared memory systems, which are today called symmetric
multiprocessors (SMPs) to designs in which the system memory was bro-
ken up and packaged with individual processors to make a scalable com-
puter. Typical of the early designs were the hypercubes, originated at
Caltech and popularized by Intel and other companies. Later designs
used different network architectures, while retaining the distributed-
memory design. Such machines came to be called distributed-memory
multiprocessors.

Because the individual processors in early distributed memory systems
used 32-bit addressing, they could not address every word in the aggre-
gate memory of a large configuration. Therefore, most such machines
used some form of “message-passing” to communicate data between pro-
cessors. Whenever one processor needed a block of data resident in the

Compiling High-Performance Fortran

784 ADVANCED COMPILING FOR HIGH PERFORMANCE

memory of another, the owner would have to explicitly send the data to
the processor that needed it, which in turn executed a receive to extract
the data block. These send and receive operations were typically pro-
grammed via calls to system libraries from Fortran or C. The drawback of
such libraries was that each one was specific to a particular machine,
making codes difficult to port between systems. This problem was solved
by the release of Message-Passing Interface (MPI), a standard interface
for message passing calls from high-level languages. Today, MPI is used
on the majority of programs written for scalable parallel machines.

However, MPI and its relatives have a serious drawback—they are not
easy to master and use. To write an MPI program, the user must typically
rewrite an application into single-program, multiple data (SPMD) form.
To illustrate this, we begin with a simple sum reduction calculation that
would be written as follows in Fortran 90:

PROGRAM SUM
REAL A(10000)
READ (9) A
SUM = 0.0
DO I = 1, 10000

SUM = SUM + A(I)
ENDDO
PRINT SUM

END

To carry out this calculation on a parallel message passing machine we
must covert it to the SPMD form, in which each processor executes
exactly the same program operating on a different subset of the data
space. A processor determines the data on which it is to operate by inter-
rogating processor specific environment variables. Here is a simple, but
inefficient, SPMD program to read a collection of data items, send sub-
sets of the collection to be stored on different processors, compute the
sum, and print the result.

PROGRAM SUM
REAL A(100), BUFF(100)
IF (PID == 0) THEN

DO IP = 0, 99
READ (9) BUFF(1:100)
IF (IP == 0) A(1:100) = BUFF(1:100)
ELSE SEND(IP,BUFF,100) ! 100 words to Proc I

ENDDO
ELSE

RECV(0,A,100) ! 100 words from proc 0 into A
ENDIF
SUM = 0.0

Introduction to HPF

Chapter Draft of February 8, 2001 785

DO I = 1, 100
SUM = SUM + A(I)

ENDDO
IF (PID == 0) SEND(1,SUM,1)
IF (PID > 0) RECV(PID-1,T,1)

SUM = SUM + T
IF (PID < 99) SEND(PID+1,SUM,1)
ELSE SEND(0,SUM,1)

ENDIF
IF (PID == 0) PRINT SUM;

END

Although this program overlaps the computation of 100-element local
partial sums, it sequentializes the computation of the global sum from the
partial sums. Thus it does not achieve the best overall parallelism. Never-
theless, it illustrates some of the difficulties of programming in SPMD
form with message passing. The principal difference from the Fortran 90
version is that the programmer must manage all of the data placement,
movement, and synchronization. To do that, he or she must strip mine the
code by hand to produce SPMD code.

The idea behind High Performance Fortran, an extended version of For-
tran 90 produced by an informal standardization process in the early
1990s, is to automate most of the details of managing data. In HPF, the
critical intellectual task for the programmer is to determine how data is to
be laid out in the processor memories in the parallel machine configura-
tion. HPF includes three directives, coded as comments, to accomplish
this.

• The TEMPLATE directive provides a mechanism for the user to declare
a fine-grained virtual processor array that represents the maximum
amount of parallelism that might be useful in the problem. For the
problem above, the following directive might suffice:

!HPF$ TEMPLATE T(10000)

• The ALIGN directive provides a way for arrays to be aligned with a
template or with one another. For this problem we might use:

!HPF ALIGN A(:) WITH T(:)

• The DISTRIBUTE directive is a machine-independent specification of
how to distribute a virtual processor array or a data array onto the
memories of a real parallel machine. For example, the example prob-
lem distributes all the data across 100 processors. This can be accom-
plished in HPF by:

!HPF DISTRIBUTE T(BLOCK)

Compiling High-Performance Fortran

786 ADVANCED COMPILING FOR HIGH PERFORMANCE

Alternatively, the effect of all three directives above can be achieved by

!HPF DISTRIBUTE A(BLOCK)

which is a direct distribution of a data array onto real processors.

With these directives the sum reduction program can be written as

PROGRAM SUM
REAL A(10000)
!HPF$ DISTRIBUTE A(BLOCK)
READ (9) A
SUM = 0.0
DO I = 1, 10000

SUM = SUM + A(I)
ENDDO
PRINT SUM

END

This is clearly much simpler than the message-passing program, but it
has a downside—the compiler must do a substantial amount of work to
generate a program that displays reasonable efficiency. In particular, it
must recognize that the main calculation is a sum reduction and replicate
the values of SUM on each processor. Then it must generate the final paral-
lel sum at the end.

In addition to the distribution directives, HPF has special directives that
can be used to assist in the identification of parallelism. The directive

!HPF INDEPENDENT

specifies that the loop that follows can be parallelized without concern
for communication or synchronization. Many compilers can detect this
fact for themselves, but the directive ensures that all compilers to which
the program is presented will execute the loop in parallel.

In the example above, the directive would not be applicable because of
the sum reduction. However, because reduction is so common in scien-
tific programs, HPF permits a special qualifier to specify that a particular
variable is the target of a sum reduction.

!HPF INDEPENDENT, REDUCTION(SUM)

With this directive, the example can be written in HPF as

PROGRAM SUM
REAL A(10000)
!HPF$ DISTRIBUTE A(BLOCK)
READ (9) A

Introduction to HPF

Chapter Draft of February 8, 2001 787

SUM = 0.0
!HPF$ INDEPENDENT, REDUCTION(SUM)
DO I = 1, 10000

SUM = SUM + A(I)
ENDDO
PRINT SUM

END

This version is much easier for the compiler to process into an efficient
message-passing program.

As a final example, we present a simple HPF code fragment that is
intended model a multigrid method. Here a TEMPLATE is used to align the
coarse grid APRIME with the fine grid A. Independent directives are used
to ensure portability across compilers that would not recognize the paral-
lelism in the computation loops.

REAL A(1023,1023), B(1023,1023), APRIME(511,511)
!HPF$ TEMPLATE T(1024,1024)
!HPF$ ALIGN A(I,J) WITH T(I,J)
!HPF$ ALIGN B(I,J) WITH T(I,J)
!HPF$ ALIGN APRIME(I,J) WITH T(2*I-1,2*J-1)
!HPF$ DISTRIBUTE T(BLOCK,BLOCK)

!HPF$ INDEPENDENT, NEW(I)
DO J = 2, 1022 ! Multigrid Smoothing (Red-Black)

!HPF$ INDEPENDENT
 DO I = MOD(J,2), 1022, 2
 A(I,J) = 0.25*(A(I+1,J) + A(I+1,J) + A(I,J-1) &

+ A(I,J+1)) + B(I,J)
 ENDDO

ENDDO

!HPF$ INDEPENDENT, NEW(I)
DO J = 2, 510 ! Multigrid Restriction

!HPF$ INDEPENDENT
 DO I = 2, 510
 APRIME(I,J) = 0.05*(A(2*I-2,2*J-2) + &

4*A(2*I-2,2*J-1) + A(2*I-2,2*J) + &
4*A(2*I-1,2*J-2) + 4*A(2*I-1,2*J) + &
A(2*I,2*J-2) + 4*A(2*I,2*J-1) + &
A(2*I,2*J))

 ENDDO
ENDDO

! Multigrid convergence test
ERR = MAXVAL(ABS(A(:,:)-B(:,:)))

Compiling High-Performance Fortran

788 ADVANCED COMPILING FOR HIGH PERFORMANCE

In the example, the qualifier NEW(I) is used in the INDEPENDENT directive
for the outer loop to ensure that the inner loop induction variable I is rep-
licated on each group of processors that execute different iterations of the
outer loop. This is roughly equivalent to the PRIVATE directive in other
parallel dialects.

In the remainder of this chapter we present some compiler strategies that
build on the machinery developed earlier in this book to compile HPF
programs into reasonably efficient message-passing programs. A goal of
this work is to achieve performance that approaches the performance of
the best hand-coded message-passing program.

14.2 HPF Compiler Overview

In this section we will discuss the typical structure of an HPF compiler
and illustrate the various phases with a simple example. The usual target
for HPF compilation is Fortran 77 or Fortran 90 with calls to MPI for
communication. For the purposes of the treatment here, we will use as
our target language the Fortran 77 subdialect of Fortran 90 plus some
simple communication calls that will be explained as we go along. We
will make the assumption that all the array assignments have been trans-
formed into sequential loops (scalarized) as described in Chapter 13. For
the purposes of this treatment, we will also assume that the number of
processors used in the computation is fixed and known at compile time,
although this assumption can easily be relaxed.

The principle used to partition computation in most implementations of
HPF is the owner-computes rule, which says that the owner of the left-
hand side of every assignment must compute expression on the right-
hand side. Although this rule is implicit in the standard, it is not required.
In fact the compiler is free to relax the owner computes rule in any way
that it sees fit. However, it should do this only when there is a clear per-
formance advantage, as the user expects a distribution of computation
according to the owner-computes rule, so he or she may have crafted the
data distributions with this in mind. Later in the chapter we will explore
optimizations that relax this rule.

The HPF compilation process proceeds in several stages.

1. Dependence Analysis. A complete set of dependences will be needed
to determine whether communication is needed and where it should be
placed in the final program.

HPF Compiler Overview

Chapter Draft of February 8, 2001 789

1. Distribution Analysis. An analysis of the data distributions is per-
formed to determine at each point in the program which distributions
can hold for each data structure. Although it is possible for multiple
distributions for the same data structure to reach a given point, it is not
likely, so we will not deal with that case here.

2. Partitioning. Once the distributions are known everywhere in the pro-
gram, a computation partitioning is determined. That is, we must
identify with each statement instance in the program, where a state-
ment instance is parameterized by the indices of the loops that control
its execution, a processor that executes it. For the compilers we will
discuss here, this corresponds to annotating each statement with an ON
HOME directive as described in the modified version of our example
below.

3. Communication Analysis and Placement. The locations where com-
munication is required must be determined. This involves examining
dependences in the program, both between statements and within
statements.

4. Program Optimization. Next, the compiler performs transformations
to improve the performance of the program to be generated. For the
most part, this means structuring communication and synchronization
to minimize the cost and maximize parallelism.

5. Code Generation. Generation of an SPMD program usually involves
three tasks. First the actual SPMD code must be generated by a strip-
mining and conditional masking procedure. Then the communication
must finalized. Finally, transformations must be made to manage the
storage required on each processor.

We illustrate these steps on a simple HPF code fragment that models a
relaxation computation. To keep focus on the issues of most important we
have left out any input-output or subroutine calls in this code.

REAL A(10000), B(10000)
!HPF$ DISTRIBUTE A(BLOCK), B(BLOCK)
DO J = 1, 10000

DO I = 2, 10000
S1: A(I) = B(I-1) + C

ENDDO
DO I = 1, 10000

S2: B(I) = A(I)
ENDDO

ENDDO

Because the different arrays are used in each of the inner loops, neither
carries a dependence. There is a loop independent true dependence from

Compiling High-Performance Fortran

790 ADVANCED COMPILING FOR HIGH PERFORMANCE

statement S1 to statement S2 because the output of S1 is used as input on
two different iterations of the loop around S2. Similarly, there is a true
dependence from S2 to S1 carried by the outer loop. There are output
dependences from S1 to itself and S2 to itself carried by the outer loop
and there are antidependences carried by the outer loop from S1 to S2
and S2 to S1. We will see shortly how these dependences will contribute
to the communication analysis. However, an important point is that the
loop on I carries no dependence.

FIGURE 14.1 Example dependences.

Distribution analysis for this example is simple—both array A and array B
have block distributions everywhere in the fragment. This means that, if
the owner-computes rule is followed, any loop that iterates over an entire
array is distributed evenly over all the processors. Based on these obser-
vations, it is clear that the desired partitioning is one that distributes the
work of the I loops.

Communication analysis should determine where the communications
are to be placed. Initially communication will be placed near the data
accesses that need it. Later, communication will be moved based on
dependence. Communication requirements are determined by examining
the footprints of various references in the loop. For example, in the loop
around S1, each processor will compute results for A(L:L+99)where
A(L:L+99) is the range of locations in A owned by that processor (on
processor 0, the result for A(1) is not computed). On the other hand, the

S1

S2

δJδ∞ δJ
-1δ∞

-1

δJ
o

δJ
o

δJ
-1

HPF Compiler Overview

Chapter Draft of February 8, 2001 791

right hand side will access B(L-1:L+98). Notice the reference to B(L-1),
which is not owned by the processor executing the statement. Therefore
this is an off-processor reference. We will refer to the process that arrives
at this conclusion as footprint analysis. By a similar footprint analysis,
we can see that the loop around S2 includes no off-processor references.
Once this analysis is complete, we know that communication is required
only on one iteration of the first I-loop. If we were to strip-mine now, the
resulting code would be as follows:

! Shadow location B(0) receives data
REAL A(1,100), B(0:100)
!HPF$ DISTRIBUTE A(BLOCK), B(BLOCK)
DO J = 1, 10000

I1: IF (PID /= 100) SEND(PID+1,B(100),1)
I2: IF (PID /= 0) THEN

RECV(PID-1,B(0),1)
A(1) = B(0) + C

ENDIF
DO I = 2, 100

S1: A(I) = B(I-1)+C
ENDDO
DO I = 1, 100

S2: B(I) = A(I)
ENDDO

ENDDO

Notice that the conditional for the receive in each loop has been merged
with the use of the received value. This is a minor optimization but allows
us to get double duty from the conditional, which avoids executing the
first iteration on processor 0 in addition to avoiding a wait for data that
will never be sent.

Another interesting feature of this example is the use of extra allocated
storage on each processor—location B(0) in this case—to hold data com-
municated from neighboring processors. These additional allocated cells
are often collectively referred to as overlap areas or shadow regions.

Next, the compiler must determine the correct placement of communica-
tion. Clearly, we need to receive the data just before using it, but how
early can we send it? For example, could we send it outside the J-loop?
The answer is no in this case because of the dependence involving values
of A that are carried by the J-loop. Since values computed in the loop are
used later in the same loop we must keep the communication within the
loop. We could attempt to move the send in I1 to a point nearer to where
the value B(100) is created at the end of the previous iteration of the J-
loop. However, we cannot carry out this move without making a special

Compiling High-Performance Fortran

792 ADVANCED COMPILING FOR HIGH PERFORMANCE

case to ensure that the first iteration receives expected values. Since this
complication would not by much overall improvement, we leave the loop
as it is.

The next step is optimization. There are three general strategies for opti-
mization of communication:

1. Aggregation of data to be sent between the same pair of processors
into a single message, to amortize the message start-up costs. This is
not too useful in the example code because there is not much data to
aggregate—basically we are sending one word in each direction
between pairs of processors on each step.

2. Overlapping communication with computation. This is quite profitable
on the current example, as we will see in a moment.

3. Recognition of special communication patterns that can replaced with
a fast system call to perform collective communication. A primary
example of this optimization is recognition of sum reductions, for
which most machines have fast system routines. Another example is
broadcast.

For our running example, the most profitable optimization is overlap of
communication with computation. If we examine the code carefully, we
can see that all but one of the iterations of the loop around S1 is purely
local—requiring no communication at all. If we can place this code
between a send and a receive of data we will get significant overlap. This
can be accomplished by moving the code to receive and compute (the
code within the conditional statement at I2) to a position after the loop
around S1:

! Shadow location B(0) receives data
REAL A(1,100), B(0:100)
!HPF$ DISTRIBUTE A(BLOCK), B(BLOCK)
DO J = 1, 10000

I1: IF (PID /= 100) SEND(PID+1,B(100),1)
DO I = 2, 100

S1: A(I) = B(I-1)+C
ENDDO

I2: IF (PID /= 0) THEN
RECV(PID-1,B(0),1)
A(1) = B(0) + C

ENDIF
DO I = 1, 100

S2: B(I) = A(I)
ENDDO

ENDDO

Basic Loop Compilation

Chapter Draft of February 8, 2001 793

At this point the loop is in pretty good shape and the final version of
SPMD code would be generated to look like code above. When generat-
ing SPMD code the compiler must strip mine the distributed data regions
down to the size for one processor plus some overlap or shadow region
storage (such as B(0) above).

In the next few sections we will present algorithms to accomplish some
of these optimizations and others that cannot be demonstrated on this
example. This is not intended to be a thorough discussion of HPF compi-
lation, which would require a book all by itself. Instead, the treatment
attempts to give the reader a sense of how the ideas and principles devel-
oped in this book can be applied to HPF language processing.

14.3 Basic Loop Compilation

In this section, we present a detailed discussion of method for imple-
menting loop nests in HPF. As a general overview, the compilation strat-
egy can be seen as preliminary analysis followed by a process that
examines a whole loop nest and transforms it to an equivalent loop nest in
SPMD format with communication inserted at the appropriate places.

14.3.1 Distribution Propagation and Analysis

The first step is to determine which distributions for a given array may
hold at a particular point in the program so that code may be generated
for accesses to that array. This is a non-trivial problem for two reasons.

1. First, HPF supports dynamic redistribution as an approved extension
to the language. That is, the user may insert REALIGN and REDISTRIB-
UTE statements, both of which are executable, on different control flow
paths leading to the point of interest.

2. Second, HPF provides a mechanism by which distributions for formal
parameters of a subroutine can be inherited from the calling program.
If different calling points then pass arrays with different distributions
to the same formal parameter, more than one distribution might apply
in the subroutine.

Clearly, ambiguity of this sort is best avoided, because the only way to
structure code in which it cannot be eliminated is by interrogating the
run-time system for the precise distribution during execution, which
could add substantial overhead in code, space, or both. First, however, it
must be determined whether any ambiguity exists.

Compiling High-Performance Fortran

794 ADVANCED COMPILING FOR HIGH PERFORMANCE

Locally, distribution analysis can be performed by solving a data flow
analysis problem called reaching decompositions, which is a direct ana-
log of the reaching definitions problem discussed in Section 4.4. In fact,
the reaching decompositions problem is exactly the reaching definitions
problem with any REALIGN or REDISTRIBUTE statement (or pair) serving
as a definition. The analysis must also assume an initial decomposition at
the beginning of the program start vertex. Across procedures, an interpro-
cedural version of the reaching decompositions problem must be solved.
This is a flow sensitive problem similar to a simple form of constant
propagation. It will be discussed in Section 14.6.In those cases where
more than one distribution reaches a program point, the distribution can
be disambiguated by code duplication at run time based on a run-time test
of the distribution. Ambiguities caused by different call chains can usu-
ally be eliminated by procedure cloning, also discussed in Section 14.6.

For the rest of this chapter, we assume that at each point in the program
there is a single applicable distribution for each array. In fact, we will
assume for simplicity that the same distribution governs all references to
the same array in a single subprogram. We can therefore construct a map-
ping from the global index space for the array to a processor and local
index space for that processor:

µA(i) = (ρA(i), δA(i)) = (p, j) (EQ 14.1)

where ρA maps a multidimensional global index i for the array into a pro-
cessor that owns the array element indexed by i and δA maps the global
index to a local index j on the owning processor. As an example, suppose
a one-dimension array A is declared to be distributed BLOCK over the
entire processor collection numbered 0 to p–1. If A is declared to have N
elements indexed from element 1, then the block size for the array is
given by:

BA = N/p (EQ 14.2)

which ensures that all block sizes are the same except for the incom-
pletely filled block on the last processor. Given the definition, we can
compute the values of the mapping functions:

ρA(i) = i/BA - 1 (EQ 14.3)

δA(i) = (i–1) mod BA + 1 = i – ρA(i)BA (EQ 14.4)

These mapping functions will be an essential component of the loop anal-
ysis described in the next section.

Basic Loop Compilation

Chapter Draft of February 8, 2001 795

Once we know the distributions that can hold for the various arrays used
in a loop nest, we are ready to determine the computation partition and
communication placement for the loop. We begin with a computation
partitioning.

14.3.2 Iteration Partitioning

Most HPF compilers use the (left-hand-side) owner-computes rule to
drive computation partitioning. This rule specifies that, on a single-state-
ment loop, each iteration will be executed on the owner of the data item
on left-hand side of the assignment for that iteration. Thus, in the loop

REAL A(10000)
!HPF$ DISTRIBUTE A(BLOCK)
DO I = 1, 10000

A(I) = A(I) + C
ENDDO

iteration I is executed on the owner of A(I). If there are 100 processors,
then the first 100 iterations are executed on processor 0, the next 100 on
processor 1, and so on.

Given the left-hand-side owner computes rule, how should we handle
multiple-statement loops? A simple strategy would be to use loop distri-
bution to make them into collections of single-statement loops. Later
these loops could be fused back together using typed fusion as described
in Chapter 6. This would take care of all but the case of recurrences that
could not be further distributed.

For recurrences, the compiler must choose to perform all computations
on the owner of the left-hand side of one of the statements in the recur-
rence. We will refer to this reference as the partitioning reference. The
choice of a partitioning reference in a recurrence loop should be made by
an heuristic strategy that has as its goal minimizing the number of carried
dependences in the collection of statements. As we see in Section 14.4.3,
the overall number of carried dependences can be reduced by an align-
ment optimization similar to the one developed in Section 6.2.3.

Once a partitioning reference is chosen, the partitioning must be carried
out. The main result of this is to determine the mapping from global iter-
ations of the given to the processors that will execute them. For a given
loop with induction variable I in loop header

DO I = 1, N

suppose the partitioning reference is:

Compiling High-Performance Fortran

796 ADVANCED COMPILING FOR HIGH PERFORMANCE

A(α(I))

where α is a function that may also include indices of other loops nested
outside and within the loop under consideration. We assume for the
moment that α is a linear function or some other one-to-one mapping on
the index. Then the processor that owns iteration I in a given loop L with
partitioning reference A(α(I)), i.e., the one responsible for performing
the computation for iteration I is given by the expression:

θL(I) = ρA(α(I)) (EQ 14.5)

The set of indices that are to be executed on a given processor p, is speci-
fied by the expression:

{I such that 1 ≤ I ≤ N and θL(I) = ρA(α(I)) == p} (EQ 14.6)

This set can be more concisely defined:

(EQ 14.7)

The problem with this set of iterations is that it is a subset of the global
iteration set. For efficiency, we would like to convert this to local iteration
sets. to do this we need to compute the mapping from global to local iter-
ations. For a given loop L, we will call this mapping ∆L.

It will be convenient for local iteration sets to run from 1 to some upper
bound, so we will make the smallest value in

map to the index 1. The cases of the processor owning the partitioning
references on iterations 1 and N must be handled as special cases, which
we shall deal with momentarily.

As an example, consider the loop below:

DO I = 1, N
A(I+1) = B(I) + C

ENDDO

the reference A(I+1) is the partitioning reference. If A is declared as in
the example above:

REAL A(10000)
!HPF$ DISTRIBUTE A(BLOCK)

α 1– ρA
1–

p{ }()() 1:N[]∩

α 1– ρA
1–

p{ }()()

Basic Loop Compilation

Chapter Draft of February 8, 2001 797

and there are 100 processors, the blocksize is 100 and

Since α(i) = i+1, the inverse subtracts 1:

Since 100p is the smallest value in the iteration range of the global index,
we will use the mapping to create a new iteration variable i for each pro-
cessor, that will begin at 1 and iterate to 100. Specifically,

i = I - 100*PID + 1 (EQ 14.8)

where i is a local variable on each processor. This can be rewritten to
provide a value for I:

I = i + 100*PID - 1 (EQ 14.9)

Given this example, we can define the abstract mapping ∆L(I,p) from the
global iteration space to the local iteration space for processor p as:

(EQ 14.10)

In our example, the mapping is:

∆L(I,PID) = I - 100*PID + 1 (EQ 14.11)

Our next step is to adjust the subscripts of the arrays to match the map-
ping to local index sets. Consider a reference to array B as follows:

B(β(I))

Our goal is to map this reference to a reference

B(γ(i))

for the local B, where γ(i) maps the local index i to the correct location
in local B. In other words, to generate the correct code, we must compute
a local index function γ that will replace β in the subscript of the array
referenced. The desired relationship is determined by the diagram given
in Figure 14.2. In this diagram, GL stands for the global loop iteration,
GI for the global array index, LL for the local loop index and LI for the
local array index. The mapping β is the function in the global array sub-

ρA
1–

p{ }() 100 p 1+ : 100 p 100+=

α 1– ρA
1–

p{ }()() 100 p : 100 p 99+=

∆L I p,() I min α 1– ρA
1–

p{ }()()(1+–=

Compiling High-Performance Fortran

798 ADVANCED COMPILING FOR HIGH PERFORMANCE

script. The function ∆ is as described above and the function δ, described
in the previous section, maps global to local array indices.

FIGURE 14.2 Mapping between index and iteration sets.

From the diagram in Figure 14.2 above, it is clear that for a given proces-
sor p, the desired function for the local subscript is given by the formula:

γ(i) = δ(β(∆-1(i))) (EQ 14.12)

In our example, the function δ is given by

δB(K) = K - 100*PID (EQ 14.13)

and the inverse of ∆L (from Equation 14.11) is given by

 = i + 100*PID - 1 (EQ 14.14)

Since β is the identity, we can simply apply ∆L as given in
Equation 14.11 to yield:

γ(i) = i + 100*PID - 1 - 100*PID = i-1 (EQ 14.15)

The mapping for array A is slightly different mapping because the sub-
script function α adds 1 to its parameter. Therefore, the reference A(I+1)
is rewritten as A(i) for the local loop.

After all these considerations, for interior processors, the loop becomes:

DO i = 1, 100
A(i) = B(i-1) + C

ENDDO

GL GI

LL LI

β

γ

∆ δ

∆L
1–
i PID,()

Basic Loop Compilation

Chapter Draft of February 8, 2001 799

However, there remains the detail of how to handle the global loop upper
and lower bounds. These are important only on the processors that own
iterations L (the lower bound) and N. On the processor that owns iteration
L, we must ensure that the loop begins no earlier than iteration

(EQ 14.16)

Similarly, on the processor that owns iteration N, we must ensure that the
iteration does not proceed beyond:

(EQ 14.17)

Note that the owner of a given iteration K is given by θL(K) = ρA(α(K)).
Therefore, we can identify the processors by testing for equality. These
points can be illustrated in the example calculation. Applying
Equation 14.16, we find that processor 0 owns global iteration 1, so on
that processor the corresponding lower bound is 2. For the upper bound
N, it is owned by processor

pN = (N+1)/100 - 1 = N/100

By Equation 14.17, the corresponding local iteration is given by

N+1-PID*100 = N+1-100*(N/100) = N mod 100 + 1

Thus, the final form of the example loop is given by:

lo = 1
IF (PID==0) lo = 2
hi = 100
IF (PID==CEIL(N+1/100)-1) hi = MOD(N,100) + 1
DO i = lo, hi

A(i) = B(i-1) + C
ENDDO

At this point, we have been able to address the problem of translating to
local indices and local subscript expressions. We still have the problem of
what to do when the processor computing an expression does not own it.
This is the goal of communication generation, treated in the next section.

14.3.3 Communication Generation

The final step in the loop compilation process is to generate the commu-
nication required by the loop. As we indicated earlier, this can be done by

∆L L p,() L 1 min α 1– ρA
1–

p{ }()()(–+=

∆L N p,() N 1 min α 1– ρA
1–

p{ }()()(–+=

Compiling High-Performance Fortran

800 ADVANCED COMPILING FOR HIGH PERFORMANCE

analyzing the footprint of each reference—the set of iterations that the
reference processes on the local iteration space.

Suppose we have a reference on the right hand side of the assignment in a
distributed loop on index I with a subscript expression β(I):

B(β(I))

The set of index values on which this reference refers to an element of B
that is local to processor p is given by:

(EQ 14.18)

If the reference is the only one on the right hand side, then the set of iter-
ations on which no communication is required is given by

(EQ 14.19)

Any other iteration will require receiving data from some other processor.
That is, if

(EQ 14.20)

Then on iteration I we must receive the data for the reference on the right
hand side from the processor that owns it.

On some iterations, we will be required to send data to another processor.
This happens on any iteration in which processor p owns the data but
does not execute the statement that does the calculations. In our set nota-
tion, this arises whenever

(EQ 14.21)

Let us now return to our example to explore the implications of these for-
mulas.

REAL A(10000), B(10000)
!HPF$ DISTRIBUTE A(BLOCK), B(BLOCK)

...
DO I = 1, N

A(I+1) = B(I) + C
ENDDO

We have already seen that

β 1– ρB
1–

p{ }()()

α 1– ρA
1–

p{ }()() β 1– ρB
1–

p{ }()() 1:N[]∩ ∩

I α 1– ρA
1–

p{ }()() β 1– ρB
1–

p{ }()()–) 1:N[]∩(∈

I β 1– ρB
1–

p{ }()() α 1– ρA
1–

p{ }()()–) 1:N[]∩(∈

Basic Loop Compilation

Chapter Draft of February 8, 2001 801

The set of iterations on the right hand side in which the data is local is
given by

By equation Equation 14.19, the set of iterations on which no communi-
cation is required on processor p is:

Following Equation 14.18, the set of iterations on which data must be
received from another processor is given by

and the set of iterations on which data must be sent to an adjacent proces-
sor before computing is to begin is:

Before we generate the code for the local iterations, we must determine
what local storage allocation must be. In this case, we need on each pro-
cessor storage to hold 100 elements of A. In addition, we need enough
storage to hold 100 values of B plus an additional location to be used to
hold the value of B that is passed from the processor immediately to the
left. Let us therefore assume that we have storage for local values of
A(1:100) and B(0:100).

Before we explore the code to be generated, we need a way to map the
iterations on which communication is required to the local iteration set.
Let us begin with the “receive,” as it is clear that we must receive data on
an iteration on which a computation is performed. The local iteration for
the loop is

α 1– ρA
1–

p{ }()() 100 p : 100 p 99+=

β 1– ρB
1–

p{ }()() 100 p 1+ : 100 p 100+=

100 p : 100 p 99+ 100 p 1+ : 100 p 100+∩

 100 p 1+ : 100 p 99+=

100 p : 100 p 99+ 100 p 1+ : 100 p 100+– 100 p : 100 p=

100 p 1+ : 100 p 100+ 100 p : 100 p 99+–

 100 p 100+ : 100 p 100+=

Compiling High-Performance Fortran

802 ADVANCED COMPILING FOR HIGH PERFORMANCE

∆L(100*PID,PID) = 100*PID - 100*PID + 1 = 1 (EQ 14.22)

Thus we must receive on iteration 1. The loop code, adjusted to include
receiving data, would then look like this:

lo = 1
IF (PID==0) lo = 2
hi = 100
IF (PID==CEIL((N+1)/100)-1) hi = MOD(N,100) + 1
DO i = lo, hi

IF (i==1 && PID /= 0) RECV (PID-1, B(0), 1)
A(i) = B(i-1) + C

ENDDO

The receive operation above does not actually need the condition to
ensure that PID ≠ 0, because lo will never be equal to 1 on that processor,
but we leave it in for completeness.

The send must happen on local iteration

∆L(100*PID+100,PID) = 100*PID - 100*PID + 101 = 101 (EQ 14.23)

Note however, that this is not in the normal iteration range of the compu-
tation. Therefore, we must either extend the iteration range to include this
iteration for sending, or we must have special code outside the loop to
perform the send. Furthermore we must ensure that we do not send on the
last iteration of the loop, since no receive will occur. If we choose the first
of these alternatives, we will need another conditional statement in the
loop, controlling the execution of every iteration:

lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100) + 1
DO i = lo, hi+1

IF (i==1 && PID /= 0) RECV (PID-1, B(0), 1)
IF (i <= hi) THEN

A(i) = B(i-1) + C
ENDIF
IF (i == hi+1 && PID /= lastP) &

SEND(PID+1, B(100), 1)
ENDDO

This code can be significantly simplified by moving the send to a position
outside the loop:

lo = 1

Basic Loop Compilation

Chapter Draft of February 8, 2001 803

IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100) + 1
IF (PID <= lastP) THEN

DO i = lo, hi
IF (i==1 && PID /= 0) RECV (PID-1, B(0), 1)
A(i) = B(i-1) + C

ENDDO
IF (PID /= lastP) SEND(PID+1, B(100), 1)

ENDIF

We note that we could further simplify the code by moving the receive
outside the loop as well. For reasons that will become clear later, we will
chose to do this by peeling the receive iteration out of the main computa-
tion loop:

lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100) + 1
IF (PID <= lastP) THEN

IF (lo == 1 && PID /= 0) THEN
RECV (PID-1, B(0), 1)
A(1) = B(0) + C

ENDIF
! lo = MAX(lo,1+1) == 2
DO i = 2, hi

A(i) = B(i-1) + C
ENDDO
IF (PID /= lastP) SEND(PID+1, B(100), 1)

ENDIF

This is the sort of code that one would hope a compiler could generate.
However, there remains one problem with this code. As written, the loop
is serialized on processors in the processor array. That is, processor 0 will
execute the loop to completion before processor 1 begins because the
send is placed at the end of the loop and the receive is placed at the begin-
ning. If the code can be safely rearranged to do all the sends first, then
parallelism can be significantly enhanced. The code is shown below:

lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100) + 1
IF (PID <= lastP) THEN

IF (PID /= lastP) &

Compiling High-Performance Fortran

804 ADVANCED COMPILING FOR HIGH PERFORMANCE

SEND(PID+1, B(100), 1) ! Moved from end
IF (lo == 1 && PID /= 0) THEN

RECV (PID-1, B(0), 1)
A(1) = B(0) + C

ENDIF
DO i = 2, hi

A(i) = B(i-1) + C
ENDDO

ENDIF

This leads to the question: When is such a rearrangement legal? To
answer, we must have some mechanism for computing dependence in
loops involving communication, such as given above. The trick will be to
make communication operations look like memory accesses, so that the
machinery for dependence that we have already developed can be
directly applied. The solution is to adopt the convention that a receive is
simply a copy from a global memory location for A to a local location.
Similarly, a send is a copy from a local to a global location for A. In these
terms the original loop above looks like the following:

IF (PID <= lastP) THEN
S1: IF (lo == 1 && PID /= 0) THEN

B(0) = Bg(0) ! RECV
A(1) = B(0) + C

ENDIF
DO i = 2, hi

A(i) = B(i-1) + C
ENDDO

S2: IF (PID /= lastP) Bg(100) = B(100) ! SEND
ENDIF

If we were now to perform dependence analysis on this code, we would
discover that there is no chain of dependences leading from S1 to S2.
Therefore these statements can be rearranged within the containing IF
statement. On the other hand if the original code were:

REAL A(10000), B(10000)
!HPF$ DISTRIBUTE A(BLOCK), B(BLOCK)

...
DO I = 1, N

A(I+1) = A(I) + C
ENDDO

The loop would be rewritten as:

IF (PID <= lastP) THEN
S1: IF (lo == 1 && PID /= 0) THEN

A(0) = Ag(0) ! RECV
A(1) = A(0) + C

Optimization

Chapter Draft of February 8, 2001 805

ENDIF
DO i = 2, hi

A(i) = A(i-1) + C
ENDDO

S2: IF (PID /= lastP) Ag(100) = A(100) ! SEND
ENDIF

Here there is a dependence that necessarily serializes the computation.
Therefore the rearrangement would not be correct.

14.4 Optimization

Once the basic framework for loop code generation is in place, we can
see a number of optimizations that might be undertaken. The goal of
these optimizations is to improve the performance of communication or
hide it by overlapping communication and computation. In addition,
some calculations that may not be completely parallel can achieve partial
parallelization through pipelining. Finally we will consider the problems
associated with storage management and how they might complicate the
communications optimization problems.

14.4.1 Communication Vectorization

On most message-passing machines, the cost of sending a message has
two components: a start-up cost and a cost per unit transferred. Typically,
the start-up costs are large, so it is profitable to combine multiple mes-
sages between the same pair of processors into the single message. This
is a goal of communication vectorization. The transformation can be
illustrated by a generalization of the example we have been considering
into two loops:

REAL A(10000,100)
!HPF$ DISTRIBUTE A(BLOCK,*), B(BLOCK,*)
DO J = 1, M

DO I = 1, N
A(I+1,J) = B(I,J) + C

ENDDO
ENDDO

If we apply the code generation procedure from the previous section, we
will get a loop that looks like the following:

DO J = 1, M
lo = 1
IF (PID==0) lo = 2
hi = 100

Compiling High-Performance Fortran

806 ADVANCED COMPILING FOR HIGH PERFORMANCE

lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100) + 1
IF (PID <= lastP) THEN

IF (PID /= lastP) &
SEND(PID+1, B(100,J), 1)

IF (lo == 1) THEN
RECV (PID-1, B(0,J), 1)
A(1,J) = B(0,J) + C

ENDIF
DO i = lo+1, hi

A(i,J) = B(i-1,J) + C
ENDDO

ENDIF
ENDDO

If we can determine that the J-loop can be distributed around the three
components in the code as follows:

lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100) + 1
IF (PID <= lastP) THEN

DO J = 1, M
IF (PID /= lastP) &

SEND(PID+1, B(100,J), 1)
ENDDO
DO J = 1, M

IF (lo == 1) THEN
RECV (PID-1, B(0,J), 1)
A(i,J) = B(i-1,J) + C

ENDIF
ENDDO
DO J = 1, M

DO i = lo+1, hi
A(i,J) = B(i-1,J) + C

ENDDO
ENDDO

ENDIF

we can then vectorize all the “receive” operations in the code to produce
much longer messages:

lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100) + 1
IF (PID <= lastP) THEN

Optimization

Chapter Draft of February 8, 2001 807

IF (lo == 1) THEN
RECV (PID-1, B(0,1:M), M)
DO J = 1, M

A(1,J) = B(0,J) + C
ENDDO

ENDIF
DO J = 1, M

DO i = lo+1, hi
A(i,J) = B(i-1,J) + C

ENDDO
ENDDO
IF (PID /= lastP) &

SEND(PID+1, B(100,1:M), M)
ENDIF

So what are the conditions for performing such a distribution? In other
words, when can we move the send and receive statements outside of a
containing loop like the J-loop. To understand this issue we use the
dependence computation strategy used in the previous section—we treat
a communication statement as a copy from local to global values. After
the first code generation step, the loop becomes:

DO J = 1, M
lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100)+1
IF (PID <= lastP) THEN

S1: IF (PID /= lastP) B(100,J) = Bg(100,J)
! SEND(PID+1, B(100,J), 1)
IF (lo == 1) THEN

S2: B(0,J) = Bg(0,J) ! RECV (PID-1,B(0,J),1)
S3: A(1,J) = B(0,J) + C

ENDIF
DO i = lo+1, hi

S4: A(i,J) = B(i-1,J) + C
ENDDO

ENDIF
ENDDO

Assuming the J-loop can be interchanged with the if statements, the issue
is whether the outer loop can be distributed around the statements under
the If statements. This is possible if the J-loop does not carry a recurrence
involving the communication statements. In the example above, the only
dependence among the marked statements is the one between S2 and S3.
Hence, there is no recurrence involving the J-loop and all communication
can be vectorized.

Compiling High-Performance Fortran

808 ADVANCED COMPILING FOR HIGH PERFORMANCE

We are now ready to generalize these ideas into a rule for communication
vectorization.

Principle 14.1. Communication statements resulting from an
inner loop can be vectorized with respect to an outer loop if the
communication statements are not involved in a recurrence car-
ried by the outer loop.

To see the validity of this principle, recall that we know loop distribution
is possible so long as the statements over which distribution is to be per-
formed do not form a recurrence carried by the loop being distributed
(see Section 2.4.2). If such a recurrence exists, then the distribution can-
not be performed and communication vectorization is prohibited.

Here is a another example that is a slight variation of our original:

REAL A(10000,100)
!HPF$ DISTRIBUTE A(BLOCK,*), B(BLOCK,*)
DO J = 1, M

DO I = 1, N
A(I+1,J+1) = A(I+1,J) + B(I,J)

ENDDO
ENDDO

Like the previous example, we need communication for array B because
of the distribution over the I-loop. On the other hand, no communication
is required for the reference to A, because the references are aligned on
the same iteration of the I-loop. Thus this loop will have a communica-
tion dependence pattern identical to the previous example, so communi-
cation can once again be vectorized.

On the other hand, suppose we create a situation where communication is
required for A, the variable that is being computed.

REAL A(10000,100)
!HPF$ DISTRIBUTE A(BLOCK,*), B(BLOCK,*)
DO J = 1, M

DO I = 1, N
A(I+1,J+1) = A(I,J) + B(I,J)

ENDDO
ENDDO

After the first code generation steps, the code looks likes this, where
communication has been replaced by copies as before:

DO J = 1, M
lo = 1
IF (PID==0) lo = 2

Optimization

Chapter Draft of February 8, 2001 809

hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100)+1
IF (PID <= lastP) THEN

IF (lo == 1) THEN
B(0,J) = Bg(0,J) ! RECV (PID-1,B(0,J),1)

S1: A(0,J) = Ag(0,J) ! RECV (PID-1,A(0,J),1)
S2: A(1,J) = B(0,J) + C

ENDIF
DO i = lo+1, hi

S3: A(i,J) = B(i-1,J) + C
ENDDO

S4: IF (PID /= lastP) THEN
Bg(100,J) = B(100,J) !SEND(PID+1,B(100,J))
Ag(100,J) = A(100,J) !SEND(PID+1,A(100,J))

ENDIF
ENDIF

ENDDO

Here the dependences carried by the I loop have prevented us from rear-
ranging the send and receive statements, although sending the values of B
could be moved to the beginning. However, the J-loop carries no depen-
dence, so communication can still be vectorized:

lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100)+1
IF (PID <= lastP) THEN

IF (lo == 1) THEN
RECV (PID-1,B(0,1:M),M)

S1: RECV (PID-1,A(0,1:M),M)
DO J = 1, M

S2: A(1,J) = B(0,J) + C
ENDDO

ENDIF
DO J = 1, M

DO i = lo+1, hi
S3: A(i,J) = B(i-1,J) + C

ENDDO
ENDDO

S4: IF (PID /= lastP) THEN
SEND(PID+1,B(100,1:M),M)
SEND(PID+1,A(100,1:M),M)

ENDIF
ENDIF

Finally, we show an example where vectorization is not possible.

Compiling High-Performance Fortran

810 ADVANCED COMPILING FOR HIGH PERFORMANCE

REAL A(10000,100)
!HPF$ DISTRIBUTE A(BLOCK,*)
DO J = 1, M

DO I = 1, N
A(I+1,J+1) = A(I,J) + C

ENDDO
ENDDO

After partitioning the I-loop and inserting communication we get:

DO J = 1, M
lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100)+1
IF (PID <= lastP) THEN

IF (lo == 1) THEN
S0: A(0,J) = Ag(0,J) ! RECV(PID-1,B(0,J),1)
S1: A(1,J+1) = A(0,J) + C

ENDIF
DO i = lo+1, hi

S2: A(i,J+1) = A(i-1,J) + C
ENDDO
IF (hi == 100) THEN !SEND(PID+1,A(100,J+1))

S3: Ag(100,J+1) = A(100,J+1)
ENDIF

ENDIF
ENDDO

Here the communication statements cannot be vectorized because there is
a recurrence carried by the J-loop. Note that the distance of the recur-
rence is equal to the block size for array A. Therefore, we can get a partial
message vectorization by strip mining, as in the following code:

DO J = 1, M, 100
lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100)+1
IF (PID <= lastP) THEN

IF (lo == 1) THEN
S0: RECV(PID-1,A(0,J:J+99),100)

DO j = J, J+99
S1: A(1,j+1) = A(0,j) + C

ENDDO
ENDIF
DO j = J, J+99

DO i = lo+1, hi

Optimization

Chapter Draft of February 8, 2001 811

S2: A(i,J+1) = A(i-1,J) + C
ENDDO

ENDDO
IF (hi == 100) THEN

S3: SEND(PID+1, A(100, J:J+99), 100)
ENDIF

ENDIF
ENDDO

14.4.2 Overlapping Communication and Computation

The cost of communication can often be hidden by overlapping it with
computation. To see how this might take place, let us return to the exam-
ple we used in the previous section.

REAL A(10000), B(10000)
!HPF$ DISTRIBUTE A(BLOCK), B(BLOCK)

...
DO I = 1, N

A(I+1) = B(I) + C
ENDDO

We have already seen that this example leads to the following local code:

lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100)+1
IF (PID <= lastP) THEN

S0: IF (PID /= lastP) SEND(PID+1, B(100), 1)
S1: IF (lo == 1) THEN

RECV (PID-1, B(0), 1)
A(i) = B(i-1) + C

ENDIF
L1: DO i = lo+1, hi

A(i) = B(i-1) + C
ENDDO

ENDIF

Notice that none of the code in the loop L1 depends on values communi-
cated from other processors. Therefore, we can rearrange so that this
communication takes place between the sends and the receives:

lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100)+1
IF (PID <= lastP) THEN

Compiling High-Performance Fortran

812 ADVANCED COMPILING FOR HIGH PERFORMANCE

S0: IF (PID /= lastP) SEND(PID+1, B(100), 1)
L1: DO i = lo+1, hi

A(i) = B(i-1) + C
ENDDO

S1: IF (lo == 1) THEN
RECV (PID-1, B(0), 1)
A(i) = B(i-1) + C

ENDIF
ENDIF

This transformation, known as iteration reordering, hides as much of the
communication delay as possible between the send and receive. If all the
processors send simultaneously, then the time for computation can be
subtracted from the effective communication time, significantly reducing
communication costs.

Iteration reordering can be used whenever there is no dependence carried
by the original loop—that is, whenever there is no dependence in the gen-
erated code that would force the receive to precede the computation in the
loop body.

Another approach to communication optimization is to move the commu-
nication within the a control flow graph to the earliest possible point in
the program. It is possible to determine the correct insertion point by
establishing a set of data-flow equations and solving them using a calcu-
lation similar to partial-redundancy determination [7].

14.4.3 Alignment and Replication

Given the scheme for distributing the iterations of a loop described in
Section 14.3, we do not need to use loop distribution to make every loop
as small as possible. Instead, we can pick a partitioning reference within
a large loop and partition the entire loop together. The drawback of this
scheme is that the loop my have many carried dependences, each requir-
ing communication. In this section we describe how to ameliorate this
problem.

Suppose we are generating code for a loop that iterates over a distributed
dimension—that is, the iterations of the loop will execute on different
processors. Then every true dependence carried by that loop requires
communication. Thus the total amount of communication is reduced if
we can eliminate carried dependences.

Suppose for the moment that there is no recurrence in the loop. Then we
know from Section 6.2 that all carried dependences can be eliminated by

Optimization

Chapter Draft of February 8, 2001 813

a combination of loop alignment and code replication. Consider for a
moment the following code;

DO I= 1, N
A(I+1) = B(I) + C(I)
D(I) = A(I+1) + A(I)

ENDDO

This loop has a carried dependences involving A with threshold 1 and a
loop-independent dependence involving A that prevents alignment alone
from solving the problem. Using alignment and replication, this loop
would be converted to:

D(1) = A
DO I= 1, N

T0 = B(I) + C(I)
A(I+1) = T0
IF (I = 1) T1 = A(I)
ELSE T1 = B(I-1) + C(I-1)
D(I) = TO + T1

ENDDO

The code generation process can then be applied to the result to produce a
perfectly parallel loop, albeit with a bit of extra computation in each iter-
ation.

In the case where there is a recurrence, this strategy can be used to mini-
mize the total amount of communication required during execution of the
recurrence. The basic idea would be to arrange the code so that the mini-
mal number of backward dependences exist then to align the body so that
forward carried dependences are eliminated.

This strategy will permit the focus of the pipelining process to shift to be
exclusively on the backward carried dependences.

14.4.4 Pipelining

Whenever the inner loop of a loop nest must be serialized, some parallel-
ism can be achieved if the outer loops contain no processor-crossing
dependences. Here is a simple example:

REAL A(10000,100)
!HPF$ DISTRIBUTE A(BLOCK,*)
DO J = 1, M

DO I = 1, N
A(I+1,J) = A(I,J) + C

ENDDO
ENDDO

Compiling High-Performance Fortran

814 ADVANCED COMPILING FOR HIGH PERFORMANCE

The initial code generation for loop I yields:

lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100)+1
IF (PID <= lastP) THEN

DO J = 1, M
IF (lo == 1) THEN

RECV (PID-1, A(0,J), 1)
A(1,J) = A(0,J) + C

ENDIF
DO i = lo+1, hi

A(i,J) = A(i-1,J) + C
ENDDO
IF (PID /= lastP) &

SEND(PID+1, A(100,J), 1)
ENDDO

ENDIF

Although the communication operations can be completely vectorized in
this case, it is unwise to do so because it gives up parallelism. In fact, the
loop as written has more parallelism than vectorized loop because pro-
cessor 1 can begin work on computing its local A(1:100, 1) as soon as
processor 0 finishes the first iteration of the J loop. In other words, the
iterations of the J loop can be overlapped. This is illustrated by the dia-
gram in Figure 14.3.

FIGURE 14.3 Pipelined parallelism with communication.

PID = 0

PID = 1

PID = 2

J = 1

J = 2 J = 1

J =1J = 3

J = 2

J = 2

J = 3

J = 3

Communication

Time

Optimization

Chapter Draft of February 8, 2001 815

The problem with this scheme is that the overhead of communicating one
word at a time will outweigh the value of parallelism gains. Figure 14.3 is
misleading because it does not show any overhead of initiating or carry-
ing out communication. A more realistic diagram is giving in figure
Figure 14.4, which shows both the overhead on processor and the com-
munication delay for carrying out a send.

FIGURE 14.4 Pipelined parallelism with communication overhead.

Because most of the overhead cost is the same no matter how many
words are sent, it is usually profitable to increase the granularity of pipe-
lining by computing several iterations of the J loop before communicat-
ing the values, as in:

lo = 1
IF (PID==0) lo = 2
hi = 100
lastP = CEIL((N+1)/100) - 1
IF (PID==lastP) hi = MOD(N,100)+1
IF (PID <= lastP) THEN

PID = 0

PID = 1

PID = 2

J = 1

J = 2

Communication

Time

overhead

overhead

overhead

J = 3

J = 1

J = 2

overhead

overhead

overhead

J = 3

J = 1

J = 2

overhead

overhead

overhead

J = 3

Compiling High-Performance Fortran

816 ADVANCED COMPILING FOR HIGH PERFORMANCE

DO J = 1, M, K
IF (lo == 1) THEN

RECV (PID-1, A(0,J:J+K-1), K)
DO j = J, J+K-1

A(1,J) = A(0,J) + C
ENDDO

ENDIF
DO j = J, J+K-1

DO i = lo+1, hi
A(i,J) = A(i-1,J) + C

ENDDO
ENDDO
IF (PID /= lastP) &

SEND(PID+1, A(100,J:J+K-1), K)
ENDDO

ENDIF

Here the blocking factor K is a tuning parameter that depends on both the
machine and the amount of computation in the loop. A variety of strate-
gies for determining the parameter could be used. For example, a test run
on each machine could determine the optimal blocking for short loops.
This same blocking could then be used for larger loops as well.

14.4.5 Identification of Common Recurrences

Many calculations found on parallel machines involve recurrences that
take as input values that are available. Many such recurrences are stan-
dard patterns such as sum reduction. These patterns usually have a fast
library implementation on each machine. A good HPF compiler should
be able to identify and replace raw calculations with the use of such
library routines. As an example, suppose that we are given the following
program:

REAL A(10000), B(10000)
!HPF$ DISTRIBUTE A(BLOCK), B(BLOCK)

...
S = 0.0
DO I = 1, N

S = S + A(I)*B(I)
ENDDO

The variable S here is assumed to be replicated on each processor so the
result should be a value for S on each processor that is equal to the sum of
products of A and B. The compiler must first separate this calculation into
local and global components. Assume that there are 100 processors so the
block size is 100.

lo = 1

Optimization

Chapter Draft of February 8, 2001 817

hi = 100
lastP = CEIL(N/100)
IF (PID==lastP) hi = MOD(N,100)
Slocal = 0.0
IF (PID <= lastP) THEN

DO i = lo, hi
Slocal = Slocal + A(i)*B(i)

ENDDO
ENDIF

Once this is done the final values can be computed by calling the library
routine:

S = GLOBAL_SUM(Slocal)

Other standard recurrences can be handled in a similar manner.

14.4.6 Storage Management

A good HPF compiler must take steps to ensure that the code it generates
does not require temporary storage in excess of what is possible. Usually
a computation should require no more temporary storage than the arrays
owned by each processor. In other words, we should assume that no more
than half of the memory on each processor is held for communicated val-
ues.

To keep within these bounds, the compiler may be required to reorganize
the computation significantly. To see this, we should consider the exam-
ple of matrix multiplication, as shown below.

ALIGN A(I,J), B(I,J), C(I,J) WITH T(I,J)
DISTRIBUTE T(BLOCK,BLOCK) ONTO P(4,4)
DO K = 1, N

DO J = 1, N
DO I = 1, N

C(I,J) = C(I,J) + A(I,K)*B(K,J)
ENDDO

ENDDO
ENDDO

It should be pointed out that, in this loop, the communication can be
moved out of all loops, a fact that the compiler easily determines. But
should it make that move? What are the storage requirements of various
code positions? As we shall see, placing the communication inside the
outermost loop achieves a significant reduction in storage requirements.

Compiling High-Performance Fortran

818 ADVANCED COMPILING FOR HIGH PERFORMANCE

Let us begin with an examination of what happens if we attempt to move
the code entirely out of the outermost loop. If this is done the generated
code might look like this, where we assume that local storage holds n by
n blocks of A, B, and C:

! Resource-independent placement
DO pR = 0, nRows-1

IF (pR /= myR) &
SEND ((pR, myC), B(n*myR+1:n*myR+n,1:n), n*n)

ENDDO
DO pC = 0, nCols-1

IF (pC /= myC) &
SEND ((myR,pC), A(1:n, myC*n+1:myC*n+n), n*n)

ENDDO
DO pR = 0, nRows-1

IF (pR /= myR) &
RECV ((pR, myC), B(n*pR+1:n*pR+n, 1:n), n*n)

ENDDO
DO pC = 0, nCols-1

IF (pC /= myC) &
RECV ((myR,pC), A(1:n, n*pC+1:n*pC+n), n*n)

ENDDO
DO K = 1, n*4 ! = N

DO J = 1, n
DO I = 1, n

C(I,J) = C(I,J) + A(I,K)*B(K,J)
ENDDO

ENDDO
ENDDO

Note that the special variables myR and myC refer to the column and row
of the executing processor so that the pair (myR,myC) is equivalent to the
current PID.

The problem with this code is that it requires storage for 4 blocks of array
A, each of size n2, four similarly-sized blocks of array B, and a single
block of storage for array C. The total storage required is thus 9 blocks of
size n2. Of these, only three are local. Thus, in this communication pat-
tern, each processor requires 6n2 locations for data communicated from
other processors—twice the storage required for local variables. The
problem is illustrated in Figure 14.5.

Optimization

Chapter Draft of February 8, 2001 819

FIGURE 14.5 Storage for matrix multiplication.

Here storage is needed on each processor for every block of A and every
block of B needed to compute block Cij.

If we leave the communication inside the outermost loop, we get a much
more modest storage requirement, as illustrated in the following code:

! Resource-based placement
DO K = 1, n*4 ! = N

kP = CEIL(K/n)-1;
kloc = MOD(K-1,n)+1
sP = MOD(PID + kP, 4)
rP = MOD(PID - kP, 4)
IF (kP /= 0) SEND ((sP, myC), B(kloc, 1:n), n)
IF (kP /= 0) SEND ((myR, sP), A(1:n, kloc), n)
IF (kP /= 0) THEN

kR = n+1
RECV ((myR,rP), B(kR, 1:n), n)

ElSE
kR = kloc

ENDIF
IF (kP /= 0) THEN

kC = n+1
RECV ((myC, rP), A(1:n, kC), n)

ElSE
kC = kloc

ENDIF
DO J = 1, n

DO I = 1, n
C(I,J) = C(I,J) + A(I,kC)*B(kR,J)

ENDDO
ENDDO

Cij Ai1 Ai3Ai2 Ai4

B2j

B1j

B3j

B4j

= ×

Compiling High-Performance Fortran

820 ADVANCED COMPILING FOR HIGH PERFORMANCE

ENDDO

The storage required by this strategy is much more modest—just 2n extra
locations on each processor. These are allocated in the column n+1 of
array A and row n+1 of array B. This is much less than the 3n2 storage
locations required for local arrays, 3n2 locations. Thus this is the best
place for insertion of communication. However, somewhat better perfor-
mance can be achieved if we block the K-loop as follows:

! Resource-based placement with strip mining
DO kP = 0, 3

sP = MOD(PID+kP,4)
rP = MOD(PID-kP,4)
IF (kP /= 0) SEND ((kP, myC), B(1:n,1:n), n*n)
IF (kP /= 0) SEND ((myR, kP), A(1:n,1:n), n*n)
IF (sP /= 0) THEN

kR = n
RECV ((myR,pC), B(n+1;n+n, 1:n), n)

ElSE
kR = 0

ENDIF
IF (sP /= myC) THEN

kC = n
RECV ((myC,pC), A(1:n, n+1:n+n), n)

ElSE
kC = 0

ENDIF
DO K = 1, n

DO J = 1, n
DO I = 1, n

C(I,J) = C(I,J) + A(I,K+kC)*B(K+kR,J)
ENDDO

ENDDO
ENDDO

ENDDO

In addition to local storage, this example requires two additional blocks
of storage, each of size n2. As a result the storage for communication is
roughly 2/3 the local storage. We should note that this formulation is the
optimal ways to do matrix multiplication on many parallel systems.

To summarize, an HPF compiler must analyze buffer resources required
for each placement of communications within a loop nest. It should then
choose the placement that requires no more storage than required for
local variables. In some cases, strip mining can be used to achieve less-
frequent communication at the expense of some storage without exceed-
ing the storage guidelines as the above example shows.

Handling Multiple Dimensions

Chapter Draft of February 8, 2001 821

14.5 Handling Multiple Dimensions

We conclude this section with a discussion of communication in two
dimensions. Suppose we are given the loop:

REAL A(1000, 1000) B(1000,1000)
!HPF$ DISTRIBUTE A(BLOCK, BLOCK), B(BLOCK,BLOCK)

...
DO J = 1, M

DO I = 1, N
A(I+1,J+1) = B(I,J+1) + B(I+1,J)

ENDDO
ENDDO

Assume that we have 100 processors arranged in a 10-by-10 grid. Then
by analogy with the example above, the code generated for the inner loop
might look like the following:

ilo = 1
IF (myR==0) ilo = 2
ihi = 100
ilastP = CEIL((N+1)/10) - 1
IF (myR==ilastP) ihi = MOD(N,10) + 1
IF (myR /= 0) THEN

IF (ilo == 1) THEN
RECV ((myR-1, myC), B(0,J+1), 1)

ENDIF
DO i = ilo, ihi

A(i,J+1) = B(i-1,J+1) + B(i,J)
ENDDO
IF (myR /= ilastP) &

SEND((myR+1, myC), B(100), 1)
ENDIF

If we then apply the same process to the outer loop, distributing where
appropriate, we get

! Compute local upper and lower bounds
jlo = 1
IF (myC==0) jlo = 2
jhi = 100
jlastP = CEIL((M+1)/10)
IF (myC==jlastP) jhi = MOD(M+1,10)
ilo = 1
IF (myR==0) ilo = 2
ihi = 100
ilastP = CEIL((N+1)/10)
IF (myR==ilastP) ihi = MOD(N+1,10)
! Receive data

Compiling High-Performance Fortran

822 ADVANCED COMPILING FOR HIGH PERFORMANCE

IF (myC /= 0) THEN
IF (jlo == 1) THEN

DO i = ilo, ihi
RECV ((myR, myC-1), B(i,0), 1)

ENDDO
ENDIF

IF (myR /= 0) THEN
IF (ilo == 1) THEN

DO j = jlo, jhi
RECV ((myR-1, myC), B(0,j), 1)

ENDDO
ENDIF

! Compute
DO j = jlo, jhi

DO i = ilo, ihi
A(i,j) = B(i-1,j) + B(i,j-1)

ENDDO
ENDDO
! Send data
IF (myR /= ilastP) THEN

DO j = jlo, jhi
SEND((myR+1, myC), B(100, j), 1)

ENDDO
ENDIF
IF (myC /= jlastP) THEN

DO i = ilo, ihi
SEND((myR+1, myC), B(i,100), 1)

ENDDO
ENDIF

We note that the communication is vectorizable and that the computation
and communication can be overlapped, so after optimization the code
becomes:

! Compute local upper and lower bounds
jlo = 1
IF (myC==0) jlo = 2
jhi = 100
jlastP = CEIL((M+1)/10) - 1
IF (myC==jlastP) jhi = MOD(M,10) + 1
nJ = jhi - jlo + 1
ilo = 1
IF (myR==0) ilo = 2
ihi = 100
ilastP = CEIL((N+1)/10) - 1
IF (myR==ilastP) ihi = MOD(N,10) + 1
nI = ihi - ilo + 1
! Send data
IF (myR /= ilastP) THEN

SEND((myR+1, myC), B(100, jlo:jhi), nJ)

Interprocedural Optimization

Chapter Draft of February 8, 2001 823

ENDIF
IF (myC /= jlastP) THEN

SEND((myR+1, myC), B(ilo:ihi,100), nI)
ENDIF
! Compute
DO j = MAX(2,jlo), jhi

DO i = MAX(2,ilo), ihi
A(i,j) = B(i-1,j) + B(i,j-1)

ENDDO
ENDDO
! Receive and compute
IF (myC /= 0) THEN

IF (jlo == 1) THEN
RECV ((myR, myC-1), B(ilo:ihi,0), nI)
DO i = MAX(2,ilo), ihi

A(i,1) = B(i-1,1) + B(i,0)
ENDDO

ENDIF
ENDIF
IF (myR /= 0) THEN

IF (ilo == 1) THEN
RECV ((myR-1, myC), B(0,jlo:jhi), nJ)
DO j = jlo, jhi

A(1,j) = B(0,j) + B(1,j-1)
ENDDO

ENDIF
ENDIF

Note that in this last version we have peeled off the executions of compu-
tations that depend on data received from another processor, thus permit-
ting the overlap of communication with the compute-only loop.

14.6 Interprocedural Optimization

Although HPF compilers can benefit from many interprocedural analyses
and optimizations, two important processes are especially important.
First, as we mentioned earlier, it is important to track decompositions
interprocedurally in an effort to ensure that only one data decomposition
reaches every point in the program. At those places where the decomposi-
tion is known at compile time, much more efficient code can be generated
because there is no need for a run -time test.

Reaching decompositions can be formulated as a direct analog of inter-
procedural constant propagation. In this formulation, specific decomposi-
tions become the constant values and the variables are the unknown
decompositions associated with distributed arrays. Just as in constant

Compiling High-Performance Fortran

824 ADVANCED COMPILING FOR HIGH PERFORMANCE

propagation, cloning can be used to reduce the number of different
decompositions that reach a given subroutine. If two different call chains
can pass different decompositions to the same procedure, then cloning
two copies, one for each call chain, eliminates the ambiguity.

A second important interprocedural transformation is communication
generation. Consider the following loop.

!HPF$ ALIGN A(I,J), B(I,J) WITH T(I,J)
!HPF$ DISTRIBUTE T(BLOCK,*) ONTO P(16)

...
DO J = 1, N

CAll SUB(A(*,J), B(*,J)
ENDDO
...

SUBROUTINE SUB(X,Y)
!HPF$ INHERIT X,Y;
DIMENSION X(*), Y(*)
DO I = LBOUND(X), UBOUND(X)

X(I) = Y(I+1) + C
ENDDO

END

In this code, interprocedural decomposition analysis determines that X
and Y are distributed using BLOCK across the iterations of the loop within
the subroutine. However, the distributed array contains a requirement for
communication associated with the I-loop. This communication can be
moved outside the loop. However, for most efficient operation, we should
move the communication outside of the subroutine call where it can be
vectorized. This kind of transformation is referred to as interprocedural
communication optimization.

14.7 Chapter Summary

We have shown that principles developed earlier in the book are useful in
compiling and optimizing High Performance Fortran (HPF). The basic
compilation algorithm consists of

1. Distribution analysis and propagation

2. Iteration partitioning, and

3. Communication generation

A variety of optimizations can improve the performance of communica-
tions generated by the compiler while ensuring the resource constraints
are not yet violated. These include message vectorization, overlap of

Case Studies

Chapter Draft of February 8, 2001 825

communication with computation, alignment and replication, pipelining,
reduction recognition, and storage analysis and management.

14.8 Case Studies

The authors have been affiliated with two implementations of HPF fea-
turs. The initial Fortran D compiler project, led by Hiranandani,
Kennedy, and Tseng [11,12,13], implemented most of the distribution
features described in this chapter, including computation partitioning
according to the owner-computes rule, communication placement, and
recognition of special cases such as reductions. The principle optimiza-
tions were focused on improving communication. It employed message
vectorization, overlap of computation and communication, and coarse-
grained pipelining. Experiments on several kernels and small applica-
tions, including linear algebra and relaxation codes, demonstrated the
promise of this approach. Table 14.1 summarizes the kernels and applica-
tions that were used for the experiment. The first three rows are well-
known kernels, including a sum reduction and two stencil kernels. The
next two are kernels where pipelining is required to get any meaningful
parallelism. Finally, there are four applications including a Gaussian
elimination benchmark and a simple shallow water weather model.

The performance measurements were all taken on a 32 processor Intel
iPSC 860. The HPF version was passed through the Fortran D compiler
and the running time of the resulting program was compared against a
hand coded message-passing version implemented using the Intel com-

Name Type Data Size

Livermore 3: Inner Product Reduction Kernel 1024Κ
Jacobi Iteration Kernel 2K × 2Κ
Livermore 18: Explicit Hydrodynamics Kernel 512 × 512
Successive Over Relaxation Pipeline Kernel 2K × 2Κ
Livermore 23: Implicit Hydrodynamics Pipelined Kernel 1K × 1Κ
Shallow Application 1K × 1Κ
Disper Applicatiion 256 × 8 × 8× 4
DGEFA Lin Alg Benchmark 2K × 2Κ
Erlebacher Application 128 × 128 × 128

TABLE 14.1 HPF kernels and applications.

Compiling High-Performance Fortran

826 ADVANCED COMPILING FOR HIGH PERFORMANCE

munication library. Speedups are over the sequential running time. In
some cases superlinear speedups were achieved because the parallel ver-
sion fit into the cache of a single processor. On the pipelined kernels, the
Fortran D compiler outperformed the hand coded version, probably due
to anomalous behavior of the i860 node compiler. Details of the experi-
ments conducted in this study are reported in Tseng’s dissertation [19].

FIGURE 14.6 Performance of HPF kernels and applications versus hand code.

Although the experiments were restricted to relatively small programs,
these experiments established that a good compiler could produce code
from HPF programs that was competitive with hand coding using a mes-
sage-passing library. As a result the Fortran D effort was extremely influ-
ential on the early commercial compiler projects.

In the mid-90s, a second HPF implementation project, called dHPF, was
initiated at Rice under the leadership of John Mellor-Crummey and
Vikram Adve. This project attempted to overcome the limitations of For-
tran D and commercial HPF compilers by using much more aggressive
strategies for optimization of computation partitioning and communica-
tion. Two important improvements were made over the original Fortran D
work. First, the owner-computes rule was relaxed to permit computation
partitionings that minimized communication. This approach resembles
the alignment strategy discussed in Section 14.4.3. Second, the project

Inner Prod Jacobi Exp Hydro SOR Imp Hydro Shallow Disper DGEFA Erlebacher
0

4

8

12

16

20

24

28

32

36

40

S
p

ee
d

u
p

Application

28.5 28.5

34.8

31.1

24.6

18.6

23.7

31.7

20.5

36.4

30.5
29.2

31.4 30.4

25.1

16.3

9.3

4.7

Hand

Fort D

Historical Comments and References

Chapter Draft of February 8, 2001 827

implemented the set operations discussed throughout this chapter using
the Omega system, developed at the University of Maryland [14,17]. This
system provided a convenient method for experimenting with the index
set splitting operations that are required for HPF. When combined with
alignment, this permitted the use of partial replication of computation to
reduce communication costs. Omega was also used for code generation
because it could generate sets of loops that handle all the special cases
required by the set analysis. Experiments have shown that these improve-
ments have high payoff when dealing with real codes. In particular, the
performance of HPF versions of the NAS Parallel Benchmarks SP and
BT, coded in a style that made no concessions to the strengths and weak-
nesses of the compiler, has been shown to achieve over 90 percent of the
performance of the versions hand coded by NAS [].

14.9 Historical Comments and References

The HPF language had its roots in the Fortran D project at Rice Univer-
sity [6] and the Vienna Fortran project at University of Vienna [5,21].
These two projects were the most visible proponents of distribution-
based compilation. High Performance Fortran itself was standardized by
the High Performance Fortran Forum [9,10], led by Kennedy, over a
period of several years.

Many researchers have produced articles on compilation for distributed
memory based on distribution specification. Two of the earliest articles
on compilation for distributed memory strategy were produced by Calla-
han and Kennedy [4] and Zima, Bast, and Gerndt [20]. This chapter is
based on the work of Hiranandani, Kennedy, and Tseng, who produced
an experimental HPF compiler at Rice [11,12,13]. Important compilation
strategies were also developed by Hatcher, Quinn, et. al. [8], Koelbel and
Mehrotra [16], and Rogers and Pingali [18]. A group led by Fox devel-
oped an alternative HPF implementation strategy based on the extensive
use of packaged communications and computation libraries [3]. Recently,
the Rice dHPF project, led by John Mellor-Crummey and Vikram Adve,
has pursued much more aggressive optimization strategies [1,2] based on
the use of powerful integer set manipulation software from Pugh and col-
leagues at the University of Maryland [14,17]. Kennedy and Sethi devel-
oped the methods presented here for resource-based communication
placement [15].

Compiling High-Performance Fortran

828 ADVANCED COMPILING FOR HIGH PERFORMANCE

14.10 Exercises

14–1 Compared to the compilation of a sequential Fortran program, what are
the extra steps needed for a compiler to generate code for a HPF pro-
gram?

14–2 Compute total bytes of communication by each processor in executing
the following program on a 4-processor machine. Can you change the
data distribution to make the program communication free?

REAL A(N), B(N)
!HPF$ TEMPLATE T(N)

 !HPF$ ALIGN A(I) WITH T(I)
 !HPF$ ALIGN B(I) WITH T(I)

!HPF$ DISTRIBUTE T(BLOCK)
DO I=1, N-1

A(I) = B(I+1)
ENDDO

14–3 Compute total bytes of communication by each processor in executing
the following program on a 4-processor machine. Assuming a fixed data
distribution, can you find another way to evenly partition the iterations
and to reduce the amount of communication by half?

REAL A(N), B(N)
!HPF$ TEMPLATE T(N)
!HPF$ ALIGN A(I) WITH T(I)
!HPF$ ALIGN B(I) WITH T(I)
!HPF$ DISTRIBUTE T(BLOCK)

DO I = 1, N-1
A(I) = A(I+1) + B(I+1)

ENDDO

14–4 How many communication messages are there when executing the fol-
lowing loop nest on four processors? Can you modify the program and
reduce the number of messages to a half of the original? Can you reduce
the total number of messages to 3? Does your optimization cause any
negative effect?

REAL A(N,N)
!HPF$ TEMPLATE T(N,N)
!HPF$ ALIGN A(I,J) WITH T(I,J)
!HPF$ DISTRIBUTE T(*,BLOCK)

DO I = 1, N
Do J = 1, N-1

A(I,J) = A(I-1,J) + 1.0
ENDDO

References

Chapter Draft of February 8, 2001 829

ENDDO

14–5 (Continued from the previous question) The method for reducing the
number of messages is to unroll the I-loop by a factor of k and inter-
change with the J-loop as the following program shows. This transfor-
mation is known as coarse-grain pipelining. Is this transformation
always legal? (Hint: it obeys the same legality condition as unroll-and-
jam)

REAL A(N,N)
!HPF$ TEMPLATE T(N,N)
!HPF$ ALIGN A(I,J) WITH T(I,J)
!HPF$ DISTRIBUTE T(*,BLOCK)

DO II = 1, N, K
DO J = 1, N-1

DO I = II, II+K-1
A(I,J) = A(I-1,J) + 1.0

ENDDO
ENDDO

ENDDO

14–6 Programming exercise. Generate the parallel code for the example
program in question 4 and 5 using PVM or MPI. Measure the perfor-
mance gain of coarse-grain pipelining. How to find the optimal unroll
factor? Test your methods.

14.11 References

[1] V. Adve and J. Mellor-Crummey. Advanced code generation for High Performance For-
tran. In Languages, Compilation Techniques, and Run-Time Systems for Scalable Paral-
lel Systems, Springer-Verlag (to appear).

[2] V. Adve and J. Mellor-Crummey. Using integer sets for data-parallel program analysis
and optimization. Proceedings of the SIGPLAN ‘98 Conference on Programming
Lanaguage Design and Implementation, Montreal, Canada, June 1998.

[3] Z. Bozkus, A. Choudhary, G. Fox , T. Haupt and S. Ranka. Fortran 90D/HPFsompiler
for distributed memory MIMD computers: design, implementation, and performance
results. Proceedings of Supercomputing ‘93: 351–360, Portland, OR, November 1993.

[4] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multiproces-
sors. Journal of Supercomputing 3:151–169, October 1988.

[5] B. Chapman and P. Mehrotra and H. Zima. Vienna Fortran --- a Fortran language exten-
sion for distributed memory multiprocessors. In J.Saltz and P. Mehrotra, editors, Lan-
guages, Compilers, and Run-Time Environments for Distributed-Memory Machines,
North-Holland, Amsterdam, 1992.

Compiling High-Performance Fortran

830 ADVANCED COMPILING FOR HIGH PERFORMANCE

[6] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng, and M. Wu.
Fortran D language specification. Technical Report TR90-141, Department of Computer
Science, Rice University, December 1990.

[7] R. v. Hanxleden, R. v. and K. Kennedy. Give-N-Take--- a balanced code placement
framework. Proceedings of the SIGPLAN ‘94 Conference on Programming Lanaguage
Design and Implementation, Orlando, June 1994.

[8] P. Hatcher, M. Quinn, A. Lapadula, B Seevers, R. Anderson, and R. Jones. Data-parallel
programming on MIMD computers. IEEE Transactions on Parallel and Distributed Sys-
tems 2(3):377–383, July 1991.

[9] High Performance Fortran Forum. High Performance Fortran language specification.
Scientific Programming 2(1–2): 1–170, 1993.

[10] High Performance Fortran Forum. High Performance Fortran language specification,
version 2.0. CRPC-TR92225, Center for Research on Parallel Computation, Rice Uni-
versity, January 1997.

[11] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler optimizations for Fortran D on
MIMD distributed-memory machines. Proceedings of Supercomputing ‘91, Albuquer-
que, NM, November 1991.

[12] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler support for machine-indepen-
dent parallel programming in Fortran D.

[13] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Preliminary experiences with the Fortran
D compiler. Proceedings of Sumpercomuting ‘93, Portland, OR, November 1993.

[14] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The Omega
Library interface guide. Technical Report, Dept. of Computer Science, University of
Maryland, College Park, MD, April 1996.

[15] K. Kennedy and A. Sethi. Resource-based communication placement analysis. Proceed-
ings of the Ninth Workshop on Languages and Compilers for Parallel Computing,
Springer-Verlag, August 1996.

[16] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed
execution. IEEE Transactions on Parallel and Distributed Systems 2(4):440–451, Octo-
ber 1991.

[17] W. Pugh. A practical algorithm for exact array dependence analysis. Communications of
the ACM 35(8):102–114, August 1992.

[18] A. Rogers and K. Pingali. Process decomposition through locality of referrence. In SIG-
PLAN '89 Conference on Programming Language Design and Implementation, Port-
land, OR, June 1989.

[19] C.-W. Tseng. An optimizing Fortran D compiler for MIMD distributed-memory
machines. Ph.D. Dissertation, Department of Computer Science, Rice University, Hous-
ton, January 1993.

[20] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: a tool for semi-automatic MIMD/SIMD
parallelization. Parallel Computing 6:1–18, 1988.

[21] H. Zima, P. Brezany, B. Chapman, P. Mehrotra and A. Schwald. Vienna Fortran --- A
Language Specification, Version 1.1. Interim Report 21, ICASE, Hampton, VA, March
1992.

Chapter Draft of February 8, 2001 831

APPENDIX A Fundamentals of
Fortran 90

A.1 Array Assignment

Since one of the main purposes of Fortran 90 is providing support for
vector and parallel hardware, it is quite natural to assume that Fortran 90
contains vector and parallel operations. One way in which this is accom-
plished is the treatment of vectors and arrays as aggregates in the assign-
ment statement. If X and Y are two arrays of the same dimension, then

X = Y

copies Y into X element by element. In other words, this assignment is
equivalent to

X(1) = Y(1)
X(2) = Y(2)
...
X(N) = Y(N)

832 ADVANCED COMPILING FOR HIGH PERFORMANCE

 Scalar quantities may be mixed with vector quantities using the conven-
tion that a scalar is expanded to a vector of the appropriate dimensions
before operations are performed. Thus,

X = X + 5.0

adds the constant 5.0 to every element of array X.

Array assignments in Fortran 90 are viewed as being executed simulta-
neously; that is, the assignment must be treated so that all input operands
are fetched before any output values are stored. For instance, consider

X = X/X(2)

Even though the value of X(2) is changed by this statement, the original
value of X(2) is used throughout, so that the result is the same as

T= X(2)
X(1) = X(1)/T
X(2) = X(2)/T
...
X(N) = X(N)/T

These semantics match the semantics of vector hardware presented ear-
lier.

A.2 Array Sections

Sections of arrays, including individual rows and columns, may be
assigned using triplet notation. If A and B are two dimensional arrays
whose subscripts range from 1 to 100 in each dimension; then

A(1:100,I) = B(J,1:100)

assigns the Jth row of B to the Ith column of A.

The range of iteration for vector assignment may be smaller than a whole
row or column. The following assignment could be used to assign the
first M elements of the Jth row of B to the first M elements of the Ith col-
umn of A.

A(1:M,I) = B(J,1:M)

This statement has the effect of the assignments:

A(1,I) = B(J,1)
A(2,I) = B(J,2)
...

Chapter Draft of February 8, 2001 833

A(M,I) = B(J,M)

even though M might contain a value much smaller than the actual upper
bound of these arrays.

The term “triplet” implies three components in the iteration range specifi-
cation. The third component, when it appears, specifies a “stride” for the
index vector in that subscript position. For example, the first M elements
of the Jth row of B may be assigned to the first M elements of the Ith col-
umn of A in odd subscript positions with the following

A(1:M*2-1:2,I) = B(J,1:M)

Triplet notation is also useful in dealing with operations involving shifted
sections. The assignment

A(I,1:M) = B(1:M,J) + C(I,3:M+2)

has the effect

A(I,1) = B(1,J) + C(I,3)
A(I,2) = B(2,J) + C(I,4)
...
A(I,M) = B(M,J) + C(I,M+2)

A.3 Parallel Loops

Fortran 90 also provides a parallel analog to vector operations. The
FORALL loop specifies a DO loop whose iterations can be done in any
order. For instance, all elements of a vector A may be incremented by 1
with the following:

FORALL I = 1, N {A(I) = A(I) + 1}

The FORALL loop is equivalent to another construct that has been in
common use: the DOALL. A DOALL allows its iterations to be done in
any order, so long as the statements within any one iteration are per-
formed in the specified order. FORALLs and DOALLs are the only kind
of parallel loop discussed in this book. Another alternative, the
DOACROSS, specifies a parallel loop containing synchronization primi-
tives. Fortran 90 contains no mechanism for specifying this kind of paral-
lelism.

834 ADVANCED COMPILING FOR HIGH PERFORMANCE

A.4 Conditional Assignment

The Fortran WHERE statement will permit an array assignment to be
controlled by a conditional masking array. For example,

WHERE (A .GT. 0.0) A = A + B

specifies that the vector sum of A and B be formed, but that stores back to
A take place only in positions where A was originally greater than zero.
The semantics of this statement require that it behave as if only compo-
nents corresponding to the locations where the controlling condition is
true are involved in the computation.

In the special case of statements such as

WHERE (A .NE. 0.0) B = B/A

the semantics require that divide checks arising as a result of evaluating
the right hand side not affect the behavior of the program—the code must
hide the error from the user. In other words, any error side effects that
might occur as a result of evaluating the right hand side in positions
where the controlling vector is false are ignored.

A.5 Library Functions

Mathematical library functions, such as SQRT and SIN, are extended on
an elementwise basis to vectors and arrays. In addition, new intrinsic-
functions are provided, such as inner matrix product (DOTPRODUCT)
and transpose (TRANSPOSE). The special function SEQ(1,N) returns an
index vector from 1 to N. Reduction functions, much like those in APL,
are also provided. For example, SUM applied to a vector returns the sum
of all elements in that vector.

Chapter Draft of February 8, 2001 835

L
loop-carried dependence 72

