
K12801

Introduction to

Compiler Construction

in a Java World

Introduction to C
om

piler
C

onstruction in a Java W
orld Bill Campbell

Swami Iyer
Bahar Akbal-DelibasC

am
pbell

Iyer
A

kbal-D
elibas

˛

˛

Immersing readers in
Java and the Java Vir-
tual Machine (JVM), Introduc-
tion to Compiler Construction in a
Java World enables a deep understanding of
the Java programming language and its implementation.
The text focuses on design, organization, and testing, helping readers
learn good software engineering skills and become better programmers.

The book covers all of the standard compiler topics, including lexical analysis, parsing,
abstract syntax trees, semantic analysis, code generation, and register allocation.
The authors also demonstrate how JVM code can be translated to a register machine,
specifically the MIPS architecture. In addition, they discuss recent strategies,
such as just-in-time compiling and hotspot compiling, and present an overview of
leading commercial compilers. Each chapter includes a mix of written exercises and
programming projects.

Features
•	 Presents a hands-on introduction to compiler construction, Java technology, and

software engineering principles
•	 Teaches how to fit code into existing projects
•	 Describes a JVM-to-MIPS code translator, along with optimization techniques
•	 Discusses well-known compilers from Oracle, IBM, and Microsoft
•	 Provides Java code on a supplementary website

By working with and extending a real functional compiler, readers develop a hands-
on appreciation of how compilers work, how to write compilers, and how the Java
language behaves. They also get invaluable practice working with a non-trivial Java
program of more than 30,000 lines of code.

Computer Science/Computer Engineering/Computing

K12801_Cover.indd 1 10/12/12 9:53 AM

Introduction to

Compiler Construction

in a Java World

K12801_FM.indd 1 10/22/12 10:55 AM

K12801_FM.indd 2 10/22/12 10:55 AM

Bill Campbell
Swami Iyer

Bahar Akbal-Delibas˛

Introduction to

Compiler Construction

in a Java World

K12801_FM.indd 3 10/22/12 10:55 AM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20121207

International Standard Book Number-13: 978-1-4398-6089-2 (eBook - VitalBook)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material repro-
duced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copy-
right.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifica-
tion and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Dedication

To Nora, Fiona, and Amy for their loving support. — Bill

To my aunts Subbalakshmi and Vasantha for their unfaltering care and affection, and my
parents Inthumathi and Raghunathan, and brother Shiva for all their support. — Swami

To my parents Gülseren and Salih for encouraging me to pursue knowledge, and to my
beloved husband Adem for always being there when I need him. — Bahar

Contents

List of Figures xiii

Preface xvii

About the Authors xxiii

Acknowledgments xxv

1 Compilation 1
1.1 Compilers . 1

1.1.1 Programming Languages . 1
1.1.2 Machine Languages . 2

1.2 Why Should We Study Compilers? . 3
1.3 How Does a Compiler Work? The Phases of Compilation 4

1.3.1 Front End . 4
1.3.2 Back End . 5
1.3.3 “Middle End” . 6
1.3.4 Advantages to Decomposition . 6
1.3.5 Compiling to a Virtual Machine: New Boundaries 7
1.3.6 Compiling JVM Code to a Register Architecture 8

1.4 An Overview of the j-- to JVM Compiler 8
1.4.1 j-- Compiler Organization . 9
1.4.2 Scanner . 10
1.4.3 Parser . 11
1.4.4 AST . 13
1.4.5 Types . 13
1.4.6 Symbol Table . 13
1.4.7 preAnalyze() and analyze() . 15
1.4.8 Stack Frames . 15
1.4.9 codegen() . 16

1.5 j-- Compiler Source Tree . 18
1.6 Organization of This Book . 23
1.7 Further Readings . 24
1.8 Exercises . 24

2 Lexical Analysis 29
2.1 Introduction . 29
2.2 Scanning Tokens . 30
2.3 Regular Expressions . 37
2.4 Finite State Automata . 39
2.5 Non-Deterministic Finite-State Automata (NFA) versus Deterministic

Finite-State Automata (DFA) . 40

vii

viii Contents

2.6 Regular Expressions to NFA . 41
2.7 NFA to DFA . 46
2.8 Minimal DFA . 48
2.9 JavaCC: Tool for Generating Scanners . 54
2.10 Further Readings . 56
2.11 Exercises . 57

3 Parsing 59
3.1 Introduction . 59
3.2 Context-Free Grammars and Languages . 61

3.2.1 Backus–Naur Form (BNF) and Its Extensions 61
3.2.2 Grammar and the Language It Describes 63
3.2.3 Ambiguous Grammars and Unambiguous Grammars 66

3.3 Top-Down Deterministic Parsing . 70
3.3.1 Parsing by Recursive Descent . 72
3.3.2 LL(1) Parsing . 76

3.4 Bottom-Up Deterministic Parsing . 90
3.4.1 Shift-Reduce Parsing Algorithm . 90
3.4.2 LR(1) Parsing . 92
3.4.3 LALR(1) Parsing . 110
3.4.4 LL or LR? . 116

3.5 Parser Generation Using JavaCC . 117
3.6 Further Readings . 122
3.7 Exercises . 123

4 Type Checking 127
4.1 Introduction . 127
4.2 j-- Types . 127

4.2.1 Introduction to j-- Types . 127
4.2.2 Type Representation Problem . 128
4.2.3 Type Representation and Class Objects 128

4.3 j-- Symbol Tables . 129
4.3.1 Contexts and Idefns: Declaring and Looking Up Types and Local

Variables . 129
4.3.2 Finding Method and Field Names in Type Objects 133

4.4 Pre-Analysis of j-- Programs . 134
4.4.1 An Introduction to Pre-Analysis . 134
4.4.2 JCompilationUnit.preAnalyze() 135
4.4.3 JClassDeclaration.preAnalyze() 136
4.4.4 JMethodDeclaration.preAnalyze() 137
4.4.5 JFieldDeclaration.preAnalyze() 139
4.4.6 Symbol Table Built by preAnalyze() 139

4.5 Analysis of j-- Programs . 140
4.5.1 Top of the AST . 141
4.5.2 Declaring Formal Parameters and Local Variables 143
4.5.3 Simple Variables . 152
4.5.4 Field Selection and Message Expressions 154
4.5.5 Typing Expressions and Enforcing the Type Rules 158
4.5.6 Analyzing Cast Operations . 159
4.5.7 Java’s Definite Assignment Rule . 161

4.6 Visitor Pattern and the AST Traversal Mechanism 161

Contents ix

4.7 Programming Language Design and Symbol Table Structure 162
4.8 Attribute Grammars . 163

4.8.1 Examples . 163
4.8.2 Formal Definition . 166
4.8.3 j-- Examples . 167

4.9 Further Readings . 168
4.10 Exercises . 168

5 JVM Code Generation 171
5.1 Introduction . 171
5.2 Generating Code for Classes and Their Members 175

5.2.1 Class Declarations . 176
5.2.2 Method Declarations . 177
5.2.3 Constructor Declarations . 177
5.2.4 Field Declarations . 178

5.3 Generating Code for Control and Logical Expressions 178
5.3.1 Branching on Condition . 178
5.3.2 Short-Circuited && . 180
5.3.3 Logical Not ! . 181

5.4 Generating Code for Message Expressions, Field Selection, and Array Access
Expressions . 181
5.4.1 Message Expressions . 181
5.4.2 Field Selection . 183
5.4.3 Array Access Expressions . 184

5.5 Generating Code for Assignment and Similar Operations 184
5.5.1 Issues in Compiling Assignment . 184
5.5.2 Comparing Left-Hand Sides and Operations 186
5.5.3 Factoring Assignment-Like Operations 188

5.6 Generating Code for String Concatenation 189
5.7 Generating Code for Casts . 190
5.8 Further Readings . 191
5.9 Exercises . 191

6 Translating JVM Code to MIPS Code 205
6.1 Introduction . 205

6.1.1 What Happens to JVM Code? . 205
6.1.2 What We Will Do Here, and Why 206
6.1.3 Scope of Our Work . 207

6.2 SPIM and the MIPS Architecture . 209
6.2.1 MIPS Organization . 209
6.2.2 Memory Organization . 210
6.2.3 Registers . 211
6.2.4 Routine Call and Return Convention 212
6.2.5 Input and Output . 212

6.3 Our Translator . 213
6.3.1 Organization of Our Translator . 213
6.3.2 HIR Control-Flow Graph . 214
6.3.3 Simple Optimizations on the HIR . 221
6.3.4 Low-Level Intermediate Representation (LIR) 227
6.3.5 Simple Run-Time Environment . 229
6.3.6 Generating SPIM Code . 238

x Contents

6.3.7 Peephole Optimization of the SPIM Code 240
6.4 Further Readings . 241
6.5 Exercises . 241

7 Register Allocation 245
7.1 Introduction . 245
7.2 Näıve Register Allocation . 245
7.3 Local Register Allocation . 246
7.4 Global Register Allocation . 246

7.4.1 Computing Liveness Intervals . 246
7.4.2 Linear Scan Register Allocation . 255
7.4.3 Register Allocation by Graph Coloring 268

7.5 Further Readings . 274
7.6 Exercises . 274

8 Celebrity Compilers 277
8.1 Introduction . 277
8.2 Java HotSpot Compiler . 277
8.3 Eclipse Compiler for Java (ECJ) . 280
8.4 GNU Java Compiler (GCJ) . 283

8.4.1 Overview . 283
8.4.2 GCJ in Detail . 284

8.5 Microsoft C# Compiler for .NET Framework 285
8.5.1 Introduction to .NET Framework . 285
8.5.2 Microsoft C# Compiler . 288
8.5.3 Classic Just-in-Time Compilation in the CLR 289

8.6 Further Readings . 292

Appendix A Setting Up and Running j-- 293
A.1 Introduction . 293
A.2 Obtaining j-- . 293
A.3 What Is in the Distribution? . 293

A.3.1 Scripts . 295
A.3.2 Ant Targets . 295

A.4 Setting Up j-- for Command-Line Execution 296
A.5 Setting Up j-- in Eclipse . 296
A.6 Running/Debugging the Compiler . 297
A.7 Testing Extensions to j-- . 298
A.8 Further Readings . 298

Appendix B j-- Language 299
B.1 Introduction . 299
B.2 j-- Program and Its Class Declarations . 299
B.3 j-- Types . 301
B.4 j-- Expressions and Operators . 302
B.5 j-- Statements and Declarations . 302
B.6 Syntax . 302

B.6.1 Lexical Grammar . 303
B.6.2 Syntactic Grammar . 304
B.6.3 Relationship of j-- to Java . 306

Contents xi

Appendix C Java Syntax 307
C.1 Introduction . 307
C.2 Syntax . 307

C.2.1 Lexical Grammar . 307
C.2.2 Syntactic Grammar . 309

C.3 Further Readings . 313

Appendix D JVM, Class Files, and the CLEmitter 315
D.1 Introduction . 315
D.2 Java Virtual Machine (JVM) . 315

D.2.1 pc Register . 316
D.2.2 JVM Stacks and Stack Frames . 316
D.2.3 Heap . 318
D.2.4 Method Area . 318
D.2.5 Run-Time Constant Pool . 318
D.2.6 Abrupt Method Invocation Completion 319

D.3 Class File . 319
D.3.1 Structure of a Class File . 319
D.3.2 Names and Descriptors . 321

D.4 CLEmitter . 322
D.4.1 CLEmitter Operation . 322
D.4.2 CLEmitter Interface . 323

D.5 JVM Instruction Set . 327
D.5.1 Object Instructions . 328
D.5.2 Field Instructions . 328
D.5.3 Method Instructions . 329
D.5.4 Array Instructions . 330
D.5.5 Arithmetic Instructions . 331
D.5.6 Bit Instructions . 332
D.5.7 Comparison Instructions . 332
D.5.8 Conversion Instructions . 333
D.5.9 Flow Control Instructions . 333
D.5.10 Load Store Instructions . 335
D.5.11 Stack Instructions . 337
D.5.12 Other Instructions . 338

D.6 Further Readings . 339

Appendix E MIPS and the SPIM Simulator 341
E.1 Introduction . 341
E.2 Obtaining and Running SPIM . 341
E.3 Compiling j-- Programs to SPIM Code . 341
E.4 Extending the JVM-to-SPIM Translator 343
E.5 Further Readings . 344

Bibliography 345

Index 351

List of Figures

1.1 Compilation. 1
1.2 Interpretation . 3
1.3 A compiler: Analysis and synthesis. 4
1.4 The front end: Analysis. 5
1.5 The back end: Synthesis. 5
1.6 The “middle end”: Optimization. 6
1.7 Re-use through decomposition. 7
1.8 The j-- compiler. 9
1.9 An AST for the HelloWorld program. 14
1.10 Run-time stack frames in the JVM. 16

2.1 State transition diagram for identifiers and integers. 31
2.2 A state transition diagram that distinguishes reserved words from identifiers. 32
2.3 Recognizing words and looking them up in a table to see if they are reserved. 33
2.4 A state transition diagram for recognizing the separator ; and the operators

==, =, !, and *. 35
2.5 Dealing with white space. 36
2.6 Treating one-line (// ...) comments as white space. 36
2.7 An FSA recognizing (a|b)a∗b. 40
2.8 An NFA. 41
2.9 Scanning symbol a. 42
2.10 Concatenation rs. 42
2.11 Alternation r|s. 42
2.12 Repetition r∗. 43
2.13 ε-move. 43
2.14 The syntactic structure for (a|b)a∗b. 43
2.15 An NFA recognizing (a|b)a∗b. 45
2.16 A DFA recognizing (a|b)a∗b. 48
2.17 An initial partition of DFA from Figure 2.16. 49
2.18 A second partition of DFA from Figure 2.16. 50
2.19 A minimal DFA recognizing (a|b)a∗b. 51
2.20 The syntactic structure for (a|b)∗baa. 52
2.21 An NFA recognizing (a|b)∗baa. 52
2.22 A DFA recognizing (a|b)∗baa. 53
2.23 Partitioned DFA from Figure 2.22. 53
2.24 A minimal DFA recognizing (a|b)∗baa. 54

3.1 An AST for the Factorial program . 60
3.2 A parse tree for id + id * id. 66
3.3 Two parse trees for id + id * id. 67
3.4 Two parse trees for if (e) if (e) s else s. 68

xiii

xiv List of Figures

3.5 LL(1) parsing table for the grammar in Example 3.21. 77
3.6 The steps in parsing id + id * id against the LL(1) parsing table in Figure

3.5. 79
3.7 The Action and Goto tables for the grammar in (3.31) (blank implies error). 95
3.8 The NFA corresponding to s0. 102
3.9 The LALR(1) parsing tables for the Grammar in (3.42) 114
3.10 Categories of context-free grammars and their relationship. 116

4.1 The symbol table for the Factorial program. 131
4.2 The structure of a context. 132
4.3 The inheritance tree for contexts. 133
4.4 The symbol table created by the pre-analysis phase for the Factorial pro-

gram. 140
4.5 The rewriting of a field initialization. 142
4.6 The stack frame for an invocation of Locals.foo(). 144
4.7 The stages of the symbol table in analyzing Locals.foo(). 147
4.8 The sub-tree for int w = v + 5, x = w + 7; before analysis. 149
4.9 The sub-tree for int w = v + 5, x = w + 7; after analysis. 151
4.10 A locally declared variable (a) before analysis; (b) after analysis. 153
4.11 Analysis of a variable that denotes a static field. 153

5.1 A variable’s l-value and r-value. 184
5.2 The effect of various duplication instructions. 188

6.1 Our j-- to SPIM compiler. 206
6.2 The MIPS computer organization. 209
6.3 SPIM memory organization. 210
6.4 Little-endian versus big-endian. 211
6.5 A stack frame. 213
6.6 Phases of the JVM-to-SPIM translator. 214
6.7 HIR flow graph for Factorial.computeIter(). 216
6.8 (HIR) AST for w = x + y + z. 217
6.9 The SSA merge problem. 218
6.10 Phi functions solve the SSA merge problem. 219
6.11 Phi functions in loop headers. 219
6.12 Resolving Phi functions. 229
6.13 A stack frame. 231
6.14 Layout for an object. 231
6.15 Layout and dispatch table for Foo. 233
6.16 Layout and dispatch table for Bar. 234
6.17 Layout for an array. 235
6.18 Layout for a string. 235
6.19 An alternative addressing scheme for objects on the heap. 236

7.1 Control-flow =graph for Factorial.computeIter(). 247
7.2 Liveness intervals for Factorial.computeIter(). 247
7.3 Control-flow graph for Factorial.computeIter() with local liveness sets

computed. 250
7.4 Building intervals for basic block B3. 254
7.5 Liveness intervals for Factorial.computeIter(), again. 258
7.6 The splitting of interval V33. 262

List of Figures xv

7.7 Liveness intervals for Factorial.computeIter(), yet again. 269
7.8 Interference graph for intervals for Factorial.computeIter(). 269
7.9 Pruning an interference graph. 271

8.1 Steps to ECJ incremental compilation. 282
8.2 Possible paths a Java program takes in GCJ. 284
8.3 Single-file versus multi-file assembly. 286
8.4 Language integration in .NET framework. 287
8.5 The method table in .NET. 291

D.1 The stack states for computing 34 + 6 * 11. 316
D.2 The stack frame for an invocation of add(). 317
D.3 A recipe for creating a class file. 323

Preface

Why Another Compiler Text?

There are lots of compiler texts out there. Some of them are very good. Some of them use
Java as the programming language in which the compiler is written. But we have yet to
find a compiler text that uses Java everywhere.

Our text is based on examples that make full use of Java:

• Like some other texts, the implementation language is Java. And, our implementation
uses Java’s object orientation. For example, polymorphism is used in implementing the
analyze() and codegen() methods for different types of nodes in the abstract syntax
tree (AST). The lexical analyzer (the token scanner), the parser, and a back-end code
emitter are objects.

• Unlike other texts, the example compiler and examples in the chapters are all about
compiling Java. Java is the source language. The student gets a compiler for a non-
trivial subset of Java, called j--; j-- includes classes, objects, methods, a few simple
types, a few control constructs, and a few operators. The examples in the text are
taken from this compiler. The exercises in the text generally involve implementing
Java language constructs that are not already in j--. And, because Java is an object-
oriented language, students see how modern object-oriented constructs are compiled.

• The example compiler and exercises done by the student target the Java Virtual
Machine (JVM).

• There is a separate back end (discussed in Chapters 6 and 7), which translates a small
but useful subset of JVM code to SPIM (Larus, 2000–2010), a simulator for the MIPS
RISC architecture. Again, there are exercises for the student so that he or she may
become acquainted with a register machine and register allocation.

The student is immersed in Java and the JVM, and gets a deeper understanding of the
Java programming language and its implementation.

Why Java?

It is true that most industrial compilers (and many compilers for textbooks) are written
in either C or C++, but students have probably been taught to program using Java. And
few students will go on to write compilers professionally. So, compiler projects steeped in
Java give students experience working with larger, non-trivial Java programs, making them
better Java programmers.

xvii

xviii Preface

A colleague, Bruce Knobe, says that the compilers course is really a software engineering
course because the compiler is the first non-trivial program the student sees. In addition, it
is a program built up from a sequence of components, where the later components depend
on the earlier ones. One learns good software engineering skills in writing a compiler.

Our example compiler and the exercises that have the student extend it follow this
model:

• The example compiler for j-- is a non-trivial program comprising 240 classes and
nearly 30,000 lines of code (including comments). The text takes its examples from
this compiler and encourages the student to read the code. We have always thought
that reading good code makes for better programmers.

• The code tree includes an Ant file for automatically building the compiler.

• The code tree makes use of JUnit for automatically running each build against a set of
tests. The exercises encourage the student to write additional tests before implement-
ing new language features in their compilers. Thus, students get a taste of extreme
programming; implementing a new programming language construct in the compiler
involves

– Writing tests

– Refactoring (re-organizing) the code for making the addition cleaner

– Writing the new code to implement the new construct

The code tree may be used either

• In a simple command-line environment using any text editor, Java compiler, and Java
run-time environment (for example, Oracle’s Java SE). Ant will build a code tree under
either Unix (including Apple’s Mac OS X) or a Windows system; likewise, JUnit will
work with either system; or

• It can be imported into an integrated development environment such as IBM’s freely
available Eclipse.

So, this experience makes the student a better programmer. Instead of having to learn
a new programming language, the student can concentrate on the more important things:
design, organization, and testing. Students get more excited about compiling Java than
compiling some toy language.

Why Start with a j-- Compiler?

In teaching compiler classes, we have assigned programming exercises both

1. Where the student writes the compiler components from scratch, and

2. Where the student starts with the compiler for a base language such as j-- and imple-
ments language extensions.

We have settled on the second approach for the following reasons:

Preface xix

• The example compiler illustrates, in a concrete manner, the implementation techniques
discussed in the text and presented in the lectures.

• Students get hands-on experience implementing extensions to j-- (for example, in-
terfaces, additional control statements, exception handling, doubles, floats and longs,
and nested classes) without having to build the infrastructure from scratch.

• Our own work experiences make it clear that this is the way work is done in commercial
projects; programmers rarely write code from scratch but work from existing code
bases. Following the approach adopted here, the student learns how to fit code into
existing projects and still do valuable work.

Students have the satisfaction of doing interesting programming, experiencing what
coding is like in the commercial world, and learning about compilers.

Why Target the JVM?

In the first instance, our example compiler and student exercises target the Java Virtual
Machine (JVM); we have chosen the JVM as a target for several reasons:

• The original Oracle Java compiler that is used by most students today targets the
JVM. Students understand this regimen.

• This is the way many compiler frameworks are implemented today. For example,
Microsoft’s .NET framework targets the Common Language Runtime (CLR). The
byte code of both the JVM and the CLR is (in various instances) then translated to
native machine code, which is real register-based computer code.

• Targeting the JVM exposes students to some code generation issues (instruction se-
lection) but not all, for example, not register allocation.

• We think we cannot ask for too much more from students in a one-semester course
(but more on this below). Rather than have the students compile toy languages to
real hardware, we have them compile a hefty subset of Java (roughly Java version 4)
to JVM byte code.

• That students produce real JVM .class files, which can link to any other .class files
(no matter how they are produced), gives the students great satisfaction. The class
emitter (CLEmitter) component of our compiler hides the complexity of .class files.

This having been said, many students (and their professors) will want to deal with
register-based machines. For this reason, we also demonstrate how JVM code can be trans-
lated to a register machine, specifically the MIPS architecture.

After the JVM – A Register Target

Beginning in Chapter 6, our text discusses translating the stack-based (and so, register-
free) JVM code to a MIPS, register-based architecture. Our example translator does only a

xx Preface

limited subset of the JVM, dealing with static classes and methods and sufficient for trans-
lating a computation of factorial. But our translation fully illustrates linear-scan register
allocation—appropriate to modern just-in-time compilation. The translation of additional
portions of the JVM and other register allocation schemes, for example, that are based on
graph coloring, are left to the student as exercises. Our JVM-to-MIPS translator framework
also supports several common code optimizations.

Otherwise, a Traditional Compiler Text

Otherwise, this is a pretty traditional compiler text. It covers all of the issues one expects in
any compiler text: lexical analysis, parsing, abstract syntax trees, semantic analysis, code
generation, limited optimization, register allocation, as well as a discussion of some recent
strategies such as just-in-time compiling and hotspot compiling and an overview of some
well-known compilers (Oracle’s Java compiler, GCC, the IBM Eclipse compiler for Java
and Microsoft’s C# compiler). A seasoned compiler instructor will be comfortable with all
of the topics covered in the text. On the other hand, one need not cover everything in the
class; for example, the instructor may choose to leave out certain parsing strategies, leave
out the JavaCC tool (for automatically generating a scanner and parser), or use JavaCC
alone.

Who Is This Book for?

This text is aimed at upper-division undergraduates or first-year graduate students in a
compiler course. For two-semester compiler courses, where the first semester covers front-
end issues and the second covers back-end issues such as optimization, our book would
be best for the first semester. For the second semester, one would be better off using a
specialized text such as Robert Morgan’s Building an Optimizing Compiler [Morgan, 1998];
Allen and Kennedy’s Optimizing Compilers for Modern Architectures [Allen and Kennedy,
2002]; or Muchnick’s Advanced Compiler Design and Implementation [Muchnick, 1997]. A
general compilers text that addresses many back-end issues is Appel’s Modern Compiler
Implementation in Java [Appel, 2002]. We choose to consult only published papers in the
second-semester course.

Structure of the Text

Briefly, An Introduction to Compiler Construction in a Java World is organized as follows.
In Chapter 1 we describe what compilers are and how they are organized, and we give
an overview of the example j-- compiler, which is written in Java and supplied with the
text. We discuss (lexical) scanners in Chapter 2, parsing in Chapter 3, semantic analysis
in Chapter 4, and JVM code generation in Chapter 5. In Chapter 6 we describe a JVM
code-to-MIPS code translator, with some optimization techniques; specifically, we target

Preface xxi

James Larus’s SPIM, an interpreter for MIPS assembly language. We introduce register
allocation in Chapter 7. In Chapter 8 we discuss several celebrity (that is, well-known)
compilers. Most chapters close with a set of exercises; these are generally a mix of written
exercises and programming projects.

There are five appendices. Appendix A explains how to set up an environment, either
a simple command-line environment or an Eclipse environment, for working with the ex-
ample j-- compiler. Appendix B outlines the j-- language syntax, and Appendix C outlines
(the fuller) Java language syntax. Appendix D describes the JVM, its instruction set, and
CLEmitter, a class that can be used for emitting JVM code. Appendix E describes SPIM,
a simulator for MIPS assembly code, which was implemented by James Larus.

How to Use This Text in a Class

Depending on the time available, there are many paths one may follow through this text.
Here are two:

• We have taught compilers, concentrating on front-end issues, and simply targeting the
JVM interpreter:

– Introduction. (Chapter 1)

– Both a hand-written and JavaCC generated lexical analyzer. The theory of gen-
erating lexical analyzers from regular expressions; Finite State Automata (FSA).
(Chapter 2)

– Context-free languages and context-free grammars. Top-down parsing using re-
cursive descent and LL(1) parsers. Bottom-up parsing with LR(1) and LALR(1)
parser. Using JavaCC to generate a parser. (Chapter 3)

– Type checking. (Chapter 4)

– JVM code generation. (Chapter 5)

– A brief introduction to translating JVM code to SPIM code and optimization.
(Chapter 6)

• We have also taught compilers, spending less time on the front end, and generating
code both for the JVM and for SPIM, a simulator for a register-based RISC machine:

– Introduction. (Chapter 1)

– A hand-written lexical analyzer. (Students have often seen regular expressions
and FSA in earlier courses.) (Sections 2.1 and 2.2)

– Parsing by recursive descent. (Sections 3.1 3.3.1)

– Type checking. (Chapter 4)

– JVM code generation. (Chapter 5)

– Translating JVM code to SPIM code and optimization. (Chapter 6)

– Register allocation. (Chapter 7)

In either case, the student should do the appropriate programming exercises. Those
exercises that are not otherwise marked are relatively straightforward; we assign several of
these in each programming set.

xxii Preface

Where to Get the Code?

We supply a code tree, containing

• Java code for the example j-- compiler and the JVM to SPIM translator,

• Tests (both conformance tests and deviance tests that cause error messages to be
produced) for the j-- compiler and a framework for adding additional tests,

• The JavaCC and JUnit libraries, and

• An Ant file for building and testing the compiler.

We maintain a website at http://www.cs.umb.edu/j-- for up-to-date distributions.

What Does the Student Need?

The code tree may be obtained at http://www.cs.umb.edu/j--/j--.zip. Everything else
the student needs is freely obtainable on the WWW: the latest version of Java SE is ob-
tainable from Oracle at http://www.oracle.com/technetwork/java/javase/downloads

/index.html. Ant is available at http://ant.apache.org/; Eclipse can be obtained from
http://www.eclipse.org/; and SPIM, a simulator of the MIPS machine, can be obtained
from http://sourceforge.net/projects/spimsimulator/files/. All of this may be in-
stalled on Windows, Mac OS X, or any Linux platform.

What Does the Student Come Away with?

The student gets hands-on experience working with and extending (in the exercises) a real,
working compiler. From this, the student gets an appreciation of how compilers work, how
to write compilers, and how the Java language behaves. More importantly, the student gets
practice working with a non-trivial Java program of more than 30,000 lines of code.

About the Authors

Bill Campbell is an associate professor in the Department of Computer Science at the
University of Massachusetts, Boston. His professional areas of expertise are software en-
gineering, object-oriented analysis, design and programming, and programming language
implementation. He likes to write programs and has both academic and commercial ex-
perience. He has been teaching compilers for more than twenty years and has written an
introductory Java programming text with Ethan Bolker, Java Outside In (Cambridge Uni-
versity Press, 2003).

Professor Campbell has worked for (what is now) AT&T and Intermetrics Inc., and has
consulted to Apple Computer and Entitlenet. He has implemented a public domain version
of the Scheme programming language called UMB Scheme, which is distributed with Linux.
Recently, he founded an undergraduate program in information technology.

Dr. Campbell has a bachelor’s degree in mathematics and computer science from New
York University, 1972; an M.Sc. in computer science from McGill University, 1975; and a
PhD in computer science from St. Andrews University (UK), 1978.

Swami Iyer is a PhD candidate in the Department of Computer Science at the Univer-
sity of Massachusetts, Boston. His research interests are in the fields of dynamical systems,
complex networks, and evolutionary game theory. He also has a casual interest in theoretical
physics. His fondness for programming is what got him interested in compilers and has been
working on the j-- compiler for several years.

He enjoys teaching and has taught classes in introductory programming and data struc-
tures at the University of Massachusetts, Boston. After graduation, he plans on pursuing
an academic career with both teaching and research responsibilities.

Iyer has a bachelor’s degree in electronics and telecommunication from the University
of Bombay (India), 1996, and a master’s degree in computer science from the University of
Massachusetts, Boston, 2001.

Bahar Akbal-Delibaş is a PhD student in the Department of Computer Science at the
University of Massachusetts, Boston. Her research interest is in structural bioinformatics,
aimed at better understanding the sequence–structure–function relationship in proteins,
modeling conformational changes in proteins and predicting protein-protein interactions.
She also performed research on software modeling, specifically modeling wireless sensor
networks.

Her first encounter with compilers was a frightening experience as it can be for many
students. However, soon she discovered how to play with the pieces of the puzzle and saw
the fun in programming compilers. She hopes this book will help students who read it the
same way. She has been the teaching assistant for the compilers course at the University of
Massachusetts, Boston and has been working with the j-- compiler for several years

Akbal-Delibaş has a bachelor’s degree in computer engineering from Fatih University
(Turkey), 2004, and a master’s degree in computer science from University of Massachusetts,
Boston, 2007.

xxiii

Acknowledgments

We wish to thank students in CS451 and CS651, the compilers course at the University
of Massachusetts, Boston, for their feedback on, and corrections to, the text, the example
compiler, and the exercises. We would like to thank Kelechi Dike, Ricardo Menard, and Mini
Nair for writing a compiler for a subset of C# that was similar to j--. We would particularly
like to thank Alex Valtchev for his work on both liveness intervals and linear scan register
allocation.

We wish to acknowledge and thank both Christian Wimmer for our extensive use of his
algorithms in his masters thesis on linear scan [Wimmer, 2004] and James Larus for our use
of SPIM, his MIPS simulator [Larus, 2010].

We wish to thank the people at Taylor & Francis, including Randi Cohen, Jessica Vakili,
the editors, and reviewers for their help in preparing this text.

Finally, we wish to thank our families and close friends for putting up with us as we
wrote the compiler and the text.

xxv

Chapter 1

Compilation

1.1 Compilers

A compiler is a program that translates a source program written in a high-level program-
ming language such as Java, C#, or C, into an equivalent target program in a lower, level
language such as machine code, which can be executed directly by a computer. This trans-
lation is illustrated in Figure 1.1.

FIGURE 1.1 Compilation.

By equivalent, we mean semantics preserving : the translation should have the same
behavior as the original. This process of translation is called compilation.

1.1.1 Programming Languages

A programming language is an artificial language in which a programmer (usually a person)
writes a program to control the behavior of a machine, particularly a computer. Of course,
a program has an audience other than the computer whose behavior it means to control;
other programmers may read a program to understand how it works, or why it causes
unexpected behavior. So, it must be designed so as to allow the programmer to precisely
specify what the computer is to do in a way that both the computer and other programmers
can understand.

Examples of programming languages are Java, C, C++, C#, and Ruby. There are hun-
dreds, if not thousands, of different programming languages. But at any one time, a much
smaller number are in popular use.

Like a natural language, a programming language is specified in three steps:

1. The tokens, or lexemes, are described. Examples are the keyword if, the operator +,
constants such as 4 and ‘c’, and the identifier foo. Tokens in a programming language
are like words in a natural language.

2. One describes the syntax of programs and language constructs such as classes, meth-
ods, statements, and expressions. This is very much like the syntax of a natural lan-
guage but much less flexible.

3. One specifies the meaning, or semantics, of the various constructs. The semantics of
various constructs is usually described in English.

1

2 An Introduction to Compiler Construction in a Java World

Some programming languages, like Java, also specify various static type rules, that a
program and its constructs must obey. These additional rules are usually specified as part
of the semantics.

Programming language designers go to great lengths to precisely specify the structure
of tokens, the syntax, and the semantics. The tokens and the syntax are often described
using formal notations, for example, regular expressions and context-free grammars. The
semantics are usually described in a natural language such as English1. A good example
of a programming language specification is the Java Language Specification [Gosling et al.,
2005].

1.1.2 Machine Languages

A computer’s machine language or, equivalently, its instruction set is designed so as to
be easily interpreted by the computer itself. A machine language program consists of a
sequence of instructions and operands, usually organized so that each instruction and each
operand occupies one or more bytes and so is easily accessed and interpreted. On the other
hand, people are not expected to read a machine code program2. A machine’s instruction
set and its behavior are often referred to as its architecture.

Examples of machine languages are the instruction sets for both the Intel i386 family
of architectures and the MIPS computer. The Intel i386 is known as a complex instruction
set computer (CISC) because many of its instructions are both powerful and complex. The
MIPS is known as a reduced instruction set computer (RISC) because its instructions are
relatively simple; it may often require several RISC instructions to carry out the same oper-
ation as a single CISC instruction. RISC machines often have at least thirty-two registers,
while CISC machines often have as few as eight registers. Fetching data from, and storing
data in, registers are much faster than accessing memory locations because registers are part
of the computer processing unit (CPU) that does the actual computation. For this reason,
a compiler tries to keep as many variables and partial results in registers as possible.

Another example is the machine language for Oracle’s Java Virtual Machine (JVM)
architecture. The JVM is said to be virtual not because it does not exist, but because it is
not necessarily implemented in hardware3; rather, it is implemented as a software program.
We discuss the implementation of the JVM in greater detail in Chapter 7. But as compiler
writers, we are interested in its instruction set rather than its implementation.

Hence the compiler: the compiler transforms a program written in the high-level pro-
gramming language into a semantically equivalent machine code program.

Traditionally, a compiler analyzes the input program to produce (or synthesize) the
output program,

• Mapping names to memory addresses, stack frame offsets, and registers;

• Generating a linear sequence of machine code instructions; and

• Detecting any errors in the program that can be detected in compilation.

Compilation is often contrasted with interpretation, where the high-level language pro-
gram is executed directly. That is, the high-level program is first loaded into the interpreter

1Although formal notations have been proposed for describing both the type rules and semantics of
programming languages, these are not popularly used.

2But one can. Tools often exist for displaying the machine code in mnemonic form, which is more readable
than a sequence of binary byte values. The Java toolset provides javap for displaying the contents of class
files.

3Although Oracle has experimented with designing a JVM implemented in hardware, it never took off.
Computers designed for implementing particular programming languages rarely succeed.

Compilation 3

and then executed (Figure 1.2). Examples of programming languages whose programs may
be interpreted directly are the UNIX shell languages, such as bash and csh, Forth, and many
versions of LISP.

FIGURE 1.2 Interpretation

One might ask, “Why not interpret all programs directly?” There are two answers.
First is performance. Native machine code programs run faster than interpreted high-

level language programs. To see why this is so, consider what an interpreter must do with
each statement it executes: it must parse and analyze the statement to decode its meaning
every time it executes that statement; a limited form of compilation is taking place for every
execution of every statement. It is much better to translate all statements in a program to
native code just once, and execute that4.

Second is secrecy. Companies often want to protect their investment in the programs
that they have paid programmers to write. It is more difficult (albeit not impossible) to
discern the meaning of machine code programs than of high-level language programs.

But, compilation is not always suitable. The overhead of interpretation does not always
justify writing (or, buying) a compiler. An example is the Unix Shell (or Windows shell)
programming language. Programs written in shell script have a simple syntax and so are
easy to interpret; moreover, they are not executed often enough to warrant compilation.
And, as we have stated, compilation maps names to addresses; some dynamic programming
languages (LISP is a classic example, but there are a myriad of newer dynamic languages)
depend on keeping names around at run-time.

1.2 Why Should We Study Compilers?

So why study compilers? Haven’t all the compilers been written? There are several reasons
for studying compilers.

1. Compilers are larger programs than the ones you have written in your programming
courses. It is good to work with a program that is like the size of the programs you
will be working on when you graduate.

2. Compilers make use of all those things you have learned about earlier: arrays, lists,
queues, stacks, trees, graphs, maps, regular expressions and finite state automata,

4Not necessarily always; studies have shown that just-in-time compilation, where a method is translated
the first time it is invoked, and then cached, or hotspot compilation, where only code that is interpreted
several times is compiled and cached, can provide better performance. Even so, in both of these techniques,
programs are partially compiled to some intermediate form such as Oracle’s Java Virtual Machine (JVM),
or Microsoft’s Common Language Runtime (CLR). The intermediate forms are smaller, and space can play
a role in run-time performance. We discuss just-in-time compilation and hotspot compilation in Chapter 8.

4 An Introduction to Compiler Construction in a Java World

context-free grammars and parsers, recursion, and patterns. It is fun to use all of
these in a real program.

3. You learn about the language you are compiling (in our case, Java).

4. You learn a lot about the target machine (in our case, both the Java Virtual Machine
and the MIPS computer).

5. Compilers are still being written for new languages and targeted to new computer
architectures. Yes, there are still compiler-writing jobs out there.

6. Compilers are finding their way into all sorts of applications, including games, phones,
and entertainment devices.

7. XML. Programs that process XML use compiler technology.

8. There is a mix of theory and practice, and each is relevant to the other.

9. The organization of a compiler is such that it can be written in stages, and each stage
makes use of earlier stages. So, compiler writing is a case study in software engineering.

10. Compilers are programs. And writing programs is fun.

1.3 How Does a Compiler Work? The Phases of Compilation

A compiler is usually broken down into several phases—components, each of which performs
a specific sub-task of compilation. At the very least, a compiler can be broken into a front
end and a back end (Figure 1.3).

FIGURE 1.3 A compiler: Analysis and synthesis.

The front end takes as input, a high-level language program, and produces as output
a representation (another translation) of that program in some intermediate language that
lies somewhere between the source language and the target language. We call this the
intermediate representation (IR). The back end then takes this intermediate representation
of the program as input, and produces the target machine language program.

1.3.1 Front End

A compiler’s front end

• Is that part of the compiler that analyzes the input program for determining its
meaning, and so

• Is source language dependent (and target machine, or target language independent);
moreover, it

Compilation 5

• Can be further decomposed into a sequence of analysis phases such as that illustrated
in Figure 1.4.

FIGURE 1.4 The front end: Analysis.

The scanner is responsible for breaking the input stream of characters into a stream of
tokens: identifiers, literals, reserved words, (one-, two-, three-, and four-character) operators,
and separators.

The parser is responsible for taking this sequence of lexical tokens and parsing against a
grammar to produce an abstract syntax tree (AST), which makes the syntax that is implicit
in the source program, explicit.

The semantics phase is responsible for semantic analysis: declaring names in a symbol
table, looking up names as they are referenced for determining their types, assigning types
to expressions, and checking the validity of types. Sometimes, a certain amount of storage
analysis is also done, for example, assigning addresses or offsets to variables (as we do in our
j-- compiler). When a programming language allows one to refer to a name that is declared
later on in the program, the semantics phase must really involve at least two phases (or two
passes over the program).

1.3.2 Back End

A compiler’s back end

• Is that part of the compiler that takes the IR and produces (synthesizes) a target
machine program having the same meaning, and so

• Is target language dependent (and source language independent); moreover, it

• May be further decomposed into a sequence of synthesis phases such as that illustrated
in Figure 1.5.

FIGURE 1.5 The back end: Synthesis.

The code generation phase is responsible for choosing what target machine instructions
to generate. It makes use of information collected in earlier phases.

The peephole phase implements a peephole optimizer, which scans through the generated
instructions looking locally for wasteful instruction sequences such as branches to branches
and unnecessary load/store pairs (where a value is loaded onto a stack or into a register
and then immediately stored back at the original location).

Finally, the object phase links together any modules produced in code generation and
constructs a single machine code executable program.

6 An Introduction to Compiler Construction in a Java World

1.3.3 “Middle End”

Sometimes, a compiler will have an optimizer, which sits between the front end and the
back end. Because of its location in the compiler architecture, we often call it the “middle
end,” with a little tongue-in-cheek.

FIGURE 1.6 The “middle end”: Optimization.

The purpose of the optimizer (Figure 1.6) is both to improve the IR program and to
collect information that the back end may use for producing better code. The optimizer
might do any number of the following:

• It might organize the program into what are called basic blocks: blocks of code from
which there are no branches out and into which there are no branches.

• From the basic block structure, one may then compute next-use information for de-
termining the lifetimes of variables (how long a variable retains its value before it is
redefined by assignment), and loop identification.

• Next-use information is useful for eliminating common sub-expressions and constant
folding (for example, replacing x + 5 by 9 when we know x has the value 4). It may
also be used for register allocation (deciding what variables or temporaries should
be kept in registers and what values to “spill” from a register for making room for
another).

• Loop information is useful for pulling loop invariants out of loops and for strength
reduction, for example, replacing multiplication operations by (equivalent but less
expensive) addition operations.

An optimizer might consist of just one phase or several phases, depending on the op-
timizations performed. These and other possible optimizations are discussed more fully in
Chapters 6 and 7.

1.3.4 Advantages to Decomposition

There are several advantages to separating the front end from the back end:

1. Decomposition reduces complexity. It is easier to understand (and implement) the
smaller programs.

2. Decomposition makes it possible for several individuals or teams to work concurrently
on separate parts, thus reducing the overall implementation time.

3. Decomposition permits a certain amount of re-use5 For example, once one has written
a front end for Java and a back end for the Intel Core Duo, one need only write a new
C front end to get a C compiler. And one need only write a single SPARC back end
to re-target both compilers to the Oracle SPARC architecture. Figure 1.7 illustrates
how this re-use gives us four compilers for the price of two.

5This depends on a carefully designed IR. We cannot count the number of times we have written front
ends with the intention of re-using them, only to have to rewrite them for new customers (with that same
intention!). Realistically, one ends up re-using designs more often than code.

Compilation 7

FIGURE 1.7 Re-use through decomposition.

Decomposition was certainly helpful to us, the authors, in writing the j-- compiler as it
allowed us better organize the program and to work concurrently on distinct parts of it.

1.3.5 Compiling to a Virtual Machine: New Boundaries

The Java compiler, the program invoked when one types, for example,

> javac MyProgram.java

produces a .class file called MyProgram.class, that is, a byte code6 program suitable for
execution on a Java Virtual Machine (JVM). The source language is Java; the target machine
is the JVM. To execute this .class file, one types

> java MyProgram

which effectively interprets the JVM program. The JVM is an interpreter, which is imple-
mented based on the observation that almost all programs spend most of their time in a
small part of their code. The JVM monitors itself to identify these “hotspots” in the program
it is interpreting, and it compiles these critical methods to native code; this compilation is
accompanied by a certain amount of in-lining: the replacement of method invocations by the
method bodies. The native code is then executed, or interpreted, on the native computer.
Thus, the JVM byte code might be considered an IR, with the Java “compiler” acting as
the front end and the JVM acting as the back end, targeted to the native machine on which
it is running.

The IR analogy to the byte code makes even more sense in Microsoft’s Common Lan-
guage Runtime (CLR) architecture used in implementing its .Net tools. Microsoft has writ-
ten compilers (or front ends) for Visual Basic, C++, C#, and J++ (a variant of Java), all of
which produce byte code targeted for a common architecture (the CLR). Using a technique
called just-in-time (JIT) compilation, the CLR compiles each method to native code and
caches that native code when that method is first invoked. Third parties have implemented
other front-end compilers for other programming languages, taking advantage of the existing
JIT compilers.

In this textbook, we compile a (non-trivial) subset of Java, which we call j--. In the first
instance, we target the Oracle JVM. So in a sense, this compiler is a front end. Nevertheless,
our compiler implements many of those phases that are traditional to compilers and so it
serves as a reasonable example for an introductory compilers course.

The experience in writing a compiler targeting the JVM is deficient in one respect: one
does not learn about register allocation because the JVM is a stack-based architecture and
has no registers.

6“byte code” because the program is represented as a sequence of byte instructions and operands (and
operands occupy several bytes).

8 An Introduction to Compiler Construction in a Java World

1.3.6 Compiling JVM Code to a Register Architecture

To remedy this deficiency, we (beginning in Chapter 6) discuss the compilation of JVM
code to code for the MIPS machine, which is a register-based architecture. In doing this, we
face the challenge of mapping possibly many variables to a limited number of fast registers.

One might ask, “Why don’t we simply translate j-- programs to MIPS programs?” After
all, C language programs are always translated to native machine code.

The strategy of providing an intermediate virtual machine code representation for one’s
programs has several advantages:

1. Byte code, such as JVM code or Microsoft’s CLR code is quite compact. It takes up
less space to store (and less memory to execute) and it is more amenable to transport
over the Internet. This latter aspect of JVM code made Java applets possible and
accounts for much of Java’s initial success.

2. Much effort has been invested in making interpreters like the JVM and the CLR run
quickly; their just-in-time compilers are highly optimized. One wanting a compiler
for any source language need only write a front-end compiler that targets the virtual
machine to take advantage of this optimization.

3. Implementers claim, and performance tests support, that hotspot interpreters, which
compile to native code only those portions of a program that execute frequently,
actually run faster than programs that have been fully translated to native code.
Caching behavior might account for this improved performance.

Indeed, the two most popular platforms (Oracle’s Java platform and Microsoft’s .NET
architecture) follow the strategy of targeting a virtual, stack-based, byte-code architecture
in the first instance, and employing either just-in-time compilation or HotSpot compilation
for implementing these “interpreters”.

1.4 An Overview of the j-- to JVM Compiler

Our source language, j--, is a proper subset of the Java programming language. It has about
half the syntax of Java; that is, its grammar that describes the syntax is about half the size
of that describing Java’s syntax. But j-- is a non-trivial, object-oriented programming lan-
guage, supporting classes, methods, fields, message expressions, and a variety of statements,
expressions, and primitive types. j-- is more fully described in Appendix B.

Our j-- compiler is organized in an object-oriented fashion. To be honest, most compilers
are not organized in this way. Nor are they written in languages like Java, but in lower-level
languages such as C and C++ (principally for better performance). As the previous section
suggests, most compilers are written in a procedural style. Compiler writers have generally
bucked the object-oriented organizational style and have relied on the more functional
organization described in Section 1.3.

Even so, we decided to structure our j-- compiler on object-oriented principles. We chose
Java as the implementation language because that is the language our students know best
and the one (or one like it) in which you will program when you graduate. Also, you are
likely to be programming in an object-oriented style.

It has many of the components of a traditional compiler, and its structure is not neces-
sarily novel. Nevertheless, it serves our purposes:

Compilation 9

• We learn about compilers.

• We learn about Java. j-- is a non-trivial subset of Java. The j-- compiler is written in
Java.

• We work with a non-trivial object-oriented program.

1.4.1 j-- Compiler Organization

Our compiler’s structure is illustrated in Figure 1.8.

FIGURE 1.8 The j-- compiler.

The entry point to the j-- compiler is Main7. It reads in a sequence of arguments, and
then goes about creating a Scanner object, for scanning tokens, and a Parser object for
parsing the input source language program and constructing an abstract syntax tree (AST).

Each node in the abstract syntax tree is an object of a specific type, reflecting the under-
lying linguistic component or operation. For example, an object of type JCompilationUnit

sits at the root (the top) of the tree for representing the program being compiled. It has
sub-trees representing the package name, list of imported types, and list of type (that is,
class) declarations. An object of type JMultiplyOp in the AST, for example, represents a
multiplication operation. Its two sub-trees represent the two operands. At the leaves of the
tree, one finds JVariable objects and objects representing constant literals.

Each type of node in the AST defines three methods, each of which performs a specific
task on the node, and recursively on its sub-trees:

1. preAnalyze(Context context) is defined only for the types of nodes that appear
near the top of the AST because j-- does not implement nested classes. Pre-analysis
deals with declaring imported types, defined class names, and class member head-
ers (method headers and fields). This is required because method bodies may make
forward references to names declared later on in the input. The context argument is

7This and other classes related to the compiler are part of the jminusminus package under $j/j--/

src, where $j is the directory that contains the j-- root directory.

10 An Introduction to Compiler Construction in a Java World

a string of Context (or subtypes of Context) objects representing the compile-time
symbol table of declared names and their definitions.

2. analyze(Context context) is defined over all types of AST nodes. When invoked
on a node, this method declares names in the symbol table (context), checks types
(looking up the types of names in the symbol table), and converts local variables to
offsets in a method’s run-time local stack frame where the local variables reside.

3. codegen(CLEmitter output) is invoked for generating the Java Virtual Machine
(JVM) code for that node, and is applied recursively for generating code for any
sub-trees. The output argument is a CLEmitter object, an abstraction of the output
.class file.

Once Main has created the scanner and parser,

1. Main sends a compilationUnit() message to the parser, causing it to parse the pro-
gram by a technique known as recursive descent, and to produce an AST.

2. Main then sends the preAnalyze() message to the root node (an object of type
JCompilationUnit) of the AST. preAnalyze() recursively descends the tree down to
the class member headers for declaring the types and the class members in the symbol
table context.

3. Main then sends the analyze() message to the root JCompilationUnit node, and
analyze() recursively descends the tree all the way down to its leaves, declaring
names and checking types.

4. Main then sends the codegen() message to the root JCompilationUnit node, and
codegen() recursively descends the tree all the way down to its leaves, generating JVM
code. At the start of each class declaration, codegen() creates a new CLEmitter object
for representing a target .class file for that class; at the end of each class declaration,
codegen() writes out the code to a .class file on the file system.

5. The compiler is then done with its work. If errors occur in any phase of the compilation
process, the phase attempts to run to completion (finding any additional errors) and
then the compilation process halts.

In the next sections, we briefly discuss how each phase does its work. As this is just an
overview and a preview of what is to come in subsequent chapters, it is not important that
one understand everything at this point. Indeed, if you understand just 15%, that is fine.
The point to this overview is to let you know where stuff is. We have the rest of the text to
understand how it all works!

1.4.2 Scanner

The scanner supports the parser. Its purpose is to scan tokens from the input stream of
characters comprising the source language program. For example, consider the following
source language HelloWorld program.

import java.lang.System;

public class HelloWorld {

// The only method.

public static void main(String [] args) {

Compilation 11

System.out.println ("Hello , World !");

}

}

The scanner breaks the program text into atomic tokens. For example, it recognizes each
of import, java, ., lang, ., System, and ; as being distinct tokens.

Some tokens, such as java, HelloWorld, and main, are identifiers. The scanner catego-
rizes theses tokens as IDENTIFIER tokens. The parser uses these category names to identify
the kinds of incoming tokens. IDENTIFIER tokens carry along their images as attributes; for
example, the first IDENTIFIER in the above program has java as its image. Such attributes
are used in semantic analysis.

Some tokens are reserved words, each having its unique name in the code. For example,
import, public, and class are reserved word tokens having the names IMPORT, PUBLIC,
and CLASS. Operators and separators also have distinct names. For example, the separators
., ;, {, }, [and] have the token names DOT, SEMI, LCURLY, RCURLY, LBRACK, and RBRACK,
respectively.

Others are literals; for example, the string literal Hello, World! comprises a single
token. The scanner calls this a STRING_LITERAL.

Comments are scanned and ignored altogether. As important as some comments are to
a person who is trying to understand a program8, they are irrelevant to the compiler.

The scanner does not first break down the input program text into a sequence of tokens.
Rather, it scans each token on demand; each time the parser needs a subsequent token, it
sends the nextToken() message to the scanner, which then returns the token id and any
image information.

The scanner is discussed in greater detail in Chapter 2.

1.4.3 Parser

The parsing of a j-- program and the construction of its abstract syntax tree (AST) is
driven by the language’s syntax, and so is said to be syntax directed. In the first instance,
our parser is hand-crafted from the j-- grammar, to parse j-- programs by a technique known
as recursive descent.

For example, consider the following grammatical rule describing the syntax for a com-
pilation unit:

compilationUnit ::= [package qualifiedIdentifier ;]
{import qualifiedIdentifier ;}
{typeDeclaration} EOF

This rule says that a compilation unit consists of

• An optional package clause (the brackets [] bracket optional clauses),

• Followed by zero or more import statements (the curly brackets {} bracket clauses
that may appear zero or more times),

• Followed by zero or more type declarations (in j--, these are only class declarations),

• Followed by an end of file (EOF).

8But we know some who swear by the habit of stripping out all comments before reading a program
for fear that those comments might be misleading. When programmers modify code, they often forget to
update the accompanying comments.

12 An Introduction to Compiler Construction in a Java World

The tokens PACKAGE, SEMI, IMPORT, and EOF are returned by the scanner.
To parse a compilation unit using the recursive descent technique, one would write a

method, call it compilationUnit(), which does the following:

1. If the next (the first, in this case) incoming token were PACKAGE, would scan it (ad-
vancing to the next token), invoke a separate method called qualifiedIdentifier()

for parsing a qualified identifier, and then we must scan a SEMI (and announce a
syntax error if the next token were not a SEMI).

2. While the next incoming token is an IMPORT, scan it and invoke qualifiedIdentifier
() for parsing the qualified identifier, and then we must again scan a SEMI. We save
the (imported) qualified identifiers in a list.

3. While the next incoming token is not an EOF, invoke a method called typeDeclaration

() for parsing the type declaration (in j-- this is only a class declaration), and we must
scan a SEMI. We save all of the ASTs for the type declararations in a list.

4. We must scan the EOF.

Here is the Java code for compilationUnit(), taken directly from Parser.

public JCompilationUnit compilationUnit () {

int line = scanner.token (). line ();

TypeName packageName = null; // Default

if (have(PACKAGE)) {

packageName = qualifiedIdentifier ();

mustBe(SEMI);

}

ArrayList <TypeName > imports = new ArrayList <TypeName >();

while (have(IMPORT)) {

imports.add(qualifiedIdentifier ());

mustBe(SEMI);

}

ArrayList <JAST > typeDeclarations = new ArrayList <JAST >();

while (!see(EOF)) {

JAST typeDeclaration = typeDeclaration ();

if (typeDeclaration != null) {

typeDeclarations.add(typeDeclaration);

}

}

mustBe(EOF);

return new JCompilationUnit(scanner.fileName(), line ,

packageName , imports , typeDeclarations);

}

In Parser, see() is a Boolean method that looks to see whether or not its argument
matches the next incoming token. Method have() is the same, but has the side-effect of
scanning past the incoming token when it does match its argument. Method mustBe()

requires that its argument match the next incoming token, and raises an error if it does not.
Of course, the method typeDeclaration() recursively invokes additional methods for

parsing the HelloWorld class declaration; hence the technique’s name: recursive descent.
Each of these parsing methods produces an AST constructed from some particular type of
node. For example, at the end of compilationUnit(), a JCompilationUnit node is created
for encapsulating any package name (none here), the single import (having its own AST),
and a single class declaration (an AST rooted at a JClassDeclaration node).

Parsing in general, and recursive descent in particular, are discussed more fully in
Chapter 3.

Compilation 13

1.4.4 AST

An abstract syntax tree (AST) is just another representation of the source program. But it
is a representation that is much more amenable to analysis. And the AST makes explicit
that syntactic structure which is implicit in the original source language program. The AST
produced for our HelloWorld program from Section 1.4.2 is illustrated in Figure 1.9. The
boxes in the figure represent ArrayLists.

All classes in the j-- compiler that are used to represent nodes in the AST extend
the abstract class JAST and have names beginning with the letter J. Each of these classes
implements the three methods required for compilation:

1. preAnalyze() for declaring types and class members in the symbol table;

2. analyze() for declaring local variables and typing all expressions; and

3. codegen() for generating code for each sub-tree.

We discuss these methods briefly below, and in greater detail later on in this book. But
before doing that, we must first briefly discuss how we build a symbol table and use it for
declaring (and looking up) names and their types.

1.4.5 Types

As in Java, j-- names and values have types. A type indicates how something can behave.
A boolean behaves differently from an int; a Queue behaves differently from a Hashtable.
Because j-- (like Java) is statically typed, its compiler must determine the types of all names
and expressions. So we need a representation for types.

Java already has a representation for its types: objects of type java.lang.Class from
the Java API. Because j-- is a subset of Java, why not use class Class? The argument is
more compelling because j--’s semantics dictate that it may make use of classes from the
Java API, so its type representation must be compatible with Java’s.

But, because we want to define our own functionality for types, we encapsulate the Class
objects within our own class called Type. Likewise, we encapsulate java.lang.reflect.

Method, java.lang.reflect.Constructor, java.lang.reflect.Field, and java.lang.

reflect.Member within our own classes, Method, Constructor, Field, and Member, re-
spectively9. And we define a sufficiently rich set of operations on these representational
classes.

There are places, for example in the parser, where we want to denote a type by its
name before that types is known or defined. For this we introduce TypeName and (because
we need array types) ArrayTypeName. During the analysis phase of compilation, these type
denotations are resolved: they are looked up in the symbol table and replaced by the actual
Types they denote.

1.4.6 Symbol Table

During semantic analysis, the compiler must construct and maintain a symbol table in
which it declares names. Because j-- (like Java) has a nested scope for declared names, this
symbol table must behave like a pushdown stack.

9These private classes are defined in the Type.java file, together with the public class Type. In the
code tree, we have chosen to put many private classes in the same file in which their associated public class
is defined.

14 An Introduction to Compiler Construction in a Java World

FIGURE 1.9 An AST for the HelloWorld program.

Compilation 15

In the j-- compiler, this symbol table is represented as a singly-linked list of Context
objects, that is, objects whose types extend the Context class. Each object in this list

represents some area of scope and contains a mapping from names to definitions. Every
context object maintains three pointers: one to the object representing the surrounding
context, one to the object representing the compilation unit context (at the root), and one
to the enclosing class context.

For example, there is a CompilationUnitContext object for representing the scope
comprising the program, that is, the entire compilation unit. There is a ClassContext

object for representing the scope of a class declaration. The ClassContext has a reference
to the defining class type; this is used to determine where we are (that is, in which class
declaration the compiler is in) for settling issues such as accessibility.

There is a MethodContext (a subclass of LocalContext) for representing the scopes of
methods and, by extension, constructors. Finally, a LocalContext represents the scope of
a block, including those blocks that enclose method bodies. Here, local variable names are
declared and mapped to LocalVariableDefns.

1.4.7 preAnalyze() and analyze()

preAnalyze() is a first pass at type checking. Its purpose is to build that part of the symbol
table that is at the top of the AST, to declare both imported types and types introduced
by class declarations, and to declare the members declared in those classes. This first pass
is necessary for declaring names that may be referenced before they are defined. Because
j-- does not support nested classes, this pass need not descend into the method bodies.

analyze() picks up where preAnalyze() left off. It continues to build the symbol table,
decorating the AST with type information and enforcing the j-- type rules. The analyze()

phase performs other important tasks:

• Type checking: analyze() computes the type for every expression, and it checks its
type when a particular type is required.

• Accessibility: analyze() enforces the accessibility rules (expressed by the modifiers
public, protected, and private) for both types and members.

• Member finding: analyze() finds members (messages in message expressions, based
on signature, and fields in field selections) in types. Of course, only the compile-time
member name is located; polymorphic messages are determined at run-time.

• Tree rewriting: analyze() does a certain amount of AST (sub) tree rewriting. Implicit
field selections (denoted by identifiers that are fields in the current class) are made
explicit, and field and variable initializations are rewritten as assignment statements
after the names have been declared.

1.4.8 Stack Frames

analyze() also does a little storage allocation. It allocates positions in the method’s current
stack frame for formal parameters and (other) local variables.

The JVM is a stack machine: all computations are carried out atop the run-time stack.
Each time a method is invoked, the JVM allocates a stack frame, a contiguous block of
memory locations on top of the run-time stack. The actual arguments substituted for formal
parameters, the values of local variables, and temporary results are all given positions within
this stack frame. Stack frames for both a static method and for an instance method are
illustrated in Figure 1.10.

16 An Introduction to Compiler Construction in a Java World

FIGURE 1.10 Run-time stack frames in the JVM.

In both frames, locations are set aside for n formal parameters and m local variables;
n,m, or both may be 0. In the stack frame for a static method, these locations are allocated
at offsets beginning at 0. But in the invocation of an instance method, the instance itself, that
is, this, must be passed as an argument, so in an instance method’s stack frame, location
0 is set aside for this, and parameters and local variables are allocated offset positions
starting at 1. The areas marked “computations” in the frames are memory locations set
aside for run-time stack computations within the method invocation.

While the compiler cannot predict how many stack frames will be pushed onto the stack
(that would be akin to solving the halting problem), it can compute the offsets of all formal
parameters and local variables, and compute how much space the method will need for its
computations, in each invocation.

1.4.9 codegen()

The purpose of codegen() is to generate JVM byte code from the AST, based on information
computed by preAnalyze() and analyze(). codegen() is invoked by Main’s sending the
codegen() message to the root of the AST, and codegen() recursively descends the AST,
generating byte code.

The format of a JVM class file is rather arcane. For this reason, we have implemented
a tool, CLEmitter (and its associated classes), to ease the generation of types (for example,
classes), members, and code. CLEmitter may be considered an abstraction of the JVM class
file; it hides many of the gory details. CLEmitter is described further in Appendix D.

Main creates a new CLEmitter object. JClassDeclaration adds a new class,
using addClass(). JFieldDeclaration writes out the fields using addField().

Compilation 17

JMethodDeclarations and JConstructorDeclarations add themselves, using addMethod

(), and then delegate their code generation to their bodies. It is not rocket science.
The code for JMethodDeclaration.codegen() illustrates what these codegen() meth-

ods look like:

public void codegen(CLEmitter output) {

output.addMethod(mods , name , descriptor , null , false);

if (body != null) {

body.codegen(output);

}

// Add implicit RETURN

if (returnType == Type.VOID) {

output.addNoArgInstruction(RETURN);

}

}

In general, we generate only the class headers, members, and their instructions and
operands. CLEmitter takes care of the rest. For example, here is the result of executing

> javap HelloWorld

where javap is a Java tool that disassembles HelloWorld.class:

public class HelloWorld extends java.lang.Object

{

public HelloWorld ();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

public static void main(java.lang.String []);

Code:

Stack=2, Locals=1, Args_size =1

0: getstatic #17; //Field java/lang/System.out:

//Ljava/io/PrintStream;

3: ldc #19; // String Hello , World!

5: invokevirtual #25; // Method java/io/PrintStream.println:

//(Ljava/lang/String ;)V

8: return

}

We have shown only the instructions; tables such as the constant table have been left
out of our illustration.

In general, CLEmitter does the following for us:

• Builds the constant table and generates references that the JVM can use to reference
names and constants; one need only generate the instructions and their operands,
using names and literals.

• Computes branch offsets and addresses; the user can use mnemonic labels.

• Computes the argument and local variable counts and the stack space a method
requires to do computation.

• Constructs the complete class file.

The CLEmitter is discussed in more detail in Appendix D. JVM code generation is
discussed more fully in Chapter 5.

18 An Introduction to Compiler Construction in a Java World

1.5 j-- Compiler Source Tree

The zip file j--.zip containing the j-- distribution can be downloaded from http://www.cs

.umb.edu/j--. The zip file may be unzipped into any directory of your choosing. Through-
out this book, we refer to this directory as $j.

For a detailed description of what is in the software bundle; how to set up the compiler
for command-line execution; how to set up, run, and debug the software in Eclipse10; and
how to add j-- test programs to the test framework, see Appendix A.

$j/j--/src/jminusminus contains the source files for the compiler, where jminusminus
is a package. These include

• Main.java, the driver program;

• a hand-written scanner (Scanner.java) and parser (Parser.java);

• J*.java files defining classes representing the AST nodes;

• CL*.java files supplying the back-end code that is used by j-- for creating JVM byte
code; the most important file among these is CLEmitter.java, which provides the
interface between the front end and back end of the compiler;

• S*.java files that translate JVM code to SPIM files (SPIM is an interpreter for the
MIPS machine’s symbolic assembly language);

• j--.jj, the input file to JavaCC11 containing the specification for generating (as
opposed to hand-writing) a scanner and parser for the j-- language; JavaCCMain, the
driver program that uses the scanner and parser produced by JavaCC; and

• Other Java files providing representation for types and the symbol table.

$j/j--/bin/j-- is a script to run the compiler. It has the following command-line
syntax:

Usage: j-- <options > <source file >

where possible options include:

-t Only tokenize input and print tokens to STDOUT

-p Only parse input and print AST to STDOUT

-pa Only parse and pre -analyze input and print AST to STDOUT

-a Only parse , pre -analyze , and analyze input and print AST to STDOUT

-s <naive|linear|graph > Generate SPIM code

-r <num > Max. physical registers (1-18) available for allocation; default =8

-d <dir > Specify where to place output files; default =.

For example, the j– program $j/j--/tests/pass/HelloWorld.java can be compiled
using j-- as follows:

> $j/j--/bin/j-- $j/j--/tests/pass/HelloWorld.java

to produce a HelloWorld.class file under pass folder within the current directory, which
can then be run as

> java pass.HelloWorld

to produce as output,

> Hello , World!

10An open-source IDE; http://www.eclipse.org.
11A scanner and parser generator for Java; http://javacc.dev.java.net/.

Compilation 19

Enhancing j--

Although j-- is a subset of Java, it provides an elaborate framework with which one may
add new Java constructs to j--. This will be the objective of many of the exercises in this
book. In fact, with what we know so far about j--, we are already in a position to start
enhancing the language by adding new albeit simple constructs to it.

As an illustrative example, we will add the division12 operator to j--. This involves
modifying the scanner to recognize / as a token, modifying the parser to be able to parse
division expressions, implementing semantic analysis, and finally, code generation for the
division operation.

In adding new language features to j--, we advocate the use of the Extreme Program-
ming13 (XP) paradigm, which emphasizes writing tests before writing code. We will do
exactly this with the implementation of the division operator.

Writing Tests

Writing tests for new language constructs using the j-- test framework involves

• Writing pass tests, which are j-- programs that can successfully be compiled using the
j-- compiler;

• Writing JUnit test cases that would run these pass tests;

• Adding the JUnit test cases to the j-- test suite; and finally

• Writing fail tests, which are erroneous j-- programs. Compiling a fail test using j--
should result in the compiler’s reporting the errors and gracefully terminating without
producing any .class files for the erroneous program.

We first write a pass test Division.java for the division operator, which simply has a
method divide() that accepts two arguments x and y, and returns the result of dividing
x by y. We place this file under the $j/j--/tests/pass folder; pass is a package.

package pass;

public class Division {

public int divide(int x, int y) {

return x / y;

}

}

Next, we write a JUnit test case DivisionTest.java, with a method testDivide()

that tests the divide() method in Division.java with various arguments. We place this
file under $j/j--/tests/junit folder; junit is a package.

public class DivisionTest extends TestCase {

private Division division;

protected void setUp() throws Exception {

super.setUp ();

division = new Division ();

}

protected void tearDown () throws Exception {

super.tearDown ();

12We only handle integer division since j-- supports only ints as numeric types.
13http://www.extremeprogramming.org/.

20 An Introduction to Compiler Construction in a Java World

}

public void testDivide () {

this.assertEquals(division.divide(0, 42), 0);

this.assertEquals(division.divide (42, 1), 42);

this.assertEquals(division.divide (127, 3), 42);

}

}

Now that we have a test case for the division operator, we must register it with
the j-- test suite by making the following entry in the suite() method of junit.

JMinusMinusTestRunner.

TestSuite suite = new TestSuite ();

...

suite.addTestSuite(DivisionTest.class);

return suite;

j-- supports only int as a numeric type, so the division operator can operate only on
ints. The compiler should thus report an error if the operands have incorrect types; to test
this, we add the following fail test Division.java and place it under the $j/j--/tests/

fail folder; fail is a package.

package fail;

import java.lang.System;

public class Division {

public static void main(String [] args) {

System.out.println(’a’ / 42);

}

}

Changes to Lexical and Syntactic Grammars

Appendix B specifies both the lexical and the syntactic grammars for the j-- language;
the former describes how individual tokens are composed and the latter describes how
these tokens are put together to form language constructs. Chapters 2 and 3 describe such
grammars in great detail.

The lexical and syntactic grammars for j-- are also available in the files $j/j--/

lexicalgrammar and $j/j--/grammar, respectively. For every language construct that is
newly added to j--, we strongly recommend that these files be modified accordingly so that
they accurately describe the modified syntax of the language. Though these files are for
human consumption alone, it is a good practice to keep them up-to-date.

For the division operator, we add a line describing the operator to $j/j--/

lexicalgrammar under the operators section.

DIV ::= "/"

where DIV is the kind of the token and "/" is its image (string representation).
Because the division operator is a multiplicative operator, we add it to the grammar

rule describing multiplicative expressions in the $j/j--/grammar file.

multiplicativeExpression ::= unaryExpression // level 2

{(STAR | DIV) unaryExpression}

The level number in the above indicates operator precedence. Next, we discuss the
changes in the j-- codebase to get the compiler to support the division operation.

Compilation 21

Changes to Scanner

Here we only discuss the changes to the hand-written scanner. Scanners can also be gener-
ated; this is discussed in Chapter 2. Before changing Scanner.java, we must register DIV as
a new token, so we add the following to the TokenKind enumeration in the TokenInfo.java
file.

enum TokenKind {

EOF("<EOF >"),

...,

STAR ("*") ,

DIV ("/") ,

...

}

The method that actually recognizes and returns tokens in the input is getNextToken

(). Currently, getNextToken() does not recognize / as an operator, and reports an error
when it encounters a single / in the source program. In order to recognize the operator, we
replace the getNextToken() code in Scanner.

if (ch == ’/’) {

nextCh ();

if (ch == ’/’) {

// CharReader maps all new lines to ’\n’

while (ch != ’\n’ && ch != EOFCH) {

nextCh ();

}

}

else {

reportScannerError(

"Operator / is not supported in j- -.");

}

}

with the following.

if (ch == ’/’) {

nextCh ();

if (ch == ’/’) {

// CharReader maps all new lines to ’\n’

while (ch != ’\n’ && ch != EOFCH) {

nextCh ();

}

}

else {

return new TokenInfo(DIV , line);

}

}

Changes to Parser

Here we only discuss the changes to the hand-written parser. Parsers can also be generated;
this is discussed in Chapter 3. We first need to define a new AST node to represent the
division expression. Because the operator is a multiplicative operator like *, we can model
the AST for the division expression based on the one (JMultiplyOp) for *. We call the new
AST node JDivideOp, and because division expression is a binary expression (one with two
operands), we define it in JBinaryExpression.java as follows:

class JDivideOp extends JBinaryExpression {

public JDivideOp(int line , JExpression lhs , JExpression rhs) {

22 An Introduction to Compiler Construction in a Java World

super(line , "/", lhs , rhs);

}

public JExpression analyze(Context context) {

return this;

}

public void codegen(CLEmitter output) {

}

}

To parse expressions involving division operator, we modify the multiplicativeExpres
- sion() method in Parser.java as follows:

private JExpression multiplicativeExpression () {

int line = scanner.token (). line ();

boolean more = true;

JExpression lhs = unaryExpression ();

while (more) {

if (have(STAR)) {

lhs = new JMultiplyOp(line , lhs ,

unaryExpression ());

}

else if (have(DIV)) {

lhs = new JDivideOp(line , lhs ,

unaryExpression ());

}

else {

more = false;

}

}

return lhs;

}

Semantic Analysis and Code Generation

Since int is the only numeric type supported in j--, analyzing the division operator is
trivial. It involves analyzing its two operands, making sure each type is int, and setting the
resulting expression’s type to int. We thus implement analyze() in the JDivideOp AST
as follows:

public JExpression analyze(Context context) {

lhs = (JExpression) lhs.analyze(context);

rhs = (JExpression) rhs.analyze(context);

lhs.type (). mustMatchExpected(line(), Type.INT);

rhs.type (). mustMatchExpected(line(), Type.INT);

type = Type.INT;

return this;

}

Generating code for the division operator is also trivial. It involves generating (through
delegation) code for its operands and emitting the JVM (IDIV) instruction for the (integer)
division of two numbers. Hence the following implementation for codegen() in JDivideOp.

public void codegen(CLEmitter output) {

lhs.codegen(output);

rhs.codegen(output);

output.addNoArgInstruction(IDIV);

}

Compilation 23

The IDIV instruction is a zero-argument instruction. The operands that it operates on
must to be loaded on the operand stack prior to executing the instruction.

Testing the Changes

Finally, we need to test the addition of the new (division operator) construct to j--. This
can be done at the command prompt by running

> ant

which compiles our tests using the hand-written scanner and parser, and then tests them.
The results of compiling and running the tests are written to the console (STDOUT).

Alternatively, one could compile and run the tests using Eclipse; Appendix A describes
how.

1.6 Organization of This Book

This book is organized like a compiler. You may think of this first chapter as the main
program, the driver if you like. It gives the overall structure of compilers in general, and of
our j-- compiler in particular.

In Chapter 2 we discuss the scanning of tokens, that is, lexical analysis.
In Chapter 3 we discuss context-free grammars and parsing. We first address the re-

cursive descent parsing technique, which is the strategy the parser uses to parse j--. We
then go on to examine the LL and LR parsing strategies, both of which are used in various
compilers today.

In Chapter 4 we discuss type checking, or semantic analysis. There are two passes re-
quired for this in the j-- compiler, and we discuss both of them. We also discuss the use of
attribute grammars for declaratively specifying semantic analysis.

In Chapter 5 we discuss JVM code generation. Again we address the peculiarities of code
generation in our j-- compiler, and then some other more general issues in code generation.

In Chapter 6 we discuss translating JVM code to instructions native to a MIPS com-
puter; MIPS is a register-based RISC architecture. We discuss what is generally called
optimization, a process by which the compiler produces better (that is, faster and smaller)
target programs. Although our compiler has no optimizations other than register allocation,
a general introduction to them is important.

In Chapter 7 register allocation is the principal challenge.
In Chapter 8 we discuss several celebrity compilers.
Appendix A gives instructions on setting up a j-- development environment.
Appendix B contains the lexical and syntactic grammar for j--.
Appendix C contains the lexical and syntactic grammar for Java.
Appendix D describes the CLEmitter interface and also provides a group-wise summary

of the JVM instruction set.
Appendix E describes James Larus’s SPIM simulator for the MIPS family of computers

and how to write j-- programs that target SPIM.

24 An Introduction to Compiler Construction in a Java World

1.7 Further Readings

The Java programming language is fully described in [Gosling et al., 2005]. The Java Virtual
Machine is described in [Lindholm and Yellin, 1999].

Other classic compiler texts include [Aho et al., 2007], [Appel, 2002],
[Cooper and Torczon, 2011], [Allen and Kennedy, 2002], and [Muchnick, 1997].

A reasonable introduction to testing is [Whittaker, 2003]. Testing using the JUnit frame-
work is nicely described in [Link and Fröhlich, 2003] and [Rainsberger and Stirling, 2005]. A
good introduction to extreme programming, where development is driven by tests, is [Beck
and Andres, 2004].

1.8 Exercises

Exercise 1.1. We suggest you use either Emacs or Eclipse for working with the j-- compiler.
In any case, you will want to get the j-- code tree onto your own machine. If you choose to
use Eclipse, do the following.

a. Download Eclipse and install it on your own computer. You can get Eclipse from http

://www.eclipse.org.

b. Download the j-- distribution from http://www.cs.umb.edu/j--/.

c. Follow the directions in Appendix A for importing the j-- code tree as a project into
Eclipse.

Exercise 1.2. Now is a good time to begin browsing through the code for the j-- compiler.
Locate and browse through each of the following classes.

a. Main

b. Scanner

c. Parser

d. JCompilationUnit

e. JClassDeclaration

f. JMethodDeclaration

g. JVariableDeclaration

h. JBlock

i. JMessageExpression

j. JVariable

k. JLiteralString

Compilation 25

The remaining exercises may be thought of as optional. Some students (and their pro-
fessors) may choose to go directly to Chapter 2. Exercises 1.3 through 1.9 require studying
the compiler in its entirety, if only cursorily, and then making slight modifications to it.
Notice that, in these exercises, many of the operators have different levels of precedence,
just as * has a different level of precedence in j-- than does +. These levels of precedence are
captured in the Java grammar (in Appendix C); for example, the parser uses one method
to parse expressions involving * and /, and another to parse expressions involving + and -.

Exercise 1.3. To start, follow the process outlined in Section 1.5 to implement the Java
remainder operator %.

Exercise 1.4. Implement the Java shift operators, <<, >>, and >>>.

Exercise 1.5. Implement the Java bitwise inclusive or operator, |.

Exercise 1.6. Implement the Java bitwise exclusive or operator, ^.

Exercise 1.7. Implement the Java bitwise and operator, &.

Exercise 1.8. Implement the Java unary bitwise complement operator ~, and the Java
unary + operator. What code is generated for the latter?

Exercise 1.9. Write tests for all of the exercises (1.3 through 1.8) done above. Put these
tests where they belong in the code tree and modify the JUnit framework in the code tree
for making sure they are invoked.

Exercise 1.10 through 1.16 are exercises in j-- programming. j-- is a subset of Java and
is described in Appendix B.

Exercise 1.10. Write a j-- program Fibonacci.java that accepts a number n as input
and outputs the nth Fibonacci number.

Exercise 1.11. Write a j-- program GCD.java that accepts two numbers a and b as input,
and outputs the Greatest Common Divisor (GCD) of a and b. Hint: Use the Euclidean
algorithm14

Exercise 1.12. Write a j-- program Primes.java that accepts a number n as input, and
outputs the all the prime numbers that are less than or equal to n. Hint: Use the Sieve of
Eratosthenes algorithm15 For example,

> java Primes 11

should output

> 2 3 5 7 11

Exercise 1.13. Write a j-- program Date.java that accepts a date in “yyyy-mm-dd”
format as input, and outputs the date in “Month Day, Year” format. For example16,

> java Date 1879 -03 -14

should output

> March 14, 1879

14See http://en.wikipedia.org/wiki/Euclidean_algorithm.
15See http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.
16March 14, 1879, is Albert Einstein’s birthday.

26 An Introduction to Compiler Construction in a Java World

Exercise 1.14. Write a j-- program Palindrome.java that accepts a string as input, and
outputs the string if it is a palindrome (a string that reads the same in either direction),
and outputs nothing if it is not. The program should be case-insensitive to the input. For
example17:

> java Palindrome Malayalam

should output:

> Malayalam

Exercise 1.15. Suggest enhancements to the j-- language that would simplify the imple-
mentation of the programs described in the previous exercises (1.10 through 1.14).

Exercise 1.16. For each of the j-- programs described in Exercises 1.10 through 1.14, write
a JUnit test case and integrate it with the j-- test framework (Appendix A describes how
this can be done).

Exercises 1.17 through 1.25 give the reader practice in reading JVM code and using
CLEmitter for producing JVM code (in the form of .class files). The JVM and the CLEmitter
are described in Appendix D.

Exercise 1.17. Disassemble (Appendix A describes how this can be done) a Java class
(say java.util.ArrayList), study the output, and list the following:

• Major and minor version

• Size of the constant pool table

• Super class

• Interfaces

• Field names, their access modifiers, type descriptors, and their attributes (just names)

• Method names, their access modifiers, descriptors, exceptions thrown, and their
method and code attributes (just names)

• Class attributes (just names)

Exercise 1.18. Compile $j/j--/tests/pass/HelloWorld.java using the j-- compiler and
Oracle’s javac compiler. Disassemble the class file produced by each and compare the output.
What differences do you see?

Exercise 1.19. Disassemble the class file produced by the j-- compiler for $j/j--/tests/
pass/Series.java, save the output in Series.bytecode. Add a single-line (//...) com-
ment for each JVM instruction in Series.bytecode explaining what the instruction does.

Exercise 1.20. Write the following class names in internal form:

• java.lang.Thread

• java.util.ArrayList

• java.io.FileNotFoundException

17Malayalam is the language spoken in Kerala, a southern Indian state.

Compilation 27

• jminusminus.Parser

• Employee

Exercise 1.21. Write the method descriptor for each of the following constructors/method
declarations:

• public Employee(String name)...

• public Coordinates(float latitude, float longitude)...

• public Object get(String key)...

• public void put(String key, Object o)...

• public static int[] sort(int[] n, boolean ascending)...

• public int[][] transpose(int[][] matrix)...

Exercise 1.22. Write a program (Appendix A describes how this can be done) GenGCD.

java that produces, using CLEmitter, a GCD.class file with the following methods:

// Returns the Greatest Common Divisor (GCD) of a and b.

public static int compute(int a, int b) {

...

}

Running GCD as follows:

> java GCD 42 84

should output

> 42

Modify GenGCD.java to handle java.lang.NumberFormatException that Integer.

parseInt() raises if the argument is not an integer, and in the handler, print an appropriate
error message to STDERR.

Exercise 1.23. Write a program GenPrimality.java that produces, using CLEmitter,
Primality.class, Primality1.class, Primality2.class, and Primality3.class files,
where Primality.class is an interface with the following method:

// Returns true if the specified number is prime , false

// otherwise.

public boolean isPrime(int n);

and Primality1.class, Primality2.class, and Primality3.class are three different
implementations of the interface. Write a j-- program TestPrimality.java that has a test
driver for the three implementations.

Exercise 1.24. Write a program GenWC.java that produces, using CLEmitter, a WC.class

which emulates the UNIX command wc that displays the number of lines, words, and bytes
contained in each input file.

Exercise 1.25. Write a program GenGravity.java that produces, using CLEmitter, a
Gravity.class file which computes the acceleration g due to gravity at a point on the
surface of a massive body. The program should accept the mass M of the body, and the
distance r of the point from body’s center as input. Use the following formula for computing
g:

28 An Introduction to Compiler Construction in a Java World

g =
GM

r2
,

where G = 6.67× 10−11Nm2

kg2 , is the universal gravitational constant.

Chapter 2

Lexical Analysis

2.1 Introduction

The first step in compiling a program is to break it into tokens. For example, given the j--
program

package pass;

import java.lang.System;

public class Factorial {

// Two methods and a field

public static int factorial(int n) {

if (n <= 0)

return 1;

else

return n * factorial(n - 1);

}

public static void main(String [] args) {

int x = n;

System.out.println(x + "! = " + factorial(x));

}

static int n = 5;

}

we want to produce the sequence of tokens package, pass, ;, import, java, ., lang, .,
System, ;, public, class, Factorial, {, public, static, int, factorial, (, int, n,), {,
if, (, n, <=, 0,), }, return, 1, ;, else, return, n, *, factorial, (, n, -, 1,), }, ;, },
public, static, void, main, (, String, [,], args,), }, {, int, x, =, n, ;, System, ., out,
., println, (, x, +, "!=", +, factorial, (, x,),), }, ;, }, static, int, n, =, 5, ;, and }.

Notice how we have broken down the program’s text into its component elements. We
call these the lexical tokens (or lexical elements) which are described by the language’s
lexical syntax. Notice also how the comment has been ignored in the sequence of tokens;
this is because comments have no meaning to the compiler or to the results of executing
the program. We call this process of recognizing tokens lexical analysis, or more simply
scanning.

The lexical syntax of a programming language is usually described separately. For ex-
ample, in j-- we describe identifiers as “a letter, underscore, or dollar-sign, followed by zero
or more letters, digits, underscores or dollar-signs.” We can also describe these tokens more
formally, using what are called regular expressions. We visit regular expressions later in
Section 2.3. For now, let us be a little less formal.

29

30 An Introduction to Compiler Construction in a Java World

In describing our lexical tokens, we usually separate them into categories. In our example
program, public, class, static, and void are categorized as reserved words. Factorial,
main, String, args, System, out, and println are all identifiers; an identifier is a token in
its own right. The string != is a literal, a string literal in this instance. The rest are operators
and separators; notice that we distinguish between single-character operators such as + and
multi-character operators like >=. In describing the tokens, we can usually simply list the
different reserved words and operators, and describe the structure of identifiers and literals.

2.2 Scanning Tokens

We call the program that breaks the input stream of characters into tokens a lexical analyzer
or, less formally, a scanner.

A scanner may be hand-crafted, that is, a program written by the compiler writer; or
it may be generated automatically from a specification consisting of a sequence of regular
expressions. The lexical analyzer that we describe in this section will be hand-crafted. We
look at generated scanners later.

When we look at the problem of producing a sequence of tokens from a program like
that above, we must determine where each token begins and ends. Clearly, white space
(blanks, tabs, new lines, etc.) plays a role; in the example above it is used to separate the
reserved word public from class, and class from the identifier Factorial. But not all
tokens are necessarily separated by white space. Whether or not we have come to the end
of a token in scanning an input stream of characters depends on what sort of token we are
currently scanning. For example, in the context of scanning an identifier, if we come across
a letter, that letter is clearly part of the identifier. On the other hand, if we are in the
process of scanning an integer value (consisting of the digits 0 to 9), then that same letter
would indicate that we have come to the end of our integer token. For this reason, we find
it useful to describe our scanner using a state transition diagram.

Identifiers and Integer Literals

For example, consider the state transition diagram in Figure 2.1. It may be used for recog-
nizing j-- identifiers and decimal integers.

In a state transition diagram, the nodes represent states, and directed edges represent
moves from one state to another depending on what character has been scanned. If a
character scanned does not label any of the edges, then the unlabeled edge is taken (and
the input is not advanced). Think of it as a machine that recognizes (scans) identifiers and
integer literals.

Consider the case when the next token in the input is the identifier x1. Beginning in the
start state, the machine considers the first character, x; because it is a letter, the machine
scans it and goes into the id state (that is, a state in which we are recognizing an identifier).
Seeing the next 1, it scans that digit and goes back into the id state. When the machine
comes across a character that is neither a letter nor a digit, nor an underscore, nor a dollar
sign, it takes the unmarked edge and goes into the idEnd state (a final state indicated by
a double circle) without scanning anything.

If the first character were the digit 0 (zero), the machine would scan the zero and go
directly into the (final) intEnd state. On the other hand, if the first character were a non-
zero digit, it would scan it and go into the integer state. From there it would scan succeeding

Lexical Analysis 31

FIGURE 2.1 State transition diagram for identifiers and integers.

digits and repeatedly go back into the integer state until a non-digit character is reached;
at this point the machine would go into the (final) intEnd state without scanning another
character.

An advantage of basing our program on such a state transition diagram is that it takes
account of state in deciding what to do with the next input character. Clearly, what the
scanner does with an incoming letter depends on whether it is in the start state (it would
go into the id state), the id state (it would remain there), or the integer state (where it
would go into the intEnd state, recognizing that it has come to the end of the integer).

It is relatively simple to implement a state transition diagram in code. For example, the
code for our diagram above might look something like

if (isLetter(ch) || ch == ’_’ || ch == ’$’) {

buffer = new StringBuffer ();

while (isLetter(ch) || isDigit(ch) || ch == ’_’ || ch == ’$’){

buffer.append(ch);

nextCh ();

}

return new TokenInfo(IDENTIFIER , buffer.toString(), line);

}

else if (ch == ’0’) {

nextCh ();

return new TokenInfo(INT_LITERAL , "0", line);

}

else if (isDigit(ch)){

buffer = new StringBuffer ();

while (isDigit(ch)) {

buffer.append(ch);

nextCh ();

}

return new TokenInfo(INT_LITERAL , buffer.toString(), line);

}

Choices translate to if-statements and cycles translate to while-statements. Notice that
the TokenInfo object encapsulates the value of an integer as the string of digits denoting
it. For example, the number 6449 is represented as the String “6449”. Translating this to
binary is done later, during code generation.

32 An Introduction to Compiler Construction in a Java World

In the code above, TokenInfo is the type of an object that encapsulates a represen-
tation of the token found, its image (if any), and the number of the line on which it was
found.

Reserved Words

There are two ways of recognizing reserved words. In the first, we complicate the state tran-
sition diagram for recognizing reserved words and distinguishing them from (non-reserved)
identifiers. For example, the state transition diagram fragment in Figure 2.2 recognizes
reserved words (and identifiers) beginning with the letter ‘i’ or the letter ‘n’.

FIGURE 2.2 A state transition diagram that distinguishes reserved words from identifiers.

The code corresponding to this might look something like

...

else if (ch == ’n’) {

buffer.append(ch);

nextCh ();

if (ch == ’e’) {

buffer.append(ch);

nextCh ();

if (ch == ’w’) {

buffer.append(ch);

nextCh ();

if (! isLetter(ch) && !isDigit(ch) &&

ch != ’_’ && ch != ’$’) {

Lexical Analysis 33

return new TokenInfo(NEW , line);

}

}

}

else if (ch == ’u’) {

buffer.append(ch);

nextCh ();

if (ch == ’l’) {

buffer.append(ch);

nextCh ();

if (ch == ’l’) {

buffer.append(ch);

nextCh ();

if (! isLetter(ch) && !isDigit(ch) &&

ch != ’_’ && ch != ’$’) {

return new TokenInfo(NULL , line);

}

}

}

}

while (isLetter(ch) || isDigit(ch) ||

ch == ’_’ || ch == ’$’) {

buffer.append(ch);

nextCh ();

}

return new TokenInfo(IDENTIFIER , buffer.toString(),

line);

}

else ...

Unfortunately, such state transition diagrams and the corresponding code are too com-
plex.1 Imagine the code necessary for recognizing all reserved words.

A second way is much more straightforward for hand-written token scanners. We simply
recognize a simple identifier, which may or may not be one of the reserved words. We look
up that identifier in a table of reserved words. If it is there in the table, then we return the
corresponding reserved word. Otherwise, we return the (non-reserved) identifier. The state
transition diagram then looks something like that in Figure 2.3.

FIGURE 2.3 Recognizing words and looking them up in a table to see if they are reserved.

1Unless the diagrams (and corresponding code) are automatically generated from a specification; we do
this later in the chapter when we visit regular expressions and finite state automata.

34 An Introduction to Compiler Construction in a Java World

The code corresponding to this logic would look something like the following:

if (isLetter(ch) || ch == ’_’ || ch == ’$’) {

buffer = new StringBuffer ();

while (isLetter(ch) || isDigit(ch) ||

ch == ’_’ || ch == ’$’){

buffer.append(ch);

nextCh ();

}

String identifier = buffer.toString ();

if (reserved.containsKey(identifier)) {

return new TokenInfo(reserved.get(identifier),

line);

}

else {

return new TokenInfo(IDENTIFIER , identifier ,

line);

}

}

This relies on a map (hash table), reserved, mapping reserved identifiers to their rep-
resentations:

reserved = new Hashtable <String , Integer >();

reserved.put(" abstract", ABSTRACT);

reserved.put(" boolean", BOOLEAN);

reserved.put("char", CHAR);

...

reserved.put("while", WHILE);

We follow this latter method, of looking up identifiers in a table of reserved words, in
our hand-written lexical analyzer.

Separators and Operators

The state transition diagram deals nicely with operators. We must be careful to watch
for certain multi-character operators. For example, the state transition diagram fragment
for recognizing tokens beginning with ‘;’, ‘==’, ‘=’, ‘!’, or ‘*’ would look like that in
Figure 2.4.

The code corresponding to the state transition diagram in Figure 2.4 would look like
the following. Notice the use of the switch-statement for deciding among first characters.

switch (ch) {

...

case ’;’:

nextCh ();

return new TokenInfo(SEMI , line);

case ’=’:

nextCh ();

if (ch == ’=’) {

nextCh ();

return new TokenInfo(EQUAL , line);

}

else {

return new TokenInfo(ASSIGN , line);

}

case ’!’:

nextCh ();

return new TokenInfo(LNOT , line);

case ’*’:

Lexical Analysis 35

FIGURE 2.4 A state transition diagram for recognizing the separator ; and the operators
==, =, !, and *.

nextCh ();

return new TokenInfo(STAR , line);

...

}

White Space

Before attempting to recognize the next incoming token, one wants to skip over all white
space. In j--, as in Java, white space is defined as the ASCII SP characters (spaces), HT
(horizontal tabs), FF (form feeds), and line terminators; in j-- (as in Java), we can denote
these characters as ‘ ’, ‘t’, ‘f’, ‘b’, ‘r’, and ‘n’, respectively. Skipping over white space
is done from the start state, as illustrated in Figure 2.5.

The code for this is simple enough, and comes at the start of a method for reading the
next incoming token:

while (isWhitespace(ch)) {

nextCh ();

}

36 An Introduction to Compiler Construction in a Java World

FIGURE 2.5 Dealing with white space.

Comments

Comments can be considered a special form of white space because the compiler ignores
them. A j-- comment extends from a double-slash, //, to the end of the line. This complicates
the skipping of white space somewhat, as illustrated in Figure 2.6.

FIGURE 2.6 Treating one-line (// ...) comments as white space.

Notice that a / operator on its own is meaningless in j--. Adding it (for denoting division)
is left as an exercise. But notice that when coming upon an erroneous single /, the lexical
analyzer reports the error and goes back into the start state in order to fetch the next valid
token. This is all captured in the code:

boolean moreWhiteSpace = true;

while (moreWhiteSpace) {

while (isWhitespace(ch)) {

nextCh ();

}

Lexical Analysis 37

if (ch == ’/’) {

nextCh ();

if (ch == ’/’) {

// CharReader maps all new lines to ’\n’

while (ch != ’\n’ && ch != EOFCH) {

nextCh ();

}

}

else {

reportScannerError(’’Operator / is not supported in j--.’’);

}

}

else {

moreWhiteSpace = false;

}

}

There are other kinds of tokens we must recognize as well, for example, String literals
and character literals. The code for recognizing all tokens appears in file Scanner.java; the
principal method of interest is getNextToken(). This file is part of source code of the j--
compiler that we discussed in Chapter 1. At the end of this chapter you will find exercises
that ask you to modify this code (as well as that of other files) for adding tokens and other
functionality to our lexical analyzer.

A pertinent quality of the lexical analyzer described here is that it is hand-crafted.
Although writing a lexical analyzer by hand is relatively easy, particularly if it is based on
a state transition diagram, it is prone to error. In a later section we shall learn how we may
automatically produce a lexical analyzer from a notation based on regular expressions.

2.3 Regular Expressions

Regular expressions comprise a relatively simple notation for describing patterns of charac-
ters in text. For this reason, one finds them in text processing tools such as text editors. We
are interested in them here because they are also convenient for describing lexical tokens.

Definition 2.1. We say that a regular expression defines a language of strings over an
alphabet. Regular expressions may take one of the following forms:

1. If a is in our alphabet, then the regular expression a describes the language consisting
of the string a. We call this language L(a).

2. If r and s are regular expressions, then their concatenation rs is also a regular ex-
pression describing the language of all possible strings obtained by concatenating a
string in the language described by r, to a string in the language described by s. We
call this language L(rs).

3. If r and s are regular expressions, then the alternation r|s is also a regular expression
describing the language consisting of all strings described by either r or s. We call
this language L(r|s).

4. If r is a regular expression, the repetition2 r∗ is also a regular expression describing
the language consisting of strings obtained by concatenating zero or more instances
of strings described by r together. We call this language L(r∗).

2Also known as the Kleene closure.

38 An Introduction to Compiler Construction in a Java World

Notice that r0 = ε, the empty string of length 0; r1 = r, r2 = rr, r3 = rrr, and so on;
r∗ denotes an infinite number of finite strings.

5. ε is a regular expression describing the language containing only the empty string.

6. Finally, if r is a regular expression, then (r) is also a regular expression denoting the
same language. The parentheses serve only for grouping.

Example. So, for example, given an alphabet {0, 1},

1. 0 is a regular expression describing the single string 0

2. 1 is a regular expression describing the single string 1

3. 0|1 is a regular expression describing the language of two strings 0 and 1

4. (0|1) is a regular expression describing the (same) language of two strings 0 and 1

5. (0|1)∗ is a regular expression describing the language of all strings, including the empty
string, of 1’s and 0’s: ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ..., 000111, ...

6. 1(0|1)∗ is a regular expression describing the language of all strings of 1’s and 0’s that
start with a 1.

7. 0|1(0|1)∗ is a regular expression describing the language consisting of all binary num-
bers (excluding those having unnecessary leading zeros).

Notice that there is an order of precedence in the construction of regular expressions:
repetition has the highest precedence, then concatenation, and finally alternation. So, 01 ∗
0|1∗ is equivalent to (0(1∗)0)|(1∗). Of course, parentheses may always be used to change the
grouping of sub-expressions.

Example. Given an alphabet {a, b},

1. a(a|b)∗ denotes the language of non-empty strings of a’s and b’s, beginning with an a

2. aa|ab|ba|bb denotes the language of all two-symbol strings over the alphabet

3. (a|b)∗ab denotes the language of all strings of a’s and b’s, ending in ab (this includes
the string ab itself)

As in programming, we often find it useful to give names to things. For example, we can
define D=1|2|3|4|5|6|7|8|9. Then we can say 0|D(D|0)* denotes the language of natural
numbers, which is the same as 0|(1|2|3|4|5|6|7|8|9)(1|2|3|4|5|6|7|8|9|0)*.

There are all sorts of extensions to the notation of regular expressions, all of which are
shorthand for standard regular expressions. For example, in the Java Language Specifica-
tion [Gosling et al., 2005], [0-9] is shorthand for (0|1|2|3|4|5|6|7|8|9), and [a-z] is
shorthand for (a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z).

Other notations abound. For example, there are the POSIX extensions [IEEE, 2004],
which allow the square bracket notation above, ? for optional, +, ∗, etc. JavaCC uses its
own notation. In our appendices, we use the notation used by [Gosling et al., 2005]. The
important thing is that all of these extensions are simply shorthand for regular expressions
that may be written using the notation described in Definition 2.1.

In describing the lexical tokens of programming languages, one uses some standard
input character set as one’s alphabet, for example, the 128 character ASCII set, the 256
character extended ASCII set, or the much larger Unicode set. Java works with Unicode,
but aside from identifiers, characters, and string literals, all input characters are ASCII,
making implementations compatible with legacy operating systems. We do the same for j--.

Lexical Analysis 39

Example. The reserved words may be described simply by listing them. For example,

abstract

| boolean

| char

.

.

.

| while

Likewise for operators. For example,

=

| ==

| >

.

.

.

| *

Identifiers are easily described; for example,

([a-zA -Z] | _ | $)([a-zA -Z0 -9] | _ | $)*

which is to say, an identifier begins with a letter, an underscore, or a dollar sign, followed
by zero or more letters, digits, underscores, and dollar signs.

A full description of the lexical syntax for j-- may be found in Appendix B. In the next
section, we formalize state transition diagrams.

2.4 Finite State Automata

It turns out that for any language described by a regular expression, there is a state transi-
tion diagram that can parse strings in this language. These are called finite state automata.

Definition 2.2. A finite state automaton (FSA) F is a quintuple F = (Σ, S, s0,M, F)
where

• Σ (pronounced sigma) is the input alphabet.

• S is a set of states.

• s0 ∈ S is a special start state.

• M is a set of moves or state transitions of the form

m(r, a) = s where r, s ∈ S, a ∈ Σ

read as, “if one is in state r, and the next input symbol is a, scan the a and move into
state s.”

• F ∈ S is a set of final states.

A finite state automaton is just a formalization of the state transition diagrams we saw
in Section 2.2. We say that a finite state automaton recognizes a language. A sentence over
the alphabet Σ is said to be in the language recognized by the FSA if, starting in the start
state, a set of moves based on the input takes us into one of the final states.

40 An Introduction to Compiler Construction in a Java World

Example. Consider the regular expression, (a|b)a∗b. This describes a language over the
alphabet {a, b}; it is the language consisting of all strings starting with either an a or a b,
followed by zero or more a’s, and ending with a b.

An FSA F that recognizes this same language is F = (Σ, S, s0,M, F), where Σ =
{a, b}, S = {0, 1, 2}, s0 = 0,M = {m(0, a) = 1,m(0, b) = 1,m(1, a) = 1,m(1, b) = 2}, F =
{2}.

The corresponding state transition diagram is shown in Figure 2.7.

FIGURE 2.7 An FSA recognizing (a|b)a∗b.

An FSA recognizes strings in the same way that state transition diagrams do. For exam-
ple, given the input sentence baaab and beginning in the start state 0, the following moves
are prescribed:

• m(0, b) = 1 =⇒ in state 0 we scan a b and go into state 1,

• m(1, a) = 1 =⇒ in state 1 we scan an a and go back into state 1,

• m(1, a) = 1 =⇒ in state 1 we scan an a and go back into state 1 (again),

• m(1, a) = 1 =⇒ in state 1 we scan an a and go back into state 1 (again), and

• m(1, b) = 2 =⇒ finally, in state 1 we scan a b and go into the final state 2.

Each move scans the corresponding character. Because we end up in a final state after
scanning the entire input string of characters, the string is accepted by our FSA.

The question arises, given the regular expression, have we a way of automatically gen-
erating the FSA? The answer is yes! But first we must discuss two categories of automata:
Non-deterministic Finite-State Automata (NFA) and Deterministic Finite-state Automata
(DFA).

2.5 Non-Deterministic Finite-State Automata (NFA) versus De-
terministic Finite-State Automata (DFA)

The example FSA given above is actually a deterministic finite-state automaton.

Definition 2.3. A deterministic finite-state automaton (DFA) is an automaton where there
are no ε-moves (see below), and there is a unique move from any state, given a single input
symbol a. That is, there cannot be two moves:

m(r, a) = s

m(r, a) = t

where s 6= t. So, from any state there is at most one state that we can go into, given an
incoming symbol.

Lexical Analysis 41

Definition 2.4. A non-deterministic finite-state automaton (NFA) is a finite state automa-
ton that allows either of the following conditions.

• More than one move from the same state, on the same input symbol, that is,

m(r, a) = s,

m(r, a) = t, for states r, s and t where s 6= t.

• An ε-move defined on the empty string ε, that is,

m(r, ε) = s,

which says we can move from state r to state s without scanning any input symbols.

An example of a deterministic finite-state automaton is N = (Σ, S, s0,M, F), where
Σ = {a, b}, S = {0, 1, 2}, s0 = 0,M = {m(0, a) = 1,m(0, b) = 1,m(1, a) = 1,m(1, b) =
1,m(1, ε) = 0,m(1, b) = 2}, F = {2} and is illustrated by the diagram in Figure 2.8. This
NFA recognizes all strings of a’s and b’s that begin with an a and end with a b. Like any
FSA, an NFA is said to recognize an input string if, starting in the start state, there exists
a set of moves based on the input that takes us into one of the final states.

But this automaton is definitely not deterministic. Being in state 1 and seeing b, we can
go either back into state 1 or into state 2. Moreover, the automaton has an ε-move.

FIGURE 2.8 An NFA.

Needless to say, a lexical analyzer based on a non-deterministic finite state automaton
requires backtracking, where one based on a deterministic finite-state automaton does not.
One might ask why we are at all interested in NFA. Our only interest in non-deterministic
finite-state automata is that they are an intermediate step from regular expressions to
deterministic finite-state automata.

2.6 Regular Expressions to NFA

Given any regular expression R, we can construct a non-deterministic finite state automaton
N that recognizes the same language; that is, L(N) = L(R). We show that this is true by
using what is called Thompson’s construction:

1. If the regular expression r takes the form of an input symbol, a, then the NFA that
recognizes it has two states: a start state and a final state, and a move on symbol a
from the start state to the final state.

42 An Introduction to Compiler Construction in a Java World

FIGURE 2.9 Scanning symbol a.

2. If Nr and Ns are NFA recognizing the languages described by the regular expressions r
and s, respectively, then we can create a new NFA recognizing the language described
by rs as follows. We define an ε-move from the final state of Nr to the start state of
Ns. We then choose the start state of Nr to be our new start state, and the final state
of Ns to be our new final state.

FIGURE 2.10 Concatenation rs.

3. If Nr and Ns are NFA recognizing the languages described by the regular expressions r
and s, respectively, then we can create a new NFA recognizing the language described
by r|s as follows. We define a new start state, having ε-moves to each of the start
states of Nr and Ns, and we define a new final state and add ε-moves from each of
Nr and Ns to this state.

FIGURE 2.11 Alternation r|s.

4. If Nr is an NFA recognizing that language described by a regular expression r, then
we construct a new NFA recognizing r∗ as follows. We add an ε-move from Nr’s final
state back to its start state. We define a new start state and a new final state, we add
ε-moves from the new start state to both Nr’s start state and the new final state, and
we define an ε-move from Nr’s final state to the new final state.

Lexical Analysis 43

FIGURE 2.12 Repetition r∗.

5. If r is ε, then we just need an ε-move from the start state to the final state.

FIGURE 2.13 ε-move.

6. If Nr is our NFA recognizing the language described by r, then Nr also recognizes the
language described by (r). Parentheses only group expressions.

Example. As an example, reconsider the regular expression (a|b)a∗b. We decompose this
regular expression, and display its syntactic structure in Figure 2.14.

FIGURE 2.14 The syntactic structure for (a|b)a∗b.

We can construct our NFA based on this structure, beginning with the simplest compo-
nents, and putting them together according to the six rules above.

• We start with the first a and b; the automata recognizing these are easy enough to
construct using rule 1 above.

44 An Introduction to Compiler Construction in a Java World

• We then put them together using rule 3 to produce an NFA recognizing a|b.

• The NFA recognizing (a|b) is the same as that recognizing a|b, by rule 6. An NFA
recognizing the second instance of a is simple enough, by rule 1 again.

• The NFA recognizing a∗ can be constructed from that recognizing a, by applying rule
4.

• We then apply rule 2 to construct an NFA recognizing the concatenation (a|b)a∗.

Lexical Analysis 45

• An NFA recognizing the second instance of b is simple enough, by rule 1 again.

• Finally, we can apply rule 2 again to produce an NFA recognizing the concatenation
of (a|b)a∗ and b, that is (a|b)a∗b. This NFA is illustrated, in Figure 2.15.

FIGURE 2.15 An NFA recognizing (a|b)a∗b.

46 An Introduction to Compiler Construction in a Java World

2.7 NFA to DFA

Of course, any NFA will require backtracking. This requires more time and, because we in
practice wish to collect information as we recognize a token, is impractical. Fortunately, for
any non-deterministic finite automaton (NFA), there is an equivalent deterministic finite
automaton (DFA). By equivalent, we mean a DFA that recognizes the same language.
Moreover, we can show how to construct such a DFA.

In general, the DFA that we will construct is always in a state that simulates all the
possible states that the NFA could possibly be in having scanned the same portion of the
input. For this reason, we call this a powerset construction3.

For example, consider the NFA constructed for (a|b)a∗b illustrated in Figure 2.15. The
start state of our DFA, call it s0, must reflect all the possible states that our NFA can be
in before any character is scanned; that is, the NFA’s start state 0, and all other states
reachable from state 0 on ε-moves alone: 1 and 3. Thus, the start state in our new DFA is
s0 = {0, 1, 3}.

This computation of all states reachable from a given state s based on ε-moves alone is
called taking the ε-closure of that state.

Definition 2.5. The ε-closure(s) for a state s includes s and all states reachable
from s using ε-moves alone. That is, for a state s ∈ S, ε-closure(s) = {s} ∪ {r ∈
S|, there is a path of only ε-moves from s to r}.

We will also be interested in the ε-closure over a set of states.

Definition 2.6. The ε-closure(S) for a set of states S includes s and all states reachable
from any state s in S using ε-moves alone.

Algorithm 2.1 computes ε-closure(S) where S is a set of states.

Algorithm 2.1 ε-closure(S) for a Set of States S

Input: a set of states, S
Output: ε-closure(S)

Stack P .addAll(S) // a stack containing all states in S
Set C.addAll(S) // the closure initially contains the states in S
while ! P .empty() do
s ← P .pop()
for r in m(s, ε) do

// m(s, ε) is a set of states
if r /∈ C then
P .push(r)
C.add(r)

end if
end for

end while
return C

Given Algorithm 2.1, the algorithm for finding the ε-closure for a single state is simple.
Algorithm 2.2 does this.

3The technique is also known as a subset construction; the states in the DFA are a subset of the powerset
of the set of states in the NFA

Lexical Analysis 47

Algorithm 2.2 ε-closure(s) for a State s

Input: a state, s
Output: ε-closure(s)

Set S.add(s) // S = {s}
return ε-closure(S)

Returning to our example, from the start state s0, and scanning the symbol a, we shall
want to go into a state that reflects all the states we could be in after scanning an a in the
NFA: 2, and then (via ε-moves) 5, 6, 7, 9, and 10. Thus,

m(s0, a) = s1, where

s1 = ε-closure(2) = {2, 5, 6, 7, 9, 10}.

Similarly, scanning a symbol b in state s0, we get

m(s0, b) = s2,where

s2 = ε-closure(4) = {4, 5, 6, 7, 9, 10}.

From state s1, scanning an a, we have to consider where we could have gone from the
states {2, 5, 6, 7, 9, 10} in the NFA. From state 7, scanning an a, we go into state 8, and
then (by ε-moves) 7, 9, and 10. Thus,

m(s1, a) = s3,where

s3 = ε-closure(8) = {7, 8, 9, 10}.

Now, from state s1, scanning b, we have

m(s1, b) = s4,where

s4 = ε-closure(11) = {11}

because there are no ε-moves out of state 11.
From state s2, scanning an a takes us into a state reflecting 8, and then (by ε-moves) 7,

9, and 10, generating a candidate state, {7, 8, 9, 10}.
But this is a state we have already seen, namely s3. Scanning a b, from state s2, takes

us into a state reflecting 11, generating the candidate state, {11}.
But this is s4. Thus,

m(s2, a) = s3, and

m(s2, b) = s4.

From state s3 we have a similar situation. Scanning an a takes us back into s3. Scanning
a b takes us into s4. So,

m(s3, a) = s3, and

m(s3, b) = s4.

There are no moves at all out of state s4. So we have found all of our transitions and all
of our states. Of course, the alphabet in our new DFA is the same as that in the original
NFA.

But what are the final states? Because the states in our DFA mirror the states in our
original NFA, any state reflecting (derived from a state containing) a final state in the NFA

48 An Introduction to Compiler Construction in a Java World

is a final state in the DFA. In our example, only s4 is a final state because it contains (the
final) state 11 from the original NFA.

Putting all of this together, a DFA derived from our NFA for (a|b)a∗b is illustrated in
Figure 2.16.

FIGURE 2.16 A DFA recognizing (a|b)a∗b.

We can now give the algorithm for constructing a DFA that is equivalent to an NFA.

2.8 Minimal DFA

So, how do we come up with a smaller DFA that recognizes the same language? Given an
input string in our language, there must be a sequence of moves taking us from the start
state to one of the final states. And, given an input string that is not in our language, there
cannot be such a sequence; we must get stuck with no move to take or end up in a non-final
state.

Clearly, we must combine states if we can. Indeed, we would like to combine as many
states together as we can. So the states in our new DFA are partitions of the states in the
original (perhaps larger) DFA.

A good strategy is to start with just one or two partitions of the states, and then split
states when it is necessary to produce the necessary DFA. An obvious first partition has
two sets: the set of final states and the set of non-final states; the latter could be empty,
leaving us with a single partition containing all states.

For example, consider the DFA from Figure 2.16, partitioned in this way. The partition
into two sets of states is illustrated in Figure 2.17.

The two states in this new DFA consist of the start state, {0, 1, 2, 3} and the final state
{4}. Now we must make sure that, in each of these states, the move on a particular symbol
reflects a move in the old DFA. That is, from a particular partition, each input symbol must
move us to an identical partition.

Lexical Analysis 49

Algorithm 2.3 NFA to DFA Construction

Input: an NFA, N = (Σ, S, s0,M, F)
Output: DFA, D = (Σ, SD, sD0,MD, FD)

Set SD0 ← ε-closure(s0)
Set SD.add(SD0)
Moves MD

Stack stk.push(SD0)
i← 0
while ! stk.empty() do
t ← stk.pop()
for a in Σ do
SDi+1 ← ε-closure(m(t, a));
if SDi+1 6= {} then

if SDi+1 ∈ SD then
// We have a new state
SD.add(SDi+1)
stk.push(SDi+1)
i← i+ 1
MD.add(MD(t, a) = i)

else if ∃j, Sj ∈ SD ∧ SDi+1 = Sj then
// In the case that the state already exists
MD.add(MD(t, a) = j)

end if
end if

end for
end while
Set FD

for sD in SD do
for s in sD do

if s ∈ F then
FD.add(sD)

end if
end for

end for
return D = (Σ, SD, sD0,MD, FD)

FIGURE 2.17 An initial partition of DFA from Figure 2.16.

50 An Introduction to Compiler Construction in a Java World

For example, beginning in any state in the partition {0, 1, 2, 3}, an a takes us to one of
the states in {0, 1, 2, 3};

m(0, a) = 1,

m(1, a) = 3,

m(2, a) = 3, and

m(3, a) = 3.

So, our partition {0, 1, 2, 3} is fine so far as moves on the symbol a are concerned. For
the symbol b,

m(0, b) = 2,

but

m(1, b) = 4,

m(2, b) = 4, and

m(3, b) = 4.

So we must split the partition {0, 1, 2, 3} into two new partitions, {0} and {1, 2, 3}. The
question arises: if we are in state s, and for an input symbol a in our alphabet there is no
defined move,

m(s, a) = t,

What do we do? We can invent a special dead state d, so that we can say

m(s, a) = d,

Thus defining moves from all states on all symbols in the alphabet.
Now we are left with a partition into three sets: {0}, {1, 2, 3}, and {4}, as is illustrated

in Figure 2.18.

FIGURE 2.18 A second partition of DFA from Figure 2.16.

We need not worry about {0} and {4} as they contain just one state and so correspond

Lexical Analysis 51

to (those) states in the original machine. So we consider {1, 2, 3} to see if it is necessary to
split it. But, as we have seen,

m(1, a) = 3,

m(2, a) = 3, and

m(3, a) = 3.

Also,

m(1, b) = 4,

m(2, b) = 4, and

m(3, b) = 4.

Thus, there is no further state splitting to be done, and we are left with the smaller DFA
in Figure 2.19.

FIGURE 2.19 A minimal DFA recognizing (a|b)a∗b.

The algorithm for minimizing a DFA is built around this notion of splitting states.

Algorithm 2.4 Minimizing a DFA

Input: a DFA, D = (Σ, S, s0,M, F)
Output: a partition of S

Set partition← {S−F, F} // start with two sets: the non-final states and the final states
// Splitting the states
while splitting occurs do

for Set set in partition do
if set.size() > 1 then

for Symbol a in Σ do
// Determine if moves from this ‘state’ force a split
State s← a state chosen from set S
targetSet← the set in the partition containing m(s, a)
Set set1← {states s from set S, such that m(s, a) ∈ targetSet}
Set set2← {states s from set S, such that m(s, a) /∈ targetSet}
if set2 6= {} then

// Yes, split the states.
replace set in partition by set1 and set2 and break out of the for-loop to
continue with the next set in the partition

end if
end for

end if
end for

end while

52 An Introduction to Compiler Construction in a Java World

Then, renumber the states and re-compute the moves for the new (possibly smaller) set
of states, based on the old moves on the original set of states.

Let us quickly run through one additional example, starting from a regular expression,
producing an NFA, then a DFA, and finally a minimal DFA.

Example. Consider the regular expression, (a|b)∗baa. Its syntactic structure is illustrated
in Figure 2.20.

FIGURE 2.20 The syntactic structure for (a|b)∗baa.

Given this, we apply the Thompson’s construction for producing the NFA illustrated in
Figure 2.21.

FIGURE 2.21 An NFA recognizing (a|b)∗baa.

Using the powerset construction method, we derive a DFA having the following states:

s0 : {0, 1, 2, 4, 7, 8},
m(s0, a) : {1, 2, 3, 4, 6, 7, 8} = s1,

m(s0, b) : {1, 2, 4, 5, 6, 7, 8, 9, 10} = s2,

m(s1, a) : {1, 2, 3, 4, 6, 7, 8} = s1,

m(s1, b) : {1, 2, 4, 5, 6, 7, 8, 9, 10} = s2,

m(s2, a) : {1, 2, 3, 4, 6, 7, 8, 11, 12} = s3,

m(s2, b) : {1, 2, 4, 5, 6, 7, 8, 9, 10} = s2, and

m(s3, a) : {1, 2, 3, 4, 6, 7, 8, 13} = s4.

Lexical Analysis 53

The DFA itself is illustrated in Figure 2.22.

FIGURE 2.22 A DFA recognizing (a|b)∗baa.

Finally, we use partitioning to produce the minimal DFA illustrated in Figure 2.23.

FIGURE 2.23 Partitioned DFA from Figure 2.22.

54 An Introduction to Compiler Construction in a Java World

We re-number the states to produce the equivalent DFA shown in Figure 2.24.

FIGURE 2.24 A minimal DFA recognizing (a|b)∗baa.

2.9 JavaCC: Tool for Generating Scanners

JavaCC (the CC stands for compiler-compiler) is a tool for generating lexical analyzers
from regular expressions, and parsers from context-free grammars. In this section we are
interested in the former; we visit the latter in the next chapter.

A lexical grammar specification takes the form of a set of regular expressions and a set of
lexical states; from any particular state, only certain regular expressions may be matched in
scanning the input. There is a standard DEFAULT state, in which scanning generally begins.
One may specify additional states as required.

Scanning a token proceeds by considering all regular expressions in the current state
and choosing that which consumes the greatest number of input characters. After a match,
one can specify a state in which the scanner should go into; otherwise the scanner stays in
the current state.

There are four kinds of regular expressions, determining what happens when the regular
expression has been matched:

1. SKIP: throws away the matched string.

2. MORE: continues to the next state, taking the matched string along.

3. TOKEN: creates a token from the matched string and returns it to the parser (or any
caller).

4. SPECIAL_TOKEN: creates a special token that does not participate in the parsing.

For example, a SKIP can be used for ignoring white space:

SKIP: {" "|"\t"|"\n"|"\r"|"\f"}

This matches one of the white space characters and throws it away; because we do not
specify a next state, the scanner remains in the current (DEFAULT) state.

We can deal with single-line comments with the following regular expressions:

MORE: { "//": IN_SINGLE_LINE_COMMENT }

<IN_SINGLE_LINE_COMMENT >

SPECIAL_TOKEN: { <SINGLE_LINE_COMMENT: "\n"|"\r"|"\r\n" > : DEFAULT }

<IN_SINGLE_LINE_COMMENT >

MORE: { < ~[] > }

Lexical Analysis 55

Matching the // puts the scanner into the IN_SINGLE_LINE_COMMENT state. The next
two regular expressions apply only to this state. The first matches an end of line and returns
it as a special token (which is not seen by the parser); it then puts the scanner back into
the DEFAULT state. The second matches anything else and throws it away; because no next
state is specified, the scanner remains in the IN_SINGLE_LINE_COMMENT state. An alternative
regular expression dealing with single-line comments is simpler4:

SPECIAL_TOKEN: {

<SINGLE_LINE_COMMENT: "//" (~["\n","\r"])* ("\n"|"\r"|"\r\n")>

}

One may easily specify the syntax of reserved words and symbols by spelling them out,
for example,

TOKEN: {

< ABSTRACT: "abstract" >

| < BOOLEAN: "boolean" >

...

| < COMMA: "," >

| < DOT: "." >

}

The Java identifier preceding the colon, for example, ABSTRACT, BOOLEAN, COMMA, and
DOT, represents the token’s kind. Each token also has an image that holds onto the actual
input string that matches the regular expression following the colon.

A more interesting token is that for scanning identifiers:

TOKEN: {

< IDENTIFIER: (<LETTER >|"_"|"$") (<LETTER >|<DIGIT >|"_"|"$")* >

| < #LETTER: ["a"-"z","A"-"Z"] >

| < #DIGIT: ["0" -"9"] >

}

This says that an IDENTIFIER is a letter, underscore, or dollar sign, followed by zero or more
letters, digits, underscores and dollar signs. Here, the image records the identifier itself. The
preceding LETTER and DIGIT indicates that these two identifiers are private to the scanner
and thus unknown to the parser.

Literals are also relatively straightforward:

TOKEN: {

< INT_LITERAL: ("0" | <NON_ZERO_DIGIT > (<DIGIT >)*) >

| < #NON_ZERO_DIGIT: ["1" -"9"] >

| < CHAR_LITERAL: "’" (<ESC > | ~[" ’" ,"\\" ,"\n","\r"]) "’" >

| < STRING_LITERAL: "\"" (<ESC > | ~["\"" ,"\\" ,"\n","\r"])* "\"" >

| < #ESC: "\\" ["n","t","b","r","f" ,"\\" ," ’" ,"\""] >

}

JavaCC takes a specification of the lexical syntax and produces several Java files. One
of these, TokenManager.java, defines a program that implements a state machine; this is
our scanner.

To see the entire lexical grammar for j--, read the JavaCC input file, j--.jj, in the
jminusminus package; the lexical grammar is close to the top of that file.

4Both implementations of the single-line comment come from the examples and documentation dis-
tributed with JavaCC. This simpler one comes from the TokenManager mini-tutorial at https://

javacc.dev.java.net/doc/tokenmanager.html.

56 An Introduction to Compiler Construction in a Java World

JavaCC has many additional features for specifying, scanning, and dealing with lexical
tokens [Copeland, 2007] and [Norvell, 2011]. For example, we can make use of a combi-
nation of lexical states and lexical actions to deal with nested comments5. Say comments
were defined as beginning with (* and ending with *); nested comments would allow one
to nest them to any depth, for example (* ...(*...*)...(*...*)...*). Nested com-
ments are useful when commenting out large chunks of code, which may contain nested
comments.

To do this, we include the following code at the start of our lexical grammar specification;
it declares a counter for keeping track of the nesting level.

TOKEN_MGR_DECLS: {

int commentDepth;

}

When we encounter a (* in the standard DEFAULT state, we use a lexical action to
initialize the counter to one and then we enter an explicit COMMENT state.

SKIP:{ "(*" { commentDepth = 1; }: COMMENT }

Every time we encounter another (* in this special COMMENT state, we bump up the
counter by one.

<COMMENT > SKIP : { "(*" { commentDepth +=1; } }

Every time we encounter a closing *), we decrement the counter and either switch back
to the standard DEFAULT state (upon reaching a depth of zero) or remain in the special
COMMENT state.

<COMMENT > SKIP : { "*)"

commentDepth -= 1;

SwitchTo(commentDepth == 0 ? DEFAULT : COMMENT); } }

Once we have skipped the outermost comment, the scanner will go about finding the
first legitimate token. But to skip all other characters while in the COMMENT state, we need
another rule:

<COMMENT > SKIP: { < ~[] > }

2.10 Further Readings

The lexical syntax for Java may be found in [Gosling et al., 2005]; this book is also published
online at http://docs.oracle.com/javase/specs/.

For a more rigorous presentation of finite state automata and their proofs, see [Sipser,
2006] or [Linz, 2011]. There is also the classic [Hopcroft and Ullman, 1969].

JavaCC is distributed with both documentation and examples; see https://javacc.

dev.java.net. Also see [Copeland, 2007] for a nice guide to using JavaCC.
Lex is a classic lexical analyzer generator for the C programming language. The best

description of its use is still [Lesk and Schmidt, 1975]. An open-source implementation called
Flex, originally written by Vern Paxton is [Paxton, 2008].

5This example is from [Norvell, 2011].

Lexical Analysis 57

2.11 Exercises

Exercise 2.1. Consult Chapter 3 (Lexical Structure) of The Java Language Specification
[Gosling et al., 2005]. There you will find a complete specification of Java’s lexical syntax.

a. Make a list of all the keywords that are in Java but not in j--.

b. Make a list of the escape sequences that are in Java but are not in j--.

c. How do Java identifiers differ from j-- identifiers?

d. How do Java integer literals differ from j-- integer literals?

Exercise 2.2. Draw the state transition diagram that recognizes Java multi-line comments,
beginning with a /* and ending with */.

Exercise 2.3. Draw the state transition diagram for recognizing all Java integer literals,
including octals and hexadecimals.

Exercise 2.4. Write a regular expression that describes the language of all Java integer
literals.

Exercise 2.5. Draw the state transition diagram that recognizes all Java numerical literals
(both integers and floating point).

Exercise 2.6. Write a regular expression that describes all Java numeric literals (both
integers and floating point).

Exercise 2.7. For each of the following regular expressions, use Thompson’s construction
to derive a non-deterministic finite automaton (NFA) recognizing the same language.

a. aaa

b. (ab)∗ab

c. a∗bc∗d

d. (a|bc∗)a∗

e. (a|b)∗

f. a∗|b∗

g. (a∗|b∗)∗

h. ((aa)∗(ab)∗(ba)∗(bb)∗)∗

Exercise 2.8. For each of the NFA’s in the previous exercise, use powerset construction
for deriving an equivalent deterministic finite automaton (DFA).

Exercise 2.9. For each of the DFA’s in the previous exercise, use the partitioning method
to derive an equivalent minimal DFA.

The following exercises ask you to modify the hand-crafted scanner in the j-- compiler
for recognizing new categories of tokens. For each of these, write a suitable set of tests, then
add the necessary code, and run the tests.

58 An Introduction to Compiler Construction in a Java World

Exercise 2.10. Modify Scanner in the j-- compiler to scan (and ignore) Java multi-line
comments.

Exercise 2.11. Modify Scanner in the j-- compiler to recognize and return all Java oper-
ators.

Exercise 2.12. Modify Scanner in the j-- compiler to recognize and return all Java reserved
words.

Exercise 2.13. Modify Scanner in the j-- compiler to recognize and return Java double
precision literal (returned as DOUBLE_LITERAL).

Exercise 2.14. Modify Scanner in the j-- compiler to recognize and return all other literals
in Java, for example, FLOAT_LITERAL, LONG_LITERAL, etc.

Exercise 2.15. Modify Scanner in the j-- compiler to recognize and return all other rep-
resentations of integers (hexadecimal, octal, etc.).

The following exercises ask you to modify the j--.jj file in the j-- compiler for recog-
nizing new categories of tokens. For each of these, write a suitable set of tests, then add the
necessary code, and run the tests. Consult Appendix A to learn how tests work.

Exercise 2.16. Modify the j--.jj file in the j-- compiler to scan (and ignore) Java multi-
line comments.

Exercise 2.17. Modify the j--.jj file in the j-- compiler to deal with nested Java multi-
line comments, using lexical states and lexical actions.

Exercise 2.18. Re-do Exercise 2.17, but insuring that any nested parentheses inside the
comment are balanced.

Exercise 2.19. Modify the j--.jj file in the j-- compiler to recognize and return all Java
operators.

Exercise 2.20. Modify the j--.jj file in the j-- compiler to recognize and return all Java
reserved words.

Exercise 2.21. Modify the j--.jj file in the j-- compiler to recognize and return Java
double precision literal (returned as DOUBLE_LITERAL).

Exercise 2.22. Modify the j--.jj file in the j-- compiler to recognize and return all other
literals in Java, for example, FLOAT_LITERAL, LONG_LITERAL, etc.

Exercise 2.23. Modify the j--.jj file in the j-- compiler to recognize and return all other
representations of integers (hexadecimal, octal, etc.).

Chapter 3

Parsing

3.1 Introduction

Once we have identified the tokens in our program, we then want to determine its syntactic
structure. That is, we want to put the tokens together to make the larger syntactic entities:
expressions, statements, methods, and class definitions. This process of determining the
syntactic structure of a program is called parsing.

First, we wish to make sure the program is syntactically valid—that it conforms to the
grammar that describes its syntax. As the parser parses the program it should identify
syntax errors and report them and the line numbers they appear on. Moreover, when the
parser does find a syntax error, it should not just stop, but it should report the error and
gracefully recover so that it may go on looking for additional errors.

Second, the parser should produce some representation of the parsed program that is
suitable for semantic analysis. In the j-- compiler, we produce an abstract syntax tree (AST).

For example, given the j-- program we saw in Chapter 2,

package pass;f

import java.lang.System;

public class Factorial {

// Two methods and a field

public static int factorial(int n) {

if (n <= 0)

return 1;

else

return n * factorial(n - 1);

}

public static void main(String [] args) {

int x = n;

System.out.println(x + "! = " + factorial(x));

}

static int n = 5;

}

we would like to produce an abstract syntax tree such as that in Figure 3.1 (the boxes
represent ArrayLists).

Notice that the nodes in the AST represent our syntactic objects. The tree is rooted at
a JCompilationUnit, the syntactic object representing the program that we are compiling.
The directed edges are labeled by the names of the fields they represent; for example, the
JCompilationUnit has a package name, a list (an ArrayList) of imported types, and a list
(an ArrayList) of class declarations—in this case just one.

59

60 An Introduction to Compiler Construction in a Java World

FIGURE 3.1 An AST for the Factorial program

Parsing 61

A BNF grammar describes the syntax of programs in a programming language. For
example, Appendix B at the end of this book uses BNF for describing the syntax of j-- and
Appendix C describes the syntax of Java. BNF is described in the next section. The AST
captures the essential syntax of our program.

Why are we interested in a tree representation for our program? Because it is easier to
analyze and decorate (with type information) a tree than it is to do the same with text.
The abstract syntax tree makes that syntax, which is implicit in the program text, explicit.
This is the purpose of parsing.

Before discussing how we might go about parsing j-- programs, we must first discuss
context-free grammars and the languages they describe.

3.2 Context-Free Grammars and Languages

3.2.1 Backus–Naur Form (BNF) and Its Extensions

The grammars that we use to describe programming languages are inherently recursive and
so are best described by what we call context-free grammars. For example, the context-free
rule

(3.1)S ::= if (E) S

says that, if E is an expression and S is a statement,

if (E) S

is also a statement. Or, we can read the rule as, a statement S can be written as an if,
followed by a parenthesized expression E and finally a statement S. That is, we can read
the “::=” as “can be written as a”. There are abbreviations possible in the notation. For
example, we can write

(3.2)S ::= if (E) S
| if (E) S else S

as shorthand for

(3.3)S ::= if (E) S
S ::= if (E) S else S

That is, we can read the “|” as “or”. So, a statement S can be written either as an if

followed by a parenthesized expression E, and a statement S; or as an if, followed by a
parenthesized expression E, a statement S, an else, and another statement S.

This notation for describing programming language is called Backus-Naur Form (BNF)
for John Backus and Peter Naur who used it to describe the syntax for Algol 60 in the Algol
60 Report [Backus et al., 1963].

The rules have all sorts of names: BNF-rules, rewriting rules, production rules, pro-
ductions, or just rules (when the meaning is clear from the context). We use the terms
production rule or simply rule.

There exist many extensions to BNF1, made principally for reasons of expression and

1BNF with these extensions is called extended BNF or EBNF.

62 An Introduction to Compiler Construction in a Java World

clarity. Our notation for describing j-- syntax follows that used for describing Java [Gosling
et al., 2005].

In our grammar, the square brackets indicate that a phrase is optional, for example,
(3.2) and (3.3) could have been written as

(3.4)S ::= if (E) S [else S]

which says an S may be written as if (E) S, optionally followed by else S. Curly braces
denote the Kleene closure, indicating that the phrase may appear zero or more times. For
example,

(3.5)E ::= T {+ T}

which says that an expression E may be written as a term T , followed by zero or more
occurrences of + followed by a term T :

T
T + T
T + T + T
. . .

Finally, one may use the alternation sign | inside right-hand sides, using parentheses for
grouping, for example,

(3.6)E ::= T {(+ | -) T}

meaning that the additive operator may be either + or -, allowing for

T + T - T + T

This extended BNF allows us to describe such syntax as that for a j-- compilation unit,

(3.7)compilationUnit ::= [package qualifiedIdentifier ;]
{import qualifiedIdentifier ;}
{typeDeclaration} EOF

which says that a j-- compilation unit may optionally have a package clause at the top,
followed by zero or more imports, followed by zero or more type (for example, class) decla-
rations2. The EOF represents the end-of-file.

These extensions do not increase the expressive power of BNF because they can be
expressed in classic BNF. For example, if we allow the empty string ε on the right-hand
side of a production rule, then the optional

[X Y Z]

can be expressed as T , where T is defined by the rules

T ::= X Y Z
T ::= ε

2Yes, syntactically this means that the input file can be empty. We often impose additional rules, enforced
later, saying that there must be at most one public class declared.

Parsing 63

and T occurs in no other rule. Likewise,

{X Y Z}

can be expressed as U , where U is defined by the rules

U ::= X Y Z U
U ::= ε

and U appears nowhere else in the grammar. Finally,

(X | Y | Z)

can be expressed as V , where V is defined by the rules

V ::= X
| Y
| Z

and V appears nowhere else in the grammar.
Even though these abbreviations express the same sorts of languages as classic BNF,

we use them for convenience. They make for more compact and more easily understood
grammars.

3.2.2 Grammar and the Language It Describes

Definition 3.1. A context-free grammar is a tuple, G = (N,T, S, P), where

• N is a set of non-terminal symbols, sometimes called non-terminals;

• T is a set of terminal symbols, sometimes called terminals;

• S ∈ N is a designated non-terminal, called the start symbol,; and

• P is a set of production rules, sometimes called productions or rules.

For example, a context-free grammar that describes (very) simple arithmetic expressions
is G = (N,T, S, P), where N = {E, T, F} is the set of non-terminals, T = {+, *, (,), id}
is the set of terminals, S = E is the start symbol, and

(3.8)P = {E ::= E + T ,
E ::= T ,
T ::= T * F ,
T ::= F ,
F ::= (E),
F ::= id}

A little less formally, we can denote the same grammar simply as a sequence of produc-
tion rules. For example, (3.9) denotes the same grammar as does (3.8).

64 An Introduction to Compiler Construction in a Java World

(3.9)
E ::= E + T
E ::= T
T ::= T * F
T ::= F
F ::= (E)
F ::= id

We may surmise that the symbols (here E, T , and F) that are defined by at least one
production rule are non-terminals. Conventionally, the first defined non-terminal (that is,
E here) is our start symbol. Those symbols that are not defined (here +, *, (,), and id)
are terminals.

The start symbol is important to us because it is from this symbol, using the production
rules, that can generate strings in a language. For example, because we designate E to be
the start symbol in the grammar above, we can record a sequence of applications of the
production rules, starting from E to the sentence id + id * id as follows:

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ id + T
⇒ id + T * F
⇒ id + F * F
⇒ id + id * F
⇒ id + id * id

We call this a derivation. When a string of symbols derives another string of symbols
in one step, that is, by a single application of a production rule, we say that first string
directly derives the second string. For example,

E directly derives E + T
E + T directly derives T + T
T + T directly derives F + T
and so on . . .

When one string can be rewritten as another string, using zero or more production rules
from the grammar, we say the first string derives the second string. For this derives relation,
we usually use the symbol

∗⇒. For example,

E
∗⇒ E (in zero steps)

E
∗⇒ id + F * F

T + T
∗⇒ id + id * id

We say the language L(G) that is described by a grammar G consists of all the strings
(sentences) comprised of only terminal symbols that can be derived from the start symbol.
A little more formally, we can express the language L(G) for a grammar G with start symbol
S and terminals T as

(3.10)L(G) = {w | S
∗⇒ w and w ∈ T*}.

For example, in our grammar above,

E
∗⇒ id + id * id

E
∗⇒ id

E
∗⇒ (id + id) * id

Parsing 65

so, L(G) includes each of

id + id * id

id

(id + id) * id

and infinitely more finite sentences.
We are interested in languages, those strings of terminals that can be derived from a

grammar’s start symbol. There are two kinds of derivation that will be important to us when
we go about parsing these languages: left-most derivations and right-most derivations.

A left-most derivation is a derivation in which at each step, the next string is derived by
applying a production rule for rewriting the left-most non-terminal. For example, we have
already seen a left-most derivation of id + id * id:

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ id + T
⇒ id + T * F
⇒ id + F * F
⇒ id + id * F
⇒ id + id * id

Here we have underlined the left-most non-terminal in each string of symbols in the deriva-
tion to show that it is indeed a left-most derivation.

A right-most derivation is a derivation in which at each step, the next string is derived
by applying a production rule for rewriting the right-most non-terminal. For example, the
right-most derivation of id + id * id would go as follows:

E ⇒ E + T
⇒ E + T * F
⇒ E + T * id

⇒ E + F * id

⇒ E + id * id

⇒ T + id * id

⇒ F + id * id

⇒ id + id * id

We use the term sentential form to refer to any string of (terminal and non-terminal)
symbols that can be derived from the start symbol. So, for example in the previous deriva-
tion,

E
E + T
E + T * F
E + T * id

E + F * id

E + id * id

T + id * id

F + id * id

id + id * id

66 An Introduction to Compiler Construction in a Java World

are all sentential forms. Clearly, any sentential form consisting solely of terminal symbols
is a sentence in the language.

An alternative representation of a derivation is the parse tree, a tree that illustrates the
derivation and the structure of an input string (at the leaves) from a start symbol (at the
root). For example, Figure 3.2 shows the parse tree for id + id * id.

FIGURE 3.2 A parse tree for id + id * id.

Consider the j-- grammar in Appendix B. In this grammar, compilationUnit is the start
symbol; from it one may derive syntactically legal j-- programs. Not every syntactically
legal j-- program is in fact a bona fide j-- program. For example, the grammar permits such
fragments as

5 * true;

The j-- grammar in fact describes a superset of the programs in the j-- language. To
restrict this superset to the set of legal j-- programs, we need additional rules, such as
type rules requiring, for example, that the operands to * must be numbers. Type rules are
enforced during semantic analysis.

3.2.3 Ambiguous Grammars and Unambiguous Grammars

Given a grammar G, if there exists a sentence s in L(G) for which there are more than one
left-most derivations in G (or equivalently, either more than one right-most derivations, or
more than one parse tree for s in G), we say that the sentence s is ambiguous. Moreover,
if a grammar G describes at least one ambiguous sentence, the grammar G is ambiguous
(grammar). If there is no such sentence, that is, if every sentence is derivable by a unique
left-most (or right-most) derivation (or has a unique parse tree), we say the grammar is
unambiguous.

Example. Consider the grammar

(3.11)E ::= E + E | E * E | (E) | id

and, consider the sentence id + id * id. One left-most derivation for this sentence is

E ⇒ E + E
⇒ id + E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

Parsing 67

Another left-most derivation of the same sentence is

E ⇒ E * E
⇒ E + E * E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

Therefore, the grammar is ambiguous. It is also the case that the sentence has two
right-most derivations in the grammar:

E ⇒ E + E
⇒ E + E * E
⇒ E + E * id

⇒ E + id * id

⇒ id + id * id

and

E ⇒ E * E
⇒ E * id

⇒ E + E * id

⇒ E + id * id

⇒ id + id * id

These two right-most derivations for the same sentence also show the grammar is am-
biguous. Finally, the two parse trees, illustrated in Figure 3.3, for the same sentence also
demonstrate ambiguity.

FIGURE 3.3 Two parse trees for id + id * id.

Clearly, we would rather have unambiguous grammars describe our programming lan-
guage, because ambiguity in the parsing can lead to ambiguity in assigning semantics (mean-
ing) to programs. For example, in id + id * id, which operation is applied first: addition

68 An Introduction to Compiler Construction in a Java World

or multiplication? From our math days, we would like the multiplication operator * to be
more binding than the addition operator +. Notice that the grammar in (3.11) does not
capture this precedence of operators in the way that the grammar in (3.9) does.

Example. As another example, consider the grammar describing conditional statements

(3.12)S ::= if (E) S
| if (E) S else S
| s

E ::= e

Here, the token e represents an arbitrary expression and the s represents a (non-
conditional) statement.

Consider the sentence

(3.13)if (e) if (e) s else s

If we look at this sentence carefully, we see that it nests one conditional statement within
another. One might ask: To which if does the else belong? We cannot know; the sentence
is ambiguous. More formally, there exist two left-most derivations for this sentence:

S ⇒ if (E) S else S
⇒ if (e) S else S
⇒ if (e) if (E) S else S
⇒ if (e) if (e) S else S
⇒ if (e) if (e) s else S
⇒ if (e) if (e) s else s

and

S ⇒ if (E) S
⇒ if (e) S
⇒ if (e) if (E) S else S
⇒ if (e) if (e) S else S
⇒ if (e) if (e) s else S
⇒ if (e) if (e) s else s

The two differing parse trees in Figure 3.4 for the same sentence (3.13) also demonstrate
ambiguity.

FIGURE 3.4 Two parse trees for if (e) if (e) s else s.

Parsing 69

If unambiguous grammars are so important, why do we see so many languages having
this ambiguous conditional statement? All of j--, Java, C, and C++ include precisely this
same ambiguous conditional construct. One could easily modify the syntax of conditionals
to remove the ambiguity. For example, the programming languages S-Algol and Algol-S
define conditionals so:

(3.14)S ::= if E do S
| if E then S else S
| s

E ::= e

Here, the do indicates the simpler conditional (having no else clause) while the then

indicates the presence of an else clause. A simple solution but it does change the language.
But programmers have become both accustomed to (and fond of) the ambiguous condi-

tional. So both programmers and compiler writers have learned to live with it. Programming
language reference manuals include extra explanations, such as In the conditional statement,
the else clause goes with the nearest preceding if.

And compiler writers handle the rule as a special case in the compiler’s parser, making
sure that an else is grouped along with the closest preceding if.

The j-- grammar (and the Java grammar) have another ambiguity, which is even more
difficult. Consider the problem of parsing the expression

x.y.z.w

Clearly, w is a field; if it were a method expression, then that would be evident in the syntax:

x.y.z.w()

But, what about x.y.z? There are several possibilities depending on the types of the
names x, y, and z.

• If x is the name of a local variable, it might refer to an object with a field y, referring
to another object with a field z, referring to yet another object having our field w. In
this case, the expression would be parsed as a cascade of field selection expressions.

• Alternatively, x.y might be the name of a package in which the class z is defined.
In this case, we would parse the expression by first parsing x.y.z as a fully qualified
class and then parse w as a static field selection of that class.

• Other possibilities, parsing various permutations of (possibly qualified) class names
and field selection operations, also exist.

The parser cannot determine just how the expression x.y.z is parsed because types
are not decided until after it has parsed the program and constructed its abstract syntax
tree (AST). So the parser represents x.y.z in the AST by an AmbiguousName node. Later
on, after type declarations have been processed, the compiler rewrites this node as the
appropriate sub-tree.

These two examples of ambiguity in j-- (and in Java) make the point that in compiling
everyday programming languages, one must deal with messiness. One relies on formal tech-
niques where practical, because formal techniques lead to more correct compilers. But once
in awhile, formality fails and one must deal with special cases.

In general, there is no algorithm that can tell us whether or not an arbitrary grammar
is ambiguous. That is, ambiguity is not decidable. But there are large classes of grammars
(and so programming languages) that both can be shown to be decidable and for which
efficient parsers can be automatically constructed. These classes of grammars are large

70 An Introduction to Compiler Construction in a Java World

enough to describe the many programming languages in use today. We look at these classes
of grammars in the next sections.

Because of their recursive nature, parsing languages described by context-free grammars
requires the use of a pushdown stack. In general, we can parse any language that is described
by a context-free grammar but more often than not, the algorithms that do so involve
backtracking.

But there are classes of grammars whose languages may be parsed without backtracking;
the parsing is said to be deterministic. At each step of the parsing algorithm, the next step
may be determined simply by looking at both the state of the pushdown stack and the
incoming symbol (as the input sentence is scanned from left to right). These deterministic
parsers may be roughly divided into two categories:

• Top-down parsing: where the parser begins at the start symbol and, step-by-step de-
rives the input sentence and producing either a parse tree or (more likely) an abstract
syntax tree (AST) from the root down to its leaves.

• Bottom-up parsing: where the parser begins at the input sentence and, scanning it
from left to right, applies the production rules, replacing right-hand sides with left-
hand-sides, in a step-by-step fashion for reducing the sentence to obtain the start
symbol. Here the parse tree or abstract syntax tree is built from the bottom leaves
up to the top root.

3.3 Top-Down Deterministic Parsing

There are two popular top-down deterministic parsing strategies: parsing by recursive de-
scent and LL(1) parsing. Both parsers scan the input from left to right, looking at and
scanning just one symbol at a time.

In both cases, the parser starts with the grammar’s start symbol as an initial goal in
the parsing process; that is, the goal is to scan the input sentence and parse the syntactic
entity represented by the start symbol. The start symbol is then rewritten, using a BNF
rule replacing the symbol with the right-hand side sequence of symbols.

For example, in parsing a j-- program, our initial goal is to parse the start symbol,
compilationUnit. The compilationUnit is defined by a single extended-BNF rule.

(3.15)compilationUnit ::= [package qualifiedIdentifier ;]
{import qualifiedIdentifier ;}
{typeDeclaration} EOF

So, the goal of parsing a compilationUnit in the input can be rewritten as a number of
sub-goals:

1. If there is a package statement in the input sentence, then we parse that.

2. If there are import statements in the input, then we parse them.

3. If there are any type declarations, then we parse them.

4. Finally, we parse the terminating EOF token.

Parsing 71

Parsing a token, like package, is simple enough. The token should be the first token in
the as-yet unscanned input sentence. If it is, we simply scan it; otherwise we raise an error.

Parsing a non-terminal is treated as another parsing (sub-) goal. For example, in the
package statement, once we have scanned the package token, we are left with parsing a
qualifiedIdentifier. This is defined by yet another BNF rule

(3.16)qualifiedIdentifier ::= <identifier> {. <identifier>}

Here we scan an <identifier> (treated by the lexical scanner as a token). And, long as we
see another period in the input, we scan that period and scan another <identifier>.

That we start at the start symbol and continually rewrite non-terminals using BNF rules
until we eventually reach leaves (the tokens are the leaves) makes this a top-down parsing
technique. Because we, at each step in parsing a non-terminal, replace a parsing goal with
a sequence of sub-goals, we often call this a goal-oriented parsing technique.

How do we decide what next step to take? For example, how do we decide whether or
not there are more import statements to parse? We decide by looking at the next unscanned
input token. If it is an import, we have another import statement to parse; otherwise we
go on to parsing type declarations. This kind of decision is more explicitly illustrated by
the definition for the statement non-terminal (3.17).

(3.17)statement ::= block
| <identifier> : statement
| if parExpression statement [else statement]
| while parExpression statement
| return [expression] ;
| ;
| statementExpression ;

When faced with the goal of parsing a statement, we have six alternatives to choose
from, depending on the next unscanned input token:

1. If the next token is a {, we parse a block;

2. If the next token is an if, we parse an if statement;

3. If the next token is a while, we parse a while statement;

4. If the next token is a return, we parse a return statement;

5. If the next token is a semicolon, we parse an empty statement;

6. Otherwise (or based on the next token being one of a set of tokens, any one of which
may begin an expression) we parse a statementExpression.

In this instance, the decision may be made looking at the next single unscanned input
token; when this is the case, we say that our grammar is LL(1). In some cases, one must look
ahead several tokens in the input to decide which alternative to take. In all cases, because
we can predict which of several alternative right-hand sides of a BNF rule to apply, based
on the next input token(s), we say this is a predictive parsing technique.

There are two principal top-down (goal-oriented, or predictive) parsing techniques avail-
able to us:

1. Parsing by recursive descent; and

2. LL(1) or LL(k) parsing.

72 An Introduction to Compiler Construction in a Java World

3.3.1 Parsing by Recursive Descent

Parsing by recursive descent involves writing a method (or procedure) for parsing each non-
terminal according to the production rules that define that non-terminal. Depending on
the next unscanned input symbol, the method decides which rule to apply and then scans
any terminals (tokens) in the right-hand side by calling upon the Scanner, and parses any
non-terminals by recursively invoking the methods that parse them.

This is a strategy we use in parsing j-- programs. We already saw the method
compilationUnit() that parses a j-- compilationUnit in Section 1.4.3.

As another example, consider the rule defining qualifiedIdentifier:

(3.18)qualifiedIdentifier ::= <identifier> {. <identifier>}

As we saw above, parsing a qualifiedIdentifier such as java.lang.Class is straightfor-
ward:

1. One looks at the next incoming token and if it is an identifier, scans it. If it is not an
identifier, then one raises an error.

2. Repeatedly, as long as the next incoming token is a period:

a. One scans the period.

b. One looks at the next incoming token and if it is an identifier, scans it. Otherwise,
one raises an error.

The method for implementing this not only parses the input, but also constructs an
AST node for recording the fully qualified name as a string. The method is quite simple but
introduces two helper methods: have() and mustBe(), which we use frequently throughout
the parser.

private TypeName qualifiedIdentifier () {

int line = scanner.token (). line ();

mustBe(IDENTIFIER);

String qualifiedIdentifier = scanner.previousToken (). image ();

while (have(DOT)) {

mustBe(IDENTIFIER);

qualifiedIdentifier += "."

+ scanner.previousToken (). image ();

}

return new TypeName(line , qualifiedIdentifier);

}

The method have() is a predicate. It looks at the next incoming token (supplied by the
Scanner), and if that token matches its argument, then it scans the token in the input and
returns true. Otherwise, it scans nothing and returns false.

The method mustBe() requires that the next incoming token match its argument. It
looks at the next token and if it matches its argument, it scans that token in the input.
Otherwise, it raises an error3.

As another example, consider our syntax for statements.

(3.19)
statement ::= block

| <identifier> : statement
| if parExpression statement [else statement]
| while parExpression statement
| return [expression] ;
| ;
| statementExpression ;

3As we shall see below, mustBe() provides a certain amount of error recovery.

Parsing 73

As we saw above, the problem parsing a sentence against the grammar is deciding which
rule to apply when looking at the next unscanned token.

private JStatement statement () {

int line = scanner.token (). line ();

if (see(LCURLY)) {

return block ();

} else if (have(IF)) {

JExpression test = parExpression ();

JStatement consequent = statement ();

JStatement alternate = have(ELSE) ? statement () : null;

return new JIfStatement(line , test , consequent , alternate);

} else if (have(WHILE)) {

JExpression test = parExpression ();

JStatement statement = statement ();

return new JWhileStatement(line , test , statement);

} else if (have(RETURN)) {

if (have(SEMI)) {

return new JReturnStatement(line , null);

} else {

JExpression expr = expression ();

mustBe(SEMI);

return new JReturnStatement(line , expr);

}

} else if (have(SEMI)) {

return new JEmptyStatement(line);

} else { // Must be a statementExpression

JStatement statement = statementExpression ();

mustBe(SEMI);

return statement;

}

}

Notice the use of see() in looking to see if the next token is a left curly bracket {, the
start of a block. Method see() is a predicate that simply looks at the incoming token to
see if it is the token that we are looking for; in no case is anything scanned. The method
block() scans the {. On the other hand, have() is used to look for (and scan, if it finds
it) either an if, a while, a return, or a ;. If none of these particular tokens are found,
then we have neither a block, an if-statement, a while-statement, a return-statement, nor
an empty statement; we assume the parser is looking at a statement expression. Given that
so many tokens may begin a statementExpression, we treat that as a default; if the next
token is not one that may start a statementExpression, then statementExpression() (or
one of the methods to which it delegates the parse) will eventually detect the error. The
important thing is that the error is detected before any additional tokens are scanned so its
location is accurately located.

Lookahead

The parsing of statements works because we can determine which rule to follow in parsing
the statement based only on the next unscanned symbol in the input source. Unfortunately,
this is not always the case. Sometimes we must consider the next few symbols in deciding
what to do. That is, we must look ahead in the input stream of tokens to decide which rule
to apply. For example, consider the syntax for simple unary expression.

(3.20)simpleUnaryExpression ::= ! unaryExpression
| (basicType) unaryExpression //cast
| (referenceType) simpleUnaryExpression // cast
| postfixExpression

74 An Introduction to Compiler Construction in a Java World

For this, we need special machinery. Not only must we differentiate between the two
kinds (basic type and reference type) of casts, but we must also distinguish a cast from a
postfix expression that is a parenthesized expression, for example (x).

Consider the Parser code for parsing a simple unary expression:

private JExpression simpleUnaryExpression () {

int line = scanner.token (). line ();

if (have(LNOT)) {

return new JLogicalNotOp(line , unaryExpression ());

} else if (seeCast ()) {

mustBe(LPAREN);

boolean isBasicType = seeBasicType ();

Type type = type ();

mustBe(RPAREN);

JExpression expr = isBasicType

? unaryExpression ()

: simpleUnaryExpression ();

return new JCastOp(line , type , expr);

} else {

return postfixExpression ();

}

}

Here we use the predicate seeCast() to distinguish casts from parenthesized expressions,
and seeBasicType() to distinguish between casts to basic types from casts to reference
types. Now, consider the two predicates.

First, the simpler seeBasicType().

private boolean seeBasicType () {

if (see(BOOLEAN) || see(CHAR) || see(INT)) {

return true;

} else {

return false;

}

}

The predicate simply looks at the next token to see whether or not it denotes a basic
type. The method simpleUnaryExpression() can use this because it has factored out the
opening parenthesis, which is common to both kinds of casts.

Now consider the more difficult seeCast().

private boolean seeCast () {

scanner.recordPosition ();

if (!have(LPAREN)) {

scanner.returnToPosition ();

return false;

}

if (seeBasicType ()) {

scanner.returnToPosition ();

return true;

}

if (!see(IDENTIFIER)) {

scanner.returnToPosition ();

return false;

} else {

scanner.next (); // Scan the IDENTIFIER

// A qualified identifier is ok

while (have(DOT)) {

if (!have(IDENTIFIER)) {

scanner.returnToPosition ();

return false;

}

Parsing 75

}

}

while (have(LBRACK)) {

if (!have(RBRACK)) {

scanner.returnToPosition ();

return false;

}

}

if (!have(RPAREN)) {

scanner.returnToPosition ();

return false;

}

scanner.returnToPosition ();

return true;

}

Here, seeCast() must look ahead in the token stream to consider a sequence of tokens
in making its decision. But our lexical analyzer Scanner keeps track of only the single
incoming symbol. For this reason, we define a second lexical analyzer LookaheadScanner,
which encapsulates our Scanner but provides extra machinery that allows one to look ahead
in the token stream. It includes a means of remembering tokens (and their images) that have
been scanned, a method recordPosition() for marking a position in the token stream, and
returnToPosition() for returning the lexical analyzer to that recorded position (that is, for
backtracking). Of course, calls to the two methods may be nested, so that one predicate (for
example, seeCast()) may make use of another (for example, seeBasicType()). Therefore,
all of this information must be recorded on a pushdown stack.

Error Recovery

What happens when the parser detects an error? This will happen when mustBe() comes
across a token that it is not expecting. The parser could simply report the error and quit.
But we would rather have the parser report the error, and then continue parsing so that
it might detect any additional syntax errors. This facility for continuing after an error is
detected is called error recovery.

Error recovery can be difficult. The parser must not only detect syntax errors but it must
sufficiently recover its state so as to continue parsing without introducing additional spurious
error messages. Many parser generators4 provide elaborate machinery for programming
effective error recovery.

For the j-- parser, we provide limited error recovery in the mustBe() method, which was
proposed by [Turner, 1977]. First, consider the definitions for see() and have().

private boolean see(TokenKind sought) {

return (sought == scanner.token (). kind ());

}

private boolean have(TokenKind sought) {

if (see(sought)) {

scanner.next ();

return true;

} else {

return false;

}

}

4A parser generator is a program that will take a context-free grammar (of a specified class) as input
and produce a parser as output. We discuss the generation of parsers in subsequent sections, and we discuss
a particular parser generator, JavaCC, in Section 3.5.

76 An Introduction to Compiler Construction in a Java World

These are defined as one would expect. Method mustBe(), defined as follows, makes use
of a boolean flag, isRecovered, which is true if either no error has been detected or if the
parser has recovered from a previous syntax error. It takes on the value false when it is in
a state in which it has not yet recovered from a syntax error.

boolean isRecovered = true;

private void mustBe(TokenKind sought) {

if (scanner.token (). kind() == sought) {

scanner.next ();

isRecovered = true;

} else if (isRecovered) {

isRecovered = false;

reportParserError ("%s found where %s sought", scanner

.token (). image(), sought.image ());

} else {

// Do not report the (possibly spurious) error ,

// but rather attempt to recover by forcing a match.

while (!see(sought) && !see(EOF)) {

scanner.next ();

}

if (see(sought)) {

scanner.next ();

isRecovered = true;

}

}

}

When mustBe() first comes across an input token that it is not looking for (it is in the
recovered state), it reports an error and goes into an unrecovered state. If, in a subsequent
use of mustBe(), it finds another syntax error, it does not report the error, but rather it
attempts to get back into a recovered state by repeatedly scanning tokens until it comes
across the one it is seeking. If it succeeds in finding that token, it goes back into a recovered
state. It may not succeed but instead scan to the end of the file; in this case, parsing stops.
Admittedly, this is a very näıve error recovery scheme, but it works amazingly well for its
simplicity5.

3.3.2 LL(1) Parsing

The recursive invocation of methods in the recursive descent parsing technique depends on
the underlying program stack for keeping track of the recursive calls. The LL(1) parsing
technique makes this stack explicit. The first L in its name indicates a left-to-right scan
of the input token stream; the second L signifies that it produces a left parse, which is a
left-most derivation. The (1) indicates we just look ahead at the next 1 symbol in the input
to make a decision.

Like recursive descent, the LL(1) technique is top-down, goal oriented, and predictive.

LL(1) Parsing Algorithm

An LL(1) parser works in typical top-down fashion. At the start, the start symbol is pushed
onto the stack, as the initial goal. Depending on the first token in the input stream of
tokens to be parsed, the start symbol is replaced on the stack by a sequence of symbols
from the right-hand side of a rule defining the start symbol. Parsing continues by parsing
each symbol as it is removed from the top of the stack:

5It reminds us of the story of the dancing dog: one does not ask how well the dog dances but is amazed
that he dances at all.

Parsing 77

• If the top symbol is a terminal, it scans that terminal from the input. If the next
incoming token does not match the terminal on the stack, then an error is raised.

• If the top symbol is a non-terminal, the parser looks at the next incoming token in
the input stream to decide what production rule to apply to expand the non-terminal
taken from the top of the stack.

Every LL(1) parser shares the same basic parsing algorithm, which is table-driven. A
unique parsing table is produced for each grammar. This table has a row for each non-
terminal that can appear on the stack, and a column for each terminal token, including
special terminator # to mark the end of the string. The parser consults this table, given the
non-terminal on top of the stack and the next incoming token, to determine which BNF
rule to use in rewriting the non-terminal. It is important that the grammar be such that
one may always unambiguously decide what BNF rule to apply; equivalently, no table entry
may contain more than one rule.

For example, consider the following grammar:

(3.21)1. E ::= T E′

2. E′ ::= + T E′

3. E′ ::= ε
4. T ::= F T ′

5. T ′ ::= * F T ′

6. T ′ ::= ε
7. F ::= (E)
8. F ::= id

This grammar describes the same language as that described by the grammar (3.8)
in Section 3.2.2. Another grammar that, using the extensions described in Section 3.2.1,
describes the same language is

(3.22)E ::= T {+ T}
T ::= F {* F}
F ::= (E) | id

Such a grammar lends itself to parsing by recursive descent. But, the advantage of the
grammar in (3.21) is that we can define an LL(1) parsing table for it. The parsing table for
the grammar in (3.21) is given in Figure 3.5.

FIGURE 3.5 LL(1) parsing table for the grammar in Example 3.21.

78 An Introduction to Compiler Construction in a Java World

The numbers in the table’s entries refer to the numbers assigned to BNF rules in the
example grammar (3.21). An empty entry indicates an error: when the parser has the given
non-terminal on top of the stack and the given token as the next input symbol, the parser
is in an erroneous state. The LL(1) parsing algorithm is parameterized by this table. As we
mentioned earlier, it makes use of an explicit pushdown stack.

Algorithm 3.1 LL(1) Parsing Algorithm

Input: LL(1) parsing table table, production rules rules, and a sentence w, where w is a
string of terminals followed by a terminator #

Output: a left-parse, which is a left-most derivation for w
Stack stk initially contains the terminator # and the start symbol S, with S on top
Symbol sym is the first symbol in the sentence w
while true do

Symbol top← stk.pop()
if top = sym = # then

Halt successfully
else if top is a terminal symbol then

if top = sym then
Advance sym to be the next symbol in w

else
Halt with an error: a sym found where a top was expected

end if
else if top is a non-terminal Y then
index← table[Y, sym]
if index 6= err then
rule← rules[index]
Say rule is Y ::= X1X2 . . . Xn; push Xn, . . . , X2, X1 onto the stack stk, with X1

on top
end if

else
Halt with an error

end if
end while

Parsing 79

FIGURE 3.6 The steps in parsing id + id * id against the LL(1) parsing table in Figure
3.5.

For example, consider parsing the input sentence, id + id * id #. The parser would
go through the states illustrated in Figure 3.6.

a. Initially, the parser begins with a # and E on top of its stack. E represents the goal, the
entity that we wish to parse.

80 An Introduction to Compiler Construction in a Java World

b. As an id is the incoming token, table[E, id] = 1 tells us to apply rule 1, E ::= TE′, and
replace the E on the stack with the right-hand side, T and E′, with T on top. Basically,
we plan to accomplish the goal of parsing an E by accomplishing the two sub- goals of
parsing a T and then an E′.

c. Seeing an id for the incoming token, we apply rule 4, T ::= FT ′, and replace the T on
the stack with the right-hand side F and T ′, with F on top.

d. We apply rule 8, F ::= id, replacing the top goal of F with an id.

e. The goal of parsing the id on top of the stack is trivially satisfied: we pop the id from
the stack and scan the id in the input; the next incoming symbol is now a +.

f. Now we have the goal of parsing a T ′ when looking at the input, +. We apply rule 6, T ′

::= ε, replacing the T ′ on the stack with the empty string (that is, nothing at all). Just
the goal E′ remains on the stack.

g. Now the goal E′, when looking at the input token +, is replaced using rule 2 by +, T and
E′, with the + on top.

h. The + is trivially parsed; it is popped from the stack and scanned from the input. The
next incoming token is id.

i. Applying rule 4, T ::= FT ′, we replace the T on the stack by F and T ′, with F on top.

j. Applying rule 8, we replace the F on the stack with id.

k. The goal of parsing the id on top of the stack is trivially satisfied: we pop the id from
the stack and scan the id in the input; the goal on the stack is now a T ′ and the next
incoming symbol is now a *.

l. We apply rule 5 to replace the T ′ on the stack with a *, F , and another T ′. The * is on
top.

m. The * on top is easily parsed: it is popped from the stack and scanned from the input.

n. The goal F , atop the stack, when looking at an incoming id, is replaced by an id using
rule 8.

o. The id is popped from the stack and scanned from the input, leaving a T ′ on the stack
and the terminator # as the incoming token.

p. We apply rule 6, replacing T ′ by the empty string.

q. We apply rule 3, replacing E′ by the empty string.

r. There is a # on top of the stack and a # as input. We are done!

An alternative to Figure 3.6 for illustrating the states that the parser goes through is as
follows:

Parsing 81

Stack Input Output

#E id+id*id#
#E′T id+id*id# 1
#E′T ′F id+id*id# 4
#E′T ′id id+id*id# 8
#E′T ′ +id*id#
#E′ +id*id# 6
#E′T+ +id*id# 2
#E′T id *id#
#E′T ′F id*id# 4
#E′T ′id id *id# 8
#E′T ′ *id#
#E′T ′F* *id# 5
#E′T ′F id#
#E′T ′id id# 8
#E′T ′ #
#E′ # 6
3

We are left with the question: How do we construct the parsing table in Figure 3.5?
Consider what the entries in the table tell us:

table[Y, a] = i, where i is the number of the rule Y ::= X1X2 . . . Xn

says that if there is the goal Y on the stack and the next unscanned symbol is a, then we can
rewrite Y on the stack as the sequence of sub-goals X1X2 . . . Xn. So, the question becomes:
When do we replace Y with X1X2 . . . Xn as opposed to something else? If we consider the
last two rules of our grammar (3.21),

7. F ::= (E)
8. F ::= id

and we have the non-terminal F on top of our parsing stack, the choice is simple. If the
next unscanned symbol is an open parenthesis (, we apply rule 7; and if it is an id, we
apply rule 8. That is,

table[F , (] = 7
table[F , id] = 8

The problem becomes slightly more complicated when the right-hand side of the rule
either starts with a non-terminal or is simply ε.

In general, assuming both α and β are (possibly empty) strings of terminals and non-
terminals, table[Y , a] = i, where i is the number of the rule Y ::= X1X2 . . . Xn, if either

1. X1X2 . . . Xn
∗⇒ aα, or

2. X1X2 . . . Xn
∗⇒ ε, and there is a derivation S#

∗⇒ αY aβ, that is, a can follow Y in a
derivation.

For this we need two helper functions: first and follow.

82 An Introduction to Compiler Construction in a Java World

First and Follow

We define, first(X1X2 . . . Xn) = {a|X1X2 . . . Xn
∗⇒ aα, a ∈ T}, that is, the set of all termi-

nals that can start strings derivable from X1X2 . . . Xn. Also, if X1X2 . . . Xn
∗⇒ ε, then we

say that first(X1X2 . . . Xn) includes ε.
We define two algorithms for computing first: one for a single symbol and the other for

a sequence of symbols. The two algorithms are both mutually recursive and make use of
memoization, that is, what was previously computed for each set is remembered upon each
iteration.

Algorithm 3.2 Compute first(X) for all symbols X in a Grammar G

Input: a context-free grammar G = (N,T, S, P)
Output: first(X) for all symbols X in G

for each terminal x do
first(x)← {x}

end for
for each non-terminal X do

first(X)← {}
end for
if X ::= ε ∈ P then

add ε to first(X)
end if
repeat

for each Y ::= X1X2 . . . Xn ∈ P do
add all symbols from first(X1X2 . . . Xn) to first(Y)

end for
until no new symbols are added to any set

Notice that the computation of first in Algorithm 3.2 might take account of the entirety
of every right-hand side of each rule defining the symbol we are interested in.

Algorithm 3.3 Compute first(X1X2 . . . Xn) for a Grammar G

Input: a context-free grammar G = (N,T, S, P) and a sequence X1X2 . . . Xn

Output: first(X1X2 . . . Xn)
Set S ← first(X1)
i← 2
while ε ∈ S and i ≤ n do
S ← S − ε
Add first(Xi) to S
i← i+ 1

end while
return S

Algorithm 3.3 says that to compute first for a sequence of symbols X1X2 . . . Xn, we start
with first(X1). If X1

∗⇒ ε, then we must also include first(X2). If X2
∗⇒ ε, then we must

also include first(X3). And so on.

Example. Consider our example grammar in (3.21). The computation of first for the
terminals, by step 1 of Algorithm 3.2 is trivial:

Parsing 83

first(+) = {+}
first(*) = {*}
first(() = {(}
first()) = {)}
first(id) = {id}

Step 2 of Algorithm 3.2 gives

first(E) = {}
first(E′) = {}
first(T) = {}
first(T ′) = {}
first(F) = {}

Step 3 of Algorithm 3.2 yields

first(E′) = {ε}
first(T ′) = {ε}

Step 4 of Algorithm 3.2 is repeatedly executed until no further symbols are added. The
first round yields

first(E) = {}
first(E′) = {+, ε}
first(T) = {}
first(T ′) = {*, ε}
first(F) = {(, id}

The second round of step 4 yields

first(E) = {}
first(E′) = {+, ε}
first(T) = {(, id}
first(T ′) = {*, ε}
first(F) = {(, id}

The third round of step 4 yields

(3.23)first(E) = {(, id}
first(E′) = {+, ε}
first(T) = {(, id}
first(T ′) = {*, ε}
first(F) = {(, id}

The fourth round of step 4 adds no symbols to any set, leaving us with (3.23).

We are left with the question as to when is a rule, X ::= ε applicable? For this we need
the notion of follow.

We define follow(X) = {a|S ∗⇒ wXα and α
∗⇒ a . . . }, that is, all terminal symbols that

start terminal strings derivable from what can follow X in a derivation. Another definition
is as follows.

84 An Introduction to Compiler Construction in a Java World

1. Follow(S) contains #, that is, the terminator follows the start symbol.

2. If there is a rule Y ::= αXβ in P , follow(X) contains first(β)− {ε}.

3. If there is a rule Y ::= αXβ in P and either β = ε or first(β) contains ε, follow(X)
contains follow(Y).

This definition suggests a straightforward algorithm.

Algorithm 3.4 Compute follow(X) for all non-terminals X in a Grammar G

Input: a context-free grammar G = (N,T, S, P)
Output: follow(X) for all non-terminals X in G

follow(S)← {#}
for each non-terminal X ∈ S do

follow(X)← {}
end for
repeat

for each rule Y ::= X1X2 . . . Xn ∈ P do
for each non-terminal Xi do

Add first(Xi+1Xi+2 . . . Xn)−{ε} to follow(Xi), and if Xi is the right-most symbol
or first(Xi+1Xi+2 . . . Xn) contains ε, add follow(Y) to follow(Xi)

end for
end for

until no new symbols are added to any set

Example. Again, consider our example grammar (3.21). By steps 1 and 2 of Algorithm
3.4,

follow(E) = {#}
follow(E′) = {}
follow(T) = {}
follow(T ′) = {}
follow(F) = {}

From rule 1, E ::= TE′, follow(T) contains first(E′)−{ε} = {+}, and because first(E′)
contains ε, it also contains follow(E). Also, follow(E′) contains follow(E). So, round 1 of
step 3 yields,

follow(E′) = {#}
follow(T) = {+, #}

We get nothing additional from rule 2, E′ ::= + TE′. follow(T) contains first(E′)−{ε},
but we saw that in rule 1. Also, follow(E′) contains follow(E′), but that says nothing.

We get nothing additional from rule 3, E′ ::= ε.
From rule 4, T ::= FT ′, follow(F) contains first(T ′) - {} = {*}, and because first(T ′)

contains ε, it also contains follow(T). Also, follow(T ′) contains follow(T). So, we have

follow(T ′) = {+, #}
follow(F) = {+, *, #}

Rules 5 and 6 give us nothing new (for the same reasons rules 2 and 3 did not).

Parsing 85

Rule 7, F ::= (E), adds) to follow(E), so

follow(E) = {), #}

Rule 8 gives us nothing.
Summarizing round 1 of step 3, gives

follow(E) = {), #}
follow(E′) = {#}
follow(T) = {+, #}
follow(T ′) = {+, #}
follow(F) = {+, *, #}

Now, in round 2 of step 3, the) that was added to follow(E) trickles down into the
other follow sets:

From rule 1, E ::= TE′, because first(E′) contains ε, follow(T) contains follow(E). Also,
follow(E′) contains follow(E). So, we have

follow(E′) = {), #}
follow(T) = {+,), #}

From rule 4, T ::= FT ′, because first(T ′) contains ε, follow(F) contains follow(T). Also,
follow(T ′) contains follow(T). So, we have

follow(T ′) = {+,), #}
follow(F) = {+, *,), #}

So round 2 produces

(3.24)follow(E) = {), #}
follow(E′) = {), #}
follow(T) = {+,), #}
follow(T ′) = {+,), #}
follow(F) = {+, *,), #}

Round 3 of step 3 adds no new symbols to any set, so we are left with (3.24).

Constructing the LL(1) Parse Table

Recall, assuming both α and β are (possibly empty) strings of terminals and non-terminals,
table[Y, a] = i, where i is the number of the rule Y ::= X1X2 . . . Xn if either

1. X1X2 . . . Xn
∗⇒ aα, or

2. X1X2 . . . Xn
∗⇒ ε, and there is a derivation S#

∗⇒ αY aβ, that is, a can follow Y in a
derivation.

This definition, together with the functions, first and follow, suggests Algorithm 3.5.

86 An Introduction to Compiler Construction in a Java World

Algorithm 3.5 Construct an LL(1) Parse Table for a Grammar G = (N,T, S, P)

Input: a context-free grammar G = (N,T, S, P)
Output: LL(1) Parse Table for G

for each non-terminal Y ∈ G do
for each rule Y ::= X1X2 . . . Xn ∈ P with number i do

for each terminal a ∈ first(X1X2 . . . Xn)− {ε} do
table[Y, a]← i
if first(X1X2 . . . Xn) contains ε then

for each terminal a (or #) in follow(Y) do
table[Y, a]← i

end for
end if

end for
end for

end for

Example. Let as construct the parse table for (3.21). For the non-terminal E, we consider
rule 1: E ::= TE′. first(TE′) = {(, id}. So,

table[E, (] = 1
table[E, id] = 1

Because first(TE′) does not contain ε, we need not consider follow(E).
For the non-terminal E′, we first consider rule 2: E′ ::= + TE′; first(+ T E′) = {+} so

table[E′, +] = 2

Rule 3: E′ ::= ε is applicable for symbols in follow(E′) = {), #}, so

table[E′,)] = 3
table[E′, #] = 3

For the non-terminal T , we consider rule 4: T ::= FT ′. first(F T ′) = {(, id}, so

table[T , (] = 4
table[T , id] = 4

Because first(F T ′) does not contain ε, we need not consider follow(T).
For non-terminal T ′, we first consider rule: 5: T ′ ::= * FT ′; first(* F T ′), so

table[T ′, *] = 5

Rule 6: T ′ ::= ε is applicable for symbols in follow(T ′) = {+,), #}, so

table[T ′, +] = 6
table[T ′,)] = 6
table[T ′, #] = 6

Parsing 87

For the non-terminal F , we have two rules. First, given rule 7: F ::= (E), and that
first((E)) = {(},

table[F , (] = 7

Second, given rule 8: F ::= id, and since (obviously) first(id) = {id},

table[F , id] = 8

LL(1) and LL(k) Grammars

We say a grammar is LL(1) if the parsing table produced by Algorithm 3.5 produces no
conflicts, that is, no entries having more than one rule. If there were more than one rule,
then the parser would no longer be deterministic.

Furthermore, if a grammar is shown to be LL(1) then it is unambiguous. This is easy to
show. An ambiguous grammar would lead to two left-most derivations that differ in at least
one step, meaning at least two rules are applicable at that step. So an ambiguous grammar
cannot be LL(1).

It is possible for a grammar not to be LL(1) but LL(k) for some k > 1. That is, the
parser should be able to determine its moves looking k symbols ahead. In principle, this
would mean a table having columns for each combination of k symbols. But this would
lead to very large tables; indeed, the table size grows exponentially with k and would be
unwieldy even for k = 2. On the other hand, an LL(1) parser generator based on the table
construction in Algorithm 3.5 might allow one to specify a k-symbol lookahead for specific
non-terminals or rules. These special cases can be handled specially by the parser and so
need not lead to overly large (and, most likely sparse) tables. The JavaCC parser generator,
which we discuss in Section 3.5, makes use of this focused k-symbol lookahead strategy.

Removing Left Recursion and Left-Factoring Grammars

Not all context-free grammars are LL(1). But for many that are not, one may define equiv-
alent grammars (that is, grammars describing the same language) that are LL(1).

Left Recursion

One class of grammar that is not LL(1) is a grammar having a rule with left recursion,
for example direct, left recursion,

(3.25)Y ::= Y α
Y ::= β

Clearly, a grammar having these two rules is not LL(1), because, by definition, first(Yα)
must include first(β) making it impossible to discern which rule to apply for expanding Y.
But introducing an extra non-terminal, an extra rule, and replacing the left recursion with
right recursion easily removes the direct left recursion:

(3.26)Y ::= β Y ′

Y ′ ::= α Y ′

Y ′ ::= ε

88 An Introduction to Compiler Construction in a Java World

Example. Such grammars are not unusual. For example, the first context-free grammar
we saw (3.8) describes the same language as does the (LL(1)) grammar (3.21). We repeat
this grammar as (3.27).

(3.27)E ::= E + T
E ::= T
T ::= T * F
T ::= F
F ::= (E)
F ::= id

The left recursion captures the left-associative nature of the operators + and *. But
because the grammar has left-recursive rules, it is not LL(1). We may apply the left-recursion
removal rule (3.26) to this grammar.

First, applying the rule to E to produce

E ::= T E′

E′ ::= + T E′

E′ ::= ε

Applying the rule to T yields

T ::= F T ′

T ′ ::= * F T ′

T ′ ::= ε

Giving us the LL(1) grammar

(3.28)E ::= T E′

E′ ::= + T E′

E′ ::= ε
T ::= F T ′

T ′ ::= * F T ′

T ′ ::= ε
F ::= (E)
F ::= id

Where have we seen this grammar before?

Much less common, particularly in grammars describing programming languages, is in-
direct left recursion. Algorithm 3.6 deals with these rare cases.

Algorithm 3.6 Left Recursion Removal for a Grammar G = (N,T, S, P)

Input: a context-free grammar G = (N,T, S, P)
Output: G with left recursion eliminated

Arbitrarily enumerate the non-terminals of G : X1, X2, . . . , Xn

for i := 1 to n do
for j := 1 to i− 1 do

Replace each rule in P of the form Xi ::= Xjα by the rules Xi ::= β1α|β2α| . . . |βkα
where Xj ::= β1|β2| . . . |βk are the current rules defining Xi

Eliminate any immediate left recursion using (3.25)
end for

end for

Parsing 89

Example. Consider the following grammar.

S ::= Aa | b
A ::= Sc | d

In step 1, we can enumerate the non-terminals using subscripts to record the numbering:
S1 and A2. This gives us a new set of rules:

S1 ::= A2a | b
A2 ::= S1c | d

In the first iteration of step 2 (i = 1), no rules apply. In the second iteration (i = 1, j = 2),
the rule

A2 ::= S1c

applies. We replace it with two rules, expanding S1, to yield

S1 ::= A2a | b
A2 ::= A2ac | bc | d

We then use the transformation (3.26) to produce the grammar

S1 ::= A2a | b
A2 ::= bcA’2 | dA’2
A’2 ::= acA’2
A’2 ::= ε

Or, removing the subscripts,

S ::= Aa | b
A ::= bcA′ | dA′
A′ ::= acA′

A′ ::= ε

Left factoring

Another common property of grammars that violates the LL(1) property is when two
or more rules defining a non-terminal share a common prefix:

Y ::= α β
Y ::= α γ

The common α violates the LL(1) property. But, as long as first(β) and first(γ) are
disjoint, this is easily solved by introducing a new non-terminal:

90 An Introduction to Compiler Construction in a Java World

(3.29)Y ::= αY ′

Y ′ ::= β
Y ′ ::= γ

Example. Reconsider (3.14).

S ::= if E do S
| if E then S else S
| s

E ::= e

Following the rewriting rule (3.29), we can reformulate the grammar as

S ::= if E S′

| s
S′ ::= do S

| then S else S
E ::= e

3.4 Bottom-Up Deterministic Parsing

In bottom-up parsing, one begins with the input sentence and scanning it from left-to-right,
recognizes sub-trees at the leaves and builds a complete parse tree from the leaves up to
the start symbol at the root.

3.4.1 Shift-Reduce Parsing Algorithm

For example, consider our old friend, the grammar (3.8) repeated here as (3.30):

(3.30)1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

And say we want to parse the input string, id + id * id. We would start off with the
initial configuration:

Stack Input Action

id+id*id#

At the start, the terminator is on the stack, and the input consists of the entire input
sentence followed by the terminator. The first action is to shift the first unscanned input
symbol (it is underlined) onto the stack.

Parsing 91

Stack Input Action

id+id*id# shift
#id +id*id#

From this configuration, the next action is to reduce the id on top of the stack to an F
using rule 6.

Stack Input Action

id+id*id# shift
#id +id*id# reduce (6)
#F +id*id#

From this configuration, the next two actions involve reducing the F to a T (by rule 4),
and then to an E (by rule 2).

Stack Input Action

id+id*id# shift
#id +id*id# reduce (6)
#F +id*id# reduce (4)
#T +id*id# reduce (2)
#E +id*id#

The parser continues in this fashion, by a sequence of shifts and reductions, until we
reach a configuration where #E is on the stack (E on top) and the sole unscanned symbol
in the input is the terminator #. At this point, we have reduced the entire input string to
the grammar’s start symbol E, so we can say the input is accepted.

Stack Input Action

id+id*id# shift
#id +id*id# reduce (6)
#F +id*id# reduce (4)
#T +id*id# reduce (2)
#E +id*id# shift
#E+ id*id# shift
#E+id *id# reduce (6)
#E+F *id# reduce (4)
#E+T *id# shift
#E+T* id# shift
#E+T*id # reduce (6)
#E+T*F # reduce (3)
#E+T # reduce (1)
#E # accept

Notice that the sequence of reductions 6, 4, 2, 6, 4, 6, 3, 1 represents the right-most
derivation of the input string but in reverse:

92 An Introduction to Compiler Construction in a Java World

E ⇒ E + T
⇒ E + T * F
⇒ E + T * id

⇒ E + F * id

⇒ E + id * id

⇒ T + id * id

⇒ F + id * id

⇒ id + id * id

That it is in reverse makes sense because this is a bottom-up parse. The question arises:
How does the parser know when to shift and when to reduce? When reducing, how many
symbols on top of the stack play a role in the reduction? And, when reducing, by which rule
does it make its reduction?

For example, in the derivation above, when the stack contains #E+T and the next
incoming token is a *, how do we know that we are to shift (the * onto the stack) rather
than reduce either the E+T to an E or the T to an E?

Notice two things:

1. Ignoring the terminator #, the stack configuration combined with the unscanned input
stream represents a sentential form in a right-most derivation of the input.

2. The part of the sentential form that is reduced to a non-terminal is always on top of
the stack. So all actions take place at the top of the stack. We either shift a token
onto the stack, or we reduce what is already there.

We call the sequence of terminals on top of the stack that are reduced to a single non-
terminal at each reduction step the handle. More formally, in a right-most derivation,

S
∗⇒ αY w ⇒ αβw

∗⇒ uw, where uw is the sentence,

the handle is the rule Y ::= β and a position in the right sentential form αβw where β
may be replaced by Y to produce the previous right sentential form αY w in a right-most
derivation from the start symbol S. Fortunately, there are a finite number of possible handles
that may appear on top of the stack.

So, when a handle appears on top of the stack,

Stack Input

#αβ w

we reduce that handle (β to Y in this case).
Now if β is the sequence X1, X2, . . . , Xn, then we call any subsequence, X1, X2, . . . , Xi,

for i ≤ n a viable prefix. Only viable prefixes may appear on the top of the parse stack. If
there is not a handle on top of the stack and shifting the first unscanned input token from
the input to the stack results in a viable prefix, a shift is called for.

3.4.2 LR(1) Parsing

One way to drive the shift/reduce parser is by a kind of DFA that recognizes viable prefixes
and handles. The tables that drive our LR(1) parser are derived from this DFA.

Parsing 93

The LR(1) Parsing Algorithm

Before showing how the tables are constructed, let us see how they are used to parse a
sentence. The LR(1) parser algorithm is common to all LR(1) grammars and is driven by
two tables, constructed for particular grammars: an Action table and a Goto table.

The algorithm is a state machine with a pushdown stack, driven by two tables: Action
and Goto. A configuration of the parser is a pair, consisting of the state of the stack and
the state of the input:

Stack Input

s0X1s1X2s2 . . . Xmsm akak+1 . . . an

where the si are states, the Xi are (terminal or non-terminal) symbols, and akak+1 . . . an
are the unscanned input symbols. This configuration represents a right sentential form in a
right-most derivation of the input sentence,

X1X2 . . . Xmakak+1 . . . an

94 An Introduction to Compiler Construction in a Java World

Algorithm 3.7 The LR(1) Parsing Algorithm

Input: Action and Goto tables, and the input sentence w to be parsed, followed by the
terminator #

Output: a right-most derivation in reverse
Initially, the parser has the configuration

Stack Input

s0 a1a2 . . . an#

where a1a2 . . . an is the input sentence
repeat

If Action[sm, ak] = ssi, the parser executes a shift (the s stands for “shift”) and goes
into state si, going into the configuration

Stack Input

s0X1s1X2s2 . . . Xmsmaksi ak+1 . . . an#

Otherwise, if Action[sm, ak] = ri (the r stands for “reduce”), where i is the number
of the production rule Y ::= XjXj+1 . . . Xm, then replace the symbols and states
XjsjXj+1sj+1 . . . Xmsm by Y s, where s = Goto[sj−1, Y]. The parser then outputs
production number i. The parser goes into the configuration

Stack Input

s0X1s1X2s2 . . . Xj−1sj−1Y s ak+1 . . . an#

Otherwise, if Action[sm, ak] = accept, then the parser halts and the input has been
successfully parsed
Otherwise, if Action[sm, ak] = error, then the parser raises an error. The input is not
in the language

until either the sentence is parsed or an error is raised

Example. Consider (again) our grammar for simple expressions, now in (3.31).

(3.31)1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

The Action and Goto tables are given in Figure 3.7.

Parsing 95

FIGURE 3.7 The Action and Goto tables for the grammar in (3.31) (blank implies error).

Consider the steps for parsing id + id * id. Initially, the parser is in state 0, so a 0 is
pushed onto the stack.

Stack Input Action

0 id+id*id#

96 An Introduction to Compiler Construction in a Java World

The next incoming symbol is an id, so we consult the Action table Action[0, id] to
determine what to do in state 0 with an incoming token id. The entry is s5, so we shift
the id onto the stack and go into state 5 (pushing the new state onto the stack above the
id).

Stack Input Action

0 id+id*id# shift 5
0id5 +id*id#

Now, the 5 on top of the stack indicates we are in state 5 and the incoming token is +,
so we consult Action[5, +]; the r6 indicates a reduction using rule 6: F ::= id. To make the
reduction, we pop 2k items off the stack, where k is the number of symbols in the rule’s
right-hand side; in our example, k = 1 so we pop both the 5 and the id.

Stack Input Action

0 id+id*id# shift 5
0id5 +id*id# reduce 6, output a 6
0 +id*id#

Because we are reducing the right-hand side to an F in this example, we push the F
onto the stack.

Stack Input Action

0 id+id*id# shift 5
0id5 +id*id# reduce 6, output a 6
0F +id*id#

And finally, we consult Goto[0, F] to determine which state the parser, initially in state
0, should go into after parsing an F . Because Goto[0, F] = 3, this is state 3. We push the
3 onto the stack to indicate the parser’s new state.

Stack Input Action

0 id+id*id# shift 5
0id5 +id*id# reduce 6, output a 6
0F3 +id*id#

From state 3 and looking at the incoming token +, Action[3, +] tells us to reduce using
rule 4: T ::= F .

Stack Input Action

0 id+id*id# shift 5
0id5 +id*id# reduce 6, output a 6
0F3 +id*id# reduce 4, output a 4
0T2 +id*id#

Parsing 97

From state 2 and looking at the incoming token +, Action[2, +] tells us to reduce using
rule 2: E ::= T .

Stack Input Action

0 id+id*id# shift 5
0id5 +id*id# reduce 6, output a 6
0F3 +id*id# reduce 4, output a 4
0T2 +id*id# reduce 2, output a 2
0E1 +id*id#

From state 1 and looking the incoming token +, Action[3, +] = s6 tells us to shift (the
+ onto the stack and go into state 6.

Stack Input Action

0 id+id*id# shift 5
0id5 +id*id# reduce 6, output a 6
0F3 +id*id# reduce 4, output a 4
0T2 +id*id# reduce 2, output a 2
0E1 +id*id# shift 6
0E1+6 id*id#

Continuing in this fashion, the parser goes through the following sequence of configura-
tions and actions:

Stack Input Action

0 id+id*id# shift 5
0id5 +id*id# reduce 6, output a 6
0F3 +id*id# reduce 4, output a 4
0T2 +id*id# reduce 2, output a 2
0E1 +id*id# shift 6
0E1+6 id*id# shift 5
0E1+6id5 *id# reduce 6, output 6
0E1+6F3 *id# reduce 4, output 4
0E1+6T13 *id# shift 7
0E1+6T13*7 id# shift 5
0E1+6T13*7id5 # reduce 6, output 6
0E1+6T13*7F14 # reduce 3, output 3
0E1+6T13 # reduce 1, output 1
0E1 # accept

In the last step, the parser is in state 1 and the incoming token is the terminator #;
Action[1, #] says we accept the input sentence; the sentence has been successfully parsed.

Moreover, the parser has output 6, 4, 2, 6, 4, 6, 3, 1, which is a right-most derivation of
the input string in reverse: 1, 3, 6, 4, 6, 2, 4, 6, that is

98 An Introduction to Compiler Construction in a Java World

E ⇒ E + T
⇒ E + T * F
⇒ E + T * id

⇒ E + F * id

⇒ E + id * id

⇒ T + id * id

⇒ F + id * id

⇒ id + id * id

A careful reading of the preceding steps suggests that explicitly pushing the symbols
onto the stack is unnecessary because the symbols are implied by the states themselves.
An industrial-strength LR(1) parser will simply maintain a stack of states. We include the
symbols only for illustrative purposes.

For all of this to work, we must go about constructing the tables Action and Goto. To
do this, we must first construct the grammar’s LR(1) canonical collection.

The LR(1) Canonical Collection

The LR(1) parsing tables, Action and Goto, for a grammar G are derived from a DFA for
recognizing the possible handles for a parse in G. This DFA is constructed from what is
called an LR(1) canonical collection, in turn a collection of sets of items of the form

(3.32)[Y ::= α · β, a]

where Y ::= αβ is a production rule in the set of productions P , α and β are (possibly
empty) strings of symbols, and a is a lookahead. The item represents a potential handle.
The · is a position marker that marks the top of the stack, indicating that we have parsed
the α and still have the β ahead of us in satisfying the Y . The lookahead symbol, a, is a
token that can follow Y (and so, αβ) in a legal right-most derivation of some sentence.

• If the position marker comes at the start of the right-hand side in an item,

[Y ::= · α β, a]

the item is called a possibility. One way of parsing the Y is to first parse the α and
then parse the β, after which point the next incoming token will be an a. The parse
might be in the following configuration:

Stack Input

#γ ua. . .

where αβ
∗⇒ u, where u is a string of terminals.

• If the position marker comes after a string of symbols α but before a string of symbols
β in the right-hand side in an item,

[Y ::= α · β, a]

Parsing 99

the item indicates that α has been parsed (and so is on the stack) but that there is
still β to parse from the input:

Stack Input

#γα va. . .

where β
∗⇒ v, where v is a string of terminals.

• If the position marker comes at the end of the right-hand side in an item,

[Y ::= α β ·, a]

the item indicates that the parser has successfully parsed αβ in a context where Y a
would be valid, the αβ can be reduced to a Y , and so αβ is a handle. That is, the
parse is in the configuration

Stack Input

#γαβ a. . .

and the reduction of αβ would cause the parser to go into the configuration

Stack Input

#γY a. . .

A non-deterministic finite-state automaton (NFA) that recognizes viable prefixes and
handles can be constructed from items like that in (3.32). The items record the progress in
parsing various language fragments. We also know that, given this NFA, we can construct
an equivalent DFA using the powerset construction that we saw in Section 2.7. The states
of the DFA for recognizing viable prefixes are derived from sets of these items, which record
the current state of an LR(1) parser. Here, we shall construct these sets, and so construct
the DFA, directly (instead of first constructing a NFA).

So, the states in our DFA will be constructed from sets of items like that in (3.32). We
call the set of states the canonical collection.

To construct the canonical collection of states, we first must augment our grammar G
with an additional start symbol S′ and an additional rule,

S′ ::= S

so as to yield a grammar G′, which describes the same language as does G, but which does
not have its start symbol on the right-hand side of any rule. For example, augmenting our
grammar (3.31) for simple expressions gives us the augmented grammar in (3.33).

(3.33)

100 An Introduction to Compiler Construction in a Java World

0. E′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

We then start constructing item sets from this augmented grammar. The first set, rep-
resenting the initial state in our DFA, will contain the LR(1) item:

(3.34){[E′ ::= · E, #]}

which says that parsing an E′ means parsing an E from the input, after which point the
next (and last) remaining unscanned token should be the terminator #. But at this point,
we have not yet parsed the E; the · in front of it indicates that it is still ahead of us.

Now that we must parse an E at this point means that we might be parsing either an
E + T (by rule 1 of 3.33) or a T (by rule 2). So the initial set would also contain

(3.35)[E ::= · E + T , #]
[E ::= · T , #]

In fact, the initial set will contain additional items implied by (3.34). We call the initial
set (3.34) the kernel. From the kernel, we can then compute the closure, that is, all items
implied by the kernel. Algorithm 3.8 computes the closure for any set of items.

Algorithm 3.8 Computing the Closure of a Set of Items

Input: a set of items, s
Output: closure(s)

add s to closure(s)
repeat

if closure(s) contains an item of the form

[Y ::= α · X β, a]

add the item

[X ::= · γ, b]

for every rule X ::= γ in P and for every token b in first(βa).
until no new items may be added

Example. To compute the closure of our kernel (3.34), that is, closure({[E′ ::= ·E, #]}),
by step 1 is initially

(3.36){[E′ ::= · E, #]}

We then invoke step 2. Because the · comes before the E, and because we have the rule
E ::= E + T and E ::= T , we add [E ::= · E + T , #] and [E ::= · T , #] to get

(3.37){[E′ ::= · E, #],
[E ::= · E + T , #],
[E ::= · T , #]}

Parsing 101

The item [E ::= · E + T , #] implies

[E ::= · E + T , +]
[E ::= · T , +]

because first(+T#) = {+}. Now, given that these items differ from previous items only in
the lookaheads, we can use the more compact notation [E ::= · E + T , +/#] for representing
the two items

[E ::= · E + T , +] and
[E ::= · E + T , #]

So we get

(3.38){[E′ ::= · E, #],
[E ::= · E + T , +/#],
[E ::= · T , +/#]}

The items [E ::= · T , +/#] imply additional items (by similar logic), leading to

(3.39){[E′ ::= · E, #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#]}

And finally the items [T ::= · F , +/*/#] imply additional items (by similar logic), leading
to

(3.40)s0 = {[E′ ::= · E, #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= ·(E), +/*/#],
[F ::= · id, +/*/#]}

The item set (3.40) represents the initial state s0 in our canonical LR(1) collection.
As an aside, notice that the closure of {[E ::= ·E, #]} represents all of the states in an

NFA, that could be reached from the initial item by ε-moves alone, that is, without scanning
anything from the input. That portion of the NFA that is equivalent to the initial state s0
in our DFA is illustrated in Figure 3.8.

We now need to compute all of the states and transitions of the DFA that recognizes
viable prefixes and handles. For any item set s, and any symbol X ∈ (T ∪N),

goto(s,X) = closure(r),

where r = {[Y ::= αX ·β, a]|[Y ::= α ·Xβ, a]}6. That is, to compute goto(s,X), we take all
items from s with a · before the X and move them after the X; we then take the closure of
that. Algorithm 3.9 does this.

6The | operator is being used as the set notation “for all”, not the BNF notation for alternation.

102 An Introduction to Compiler Construction in a Java World

FIGURE 3.8 The NFA corresponding to s0.

Parsing 103

Algorithm 3.9 Computing goto

Input: a state s, and a symbol X ∈ T ∪N
Output: the state, goto(s,X)
r ← {}
for each item [Y ::= α ·Xβ, a] in s do

add [Y ::= αX · β, a] to r
end for
return closure(r)

Example. Consider the computation of goto(s0, E), where s0 is in (3.40). The relevant
items in s0 are [E′ ::= ·E, #] and [E ::= ·E + T , +/#]. Moving the · to the right of the E in
the items gives us {[E′ ::= E·, #], [E ::= E· + T , +/#]}. The closure of this set is the set
itself; let us call this state s1.

goto(s0, E) = s1
= {[E′ ::= E ·, #],

[E ::= E · + T , +/#]}

In a similar manner, we can compute

goto(s0, T) = s2
= {[E ::= T ·, +/#],

[T ::= T · * F , +/*/#]}

goto(s0, F) = s3
= {[T ::= F ·, +/*/#]}

goto(s0, () involves a closure because moving the · across the (puts it in front
of the E.

goto(s0, () = s4
= {[F ::= (· E), +/*/#],

[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s0, id) = s5
= {[F ::= id ·, +/*/#]}

We continue in this manner, computing goto for the states we have, and then for any
new states repeatedly until we have defined no more new states. This gives us the canonical
LR(1) collection.

104 An Introduction to Compiler Construction in a Java World

Algorithm 3.10 Computing the LR(1) Collection

Input: a context-free grammar G = (N,T, S, P)
Output: the canonical LR(1) collection of states c = {s0, s1, . . . , sn}

Define an augmented grammar G′, which is G with the added non-terminal S′ and added
production rule S′ ::= S, where S is G’s start symbol. The following steps apply to G′.
Enumerate the production rules beginning at 0 for the newly added production.
c← {s0} where s0 = closure({[S′ ::= ·S, #]})
repeat

for each s in c, and for each symbol X ∈ T ∪N do
if goto(s,X) 6= ∅ and goto(s,X) /∈ c then

add goto(s,X) to c.
end if

end for
until no new states are added to c

Example. We can now resume computing the LR(1) canonical collection for the simple
expression grammar, beginning from state s1:

goto(s1, +) = s6
= {[E ::= E + · T , +/#],

[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

There are no more moves from s1. Similarly, from s2,

goto(s2, *) = s7
= {[T ::= T * · F , +/*/#],

[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

Notice that the closure of {[T ::= T * ·F , +/*/#]} carries along the same lookaheads
because no symbol follows the F in the right-hand side. There are no gotos from s3, but
several from s4.

goto(s4, E) = s8
= {[F ::= (E ·), +/*/#],

[E ::= E · + T , +/)]}

goto(s4, T) = s9
= {[E ::= T ·, +/)],

[T ::= T · * F , +/*/)]}

goto(s4, F) = s10
= {[T ::= F ·, +/*/)]}

Parsing 105

goto(s4, () = s11
= {[F ::= (· E), +/*/)],

[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

Notice that s11 differs from s4 in only the lookaheads for the first item.

goto(s4, id) = s12
= {[F ::= id ·, +/*/)]}

There are no moves from s5, so consider s6:

goto(s6, T) = s13
= {[E ::= E + T ·, +/#],

[T ::= T · * F , +/*/#]}

Now, goto(s6, F) = {[T ::= F ·, +/*/#]} but that is s3. goto(s6, () is closure({[F ::= (

·E), +/*/#]}), but that is s4. And goto(s6, id) is s5.

goto(s6, F) = s3
goto(s6, () = s4
goto(s6, id) = s5

Consider s7, s8, and s9.

goto(s7, F)= s14
= {[T ::= T * F ·, +/*/#]}

goto(s7, () = s4
goto(s7, id) = s5
goto(s8,)) = s15

= {[F ::= (E) ·, +/*/#]}
goto(s8, +) = s16

= {[E ::= E + · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s9, *) = s17
= {[T ::= T * · F , +/*/)],

[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

There are no moves from s10, but several from s11:

106 An Introduction to Compiler Construction in a Java World

goto(s11, E) = s18
= {[F ::= (E ·), +/*/)],

[E ::= E · + T , +/)]}
goto(s11, T) = s9
goto(s11, F) = s10
goto(s11, () = s11
goto(s11, id) = s12

There are no moves from s12, but there is a move from s13:

goto(s13, *) = s7

There are no moves from s14 or s15, but there are moves from s16, s17, s18, and s19:

goto(s16, T) = s19
= {[E ::= E + T ·, +/)],

[T ::= T · * F , +/*/)]}
goto(s16, F) = s10
goto(s16, () = s11
goto(s16, id) = s12
goto(s17, F) = s20

= {[T ::= T * F ·, +/*/)]}
goto(s17, () = s11
goto(s17, id) = s12
goto(s18,)) = s21

= {[F ::= (E) ·, +/*/)]}
goto(s18, +) = s16
goto(s19, *) = s17

There are no moves from s20 or s21, so we are done. The LR(1) canonical collection
consists of twenty-two states s0 . . . s21. The entire collection is summarized in the table
below.

s0 = {[E′ ::= · E, #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= ·(E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1
goto(s0, T) = s2
goto(s0, F) = s3
goto(s0, () = s4
goto(s0, id) = s5

s11 = {[F ::= (· E), +/*/)],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s11, E) = s18
goto(s11, T) = s9
goto(s11, F) = s10
goto(s11, () = s11
goto(s11, id) = s12

s1 = {[E′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s1, +) = s6 s12 = {[F ::= id ·, +/*/)]}

Parsing 107

s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s2, *) = s7 s13 = {[E ::= E + T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s13, *) = s7

s3 = {[T ::= F ·, +/*/#]} s14 = {[T ::= T * F ·, +/*/#]}

s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s4, E) = s8
goto(s4, T) = s9
goto(s4, F) = s10
goto(s4, () = s11
goto(s4, id) = s12

s15 = {[F ::= (E) ·, +/*/#]}

s5 = {[F ::= id ·, +/*/#]} s16 = {[E ::= E + · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s16, T) = s19
goto(s16, F) = s10
goto(s16, () = s11
goto(s16, id) = s12

s6 = {[E ::= E + · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s6, T) = s13
goto(s6, F) = s3
goto(s6, () = s4
goto(s6, id) = s5

s17 = {[T ::= T * · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s17, F) = s20
goto(s17, () = s11
goto(s17, id) = s12

s7 = {[T ::= T * · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s7, F) = s14
goto(s7, () = s4
goto(s7, id) = s5

s18 = {[F ::= (E ·), +/*/)],
[E ::= E · + T , +/)]}

goto(s18,)) = s21
goto(s18, +) = s16

s8 = {[F ::= (E ·), +/*/#],
[E ::= E · + T , +/)]}

goto(s8,)) = s15
goto(s8, +) = s16

s19 = {[E ::= E + T ·, +/)],
[T ::= T · * F , +/*/)]}

goto(s19, *) = s17

s9 = {[E ::= T ·, +/)],
[T ::= T · * F , +/*/)]}

goto(s9, *) = s17 s20 = {[T ::= T * F ·, +/*/)]}

s10 = {[T ::= F ·, +/*/)]} s21 = {[F ::= (E) ·, +/*/)]}

We may now go about constructing the tables Action and Goto.

Constructing the LR(1) Parsing Tables

The LR(1) parsing tables Action and Goto are constructed from the LR(1) canonical col-
lection, as prescribed in Algorithm 3.11.

108 An Introduction to Compiler Construction in a Java World

Algorithm 3.11 Constructing the LR(1) Parsing Tables for a Context-Free Grammar

Input: a context-free grammar G = (N,T, S, P)
Output: the LF(1) tables Action and Goto

1. Compute the LR(1) canonical collection c = {s0, s1, . . . , sn}. State i of the parser
corresponds to the item set si. State 0, corresponding to the item set s0, which
contains the item [S′ ::= ·S, #], is the parser’s initial state

2. The Action table is constructed as follows:

a. For each transition, goto(si, a) = sj , where a is a terminal, set Action[i, a] =
sj. The s stands for “shift”

b. If the item set sk contains the item [S′ ::= S·, #], set Action[k, #] = accept

c. For all item sets si, if si contains an item of the form [Y ::= α·, a], set Action[i,
a] = rp, where p is the number corresponding to the rule Y ::= α. The r stands
for “reduce”

d. All undefined entries in Action are set to error

3. The Goto table is constructed as follows:

a. For each transition, goto(si, Y) = sj , where Y is a non-terminal, set Goto[i,
Y] = j.

b. All undefined entries in Goto are set to error

If all entries in the Action table are unique, then the grammar G is said to be LR(1).

Example. Let us say we are computing the Action and Goto tables for the arithmetic
expression grammar in (3.31). We apply Algorithm 3.10 for computing the LR(1) canon-
ical collection. This produces the twenty-two item sets shown in the table before. Adding
the extra production rule and enumerating the production rules gives us the augmented
grammar in (3.41).

(3.41)0. E′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

We must now apply steps 2 and 3 of Algorithm 3.11 for constructing the tables Action
and Goto. Both tables will each have twenty-two rows for the twenty-two states, derived
from the twenty-two item sets in the LR(1) canonical collection: 0 to 21. The Action table
will have six columns, one for each terminal symbol: +, *, (,), id, and the terminator #.
The Goto table will have three columns, one for each of the original non-terminal symbols:
E, T , and F . The newly added non-terminal E′ does not play a role in the parsing process.
The tables are illustrated in Figure 3.7. To see how these tables are constructed, let us
derive the entries for several states.

First, let us consider the first four states of the Action table:

Parsing 109

• The row of entries for state 0 is derived from item set s0.

– By step 2a of Algorithm 3.11, the transition goto(s0, () = s4 implies Action[0,
(] = s4, and goto(s0, id) = s5 implies Action[0, id] = s5. The s4 means “shift
the next input symbol (onto the stack and go into state 4”; the s5 means “shift
the next input symbol id onto the stack and go into state 5.”

• The row of entries for state 1 is derived from item set s1:

– By step 2a, the transition goto(s1, +) = s6 implies Action[1, +] = s6. Remember,
the s6 means “shift the next input symbol + onto the stack and go into state 6”.

– By step 2b, because item set s1 contains [E′ ::= E·, #], Action[1, #] = accept. This
says, that if the parser is in state 1 and the next input symbol is the terminator
#, the parser accepts the input string as being in the language.

• The row of entries for state 2 is derived from item set s2:

– By step 2a, the transition goto(s2, *) = s7 implies Action[2, *] = s7.

– By step 2c, the items7 [E ::= T ·, +/#] imply two entries: Action[2, #] = r2 and
Action[2, +] = r2. These entries say that if the parser is in state 2 and the next
incoming symbol is either a # or a +, reduce the T on the stack to a E using
production rule 2: E ::= T .

• The row of entries for state 3 is derived from item set s3:

– By step 2c, the items [T ::= F ·, +/*/#] imply three entries: Action[3, #]= r4,
Action[3, +] = r4, and Action[3, *] = r4. These entries say that if the parser is
in state 3 and the next incoming symbol is either a #, a +, or a * reduce the F
on the stack to a T using production rule 4: T ::= F .

All other entries in rows 0, 1, 2, and 3 are left blank to indicate an error. If, for example,
the parser is in state 0 and the next incoming symbol is a +, the parser raises an error. The
derivations of the entries in rows 4 to 21 in the Action table (see Figure 3.7) are left as an
exercise.

Now let us consider the first four states of the Goto table:

• The row of entries for state 0 is derived from item set s0:

– By step 3a of Algorithm 3.11, the goto(s0, E) = 1 implies Goto[0, E] = 1, goto(s0,
T) = 2 implies Goto[0, E] = 4, and goto(s0, F) = 3 implies Goto[0, E] = 3. The
entry Goto[0, E] = 1 says that in state 0, once the parser scans and parses an
E, the parser goes into state 1.

• The row of entries for state 1 is derived from item set s1. Because there are no
transitions on a non-terminal from item set s1, no entries are indicated for state 1 in
the Goto table.

• The row of entries for state 2 is derived from item set s2. Because there are no
transitions on a non-terminal from item set s2, no entries are indicated for state 2 in
the Goto table.

7Recall that the [E ::= T ·, +/#] denotes two items: [E ::= T ·, +] and [E ::= T ·, #].

110 An Introduction to Compiler Construction in a Java World

• The row of entries for state 3 is derived from item set s3. Because there are no
transitions on a non-terminal from item set s3, no entries are indicated for state 3 in
the Goto table.

All other entries in rows 0, 1, 2, and 3 are left blank to indicate an error. The derivations
of the entries in rows 4 to 21 in the Goto table (see Figure 3.7) are left as an exercise.

Conflicts in the Action Table

There are two different kinds of conflicts possible for an entry in the Action table:

1. The first is the shift-reduce conflict, which can occur when there are items of the forms

[Y ::= α ·, a] and
[Y ::= α ·aβ, b]

The first item suggests a reduce if the next unscanned token is an a; the second
suggests a shift of the a onto the stack.

Although such conflicts may occur for unambiguous grammars, a common cause is
ambiguous constructs such as

S ::= if (E) S
S ::= if (E) S else S

As we saw in Section 3.2.3, language designers will not give up such ambiguous con-
structs for the sake of parser writers. Most parser generators that are based on LR
grammars permit one to supply an extra disambiguating rule. For example, the rule
in this case would be to favor a shift of the else over a reduce of the “if (E) S” to
an S.

2. The second kind of conflict that we can have is the reduce-reduce conflict. This can
happen when we have a state containing two items of the form

[X ::= α ·, a] and
[Y ::= β ·, a]

Here, the parser cannot distinguish which production rule to apply in the reduction.

Of course, we will never have a shift-shift conflict, because of the definition of goto for
terminals. Usually, a certain amount of tinkering with the grammar is sufficient for removing
bona fide conflicts in the Action table for most programming languages.

3.4.3 LALR(1) Parsing

Merging LR(1) States

An LR(1) parsing table for a typical programming language such as Java can have thousands
of states, and so thousands of rows. One could argue that, given the inexpensive memory
nowadays, this is not a problem. On the other hand, smaller programs and data make for

Parsing 111

faster running programs so it would be advantageous if we might be able to reduce the
number of states. LALR(1) is a parsing method that does just this.

If you look at the LR(1) canonical collection of states in Figure 3.8, which we computed
for our example grammar (3.31), you will find that many states are virtually identical—they
differ only in their lookahead tokens. Their cores—the core of an item is just the rule and
position marker portion—are identical. For example, consider states s2 and s9:

s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

s9 = {[E ::= T ·, +/)],
[T ::= T · * F , +/*/)]}

They differ only in the lookaheads # and). Their cores are the same:

s2 = {[E ::= T ·],
[T ::= T · * F]}

s9 = {[E ::= T ·],
[T ::= T · * F]}

What happens if we merge them, taking a union of the items, into a single state, s2.9?
Because the cores are identical, taking a union of the items merges the lookaheads:

s2.9 = {[E ::= T ·, +/)/#],
[T ::= T · * F , +/*/)/#]}

Will this cause the parser to carry out actions that it is not supposed to? Notice that
the lookaheads play a role only in reductions and never in shifts. It is true that the new
state may call for a reduction that was not called for by the original LR(1) states; yet an
error will be detected before any progress is made in scanning the input.

Similarly, looking at the states in Figure 3.8, one can merge states s3 and s10, s2 and
s9, s4 and s11, s5 and s12, s6 and s16, s2 and s17, s8 and s18, s13 and s19, s14 and s20, and
s15 and s21. This allows us to reduce the number of states by ten. In general, for bona fide
programming languages, one can reduce the number of states by an order of magnitude.

LALR(1) Table Construction

There are two approaches to computing the LALR(1) states, and so the LALR(1) parsing
tables.

LALR(1) table construction from the LR(1) states

In the first approach, we first compute the full LR(1) canonical collection of states, and
then perform the state merging operation illustrated above for producing what we call the
LALR(1) canonical collection of states.

112 An Introduction to Compiler Construction in a Java World

Algorithm 3.12 Constructing the LALR(1) Parsing Tables for a Context-Free Grammar

Input: a context-free grammar G = (N,T, S, P)
Output: the LALR(1) tables Action and Goto

1. Compute the LR(1) canonical collection c = {s0, s1, . . . , sn}

2. Merge those states whose item cores are identical. The items in the merged state
are a union of the items from the states being merged. This produces an LALR(1)
canonical collection of states

3. The goto function for each new merged state is the union of the goto for the indi-
vidual merged states

4. The entries in the Action and Goto tables are constructed from the LALR(1) states
in the same way as for the LR(1) parser in Algorithm 3.11

If all entries in the Action table are unique, then the grammar G is said to be LALR(1).

Example. Reconsider our grammar for simple expressions from (3.31), and (again) re-
peated here as (3.42).

(3.42)0. E′ ::= E
1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

Step 1 of Algorithm 3.12 has us compute the LR(1) canonical collection that was shown
in a table above, and is repeated here.

s0 = {[E′ ::= · E, #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= ·(E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1
goto(s0, T) = s2
goto(s0, F) = s3
goto(s0, () = s4
goto(s0, id) = s5

s11 = {[F ::= (· E), +/*/)],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s11, E) = s18
goto(s11, T) = s9
goto(s11, F) = s10
goto(s11, () = s11
goto(s11, id) = s12

s1 = {[E′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s1, +) = s6 s12 = {[F ::= id ·, +/*/)]}

s2 = {[E ::= T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s2, *) = s7 s13 = {[E ::= E + T ·, +/#],
[T ::= T · * F , +/*/#]}

goto(s13, *) = s7

s3 = {[T ::= F ·, +/*/#]} s14 = {[T ::= T * F ·, +/*/#]}

Parsing 113

s4 = {[F ::= (· E), +/*/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s4, E) = s8
goto(s4, T) = s9
goto(s4, F) = s10
goto(s4, () = s11
goto(s4, id) = s12

s15 = {[F ::= (E) ·, +/*/#]}

s5 = {[F ::= id ·, +/*/#]} s16 = {[E ::= E + · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s16, T) = s19
goto(s16, F) = s10
goto(s16, () = s11
goto(s16, id) = s12

s6 = {[E ::= E + · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s6, T) = s13
goto(s6, F) = s3
goto(s6, () = s4
goto(s6, id) = s5

s17 = {[T ::= T * · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s17, F) = s20
goto(s17, () = s11
goto(s17, id) = s12

s7 = {[T ::= T * · F , +/*/#],
[F ::= · (E), +/*/#],
[F ::= · id, +/*/#]}

goto(s7, F) = s14
goto(s7, () = s4
goto(s7, id) = s5

s18 = {[F ::= (E ·), +/*/)],
[E ::= E · + T , +/)]}

goto(s18,)) = s21
goto(s18, +) = s16

s8 = {[F ::= (E ·), +/*/#],
[E ::= E · + T , +/)]}

goto(s8,)) = s15
goto(s8, +) = s16

s19 = {[E ::= E + T ·, +/)],
[T ::= T · * F , +/*/)]}

goto(s19, *) = s17

s9 = {[E ::= T ·, +/)],
[T ::= T · * F , +/*/)]}

goto(s9, *) = s17 s20 = {[T ::= T * F ·, +/*/)]}

s10 = {[T ::= F ·, +/*/)]} s21 = {[F ::= (E) ·, +/*/)]}

Merging the states and re-computing the gotos gives us the LALR(1) canonical collection
illustrated in the table below.

s0 = s6.16 =

{[E′ ::= · E, #],
[E ::= · E + T , +/#],
[E ::= · T , +/#],
[T ::= · T * F , +/*/#],
[T ::= · F , +/*/#],
[F ::= ·(E), +/*/#],
[F ::= · id, +/*/#]}

goto(s0, E) = s1
goto(s0, T) = s2.9
goto(s0, F) = s3.10
goto(s0, () = s4.11
goto(s0, id) = s5.12

{[E ::= E + · T , +/)/#],
[T ::= · T * F , +/*/)/#],
[T ::= · F , +/*/)/#],
[F ::= · (E), +/*/)/#],
[F ::= · id, +/*/)/#]}

goto(s6.16, T) = s13.19
goto(s6.16, F) = s3.10
goto(s6.16, () = s4.11
goto(s6.16, id) = s5.12

s1 = s7.17 =

{[E′ ::= E ·, #],
[E ::= E · + T , +/#]}

goto(s1, +) = s6.16 {[T ::= T * · F , +/*/)/#],
[F ::= · (E), +/*/)/#],
[F ::= · id, +/*/)/#]}

goto(s7.17, F) = s14.20
goto(s7.17, () = s4.11
goto(s7.17, id) = s5.12

114 An Introduction to Compiler Construction in a Java World

s2.9 = s8.18 =

{[E ::= T ·, +/)/#],
[T ::= T · * F , +/*/)/#]}

goto(s2.9, *) = s7.17 {[F ::= (E ·), +/*/)/#],
[E ::= E · + T , +/)]}

goto(s8.18,)) = s15.21
goto(s8.18, +) = s6.16

s3.10 = s13.19 =

{[T ::= F ·, +/*/)/#]} {[E ::= E + T ·, +/)/#],
[T ::= T · * F , +/*/)/#]}

goto(s13.19, *) = s7.17

s4.11 =

{[F ::= (· E), +/*/)/#],
[E ::= · E + T , +/)],
[E ::= · T , +/)],
[T ::= · T * F , +/*/)],
[T ::= · F , +/*/)],
[F ::= · (E), +/*/)],
[F ::= · id, +/*/)]}

goto(s4.11, E) = s8.18
goto(s4.11, T) = s2.9
goto(s4.11, F) = s3.10
goto(s4.11, () = s4.11
goto(s4.11, id) = s5.12

s14.20 = {[T ::= T * F ·, +/*/)/#]}

s5.12 = {[F ::= id ·, +/*/)/#]} s15.21 = {[F ::= (E) ·, +/*/)]}

The LALR(1) parsing tables are given in Figure 3.9.

FIGURE 3.9 The LALR(1) parsing tables for the Grammar in (3.42)

Parsing 115

Of course, this approach of first generating the LR(1) canonical collection of states and
then merging states to produce the LALR(1) collection consumes a great deal of space. But
once the tables are constructed, they are small and workable. An alternative approach, which
does not consume so much space, is to do the merging as the LR(1) states are produced.

Merging the states as they are constructed

Our algorithm for computing the LALR(1) canonical collection is a slight variation on
Algorithm 3.10; it is Algorithm 3.13.

Algorithm 3.13 Computing the LALR(1) Collection of States

Input: a context-free grammar G = (N,T, S, P)
Output: the canonical LALR(1) collection of states c = {s0, s1, . . . , sn}

Define an augmented grammar G′ which is G with the added non-terminal S′ and added
production rule S′ ::= S, where S is G’s start symbol. The following steps apply to G′.
Enumerate the production rules beginning at 0 for the newly added production
c← {s0}, where s0 = closure({[S′ ::= ·S, #]})
repeat

for each s in c, and for each symbol X ∈ T ∪N do
if goto(s,X) 6= ∅ and goto(s,X) /∈ c then

Add s = goto(s,X) to c
Check to see if the cores of an existing state in c are equivalent to the cores of s
If so, merge s with that state
Otherwise, add s to the collection c

end if
end for

until no new states are added to c

There are other enhancements we can make to Algorithm 3.13 to conserve even more
space. For example, as the states are being constructed, it is enough to store their kernels.
The closures may be computed when necessary, and even these may be cached for each
non-terminal symbol.

LALR(1) Conflicts

There is the possibility that the LALR(1) table for a grammar may have conflicts where the
LR(1) table does not. Therefore, while it should be obvious that every LALR(1) grammar
is an LR(1) grammar, not every LR(1) grammar is an LALR(1) grammar.

How can these conflicts arise? A shift-reduce conflict cannot be introduced by merging
two states, because we merge two states only if they have the same core items. If the merged
state has an item that suggests a shift on a terminal a and another item that suggests a
reduce on the lookahead a, then at least one of the two original states must have contained
both items, and so caused a conflict.

On the other hand, merging states can introduce reduce-reduce conflicts. An example
arises in grammar given in Exercise 3.20. Even though LALR(1) grammars are not as pow-
erful as LR(1) grammars, they are sufficiently powerful to describe most programming lan-
guages. This, together with their small (relative to LR) table size, makes the LALR(1) fam-
ily of grammars an excellent candidate for the automatic generation of parsers. Stephen C.
Johnson’s YACC, for “Yet Another Compiler-Compiler” [Johnson, 1975], based on LALR(1)
techniques, was probably the first practical bottom-up parser generator. GNU has developed
an open-source version called Bison [Donnelly and Stallman, 2011].

116 An Introduction to Compiler Construction in a Java World

3.4.4 LL or LR?

Figure 3.10 illustrates the relationships among the various categories of grammars we have
been discussing.

FIGURE 3.10 Categories of context-free grammars and their relationship.

Theoretically, LR(1) grammars are the largest category of grammars that can be parsed
deterministically while looking ahead just one token. Of course, LR(k) grammars for k > 1
are even more powerful, but one must look ahead k tokens, more importantly, the parsing
tables must (in principle) keep track of all possible token strings of length k. So, in principle,
the tables can grow exponentially with k.

LALR(1) grammars make for parsers that are almost as powerful as LR(1) grammars
but result in much more space-efficient parsing tables. This goes some way in explaining
the popularity of parser generators such as YACC and Bison.

LL(1) grammars are the least powerful category of grammars that we have looked at.
Every LL(1) grammar is an LR(1) grammar and every LL(k) grammar is an LR(k) grammar.

Also, every LR(k) grammar is an unambiguous grammar. Indeed, the LR(k) category
is the largest category of grammars for which we have a means for testing membership.
There is no general algorithm for telling us whether an arbitrary context-free grammar is
unambiguous. But we can test for LR(1) or LR(k) for some k; and if it is LR(1) or LR(k),
then it is unambiguous.

In principle, recursive descent parsers work only when based on LL(1) grammars. But as
we have seen, one may program the recursive descent parser to look ahead a few symbols,
in those places in the grammar where the LL(1) condition does not hold.

LL(1), LR(1), LALR(1), and recursive descent parsers have all been used to parse one
programming language or another. LL(1) and recursive descent parsers have been applied to

Parsing 117

most of Nicklaus Wirth’s languages, for example, Algol-W, Pascal, and Modula. Recursive
descent was used to produce the parser for the first implementations of C but then using
YACC; that and the fact that YACC was distributed with Unix popularized it. YACC was
the first LALR(1) parser generator with a reasonable execution time.

Interestingly, LL(1) and recursive descent parsers are enjoying greater popularity, for
example for the parsing of Java. Perhaps it is the simplicity of the predictive top-down
approach. It is now possible to come up with (mostly LL) predictive grammars for most
programming languages. True, none of these grammars are strictly LL(1); indeed, they
are not even unambiguous, look at the if-else statement in Java and almost every other
programming language. But these special cases may be handled specially, for example by
selective looking ahead k symbols in rules where it is necessary, and favoring the scanning
of an else when it is part of an if-statement. There are parser generators that allow the
parser developer to assert these special conditions in the grammatical specifications. One
of these is JavaCC, which we discuss in the next section.

3.5 Parser Generation Using JavaCC

In Chapter 2 we saw how JavaCC can be used to generate a lexical analyzer for j-- from an
input file (j--.jj) specifying the lexical structure of the language as regular expressions.
In this section, we will see how JavaCC can be used to generate an LL(k) recursive descent
parser for j-- from a file specifying its syntactic structure as EBNF (extended BNF) rules.

In addition to containing the regular expressions for the lexical structure for j--, the
j--.jj file also contains the syntactic rules for the language. The Java code between the
PARSER_BEGIN(JavaCCParser) and PARSER_END(JavaCCParser) block in the j--.jj file is
copied verbatim to the generated JavaCCParser.java file in the jminusminus package. This
code defines helper functions, which are available for use within the generated parser. Some
of the helpers include reportParserError() for reporting errors and recoverFromError()

for recovering from errors. Following this block is the specification for the scanner for j--,
and following that is the specification for the parser for j--.

We now describe the JavaCC syntactic specification. The general layout is this: we define
a start symbol, which is a high-level non-terminal (compilationUnit in case of j--) that
references lower-level non-terminals. These lower-level non-terminals in turn reference the
tokens defined in the lexical specification.

When building a syntactic specification, we are not limited to literals and simple token
references. We can use the following EBNF syntax:

• [a] for “zero or one”, or an “optional” occurrence of a

• (a)∗ for “zero or more” occurrences of a

• a|b for alternation, that is, either a or b

• () for grouping

The syntax for a non-terminal declaration (or, production rule) in the input file almost
resembles that of a java method declaration; it has a return type (could be void), a name,
can accept arguments, and has a body that specifies the extended BNF rules along with
any actions that we want performed as the production rule is parsed. It also has a block
preceding the body; this block declares any local variables used within the body. Syntactic

118 An Introduction to Compiler Construction in a Java World

actions, such as creating an AST node, are java code embedded within blocks. JavaCC turns
the specification for each non-terminal into a java method within the generated parser.

As an example, let us look at how we specify the following rule:

qualifiedIdentifier ::= <identifier> {. <identifier>}

for parsing a qualified identifier using JavaCC.

private TypeName qualifiedIdentifier (): {

int line = 0;

String qualifiedIdentifier = "";

}

{

try {

<IDENTIFIER >

{

line = token.beginLine;

qualifiedIdentifier = token.image;

}

(

<DOT > <IDENTIFIER >

{ qualifiedIdentifier += "." + token.image; }

)*

}

catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{ return

new TypeName(line , qualifiedIdentifier); }

}

Let us walk through the above method in order to make sense out of it.

• The qualifiedIdentifier non-terminal, as in the case of the hand-written parser,
is private method and returns an instance of TypeName. The method does not take
any arguments.

• The local variable block defines two variables, line and qualifiedIdentifier; the
former is for tracking the line number in the source file, and the latter is for accumu-
lating the individual identifiers (x, y, and z in x.y.z, for example) into a qualified
identifier (x.y.z, for example). The variables line and qualifiedIdentifier are used
within the body that actually parses a qualified identifier.

• In the body, all parsing is done within the try-catch block. When an identifier token8

<IDENTIFIER> is encountered, its line number in the source file and its image are
recorded in the respective variables; this is an action and hence is within a block. We
then look for zero or more occurrences of the tokens <DOT> <IDENTIFIER> within the
()* EBNF construct. For each such occurrence, we append the image of the identifier
to the qualifiedIdentifier variable; this is also an action and hence is java code
within a block. Once a qualified identifer has been parsed, we return (again an action
and hence is java code within a block) an instance of TypeName.

• JavaCC raises a ParseException when encountering a parsing error. The instance of
ParseException stores information about the token that was found and the token
that was sought. When such an exception occurs, we invoke our own error recovery

8The token variable stores the current token information: token.beginLine stores the line number
in which the token occurs in the source file and token.image stores the token’s image (for example, the
identifier name in case of the <IDENTIFIER> token).

Parsing 119

method recoverFromError() and try to recover to the nearest semicolon (SEMI) or
to the end of file (EOF). We pass to this method the instance of ParseException so
that the method can report a meaningful error message.

As another example, let us see how we specify the non-terminal statement,

statement ::= block
| <identifier> : statement
| if parExpression statement [else statement]
| while parExpression statement
| return [expression] ;
| ;
| statementExpression ;

for parsing statements in j--.

private JStatement statement (): {

int line = 0;

JStatement statement = null;

JExpression test = null;

JStatement consequent = null;

JStatement alternate = null;

JStatement body = null;

JExpression expr = null;

}

{

try {

statement = block() |

<IF> { line = token.beginLine; }

test = parExpression ()

consequent = statement ()

// Even without the lookahead below , which is added to

// suppress JavaCC warnings , dangling if-else problem is

// resolved by binding the alternate to the closest

// consequent.

[

LOOKAHEAD(<ELSE >)

<ELSE > alternate = statement ()

]

{ statement =

new JIfStatement(line , test , consequent , alternate); } |

<WHILE > { line = token.beginLine; }

test = parExpression ()

body = statement ()

{ statement = new JWhileStatement(line , test , body); } |

<RETURN > { line = token.beginLine; }

[

expr = expression ()

]

<SEMI >

{ statement = new JReturnStatement(line , expr); } |

<SEMI >

{ statement = new JEmptyStatement(line); } |

// Must be a statementExpression

statement = statementExpression ()

<SEMI >

}

catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{ return statement; }

120 An Introduction to Compiler Construction in a Java World

}

We will jump right into the try block to see what is going on.

• If the current token is <LCURLY>, which marks the beginning of a block, the lower-
level non-terminal block is invoked to parse block-statement. The value returned by
block is assigned to the local variable statement.

• If the token is <IF>, we get its line number and parse an if statement; we delegate
to the lower-level non-terminals parExpression and statement to parse the test ex-
pression, the consequent, and the (optional) alternate statements. Note the use of
the | and [] JavaCC constructs for alternation and option. Once we have successfully
parsed an if statement, we create an instance of the AST node for an if statement
and assign it to the local variable statement.

• If the token is <WHILE>, <RETURN>, or <SEMI>, we parse a while, return, or an empty
statement.

• Otherwise, it must be a statement expression, which we parse by simply delegating
to the lower-level non-terminal statementExpression. In each case we set the local
variable statement to the appropriate AST node instance.

Finally, we return the local variable statement and this completes the parsing of a j--
statement.

Lookahead

As in the case of a recursive descent parser, we cannot always decide which production rule
to use in parsing a non-terminal just by looking at the current token; we have to look ahead
at the next few symbols to decide. JavaCC offers a function called LOOKAHEAD that we can
use for this purpose. Here is an example in which we parse a simple unary expression in j--,
expressed by the BNF rule:

simpleUnaryExpression ::= ! unaryExpression
| (basicType) unaryExpression //cast
| (referenceType) simpleUnaryExpression // cast
| postfixExpression

private JExpression simpleUnaryExpression (): {

int line = 0;

Type type = null;

JExpression expr = null , unaryExpr = null , simpleUnaryExpr = null;

}

{

try {

<LNOT > { line = token.beginLine; }

unaryExpr = unaryExpression ()

{ expr = new JLogicalNotOp(line , unaryExpr); } |

LOOKAHEAD(<LPAREN > basicType () <RPAREN >)

<LPAREN > { line = token.beginLine; }

type = basicType ()

<RPAREN >

unaryExpr = unaryExpression ()

{ expr = new JCastOp(line , type , unaryExpr); } |

LOOKAHEAD(<LPAREN > referenceType () <RPAREN >)

<LPAREN > { line = token.beginLine; }

type = referenceType ()

Parsing 121

<RPAREN >

simpleUnaryExpr = simpleUnaryExpression ()

{ expr = new JCastOp(line , type , simpleUnaryExpr); } |

expr = postfixExpression ()

}

catch (ParseException e) {

recoverFromError(new int[] { SEMI , EOF }, e);

}

{ return expr ; }

}

We use the LOOKAHEAD function to decide between a cast expression involving a basic
type, a cast expression involving a reference type, and a postfix expression, which could
also begin with an LPAREN ((x) for example). Notice how we are spared the chore of writing
our own non-terminal-specific lookahead functions. Instead, we simply invoke the JavaCC
LOOKAHEAD function by passing in tokens we want to look ahead. Thus, we do not have to
worry about backtracking either; LOOKAHEAD does it for us behind the scenes. Also notice
how, as in LOOKAHEAD(<LPAREN> basicType()<RPAREN>), we can pass both terminals and
non-terminals to LOOKAHEAD.

Error Recovery

JavaCC offers two error recovery mechanisms, namely shallow and deep error recovery.
We employ the latter in our implementation of a JavaCC parser for j--. This involves
catching within the body of a non-terminal, the ParseException that is raised in the
event of a parsing error. The exception instance e along with skip-to tokens are passed to
our recoverFromError() error recovery function. The exception instance has information
about the erroneous token that was found and the token that was expected, and skipTo is
an array of tokens that we would like to skip to in order to recover from the error. Here is
the function:

private void recoverFromError(int[] skipTo , ParseException e) {

// Get the possible expected tokens

StringBuffer expected = new StringBuffer ();

for (int i = 0; i < e.expectedTokenSequences.length; i++) {

for (int j = 0; j < e.expectedTokenSequences[i]. length;

j++) {

expected.append ("\n");

expected.append (" ");

expected.append(tokenImage[

e.expectedTokenSequences[i][j]]);

expected.append ("...");

}

}

// Print error message

if (e.expectedTokenSequences.length == 1) {

reportParserError ("\"%s\" found where %s sought",

getToken (1), expected);

}

else {

reportParserError ("\"%s\" found where one of %s sought",

getToken (1), expected);

}

// Recover

boolean loop = true;

do {

token = getNextToken ();

for (int i = 0; i < skipTo.length; i++) {

122 An Introduction to Compiler Construction in a Java World

if (token.kind == skipTo[i]) {

loop = false;

break;

}

}

} while(loop);

}

First, the function, from the token that was found and the token that was sought,
constructs and displays an appropriate error message. Second, it recovers by skipping to
the nearest token in the skipto list of tokens.

In the current implementation of the parser for j--, all non-terminals specify SEMI and
EOF as skipTo tokens. This error recovery scheme could be made more sophisticated by
specifying the follow of the non-terminal as skipTo tokens.

Note that when ParseException is raised, control is transferred to the calling non-
terminal. Thus when an error occurs within higher non-terminals, the lower non-terminals
go unparsed.

Generating a Parser Versus Hand-Writing a Parser

If you compare the JavaCC specification for the parser for j-- with the hand-written parser,
you will notice that they are very much alike. This would make you wonder whether we are
gaining anything by using JavaCC. The answer is, yes we are. Here are some of the benefits:

• Lexical structure is much more easily specified using regular expressions.

• EBNF constructs are allowed.

• Lookahead is easier; it is given as a function and takes care of backtracking.

• Choice conflicts are reported when lookahead is insufficient

• Sophisticated error recovery mechanisms are available.

Other parser generators, including ANTLR9 for Java, also offer the above advantages
over hand-written parsers.

3.6 Further Readings

For a thorough and classic overview of context-free parsing, see [Aho et al., 2007].
The context-free syntax for Java may be found in [Gosling et al., 2005]; see chapters 2

and 18. This book is also published online at http://docs.oracle.com/javase/specs/.
LL(1) parsing was introduced in [Lewis and Stearns, 1968] and [Knuth, 1971b]. Recursive

descent was introduced in [Lewis et al., 1976]. The simple error-recovery scheme used in our
parser comes from [Turner, 1977].

See Chapter 5 in [Copeland, 2007] for more on how to generate parsers using JavaCC.
See Chapter 7 for more information on error recovery. See Chapter 8 for a case study—
parser for JavaCC grammar. JavaCC itself is open-source software, which may be obtained
from https://javacc.dev.java.net/. Also, see [van der Spek et al., 2005] for a discussion
of error recovery in JavaCC.

9A parser generator; http://www.antlr.org/.

Parsing 123

See [Aho et al., 1975] for an introduction to YACC. The canonical open-source implemen-
tation of the LALR(1) approach to parser generation is given by [Donnelly and Stallman,
2011]. See [Burke and Fisher, 1987] for a nice approach to LALR(1) parser error recovery.

Other shift-reduce parsing strategies include both simple-precedence and operator-
precedence parsing. These are nicely discussed in [Gries, 1971].

3.7 Exercises

Exercise 3.1. Consult Chapter 18 of the Java Language Specification [Gosling et al., 2005].
There you will find a complete specification of Java’s context-free syntax.

a. Make a list of all the expressions that are in Java but not in j--.

b. Make a list of all statements that are in Java but not in j--.

c. Make a list of all type declarations that are in Java but not in j--.

d. What other linguistic constructs are in Java but not in j--?

Exercise 3.2. Consider the following grammar:

S ::= (L) | a
L ::= L S | ε

a. What language does this grammar describe?

b. Show the parse tree for the string (a () (a (a))).

c. Derive an equivalent LL(1) grammar.

Exercise 3.3. Show that the following grammar is ambiguous.

S ::= a S b S | b S a S | ε

Exercise 3.4. Show that the following grammar is ambiguous. Come up with an equivalent
grammar that is not ambiguous.

E ::= E and E | E or E | true | false

Exercise 3.5. Write a grammar that describes the language of Roman numerals.

Exercise 3.6. Write a grammar that describes Lisp s-expressions.

Exercise 3.7. Write a grammar that describes a number of (zero or more) a’s followed by
an equal number of b’s.

Exercise 3.8. Show that the following grammar is not LL(1).

S ::= a b | A b

A ::= a a | c d

Exercise 3.9. Consider the following context-free grammar:

124 An Introduction to Compiler Construction in a Java World

S ::= B a | a

B ::= c | b C B
C ::= c C | ε

a. Compute first and follow for S, B, and C.

b. Construct the LL(1) parsing table for this grammar.

c. Is this grammar LL(1)? Why or why not?

Exercise 3.10. Consider the following context-free grammar:

S ::= A a | a
A ::= c | b B
B ::= c B | ε

a. Compute first and follow for S, A, and B.

b. Construct the LL(1) parsing table for the grammar.

c. Is this grammar LL(1)? Why or why not?

Exercise 3.11. Consider the following context-free grammar:

S ::= A a

A ::= b d B | e B
B ::= c A | d B | ε

a. Compute first and follow for S, A, and B.

b. Construct an LL(1) parsing table for this grammar.

c. Show the steps in parsing b d c e a.

Exercise 3.12. Consider the following context-free grammar:

S ::= AS | b
A ::= SA | a

a. Compute first and follow for S and A.

b. Construct the LL(1) parsing table for the grammar.

c. Is this grammar LL(1)? Why or why not?

Exercise 3.13. Show that the following grammar is LL(1).

S ::= A a A b

S ::= B b B a

A ::= ε
B ::= ε

Exercise 3.14. Consider the following grammar:

E ::= E or T | T
T ::= T and F | F
F ::= not F | (E) | i

Parsing 125

a. Is this grammar LL(1)? If not, derive an equivalent grammar that is LL(1).

b. Construct the LL(1) parsing table for the LL(1) grammar.

c. Show the steps in parsing not i and i or i.

Exercise 3.15. Consider the following grammar:

S ::= L = R
S ::= R
L ::= * R
L ::= i

R ::= L

a. Construct the canonical LR(1) collection.

b. Construct the Action and Goto tables.

c. Show the steps in the parse for * i = i.

Exercise 3.16. Consider the following grammar:

S ::= (L) | a
L ::= L , S | S

a. Compute the canonical collection of LR(1) items for this grammar.

b. Construct the LR(1) parsing table for this grammar.

c. Show the steps in parsing the input string ((a , a), a).

d. Is this an LALR(1) grammar?

Exercise 3.17. Consider the following grammar.

S ::= A a | b A c | d c | b d a

A ::= d

a. What is the language described by this grammar?

b. Compute first and follow for all non-terminals.

c. Construct the LL(1) parsing table for this grammar. Is it LL(1)? Why?

d. Construct the LR(1) canonical collection, and the Action and Goto tables for this gram-
mar. Is it LR(1)? Why or why not?

Exercise 3.18. Is the following grammar LR(1)? LALR(1)?

S ::= C C
C ::= a C | b

Exercise 3.19. Consider the following context-free grammar:

S ::= A a | b A c | d c | b d a

A ::= d

a. Compute the canonical LR(1) collection for this grammar.

126 An Introduction to Compiler Construction in a Java World

b. Compute the Action and Goto tables for this grammar.

c. Show the steps in parsing b d c.

d. Is this an LALR(1) grammar?

Exercise 3.20. Show that the following grammar is LR(1) but not LALR(1).

S ::= a B c | b C d | a C d b B d

B ::= e

C ::= e

Exercise 3.21. Modify the Parser to parse and return nodes for the double literal and
the float literal.

Exercise 3.22. Modify the Parser to parse and return nodes for the long literal.

Exercise 3.23. Modify the Parser to parse and return nodes for all the additional opera-
tors that are defined in Java but not yet in j--.

Exercise 3.24. Modify the Parser to parse and return nodes for conditional expressions,
for example, (a > b)? a : b.

Exercise 3.25. Modify the Parser to parse and return nodes for the for-statement, in-
cluding both the basic for-statement and the enhanced for-statement.

Exercise 3.26. Modify the Parser to parse and return nodes for the switch-statement.

Exercise 3.27. Modify the Parser to parse and return nodes for the try-catch-finally
statement.

Exercise 3.28. Modify the Parser to parse and return nodes for the throw-statement.

Exercise 3.29. Modify the Parser to deal with a throws-clause in method declarations.

Exercise 3.30. Modify the Parser to deal with methods and constructors having variable
arity, that is, a variable number of arguments.

Exercise 3.31. Modify the Parser to deal with both static blocks and instance blocks in
type declarations.

Exercise 3.32. Although we do not describe the syntax of generics in Appendix C, it is
described in Chapter 18 of the Java Language Specification [Gosling et al., 2005]. Modify
the Parser to parse generic type definitions and generic types.

Exercise 3.33. Modify the j--.jj file in the compiler’s code tree for adding the above
(3.22 through 3.31) syntactic constructs to j--.

Exercise 3.34. Say we wish to add a do-until statement to j--. For example,

do {

x = x * x;

}

until (x > 1000);

a. Write a grammar rule for defining the context-free syntax for a new do-until statement.

b. Modify the Scanner to deal with any necessary new tokens.

c. Modify the Parser to parse and return nodes for the do-until statement.

Chapter 4

Type Checking

4.1 Introduction

Type checking, or more formally semantic analysis, is the final step in the analysis phase. It
is the compiler’s last chance to collect information necessary to begin the synthesis phase.
Semantic analysis includes the following:

• Determining the types of all names and expressions.

• Type checking: insuring that all expressions are properly typed, for example, that the
operands of an operator have the proper types.

• A certain amount of storage analysis, for example determining the amount of storage
that is required in the current stack frame to store a local variable (one word for ints,
two words for longs). This information is used to allocate locations (at offsets from
the base of the current stack frame) for parameters and local variables.

• A certain amount of AST tree rewriting, usually to make implicit constructs more
explicit.

Semantic analysis of j-- programs involves all of the following operations.

• Like Java, j-- is strictly-typed ; that is, we want to determine the types of all names
and expressions at compile time.

• A j-- program must be well-typed; that is, the operands to all operations must have
appropriate types.

• All j-- local variables (including formal parameters) must be allocated storage and
assigned locations within a method’s stack frame.

• The AST for j-- requires a certain amount of sub-tree rewriting. For example, field
references using simple names must be rewritten as explicit field selection operations.
And declared variable initializations must be rewritten as explicit assignment state-
ments.

4.2 j-- Types

4.2.1 Introduction to j-- Types

A type in j-- is either a primitive type or a reference type.

127

128 An Introduction to Compiler Construction in a Java World

j-- primitive types:

• int - 32 bit two’s complement integers

• boolean - taking the value true or false

• char - 16 bit Unicode (but many systems deal only with the lower 8 bits)

j-- reference types:

• Arrays

• Objects of a type described by a class declaration

• Built-in objects java.lang.Object and java.lang.String

j-- code may interact with classes from the Java library but it must be able to do so using
only these types.

4.2.2 Type Representation Problem

The question arises: How do we represent a type in our compiler? For example, how do we
represent the types int, int[], Factorial, String[][]? The question must be asked in
light of two desires:

1. We want a simple, but extensible representation. We want no more complexity than is
necessary for representing all of the types in j-- and for representing any (Java) types
that we may add in exercises.

2. We want the ability to interact with the existing Java class libraries.

Two solutions come immediately to mind:

1. Java types are represented by objects of (Java) type java.lang.Class. Class is a
class defining the interface necessary for representing Java types. Because j-- is a
subset of Java, why not use Class objects to represent its types? Unfortunately, the
interface is not as convenient as we might like.

2. A home-grown representation may be simpler. One defines an abstract class (or
interface) Type, and concrete sub-classes (or implementations) PrimitiveType,
ReferenceType, and ArrayType.

4.2.3 Type Representation and Class Objects

Our solution is to define our own class Type for representing types, with a simple interface
but also encapsulating the java.lang.Class object that corresponds to the Java represen-
tation for that same type.

But the parser does not know anything about types. It knows neither what types have
been declared nor which types have been imported. For this reason we define two placeholder
type representations:

1. TypeName - for representing named types recognized by the parser like user-defined
classes or imported classes until such time as they may be resolved to their proper
Type representation.

2. ArrayTypeName - for representing array types recognized by the parser like String[],
until such time that they may resolved to their proper Type representation.

Type Checking 129

During analysis, TypeNames and ArrayTypeNames are resolved to the Types that they
represent. Type resolution involves looking up the type names in the symbol table to de-
termine which defined type or imported type they name. More specifically,

• A TypeName is resolved by looking it up in the current context, our representation
of our symbol table. The Type found replaces the TypeName.1 Finally, the Type’s
accessibility from the place the TypeName is encountered is checked.

• An ArrayTypeName has a base type. First the base type is resolved to a Type, whose
Class representation becomes the base type for a new Class object for representing
the array type2. Our new Type encapsulates this Class object.

• A Type resolves to itself.

So that ArrayTypeNames and TypeNames may stand in for Types in the compiler, both are
sub-classes of Type.

One might ask why the j-- compiler does not simply use Java’s Class objects for rep-
resenting types. The answer is twofold:

1. Our Type defines just the interface we need.

2. Our Type permits the Parser to use its sub-types TypeName and ArrayTypeName in
its place when denoting types that have not yet been resolved.

4.3 j-- Symbol Tables

In general, a symbol table maps names to the things they name, for example, types, for-
mal parameters, and local variables. These mappings are established in a declaration and
consulted each time a declared name is encountered.

4.3.1 Contexts and Idefns: Declaring and Looking Up Types and Local
Variables

In the j-- compiler, the symbol table is a tree of Context objects, which spans the abstract
syntax tree. Each Context corresponds to a region of scope in the j-- source program and
contains a map of names to the things they name.

For example, reconsider the simple Factorial program. In this version, we mark two
locations in the program using comments: position 1 and position 2.

package pass;

import java.lang.System;

public class Factorial {

// Two methods and a field

public static int factorial(int n) {

1Even though externally defined types must be explicitly imported, if the compiler does not find the
name in the symbol table, it attempts to load a class file of the given name and, if successful, declares it.

2Actually, because Java does not provide the necessary API for creating Class objects that represent
array types, we create an instance of that array type and use getClass() to get its type’s Class
representation.

130 An Introduction to Compiler Construction in a Java World

// position 1:

if (n <= 0) {

return 1;

} else {

return n * factorial(n - 1);

}

}

public static void main(String [] args) {

// position 2:

int x = n;

System.out.println(n + "! = " + factorial(x));

}

static int n = 5;

}

The symbol table for this program, and its relationship to the AST, is illustrated in Figure
4.1.

In its entirety, the symbol table takes the form of a tree that corresponds to the shape
of the AST. A context—that is, a node in this tree—captures the region of scope corre-
sponding to the AST node that points to it. For example, in Figure 4.1,

1. The context pointer from the AST’s JCompilationUnit node points to the
JCompilationUnitContext that is at the root of the symbol table.

2. The context pointer from the AST’s JClassDeclaration points to a ClassContext,

3. The context pointer from the AST’s two JMethodDeclarations each point to a
MethodContext

4. The context pointer from the AST’s two JBlocks each point to a LocalContext.

On the other hand, from any particular location in the program, looking back toward
the root CompilationUnitContext, the symbol table looks like a stack of contexts. Each
(surroundingContext) link back toward the CompilationUnitContext points to the con-
text representing the surrounding lexical scope.

For example,

1. The context for Position 2 pointer in Figure 4.1 points to a LocalContext, which
declares the local variable x in the body of the main() method of the Factorial

program.

2. Its surroundingContext pointer points to a MethodContext in which the formal
parameter, args is declared.

3. Its surroundingContext pointer points to a ClassContext in which nothing is de-
clared.

4. Its surroundingContext pointer points to a CompilationUnitContext at the base
of the stack, which contains the declared types for the entire program.

During analysis, when the compiler encounters a variable, it looks up that variable in the
symbol table by name, beginning at the LocalContext most recently created in the symbol
table, for example, that pointed to by the pointer labeled “context for Position 1.” Type
names are looked up in the CompilationUnitContext. To make this easier, each context
maintains three pointers to surrounding contexts, as illustrated in Figure 4.2.

Type Checking 131

FIGURE 4.1 The symbol table for the Factorial program.

132 An Introduction to Compiler Construction in a Java World

FIGURE 4.2 The structure of a context.

The pointer surroundingContext points to the context for the surrounding region of
scope; the chain of these pointers is the stack that captures the nested scope in j-- programs.
The pointer compilationUnitContext points to the context for the enclosing compilation
unit, that is, a CompilationUnitContext. In the current definition of j--, there is just one
compilation unit but one might imagine an extension to j-- permitting the compilation of
several files, each of which defines a compilation unit. The pointer classContext points to
the context (a ClassContext) for the enclosing class. As we shall see below, no names are
declared in a ClassContext but this could change if we were to add nested type declarations
to j--.

A CompilationUnitContext represents the scope of the entire program and contains a
mapping from names to types:

• The implicitly declared types, java.lang.Object, and java.lang.String

• Imported types

• User-defined types, that is, types introduced in class declarations

A ClassContext represents the scope within a class declaration. In the j-- symbol table,
no names are declared here. All members, that is all constructors, methods and fields are
recorded in the Class object that represents the type; we discuss this in the next section.
If we were to add nested type declarations to j--, they might be declared here.

A MethodContext represents the scope within a method declaration. A method’s formal
parameters are declared here. A MethodContext is a kind of LocalContext.

A LocalContext represents the scope within a block, that is, the region between two
curly brackets { and }. This includes the block defining the body to a method. Local
variables are declared here.

Each kind of context derives from (extends) the class Context, which supplies the
mapping from names to definitions (IDefns). Because a method defines a local context,
MethodContext extends LocalContext. The inheritance tree for contexts is illustrated in
Figure 4.3

Type Checking 133

FIGURE 4.3 The inheritance tree for contexts.

An IDefn is the interface type for symbol table definitions, which has two implementa-
tions:

1. A TypeNameDefn, which defines a type name. An IDefn of this sort encapsulates the
Type that it denotes.

2. A LocalVariableDefn defines a local variable and encapsulates the name, its Type,
and an offset in the current run-time stack frame. (We discuss stack frame offsets in
Section 4.5.2.)

4.3.2 Finding Method and Field Names in Type Objects

As we discussed in Section 4.2.3, the types defined by classes are represented in the same
way as they are in the Java library, so that we may consistently manipulate types that we
define and types that we import.

Class member (field and method in j--) names are not declared in a ClassContext,
but in the Types that they declare. We rely on the encapsulated Class object to store the
interface information, and we rely on Java reflection to query a type for information about
its members.

For example, Type supports a method fieldFor() that, when given a name, returns
a Field with the given name that is defined for that type. It delegates the finding of this
field to a search of the underlying Class object and can be seen from the code that defines
fieldFor():

public Field fieldFor(String name) {

Class <?> cls = classRep;

while (cls != null) {

java.lang.reflect.Field [] fields =

cls.getDeclaredFields ();

for (java.lang.reflect.Field field:fields) {

if (field.getName (). equals(name)) {

return new Field(field);

}

}

cls = cls.getSuperclass ();

}

return null;

}

This code first looks for the named field in the Class object for the Type being defined. If it
does not find it there, it looks in the Class object for the Type’s super type, and so on until
either the field is found or we come to the base of the inheritance tree, in which case null is
returned to indicate that no such field was found. If we find the java.lang.reflect.Field,

134 An Introduction to Compiler Construction in a Java World

we encapsulate it within our own locally defined Field. More interface for querying a Type

about its members is implemented, delegating the reflection to the underlying Class object
that is kept in the Type’s classRep field.

The Class objects are created for declared classes in the preAnalyze() phase and are
queried during the analyze() phase. This is made possible by the CLEmitter’s ability to
create partial class files—class files that define the headers for methods (but not the bodies)
and the types of fields (but not their initializations). These analysis issues are discussed in
the next two sections.

4.4 Pre-Analysis of j-- Programs

4.4.1 An Introduction to Pre-Analysis

The semantic analysis of j-- (and Java) programs requires two traversals of the AST because
a class name or a member name may be referenced before it is declared in the source
program. The traversals are accomplished by methods (the method preAnalyze() for the
first traversal and the method analyze() for the second), that invoke themselves at the
child nodes for recursively descending the AST to its leaves.

But the first traversal need not traverse the AST as deeply as the second traversal. The
only names that may be referred to before they are declared are type names (that is, class
names in j--) and members.

So preAnalyze() must traverse down the AST only far enough for

• Declaring imported type names,

• Declaring user-defined class names,

• Declaring fields,

• Declaring methods (including their signatures the types of their parameters).

For this reason, preAnalyze() need be defined only in the following types of AST nodes:

• JCompilationUnit

• JClassDeclaration

• JFieldDeclaration

• JMethodDeclaration

• JConstructorDeclaration

So the preAnalyze() phase descends recursively down the AST only as far as the member
declarations, but not into the bodies of methods3.

3Implementing nested classes would require recursing more deeply.

Type Checking 135

4.4.2 JCompilationUnit.preAnalyze()

For the JCompilationUnit node at the top of the AST, preAnalyze() does the following:

1. It creates a CompilationUnitContext.

2. It declares the implicit j-- types, java.lang.String and java.lang.Object.

3. It declares any imported types.

4. It declares the types defined by class declarations. Here it creates a Type for each de-
clared class, whose classRep refers to a Class object for an empty class. For example,
at this point in the pre-analysis phase of our Factorial program above, the Type for
Factorial would have a classRep, the Class object for the class:

class Factorial {}

Later on, in both analyze() and codeGen(), the class will be further defined.

5. Finally, preAnalyze() invokes itself for each of the type declarations in the compila-
tion unit. As we shall see below (Section 4.4.3), this involves, for a class declaration,
creating a new Class object that records the interface information for each member
and then overwriting the classRep for the declared Type with this new (more fully
defined) Class.

Here is the code for preAnalyze() in JCompilationUnit:

public void preAnalyze () {

context = new CompilationUnitContext ();

// Declare the two implicit types java.lang.Object and

// java.lang.String

context.addType(0, Type.OBJECT);

context.addType(0, Type.STRING);

// Declare any imported types

for (TypeName imported: imports) {

try {

Class <?> classRep =

Class.forName(imported.toString ());

context.addType(imported.line(),

Type.typeFor(classRep));

}

catch (Exception e) {

JAST.compilationUnit.reportSemanticError(

imported.line(),

"Unable to find %s", imported.toString ());

}

}

// Declare the locally declared type(s)

CLEmitter.initializeByteClassLoader ();

for (JAST typeDeclaration: typeDeclarations) {

((JTypeDecl)

typeDeclaration). declareThisType(context);

}

// Pre -analyze the locally declared type(s). Generate

// (partial) Class instances , reflecting only the member

// interface type information

CLEmitter.initializeByteClassLoader ();

for (JAST typeDeclaration: typeDeclarations) {

136 An Introduction to Compiler Construction in a Java World

((JTypeDecl)

typeDeclaration). preAnalyze(context);

}

}

4.4.3 JClassDeclaration.preAnalyze()

In a class declaration, preAnalyze() does the following:

1. It first creates a new ClassContext, whose surroundingContext points to the
CompilationUnitContext.

2. It resolves the class’s super type.

3. It creates a new CLEmitter instance, which will eventually be converted to the Class

object for representing the declared class.

4. It adds a class header, defining a name and any modifiers, to this CLEmitter instance.

5. It recursively invokes preAnalyze() on each of the class’ members. This causes field
declarations, constructors, and method declarations (but with empty bodies) to be
added to the CLEmitter instance.

6. If there is no explicit constructor (having no arguments) in the set of members, it adds
the implicit constructor to the CLEmitter instance. For example, for the Factorial

program above, the following implicit constructor is added, even though it is never
used in the Factorial program:

public Factorial () {

super.Factorial ();

}

7. Finally, the CLEmitter instance produces a Class object, and that replaces the
classRep for the Type of the declared class name in the (parent) ClassContext.

Notice that this pass need not descend into method bodies. If j--, like full Java, supported
nested classes, then preAnalyze() would have to examine all of the statements of every
method body to see if it were a nested class needing pre-analysis.

The code for JClassDeclaration’s preAnalyze() is as follows:

public void preAnalyze(Context context) {

// Construct a class context

this.context = new ClassContext(this , context);

// Resolve superclass

superType = superType.resolve(this.context);

// Creating a partial class in memory can result in a

// java.lang.VerifyError if the semantics below are

// violated , so we can ’t defer these checks to analyze ()

thisType.checkAccess(line , superType);

if (superType.isFinal ()) {

JAST.compilationUnit.reportSemanticError(line ,

"Cannot extend a final type: %s",

superType.toString ());

}

// Create the (partial) class

Type Checking 137

CLEmitter partial = new CLEmitter ();

// Add the class header to the partial class

String qualifiedName =

JAST.compilationUnit.packageName () == "" ? name :

JAST.compilationUnit.packageName () + "/" + name;

partial.addClass(mods , qualifiedName , superType.jvmName(),

null , false);

// Pre -analyze the members and add them to the partial class

for (JMember member: classBlock) {

member.preAnalyze(this.context , partial);

if (member instanceof JConstructorDeclaration &&

((JConstructorDeclaration) member).

params.size() == 0) {

hasExplicitConstructor = true;

}

}

// Add the implicit empty constructor?

if (! hasExplicitConstructor) {

codegenPartialImplicitConstructor(partial);

}

// Get the Class rep for the (partial) class and make it the

// representation for this type

Type id = this.context.lookupType(name);

if (id != null &&

!JAST.compilationUnit.errorHasOccurred ()) {

id.setClassRep(partial.toClass ());

}

}

4.4.4 JMethodDeclaration.preAnalyze()

Here is the code for preAnalyze() in JMethodDeclaration:

public void preAnalyze(Context context , CLEmitter partial) {

// Resolve types of the formal parameters

for (JFormalParameter param: params) {

param.setType(param.type (). resolve(context));

}

// Resolve return type

returnType = returnType.resolve(context);

// Check proper local use of abstract

if (isAbstract && body != null) {

JAST.compilationUnit.reportSemanticError(line(),

"abstract method cannot have a body ");

}

else if (body == null && ! isAbstract) {

JAST.compilationUnit.reportSemanticError(line(),

"Method with null body must be abstract ");

}

else if (isAbstract && isPrivate) {

JAST.compilationUnit.reportSemanticError(line(),

"private method cannot be declared abstract ");

}

else if (isAbstract && isStatic) {

JAST.compilationUnit.reportSemanticError(line(),

"static method cannot be declared abstract ");

138 An Introduction to Compiler Construction in a Java World

}

// Compute descriptor

descriptor = "(";

for (JFormalParameter param: params) {

descriptor += param.type (). toDescriptor ();

}

descriptor += ")" + returnType.toDescriptor ();

// Generate the method with an empty body (for now)

partialCodegen(context , partial);

}

Basically, preAnalyze() does the following in a method declaration:

1. It resolves the types of its formal parameters and its return type.

2. It checks that any abstract modifier is proper.

3. It computes the method descriptor, which codifies the method’s signature as a string4.
For example, in the Factorial program above,

• Method factorial() has the descriptor (I)I, which indicates a method taking
an int for an argument and returning an int result, and

• Method main() has the descriptor ([Ljava.lang.String;)V, which indicates a
method taking a String[] argument and not returning anything (that is, a void

return type).

4. Finally, it calls upon partialCodegen() to generate code for the method, but without
the body. So the Class object that is generated for the enclosing class declaration has,
after pre-analysis, at least the interface information for methods, including the types
of parameters and the return type.

The code for partialCodegen() is as follows:

public void partialCodegen(Context context , CLEmitter partial) {

// Generate a method with an empty body; need a return to

// make the class verifier happy.

partial.addMethod(mods , name , descriptor , null , false);

// Add implicit RETURN

if (returnType == Type.VOID) {

partial.addNoArgInstruction(RETURN);

}

else if (returnType == Type.INT ||

returnType == Type.BOOLEAN ||

returnType == Type.CHAR) {

partial.addNoArgInstruction(ICONST_0);

partial.addNoArgInstruction(IRETURN);

}

else {

// A reference type.

partial.addNoArgInstruction(ACONST_NULL);

partial.addNoArgInstruction(ARETURN);

}

}

4Method descriptors are discussed in Appendix D.

Type Checking 139

4.4.5 JFieldDeclaration.preAnalyze()

Pre-analysis for a JFieldDeclaration is similar to that for a JMethodDeclaration. In a
JFieldDeclaration, preAnalyze() does the following:

1. It enforces the rule that fields may not be declared abstract.

2. It resolves the field’s declared type.

3. It generates the JVM code for the field declaration, via the CLEmitter created for the
enclosing class declaration.

The code itself is rather simple:

public void preAnalyze(Context context , CLEmitter partial) {

// Fields may not be declared abstract.

if (mods.contains (" abstract ")) {

JAST.compilationUnit.reportSemanticError(line(),

"Field cannot be declared abstract ");

}

for (JVariableDeclarator decl: decls) {

// Add field to (partial) class

decl.setType(decl.type (). resolve(context));

partial.addField(mods , decl.name(),

decl.type (). toDescriptor (), false);

}

}

4.4.6 Symbol Table Built by preAnalyze()

So, pre-analysis recursively descends only so far as the class members declared in a program
and constructs only a CompilationUnitContext (in which all types are declared) and a
ClassContext. No local variables are declared in pre-analysis. Figure 4.4 illustrates how
much of the symbol table is constructed for our Factorial program once pre-analysis is
complete.

140 An Introduction to Compiler Construction in a Java World

FIGURE 4.4 The symbol table created by the pre-analysis phase for the Factorial

program.

4.5 Analysis of j-- Programs

Once we have declared and loaded all imported types, and we have declared the types
defined by class declarations, the compiler can execute the analysis phase.

The analysis phase recursively descends throughout the AST all the way to its leaves,

• Rewriting field and local variable initializations as assignments,

• Declaring both formal parameters and local variables,

• Allocating locations in the stack frame for the formal parameters and local variables,

• Computing the types of expressions and enforcing the language type rules,

• Reclassifying ambiguous names, and

• Doing a limited amount of tree surgery.

Type Checking 141

4.5.1 Top of the AST

Traversing the Top of the AST

At the top of the AST, analyze() simply recursively descends into each of the type (class)
declarations, delegating analysis to one class declaration at a time:

public JAST analyze(Context context) {

for (JAST typeDeclaration : typeDeclarations) {

typeDeclaration.analyze(this.context);

}

return this;

}

Each class declaration in turn iterates through its members, delegating analysis to each of
them. The only interesting thing is that, after all of the members have been analyzed, static
field initializations are separated from instance field initializations, in preparation for code
generation. This is discussed in the next section.

Rewriting Field Initializations as Assignments

In JFieldDeclaration, analyze() rewrites the field initializer as an explicit assignment
statement, analyzes that, and then stores it in the JFieldDeclaration’s initializations list.

public JFieldDeclaration analyze(Context context) {

for (JVariableDeclarator decl : decls) {

// All initializations must be turned into assignment

// statements and analyzed

if (decl.initializer () != null) {

JAssignOp assignOp =

new JAssignOp(decl.line(),

new JVariable(decl.line(),

decl.name()),

decl.initializer ());

assignOp.isStatementExpression = true;

initializations.add(

new JStatementExpression(decl.line(),

assignOp). analyze(context));

}

}

return this;

}

Afterward, returning up to JClassDeclaration, analyze() separates the assignment
statements into two lists: one for the static fields and one for the instance fields.

// Copy declared fields for purposes of initialization.

for (JMember member : classBlock) {

if (member instanceof JFieldDeclaration) {

JFieldDeclaration fieldDecl = (JFieldDeclaration) member;

if (fieldDecl.mods (). contains (" static ")) {

staticFieldInitializations.add(fieldDecl);

} else {

instanceFieldInitializations.add(fieldDecl);

}

}

}

Later, codegen() will use these lists in deciding whether or not to generate both an instance
initializing method and a class initializing method.

For example, consider the static field, declared in the Factorial class:

static int n = 5;

142 An Introduction to Compiler Construction in a Java World

Figure 4.5 illustrates how the sub-tree for the declaration is rewritten. The tree surgery in
Figure 4.5 proceeds as follows.

FIGURE 4.5 The rewriting of a field initialization.

1. The original sub-tree, produced by the parser for the static field declaration is shown
in (a). The tree for the initial value is stored in JVariableDeclarator’s initializer
field.

Type Checking 143

2. During analysis, JFieldDeclaration’s analyze() rewrites the initializing expression,
5 as an explicit assignment statement, n = 5; producing the sub-tree illustrated in
(b).

3. Finally, when analysis returns back up the AST to JClassDeclaration (after recurs-
ing down the tree, these methods also back out and they may do tasks on the way
back up), its analyze() copies the initializations to fields in its node. It separates
the initializations into two lists: staticFieldInitializations for static fields and
instanceFieldInitializations for instance fields. In the case of our example, n is
static, and so the initialization is added to staticFieldInitializations as illus-
trated in (c).

In addition to this tree surgery on field initializations, analyze() does little at the top
of the AST. The only other significant task is in JMethodDeclaration, where analyze()

declares parameters and allocates locations relative to the base of the current stack frame.
We discuss this in the next section.

4.5.2 Declaring Formal Parameters and Local Variables

MethodContexts and LocalContexts

Both formal parameters and local variables are declared in the symbol table and allocated
locations within a method invocation’s run-time stack frame. For example, consider the
following class declaration:

public class Locals {

public int foo(int t, String u) {

int v = u.length ();

{

int w = v + 5, x = w + 7;

v = w + x;

}

{

int y = 3;

int z = v + y;

t = t + y + z;

}

return t + v;

}

}

The stack frame allocated for an invocation of foo() at run- time by the JVM is illustrated
in Figure 4.6. Because foo() is an instance method, space is allocated at location 0 for
this.

144 An Introduction to Compiler Construction in a Java World

FIGURE 4.6 The stack frame for an invocation of Locals.foo().

There are several regions of scope defined within the method foo():

• First, the method itself defines a region of scope, where the formal parameters t and
u are declared.

• The method body defines a nested region of scope, where the local variable v is
declared.

• Nested within the body are two blocks, each of which defines a region of scope:

– In the first region, the local variables w and x are declared.

– In the second region, the local variables y and z are declared.

Because these two regions are disjoint, their locally declared variables may share locations
on the run-time stack frame. Thus, as illustrated in Figure 4.6, w and y share the same
location, and x and z share the same location.

During analysis, a context is created for each of these regions of scope: a MethodContext

for that region defined by the method (and in which the formal parameters t and u are
declared) and a LocalContext for each of the blocks.

The code for analyzing a JMethodDeclaration performs four steps:

1. It creates a new MethodContext, whose surroundingContext points back to the
previous ClassContext.

2. The first stack frame offset is 0; but if this is an instance method, then offset 0 must
be allocated to this, and the nextOffset is incremented to 1.

3. The formal parameters are declared as local variables and allocated consecutive offsets
in the stack frame.

4. It analyzes the method’s body.

The code is straightforward:

public JAST analyze(Context context) {

this.context = new MethodContext(context , returnType);

if (! isStatic) {

// Offset 0 is used to addr "this".

this.context.nextOffset ();

Type Checking 145

}

// Declare the parameters

for (JFormalParameter param : params) {

this.context.addEntry(param.line(), param.name(),

new LocalVariableDefn(param.type(), this.context

.nextOffset (), null));

}

if (body != null) {

body = body.analyze(this.context);

}

return this;

}

The code for analyzing a JBlock is even simpler; it performs just two steps:

1. It creates a new LocalContext, whose surroundingContext points back to the pre-
vious MethodContext (or LocalContext in the case of nested blocks). Its nextOffset
value is copied from the previous context.

2. It analyzes each of the body’s statements. Any JVariableDeclarations declare their
variables in the LocalContext created in step 1. Any nested JBlock simply invokes
this two-step process recursively, creating yet another LocalContext for the nested
block.

Again, the code is straightforward:

public JBlock analyze(Context context) {

// { ... } defines a new level of scope.

this.context = new LocalContext(context);

for (int i = 0; i < statements.size (); i++) {

statements.set(i, (JStatement) statements.get(i). analyze(

this.context));

}

return this;

}

For example, the steps in adding the contexts to the symbol table for the analysis of method
foo() are illustrated in Figure 4.7. In the contexts, the names should map to objects of
type LocalVariableDefn, which define the variables and their stack frame offsets. In the
figures, the arrows point to the offsets in parentheses.

146 An Introduction to Compiler Construction in a Java World

Type Checking 147

FIGURE 4.7 The stages of the symbol table in analyzing Locals.foo().

Analysis proceeds as follows:

(a) The analyze() method for JMethodDeclaration creates a new MethodContext. Be-
cause foo() is an instance method, location 0 is allocated to this, and the next available
stack frame location (nextOffset) is 1.

(b) It declares the first formal parameter t in this MethodContext, allocating it the offset
1 (and incrementing nextOffset to 2).

(c) It declares the second formal parameter u in this MethodContext, allocating it the offset
2 (and incrementing nextOffset to 3). Analysis is then delegated to the method’s block
(a JBlock).

(d) The analyze() method for JBlock creates a new LocalContext. Notice how the con-
structor for the new LocalContext copies the value (3) for nextOffset from the context
for the enclosing method or block:

public LocalContext(Context surrounding) {

148 An Introduction to Compiler Construction in a Java World

super(surrounding , surrounding.classContext (),

surrounding.compilationUnitContext ());

offset = (surrounding instanceof LocalContext)

? ((LocalContext) surrounding). offset ()

: 0;

}

(e) A JVariableDeclaration declares the variable v in the LocalContext, allocating it
the offset 3.

(f) analyze() creates a new LocalContext for the nested JBlock, copying the nextOffset
4 from the context for the surrounding block.

(g) A JVariableDeclaration declares the variable w in the new LocalContext, for the
nested block, allocating it the offset 4.

(h) A second JVariableDeclaration declares the variable x in the same LocalContext,
allocating it the offset 5. The subsequent assignment statement will be analyzed in this
context.

(i) When this first nested JBlock has been analyzed, analyze() returns control to the
analyze() for the containing JBlock, leaving the symbol table in exactly the state
that it was in step (e).

(j) Analyze() creates a new LocalContext for the second nested JBlock, copying the
nextOffset 4 from the context for the surrounding block. Notice the similarity to the
state in step (f). In this way, variables y and z will be allocated the same offsets in steps
(k) and (l) as w and x were in steps (g) and (h).

(k) A JVariableDeclaration declares the variable y in the new LocalContext, for the
nested block, allocating it the offset 4.

(l) A second JVariableDeclaration declares the variable z in the same LocalContext,
allocating it the offset 5. The subsequent assignment statement will be analyzed in this
context.

(m) When this second nested JBlock has been analyzed, analyze() returns control to the
analyze() for the containing JBlock, leaving the symbol table in exactly the state that
it was in steps (e) and (i).

(n) When the method body’s JBlock has been analyzed, analyze() returns control to the
analyze() for the containing JMethodDeclaration, leaving the symbol table in exactly
the state that it was in step (c).

(o) When the JMethodDeclaration has been analyzed, analyze() returns control to the
analyze() for the containing JClassDeclaration, leaving the symbol table in exactly
the state that it was before step (a).

We address the details of analyzing local variable declarations in the next section.

Analyzing Local Variable Declarations and Their Initializations

A local variable declaration is represented in the AST with a JVariableDeclaration. For
example, consider the local variable declaration from Locals:

int w = v + 5, x = w + 7;

Type Checking 149

Before the JVariableDeclaration is analyzed, it appears exactly as it was created by the
parser, as is illustrated in Figure 4.8.

FIGURE 4.8 The sub-tree for int w = v + 5, x = w + 7; before analysis.

Figure 4.8 also pictures the LocalContext created for the nested block in which the
declaration occurs, but before the declaration is analyzed.

The code for analyzing a JVariableDeclaration is as follows:

public JStatement analyze(Context context) {

for (JVariableDeclarator decl : decls) {

// Local variables are declared here (fields are

// declaredin preAnalyze ())

int offset = ((LocalContext) context). nextOffset ();

LocalVariableDefn defn = new LocalVariableDefn(decl

.type (). resolve(context), offset);

// First , check for shadowing

IDefn previousDefn = context.lookup(decl.name ());

if (previousDefn != null

&& previousDefn instanceof LocalVariableDefn) {

JAST.compilationUnit.reportSemanticError(decl.line(),

"The name " + decl.name()

+ " overshadows another local variable .");

}

// Then declare it in the local context

context.addEntry(decl.line(), decl.name(), defn);

// All initializations must be turned into assignment

// statements and analyzed

if (decl.initializer () != null) {

defn.initialize ();

JAssignOp assignOp = new JAssignOp(decl.line(),

new JVariable(decl.line(), decl.name()), decl

150 An Introduction to Compiler Construction in a Java World

.initializer ());

assignOp.isStatementExpression = true;

initializations.add(new JStatementExpression(decl

.line(), assignOp). analyze(context));

}

}

return this;

}

Analysis of a JVariableDeclaration such as that in Figure 4.8 involves the following:

1. LocalVariableDefns and their corresponding stack frame offsets are allocated for
each of the declared variables.

2. The code checks to make sure that the declared variables do not shadow existing local
variables.

3. The variables are declared in the local context.

4. Any initializations are rewritten as explicit assignment statements; those assignments
are re-analyzed and stored in an initializations list. Later, code generation will
generate code for any assignments in this list.

Figure 4.9 illustrates the result of analyzing the JVariableDeclaration in Figure 4.8.
Notice that re-analyzing the assignment statements attaches types to each node in the
sub-trees; more on that below.

Type Checking 151

FIGURE 4.9 The sub-tree for int w = v + 5, x = w + 7; after analysis.

152 An Introduction to Compiler Construction in a Java World

4.5.3 Simple Variables

Simple variables are represented in the AST as JVariable nodes. A simple variable could
denote a local variable, a field or a type. Analysis of simple variables involves looking up
their names in the symbol table to find their types. If a variable is not found in the symbol
table, then we examine the Type for the surrounding class (in which the variable appears)
to see if it is a field. If it is a field, then the field selection is made explicit by rewriting the
tree as a JFieldSelection.

The code for analyze() in JVariable is as follows:

public JExpression analyze(Context context) {

iDefn = context.lookup(name);

if (iDefn == null) {

// Not a local , but is it a field?

Type definingType = context.definingType ();

Field field = definingType.fieldFor(name);

if (field == null) {

type = Type.ANY;

JAST.compilationUnit.reportSemanticError(line ,

"Cannot find name: " + name);

} else {

// Rewrite a variable denoting a field as an

// explicit field selection

type = field.type ();

JExpression newTree = new JFieldSelection(line(),

field.isStatic () ||

(context.methodContext () != null &&

context.methodContext (). isStatic ()) ?

new JVariable(line(),

definingType.toString ()) :

new JThis(line), name);

return (JExpression) newTree.analyze(context);

}

} else {

if (! analyzeLhs && iDefn instanceof LocalVariableDefn &&

!((LocalVariableDefn) iDefn). isInitialized ()) {

JAST.compilationUnit.reportSemanticError(line ,

"Variable " + name + " might not have been

initialized ");

}

type = iDefn.type ();

}

return this;

}

For example, consider a simple case where a variable is declared locally, such as the variable
v in our Locals class. When analyzing the return statement,

return t + v;

the analysis of v is pretty straightforward and is illustrated in Figure 4.10.

1. Its name is looked up in the symbol table and is found to be associated with the
LocalVariableDefn of a local variable with type Type.INT and offset 3.

2. The LocalVariableDefn is recorded in field iDefn for later use by code generation.

3. The type field is copied from the LocalVariableDefn.

Type Checking 153

FIGURE 4.10 A locally declared variable (a) before analysis; (b) after analysis.

When the variable denotes a field, analysis is a little more interesting. For example,
consider the analysis of the static field n, when it appears in the main() method of our
Factorial class example above.

1. Figure 4.11(a) shows the JVariable before it is analyzed.

2. Its name is looked up in the symbol table but is not found. So the defining type (the
type declaration enclosing the region where the variable appears) is consulted; n is
found to be a static field in class Factorial.

3. The implicit static field selection is made explicit by rewriting the tree to represent
pass.Factorial.n. This produces the JFieldSelection illustrated in Figure 4.11
(b).

4. The JFieldSelection produced in step 3 is recursively analyzed to determine the
types of its target and the result, as illustrated in Figure 4.11(c).

5. It is this sub-tree that is returned to replace the original JVariable (a) in the parent
AST. This tree rewriting is the reason that analyze() everywhere returns a (possibly
rewritten) sub-tree.

FIGURE 4.11 Analysis of a variable that denotes a static field.

154 An Introduction to Compiler Construction in a Java World

Just how the sub-tree in Figure 4.11(b) is analyzed to produce (c) is discussed in the next
section.

4.5.4 Field Selection and Message Expressions

Reclassifying an Ambiguous Target

Both field selections and message expressions have targets. In a field selection, the target is
either an object or a class from which one wants to select a field. In a message expression,
the target is an object or class to which one is sending a message. Unfortunately, the parser
cannot always make out the syntactic structure of a target.

For example, consider the field selection

w.x.y.z

The parser knows this is a field selection of some sort and that z is the field. But, without
knowing the types of w, x, and y, the parser cannot know whether

• w is a class name, x is a static field in w, and y is a field of x;

• w is a package containing class x, and y is a static field in x; or

• w.x.y is a fully qualified class name such as java.lang.System.

For this reason, the parser packages up the string "w.x.y" in an AmbiguousName object,
attached to either the JFieldSelection or JMessageExpression, so as to put off the
decision until analysis.

The first thing that analysis does in either sort of expression is to reclassify the ambigu-
ous target in the context in which it appears. The reclassify() method in AmbiguousName

is based on the rules in the Java Language Specification [Gosling et al., 2005] for reclassifying
an ambiguous name:

public JExpression reclassify(Context context) {

// Easier because we require all types to be imported.

JExpression result = null;

StringTokenizer st = new StringTokenizer(name , ".");

// Firstly , find a variable or Type.

String newName = st.nextToken ();

IDefn iDefn = null;

do {

iDefn = context.lookup(newName);

if (iDefn != null) {

result = new JVariable(line , newName);

break;

} else if (!st.hasMoreTokens ()) {

// Nothing found. :(

JAST.compilationUnit.reportSemanticError(line ,

"Cannot find name " + newName);

return null;

} else {

newName += "." + st.nextToken ();

}

} while (true);

// For now we can assume everything else is fields.

while (st.hasMoreTokens ()) {

result = new JFieldSelection(line , result ,

st.nextToken ());

Type Checking 155

}

return result;

}

For example, consider the following message expression:

java.lang.System.out.println (...);

The parser will have encapsulated the target java.lang.System.out in an AmbiguousName

object. The first thing analyze() does for a JMessageExpression is to reclassify this
AmbiguousName to determine the structure of the expression that it denotes. It does this by
looking at the ambiguous java.lang.System.out from left to right.

1. First, reclassify() looks up the simple name java in the symbol table.

2. Not finding that, it looks up java.lang.

3. Not finding that, it looks up java.lang.System, which (assuming java.lang.System

has been properly imported) it finds to be a class.

4. It then assumes that the rest of the ambiguous part, that is out, is a field.

5. Thus, the target is a field selection whose target is java.lang.System and whose field
name is out.

Analyzing a Field Selection

The code for analyzing a field is as follows:

public JExpression analyze(Context context) {

// Reclassify the ambiguous part.

target = (JExpression) target.analyze(context);

Type targetType = target.type ();

// We use a workaround for the "length" field of arrays.

if ((targetType instanceof ArrayTypeName)

&& fieldName.equals (" length ")) {

type = Type.INT;

} else {

// Other than that , targetType has to be a

// ReferenceType

if (targetType.isPrimitive ()) {

JAST.compilationUnit.reportSemanticError(line(),

"Target of a field selection must "

+ "be a defined type ");

type = Type.ANY;

return this;

}

field = targetType.fieldFor(fieldName);

if (field == null) {

JAST.compilationUnit.reportSemanticError(line(),

"Cannot find a field: " + fieldName);

type = Type.ANY;

} else {

context.definingType (). checkAccess(line ,

(Member) field);

type = field.type ();

// Non -static field cannot be referenced from a

// static context.

if (!field.isStatic ()) {

156 An Introduction to Compiler Construction in a Java World

if (target instanceof JVariable &&

((JVariable) target). iDefn() instanceof

TypeNameDefn) {

JAST.compilationUnit.

reportSemanticError(line(),

"Non -static field " + fieldName +

" cannot be referenced from a static

context ");

}

}

}

}

return this;

}

After reclassifying any ambiguous part and making that the target, analysis of a
JFieldSelection proceeds as follows:

1. It analyzes the target and determines the target’s type.

2. It then considers the special case where the target is an array and the field is length.
In this case, the type of the “field selection” is Type.INT5.

3. Otherwise, it ensures that the target is not a primitive and determines whether or not
it can find a field of the appropriate name in the target’s type. If it cannot, then an
error is reported.

4. Otherwise, it checks to make sure the field is accessible to this region, a non-static field
is not referenced from a static context, and then returns the analyzed field selection
sub-tree.

Analyzing messages expressions is similar, but with the added complication of argu-
ments.

Analyzing a Message Expression

After reclassifying any AmbiguousName, analyzing a JMessageExpression proceeds as fol-
lows.

1. It analyzes the arguments to the message and constructs an array of their types.

2. It determines the surrounding, defining class (for determining access).

3. It analyzes the target to which the message is being sent.

4. It takes the message name and the array of argument types and looks for a matching
method defined in the target’s type. In j--, argument types must match exactly. If no
such method is found, it reports an error.

5. Otherwise, the target class and method are checked for accessibility, a non-static
method is now allowed to be referenced from a static context, and the method’s
return type becomes the type of the message expression.

public JExpression analyze(Context context) {

// Reclassify the ambiguous part

5This is a Java language hack; length is not really a field but an operation on arrays.

Type Checking 157

// Then analyze the arguments , collecting

// their types (in Class form) as argTypes

argTypes = new Type[arguments.size ()];

for (int i = 0; i < arguments.size (); i++) {

arguments.set(i, (JExpression) arguments.get(i). analyze(

context));

argTypes[i] = arguments.get(i).type ();

}

// Where are we now? (For access)

Type thisType = ((JTypeDecl) context.classContext

.definition ()). thisType ();

// Then analyze the target

if (target == null) {

// Implied this (or, implied type for statics)

if (! context.methodContext (). isStatic ()) {

target = new JThis(line ()). analyze(context);

}

else {

target = new JVariable(line(),

context.definingType (). toString ()).

analyze(context);

}

} else {

target = (JExpression) target.analyze(context);

if (target.type (). isPrimitive ()) {

JAST.compilationUnit.reportSemanticError(line(),

"cannot invoke a message on a primitive type:"

+ target.type ());

}

}

// Find appropriate Method for this message expression

method = target.type (). methodFor(messageName , argTypes);

if (method == null) {

JAST.compilationUnit.reportSemanticError(line(),

"Cannot find method for: "

+ Type.signatureFor(messageName , argTypes));

type = Type.ANY;

} else {

context.definingType (). checkAccess(line ,

(Member) method);

type = method.returnType ();

// Non -static method cannot be referenced from a

// static context.

if (! method.isStatic ()) {

if (target instanceof JVariable &&

((JVariable) target). iDefn() instanceof

TypeNameDefn) {

JAST.compilationUnit.reportSemanticError(line(),

"Non -static method " +

Type.signatureFor(messageName , argTypes) +

"cannot be referenced from a static context ");

}

}

}

return this;

}

158 An Introduction to Compiler Construction in a Java World

4.5.5 Typing Expressions and Enforcing the Type Rules

Much of the rest of analysis, as defined for the various kinds of AST nodes, is about comput-
ing and checking types and enforcing additional j-- rules. Indeed, when one reads through
any compiler, one finds lots of code whose only purpose is to enforce a litany of rules.

For most kinds of AST nodes, analysis involves analyzing the sub-trees and checking the
types.

Analyzing a Subtraction Operation

For example, analyzing a JSubtractOp is straightforward:

public JExpression analyze(Context context) {

lhs = (JExpression) lhs.analyze(context);

rhs = (JExpression) rhs.analyze(context);

lhs.type (). mustMatchExpected(line(), Type.INT);

rhs.type (). mustMatchExpected(line(), Type.INT);

type = Type.INT;

return this;

}

Analyzing a + Operation Causes Tree Rewriting for Strings

On the other hand, analyzing a JPlusOp is complicated by the possibility that one of
the operands to the + is a string; in this case, we simply rewrite the JPlusOp as a
JStringConcatenationOp and analyze that:

public JExpression analyze(Context context) {

lhs = (JExpression) lhs.analyze(context);

rhs = (JExpression) rhs.analyze(context);

if (lhs.type() == Type.STRING || rhs.type() == Type.STRING) {

return (new JStringConcatenationOp(line , lhs , rhs))

.analyze(context);

} else if (lhs.type() == Type.INT && rhs.type() == Type.INT){

type = Type.INT;

} else {

type = Type.ANY;

JAST.compilationUnit.reportSemanticError(line(),

"Invalid operand types for +");

}

return this;

}

And, analyzing a JStringConcatenationOp is easy because we know at least one of the
operands is a string, so the result has to be a string:

public JExpression analyze(Context context) {

type = Type.STRING;

return this;

}

Analyzing a Literal

Analyzing a literal is trivial. We know its type. For example, the analyze() method for
JLiteralInt follows:

public JExpression analyze(Context context) {

type = Type.INT;

return this;

}

Type Checking 159

Analyzing a Control Statement

Analyzing a control statement (for example, if-statement) is pretty straightforward. For
example, analysis of the if-statement involves only

1. Analyzing the test and checking that it is a Boolean,

2. Analyzing the consequent (the then part); and finally,

3. If there is an alternate (an else part), analyzing that.

The code for analyzing the JIfStatement follows.

public JStatement analyze(Context context) {

test = (JExpression) test.analyze(context);

test.type (). mustMatchExpected(line(), Type.BOOLEAN);

consequent = (JStatement) consequent.analyze(context);

if (alternate != null) {

alternate = (JStatement) alternate.analyze(context);

}

return this;

}

4.5.6 Analyzing Cast Operations

The j-- language is stricter than Java when it comes to types. For example, there are
no implied conversions in j--. When one assigns an expression to a variable, the types
must match exactly. The same goes for actual parameters to messages matching the formal
parameters of methods.

This does not exclude polymorphism. For example if type Bar extends (is a sub-type of)
type Foo, if bar is a variable of type Bar and foo is a variable of type Foo, we can say

foo = (Foo) bar;

to keep the j-- compiler happy. Of course, the object that bar refers to could be of type Bar

or any of its sub-types. Polymorphism has not gone away.
Analysis, when encountering a JCastOp for an expression such as

(Type2) expression of Type1

must determine two things:

1. That an expression of type Type1 can be cast to Type2, that is, that the cast is valid.

2. The type of the result. This part is easy: it is simply Type2.

To determine (1), we must consider the possibilities for Type1 and Type2. These are
specified in Section 4.5 of the Java Language Specification [Gosling et al., 2005].

1. Any type may be cast to itself. Think of this as the Identity cast.

2. An arbitrary reference type may be cast to another reference type if and only if either
one of the following holds:

(a) The first type is a sub-type of (extends) the second type. This is called widening
and requires no action at run-time.

(b) The second type is a sub-type of the first type. This is called narrowing and
requires a run-time check to make sure the expression being cast is actually an
instance of the type it is being cast to.

160 An Introduction to Compiler Construction in a Java World

3. The following table summarizes other casts. In reading the table, think of the rows as
Type1 and the columns as Type2. So the table says whether or not (and how) a type
labeling a row may be cast to a type labeling a column.

boolean char int Boolean Character Integer
boolean Identity Error Error Boxing Error Error
char Error Identity Widening Error Boxing Error
int Error Narrowing Identity Error Error Boxing
Boolean Unboxing Error Error Identity Error Error
Character Error Unboxing Error Error Identity Error
Integer Error Error Unboxing Error Error Identity

(a) A boolean can always be cast to a Boolean. The Boolean simply encapsulates
the boolean value so the operation is called boxing. Similarly, a char can be
boxed as a Character, and an int can be boxed as an Integer.

(b) A Boolean can be cast to a boolean using unboxing, plucking out the encapsu-
lated boolean value. Similarly for Characters and Integers.

(c) One primitive type may often be cast to another. For example, a char may be
cast to an int. This is an example of widening and requires no run-time action.
An int may be cast to a char. This is an example of narrowing and requires the
execution of the i2c instruction at run-time.

(d) Some types may not be cast to other types. For example, one may not cast a
boolean to an int. Such casts are invalid.

The code for analyze() in JCastOp follows:

public JExpression analyze(Context context) {

expr = (JExpression) expr.analyze(context);

type = cast = cast.resolve(context);

if (cast.equals(expr.type ())) {

converter = Converter.Identity;

} else if (cast.isJavaAssignableFrom(expr.type ())) {

converter = Converter.WidenReference;

} else if (expr.type (). isJavaAssignableFrom(cast)) {

converter = new NarrowReference(cast);

} else if ((converter =

conversions.get(expr.type(), cast)) != null) {

} else {

JAST.compilationUnit.reportSemanticError(line ,

"Cannot cast a " + expr.type (). toString () + " to a "

+ cast.toString ());

}

return this;

}

In the code, cast is the type that we want to cast the expression expr to. The code not
only decides whether or not the cast is valid, but if it is valid, computes the Converter that
will be used at code generation time to generate any run-time code required for the cast. If
no such converter is defined, then the cast is invalid.

One example of a converter is that for narrowing one reference type to another (more
specific) reference sub-type; the converter is NarrowReference and its code is as follows:

class NarrowReference implements Converter {

private Type target;

Type Checking 161

public NarrowReference(Type target) {

this.target = target;

}

public void codegen(CLEmitter output) {

output.addReferenceInstruction(CHECKCAST ,

target.jvmName ());

}

}

The compiler creates a NarrowReference instance for each cast of this kind, tailored to the
type it is casting to.

The codegen() method is used in the next code generation phase. We address code
generation in the next chapter.

4.5.7 Java’s Definite Assignment Rule

In full Java, every variable (whether it be a local variable or a field) must be definitely
assigned before it is accessed in a computation. That is, it must appear on the left-hand
side of the = operator before it is accessed. The definite assignment rule, as it applies to
Java, is described fully in Chapter 16 of the Java Language Specification [Gosling et al.,
2005]. We do not have this rule in j--, so we need not enforce it in our compiler.

Enforcing the definite assignment rule requires data flow analysis, which determines
where in the program variables are defined (assigned values), where in the program the
variables’ values are used, and so where in the program those values are valid (from assign-
ment to last use).

We discuss data flow analysis in Chapters 6 and 7; our JVM-to-MIPS translator performs
data-flow analysis as part of computing live intervals for register allocation.

4.6 Visitor Pattern and the AST Traversal Mechanism

One might ask, “Why does the compiler not use the visitor pattern for traversing the AST
in pre-analysis, analysis, and code generation?”

The visitor pattern is one of the design patterns introduced by Erich Gamma et al.
[Gamma, 1995]. The visitor pattern serves two purposes:

1. It separates the tree traversal function from the action taken at each node. A separate
mechanism, which can be shared by tree-printing, pre-analysis, analysis, and code
generation, traverses the tree.

2. It gathers all of the actions for each phase together into one module (or method).
Thus, all of the tree-printing code is together, all of the pre-analysis code is together,
all of the analysis code is together, and all of the code generation code is together.

The idea is that it separates traversal from actions taken at the nodes (a separation of
concerns) and it makes it simpler to add new actions. For example, to add an optimization
phase one need simply write a single method, rather than having to write an optimize()

method for each node type.
Such an organization would be useful if we were planning to add new actions. But we

162 An Introduction to Compiler Construction in a Java World

are more likely to be adding new syntax to j--, together with its functionality. Making
extensions to j-- would require our modifying each of the phases.

Moreover, often the traversal order for one node type differs from that of another. And
sometimes we want to perform actions at a node before, after, and even in between the
traversal of the sub-trees. For example, take a look at codegen() for the JIfStatement:

public void codegen(CLEmitter output) {

String elseLabel = output.createLabel ();

String endLabel = output.createLabel ();

condition.codegen(output , elseLabel , false);

thenPart.codegen(output);

if (elsePart != null) {

output.addBranchInstruction(GOTO , endLabel);

}

output.addLabel(elseLabel);

if (elsePart != null) {

elsePart.codegen(output);

output.addLabel(endLabel);

}

}

Mixing the traversal code along with the actions is just so much more flexible. For this
reason, the j-- compiler eschews the visitor pattern.

4.7 Programming Language Design and Symbol Table Structure

Our symbol table for j-- has two parts:

1. A linked list (or stack) of contexts (hash tables) for capturing the nested scope of type
definitions and local variables. Types are maintained in a CompilationUnitContext

at the base of this list (or stack). Local variables are looked up beginning at the end
of this linked list (or top of the stack); this reflects the nested scope of local variables.
That names at each level of scope are defined in a hash table speeds up the lookup
operation. Keeping a linked list of these hash tables, one for each lexical level of scope,
speeds up compile-time block entry and block exit.

2. Classes are represented by Type objects, stored in the CompilationUnitContext, and
built upon Java’s Class objects—Java’s representation for types. This representation
reflects the fact that a class’ method names and field names are particular to that
class, and it allows j-- programs to engage with existing classes in the Java API.

Thus, the symbol table structure in our compiler is pretty much dictated by the design of
the j-- programming language.

If we were to implement nested class declarations (an exercise in Chapter 5), some of
the infrastructure is already in our symbol table design—additional classes can be stored in
nested contexts; we may have to modify addType() and lookupType() somewhat. Other
languages that have classes or modules (such as the programming language Modula) will
want a symbol table whose structure is similar to ours.

But other, simpler procedural languages, such as the C language, in which a name is
either external to all functions or local to a function, may have much simpler symbol tables.
For C, one could use a single hash table mapping external names to their definitions, and
a simple stack of hash tables for dealing with nested blocks inside of functions.

Type Checking 163

Languages that support dynamic binding (such as some versions of LISP and some
functional programming languages) require us to keep the symbol table around at run-
time; here, efficiency becomes even more important; hash tables are the usual solution. A
radical solution to dealing with the run-time name environments of function programming
languages is to do away the names altogether! David Turner [Turner, 1979] proposed a
practical scheme where all functional programs might be translated to constant combinators.

4.8 Attribute Grammars

Notice that as we recursively traverse our abstract syntax tree, we are making additional
passes over the syntax for enforcing type rules, which are not expressible using the context
free syntax. It would be nice if we could somehow attach type rules to our (BNF) grammar
rules. An attempt at this takes the form of attribute grammars.

Attribute grammars, first developed by Donald Knuth [Knuth, 1968] as a means of
formalizing the semantics of a context-free language, are useful in specifying the syntax and
semantics of a programming language. An attribute grammar can be used to specify the
context-sensitive aspects of a language, such as checking that a variable has been declared
before use and that the use of the variable is consistent with its declaration. Attribute
grammars can also be used to specify the operational semantics of a language by defining a
translation into machine-specific lower-level code.

In this section, we will first introduce attribute grammars through examples, then pro-
vide a formal definition for an attribute grammar, and finally present attribute grammars
for a couple of constructs in j--.

4.8.1 Examples

An attribute grammar may be informally defined as a context-free grammar that has been
extended to provide context sensitivity using a set of attributes, assignment of attribute
values, evaluation rules, and conditions. In a parse tree representing the input sentence
(source program), attribute grammars can pass values from a node to its parent, using a
synthesized attribute, or from a node to its child, using an inherited attribute. In addition
to passing values up or down the tree, the attribute values may be assigned, modified, and
checked at any node in the tree. We clarify these ideas using the following examples.

Let us try and write a grammar to recognize sentences of the form anbncn. The sentences
aabbcc and abc belong to this grammar, but the sentences abbcc and aac do not. Consider
the following context-free grammar (from [Slonneger and Kurtz, 1995]:)

letterSequence ::= aSequence bSequence cSequence

aSequence ::= a | aSequence a

bSequence ::= b | aSequence b

cSequence ::= c | aSequence c

It is easily seen that the above grammar, in addition to generating the acceptable strings
such as aabbcc, also generates the unacceptable strings such as abbcc. It is impossible to

164 An Introduction to Compiler Construction in a Java World

write a context-free grammar describing the language under consideration here. Attribute
grammars come to our rescue. Augmenting our context-free grammar with an attribute
describing the length of a letter sequence, we can use these values to make sure that the
sequences of a, b, and c have the same length.

We associate a synthesized attribute size with the non-terminals aSequence, bSequence,
and cSequence, and a condition at the root of the parse tree that the size attribute for each
of the letter sequences has the same value. If the input consists of a single character, size
is set to 1; if it consists of a sequence followed by a single character, size for the parent
character is set to the size of the child character plus one. Added to the root is the condition
that the sizes of the sequences be the same. Here is the augmented grammar:

letterSequence ::= aSequence bSequence cSequence

condition : size(aSequence) = size(bSequence) = size(cSequence)

aSequence ::= a

size(aSequence) ← 1
| aSequence a

size(aSequence) ← size(aSequence) + 1

bSequence ::= b

size(bSequence) ← 1
| bSequence b

size(bSequence) ← size(bSequence) + 1

cSequence ::= c

size(cSequence) ← 1
| cSequence c

size(cSequence) ← size(cSequence) + 1

The augmented attribute grammar successfully parses legal strings such as aabbcc, but
does not parse illegal sequences such as abbcc; such illegal sequences satisfy the BNF part
of the grammar, and do not satisfy the condition required of the attribute values.

Another approach is to pass information from one part of the parse tree to some node,
and then have it inherited down into other parts of the tree. Let size be a synthesized
attribute for the sequence of a’s, and iSize be the inherited attribute for the sequences of
b’s, and c’s. We synthesize the size of the sequence of a’s to the root of the parse tree, and
set the iSize attribute for the b sequence and the c sequence to this value and inherit it
down the tree, decrementing the value by one every time we see another character in the
sequence. When we reach the node where the sequence has a child consisting of a single
character, we check if the inherited iSize attribute equals one. If so, the size of the sequence
must be the same as the size of the a sequence; otherwise, the two sizes do not match and
the parsing is unsuccessful. The following attribute grammar clarifies this:

letterSequence ::= aSequence bSequence cSequence

iSize(bSequence) ← size(aSequence)
iSize(cSequence) ← size(aSequence)

aSequence ::= a

size(aSequence) ← 1
| aSequence a

Type Checking 165

size(aSequence) ← size(aSequence) + 1

bSequence ::= b

condition : iSize(bSequence) = 1
| bSequence b

iSize(bSequence) ← iSize(bSequence) - 1

cSequence ::= c

condition : iSize(cSequence) = 1
| cSequence c

iSize(cSequence) ← iSize(cSequence) - 1

For the non-terminal a Sequence, size is a synthesized attribute; but for the non-terminals
bSequence and cSequence, iSize is an inherited attribute passed from the parent to child.
As before, the attribute grammar above cannot parse illegal sequences such as abbcc, as
these sequences do not satisfy all the conditions associated with attribute values.

In this grammar, the sequence of a’s determines the desired length against which the
other sequences are checked. Consider the sequence abbcc. It could be argued that the
sequence of a’s is at fault and not the other two sequences. However, in a programming
language with declarations, we use the declarations to determine the desired types against
which the remainder of the program is checked. In other words, the declaration information
is synthesized up and is inherited by the entire program for checking.

In our next example, we illustrate the use of attribute grammars in specifying semantics
using an example from Donald Knuth’s 1968 seminal paper on attribute grammars [Knuth,
1968]. The example grammar computes the values of binary numbers. The grammar uses
both synthesized and inherited attributes.

Consider the following context-free grammar describing the structure of binary numbers.
N stands for binary numbers, L stands for bit lists, and B stands for individual bits.

N ::= L

N ::= L . L

L ::= B

L ::= L B

B ::= 0

B ::= 1

Examples of binary numbers that follow the above grammar are both integral numbers such
as 0, 1, 10, 11, 100, and so on, and rational numbers with integral fractional part such as
1.1, 1.01, 10.01, and so on.

We want to compute the values of the binary numbers using an attribute grammar. For
example, 0 has the value 0, 1 the value 1, 0.1 the value 0.5, 10.01 the value 2.25, and so
on.

Knuth provides a couple of different attribute grammars to define the computation; the
first one uses only synthesized attributes, and the second uses both inherited and synthesized
attributes. We will illustrate the latter.

In this attribution, each bit has a synthesized attribute value, which is a rational number
that takes the position of the bit into account. For example, the first bit in the binary number

166 An Introduction to Compiler Construction in a Java World

10.01 will have the value 2 and the last bit will have the value 0.25. In order to define these
attributes, each bit also has an inherited attribute scale used to compute the value of a
1-bit as value = 2scale. So for the bits in 10.01, scale will be 1, 0, −1, −2, respectively.

If we have the values of the individual bits, these values can simply be summed up to the
total value. Adding synthesized attributes value both for bit lists and for binary numbers
does this. In order to compute the scale attribute for the individual bits, an inherited
attribute scale is added also for bit lists (representing the scale of the rightmost bit in that
list), and a synthesized attribute length for bit lists, holding the length of the list.

Knuth uses the abbreviations v, s, and l for the value, scale, and length attributes. Here
is the resulting attribute grammar:

N ::= L
v(N) ← v(L)
s(L) ← 0

N ::= L1 . L2

v(N) ← v(L2) + v(L2)
s(L1) ← 0
s(L2) ← - l(L2)

L ::= B
v(L) ← v(B)
s(B) ← s(L)
l(L) ← 1

L1 ::= L2 B
v(L1) ← v(L2) + v(B)
s(B) ← s(L1)
s(L2) ← s(L1) + 1
l(L1) ← l(L2) + 1

B ::= 0

v(B) ← 0

B ::= 1

v(B) ← 2s(B)

4.8.2 Formal Definition

An attribute grammar is a context-free grammar augmented with attributes, semantic rules,
and conditions. Let G = (N,T, S, P) be a context-free grammar. For each non-terminal
X ∈ N in the grammar, there are two finite disjoint sets I(X) and S(X) of inherited and
synthesized attributes. For X = S, the start symbol I(X) = ∅.

Let A(X) = I(A) ∪ S(X) be the set of attributes of X. Each attribute A ∈ A(X) takes
a value from some semantic domain (such as integers, strings of characters, or structures of
some type) associated with that attribute. These values are defined by semantic functions
or semantic rules associated with the productions in P .

Consider a production p ∈ P of the form X0 ::= X1X2 . . . Xn. Each synthesized attribute
A ∈ S(X0) has its value defined in terms of the attributes in A(X1)∪A(X2)∪· · ·∪A(Xn)∪
I(X0). Each inherited attribute A ∈ I(Xk) for 1 ≤ k ≤ n has its value defined in terms of
the attributes in A(X0) ∪ S(X1) ∪ S(X2) ∪ · · · ∪ S(Xn). Each production may also have a

Type Checking 167

set of conditions on the values of the attributes in A(X0) ∪ A(X1) ∪ A(X2) ∪ · · · ∪ A(Xn)
that further constrain an application of the production. The derivation of a sentence in the
attribute grammar is satisfied if and only if the context-free grammar is satisfied and all
conditions are true.

4.8.3 j-- Examples

We now look at how the semantics for some of the constructs in j-- can be expressed using
attribute grammars. Let us first consider examples involving just synthesized attributes.
Semantics of literals involves just the synthesis of their type. This can be done using a
synthesized attribute type:

literal ::= <int_literal>

type(literal) ← int

| <char_literal>
type(literal) ← char

| <string_literal>
type(literal) ← String

Semantics of a multiplicative expression involves checking the types of its arguments making
sure that they are numeric (integer), and synthesizing the type of the expression itself. Hence
the following attribute grammar.

multiplicativeExpression ::= unaryExpression1

{* unaryExpression2 }
condition: type(unaryExpression1) = int and type(unaryExpression2) = int

type(multiplicativeExpression) ← int

Now, consider a j-- expression x * 5. The variable x must be of numeric (int) type. We
cannot simply synthesize the type of x to int, but it must be synthesized elsewhere, that
is, at the place where it is declared, and inherited where it is used. The language semantics
also require that the variable x be declared before the occurrence of this expression. Thus,
we must inherit the context (symbol table) that stores the names of variables and their
associated types, so we can perform a lookup to see if the variable x is indeed declared.
The attribute grammar below indicates how we synthesize the context for variables at the
place where they are declared and how the context is inherited at the place the variables
are used.

localVariableDeclarationStatement ::= type variableDeclarators ;

foreach variable in variableDeclarators
add(context, defn(name(variable), type))

variableDeclarator ::= <identifier> [= variableInitializer]
name(variableDeclarator) ← <identifier>

primary ::= . . .
| variable

defn ← lookup(context, name(variable))
if defn = null

error(‘‘Cannot find variable ’’ + name(variable))
else

type(primary) ← type(defn)

168 An Introduction to Compiler Construction in a Java World

Functions add() and lookup() are auxiliary functions defined for adding variable definitions
into a context (symbol table) and for looking up a variable in a given context. In the above
attribute grammar, the attribute context is synthesized in localVariableDeclarationState-
ment and is inherited in primary.

Attribute grammars might also be used for specifying the code to be produced for (or,
at least the mathematical meaning of) the various syntactic forms in our source language.

For better or worse, attribute grammars have never found their way into the practice of
compiler writing, but have rather been an academic tool for specifying the formal semantics
of programming languages.

4.9 Further Readings

The Java Language Specification [Gosling et al., 2005] is the best source of information on
the semantic rules for the Java language.

Attribute grammars were first introduced in [Knuth, 1968]. Chapter 3 of [Slonneger and
Kurtz, 1995] offers an excellent treatment of attribute grammars; Chapter 7 discusses the
application of attribute grammars in code generation. A general compilers text that makes
extensive use of attribute grammars is [Waite and Goos, 1984]. Chapter 5 of [Aho et al.,
2007] also treats attribute grammars.

[Gamma, 1995] describes the Visitor Pattern as well as many other design patterns.
Another good text describing how design patterns may be used in Java programming is [Jia,
2003]. Yet another resource for design patterns is [Freeman et al., 2004].

4.10 Exercises

The j-- compiler does not enforce all of the Java rules that it might. The following exercises
allow the reader to rectify this.

Exercise 4.1. The compiler does not enforce the Java rule that only one type declaration
(that is, class declaration in j--) be declared public. Repair this in one of the analyze()

methods.

Exercise 4.2. The analyze() method in JVariable assigns the type Type.ANY to a
JVariable (for example, x) in the AST that has not been declared in the symbol table.
This prevents a cascading of multiple errors from the report of a single undeclared variable.
But we could go further by declaring the variable (as Type.ANY) in the symbol table so as
to suppress superfluous error reports in subsequent encounters of the variable. Make this
improvement to analysis.

Exercise 4.3. Go through The Java Language Specification [Gosling et al., 2005], and for
each node type in the j-- compiler, compile a list of rules that Java imposes on the language
but are not enforced in j--.

a. Describe how you might implement each of these.

b. Which of these rules cannot be enforced?

Type Checking 169

c. Implement the enforcement of those rules that have not been implemented in j-- but that
one can.

Exercise 4.4. Write an attribute grammar expressing the type rules for each of the state-
ments in j--.

statement ::= block
| if parExpression statement [else statement]
| while parExpression statement
| return [expression] ;
| ;
| statementExpression ;

Exercise 4.5. Write an attribute grammar expressing the semantics of expressions in j--,
that is, for productions from statementExpression through literal. See Appendix B for the
j-- syntax specification.

Implementation of analysis for new functionality is left for Chapter 5.

Chapter 5

JVM Code Generation

5.1 Introduction

Once the AST has been fully analyzed, all variables and expressions have been typed and
any necessary tree rewriting has been done. Also a certain amount of setup needed for code
generation has been accomplished. The compiler is now ready to traverse the AST one more
time to generate the Java Virtual Machine (JVM) code, that is, build the class file for the
program.

For example, consider the following very simple program:

public class Square {

public int square(int x) {

return x * x;

}

}

Compiling this with our j-- compiler,

> $j/j--/bin/j-- Square.java

produces a class file, Square.class. If we run the javap program on this, that is

> javap -verbose Square

we get the following symbolic representation of the class file:

public class Square extends java.lang.Object

minor version: 0

major version: 49

Constant pool:

const #1 = Asciz Square;

const #2 = class #1; // Square

const #3 = Asciz java/lang/Object;

const #4 = class #3; // java/lang/Object

const #5 = Asciz <init >;

const #6 = Asciz ()V;

const #7 = NameAndType #5:#6;// "<init >":()V

const #8 = Method #4.#7; // java/lang/Object."<init >":()V

const #9 = Asciz Code;

const #10 = Asciz square;

const #11 = Asciz (I)I;

{

public Square ();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

171

172 An Introduction to Compiler Construction in a Java World

public int square(int);

Code:

Stack=2, Locals=2, Args_size =2

0: iload_1

1: iload_1

2: imul

3: ireturn

}

We cannot run this program because there is no main() method. But this is not our purpose;
we simply wish to look at some code.

Now, the first line is the class header:

public class Square extends java.lang.Object

It tells us the name of the class is Square and its super class is java.lang.Object. The
next two lines tell us something about the version of the JVM that we are using; we are not
interested in this. Following this is a constant pool, which in this case defines eleven con-
stants. The numerical tags #1,. . . ,#11 are used in the code for referring to these constants.
For example, #10 refers to the method name square; #11 refers to its descriptor (I)I1. The
use of the constant pool may appear somewhat archaic, but it makes for a compact class
file.

Notice there are two methods defined. The first is a constructor.

public Square ();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

This constructor (generated as a method named <init>) is the implied empty constructor
(having no arguments), which the compiler must generate if the user has not defined an
explicit version. The first line of this code is not really code at all but rather a sequence of
values that the run-time JVM will want to know when it allocates a stack frame:

Stack=1, Locals=1, Args_size =1

The Stack=1 indicates that one memory location is required for partial results (in this case,
for loading this onto the stack). The Locals=1 says just one local variable is allocated in
the stack frame, in this instance, the location at offset 0 for this. The Args_size=1 says
there is just one actual argument to this constructor (in this case, the implicit argument,
this).

Then there is the code, proper:

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

At location 0 is a one-byte aload_0 instruction that loads this onto the stack. Following
that, at location 1, is a three-byte invokespecial instruction. The first byte holds the
opcode for invokespecial, and the next two bytes hold a reference to the constant named
#8 in the constant pool: Method #4.#7;. This constant in turn makes reference to additional
constant entries #4 and #7. Taken as a whole, the invokespecial instruction invokes the

1Recall, a descriptor describes a method’s signature. In this case, (I)I describes a method that takes
one int as an argument and returns an int result.

JVM Code Generation 173

constructor <init>,<init> with descriptor ()V, of Square’s super class java/lang/Object,
on the single argument this. After invoking the super constructor, the constructor simply
returns, obeying the return instruction at location 4.

The second, explicit method square() is even simpler. The stack frame information,

Stack=2, Locals=2, Args_size =2

says we need two locations for computation (the two operands to the multiplication op-
eration), two local variables allocated (for the implicit parameter this, and the explicit
parameter x), and that there will be two actual arguments on the stack: this and the
argument for x. The code consists of four one-byte instructions:

0: iload_1

1: iload_1

2: imul

3: ireturn

The instruction at location 0 loads the value for x onto the stack; the instruction at location
1 does the same. The instruction at location 2 pops those two values off the stack and
performs an integer multiplication on them, leaving its result on the stack. The instruction
at location 3 returns the integer (x * x) on the stack as the result of the method invocation.

Of course, to emit these instructions, we first create a CLEmitter instance, which is an
abstraction of the class file we wish to build, and then call upon CLEmitter’s methods for
generating the necessary headers and instructions.

For example, to generate the class header,

public class Square extends java.lang.Object

one would invoke the addClass() method on output, an instance of CLEmitter:

output.addClass(mods , "Square", "java/lang/Object", false);

where

• The mods denotes an ArrayList containing the single string “public”,

• Square is the class name,

• java/lang/Object is the internal form for the fully qualified super class, and

• false indicates that the class is not synthetic.

As a simpler example, the one-byte, no-argument instruction aload_1 may be generated
by

output.addNoArgInstruction(ALOAD_1);

To fully understand CLEmitter and all of its methods for generating code, one should
read through the CLEmitter.java source file, which is distributed as part of the j-- compiler.
One must sometimes be careful to pay attention to what the CLEmitter is expecting. For
example, sometimes a method requires a fully qualified name in Java form such as java.

lang.Object; other times an internal form is required, that is, java/lang/Object.
For another, more involved example of code generation, we revisit the Factorial class

from Chapters 2 and 3. Recall the source code:

package pass;

import java.lang.System;

174 An Introduction to Compiler Construction in a Java World

public class Factorial {

// Two methods and a field

public static int factorial(int n) {

// position 1:

if (n <= 0) {

return 1;

} else {

return n * factorial(n - 1);

}

}

public static void main(String [] args) {

int x = n;

// position 2:

System.out.println(n + "! = " + factorial(x));

}

static int n = 5;

}

Running javap on the class produced for this by the j-- compiler gives us

public class pass.Factorial extends java.lang.Object

minor version: 0

major version: 49

Constant pool:

...

{

static int n;

public pass.Factorial ();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

public static int factorial(int);

Code:

Stack=3, Locals=1, Args_size =1

0: iload_0

1: iconst_0

2: if_icmpgt 10

5: iconst_1

6: ireturn

7: goto 19

10: iload_0

11: iload_0

12: iconst_1

13: isub

14: invokestatic #13; // Method factorial :(I)I

17: imul

18: ireturn

19: nop

public static void main(java.lang.String []);

Code:

Stack=3, Locals=2, Args_size =1

0: getstatic #19; //Field n:I

3: istore_1

4: getstatic #25; //Field java/lang/System.out:Ljava/io/PrintStream;

7: new #27; // class java/lang/StringBuilder

JVM Code Generation 175

10: dup

11: invokespecial #28; // Method java/lang/StringBuilder ."<init >":()V

14: getstatic #19; // Field n:I

17: invokevirtual #32; // Method java/lang/StringBuilder.append:

(I)Ljava/lang/StringBuilder;

20: ldc #34; // String ! =

22: invokevirtual #37; // Method java/lang/StringBuilder.append:

(Ljava/lang/String ;) Ljava/lang/StringBuilder;

25: iload_1

26: invokestatic #13; // Method factorial :(I)I

29: invokevirtual #32; // Method java/lang/StringBuilder.append:

(I)Ljava/lang/StringBuilder;

32: invokevirtual #41; // Method java/lang/StringBuilder.toString:

()Ljava/lang/String;

35: invokevirtual #47; // Method java/io/PrintStream.println:

(Ljava/lang/String ;)V

38: return

public static {};

Code:

Stack=2, Locals=0, Args_size =0

0: iconst_5

1: putstatic #19; //Field n:I

4: return

}

We have removed the constant pool, but the comments contain the constants that the
program refers to. Notice the last method, static. That implements what is known as the
static block, where class initializations can go. Here, the static field n is initialized to 5. The
method that does this in the JVM code is <clinit> (for class initialization).

The following sections address the task of generating code for various j-- constructs.

5.2 Generating Code for Classes and Their Members

JCompilationUnit’s codegen() drives the generation of code for classes. For each type
(that is, class) declaration, it

• Invokes codegen() on the JClassDeclaration for generating the code for that class,

• Writes out the class to a class file in the destination directory, and

• Adds the in-memory representation of the class to a list that stores such representa-
tions for all the classes within a compilation unit; this list is used in translating JVM
byte code to native (SPIM) code, in Chapter 6.

public void codegen(CLEmitter output) {

for (JAST typeDeclaration : typeDeclarations) {

typeDeclaration.codegen(output);

output.write ();

clFiles.add(output.clFile ());

}

}

176 An Introduction to Compiler Construction in a Java World

5.2.1 Class Declarations

The codegen() method for JClassDeclaration does the following:

• It computes the fully- qualified name for the class, taking any package name into
account.

• It invokes an addClass() on the CLEmitter for adding the class header to the start
of the class file.

• If there is no explicit constructor with no arguments defined for the class, it invokes
the private method codegenImplicitConstructor() to generate code for the implicit
constructor as required by the language.

• It generates code for its members by sending the codegen() message to each of them.

• If there are any static field initializations in the class declaration, then it invokes the
private method codegenClassInit() to generate the code necessary for defining a
static block, a block of code that is executed after a class is loaded.

In the case of our Factorial example, there is no explicit constructor, so one is generated.
The method, codegenImplicitConstructor() is invoked to generate the following JVM
code2:

public <init >();

Code:

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

The constructor is simply invoking the superclass constructor, that is, Object(). In Java,
such a constructor would look like

public Factorial () {

this.super ();

}

The Factorial example has one static field with an initialization:

static int n = 5;

During analysis, the initialization was transformed into an explicit assignment, which must
be executed after the Factorial class is loaded. Seasoned Java programmers will recognize
this to be in a static block; in Java, the static block would look like

static {

n = 5;

}

and would occur as a member of Factorial. Of course, j-- does not have static blocks3;
they may be represented in the JVM as, for example4,

2Actually, javap shows the name as Factorial() but when invoking the addMethod() method on
the CLEmitter, one passes the argument "<init>" for the constructor’s name; a constructor is simply
an initialization method. The JVM expects this internal name.

3Its implementation is left as an exercise.
4Again, javap represents <clinit> as static, but in the argument to the addMethod(), method

is "<clinit>"; <clinit> stands for class initialization. Again, the JVM expects this internal name.

JVM Code Generation 177

public <clinit > {};

Code:

Stack=2, Locals=0, Args_size =0

0: iconst_5

1: putstatic #19; //Field n:I

4: return

}

5.2.2 Method Declarations

The code generated for a JMethodDeclaration is pretty simple:

public void codegen(CLEmitter output) {

output.addMethod(mods , name , descriptor , null , false);

if (body != null) {

body.codegen(output);

}

// Add implicit RETURN

if (returnType == Type.VOID) {

output.addNoArgInstruction(RETURN);

}

}

It generates code for the method header, the body and then, for void methods, an implicit
return-statement. Of course, the return may be superfluous if one already exits in the source
code, but any good optimizer would remove the extra one.

5.2.3 Constructor Declarations

A constructor declaration is handled very much like a method declaration, but requires two
additional tasks:

1. After the method header <init> has been emitted, JConstructorDeclaration’s
codegen() looks to see if a super class constructor has been explicitly invoked:

if (! invokesConstructor) {

output.addNoArgInstruction(ALOAD_0);

output.addMemberAccessInstruction(INVOKESPECIAL ,

((JTypeDecl) context.classContext (). definition ())

.superType (). jvmName(), "<init >", "()V");

}

The flag invokesConstructor is set to false by default and is set to true during
analysis of the body if the first statement in that body is an invocation of the super
class constructor.

2. Any instance field initializations (after analysis, represented as assignments) are gen-
erated:

for (JFieldDeclaration field : definingClass

.instanceFieldInitializations ()) {

field.codegenInitializations(output);

}

Notice that JConstructorDeclaration extends JMethodDeclaration.

178 An Introduction to Compiler Construction in a Java World

5.2.4 Field Declarations

Because the analysis phase has moved initializations, codegen() for JFieldDeclaration

need only generate code for the field declaration itself:

public void codegen(CLEmitter output) {

for (JVariableDeclarator decl : decls) {

// Add field to class

output.addField(mods , decl.name(), decl.type()

.toDescriptor (), false);

}

}

5.3 Generating Code for Control and Logical Expressions

5.3.1 Branching on Condition

Almost all control statements in j-- are controlled by some Boolean expression. Indeed,
control and Boolean expressions are intertwined in j--. For example, consider the if-then-
else statement below:

if (a > b) {

c = a;

} else {

c = b;

}

The code produced for this is as follows:

0: iload_1

1: iload_2

2: if_icmple 10

5: iload_1

6: istore_3

7: goto 12

10: iload_2

11: istore_3

12: ...

Notice a couple of things about this code.

1. Rather than compute a Boolean value (true or false) onto the stack depending on
the condition and then branching on the value of that, the code branches directly on
the condition itself. This is faster, makes use of the underlying JVM instruction set,
and makes for more compact code.

2. A branch is made over the code for the then-part to the else-part if the condition’s
complement is true, that is, if the condition is false; in our example, an if_icmple

instruction is used.

branch to elseLabel if <condition > is false

<code for thenPart >

branch to endLabel

elseLabel:

<code for elsePart >

endLabel:

JVM Code Generation 179

Consider the case where we were implementing the Java do-while statement; for ex-
ample,

do {

a++;

}

while (a < b);

The do-while statement is not in j-- but we could add it5. The code we generate might
have the form

topLabel:

<code for body >

branch to topLabel if <condition > is true

While we branch on the condition false for the if-then-else statement, we would
branch on the condition true for the do-while statement.

In generating code for a condition, one needs a method of specifying three arguments:

1. The CLEmitter,

2. The target label for the branch, and

3. A boolean flag, onTrue. If onTrue is true, then the branch should be made on the
condition; if false, the branch should be made on the condition’s complement.

Thus, every boolean expression must support a version of codegen() with these three
arguments. For example, consider that for JGreaterThanOp is:

public void codegen(CLEmitter output , String targetLabel ,

boolean onTrue) {

lhs.codegen(output);

rhs.codegen(output);

output.addBranchInstruction(onTrue ? IF_ICMPGT : IF_ICMPLE ,

targetLabel);

}

A method of this sort is invoked on the condition controlling execution; for example, the
following codegen() for JIfStatement makes use of such a method in producing code for
the if-then-else statement.

public void codegen(CLEmitter output) {

String elseLabel = output.createLabel ();

String endLabel = output.createLabel ();

condition.codegen(output , elseLabel , false);

thenPart.codegen(output);

if (elsePart != null) {

output.addBranchInstruction(GOTO , endLabel);

}

output.addLabel(elseLabel);

if (elsePart != null) {

elsePart.codegen(output);

output.addLabel(endLabel);

}

}

Notice that method createLabel() creates a unique label each time it is invoked, and the
addLabel() and addBranchInstruction() methods compute the necessary offsets for the
actual JVM branches.

5Implementing the do-while statement is left as an exercise.

180 An Introduction to Compiler Construction in a Java World

5.3.2 Short-Circuited &&

Consider the logical && operator. In a logical expression like

arg1 && arg2

The semantics of Java, and so of j--, require that the evaluation of such an expression be
short-circuited. That is, if arg1 is false, arg2 is not evaluated; false is returned. If arg1
is true, the value of the entire expression depends on arg2. This can be expressed using
the Java conditional expression, as arg1 ? arg2 : false. How do we generate code for this
operator? The code to be generated depends of whether the branch for the entire expression
is to be made on true, or on false:

Branch to target when Branch to target when

arg1 && arg2 is true: arg1 && arg2 is false:

branch to skip if branch to target if

arg1 is false arg1 is false

branch to target when branch to target if

arg2 is true arg2 is false

skip: ...

For example, the code generated for

if (a > b && b > c) {

c = a;

}

else {

c = b;

}

would be

0: iload_1

1: iload_2

2: if_icmple 15

5: iload_2

6: iload_3

7: if_icmple 15

10: iload_1

11: istore_3

12: goto 17

15: iload_2

16: istore_3

17: ...

The codegen() method in JLogicalAndOp generates the code for the && operator:

public void codegen(CLEmitter output , String targetLabel ,

boolean onTrue) {

if (onTrue) {

String falseLabel = output.createLabel ();

lhs.codegen(output , falseLabel , false);

rhs.codegen(output , targetLabel , true);

output.addLabel(falseLabel);

} else {

lhs.codegen(output , targetLabel , false);

rhs.codegen(output , targetLabel , false);

}

}

JVM Code Generation 181

Notice that our method prevents unnecessary branches to branches. For example, consider
the slightly more complicated condition in

if (a > b && b > c && c > 5) {

c = a;

}

else {

c = b;

}

The JVM code produced for this targets the same exit on false, for each of the && opera-
tions:

0: iload_1

1: iload_2

2: if_icmple 18

5: iload_2

6: iload_3

7: if_icmple 18

10: iload_3

11: iconst_5

12: if_icmple 18

15: iinc 1, -1

18: ...

Branches to branches are avoided even when generating code for a deeply nested and com-
plex Boolean expression because we pass the target through nested recursive calls to this
special version of codegen().

The implementation of a || operator for a short-circuited logical or operation (not yet
in the j-- language) is left as an exercise.

5.3.3 Logical Not !

The code generation for the JLogicalNot operator ! is trivial: a branch on true becomes
a branch on false, and a branch on false becomes a branch on true:

public void codegen(CLEmitter output , String targetLabel ,

boolean onTrue) {

arg.codegen(output , targetLabel , !onTrue);

}

5.4 Generating Code for Message Expressions, Field Selection, and
Array Access Expressions

5.4.1 Message Expressions

Message expressions are what distinguish object-oriented programming languages from the
more traditional programming languages such as C. j--, like Java, is object-oriented.

Much of the work in decoding a message expression is done in analysis. By the time
the compiler has entered the code generation phase, any ambiguous targets have been
reclassified, instance messages have been distinguished from class (static) messages, implicit
targets have been made explicit, and the message’s signature has been determined.

In fact, by examining the target’s type (and if necessary, its sub-types) analysis can

182 An Introduction to Compiler Construction in a Java World

determine whether or not a viable message matching the signature of the message exists. Of
course, for instance messages, the actual message that is invoked cannot be determined until
run-time. That depends on the actual run-time object that is the target of the expression
and so is determined by the JVM. But the code generated for a message expression does
state everything that the compiler can determine.

JMessageExpression’s codegen() proceeds as follows:

1. If the message expression involves an instance message, codegen() generates code for
the target.

2. The message invocation instruction is determined: invokevirtual for instance mes-
sages and invokestatic for static messages.

3. The addMemberAccessInstruction() method is invoked to generate the message in-
vocation instruction; this method takes the following arguments:

(a) The instruction (invokevirtual or invokestatic).

(b) The JVM name for the target’s type.

(c) The message name.

(d) The descriptor of the invoked method, which was determined in analysis.

4. If the message expression is being used as a statement expression and the return type
of the method referred to in (d), and so the type of the message expression itself
is non-void, then method addNoArgInstruction() is invoked for generating a pop

instruction. This is necessary because executing the message expression will produce
a result on top of the stack, and this result is to be thrown away.

For example, the code generated for the message expression

... = s.square (6);

where square is an instance method, would be

aload s’

bipush 6

invokevirtual #6; // Method square :(I)I

Notice this leaves an integer result 36 on the stack. But if the message expression were used
as a statement, as in

s.square (6);

our compiler generates a pop instruction to dispose of the result6:

aload s’

bipush 6

invokevirtual #6; // Method square :(I)I

pop

We invoke static methods using invokestatic instructions. For example, say we wanted to
invoke the static method csquare; the message expression

.. = Square1.csquare (5);

would be translated as

6s’ indicates the stack frame offset for the local variable s.

JVM Code Generation 183

iconst_5

invokestatic #5; // Method csquare :(I)I

If we were to implement interfaces (this is left as an exercise), we would want to generate
the invokeinterface instruction.

5.4.2 Field Selection

When we talk about generating code for a field selection, we are interested in the case where
we want the value7 for the field selection expression. The case where the field selection occurs
as the target of an assignment statement is considered in the next section.

As for message expressions, much of the work in decoding a field selection occurs during
analysis. By the time the code generation phase begins, the compiler has determined all of
what it needs to know to generate code. JFieldSelection’s codegen() works as follows:

1. It generates code for its target. (If the target is a class, no code is generated.)

2. The compiler must again treat the special case a.length where a is an array. As was
noted in the discussion of analysis, this is a language hack. The code generated is also
a hack, making use of the special instruction arraylength.

3. Otherwise, it is treated as a proper field selection. The field selection instruction is
determined: getfield for instance fields and getstatic for static fields.

4. The addMemberAccessInstruction() method is invoked with the following argu-
ments:

(a) The instruction (getfield or getstatic)

(b) The JVM name for the target’s type

(c) The field name

(d) The JVM descriptor for the type of the field, and so the type of the result

For example, given that instanceField is indeed an instance field, the field selection

s.instanceField

would be translated as

aload s’

getfield instanceField:I

On the other hand, for a static field selection such as

Square1.staticField

our compiler would generate

getstatic staticField:I

7Actually, as we shall see in the next section, the field expression’s r-value.

184 An Introduction to Compiler Construction in a Java World

5.4.3 Array Access Expressions

Array access expressions in Java and so in j-- are pretty straightforward. For example, if
the variable a references an array object, and i is an integer, then

a[i]

is an array access expression. The variable a may be replaced by any primary expression
that evaluates to an array object, and i may be replaced by any expression evaluating to
an integer. The JVM code is just as straightforward. For example, if a is an integer array,
then the code produced for the array access expression would be

aload a’

iload i’

iaload

Instruction iaload pops an index i and an (integer) array a off the stack and replaces those
two items by the value for a[i].

In j--, as in Java, multiply dimensioned arrays are implemented as arrays of arrays8.
That is, j-- arrays are vectors.

5.5 Generating Code for Assignment and Similar Operations

5.5.1 Issues in Compiling Assignment

l-values and r-values

Consider a simple assignment statement;

x = y;

It does not seem to say very much; it asks that the value of variable y be stored (as the new
value) in variable x. Notice that we want different values for x and y when interpreting such
an assignment. We often say we want the l-value for x, and the r-value for y. We may think
of a variable’s l-value as its address or location (or in the case of local variables, its stack
frame offset), and we may think of a variable’s r-value as its content or the value stored in
(or, as the value of) the variable. This relationship is illustrated in Figure 5.1.

FIGURE 5.1 A variable’s l-value and r-value.

The names l-value and r-value come from the corresponding positions in the assignment
expression: the left-hand side of the = and the right-hand side of the =. Think of

l-value = r-value

Notice that while all expressions have r-values, many have no l-values. For example, if a is
an array of ten integers and o is an object with field f, C is a class with static field sf, and
x is a local variable, then all of

8Such arrays are known as Illife vectors, after their inventor, John K. Illife.

JVM Code Generation 185

a[3]

o.f

C.sf

x

have both l-values and r-values. That is, any of these may appear on the left-hand side or on
the right-hand side of an assignment operator. On the other hand, while all of the following
have r-values, none has an l-value:

5

x+5

Factorial.factorial (5)

None of these may meaningfully appear on the left-hand side of an assignment statement.
In compiling an assignment, compiling the right-hand side expression to produce code

for computing its r-value and leaving it on the stack is straightforward. But what code must
be generated for the left-hand side? In some cases, no code need be generated; for example,
assuming x and y are local integer variables, then compiling

x = y;

produces

iload y’

istore x’

where x’ and y’ are the stack offsets for x and y, respectively. On the other hand, compiling

a[x] = y;

produces

aload a’

iload x’

iload y’

iastore

This code loads (a reference to) the array a and an index x onto the stack. It then loads the
r-value for y onto the stack. The iastore (integer array store) instruction pops the value
for y, the index x, and the array a from the stack, and it stores y in the element indexed
by x in array a.

Assignment Expressions versus Assignment Statements

Another issue is that an assignment may act as an expression producing a result (on the
stack) or as a statement (syntactically, as a statement expression). That is, we can have

x = y;

or

z = x = y;

In the first case, the assignment x = y; is a statement; no value is left on the stack. But
in the second case, the x = y must assign the value of y to x but also leave a value (the
r-value for y) on the stack so that it may be popped off and assigned to z. That is, the code
might look something like

iload y’

dup

istore x’

istore z’

186 An Introduction to Compiler Construction in a Java World

The dup duplicates the r-value for y on top of the stack so there are two copies. Each of the
istore operations pops a value and stores it in the appropriate variable.

In parsing, when an expression is used as a statement, Parser’s statementExpression
() method sets a flag isStatementExpression in the expression node to true. The code
generation phase can make use of this flag in deciding when code must be produced for
duplicating r-values on the run-time stack.

Additional Assignment-Like Operations

The most important property of the assignment is its side effect. One uses the assignment
operation for its side effect, overwriting a variable’s r-value with another. There are other
Java (and j--) operations having the same sort of side effect. For example,

x--

++x

x += 6

are all expressions that have side effects. But they also denote values. The context in which
they are used determines whether or not we want the value left on the stack, or we simply
want the side effect.

5.5.2 Comparing Left-Hand Sides and Operations

The table below compares the various operations (labeled down the left) with an assortment
of left-hand sides (labeled across the top). We do not deal with string concatenation here,
but leave that to a later section.

JVM Code Generation 187

x a[i] o.f C.sf
lhs = y iload y’

[dup]

istore x’

[dup_x2]

iastore

aload a’

iload i’

iload y’

putfield f

aload o’

iload y

[dup_x1]

iload y’

[dup]

putstatic sf

lhs += y iload x’

iload y’

iadd

[dup]

istore x’

iadd

[dup_x2]

iastore

aload a’

iload i’

dup2

iaload

iload y’

[dup_x1]

putfield f

aload o’

dup

getfield f

iload y’

iadd

getstatic sf

iload y’

iadd

[dup]

putstatic sf

++lhs iinc x’,1

[iload x’]

dup2

iaload

iconst_1

iadd

[dup_x2]

iastore

aload a’

iload i’

getfield f

iconst_1

iadd

[dup_x1]

putfield f

aload o’

dup

iadd

[dup]

putstatic sf

getstatic sf

iconst_1

lhs-- [iload x’]

iinc x’,1

dup2

iaload

[dup_x2]

iconst_1

isub

iastore

aload a’

iload i’

getfield f

[dup_x1]

iconst_1

isub

putfield f

aload o’

dup

iconst_1

isub

putstatic sf

getstatic sf

[dup]

The instructions in brackets [...] must be generated if and only if the operation is a sub-
expression of some other expression, that is, if the operation is not a statement expression.

Notice that there are all sorts of stack instructions for duplicating values and moving
them into various locations on the stack:

dup duplicates the top value on the stack (pushing a copy on top)

dup2 duplicates the top pair of items on the stack (pushing a second pair on top)

dup_x2 duplicates the top value, but copies it below the two items that are below the
original top value

dup_x1 duplicates the top value, but copies it below the single item that is below the
original top value

Figure 5.2 illustrates the effect of each of these. As one might guess, these instructions
were included in the JVM instruction set for just these sorts of operations.

188 An Introduction to Compiler Construction in a Java World

FIGURE 5.2 The effect of various duplication instructions.

The table above suggests that all of this is very complicated, but there is a pattern here,
which we may take advantage of in clarifying what code to generate.

5.5.3 Factoring Assignment-Like Operations

The table above suggests four sub-operations common to most of the assignment-like oper-
ations in j--. They may also be useful if and when we want to extend j-- and when adding
additional operations. These four sub-operations are

1. codegenLoadLhsLvalue() – this generates code to load any up-front data for the
left-hand side of an assignment needed for an eventual store, that is, its l-value.

2. codegenLoadLhsRvalue() – this generates code to load the r-value of the left-hand
side, needed for implementing, for example, the += operator.

3. codegenDuplicateRvalue() – this generates code to duplicate an r-value on the stack
and put it in a place where it will be on top of the stack once the store is executed.

4. codegenStore() – this generates the code necessary to perform the actual store.

The code needed for each of these differs for each potential left-hand side of an assignment:
a simple local variable x, an indexed array element a[i], an instance field o.f, and a static
field C.sf. The code necessary for each of the four operations, and for each left-hand side
form, is illustrated in the table below.

JVM Code Generation 189

x a[i] o.f C.sf
codegenLoadLhsLvalue() [none] aload a’

aload i’

aload o’ [none]

codegenLoadLhsRvalue() iload x’

iaload

dup2

getfield f

dup getstatic sf

codegenDuplicateRvalue() dup dup_x2 dup_x1 dup
codegenStore() istore x’ iastore putfield

f

putstatic sf

Our compiler defines an interface JLhs, which declares four abstract methods for these
four sub-operations. Each of JVariable, JArrayExpression, and JFieldSelection im-
plements JLhs. Of course, one must also be able to generate code for the right-hand side
expression. But codegen() is sufficient for that—indeed, that is its purpose.

For example, JPlusAssignOp’s codegen() makes use of all of these operations:

public void codegen(CLEmitter output) {

((JLhs) lhs). codegenLoadLhsLvalue(output);

if (lhs.type (). equals(Type.STRING)) {

rhs.codegen(output);

} else {

((JLhs) lhs). codegenLoadLhsRvalue(output);

rhs.codegen(output);

output.addNoArgInstruction(IADD);

}

if (! isStatementExpression) {

// Generate code to leave the r-value atop stack

((JLhs) lhs). codegenDuplicateRvalue(output);

}

((JLhs) lhs). codegenStore(output);

}

5.6 Generating Code for String Concatenation

The implementation of most unary and binary operators is straightforward; there is a JVM
instruction for each j-- operation. A case for which this does not apply is string concatena-
tion.

In j--, as in Java, the binary + operator is overloaded. If both of its operands are integers,
it denotes addition. But if either operand is a string then the operator denotes string
concatenation and the result is a string. String concatenation is the only j-- operation
where the operand types don’t have to match9.

The compiler’s analysis phase determines whether or not string concatenation is implied.
When it is, the concatenation is made explicit; that is, the operation’s AST is rewritten,
replacing JAddOp with a JStringConcatenationOp. Also, when x is a string, analysis re-
places

x += <expression >

by

x = x + <expression >

9We leave the implementation of other implicit type conversions as an exercise.

190 An Introduction to Compiler Construction in a Java World

So, code generation is left with generating code for only the explicit string concatenation
operation. To implement string concatenation, the compiler generates code to do the fol-
lowing:

1. Create an empty string buffer, that is, a StringBuffer object, and initialize it.

2. Append any operands to that buffer. That StringBuffer’s append() method is over-
loaded to deal with any type makes handling operands of mixed types easy.

3. Invoke the toString() method on the string buffer to produce a String.

JStringConcatenationOp’s codegen() makes use of a helper method nestedCodegen()

for performing only step 2 for any nested string concatenation operations. This eliminates
the instantiation of unnecessary string buffers. For example, given the j-- expression

x + true + "cat" + 0

the compiler generates the following JVM code:

new java/lang/StringBuilder

dup

invokespecial StringBuilder ."<init >":()V

aload x’

invokevirtual append :(Ljava/lang/String ;) StringBuilder;

iconst_1

invokevirtual append :(Z)Ljava/lang/StringBuilder;

ldc "cat"

invokevirtual append :(Ljava/lang/String ;)Ljava/lang/StringBuilder;

iconst_0

invokevirtual append :(I)Ljava/lang/StringBuilder;

invokevirtual StringBuilder.toString :() Ljava/lang/String;

5.7 Generating Code for Casts

Analysis determines both the validity of a cast and the necessary Converter, which encap-
sulates the code generated for the particular cast. Each Converter implements a method
codegen(), which generates any code necessary to the cast. For example, consider the con-
verter for casting a reference type to one of its sub-types; such a cast is called narrowing
and requires that a checkcast instruction be generated:

class NarrowReference implements Converter {

private Type target;

public NarrowReference(Type target) {

this.target = target;

}

public void codegen(CLEmitter output) {

output.addReferenceInstruction(CHECKCAST ,

target.jvmName ());

}

}

On the other hand, when any type is cast to itself (the identity cast), or when a reference
type is cast to one of its super types (called widening), no code need be generated.

JVM Code Generation 191

Casting an int to an Integer is called boxing and requires an invocation of the Integer
.valueOf() method:

invokestatic java/lang/Integer.valueOf :(I)Ljava/lang/Integer;

Casting an Integer to an int is called unboxing and requires an invocation of the
Integer.intValue() method:

invokevirtual java/lang/Integer.intValue :()I

Certain casts, from one primitive type to another, require that a special instruction be
executed. For example, the i2c instruction converts an int to a char. There is a Converter

defined for each valid conversion in j--.

5.8 Further Readings

[Lindholm and Yellin, 1999] is the authoritative reference for the JVM and its instruction
set; Chapter 7 in that text discusses some of the issues in compiling a high-level language
such as Java to the JVM.

An excellent introduction to compiling Microsoft’s R© .NET Common Language Runtime
(CLR) is [Gough and Gough, 2001].

[Strachey, 2000] introduces the notion of l-values and r-values.
A good introduction to the behavior of Java generics—one of our exercises below—

is [Bracha, 2004].

5.9 Exercises

Exercise 5.1. Add interfaces (as a type declaration) to j--. Make any changes that are
necessary to classes and class declarations for accommodating interfaces. Test your imple-
mentation thoroughly.

An interface defines a type that obeys a contract. Declare a variable to be of an interface
type and you can be sure that it will refer to objects that support certain behaviors. Any
class that implements the interface must support those same behaviors. Think of an interface
as a purely abstract class.

From the point of view of analysis, interfaces have all sorts of rules that must be enforced.
Method analyze(), in both JInterfaceDeclaration, and JClassDeclaration is where
most of these rules may be enforced. These rules include

1. Although an interface may have public, protected, or private modifiers, only
public is meaningful for interfaces not nested within other classes.

2. The compiler must also allow the modifiers abstract, static, and strictfp. The
abstract modifier is redundant (as all interfaces are abstract) but the compiler must
allow it. The static modifier has meaning only for member (nested) interfaces. The
strictfp modifier has meaning if and only if one is supporting (float or double)
floating-point arithmetic.

192 An Introduction to Compiler Construction in a Java World

3. An interface may extend any number of (super-) interfaces.

4. A class may implement as many interfaces as it likes. Notice that this will require our
changing the parser’s classDeclaration() method so that it parses an (optional)
implements-clause and stores a (possibly empty) list of interfaces.

5. Every field declaration in an interface is implicitly public, static, and final, but
any of these three modifiers may be present even if unnecessary. Every field must be
initialized. The initializing expression need not be constant and may reference other
fields appearing textually before the reference.

6. The initializing expression in an interface’s field declaration must involve only con-
stants or other static fields.

7. There are rules about the inheritance of fields; see the language specification.

8. Every method declaration in an interface is implicitly public and abstract but either
of these modifiers may be present in the declaration. Because the methods are abstract,
its body is always a semicolon.

9. An interface’s method can never be declared static or final, but class methods
implementing them can be final.

10. There are additional rules governing method inheritance, overriding, and overloading
abstract methods in interfaces; see the language specification.

11. Any class implementing an interface (or a list of interfaces) must implement all of the
methods of the interface(s).

In code generation, there are several facts to consider:

1. In the JVM, an interface is a kind of class. So, just as for a class, one uses CLEmitter’s
addClass() method for introducing an interface.

2. The list of modifiers for the addClass()’s formal parameter accessFlags must include
both interface and abstract. The superClass argument should be the JVM name
for java.lang.Object. Of course, the argument passed for superInterfaces should
be the (possibly empty) list of the super-interfaces (from the extends-clause).

3. The list of modifiers of any field defined by addField() must include public, static,
and final.

4. The list of modifiers of any method defined by addMethod() must include public and
abstract.

5. In invoking a method on an interface, that is, an object declared to be of a type defined
by an interface, one uses the invokeinterface instruction. Although less efficient
than invokevirtual, invokeinterface deals with the possibility of interfaces that
inherited multiple interfaces, and multiple classes implementing the same interface.

Otherwise, use JClassDeclaration as a guide to, and so a starting point for, imple-
menting JInterfaceDeclaration.

Exercise 5.2. Study the Java Language Specification [Gosling et al., 2005] and determine
what must be done to incorporate the final modifier into j--. Add the final modifier to j--,
adding it to your compiler and testing it thoroughly.

JVM Code Generation 193

Exercise 5.3. Add static initializers to j--, adding it to your compiler and testing it thor-
oughly.

A static initializer is a class (or interface) member. It is a block of initializing code that
is executed before the class enclosing it is referenced. It is identified by the static keyword
as in

static {

...

}

The code in the static initializer is executed before the enclosing class is referenced. As such,
the code goes into the <clinit> method the same place that class field initializations go.
To learn more about static initializers, see Section 8.7 of the Java Language Specification
[Gosling et al., 2005]. The order that fields and static initializers are executed (and so the
order they appear in <clinit>) is the order that the members appear in the class; the only
exception to this is “that final class variables and fields of interfaces whose values are
compile-time constants are initialized first.” See Section 12.4.2 of [Gosling et al., 2005].

Rules that static initializers must follow include

1. It is a compile-time error to throw an exception or to return in the initializing code.

2. Static initializers may not refer to this or super.

3. There are restrictions in referring to class variables that are defined textually further
in the code.

Exercise 5.4. Add instance initializers to j--, adding it to your compiler and testing it
thoroughly.

An instance initializer is a block of initializing code that is executed each time an
instance of the enclosing class is instantiated. Therefore, its code goes into the constructors,
that is <init>. Make sure this code is not executed twice, that is, in a constructor whose
code starts off with this().

Rules that instance initializers must follow include

1. It is a compile-time error to throw an exception or to return in the initializing code.

2. Instance initializers may refer to this.

Exercise 5.5. Java permits the declaration of methods of variable arity. For example, one
might declare a method

public void foo(int x, String y, int... z) { <body > }

Invocations of foo require an int value for x, a String value for y, and then any number
(including zero) of ints, all of which are gathered into an implicitly declared integer array
z. Implementing variable arity methods requires declaring the implicit array at method
declaration time, and then gathering the (extra) actual arguments into an array at method
invocation time. Add variable arity methods to j--, adding them to your compiler and testing
them thoroughly.

Exercise 5.6. Add the do-while statement to j--, adding it to your compiler and testing it
thoroughly.

The do-while statement takes the form

do {

Statement

}

while (Test);

194 An Introduction to Compiler Construction in a Java World

The Statement is always executed at least once, and the Test is at the bottom of the loop.
As an example, consider

do {

sum = sum + i;

i = i 1;

} while (i > 0);

The Oracle Java compiler, javac would produce for this:

top: iload sum ’

iload i’

iadd

istore sum ’

iload i’

iconst_1

isub

istore i’

iload i’

ifgt top

Compiling the do-while statement is very much like compiling the while-statement.

Exercise 5.7. Add the classic for-statement to j--, adding it to your compiler and testing
it thoroughly. The classic for-statement may be reformulated as a while-statement, even in
Java. For example, the template

for (Initialization; Test; Increment)

Statement

may be expressed as

Initialization

while (Test) {

Statement;

Increment;

}

We must take into account the fact that either Initialization, Test, or Increment may be
empty, and translate appropriately. This means that the for-statement may be translated
in either of two ways:

1. We can generate JVM code directly, following the patterns illustrated in this chapter.

2. We can first rewrite the AST, replacing the JForStatement node with the block above,
and then apply codegen() to that sub-tree. Notice how the enclosing block captures
the limited scope of any variables declared in Initialization.

Which way is better?

Exercise 5.8. Add the enhanced for-statement to j--, adding it to your compiler and
testing it thoroughly. The Java enhanced for-statement is used to iterate over collections.
Syntactically, it looks something like

for (Type Identifier : Expression)

Statement

How this can be interpreted depends on the type of Expression. If Expression’s type is a
sub-type of Iterable, let I be the type of Expression.iterator(). Then our enhanced
for-statement may be expressed as the following classic for-statement:

JVM Code Generation 195

for (I i’ = Expression.iterator (); i’. hasNext () ;) {

Type Identifier = i’.next ();

Statement

}

The variable i’ is compiler generated in such a way as not to conflict with any other variables.
Otherwise, Expression must have an array type T[]. In this case, our enhanced for- statement
may be expressed as

T[] a’ = Expression;

for (int i’ = 0; i’ < a’. length; i’++) {

Type Identifier= a’[i’];

Statement

}

The variables a’ and i’ are compiler generated in such a way as not to conflict with any
other variables. This can be compiled similarly to the classic for- statement.

Exercise 5.9. Study the Java Language Specification [Gosling et al., 2005] to determine
what it would take to implement the continue-statement in your compiler. Then add the
continue-statement to j--, adding them to your compiler and testing it thoroughly.

Exercise 5.10. Study the Java Language Specification [Gosling et al., 2005] to determine
what it would take to implement the break-statement in your compiler. Then add the
break-statement to j--, adding it to your compiler and testing it thoroughly.

Exercise 5.11. Add conditional expressions to j--, adding them to your compiler and
testing them thoroughly. Conditional expressions are compiled in a manner identical to
if-else statements. The only difference is that in this case, both the consequent and the
alternative are expressions. For example, consider the assignment

z = x > y ? x - y : y - x;

The javac compiler produces the following code for this:

43: iload_1

44: iload_2

45: if_icmple 54

48: iload_1

49: iload_2

50: isub

51: goto 57

54: iload_2

55: iload_1

56: isub

57: istore_3

As for the if-then statement, we compile the Boolean test expression using the 3-argument
version of codegen().

Exercise 5.12. Add the conditional or operator || to j--, adding it to your compiler and
testing it thoroughly. Make sure to avoid unnecessary branches to branches. The conditional
||, like the conditional &&, is short-circuited. That is, in

e1 || e2
if e1 evaluates to true, then e2 is not evaluated and the whole expression is true. For ex-

ample, javac compiles

196 An Introduction to Compiler Construction in a Java World

if (x < 0 || y > 0) {

x = y;

}

to produce

58: iload_1

59: iflt 66

62: iload_2

63: ifle 68

66: iload_2

67: istore_1

68: ...

Exercise 5.13. Write tests that involve conditional branches on nested Boolean expressions
that involve the, !, && and (if you have implemented it) || operator to insure that the
compiler is not generating branches to branches.

Exercise 5.14. Add the switch-statement to j--, adding it to your compiler and testing it
thoroughly.

The switch-statement is more involved than other control constructs. Fortunately, the
JVM provides special support for it. Code generation for the switch-statement is discussed
in Section 6.10 of the JVM specification [Lindholm and Yellin, 1999].

As an example, let us consider a method that makes use of a simple switch-statement.

int digitTight(char c) {

switch (c) {

case ’1’: return 1;

case ’0’: return 0;

case ’2’: return 2;

default: return -1;

}

}

This method converts digit characters ’0’, ’1’, and ’2’ to the integers they denote; any
other character is converted to −1. This is not the best way to do this conversion but it
makes for a simple example of the switch-statement. Let us take a look at the code that
javac produces, using the javap tool:

int digitTight(char);

Code:

Stack=1, Locals=2, Args_size =2

0: iload_1

1: tableswitch{ //48 to 50

48: 30;

49: 28;

50: 32;

default: 34 }

28: iconst_1

29: ireturn

30: iconst_0

31: ireturn

32: iconst_2

33: ireturn

34: iconst_m1

35: ireturn

Notice a few things here. First, the JVM uses a table to map the Unicode character repre-
sentations to the code locations for each of the corresponding cases. For example, 48 (the
Unicode representation for the character ’0’) maps to location 30, the location of the JVM

JVM Code Generation 197

code for the return 0;. Notice also that the characters have been sorted on their Unicode
values: 48, 49, and 50. Finally, because the characters are consecutive, the tableswitch

instruction can simply calculate an offset in the table to obtain the location to which it
wants to branch.

Now consider a second example, where the range of the characters we are switching on
is a little more sparse; that is, the characters are not consecutive, even when sorted.

int digitSparse(char c) {

switch (c) {

case ’4’: return 4;

case ’0’: return 0;

case ’8’: return 8;

default: return -1;

}

}

The code that javac produces for this takes into account this sparseness.

int digitSparse(char);

Code:

Stack=1, Locals=2, Args_size =2

0: iload_1

1: lookupswitch{ //3

48: 38;

52: 36;

56: 40;

default: 43 }

36: iconst_4

37: ireturn

38: iconst_0

39: ireturn

40: bipush 8

42: ireturn

43: iconst_m1

44: ireturn

Again, a table is used, but this time a lookupswitch instruction is used in place of the
previous tableswitch. The table here represents a list of pairs, each mapping a Unicode
representation for a character to a location. Again, the table is sorted on the Unicode
representations but the sequence of characters is too sparse to use the offset technique for
finding the appropriate code location. Rather, lookupswitch searches the table for the
character it is switching on and then branches to the corresponding location. Because the
table is sorted on the characters, a binary search strategy may be used for searching large
tables.

Consider one more example, where the sorted characters are almost but not quite se-
quential:

int digitClose(char c) {

switch (c) {

case ’1’: return 1;

case ’0’: return 0;

case ’3’: return 3;

default: return -1;

}

}

That the range of characters we are switching on is not too sparse suggests our using the
tableswitch instruction, which uses an offset to choose the proper location to branch to.
The javac compiler does just this, as illustrated by the following output provided by the
javap tool.

198 An Introduction to Compiler Construction in a Java World

int digitClose(char);

Code:

Stack=1, Locals=2, Args_size =2

0: iload_1

1: tableswitch{ //48 to 51

48: 34;

49: 32;

50: 38;

51: 36;

default: 38 }

32: iconst_1

33: ireturn

34: iconst_0

35: ireturn

36: iconst_3

37: ireturn

38: iconst_m1

39: ireturn

Notice a sequential table is produced. Of course, the entry for character ’2’ (Unicode 50)
maps to location 38 (the default case) because it is not one of the explicit cases.

So our compiler must construct a list of value-label pairs, mapping a case value to a
label we will emit to mark the location of code to branch to. We then sort that list on
the case values and decide, based on sparseness, whether to use a tableswitch instruction
(not sparse) or a lookupswitch (sparse) instruction. CLEmitter provides a method for each
choice.

CLEmitter’s addTABLESWITCHInstruction() method provides for several arguments: a
default label, a lower bound on the case values, an upper bound on the case values, and
a sequential list of labels.

CLEmitter’s addLOOKUPSWITCHInstruction() method provides for a different set of
arguments: a default label, a count of the number of value-label pairs in the table, and a
TreeMap that maps case values to labels.

Of course, our compiler must decide which of the two instructions to use.

The next three exercises deal with exception handling. Exception handling in Java is
captured by the try-catch-finally and throws-statement. Additionally, there is the throws-
clause, which serves to help the compiler ensure that there is a catch for every exception
thrown.

To illustrate the JVM code that is generated for exceptions, consider the following class
declaration:

import java.io.FileReader;

import java.io.FileWriter;

import java.lang.IndexOutOfBoundsException;

import java.lang.System;

import java.io.FileNotFoundException;

import java.io.IOException;

public class Copy {

private static final int EOF = -1; // end of file character rep.

public static void main(String [] args) throws IOException {

FileReader inStream = null;

FileWriter outStream = null;

int ch;

try {

// open the files

JVM Code Generation 199

inStream = new FileReader(args [0]);

outStream = new FileWriter(args [1]);

// copy

while ((ch = inStream.read ()) != EOF) {

outStream.write(ch);

}

}

catch (IndexOutOfBoundsException e) {

System.err.println(

"usage: java Copy1 sourcefile targetfile ");

}

catch (FileNotFoundException e) {

System.err.println(e); // rely on e’s toString ()

}

catch (IOException e) {

System.err.println(e);

}

finally { // close the files

inStream.close ();

outStream.close ();

}

}

void foo()

throws IOException {

throw new IOException ();

}

}

Notice that the closing of files in the finally-clause might cause an exception to be thrown.
We could either nest this closing of files within its own try-catch block or we could declare
that the method main might possibly throw an IOException. We do the latter here.

Exercise 5.15. Add the throw-statement to j--, adding it to your compiler and testing
it thoroughly. The throw-statement is straightforwardly compiled to JVM code using the
athrow instruction; for example,

throw new IOException ();

produces the following JVM code, which constructs, initializes, and throws the exception
object:

0: new #16; // class java/io/IOException

3: dup

4: invokespecial #17; // method java/io/IOException ."<init >":()V

7: athrow

Exercise 5.16. Add the try-catch-finally-statement to j--, adding it to your compiler and
testing it thoroughly.

Let us look at the code generated by javac for method main() (above):

public static void main(java.lang.String []) throws java.io.IOException;

Code:

Stack=4, Locals=6, Args_size =1

0: aconst_null

1: astore_1

2: aconst_null

3: astore_2

4: new #2; //class java/io/FileReader

7: dup

8: aload_0

200 An Introduction to Compiler Construction in a Java World

9: iconst_0

10: aaload

11: invokespecial #3; // Method java/io/FileReader ."<init >"

:(Ljava/lang/String ;)V

14: astore_1

15: new #4; //class java/io/FileWriter

18: dup

19: aload_0

20: iconst_1

21: aaload

22: invokespecial #5; // Method java/io/FileWriter ."<init >"

:(Ljava/lang/String ;)V

25: astore_2

26: aload_1

27: invokevirtual #6; // Method java/io/FileReader.read :()I

30: dup

31: istore_3

32: iconst_m1

33: if_icmpeq 44

36: aload_2

37: iload_3

38: invokevirtual #7; // Method java/io/FileWriter.write :(I)V

41: goto 26

44: aload_1

45: invokevirtual #8; // Method java/io/FileReader.close :()V

48: aload_2

49: invokevirtual #9; // Method java/io/FileWriter.close :()V

52: goto 131

55: astore 4

57: getstatic #11; // Field java/lang/System.err:Ljava/io/PrintStream;

60: ldc #12; // String usage: java Copy1 sourcefile targetfile

62: invokevirtual #13; // Method java/io/PrintStream.println:

(Ljava/lang/String ;)V

65: aload_1

66: invokevirtual #8; // Method java/io/FileReader.close :()V

69: aload_2

70: invokevirtual #9; // Method java/io/FileWriter.close :()V

73: goto 131

76: astore 4

78: getstatic #11; // Field java/lang/System.err:Ljava/io/PrintStream;

81: aload 4

83: invokevirtual #15; // Method java/io/PrintStream.println:

(Ljava/lang/Object ;)V

86: aload_1

87: invokevirtual #8; // Method java/io/FileReader.close :()V

90: aload_2

91: invokevirtual #9; // Method java/io/FileWriter.close :()V

94: goto 131

97: astore 4

99: getstatic #11; // Field java/lang/System.err:Ljava/io/PrintStream;

102: aload 4

104: invokevirtual #15; // Method java/io/PrintStream.println:

(Ljava/lang/Object ;)V

107: aload_1

108: invokevirtual #8; // Method java/io/FileReader.close :()V

111: aload_2

112: invokevirtual #9; // Method java/io/FileWriter.close :()V

115: goto 131

118: astore 5

120: aload_1

121: invokevirtual #8; // Method java/io/FileReader.close :()V

124: aload_2

125: invokevirtual #9; // Method java/io/FileWriter.close :()V

128: aload 5

JVM Code Generation 201

130: athrow

131: return

Exception table:

from to target type

4 44 55 Class java/lang/IndexOutOfBoundsException

4 44 76 Class java/io/FileNotFoundException

4 44 97 Class java/io/IOException

4 44 118 any

55 65 118 any

76 86 118 any

97 107 118 any

118 120 118 any

The code for the try block ranges from location 4 up to (but not including location) 44.

4: new #2; //class java/io/FileReader

7: dup

8: aload_0

9: iconst_0

10: aaload

11: invokespecial #3; // Method java/io/FileReader ."<init >":

(Ljava/lang/String ;)V

14: astore_1

15: new #4; //class java/io/FileWriter

18: dup

19: aload_0

20: iconst_1

21: aaload

22: invokespecial #5; // Method java/io/FileWriter ."<init >":

(Ljava/lang/String ;)V

25: astore_2

26: aload_1

27: invokevirtual #6; // Method java/io/FileReader.read :()I

30: dup

31: istore_3

32: iconst_m1

33: if_icmpeq 44

36: aload_2

37: iload_3

38: invokevirtual #7; // Method java/io/FileWriter.write :(I)V

41: goto 26

Much of the exception handling control is specified in the exception table:

from to target type

4 44 55 Class java/lang/IndexOutOfBoundsException

4 44 76 Class java/io/FileNotFoundException

4 44 97 Class java/io/IOException

4 44 118 any

55 65 118 any

76 86 118 any

97 107 118 any

118 120 118 any

The first entry,

4 44 55 Class java/lang/IndexOutOfBoundsException

says that the exception handling applies to locations 4 up to (but not including) 44; con-
trol is transferred to location 55 if and when an exception of the given type (java.lang.
IndexOutOfBoundsException here) is raised. This entry captures the control for the first
catch-clause. Similarly, the next two table entries,

4 44 76 Class java/io/FileNotFoundException

202 An Introduction to Compiler Construction in a Java World

4 44 97 Class java/io/IOException

capture the control for the next two catch-clauses in the source code. The next five entries
in the table

4 44 118 any

55 65 118 any

76 86 118 any

97 107 118 any

118 120 118 any

apply to the try block, the three catch-clauses, and the finally-clause itself. These insure
that if an exception is raised in any of these, the code for the finally-clause is executed:

118: astore 5

120: aload_1

121: invokevirtual #8; // Method java/io/FileReader.close :()V

124: aload_2

125: invokevirtual #9; // Method java/io/FileWriter.close :()V

128: aload 5

130: athrow

Notice copies of the finally-clause code follow the try block and each of the catch-clauses,
insuring that the finally code is always executed10.

Invoke CLEmitter’s addExceptionHandler() method for emitting each entry in the
table. This method uses labels for identifying locations and is discussed in Appendix D
(D.3.2).

Exercise 5.17. Add the throws-clause to j--, adding it to your compiler and testing it
thoroughly. Make sure all the rules of exception handling are covered.

Much of the work here is ensuring that any exception that might be possibly thrown in
the invocation of the method is either caught by a catch-clause in a surrounding try-catch
block, or is covered by one of the exceptions in the throws declaration. See Section 11.2 of
the Java Language Specification [Gosling et al., 2005].

As far as the generated code goes, one needs to ensure that the invocation of the method
for adding a new method,

public void addMethod(ArrayList <String > accessFlags ,

String name ,

String descriptor ,

ArrayList <String > exceptions ,

boolean isSynthetic)

includes a list of the exceptions that the method throws, in internal form.

Exercise 5.18. Modify the Copy class to catch possible exceptions in the finally-clause:

finally { // close the files

try {

if (inStream != null) {

inStream.close ();

}

}

catch (Exception e) {

System.err.println (" Unable to close input stream .");

}

try {

10Another way to handle the finally-clause is to treat it as a subroutine, making use of the JVM’s jsr
and ret instructions. Consult Chapter 7 of [Lindholm and Yellin, 1999] for hints on using these instructions
for exception handling.

JVM Code Generation 203

if (outStream != null) {

outStream.close ();

}

}

catch (Exception e) {

System.err.println (" Unable to close output stream .");

}

}

Execute javap on the class files produced by both javap and by your extensions to j--.
Make sure you are generating the proper JVM code.

Exercise 5.19. Study the Java Language Specification [Gosling et al., 2005] to determine
what it would take to implement the assert-statement in your compiler. Then add the
assert-statement to j--, adding it to your compiler and testing it thoroughly.

The next three exercises involve adding primitive types to our compiler. (There is no
reason why we cannot add built-in reference types such as matrices for which we can overload
the arithmetic operators; but doing so would go against the spirit of Java.) And, because
the primitive types in Java that are not already in j-- are numeric types, the new types
must work in concert with the current types.

Exercise 5.20. Add the primitive type double to j--, adding it to your compiler and test-
ing it thoroughly. Adding double-precision floating-point numbers to j-- introduces several
wrinkles:

1. Arithmetic requires new JVM instructions, for example, dadd.

2. Each double-precision floating-point number occupies two words. This requires that
the offset be incremented by 2 each time a double variable is declared.

3. Mixed arithmetic introduces the need for implicit conversion.

For example, consider the following contrived method, where d and e are double-precision
variables and i is an integer variable:

void foo() {

int i = 4;

double d = 3.0;

double e = 5.0;

e = d * i;

}

The javac compiler produces the following JVM code:

void foo ();

Code:

Stack=4, Locals=6, Args_size =1

0: iconst_4

1: istore_1

2: ldc2_w #2; // double 3.0d

5: dstore_2

6: ldc2_w #4; // double 5.0d

9: dstore 4

11: dload_2

12: iload_1

13: i2d

14: dmul

15: dstore 4

17: return

204 An Introduction to Compiler Construction in a Java World

Notice several things here. First, notice that the stack offsets take account of i being a one-
word int, and d and e being two-word doubles. Second, notice the mix of types an iload

instruction is used to load the integer and a dload instruction is used to load the double-
precision value. The arithmetic is done in double precision, using the dmul instruction.
Therefore, the integer i must be promoted (converted to a more precise representation) to
a double-precision value using the i2d instruction.

In the assignment and arithmetic operations, analyze() must be modified for dealing
with this mixed arithmetic. In the case of a mix of int and double, the rule is pretty simple:
convert the int to a double. One will want to consult the Java Language Specification
[Gosling et al., 2005], especially Chapters 5 and 15. The rules are pretty easy to ferret out
for just ints and doubles.

Exercise 5.21. Add the primitive type long to j--, adding it to your compiler and testing it
thoroughly. When adding additional primitive types (to int and double), the rules become
more complicated. One must worry about when to do conversions and how to do them. One
must follow the Java Language Specification [Gosling et al., 2005].

Once one has more than two numeric types to deal with, it is probably best to re-think
the conversion scheme and build a simple framework for deciding how to promote one type
to another. There are fifteen primitive type conversion instructions available to us in the
JVM, and we will want to make effective use of them.

Exercise 5.22. Add the primitive type float to j--, adding it to your compiler and testing
it thoroughly.

Exercise 5.23. The JVM provides instructions making it relatively straightforward to add
synchronized-statement. Study the Java Language Specification [Gosling et al., 2005] to
determine what it would take to implement the synchronized-statement in your compiler.
Then add the synchronized-statement to j--, adding it to your compiler and testing it
thoroughly.

Exercise 5.24. (Small project) Study the Java Language Specification [Gosling et al., 2005]
to determine what it would take to implement nested classes in your compiler. Then add
nested classes to j--, adding it to your compiler and testing them thoroughly.

In implementing nested classes, one must take into account and enforce both the scope
rules and access rules. The j-- compiler includes a little helpful machinery as it stands, in
the form of a class context entry in the symbol table where nested classes might be stored.

Exercise 5.25. (Small project) Study the Java Language Specification [Gosling et al., 2005]
to determine what it would take to implement enum types in your compiler. Then add enum

types to j--, adding it to your compiler and testing them thoroughly.
The implementation of enum types simply requires enumerating the values supplied in

the type declaration and storing these values along with their enumeration; of course, one
must take into account explicit assignation in the declaration.

Exercise 5.26. (Large project) Study the Java Language Specification [Gosling et al.,
2005] and other articles to determine what it would take to implement generic types in your
compiler. Then add generic types to j--, adding it to your compiler and testing it thoroughly.
Implementing generic types is a major project. Generics are described in [Bracha, 2004].

Exercise 5.27. (Large project) Add implicit type conversions to your implementation of
j--, implementing them in your compiler and testing them thoroughly.

What makes this difficult is that it leads to complexity in the identification and selection
from applicable methods in resolving method invocation. There are hints to an implemen-
tation in the steps outlined in [Gosling et al., 2005].

Chapter 6

Translating JVM Code to MIPS Code

6.1 Introduction

6.1.1 What Happens to JVM Code?

Compilation is not necessarily over with after the class file is constructed. At “execution,”
the class is loaded into the JVM and then interpreted. In the Oracle HotSpotTMVM, once
a method has been executed several times, it is compiled to native code—code that can
be directly executed by the underlying computer. Once these hotspots in the code are
compiled, the native code is cached so that it may be re-used in subsequent invocations of
the method. So at run-time, control shifts back and forth between JVM code and native
code. Of course, the native code runs much faster than the interpreted JVM code. This
regimen takes advantage of the fact that nearly all programs spend most of their time
executing small regions of code.

This scenario is further complicated by the existence of at least two run-time environ-
ments. The VM that runs on a server performs many optimizations on the native code.
While these optimizations are expensive, they produce very fast code that, on a server,
runs over and over again. On the other hand, the VM that runs on a client computer,
such as a user’s personal workstation, performs fewer optimizations and thus minimizes the
one-time cost of compiling the method to native code.

Compiling JVM code to native code involves the following:

Register allocation. In the JVM code, all local variables, transients and instruction
operands are stored on the run-time stack. But the computer architectures we are
compiling to have a fixed number of (often eight or thirty-two) high-speed registers.
The native instructions often require that operands be in registers and permanently
assigning as many local variables and transients to registers makes for faster running
programs. When all registers are in use and the computation requires another, one
register must be spilled to memory. Register spilling, in turn, degrades performance,
so we want to minimize that.

Optimization. The code produced can be improved so as to run faster. In some instances,
invocations of methods having short bodies can be in lined, that is, replaced by the
bodies’ code.

Instruction selection. We must choose and generate the native code instructions suffi-
cient to perform the computations.

Run-time support. A certain amount of functional support is required at run-time. For
example, we need support for creating new objects on the heap. We also implement a
class that gives us basic input and output functionality for testing our programs.

One might reasonably ask, “Why don’t we simply compile the entire JVM program to

205

206 An Introduction to Compiler Construction in a Java World

native code at the very start?” One reason is Java’s dynamic quality means we are not
exactly sure which code will be needed at compile time. Further, new classes may be loaded
while a Java program is executing. That HotSpot compilation can compete with static
compilation in performance is counter-intuitive to programmers. But Oracle has bench-
marks that demonstrate that the HotSpot VM often out-performs programs that have been
statically compiled to native code.

6.1.2 What We Will Do Here, and Why

Here we shall translate a small subset of JVM instructions to the native code for the
MIPS architecture. MIPS is a relatively modern reduced instruction set computer (RISC),
which has a set of simple but fast instructions that operate on values in registers; for this
reason it is often referred to as a register-based architecture—it relies on loads and stores
for moving values between memory and its thirty-two general-purpose registers. The RISC
architecture differs from the traditional complex instruction set computer (CISC), which
has fewer but more complex (and so slower) instructions with a wider range of operand
addressing capabilities; CISC operands can be expressed as registers, memory locations, or
a combination of both (allowing indexing), and so CISC architectures normally have fewer
(for example, eight) general-purpose registers. A popular CISC architecture is Intel’s family
of i86x computers.

More accurately, we will target the MIPS assembly language, which is directly inter-
preted by James Larus’s SPIM simulator [Larus, 2010], and is readily available for many
environments. We call this assembly language SPIM code. (SPIM is MIPS spelled back-
ward.)

Assembly code is a symbolic language for expressing a native code program. It captures
the native code program nicely because there is a one-to-one correspondence between it and
the bit pattern representing each individual instruction but it is more meaningful to the
reader.

Normally, a compiler will produce this assembly code and then use an assembler, i.e., a
simple translator for translating the assembly code to the bit representation of native code.

But the SPIM interpreter interprets the MIPS assembly code directly. This serves our
purpose just fine; we can produce sequences of MIPS instructions that are both readable
and can be executed directly for testing the code we generate.

Our goal here is illustrated in Figure 6.1. The work that we have already done is shown
using the dashed line. The work we intend to do here in this chapter and the next is shown
using the solid line.

FIGURE 6.1 Our j-- to SPIM compiler.

Here we can re-define what constitutes the IR, the front end, and the back end:

• JVM code is our new IR.

• The j-- to JVM translator (discussed in Chapters 1–5) is our new front end.

• The JVM-to-SPIM translator (discussed in this chapter and the next) is our new back
end.

Translating JVM Code to MIPS Code 207

6.1.3 Scope of Our Work

We translate a sufficient subset of the JVM to SPIM code to give the student a taste of
native code generation, some of the possibilities for optimization, and register allocation.
More precisely, we translate enough JVM code to SPIM code to handle the following j--
program1. The class spim.SPIM is a class that we have defined for accessing special SPIM
system routines for doing simple IO.

import spim.SPIM;

// Prints factorial of a number computed using recursive and iterative

// algorithms.

public class Factorial {

// Return the factorial of the given number computed recursively.

public static int computeRec(int n) {

if (n <= 0) {

return 1;

} else {

return n * computeRec(n - 1);

}

}

// Return the factorial of the given number computed iteratively.

public static int computeIter(int n) {

int result = 1;

while (n > 0) {

result = result * n--;

}

return result;

}

// Entry point; print factorial of a number computed using

// recursive and iterative algorithms.

public static void main(String [] args) {

int n = 7;

SPIM.printInt(Factorial.computeRec(n));

SPIM.printChar (’\n’);

SPIM.printInt(Factorial.computeIter(n));

SPIM.printChar (’\n’);

}

}

We handle static methods, conditional statements, while loops, recursive method invoca-
tions, and enough arithmetic to do a few computations. We must deal with some objects,
for example, constant strings. Although the program above refers to an array, it does not
really do anything with it so we do not implement array objects. Our run-time support is
minimal.

In order to determine just what JVM instructions must be handled, it is worth looking
at the output from running javap on the class file produced for this program.

public class Factorial extends java.lang.Object

minor version: 0

major version: 49

Constant pool:

... <the constant pool is elided here > ...

{

public Factorial ();

Code:

1We also compile a few more programs, which are included in the code tree but are not discussed further
here: Fibonacci, GCD, Formals, and HelloWorld.

208 An Introduction to Compiler Construction in a Java World

Stack=1, Locals=1, Args_size =1

0: aload_0

1: invokespecial #8; // Method java/lang/Object."<init >":()V

4: return

public static int computeRec(int);

Code:

Stack=3, Locals=1, Args_size =1

0: iload_0

1: iconst_0

2: if_icmpgt 10

5: iconst_1

6: ireturn

7: goto 19

10: iload_0

11: iload_0

12: iconst_1

13: isub

14: invokestatic #13; // Method computeRec :(I)I

17: imul

18: ireturn

19: nop

public static int computeIter(int);

Code:

Stack=2, Locals=2, Args_size =1

0: iconst_1

1: istore_1

2: iload_0

3: iconst_0

4: if_icmple 17

7: iload_1

8: iload_0

9: iinc 0, -1

12: imul

13: istore_1

14: goto 2

17: iload_1

18: ireturn

public static void main(java.lang.String []);

Code:

Stack=1, Locals=2, Args_size =1

0: bipush 7

2: istore_1

3: iload_1

4: invokestatic #13; // Method computeRec :(I)I

7: invokestatic #22; // Method spim/SPIM.printInt :(I)V

10: bipush 10

12: invokestatic #26; // Method spim/SPIM.printChar :(C)V

15: iload_1

16: invokestatic #28; // Method computeIter :(I)I

19: invokestatic #22; // Method spim/SPIM.printInt :(I)V

22: bipush 10

24: invokestatic #26; // Method spim/SPIM.printChar :(C)V

27: return

}

All methods (other than the default constructor) are static; thus, the plethora of
invokestatic instructions. Otherwise, we see lots of loads, stores, a few arithmetic opera-
tions and both conditional and unconditional branches. Translating additional instructions
is left as a set of exercises.

Translating JVM Code to MIPS Code 209

6.2 SPIM and the MIPS Architecture

SPIM and the MIPS computer it simulates are both nicely described by SPIM’s author
in [Larus, 2009]. Our brief description here is based on that.

6.2.1 MIPS Organization

The MIPS computer organization is sketched out in Figure 6.2.

FIGURE 6.2 The MIPS computer organization.

It has an integer central processing unit (CPU), which operates on thirty-two general-
purpose registers (numbered $0–$31); a separate floating- point coprocessor 1 (FPU), with
its own 32 registers ($f0–$f31) for doing single- precision (32-bit) and double- precision (64-
bit) floating point arithmetic, and coprocessor 0 for handling exceptions and interrupts, also
with its own set of registers, including a status register. There are instructions for moving
values from one register set to another. Our translation will focus on the integer-processing
unit; exercises may involve the reader’s dealing with the other coprocessors.

Programming the raw MIPS computer can be quite complicated, given its (time) delayed

210 An Introduction to Compiler Construction in a Java World

branches, delayed loads, caching, and memory latency. Fortunately, the MIPS assembler
models a virtual machine that both hides these timing issues and uses pseudo-instructions
to provide a slightly richer instruction set. By default, SPIM simulates this virtual machine,
although it can be configured to model the more complicated raw MIPS computer. We will
make use of the simpler, default assembly language.

6.2.2 Memory Organization

Memory is, by convention, divided into four segments, as illustrated in Figure 6.3 and
derived from [Larus, 2009].

FIGURE 6.3 SPIM memory organization.

Text segment. The program’s instructions go here, near the bottom end of memory, start-
ing at 400000hex. (The memory location below 400000hex are reserved.)

Static data segment. Static data, which exist for the duration of the program, go here,
starting at 1000000hex. This would be a good place to put constants (including con-
stant strings) and static fields. To access these values conveniently, MIPS designates
one of its thirty-two registers as $gp (register number 28), which points to the middle
of a 64K block data in this segment. Individual memory locations may be addressed
at fixed (positive or negative) offsets from $gp.

Dynamic data segment. Often called the heap, this is where objects and arrays are dy-
namically allocated during execution of the program. Many systems employ a garbage
collection to reclaim the space allocated to objects that are no longer of use. This seg-
ment starts just above the static data segment and grows upward, toward the run-time
stack.

Stack segment. The stack is like that for the JVM. Every time a routine is called, a new
stack frame is pushed onto the stack; every time a return is executed, a frame is
popped off. The stack starts at the top of memory and grows downward toward the
heap. That the dynamic data segment and stack segment start as far apart as possible
and grow toward each other leads to an effective use dynamic memory. We use the

Translating JVM Code to MIPS Code 211

$fp register (30) to point to the current stack frame and the $sp register (29) to point
to the last element on the stack.

MIPS and SPIM require that quantities be aligned on byte addresses that are multiples of
their size; for example, 32-bit words must be at addresses that are multiples of four, and 64-
bit doubles must be at addresses that are multiples of eight. Fortunately, the MIPS assembler
(and thus SPIM) provides program directives for correctly aligning data quantities. For
example, in

b: .byte 10

w: .word 324

the byte 10 is aligned on a byte boundary and may be addressed using the label b, and
the word 324 is aligned on a 4-byte boundary and may be addressed as w; w is guaranteed
to address a word whose address is evenly divisible by 4. There are assembler directives
for denoting and addressing data items of several types in the static data segment. See
Appendix E and [Larus, 2009].

Interestingly, SPIM does not define a byte order for quantities of several bytes; rather,
it adopts the byte order of the machine on which it is running. For example, on an Intel
x86 machine (Windows or Mac OS X on an Intel x86), the order is said to be little-endian,
meaning that the bytes in a word are ordered from right to left. On Sparc or a Power PC
(Solaris or Mac OS X on a Sparc), the order is said to be big-endian, meaning that the
bytes in a word are ordered from left to right. For example, given the directive

w: .byte 0, 1, 2, 3

if we address w as a word, the 0 will appear in the lowest-order byte on a little-endian
machine (as in Figure 6.4(a)) and in the highest order byte on a big-endian machine (as in
Figure 6.4(b)).

FIGURE 6.4 Little-endian versus big-endian.

For most of our work, the endian-ness of our underlying machine on which SPIM is
running should not matter.

6.2.3 Registers

Many of the thirty-two 32-bit general-purpose registers, by convention, are designated for
special uses and have alternative names that remind us of these uses:

$zero (register number 0) always holds the constant 0.

$at (1) is reserved for use by the assembler and should not be used by programmers or in
code generated by compilers.

$v0 and $v1 (2 and 3) are used for expression evaluation and as the results of a function.

$a0 – $a3 (4–7) are used for passing the first four arguments to routines; any additional
arguments are passed on the stack.

212 An Introduction to Compiler Construction in a Java World

$t0 – $t7 (8–15) are meant to hold temporary values that need not be preserved across
routine calls. If they must be preserved, it is up to the caller (the routine making the
call) to save them; hence they are called caller-saved registers.

$s0 – $s7 (16–23) are meant to hold values that must be preserved across routine calls.
It is up to the callee (the routine being called) to save these registers; hence they are
called callee-saved registers.

$t8 and $t9 (24 and 25) are caller-saved temporaries.

$k0 and $k1 (26 and 27) are reserved for use by the operating system kernel and so should
not be used by programmers or in code generated by compilers.

$gp (28) is a global pointer; it points to the middle of a 64K block of memory in the static
data segment.

$sp (29) is the stack pointer, pointing to the last location on the stack.

$fp (30) is the stack frame pointer, pointing to the latest frame on the stack.

$ra (31) is the return address register, holding the address to which execution should
continue upon return from the latest routine.

It is a good idea to follow these conventions when generating code; this allows our code to
cooperate with code produced elsewhere.

6.2.4 Routine Call and Return Convention

SPIM assumes we follow a particular protocol in implementing routine calls when one
routine (the caller) invokes another routine (the callee).

Most bookkeeping for routine invocation is recorded in a stack frame on the run-time
stack segment, much as like is done in the JVM; but here we must also deal with registers.
The stack frame for an invoked (callee) routine is illustrated in Figure 6.5.

SPIM has pretty well defined protocols for preparing for a call in the calling code, making
a call, saving registers in the frame at the start of a method, restoring the saved registers
from the frame at the end of a method, and executing a return to the calling code. We follow
these protocols closely in our run-time stack management and they are described where we
discuss our run-time stack in Section 6.3.5.

6.2.5 Input and Output

The MIPS computer is said to have memory-mapped IO, meaning the input and output
device registers are referred to as special, reserved addresses in memory. Although SPIM
does simulate this for a simple console, it also provides a set of system calls for accessing
simple input and output functions. We shall use these system calls for our work.

Translating JVM Code to MIPS Code 213

FIGURE 6.5 A stack frame.

6.3 Our Translator

6.3.1 Organization of Our Translator

Our JVM-to-SPIM translator is based on those described by Christian Wimmer [Wimmer,
2004] and Hanspeter Mössenböck [Mössenböck, 2000], which are in turn versions of the Sun
(now Oracle) HotSpot Client Compiler. Our translator differs in several ways from those
described by Wimmer and Mössenböck, and while theirs produce native code for the Intel
86x, ours targets SPIM, a simulator for the MIPS32 architecture.

Roughly, the phases proceed as illustrated in Figure 6.6.
In the first phase, the JVM code is parsed and translated to a control-flow graph,

composed of basic blocks. A basic block consists of a linear sequence of instructions with
just one entry point at the start of the block, and one exit point at the end; otherwise, there
are no branches into or out of the block. The instructions are of a high level and preserve
the tree structure of expressions; following Wimmer, we call this a high-level intermediate
representation (HIR). Organizing the code in this way makes it more amenable to analysis.

In the second (optional) phase, various optimizations may be applied to improve the
code, making it faster and often smaller.

In the third phase, a lower-level representation of the code is constructed, assigning ex-

214 An Introduction to Compiler Construction in a Java World

FIGURE 6.6 Phases of the JVM-to-SPIM translator.

plicit virtual registers to the operands of the instructions; there is no limit to the number
of virtual registers used. Following Wimmer, we call this a low-level intermediate represen-
tation (LIR). The instructions are very close to the instructions in our target instruction
set, SPIM.

In the fourth phase, we perform register allocation. The thirty-two physical registers in
the MIPS architecture (and thus in SPIM) are assigned to take the place of virtual registers.
Register allocation is discussed in Chapter 7.

In the fifth and final phase, we generate SPIM code—our goal.
The names of all classes participating in the translation from JVM code to SPIM code

begin with the letter N (the N stands for Native). The translation is directed by the driver,
NEmitter; most of the steps are directed by its constructor NEmitter().

NEmitter() iterates through the classes and methods for each class, constructing the
control-flow graph of HIR instructions for each method, doing any optimizations, rewriting
the HIR as LIR and performing register allocation.

SPIM code is emitted by the driver (Main or JavaCCMain) using NEmitter’s write()

method.

6.3.2 HIR Control-Flow Graph

The Control-Flow Graph

The first step is to scan through the JVM instructions and construct a flow graph of basic
blocks. A basic block is a sequence of instructions with just one entry point at the start and
one exit point at the end; otherwise, there are no branches into or out of the instruction
sequence.

To see what happens here, consider the JVM code for the method computeIter() from
our Factorial example:

public static int computeIter(int);

Code:

Stack=2, Locals=2, Args_size =1

0: const_1

1: istore_1

2: iload_0

3: iconst_0

Translating JVM Code to MIPS Code 215

4: if_icmple 17

7: iload_1

8: iload_0

9: iinc 0, -1

12: imul

13: istore_1

14: goto 2

17: iload_1

18: ireturn

We have inserted line breaks to delineate basic blocks. The entry point is the iconst_1

instruction at location 0 so that begins a basic block; let us call it B1. The iload_0 at
location 2 is the target of the goto instruction (at 14) so that also must start a basic block;
we call it B2. B2 extends through the if_icmple instruction; the block must end there
because it is a branch. The next basic block (B3) begins at location 7 and extends to the
goto at location 14. Finally, the iload_1 at location 17 is the target of the if_icmple

branch at location 4 so it starts basic block B4. B4 extends to the end of the method and
is terminated by the ireturn instruction.

The control-flow graph, expressed as a graph constructed from these basic blocks is
illustrated in Figure 6.7; we have added an extra special entry block B0, for making further
analysis simpler. The boxes represent the basic blocks and the arrows indicate the flow of
control among the blocks; indeed, all control flow information is captured in the graph.
Notice that the boxes and arrows are not really necessary to follow the flow of control
among blocks; we put them there in the figure only for emphasis. You will notice that the
first line of text within each box identifies the block, a list of any successor blocks (labeled
by succ:) and a list of any predecessor blocks (labeled by pred:). For example, block B3
has a predecessor B2 indicating that control flows from the end of block B2 into the start
of B3; B3 also has a successor B2 indicating that control flows from the end of B3 to the
start of block B3. We add an extra beginning block B0 for the method’s entry point.

The denotation [LH] on the first line of B2 indicates that B2 is a loop header—the first
block in a loop. The denotation [LT] on the first line of B3 indicates that B3 is a loop
tail—the last block in a loop (and a predecessor of the loop header). This information is
used later in identifying loops for performing optimizations and ordering blocks for optimal
register allocation.

The pairs of numbers within square brackets, for example [7, 14] on the first line of
B3, denote the ranges of JVM instructions captured in the block.

The keyword dom: labels the basic block’s immediate dominator. In our graph, a node d
is said to dominate a node n if every path from the entry node (B0) to n must go through
d. A node d strictly dominates n if it dominates n but is not the same as n. Finally, node d
is an immediate dominator of node n if d strictly dominates n but does not dominate any
other node that strictly dominates n. That is, it is the node on the path from the entry node
to n that is the “closest” to n. Dominators are useful for certain optimizations, including
the lifting of loop-invariant code (see Section 6.3.3).

The State Vector

Local variables are tracked in a state vector called locals and are indexed in this vector
by their location in the JVM stack frame. The current state of this vector at the end of a
block’s instruction sequence is printed on the block’s second line and labeled with Locals:.
The values are listed in positional order and each value is represented by the instruction id
for the instruction that computes it.

For example, in B0 this vector has just one element, corresponding to the method’s

216 An Introduction to Compiler Construction in a Java World

FIGURE 6.7 HIR flow graph for Factorial.computeIter().

formal argument n. I0 identifies the instruction LDLOC 0 that loads the value (for n) from
position 0 on the stack2; notice the instruction is typed to be integer by the I in I0. In B1,
the vector has two elements: the first is I0 for n and the second is I2 for result.

HIR Instructions

The instruction sequence within each basic block is of a higher level than is JVM code.
These sequences capture the expression trees from the original source. We follow [Wimmer,

2The argument actually will be in register $a0 in the SPIM code, following SPIM convention.

Translating JVM Code to MIPS Code 217

2004] in calling this a high-level intermediate representation (HIR). For example, the Java
statement

w = x + y + z;

might be represented in HIR by

I8: I0 + I1

I9: I8 + I2

The I0, I1, and I2 refer to the instruction ids labeling instructions that compute values for
x, y and z, respectively. So the instruction labeled I8 computes the sum of the values for
x and y, and then the instruction labeled I9 sums that with the value for z to produce a
value for w. Think of this as an abstract syntax tree such as that illustrated in Figure 6.8.
The I is a type label, indicating the type is (in this case) an integer.

FIGURE 6.8 (HIR) AST for w = x + y + z.

The instruction for loading a constant is simply the constant itself. For example, consider
block B1 in Figure 6.7. It has just the single instruction

I2: 1

which is to say, the temporary I2 (later, I2 will be allocated a register) is loaded with the
constant 1. 1 is that instruction that loads the constant 1.

Not all instructions generate values. For example, the instruction

6: if I3 <= I5 then B4 else B3

in block B2 produces no value but transfers control to either B4 or B3. Of course, the 6:

has no type associated with it.
As we shall see in Section 6.3.3, HIR lends itself to various optimizations.

Static Single Assignment (SSA) Form

Our HIR employs static single assignment (SSA) form, where for every variable, there is
just one place in the method where that variable is assigned a value. This means that when
a variable is re-assigned in the method, one must create a new version for it.

For example, given the simple sequence

x = 3;

x = x + y;

the second assignment to x requires that we create a new version. For example, we might
subscript our variables to distinguish different versions.

218 An Introduction to Compiler Construction in a Java World

x1 = 3;

x1 = x1 + y1;

In the HIR, we represent a variable’s value by the instruction that computed it and we
track these values in the state vector. The value in a state vector’s element may change as
we sequence through the block’s instructions. If the next block has just one predecessor, it
can copy the predecessor’s state vector at its start; if there are more than two predecessors,
the states must be merged.

For example, consider the following j-- method, where the variables are in SSA form.

static int ssa(int w1) {

if (w1 > 0) {

w2 = 1;

}

else {

w3 = 2;

}

return w?;

}

In the statement,

return w?;

which w do we return, w2 or w3? Well, it depends on which of the two paths is taken through
the if-then-else statement. In terms of basic blocks, it is as illustrated in Figure 6.9.

FIGURE 6.9 The SSA merge problem.

We solve this problem using what is called a Phi function, a special HIR instruction
that captures the possibility of a variable having one of several values. In our example, the
final block would contain the following code.

w4 = [w2 w3];
return w4;

The [w2 w3] represents a Phi function with two operands: the operand w2 captures the
possibility that one branch of the if-then-else was taken and the w3 captures the possibility
that the other branch was taken. Of course, the target SPIM has no representation for
this but we shall remove these special Phi instructions before attempting to generate SPIM
instructions. We can still do analysis on it. The data flow is illustrated in Figure 6.10.

Translating JVM Code to MIPS Code 219

FIGURE 6.10 Phi functions solve the SSA merge problem.

Another place where Phi functions are needed are in loop headers. Recall that, a loop
header is a basic block having at least one incoming backward branch and at least two
predecessors, as is illustrated in Figure 6.11.

FIGURE 6.11 Phi functions in loop headers.

Unfortunately, a changed variable flowing in from a backward branch is known only
after the block has been fully processed. For this reason, at loop headers, we conservatively
define Phi functions for all variables and then remove redundant Phi functions later. In the
first instance, w2 can be defined as a Phi function with operands w1 and w2:

w2 = [w1 w2]

Then, when w is later incremented, the second operand may be overwritten by the new w3.

w2 = [w1 w3]

220 An Introduction to Compiler Construction in a Java World

Of course, a redundant Phi function will not be changed. If the w is never modified in the
loop body, the Phi function instruction takes the form

w2 = [w1 w2]

and can be removed as it is apparent that w has not been changed.
Phi functions are tightly bound to state vectors. When a block is processed:

• If the block has just a single predecessor, then it may inherit the state vector of that
predecessor; the states are simply copied.

• If the block has more than one predecessor, then those states in the vectors that differ
must be merged using Phi functions.

• For loop headers we conservatively create Phi functions for all variables, and then
later remove redundant Phi functions.

In block B2 in the code for Factorial (Figure 6.7), I3 and I4 identify the instructions

I3: [I0 I8]

I4: [I2 I9]

These are Phi function instructions capturing the local variable n and result respectively.
I3 is a Phi function with operands I0 and I8; I4 is a Phi function with operands I2 and
I9.

Control-Flow Graph Construction

The best place to look at the translation process is the constructor NEmitter() in class
NEmitter. For each method, the control-flow graph of HIR is constructed in several steps:

1. The NControlFlowGraph constructor is invoked on the method. This produces the
control-flow graph cfg. In this first step, the JVM code is translated to sequences of
tuples:

(a) Objects of type NBasicBlock represent the basic blocks in the control-flow graph.
The control flow is captured by the links successors in each block. There are
also the links predecessors for analysis.

(b) The JVM code is first translated to a list of tuples, corresponding to the JVM
instructions. Each block stores its sequence of tuples in an ArrayList, tuples.
For example, the blocks of tuples for our Factorial example, computeIter()
are as follows:

B0

B1

0: iconst_1

1: istore_1

B2

2: iload_0

3: iconst_0

4: if_icmple 0 13

B3

7: iload_1

8: iload_0

9: iinc 0 255

12: imul

Translating JVM Code to MIPS Code 221

13: istore_1

14: goto 255 244

B4

17: iload_1

18: ireturn

This use of tuples is not strictly necessary but it makes the translation to HIR
easier.

2. The message expression

cfg.detectLoops(cfg.basicBlocks.get(0), null);

detects loop headers and loop tails. This information may be used for lifting invariant
code from loops during the optimization phase and for ordering blocks for register
allocation.

3. The message expression

cfg.removeUnreachableBlocks ();

removes unreachable blocks, for example, blocks resulting from jumps that come after
a return instruction.

4. The message expression,

cfg.computeDominators(cfg.basicBlocks.get(0), null);

computes an immediate dominator for each basic block, that closest predecessor
through which all paths must pass to reach the target block. It is a useful place
to insert invariant code that is lifted out of a loop in optimization.

5. The message expression

cfg.tuplesToHir ();

converts the tuples representation to HIR, stored as a sequence of HIR instructions
in the array list, hir for each block. As the tuples are scanned, their execution is
simulated, using a stack to keep track of newly created values and instruction ids.
The HIR is in SSA form, with (sometimes redundant) Phi function instructions.

6. The message expression

cfg.eliminateRedundantPhiFunctions ();

eliminates unnecessary Phi functions and replaces them with their simpler values as
discussed above.

The HIR is now ready for further analysis.

6.3.3 Simple Optimizations on the HIR

That the HIR is in SSA form makes it amenable to several simple optimizations—
improvements to the HIR code; these improvements make for fewer instructions and/or
faster programs.

Local optimizations are improvements made based on analysis of the linear sequence

222 An Introduction to Compiler Construction in a Java World

of instructions within a basic block. Global optimizations require an analysis of the whole
control graph and involve what is called data-flow analysis3.

One can make important improvements to the code even with analysis within single
basic blocks. Moreover, the SSA form of the HIR allows us to deal with sequences of code
that cross basic block boundaries, as long as we do not deal with those values produced by
Phi functions.

Inlining

The cost of calling a routine (for invoking a method) can be considerable. In addition the
control-flow management and stack frame management, register values must be saved on
the stack. But in certain cases, the code of a callee’s body can replace the call sequence in
the caller’s code, saving the overhead of a routine call. We call this inlining.

Inlining usually makes sense for methods whose only purpose is to access a field as in
getters and setters.

For example, consider the following two methods, defined within a class Getter.

static int getA() {

return Getter.a;

}

static void foo() {

int i;

i = getA ();

}

The a in Getter.a refers to a static field declared in Getter. We can replace the getA()

with the field selection directly:

static void foo() {

int i;

i = Getter.a;

}

Inlining makes sense only when the callee’s code is relatively short. Also, when modeling
a virtual method call, we must be able to determine the routine that should be called at
compile-time. One also should be on the lookout for nested recursive calls; repeated inlining
could go on indefinitely.

A simple strategy for enabling inlining is to keep track of the number of instructions
within the HIR for a method and whether or not that method makes nested calls; this
information can be computed as the HIR for a method is constructed. Inlining method in-
vocations can create further opportunities for inlining. Inlining can also create opportunities
for other optimizations.

Constant Folding and Constant Propagation

Expressions having operands that are both constants, for example,

3 + 4

or even variables whose values are known to be constants, for example,

int i = 3;

int j = 4;

... i + j ...

3We describe a detailed data-flow analysis algorithm for computing liveness intervals for variables as
part of register allocation in Section 7.4.1

Translating JVM Code to MIPS Code 223

can be folded, that is, replaced by their constant value.
For example, consider the Java method

static void foo1() {

int i = 1;

int j = 2;

int k = i + j + 3;

}

and corresponding HIR code

B0 succ: B1

Locals:

0: 0

1: 1

2: 2

B1 [0, 10] dom: B0 pred: B0

Locals:

0: I3

1: I4

2: I7

I3: 1

I4: 2

I5: I3 + I4

I6: 3

I7: I5 + I6

8: return

The instruction I3 + I4 at I5: can be replaced by the constant 3, and the I5 + I6 at
I7: can replaced by the constant 6.

A strategy for implementing is to associate a hash table with each basic block for storing
the constant values associated with instruction ids. As we scan a block’s instructions, an
instruction defining a constant is added to the hash table, keyed by its id. If we come across
an instruction whose operands are already stored in this hash table of constants, we can
perform the operation immediately and store the result in that same table, keyed by the
instruction’s id. This analysis may be carried across basic block boundaries, so long as we
do not store instruction ids for instructions representing Phi functions.

Common Sub-Expression Elimination (CSE) within Basic Blocks

Another optimization one may make is common sub-expression elimination, where we iden-
tify expressions that are re-evaluated even if their operands are unchanged.

For example, consider the following method, unlikely as it may be.

void foo(int i) {

int j = i * i * i;

int k = i * i * i;

}

We can replace

int k = i * i * i;

in foo() with the more efficient

int k = j;

To see how we might recognize common sub-expressions, consider the HIR code for the
original version of foo():.

224 An Introduction to Compiler Construction in a Java World

B0 succ: B1

Locals: I0

I0: LDLOC 0

B1 [0, 12] dom: B0 pred: B0

Locals: I0 I4 I6

I3: I0 * I0

I4: I3 * I0

I5: I0 * I0

I6: I5 * I0

7: return

We sequence through the instructions, registering each in the block’s hash table, indexed
by the instruction and its operand(s); the value stored is the instruction id. As for constant
propagation, we cannot trust values defined by Phi functions without further data-flow
analysis, so we do not register such instructions.

At I6:, the reference to I5 can replaced by I3. More importantly, any subsequent
reference to I6 could be replaced by I4.

Of course, we are not likely to see such a method with such obvious common sub-
expressions. But common sub-expressions do arise in places one might not expect them. For
example, consider the following C Language fragment:

for (i = 0; i < 1000; i++) {

for (j = 0; j < 1000; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

The C compiler represents the matrices as linear byte sequences, one row of elements after
another; this is called row major form4. If a, b, and c are integer matrices, and the base
address of c is c’, then the byte memory address of c[i][j] is

c’ + i * 4 * 1000 + j * 4

The factor i is there because it is the (counting from zero) ith row; the factor 1000 is there
because there are 1,000 elements in a row; and the factor 4 is there (twice) because there
are 4 bytes in an integer word. Likewise, the addresses of a[i][j] and b[i][j] are

a’ + i * 4 * 1000 + j * 4

and

b’ + i * 4 * 1000 + j * 4

respectively. So, eliminating the common offsets, i * 4 * 1000 + j * 4 can save us a lot
of computation, particularly because the inner loop is executed a million times!

But in Java, matrices are not laid out this way. Rather, in the expression

a[i][j]

the sub-expression a[i] yields an integer array object, call it ai, from which we can index
the jth element,

ai[j]

So, we cannot expect the same savings. On the other hand, the expression a[i] never
changes in the inner loop; only the j is being incremented. We say that, within the inner

4In FORTRAN, matrices are stored as a sequence of columns, which is in column major form.

Translating JVM Code to MIPS Code 225

loop, the expression a[i] is invariant; that is, it is a loop invariant expression. We deal with
these in the next section.

And as we shall see below, there is still much to be gained from common sub-expression
elimination when it comes to dealing with Java arrays.

Lifting Loop Invariant Code

Loop invariant expressions can be lifted out of the loop and computed in the predecessor
block to the loop header.

For example, consider the j-- code for summing the two matrices from the previous
section5.

int i = 0;

while (i <= 999) {

int j = 0;

while (j <= 999) {

c[i][j] = a[i][j] + b[i][j];

j = j + 1;;

}

i = i + 1;

}

This can be rewritten as

int i = 0;

while (i <= 999) {

int[] ai = a[i];

int[] bi = b[i];

int[] ci = c[i];

int j = 0;

while (j <= 999)

{

ci[j] = ai[j] + bi[j];

j = j + 1;;

}

i = i + 1;

}

Thus, a[i], b[i], and c[i] need be evaluated just 1,000 times instead of 1,000,000 times.
This optimization is more difficult than the others. Basically, the expression a[i] is

invariant if either

1. i is constant, or

2. All the definitions of i that reach the expression are outside the loop, or

3. Only one definition of i reaches the expression, and the definition is loop invariant.

But that the HIR conforms to SSA makes it possible. Any code that is lifted must be lifted
to an additional block, which is inserted before the loop header.

Invariant expressions can be distinguished from expressions defined within the loop by
the fact that they are registered in the hash tables for dominators of the loop header.
Both a loop header and its immediate dominator are stored in the blocks. To find previous
dominators, one just links back through the block list via the immediate dominator links.
Computations involving invariant operands may be moved to the end of a loop header’s
immediate dominator block.

5The for-loop is not part of the j-- language so we use the equivalent while-loop notation. If you have
implemented for-loops in your compiler by rewriting them as while-loops, then you should produce similar
HIR.

226 An Introduction to Compiler Construction in a Java World

Array Bounds Check Elimination

When indexing an array, we must check that the index is within bounds. For example, in
our example of matrix multiplication, in the assignment

c[i][j] = a[i][j] + b[i][j];

The i and j must be tested to make sure each is greater than or equal than zero, and less
than 1,000. And this must be done for each of c, a, and b. But if we know that a, b, and c

are all of like dimensions, then once the check is done for a, it need not be repeated for b

and c. Given that the inner loop in our earlier matrix multiplication example is executed
one million times, we have saved two million checks!

Again, a clever compiler can analyze the context in which the statement

c[i][j] = a[i][j] + b[i][j];

is executed (for example, within a nested for-loop) and show that the indices are never out
of bounds. When the arrays for a, b and c are created in a loop header’s dominator, this is
straightforward; other more complicated control graphs may warrant more extensive data-
flow analysis (below). Moreover, an array index operation such as a[i] can be registered
in the hash table, ensuring that subsequent occurrences, in the same basic block or in
subsequent blocks where the operation is not involved in a Phi function, need not be re-
checked.

Null Check Elimination

Every time we send a message to an object, or access a field of an object, we must insure
that the object is not the special null object. For example, in

...a.f...

we will want to make sure that a is non-null before computing the offset to the field f. But
we may know that a is non-null; for example, we may have already checked it as in the
following.

...a.f...

...a.g...

...a.h...

Once we have done the null-check for

...a.f...

there is no reason to do it again for either a.g or a.h.
Again, the ids of checked operands can be stored in the hash tables attached to blocks.

If they are found subsequently, they need not be checked again.

A Need for Data-Flow Analysis

The HIR does not expose every opportunity for optimization, particularly those involving
back branches (in loops); for this to happen we would need full data-flow analysis where
we compute where in the code computed values remain valid. We use data-flow analysis in
Section 7.4.1 to compute such liveness intervals for virtual registers (variables) in the LIR as
a prerequisite to register allocation; look there for a detailed data-flow analysis algorithm.

On the other hand, the HIR does expose many opportunities for optimization, partic-
ularly for the effort involved. The amount of code improvement achieved in proportion to
the time spent is important in a just-in-time (or hot spot) compiler such as we use for
processing JVM code.

Translating JVM Code to MIPS Code 227

A full discussion of compiler optimization is outside the scope of this text; see the Further
Readings section (Section 6.4) at the end of this chapter for detailed discussions of code
optimization techniques.

Summary

At a panel discussion on compiler optimization, Kathleen Knobe observed that, rather than
to put all of one’s efforts into just one or two optimizations, it is best to attempt all of
them, even if they cannot be done perfectly.

We have not implemented any of these optimizations, but leave them as exercises.
Of course, one of the best optimizations one can make is to replace references to local

variables with references to registers by allocating registers for holding local variable values.
We discuss register allocation in Chapter 7.

6.3.4 Low-Level Intermediate Representation (LIR)

The HIR lends itself to optimization but is not necessarily suitable for register allocation.
For this reason we translate it into a low-level intermediate representation (LIR) where

• Phi functions are removed from the code and replaced by explicit moves, and

• Instruction operands are expressed as explicit virtual registers.

For example, the LIR for Factorial.computeIter() is given below; notice that we retain
the control-flow graph from the HIR. Notice also that we have allocated virtual registers
to the computation. One may have an arbitrary number of virtual registers. In register
allocation, we shall map these virtual registers to actual physical registers on the MIPS
architecture. Because there might be many more virtual registers than physical registers,
the mapping may require that some physical registers be spilled to stack locations and
reloaded when the spilled values are needed again. Notice that each instruction is addressed
at a location that is a multiple of five; this leaves room for spills and loads (at intervening
locations).

computeIter (I)I

B0

B1

0: LDC [1] [V32|I]

5: MOVE $a0 [V33|I]

10: MOVE [V32|I] [V34|I]

B2

15: LDC [0] [V35|I]

20: BRANCH [LE] [V33|I] [V35|I] B4

B3

25: LDC [-1] [V36|I]

30: ADD [V33|I] [V36|I] [V37|I]

35: MUL [V34|I] [V33|I] [V38|I]

40: MOVE [V38|I] [V34|I]

45: MOVE [V37|I] [V33|I]

50: BRANCH B2

B4

55: MOVE [V34|I] $v0

60: RETURN $v0

228 An Introduction to Compiler Construction in a Java World

In this case, seven virtual registers V32–V38 are allocated to the LIR computation. Two
physical registers, $a0 for the argument n and $v0 for the return value, are referred to
by their symbolic names; that we use these physical registers indicates that SPIM expects
values to be stored in them. Notice that LIR instructions are read from left to right. For
example, the load constant instruction

0: LDC [1] [V32|I]

in block B1, loads the constant integer 1 into the integer virtual register V32; the |I notation
types the virtual register as an integer. Notice that we start enumerating virtual registers
beginning at 32; the numbers 0 through 31 are reserved for enumerating physical registers.
The next instruction,

5: MOVE $a0 [V33|I]

copies the value from the integer physical register $a0 into the integer virtual register V33.
The add instruction in block B3,

30: ADD [V33|I] [V36|I] [V37|I]

adds the integer values from registers V33 and V36 and puts the sum in V37.
Notice that we enumerate the LIR instructions by multiples of five. This eases the

insertion of spill (and restore) instructions, which may be required for register allocation
(and are discussed in Chapter 7).

The process of translating HIR to LIR is relatively straightforward and is a two-step
process.

1. First, the NEmitter constructor invokes the NControlFlowGraph method hirToLir()

on the control-flow graph:

cfg.hirToLir ();

The method hitToLir() iterates through the array of HIR instructions for the control-
flow graph translating each to an LIR instruction, relying on a method toLir(), which
is defined for each HIR instruction.

2. NEmitter invokes the NControlFlowGraph method resolvePhiFunctions() on the
control-flow graph:

cfg.resolvePhiFunctions ();

This method resolves Phi function instructions, replacing them by move instructions
near the end of the predecessor blocks. For example, the Phi function from Figure
6.10 and now repeated in Figure 6.12(a) resolves to the moves in Figure 6.12(b). One
must make sure to place any move instructions before any branches in the predecessor
blocks.

Translating JVM Code to MIPS Code 229

FIGURE 6.12 Resolving Phi functions.

6.3.5 Simple Run-Time Environment

Introduction

An actual run-time environment supporting code produced for Java would require:

1. A naming convention.

2. A run-time stack.

3. A representation for arrays and objects.

4. A heap, that is, an area of memory from which arrays and objects may be dynamically
allocated. The heap should offer some sort of garbage collection, making objects that
are no longer in use available for (re-)allocation.

5. A run-time library of code that supports the Java API.

To do all of this here would be beyond the scope of this text. Given that our goal is to have a
taste of native code generation, including register allocation, we do much less. We implement
just enough of the run-time environment for supporting our running the Factorial example
(and a few more examples, which are included in our code tree).

Naming Convention

We use a simple naming mechanism that takes account of just classes and their members.
Methods are represented in SPIM by routines with assembly language names of the form
<class>.<name>, where <name> names a method in a class <class>. For example, the
computeIter() method in class Factorial would have the entry point

Factorial.computeIter:

Static fields are similarly named; for example, a static integer field staticIntField in class
Factorial would translate to SPIM assembly language as

Factorial.staticIntField: .word 0

String literals in the data segment have labels that suggest what they label, for example,
Constant..String1:.

230 An Introduction to Compiler Construction in a Java World

Run-Time Stack

Our run-time stack conforms to the run-time convention described for SPIM in [Larus,
2009] and our Section 6.2.4. Each time a method is invoked, a new stack frame of the type
illustrated in Figure 6.5 is pushed onto the stack. Upon return from the method, the same
frame is popped off the stack.

When the caller wants to invoke a callee, it does the following:

1. Argument passing. The first four arguments are passed in registers $a0 to $a3. Any
additional arguments are pushed onto the stack and thus will appear at the beginning
of the callee’s stack frame.

2. Caller-saved registers. Registers $a0 to $a3 and $t0 to $t9 can be used by the callee
without its having to save their values, so it is up to the caller to save any registers
whose values it expects to use after the call, within its own stack frame before executing
the call.

3. Executing the call. After arguments have passed and caller registers have been saved,
we execute the jal instruction, which jumps to the callee’s first instruction and saves
the return address in register $ra.

Once a routine (the callee) has been invoked, it must first do the following:

1. Push stack frame. Allocate memory for its new stack frame by subtracting the frame’s
size from the stack pointer $sp. (Recall, the stack grows downward in memory.)

2. Callee-saved registers. The callee must save any of $s0 to $s7, $fp, and $ra before
altering any of them because the caller expects their values will be preserved. We
must always save $fp. $ra must be saved only if the callee invokes another routine.

3. The frame pointer. The new $fp = $sp + stack frame size − 4.

The stack frame for an invoked (callee) routine is illustrated in Figure 6.13.
Once it has done its work, the callee returns control to the caller by doing the following:

1. Return value. If the callee returns a value, it must put that value in register $0.

2. Callee-saved registers. All callee-saved registers that were saved at the start of the
routine are restored.

3. Stack frame. The stack frame is popped from the stack, restoring register $fp from its
saved location in the frame, and adding the frame size to register $sp.

4. Return. Execute the return instruction, which causes a jump to the address in register
$ra.

A Layout for Objects

Although we mean only to support static methods, objects do leak into our implementation.
For example, method main() takes as its sole argument an array of strings.

Although, we do not really support objects, doing so need not be difficult. [Corliss and
Lewis, 2007]) propose layouts, which we use here. For example, an arbitrary object might
be organized as in Figure 6.14.

Translating JVM Code to MIPS Code 231

FIGURE 6.13 A stack frame.

FIGURE 6.14 Layout for an object.

The type tag identifies the type (that is, the class) of the object. The size in bytes is the
number of bytes that must be allocated to represent the object; this number is rounded up
to a multiple of 4 so that objects begin on word boundaries. The dispatch table pointer is
the address of a dispatch table, which contains the address of each method for the object’s
class.

The dispatch table may be allocated in the data segment and keeps track of both in-
herited and defined methods. When code is generated for the class, entries in the table are
first copied from the superclass. Then entries for newly defined method are added; over-
riding method entries replace the overridden entries in the table and other method entries
are simply added at the end. Entries are added in the order they are declared in the class
declaration. In this way, the dispatch table for a class keeps track of the proper (inherited,
overriding, or newly defined) methods that are applicable to each class. A dispatch table
for class <class> may be labeled (and addressed) in the data segment using the name

232 An Introduction to Compiler Construction in a Java World

<class >.. Dispatch:

The double period distinguishes this name from a method named Dispatch().
The order of fields in an object is also important because a class inherits fields from a

superclass. In constructing the format of an object, first any inherited fields are allocated.
Then any newly defined fields are allocated. Java semantics require that space is allocated to
all newly defined fields, even those with the same names as inherited fields; the “overridden”
fields can are always available through casting an object to its superclass.

For each class, we also maintain a class template in the data segment, which among
other things may include a typical copy of an object of that class that can be copied to the
heap during allocation. We name this

<class >.. Template:

For example, consider the following j-- code, which defines two classes: Foo and Bar.

public class Foo {

int field1 = 1;

int field2 = 2;

int f() {

return field1 + field2;

}

int foo() {

return field1;

}

}

class Bar extends Foo {

int field3 = 3;

int field1 = 4;

int f() {

return field1 + field2 + field3;

}

int bar() {

return field1;

}

}

Consider an object of class Foo, illustrated in Figure 6.15.

Translating JVM Code to MIPS Code 233

FIGURE 6.15 Layout and dispatch table for Foo.

Assuming the type tag for Foo is 46,

Foo..Tag: .word 4

The SPIM code for a template for Foo might look like

Foo.. Template:

.word Foo..Tag

.word 20

.word Foo.. Dispatch

.word 0

.word 0

The fields have initial values of zero. It is the responsibility of the <init> routine for Foo

to initialize them to 1 and 2, respectively.
The construction of the dispatch table for Foo follows these steps:

1. First the methods for Foo’s superclass (Object) are copied into the table. (Here we as-
sume we have given Object just the three methods clone(), equals() and toString

()).

2. Then we add the methods defined in Foo to the dispatch table: f() and foo().

The SPIM code for this dispatch table might look something like the following:

Foo.. Dispatch:

.word 5 # the number of entries in our table

.word Object.clone

.word Object.equals

.word Object.toString

.word Foo.f

.word Foo.foo

6This assumes that, 1 represents a string, 2 represents an array, and 3 represents an Object.

234 An Introduction to Compiler Construction in a Java World

The layout and dispatch table for class Bar, which extends class Foo, is illustrated in Figure
6.16.

FIGURE 6.16 Layout and dispatch table for Bar.

Assuming the type tag for Bar is 5,

Bar..Tag: .word 5

The SPIM code for a template for Bar might look like

Bar.. Template:

.word Bar..Tag

.word 28

.word Bar.. Dispatch

.word 0

.word 0

.word 0

.word 0

Again, the fields have initial values of zero. It is the responsibility of the <init> routine for
Foo and Bar to initialize them to 1,2, 3, and 4, respectively.

The construction of the dispatch table for Bar follows these steps:

1. First the methods for Bar’s superclass (Foo) are copied into the table.

2. Then we add the methods defined in Bar to the dispatch table. The method Bar.f()

overrides, and so replaces Foo.f() in the table; the new Bar.bar() is simply added
to the table.

The SPIM code for this dispatch table might look something like the following:

Translating JVM Code to MIPS Code 235

Bar.. Dispatch:

.word 6 # the number of entries in our table

.word Object.clone

.word Object.equals

.word Object.toString

.word Bar.f

.word Foo.foo

.word Bar.bar

Arrays are a special kind of object; they are dynamically allocated on the heap but lie
outside the Object hierarchy. A possible layout for an array is illustrated in Figure 6.17.

FIGURE 6.17 Layout for an array.

Arrays have a type tag of 1. The size in bytes is the size of the array object in bytes,
that is, 12 + n ∗ bytes, where n is the number of elements in the array and bytes is the
number of bytes in each element. The array length is the number of elements in the array;
any implementation of the JVM arraylength instruction must compute this value. The
array elements follow. The size of the array object should be rounded up to a multiple of
4 to make sure the next object is word aligned. Notice that an array indexing expression
a[i] would translate to the heap address a + 12 + i ∗ bytes, where a is the address of the
array object on the heap and bytes is the number of bytes in a single element.

Strings are also special objects; while they are part of the Object hierarchy, they are
final and so they may not be sub-classed. This means we can do without a dispatch table
pointer in string objects; we can maintain one dispatch table for all string operations:

String .. Dispatch:

.word m # m is the number of entries in the table

.word String.clone

.word String.equals

.word String.toString

... addresses of methods for Strings ...

Which String methods we implement is arbitrary and is left as an exercise.
A possible layout for a string is illustrated in Figure 6.18.

FIGURE 6.18 Layout for a string.

The type tag for a string is 2. Its size in bytes is the number of bytes that must be
allocated to represent the string object; it is 12 + size + 1 rounded up to a multiple of 4,
where size is the number of characters in the string. String size is the number of characters
in the string. The sequence of characters is terminated with an extra null character, with
Unicode representation 0; the null character is necessary so that our strings are compatible
with SPIM strings.

236 An Introduction to Compiler Construction in a Java World

Constant strings may be allocated in the data segment, which is to say, we may generate
constant strings in the data segment; strings in the data segment will then look exactly like
those on the heap (the dynamic segment). For example, the constant "Hello World!" might
be represented at the label Constant..String1:.

Constant .. String1:

.word 2 # tag 2 indicates a string.

.word 28 # size of object in bytes.

.word 12 # string length (not including null terminator).

.asciiz "Hello World!" # string terminated by null character 0.

.align 2 # next object is on a word boundary.

The reader will have noticed that all objects on the heap share three words (12 bytes)
of information at the start of each object. This complicates the addressing of components
in the object. For example, the first element of an array a is at address a + 12; the first
character of a string s is at s+12; and the first field of an object o is at address o+12. That
12 must be added to an object’s address each time we want an array’s element, a string’s
character or an object’s field can be expensive. We can do away with this expense by having
our pointer, which we use to reference the object, always point into the object 12 bytes as
illustrated in Figure 6.19.

FIGURE 6.19 An alternative addressing scheme for objects on the heap.

Dynamic Allocation

The logic for allocating free space on the heap is pretty simple in our (oversimplified) model.

obj = heapPointer;

heapPointer += <object size >;

if (heapPointer >= stackPointer) goto freakOut;

<copy object template to obj >;

When allocating a new object, we simply increment a free pointer by the appropriate size
and if we have run out of space (that is, when the heap pointer meets the stack pointer),
we freak out. A more robust heap management system might perform garbage collection.

Once we have allocated the space for the object, we copy its template onto the heap
at the object’s location. Proper initialization is left to the SPIM routines that model the
constructors.

SPIM Class for IO

SPIM provides a set of built-in system calls for performing simple IO tasks. Our run-time
environment includes a class SPIM, which is a wrapper that gives us access to these calls as
a set of static methods. The wrapper is defined as follows:

package spim;

/**

* This is a Java wrapper class for the SPIM run -time object SPIM.s.

* Any j-- program that ’s compiled for the SPIM target must import

* this class for (file and console) IO operations. Note that the

* functions have no implementations here which means that if the

Translating JVM Code to MIPS Code 237

* programs using this class are compiled using j--, they will

* compile fine but won ’t function as desired when run against

* the JVM. Such programs must be compiled using the j-- compiler

* for the SPIM target and must be run against the SPIM simulator.

*/

public class SPIM {

/** Wrapper for SPIM.printInt (). */

public static void printInt(int value) { }

/** Wrapper for SPIM.printFloat (). */

public static void printFloat(float value) { }

/** Wrapper for SPIM.printDouble (). */

public static void printDouble(double value) { }

/** Wrapper for SPIM.printString (). */

public static void printString(String value) { }

/** Wrapper for SPIM.printChar (). */

public static void printChar(char value) { }

/** Wrapper for SPIM.readInt (). */

public static int readInt () { return 0; }

/** Wrapper for SPIM.readFloat (). */

public static float readFloat () { return 0; }

/** Wrapper for SPIM.readDouble (). */

public static double readDouble () { return 0; }

/** Wrapper for SPIM.readString (). */

public static String readString(int length) { return null; }

/** Wrapper for SPIM.readChar (). */

public static char readChar () { return ’ ’; }

/** Wrapper for SPIM.open (). */

public static int open(String filename , int flags , int mode)

{ return 0; }

/** Wrapper for SPIM.read (). */

public static String read(int fd, int length) { return null; }

/** Wrapper for SPIM.write (). */

public static int write(int fd , String buffer , int length)

{ return 0; }

/** Wrapper for SPIM.close (). */

public static void close(int fd) { }

238 An Introduction to Compiler Construction in a Java World

/** Wrapper for SPIM.exit (). */

public static void exit() { }

/** Wrapper for SPIM.exit2 (). */

public static void exit2(int status) { }

}

Because the SPIM class is defined in the package spim, that package name is part of the
label for the entry point to each SPIM method, for example,

spim.SPIM.printInt:

6.3.6 Generating SPIM Code

After LIR with virtual registers has been generated, we invoke register allocation for map-
ping the virtual registers to physical registers. In this chapter we use a näıve register alloca-
tion scheme where physical registers are arbitrarily assigned to virtual registers (see Section
7.2). Register allocation is discussed in greater detail in Chapter 7.

Once virtual registers have been mapped to physical registers, translating LIR to SPIM
code is pretty straightforward.

1. We iterate through the list of methods for each class; for each method, we do the
following:

(a) We generate a label for the method’s entry point, for example,

Factorial.computeIter:

(b) We generate code to push a new frame onto the run-time stack (remember this
stack grows downward in memory) and then code to save all our registers. In this
compiler, we treat all of SPIM’s general-purpose registers $t0 to $t9 and $s0 to
$s7 as callee-saved registers; that is, we make it the responsibility of the invoked
method to save any registers it uses. As we shall see in Chapter 7, some register
allocation schemes do otherwise; that is, the caller saves just those registers that
contain meaningful values when call is encountered.

For computeIter(), the LIR uses seven general purpose registers, so we generate
the following:

subu $sp ,$sp ,36 # Stack frame is 36 bytes long

sw $ra ,32($sp) # Save return address

sw $fp ,28($sp) # Save frame pointer

sw $t0 ,24($sp) # Save register $t0

sw $t1 ,20($sp) # Save register $t1

sw $t2 ,16($sp) # Save register $t2

sw $t3 ,12($sp) # Save register $t3

sw $t4 ,8($sp) # Save register $t4

sw $t5 ,4($sp) # Save register $t5

sw $t6 ,0($sp) # Save register $t6

addiu $fp ,$sp ,32 # Save frame pointer

(c) Because all branches in the code are expressed as branches to basic blocks, a
unique label for each basic block is generated into the code; for example,

Factorial.computeIter .2:

Translating JVM Code to MIPS Code 239

(d) We then iterate through the LIR instructions for the block, invoking a method
toSpim(), which is defined for each LIR instruction; there is a one-to-one transla-
tion from each LIR instruction to its SPIM equivalent. For example, the (labeled)
code for block B2 is

Factorial.computeIter .2:

li $t3 ,0

ble $t1 ,$t3 ,Factorial.computeIter .4

j Factorial.computeIter .3

(e) Any string literals that are encountered in the instructions are put into a list,
together with appropriate labels. These will be emitted into a data segment at
the end of the method (see step 2 below).

(f) At the end of the method, we generate code to restore those registers that had
been saved at the start. This code also does a jump to that instruction following
the call in the calling code, which had been stored in the $ra register (ra is a
mnemonic for return address) at the call. This code is labeled so that, once a
return value has been placed in $v0, execution may branch to it to affect the
return. For example, the register-restoring code for computeIter() is

Factorial.computeIter.restore:

lw $ra ,32($sp) # Restore return address

lw $fp ,28($sp) # Restore frame pointer

lw $t0 ,24($sp) # Restore register $t0

lw $t1 ,20($sp) # Restore register $t1

lw $t2 ,16($sp) # Restore register $t2

lw $t3 ,12($sp) # Restore register $t3

lw $t4 ,8($sp) # Restore register $t4

lw $t5 ,4($sp) # Restore register $t5

lw $t6 ,0($sp) # Restore register $t6

addiu $sp ,$sp ,36 # Pop stack

jr $ra # Return to caller

2. After we have generated the text portion (the program instructions) for the method
(notice the .text directive at the start of code for each method), we then populate
a data area, beginning with the .data directive, from the list of string literals con-
structed in step 1(e). Any other literals that you may wish to implement would be
handled in the same way. Notice that computerIter() has no string literals; its data
segment is empty.

3. Once all of the program code has been generated, we then copy out the SPIM code
for implementing the SPIM class. This is where any further system code, which you
may wish to implement, should go.

For example, the code for Factorial.computeIter() is as follows:

.text

Factorial.computeIter:

subu $sp ,$sp ,36 # Stack frame is 36 bytes long

sw $ra ,32($sp) # Save return address

sw $fp ,28($sp) # Save frame pointer

sw $t0 ,24($sp) # Save register $t0

sw $t1 ,20($sp) # Save register $t1

sw $t2 ,16($sp) # Save register $t2

sw $t3 ,12($sp) # Save register $t3

sw $t4 ,8($sp) # Save register $t4

sw $t5 ,4($sp) # Save register $t5

240 An Introduction to Compiler Construction in a Java World

sw $t6 ,0($sp) # Save register $t6

addiu $fp ,$sp ,32 # Save frame pointer

Factorial.computeIter .0:

Factorial.computeIter .1:

li $t0 ,1

move $t1 ,$a0

move $t2 ,$t0

Factorial.computeIter .2:

li $t3 ,0

ble $t1 ,$t3 ,Factorial.computeIter .4

j Factorial.computeIter .3

Factorial.computeIter .3:

li $t4 ,-1

add $t5 ,$t1 ,$t4

mul $t6 ,$t2 ,$t1

move $t2 ,$t6

move $t1 ,$t5

j Factorial.computeIter .2

Factorial.computeIter .4:

move $v0 ,$t2

j Factorial.computeIter.restore

Factorial.computeIter.restore:

lw $ra ,32($sp) # Restore return address

lw $fp ,28($sp) # Restore frame pointer

lw $t0 ,24($sp) # Restore register $t0

lw $t1 ,20($sp) # Restore register $t1

lw $t2 ,16($sp) # Restore register $t2

lw $t3 ,12($sp) # Restore register $t3

lw $t4 ,8($sp) # Restore register $t4

lw $t5 ,4($sp) # Restore register $t5

lw $t6 ,0($sp) # Restore register $t6

addiu $sp ,$sp ,36 # Pop stack

jr $ra # Return to caller

This code is emitted, together with the code for other Factorial methods and the SPIM

class to a file ending in .s; in this case, the file would be named Factorial.s. This file can
be loaded into any SPIM interpreter and executed.

You will notice, there are lots of moving values around among registers. In Chapter 7,
we address how that might be minimized.

6.3.7 Peephole Optimization of the SPIM Code

You might have noticed in the SPIM code generated in the previous section, that some
jumps were superfluous. For example, at the end of the SPIM code above, the jump at the
end of block B4 simply jumps to the very next instruction! There might also be jumps to
jumps. Such code can often be simplified. Jumps to the next instruction can be removed,
and jumps to jumps can be simplified, (sometimes) removing the intervening jump.

We call such simplification peephole optimization because we need to consider just a few
instructions at a time as we pass over the program; we need not do any global analysis.

To do peephole optimization on the SPIM code, it would be easier if we were to keep a
list (perhaps an array list) of SPIM labels and instructions that we emit, representing the
instructions in some easily analyzable way. Once the simplifications are done, we can spit
out the SPIM instructions to a file.

Translating JVM Code to MIPS Code 241

6.4 Further Readings

James Larus’ SPIM simulator [Larus, 2010] may be freely obtained on the WWW at http://
sourceforge.net/projects/spimsimulator/files/. QtSpim is the interpreter of choice
these days and is easily installed on Windows R©, Linux R©, and Mac OS X. Larus maintains
a resource page at http://pages.cs.wisc.edu/~larus/spim.html. Finally, an excellent
introduction to SPIM and the MIPS may be found at [Larus, 2009].

Our JVM-to-SPIM translator is based on that described in Christian Wimmer’s Master’s
thesis [Wimmer, 2004]; this is a good overview of the Oracle HotSpot compiler. Another
report on a register allocator for the HotSpot compiler is [Mössenböck, 2000].

Our proposed layout of objects is based on that of [Corliss and Lewis, 2007].
For comprehensive coverage of code optimization techniques, see [Morgan, 1998], [Much-

nick, 1997], [Allen and Kennedy, 2002], and [Cooper and Torczon, 2011].
[Wilson, 1994] is a good introduction to classical garbage collection techniques. [Jones

and Lins, 1996] also presents many memory management strategies.

6.5 Exercises

As we have stated in the narrative, we implement enough of the JVM-to-SPIM translator
to implement a small subset of the JVM. The following exercises ask one to expand on this.

Exercise 6.1. Implement all of the relational and equality JVM instructions in the HIR,
the LIR, and SPIM. (Notice that some of this has been done.) Test these.

Exercise 6.2. Assuming you have implemented / and % in your j-- compiler, implement
them in the HIR, LIR, and SPIM. Test these.

Exercise 6.3. Implement the bitwise JVM instructions in the HIR, LIR and SPIM. Test
these.

Exercise 6.4. In many places in the HIR, we refer to the instruction 0, which means 0
is an operand to some computation. In generating the LIR, that constant 0 is loaded into
some virtual register. But SPIM has the register $zero, which always contains the constant
0 and so may replace the virtual register in the LIR code. Modify the translation of HIR to
LIR to take advantage of this special case.

Exercise 6.5. The JVM instructions getstatic and putstatic are implemented in the
HIR and LIR but not in SPIM. Implement these instructions in SPIM and test them.

Exercise 6.6. Implement the Object type, supporting the methods clone(), equals(),
and toString().

Exercise 6.7. Implement the String type, which is a subclass of Object and implements
the methods charAt(), concat(), length(), and substring() with two arguments.

Exercise 6.8. In Section 6.3.5, we came up with a naming convention for the SPIM routines
for methods that does not deal with overloaded method names, that is, methods having the
same name but different signatures. Propose an extension to our convention that deals with
overloaded methods.

242 An Introduction to Compiler Construction in a Java World

Exercise 6.9. In Figure 6.19, we suggest an alternative addressing scheme where a pointer
to an object actually points 12 bytes into the object, making the addressing of components
(fields, array elements, or string characters) simpler. Implement this scheme, changing both
the run-time code and the code generated for addressing components.

Exercise 6.10. Implement the JVM instructions invokevirtual and invokespecial. Test
them.

Exercise 6.11. Implement the JVM invokeinterface instruction. See [Alpern et al., 2001]
for a discussion of this.

Exercise 6.12. Implement arrays in the HIR (iaload and iastore have been implemented
in the HIR), the LIR, and SPIM. Implement the arraylength instruction. Test these.

Exercise 6.13. Implement the instance field operations getfield and putfield in the
HIR, the LIR, and SPIM. Test these.

Exercise 6.14. Implement the remaining JVM load and store instructions and test them.

Exercise 6.15. In the current implementation, all general-purpose registers are treated as
callee-saved registers; they are saved by the method being invoked. Modify the compiler so
that it instead treats all general-purpose registers as caller-saved, generating code to save
registers before a call to another method, and restoring those same registers after the call.

The following exercises implement various optimizations, which are discussed in Section
6.3.3. The code already defines a method, optimize(), in the class NControlFlowGraph.
That is a good place to put calls to any methods that perform optimizations on the HIR.

Exercise 6.16. Implement inlining in the optimizations phase. Use an arbitrary instruction
count in deciding what methods to inline. Be careful in dealing with virtual methods.

Exercise 6.17. Implement constant folding in the optimizations phase.

Exercise 6.18. Implement common sub-expression elimination in the optimization phase.

Exercise 6.19. Implement the lifting of invariant code in the optimization phase.

Exercise 6.20. Design and implement a strategy for performing various forms of strength
reduction in the optimization phase.

Exercise 6.21. Implement redundant array bounds check elimination in the optimization
phase.

Exercise 6.22. Implement redundant null check elimination in the optimization phase.

Exercise 6.23. Implement a simple version of peephole optimizations, simplifying some of
the branches discussed in Section 6.3.7.

Exercise 6.24. (Involved7) Implement the JVM instructions lookupswitch and
lookuptable in the HIR, the LIR, and SPIM. Test these. Notice that these flow-of-control
instructions introduce multiple predecessors and multiple successors to basic blocks in the
flow graph.

Exercise 6.25. (Involved) Introduce the long types of constants, variables and operations
into the HIR, the LIR, and SPIM. This assumes you have already added them to j--. Notice
that this will complicate all portions of your JVM to SPIM translation, including register
allocation, because longs require two registers and complicate their operations in SPIM.

7Meaning not necessarily difficult but involving some work.

Translating JVM Code to MIPS Code 243

Exercise 6.26. (Involved) Introduce the float and double types of constants, variables
and operations into the HIR, the LIR and SPIM. This assumes you have already added
them to j--. Notice that this will complicate all portions of your JVM-to-SPIM translation
and will require using the special floating-point processor and registers, which are fully
documented in [Larus, 2009].

Exercise 6.27. (Involved) Implement exception handling in the HIR, the LIR, and SPIM.
This assumes you have already added exception handling to j--. Notice that this will com-
plicate all portions of your JVM-to-SPIM translation and will require using the special
exception handling instructions, which are fully documented in [Larus, 2009].

Exercise 6.28. (Involved) Read up on and implement a (relatively) simple copy form of
garbage collection. See the section on Further Readings for starting points to learning about
garbage collection.

Chapter 7

Register Allocation

7.1 Introduction

Register allocation is the process of assigning as many local variables and temporaries to
physical registers as possible. The more values that we can keep in registers instead of in
memory, the faster our programs will run. This makes register allocation the most effective
optimization technique that we have.

With respect to our LIR discussed in Chapter 6, we wish to assign physical registers
to each of the virtual registers that serve as operands to instructions. The problem is that
there are often many fewer physical registers than there are virtual registers. Sometimes,
as program execution progresses, some values in physical registers will have to be spilled
to memory while the register is used for another purpose, and then reloaded when those
values are needed again. Code must be generated for storing spilled values and then for
reloading those values at appropriate places. Of course, we wish to minimize this spilling
(and reloading) of values to and from memory.

So, any register allocation strategy must determine how to most effectively allocate
physical registers to virtual registers and, when spilling is necessary, which physical registers
to spill to make room for assignment to other virtual registers. This problem has been shown
to be NP-complete in general [Sethi, 1973] but there are several allocation strategies that
do a reasonable job in near-linear time.

Register allocation that focuses on just a single basic block, or even just a single state-
ment, is said to be local. Register allocation that considers the entire flow graph of a method
is said to be global.

In this chapter we look briefly at some local register allocation strategies but we fo-
cus most of our attention on two global register allocation strategies: linear scan register
allocation and graph coloring register allocation.

7.2 Näıve Register Allocation

A näıve register allocation strategy simply sequences through the operations in the (LIR)
code, assigning global registers to virtual registers. Once all physical registers have been
assigned, and if there are additional virtual registers to deal with, we begin spilling physical
registers to memory. There is no strategy for determining which registers to spill; for ex-
ample, one might simply sequence through the physical registers a second time in the same
order they were assigned the first time, spilling each to memory as it is re-needed. When
a spilled value is used again, it must be reloaded into a (possibly different) register. Such
a regimen works just fine when there are as many physical registers as there are virtual

245

246 An Introduction to Compiler Construction in a Java World

registers; in fact, it is as effective as any other register allocation scheme in this case. Of
course, when there are many more virtual registers than physical registers, its performance
degrades rapidly as physical register values must be repeatedly spilled and reloaded.

7.3 Local Register Allocation

Local register allocation can involve allocating registers for a single statement or a single
basic block.

In [Aho et al., 2007], the authors provide an algorithm that allocates the minimal number
of registers required for processing the computation represented by an abstract syntax tree
(AST); the algorithm does a post-order traversal of the AST, determining the minimum
number of registers required, and assigns registers, re-using registers as appropriate, to the
computation1 .

Another strategy is to compute, for each virtual register, a live interval (see Section
7.4.1) local to a block. Registers are allocated in the order of the intervals’ start positions.
When a register must be spilled, we avoid spilling those registers whose values last the
longest in the block.

Yet another strategy mixes local and limited global information. It computes and applies
local liveness intervals to the allocation of registers, but in those blocks within the deepest
nested loops first, the payoff comes from the fact that instructions more deeply nested within
loops are executed much more often.

A more effective register allocation regime considers the entire control-flow graph for a
method’s computation, that is, global register allocation.

7.4 Global Register Allocation

7.4.1 Computing Liveness Intervals

Liveness Intervals

Global register allocation works with a method’s entire control-flow graph to map virtual
registers to physical registers. One wants to minimize spills to memory; where spills are
necessary, one wants to avoid using them within deeply nested loops. The basic tool in
global register allocation is the liveness interval, the sequence of instructions for which a
virtual register holds a meaningful value.

Liveness intervals are required by both of the global register algorithms that we consider:
linear scan register allocation and register allocation by graph coloring.

In its roughest form, a liveness interval for a virtual register extends from the first
instruction that assigns it a value to the last instruction that uses its value. A more accurate
liveness interval has “holes” in this sequence, where a virtual register does not contain a
useful value; for example, a hole occurs from where the previously assigned value was last
used (or read) to the next assignment (or write) of a new value.

1The algorithm is similar to that used by CLEmitter for computing the minimum number of locations
to allocate to a JVM stack frame for computing expressions in the method.

Register Allocation 247

For example, consider the control-flow graph for Factorial’s computeIter() in Figure
7.1. Here, it is composed of the LIR instructions that we computed in Chapter 6.

FIGURE 7.1 Control-flow =graph for Factorial.computeIter().

The liveness intervals for this code are illustrated in Figure 7.2. We shall go through the
steps in constructing these intervals in the next sections. The numbers on the horizontal axis
represent instruction ids; recall, instruction ids are assigned at increments of 5 to facilitate
the insertion of spill code. The vertical axis is labeled with register ids.

FIGURE 7.2 Liveness intervals for Factorial.computeIter().

248 An Introduction to Compiler Construction in a Java World

There are two physical registers here: $v0 and $a02; $a0 is the first argument to
computerIter() and the return value is in $v0. There are seven virtual registers: V32
to V38. Recall that, we begin numbering the virtual registers at 32 because 0 to 31 are
reserved for the 32 general-purpose (physical) registers.

An interval for a virtual register extends from where it is defined (it could be defined as
an argument; for example, $a0) to the last time it is used. For example, V37 is defined at
instruction position 30 and is last used at instruction position 45.

Some intervals have holes. A hole might extend from the instruction following the last
instruction using the register up until the next time it is defined. For example, consider
virtual register V33. It is defined at position 5 and used at positions 20, 30 and 35. But it
is not used again until after it is redefined at position 45 (notice the loop again). There is
a hole at position 40.

Loops can complicate determining an interval. For example, V34 is first defined at po-
sition 10, used at 35, and then redefined at 40. But there is a branch (at position 50) back
to basic block B2. At some point in the iteration, the conditional branch at position 20
will bring us to block B4, and V34 will be used a last time at position 55. So we say that
the interval for V34 extends from position 10 to position 55 inclusively; its value is always
meaningful over that interval.

Finally, the darker vertical segments in the intervals identify use positions: a use position
is a position in the interval where either the register is defined (that is, written) or the
register is being used (that is, read). For example, $v0 in Figure 7.2 is defined at position 55
and used at position 60, so there are two segments. But $a0 is never defined in the interval
(actually, we assume it was defined in the calling code) but is used at position 5. From the
same figure we can see that V34 is either defined or used at positions 10, 35, 40, and 55.

The compiler prints out these intervals using the following format:

v0: [55, 60]

a0: [0, 5]

V32: [0, 10]

V33: [5, 35] [45, 50]

V34: [10, 55]

V35: [15, 20]

V36: [25, 30]

V37: [30, 45]

V38: [35, 40]

Here, just the intervals (and not the use positions) are displayed for each register. The
notation

[<from> <to>]

indicates that the register holds a meaningful value from position <from> to position <to>.
For example, the line

V37: [30, 45]

says the liveness interval for register V37 ranges from position 30 to position 45. Notice that
register V33,

V33: [5, 35] [45, 50]

has an interval with two ranges: from position 5 to position 35, and from position 45 to
position 50; there is a hole in between.

2The compiler’s output leaves out the ‘$’ prefix here but we use it to distinguish physical registers.

Register Allocation 249

Computing Local Liveness Sets

As a first step in building the liveness intervals for LIR operands, we compute, for each
block, two local liveness sets: liveUse and liveDef. The liveUse operands are those operands
that are read (or used) before they are written (defined) in the block’s instruction sequence;
presumably they were defined in a predecessor block (or are arguments to the method). The
liveDef operands are those operands that are written to (defined) by some instruction in
the block.

Algorithm 7.1 computes liveUse and liveDef for each basic block in a method.

Algorithm 7.1 Computing Local Liveness Information

Input: The control-flow graph g for a method
Output: Two sets for each basic block: liveUse, registers used before they are overwritten

(defined) in the block and liveDef, registers that are defined in the block
for block b in g.blocks do

Set b.liveUse ← {}
Set b.liveDef ← {}
for instruction i in b.instructions do

for virtual register v in i.readOperands do
if v /∈ b.liveDef then
b.liveUse.add(v)

end if
end for
for virtual register v in i.writeOperands do
b.liveDef.add(v)

end for
end for

end for

For example, the control-flow graph for Factorial’s computeIter() but with its local
liveness sets computed is illustrated in Figure 7.3.

In the computation of the local liveness sets, we can sequence through the blocks in
any order because all computations are local to each block. Our computation proceeds as
follows:

B0 There are no registers in block B0 to be used or defined.

B1 In block B1, there are four registers. V32 is defined in instruction 0. At instruction 5,
$a0 is used in the block before it is defined and V33 is defined. At instruction 10, V34
is defined (V32 is used but it is already defined in this block).

B2 In block B2, V35 is defined in instruction 15. V33 is used in instruction 20 without
previously being defined in the block.

B3 In block B3, V36 is defined in instruction 25. In instruction 30, V33 is used (before
defined) and V37 is defined. In instruction 35, V34 is used (before defined) and V38
is defined. V34 is defined in instruction 40 and V33 is defined in instruction 45. No
register is used or defined in the branch at 50.

B4 In block B4, V34 is used and $v0 is defined in instruction 55. $v0 is used in instruction
60 but not before it is defined in the block.

250 An Introduction to Compiler Construction in a Java World

FIGURE 7.3 Control-flow graph for Factorial.computeIter() with local liveness sets
computed.

Our next step is to use this local liveness information to compute global liveness infor-
mation; for each basic block, we want to know which registers are live, both coming into
the block and going out of the block.

Computing Global Liveness Sets

We can compute the set of operands that are live at the beginning and end of a block using
a backward data-flow analysis [Aho et al., 2007]. We call the set of operands that are live
at the start of a block liveIn. We call the set of operands that are live at the end of a block
liveOut.

Algorithm 7.2 computes this global liveness data for us. Notice we iterate through the
blocks, and also the instruction sequence within each block, in a backwards direction.

Register Allocation 251

Algorithm 7.2 Computing Global Liveness Information

Input: The control-flow graph g for a method, and the local liveness sets liveUse and
liveDef for every basic block

Output: Two sets for each basic block: liveIn, registers live at the beginning of the block,
and liveOut, registers that are live at the end of the block
repeat

for block b in g.blocks in reverse order do
b.liveOut ← {}
for block s in b.successors do
b.liveOut ← b.liveOut ∪ s.liveIn

end for
b.liveIn ← (b.liveOut − b.liveDef) ∪ b.liveUse

end for
until no liveOut has changed

We represent the live sets as BitSets from the Java API, indexed by the register number
of the operands. Recall that registers numbered 0 to 31 are physical registers and registers
32 and higher are virtual registers. By the time we compute liveness intervals, we know how
many virtual registers we will need for a method’s computation. Later, splitting of intervals
may create additional virtual registers but we do not need liveness sets for those.

We cannot compute the live sets for a loop in a single pass; the first time we process a
loop end block, we have not yet processed the corresponding loop header block; the loop
header’s block’s liveIn set (and so its predecessor blocks’ liveOut sets) is computed correctly
only in the second pass. This means our algorithm must make d+ 1 passes over the blocks,
where d is the depth of the deepest loop.

Continuing with our example for Factorial’s computeIter(), we start with the local
liveness sets in Figure 7.3. Our computation requires three iterations:

1. After the first iteration, the sets liveIn and liveOut for each block are

B4 liveIn: V34

B4 liveOut:

B3 liveIn: V33 V34

B3 liveOut:

B2 liveIn: V33 V34

B2 liveOut: V33 V34

B1 liveIn: $a0

B1 liveOut: V33 V34

B0 liveIn: $a0

B0 liveOut: $a0

Recall that at each iteration we process the blocks in reverse order; at the start,
liveOut for each block is empty.

(a) B4 has no successors so liveOut remains empty. Because V34 is used in B4 (in
B4’s liveUse), it is added into B4’s liveIn.

(b) B3’s only successor B2 has not been processed yet so B3’s liveOut is empty at
this iteration (the next iteration will add registers). Because B3’s liveUse contains
V33 and V34 (as they are used before defined in the block), V33 and V34 are
added to B3’s liveIn.

(c) B2 has successors B3 and B4. Because V33 and V34 are in B3’s liveIn, they are
added to B2’s liveOut; V34 is also in B4’s liveIn but it is already in B2’s liveOut.
Because neither V33 nor V34 are redefined in B2, they are also added to B2’s
liveIn.

252 An Introduction to Compiler Construction in a Java World

(d) B1 has the single successor B2 and it gets its liveOut (V33 and V34) from B2’s
liveIn. V33 and V34 are not added to B1’s liveIn, even though they are in its
liveOut, because they are in its liveDef (defined in B1). Because $a0 is in B1’s
liveUse, it is added to its liveIn.

(e) B0 has the single successor B1 and gets its liveOut ($a0) from B1’s liveIn. Because
$a0 is not redefined in B0 (nothing is defined in B0), it is also in B0’s liveIn.

Of course, there have been changes to at least one of the sets and we need another
iteration.

2. In the second iteration, we again go through the blocks in reverse order to get the
following sets:

B4 liveIn: V34

B4 liveOut:

B3 liveIn: V33 V34

B3 liveOut: V33 V34

B2 liveIn: V33 V34

B2 liveOut: V33 V34

B1 liveIn: $a0

B1 liveOut: V33 V34

B0 liveIn: $a0

B0 liveOut: $a0

(a) Nothing has changed for B4.

(b) But B3’s liveOut changes because one of its successor’s liveIn changed in the first
iteration; V33 and V34 are added to B3’s liveOut.

(c) Nothing has changed for B2.

(d) Nothing has changed for B1.

(e) Nothing has changed for B2.

Because there was a change to liveOut in processing B3, we must iterate yet again.

3. But no changes are made to any of the sets in the third iteration, so we can stop. The
final global liveness sets are those computed in the second iteration:

B4 liveIn: V34

B4 liveOut:

B3 liveIn: V33 V34

B3 liveOut: V33 V34

B2 liveIn: V33 V34

B2 liveOut: V33 V34

B1 liveIn: $a0

B1 liveOut: V33 V34

B0 liveIn: $a0

B0 liveOut: $a0

We can now use this global live in and live out information to compute accurate liveness
intervals.

Building the Intervals

To build the intervals, we make a single pass over the blocks and instructions, again in
reverse order. Algorithm 7.3 computes these intervals with both the ranges and the use
positions.

Register Allocation 253

Algorithm 7.3 Building Liveness Intervals

Input: The control-flow graph g for a method with LIR, and the liveIn and liveOut sets
for each basic block

Output: A liveness interval for each register, with ranges and use positions
for block b in g.blocks in reverse order do

int blockFrom ← b.firstInstruction.id
Set blockTo ← b.lastInstruction.id
for register r in b.liveOut do

intervals[r].addOrExtendRange(blockFrom, blockRange)
end for
for instruction i in b.instructions in reverse order do

if i.isAMethodCall then
for physical register r in the set of physical registers do

intervals[r].addRange(i.id, i.id)
end for

end if
for virtual register r in i.writeOperands do

intervals[r].firstRange.from ← i.id
intervals[r].addUsePos(i.id)

end for
for virtual register r in i.readOperands do

intervals[r].addOrExtendRange(blockFrom, i.id)
intervals[r].addUsePos(i.id)

end for
end for

end for

Before we even look at the LIR instructions, we add ranges for all registers that are live
out. These ranges must extend to the end of the block because they are live out. Initially,
we define the ranges to extend from the start of the block because they may have been
defined in a predecessor; if we later find they are defined (or redefined) in the block, then
we shorten this range by overwriting the from position with the defining position.

As we iterate through the instructions of each block, in reverse order, we add or modify
ranges:

• When we encounter a subroutine call, we add ranges of length 1 at the call’s position
to the intervals of all physical registers. The reason for this is that we must assume
the subroutine itself will use these registers and so we would want to force spills.

In our current implementation, we do not do this step. Rather, we treat all registers
as callee-saved registers, making it the responsibility of the called subroutine to save
any physical registers that it uses. We leave alternative implementations as exercises.

• If the instruction has a register that is written to, then we adjust the first (most
recent) range’s start position to be the position of the (writing) instruction, and we
record the use position.

• For each register that is read (or used) in the instruction, we add a new range extending
to this instruction’s position. Initially, the new range begins at the start of the block;
a write may cause the start position to be re-adjusted.

Notice the addOrExtendRange() operation merges contiguous ranges into one.

254 An Introduction to Compiler Construction in a Java World

The careful reader will notice that this algorithm assumes that no virtual register is defined
but not used; this means we do not have local variables that are given values that are never
used. We leave dealing with the more peculiar cases as exercises.

Consider how Algorithm 7.3 would deal with basic block B3 of the LIR for Factorial.
computeIter().

B3

25: LDC [-1] [V36|I]

30: ADD [V33|I] [V36|I] [V37|I]

35: MUL [V34|I] [V33|I] [V38|I]

40: MOVE [V38|I] [V34|I]

45: MOVE [V37|I] [V33|I]

50: BRANCH B2

The progress of building intervals for basic block B3, as we sequence backward through its
instructions, is illustrated in Figure 7.4. (LiveOut contains V33 and V34.)

FIGURE 7.4 Building intervals for basic block B3.

At the start of processing B3, virtual registers V33 and V34 are in liveOut and so have
intervals with ranges extending from (for now) the start of the block (position 25) to the
end of the block (position 50), as illustrated in Figure 7.4(a). We then sequence through
the instructions in reverse order.

• At position 50, the branch instruction has no register operands, so no intervals are
affected.

Register Allocation 255

• At position 45, the move defines V33 so the range for V33 is shortened to start at 45;
V37 is used, so we add a range to V37 extending from (for now) the start of the block
to position 45. This is illustrated in Figure 7.4(b).

• At position 40, the move defines V34 so its range is shortened to start at 40; V38 is
used so we add a range to V38 extending from (for now) the start of the block to
position 40. This is illustrated in Figure 7.4(c).

• At position 35, the multiplication operation defines V38 so its range is shortened to
start at 35; V34 is used so we add a range extending from the start of the block to
35, and because it is adjacent to the next segment, we merge the two; V33 is used,
so we add a segment for V33 from the start of the block to 35. This is illustrated in
Figure 7.4(d).

• At position 30, the add operation defines V37 so we shorten its range to start at 30;
V33 is used, so we add a use to its interval at 30; V36 is used so we add a range from
the start of the block to 30. This is illustrated in Figure 7.4(e).

• At position 25 the load constant operation defines V36 so we define a use for V36
(definitions are considered uses) at position 25. This is illustrated in Figure 7.4 (f).

Once we have calculated the liveness intervals for a method, we can set about using them
to allocate registers.

7.4.2 Linear Scan Register Allocation

Introduction to Linear Scan

Linear scan [Poletto and Sarkar, 1999] is the first register allocation technique we look at,
and it is the one we have implemented in the JVM code to SPIM translator. Its principal
advantage is that it is fast—it really just does a linear scan through the liveness intervals,
in order of their starting positions (earliest first), and maps them to physical registers.

We follow a strategy laid out by Christopher Wimmer in his Master’s thesis [Wimmer,
2004], which he used to implement a register allocator for the Oracle HotSpot client JIT
compiler. It is fast and it is also intuitive.

Linear Scan Allocation Algorithm

Algorithm 7.4 describes a linear scan register allocation algorithm based on that in [Wim-
mer, 2004].

First we sort the intervals in increasing order, based on their start positions. At any
time, the algorithm is working with one interval called the current interval; this interval has
a starting position, the from field of its first range. This position categorizes the remaining
intervals into four lists:

1. A list of unhandled intervals sorted on their start positions in increasing order. The
unhandled list contains intervals starting after position.

2. A list of active intervals, whose intervals cover position and so have a physical register
assigned to them.

3. A list of inactive intervals, each of which starts before position and ends after position
but do not cover position, because position lies in a lifetime hole.

4. A list of handled intervals, each of which ends before position or was spilled to memory.
These intervals are no longer needed.

256 An Introduction to Compiler Construction in a Java World

Algorithm 7.4 Linear Scan Register Allocation

Input: The control-flow graph g for a method with its associated liveness intervals
Output: A version of the LIR where all virtual registers are mapped to physical registers,

and code for any necessary spills, has been inserted into the LIR
List unhandled ← a list of all intervals, sorted in increasing start-position order
List active ← {}
List inactive ← {}
List handled ← {}
while unhandled 6= {} do
current ← first interval removed from unhandled
position ← current.firstRange.from
for interval i in active do

if i.lastRange.to < position then
move i from active to handled

else if i.covers(position) then
move i from active to inactive

end if
end for
for interval i in inactive do

if i.lastRange.to < position then
move i from inactive to handled

else if i.covers(position) then
move i from inactive to inactive

end if
end for
if foundFreeRegisterFor(current) then

allocateBlockedRegisterFor(current)
end if

end while

The algorithm scans through the unhandled intervals one at a time, finding a physical
register for each; in the first instance, it looks for a free physical register and, if it fails at
that, it looks for a register to spill. In either case, a split may occur, creating an additional
interval and sorting it back into unhandled. Before allocating a register, the algorithm does
a little bookkeeping: based on the new position (the start of the current interval), it moves
intervals among the lists.

The method foundFreeRegisterFor() takes an interval as its argument and attempts to
map it to a freely available register; if it is successful, it returns true; if unsuccessful in
finding a free register, it returns false. In the latter case, the linear scan algorithm calls
upon the method allocateBlockedRegisterFor(), which determines which register should be
spilled so that it can be allocated to the interval.

Algorithm 7.5 describes the behavior of the method foundFreeRegisterFor().

Register Allocation 257

Algorithm 7.5 Attempting to Allocate a Free Register

Input: The current interval current, from Algorithm 7.4
Output: true if a free register was assigned to the current interval; false if no free register

was found
List unhandled ← a list of all intervals, sorted in increasing start-position order
for physical register r in the set of physical registers do

freePos[r] ← maxInt // default
end for
for interval i in active do

freePos[i.reg] ← 0 // unavailable
end for
for interval i in inactive do

if i intersects with current then
freePos[i.reg] ← min(freePos[i.reg], next intersection of i with current)

end if
end for
register reg ← register with highest freePos
if freePos[reg] = 0 then

return false // failure
else if freePos[reg] > current.lastRange.to then

// available for all of current interval
current.r ← reg // assign it to current interval

else
// register available for first part of current
current.r ←reg // assign it to current interval
// split current at optimal position before freePos[reg]
put current with the split-off part back on unhandled

end if
return true // success

The array freePos[] is used to compute the next position that each register is used; the
register is free up until that position. The element freePos[r] records this position for the
physical register (numbered) r.

By default, all physical registers are free for the lifetime of the method; hence, the freePos
is maxInt. But none of the physical registers assigned to intervals that are on the active
list are free; hence the freePos is 0. But registers assigned to intervals that are inactive
(and so in a hole) are assigned a freePos equal to the next position that the current interval
intersects with the interval in question, that is, the position where both intervals would need
the same register; the register is free to be assigned to the current interval up until that
position. Because the same physical register may (because of previous splits) have several
next use positions, we choose the closest (the minimum) for freePos.

So, when we choose the register with the highest freePos, we are choosing that register
that will be free the longest.

If the chosen register has a freePos of 0, then neither it nor any other register is free
and so we return false to signal we will have to spill some register. But if its freePos is
greater than the to position of current’s last range, then it is available for the duration
of current and so is assigned to current. Otherwise, the interval we are considering is in
a hole; indeed, it is in a hole that extends the furthest of any other interval in a hole. Its
register is available to the current interval up until that position. So we split the current
interval at some optimal position between the current position and that freePos, we assign

258 An Introduction to Compiler Construction in a Java World

the interval’s register (temporarily) to the first split off part of current, and we put current
with the remaining split off part back on unhandled for further processing. So we make the
best use of registers that are assigned to intervals that are currently in holes.

If the current and the candidate interval do not intersect at all, then both intervals may
make use of the same physical register with no conflict; one interval is in a hole while the
other is making use of the shared register.

When we say we split the current interval at some optimal position, we are choosing
how much of the hole to take up for current’s purposes. One could say we want as much as
possible, that is, all the way up to freePos. But, in the next section we shall see that this is
not always wise.

Consider the intervals for Factorial.computeIter() from Figure 7.2 and repeated in
Figure 7.5.

FIGURE 7.5 Liveness intervals for Factorial.computeIter(), again.

We first assume we have four free physical registers ($t0–$t3) that we can allocate to
our seven virtual registers (V32–V38); that is, we invoke j-- with

> j-- -s linear -r 4 Factorial.java

The argument -s specifies that we are using linear scan; the -r 4 says we are working with
four physical registers. Algorithm 7.4 does a linear scan through the seven virtual registers,
in order of their starting positions V32, V33,..., V38, as follows.

Algorithm 7.4 starts off with the list of seven unhandled intervals, an empty active list
and an empty inactive list. A trace of the linear scan process follows:3.

1. unhandled: [V32, V33, V34, V35, V36, V37, V38]

The first interval in the list is removed and becomes current. The active and inactive
lists remain empty. All four physical registers are available for allocation.

current = V32
active:
inactive:
free registers: [$t0, $t1, $t2, $t3]

The current interval, V32, is assigned the first free physical register $t0; V32 is put
on the active list for the next iteration.

3In the trace, we do not italicize variables.

Register Allocation 259

Interval V32 is allocated physical register $t0

2. The next iteration deals with V33.

unhandled: [V33, V34, V35, V36, V37, V38]
current = V33
active: [V32]
inactive: []
free registers: [$t1, $t2, $t3]

Interval V33 is allocated physical register $t1

3. unhandled: [V34, V35, V36, V37, V38]
current = V34
active: [V32, V33]
inactive: []
free registers: [$t2, $t3]

Interval V34 is allocated physical register $t2

4. unhandled: [V35, V36, V37, V38]
current = V35
active: [V33, V34]
inactive: []
free registers: [$t0, $t3]

Interval V35 is allocated physical register $t0

5. unhandled: [V36, V37, V38]
current = V36
active: [V33, V34]
inactive: []
free registers: [$t0, $t3]

Interval V36 is allocated physical register $t0

6. unhandled: [V37, V38]
current = V37
active: [V33, V34, V36]
inactive: []
free registers: [$t3]

Interval V37 is allocated physical register $t3

7. unhandled: [V38]
current = V38
active: [V33, V34, V37]
inactive: []
free registers: [$t0]

Interval V38 is allocated physical register $t0

260 An Introduction to Compiler Construction in a Java World

At the end of the linear scan allocation, all intervals have been assigned physical registers
and the LIR now looks as follows:

B0

B1

0: LDC [1] $t0

5: MOVE $a0 $t1

10: MOVE $t0 $t2

B2

15: LDC [0] $t0

20: BRANCH [LE] $t1 $t0 B4

B3

25: LDC [-1] $t0

30: ADD $t1 $t0 $t3

35: MUL $t2 $t1 $t0

40: MOVE $t0 $t2

45: MOVE $t3 $t1

50: BRANCH B2

B4

55: MOVE $t2 $v0

60: RETURN $v0

Now, if no register is free to be assigned to current even for a portion of its lifetime, then
we must spill some interval to a memory location on the stack frame. We use Algorithm
7.6 [Wimmer, 2004] to select an interval for spilling and to assign the freed register to
current. The algorithm chooses to spill that register that is not used for the longest time—
that register next used at the highest position in the code.

Algorithm 7.6 describes the behavior of the method foundFreeRegisterFor(). This algo-
rithm collects two positions for each physical register r by iterating through all active and
inactive intervals:

1. usePos[r] records the position where an interval with register r assigned is used next.
If more than one use position is available, the minimum is used. It is used in selecting
a spill candidate.

2. blockPos[r] records a (minimum) hard limit where register r cannot be freed by
spilling. Because this is a candidate value for usePos, usePos can never be higher
than this hard blockPos.

The register with the highest usePos is selected as a candidate for spilling. Based on the
use positions, the algorithm identifies three possibilities:

1. It is better to spill current if its first use position is found after the candidate with
the highest usePos. We split current before its first use position where it must be
reloaded; the active and inactive intervals are left untouched. This case also applies if
all registers are blocked at a method-call site.

2. Otherwise, current is assigned the selected register. All inactive and active intervals
for this register intersecting with current are split before the start of current and
spilled. We need not consider these split children further because they do not have a
register assigned. But if they have use positions requiring a register, they will have to
be reloaded to some register so they are split a second time before the use positions
and the second split children are sorted back into unhandled. They will get a register
assigned when the allocator has advanced to their position.

Register Allocation 261

3. If the selected register has a blockPos in the middle of current, then it is not available
for current’s entire lifetime; current is split before blockPos and the sorted child is
sorted into unhandled. (That the current interval starts before a use is probably the
result of a previous split.)

4. Notice that neither loads nor stores are actually generated in the LIR. This will be
done later based on the split intervals. This differs slightly from [Wimmer, 2004],
which (apparently) generates the loads and stores local to a block immediately, and
leaves those needed in other blocks to a (global) data-flow resolver.

Either current gets spilled or current is assigned a register. Many new split children may
be sorted into unhandled, but the allocator always advances position and so will eventually
terminate.

Algorithm 7.6 Spill and Allocate a Blocked Register

Input: The current interval current, from Algorithm 7.4
Output: A register is spilled and assigned to the current interval

for physical register r in the set of physical registers do
usePos[r] ← blockPos[r] ← maxInt

end for
for non-fixed interval i in active do

usePos[i.reg] ← min(usePos[i.reg], next usage of i after current.firstRange.from)
end for
for non-fixed interval i in inactive do

if i intersects with current then
usePos[i.reg] ← min(usePos[i.reg], next usage of i after current.firstRange.from)

end if
end for
for fixed interval i in active do

usePos[i] ← blockPos[i] ← 0
end for
for fixed interval i in inactive do

blockPos[i.reg] ← next intersection of i with current
usePos[i.reg] ← min(usePos[i.reg], blockPos[i.reg])

end for
register reg ← register with highest usePos
if usePos[reg] < first usage of current then

// all intervals are used before current ⇒ spill current itself
assign a spill slot on stack frame to current
split current at an optimal position before first use position requiring a register

else if blockPos[reg] > current.lastRange.to then
// spilling frees reg for all of current
assign a spill slot on stack frame to child interval for reg
assign register reg to interval current
split, assign a stack slot, and spill intersecting active and inactive intervals for reg

else
// spilling frees reg for first part of current
assign a spill slot on stack frame to child interval for reg
assign register reg to interval current
split current at optimal position before blockPos[reg]
split, assign a stack slot, and spill intersecting active and inactive intervals for reg

end if

262 An Introduction to Compiler Construction in a Java World

Splitting Intervals

In some cases, where an interval cannot be assigned a physical register for its entire lifetime,
we will want to split intervals.

Consider the interval for virtual register V33:

V33: [5, 35] [45, 50]

Originally, this interval is modeled by the NInterval object in Figure 7.6(a).

FIGURE 7.6 The splitting of interval V33.

Then, we split the interval twice:

1. First, the interval is split at position 20. This creates a new interval V39 (the next
available virtual register number) with all ranges and use positions above 20. The
original range [5, 35] is split into the range [5, 20] for interval V33 and the range [25,
35] for interval V39.

2. Next, the interval V39 is split at position 40, creating the new interval V40. Although
the split occurred at position 40, interval V39 now ends at position 35 and interval
V40 starts at position 45 because neither interval is live between 35 and 45.

The result of the two splits is illustrated in Figure 7.6(b). Each interval maintains an array
of split children.

Register Allocation 263

Choosing an Optimal Split Position

Once we have burned through all of our registers, we will be forced to split intervals. As
we have seen above, we may split current to temporarily assign it a physical register that
is attached to an inactive interval. We may split and spill intervals that are active. Usually,
we are offered a range of positions where we may split an interval; the position where an
interval is spilled or reloaded can be moved to a lower position. Where exactly we choose
to split an interval can affect the quality of the code.

Wimmer [Wimmer, 2004] proposes the following three heuristics to apply when choosing
a split position:

1. Move the split position out of loops. Code in loops is executed much more often than
code outside of loops, so it is best to move register spills and register reloads outside
of these loops.

2. Move the split position to block boundaries. Data-flow resolution (in the next section)
takes care of spills and reloads at block boundaries automatically.

3. Move split positions to positions that are not multiples of five. These positions are
not occupied by normal LIR operations and so are available for spills and reloads.

These rules do not guarantee optimal code but they go a long way toward improving the
code quality.

Resolving the Data Flow, Again

The splitting of intervals that occurs as a result of register allocation may cause inconsis-
tencies in the resulting code.

For example, consider the follow of data in an if-then-else statement:

if (condition) {

then part

} else {

else part

}

subsequent code

Consider the case where the register allocator must spill a register (say, for example, $s5)
in allocating registers to the LIR code for the else part ; somewhere in the LIR code for the
else part is a move instruction (for example, a store) to spill the value of $s5 to a slot on
the run-time stack. If the subsequent code makes use of the value in $s5, then it will know
that the value has been spilled to the stack because the interval will extend at least to this
next use; it will use a move to load that value back into a (perhaps different) register.

But what if the flow of control passes through the then part code? Again, subsequent
code will expect the value of $s5 to have been spilled to the stack slot; it will load a value
that has not been stored there.

For this reason, an extra store of $s5 must be inserted at the end of the then part code
so that the (spilled) state of $s5 is consistent in the subsequent code.

Algorithm 7.7 ([Wimmer, 2004] and [Traub et al., 1998]) inserts all moves for spilling,
including these necessary extra moves.

264 An Introduction to Compiler Construction in a Java World

Algorithm 7.7 Resolve Data Flow

Input: The version of the control-flow graph g after register allocation (Algorithm 7.4)
Output: The same LIR but with all necessary loads and stores inserted, including those

required to resolve changes in the data flow
// Resolve local (to a block) data flow
for interval i in g.intervals do

if the interval i is marked for spilling then
for child interval c in the interval i do

if c is the first child then
add a store instruction at the end of i’s last range
add a load instruction at the start of c’s first range

else
add a store instruction at the end of the previous child’s last range
add a load instruction at the start of c’s first range

end if
end for

end if
end for
// Resolve global data flow
for block b in g.blocks do

for block s in b.succesors do
// collect all necessary resolving moves between b and s
for operand register r in s.liveIn do

interval parentInterval ← g.intervals[r]
interval fromInterval ← parentInterval.childAt(b.lastOp.id)
interval fromInterval ← parentInterval.childAt(s.firstOp.id)
if fromInterval 6= toInterval then

add a store instruction after the last use position in the from block
if there is a use in the from block before a define then

add a load instruction before it in the to block
end if

end if
end for

end for
end for

The algorithm has two parts. The first part deals with the local basic block, that is, the
basic block in which the split occurred. The second part deals with other blocks, adding
stores and loads to preserve data flow. Notice the similarity to the algorithm for Phi-
resolution when translating HIR to LIR in Chapter 6.

An interval starts off whole, and may consist of multiple ranges with holes between
them. Once that interval is split, it is either split at a hole or at a range; in either case,
a child is created. The child consists of the remaining range(s). The child’s first range’s
start is guaranteed to be at an index after its parent interval’s last range’s end. The child
is itself an interval with ranges, holes, etc., so it can be split too. The resulting interval
however, is considered the second child to the original parent interval and not the child of
the child. This keeps interval families only one level deep, allowing easy tracking of which
children belong to which parent. Note also that the list of children, if more than one, do
not overlap index-wise and are consecutive according to their position in the children array
of the parent.

Register Allocation 265

Now let us re-run Algorithm 7.4, but with three registers. The first five iterations go
exactly as for four registers in our previous example.

1. unhandled: [V32, V33, V34, V35, V36, V37, V38]
current = V32
active: []
inactive: []
free registers: [$t0, $t1, $t2]

Interval V32 is allocated physical register $t0

2. unhandled: [V33, V34, V35, V36, V37, V38]
current = V33
active: [V32]
inactive: []
free registers: [$t1, $t2]

Interval V33 is allocated physical register $t1

3. unhandled: [V34, V35, V36, V37, V38]
current = V34
active: [V32, V33]
inactive: []
free registers: [$t2]

Interval V34 is allocated physical register $t2

4. unhandled: [V35, V36, V37, V38]
current = V35
active: [V33, V34]
inactive: []
free registers: [$t0]

Interval V35 is allocated physical register $t0

5. unhandled: [V36, V37, V38]
current = V36
active: [V33, V34]
inactive: []
free registers: [$t0]

Interval V36 is allocated physical register $t0

6. But in the sixth iteration, we have used up our three registers ($t1 for V33, $t2 for
V34, and $t0 for V36). We decide to spill $t2 because its next use position is the
furthest away.4

unhandled: [V37, V38]

4Actually, a close reading of the instruction at position 30 in the LIR suggests that we might re-use $t0
for V37 because it can be used as the target in the same ADD instruction that it is used in as the input
V36. We leave this improvement to Algorithm 7.4 as an exercise.

266 An Introduction to Compiler Construction in a Java World

current = V37
active: [V33, V34, V36]
inactive: []
free registers: []

Allocation failed.
Spill $t2 for all of current.

7. unhandled: [V38, V39]
current = V38
active: [V33, V37]
inactive: []
free registers: [$t0]

Interval V38 is allocated physical register $t0

8. In the next iteration we spill $t2 again5.

unhandled: [V39]
current = V39
active: [V33, V37, V38]
inactive: []
free registers: []

Allocation failed.
Spill $t2 for all of current.

9. unhandled: [V40]
current = V40
active: [V33, V39]
inactive: []
free registers: [$t0]

Interval V40 is allocated physical register $t0

Global data-flow resolution requires the insertion of several loads and stores to keep the
register values consistent6.

Local Data-flow Resolution:
Store inserted for V34 at 26 in block [B3]
Load inserted for V39 at 34 in block [B3]
Store inserted for V37 at 31 in block [B3]
Load inserted for V40 at 44 in block [B3]

Global Data-flow Resolution:
Store inserted for V34 at 11 in block [B1]
Load inserted for V39 at 54 in block [B4]

5The previous footnote applies here also.
6As the two previous footnotes observe, we avoid all of these loads and stores if we implement the

improvement that distinguishes between reads and writes in an LIR instruction.

Register Allocation 267

Store inserted for V39 at 41 in block [B3]

This gives us the following LIR.

B0

B1

0: LDC [1] $t0

5: MOVE $a0 $t1

10: MOVE $t0 $t2

11: STORE $t2 [stack :0]

B2

15: LDC [0] $t0

20: BRANCH [LE] $t1 $t0 B4

B3

25: LDC [-1] $t0

26: STORE $t2 [stack :0]

30: ADD $t1 $t0 $t2

31: STORE $t2 [stack :1]

34: LOAD [stack :0] $t2

35: MUL $t2 $t1 $t0

40: MOVE $t0 $t2

41: STORE $t2 [stack :0]

44: LOAD [stack :1] $t0

45: MOVE $t0 $t1

50: BRANCH B2

B4

54: LOAD [stack :0] $t2

55: MOVE $t2 $v0

60: RETURN $v0

Physical Register Assignment in the LIR

The final step in Wimmer’s strategy replaces the virtual registers in the LIR with assigned
physical registers. Algorithm 7.8 [Wimmer, 2004] does this register assignment.

Algorithm 7.8 Assign Physical Register Numbers

Input: The version of the control-flow graph g after resolution (Algorithm 7.7)
Output: The same LIR but with virtual registers replaced by physical registers

for block b in g.blocks do
for instruction i in b.instructions do

for virtual register r in i.operands do
// determine new operand
physical register p ← intervals[r].childAt(i.id).assignedReg
replace r with p in i

end for
if i is a move where the target is the same as the source then
b.instructions.remove(i)

end if
end for

end for

Now the LIR refers only to physical registers and is ready for translation to SPIM.

268 An Introduction to Compiler Construction in a Java World

Some Improvements to the LIR

An examination of the LIR after register allocation (using any global allocation strategy)
makes it clear that many (often unnecessary) moves are generated.

Because we have not made fixed registers, for example, $a0 to $a3 and $v0 (and $v1),
available for allocation, there is much movement among these and virtual registers in the
original LIR; this leads to many meaningless moves from one register to another once
physical registers are allocated. Bringing these physical registers (modeled as fixed intervals)
into play should eliminate our overreliance on other general-purpose registers and eliminate
many moves among them.

There is much room for spill optimization. When a variable is defined once and then
used several times, it needs to be spilled just once even if the interval modeling the virtual
register holding the value is split several times. A dirty bit may be used to keep track of
definitions versus uses. Certain arguments to methods, for example, $a0 when it contains
the address of an object for this, needs to be spilled just once also.

If all of a block’s predecessors end with the same sequence of move instructions, they
may be moved to the start of the block itself. Likewise, if all of a block’s successors start with
the same sequence of move instructions, they can be moved to the end of the (predecessor)
block. Such moves are most likely to be introduced either by Phi-resolution (Chapter 6)
or by data-flow resolution. Wimmer makes the point that this is best done after virtual
registers have been replaced by physical registers because this allows us to combine moves
involving like physical registers even if they originated from differing virtual registers.

By examining the output of the register allocation process, one will find many places for
improvement. It is best to formulate algorithms that are as general as possible in making
these improvements.

What is in the Code Tree; What is Left Undone

Much of Wimmer’s strategy, recounted above, is implemented in our code. The following
issues are not addressed and thus are left as exercises.

• We do not deal with physical registers in the register allocation process. Although we
make use of particular fixed registers, for example, $a0 to $a3 for holding arguments
passed to methods and $v0 for holding return values, we do not otherwise make these
available for allocation to other computations. Moreover, when we allocate $t0 to $t9
and $s0 to $s7, we assume they are callee-saved. The Wimmer algorithms treat them
as caller-saved and depend on the (short) intervals at calls to insure they are spilled
before the calls, and reloaded after the calls; otherwise, they are treated like any other
general-purpose registers and are available to the allocator.

• Our code does not use heuristics to find the optimal split position.

• Our code does not optimize spills.

• Our code does not move sequences of like moves between successors and predecessors.

7.4.3 Register Allocation by Graph Coloring

Introduction to Graph Coloring Register Allocation

In graph coloring register allocation, we start with an interference graph built from the
liveness intervals. An interference graph consists of a set of nodes, one for each virtual

Register Allocation 269

register or liveness interval, and a set of edges. There is an edge between two nodes if the
corresponding intervals interfere, that is, if they are live at the same time.

For example, reconsider the liveness intervals for the virtual registers V32 to V38 of
Factorial.computeIter(), originally in Figure 7.2 but repeated here as Figure 7.7.

FIGURE 7.7 Liveness intervals for Factorial.computeIter(), yet again.

Figure 7.8 shows the corresponding interference graph.

FIGURE 7.8 Interference graph for intervals for Factorial.computeIter().

We need not draw an arc from the node for a virtual register we are using to the node
for the virtual register we are defining. For example, at position 10, the instruction

10: MOVE [V32|I] [V34|I]

uses V32 to define virtual register V34; so the interval for V32 ends where the interval for
V34 begins. So we draw no edge from V32 to V34.

Register allocation then becomes coloring the graph but using physical registers as the
colors. The question becomes: can the graph be “colored” such that no two adjacent nodes
(that is no two intervals that are live at the same time) share the same physical register?
John Cocke was the first person to see that register allocation could be modeled as graph
coloring [Allen and Kennedy, 2002]. Gregory Chaitin and colleagues ([Chaitin et al., 1981]
and [Chaitin, 1982]) implemented such an allocator at IBM in 1981.

We say that a graph has an R-coloring if it can be colored using R distinct colors, or
in our case R distinct physical registers. To exhaustively find such an R-coloring for R ≥
2 has long been known to be NP-complete. But there are two heuristics available to us for
simplifying the graph.

270 An Introduction to Compiler Construction in a Java World

1. The first, called the degree < R rule, derives from the fact that a graph with a node
of degree <R (that is a node with <R adjacent nodes) is R-colorable if and only
if the graph with that node removed is R-colorable. We may use this rule to prune
the graph, removing one node of degree <R at a time and pushing it onto a stack;
removing nodes from the graph removes corresponding edges, potentially creating
more nodes with degree <R. We continue removing nodes until either all nodes have
been pruned or until we reach a state where all remaining nodes have degrees ≥ R.

2. The second is called the optimistic heuristic and allows us to continue pruning nodes
even with degree ≥ R. We use a heuristic function spillCost() to find a node having
the smallest cost of spilling its associated virtual register; we mark that register for
possible spilling and remove the node (and its edges) and push it onto the stack in
the hope that we will not really have to spill it later. (Just because a node has degree
≥ R does not mean the nodes need different colors.)

Let us attempt to prune the interference graph in Figure 7.8 where R = 3, meaning we have
three physical registers to work with. In this case, we need to invoke just the first degree < R
rule. The steps to pruning the graph are illustrated in Figure 7.9. Figure 7.9 pretty much
speaks for itself. We start with V32, which (in Figure 7.9(a)) has just one adjacent interval,
remove it, and push it onto the stack to give us the graph in Figure 7.9(b). We continue
in this way until all nodes have been removed and pushed onto the stack. Removing nodes
with degree < 3 causes edges to be removed and so more nodes end up with degree < 3.

We may then pop the virtual registers off the list, one at a time, and try to assign
physical register numbers (r1, r2, or r3) to each in such a way that adjacent virtual registers
(in the graph) are never assigned the same physical register. A possible assignment is

V38 r1
V37 r2
V34 r3
V33 r1
V36 r2
V35 r2
V32 r2

Imposing this mapping onto our LIR for Factorial.computeIter() gives us

B0

B1

0: LDC [1] r2

5: MOVE $a0 r1

10: MOVE r2 r3

B2

15: LDC [0] r2

20: BRANCH [LE] r1 r2 B4

B3

25: LDC [-1] r2

30: ADD r1 r2 r2

35: MUL r3 r1 r1

40: MOVE r1 r3

45: MOVE r2 r1

50: BRANCH B2

B4

55: MOVE r3 $v0

60: RETURN $v0

Register Allocation 271

FIGURE 7.9 Pruning an interference graph.

Graph Coloring Register Allocation Algorithm

Algorithm 7.9 performs graph coloring register allocation based on that of ([Muchnick,
1997]). The algorithm attempts to coalesce virtual registers where there is a move from
one to the next and the two registers’ intervals do not conflict. Also, once spill code is
generated, it repeats the register allocation process. It does this repeatedly until it succeeds
in assigning physical registers to virtual registers without introducing additional spills.

272 An Introduction to Compiler Construction in a Java World

Algorithm 7.9 Graph Coloring Register Allocation

Input: The control-flow graph g for a method with LIR that makes use of virtual registers
Output: The same g but with virtual registers replaced by physical registers
registersAssignedSuccessfully ← false

repeat
repeat

buildIntervals()
buildInterferenceGraph()

until coalesceRegistersSuccessful()
buildAdjacencyLists()
computeSpillCosts()
pruneGraph()
registersAssignedSuccessfully ← assignRegistersSuccessful()
if registersAssignedSuccessfully then

generateSpillCode()
end if

until registersAssignedSuccessfully

This algorithm looks like it could go on for a long time, but it usually terminates after
at most two or three iterations.

Register Coalescing

Coalescing registers reduces both the number of virtual registers and the number of moves.
The method coalesceRegistersSuccessful() returns true if it is able to coalesce two registers
and false otherwise; this Boolean result insures that any register coalescing is followed by
a rebuilding of the intervals and the interference graph.

Register coalescing also makes for longer intervals and could render the graph uncol-
orable. [Briggs et al., 1994] and [George and Appel, 1996] propose more conservative condi-
tions under which we may safely coalesce registers, without making the graph uncolorable.
Briggs proposes that two nodes in the graph may be coalesced if the resulting node will
have fewer than R neighbors of significant degree (having R or more edges). George and
Appel propose that two nodes may be coalesced if for every neighbor t of one of those nodes,
either t already interferes with the other node (so no additional edges are added) or t is of
insignificant degree. Appel [Appel, 2002] points out that these rules may prevent the safe
removal of certain moves but that extra moves are less costly than spills.

Representing the Interference Graph

The representation of the interference graph is driven by the kind of queries one wants to
make of it. Our algorithm wants to ask two things:

1. Whether or not one node is adjacent to another. We want to know this when we
coalesce registers and when we want to assign registers.

2. How many nodes, and which nodes, are adjacent to a given node.

The first is best answered by a Boolean adjacency matrix: a matrix with a row and column
for each register; adj[i, j] is true if nodes i and j are adjacent and false otherwise. A lower-
triangular matrix is sufficient because there is an ordering on the nodes. For example, our
interference graph in Figure 7.8 might be captured using the following lower-triangular
matrix, where T is true and F is false.

Register Allocation 273

V32 V33 V34 V35 V36 V37

V33 T
V34 F T
V35 F T T
V36 F T F F
V37 F T T F F
V38 F F T F F T

Method buildIntervals() might build such an adjacency matrix.
The second is best answered by a couple of vectors, each indexed by the register number:

a vector of integers recording the numbers of neighbors, and a vector of lists of neighboring
nodes. These vectors are easily computed from the adjacency matrix. Method buildAdja-
cencyLists() might build these vectors.

Determining Spill Cost

During the pruning process, we may reach a state where only nodes with degree ≥ R remain
in the graph. In this state, our algorithm must choose a node with the smallest spill cost.

The spill cost of a register certainly depends on the loop depths of the positions where
the register must be stored to or loaded from memory; [Muchnick, 1997] suggests summing
up the uses and definitions, using a factor of 10depth for taking loop depth into account.
Muchnick also suggests recomputing the value for a register when it is cheaper than spilling
and reloading that same value.

Pre-Coloring Nodes

Our example does not address fixed intervals. [Muchnick, 1997] suggests pre-coloring nodes
in the interference graph that correspond to these pre-chosen physical registers, for example,
$a0–$a3, $v1, and $v2, and bring them into the allocation process so that they may be
used for other purposes when they are not needed for their specialized functions. Register
allocation designers take an aggressive approach to register allocation, where all registers
are in play.

Comparison to Linear Scan Register Allocation

The complexity of linear scan register allocation is roughly linear with respect to n—the
number of virtual registers, where the complexity of graph coloring register allocation is
roughly n2. At the same time, graph coloring register allocation is claimed to do a much
better job at allocating physical registers, producing faster code. For this reason, linear
scan is often sold as a solution to many just-in-time compiling strategies where compilation
occurs at run-time, and graph coloring is sold as a strategy where code quality is more
important than compile time. For example, in the Oracle HotSpot compiler, a client version
uses linear scan and a server version uses graph coloring [Wimmer, 2004].

Even so, there has been a kind of duel between advocates for the two strategies, where
linear scan register allocation developers are improving the quality of register assignment,
for example, [Traub et al., 1998], and graph coloring register allocation developers are
improving the speed of register allocation, for example, [Cooper and Dasgupta, 2006].

274 An Introduction to Compiler Construction in a Java World

7.5 Further Readings

The linear scan algorithm discussed in this chapter relies extensively on [Wimmer, 2004]
and [Traub et al., 1998]. [Wimmer and Franz, 2010] describe a version of the linear scan
that operates on code adhering to SSA.

Graph coloring register allocation was first introduced in [Chaitin et al., 1981] and
[Chaitin, 1982]. Two texts that describe graph coloring register allocation in great detail are
[Appel, 2002] and [Muchnick, 1997]. The performance of graph coloring register allocation
is addressed in [Cooper and Dasgupta, 2006].

7.6 Exercises

Exercise 7.1. Implement a local register allocation strategy that works with liveness in-
tervals computed only for local individual basic blocks.

Exercise 7.2. Implement a local register allocation strategy that works with individual
basic blocks but that gives preference to blocks that are most nested within loops.

Exercise 7.3. Modify the linear scan algorithm described in Section 7.3 so that it deals
effectively with virtual registers that are defined but are never used.

Exercise 7.4. In a footnote to the 6th iteration in the second example of running Algorithm
7.4, we observe that we need not spill $t2. Rather, in the instruction

30: ADD $t1 $t0 $t2

we can re-use $t0 in place of $t2, as in

30: ADD $t1 $t0 $t0

Implement this modification using Algorithm 7.4. Note that this requires that intervals keep
track of the instruction that uses them, and distinguishes between reads and writes (two
reads cannot share the same physical register); this can be done in Algorithm 7.3, which
builds the intervals.

Exercise 7.5. Modify the code to deal with physical registers in the register allocation
process. Treat all registers as caller-saved registers and bring registers such as $a0–$a3 for
holding arguments passed to methods and $v0 for holding return values into the greater
allocation process.

Exercise 7.6. Modify the code to use the heuristics in Section 7.4.2 to find the optimal
split position.

Exercise 7.7. Modify the code to optimize spills as discussed in Section 7.4.2.

Exercise 7.8. Modify the code to move sequences of like moves between successors and
predecessors, as described in Section 7.4.2.

Exercise 7.9. Implement the linear scan register allocation algorithm that operates on
LIR in SSA form and is described in [Wimmer and Franz, 2010].

Register Allocation 275

Exercise 7.10. Repeat the example register allocation performed by hand in Section 7.4.3
but where R = 2; that is, where we have two physical registers to work with.

Exercise 7.11. Implement Algorithm 7.9 for performing graph coloring register allocation
on our LIR.

Exercise 7.12. Modify the coalesceRegistersSuccessful() method to make use of the more
conservative [Briggs et al., 1994] condition for identifying registers that may be coalesced.

Exercise 7.13. Modify the coalesceRegistersSuccessful() method to make use of the more
conservative [George and Appel, 1996] condition for identifying registers that may be coa-
lesced.

Exercise 7.14. Compare the run-time speed of your linear scan register allocator and your
graph coloring register allocator. How does the code produced compare?

Exercise 7.15. Try pre-coloring fixed intervals, bringing more physical registers into your
graph coloring register allocation program.

Chapter 8

Celebrity Compilers

8.1 Introduction

Here we survey some of the popular Java (or Java-like) compilers. For each of these, we
discuss issues or features that are peculiar to the compiler in question. The compilers we
discuss are the following:

• Oracle’s Java HotSpot
TM

compiler

• IBM’s Eclipse compiler for Java

• The GNU Java compiler

• Microsoft’s C# compiler

This chapter will only give a taste of these compilers. The reader may wish to consult
some of the recommended readings in the Further Readings section (Section 8.6) at the end
of this chapter for a deeper understanding of them.

8.2 Java HotSpot Compiler

The original Java Virtual Machine (JVM) was developed by Sun Microsystems. The Oracle
Corporation, which acquired Sun in 2010, now maintains it. What makes Oracle’s JVM
compiler [Oracle, 2010] special, aside from the fact that it is the original Java compiler, is
its implementation of its just-in-time (JIT) compiler.

A typical JIT compiler will translate a method’s (JVM) byte code into native code the
first time the method is invoked and then cache the native code. In this manner, only native
code is executed. When a method is invoked repeatedly, its native code may be found in
the cache. In programs with large loops or recursive methods, JIT compilation drastically
reduces the execution time [Kazi et al., 2000].

An obvious drawback of JIT compilation is the initial run-time delay in the execution
of a program, which is caused by both the compilation of methods the first time they are
encountered and the application of platform-dependent optimizations. JIT compilers are
able to perform optimizations that static compilers1 cannot, because they have access to
run-time information, such as input parameters, control flow, and target machine specifics
(for example, the compiler knows what processor the program is running on and can tune
the generated code accordingly). Other than that, JIT compilers do not spend as much

1Static compilation is also known as ahead-of-time compilation, which is discussed in Section 8.4.2.

277

278 An Introduction to Compiler Construction in a Java World

time on optimizing as the static compilers do because the time spent on optimizations adds
to the execution time. Also, because classes can be dynamically invoked or each method is
compiled on demand, it is difficult for JIT compilers to perform global optimizations.

When compared to interpretation, JIT compilation has another downside: methods are
entirely compiled before they are executed. If only a small part of a large method is executed,
JIT compilation may be time consuming [Kazi et al., 2000]. The memory usage is increased
as well because native code requires more space than the more compact JVM byte code.

The Oracle JVM uses a JIT compilation regimen called HotSpot. Knuth’s finding, which
states that most programs spend the majority of time executing a small fraction of the
code [Knuth, 1971a], lays the foundation for a technique called adaptive optimization. Adap-
tive optimization was pioneered by the Jikes Research Virtual Machine2 at IBM Watson
Research Center. Animorphic, a small start-up company, which was acquired by Sun Mi-
crosystems in 1997, adopted the technique and developed the Java HotSpot VM.

The Java HotSpot VM has both an interpreter and a byte code-to-native machine code
compiler. Instead of compiling every method it encounters, the VM first runs a profiling
interpreter to quickly gather run-time information, detect the critical “hot spots” in the
program that are executed most often, and collect information about the program behavior
so it may use it to optimize the generated native code in later stages of program execution.
The identified hot spots are then compiled into optimized native code, while infrequently
executed parts of the program continue to be interpreted. As a result, more time can be spent
on optimizing those performance-critical hot spots, and the optimizations are smarter than
static compiler optimizations because of all the information gathered during interpretation.
Hot spot monitoring continues during run-time to adapt the performance according to
program behavior.

There are two versions of the Java HotSpot VM: the Client VM [Kotzmann et al., 2008]
and the Server VM. These two VMs are identical in their run-time, interpreter, memory
model, and garbage collector components; they differ only in their byte code-to-native ma-
chine code compilers.

The client compiler, is simpler and focuses on extracting as much information as possible
from the byte code, like locality information and an initial control flow graph, to reduce
the compilation time. It aims to reduce the initial start-up time and memory footprint on
users’ computers.

The server compiler on the other hand, is an advanced dynamic optimizing compiler
focusing on the run-time execution speed. It uses an advanced SSA-based IR3 for opti-
mizations. The optimizer performs classic optimizations like dead code elimination, loop-
invariant hoisting, common sub-expression elimination and constant propagation, as well
as Java-specific optimizations such as null-check and range check elimination4. The register
allocator is a global graph coloring allocator5 [Oracle, 2010]. However, the most impor-
tant optimizations performed by the Java HotSpot server compiler are method inlining and
dynamic de-optimization.

Static compilers cannot take full advantage of method inlining because they cannot
know if a method is overridden in a sub-class. A static compiler can conservatively inline
static, final, and private methods because such methods cannot be overridden, but there
is no such guarantee for public and protected methods. Moreover, classes can be loaded
dynamically during run-time and a static compiler cannot deal with such run-time changes
in the program structure [Wilson and Kesselman, 2000].

While method inlining can reduce both compilation time and execution time, it will

2Initially called the Jalapeño project.
3SSA stands for static single assignment and IR stands for Intermediate Representation. See Chapter 6.
4See Chapter 6 for various optimizations techniques.
5See Chapter 7 for register allocation techniques, including graph-coloring allocation.

Celebrity Compilers 279

increase the total size of the produced native machine code. That is why it is important
to apply this optimization selectively rather than blindly inlining every method call. The
HotSpot compiler applies method inlining in the detected program hot spots. HotSpot has
the freedom of inlining any method because it can always undo an inlining if the method’s
inheritance structure changes during run time.

Undoing the inlining optimizations is called dynamic de-optimization. Suppose the com-
piler comes across to a virtual function call as

MyProgram.foo ();

There are two possibilities here: the compiler can run the foo() function implemented
in MyProgram, or a child class’s implementation of foo(). If MyProgram is defined as a
final class, or foo() in MyProgram is defined as a final method, the compiler knows that
MyProgram’s foo() should be executed. What if that is not the case? Well, then the compiler
has to make a guess, and pick whichever seems right to it at the moment. If it is lucky, there
is no need to go back; but that decision may turn out to be wrong or invalidated by a class
loaded dynamically that extends MyProgram during run time [Goetz, 2004]. Every time a
class is dynamically loaded, the HotSpot VM checks whether the interclass dependencies of
inlined methods have been altered. If there are any altered dependencies, the HotSpot VM
can dynamically de-optimize the affected inlined code, switch to interpretation mode and
maybe re-optimize later during run time as a result of new class dependencies. Dynamic
de-optimization allows HotSpot VM to perform inlining aggressively with the confidence
that possible wrong decisions can always be backed out.

If we look at the evolution of Oracle’s JVM since the beginning, we see that it has
matured in stages. Early VMs always interpreted byte code, which could result in 10 to 20
times slower performance compared to C. Then, a JIT compiler was introduced for the first
time with JDK 1.2 as an add-on, which was originally developed by Animorphic Systems.
With JDK 1.3, HotSpot became the default compiler. Compared to the initial release, JDK
1.3 showed a 40% improvement in start-up time and a 25% smaller RAM footprint [Shudo,
2004]. Later releases further improved HotSpot even more [Kotzmann et al., 2008]. Thus, the
performance of a Java program written in Java code today approaches that of an equivalent
C program.

As an example of improvements made to HotSpot, consider the history of the JVM’s
handling of the transfer of control between byte code and native code. In HotSpot’s ini-
tial version, two counters were associated with each method: a method-entry counter and
a backward-branch counter. The method entry counter was incremented every time the
method was called while the backward-branch counter was incremented every time a back-
ward branch was taken (for example, imagine a for-loop; the closing brace of the for-loop’s
body would correspond to a backward branch); and these counters were combined into a
single counter value with some additional heuristics for the method. Once the combined
counters hit a threshold (10,000 in HotSpot version 1.0) during interpretation, the method
would be considered “hot” and it then would be compiled [Paleczny et al., 2001]. How-
ever, the HotSpot compiler could only execute the compiled code for this method when the
method is called the next time.

In other words, if the HotSpot compiler detected a big, computationally intensive method
as a hot spot and compiled it into native code, say, because of a loop at the beginning of the
method, it would not be able to use the compiled version of the method until the next time
it was invoked. It was possible that heavy-weight methods were compiled during run-time
but the compiled native code would never be used [Goetz, 2004]. Programmers used to
“warm up” their programs for HotSpot by adding redundant and very long running loops
in order to provoke the HotSpot to produce native code at specific points in their program
and obtain better performance at the end.

280 An Introduction to Compiler Construction in a Java World

On-stack replacement (OSR) is used to overcome this problem. It is the opposite of
dynamic de-optimization, where the JVM can switch from interpretation mode to compi-
lation mode or swap a better version of compiled code in the middle of a loop, without
waiting for the enclosing method to be exited and re-entered [Fink and Qian, 2003]. When
the interpreter sees a method looping, it will invoke HotSpot to compile this method. While
the interpreter is still running the method, HotSpot will compile the method aside, with
an entry point at the target of the backward branch. Then the run-time will replace the
interpreted stack activation frame with the compiled frame, so that execution continues
with the new frame from that point [Paleczny et al., 2001]. HotSpot can apply aggressive
specializations based on the current conditions at any time and re-compile the code that is
running if those conditions change during run-time by means of OSR.

Clever techniques like aggressive inlining, dynamic de-optimization, OSR, and many
others [Paleczny et al., 2001, Oracle, 2010] allow HotSpot to produce better code when
compared to traditional JIT compilation.

8.3 Eclipse Compiler for Java (ECJ)

Eclipse is an open-source development platform comprised of extensible frameworks, tools,
and run-times, originally developed by IBM. The Eclipse platform is structured as a set
of sub-systems, which are implemented as plug-ins. The Eclipse Java Development Tools
(JDT) provide the plug-ins for a Java integrated development environment with its own
Java compiler called the Eclipse Compiler for Java (ECJ), which is often compared with
Oracle’s Java compiler.

The ECJ is an incremental compiler, meaning that after the initial compilation of a
project, it compiles only the modified (or newly added) file and its dependent files next
time, instead of re-compiling the whole project again.

Compilation in Eclipse can be invoked in three different ways [Arthorne, 2004]:

• Full Compilation requires that all source files in the project be compiled. This is
either performed as the initial compilation, or as a result of a clean operation that
is performed on the project, which deletes all the .class files and problem markers,
thus forcing a re-compilation of an entire project.

• Incremental Compilation compiles only the changed files (by visiting the complete
resource delta tree) and the files that are affected by the change, for example, classes
that implement an interface, the classes calling methods of the changed classes, etc.

• Auto Compilation is essentially the same as incremental compilation. Here, incre-
mental compilation is triggered automatically because a change in source code has
occurred.

Eclipse’s incremental compiler for Java uses a last build state to do an optimized build
based on the changes in the project since the last compilation. The changes since the last
compilation are captured as a resource delta tree, which is a hierarchical description of what
has changed between two discrete points in the lifetime of the Eclipse workspace. The next
time ECJ is called, it uses this resource delta tree to determine the source files that need
to be re-compiled because they were changed, removed, or added.

In addition to the resource delta tree, the compiler keeps a dependency graph in memory
as part of its last built state. The dependency graph includes all the references from each

Celebrity Compilers 281

type to other types. It is created from scratch in the initial compilation, and updated
incrementally with new information on each subsequent compilation. Using this graph, the
compiler can decide if any structural changes6 occur as a consequence of changing, adding,
or deleting a file. The computation of these structural changes involves the set of source files
that might compile differently as a consequence. The compiler deletes obsolete class files
and associated Java problem markers that were added to the source files due to previous
compilation errors, and compiles only the computed subset of source files. The dependency
graph is saved between sessions with workspace saves. The dependency graph does not
have to be re-generated, and the compiler avoids full compilation every time the project is
opened. Of course, the last built state is updated with the new reference information for the
compiled type, and new problem markers are generated for each compiled type if it has any
compilation problems, as the final steps in compilation [Rivieres and Beaton, 2006]. Figure
8.1 shows these steps.

Incremental compilation is very effective, especially in big projects with hundreds of
source files, as most of the source files will remain unchanged between two consecutive com-
pilations. Frequent compilations on hundreds or thousands of source files can be performed
without delay.

Many times when a Java file is changed, it does not result in any structural changes;
there is only a single file to be compiled. Even when structural changes occur and all
referencing types need to be re-compiled, those secondary types will almost never have
structural changes themselves, so the compilation will be completed in, at most, a couple of
iterations. Of course, one cannot claim that there will never be significant structural changes
that may cause many files to be re-compiled. ECJ considers this trade-off worth the risk,
assuming that the compiler runs very fast for the most common cases; rare occasions of
longer delays are acceptable to users.

Incremental compilers are usually accused of not optimizing enough because of the lo-
cality and relatively small amount of the code that has been changed since the last build.
However, this is not a real problem, as all the heavy-weight optimizations are performed
during run-time. Java compilers are not expected to optimize heavily when compiling from
source code to bytecode. ECJ performs light optimizations like discarding unused local
variables from the generated bytecode and inlining to load the bytecode faster into the VM
(since the verification process is then much simpler even though the code size to load in-
creases), but the real run-time performance difference comes from the VM that is used (for
example, IBM’s JVM, Oracle’s JVM, etc.). And if one decides to use, say, Oracle’s JVM,
choosing the latest version would be a good practice because HotSpot is being improved in
each new version.

Perhaps one of the most interesting features of ECJ is its ability to run and debug code
that contains errors. Consider the following näıve test:

public class Foo {

public void foo() {

System.println ("I feel like I forgot something ...");

}

public static void main(String [] args) {

System.out.println ("It really works !");

}

}

The ECJ will flag the erroneous use of println() within foo(), marking the line in the
editor and underlining the println; however, it will still generate the bytecode. And when

6Structural changes are the changes that can affect the compilation of a referencing type, for example,
added or removed methods, fields or types, or changed method signatures.

282 An Introduction to Compiler Construction in a Java World

FIGURE 8.1 Steps to ECJ incremental compilation.

the generated bytecode is executed, it will run properly because foo() is never called in
the program. If the control reaches the error, the run-time will then throw an exception.
This feature is useful when testing individual complete pieces of a project that contains
incomplete pieces.

Celebrity Compilers 283

A lesser-known feature of ECJ is its support for scrapbook pages. A scrapbook page
allows programmers to test small pieces of Java expressions without creating a surrounding
Java class or method for the specific code snippet.

This can be created by either simply creating a file with .jpage extension, or using the
scrapbook page wizard in Eclipse [Eclipse, 2011]. One can write a single line of code as:

new java.util.Date()

inside the new scrapbook page, and then evaluate it. Notice that, a semicolon at the end
of line is omitted, which would normally cause a compile-time error in a java file; yet ECJ
understands what is intended here and evaluates the expression. The scrapbook editor also
supports code assist, showing the possible completions when writing a qualified name.

Another convenience is the ability to Inspect a highlighted expression, which will open
a pop-up window inside the editor and show all the debug information on the highlighted
object without having to switch to the Debug perspective.

There is also the ability to Execute scrapbook expressions on the JVM. Suppose a
scrapbook page has the following lines:

java.util.Date now = new java.util.Date ();

System.out.println (" Current date and time: " + now);

Executing these two lines in scrapbook produce the requisite output:

Current date and time: Mon Sep 26 23:33:03 EDT 2011

The scrapbook provides that immediate feedback that LISP users find so useful.
The ECJ is also used in Apache Tomcat for compiling JSP pages and the Java IDE called

IntelliJ IDEA. In addition, GCJ, discussed in the next section, uses ECJ as its front-end
compiler (as of GCJ 4.3).

8.4 GNU Java Compiler (GCJ)

8.4.1 Overview

The GNU Java Compiler (GCJ) [GNU, 2012] is one of the compilers provided in the GNU
Compiler Collection (GCC). Although GCC started as a C compiler (aka the GNU C
Compiler), compilers for other languages including Java were soon added to the collection.
Today, GCC is the standard compiler for many Unix-like operating systems.

GCJ may directly produce either native machine code or JVM bytecode class files. GCJ
can deal with both Java source files or zip/jar archives, and can package Java applications
into both .jar files and Windows executables (.exe files), as well as producing class files.

GCJ uses the Eclipse Java Compiler (ECJ) as its front end. Programs that are compiled
into bytecode with ECJ are linked with the GCJ run-time called libgcj. Libgcj provides
typical run-time system components such as a class loader, core class libraries, a garbage
collector7, and a bytecode interpreter. Libgcj can also interpret source code to machine code
directly. Figure 8.2 shows possible routes a Java source code can take when fed to GCJ.

7Hans Boehm’s conservative garbage collector, which is known as Boehm GC, is used. Detailed informa-
tion can be found at http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

284 An Introduction to Compiler Construction in a Java World

FIGURE 8.2 Possible paths a Java program takes in GCJ.

Compiled Java programs are next fed into the GCJ back end to be optimized and
executed. The GCJ back end and the philosophy behind it are discussed in the next section.

8.4.2 GCJ in Detail

In addition to providing a Java implementation under the GPL license, a principal mo-
tivation for GCJ was to compete with JIT performance. As we saw in Section 8.2, JIT
compilation suffers from issues with start-up overhead and the overhead in detecting hot
spots.

GCJ took a “radically traditional” approach to overcome these problems and followed
the classical ahead-of-time (AOT) compilation, where bytecode programs are compiled into
a system-dependent binary before executing the programs.

GCJ developers treated Java like another form of C++. Java programs are translated to
the same abstract syntax tree used for other GCC source languages. Thus, all existing op-
timizations, like common sub-expression elimination, strength reduction, loop optimization
and register allocation, that were available for GNU tools could be used in GCJ [Bothner,
2003].

As a result, programs compiled directly to native code using the GCC back ends run at
full native speed with low start-up overhead and modest memory usage. This makes GCJ
a suitable compiler for embedded systems.

On the other hand, after start-up, Java programs compiled by GCJ do not necessarily
always run faster than a modern JIT compiler like HotSpot. There are various reasons for
this:

• First of all, some optimizations possible in JIT compilation, such as run-time profile-
guided optimizations and virtual function inlining, are not possible in GCJ.

• Programs that allocate many small, short-lived objects can cause the heap to fill
quickly and are garbage collected often, which in turn slows down the execution.

• GCJ has sub-optimal run-time checking code, and the compiler is not so smart about
automatically removing array checks. A (dangerous) hack for this can be compiling
with GCJ’s --no-bounds-check option.

• On many platforms, dynamic (PIC8) function calls are more expensive than static
ones. In particular, the interaction with Boehm BC seems to incur extra overhead

8Position-independent code (PIC) is machine instruction code that can be copied to an arbitrary location
in memory and work without requiring any address relocation. PIC is commonly used for shared libraries.

Celebrity Compilers 285

when shared libraries are used. In such cases, static linking9 can be used to overcome
this problem.

• GCJ does not behave well with threads. Multi-threaded processes are less efficient in
GCJ.

A useful feature of GCJ is the flexibility it offers in choosing what optimizations to
perform. GCJ categorizes optimizations by level and permits users to choose the level of
optimizations they want to apply on the programs. There are five optimization levels, each
specified by the -Ox (x representing the optimization level) option [GNU, 2011]. Overall,
GCJ is a good choice for embedded systems, and is being improved continually.

8.5 Microsoft C# Compiler for .NET Framework

8.5.1 Introduction to .NET Framework

The .NET Framework [Microsoft, 2012] is an integral Microsoft Windows component for
building and running applications. It is a multi-language development platform that com-
prises a virtual machine called the Common Language Runtime (CLR) [Box and Sells,
2002], and a library called the Framework Class Library (FCL).

The CLR is the heart of the .NET framework, and it consists of several compnents, in-
cluding a class loader, metadata engine, garbage collector, debugging services, and security
services. The CLR is Microsoft’s implementation for the Common Language Infrastructure
(CLI) Standard, which defines an execution environment that allows multiple high-level
languages to be used on different computer platforms10 without being rewritten for specific
architectures [Miller and Ragsdale, 2004]. It takes care of compiling intermediate language
programs to native machine code, memory management (for example, allocation of objects
and buffers), thread execution, code execution and exception handling, code safety11 verifi-
cation (for example, array bounds and index checking), cross-language integration (that is,
following certain rules to ensure the interoperability between languages), garbage collection,
and controls the interaction with the OS.

FCL is the other core component of the .NET Framework; it is a library of classes,
interfaces, and value types. It is structured as a hierarchical tree and divided into logical
groupings of types called namespaces (as in the Java API) according to functionality. System
is the root for all types in the .NET Framework namespace hierarchy. The class libraries pro-
vided with the .NET Framework can be accessed using any language that targets the CLR.
One can combine the object-oriented collection of reusable types and common functions
from the FCL with her own code, which can be written in any of the .NET-compatible lan-
guages. The .NET-compatible languages can altogether be called .NET languages. C#, C++,
Perl, Python, Ruby, Scheme, Visual Basic, Visual J++, Phalanger12, and FORTRAN.NET13

are a few examples of .NET languages with CLR-targeting compilers [Hamilton, 2003].

9Static linking refers to resolving the calls to libraries in a caller and copying them into the target
application program at compile time, rather than loading them in at run-time.

10Such platforms would be the combination of any architecture with any version of the Microsoft Windows
operating system running atop.

11Comprising type, memory, and control-flow safety, meaning that the intermediate code is correctly
generated and only accesses the memory locations it is authorized to access, and isolating objects from each
other to protect them from accidental or malicious corruption.

12An implementation of PHP with extensions for ASP.NET.
13Fortran compiling to .NET.

286 An Introduction to Compiler Construction in a Java World

Programs written in .NET languages are first compiled into a stack-based bytecode
format named as Common Intermediate Language (CIL)14. Then this CIL code is fed into
the CLR, with the associated metadata. Metadata in .NET is binary information that
describes the classes and methods (with their declarations and implementations), data types,
references to other types and members, and attributes (for example, versioning information,
security permissions, etc.) of the program. Metadata is stored in a file called the Manifest.
CIL code and the Manifest are wrapped in a Portable Executable15 file called an Assembly.
An Assembly can consist of one or more program files and a manifest, possibly along with
reference files, such as bitmap files that are called within the program. Assemblies can be
either Process Assemblies (.EXE files) or Library Assemblies (.DLL files). (See Figure 8.3)

FIGURE 8.3 Single-file versus multi-file assembly.

CIL code contained in an assembly with metadata is managed code. The program code
that executes under the management of a VM is called managed code, whereas the program
code that is directly compiled into machine code before execution and executed directly by
the CPU is called unmanaged code. Managed code is designed to be more reliable and robust
than unmanaged code, with features such as garbage collection and type safety available
to it. The managed code running in the CLR cannot be accessed outside the run-time
environment and/or cannot call Operating System (OS) services directly from outside the
run-time environment. This isolates programs and makes computers more secure. Managed
code needs the CLR’s JIT compiler to convert it to native executable code, and it relies
on CLR to provide services such as security, memory, management, and threading during
run-time.

Pre-compiled executables are called unmanaged code. One may prefer bypassing CLR
and make direct calls to specific OS services through the Win32 API. However, such code
would be considered unsafe because it yields security risks, and it will throw an exception if
fed to CLR because it is not verifiable. Unmanaged code is directly compiled to architecture-
specific machine code. Hence, unmanaged code is not portable.

Figure 8.4 depicts the compilation of programs written in .NET languages for the .NET

14Also referred to as Intermediate Language (IL), formerly Microsoft Intermediate Language (MSIL).
15The Portable Executable (PE) format is a file format for executables, object code, and DLLs, used in

32-bit and 64-bit versions of Windows operating systems.

Celebrity Compilers 287

Framework. A program is first compiled into an executable file (that is, assembly) by the
individual higher-level language compiler, and then the executable file is fed into CLR to
be JIT-compiled into native code to be executed [Microsoft, 2012].

FIGURE 8.4 Language integration in .NET framework.

A significant advantage of the .NET Framework is cross-language interoperability, which
is supported on all versions of Windows OS, regardless of the underlying architecture.
Language interoperability means that code written in one language can interact with code
written in another language. This is made possible in .NET languages and language-specific
compilers by following a certain set of rules comprising the Common Type System (CTS).

CTS is a unified type system that supports the types found in many programming
languages, and is shared by all .NET language-specific compilers and the CLR. It is the
model that defines the rules that the CLR follows when declaring, using, and managing run-
time types. The CTS also defines casting rules (including boxing and un-boxing operations),
scopes, and assemblies. CTS supports object-oriented languages, functional languages, and
procedural programming languages. By following the rules of CTS, programmers can mix
constructs from different .NET languages, such as passing an object to a method written
in a different programming language, or defining a type in one language and deriving from
that type in another language. The types defined in CTS can be categorized as the Value
types and the Reference Types.

Value types are stored in the stack rather than the garbage-collected heap. Each value
type describes the storage that it occupies, the meanings of the bits in its representation,
and the valid operations on that representation. Value types can be either built-in data types
or user-defined types such as Enum.

Reference types are passed by reference and stored in the heap. A reference type carries
more information than a value type. It has an identity that distinguishes it from all other
objects, and it has slots that store other entities, which can be either objects or values. Ref-
erence types can be categorized as self-describing reference types, built-in reference types,
interfaces, and pointers. Self-describing types can be further categorized as arrays and class
types. The class types are user-defined classes, boxed value types, and delegates (the man-

288 An Introduction to Compiler Construction in a Java World

aged alternative to unmanaged function pointers). Built-in reference types include Object

(primary base class of all classes in the .NET Framework, which is the root of the type
hierarchy) and String.

Of course, a disadvantage of .NET is that it runs only on Windows platforms. One does
not get the “write once, run anywhere” flexibility of Java.

8.5.2 Microsoft C# Compiler

When a C# program is fed to Microsoft’s C# compiler, the compiler generates metadata,
CIL code describing the program. In order to achieve this, the compiler does multiple passes
over the code

In a first main pass, it looks for declarations in the code to gather information about the
used namespaces, classes, structs, enums, interfaces, delegates, methods, type parameters,
formal parameters, constructors, events, and attributes. All this information is extracted
over more sub-passes. A lexical analyzer identifies the tokens in the source file, and the parser
does a top-level parse, not going inside method bodies. Both the lexical analyzer and parser
are hand-written, the parser being a basic recursive-descent parser. Then, a “declaration”
pass records the locations of namespaces and type declarations in the program.

After the declaration pass, the compiler does not need to go over the actual program
code; it can do the next passes on the symbols it has generated so far to extract further
metadata. The next pass verifies that there are no cycles in the base types of the declared
types. A similar pass is also done for the generic parameter constraints on generic types,
verifying the acyclic hierarchy. After that, another pass checks the members (methods of
classes, fields of structs and enum values, etc.) of every type—for example, whether what
overriding methods override are actually virtual methods, or enums have no cycles, etc. One
last pass takes care of the values of all constant fields.

Then, the compiler generates CIL code. This time the compiler parses the method bodies
and determines the type of every expression within the method body. Many more sub-
passes follow this. The compiler does not need the actual program code once it has created
the annotated parse tree; subsequent passes work on this data structure, rewriting it as
necessary. The compiler transforms loops into gotos and labels. Then, more passes are done
to look for problems and to do some optimization. The compiler makes a pass for each of
the following:

• To search for use of deprecated types and generate warnings if any exist,

• To search for types that have no metadata yet and emit those,

• To check whether expression trees16 are constructed correctly,

• To search for local variables that are defined but not used, and generate warnings,

• To search for illegal patterns inside iterator blocks,

• To search for unreachable code, such as a non-void method with no return statement,
and generate warnings,

• To check whether every goto targets a sensible label, and every label is targeted by a
reachable goto, and

16Expression trees are C#-specific tree-like data structures, where each node is an expression in the
code, for example, a method call or a binary operation such as x < y. For details on expression trees,
see [Microsoft, 2012].

Celebrity Compilers 289

• To check whether all local variables have assigned values before their use.

Once the compiler is done with the passes for problem checks, it initiates the set of
optimizing passes:

• To transform expression trees into the sequence of factory method calls necessary to
create the expression trees at run-time,

• To rewrite all arithmetic that can possibly have null value as code that checks for null
values,

• To rewrite references to methods defined in base classes as non-virtual calls,

• To find unreachable code and remove it from the tree, as generating IL for such code
is redundant,

• To rewrite switch (constant) expressions as a direct branch to the correct case,

• To optimize arithmetic, and

• To transform iterator blocks into switch-based state machines.

After all these passes17, the compiler can finally generate IL code by using the latest
version of the annotated parse tree. The Microsoft C# compiler is written in unmanaged
C++ and generates IL code structures as a sequence of basic blocks. The compiler can apply
further optimizations on the basic blocks; for instance, it can rewrite branches between
basic blocks for a more efficient call sequence, or remove the basic blocks containing dead
code. Generated metadata and IR code are then fed to the CLR as an executable, to be
JIT-compiled on any architecture running a Windows OS.

8.5.3 Classic Just-in-Time Compilation in the CLR

Microsoft’s .NET run-time has two JIT compilers: the Standard-JIT compiler and the
Econo-JIT compiler. The Econo-JIT compiler works faster than the Standard-JIT com-
piler. It compiles only Common Intermediate Language (CIL) code for methods that are
invoked during run-time, but the native code is not saved for further calls. The Standard-
JIT generates more optimized code than does the Econo-JIT and verifies the CIL code;
compiled code is cached for subsequent invocations.

When an application is executed, the Windows OS checks whether it is a .NET assembly;
if so, the OS starts up the CLR and passes the application to it for execution. The first thing
the CLR’s JIT compiler does is to subject the code to a verification process to determine
whether the code is type safe by examining the CIL code and the associated metadata.
In addition to checking that the assembly complies with the CTS, the CLR’s JIT uses
the metadata to locate and load classes; discover information about the programs classes,
members, and inheritance; lay out instances in memory; and resolve method invocations
during run-time. The executed assembly may refer to other assemblies; in this case, the
referenced assemblies are loaded as needed.

When a type (for example, a structure, interface, enumerated type, or primitive type) is
loaded, the loader creates and attaches a stub18 to each of the types methods. All types have

17There are some more passes for .NET-specific tasks dealing with COM objects, anonymous types and
functions, and dynamic calls using the CLR; however, they are excluded here to avoid introducing extra
terminology and unnecessary details.

18A stub is a routine that only declares itself and the parameters it accepts and returns an expected value
for the caller. A stub contains just enough code to allow it to be compiled and linked with the rest of the
program; it does not contain the complete implementation.

290 An Introduction to Compiler Construction in a Java World

their own method tables to store the addresses of their stubs. All object instances of the same
type will refer to the same method table. Each method table contains information about
the type, such as whether it is an interface, abstract class, or concrete class; the number of
interfaces implemented by the type; the interface map for method dispatch; the number of
slots in the method table; and an embedded method slot table, which points to the method
implementations called method descriptors. Method slot table entries are always ordered as
inherited virtuals, introduced virtuals, instance methods, and static methods. As Figure 8.5
shows, ToString, Equals, GetHashCode, and Finalize are the first four methods in the
method slot table for any type. These are virtual methods inherited from System.Object.
.cctor and .ctor are grouped with static methods and instance methods, respectively.

Initially, all entries in the method tables refer to the JIT compiler through method
descriptors. Method descriptors are generated during the loading process and they all point
to the CIL code (CodeOrIL in Figure 8.5) with a padding of 5 bytes (PreJit Stub in Figure
8.5) containing the instructions to make a call to the JIT Compiler. As discussed in Section
8.2, it is possible that some code might never be called during execution. So instead of
converting all of the CIL code into native machine code, the JIT compiler converts the
CIL as needed. Once a method is called for the first time, the call instruction contained
in the associated stub passes control to the JIT compiler, which converts the CIL code
for that method into native code and modifies the stub to direct execution to the location
of the native code by overwriting the call instruction with an unconditional jump to the
JIT-compiled native code. In other words, while methods are being stubbed out, the JIT
compiler overwrites the call instruction, replacing the address in the method table with the
compiled codes memory address. The machine code produced for the stubbed out methods is
stored in memory. Subsequent calls to the JIT-compiled method directly invoke the machine
code that was generated after the first call; thus, time to compile and run the program is
reduced [Kommalapati and Christian, 2005].

Conversion of CIL to native code is done in several stages. The first stage is import-
ing, in which the CIL code is first converted to JIT’s internal representation. The JIT
compiler has to make sure that the CIL code is type safe before converting it into machine
code—confirming that the code can access memory locations and call methods only through
properly defined types.

The second stage is morphing, where some transformations are applied to the internal
structures to simplify or lightly optimize the code. Examples of such transformations are
constant propagation and method inlining.

In the third stage, the JIT compiler performs a traditional flow-graph analysis to deter-
mine the liveness of variables, loop detection, etc. The information obtained in this stage is
used in the subsequent stages.

The fourth stage is about heavy optimizations like common sub-expression and range
check elimination, loop hoisting, and so on.

Then comes the register allocation stage, where the JIT compiler must effectively map
variables to registers.

Finally, the code generation and emitting stages come. While generating the machine
code, the JIT compiler must consider what processor it is generating code for and the
OS version. For example, it may embed the address of some Win32 APIs in to the native
code produced, and the address of these APIs could change between different service packs
of a specific Windows OS [Richter, 2005]. After generating the machine code for a specific
method, the JIT compiler packs everything together and returns to the CLR, which will then
redirect control to the newly generated code. Garbage collection and debugger information
is also recorded here. Whenever memory is low, the JIT compiler will free up memory by
placing back the stubs of methods that had not been called frequently during program
operation up to that point.

Celebrity Compilers 291

FIGURE 8.5 The method table in .NET.

Knowing that JIT compilation in the CLR works on a method-by-method basis as
needed, and gives us an understanding of the performance characteristics and the ability to
make better design decisions. For example, if one knows that a piece of code will be needed
only in rare or specific cases, one can keep it in a separate assembly. Alternatively, one can
keep that rarely needed piece of code in a separate method so that JIT Compiler will not
compile it until explicitly invoked.

One important point to emphasize about the CLR’s JIT compilation is that the CLR
does not provide an interpreter to interpret the CIL Code. A method’s CIL code is compiled

292 An Introduction to Compiler Construction in a Java World

to machine code at once to run. In Section 8.2 we saw that things work differently in Java’s
HotSpot JIT compiler. The HotSpot compiler may not JIT compile a method if it expects
the overhead of compilation to be lower than the overhead of interpreting the code. It
can recompile with heavier optimization than before, based on actual usage. In that sense,
CLR’s JIT compilation is simpler than HotSpot compilation.

At the end, one may ask how the Java platform compares to .NET Framework. The
answer to that, in a nutshell, is that Java platform deals with one language running on
multiple operating systems, whereas the .NET framework deals with multiple languages
running on a single (Windows) platform.

8.6 Further Readings

[Oracle, 2010] provides comprehensive explanations of the Java HotSpot VM and its com-
piler. [Liang and Bracha, 1998] explains class loaders in the Java platform in a basic sense,
focusing on dynamic class loading and type safety.

[Arthorne, 2004] introduces incremental building in Eclipse. [Clayberg and Rubel, 2009]
give a good introduction to plug-in development for Eclipse. [D’Anjou, 2005] is a good source
on Java development in Eclipse.

[Bothner, 2003] explains GCJ in depth. Also, [GNU, 2011] gives a full list of optimization
options available in GCC.

[Richter and Balena, 2002] and [Richter, 2010] are both excellent and very different
introductions to Microsoft’s .NET and the CLR. (Anything Jeffrey Richter writes is excel-
lent.) [Hamilton, 2003] presents concepts revolving around language interoperability in the
CLR. [Kommalapati and Christian, 2005] examine the internals of the CLR.

[Aycock, 2003] presents the ideas underlying JIT compilation and how it is used in
implementing various programming languages.

Appendix A

Setting Up and Running j--

A.1 Introduction

This appendix describes where to obtain the j-- compiler, what is in the distribution, how
to set it up for command-line execution, and how to set up, run, and debug the compiler
in Eclipse1.

A.2 Obtaining j--

The zip file j--.zip containing the j-- distribution can be downloaded from http://www.

cs.umb.edu/j--.

A.3 What Is in the Distribution?

The j-- distribution includes the following files and folders:

1An open-source IDE; http://www.eclipse.org.

293

294 An Introduction to Compiler Construction in a Java World

File/Folder Description

j--/ j-- root directory2.
src/
jminusminus/
.java The compiler source files; J.java files define classes

representing AST nodes, CL*.java files supply back-
end code that is used by j-- to create JVM byte code,
and N*.java files implement JVM-to-SPIM transla-
tion and register allocation.

j--.jj JavaCC input file for generating a scanner and
parser.

package.html Describes the jminusminus package for javadoc .
spim/
*.s, *.java SPIM3 run-time files and their Java wrappers.
package.html Describes the spim package for javadoc.

overview.html Describes the j-- project for javadoc.
lib/ Contains jar files for JavaCC4, JUnit5, and

Java2HTML6. Also contains the jar file generated
for the compiler.

bin/ Contains UNIX and Windows scripts for running the
compiler and the Java class file emitter (CLEmitter).

tests/
clemitter/ Contains Java programs that programmatically gen-

erate class files using the CLEmitter interface.
pass/ Contains j-- conformance tests.
fail/ Contains j-- deviance tests. None of these tests

should compile successfully, that is, the compiler
should not produce class files for any of these tests.

junit/ Contains JUnit test cases for compiling and running
j-- test programs.

spim/ Contains j-- test programs that compile to SPIM.
lexicalgrammar Lexical grammar for j--.
grammar Syntactic grammar for j--.
build.xml Ant7 file for building and testing the compiler.
.externalToolBuilders/ Contains project settings for Eclipse.
.classpath
.project

2The directory that contains the j-- root directory is referred to as $j.
3A self-contained simulator that runs MIPS32 programs; http://spimsimulator.sourceforge

.net/.
4A lexer and parser generator for Java; http://javacc.dev.java.net/.
5A regression testing framework; http://www.junit.org.
6Converts Java source code into a colorized and browsable HTML representation. http://www.

java2html.com.
7A Java-based build tool; http://ant.apache.org.

Setting Up and Running j-- 295

A.3.1 Scripts

We provide three scripts8: The first script, $j/j--/bin/j--, is a wrapper for jminusminus
.Main. This is the j-- compiler. It has the following command-line syntax:

Usage: j-- <options > <source file >

where possible options include:

-t Only tokenize input and print tokens to STDOUT

-p Only parse input and print AST to STDOUT

-pa Only parse and pre -analyze input and print AST to STDOUT

-a Only parse , pre -analyze , and analyze input and print AST to STDOUT

-s <naive|linear|graph > Generate SPIM code.

-r <num > Max. physical registers (1-18) available for allocation; default =8

-d <dir > Specify where to place generated class files; default =.

The second script, $j/j--/bin/javaccj--, is a wrapper for jminusminus.JavaCCMain.
This is also the j-- compiler, but uses the front end generated by JavaCC. Its command-line
syntax is similar to the script discussed above.

The third script, $j/j--/bin/clemitter, is separate from the compiler, and is a wrap-
per for jminusminus.CLEmitter. This is the Java class file emitter. It has the following
command-line syntax:

Usage: clemitter <file >

where file is a Java program that uses the CLEmitter interface to programmatically generate
a JVM class file. The output is a class file for the program, and the class files the program
was programmed to generate. For example, running the following command:

> $j/j--/bin/clemitter $j/j--/tests/clemitter/GenHelloWorld.java

produces GenHelloWorld.class and HelloWorld.class files. HelloWorld.class can then
be run as,

> java HelloWorld

producing as output,

> Hello , World!

$j/j--/bin may be added to the environment variable PATH for convenience. This will
allow invoking the scripts without specifying their fully qualified path, as follows:

> j-- $j/j--/tests/pass/HelloWorld.java

A.3.2 Ant Targets

The Ant file $j/j--/build.xml advertises the following targets:

8For the scripts to run, j-- must be compiled and j--.jar file must exist in $j/j--/lib.

296 An Introduction to Compiler Construction in a Java World

Target Description

package Makes a distributable package for the compiler that in-
cludes the source files, binaries, documentation, and JU-
nit test framework.

runCompilerTests This is the default target. It first compiles the j--
test programs under $j/j--/tests/pass and $j/j--/

tests/fail using the j-- compiler. Second, it runs the
j-- pass tests.

runCompilerTestsJavaCC Same as the above target, but using JavaCC scanner
and parser.

testScanner Tokenizes the j-- test programs in $j/j--/tests/pass.
testJavaCCScanner Same as the above target, but using JavaCC scanner.
testParser Parses the j-- test programs in $j/j--/tests/pass.
testJavaCCParser Same as the above target, but using JavaCC scanner

and parser.
testPreAnalysis Pre-analyzes the j-- test programs in $j/j--/tests/

pass.
testAnalysis Analyzes the j-- test programs in $j/j--/tests/pass.
help Lists main targets.

A.4 Setting Up j-- for Command-Line Execution

We assume the following:

• J2SE9 7 or later (the latest version is preferred) has been installed and the environ-
ment variable PATH has been configured to include the path to the Java binaries. For
example, on Windows, PATH might include C:\Program Files\Java\jdk1.7.0\bin.

• Ant 1.8.2 or later has been installed, the environment variable ANT_HOME has been set
to point to the folder where it is installed, and environment variable PATH is configured
to include $ANT_HOME/bin.

Now, the Ant targets listed in A.3.2 can be run as

> ant <target >

For example, the following command runs the target named testScanner:

> ant testScanner

If no target is specified, the default (runCompilerTests) target is executed.

A.5 Setting Up j-- in Eclipse

In order to be able to set up j-- in Eclipse, we assume the following:

9Java Development Kit (JDK); http://www.oracle.com/technetwork/java/index.html.

Setting Up and Running j-- 297

• J2SE 7 or later (the latest version is preferred) has been installed and the environment
variable JAVA_HOME has been set to point to the installation folder. For example, on
Windows, JAVA_HOME might be set to C:\Program Files\Java\jdk1.7.0.

• Eclipse 3.7 or later has been installed.

An Eclipse project for j-- can be set up as follows:

1. Unzip the j-- distribution into a temporary folder, say /tmp.

2. In Eclipse, click the File → New → Project ... menu 10 to bring up the New Project
dialog box. Select Java Project and click Next. In the New Java Project dialog box,
type “j--” for Project Name, make sure JRE (Java Run-time Environment) used is
1.7 or later, and click Finish. This creates an empty Java project called “j--” in the
current workspace.

3. In the Project Explorer pane on the left, select the “j--” project. Click File → Import
... menu to bring up the Import dialog box. Under General, select File System as
the Import Source, and click Next. Choose “/tmp/j–” as the From directory, select
“j--” below, and click Finish. Answer Yes to All to the question on the Question
pop-up menu. This imports the j-- files into the “j--” project. Once the import is
complete, Eclipse will automatically build the project. The automatic build feature
can be turned off, if necessary, by clicking the Project → Build Automatically menu.

To build the j-- project manually, select the project in the Project Explorer window and
click the Project → Build Project menu. This runs the default (runCompilerTests) target
in the Ant file $j/j--/build.xml. To run a different target, edit the following line in the
Ant file:

<project default =" runCompilerTests">

and change the value of the default attribute to the desired target.

A.6 Running/Debugging the Compiler

In order to run and debug the compiler within Eclipse, a Launch Configuration must be
created, which can be done as follows:

1. Click the Run → Run ... menu to bring up the Run dialog box. Select Java Application,
and click the New Launch Configuration button.

2. Give a suitable name for the configuration. Select “j--” for Project and type “jminus-
minus.Main” for Main class.

3. In the (x) = Arguments tab, type appropriate values for Program arguments; these are
the same as the arguments for the $j/j--/bin/j-- script described in Section A.3.1.
For example, type “-t tests/pass/HelloWorld.java” to tokenize the j-- test program
HelloWorld.java using the hand-written scanner.

4. Click Apply and Close.

10Note that Eclipse menus have slightly different names under different operating systems.

298 An Introduction to Compiler Construction in a Java World

You can have as many configurations as you like. To run or debug a particular configu-
ration, click Run → Run ... or Run → Debug ... menu, select the configuration, and click
Run or Debug. The output (STDOUT and STDERR) messages from the compiler are redirected
to the Console pane.

A.7 Testing Extensions to j--

We test extensions to the j-- language that compile to the JVM target using a JUnit test
framework. The framework supports writing conformance and deviance tests in order to
test the compiler; it also supports writing JUnit test cases to run the pass tests.

A pass test is a j-- test program that is syntactically and semantically correct. When
such a program is compiled using j--, the compiler should report no error(s) and should
generate class file(s) for the program. A fail test is a j-- test program that has syntactic
and/or semantic error(s). When such a program is compiled using j--, the compiler should
report the error(s) and exit gracefully. It should not produce class files for such programs.

The Ant targets, runCompilerTests and runCompilerTestsUsingJavaCC, attempt at
compiling the pass and fail tests using j--, and running the test suite for the pass tests.
Any pass test that compiles with errors or produces incorrect results would result in failed
JUnit assertions. Any fail test that compiles successfully would also result in a failed JUnit
assertions.

Chapter 1 describes how to add a simple extension (the division operator) to j-- and
how to test the extension using the JUnit test framework. Appendix E describes the SPIM
target and how to compile j-- programs for that target.

A.8 Further Readings

See the Java Development User Guide in [Eclipse, 2011] for more on how to run, debug,
and test your programs using Eclipse.

Appendix B

j-- Language

B.1 Introduction

j-- is a subset of Java and is the language that our example compiler translates to JVM
code. It has a little less than half the syntax of Java. It has classes; it has ints, booleans,
chars, and Strings; and it has many Java operators. The ‘j’ is in the name because j-- is
derived from Java; the ‘--’ is there because j-- has less functionality than does Java. The
exercises in the text involve adding to this language. We add fragments of Java that are not
already in j--.

B.2 j-- Program and Its Class Declarations

A j-- program looks very much like a Java program. It can have an optional package state-
ment, followed by zero or more import declarations, followed by zero or more type declara-
tions. But in j--, the only kind of type declaration we have is the class declaration; j-- has
neither interfaces nor enumerations.

We may have only single-type-import declarations in j--; it does not support import-on-
demand declarations (for example, java.util.*). The only Java types that are implicitly
imported are java.lang.Object and java.lang.String. All other external Java types
must be explicitly imported.

For example, the following is a legal j-- program:

package pass;

import java.lang.Integer;

import java.lang.System;

public class Series {

public static int ARITHMETIC = 1;

public static int GEOMETRIC = 2;

private int a; // first term

private int d; // common sum or multiple

private int n; // number of terms

public Series () {

this(1, 1, 10);

}

299

300 An Introduction to Compiler Construction in a Java World

public Series(int a, int d, int n) {

this.a = a;

this.d = d;

this.n = n;

}

public int computeSum(int kind) {

int sum = a, t = a, i = n;

while (i-- > 1) {

if (kind == ARITHMETIC) {

t += d;

} else if (kind == GEOMETRIC) {

t = t * d;

}

sum += t;

}

return sum;

}

public static void main(String [] args) {

int a = Integer.parseInt(args [0]);

int d = Integer.parseInt(args [1]);

int n = Integer.parseInt(args [2]);

Series s = new Series(a, d, n);

System.out.println (" Arithmetic sum = "

+ s.computeSum(Series.ARITHMETIC));

System.out.println (" Geometric sum = "

+ s.computeSum(Series.GEOMETRIC));

}

}

j-- is quite rich. Although j-- is a subset of Java, it can interact with the Java API. Of
course, it can only interact to the extent that it has language for talking about things in
the Java API. For example, it can send messages to Java objects that take int, boolean,
or char arguments, and which return int, boolean, and char values, but it cannot deal
with floats, doubles, or even longs.

As for Java, only one of the type declarations in the compilation unit (the file containing
the program) can be public, and that class’s main() method is the program’s entry point1.

Although j-- does not support interface classes, it does support abstract classes. For
example,

package pass;

import java.lang.System;

abstract class Animal {

protected String scientificName;

protected Animal(String scientificName) {

this.scientificName = scientificName;

}

public String scientificName () {

return scientificName;

}

}

class FruitFly

1A program’s entry point is where the program’s execution commences.

j-- Language 301

extends Animal {

public FruitFly () {

super(" Drosophila melanogaster ");

}

}

class Tiger

extends Animal {

public Tiger () {

super(" Panthera tigris corbetti ");

}

}

public class Animalia {

public static void main(String [] args) {

FruitFly fruitFly = new FruitFly ();

Tiger tiger = new Tiger ();

System.out.println(fruitFly.scientificName ());

System.out.println(tiger.scientificName ());

}

}

Abstract classes in j-- conform to the Java rules for abstract classes.

B.3 j-- Types

j-- has fewer types than does Java. This is an area where j-- is a much smaller language
than is Java.

For example, j-- primitives include just the ints, chars, and booleans. It excludes many
of the Java primitives: byte, short, long, float, and double.

As indicated above, j-- has neither interfaces nor enumerations. On the other hand,
j-- has all the reference types that can be defined using classes, including the implicitly
imported String and Object types.

j-- is stricter than is Java when it comes to assignment. The types of actual arguments
must exactly match the types of formal parameters, and the type of right-hand side of an
assignment statement must exactly match the type of the left-hand side. The only implicit
conversion is the Java String conversion for the + operator; if any operand of a + is a String

or if the left-hand side of a += is a String, the other operands are converted to Strings. j--
has no other implicit conversions. But j-- does provide casting; j-- casting follows the same
rules as Java.

That j-- has fewer types than Java is in fact a rich source of exercises for the student.
Many exercises involve the introduction of new types, the introduction of appropriate casts,
and implicit type conversion.

302 An Introduction to Compiler Construction in a Java World

B.4 j-- Expressions and Operators

j-- supports the following Java expressions and operators.

Expression Operators

Assignment =, +=
Conditional &&
Equality ==
Relational >, <=, instanceof2

Additive +, -
Multiplicative *
Unary (prefix) ++, -
Simple unary !
Postfix --

It also supports casting expressions, field selection, and message expressions. Both this

and super may be the targets of field selection and message expressions.
j-- also provides literals for the types it can talk about, including Strings.

B.5 j-- Statements and Declarations

In addition to statement expressions3, j-- provides for the if statement, if-else statement,
while statement, return statement, and blocks. All of these statements follow the Java
rules.

Static and instance field declarations, local variable declarations, and variable initializa-
tions are supported, and follow the Java rules.

B.6 Syntax

This section describes the lexical and syntactic grammars for the j-- programming language;
the former specifies how individual tokens in the language are composed, and the latter
specifies how language constructs are formed.

We employ the following notation to describe the grammars.

• // indicates comments;

• Non-terminals are written in the form of Java (mixed-case) identifiers;

• Terminals are written in bold;

2Technically, instanceof is a keyword.
3A statement expression is an expression that can act as a statement. Examples include, i--;, x = y

+ z; and x.doSomething();.

j-- Language 303

• Token representations are enclosed in <>;

• [x] indicates x is optional, that is, zero or one occurrence of x;

• {x} indicates zero or more occurrences of x;

• x|y indicates x or y;

• x̃ indicates negation of x;

• Parentheses are used for grouping;

• Level numbers in expressions indicate precedence.

B.6.1 Lexical Grammar

White Space

White space in j-- is defined as the ASCII space (SP), horizontal tab (HT), and form feed
(FF) characters, as well as line terminators: line feed (LF), carriage return (CR), and carriage
return (CR) followed by line feed (LF).

Comments

j-- supports single-line comments; all the text from the ASCII characters // to the end of
the line is ignored.

Reserved Words

The following tokens are reserved for use as keywords in j-- and cannot be used as identifiers:

abstract extends int protected this

boolean false new public true

char import null return void

class if package static while

else instanceof private super

Operators

The following tokens serve as operators in j--:

= == > ++ && <= ! - -- + += *

Separators

The following tokens serve as separators in j--:

, . [{ () }] ;

Identifiers

The following regular expression describes identifiers in j--:

<identifier > = (a-z|A-Z|_|$){a-z|A-Z|_|0-9|$}

304 An Introduction to Compiler Construction in a Java World

int, char and String Literals

An escape (ESC) character in j-- is a \ followed by n, r, t, b, f, ’, ", or \. In addition to
the true, false, and null literals, j-- supports int, char, and String literals as described
by the following regular expressions:

<int_literal > = 0|(1 -9){0 -9}

<char_literal > = ’(ESC |~(’|\|LF|CR))’

<string_literal > = "{ESC |~("|\| LF|CR)}"

B.6.2 Syntactic Grammar

compilationUnit ::= [package qualifiedIdentifier ;]
{import qualifiedIdentifier ;}
{typeDeclaration} EOF

qualifiedIdentifier ::= <identifier> {. <identifier>}

typeDeclaration ::= modifiers classDeclaration

modifiers ::= {public | protected | private | static | abstract}

classDeclaration ::= class <identifier> [extends qualifiedIdentifier] classBody

classBody ::= { {modifiers memberDecl} }

memberDecl ::= <identifier> // constructor
formalParameters block

| (void | type) <identifier> // method
formalParameters (block | ;)

| type variableDeclarators ; // field

block ::= { {blockStatement} }

blockStatement ::= localVariableDeclarationStatement
| statement

statement ::= block
| <identifier> : statement
| if parExpression statement [else statement]
| while parExpression statement
| return [expression] ;
| ;
| statementExpression ;

formalParameters ::= ([formalParameter {, formalParameter}])

formalParameter ::= type <identifier>

parExpression ::= (expression)

localVariableDeclarationStatement ::= type variableDeclarators ;

j - - Language 305

variableDeclarators ::= variableDeclarator {, variableDeclarator}

variableDeclarator ::= <identifier> [= variableInitializer]

variableInitializer ::= arrayInitializer | expression

arrayInitializer ::= { [variableInitializer {, variableInitializer}] }

arguments ::= ([expression {, expression}])

type ::= referenceType | basicType

basicType ::= boolean | char | int

referenceType ::= basicType [] {[]}
| qualifiedIdentifier {[]}

statementExpression ::= expression // but must have side-effect, eg i++

expression ::= assignmentExpression

assignmentExpression ::= conditionalAndExpression // must be a valid lhs
[(= | +=) assignmentExpression]

conditionalAndExpression ::= equalityExpression // level 10
{&& equalityExpression}

equalityExpression ::= relationalExpression // level 6
{== relationalExpression}

relationalExpression ::= additiveExpression // level 5
[(> | <=) additiveExpression | instanceof referenceType]

additiveExpression ::= multiplicativeExpression // level 3
{(+ | -) multiplicativeExpression}

multiplicativeExpression ::= unaryExpression // level 2
{* unaryExpression}

unaryExpression ::= ++ unaryExpression // level 1
| - unaryExpression
| simpleUnaryExpression

simpleUnaryExpression ::= ! unaryExpression
| (basicType) unaryExpression //cast
| (referenceType) simpleUnaryExpression // cast
| postfixExpression

postfixExpression ::= primary {selector} {--}

306 An Introduction to Compiler Construction in a Java World

selector ::= . qualifiedIdentifier [arguments]
| [expression]

primary ::= parExpression
| this [arguments]
| super (arguments | . <identifier> [arguments])
| literal
| new creator
| qualifiedIdentifier [arguments]

creator ::= (basicType | qualifiedIdentifier)
(arguments
| [] {[]} [arrayInitializer]
| newArrayDeclarator)

newArrayDeclarator ::= [expression] {[expression]} {[]}

literal ::= <int_literal> | <char_literal> | <string_literal> | true | false | null

B.6.3 Relationship of j-- to Java

As was said earlier, j-- is a subset of the Java programming language. Those constructs of
Java that are in j-- roughly conform to their behavior in Java. There are several reasons for
defining j-- in this way:

• Because many students know Java, j-- will not be totally unfamiliar.

• The exercises involve adding Java features that are not already there to j--. Again,
because one knows Java, the behavior of these new features should be familiar.

• One learns even more about a programming language by implementing its behavior.

• Because our compiler is written in Java, the student will get more practice in Java
programming.

For reasons of history and performance, most compilers are written in C or C++. One
might ask: Then why don’t we work in one of those languages? Fair question.

Most computer science students study compilers, not because they will write compilers
(although some may) but to learn how to program better: to make parts of a program work
together, to learn how to apply some of the theory they have learned to their programs,
and to learn how to work within an existing framework. We hope that one’s working with
the j-- compiler will help in all of these areas.

Appendix C

Java Syntax

C.1 Introduction

This appendix describes the lexical and syntactic grammars1 for the Java programming
language; the former specifies how individual tokens in the language are composed, and the
latter specifies how language constructs are formed. The grammars are based on the second
edition of the Java Language Specification.

C.2 Syntax

We employ the following notation to describe the lexical and syntactic grammars, similar
to what we used in Appendix B to specify j-- syntax.

• // indicates comments;

• Non-terminals are written in the form of Java (mixed-case) identifiers;

• Terminals are written in bold;

• Token representations are enclosed in <>;

• [x] indicates x is optional, that is, zero or one occurrence of x;

• {x} indicates zero or more occurrences of x;

• x|y indicates x or y;

• ˜x indicates negation of x;

• Parentheses are used for grouping;

• Level numbers in expressions indicate precedence.

C.2.1 Lexical Grammar

White Space

White space in Java is defined as the ASCII space (SP), horizontal tab (HT), and form feed
(FF) characters, as well as line terminators: line feed (LF), carriage return (CR), and carriage
return (CR) followed by line feed (LF).

1Adapted from ANTLR (http://www.antlr.org) Parser Generator examples.

307

308 An Introduction to Compiler Construction in a Java World

Comments

Java supports two kinds of comments: the traditional comment where all the text from the
ASCII characters /* to the ASCII characters */ is ignored, and single-line comments where
all the text from the ASCII characters // to the end of the line is ignored.

Reserved Words

The following tokens are reserved for use as keywords in Java and cannot be used as iden-
tifiers:

abstract const finally int public this

boolean continue float interface return throw

break default for long short throws

byte do goto native static transient

case double if new strictfp try

catch else implements package super void

char extends import private switch volatile

class final instanceof protected synchronized while

Operators

The following tokens serve as operators in Java:

? = == ! ~ != / /= + += ++ -

-= -- * *= % %= >> >>= >>> >>>= >= >

<< <<= <= < ^ ^= | |= || & &= &&

Separators

The following tokens serve as separators in Java:

, . [{ () }] ;

Identifiers

The following regular expression describes identifiers in Java:

<identifier > = (a-z|A-Z|_|$){a-z|A-Z|_|0-9|$}

Literals

An escape (ESC) character in Java is a \ followed by n, r, t, b, f, ’, ", or \. An octal
escape (OCTAL_ESC)—provided for compatibility with C—is an octal digit (0–7), or an octal
digit followed by another octal digit, or one of 0, 1, 2, or 3 followed by two octal digits. In
addition to the true, false, and null literals, Java supports int, long, float, double,
char, and String literals as described by the following regular expressions:

<int_literal > = 0|(1 -9) {0-9} // decimal

| 0 (x|X) ((0 -9)|(A-F)|(a-f)) {(0 -9)|(A-F)|(a-f)} // hexadecimal

| 0 (0-7) {0-7} // octal

<long_literal > = <int_literal > (l|L)

<float_literal > = (0 9) {0 9 } . {0-9} [(e|E) [+|-] (0-9) {0-9}] [f|F]

| . {0-9} [(e|E) [+|-] (0-9) {0 -9}] [f|F]

| (0-9) {0-9} [(e|E) [+|-] (0-9) {0-9}] (f|F)

| (0-9) {0-9} ((e|E) ([+| -] (0-9) {0 -9}) [f|F]

Java Syntax 309

| (0x|0X) . (0 -9)|(a-f)|(A-F) {(0 -9)|(a-f)|(A-F)}

(p|P) [+|-] (0 -9){0 -9} [f|F] // hexadecimal

| (0x|0X) (0 -9)|(a-f)|(A-F) {(0 -9)|(a-f)|(A-F)}

[.{(0 -9)|(a-f)|(A-F)}]

(p|P) [+|-] (0 -9){0 -9} [f|F] // hexadecimal

<double_literal > = {0-9} [[.] {0-9} [(e|E) [+|-] (0-9) {0-9}]] [d|D]

<char_literal > = ’(ESC|OCTAL_ESC |~(’|\|LF|CR))’

<string_literal > = "{ESC|OCTAL_ESC |~("|\| LF|CR)}"

C.2.2 Syntactic Grammar

compilationUnit ::= [package qualifiedIdentifier ;]
{import qualifiedIdentifierStar ;}
{typeDeclaration}
EOF

qualifiedIdentifier ::= <identifier> {. <identifier>}

qualifiedIdentifierStar ::= <identifier> {. <identifier>} [. *]

typeDeclaration ::= typeDeclarationModifiers (classDeclaration | interfaceDeclaration)
| ;

typeDeclarationModifiers ::= { public | protected | private | static | abstract
| final | strictfp }

classDeclaration ::= class <identifier> [extends qualifiedIdentifier]
[implements qualifiedIdentifier {, qualifiedIdentifier}]

classBody

interfaceDeclaration ::= interface <identifier> // can’t be final

[extends qualifiedIdentifier {, qualifiedIdentifier}]
interfaceBody

modifiers ::= { public | protected | private | static | abstract
| transient | final | native | threadsafe | synchronized
| const | volatile | strictfp} // const is reserved, but not valid

classBody ::= { { ;
| static block
| block
| modifiers memberDecl
}

}

interfaceBody ::= { { ;
| modifiers interfaceMemberDecl
}

}

310 An Introduction to Compiler Construction in a Java World

memberDecl ::= classDeclaration // inner class
| interfaceDeclaration // inner interface
| <identifier> // constructor

formalParameters
[throws qualifiedIdentifier {, qualifiedIdentifier}] block

| (void | type) <identiier> // method
formalParameters { [] }

[throws qualifiedIdentifier {, qualifiedIdentifier}] (block | ;)
| type variableDeclarators ; // field

interfaceMemberDecl ::= classDeclaration // inner class
| interfaceDeclaration // inner interface
| (void | type) <identifier> // method

formalParameters { [] }
[throws qualifiedIdentifier {, qualifiedIdentifier}] ;

| type variableDeclarators ; // fields; must have inits

block ::= { {blockStatement} }

blockStatement ::= localVariableDeclarationStatement
| typeDeclarationModifiers classDeclaration
| statement

statement ::= block
| if parExpression statement [else statement]
| for ([forInit] ; [expression] ; [forUpdate]) statement
| while parExpression statement
| do statement while parExpression ;

| try block
{catch (formalParameter) block}

[finally block] // must be present if no catches
| switch parExpression { {switchBlockStatementGroup} }
| synchronized parExpression block
| return [expression] ;
| throw expression ;

| break [<identifier>] ;
| continue [<identifier>] ;
| ;
| <identifier> : statement
| statementExpression ;

formalParameters ::= ([formalParameter {, formalParameter}])

formalParameter ::= [final] type <identifier> { [] }

parExpression ::= (expression)

forInit ::= statementExpression {, statementExpression}
| [final] type variableDeclarators

Java Syntax 311

forUpdate ::= statementExpression {, statementExpression}

switchBlockStatementGroup ::= switchLabel {switchLabel} {blockStatement}

switchLabel ::= case expression : // must be constant
| default :

localVariableDeclarationStatement ::= [final] type variableDeclarators ;

variableDeclarators ::= variableDeclarator {, variableDeclarator}

variableDeclarator ::= <identifier> { [] } [= variableInitializer]

variableInitializer ::= arrayInitializer | expression

arrayInitializer ::= { [variableInitializer {, variableInitializer} []]

arguments ::= ([expression {, expression}])

type ::= referenceType | basicType

basicType ::= boolean | byte | char | short | int | float | long | double

referenceType ::= basicType [] {[]}
| qualifiedIdentifier {[]}

statementExpression ::= expression // but must have side-effect, eg i++

expression ::= assignmentExpression

// level 13
assignmentExpression ::= conditionalExpression // must be a valid lhs

[
(=
| +=
| -=
| *=
| /=
| %=
| >>=
| >>>=
| <<=
| &=
| |=
| ^=
) assignmentExpression]

// level 12
conditionalExpression ::= conditionalOrExpression

[? assignmentExpression : conditionalExpression]

312 An Introduction to Compiler Construction in a Java World

// level 11
conditionalOrExpression ::= conditionalAndExpression { || conditionalAndExpression }

// level 10
conditionalAndExpression ::= inclusiveOrExpression { && inclusiveOrExpression }

// level 9
inclusiveOrExpression ::= exclusiveOrExpression { | exclusiveOrExpression }

// level 8
exclusiveOrExpression ::= andExpression { ^ andExpression }

// level 7
andExpression ::= equalityExpression { & equalityExpression }

// level 6
equalityExpression ::= relationalExpression { (== | !=) relationalExpression }

// level 5
relationalExpression ::= shiftExpression

({ (< | > | <= | >=) shiftExpression }
| instanceof referenceType)

// level 4
shiftExpression ::= additiveExpression { (<< | >> | >>>) additiveExpression }

// level 3
additiveExpression ::= multiplicativeExpression { (+ | -) multiplicativeExpression }

// level 2
multiplicativeExpression ::= unaryExpression { (* | / | %) unaryExpression }

// level 1
unaryExpression ::= ++ unaryExpression

| -- unaryExpression
| (+ | -) unaryExpression
| simpleUnaryExpression

simpleUnaryExpression ::= ~ unaryExpression
| ! unaryExpression
| (basicType) unaryExpression //cast
| (referenceType) simpleUnaryExpression // cast
| postfixExpression

postfixExpression ::= primary {selector} { -- | ++ }

selector ::= . (<identifier> [arguments]
| this
| super superSuffix
| new innerCreator
)

Java Syntax 313

| [expression]

superSuffix ::= arguments
| . <identifier> [arguments]

primary ::= (assignmentExpression)

| this [arguments]
| super superSuffix
| literal
| new creator
| <identifier> . <identifier> [identifierSuffix]
| basicType {[]} . class

| void . class

identifierSuffix ::= [] {[]} . class

| [expression]
| . (class
| this
| super arguments
| new innerCreator
)

| arguments

creator ::= type
(arguments [classBody]
| newArrayDeclarator [arrayInitializer]
)

newArrayDeclarator ::= [[expression]] { [[expression]] }

innerCreator ::= <identifier> arguments [classBody]

literal ::= <int_literal> | <char_literal> | <string_literal> | <float_literal>
| <long_literal> | <double_literal> | true | false | null

C.3 Further Readings

See Chapter 2 of [Gosling et al., 2005] for a detailed description of the lexical and syntactic
grammars for the Java language.

Appendix D

JVM, Class Files, and the CLEmitter

D.1 Introduction

In the first instance, our compiler’s target is the Java Virtual Machine (JVM), a virtual
byte-code machine. In this appendix, we provide a brief description of the JVM, and then
describe the CLEmitter, a high-level interface for producing the byte code.

D.2 Java Virtual Machine (JVM)

The JVM is an abstract architecture that can have any number of implementations. For
example, Oracle has implemented a Java Run-time Environment (JRE1) that interprets
JVM programs, but uses Hotspot technology for further compiling code that is executed
repeatedly to native machine code. We say it is a byte-code machine, because the programs
it executes are sequences of bytes that represent the instructions and the operands.

Although virtual, the JVM has a definite architecture. It has an instruction set and it
has an internal organization.

The JVM starts up by creating an initial class, which is specified in an implementation-
dependent manner, using the bootstrap class loader. The JVM then links the initial class,
initializes it, and invokes its public class method void main(String[] args). The invoca-
tion of this method drives all further execution. Execution of JVM instructions constituting
the main() method may cause linking (and consequently creation) of additional classes and
interfaces, as well as invocation of additional methods.

A JVM instruction consists of a one-byte opcode (operation code) specifying the oper-
ation to be performed, followed by zero or more operands supplying the arguments or data
that are used by the operation.

The inner loop of the JVM interpreter is effectively:

do {

fetch an opcode;

if (operands) fetch operands;

execute the action for the opcode;

} while (there is more to do);

The JVM defines various run-time data areas that are used during execution of a pro-
gram. Some of these data areas are created at the JVM start-up and are destroyed only
when the JVM exits. Other data areas are per thread2. Per-thread data areas are created
when a thread is created and destroyed when the thread exits.

1Available at http://www.oracle.com/technetwork/java/javase/downloads/.
2j-- does not support implementation of multi-threaded programs.

315

316 An Introduction to Compiler Construction in a Java World

D.2.1 pc Register

The JVM can support many threads of execution at once, and each thread has its own pc

(program counter) register. At any point, each JVM thread is executing the code of a single
method, the current method for that thread. If the method is not native, the pc register
contains the address of the JVM instruction currently being executed.

D.2.2 JVM Stacks and Stack Frames

The JVM is not a register machine, but a stack machine. Each JVM thread has a run-time
data stack, created at the same time as the thread. The JVM stack is analogous to the stack
of a conventional language such as C; it holds local variables and partial results, and plays
a role in method invocation and return. There are instructions for loading data values onto
the stack, for performing operations on the value(s) that are on top of the stack, and there
are instructions for storing the results of computations back in variables.

For example, consider the following simple expression.

34 + 6 * 11

If the compiler does no constant folding, it might produce the following JVM code for
performing the calculation.

ldc 34

ldc 6

ldc 11

imul

iadd

Executing this sequence of instructions takes a run-time stack through the sequence of
states illustrated in Figure D.1

FIGURE D.1 The stack states for computing 34 + 6 * 11.

In (a), the run-time stack is in some initial state, where top points to its top value. Executing
the first ldc (load constant) instruction causes the JVM to push the value 34 onto the stack,
leaving it in state (b). The second ldc, pushes 6 onto the stack, leaving it in state (c). The
third ldc pushes 11 onto the stack, leaving it in state (d). Then, executing the imul (integer
multiplication) instruction causes the JVM to pop off the top two values (11 and 6) from
the stack, multiply them together, and push the resultant 66 back onto the stack, leaving it
in state (e). Finally, the iadd (integer addition) instruction pops off the top two values (66
and 34) the stack, adds them together, and pushes the resultant 100 back onto the stack,
leaving it in the state (f).

As we saw in Chapter 1, the stack is organized into stack frames. Each time a method is
invoked, a new stack frame for the method invocation is pushed onto the stack. All actual

JVM, Class Files, and the CLEmitter 317

arguments that correspond to the methods formal parameters, and all local variables in the
method body are allocated space in this stack frame. Also, all the method computations,
like that illustrated in Figure D.1, are carried out in the same stack frame. Computations
take place in the space above the arguments and local variables.

For example, consider the following instance method, add().

int add(int x, int y) {

int z;

z = x + y;

return z;

}

Now, say add() is a method defined in a class named Foo, and further assume that f is
a variable of type Foo. Consider the message expression

f.add(2, 3);

When add() is invoked, a stack frame like that illustrated in Figure D.2 is pushed onto
the run-time stack.

FIGURE D.2 The stack frame for an invocation of add().

Because add() is an instance method, the object itself, that is, this, must be passed as
an implicit argument in the method invocation; so this occupies the first location in the
stack frame at offset 0. Then the actual parameter values 2 and 3, for formal parameters
x and y, occupy the next two locations at offsets 1 and 2, respectively. The local variable
z is allocated space for its value at offset 3. Finally, two locations are allocated above the
parameters and local variable for the computation.

Here is a symbolic version3 of the code produced for add() by our j-- compiler.

int add(int , int);

Code:

Stack=2, Locals=4, Args_size =3

0: iload_1

1: iload_2

2: iadd

3: istore_3

3Produced using javap -v Foo.

318 An Introduction to Compiler Construction in a Java World

4: iload_3

5: ireturn

Here is how the JVM executes this code.

• The iload_1 instruction loads the integer value at offset 1 (for x) onto the stack at
frame offset 4.

• The next iload_2 instruction loads the integer value at offset 2 (for y) onto the stack
at frame offset 5.

• The iadd instruction pops the two integers off the top of the stack (from frame offsets
4 and 5), adds them using integer addition, and then pushes the result (x + y) back
onto the stack at frame offset 4.

• The istore_3 instruction pops the top value (at frame offset 4) off the stack and
stores it at offset 3 (for z).

• The iload_3 instruction loads the value at frame offset 3 (for z) onto the stack at
frame offset 4.

• Finally, the ireturn instruction pops the top integer value from the stack (at frame
location 4), pops the stack frame from the stack, and returns control to the invoking
method, pushing the returned value onto the invoking method’s frame.

Notice that the instruction set takes advantage of common offsets within the stack frame.
For example, the iload_1 instruction is really shorthand for iload 1.

The iload_1 instruction occupies just one byte for the opcode; the opcode for iload_1
is 27. But the other version requires two bytes: one for the opcode (21) and one byte for
the operand’s offset (1). The JVM is trading opcode space—a byte may only represent up
to 256 different operations—to save code space.

A frame may be extended to contain additional implementation-specific data such as
the information required to support a run-time debugger.

D.2.3 Heap

Objects are represented on the stack as pointers into the heap, which is shared among all
JVM threads. The heap is the run-time data area from which memory for all class instances
and arrays is allocated. It is created during the JVM start-up. Heap storage for objects is
reclaimed by an automatic storage management system called the garbage collector.

D.2.4 Method Area

The JVM has a method area that is shared among all JVM threads. It is created during the
JVM start-up. It stores per-class structures such as the run-time constant pool, field and
method data, and the code for methods and constructors, including the special methods
used in class and instance initialization and interface type initialization.

D.2.5 Run-Time Constant Pool

The run-time constant pool is a per-class or per-interface run-time representation of the
constant_pool table in a class file. It contains several kinds of constants, ranging from
numeric literals known at compile time to method and field references that must be resolved
at run-time. It is constructed when the class or interface is created by the JVM.

JVM, Class Files, and the CLEmitter 319

D.2.6 Abrupt Method Invocation Completion

A method invocation completes abruptly if execution of a JVM instruction within the
method causes the JVM to throw an exception and that exception is not handled within
the method. Execution of an ATHROW instruction also causes an exception to be explicitly
thrown and, if the exception is not caught by the current method, results in abrupt method
invocation completion. A method invocation that completes abruptly never returns a value
to its invoker.

D.3 Class File

D.3.1 Structure of a Class File

The byte code that j-- generates from a source program is stored in a binary file with a
.class extension. We refer to such files as class files. Each class file contains the definition of
a single class or interface. A class file consists of a stream of 8-bit bytes. All 16-bit, 32-bit,
and 64-bit quantities are constructed by reading in two, four, and eight consecutive 8-bit
bytes, respectively. Multi-byte data items are always stored in big-endian order, where the
high bytes come first.

A class file consists of a single ClassFile structure; in the C language it would be:

ClassFile {

u4 magic;

u2 minor_version;

u2 major_version;

u2 constant_pool_count;

cp_info constant_pool[constant_pool_count -1];

u2 access_flags;

u2 this_class;

u2 super_class;

u2 interfaces_count;

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count];

u2 methods_count;

method_info methods[methods_count];

u2 attributes_count;

attribute_info attributes[attributes_count];

}

The types u1, u2, and u4 represent an unsigned one-, two-, or four-byte quantity, re-
spectively. The items of the ClassFile structure are described below.

320 An Introduction to Compiler Construction in a Java World

Attribute Description
magic A magic number (0xCAFEBABE) identifying the

class file format.
minor_version, major_version Together, a major and minor version number de-

termine the version of the class file format. A
JVM implementation can support a class file for-
mat of version v if and only if v lies in some con-
tiguous range of versions. Only Oracle specifies
the range of versions a JVM implementation may
support.

constant_pool_count Number of entries in the constant_pool table

plus one.
constant_pool[] A table of structures representing various string

constants, class and interface names, field names,
and other constants that are referred to within
the ClassFile structure and its sub-structures.

access_flags Mask of flags used to denote access permissions
to and properties of this class or interface.

this_class Must be a valid index into the constant_pool

table. The entry at that index must be a structure
representing the class or interface defined by this
class file.

super_class Must be a valid index into the constant_pool ta-
ble. The entry at that index must be the structure
representing the direct super class of the class or
interface defined by this class file.

interfaces_count The number of direct super interfaces of the class
or interface defined by this class file.

interfaces[] Each value in the table must be a valid index into
the constant_pool table. The entry at each in-
dex must be a structure representing an interface
that is a direct super interface of the class or in-
terface defined by this class file.

fields_count Number of entries in the fields table.
fields[] Each value in the table must be a field_info

structure giving complete description of a field in
the class or interface defined by this class file.

methods_count Number of entries in the methods table.
methods[] Each value in the table must be a method_info

structure giving complete description of a method
in the class or interface defined by this class file.

attributes_count Number of entries in the attributes table.
attributes[] Must be a table of class attributes.

The internals for all of these are fully described in [Lindholm and Yellin, 1999].
One may certainly create class files by directly working with a binary output stream.

However, this approach is rather arcane, and involves a tremendous amount of housekeeping;
one has to maintain a representation for the constant_pool table, the program counter pc,
compute branch offsets, compute stack depths, perform various bitwise operations, and do
much more.

It would be much easier if there were a high-level interface that would abstract out the
gory details of the class file structure. The CLEmitter does exactly this.

JVM, Class Files, and the CLEmitter 321

D.3.2 Names and Descriptors

Class and interface names that appear in the ClassFile structure are always represented
in a fully qualified form, with identifiers making up the fully qualified name separated by
forward slashes (‘/’)4. This is the so-called internal form of class or interface names. For
example, the name of class Thread in internal form is java/lang/Thread.

The JVM expects the types of fields and methods to be specified in a certain format
called descriptors.

A field descriptor is a string representing the type of a class, instance, or local variable.
It is a series of characters generated by the grammar5:

FieldDescriptor ::= FieldType

ComponentType ::= FieldType

FieldType ::= BaseType | ObjectType | ArrayType

BaseType ::= B | C | D | F | I | J | S | Z

ObjectType ::= L <class name> ; // class name is in internal form

ArrayType ::= [ComponentType

The interpretation of the base types is shown in the table below:

Basic Type Character Type

B byte
C char
D double
F float
I int
J long
S short
Z boolean

For example, the table below indicates the field descriptors for various field declarations:

Field Descriptor

int i; I
Object o; Ljava/lang/Object;
double[][][] d; [[[D
Long[][] l; [[Ljava/lang/Long;

A method descriptor is a string that represents the types of the parameters that the
method takes and the type of the value that it returns. It is a series of characters generated
by the grammar:

4This is different from the familiar syntax of fully qualified names, where the identifiers are separated
by periods (‘.’).

5This is the so-called EBNF (Extended Backus Naur Form) notation for describing the syntax of lan-
guages.

322 An Introduction to Compiler Construction in a Java World

MethodDescriptor ::= ({ParameterDescriptor}) ReturnDescriptor

ParameterDescriptor ::= FieldType

ReturnDescriptor ::= FieldType | V

For example, the table below indicates the method descriptors for various constructor
and method declarations:

Constructor/Method Descriptor

public Queue() ()V
public File[] listFiles() ()[Ljava/io/File;
public Boolean isPrime(int n) (I)Ljava/lang/Boolean;
public static void main(String[] args) ([L/java/lang/String;)V

D.4 CLEmitter

D.4.1 CLEmitter Operation

The j-- compiler’s purpose is to produce a class file. Given the complexity of class files we
supply a tool called the CLEmitter to ease the generation of code and the creation of class
files. The CLEmitter6 has a relatively small set of methods that support

• The creation of a class or an interface;

• The addition of fields and methods to the class;

• The addition of instructions, exception handlers, and code attributes to methods;

• The addition of inner classes;

• Optional field, method, and class attributes;

• Checking for errors; and

• The writing of the class file to the file system.

While it is much simpler to work with an interface like CLEmitter, one still must be
aware of certain aspects of the target machine, such as the instruction set.

Figure D.3 outlines the necessary steps for creating an in-memory representation of a
class file using the CLEmitter interface, and then writing that class file to the file system.

6This is a class in the jminusminus package under $j/j--/src folder. The classes that CLEmitter
depends on are also in that package and have a CL prefix.

JVM, Class Files, and the CLEmitter 323

FIGURE D.3 A recipe for creating a class file.

D.4.2 CLEmitter Interface

The CLEmitter interface support: creating a Java class representation in memory; adding
inner classes, fields, methods, exception handlers, and attributes to the class; and converting
the in-memory representation of the class to a java.lang.Class representation, both in
memory and on the file system.

324 An Introduction to Compiler Construction in a Java World

Instantiate CLEmitter

In order to create a class, one must create an instance of CLEmitter as the first step in
the process. All subsequent steps involve sending an appropriate message to that instance.
Each instance corresponds to a single class.

To instantiate a CLEmitter, one simply invokes its constructor:

CLEmitter output = new CLEmitter(true);

Change the argument to the constructor to false if only an in-memory representation of
the class is needed, in which case the class will not be written to the file system.

One then goes about adding classes, method, fields, and instructions. There are methods
for adding all of these.

Set Destination Directory for the Class

The destination directory for the class file can be set by sending to the CLEmitter instance
the following message:

public void destinationDir(String destDir)

where destDir is the directory where the class file will be written. If the class that is being
created specifies a package, then the class file will be written to the directory obtained by
appending the package name to the destination directory. If a destination directory is not
set explicitly, the default is “.”, the current directory.

Add Class

A class can be added by sending to the CLEmitter instance the following message:

public void addClass(ArrayList <String > accessFlags ,

String thisClass ,

String superClass ,

ArrayList <String > superInterfaces ,

boolean isSynthetic)

where accessFlags7 is a list of class access and property flags, thisClass is the name of
the class in internal form, superClass is the name of the super class in internal form,
superInterfaces is a list of direct super interfaces of the class in internal form, and
isSynthetic specifies whether the class is created by the compiler.

If the class being added is an interface, accessFlags must contain appropriate (“interac-
tive” and “abstract”) modifiers, superInterfaces must contain the names of the interface’s
super interfaces (if any) in internal form, and superClass must always be “java/lang/Ob-
ject”.

Add Inner Classes

While an inner class C is just another class and can be created using the CLEmitter interface,
the parent class P that contains the class C must be informed about C, which can be done
by sending the CLEmitter instance for P the following message:

public void addInnerClass(ArrayList <String > accessFlags ,

String innerClass ,

String outerClass ,

String innerName)

7Note that the CLEmitter expects the access and property flags as Strings and internally translates
them to a mask of flags. For example, “public” is translated to ACC_PUBLIC (0x0001).

JVM, Class Files, and the CLEmitter 325

where accessFlags is a list of inner class access and property flags, innerClass is the name
of the inner class in internal form, outerClass is the name of the outer class in internal
form, and innerName is the simple name of the inner class.

Add Field

After a class is added, fields can be added to the class by sending to the CLEmitter instance
the following message:

public void addField(ArrayList <String > accessFlags ,

String name ,

String type ,

boolean isSynthetic)

where accessFlags is a list of field access and property flags, name is the name of the field,
type is the type descriptor for the field, and isSynthetic specifies whether the field is
created by the compiler.

A final field of type int, short, byte, char, long, float, double, or String with an
initialization must be added to the class by sending to the CLEmitter instance the respective
message from the list of messages below8:

public void addField(ArrayList <String > accessFlags ,

String name ,

String type ,

boolean isSynthetic ,

int i)

public void addField(ArrayList <String > accessFlags ,

String name ,

String type ,

boolean isSynthetic ,

float f)

public void addField(ArrayList <String > accessFlags ,

String name ,

String type ,

boolean isSynthetic ,

long l)

public void addField(ArrayList <String > accessFlags ,

String name ,

String type ,

boolean isSynthetic ,

double d)

public void addField(ArrayList <String > accessFlags ,

String name ,

String type ,

boolean isSynthetic ,

String s)

The last parameter in each of the above messages is the value of the field. Note that the
JVM treats short, byte, and char types as int.

Add Method

A method can be added to the class by sending to the CLEmitter instance the following
message:

8The field_info structure for such fields must specify a ConstantValueAttribute reflecting the
value of the constant, and these addField() variants take care of that.

326 An Introduction to Compiler Construction in a Java World

public void addMethod(ArrayList <String > accessFlags ,

String name ,

String descriptor ,

ArrayList <String > exceptions ,

boolean isSynthetic)

where accessFlags is a list of method access and property flags, name is the name9 of the
method, descriptor is the method descriptor, exceptions is a list of exceptions in internal
form that this method throws, and isSythetic specifies whether the method is created by
the compiler.

For example, one may add a method using

accessFlags.add(" public ");

output.addMethod(accessFlags , "factorial", "(I)I", exceptions , false);

where accessFlags is a list of method access and property flags, “factorial” is the name10

of the method, “(I)I” is the method descriptor, exceptions is a list of exceptions in internal
form that this method throws, and the argument false indicates that the method appears
in source code.

A comment on the method descriptor is warranted. The method descriptor describes the
method’s signature in a format internal to the JVM. The I is the internal type descriptor for
the primitive type int, so the “(I)I” specifies that the method takes one integer argument
and returns a value having integer type.

Add Exception Handlers to Method

An exception handler to code a try-catch block can be added to a method by sending to
the CLEmitter instance the following message:

public void addExceptionHandler(String startLabel ,

String endLabel ,

String handlerLabel ,

String catchType)

where startLabel marks the beginning of the try block, endLabel marks the end of the
try block, handlerLabel marks the beginning of a catch block, and catchType specifies
the exception that is to be caught in internal form. If catchType is null, this exception
handler is called for all exceptions; this is used to implement finally.

createLabel() and addLabel(String label) can be invoked on the CLEmitter in-
stance to create unique labels and for adding them to mark instructions in the code indi-
cating where to jump to.

A method can specify as many exception handlers as there are exceptions that are being
caught in the method.

Add Optional Method, Field, Class, Code Attributes

Attributes are used in the ClassFile (CLFile), field_info(CLFieldInfo), method_info
(CLMethodInfo), and Code_attribute (CLCodeAttribute) structures of the class file
format. While there are many kinds of attributes, only some are mandatory; these
include InnerClasses_attribute (class attribute), Synthetic_attribute (class, field,
and method attribute), Code_attribute (method attribute), and Exceptions_attribute

(method attribute).
CLEmitter implicitly adds the required attributes to the appropriate structures. The

9Instance initializers must have the name <init> and static initializers must have the name <clinit>.
10Instance constructors must have the name <init>.

JVM, Class Files, and the CLEmitter 327

optional attributes can be added by sending to the CLEmitter instance one of the following
messages:

public void addMethodAttribute(CLAttributeInfo attribute)

public void addFieldAttribute(CLAttributeInfo attribute)

public void addClassAttribute(CLAttributeInfo attribute)

public void addCodeAttribute(CLAttributeInfo attribute)

Note that for adding optional attributes, you need access to the constant pool table,
which the CLEmitter exposes through its constantPool() method, and also the program
counter pc, which it exposes through its pc() method. The abstractions for all the attributes
(code, method, field, and class) are defined in the CLAttributeInfo class.

Checking for Errors

The caller, at any point during the creation of the class, can check if there was an error, by
sending to the CLEmitter the following message:

public boolean errorHasOccurred ()

Write Class File

The in-memory representation of the class can be written to the file system by sending to
the CLEmitter instance the following message:

public void write()

The destination directory for the class is either the default (current) directory or the one
specified by invoking destinationDir(String destDir) method. If the class specifies a
package, then the class will be written to the directory obtained by appending the package
information to the destination directory.

Alternatively, the representation can be converted to java.lang.Class representation
in memory by sending to the CLEmitter instance the following message:

public Class toClass ()

D.5 JVM Instruction Set

The instructions supported by the JVM can be categorized into various groups: object,
field, method, array, arithmetic, bit, comparison, conversion, flow control, load and store,
and stack instructions. In this section, we provide a brief summary of the instructions
belonging to each group. The summary includes the mnemonic11 for the instruction, a one-
line description of what the instruction does, and how the instruction affects the operand
stack. For each set of instructions, we also specify the CLEmitter method to invoke while
generating class files, to add instructions from that set to the code section of methods.

For each instruction, we represent the operand stack as follows:

· · · , value1, value2⇒ · · · , result

which means that the instruction begins by having value2 on top of the operand stack with

11These mnemonics (symbolic opcodes) are defined in jminusminus.CLConstants.

328 An Introduction to Compiler Construction in a Java World

value1 just beneath it. As a result of the execution of the instruction, value1 and value2
are popped from the operand stack and replaced by result value, which has been calculated
by the instruction. The remainder of the operand stack, represented by an ellipsis (· · ·), is
unaffected by the instruction’s execution. Values of types long and double are represented
by a single entry on the operand stack.

D.5.1 Object Instructions

Mnemonic Operation Operand Stack

new Create new object · · · ⇒ · · · , objectref
instanceof Determine if object is of

given type
· · · , objectref ⇒ · · · , result

checkcast Check whether object is of
given type

· · · , objectref ⇒ · · · , objectref

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addReferenceInstruction(int opcode ,

String type)

where opcode is the mnemonic of the instruction to be added, and type is the reference
type in internal form or a type descriptor if it is an array type.

D.5.2 Field Instructions

Mnemonic Operation Operand Stack

getfield Get field from object · · · , objectref ⇒ · · · , value
putfield Set field in object · · · , objectref, value⇒ · · ·
getstatic Get static field from class · · · ⇒ · · · , value
putstatic Set static field in class · · · , value⇒ · · ·

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addMemberAccessInstruction(int opcode ,

String target ,

String name ,

String type)

where opcode is the mnemonic of the instruction to be added, target is the name (in
internal form) of the class to which the field belongs, name is the name of the field, and
type is the type descriptor of the field.

JVM, Class Files, and the CLEmitter 329

D.5.3 Method Instructions

Mnemonic Operation Operand Stack

invokevirtual Invoke instance method;
dispatch based on class

· · · , objectref, [arg1, [arg2 · · ·]]⇒ · · ·

invokeinterface Invoke interface method · · · , objectref, [arg1, [arg2 · · ·]]⇒ · · ·
invokespecial Invoke instance method;

special handling for su-
perclass, private, and
instance initialization
method invocations

· · · , objectref, [arg1, [arg2 · · ·]]⇒ · · ·

invokestatic Invoke a class (static)
method

· · · , [arg1, [arg2 · · ·]]⇒ · · ·

invokedynamic Invoke instance method;
dispatch based on class

· · · , objectref, [arg1, [arg2 · · ·]]⇒ · · ·

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addMemberAccessInstruction(int opcode ,

String target ,

String name ,

String type)

where opcode is the mnemonic of the instruction to be added, target is the name (in
internal form) of the class to which the method belongs, name is the name of the method,
and type is the type descriptor of the method.

Mnemonic Operation Operand Stack

ireturn Return int from method · · · , value⇒ [empty]
lreturn Return long from method · · · , value⇒ [empty]
freturn Return float from

method
· · · , value⇒ [empty]

dreturn Return double from
method

· · · , value⇒ [empty]

areturn Return reference from
method

· · · , objectref ⇒ [empty]

return Return void from method · · · ⇒ [empty]

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addNoArgInstruction(int opcode)

where opcode is the mnemonic of the instruction to be added.

330 An Introduction to Compiler Construction in a Java World

D.5.4 Array Instructions

Mnemonic Operation Operand Stack

newarray Create new array · · · , count⇒ · · · , arrayref
anewarray Create new array of refer-

ence type
· · · , count⇒ · · · , arrayref

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addArrayInstruction(int opcode ,

String type)

where opcode is the mnemonic of the instruction to be added, and type is the type descriptor
of the array.

Mnemonic Operation Operand Stack

multianewarray Create new multidimen-
sional array

· · · , count1, [count2, · · ·]
⇒ · · · , arrayref

The above instruction can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addMULTIANEWARRAYInstruction(String type ,

int dim)

where type is the type descriptor of the array, and dim is the number of dimensions.

Mnemonic Operation Operand Stack

baload Load byte or boolean

from array
· · · , arrayref, index⇒ · · · , value

caload Load char from array · · · , arrayref, index⇒ · · · , value
saload Load short from array · · · , arrayref, index⇒ · · · , value
iaload Load int from array · · · , arrayref, index⇒ · · · , value
laload Load long from array · · · , arrayref, index⇒ · · · , value
faload Load float from array · · · , arrayref, index⇒ · · · , value
daload Load double from array · · · , arrayref, index⇒ · · · , value
aaload Load from reference array · · · , arrayref, index⇒ · · · , value
bastore Store into byte or

boolean array
· · · , arrayref, index, value⇒ · · ·

castore Store into char array · · · , arrayref, index, value⇒ · · ·
sastore Store into short array · · · , arrayref, index, value⇒ · · ·
iastore Store into int array · · · , arrayref, index, value⇒ · · ·
lastore Store into long array · · · , arrayref, index, value⇒ · · ·
fastore Store into float array · · · , arrayref, index, value⇒ · · ·
dastore Store into double array · · · , arrayref, index, value⇒ · · ·
aastore Store into reference array · · · , arrayref, index, value⇒ · · ·
arraylength Get length of array · · · , arrayref ⇒ · · · , length

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

JVM, Class Files, and the CLEmitter 331

public void addNoArgInstruction(int opcode)

where opcode is the mnemonic of the instruction to be added.

D.5.5 Arithmetic Instructions

Mnemonic Operation Operand Stack

iadd Add int · · · , value1, value2⇒ · · · , result
ladd Add long · · · , value1, value2⇒ · · · , result
fadd Add float · · · , value1, value2⇒ · · · , result
dadd Add double · · · , value1, value2⇒ · · · , result
isub Subtract int · · · , value1, value2⇒ · · · , result
lsub Subtract long · · · , value1, value2⇒ · · · , result
fsub Subtract float · · · , value1, value2⇒ · · · , result
dsub Subtract double · · · , value1, value2⇒ · · · , result
imul Multiply int · · · , value1, value2⇒ · · · , result
lmul Multiply long · · · , value1, value2⇒ · · · , result
fmul Multiply float · · · , value1, value2⇒ · · · , result
dmul Multiply double · · · , value1, value2⇒ · · · , result
idiv Divide int · · · , value1, value2⇒ · · · , result
ldiv Divide long · · · , value1, value2⇒ · · · , result
fdiv Divide float · · · , value1, value2⇒ · · · , result
ddiv Divide double · · · , value1, value2⇒ · · · , result
irem Remainder int · · · , value1, value2⇒ · · · , result
lrem Remainder long · · · , value1, value2⇒ · · · , result
frem Remainder float · · · , value1, value2⇒ · · · , result
drem Remainder double · · · , value1, value2⇒ · · · , result
ineg Negate int · · · , value⇒ · · · , result
lneg Negate long · · · , value⇒ · · · , result
fneg Negate float · · · , value⇒ · · · , result
dneg Negate double · · · , value⇒ · · · , result

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addNoArgInstruction(int opcode)

where opcode is the mnemonic of the instruction to be added.

332 An Introduction to Compiler Construction in a Java World

D.5.6 Bit Instructions

Mnemonic Operation Operand Stack

ishl Shift left int · · · , value1, value2⇒ · · · , result
ishr Arithmetic shift right int · · · , value1, value2⇒ · · · , result
iushr Logical shift right int · · · , value1, value2⇒ · · · , result
lshl Shift left long · · · , value1, value2⇒ · · · , result
lshr Arithmetic shift right

long

· · · , value1, value2⇒ · · · , result

lushr Logical shift right long · · · , value1, value2⇒ · · · , result
ior Boolean OR int · · · , value1, value2⇒ · · · , result
lor Boolean OR long · · · , value1, value2⇒ · · · , result
iand Boolean AND int · · · , value1, value2⇒ · · · , result
land Boolean AND long · · · , value1, value2⇒ · · · , result
ixor Boolean XOR int · · · , value1, value2⇒ · · · , result
lxor Boolean XOR long · · · , value1, value2⇒ · · · , result

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addNoArgInstruction(int opcode)

where opcode is the mnemonic of the instruction to be added.

D.5.7 Comparison Instructions

Mnemonic Operation Operand Stack

dcmpg Compare double; result is
1 if at least one value is
NaN

· · · , value1, value2⇒ · · · , result

dcmpl Compare double; result is
−1 if at least one value is
NaN

· · · , value1, value2⇒ · · · , result

fcmpg Compare float; result is 1
if at least one value is NaN

· · · , value1, value2⇒ · · · , result

fcmpl Compare float; result is
−1 if at least one value is
NaN

· · · , value1, value2⇒ · · · , result

lcmp Compare long · · · , value1, value2⇒ · · · , result

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addNoArgInstruction(int opcode)

where opcode is the mnemonic of the instruction to be added.

JVM, Class Files, and the CLEmitter 333

D.5.8 Conversion Instructions

Mnemonic Operation Operand Stack

i2b Convert int to byte · · · , value⇒ · · · , result
i2c Convert int to char · · · , value⇒ · · · , result
i2s Convert int to short · · · , value⇒ · · · , result
i2l Convert int to long · · · , value⇒ · · · , result
i2f Convert int to float · · · , value⇒ · · · , result
i2d Convert int to double · · · , value⇒ · · · , result
l2f Convert long to float · · · , value⇒ · · · , result
l2d Convert long to double · · · , value⇒ · · · , result
l2i Convert long to int · · · , value⇒ · · · , result
f2d Convert float to double · · · , value⇒ · · · , result
f2i Convert float to int · · · , value⇒ · · · , result
f2l Convert float to long · · · , value⇒ · · · , result
d2i Convert double to int · · · , value⇒ · · · , result
d2l Convert double to long · · · , value⇒ · · · , result
d2f Convert double to float · · · , value⇒ · · · , result

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addNoArgInstruction(int opcode)

where opcode is the mnemonic of the instruction to be added.

D.5.9 Flow Control Instructions

Mnemonic Operation Operand Stack

ifeq Branch if int comparison
value == 0 true

· · · , value⇒ · · ·

ifne Branch if int comparison
value != 0 true

· · · , value⇒ · · ·

iflt Branch if int comparison
value < 0 true

· · · , value⇒ · · ·

ifgt Branch if int comparison
value > 0 true

· · · , value⇒ · · ·

ifle Branch if int comparison
value ≤ 0 true

· · · , value⇒ · · ·

ifge Branch if int comparison
value ≥ 0 true

· · · , value⇒ · · ·

ifnull Branch if reference is
null

· · · , value⇒ · · ·

ifnonnull Branch if reference is
not null

· · · , value⇒ · · ·

if_icmpeq Branch if int comparison
value1 == value2 true

· · · , value1, value2⇒ · · ·

if_icmpne Branch if int comparison
value1 != value2 true

· · · , value1, value2⇒ · · ·

334 An Introduction to Compiler Construction in a Java World

Mnemonic Operation Operand Stack

if_icmplt Branch if int comparison
value1 < value2 true

· · · , value1, value2⇒ · · ·

if_icmpgt Branch if int comparison
value1 > value2 true

· · · , value1, value2⇒ · · ·

if_icmple Branch if int comparison
value1 ≤ value2 true

· · · , value1, value2⇒ · · ·

if_icmpge Branch if int comparison
value1 ≥ value2 true

· · · , value1, value2⇒ · · ·

if_acmpeq Branch if reference com-
parison value1 == value2
true

· · · , value1, value2⇒ · · ·

if_acmpne Branch if reference com-
parison value1 != value2
true

· · · , value1, value2⇒ · · ·

goto Branch always No change
goto_w Branch always (wide in-

dex)
No change

jsr Jump subroutine · · · ⇒ · · · , address
jsr_w Jump subroutine (wide in-

dex)
· · · ⇒ · · · , address

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addBranchInstruction(int opcode ,

String label)

where opcode is the mnemonic of the instruction to be added, and label is the target
instruction label.

Mnemonic Operation Operand Stack

ret Return from subroutine No change

The above instruction can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addOneArgInstruction(int opcode ,

int arg)

where opcode is the mnemonic of the instruction to be added, and arg is the index of the
local variable containing the return address.

Mnemonic Operation Operand Stack

lookupswitch Access jump table by key
match and jump

· · · , key ⇒ · · ·

The above instruction can be added to the code section of a method by sending the
CLEmitter instance the following message:

JVM, Class Files, and the CLEmitter 335

public void addLOOKUPSWITCHInstruction(String defaultLabel ,

int numPairs ,

TreeMap <Integer , String >

matchLabelPairs)

where defaultLabel is the jump label for the default value, numPairs is the number of
pairs in the match table, and the matchLabelPairs is the key match table.

Mnemonic Operation Operand Stack

tableswitch Access jump table by in-
dex match and jump

· · · , index⇒ · · ·

The above instruction can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addTABLESWITCHInstruction(String defaultLabel ,

int low ,

int high ,

ArrayList <String > labels)

where defaultLabel is the jump label for the default value, low is smallest value of index,
high is the highest value of index, and labels is a list of jump labels for each index value
from low to high, end values included.

D.5.10 Load Store Instructions

Mnemonic Operation Operand Stack

iload_n; n ∈ [0 . . . 3] Load int from local vari-
able at index n

· · · ⇒ · · · , value

lload_n; n ∈ [0 . . . 3] Load long from local vari-
able at index n

· · · ⇒ · · · , value

fload_n; n ∈ [0 . . . 3] Load float from local
variable at index n

· · · ⇒ · · · , value

dload_n; n ∈ [0 . . . 3] Load double from local
variable at index n

· · · ⇒ · · · , value

aload_n; n ∈ [0 . . . 3] Load reference from local
variable at index n

· · · ⇒ · · · , objectref

istore_n; n ∈ [0 . . . 3] Store int into local vari-
able at index n

· · · , value⇒ · · ·

lstore_n; n ∈ [0 . . . 3] Store long into local vari-
able at index n

· · · , value⇒ · · ·

fstore_n; n ∈ [0 . . . 3] Store float into local
variable at index n

· · · , value⇒ · · ·

dstore_n; n ∈ [0 . . . 3] Store double into local
variable at index n

· · · , value⇒ · · ·

astore_n; n ∈ [0 . . . 3] Store reference into local
variable at index n

· · · , objectref ⇒ · · ·

336 An Introduction to Compiler Construction in a Java World

Mnemonic Operation Operand Stack

iconst_n; n ∈ [0 . . . 5] Push int constant n · · · ⇒ · · · , value
iconst_m1 Push int constant -1 · · · ⇒ · · · , value
lconst_n; n ∈ [0 . . . 1] Push long constant n · · · ⇒ · · · , value
fconst_n; n ∈ [0 . . . 2] Push float constant n · · · ⇒ · · · , value
dconst_n; n ∈ [0 . . . 1] Push double constant n · · · ⇒ · · · , value
aconst_null Push null · · · ⇒ · · · , null
wide12 Modifies the behavior an-

other instruction13 by ex-
tending local variable in-
dex by additional bytes

Same as modified instruction

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addNoArgInstruction(int opcode)

where opcode is the mnemonic of the instruction to be added.

Mnemonic Operation Operand Stack

iload Load int from local vari-
able at an index

· · · ⇒ · · · , value

lload Load long from local vari-
able at an index

· · · ⇒ · · · , value

fload Load float from local
variable at an index

· · · ⇒ · · · , value

dload Load double from local
variable at an index

· · · ⇒ · · · , value

aload Load reference from local
variable at an index

· · · ⇒ · · · , objectref

istore Store int into local vari-
able at an index

· · · , value⇒ · · ·

lstore Store long into local vari-
able at an index

· · · , value⇒ · · ·

fstore Store float into local
variable at an index

· · · , value⇒ · · ·

dstore Store double into local
variable at an index

· · · , value⇒ · · ·

astore Store reference into local
variable at an index

· · · , objectref ⇒ · · ·

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addOneArgInstruction(int opcode ,

int arg)

12The CLEmitter interface implicitly adds this instruction where necessary.
13Instructions that can be widened are iinc, iload, fload, aload, lload, dload, istore,

fstore, astore, lstore, dstore, and ret.

JVM, Class Files, and the CLEmitter 337

where opcode is the mnemonic of the instruction to be added, and arg is the index of the
local variable.

Mnemonic Operation Operand Stack

iinc Increment local variable
by constant

No change

The above instruction can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addIINCInstruction(int index ,

int constVal)

where index is the local variable index, and constVal is the constant by which to increment.

Mnemonic Operation Operand Stack

bipush Push byte · · · ⇒ · · · , value
sipush Push short · · · ⇒ · · · , value

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addOneArgInstruction(int opcode ,

int arg)

where opcode is the mnemonic of the instruction to be added, and arg is byte or short

value to push.
ldc15 instruction can be added to the code section of a method using one of the following

CLEmitter functions:

public void addLDCInstruction(int i)

public void addLDCInstruction(long l)

public void addLDCInstruction(float f)

public void addLDCInstruction(double d)

public void addLDCInstruction(String s)

where the argument is the type of the item.

D.5.11 Stack Instructions

Mnemonic Operation Operand Stack

pop Pop the top operand stack
value

· · · , value⇒ · · ·

pop2 Pop the top one or two
operand stack values

· · · , value2, value1⇒ · · ·

· · · , value⇒ · · ·
dup Duplicate the top operand

stack value
· · · , value⇒ · · · , value, value

15The CLEmitter interface implicitly adds ldc_w and ldc2_w instructions where necessary.

338 An Introduction to Compiler Construction in a Java World

Mnemonic Operation Operand Stack

dup_x1 Duplicate the top operand
stack value and insert two
values down

· · · , value2, value1⇒ · · · , value1, value2, value1

dup_x2 Duplicate the top operand
stack value and insert two
or three values down

· · · , value3, value2, value1 ⇒
· · · , value1, value3, value2, value1

· · · , value2, value1⇒ · · · , value1, value2, value1
dup2 Duplicate the top one or

two operand stack values
· · · , value2, value1 ⇒

· · · , value2, value1, value2, value1

· · · , value⇒ · · · , value, value
dup2_x1 Duplicate the top one or

two operand stack values
and insert two or three
values down

· · · , value3, value2, value1 ⇒
· · · , value2, value1, value3, value2, value1

· · · , value2, value1⇒ · · · , value1, value2, value1
dup2_x2 Duplicate the top one or

two operand stack values
and insert two, three, or
four values down

· · · , value4, value3, value2, value1 ⇒
· · · , value2, value1, value4, value3, value2, value1

· · · , value3, value2, value1 ⇒
· · · , value1, value3, value2, value1

· · · , value3, value2, value1 ⇒
· · · , value2, value1, value3, value2, value1

· · · , value2, value1⇒ · · · , value1, value2, value1
swap Swap the top two operand

stack values
· · · , value2, value1⇒ · · · , value1, value2

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addNoArgInstruction(int opcode)

where opcode is the mnemonic of the instruction to be added.

D.5.12 Other Instructions

Mnemonic Operation Operand Stack

nop Do nothing No change
athrow Throw exception or error · · · , objectref ⇒ · · · , objectref
monitorenter Enter monitor for object · · · , objectref ⇒ · · ·
monitorexit Exit monitor for object · · · , objectref ⇒ · · ·

The above instructions can be added to the code section of a method by sending the
CLEmitter instance the following message:

public void addNoArgInstruction(int opcode)

JVM, Class Files, and the CLEmitter 339

where opcode is the mnemonic of the instruction to be added.

D.6 Further Readings

The JVM Specification [Lindholm and Yellin, 1999] describes the JVM in detail. See Chapter
4 of the specification for a detailed description of the class file format. See Chapter 6
for detailed information about the format of each JVM instruction and the operation it
performs. See Chapter 7 in that text for hints on compiling various Java language constructs
to JVM byte code.

Appendix E

MIPS and the SPIM Simulator

E.1 Introduction

In addition to compiling j-- source programs to JVM byte code, the j-- compiler can also
produce native code for the MIPS architecture. The compiler does not actually produce
binary code that can be run on such a machine, but it produces human-readable assembly
code that can be executed by a program that simulates a MIPS machine. The advantage of
using a simulator is that one can easily debug the translated program, and does not need
access to an actual MIPS machine in order to run the program. The simulator that we will
use is called SPIM (MIPS spelled backward). Chapter 7 describes the MIPS architecture
and the SPIM simulator in some detail. In this appendix we describe how one can obtain
and run SPIM, compile j-- programs to SPIM code, and extend the JVM to SPIM translator
to convert more JVM instructions to SPIM code. The MIPS (and so, SPIM) instruction set
is described very nicely in [Larus, 2009].

E.2 Obtaining and Running SPIM

SPIM implements both a command-line and a graphical user interface (GUI). The GUI for
SPIM, called QtSpim, is developed using the Qt UI Framework1. Qt being cross-platform,
QtSpim will run on Windows, Linux, and Mac OS X.

One can download the compiled version of SPIM for Windows, Mac OS X,
or Debian-based (including Ubuntu) Linux from http://sourceforge.net/projects

/spimsimulator/files/, or build SPIM from source files obtained from http://

spimsimulator.svn.sourceforge.net/viewvc/spimsimulator/. The README file in the
source distribution documents the installation steps.

E.3 Compiling j-- Programs to SPIM Code

The j-- compiler supports the following command-line syntax:

Usage: j-- <options > <source file >

where possible options include:

-t Only tokenize input and print tokens to STDOUT

1A cross-platform application and UI framework with APIs for C++ programming and Qt Quick for
rapid UI creation.

341

342 An Introduction to Compiler Construction in a Java World

-p Only parse input and print AST to STDOUT

-pa Only parse and pre -analyze input and print AST to STDOUT

-a Only parse , pre -analyze , and analyze input and print AST to STDOUT

-s <naive|linear|graph > Generate SPIM code

-r <num > Max. physical registers (1-18) available for allocation; default =8

-d <dir > Specify where to place output files; default =.

In order to compile the j-- source program to SPIM code, one must specify the -s and the
optional -r switches along with appropriate arguments. The -s switch tells the compiler
that we want SPIM code for output and the associated argument specifies the register
allocation mechanism that must be used; the options are “naive” for a näıve round robin
allocation, “linear” for allocation using the linear scan algorithm, or “graph” for allocation
using the graph coloring algorithm. See Chapter 7 for a detailed description of these register
allocation algorithms. The optional -r switch forces the compiler to allocate only up to a
certain number of physical registers, specified as argument; the argument can take values
between 3 and 18, inclusive, for linear register allocation, and between 1 and 18, inclusive,
for the other two register allocation methods. If this switch is not specified, then a default
value of 8 is used. Registers are allocated starting at $t02.

For example, here is the command-line syntax for compiling the Factorial program to
SPIM code allocating up to 18 (the maximum) physical registers using the näıve allocation
procedure:

> $j/j--/bin/j-- -s naive -r 18 $j/j--/tests/spim/Factorial.java

The compiler first translates the source program to JVM byte code in memory, which
in turn is translated into SPIM code. The compiler prints to STDOUT the details of the
translation process for each method, such as the basic block structure with JVM instructions
represented as tuples, the high-level (HIR) instructions in each basic block, the low-level
(LIR) instructions for each basic block before allocation of physical registers to virtual
registers, the intervals and associated ranges for each register, and the LIR instructions
for each basic block after the physical registers have been allocated and spills have been
handled where needed. In addition, the compiler also produces a target .s file containing the
SPIM code (Factorial.s in above example) in the folder in which the command is run.
One can specify an alternate folder name for the target .s file using the -d command-line
switch.

Once the .s file has been produced, there are several ways to execute it using the SPIM
simulator. The simplest way is to run the following command:

> spim -file <input file >

where spim is the command-line version of the SPIM simulator. The -file argument spec-
ifies the name of the file with a .s extension that contains the SPIM code to execute. For
example, we can execute the Factorial.s file from above as

> spim -file Factorial.s

which produces the following output:

SPIM Version 8.0 of January 8, 2010

Copyright 1990 -2010 , James R. Larus.

All Rights Reserved.

See the file README for a full copyright notice.

Loaded: /usr/lib/spim/exceptions.s

5040

5040

2That is a total of up to eighteen registers ($t0, $t1, ..., $t9, $s0, ..., $s7) available for
allocation.

MIPS and the SPIM Simulator 343

Yet another way of running the .s file is to launch the SPIM command-line interpreter,
and at the (spim) prompt, use SPIM commands load and run to load and execute a .s
file. The quit() command exits the SPIM interpreter. For example, Factorial.s can be
executed as follows:

> spim

SPIM Version 8.0 of January 8, 2010

Copyright 1990 -2010 , James R. Larus.

All Rights Reserved.

See the file README for a full copyright notice.

Loaded: /usr/lib/spim/exceptions.s

(spim) load "Factorial.s"

(spim) run

5040

5040

(spim) quit()

>

For a complete list of all the SPIM commands that are supported by the command-line
interpreter, execute the command help at the (spim) prompt.

Finally, one can load a .s file into the QtSpim user interface and click the run button
to execute the program. QtSpim offers a convenient interface for inspecting values in regis-
ters and memory, and also facilitates easy debugging of programs by stepping through the
instructions, one at a time.

E.4 Extending the JVM-to-SPIM Translator

The j-- compiler translates only a limited number of the JVM instructions to SPIM code,
just enough to compile and run the four j-- programs (Factorial, GCD, Fibonacci, and
Formals) under $j/j--/tests/spim. Nevertheless, it provides sufficient machinery with
which one could build on to translate more instructions to SPIM code.

Unlike the j-- programs that are compiled for the JVM, the ones that target SPIM
cannot import any Java libraries. Any low-level library support for SPIM must be made
available in the form of SPIM run-time files: a .s file and a corresponding Java wrapper for
each library. For example, if j-- programs that target SPIM need to perform input/output
(IO) operations, it must import spim.SPIM, which is a Java wrapper for the SPIM.s file,
the run-time library for IO operations in SPIM. These two files can be found under $j/j

--/src/spim. The Java wrapper only needs to provide the function headers and not the
implementation, as it is only needed to make the compiler happy. The actual implementation
of the functions resides in the .s file. The compiler copies the run-time .s files verbatim to
the end of the compiled .s program. This saves us the trouble of loading the run-time files
separately into SPIM before loading the compiled .s program.

If one needs to extend the SPIM run-time to, say, support objects, strings, and arrays,
then for each one of them, a .s file and a Java wrapper must be implemented under $j/j

--/src/spim, and the following code in NEmitter.write() must be updated to copy the
new run-time libraries to the end of the compiled j-- program.

// Emit SPIM runtime code; just SPIM.s for now.

String [] libs = { "SPIM.s" };

out.printf ("# SPIM Runtime\n\n");

for (String lib : libs) {

...

344 An Introduction to Compiler Construction in a Java World

}

See Chapter 7 for hints on providing run-time representational support for objects,
strings, and arrays.

Converting additional JVM instructions, in addition to the ones that already are, into
SPIM code, involves the following steps:

• Adding/modifying the HIR representation: This is done in $j/j--/src/jminusminus

/NHIRInstruction.java. Each class that represents an HIR instruction inherits from
the base class NHIRInstruction. The additions will be to the constructor of the HIR
instruction; the inherited toLir() method that converts and returns the low-level
(LIR) representation; and the inherited toString() method that returns a string
representation for the HIR instruction.

• Adding/modifying the LIR representation: This is done in $j/j--/src/jminusminus

/NLIRInstruction.java. Each class representing an LIR instruction inherits from
the base class NLIRInstruction. The additions will be to the constructor of the LIR
instruction; the inherited allocatePhysicalRegisters() method that replaces ref-
erences to virtual registers in the LIR instruction with references to physical registers
and generates LIR spill instructions where needed; the toSpim() method that emits
SPIM instructions to an output stream (a .s file); and the toString() method that
returns a string representation for the LIR instruction.

Both NHIRInstruction and NLIRInstruction have plenty of code in place that can
serve as a guideline in implementing the above steps for the new JVM instructions being
translated to SPIM code.

E.5 Further Readings

The website [Larus, 2010] for the SPIM simulator provides a wealth of information about
the simulator, especially on how to obtain, compile, install, and run the simulator.

For a detailed description of the SPIM simulator, its memory usage, procedure call
convention, exceptions and interrupts, input and output, and the MIPS assembly language,
see [Larus, 2009].

Bibliography

[Aho et al., 2007] Aho, A., Lam, M., Sethi, R., and Ullman, J. (2007). Compilers: Princi-
ples, Techniques, and Tools. Prentice-Hall, Inc., Upper Saddle River, NJ.

[Aho et al., 1975] Aho, A. V., Johnson, S. C., and Ullman, J. D. (1975). Deterministic
parsing of ambiguous grammars. Communications of the ACM, 18(8):441–452.

[Allen and Kennedy, 2002] Allen, R. and Kennedy, K. (2002). Optimizing Compilers for
Modern Architectures: A Dependence-Based Approach. Morgan Kaufmann Publishers,
San Francisco, CA.

[Alpern et al., 2001] Alpern, B., Cocchi, A., Fink, S., and Grove, D. (2001). Efficient im-
plementation of Java interfaces: invokeinterface considered harmless. ACM SIGPLAN
Notices, 36(11):108–124.

[Appel, 2002] Appel, A. (2002). Modern Compiler Implementation in Java, Second Edition.
Cambridge University Press, New York, NY.

[Arthorne, 2004] Arthorne, J. (2004). Project builders and natures. Eclipse Corner Articles.
http://www.eclipse.org/articles/Article-Builders/builders.html.

[Aycock, 2003] Aycock, J. (2003). A brief history of just-in-time. ACM Computing Surveys,
35(2):97–113.

[Backus et al., 1963] Backus, J., Bauer, F., Green, J., Katz, C., McCarthy, J., Naur, P.,
Perlis, A., Rutishauser, H., Samelson, K., Vauquois, B., et al. (1963). Revised report on
the algorithmic language Algol 60. The Computer Journal, 5(4):349–367.

[Beck and Andres, 2004] Beck, K. and Andres, C. (2004). Extreme Programming Explained:
Embrace Change. Addison-Wesley Professional, Boston, MA.

[Bothner, 2003] Bothner, P. (2003). Compiling Java with GCJ. Linux Journal, 2003(105).

[Box and Sells, 2002] Box, D. and Sells, C. (2002). Essential .NET: The Common Language
Runtime, volume 1. Addison-Wesley Professional, Boston, MA.

[Bracha, 2004] Bracha, G. (2004). Generics in the Java programming language. Sun
Microsystems Journal, pages 1–23. http://java.sun.com/j2se/1.5/pdf/generics-

tutorial.pdf.

[Briggs et al., 1994] Briggs, P., Cooper, K., and Torczon, L. (1994). Improvements to graph
coloring register allocation. ACM Transactions on Programming Languages and Systems,
16(3):428–455.

[Burke and Fisher, 1987] Burke, M. and Fisher, G. (1987). A practical method for LR and
LL syntactic error diagnosis and recovery. ACM Transactions on Programming Languages
and Systems, 9(2):164–197.

345

346 Bibliography

[Chaitin et al., 1981] Chaitin, G., Auslander, M., Chandra, A., Cocke, J., Hopkins, M., and
Markstein, P. (1981). Register allocation via coloring. Computer Languages, 6(1):47–57.

[Chaitin, 1982] Chaitin, G. J. (1982). Register allocation & spilling via graph coloring.
ACM SIGPLAN Notices, 17(6):98–101.

[Clayberg and Rubel, 2009] Clayberg, E. and Rubel, D. (2009). Eclipse Plug-ins. Addison-
Wesley Professional, Boston, MA.

[Cooper and Dasgupta, 2006] Cooper, K. and Dasgupta, A. (2006). Tailoring graph-
coloring register allocation for runtime compilation. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 39–49. IEEE Computer Society.

[Cooper and Torczon, 2011] Cooper, K. and Torczon, L. (2011). Engineering a Compiler.
Morgan Kaufmann Publishing, San Francisco, CA.

[Copeland, 2007] Copeland, T. (2007). Generating Parsers with JavaCC. Centennial Books,
Alexandria, VA.

[Corliss and Lewis, 2007] Corliss, M. and Lewis, E. (2007). Bantam Java Runtime System
Manual. Bantam Project. http://www.bantamjava.com.

[D’Anjou, 2005] D’Anjou, J. (2005). The Java Developer’s Guide to Eclipse. Addison-
Wesley Professional, Boston, MA.

[Donnelly and Stallman, 2011] Donnelly, C. and Stallman, R. (2011). Bison, the YACC-
compatible Parser Generator. Free Software Foundation, Boston, MA, 2.5 edition.

[Eclipse, 2011] Eclipse (2011). Eclipse documentation. http://help.eclipse.org/indigo
/index.jsp.

[Fink and Qian, 2003] Fink, S. and Qian, F. (2003). Design, implementation and evaluation
of adaptive recompilation with on-stack replacement. In International Symposium on
Code Generation and Optimization, 2003, pages 241–252. IEEE Computer Society.

[Freeman et al., 2004] Freeman, E., Freeman, E., Sierra, K., and Bates, B. (2004). Head
First Design Patterns. O’Reilly Media, Sebastopol, CA.

[Gamma, 1995] Gamma, E. (1995). Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional, Boston, MA.

[George and Appel, 1996] George, L. and Appel, A. W. (1996). Iterated register coalescing.
ACM Transactions on Programming Languages and Systems, 18(3):300–324.

[GNU, 2011] GNU (2011). GNU Manual. Free Software Foundation, Boston, MA. http

://gcc.gnu.org/onlinedocs/gcc.

[GNU, 2012] GNU (2012). The GNU Compiler for the Java Programming Language. Free
Software Foundation, Boston, MA. http://gcc.gnu.org/java/.

[Goetz, 2004] Goetz, B. (2004). Java theory and practice: dynamic compilation and per-
formance measurement - The perils of benchmarking under dynamic compilation. IBM
DeveloperWorks. http://www.ibm.com/developerworks/library/j-jtp12214/.

[Gosling et al., 2005] Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005).
JavaTMLanguage Specification, Third Edition. Addison-Wesley Professional, Boston, MA.

Bibliography 347

[Gough and Gough, 2001] Gough, J. and Gough, K. (2001). Compiling for the .NET Com-
mon Language Runtime. Prentice Hall PTR, Upper Saddle River, NJ.

[Gries, 1971] Gries, D. (1971). Compiler Construction for Digital Computers. Wiley, New
York, NY.

[Hamilton, 2003] Hamilton, J. (2003). Language integration in the common language run-
time. ACM SIGPLAN Notices, 38(2):19–28.

[Hopcroft and Ullman, 1969] Hopcroft, J. and Ullman, J. (1969). Formal Languages and
their Relation to Automata. Addison-Wesley Longman Publishing, Reading, MA.

[IEEE, 2004] IEEE (2004). IEEE Standard 1003.1, Chapter 9, “Regular Expressions”. http
://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html.

[Jia, 2003] Jia, X. (2003). Object-Oriented Software Development Using Java, Second Edi-
tion. Addison Wesley, Reading, MA.

[Johnson, 1975] Johnson, S. (1975). YACC: Yet Another Compiler-Compiler. Bell Labora-
tories, Murray Hill, NJ.

[Jones and Lins, 1996] Jones, R. and Lins, R. (1996). Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. Wiley, New York, NY.

[Kazi et al., 2000] Kazi, I. H., Chen, H. H., Stanley, B., and Lilja, D. J. (2000). Techniques
for obtaining high performance in Java programs. ACM Computing Surveys, 32(3):213–
240.

[Knuth, 1968] Knuth, D. (1968). Semantics of context-free languages. Theory of Computing
Systems, 2(2):127–145.

[Knuth, 1971a] Knuth, D. (1971a). An empirical study of FORTRAN programs. Software:
Practice and Experience, 1(2):105–133.

[Knuth, 1971b] Knuth, D. (1971b). Top-down syntax analysis. Acta Informatica, 1(2):79–
110.

[Kommalapati and Christian, 2005] Kommalapati, H. and Christian, T. (2005). JIT and
Run-Drill into .NET Framework Internals to See How the CLR Creates Runtime Objects.
MSDN Magazine, pages 52–63.

[Kotzmann et al., 2008] Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez, T., Rus-
sell, K., and Cox, D. (2008). Design of the Java HotSpot client compiler for Java 6. ACM
Transactions on Architecture and Code Optimization (TACO), 5(1).

[Larus, 2009] Larus, J. (2009). Assemblers, linkers, and the SPIM simulator. Appendix B of
Hennessy and Patterson’s Computer Organization and Design: The Hardware/Software
Interface. http://pages.cs.wisc.edu/~larus/HP_AppA.pdf.

[Larus, 2010] Larus, J. (2010). SPIM: A MIPS32 Simulator. http://spimsimulator.

sourceforge.net/.

[Lesk and Schmidt, 1975] Lesk, M. and Schmidt, E. (1975). Lex — A Lexical Analyzer
Generator. Technical report, Bell Laboratories, Murray Hill, NJ.

[Lewis et al., 1976] Lewis, P., Rosenkrantz, D., and Stearns, R. (1976). Compiler Design
Theory. Addison-Wesley, Reading, MA.

348 Bibliography

[Lewis and Stearns, 1968] Lewis, P. and Stearns, R. (1968). Syntax-directed transduction.
Journal of the ACM, 15(3):465–488.

[Liang and Bracha, 1998] Liang, S. and Bracha, G. (1998). Dynamic class loading in the
Java virtual machine. ACM SIGPLAN Notices, 33(10):36–44.

[Lindholm and Yellin, 1999] Lindholm, T. and Yellin, F. (1999). Java Virtual Machine
Specification. Addison-Wesley Longman Publishing, Reading, MA.

[Link and Fröhlich, 2003] Link, J. and Fröhlich, P. (2003). Unit Testing in Java: How Tests
Drive the Code. Morgan Kaufmann Publishers, San Francisco, CA.

[Linz, 2011] Linz, P. (2011). An Introduction to Formal Languages and Automata. Jones
& Bartlett Publishers, Burlington, MA.

[Microsoft, 2012] Microsoft (2012). .NET Home Page. http://www.microsoft.com/net.

[Miller and Ragsdale, 2004] Miller, J. and Ragsdale, S. (2004). The Common Language
Infrastructure Annotated Standard. Addison-Wesley Professional, Boston, MA.

[Morgan, 1998] Morgan, R. (1998). Building an Optimizing Compiler. Elsevier Science &
Technology Books, Burlington, MA.

[Mössenböck, 2000] Mössenböck, H. (2000). Adding static single assignment form and a
graph coloring register allocator to the Java HotSpot client compiler. Technical report,
Technical Report 15, Institute for Practical Computer Science, Johannes Kepler Univer-
sity Linz.

[Muchnick, 1997] Muchnick, S. S. (1997). Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishing, San Francisco, CA.

[Norvell, 2011] Norvell, T. S. (2011). The JavaCC FAQ. http://www.engr.mun.ca/~theo
/JavaCC-FAQ/.

[Oracle, 2010] Oracle (2010). The Java HotSpot Performance Engine Architecture.
Whitepaper. http://www.oracle.com/technetwork/java/whitepaper-135217.html.

[Paleczny et al., 2001] Paleczny, M., Vick, C., and Click, C. (2001). The Java
HotSpotTMserver compiler. In Proceedings of the 2001 Symposium on Java Virtual Ma-
chine Research and Technology Symposium – Volume 1, JVM’01, Berkeley, CA. USENIX
Association.

[Paxton, 2008] Paxton, V. (2008). FLex – The Fast Lexical Analyzer. http://flex.

sourceforge.net/.

[Poletto and Sarkar, 1999] Poletto, M. and Sarkar, V. (1999). Linear scan register alloca-
tion. ACM Transactions on Programming Language Systems, 21(5):895–913.

[Rainsberger and Stirling, 2005] Rainsberger, J. and Stirling, S. (2005). JUnit Recipes.
Manning, Shelter Island, NY.

[Richter, 2005] Richter, J. (2005). .NET Questions regarding JIT compiler/strong-
naming security. Blog. http://www.wintellect.com/cs/blogs/jeffreyr/archive

/2005/07/25/net-questions-regarding-jit-compiler-strong-naming-security.

aspx.

Bibliography 349

[Richter, 2010] Richter, J. (2010). CLR Via C#, Third Edition. Microsoft Press, Portland,
OR.

[Richter and Balena, 2002] Richter, J. and Balena, F. (2002). Applied Microsoft .NET
Framework Programming, volume 1. Microsoft Press, Portland, OR.

[Rivieres and Beaton, 2006] Rivieres, J. and Beaton, W. (2006). Eclipse platform technical
overview. http://www.eclipse.org/.

[Sethi, 1973] Sethi, R. (1973). Complete register allocation problems. In Proceedings of the
Fifth Annual ACM Symposium on Theory of Computing, STOC ’73, pages 182–195, New
York, NY. ACM.

[Shudo, 2004] Shudo, K. (2004). Performance Comparison of Java/.NET Runtimes. http

://www.shudo.net/jit/perf.

[Sipser, 2006] Sipser, M. (2006). Introduction to the Theory of Computation. Thomson
Course Technology, Tampa, FL.

[Slonneger and Kurtz, 1995] Slonneger, K. and Kurtz, B. (1995). Formal Syntax and Se-
mantics of Programming Languages, volume 1. Addison-Wesley, Reading, MA.

[Strachey, 2000] Strachey, C. (2000). Fundamental concepts in programming languages.
Higher-Order and Symbolic Computation, 13(1):11–49.

[Traub et al., 1998] Traub, O., Holloway, G., and Smith, M. D. (1998). Quality and speed
in linear-scan register allocation. ACM SIGPLAN Notices, 33(5):142–151.

[Turner, 1977] Turner, D. (1977). Error diagnosis and recovery in one pass compilers. In-
formation Processing Letters, 6(4):113–115.

[Turner, 1979] Turner, D. (1979). A new implementation technique for applicative lan-
guages. Software: Practice and Experience, 9(1):31–49.

[van der Spek et al., 2005] van der Spek, P., Plat, N., and Pronk, C. (2005). Syntax error
repair for a Java-based parser generator. ACM SIGPLAN Notices, 40(4):47–50.

[Waite and Goos, 1984] Waite, W. and Goos, G. (1984). Compiler Construction. Springer-
Verlag, New York, NY.

[Whittaker, 2003] Whittaker, J. (2003). How to Break Software. Addison Wesley Longman
Publishing, Reading, MA.

[Wilson and Kesselman, 2000] Wilson, S. and Kesselman, J. (2000). Java Platform Perfor-
mance: Strategies and Tactics. Prentice Hall, Upper Saddle River, NJ.

[Wimmer, 2004] Wimmer, C. (2004). Linear scan register allocation for the Java
HotSpotTMclient compiler. Master’s thesis, Johannes Kepler University Linz.

[Wimmer and Franz, 2010] Wimmer, C. and Franz, M. (2010). Linear scan register alloca-
tion on SSA form. In Proceedings of the 8th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, pages 170–179, New York, NY. ACM.

K12801

Introduction to

Compiler Construction

in a Java World

Introduction to C
om

piler
C

onstruction in a Java W
orld Bill Campbell

Swami Iyer
Bahar Akbal-DelibasC

am
pbell

Iyer
A

kbal-D
elibas

˛

˛

Immersing readers in
Java and the Java Vir-
tual Machine (JVM), Introduc-
tion to Compiler Construction in a
Java World enables a deep understanding of
the Java programming language and its implementation.
The text focuses on design, organization, and testing, helping readers
learn good software engineering skills and become better programmers.

The book covers all of the standard compiler topics, including lexical analysis, parsing,
abstract syntax trees, semantic analysis, code generation, and register allocation.
The authors also demonstrate how JVM code can be translated to a register machine,
specifically the MIPS architecture. In addition, they discuss recent strategies,
such as just-in-time compiling and hotspot compiling, and present an overview of
leading commercial compilers. Each chapter includes a mix of written exercises and
programming projects.

Features
•	 Presents a hands-on introduction to compiler construction, Java technology, and

software engineering principles
•	 Teaches how to fit code into existing projects
•	 Describes a JVM-to-MIPS code translator, along with optimization techniques
•	 Discusses well-known compilers from Oracle, IBM, and Microsoft
•	 Provides Java code on a supplementary website

By working with and extending a real functional compiler, readers develop a hands-
on appreciation of how compilers work, how to write compilers, and how the Java
language behaves. They also get invaluable practice working with a non-trivial Java
program of more than 30,000 lines of code.

Computer Science/Computer Engineering/Computing

K12801_Cover.indd 1 10/12/12 9:53 AM

 ~StormRG~

	Front Cover
	Dedication
	Contents
	List of Figures
	Preface
	About the Authors
	Acknowledgments
	Chapter 1: Compilation
	Chapter 2: Lexical Analysis
	Chapter 3: P arsing
	Chapter 4: Type Checking
	Chapter 5: JVM Code Generation
	Chapter 6: Translating JVM Code to MIPS Code
	Chapter 7: Register Allo cation
	Chapter 8: Celebrity Compilers
	Appendix A: Setting Up and Running
	Appendix B: j-- Language
	Appendix C: Java Syntax
	Appendix D: JVM, Class Files, and the CLEmitter
	Appendix E: MIPS and the SPIM Sim ulator
	Bibliography
	Back Cover

