理论物理专题讲义

王虹宇 鞍山师范学院物理系

2011年6月23日

第一章	分析力]学基础	7
1.1	力学的]变分原理	7
1.2	正则形	《式的运动方程	9
	1.2.1	守恒定律和正则变量	9
	1.2.2	正则形式	9
	1.2.3	泊松括号	10
	1.2.4	相空间和相轨迹	10
1.3	小振动	1和分子振动问题	10
htter = = = ===	티구니		
第二章	重子ス]学的基础结构	13
2.1	线性代	数和线性空间原理	13
	2.1.1	概述	13
	2.1.2	Dirac符号	14
	2.1.3	特征值和特征向量	16
2.2	量子力	J学的基本原理和表象变换	16
2.3	本征值	[问题的严格解	19
	2.3.1	谐振子问题	20
	2.3.2	角动量问题	21
2.4	坐标空	【间表示和一些严格可解问题	22
	2.4.1	谐振子的波函数	24
	2.4.2	一维势阱问题	24
	2.4.3	平面转子	25
	2.4.4	轨道角动量	26
	2.4.5	箱归一化和δ函数归一化	26

目录

E	13	ł

		2.4.6 中心力场中的散射:分波法	. 27
	2.5	对称性	. 28
		2.5.1 连续对称性	. 28
		2.5.2 分立对称性	. 29
		2.5.3 应用	. 29
	2.6	定态微扰法	. 30
		2.6.1 非简并情况	. 30
		2.6.2 简并情况	. 30
		2.6.3 散射的波恩近似	. 33
	2.7	角动量耦合	. 34
	2.8	绘景和演化问题	. 36
		2.8.1 演化算符	. 36
		2.8.2 绘景变换	. 37
		2.8.3 含时微扰论	. 40
		2.8.4 绝热和突发近似	. 41
	2.9	电磁场中的粒子	. 41
		2.9.1 电磁场中的无自旋粒子	. 41
		2.9.2 电子的自旋磁矩	. 42
		2.9.3 阿哈郎诺夫-玻姆效应 (A-B effect)	. 43
	2.10	电磁场的量子化和爱因斯坦系数	. 44
		2.10.1 半经典理论: 吸收过程	. 44
		2.10.2 电磁场量子化:光子	. 45
		2.10.3 发射过程和爱因斯坦系数	. 46
	2.11	全同粒子问题	. 47
		2.11.1 两粒子的波函数	. 48
		2.11.2 多粒子体系的波函数	. 48
第	三章	统计力学基础	51
	3.1	· · · · · · · · · · · · · · · · · · ·	. 51
	3.2	正则系综和平衡热力学原理	. 52
	3.3	从系综问题到独立粒子分布	. 53
		3.3.1 经典比热理论	. 54
	3.4	系综方法的应用	. 55
		3.4.1 非理想气体的一阶近似	. 55

目录

	3.4.2	Ising模型	55
3.5	量子统	·计法	56
	3.5.1	巨正则系综	56
	3.5.2	玻色统计和费米统计	56
	3.5.3	理想气体的状态方程	57
3.6	量子统	T计法的应用	57
	3.6.1	黑体辐射	57
	3.6.2	德拜比热理论	57
	3.6.3	玻色-爱因斯坦凝聚	58
	3.6.4	费米气体	58
竺Ⅲ主	<u></u>掛砕す	る <i>對</i>	61
 	10 // 15	1,XX	•••
第四早 4.1	勒让德	••• 多项式	61
第四早 4.1	书 冰 ē 勒 让 德 4.1.1	選多项式 按照本征函数的展开	61 61
弗四早 4.1	特別電勒让德4.1.14.1.2	多项式	61 61 61
寿四早 4.1	勒让德 4.1.1 4.1.2 4.1.3	多项式	61 61 61 63
东四早 4.1	 初述德 4.1.1 4.1.2 4.1.3 4.1.4 	多项式	 61 61 61 61 63 64
 弗四卓 4.1 4.2	勒让德 4.1.1 4.1.2 4.1.3 4.1.4 球谐函	多项式	 61 61 61 61 63 64 64
东四卓 4.1 4.2 4.3	勒让德 4.1.1 4.1.2 4.1.3 4.1.4 球谐函 贝赛尔	多项式 按照本征函数的展开 方程式 按照本征函数的展开 正交多项式 ····································	 61 61 61 63 64 64 65
东四卓 4.1 4.2 4.3	勒让德 4.1.1 4.1.2 4.1.3 4.1.4 球谐函 贝赛尔 4.3.1	多项式	61 61 61 63 64 64 65 65
东四卓 4.1 4.2 4.3	勒让德 4.1.1 4.1.2 4.1.3 4.1.4 球谐函 贝赛尔 4.3.1 4.3.2	多项式 按照本征函数的展开 正交多项式 正交多项式 多极矩展开和勒让德方程式 递推关系 ·	61 61 63 64 64 65 65 66
东四卓 4.1 4.2 4.3	 勒让德 4.1.1 4.1.2 4.1.3 4.1.4 球谐逐 贝赛尔 4.3.1 4.3.2 4.3.3 	多项式 按照本征函数的展开 正交多项式 多极矩展开和勒让德方程式 递推关系 勤 函数 贝赛尔函数和诺依曼函数 生成函数和展开公式 柱坐标方程的解	61 61 63 64 64 65 65 66 66

第一章 分析力学基础

1.1 力学的变分原理

利用变分原理的形式,可以将力学直到整个 经典物理的基本方程写成某种统一的形式。此外, 变分技巧的使用,使得处理曲线坐标和约束问题 都更加简单,其基本概念是引入作用量描述。

考虑一个系统,列出其所有自由度的描述量,称之为广义坐标。它们不必是直角坐标形式,在 定义了广义坐标之后,可以引入拉格郎日量

$$L = T - U = L(q, \dot{q}, t)$$

其中T和U分别是动能和势能。

假设系统初始时刻 t_1 处于位形 q_1 ,在末时 刻 t_2 演化为位形 q_2 ,中间过程将是一组路径: $q = q(t), \dot{q} = \dot{q}(t)$ 。那么,我们有力学的哈密 顿变分原理(最小作用量原理):

在一切起点和终点固定的可能路径中,真实路径q = q(t)将使得作用量

$$S = \int_{t_1}^{t_2} L(q, \dot{q}, t) dt$$

取最小值。

例如,考虑自由质点的运动,也就是其中*U* = 0。这样, $L = \frac{1}{2}m\dot{z}^2$,假设起点和终点分别是q(0) = 0,q(T) = x。注意到 $\int_0^T \dot{q}^2 dt = \dot{q}^2 T \ge (\dot{q})^2 T$,其中等式仅当 \dot{q} 是个常数的时候才成立,因此知道真实运动一定是匀速直线运动。

我们引入一般的变分方法处理这个问题。注 意到在现在的问题中,q(t)是个函数,也就是S是 个"函数的函数",亦即泛函。现在在q(t)上加上 一个无穷小函数 $\delta q(t)$,那么S也要变成S + δ S,现 在我们需要的是把 δ S用类似标准微分学的方法表 达出来。

处理这个问题最简单和清晰的方法是 将 δq 形式地表达成一组本征函数的组合, $\delta q = \sum_i \epsilon_i \eta_i(x)$,取其中的 ϵ_i 是一组小常数,然后可以 在 $\epsilon_i \rightarrow 0$ 的极限下,把 δS 写成 ϵ_i 的级数展开。

不过,为了处理的简便,我们用写起来比较简洁(同时也是比较通用的方法)来简化这种表述。我们可以注意到,其实ϵ_i只是一个形式因子,我们需要的其实只是按照δq的阶次展开,我们只要写出展开形式是什么(而且实际上,只需要一阶展开形式)。

我们首先不考虑动能项,看看纯粹坐标函数 部分导致的积分会是什么样子,例如

$$\int_{t_1}^{t_2} f(q(t) + \delta q(t)) dt = \int_{t_1}^{t_2} f(q(t)) dt$$
$$+ \int_{t_1}^{t_2} f'(q) \delta q dt + \int_{t_1}^{t_2} f''(q) \delta q^2 dt + \dots$$
(1.1)

从而,我们可以把 δS 写成 $\delta S^1 + \delta S^2 + ...,$ 其中

$$\delta^1 S = \int_{t_1}^{t_2} f'(q) \delta q(t) dt$$

第一章 分析力学基础

$$\delta^2 S = \int_{t_1}^{t_2} f''(q) \delta q(t)^2 dt$$

如果我们把 δq 看做一个"无穷小量",那么上 述两项就是和 δq的一次和二次方相当。从微分学 的类似经验中我们可以猜到,上述S取极值的条 件, 是 δ^1S 为零。(如果要确定极大值还是极小值, 显然需要的是确定 $\delta^2 S$ 的符号,但我们暂时不需要 考虑这个问题)。

问题是 δq 基本的是个任意函数,除了我们知 道它足够小(如何定义一个函数足够小?这是一 个数学问题,但我们暂且不管他)。要使得δ¹S对 于任何 δq 都是零,唯一的可能就是积分中的"核" $f'(q) = \frac{\partial f(q)}{\partial q} = 0_{\circ}$

为了简便起见,我们以后直接把δ¹S记为δS。 前面的计算中没有考虑动能项,我们现在需要连 同动能项,把S的一阶变化(称为"一阶变分") 写成类似上面的积分形式:

$$\delta S = \delta \int_{t_1}^{t_2} L(q, \dot{q}, t) dt = \int_{t_1}^{t_2} \phi(\dots) \delta q dt$$

展开 δS 的表达式,就是

$$\delta S = \int_{t_1}^{t_2} L(q + \delta q, \dot{q} + \delta \dot{q}, t) dt - \int_{t_1}^{t_2} L(q, \dot{q}, t) dt$$
$$= \int_{t_1}^{t_2} \left(\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right) dt$$
(1.2)

利用关系式 $\delta \dot{q} = d \frac{\delta q}{dt}$,分部积分后上式变成

$$\delta S = \left[\frac{\partial L}{\partial \dot{q}} \delta q\right]_{t_1}^{t_2} + \int_{t_1}^{t_2} \left(\frac{\partial L}{\partial q} - \frac{d}{dt}\frac{\partial L}{\partial \dot{q}}\right) \delta q dt = 0$$

样, δq一阶项系数为0的条件给出一个方程

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0$$

这个方程称为拉格郎日运动方程。

一个有用的定义是所谓"泛函导数"。我们可 以注意到S是"函数的函数",也就是泛函。一般 来说我们可以把一个泛函写成

$$F[x(t)] = \int_{t_1}^{t_2} f(x, \dot{x}, t) dt$$

而它的变分可以写成

$$\delta F = \int_{t_1}^{t_2} g(x, \dot{x}, \ddot{x}, t) dt$$

那么我们说F的"泛函导数"为

$$\frac{\delta F[x(t)]}{\delta x(t)} = g$$

于是,对于任何一个力学系统,确定运动规 律的问题归结为写出拉格郎日量 $L(q, \dot{q}, t)$,写出这 个量后,就可以写出运动方程。

除了上面的哈密顿原理,力学中还存在很多 其他的变分原理,它们彼此之间通常是等价的。 一个 等价也很有意义的原理是莫培督变分原理。

为什么会有这些变分原理?考虑一个质点在 势场中的运动, L = T - U, 在两点距离够近的时 候,U可以看成常数,那么L = -E + 2T = -E + p * v, 因此dS = -Edt + pdx。在量子力学中,这是沿对 应方向波函数相位的改变 $d\phi = kx - \omega t$,所以,在 量子力学看来, 粒子是沿波函数相位变化最慢的 方向运动。

一个类似的概念是光学中的Fermat最小光程 由于路径的两个端点是固定的,原理:几何光学路径是所有可能的传播路径中光 $\delta q(t_1)$ 和 $\delta q(t_1)$ 都是0, 所以后面的积分也是0。这 程最小的。这是由于波动的传递是穿过空间中一 切可能的路线, 每条路线提供差不多的贡献, 但

1.2 正则形式的运动方程

在大部分路径上,由于相位极度剧烈的变化,光 学贡献抵消,只有在极值路径附近,波动叠加才 给出有价值的贡献。

同样,在直观上,可以认为粒子实际上穿过 了空间一切可能的轨道,然而在经典条件下,只 有极值路径附近的轨道才提供有价值的贡献,因 此粒子看上去是沿唯一的轨道运行。一旦作用 量S变得和普朗克常数可以比拟,那么S的变化不 够剧烈,其他路径处的贡献就不能完美抵消,于 是出现了波动性。

1.2 正则形式的运动方程

1.2.1 守恒定律和正则变量

考虑拉格郎日量 $L(q, \dot{q}, t)$ 。假设这个体系具有 平移不变性,也就是在做 $q - > q + \epsilon$ 的变换的时候 系统的拉格郎日量不变,那么在这个变易下应该 有 $\delta L = \sum_{\alpha} \frac{\partial L}{\partial q_{\alpha}} \epsilon_{\alpha} = 0$,也就是 $\frac{\partial L}{\partial q_{\alpha}} = 0$,利用拉格郎 日运动方程得出

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{\alpha}} = 0$$

这就是说,当系统按照拉格郎日运动方程变 化的时候,物理量 $\frac{\partial L}{\partial q_a}$ 是个守恒量。如果 q_a 是普通 坐标x,y,z之一,这个量就是对应的动量,所以在 一般情况下,我们称这个量为和 q_a 共轭的广义动 量 p_{α} 。

和这个量的导出类似,我们可以完全相同的 得到关于时间的守恒定律。假定*L* = *L*(*q*,*q*)不显含 时间,那么

$$\frac{d}{dt}L = \sum_{i} \frac{\partial L}{\partial q_{i}} \frac{dq_{i}}{dt} + \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \frac{d\dot{q}_{i}}{dt}$$

运用拉格郎日运动方程,这个表达式就是

$$\frac{d}{dt}L = \sum_{i} \frac{d}{dt} (\frac{\partial L}{\partial \dot{q}_{i}})\dot{q} + \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}}\ddot{q}_{i}$$
$$= \frac{d}{dt} \sum_{i} p_{i}\dot{q}_{i}$$
(1.3)

因此得到量∑*i piq̀i* – *L*是个守恒量,在前面普 通坐标形式下,这个量就是能量,所以我们称这 个量为能量,也叫哈密顿量。

1.2.2 正则形式

拉格郎日形式中, 描述力学系统的参量 是q,q。(这是什么意思?简单的说, 就是q的变 化率是q,q的变化率则是q的函数, 它们形成了一 组自治微分方程系统。) 很多情况下,使用正则坐 标和正则动量q,p更加方便。为此我们把运动方程 变换到使用上述两个参量的形式。这种变换方法 称为勒让德变换。

变换的基本概念如下:使用拉格郎日形式的 时候,系统由拉格郎日函数描述,它的全微分是

$$dL = \sum_{i} \frac{\partial L}{\partial q_{i}} dq_{i} + \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} d\dot{q}_{i}$$

也就是分别包含dq和q。由于dL是个全微分, 所以L函数在q,q平面上可以构成一个 单值函数, 只要给定了q和q的值就可以确定L的值,也就是确 定了相点。另外一方面,多元函数的交叉 导数的 特性正好给定了运动方程。

要把这个形式变换到p,q描述,就是要构造一个函数,它的全微分由dq和 dp构成。由于上式的第二项 就是 $\sum_i p_i dq_i$,所以这可以通过在两边减去 $d\sum_i p_i q_i$ 来完成,也就是得到

$$dH = d(\sum_{i} p_{i}q_{i} - L) = -\sum_{i} \dot{p}_{i}dq_{i} + \sum_{i} \dot{q}_{i}dp_{i}$$

个全微分形式我们马上得出一对方程:

$$\dot{q}_{i} = \frac{\partial H}{\partial p_{i}}$$
(1.4)
$$\dot{p}_{i} = -\frac{\partial H}{\partial q_{i}}$$
(1.5)

这组方程称为正则运动方程,而这种用正则坐标 和正则动量描述问题的方式称为力学的正则形 中包围的面积。 式。

1.2.3 泊松括号

考虑任何一个力学量f(p,q,t),其时间演化可 以使用全导数算出

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \left(\frac{\partial f}{\partial q}\frac{\partial H}{\partial p} - \frac{\partial f}{\partial p}\frac{\partial H}{\partial q}\right)$$

定义两个量的泊松括号为

$$\{A, B\} = \frac{\partial A}{\partial p} \frac{\partial B}{\partial q} - \frac{\partial A}{\partial q} \frac{\partial B}{\partial p}$$

得出

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \{H, f\}$$

容易看出只要把泊松括号换成量子力学的对 易关系:

$$\{A, B\} \rightarrow \frac{1}{i\hbar}[A, B]$$

就可以从经典力学过渡到量子力学(海森堡绘 景)。历史上,这一规则被Dirac用于建立量子力学 的形式体系。

1.2.4 相空间和相轨迹

注意H需要用p来取代原来用q表示的部分。从这 就是p和q的演化过程。这样如果将p和q作为坐标, 就形成一个6N维空间,称为相空间。而系统的演 化过程就是代表点在空间运动形成一条曲线的过 程。这样的曲线称为相轨迹。

> 容易看到相轨迹必然是永远不会和自身相交 的。

【例】求出一维谐振子的相空间轨迹及轨迹

小振动和分子振动问题 1.3

回到拉格郎日形式,将三个质点用两个弹簧 连接在一起,其势函数为

$$U(x_1, x_2, x_3) = \frac{1}{2}k(x_1 - x_2)^2 + \frac{1}{2}k(x_2 - x_3)^2$$

动能是

$$T = \frac{1}{2}m\{\dot{x}_1^2 + \dot{x}_2^2 + \dot{x}_1^2\}$$

因此不难写出拉格郎日方程是

$$m\ddot{x}_{1} = -k(x_{1} - x_{2})$$

$$m\ddot{x}_{2} = -k(2x_{2} - x_{1} - x_{3})$$

$$m\ddot{x}_{1} = k(x_{2} - x_{3}))$$

这是一个常系数线性常微分方程组,令xi = *Re*(*A_i* exp{*i*ω*t*}),代入后得到

$$kA_1 - kA_2 + 0A_3 = m\omega^2 A_1$$
$$-kA_1 + 2kA_2 - kA_3 = m\omega^2 A_2$$
$$0A_1 - kA_2 + kA_3 = m\omega^2 A_3$$

这个方程有非零解的条件是系数行列式为0,于 是得到三个可能的解即 $\omega = \sqrt{\frac{k}{m}}, 0, 3\sqrt{\frac{k}{m}}$ 。其中, 由于哈密顿方程是个一阶自治微分方程组, $\omega = 0$ 是一个退化的状态, 代表三个质点以完全 给出了p,q就确定了系统的一个状态,系统的演化 相同的方式运动,如果我们加上 $\sum m_i q_i = 0$ 的约

束(质心位于原点),就可以消除这个模式。 其他两个解分别代表了不同的振动方式,分别是 $A_1 = A_3 = -\frac{A_2}{2} \pi A_1 = -A_3, A_2 = 0$ 。这两个模式是相互独立的,称为简正模式。

一般情况下,对于一个处于平衡点附近的 质点系,我们首先用上述的质心坐标消除掉整 体平动,只考虑剩下的坐标 q_i ,在平衡点处必然 有 $\frac{d}{dq_i}U(q_1^0, q_2^0, ..., q_n^0) = 0$ 。令 $q_i = q_i^0 + \tilde{q}_i$,使用泰勒展 开保留到第二阶,于是

$$U = U_0 + \sum_{i,j} k_{ij} \tilde{q}_i \tilde{q}_j$$

此外,动能项是

$$T = \sum_{i,j} m_{i,j} \dot{\tilde{q}}_i \dot{\tilde{q}}_j$$

所以得到了运动方程

$$\sum_{j} m_{ij} \ddot{\tilde{q}}_{j} + \sum_{j} k_{ij} \tilde{q}_{j} = 0$$

如上设

$$\tilde{q}_j = Re[A_j \exp(i\omega t)]$$

于是上述方程成为一组线性方程组,得到关于ω的 久期方程。这样的方程有若干个解,其个数等于 方程中独立坐标的个数,而每个ω_k都对应一种独 立的振动模式,这些模式统称为简正模式。

上述情况假定了质点系的平衡点是稳定的, 于是每个解都是近似的简谐振动。如果上述的解 中ω不是实数, 那么振幅就不再是常数,从而系 统的平衡不会稳定。

【例题】考虑带阻尼的谐振子,研究其运动。

第一章 分析力学基础

第二章 量子力学的基础结构

2.1 线性代数和线性空间原理

2.1.1 概述

量子力学具有很多种表达形式,其中最简单的是基于线性空间的Dirac表达法。这个表达形式的基础是向量和算子的概念。首先我们引入向量的概念。在线性代数中学过普通的n维向量,它们就是一些同样维数的有序数组 $\xi = \{x_1, x_2, ..., x_n\}$ 。这些数组之间定义加法,数乘运算后,就称为向量。向量的这些计算必须满足条件:

(1)向量的和/差都是向量。

(2)向量和数的乘积是向量。

(3)向量的加法满足交换律,数乘和加法之间 满足分配律。

我们对这个概念进行推广:凡在一组对象间 定义了加法和数乘运算,且运算满足上述关系的, 这些对象就称为向量。对于两个向量集合,我们 可以在其中定义一一映射,使得它们的运算行为 可以被映射完全对应起来,这样的集合在我们的 观点下是完全相同的,只要研究其中任何一个的 性质就了解了另一个的性质。

考虑向量集合V,我们要求V满足下列条件: (4)存在零矢量**d**。

(5)对于任何一个矢量d存在-d使得 $d + (-d) = \vec{0}$ 。

(6)封闭性:任何两个矢量的和,差,任何矢

量的倍数都在这个集合之内;

这样的集合V称为向量空间。

进一步地可以定义内积(标量积)运算, 即(ψ , ϕ) = c,c是一个数。我们要求内积满足下列 条件:

(7)向量的内积是一个复数。

(8)向量和自身的内积是非负的,且仅当向量 本身为0的时候才为0.这个数的平方根称为向量的 长度,记为|ø|。

(9)向量的内积满足自反性质: $(\psi, \phi) =$ $(\phi, \psi)^*$ 和分配律 $(\phi, \psi_1 + \psi_2) = (\phi, \psi_1) + (\phi, \psi_2),$ $(\phi_1 + \phi_2, \psi) = (\phi_1, \psi) + (\phi_2, \psi).$

 $(10)((\psi, a\phi) = (\psi, \phi)a,相应地(a\psi, \phi) = a^*(\psi, \phi)$

定义了内积运算的向量空间称为内积空间。

最后,在很多情况下需要使用无穷级数和极限进行计算,这就要引入完备性概念。首先我们需要定义柯西收敛,即将普通数列的 $\delta - N$ 收敛概念推广到向量序列:当N趋于无穷大的时候任何 $|\phi_{N+m} - \phi_N| < \delta$, δ 是任意小的正数,那么这个序列是收敛的。所谓完备性是说

(11)完备性:任何柯西收敛序列的极限也在本 集合中。

满足完备性条件的内积空间称为希尔伯特空间。例如,所有N维矢量的全体构成了一个希尔伯特空间。技术上,所有平方可积函数的全体构成 一个内积空间,但不是希尔伯特空间。

如同在研究解析几何问题中一样,我们引入

么这两个向量正交(垂直)。此外,如果我们有一 矢乘在一起的时候,就会产生出一个复数。 组向量 $\psi_1, \psi_2, ..., \psi_n$,我们可以求解方程 $a_1\psi_1 + a_2\psi_2 +$... + $a_n\psi_n = 0$,若此方程的唯一解是 $a_1 = a_2 = ... =$ $a_n = 0$,这些向量称为线性无关的,否则称为线性 相关的。

组 ψ_i ,若V中任何一个向量都能用 ψ 表示出来(e.g. $\phi = \sum a_i \psi_i$), 那么这组向量组 ψ_i 称为一个完全集。

在向量空间V中,任何一个正交归一的完全 集{\\u03c6_1, \u03c6_2, ...\u03c6_n}称为一组基矢。所谓正交性是指

$$(\psi_i, \psi_i) = 0$$
 if $i \neq j$

而归一性是指

$$(\psi_i, \psi_j) = 1$$

显然, V中任何一个向量都可以用基矢表示出来: 表示的系数 $a_1, a_2, ...a_n$ 唯一确定了矢量 ϕ 。我们可以 用这组数字的数组来直接写出向量,这种表述称 为向量的坐标描述:

$$\phi = \{a_1, a_2, ..., a_n\}^T$$

也常常被称为向量的"行/列矩阵描述"。

2.1.2 Dirac符号

为了简便,在量子力学中通常使用左矢和 右矢的概念来表达向量。即:将内积(ψ, φ)表示 为< ulo >, 其中lo >就是我们讨论的向量,称为 右矢, 而< 4)代表利用**6**在左侧和任何一个右矢做 内积的操作。于是对于每一个右矢都存在一个对 应的操作,我们可以将这样的操作定义成另一组 矢量,称为左矢。这样,右矢之间的计算规则和 我们 前面讨论的规则完全一样, 左矢之间则差一

基矢的描述。首先,如果两个向量的内积为0,那 个数乘的共轭规则: < a \u03c4 | = a* < \u03c4 | 。当左矢和右

我们可以注意到如果右矢被映射为列向量 ϕ = $\{a_1, a_2, ..., a_n\}^T$ 的话, 左矢的行为完全和其转置共轭 向量 $\phi = \{a_1^*, a_2^*, ..., a_n^*\}$ 一样。这个操作称为"厄米 共轭"。在很多情况下,这被说成"左矢为右矢的 对于一个向量空间V,考虑一组线性无关复(厄米)共轭",也就是< ψ = ψ >[†]。在这个 意义上

$\{c|\psi>\}^{\dagger} = \langle\psi|c^*\rangle$

最后,我们引入算符(算子)的概念:考虑 在V上的一个映射F, 它把任何一个矢量ψ映射为 另一个矢量,这样的映射称为一个算符。把算符 对矢量的作用操作写成乘法的形式: $|\phi\rangle = \hat{F}|\phi\rangle$ 。

我们用左分配律和结合律来定义算符之间的 演算:

 $(\hat{F}_1 + \hat{F}_2)|\psi\rangle \ge \hat{F}_1|\psi\rangle \ge +\hat{F}_2|\psi\rangle$

 $((\hat{F}_1\hat{F}_2)|\psi>=\hat{F}_1(\hat{F}_2|\psi>)$

如果一个算符对向量的运算满足右分配 律: $\hat{F}(|\psi_1 > +|\psi_2 >) = \hat{F}|\psi_1 > +\hat{F}|\psi_1 >, 则称这$ 个算符为一个线性算符。

尽管算符计算满足结合律,但一般的说两个 算符的乘法不满足交换律,或者说[A,B] = AB - $BA \neq 0$,其中[A, B]称为A和B的对易式,或者说对 易关系。

不难看到|ψ >< ¢|是一个算符。如果一组基 $(\epsilon_i > (i = 1, 2, ...)$ 能够完全描述空间中的任何一个 向量,那么对任何向量

$$|\phi> = \sum c_i |\epsilon_i>$$

在两边乘以< ε; 利用正交归一性关系马上得出

 $c_i = \langle \epsilon_i | \phi \rangle$

也就是

$$|\phi>=\sum |\epsilon_i><\epsilon_i|\phi>$$

于是我们看到(在乘以任何一个右矢的意义上, 也就是在算符意义上)

$$\sum_{i} |\epsilon_i \rangle < \epsilon_i| = 1$$

这组关系称为完全性关系式,不过你也可以将它 当成单位算符的一种形式。

对于完备的内积空间,我们可以定义算符 的函数f(A),方法是通过把f展开成为泰勒级数: 假设当x是个复数的时候f(x)是个解析函数,于 是f(x)可以展开成为幂级数:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots$$

那么, f(A)对任何一个右矢的作用是

$$f(\hat{A})|\psi\rangle = \{a_0 + a_1\hat{A} + a_2\hat{A}\hat{A} + ...\}|\psi\rangle$$
(2.1)

在实践中,这一方法等效于使用后面叙述的 特征值方法。

以定义作用在左矢上的算符。但如同前面说的那 样, 数乘以某个左矢 和乘以右矢差一个复共轭, 所以我们需要特殊定义算符向左作用的规则。考 虑算符F, 它执行映射 $|\phi\rangle = \hat{F}|\phi\rangle$, 于是一定存 在一个映射把< φ|映射为< ψ|。我们把这个映射 称为F的共轭算符 F^{\dagger} ,也就是< ϕ =< ψ F^{\dagger} 。 必须注 意现在这个算符是向左作用的:它只能作用在左矢 正的。 Ŀ.

和右矢上,剩下的问题就是需要认识到两种算 成:

$$(\langle \phi|F)|\psi \rangle = \langle \phi|(F|\psi \rangle)$$

 $\langle \phi | (F^{\dagger} | \psi \rangle) = (\langle \phi | F^{\dagger}) | \psi \rangle$

第一个式子定义了< ølF和任何右矢之间的内 积,因此也就定义了< ØF,而对于任何< Ø我们 都能这样定义 < ØF,于是也就定义了F向左作用。 同样,第二个表达式定义了F[†]向右作用。当建立 了 F^{\dagger} 在右矢空间的定义后,我们称 F^{\dagger} 为F的厄米 共轭算符。容易看到

$$\langle \psi | A | \phi \rangle = \langle \phi | A^+ | \psi \rangle^*$$

如果A是一个数*c*,那么显然有 $c^{\dagger} = c^*$ 。 从厄米共轭的定义看到

$$(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$$

以及

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

这一连串定义可能会让你脑子陷入混乱,特 别是关于厄米共轭操作,你可能会觉得写出一个 算符的厄米共轭形式简直是胡闹。事实上, 这一 由于左矢和右矢是一一对应的,所以我们可 切是很简单的-一旦你按照下一节的方法引入了表 象概念。在抽象理论阶段,你可以仅仅满足于相 信: 正确运用乘法结合律和分配律 会给出前后一 致的描述。

> 如果一个算符和它的厄米共轭相等,那么这 个算符称为自伴的或者厄米的。如果一个算符的 共轭和它自身互为逆算符,那么这个算符称为幺

严格说来,自伴算符和厄米算符不是一回事, 现在我们定义了两种算符,分别作用在左矢 这是因为一个算符的相等包含计算结果相等和定 义域相等两层含义。技术上, 当一个算符和它的 符是同一种东西,这不难通过引入乘法分配律完 伴随算符计算结果相等,定义域也相等的时候, 才称为自伴的,但在这一条件下,很多厄米算符 不是自伴的。

此外,上述左右矢量空间中的算符形式, 速写出各种表达式,但如果F不是线性算符,直仍然成立。 接运用左矢形式的算符计算规则就容易出现问题。 通常我们不会涉及这个问题,但必须注意。

2.1.3 特征值和特征向量

考虑一个算符*Ê*,我们称

$$\hat{F}|\psi\rangle = f_n|\phi_n\rangle$$

为本征方程,其中 f_n 是一个数。对应的 f_n 和 $|\phi_n>$ 的 解称为本征值(特征值)和本征矢量(特征向 量)。两个算符可以有共同的本征矢,也就是说

$$\hat{A}|\psi\rangle = a|\psi\rangle$$
$$\hat{B}|\psi\rangle = b|\psi\rangle$$

上述式子能够成立的前提是

$$[\hat{A}, \hat{B}]|\psi >= 0$$

如果上述共同本征矢量构成一个本征函数系,那 么显然必须[\hat{A}, \hat{B}] = 0。

如果一个算符F是厄米的,那么对于不同的特 征值,其特征向量正交,也就是

 $< f_m | f_n >= 0$

如果 $f_m \neq f_n$ 。

如果这个算符还是自伴的,那么它的特征向 量会构成一个完全集。因此,如果自伴算符的特 征值没有简并,那么我们可以把If,>取为归一的, 于是

$$\sum |f_n > < f_n| = 1$$

在有简并的情况下,我们可以针对简并的特 是Dirac引入的。通常情况下,这种方法便于快 征向量进行正交归一操作,然后上述完备性关系

> 在上述正交归一完备性关系成立的前提下, 我们可以用特征向量来写出f的显式表达式,即

$$\hat{F} = \sum_{n} |f_n > f_n < f_n$$

这个式子的成立是显然的。现在考虑任意 单值函数g(x),我们可以用上述方法定义算符函 数 $g(\hat{F})$:

$$g(\hat{F}) = \sum_{n} |f_n > g(f_n)| f_n >$$
 (2.2)

你可能会问这个定义和前面的级数定义2.1哪 个是严格的。我的回答是,在这本讲义中我将尽 可能 避免追究这些细节,我们的目标是给出一套 方便且不损失数学概念的计算手段,而不是去建 立公理化的量子力学 原理。

2.2 量子力学的基本原理和表象

变换

现在可以讨论量子力学了。"正统"量子力学 在向量空间框架下的表述非常简单:

1. 任何封闭微观系统的状态用希尔伯特空间 中的向量来描述。两个向量如果只差一个相乘复 数乘数,则他们代表同一状态。

2.微观系统的"动力学"变量(物理上可以观 测的变量)用这个空间中的线性厄米算符表示; 任何物理量可以观测到的值, 都属于这个算符 的本征值即 $\hat{F}|_{f_i} \ge f_i|_{f_i} \ge h_i$ 之一;对于态| $\psi \ge h_i$ $\sum c_i | f_i \rangle$,其中 $| \psi \rangle$ 和本征矢 $| f_i \rangle$ 已经归一化,则观 测力学量F得到 f_i 的几率是 $|c_i|^2$ 。而 $c_i = \langle f_i|\psi \rangle$ 。

你可能听说过有关于"波动力学"和"矩阵 其中Ĥ是个厄米算符,于是得到 力学"的说法。忘掉它们。正则形式的量子力学 的表述方式就是利用向量 形式. 至于所谓波函数 或者矩阵那只是为向量选择了一个方便计算的表 示而已。这种表示的主要部分是接下来讲的表象 理论, 其次的部分在后面的绘景理论中。无论如 何,你可以把量子力学理论看成围棋规则,所谓 波动力学或者矩阵力学只不过是中文或者 日文文 本而已, 文本什么也不是---即使哲学家有意见。 在量子力学的情况下,事情比围棋规则还要简单, 因为我们不贴目, 也不用考虑算目还是数子。

上述两条原理给定了状态矢量的基本结构。 要研究量子力学问题,我们需要了解状态矢量的 演化过程,通常这种演化规律被称为薛定谔方程。 不过我们可以更一般的考虑这个问题:我们的世 界是连续的,因此状态向量 $\psi(t)$ >应该是t的某个 "连续"函数。这样,我们可以写出

 $|\psi(t+dt)\rangle = \hat{U}(dt)|\psi(t)\rangle$

Û称为演化算符,它的具体形式如何还不知道,但 是连续性条件要求

$$\hat{U}(0) = 1$$

$$\hat{U}^{\dagger}\hat{U}=1$$

$$\hat{U}(dt_1)\hat{U}(dt_2) = \hat{U}(dt_1 + dt_2)$$

实际上,只要给出了无穷小演化算符,就已经确 定了量子力学的动力学规律。不过我们要把事情 再简化一些。可以把上述性质发展为 某种积分 算法,相应的形式称为"量子力学的路径积分形 式";更简单的方法是去寻找一个微分方程。上述 关系可以改写成

$$U(dt) = 1 - \frac{i}{\hbar}\hat{H}dt$$

$$\frac{|\psi(t+dt)>-|\psi(t)>}{dt}=-\frac{i}{\hbar}\hat{H}|\psi(t)>$$

两边取极限后,就得出"量子力学的第三条公 理"(薛定鄂方程)

 $3.i\hbar_{a}^{\partial}|\psi\rangle = \hat{H}|\psi\rangle$ 其中的 \hat{H} 是个线性厄米算符, 称为哈密顿算符。

显然,问题的根本是写出所有算符特别是哈 密顿量的具体形式(在上述表达中,"写出具体形 式"的含义是什么?)。这个过程称为"量子化" 过程。事实上不存在统一的量子化过程。但对于 具有经典对应的体系(在经典力学和经典电动力 学描述下有意义的系统),常常我们可以借用分 析力学中的正则形式来处理问题。这类手法称为 "正则量子化",其过程是,对于量子体系,引入 正则坐标 *x*和正则动量 *p*, 然后引入下述规则(对 易关系)

4. $[\hat{x}_{k}, \hat{p}_{l}] = \hat{x}_{k}\hat{p}_{l} - \hat{p}_{l}\hat{x}_{k} = i\hbar\delta_{lk}$

然后利用*x*和*p*就可以构造出所有其他算符。 特别是,哈密顿算符就是哈密顿量 对应的那个算 符(在第一章已经给出了哈密顿量和正则坐标正 则动量的关系。至于你为什么就是这个量? 很好, 我不准备回答这个问题,你可以自己慢慢思考)。

最后,作为纯粹理论分析的需要,通常引入 投影公设:

5.对某个系统的力学变量**f**进行测量,如果得 到测量值f,,,则在测量后的一瞬间,系统将处在 态|*f_n*>。

上述几条基本原理都是纯形式的,不涉及任 何具体的基矢形式。为了计算问题,我们总要选 择一组基矢,而不同的问题用不同的基矢 比较方 便,因此我们需要在基矢之间变换的算法。这样 的计算规则称为表象变换。

在给定一组基矢 $|\epsilon_i>$ 之后,任何一个向量 ψ 都 可以用其坐标 $a_i =< \epsilon_i |\psi>$ 唯一确定,这组系数称 为波函数。在基矢为分立的情况下我们可以用行 矩阵 A^T 或者列矩阵A写出这个系数。而这时任何 一个线性算符对向量的操作,都等效于一个矩阵 对于 a_i 的操作。矩阵的表示形式可以从线性展开原 则得出:任何算符f都可以用一个矩阵F来表示:

$$|\phi\rangle = \hat{F}|\psi\rangle$$

对基矢展开后

$$<\epsilon_i|\phi>=\sum_j<\epsilon_i|\hat{F}|\epsilon_j><\epsilon_j|\psi>$$

也就是

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \dots \\ \phi_n \end{pmatrix} = \begin{pmatrix} F_{11} & F_{12} & \dots & F_{1n} \\ F_{21} & F_{22} & \dots & F_{2n} \\ \dots & \dots & \dots & \dots \\ F_{n1} & F_{n2} & \dots & F_{nn} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \dots \\ \psi_n \end{pmatrix}$$

其中 $F_{ij} = \langle \epsilon_i | \hat{F} | \epsilon_j \rangle_{\circ}$ 考虑两组基矢 $\epsilon_i \pi \mu_j$,完全性要求是

$$\sum |\epsilon_i > < \epsilon_i| = 1$$

$$\sum |\mu_j > <\mu_j| = 1$$

而正交性要求是

$$<\epsilon_i |\epsilon_j> = \delta_{ij}$$

 $<\mu_i |\mu_j> = \delta_{ij}$

设一个向量 $|\psi\rangle$ 之在 ϵ 表象下坐标为 a_i ,在 μ 表象下 坐标为 b_i ,那么有

$$\psi > = \sum_{i} a_{i} |\epsilon_{i}\rangle = \sum_{i} a_{i} \sum_{j} |\mu_{j}\rangle \langle \mu_{j}|\epsilon_{i}\rangle$$
$$= \sum_{i} b_{j} |\mu_{j}\rangle$$
(2.4)

也就是

其中

$$U_{ji} = \langle \mu_j | \epsilon_i \rangle$$

B = UA

称为表象变换矩阵,容易证明 $U^{\dagger} = U^{-1}$ 。

用同样的算法不不难写出算符的变换矩阵, 即 $F' = U^{-1}FU$ 。

通常,我们会取μ表象的基矢为某个算符**k**的 (2.3) 基矢,也就是 **k**μ_j >= K_jμ_j >,这种选择称为"使 用K表象"。

> 选择表象常常是为了计算前面引入的复杂算 符函数,我们可以注意到,任何算符在自身表象 中是对角的,即在K表象中 < $i|K|_j >= K_i \delta_{ij}$ 。此外, 如果|i>是 厄米算符K的本征矢,即 $\hat{K}|_i >= k_i|_i >$ 。 取这组|i>为基矢,利用解析函数的泰勒展开不难 得出对任何解析函数f(x)有

$$f(\hat{K})|i\rangle = f(k_i)|i\rangle$$

如果 $f(\hat{K})$ 是个线性算符,那么

$$f(\hat{K})|\psi>=\sum_i f(k_i)|i>< i|\psi>$$

注意到这个式子对任何|\/>都应该成立,于是我们 可以写出

$$f(\hat{K}) = \sum_{i} f(k_i) |i\rangle \langle i|$$

2.3 本征值问题的严格解

也就是

$$\langle i|f(\hat{K})|j\rangle = f(k_i)\delta_{ij}$$

因此,在算符本身表象中,其函数的矩阵表示也 是对角的,且对角元等于K对角元的函数。

对于左矢的计算可以类似地完成,也就是

$$\langle \psi | f^{\dagger}(\hat{K}) = \sum_{i} \langle \psi | i \rangle \langle i | f^{*}(k_{i})$$

们将 $f^*(x)$ 记成g(x),其中x是个实数,那么, 然 $f^{\dagger}(\hat{K}) = g(\hat{K})$ 。于是

$$\langle \psi | f(\hat{K}) = \langle \psi | g^{\dagger}(\hat{K}) = \sum_{i} \langle \psi | i \rangle \langle i | g^{*}(k_{i})$$
$$= \sum_{i} \langle \psi | i \rangle \langle i | f(k_{i})$$

如果在 $|\epsilon>$ 表象中的 $|\mu_i>$ 波函数已知的话,那 么变换矩阵U很容易写出,这是因为 $U^{-1} = U^{\dagger}$,也 就是

$$U_{ij}^{-1} = U_{ji}^* = < \epsilon_i |\mu_j>$$

, 于是 U⁻¹ = {u₁, u₂, ..u_n}, 其中每个u_i都是个列向 量

$$u_j = \{ < \epsilon_1 | \mu_j >, < \epsilon_2 | \mu_j >, ..., < \epsilon_n | \mu_j > \}^T$$

这正好就是 $|\mu_i\rangle$ >在 ϵ 表象中的表示,所以只要写 出*k*在*e*表象中的本征 函数,将其按列排列成为 矩阵,就得到逆变换矩阵U⁻¹,而U是它的厄米共 轭。或者,如果我们知道 $|\mu>$ 表象中的 $|\epsilon>$ 列矩阵 的话,直接排成列矩阵就是U。

本征值问题的严格解 2.3

所有本征值都是实数。此外,从泛函分析也可以 是个齐次线性方程组,仅当其系数行列式为0的时

证明,如果**f**是个 自伴算符,则其全部本征矢构 成该空间的一组完备基矢。我们以后将主要考虑 这种情况。即所有本征矢量|ø,, >为正交归一化的 基矢的情况。

对于厄米算符来说,不同本征值对应的本征 函数必然是正交的。如果有某个本征值对应多个 不同的本征函数,称这个本征值是简并的。对于 简并的本征函数,我们总是可以用一组强制的手 由于K是厄米的,因此所有ki都是实数。我 段将其化为正交归一的。此外,我们往往还可以 显 引入多个算符的共同本征函数。一般来说, 因为 共同本征函数的存在要求选择的算符是对易的, 所以可以选择的算符是有限的:对于某个系统来 说,我们可以引入的互相对易同时具有不同实质 含义(两个仅仅是互为函数关系的算符当然是对 易的,但这没有实质区别,比如p和p²)的力学量 个数是有限的。一组总数达到最大的互相对易且 有实际区别的力学量,称为该系统的力学量完全 集。

> 由于存在分配律,所以在本征矢量构建的表 象里面的算符函数计算特别简单,此时A算符的矩 阵表示是个对角矩阵。而对角矩阵的 计算可以化 为复数计算,简单的说就是如果Â|n>=a_n|n>,那 么有

$$f(\hat{A})|\psi\rangle = f(\hat{A})\sum_{n} c_{n}|n\rangle = \sum_{n} f(a_{n})c_{n}|n\rangle$$

对于其它任何一个表象|*ϵ*_m >,上述本征方程 变成线性方程组 问题

$$\sum_{n} F_{mn}\phi_n = f\phi_m$$

容易证明,如果 \hat{F} 是个线性厄米算符,则它的 其中 $F_{mn} = \langle \epsilon_m | F | \epsilon_n \rangle, \phi_k = \langle \epsilon_k | f \rangle$ 。这个方程组

式方程

$$\begin{vmatrix} F_{11} - f & F_{12} & \dots & F_{1n} & \dots \\ F_{21} & F_{22} - f & \dots & F_{2n} & \dots \\ \dots & \dots & \dots & \dots & \dots \\ F_{n1} & F_{n2} & \dots & F_{nn} - f & \dots \end{vmatrix} = 0 \quad (2.5)$$

这个方程的解就是F可能的本征值。

当两个厄米算符对易时,他们有共同的本征 态,即如果 f_1, f_2 都是不简并的,且[\hat{F}_1, \hat{F}_2] = 0,则

$$\hat{F}_1 | f_1 f_2 \rangle = f_1 | f_1 f_2 \rangle$$

$$\hat{F}_2 | f_1 f_2 \rangle = f_2 | f_1 f_2 \rangle$$

在可以存在简并的情况下,有一条相关的定理: 设A,B对易,且

$$\hat{A}|A', \alpha >= A'|A', \alpha >$$

其中*α* = 1, 2, ...*n*, 那么

$$\hat{B}|A',eta>=\sum_{lpha=1}^n b_lpha|A',lpha>$$

也就是说,在B的作用下, |A', α >会被变成具有 相同A本征值的A本征态的线性组合。因此,只需 执行一个对角化操作 就可以获得Â, B的共同本征 态。

当系统处在哈密顿算符的本征态时,薛定谔 方程可以直接解出,即| $\psi(t) >= \exp\{-i\frac{E}{\hbar}t\}|\psi(0) >$ 。 如同前面指出的,系统随时间演化只改变一个相 乘复数,因此说明系统状态并不随时间变化,这 样的状态称为定态。

求解定态能量是量子力学的主要问题之一, 一般来说,因为哈密顿算符的复杂性,这个问题

候, 这个方程才有非0解, 这样, 就得到一个多项 很少可以严格求解。只在一些具有特殊对称性的 问题中,这个问题才具有解析的解法。(从数学角 度看,大部分本征值问题即使写出矩阵形式 也是 不可解的,因为它需要求解一个高次方程,而众 所周知高于五次的代数方程没有通用解法)

> 求解能量本征值的基本思路是选择一个能够 化简问题的表象,然后在这个表象中运用对易关 系,对哈密顿算符进行因式分解。 最常见的几种 可解问题包括谐振子,刚性转子和氢原子,它们 都可以用算符的因式分解法建立升降算符求解。 下面讨论谐振子问题和刚性转子问题。

2.3.1 谐振子问题

量子力学的谐振子哈密顿量可以通过经典哈 密顿量直接写出,即

$$\hat{H} = \frac{1}{2}m\omega^{2}\hat{x}^{2} + \frac{1}{2m}\hat{P}^{2}$$

为了求解这个问题,首先可以对问题进行 无量纲化,也就是 $x = x_0q$, $P = p_0p$,单位是 $x_0 =$ $\sqrt{\frac{\hbar}{m\omega}}, p_0 = \sqrt{m\hbar\omega}, 于是$

$$\hat{H} = \left(\frac{1}{2}\hat{q}^2 + \frac{1}{2}\hat{p}^2\right)\hbar\omega$$

$$a = \frac{1}{\sqrt{2}}(q + ip)$$
$$a^{+} = \frac{1}{\sqrt{2}}(q - ip)$$

讲一步的可以写出

引入

$$\hat{H} = \frac{1}{2}\hbar\omega\left(\hat{a}\hat{a}^{\dagger} + \hat{a}^{\dagger}\hat{a}\right)$$
$$= \hbar\omega(\hat{a}^{\dagger}\hat{a} + \frac{1}{2})$$
$$= \hbar\omega(\hat{a}\hat{a}^{\dagger} - \frac{1}{2})$$

写出它们的对易关系很有帮助,即

$$\begin{aligned} & [\hat{a}, \hat{a}^{\dagger}] &= 1 \\ & [\hat{H}, \hat{a}] &= -\hbar\omega\hat{a} \\ & [\hat{H}, \hat{a}^{\dagger}] &= \hbar\omega\hat{a}^{\dagger} \end{aligned}$$

而需要求解的本征值方程现在是 $\hat{H}|E_n >= E_n|E_n >$

求解这个方程的方法是在两边乘以â,得到

$$\hat{a}\hat{H}|E_n\rangle = \hat{H}\hat{a}|E_n\rangle + \hbar\omega\hat{a}|E_n\rangle \qquad (2.7)$$

因此得到

$$\hat{H}\hat{a}|E_n > = (E_n - \hbar\omega)\hat{a}|E_n >$$

这意味着,如果 $|E_n>$ 是一个能量本征态,那 么 $\hat{a}|E_n>$ 也是一个能量本征态,只是能量低了 $\hbar\omega$ 。 这样可以产生出一系列能量越来越低的状态,但 是容易看出 $E_n \ge 0$,所以在执行若干次乘法之后, 必定会出现 $\hat{a}|E_0>=0$ 。

从而,可能的解矢量为 $|E_0>$, $|E_1>$,..., $|E_n>$,...,其中 $E_n = (n + \frac{1}{2})\hbar\omega$,为了简单,我们把 $|E_n>$ 直接写成|n>。

从上面的结果可以看出必然有

$$\hat{a}|n\rangle = c_n|n-1\rangle$$

其中c_n是个复常数。取此式的共轭给出

$$< n - 1 | c_n^* = < n | \hat{a}$$

又

$$< n|\hat{a}^{\dagger}\hat{a}|n >= n$$

从而知道

$$|c_n|^2 = n$$

消除掉相位不确定性,得出

$$\hat{a}|n\rangle = \sqrt{n}|n-1\rangle \tag{2.9}$$

$$\hat{a}^{\dagger}|n > = \sqrt{n+1}|n+1 >$$
 (2.10)

这两个公式对于计算*x*和*p*的矩阵元很有帮助。

[例题]计算< m|x²|n >

7) 2.3.2 角动量问题

(2.8)

下一个严格可解问题是刚性转子,对于对称 的刚性转子,这个问题可以直接求解,我们首先 写出其哈密顿量

$$\hat{H} = \frac{1}{2I}\hat{J}^2$$

接下来需要写出角动量J的算符形式,在经典力学中, *J* = *r*×*p*,在量子力学中我们可以直接运用这一表达式,但存在一些基本问题,事实上严格处理这个问题需要使用 群论,在这里使用另外一种折中方案:首先利用经典表达式给出角动量的对易关系,然后利用对易关系求解 角动量的本征 值。

利用角动量算符的经典表达式可以写出

$$[\hat{J}_i, \hat{J}_j] = i\hbar \sum_k \epsilon_{ijk} \hat{J}_k$$
(2.11)

很多时候这个对易关系式用更简单的方法写成

 $\hat{J} \times \hat{J} = i\hbar \hat{J}$

用这个对易关系不难算出

$$[\hat{J}^2,\hat{J}_k]=0$$

从而,我们可以预期,对于任何k = 1, 2, 3,存 在一个 J^2, J_k 共同的表象。为了求解这个问题,选 这个表象为 J^2, J_z 。

利用量纲关系式,可以写出

$$J^2 |\lambda m\rangle = \lambda \hbar^2 |\lambda m\rangle \tag{2.12}$$

$$J_z |\lambda m\rangle = m\hbar |\lambda m\rangle \tag{2.13}$$

引入两个算符 $J_+ = J_x + iJ_y$ 和 $J_- = J_x - iJ_y$,可以写出它们和 J^2 , J_z 的对易关系:

$$[J^2, J_{\pm}] = 0 \tag{2.14}$$

$$[J_z, J_{\pm}] = \pm \hbar J_z \tag{2.15}$$

剩下的做法和谐振子问题是一样的,即用J₄作用于|*\mml*, 得出

$$J_{\pm}|\lambda m\rangle = c_{\pm}|\lambda m \pm 1\rangle$$

然后注意到 $J^2 \ge J_z^2$,因此对于 λ 给定的状态,m必 然有上下界 $\pm \sqrt{\lambda}$,而 J_- 每次作用都使得m减去一, 唯一的可能就是对于某个M有 $J_-|\lambda M\rangle = 0$,同样对 于M'有 $J_+|\lambda M'\rangle = 0$ 。另外,M' - M必定是个整数。 剩下的计算是 $J_-J_+|\lambda M'\rangle = (\lambda - M'^2 - M')|\lambda M'\rangle =$ 0和 $J_+J_-|\lambda M\rangle = (\lambda - M^2 + M)|\lambda M\rangle = 0$,这样得出

$$M'(M' + 1) = M(M - 1)$$

这个方程有两组可能的解,分别是M' = M - 1和M' = -M,但因为M' >= M,所以只能取M' = -M,然后M' - M = 2j且 $\lambda = j(j+1)$,于是知道

$$j = 0, 1/2, 1, 3/2, ...$$
 (2.16) 同理
 $m = -j, -j + 1, ..., j - 1, j$ (2.17)

注意这和直接求解坐标空间方程的结果有一定的 区别。

最后需要求出两个系数 c_{\pm} 的表达式,和谐振 子的情况一样,注意到 $J_{\pm}^{*} = J_{\mp}$ 得出

$$J_{\pm}|jm> = \sqrt{(j \mp m)(j \pm m + 1)}|j,m \pm 1>$$

2.4 坐标空间表示和一些严格可 解问题

下面我们导出位置/动量表示。这种表示存在 一些特殊之处,即它是个连续表示,矩阵运算要 变成对应的函数积分和微分。为了简单,我们只 写出一维形式,然后直接推广到三维。

首先,完备性关系现在是

$$\int_{-\infty}^{\infty} dx |x > < x| = 1$$
$$\int_{-\infty}^{\infty} dp |p > < p| = 1$$

其中 $\hat{x}|x \ge x|x >, \hat{p}|p \ge p|p >.$

注意到

$$< x'| = \int dx < x'|x > < x|$$
$$< x'|\psi > = \int dx < x|\psi > < x'|x >$$

< $x|\psi > E|\psi > 态在x表象下的表示,也就是坐标空$ $间波函数,(| < <math>x|\psi > |^2 E观察到粒子坐标位于x点$ $的几率,所以< <math>x|\psi > E波函数$)因此积分核只能是 个 δ 函数,也就是

$$\langle x'|x \rangle = \delta(x - x')$$

$$< p'|p> = \delta(p-p')$$

这种归一化称为δ函数归一化。

在位置表示中,位置算符本身只是一个相乘 因数,主要是写出动量算符的形式。

首先是求出< xlp >。这个波函数形式可以从 纯粹算符关系求出。为此, 需要首先证明下述等 式:

$$[f(\hat{x}), \hat{p}] = i\hbar \frac{\partial}{\partial x} f(x)$$
$$[\hat{x}, g(\hat{p})] = i\hbar \frac{\partial}{\partial p} g(p)$$

这可以通过归纳法证明

 $[x^{n}, p] = nx^{n-1}$

然后运用级数展开法得到。 接下来, 设 $Q(\xi) = \exp\{\frac{i}{\hbar}\xi p\}$, 不难得到

$$xQ(\xi)|x_0 > = (x_0 - \xi)Q(\xi)|x_0 >$$

也就是

$$Q|x_0 >= |x_0 - \xi >$$

同样设 $T(\pi) = \exp\{-\frac{i}{\hbar}\pi p\}$ 得出

$$T(\pi)|p>=|p-\pi>$$

最后,计算

$$< x|p> = < x|T^{\dagger}(p)|p = 0 > = < x|e^{\frac{i}{\hbar}p\hat{x}}|p = 0 >$$
$$= e^{\frac{i}{\hbar}px} < x|p = 0 > = e^{\frac{i}{\hbar}px} < x = 0|Q(x)|p = 0 >$$
$$= e^{\frac{i}{\hbar}px} < x = 0|e^{\frac{i}{\hbar}x\hat{p}}|p = 0 >$$
$$= e^{\frac{i}{\hbar}px} < x = 0|p = 0 >$$

利用归一化条件给出,也就是
$$\delta(p-p') = \langle p'|p \rangle = \int \langle p'|x \rangle \langle x|p \rangle dx$$
$$= |\langle x = 0|p = 0 \rangle|^2 \int \exp\{-\frac{i}{\hbar}(p'-p)x\}dx$$
$$= |\langle x = 0|p = 0 \rangle|^2 2\pi\hbar\delta(p'-p)$$

从而

$$\langle x|p \rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{\frac{i}{\hbar}px}$$

从这个波函数表达式,不难导出p算符的微分 表达式:

$$< x|\hat{p}|\psi> = -i\hbar \frac{d}{dx} < x|\psi>$$

它的共轭形式是

$$<\psi|\hat{p}|x>=i\hbarrac{d}{dx}<\psi|x>$$

上面的表达式就是

$$< x|\hat{p}|\psi > = \int dp' < x|\hat{p}|p' > < p'|\psi >$$

$$= \int dp'p' \frac{1}{\sqrt{2\pi\hbar}} e^{\frac{i}{\hbar}p'x} < p'|\psi >$$

$$= -i\hbar \int \frac{d}{dx} < x|p' > < p'|\psi > dp'$$

$$= -i\hbar \frac{d}{dx} < x|\psi >$$

我们一般把这个形式直接写成

$$\hat{p} = -i\hbar \frac{d}{dx}$$

当然这只是p在坐标空间的表示而已。

很多书上把这个形式写成

$$\langle x'|\hat{p}|x\rangle = i\hbar \frac{\partial}{\partial x}\delta(x'-x) = -i\hbar \frac{\partial}{\partial x'}\delta(x'-x)$$

形式上会简单一些,但出现了δ函数的导数。 最后的表达式< x = 0|p = 0>只是一个系数,可以这有时候很让人困惑,因为 δ 函数只有乘在别的函 数 上积分才有意义,而对它的导数实际上只能通 过分部积分来定义:

$$\int f(x)\delta'(x-a)dx = -f'(a)$$

但< x'|p|x >是个矩阵元,实际应用中需要根据 得到通项公式是 是左乘还是右乘来选择积分变量,这往往带来混 淆。

剩下的就是根据x, p的形式写出其他算符的具 体形式。一般来说,物理上有意义的量多数是他 们的解析函数,因此可以通过将其他算符展开为 它们的级数的方式来写出算符形式。尽管如此, 一个很大的问题仍然是,因为对易关系的存在,其中 $H_n(\xi)$ 是厄米多项式,即 需要排列多项式的乘法顺序。但这种规则是 任意 的且不具备完备性的,因此我们不具体讨论。

2.4.1 谐振子的波函数

在上一节给出了基本关系式âl0 >= 0, 写出其 坐标表象的表达式,在坐标表象中

$$a = \frac{1}{\sqrt{2}}(\xi + \frac{d}{d\xi})$$
$$a^{\dagger} = \frac{1}{\sqrt{2}}(\xi - \frac{d}{d\xi})$$

其中 $\xi = \sqrt{\frac{m\omega}{\hbar}} x_{\circ}$

这样直接得出 $\psi_0(\xi) = < x|0 > 满足的微分方程$ 为

$$(\frac{d}{d\xi} + \xi)\psi_0(\xi) = 0$$

不难解出其结果是

$$\psi_0(\xi) = exp(-\frac{1}{2}\xi^2)$$

而高阶波函数可以通过连续在这个波函数上 作用a[†]得出。考虑到

$$\frac{d}{d\xi} - \xi = -e^{\frac{1}{2}\xi^2} \frac{d}{d\xi} e^{-\frac{1}{2}\xi^2}$$

$$\psi_{n}(\xi) = \frac{1}{\sqrt{n!2^{n}}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} (-1)^{n} \\ \times \left(-e^{\frac{1}{2}\xi^{2}} \frac{d^{n}}{d\xi^{n}} e^{-\frac{1}{2}\xi^{2}}\right) e^{-\frac{1}{2}\xi^{2}} \\ = \frac{1}{\sqrt{n!2^{n}}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} H_{n}(\xi) e^{-\frac{1}{2}\xi^{2}}$$
(2.18)

$$H_n(\xi) = (-1)^n e^{\xi^2} \frac{d^n}{d\xi^n} e^{-\xi^2}$$

另一个比较有用的形式是厄米多项式的生成函数, 即

$$\exp\{-t^{2} + 2zt\} = \sum_{n=0}^{\infty} \frac{H_{n}(z)}{n!} t^{n}$$

2.4.2 一维势阱问题

在坐标表象下,一般的势阱问题哈密顿量是

$$\hat{H} = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)$$

考虑一种典型的情况,即V(±∞) = 0而V(0) < 0。这样存在两种可能,一种是粒子的总能量大 于零,因此粒子形成了一个散射态,即连续的入 射/出射波;另一种可能是粒子总能量小于0,粒 子可能被束缚在势阱内。

首先考虑第一种情况,这时,在无穷远 处, 有 $\psi(x) \rightarrow A \exp(ikx) + B \exp(-ikx)$, 其中k = $\sqrt{2mE/\hbar^2}$ 。这时粒子的能量必须给定,然后沿着 粒子传输的方向逐步给出波函数。

须是连续函数;此外,考虑势阱中的任何一点x₀,写出哈密顿量为 写出

$$\psi''(x_0) = \frac{2m}{\hbar^2} (V - E)\psi(x_0)$$

$$\psi'(x_0+\epsilon)-\psi'(x_0-\epsilon)=\frac{2m}{\hbar^2}\psi(\xi)[V(\xi)-E]*2\epsilon$$

取 ϵ → 0的极限,可以知道:如果V(x)在 x_0 有限, 样,通过两个连续条件,就可以逐步解出在势阱 内的波函数。

对于E < 0的情况,问题稍有不同,这时在无 限远的解是 $\psi(x) \rightarrow \exp(\pm kx)$,其中的正负号必须 按照x的正负来选择,以保证波函数不会发散。这 样每一侧的无穷远边界条件都为势阱内的波函数 定了一个限制,这些限制通常是不相容的,只有 粒子的总能量满足某个特定条件的时候,问题才 有解。这时就得到分立能级。

下面处理一个比较特殊的例子,假设V(x) = $-V_0\delta(x)$,这时,前面的分析要改成

$$\psi'(\epsilon) - \psi'(-\epsilon) = -\frac{2m}{\hbar^2}V_0$$

首先考虑E > 0的情况。假设粒子从左侧入射, 那么,右侧是纯出射波,即 $\psi_{II} = C \exp(-ikx)$,左 侧则具有一定的反射波 $\psi_I = \exp(-ikx) + B \exp(ikx)$, 使用连接条件不难算出反射系数|B|²。

当E < 0时, 两侧的解分别是 ψ_I = $\exp(kx)$ 和 $\psi_{II} = \exp(-kx)$, 连接条件是 $k = \frac{mV_0}{\hbar^2}$ 从 而这个势阱有且仅有一个束缚态。

2.4.3 平面转子

限制在一个平面上转动的刚性转子是另一个 波函数和能级。

理论上,由于波函数的几率解释,波函数必 较为简单的可解问题。由于只能绕z轴转动,可以

$$H = \frac{J_z^2}{2I} = -\frac{\hbar^2}{2I}\frac{\partial^2}{\partial\theta^2}$$

由于是简单的二阶微分方程,问题可以直接 解出,即

$$\psi(\theta) = \exp(im\theta)$$
$$E = \frac{m^2\hbar^2}{2I}$$

那么此式为0,因此 $\psi(x)$ 的一阶导数是连续的。这 刚性转子的自然边界条件是 $\psi(\theta + 2\pi) = \psi(\theta)$,因此 得到

$$m = 0, \pm 1, \pm 2, \dots$$

例 两个等质量的粒子约束在圆环上运动,已 知相互作用为 $V = V_0 \cos(\theta_1 - \theta_2)$, 且 $V_0 \gg E$, 求基 态能级和波函数。

哈密顿量是

$$H = -\frac{\hbar^2}{2I} \left(\frac{\partial^2}{\partial \theta_1^2} + \frac{\partial^2}{\partial \theta_1^2}\right)$$

引入 $\phi = \theta_1 - \theta_2 \pi \psi = \theta_1 + \theta_2$,得到

$$\frac{\partial^2}{\partial \theta_1^2} + \frac{\partial^2}{\partial \theta_2^2} = 2(\frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial \psi^2})$$

分离变量并注意到由于

$$E \ll V_0$$

,粒子几乎是被推斥力限制在对称的两个点上. 或 者说 $\phi \simeq \pi$ 。 当 $\phi = \pi + \alpha$ 时($\alpha \ll 1$)

$$cos(\theta_1 - \theta_2) = -\cos\alpha \simeq 1 - \alpha^2/2$$

和

$$\frac{d^2}{d\phi^2} = \frac{d^2}{d\alpha^2}$$

于是得到一个谐振子方程,可以直接用谐振子的

2.4.4 轨道角动量

轨道角动量算符的坐标空间表示是

$$L_x = i\hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \cot \theta \cos \phi \frac{\partial}{\partial \phi} \right)$$
$$L_y = i\hbar \left(\cos \phi \frac{\partial}{\partial \theta} + \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right)$$
$$L_z = -i\hbar \frac{\partial}{\partial \phi}$$

而 L^2 和 L_z 的共同本征函数也就是 $Y_{lm}(\theta, \phi) = \langle \theta \phi | lm \rangle$,其中

$$L^2 Y_{lm}(\theta\phi) = l(l+1)\hbar^2 Y_{lm}(\theta\phi)$$

$$L^{z}Y_{lm}(\theta\phi) = m\hbar Y_{lm}(\theta\phi)$$

利用分离变量法可以解出其形式为

 $Y_{lm}(\theta,\phi) = Y_0 P_l^m(\cos\theta) \exp\{im\phi\}$

由于是曲线坐标系,完全性关系要变成

$$\int_{0}^{\pi} d\theta \int_{0}^{2\pi} \sin \theta d\phi |\theta\phi\rangle < \theta\phi| = 1$$

正交归一性条件就是

$$\int_0^{\pi} d\theta \int_0^{2\pi} Y_{lm}^*(\theta\phi) Y_{l'm'}(\theta\phi) \sin \theta d\phi = \delta_{ll'} \delta_{mm'}$$

*Y*_{lm}(θφ)的具体形式有时候需要写出,它的基本形式是

 $Y_l m(\theta, \phi) = Y_0 P_l^{|m|}(\cos \theta) e^{im\phi}$

也就是一般所说的球谐函数,其中 $P_l^{[m]}(\cos\theta)$ 是连带勒让德多项式。

2.4.5 箱归一化和δ函数归一化

动量本征态的归一化是个相当典型的问题, 上面我们把动量算符的本征态写成

$$\psi_p(x) = \langle x | p \rangle = \frac{1}{\sqrt{h}} \exp\{\frac{i}{\hbar}px\}$$

这是自由粒子的动量本征态在坐标空间的表示, 或者称为平面波函数。问题是容易看到

$$\int \psi_p(x)^* \psi_p(x) dx = \delta(0)$$

出现了一个没有定义的无穷大。实际上,在很多 计算中我们都会碰到这个*δ*(0),因此,我们需要明 确这个量的物理意义。

为了给出物理上有明确意义的表达式,我们 注意到这个无穷大来源于对全空间的积分。计算

$$\int_{-L/2}^{L/2} \psi_p(x)^* \psi_p(x) dx = L$$

而实践中完全不可能有弥散到无穷的波函数 存在,我们现在只研究一个有限长度L内的波函 数,取L是一个宏观距离,因此相对于1/k来说几 乎是无穷大。在这种情况下,边界条件变成

$$\psi(x+L) = \psi(x)$$

于是

$$\psi_n(x) = \frac{1}{\sqrt{L}} \exp\{ik_n x\}$$
$$k_n L = 2\pi$$

这样,我们得到了一个在L空间范围内被归一化的 波函数,这种归一化称为箱归一化。三维下,这 个表达式可以扩展成为

$$\psi_n(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} \exp\{i\mathbf{k_n}\cdot\mathbf{r}\}$$

 Ω 是箱子的体积,而且

$$k_n L = \{k_1, k_2, k_3\}$$

箱归一化在需要计算空间中总的粒子数的时候非常有用。从上面的表达式我们也不难看出, δ函数归一化中的δ(0)可以理解为全空间的体积。

2.4.6 中心力场中的散射:分波法

流密度算符是

$$\hat{j} = \frac{i\hbar}{2m} \left(\psi \nabla \psi^* - \psi^* \nabla \psi \right)$$

因此对于任何一个形式如 $exp(i\vec{k}\cdot\vec{r})$ 的波函数,它具有流密度^{\underline{M}}。

在中心力的场合,连续谱波函数的渐近形式 解是(假设入射方向在z方向)

$$\psi(r,\theta,\phi) = \exp(ikz) + \frac{f(\theta,\phi)}{r}\exp(ikr)$$

这代表一个平面入射波和一个球面散射 波。(指数上正负号的选择依赖于流算符的选择)。 那么,按照流密度的定义,得出微分散射截面是

$d\sigma = 2\pi \sin \theta |f(\theta)|^2 d\theta$

所以,如果求出了*f*(θ)的渐近形式,就得出了 微分散射截面。

在这个散射过程中, $J_z \equiv 0$,所以波函数可以 写成

$$\psi = \sum_{l=0}^{\infty} A_l P_l[\cos(\theta)] R_{kl}(r)$$

其中的波函数径向部分需要满足方程

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR_{kl}}{dr} \right) + \left[k^2 - \frac{l(l+1)}{r^2} - \frac{2m}{\hbar^2} U(r) \right] R_{kl} = 0$$

考虑当 $r - > \infty$ 的极限, 这时方程变成

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR_{kl}}{dr} \right) + [k^2 - \frac{l(l+1)}{r^2}] R_{kl} = 0$$

其解是

$$R_{kl}(r) = \frac{2}{r} \sin(kr - \frac{l\pi}{2} + \delta_l)$$

= $\frac{1}{ir} \{(-i)^l \exp[i(kr + \delta_l)] -i^l \exp[-i(kr + \delta_l)]\}$ (2.19)

另一方面,平面波的展开形式是

$$e^{i\vec{k}\cdot\vec{z}} = \frac{1}{2ikr} \sum_{l=0}^{\infty} (2l+1)P_l(\cos\theta)[(-1)^{l+1}e^{-ikr} + e^{ikr}]$$

对比后知道

$$A_l = \frac{1}{2k}(2l+1)i^l \exp(i\delta_l)$$

且

$$f(\theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} (2l+1) [\exp(2i\delta_l) - 1] P_l(\cos\theta)$$

微分截面和总截面分别是

$$\sigma(\theta) = |f(\theta)|^2$$

和

$$Q = \int_0^{\pi} 2\pi \sin \theta \sigma(\theta) d\theta = \frac{4\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l$$

因此,一旦求出了各个 δ_l ,就求出了散射微分截面。

上面的求和是一个无限求和。尽管如此, 我们应该注意到, $\sqrt{l(l+1)\hbar^2}$ 是入射粒子的角动 量,也就是说l越大意味着越大的 瞄准距离, 假 如V(r)只分布在有限区域内, 那么大角动量的粒 子基本不会进入到V(r)之内, 因此也不会受到散 射。这意味着, 对于短程 势V(r), 上述求和只需 要计算l比较小的一些项。假设V的空间延伸尺度 是a,那么显然只有对 $\sqrt{l(l+1)h^2} < pa(瞄准距离小$ 于a)的部分才需要计算,也就是上述求和只要计 算到

$$l \leq ka$$

在低能区, 当k->0时, 只剩下l=0的部分, 这 立而且更加简单。 就是零能散射极限:

$$\sigma = \frac{4\pi}{k^2} \sin^2 \delta$$

理:

$$Q = \frac{4\pi}{k} Imf(0)$$

考虑一个吸引性的球方势阱,低能极限的径 向方程是

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \left[k^2 + \frac{2m}{\hbar^2}V_0\right]R = 0$$

这个方程的解是

$$R = \frac{\sin(k'r)}{r}$$

相移必须满足的方程:

$\sin k' a = A \sin(ka + \delta)$ $k' \cos k' a = Ak \cos(ka + \delta)$ (2.20)

在某些 k, a, V_0 取值条件下, δ 等于 π ,这时粒子受到 的散射为0,这个效应称为冉邵尔-汤森德效应。

习题: 计算刚性球势垒在k->0的极限下的散 射截面。

对称性 2.5

如同在经典力学的理论分析中看到的,系统 在时间-空间的变换中存在的不变性引出了某些守 恒定律。在量子力学中,这种对称性论证同样成

2.5.1 连续对称性

考虑在空间将整个系统的移动一个位移a的操 在上面的 $f(\theta)$ 公式中取 θ = 0,马上得出光学定 作,于是空间任何一点r的波函数要变成|ψ(r) >→|ψ(r-a) >(因为在系统看来,空间的每一点都移动 了-a)。首先我们写出态矢平移的表达式。 在一维 条件下,使用Taylor展开给出(注意到< $x|\psi(r)>$ 就 是坐标表示下的波函数ψ(x))

$$< x|\psi(r-a) > = < x|\psi(r) > -a\frac{\partial}{\partial x} < x|\psi(r) >$$
$$+\frac{1}{2}a^{2}\frac{\partial^{2}}{\partial x^{2}} < x|\psi(r) > -\dots$$
$$= < x|\psi(r) > -\frac{i}{\hbar}a(-i\hbar\frac{\partial}{\partial x}) < x|\psi(r) >$$
$$+\frac{1}{2}(-\frac{i}{\hbar}a)^{2}(-i\hbar\frac{\partial}{\partial x})^{2} < x|\psi(r) > +\dots$$
$$= < x|e^{-\frac{i}{\hbar}\hat{p}a}|\psi(r) > (2.21)$$

现在将对态矢的平移操作看成一个线性变换, 在方势阱边界上取连接条件,就得出零级的散射 即D(a)|ψ(r) >= |ψ(r - a) >,那么D(r)是个幺正变 换,因为它只是乘以一个相因子的操作。从上面 的式子可以看出(推广到3维)

$$\hat{D}(a) = e^{i\hbar\hat{p}\cdot a}$$

同样在这样的变化下,算符也会发生变换

$$F(r) \rightarrow F(r+a) = D(a)FD^{-1}(a)$$

现在考虑如果在无穷小变换 $D(\delta r) = 1 - \frac{i}{\hbar}\hat{p}$. δr 下系统的哈密顿不变,代入后就得出

[p, H] = 0

2.5 对称性

于是动量算符的期望值不随时间变化(海森堡运 动方程),因此动量是守恒量。

类似地,可以同样证明,当空间旋转不改变 哈密顿量的时候,角动量是一个守恒量,且空间 旋转算符是e^{-_____}。

现在考虑时间平移操作,此时问题变得很微 妙,因为时间平移算符是 $T(\tau) = e^{\tau \frac{d}{dt}}$,它并没有简 单的等价形式。但同时我们应该注意到按照薛定 谔 方程有,

$$i\hbar \frac{d}{dt}|\phi\rangle = H|\phi\rangle$$

如果H不显含时间,则对于这个系统的任何一 个态|xi >, 从 $\frac{d}{dt}|\xi >= \frac{1}{i\hbar}H|\xi >$, 可以导出 $T(\tau)|\xi >=$ $e^{\tau \frac{d}{dt}} = e^{-iH\tau} | \xi >$ 。这样,假设在T作用下H不变,就 得出[H,H] = 0,因此系统的能量守恒。这种情况 下通常说"系统的物理性质是时间平移不变的", 或者"时间平移不变性导致能量守恒"。

2.5.2 分立对称性

考虑一个特殊的操作,即空间反演 $r \rightarrow -r$, 这个操作有时候称为宇称反演P,也就是 $\hat{P}|\psi(r)>=$ $|\psi(-r)>_{\circ}$

征值只能是±1,因此除了是个幺正算符之外,它 作,这时1号碳原子转动为2号碳原子。2号变换 还是个厄米算符,也就可以存在相应的力学量。 我们把对应的力学量称为宇称。当然这个力学量 能被观测到的结果只有±1。

宇称反演操作就是把整个空间的坐标翻转, 因此有 $\hat{P}r\hat{P}^{-1} = -r \pi \hat{P}p\hat{P}^{-1} = -p$ 。而角动量因为 是 $r \times p$,所以在反演操作下不变,也就是 $\hat{P}J\hat{P}^{-1}$ = J $_{\circ}$

不变也就是 $\hat{P}H\hat{P}^{-1} = H$,这个表达式也就是 $\hat{P}\hat{H} = \mathbb{P}_n|n >= P_n|n >= P_m|m >$ 这个矩阵元就等 ĤP因此P算符和H对易, 宇称将是一个守恒量。

另一个类似的操作是时间反演 $t \rightarrow -t$ 的操作, 然而这个问题变得很复杂,因为原则上量子力学 中时间并不是一个力学量而只是一个参数。因此 并不存在和时间反演对应的守恒量。

2.5.3 应用

当问题本身包含对称性时,对系统的波函数 进行对称操作,由于系统的状态在这个操作中不 变,因此波函数只能乘以一个相乘因子。这种手 法 在解决量子力学问题中很常用。

【实例:苯分子】考虑苯分子,它的骨架部 分是一个正六边形的碳原子环。可以认为每个碳 原子的2p电子可以 在临近原子之间运动, 当电子 处于第i个原子附近的时候,态矢为li>,假设只有 临近原子之间才有相互作用, 即设哈密顿量的矩 阵元 $i|H|_i > \exists i = j$ 时等于 $E, \exists i = j \pm 1$ 时等于V,其 他情况下为0.计算出这样的苯分子的第一激发能, 并和用同样近似计算的乙烯分子(两个相邻的碳 原子)的能量比较,说明苯的化学稳定性。

要点:近似波函数是 $\sum_i c_i | i > , 求和中包含分$ 子中的全部原子, 求解苯分子的本征方程时可以 由于宇称反演算符的平方ô² = 1,所以P的本 使用对称性论证,即考虑绕分子轴转动60度的操 为3号,所以波函数变为 $\sum_i c_{i-1} | i > i$,而旋转对称性 要求这个波函数和原来的波函数 只能差一个相因 子 $e^{i\lambda}$,于是必定有 $c_i = e^{i\lambda}c_{i-1}$ 而且 $e^{i\lambda}c_6 = c_1$,这样就 得出 $(e^{i\lambda})^6 = 1$,于是得到六个可能的 λ ,正好给出 六个可能的波函数。

对称性论证的另外一种常见用途是用来给 出矩阵元的选择定则。例如,考虑< nlxlm >这 考虑某个系统,其哈密顿算符在空间反演下 个矩阵元,其中|n >和|m >都是宇称的本征矢, 于< $n|P^{-1}PxP^{-1}P|m > = -P_nP_m < n|x|m >$, 所以,

如果 $P_n P_m = 1$,整个矩阵元就为0.这就是光谱学 两边乘以<n就给出 中的宇称选择定则:除非初态和末态的宇称相反, 否则跃迁禁止。

2.6 定态微扰法

定态微扰法是一种利用形式级数展开求解近 似结果的方法。考虑哈密顿量 $H = H^{(0)} + \lambda V$,其 中 $\lambda \ll 1$,而 $H^{(0)}$ 的本征函数可以严格解出。通过 形式的级数展开,可以把#写成这些本征函数的无 穷级数,然后利用递推方法逐步算出级数的每一 项。理论上这个计算可以无限 延伸下去,然而实 践中很少需要计算超过2阶的展开。

2.6.1 非简并情况

如果H⁽⁰⁾是无简并的,问题最为简单,设

$$E = E^{(0)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \dots$$
$$\psi = \psi^{(0)} + \lambda \psi^{(1)} + \lambda^2 \psi^{(2)} + \dots$$

且H⁽⁰⁾的本征函数是

$$H^{(0)}|n\rangle = E_n|n\rangle$$

按照多项式理论,匹配H|ψ >= E|ψ >级数展开式 的各次项,就给出逐级递推关系式。零级近似的 波函数就是 H⁽⁰⁾的波函数,也就是

$$E^{0} = E_{n}^{0}$$

$$|\psi^{(0)}>=|n>$$

$$V|\psi^{(0)} > +H_0|\psi^{(1)} > = E^{(0)}|\psi^{(1)} > +E^{(1)}|\psi^{(0)} >$$

$$E^{(1)} = < n |V| n >$$

 $\langle \psi^{(1)} \rangle = \sum_{m \neq n} a_m | m \rangle$,也就是不包含 $| n \rangle$ 分量, 两边乘以< ml给出

$$|\psi^{(1)}\rangle = \sum_{m \neq n} \frac{\langle m|V|n \rangle |m \rangle}{E_n - E_m}$$

第二级近似方程是

$$V|\psi^{(1)} > +H_0|\psi^{(2)} >$$

= $E^{(0)}|\psi^{(2)} > +E^{(1)}|\psi^{(1)} > +E^{(2)}|\psi^{(0)} >$ (2.22)

仍然假定 $|\psi^{(2)}\rangle = \sum_{m \neq l} d_m |m\rangle$, 两边乘以< n|后得 到二级近似能量

$$E^{(2)} = \sum_{m \neq n} \frac{\langle m | V | n \rangle \langle n | V | m \rangle}{E_n - E_m}$$

2.6.2 简并情况

简并情况的微扰,主要问题在于确定零级近 似波函数 $W^{(0)} >$ 。这是因为如果H'的对称性和 $H^{(0)}$ 不同的话, H对应于E⁽⁰⁾的本征函数将不是简并的, 因此即使零级波函数也不能在H⁽⁰⁾的波函数中任意 选择,而应该是H⁽⁰⁾对应于未微扰能级的本征函数 的若干线性组合。为了处理这个问题,将H⁽⁰⁾的本 征函数记为|nl >,其中 n是能量量子数,而l则是 区分简并的一个量子数。

U近似 首先考虑一阶近似,也就是

$$H^{(0)}|\psi^{(1)} > +H'|\psi^{(0)} > = E^{(0)}|\psi^{(1)} > +E^{(1)}|\psi^{(0)} >$$

其中 $E^{(0)} = E_m$,对于n=m的能级,本征态是p阶简 并的。

是微扰部分不包含所有n = m的态。技术上,如 否则,零级近似波函数需要在二级近似中定出。 $\mathbb{H}(u^{(1)}) > \mathbf{P} \in \mathbb{C}^n = m$ 的态, 总可以把他们归 为了问题的清晰,我们在V近似中讨论。 入业⁽⁰⁾中。可以证明这个假设导致对业⁽⁰⁾ >的选 取会差一个整体相位因子,因为现在只考虑能级, 可以不考虑这个相因子。这样写成

$$|\psi^{(0)}\rangle = \sum_{l} a_{l}|ml\rangle$$

在两边乘以< mk|,利用正交性关系式,就得 出(假定H₀的波函数都已经是正交归一化的)

$$\sum_{l} a_l < mk |H'| ml >= a_k E^{(1)}$$

这又得到久期方程,求解久期方程就得到p个一阶 近似能量。

得到的一阶近似能量有几种可能,如果p个一 阶近似能量各不相同,那么所有的a,都可以直接求 出:这样就得出了零级近似波函数:否则,微扰 从而一级近似能量是 后的能级仍然是部分简并的。这时,只有部分零 级函数的确定的,简并能级的波函数仍然可以任 意选择。

归纳一下U近似的基本思路,是将H分解为 块对角部分和块反对角部分。其中,每组对于相 同n的态 $l = k, j, H_{nnkj}$ 构成了H矩阵的一个对角块。 上述0级近似过程实际是首先对角化这个局部对 角块,也就是寻求一个幺正矩阵U使得U[†]H'U的 对角块成为对角 矩阵的过程。所以,这个过程 称为U近似。由于U近似只是对角化了H'的块内部 分,所以U[†]H'U并不是对角化的:但对角块外部 分至少是一级近似,因此零级近似可以忽略它 们。

接下来的问题是一级近似波函数和二级近似 能量。如果在一级近似中所有本征态都已解除简 并,使用新的本征函数表达问题之后,问题就简

除此之外,我们假定< ψ⁽¹⁾|ml >= 0,也就 化为非简并情形,可以直接处理二级近似方程;

例题1

假设哈密顿量为

$$\begin{array}{ccc} H = H_0 + V & = \\ \left\{ \begin{array}{ccc} E_1 & 0 & 0 \\ 0 & E_1 & 0 \\ 0 & 0 & E_2 \end{array} \right\} & + & \left\{ \begin{array}{ccc} 0 & V_1 & 0 \\ V_1 & 0 & V_2 \\ 0 & V_2^* & 0 \end{array} \right\}$$

求解微扰基态能量到二级。

基态只需要处理能量为E1的能级。E1对应的 是简并情况,不难写出其久期方程就是

$$\begin{vmatrix} -E^{(1)} & V_1 \\ V_1 & -E^{(1)} \end{vmatrix} = 0$$

$$E^{(1)} = \pm V_1$$

零级近似波函数是

$$|\psi_1^{(0)}\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle)$$

 $|\psi_2^{(0)}\rangle = \frac{1}{\sqrt{2}}(|1\rangle - |2\rangle)$

按照前面的描述,一级近似波函数为4:1 = cil3 >.其中i = 1.2代表两个简并态。 在一级近 似方程两边乘以<31. 就得出控制一级近似波函数 的方程:

$$c_i E_2 + < 3 |V| \psi_i^{(0)} > = c_i E_1$$

从而

$$c_i = \frac{\langle 3|V|\psi_i^{(0)} \rangle}{E_1 - E_2}$$

二级近似方程的两侧,得到(注意 $\psi_{1i}^{(2)} = d_i | 3 >)$

$$< i |c_i V|$$
 >= $E_i^{(2)} c_i$

于是 $E_{1i}^{(2)} = \frac{\langle 3|V|i \rangle \langle i|V|3 \rangle}{E_1 - E_2}$

对于 E_2 对应的态的微扰,显然 $E_2^{(1)} = 0$,因此 零级微扰波函数就是|2>。联合前面得到的前两个 零级近似波函数, 已经得出了所有的零级近似波 函数,且在这一阶下已经没有简并能级,因此直 接利用一级近似方程就可以得出二级近似能量和 一级近似波函数。

V近似 在简并未完全解除的条件下,可以处 理V近似。基本思路是首先将零级本征函数重写 成U近似后的形式,或者说对原始本征函数进行一 个幺正变换 U使得

$$H = E^{(0)} + \lambda E^{(1)} + \lambda H'$$

注意在简并未解除的态之间,U矩阵是不定 分。 的,对于这部分态直接取U矩阵为单位矩阵,其 中*H*′是*H*′矩阵的反对角块部分,因为这时的波函 数已经是U近似的,因此对角块部分已经是完全 对角矩阵。V近似的概念是再去寻找一个幺正变 换V使得H矩阵被对角化。因为严格对角化 是不可 能的,所以仍然需要做微扰近似,即零级,一级, 二级近似这样。

设U变换后的波函数是|nlv >,其中凡是简并的态 和|2 >就得到 就直接取对应的U变换为单位变换,接下来,需 要同样将本征方程依次展开到0阶,1阶和2阶, 仍然假定V⁽⁰⁾是仅对n,l全相等只有v不等的态才不 为0, 而 $V^{(1)}$ 只对n, l有所不同的态才不为0, $V^{(2)}$ 只将 c_i 的表达式代入得到久期方程, 然后可以定 对于n不同的态才不为0,如此计算下去,这样, 出E⁽²⁾和ai, bi。

为了求出二级近似能量,用<11和<21分别乘 在二级近似中就有可能解除原来在一级近似中未 能解除的近似。

> 我们用一个简单的例子来解释简并态的V近 似。

例题2

和上面的问题类似,但

$$\begin{array}{cccc} H = H_0 + H_1 & = \\ \left(\begin{array}{ccc} E_1 & 0 & 0 \\ 0 & E1 & 0 \\ 0 & 0 & E_2 \end{array} \right) & + & \left\{ \begin{array}{cccc} 0 & 0 & V_1 \\ 0 & 0 & V_2 \\ V_1^* & V_2^* & 0 \end{array} \right) \end{array}$$

求基态能量到二级微扰。

这个问题中很容易看出按照前面的方法 有 $E_1^{(1)} = E_2^{(1)} = 0$,因此 $\psi^{(0)}$ 无法在一级近似中定出。 由于这时候简并完全没有解除, U矩阵是个单位矩 阵。考虑到一共只有三个能级,头两个简并,而 第三个是不简并的,对于简并态,零级近似波函 数仍然由未微扰的本征函数线性组合而成,而这 两个态的一级修正波函数就只能包含第三个态成

一级近似可以写出是 ($|\psi_{i}^{(1)}\rangle = c_{i}|3\rangle$, $|\psi_{i}^{(0)}\rangle =$ $a_i|1 > +b_i|2 >$):

$$H_0|\psi^{(1)} > +V|\psi^{(0)} > = E^{(0)}|\psi^{(1)} > +E^{(1)}|\psi^{(0)} >$$

两边乘以<3|得到

$$c_i = \frac{a_i V_1^* + b_i V_2^*}{E_1 - E_2}$$

用完全相同的方案去构造变换系统,即假 然后写出二级近似方程,并且在两边乘以11>

$$c_i V_1 = E^{(2)} a_i$$
$$c_i V_2 = E^{(2)} b_i$$

2.6 定态微扰法

得出前两个态的零级近似波函数后,对 于E₂态的微扰计算显然已经和非简并情况完全 相同,于是只要在求和中对(1),(2)两个态分别计算 就可以了。

上述计算因为只有E₃一个对简并微扰影响的 状态,因此相对比较容易。如果包含更多的态,比 如有4个态, 1,2简并同时3,4简并,就需要对两个 态都进行上述展开,并且进入二级近似计算。

2.6.3 散射的波恩近似

我们来考虑连续谱的微扰法。如果势函数相 比粒子的总能量来说很小(绝对值很小或者影响 范围很小),那么可以把势能当成微扰,也就是

$$H_0 = -\frac{p^2}{2m}$$
$$\psi^{(0)} = \exp\{ikz\}$$
$$H^{(1)} = V(\vec{r})$$

这基本是一种散射过程。因为粒子能量是由 入射参数给出,无需再考虑能量修正是什么,只 要求出微扰后的波函数。

写出一级微扰的方程式

$$V|\psi^{(0)} >= (E - H_0)|\psi^{(1)} >$$

在坐标表象中写出这个方程就是

$$\nabla^2 \psi^{(1)}(\mathbf{r}) + k^2 \psi^{(1)}(\mathbf{r}) = \frac{2mU}{\hbar^2} \psi^{(0)}(\mathbf{r})$$

其中 $U = \frac{2m}{\hbar^2}$,这就是电动力学中学到的推迟势 方程。为了求解这种方程,我们需要研究格林函 数G(r, r')使得

$$\nabla^2 G(\mathbf{r} - \mathbf{r}') + k^2 G(\mathbf{r} - \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}')$$

对这方程两边做三维傅里叶变换,给出

$$(-k'^2 + k^2)G(k') = \frac{1}{(2\pi)^3}$$

这个方程是奇性的,因为在k' = ±k处有两个奇点。 为了使得这个方程有意义,我们可以把它改成

$$\lim_{\eta \to 0} (-k'^2 + k^2 + i\eta)G(k') = \frac{1}{(2\pi)^3}$$

η是个无穷小量。 逆变换这个表达式就得出

$$\begin{aligned} &G(r-r') \\ &= \lim_{\eta \to 0} \frac{1}{(2\pi)^3} \int \frac{\exp\{ik' \cdot (\mathbf{r} - \mathbf{r}')\}}{-k'^2 + k^2 + i\eta} d^3k' \\ &= \frac{1}{(2\pi)^3} \lim_{\eta \to 0} \int_0^\infty \frac{k'^2 dk'}{-k'^2 + k^2 + i\eta} \\ &\times \int \exp\{ik' |\mathbf{r} - \mathbf{r}'| \cos\theta\} \sin\theta d\theta d\phi \\ &= \frac{1}{(2\pi)^2} \frac{1}{i|\mathbf{r} - \mathbf{r}'|} \lim_{\eta \to 0} \int_0^\infty \frac{e^{ik'|\mathbf{r} - \mathbf{r}'|} - e^{-ik'|\mathbf{r} - \mathbf{r}'|}}{-k'^2 + k^2 + i\eta} k' dk \\ &= \frac{1}{4\pi^2 i|\mathbf{r} - \mathbf{r}'|} \lim_{\eta \to 0} \int_{-\infty}^\infty \frac{k' \exp\{ik'|\mathbf{r} - \mathbf{r}'|\}}{-k'^2 + k^2 + i\eta} dk' \end{aligned}$$

最后用复变函数方法算出这个积分,计算方法是 在上半平面或者下半平面用大圆闭合围道,围道 中只有一个单极点。于是当η > 0的时候,得出

$$G(\mathbf{r} - \mathbf{r}') = -\frac{1}{4\pi} \frac{\exp\{ik|\mathbf{r} - \mathbf{r}'|\}}{|\mathbf{r} - \mathbf{r}'|}$$

这个G函数满足我们在散射理论中指出的无穷远处 渐近条件(出射),因此是我们需要的形式。

这样就得到

$$\psi(\mathbf{r}) = \exp\{ikz\} - \frac{1}{4\pi} \int \frac{\exp\{ik|\mathbf{r} - \mathbf{r}'|\}}{|\mathbf{r} - \mathbf{r}'|} U(\mathbf{r}') \exp\{ikz'\} dr$$

由于 $r \gg r'$,可以近似地写出

$$ik|\mathbf{r} - \mathbf{r}'| + ikz' = ik(r - \mathbf{e_r} \cdot \mathbf{r}') + ikz'$$

令散射波的波矢
$$\mathbf{k} = k\mathbf{e}_{\mathbf{r}}, \mathbf{q} = \mathbf{k} = \mathbf{k}',$$
得出
 $\psi(\mathbf{r}) = \exp\{ikz\} - \frac{e^{ikr}}{4\pi r}\int \exp\{-i\mathbf{q}\cdot\mathbf{r}'\}U(\mathbf{r}')dr'$

或者

$$f(\theta,\phi) = -\frac{m}{2\pi\hbar^2} \int \exp\{-i\mathbf{q}\cdot\mathbf{r}'\}V(\mathbf{r}')dr'$$

这个结果称为散射的波恩近似。

例题 计算屏蔽库仑场 $V = \frac{A}{r} \exp\{-\mu r\}$ 的散射截面。

$$f(\theta) = -\frac{2m}{\hbar^2 q} \int_0^\infty r' V(r') \sin(qr') dr'$$

$$= -\frac{2m}{\hbar^2 q} \int_0^\infty A \exp(-\mu r') \sin(qr') dr'$$

$$= -\frac{2mA}{\hbar^2} \frac{1}{\mu^2 + q^2}$$

当 μ →0的时候,就得到经典的卢瑟福散射公式。

2.7 角动量耦合

考虑一个系统由两个子系统构成的情况,这 时系统的总角动量

$J = J_1 + J_2$

如果两个子系统之间没有内部联系,那 么 J_1,J_2 互相对易,总角动量的对易关系仍然 是 $\vec{J} \times \vec{J} = i\hbar \vec{J}$ 。所以总角动量的本征值仍然是

$$J^{2}|jm \rangle = j(j+1)\hbar^{2}|jm \rangle$$

$$J_{z}|jm \rangle = m\hbar|jm \rangle$$
(2.23)

考虑两个子系统之间存在某种耦合的情况, 例如

$$H = f(J_1^2, J_2^2) + \lambda J_1 \cdot J_2$$

这个哈密顿量可以写成

$$H = f(J_1^2, J_2^2) + \lambda \frac{(J_1 + J_2)^2 - J_1^2 - J_2^2}{2}$$

也就是哈密顿量是 J_1^2 , J^2 , J_n^2 的函数,从而本征矢就 是 $|j_1 j_2 jm >$ 。因此,如果我们求出了这个本征矢 的表达式,就得出了系统的本征态。

另一方面,子系统一的本征矢量是 $|j_1m_1 >$, 子系统二的本征矢量是 $|j_2m_2 >$,所以整个系统的 状态描述也可以通过描述所有 $j_1m_1j_2m_2$ 获得。引入 一种新的乘法,称为直积,即 $|j_1m_1 > \bigotimes |j_2m_2 >$ = $|j_1m_1j_2m_2 >$ 。它的含义是, $|j_1m_1j_2m_2 >$ 这个态矢 表示子系统一的态矢是 $|j_1m_1 >$,子系统二的态矢 是 $|j_2m_2 >$ 。当用这个态矢和其他量进行计算的时 候,凡是和子系统一相关的项只对 $|j_1m_1 >$ 发生作 用,和子系统二相关的项只对 $|j_2m_2 >$ 发生作用。 在不发生混淆的情况下,我们可以直接将上述乘 法的直乘符号 🛞 去掉。这样,每一组 $j_1m_1j_2m_2$ 都 会直乘出一组态矢,一共得到($2j_1 + 1$)($2j_2 + 1$)个 态矢,这些态矢显然是正交归一的,于是我们可 以使用这样的 $|j_1m_1j_2m_2 >$ 作为希尔伯特空间的基 矢。

假设我们研究坐标表象,那么基矢显然 $\mathcal{E}|x_1 > \bigotimes |x_2 >$,波函数就是用这个基矢直接 乘到对应的 $|\psi_1 > \bigotimes |\psi_2 >$ 上,然后因为对于子系 统1和子系统2的计算 是独立的,子系统1给出一 个< $x_1|\psi_1 >= \psi_1(x_1)$,子系统2给出一个< $x_2|\psi_2 >=$ $\psi_2(x_2)$,最后的结果应该是两个结果之间的直积。 但是技术上坐标波函数都是数,其直积就是数的 乘积,也就是< $x_1x_2|\psi_1\psi_2 >= \psi_1(x_1)\psi_2(x_2)$,这就是 通常说"整个系统的波函数等于子系统波函数的 乘积"的来源。但是如果研究的是自旋问题,例 如自旋 $\frac{1}{2}$,那么每个子系统的波函数都是2维的列矩 阵,而容易看到整个系统的态空间是4维的,也就 是整个系统的波函数是4维列矩阵,只能说列矩阵 的每个矩阵元都是对应子系统波函数矩阵元的乘 积,而整个列矩阵是子系统列矩阵的直积。

2.7 角动量耦合

【习 题】 考 虑 两 个1/2自 旋*s*1和*s*2.在|*j*1*m*1*j*2*m*2 >表象下写出*s*1,*s*2以及*s*1·*s*2的 矩阵形式。

在另一方面,总角动量的本征矢量应该 是|*jm*>,这些本征矢也构成一组基矢。两组基 矢之间必然可以用某个幺正变换联系。这个变换 关系可以写成

$$|j_{1}j_{2}jm >$$

$$= \sum_{m_{1}} \sum_{m_{2}} |j_{1}m_{1} > |j_{2}m_{2} > \langle j_{1}m_{1}j_{2}m_{2}|j_{1}j_{2}jm >$$

$$= \sum_{m_{1}} \sum_{m_{2}} |j_{1}m_{1} > |j_{2}m_{2} > S_{m_{1}m_{2}jm}^{j_{1}j_{2}} \qquad (2.24)$$

其中的S系数称为Clebsch-Gordan系数,代表 基矢变换之间的矩阵元。

这组系数的完成计算可以使用升降算符完成, 也可以查完整的系数表,当 j_1, j_2 都很小的时候, 用升降算符+正交性关系最容易处理。为此首先 指出,这组系数仅当 $m_1+m_2 = m \Box |j_1-j_2| \le j \le |j_1+$ j_2 |时才不为0。第一条是因为 $J_z = J_{1z} + J_{2z}$,两边乘 以 J_z 之后再乘< $j_1m_1 j_2m_2$ |就可以得出 $m = m_1 + m_2$ 。 第二条可以直接从矢量耦合法则看出来,也可 以可以通过在 $|j_m >$ 上执行若干次上升或者下降算 符证明,例如,假设对于 $j > j_1 + j_2$ 的态,展开系 数< $j_1m_1 j_2m_2 |j_1 j_2 j(m_1 + m_2) >$ 不为零,那么在这个 展开式两边用 $J_+ = J_{1+} + J_{2+}$ 作用若干次,使左边成 为 $|j_1 j_2 j_j >$ 。现在来考虑右边的形式:在任何一个 态 $|j_1m_1 j_2m_2 >$ 上乘以 J_+ 都会产生出两个结果,即

 $J_{+}|j_{1}m_{1}j_{2}m_{2}\rangle = a|j_{1}m_{1} + 1j_{2}m_{2}\rangle + b|j_{1}m_{1}j_{2}m_{2} + 1\rangle$

因此乘以n次J+之后的结果是

$$J_{+}^{n}|j_{1}m_{1}j_{2}m_{2}\rangle = \sum_{k+l=n} a_{kl}|j_{1}(m_{1}+k)j_{2}(m_{2}+l)\rangle$$

现在因为 $j > j_1 + j_2$,所以无论如何都会有 $m_1 + k > j_1$ 或者 $m_2 + l > j_2$,结果展开式的每一项都是0。

这样,在(2.24)的右边全部为0,结果得 到|*j*₁*j*₂*jj*>=0,但这是个基矢,其模应该等于1, 因此是不可能的。类似地可以考虑*j* < |*j*₁ - *j*₂|的情况。

其次考虑当 $j_1 + j_2 = j \pm m_1 = j_1, m_2 = j_2$ 的系 数< $j_1 j_1 j_2 j_2 | j_1 j_2 j j >$ 。立刻看出 这个系数为1,也 就是

$$|j_1 j_2 (j_1 + j_2)(j_1 + j_2) \rangle = |j_1 j_1 \rangle |j_2 j_2 \rangle$$

然后在此式子两边应用下降算符,马上得出 所有|*j*₁*j*₂*jm*>。其次,需要计算|*j*₁*j*₂(*j*-1)(*j*-1)>, 按照前面叙述的选择定则,这个只可能由下面的 两个态构成: |*j*₁*j*₁ - 1*j*₂*j*₂ >和|*j*₁*j*₁*j*₂*j*₂ - 1>,而 这两个态正好构成过|*j*₁ - 1>,因此可以通过正 交性关系式得出对应的两个系数,随后知道所 有的|*j*₁*j*₂(*j* - 1)*m*>。下一个计算 |*j*₁*j*₂(*j* - 2)(*j* -2)>则可以使用更多的正交性关系,依此类推, 当*j*₁和*j*₂有一个很小的时候这一算法很容易给出所 有的展开公式。

考虑最简单的情况,也就是 $j_1 = j_2 = \frac{1}{2}$,如上述,合成的角动量为j = 0,1。首先研究j = 1的情况,也就是

$$|11> = |\frac{1}{2}\frac{1}{2}>$$

其中j₁, j₂已经隐含。

使用下降算符后,得到

$$|10\rangle = \frac{1}{\sqrt{2}} \left(|\frac{1}{2} - \frac{1}{2}\rangle + |-\frac{1}{2}\frac{1}{2}\rangle \right)$$
$$|1-1\rangle = |-\frac{1}{2} - \frac{1}{2}\rangle$$

其次需要计算|*j* = 0 >的情况,这只有一个可 能态是|00 >。如上述, |00 >必定由|1/2 - 1/2 >和|-122 >组成,而且它和|10 >必定正交,因此唯一可 2.8.1 演化算符 能的解是

$$|10> = \frac{1}{\sqrt{2}} \left(|\frac{1}{2} - \frac{1}{2} > -| -\frac{1}{2}\frac{1}{2} > \right)$$

这样我们得到四个基矢,其中三个对应;= 1, -个对应j = 0。当哈密顿量取前述形式的时候, 我们就得出两个能级,一个是三重简并态,另一 其中U(t,t₀)称为演化算符,且 个是单态。

有时候需要考虑 $j_1 = 1$ 和 $j_2 = \frac{1}{2}$ 的耦合,这个 计算可以完全类似地做出,即 $j = \frac{3}{2}, \frac{1}{2}$,而且

$$|\frac{3}{2}\frac{3}{2}\rangle = |1\frac{1}{2}\rangle$$

使用下降算符给出

$$|\frac{3}{2}\frac{1}{2}\rangle = \frac{1}{\sqrt{3}}\left(\sqrt{2}|0\frac{1}{2}\rangle + |1-\frac{1}{2}\rangle\right)$$

$$\left|\frac{3}{2} - \frac{1}{2}\right| \ge \frac{1}{\sqrt{3}} \left(\sqrt{2}\left|0 - \frac{1}{2}\right| > + \left|-1\frac{1}{2}\right| > \right)$$

$$|\frac{3}{2}\frac{1}{2}\rangle = |-1 - \frac{1}{2}\rangle$$

剩下j = 1/2的两个态可以使用和中间两个态的 正交性关系求出,结果是

$$|\frac{1}{2}\frac{1}{2}\rangle = \frac{1}{\sqrt{3}} \left(|0\frac{1}{2}\rangle - \sqrt{2}|1-\frac{1}{2}\rangle \right)$$

和

$$\left|\frac{1}{2} - \frac{1}{2}\right| \ge \frac{1}{\sqrt{3}} \left(\left|0 - \frac{1}{2}\right| > -\sqrt{2}\left|-1\frac{1}{2}\right|\right)$$

2.8 绘景和演化问题

现在考虑量子力学系统状态的演化。系统的 演化可以用薛定谔方程描述,对此方程形式地进 行积分得出

$$|\psi(t)\rangle = U(t,t_0)|\psi(t_0)\rangle$$

$$i\hbar \frac{\partial}{\partial t} U(t, t_0) = HU(t, t_0)$$

当H中不显含时间时, U具有形式解

$$U(t,t_0) = e^{-\frac{i}{\hbar}(t-t_0)\hat{H}}$$

由于是算符积分,通常不可能直接积出。下面考 虑一些比较简单的情况。假设哈密顿的本征态是 己知的, 即 $H|n \ge E_n|n >$, 且| $\psi(0) >$ 可以写成

$$|\psi(0)\rangle = \sum_{n} a_{n}|n\rangle$$

那么,注意到

$$f(H)|n \ge f(E_n)|n \ge n$$

,所以方程写成

$$U(t,t_0)|\psi\rangle = \sum_n a_n \exp\{-i\frac{E_n}{\hbar}(t-t_0)\}|n\rangle$$

或者说

$$\psi = \sum_m a_m(t)\psi_m$$

其中

$$a_m(t) = \langle m | \psi(t) \rangle = a_m(0) \exp\{-i \frac{E_m}{\hbar} (t - t_0)\}$$

例1:

2.8 绘景和演化问题

t=0时刻的电子处于 $S_x = \frac{\hbar}{2}$ 中,加上y方向的磁 |*p* > *U*(*p*,*t*),因此 场B,求时刻t电子的自旋。

注:哈密顿算符是 $H = -\mu B = \frac{eB\hbar}{m}\sigma_y$ 。因此能 级就是 $E = \pm \frac{eB\hbar}{m}$,对应的本征矢为

$$|+y\rangle = \frac{1}{\sqrt{2}}(|\frac{1}{2}\rangle + i| - \frac{1}{2}\rangle)$$
$$|-y\rangle = \frac{1}{\sqrt{2}}(|\frac{1}{2}\rangle - i| - \frac{1}{2}\rangle)$$

初态是

$$|+x>=|+y><+y|+x>+|-y><-y|+x>$$

= $\frac{1-i}{2}|+y>+\frac{1+i}{2}|-y>$

于是在时刻t的态是

 $|t> = \frac{1-i}{2} \exp\{-i\frac{eB}{m}t\}| + y> + \frac{1+i}{2} \exp\{+i\frac{eB}{m}t\}| - y>$

自旋可以通过计算< t\S|t>得出。

例2:

假设一维自由粒子初始的波函数 为 $\frac{1}{\sqrt{2}}$ exp{ $-x^2$ }。求t时刻后的波函数。

注意到演化方程现在是

$$|\psi(t)\rangle = U(t, t_0)|\psi(0)\rangle = \exp\{-\frac{i}{\hbar}t\frac{\hat{p}^2}{2m}\}|\psi(0)\rangle$$

= $U(\hat{p}, t)|\psi(0)\rangle$

波函数就是< $x|\psi(t)>$,也就是

$$< x|\psi(t) > = < x|U(\hat{p},t)|\psi(0) >$$
$$= \int dp < x|U(\hat{p},t)|p > < p|\psi(0) >$$

(2.25)

$$< x|\psi(t) > = < x|U(\hat{p},t)|\psi(0) >$$

$$= \int dp < x|p > U(p,t) \int dx' < p|x' > < x'|\psi(0) >$$

$$= \int dp < x|p > U(p,t) \int dx' \frac{1}{\sqrt{h}} \exp(-ipx'/\hbar)\psi(x')$$

$$= \int dp < x|p > U(p,t) \frac{1}{\sqrt{h}} \exp(-\frac{p^2}{4\hbar^2})$$

$$= \int dp \frac{1}{\sqrt{h}} \exp(\frac{ipx}{\hbar}) \exp\{-\frac{i}{\hbar} \frac{p^2}{2m}t\} \frac{1}{\sqrt{h}} \exp(-\frac{p^2}{4\hbar^2})$$

积分就得到所求。

2.8.2 绘景变换

上面的计算都是针对一组不变基矢的,也就 是基矢|i>和算符的矩阵形式Fii都不随时间变化, 这种情况最为常用,称为薛定谔绘景(picture,区分 它和representation的区别)。在很多情况下,我们 可以使用另外一种描述方式,形式上, 这描述方 式类似于在力学中使用运动参考系。这样就得到 绘景的概念。这种变换过程 称为绘景变换。以后 为说明是薛定谔绘景,在对应量下面增加一个s上 标。在薛定谔绘景下,基矢和算符的矩阵形式是 不变的,但态矢量的矩阵形式随时间变化。

考虑薛定谔绘景下的哈密顿量H*不显含时间 的情况,这时,假设演化算符可以求出,然后对所 需要研究的系统的态矢量 和算符做一个幺正变 换U⁻¹,那么,得到海森伯表象下的态矢和算符形 式

$$|\psi(t)\rangle^{H} = U^{-1}(t,0)|\psi(t)\rangle^{s} = |\psi(0)\rangle^{s}$$

 $A^{H}(t) = U^{-1}(t,0)A^{s}U(t,0)$

注意这不是表象变换,因为我们没有改变基矢体 然后注意到 $U(\hat{p},t)$ 是 \hat{p} 的函数,也就是 $U(\hat{p},t)|p >=$ 系。这个问题也可以等价地看成取态矢不变,而 给所有基矢乘以一个U(t,0)。这是因为

 $< n|\psi^{H}(t) > = < n|U^{-1}(t,0)|\psi_{S}(t) > = (U(t,0)|n>, |\psi^{S}(t)>)$ 楞绘景中是

换句话说,这个观点等于在转动参考系中看问题, 在转动参照系中,原来静止的矢量现在开始旋转, 因此静止矢量的坐标随时间不断的变化, 而和参 照系一起旋转的矢量,其坐标却不再变化。

以后将取第一种观点,即基矢没有变化,而 在每一瞬间的态矢和算符上都作一个幺正变换。 两种观点本质上是等价的,但用第一种 观点计算 起来比较清楚。

在海森伯绘景下,对应物理体系的态矢是不 变的,而算符随时间演化。假设A是个不显含时间 的算符,于是演化方程是(我们总是假定哈密顿 不显含时间)

$$i\hbar \frac{\partial}{\partial t} |\psi\rangle^{H} = 0$$
$$i\hbar \frac{d}{dt} A^{H}(t) = [A(t)^{H}, H^{H}]$$

后面这个方程称为海森伯运动方程。

由于在海森伯绘景中,对应系统的态矢量是 不变的,于是展开系数 < $n|\psi^{H}(t)$ >也不随时间变 化。如果我们取能量表象,则

$$< n|\psi^{H}(t) >= \exp(\frac{i}{\hbar}E_{n}t) < n|\psi^{S}(t) > = < n|\psi^{S}(0) >$$

换句话说,展开系数是不同的。如果在能量 表象中计算任何算符的矩阵元,就得出

$$< n|A^{H}(t)|m> = \exp\left[\frac{i}{\hbar}(E_n - E_m)t\right] < n|A^{S}(t)|m>$$

系的态矢的平均值 也不变,也就是这个算符对应 量 的原则是使得正则运动方程能够给出正确的 的物理量是个守恒量。

上述在两种绘景之间的变换只是一个含时幺 正变换,考虑两个算符*Ê*和*Ĝ*,其对易关系在薛定

$$[F^S, G^S] = W^S$$

如果在同一时刻计算海森伯绘景中的算符 \hat{F} 和 \hat{G} , 那么它们的 对易关系是

$$[F^{H}(t), G^{H}(t)] = U^{-1}(t)F^{S}U(t)U^{-1}(t)G^{S}U(t)$$
$$-U^{-1}(t)G^{S}U(t)U^{-1}(t)F^{S}U(t)$$
$$= U^{-1}(t)[F^{S}, G^{S}]U(t) = W(t)^{H}$$

因此可知海森伯绘景中算符的等时对易关系和薛 定谔绘景中的算符对易关系相同。

此外不难看到如果系统的 态矢是W(t) >, 力学变量算符是F(t),那么有

$$<\psi(t)^{H}|F(t)^{H}|\psi^{H}(t)>$$

=< $\psi(t)^{S}|U(t)U^{-1}(t)F^{S}U(t)U^{-1}(t)|\psi^{S}(t)>$
=< $\psi(t)^{S}|F^{S}|\psi^{S}(t)>$

也就是在任何绘景下算出的力学变量期望值是一 样的。

海森伯绘景的计算很繁杂,但其主要优点是 演化过程被完全吸收到力学变量中,这使得海森 伯绘景下的量子化过程比较容易。

我们回到基本原理中的正则量子化方法,对 于熟知的自由粒子或者其他任何能够写出势能和 动能的系统,选择正则坐标和正则动 量是很简单 的,但对于更一般的问题,如何选择什么是正则 坐标和正则动量呢? 在一般的问题中, 正则坐标 容易从海森伯运动方程得出,如果A^H和H^H对 和正则动量可能并不具有任何"坐标"或"动量" 易则A算符不变,所以其在海森伯绘景下的对该体 的含义。在经典力学中,选择正则坐标和正则动 系统运动方程。而在量子力学中,选定了对易关 $\mathcal{K}[x, p] = i\hbar$ 之后,就可以得到海森伯绘景下的正 则坐标,正则动量以及哈密顿量,然后得出算符 须有 $c_1c_2 = L_o$ 容易看出 $c_1 h c_2$ 的绝对值是无意义 演化方程(海森伯运动方程)。而我们可以要求这的,因为两个量总可以成比例地放缩,所以最后 个方程等价于体系的正则运动方程,这样,我们 $pc_1 = 1, c_2 = L$,也就是x = Q, p = LI就得到正确 就可以得到一个基本的正则量子化形式。

一旦得到了海森伯绘景下的哈密顿量,就可 以直接过渡到薛定谔绘景, 然后就可以使用前面 发展的各种计算技巧给出量子力学结果。

例题: 考虑LC振荡电路,其能量为

$$H = \frac{1}{2}LI^2 + \frac{1}{2}\frac{Q^2}{C}$$

而运动方程是

$$\frac{dQ}{dt} = L \frac{dI}{dt} = -\frac{Q}{C}$$

写出其量子化形式。

显然,可以猜测I,Q是一对正则变量,为此注 意到两个运动方程联立后

$$\frac{d^2Q}{dt^2} + \omega^2 Q = 0$$

是谐振子的经典运动方程,于是猜测应该取 x^{H} = $c_1Q, p^H = c_2I, 然后哈密顿量$

$$H^{H} = \frac{1}{2} \frac{L}{c_{2}^{2}} p^{H2} + \frac{1}{2} \frac{1}{c_{1}^{2} C} x^{H2}$$

这样海森堡运动方程就是

$$\frac{dx^H}{dt} = \frac{L}{c_2^2} p^H$$
$$\frac{dp^H}{dt} = -\frac{1}{c_1^2 C} x^H$$

也就是

$$\frac{dQ^{H}}{dt} = \frac{L}{c_{1}c_{2}}I^{H}$$
$$\frac{dI^{H}}{dt} = -\frac{1}{c_{1}c_{2}C}U^{H}$$

为了使海森堡运动方程等价于电流方程,必 的量子化规则: $[Q^H(t), I^H(t)] = i\frac{\hbar}{r}$ 。

然后我们需要过渡到薛定谔绘景,于是薛定 谔绘景下, 系统的态矢量(管他是什么意思!)应 该是|4>, 且演化方程是

$$i\hbar \frac{\partial}{\partial t} |\psi\rangle = H |\psi\rangle$$

为了研究这个演化问题,需要求解本征方程

$$H|E_n > = E_n|n >$$

其中 $H = \frac{1}{2L}\hat{p}^2 + \frac{1}{2C}\hat{x}^2$ 这显然是个谐振子的哈密顿, 于是

$$E_n = (n+1/2)\hbar\omega$$

进一步地,可以得到基态的平均涨落噪声:

$$\langle \Delta q^2 \rangle = \frac{\hbar \omega_0 C}{2}$$

换句话说,对于一个无穷小的LC电路,其电流和 电压即使在绝对零度下也不是一个定值, 而是存 在一些极小的量子涨落。

考虑系统的哈密顿量可以分离成两部分的情 况, 即 $H^{s} = H_{0}^{s} + H_{1}^{s}$, 其中主要部分 H_{0}^{s} 可以严格 解出,这时,可以建立一种新的绘景,称为相互 作用绘景或者叫Dirac绘景。其基本思路是,使用 一个不完全的演化算符

$$U_0(t) = e^{-\frac{i}{\hbar}H_0^S}$$

进行类似海森伯绘景的幺正变换。 也就是

$$|\psi(t)\rangle^{I} = e^{\frac{i}{\hbar}H_{0}^{S}}|\psi(t)\rangle^{S}$$

$$A^{I}(t) = e^{\frac{i}{\hbar}H_0^S} A^S e^{-\frac{i}{\hbar}H_0^S}$$

这样得出态矢和算符都在演化,演化方程是

$$i\hbar\frac{\partial}{\partial t}|\psi\rangle^{I} = H_{1}^{I}(t)|\psi(t)\rangle$$
$$i\hbar\frac{\partial}{\partial t}A^{I}(t) = [A(t)^{I}, H^{I}]$$

2.8.3 含时微扰论

含时微扰问题非常适合用Dirac绘景来处理, 考虑上边的态矢演化方程,取H₀表象,则态矢演 化方程变为

$$i\hbar \frac{\partial}{\partial t} < n|\psi(t)>^{I} = \sum_{m} < n|H_{1}^{I}|m> < m|\psi(t)>^{I}$$

写成矩阵形式,其中< $n|\psi^{I}(t)$ >就 是 $a_n^I(t)$,而 H_1^I 是

$$< n|H_1^I|m > = e^{\frac{i}{\hbar}(E_n - E_m)t} < n|H_1^S|m >$$

这样就得出

$$i\hbar\frac{\partial}{\partial t}a_n^l(t) = \sum_m e^{\frac{i}{\hbar}(E_n-E_m)t} < n|H_1^S|m > a_m^l(t)$$

一旦解出了a^l_n(t),用逆变换可以直接给出薛定谔 绘景中的波函数

$$|\psi(t)\rangle^{S} = \sum_{n} \exp\{-\frac{i}{\hbar}E_{n}t\}a_{n}^{I}(t)|n\rangle$$

许多书上使用下面的方法来处理这种微扰问 题: 令系统的微扰后波函数为

$$\psi(x,t) = \sum_{m} c_{m}(t)\phi_{m}(x)e^{\frac{-iE_{m}t}{\hbar}}$$

于是给出

$$\sum_{m=1}^{\infty} i\hbar \dot{c}_m(t)\phi_m(x)e^{\frac{-iE_m t}{\hbar}} + \sum_{m=1}^{\infty} c_m(t)E_m\phi_m(x)e^{\frac{-iE_m t}{\hbar}}$$
$$= \sum_{m=1}^{\infty} c_m(t)E_m\phi_m(x)e^{\frac{-iE_m t}{\hbar}} + \sum_{m=1}^{\infty} c_m(t)H'\phi_m(x)e^{\frac{-iE_m t}{\hbar}}$$

左乘以 $\phi_n^*(x)e^{\frac{iE_nt}{\hbar}}$ 并且积分就得出

$$i\hbar \frac{d}{dt}c_n(t) = \sum_m c_m(t)H'_{nm}e^{\frac{i(E_n-E_m)t}{\hbar}}$$

实际上这办法是对相互作用绘景(乃至海森伯绘 景)的另一种表述方式,因为如同前面所说的, 相互作用绘景中的幺正变换, 等效于 将基矢演 化起来。也就是让基矢 $|n > 改成|n(t) = U_0(t)|n >$, 如果 $|n\rangle$ 是能量本征态,那么< x|n(t)>就是 $\phi_n(x)e^{\frac{-iE_nt}{\hbar}}$.

现在考虑 $H_1^S \ll H_0^S$ 的情况,首先考虑最简单 的情况,即系统初态是 $a_m(0) = 1, a_n(0) = 0$,微扰 是在t = 0时刻加上的,那么,在第一级近似下, 演化方程的近似结果是

$$a_n(t) = \frac{i}{\hbar} \int_0^t \exp(i\omega_{nm}\tau) H_{nm} d\tau$$

而跃迁到k'态的几率就是|ak'(t)|2(相因子被去 除)。

现在考虑典型的周期性微扰,也就是H = $H_1 \sin(\omega t) = F \exp\{-i\omega t\} + F^* \exp\{-i\omega t\}$, 这时, 上 述积分可以明显的算出,结果当 $\omega \neq \omega_{nm}$ 的时候,跃 迁结果是粒子在两个态中间振荡。

现在考虑 $\omega \simeq \omega_{nm}$ 的情况,这时粒子出现 在n态的几率是

$$\mathscr{P} = \mathscr{W}_{nm} = \left| \frac{i}{\hbar} \int_0^t \exp\{i(\omega_{nm} - \omega)\tau\} F_{nm} d\tau \right|^2$$

计算上述积分并且取 $|E_n - E_m| = \omega$ 的极限,利 . 2

$$\lim_{t \to \infty} \frac{\sin^2 \alpha t}{\alpha^2 t \pi} = \delta(\alpha)$$

以及

用

$$\delta(ax) = \frac{1}{a}\delta(x)$$

于是得出

$$\mathscr{P} = \frac{2\pi}{\hbar} | < n |F|m > |^2 t \delta(E_n - E_m - \hbar \omega)$$

黄金规则)

$$\mathscr{W} = \frac{2\pi}{\hbar} | < n |F|m > |^2 \delta(E_n - E_m - \hbar\omega)$$

在最后出现了一个δ函数,这是因为纯粹的单 色微扰不可能存在。有两种吸收掉这个δ函数的情 况,首先是末态为一组准连续的情况,于是在单 位时间内,跃迁跑到某个末态 $E_n \rightarrow E_n + dE$ 的几 率,应该是上述的₩乘以末态分布ρ(E_n)dE,并且 积分,也就是

$$\mathcal{W} = \frac{2\pi}{\hbar} | < n |F|m > |^2 \rho(E_n)$$

另一种情况是微扰不是纯粹单色的,或者说 微扰实际上是

$$H = \int_0^\infty \{F(\omega) \exp(-i\omega t) + F^*(\omega) \exp(i\omega t)\} d\omega$$

那么显然需要对上述 ω 进行积分,同样消除掉 δ 函 数:

$$\mathcal{W} = \frac{2\pi}{\hbar^2} \int_0^\infty |\langle n|F|m \rangle|^2 \delta(\omega_{nm} - \omega) d\omega$$
$$= \frac{2\pi}{\hbar^2} |\langle n|F(\omega)|m \rangle|^2$$

2.8.4 绝热和突发近似

回到演化问题,考虑一个在t=0时刻加上的扰 动,一般来说跃迁几率和扰动的具体施加方式有 关。假设扰动以一种极其缓慢的方式被施加到系 统中,对跃迁几率进行分部积分不难看出跃迁几 率为0。也就是说,在这种极其缓慢的外部扰动 下,系统基本上保持在稳定状态中,只是状态本 身由于外部参数的改变而改变。在第一级近似下, 我们可以直接写出未来时刻的波函数:

$$\psi(t \to \infty) = |H(t)\rangle$$

也就是说,单位时间内的跃迁几率是(Fermi的跃迁 这种近似称为绝热近似。一个典型的例子是分子 中的电子能级,当一个处于基态的分子发生振动 的时候,电子基本上维持在基态,不会跃迁到其 他状态。

> 一种完全对立的情况是扰动被以瞬间的方式 加在系统上。在第一级近似下,可以认为在扰动 加上后的瞬间,系统仍然处于原来的波函数描述 下, 也就是 $\psi(0+) = \psi(0-)$,于是如果加上微扰之 后的本征态是|n'>,那么在加上微扰后瞬间,系 统跑到|n'>的几率是| < n'|ψ(0−)>|²。这种近似称 为突发近似。

2.9 电磁场中的粒子

2.9.1 电磁场中的无自旋粒子

现在考虑一个无自旋带电粒子在电磁场中的 运动。在量子力学中不存在力和加速度的概念, 因此不能直接用洛伦兹力的 方法处理问题。解决 方法是按照经典力学和电动力学的方法,使用所 谓最小电磁耦合。

所谓最小电磁耦合是指在哈密顿量中做替 换(这不是严格的定义,但在现在基本可用)

$$p \rightarrow p - eA$$

 $H \rightarrow H - e\phi$

这样, 粒子的哈密顿量可以写成

$$H = \frac{1}{2m}(p - eA)^2 + V + e\phi$$

如同在经典电动力学里面学到的那样, A.o的 选择具有相当的任意性。在非相对论问题中, 库 仑规范是比较简单的,也就是 $∇ \cdot A = 0$ 。将上面的 表达式展开,就得到

$$H = \frac{1}{2m}(p^2 - 2eA \cdot p + e^2A^2) + V + e\phi$$

考虑最简单的情况,即只有一个恒定磁场 \vec{B} 。 这时矢量势可以写成 $A = \frac{1}{2}(\vec{B} \times \vec{r})$,于是哈密顿量成 为

$$H = \frac{1}{2m}p^2 - \frac{e}{2m}\vec{B} \cdot (\vec{r} \times \vec{p}) + \frac{e^2}{8m}|B \times r|^2 + V$$
$$= \frac{1}{2m}p^2 - \frac{e}{2m}\vec{L} \cdot \vec{B} + \frac{e^2}{8m}|B \times r|^2 + V$$
$$= \frac{1}{2m}p^2 - \vec{\mu} \cdot \vec{B} + \frac{1}{8m}|B \times r|^2 + V (2.26)$$

最后出现了两个附加项,考虑对于原子的情况,这时粒子具有近似守恒的轨道角动量。第一 个是 $\mu = \frac{eL}{2m}$,称为粒子的轨道磁矩。也就是说,如 同在经典物理中一样,具有某个轨道角动量的电 子可以当成一个磁偶极子。

第二项的情况稍微复杂一点。考虑匀强磁场 中的一个原子,这个项就是

$$H' = \frac{1}{8m}e^2(B \times r)^2$$

通常我们用微扰方法处理这个问题,这时需要计 算< $\psi|H'|\psi>$ 。此外 $B \times r = |B||r|\sin\theta$,由于 θ 是随 机的,需要对sin² θ 进行统计平均,这个平均结果 是²₃,于是结果是

$$E' = \frac{1}{12m}e^2 B^2 \overline{r^2}$$

这样的原子放在磁场中出现了一个正的附加能量, 于是表示它的磁化方向和驱动磁场相反,这就是 抗磁性。

当除了磁场以外没有别的外场时,上述方程 可以严格解出。求解可以使用算符法或者直接求 解坐标表象的薛定谔方程。后一方法相对比较 简单。假设磁场在z方向,由于矢量势选择的任意 性,可以任意选择一个比较简单的表达式,我们选择*A* = {0,*B*_z*x*,0},薛定谔方程就是

$$\frac{1}{2m} \{ (-i\hbar \frac{\partial}{\partial x})^2 + (-i\hbar \frac{\partial}{\partial y} - eB_z x)^2 + (-i\hbar \frac{\partial}{\partial z})^2 \} \psi(x, y, z) = E\psi(x, y, z)$$
(2.27)

分离变量后, y,z方向都是平面波, 即 $\phi(y,z) = \exp\{\frac{i}{\hbar}(p_yy + p_zz)\}$, 对应的能量是 $E_w = \frac{(p_y^2 + p_z^2)}{2m}$, 而 在x方向的方程是:

$$(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{e^2B_z^2}{2m}x^2 - \frac{eB_zp_yx}{m})\phi(x)$$
$$= [E - \frac{(p_y^2 + p_z^2)}{2m}]\phi(x) \qquad (2.28)$$

令 $x' = x - \frac{P_y}{eB_z}$, $\omega = \frac{eB_z}{m}$, 这方程就成为谐振子方程:

$$(-\frac{\hbar^2}{2m}\frac{d^2}{dx'^2} + \frac{1}{2}m\omega^2 x^2)\phi(x) = \left[E - \frac{p_z^2}{2m}\right]\phi(x)$$
(2.29)

所以能级成为谐振子形式:

$$E = (n + \frac{1}{2})\hbar\omega_B + \frac{p_z^2}{2m}$$

其中 $\omega_B = \frac{eB_z}{m}$,这个能级称为朗道能级。

2.9.2 电子的自旋磁矩

对于自旋为¹2的粒子,通常除了轨道磁矩还会 有一个自旋磁矩存在。在电子的情况下,自旋磁 矩可以写成

$$\vec{\mu}_S = \frac{2e}{m}\vec{S} = \frac{e\hbar}{m}\vec{\sigma}$$

因此,在磁场中的电子会存在两个附加磁能,其 中之一是外磁场导致的自旋磁能项

$$H_S = \frac{e\hbar}{m} \vec{B} \cdot \vec{\sigma}$$

2.9 电磁场中的粒子

另一个是电子的自旋/轨道耦合相互作用项

 $H_{LS} = \lambda \vec{L} \cdot S$

如果不考虑轨道运动,那么在静磁场中,电子存 在两个能级±^{ch}_mB,分别对应自旋平行及反平行于 磁场。

对于自旋态a|+ > +b|- >,加上z方向的 磁场后,由于|+ >和|- >都是能量本征态,因 此 经过时间t,系统状态演化为 $a \exp(i\frac{cB}{m}t)|+ >$ $-b \exp(-i\frac{cB}{m}t)|- >$ 。计算自旋期待值知道这个态 的自旋期待值以一定速度围绕z轴旋转。

【**习题**】如果系统初始处于|+ >态,加上一 个 $\omega = \frac{2eB}{m}$ 的变化磁场,求t时刻的自旋 s_z 期待值。

例题

计算一个LS耦合l,s,j的原子在磁场中的塞曼 能量。假定磁能相对于自旋-轨道耦合能量可以当 作微扰处理。

这个问题的完整处理需要使用群论中的Wigner-Eckart定理。尽管如此,我们可以用不十分严格的方法来处理这个问题,在加上磁场之前,系统的状态写成|LS j J_z >,加上磁场后,只处理一级近似,能量是

$$\Delta E = \langle LS j j_z | \frac{eB}{2m} L_z + 2S_z | LS j j_z \rangle$$

= $\frac{eB j_z \hbar}{2m} + \langle LS j j_z | \frac{eB}{2m} S_z | LS j j_z \rangle$ (2.30)

第二项的直接计算需要写出 $|LS jj_z >$ 的展开式 (即,计算克莱布施-戈登系数),尽管如此,为 了避免繁琐的计算,我们注意到描述系统唯一的 矢量就是 \vec{J} ,因此 \vec{S} 的期望值必然平行于 \vec{J} 的期望 值,所以 $<\vec{s}>=\lambda < \vec{j}>$ 且 $<\vec{s_z}>=\lambda < \vec{j_z}>$ 。为了 计算 λ ,在式子两边点乘j,也就是

$$\lambda = \frac{\vec{j} \cdot \vec{s}}{j^2}$$

求出λ就得出需要的结果,这个系数λ称为郎德因 子。

2.9.3 阿哈郎诺夫-玻姆效应 (A-B effect)

考虑电子的双缝衍射效应,假设在双缝之后 插入一个足够细的磁通量(例如一个螺线管或者 一根磁化的纤维),考虑这种情况下的波函数。我 们可以认为屏上的波函数是沿两条路径的波函数 之和。考虑电子飞行路线上的波函数。在插入磁 通之前,薛定谔方程是

$$\frac{\hat{p}^2}{2m}\phi_0(\mathbf{r}) = E\phi_0(\mathbf{r})$$

插入磁通之后,可以改写成

$$\frac{1}{2m}(\hat{p} - e\mathbf{A})^2\phi(\mathbf{r}) = E\phi(\mathbf{r})$$

直接验算得出这个方程的解为

$$\phi(\mathbf{r}) = \exp\left\{\frac{ie}{\hbar} \int_0^r \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}'\right\} \phi_0(\mathbf{r})$$

插入磁通之前, 设两条路径在屏上的波函数贡献

分别是 $f_1^0(x_c)$ 和 $f_2^0(x_c)$,插入磁通之后就是

$$f_{c} = \exp\left\{\frac{ie}{\hbar}\int_{1}\mathbf{A}\cdot d\mathbf{r}'\right\}f_{1}^{0} + \exp\left\{\frac{ie}{\hbar}\int_{2}\mathbf{A}\cdot d\mathbf{r}'\right\}f_{2}^{0}$$
$$= \exp\left\{\frac{ie}{\hbar}\int_{1}\mathbf{A}\cdot d\mathbf{r}'\right\}$$
$$\times\left\{f_{1}^{0} + f_{2}^{0}\exp\left[\frac{ie}{\hbar}\oint\mathbf{A}\cdot d\mathbf{r}'\right]\right\}$$

于是,插入磁通之后,产生了一个额外的干涉程 差,将导致干涉条纹的变化。

当然实践中,电子波函数不可能是局限在两 条路径上。实际上这个问题的详细处理需要使 用路径积分法。考虑一种足够简单的情况,即磁 场完全束缚在 螺线管内,技术上需要对所有可 能的路径求和得到屏上的几率密度。但是干涉程 差號 $\oint \mathbf{A} \cdot d\mathbf{r}'$ 决定于 $\oint \mathbf{A} \cdot d\mathbf{r}' = \Phi_m$,因此磁场造成的 干涉程差 仅仅决定于路径是在螺线管的上方还 是下方,因此干涉条纹的改变等效于将上方电子 的相位改变上述程差。于是效果就是干涉条纹会 移动一段距离。特别是,即使磁通完全束缚在螺 线管内,从而电子运行的路径上并不存在磁场强 度*B*,仍然可以通过干涉条纹的变化检查到磁场的 存在。这种效应称为*A* – *B*效应。

A - B效应是电磁场全局性质的一个表现,注 $意到<math>\oint \mathbf{A} \cdot d\mathbf{r}' = \Phi$,也就是干涉程差决定于路径包围 的磁通,这说明实验结果仍然是规范不变的,也 就是A并不是一个可观测量,它包含某些没有物 理意义的内容;但在另一方面,如果用B来描述磁 场,则需要考察 全域的场强才能得出物理结果, 也就是B的局域描述是不足的。

2.10 电磁场的量子化和爱因斯坦

系数

2.10.1 半经典理论: 吸收过程

我们首先用一个半经典的理论来处理电磁场 和原子的相互作用,即将电磁场看成一个外加场, 而原子在这个外加场的驱动下跃迁。在原子物理 中我们知道原子和电磁场的相互作用具有三种类 型的行为:吸收,受激发射以及自发发射。

如同上面所述的,量子力学对这种微扰只能 给出一个跃迁几率,代表粒子在电磁场的推动下 跃迁到其他能级。在典型的情况下,电磁场频谱 是连续的,而粒子的初末态是分立的。回到前面 计算跃迁几率的公式,首先注意在取库仑规范的 时候,微扰是 $H' = \frac{e}{u}A \cdot p$,其中p是电子动量算符。

一般情况下,光的波长远远大于原子大小,因此可以使用近似 $A \simeq S_0 A(t)$,考虑从m态到n态的跃迁,跃迁几率是(S_0 是电磁波的偏振方向)

$$P = \frac{1}{\hbar^2} |< n| \frac{e}{\mu} \hat{p} \cdot S_0 |m>|^2 \left| \int_0^t \exp\{i\omega_{nm}t'\} A(t') dt' \right|^2$$

假设 $A(t) = \int_0^\infty \{A(\omega)e^{-i\omega t} + A^*(\omega)e^{i\omega t}\}d\omega,$ 直接 套用前面得出的跃迁规则,并对所有频率积分, 得出单位时间内跃迁几率是

$$\mathscr{W}_{m \to n} = \frac{2\pi e^2 |A(\omega_{nm})|^2}{\mu^2 \hbar^2} (p_{nm} \cdot S_0)^2$$

且必须 $\omega_{nm} = \frac{E_n - E_m}{\hbar} = \omega$ 另一方面,对于电磁波E(t),其电场能密度是

$$\mathscr{E} = 2\epsilon_0 \int_0^\infty |\omega A(\omega)|^2 d\omega = \int_0^\infty \mathscr{S}(\nu) \frac{d\omega}{2\pi}$$

其中、父是单位频率范围内的场能密度。也就是说

$$|A(\omega)|^2 = \frac{\pi}{\epsilon_0 \omega^2} \mathscr{S}$$

因此跃迁系数写成

$$\mathcal{W} = \frac{e^2}{2\epsilon_0 \mu^2 \omega_{nm}^2 \hbar^2} (p_{nm} \cdot S_0)^2 \mathcal{S}$$

而利用对易关系有

$$< n|\hat{p}|m > = \mu < n|\frac{1}{i\hbar}[\hat{x},\hat{H}]|m >$$

$$= \mu \frac{E_n - E_m}{i\hbar} < n|\hat{x}|m >$$

$$= i\mu\omega_{nm} < n|\hat{x}|m >$$

因此

$$\mathscr{W} = \frac{e^2}{2\epsilon_0\hbar^2} (\mathbf{x}_{nm} \cdot \mathbf{S}_0)^2 \mathscr{S}$$

此外 $\mathbf{x}_{nm} \cdot \mathbf{S}_0 = x_{nm} \cos \theta$ 是原子在激光电场方向的电偶极矩,由于一般来说原子是任意指向的,需要对所有可能的方向做平均,平均结果产生一个< $\cos^2 \theta >= \frac{1}{3}$ 的因子,最后得出爱因斯坦的吸收系数是

$$\mathscr{B} = \frac{e^2}{6\epsilon_0 \hbar^2} x_{mn}^2$$

2.10.2 电磁场量子化:光子

上述算法只能给出吸收过程的系数,如同爱 因斯坦指出的,辐射和原子的相互作用包括三个 部分,吸收,受激辐射和自发发射。上述方法没 有给出正确的发射过程,是因为处理中并没有自 洽地研究辐射场。为了研究发射过程,还需要处 理辐射场的量子力学,或者说,对电磁场进行量 子化。

形式上,对经典场进行量子化和对原子进行 量子化没什么不同,同样是将场的运动方程写成 拉格朗日形式,再转化为哈密顿形式,然后对 正则坐标和正则动量引入对易关系,就完成了场 的量子化。但问题在于,电磁场的场量*A*和*ø*并不 是可观察量,为了使得结果有意义,首先必须 确定规范。由于规范条件的存在,不能直接把四 个A_μ分量当成正则变量,否则至少有一个方程是 奇异的。我们需要保证我们量子化使用的每个正 则变量都是独立变量。在历史上,这是建立电磁 场正则量子化形式的严重困难之一。

考虑一个在Ω体积内的自由电磁场,没有 电荷和电流源。由于我们的问题是非相对论的 (anyway,我们不讨论这里的"非相对论"到底是什 么意思),可以使用库仑规范。选定了库仑规范 后,将电磁场分解为傅立叶分量,即

$$A = \sum_{k,\lambda} \mathbf{u}_{k\lambda} [f(k,t)e^{ik \cdot r} + f^*(k,t)e^{-ik \cdot r}]$$

这里的 $u_{k\lambda}$ 是光的极化矢量,对于任何一个传播 方向k,有两个u,且 $u_{k\lambda} \cdot k = 0$ 。

这样做的结果,得到的无穷个f(k,t)是互相独 立的,它们包含了Ω内电磁场的所有可能自由度, 而且在Ω有限的情况下,这个求和是可数的。

运用波动方程得出各个f(k,t)的运动方程是

$$\frac{d^2f}{dt^2} + k^2c^2f = 0$$

于是必然有

$$f(t) = f_0 \exp(-i\omega t)$$

然后总能量是

$$H = \sum_{k,\lambda} \epsilon_0 c^2 k^2 (ff^* + f^*f) \Omega$$

 Ω 是整个空间的体积。

现在我们可以用*f*和*f**建立电磁场方程的正则 形式,由于*f*和*f**是复数,直接将它们当成正则坐 标和正则动量是不行的,但不难看到可以取

$$q = \frac{\sqrt{\epsilon_0 \Omega}}{\omega} (f - f^*)$$

和

$$p = \frac{\sqrt{\epsilon_0 \Omega}}{i} (f + f^*)$$

于是

$$H = \sum_{k,\lambda} \frac{1}{2} (\omega^2 q_{k,\lambda}^2 + p_{k,\lambda}^2)$$

而且麦克斯韦方程组是

$$\dot{q} = p = \frac{\partial H}{\partial p}$$

和

$$\dot{p} = -\omega^2 q = -\frac{\partial H}{\partial q}$$

这样q和p就可以看成正则坐标和正则动量了。

现在可以对q和p进行量子化,也就是(薛定 谔绘景)

$$[q_{k\lambda}, p_{k'\lambda'}] = i\hbar\delta_{kk'}\delta_{\lambda\lambda}$$

接下来的解法只不过是谐振子问题的简单重 复,对每一组*k*和λ,引入*a*和*a*[†]使得

$$a = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\omega}{\hbar}} q + i \frac{p}{\sqrt{\hbar\omega}} \right)$$
$$a^{\dagger} = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\omega}{\hbar}} q - i \frac{p}{\sqrt{\hbar\omega}} \right)$$

不难算出

$$H = \frac{1}{2} \sum_{k,\lambda} \hbar \omega \left(a_{k,\lambda} a_{k,\lambda}^{\dagger} + a_{k,\lambda}^{\dagger} a_{k,\lambda} \right)$$

由于实践中H的表达式中存在一个无穷大的 $\sum_{k,l} \frac{1}{2}$,这个剩余项影响以后的计算,我们可以简单地用修改基态能量的方法将它减掉,也就是

$$H = \sum_{k,\lambda} \hbar \omega a_{k,\lambda}^{\dagger} a_{k,\lambda}$$

而自由电磁场的本征态就是一堆本征态的直 乘 $\prod_{k,\lambda} | n_{k,\lambda} >$,

$$a_{k,\lambda}^{\dagger}|n_{k,\lambda}\rangle = \sqrt{n_{k,\lambda}+1}|n_{k,\lambda}+1\rangle$$
$$a_{k,\lambda}|n_{k,\lambda}\rangle = \sqrt{n_{k,\lambda}}|n_{k,\lambda}-1\rangle$$

且

$$H|n_{k,\lambda}\rangle = n_{k,\lambda}\hbar\omega|n_{k,\lambda}\rangle$$

也就是自由电磁场的能量不是连续的,而是一份 一份的,在每个频率上,能量单位是ħω。此外, 我们知道经典电磁场的动量是

$$P = \int cE \times HdV$$

利用前面的A的表达式,得出对于我们量子化的电磁场,有

$$\mathbf{P}|n_{k,\lambda} >= n_{k,\lambda}\hbar\mathbf{k}|n_{k,\lambda} >$$

也就是,现在的电磁场能量和动量都是量子化的, 这正是爱因斯坦和普朗克的光子理论。

尽管如此,正则量子化形式中我们很容易看 到,"光子"和"原子"在我们这个层次的理论中 有明显的区别。"原子"是个实在的粒子体系, 而"光子"不具有任何"粒子"的含义,它只是电 磁场量子化的一个结论而已:全空间弥散的电磁 场,在某个频率上的能量和动量是量子化的。我 们绝对不可能将上述量子化过程劈裂开,并且在 空间指定一小块区域说这里存在一个"光子",因 为只有全空间存在的东西才能叫做场量。

2.10.3 发射过程和爱因斯坦系数

最后引入粒子和电磁场的相互作用,取H₀是 粒子的哈密顿加上自由电磁场的哈密顿,相互作 用哈密顿可以从前述的展开中取A的一阶项,于 是

$$H' = -\frac{e}{\mu} \mathbf{A} \cdot \mathbf{p}$$

用微扰法处理这个问题,按照前面的处理,显然只需要算出相互作用绘景中的矩阵元< f|H'^I|I>,而这个矩阵元就是

$$< f|H'^{S}|i> \exp\{\frac{i}{\hbar}(E_{f}-E_{i})t\}$$
$$= \frac{e}{\mu} < j'|A|j> \cdot < m|p|n> e^{\frac{i}{\hbar}[E_{m}-E_{n}+\hbar\omega(j'-j)]t}$$

注意到未微扰的 矢量势A由a和a[†]的和给出, 立刻 知道只有当 $j' = j \pm 1$ 时这个矩阵元才会有非0结果。 其中下降算符导致j' = j - 1,即辐射场能量减少一 个单位 $\hbar\omega$,表示一个吸收过程,而上升算符导致 增加一个 $\hbar\omega$ 代表发射过程。

上述相互作用绘景矩阵元包含一个周期函数, 按照前面对于周期微扰的处理,这个函数将在跃 迁几率中产生一个 $\delta[E_m - E_n + \hbar\omega(j' - j)]$,也就是 说,只有能量守恒的跃迁才能产生有意义的跃迁 率。跃迁几率正比于薛定谔绘景的矩阵元平方再 乘以这个 δ 函数,于是正比于 $| < n - 1|a|n > |^2 n| < n + 1|a^{\dagger}|n > |^2$,这样发射过程比吸收过程要多 一项(n+1:n),特别是即使对于N = 0也存在跃迁 到N = 1的几率,这就是自发发射过程。

三个爱因斯坦系数可以按照上述方法直接用 费米的黄金规则求出,也可以通过简单的比值原 理给出。首先,很明显薛定谔绘景矩阵元部分唯 一的差别是《的矩阵元。按照上面的分析,发射 矩阵元和吸收矩阵元之比就是n + 1 : n,n是初态 光子数。而吸收几率已经在前面给出,从而我们 立刻认识到发射项中的n和1分别代表受激发射和 自发发射,且受激发射产生的光子,其传播方向, 极化都和激励光完全相同。

看到爱因斯坦的公式是

$$\frac{dN^{+}}{N} = \{\mathscr{A} + \mathscr{B}_{if}\rho(\omega)\}d\omega$$
$$\frac{dN^{-}}{N} = \{\mathscr{B}_{fi}\rho(\omega)\}d\omega$$

同时从上面的公式看到将光子自发发射和受 激发射到同一个态中以及吸收的几率比是1:*n*:*n*, 因此 $\mathcal{B}_{if} = \mathcal{B}_{fi}$ 。对于系数 \mathscr{A} ,一方面矩阵元带来 了一个1/*n*的因子,另一方面和 受激过程不同,自 发发射的光子方向和极化都是随机的,应该把所 有可能的出射态求和。所以 \mathscr{A} 应该等于 $\mathcal{B}\rho/n$ 乘 以末态的光子态密度。光子的末态密度是 $\frac{\omega\Omega}{\pi^2 \sigma}$, 而 $\rho = n\hbar\omega/\Omega$,最后就得出

$$\mathscr{A}_{if} = \frac{\hbar\omega^3}{\pi^2 c^3} \mathscr{B}_{if}$$

2.11 全同粒子问题

当系统由若干个完全相同的粒子构成的时候, 会有一条额外的"原理"控制量子力学行为,这 就是全同性原理。粒子的全同性,意味着任意 交换粒子不影响系统的物理状态。我们把系统 的态矢写成 $\xi_1, \xi_2, ...\xi_n >$,其中每个下标代表了一 个粒子。(上述式子的意义是,1号粒子的描述 量是 $\xi_1,...)$ 那么,交换不变性意味着 $|\xi_1,\xi_2,...\xi_n >$ = exp $\{i\alpha\}|\xi_2,\xi_1,...,\xi_n >$ 。由于任意两次同样的交换就 得出原来的态,所以有exp $\{i\alpha\}=\pm1$ 。

对于不同的粒子,上述的原理就成为选择正 负号的问题,在非相对论量子力学范围内,我们 把选择规则当成一条原理,即:自旋为整数的粒 子取正号,称为玻色子,自旋为半整数的粒子取 负号,称为费米子。

对于N个粒子组成的系统,如果粒子之间没有 相互作用,那么整个系统的状态必然由各粒子状 态的乘积构成,哈密顿的本征矢就是 $|\alpha_1 >_1 |\alpha_2 >_2$ … $|\alpha_n >_n$,其中 $|a_k >_i$ 中的下角标i表示描述的是 第i个粒子,而 a_k 描述了相应的状态。为了满足对 称性条件,需要对其进行对称化。于是整个态矢 写成

$$|\psi\rangle = \frac{1}{n!} \sum_{P} \epsilon^{P} \hat{P} |\alpha_1\rangle_1 |\alpha_2\rangle_2 \dots |\alpha_n\rangle_n$$

其中 \hat{P} 是排列算符,代表对 α ;做排列变换,而 ϵ = $\exp(i\alpha)_{\circ}$

而对于费米子,上述态矢可以写成行列式的 形式

$$|\psi\rangle = \frac{1}{N!} \begin{vmatrix} |\alpha_1 \rangle_1 & |\alpha_1 \rangle_2 & \dots & |\alpha_1 \rangle_n \\ |\alpha_2 \rangle_1 & |\alpha_2 \rangle_2 & \dots & |\alpha_2 \rangle_n \\ \dots & \dots & \dots & \dots \\ |\alpha_n \rangle_1 & |\alpha_n \rangle_2 & \dots & |\alpha_n \rangle_n \end{vmatrix}$$

而对于玻色子,波函数是

$$|\psi\rangle = \frac{1}{n!} \sum_{P} \hat{P}|\alpha_1\rangle_1 |\alpha_2\rangle_2 \dots |\alpha_n\rangle_n$$

在粒子之间有相互作用的情况下,态矢不能如此 简单的写出,然而可以将这些向量作为基矢。

2.11.1 两粒子的波函数

对于只有两个粒子的情况,问题变得很简单。 注意到从态矢到波函数的转换规则现在是

$$\psi(x_1, x_2) = < x_1, x_2 | \psi > = < x_1 | < x_2 | \psi >$$

,系统波函数可以直接了当的写出。

考虑没有外场的特殊情况,这时,系统哈密 顿对于交换两个粒子是不变的: $P^{-1}HP = H$ 。 忽 略自旋-轨道相互作用项,所以哈密顿量的空间部 分和自旋部分是独立的, 也就可以写成

$$|\psi(r_1, r_2, s_1, s_2)\rangle = |\phi(r_1, r_2)\chi(s_1, s_2)\rangle$$

r5-rī反演。在两个粒子的条件下,哈密顿的空间 部分 在交换过程中不变(因为能量是个真标量), 于是进行空间坐标交换后的波函数必然也是系统 的本征函数。将质心坐标和相对坐标分解的话, 那么上述交换就是宇称反演操作, 按照以前的理 论, 宇称算符的本征值只能是正负一:

$$P_r\phi(r_1, r_2) = \pm \phi(r_2, r_1)$$

(对于两组坐标的函数我们总可以如此处理,即 使原始波函数没有这个对称性, 我们仍然可以将 其进行数学上的对称化操作)

对应地,必然有

$$P_s\chi(s_1,s_2) = \mp \chi(s_2,s_1)$$

因此得到结论,如果哈密顿量中不包含自旋-轨道 耦合项,两粒子系统的波函数可以 写成空间函数 和自旋函数的乘积,两个部分都是对称化或者反 对称化的。

例题

写出无限深方势阱两个1/2自旋无相互作用粒 子的基态和第一激发态波函数

2.11.2 多粒子体系的波函数

在初级水平上,对于多粒子(N ≥ 3)只能处理 粒子之间无相互作用的情况,这时需要做的是写 出每个粒子的本征函数, 做直乘写出 一个本征态 的基矢,然后对称化。

需要指出的是,在前面对于两个粒子的体系, 我们将整个波函数写成坐标函数和自旋函数的乘 积,并且证明两者都是或者对称或者反对称的: 考虑空间交换算符Pr, 就是交换两个粒子的 在三个以上粒子的情况, 这个论证不成立, 即不 坐标,不难看出这个操作就是将相对坐标了= 能再分别对自旋函数和坐标函数对称化,而必须

2.11 全同粒子问题

直接写出整个单粒子波函数 $\phi(r_i)\chi_i$,然后再做整体对称化。

由于前面的对称化操作,不难看出对于费米 子,在行列式中每行的α都要不同,否则行列式 为0.也就是说,不允许在展开形式中存在两个粒 子处于同一态中,否则波函数为0。

例题

考虑三个在库伦场中运动的电子,每个电子 有自身的自旋-轨道相互作用,忽略电子之间的相 互作用,写出基态和第一激发态波函数。

第三章 统计力学基础

统计系综和微系综分布 3.1

考虑大量相同物理系统的集合,每个都按照 经典力学或者量子力学的规律运动。假设我们将 它们放在分离的宇宙中, 因此它们彼此之间互 不相关,每个系统的运动仅仅由其自身力学法则 确定。现在,每个系统在任意时刻的状态由相空 间中 的一个点来确定, 把所有点画在同一相空间 内,假如这个集合中系统的数目非常大,那么在 相空间中的任何一个位置都 有相应于系统数量的 几率,因此可以对每个位置定义一个统计权重函 规律,这样的相空间权重分布称为系综。

在物理上,当系统本身包含大量内部组成部 分时,测量系统的物理量必然得到一个统计分布, 假如测量是理想的,对于经典系综,我们相信测 量的预期(平均值)将等于物理量按照系综权重 函数的平均:

$$< F >= \int F(p,q)\rho(p,q)dpdq$$

以后我们称这个权重函数为分布函数。所以 全部的问题简化为,如何针对某类型物理系统满 足的规律,求出对应系统的分布函数。

考虑一个孤立体系,即它不和其他任何外界 体系作用,那么其运动满足正则运动方程,其轨 迹在相空间形成一条曲线。如果体系有 N个自由 度,相空间是2N维的。由于能量守恒的限制(动能 正则系综的分布函数写成

正比于动量的平方,因此动量必须有限),系统能 跑到的 相空间体积是有限的, 它必须处于相空间 的等能面上。在某些情况下,相轨道形成闭合曲 线或者无穷逼近于一个闭合环,这类问题中,系 统的运动区间是非常确定的。 例如对于一维谐振 子,由于存在能量守恒限制,所以2维相曲线直接 可以简化为1维问题。另一个典型的例子是氢原 子, 它有三个自由度, 也就是6个自由变量, 能 量-角动量守恒给出四个方程,剩下两个自由变量, 轨道的闭合性(龙格-楞次矢量)给出第五个,这 样问题重新退化 为一维。

然而对于体系内部粒子非常多的情况,不再 存在这种类型的限制条件,除了能量-动量-角动量 外,再没有更多的不变量(称为运动积分),这 时,系统的具体运动非常的复杂,相曲线的形状 一般来说不存在任何规律。然而,无规律本身就 是一种规律:我们假设,在这种情况下,对于大 量初始条件没有任何规定(当然能量-动量-角动量 是相等的)的系统,它们独立运动形成的系综分 布函数是:

在相空间等能面上,观察到系统的几率处处 相等

这样的系综称为微正则系综。

由于测量能量不可避免的有误差,我们把微

$$\rho(E) = \begin{cases} \rho_0, \varepsilon < E < \varepsilon + \Delta \varepsilon \\ 0, other case. \end{cases}$$
(3.1)

在ε < E < ε + Δε的情况下,我们写出 $ρ_0 = \frac{1}{\omega}$, 这里的ω是一个归一化系数,当对全部相空间积分 的时候,这个结果必须等于1。而这个积分实际就 是等能面附近一个薄层的体积。也就是

$$\omega = \iint_{\varepsilon < E < \varepsilon + \Delta \varepsilon} \Delta \varepsilon \frac{d^{3N} p d^{3N} q}{h^{3N}}$$

最后的h^{3N}项是为了消去量纲。

对于量子体系,上述的理论需要做一些修改, 但基本框架是完全平行的,我们同样要求系统能 量处于 $\varepsilon < E < \varepsilon + \Delta \varepsilon$ 范围内,所不同的是这时 候 Ω 是针对于系统 能量E附近所有态的求和,或者 说

ω 是能量本征值在ε到ε < E < ε + Δε之间的 态的总数

考虑一个最简单的例子:单原子理想气体, 体系的哈密顿是

$$H = \frac{p^2}{2m}$$

为了了解ω的性质,我们可以计算

$$\Omega(E) = \iint_{H < E} \frac{d^{3N} p d^{3N} q}{h^{3N}}$$

ω就是它的导数乘以Δε。不难看出W(E)的坐标部 分就是 V^N ,而动量部分则是 3N维空间一个超球 的体积,这个结果必然和 $\sqrt{2mE}$ 的3N次方成正比, 也就是

$W(E) = KV^N E^{3N/2}$

我们不需要计算系数K是什么,只要注意一 点,那就是Ω(*E*)是个和*NV^NE*^{3½-1}成正比的量,因 此它是个随着*E*,*N*增加增长极快的函数。

3.2 正则系综和平衡热力学原理

现在我们考虑实践中比较重要的一种分布,称为正则分布。考虑整个宇宙中放入一个"基本 是独立"的体系。也就是说,体系的内部粒子数 是不变的,而体系和外界之间可以交换能量,且 交换能量远小于系统能量,系统能量又远小于外 界能量。在交换过程中,系统的体积和粒子数都 不发生变化。这样的系综分布称为正则分布。

无疑系统加上外界是个孤立体系,可以用微 正则系综来描述,所以系统+外界处在某个相空间 体积元的几率为 $\rho d\Omega$ 。而系统处在某个体元 $d\Omega_s$ 的 几率 $\rho_s d\Omega_s$ 是

$$\rho_S d\Omega_S = \int_R \rho d\Omega_S d\Omega_R = d\Omega_S \frac{1}{\omega(E)} \int_{E_R = E - E_s} d\Omega_R$$
$$= d\Omega_S \frac{\omega_R(E - E_S)}{\omega(E)}$$

当相互作用不大的时候,系统能量会非常接 近于某个常数 E_0 ,此外系统远远小于外界,于是 我们可以将热源的 ω_R 表达式在 $E - E_S$ 附近展开。 尽管如此,直接展开是不可能的,因为 $\omega_R(E)$ 是 个E的3N/2次函数,也就意味着每阶展开都多一 个量级为N的系数,因此需要保留大约N项,这 是没有意义的,我们可以展开 $\log \omega_R(E - E_S)$,即 令 $\sigma_R = \log \omega_R$,然后展开得出

$$\sigma_{R}(E - E_{S}) \doteq \sigma_{R}(E) - \frac{\partial \sigma_{R}}{\partial E} E_{S} = \sigma_{R}(E) - \beta E_{S}$$
帶入后,得出

$$\rho_S = \exp\{-\psi - \beta E\}$$

第一个exp{ψ}是个归一化系数,可以通过积分 定出,也就是

$$\psi = \log\left\{\int \exp\{-\beta E\}d\Omega\right\} = \log P$$

这里的P称为配分函数。

下一个问题是确认β.首先我们注意到,如 开得越宽,这个关系称为Boltzman关系式。 果A,B都和一个大热源接触且保持平衡,那么他 们的β相等,也就是β只是热源的函数。热源具有 的唯一性质就是温度,所以我们确认β是温度的函 数。此外,我们可以计算系统的平均能量,也就 是内能U,为此我们令 $Z = e^{-\beta A}$,然后

$$U = \frac{1}{Z} \int E e^{-\beta E} = \left(\frac{\partial(\beta A)}{\partial \beta}\right)_{V,N}$$

比较热力学中的关系式:

$$\frac{\partial (F/T)}{\partial (1/T)} = U$$

我们知道A就是亥姆霍兹自由能F,而 $\beta = \frac{1}{kT}$ 。进 一步的我们可以得出其他力学变量,特别是,我 们注意到

$$\rho = \exp\{\frac{F - E}{kT}\}\$$

两边取对数且平均得出

$$\log \bar{\rho} = \frac{F - \bar{E}}{kT} = \frac{S}{k}$$

所以系统的熵就是

 $S = -k \log \bar{\rho}$

为了解释熵的含义,我们考虑系统内部粒子 数很多的时候,这时系统的主要分布都出现在平 均能量附近。出现几率是

$$\rho(E)dE = \rho(p,q)\frac{d\Omega}{dE}dE$$

这个几率的积分为1,我们可以将它写成

$$1 = \exp\{(F-\bar{E})/k\}\Delta\Omega$$

 $\Delta\Omega$ 是系统代表点在相空间中的有效面积,而

 $S = k \log \Delta \Omega$

这样, 熵越大的系统, 其分布函数在相空间中展

例题:能量均分定理

从系综问题到独立粒子分布 3.3

现在我们考虑一个问题特例,即近似理想气 体。我们从理想气体的极限出发。在理想气体的 条件下,分子之间没有相互作用,所以 配分函数 就是

$$P = \frac{1}{N!h^{3N}} \int \exp\{-\beta E\} dp dq^{3N}$$
(3.2)

$$= \left(\frac{1}{h^3} \int e^{-\beta\epsilon} dp dq\right)^{\prime\prime}$$
(3.3)

$$=\frac{1}{N!}Q^{3N}$$
 (3.4)

其中 $Q = \frac{(2\pi m kT)^3 V}{h^3}$ 。由于粒子不可分辨性的影响, 我们需要在前面乘以一个系数N!。

而分布函数是

$$\rho(\epsilon_1, \epsilon_2, \ldots) = \frac{e^{-\beta\epsilon_1}}{Q_1} \frac{e^{-\beta\epsilon_2}}{Q_2} \ldots$$

Q的计算中只需要处理单独一个气体分子的p,q, 最后我们得出一个分布定律:

对于近独立粒子构成的体系,每个粒子处于 能量*E*附近的几率是 $\rho(E)dE = \frac{1}{2}e^{-\beta E}\frac{d^3pd^3q}{b}$,这里 的E和Z计算都只需要计算单个粒子的变量,这个 定律称为Boltzman分布定律。

对于量子情况,问题变得复杂很多,因为这 时候我们需要对态求和。在能量表象中,我们用 组态描述能态,即 $E = \sum_{i} n_i \epsilon_i$ 。实际上这个问题的 处理需要使用更复杂的技巧,但我们考虑一种极 限情况,即平均占有数非常低,导致几乎对所有 的态 $n_i \doteq 0$ 。先假定单粒子的能态是不简并的,对 所有可能的组态求和,也就是

$$Z = \sum_{(n_i)} \exp\{-\beta \sum n_j \epsilon_j\}$$

求和中需要约束 $\sum_{j} n_{j} = N$,另外如果对于费米子,还要增加不相容原理的约束。

现在我们注意到0! = 1! = 1,所以我们可以认为*n_j*! = 1,此外,我们忽略不相容原理,于是在上式中插入一组系数,即

$$Z = \frac{1}{N!} \sum_{(n_j)} \frac{N!}{n_1! n_2! \dots} \exp\{-\beta \sum n_j \epsilon_j\}$$

现在,求和变成了一个N项式定理的形式,于是

$$Z = \frac{1}{N!} \left[\sum \exp(-\beta n_j \epsilon_j)\right]^N$$

于 是,我们正确的得出了单粒子配分函数 以及前面的系数 $\frac{1}{N!}$ 。处在某个态的分布几率 是 $\frac{1}{2} \exp(-\beta E)$,而 $Z = \sum \exp(-\beta E_j)$ 。如果单粒子 状态中存在简并的情况,需要的只是在上述推导 中将简并能态拆成几个态来求和,结果配分函数 改成 $Z = \sum g_i \exp(-\beta E_i)$,其中 g_i 是简并度。

必须注意的是,和上面计算正则系综的情况 一样,总的分布几率是两个项的乘积,一个是相 空间面积的倒数(配分函数),一个是分布函数, 结果通常导致一个极大值的存在。但和正则系综 不同的是,因为这里N=1,所以不会出现极其尖 锐的极大值。

除了导出分布定律,对于独立粒子体系,还 可以利用配分函数写出状态方程,这是因为Z = Q^N ,因此自由能是 $A = NkT \log Q - \log(N!)$,于是 压强需要满足方程 $p = \frac{\partial A}{\partial V}$,使用前面得出的Q表达 式,得到 $p = \frac{NkT}{V}$,这就是理想气体方程。

例题:给出麦克斯韦气体分子速率分布律。 例题:计算重力场中气体的密度分布函数。 我们考虑稍微变形一点的理想气体,即分子间没有相互作用,但分子本身具有一定的大小,那么,配分函数中对坐标的积分变成 $Z_q = (V-b)^{3N}$ 。剩下的计算完全相同,因此得到这种气体的状态方程为p(V-b) = NkT。

3.3.1 经典比热理论

稀薄气体的比热可以用上述定律很容易的计 算出来。不难看出,如果温度T对应的能量远高于 能级差,那么求和可以看成积分,可以直接运用 能量均分定理导出每分子比热;否则,需要计算 平均能量。

通常情况下,对于稀薄气体,分子的平动和 转动能级都可以使用均分定理,于是可以给出平 动和转动对应的比热。但对于振动,由于振动能 级比较高,需要直接计算玻尔兹曼配分函数。

振动能级是无简并的,而且 $\epsilon_j = (j + 1/2)\hbar\omega$,所以

$$Q = \sum \exp\{-\beta\epsilon_j\} = \frac{\exp\{-\frac{1}{2}\beta\hbar\omega\}}{1 - \exp(-\beta\hbar\omega)}$$

当β很大的时候,这个式子只包含第一项,就 是

$$Q \doteq \exp\{-\frac{1}{2}\beta\hbar\omega\}$$

因此 $U = \frac{1}{2}\hbar\omega$,而 $C_v = 0$ 。

固体中,粒子之间并不是独立的。然而,不 难看到固体中唯一可能的运动就是分子在平衡点 附近的振动,因此,可以用正则变换将哈密顿化 简为一些简正振动哈密顿的和,然后运用能均分 定理就得出固体的摩尔比热为3R。

习题:研究固体比热的爱因斯坦模型。

3.4 系综方法的应用

3.4 系综方法的应用

现在我们考虑系综方法的直接应用,由于这时需要计算一个6N重的相积分,问题变得极其困难,只有很少的情况下才能得到问题的严格解。

3.4.1 非理想气体的一阶近似

考虑稀薄的非理想气体,哈密顿是

$$H = \sum_{i=1}^{3N} \frac{p_i^2}{2m} + V(q_1, q_2, ...q_{3N})$$

现在来计算配分函数,不难求出动量部分是

$$Z_p = \frac{1}{N!\lambda^{3N}}$$

其中

坐标部分非常难以计算。我们引入下列近似: 首先,只考虑两体相互作用,因此 $V = \sum_{i < j} u_{ij}$ 。其 次,令 $f_{ij} = \exp(-u_{ij}/kT) - 1$,展开指数项上的求 和,只保留头两项,即,

$$\exp\{-V/kT\} = \exp\{\sum_{i < j} f_{ij}\} = \prod_{i < j} (1 + f_{ij}) \doteq 1 + \sum_{i < j} f_{ij}\}$$

于是,坐标部分的积分就是

$$Z_{q} = \int \exp\{-V/kT\}d^{3N}q = V^{N} + \frac{N(N-1)}{2}V^{N-1}\int f(r)d^{3}r$$
(3.5)

其中消去了相互作用两粒子的质心坐标。

化简后,最后一项是个仅依赖于相互作用函数的常数,因此可以写成μ(不难看出μ < 0,于是得到配分函数为

$$Z = Z_p Z_r = \frac{V^N}{N! \lambda^{3N}} (1 + \frac{\mu}{V})$$

为了验证这个结果,考虑状态方程,注意到 $p = -\frac{24}{60}$,代入后得到

$$(p - \frac{a}{V^2})V = NkT$$

这是Van der Walls方程的一个特例。

为了达到更高的精度,可以对上述乘法展开 到更高阶次,最后就得到热力学中的维里方程 式。

3.4.2 Ising模型

系综方法另一个具有里程碑意义的工作是关于Ising模型的研究,和前面说的维里展开不同,Ising模型 是量子的。

考虑放在格点上的若干原子,每个原子具 有1/2自旋,而哈密顿只包含临近格点原子之间的 相互作用,这就是 Ising模型。

Ising模型的严格解非常困难,在1维和2维的 情况下,这个解已经有人给出,得到了重要的结 论:在二维条件下,当原子相互作用趋向于使原 子互相平行排列自旋的时候,Ising模型的无外场 磁化强度

$$M = \begin{cases} 0, \ T > T_c \\ M_0 (1 - T/T_c)^{1/8} \end{cases}$$
(3.6)

这意味着,这样一个模型将能反映实践中的铁磁 性转变。

一维的Ising模型不出现上述转变行为,而三 维下的Ising模型目前没有解析结果,只能用数值 方法和一些近似方法处理。

3.5 量子统计法

3.5.1 巨正则系综

现在考虑量子统计,也就是平均占有数n_l不再 趋近于0的状态。这时,必须区分玻色子和费米子 进行处理。在这个条件下, 前面导出Boltzmann统 计律的技巧不再成立,对于玻色子, n,有可能大 于1因此引入的系数不正确,对于费米子,上述形 式中多算了很多状态。

主要的计算困难来自总粒子数限制 $\sum_{l} n_{l} = N$ 。 对于独立子系,无法通过上述多项式乘法转换为 独立粒子统计法。解决办法是考虑一个和大热源 及大粒子源接触的体系,按照和前面导出正则 系综完全相同的方法,得到巨正则系综的分布公 对于玻色子,是0,1,....,∞,而对费米子就是0,1。 式(现在只考虑量子形式,于是得到的是系统处于 具有N个粒子及能量E_i的一个状态的几率)

$$\rho(N, E_j) = \frac{1}{\Theta} \exp[-\beta(E_j - \mu N)]$$

其中Θ起着正则配分函数的作用,称为巨配分 函数, 它等于

$$\Theta(\beta,\mu) = \sum_{N,j} \exp[-\beta(E_j - \mu N)] = \sum_N z^N Z_N$$

其中 $z = e^{\beta\mu}$,而 Z_N 是对应于N个粒子的正则配 分函数。

对于近独立粒子的集合, 需要计算平均占有 数,不难写出

$$\bar{n_l} = \frac{1}{\Theta} \sum_N z^N n_l (\sum_{(n_i)} \exp\{-\beta \sum_i n_i \epsilon_i\}) = \frac{1}{\beta} \frac{\partial}{\partial \epsilon_l} \log \Theta$$

3.5.2 玻色统计和费米统计

现在来计算巨配分函数。在巨配分函数表达 式中存在两重求和,其中对组态n;求和需要受到

总粒子数的限制,而对粒子数求和需要扩展到无 穷,因此总的效果等于对n_i完全独立的求和,不做 任何限制,也就是

$$\Theta = \sum_{N} z^{N} (\sum_{(n_{i})} \exp\{-\beta \sum_{i} n_{i} \epsilon_{i}\})$$
(3.7)

$$=\sum_{N}\sum_{(ni)}\Pi_{j}(ze^{-\beta\epsilon_{j}})^{n_{j}}$$
(3.8)

$$= \sum_{all} [(ze^{-\beta\epsilon_0})^{n_0} (ze^{-\beta\epsilon_1})^{n_1}]$$
(3.9)

$$= \left[\sum_{n_0} (ze^{-\beta\epsilon_0})^{n_0}\right] \left[\sum_{n_1} (ze^{-\beta\epsilon_1})^{n_1}\right]..... (3.10)$$

其中对n_i的求和是涵盖所有可能取值,也就是 算出上述求和得到:

对于玻色子:

$$\Theta = \prod_{l} \frac{1}{1 - ze^{-\beta\epsilon_{l}}}$$
$$\log \Theta = -\sum_{l} \log(1 - ze^{-\beta\epsilon_{l}})$$

第I个能级的平均占有数是

$$\bar{n}_l = \frac{1}{e^{(\epsilon_l - \mu)/kT} - 1}$$

对于费米子

$$\Theta = \Pi_l (1 + z e^{-\beta \epsilon_l})$$

$$\log \Theta = \sum_{l} \log(1 + z e^{-\beta \epsilon_l})$$

第I个能级的平均占有数是

$$\bar{n}_l = \frac{1}{e^{(\epsilon_l - \mu)/kT} + 1}$$

3.6 量子统计法的应用

3.5.3 理想气体的状态方程

为了进一步处理热力学问题,需要对Θ引入 和正则配分函数Z类似的公式,令 Ω = -kT log Θ, 当N给定的时候,Ω就转化为自由能形式。首先注 意到

$$\Omega + \mu N = F = U - TS = G - pV$$

和热力学中的关系相比,知道

 $\Omega = -pV$

$$G = \mu N$$

也就是µ是系统的化学势。而

$$d\Omega = -pdV - SdT - Nd\mu$$

Ω称为热力学势。利用这个关系,状态方程直接 等于

$$p = -\frac{kT}{V}\log\Theta$$

3.6 量子统计法的应用

3.6.1 黑体辐射

黑体辐射有两种等价的处理方式:将辐射场 看成经典振子或者光子气体。我们首先从光子气 体的角度来考虑问题。 光子本身可以产生或湮 灭,因此粒子数N不是常数。在黑体辐射的情况 下,V,T为恒量,确定N的条件是自由能为极小, 但同时在V,T恒定的时候 $\mu = \frac{\partial f}{\partial N}$,因此化学势必然 为0,也就是在达到粒子数平衡的时候,化学势 为0。

这样,光子气体在某个态上的平均占有数为

$$n_l = \frac{1}{e^{\frac{h\omega_l}{kT}} - 1}$$

为了求出分布,需要给出对应某个频率的状态数。一个体积为V的箱子内,波数k处于 $\{k_x,k_y,k_z\}$ 到 $\{k_x + dk_x,k_y + dk_y,k_z + dk_z\}$ 范围内的状态数是 $\frac{V}{(2\pi)^3}dk_xdk_ydk_z$,换算成频率绝对值,并且考虑到光有两种偏振,得到在 ω 到 $\omega + d\omega$ 之间的状态数是 $\frac{V\omega^2d\omega}{\pi^2c^3}$,于是在这范围内的光子数为

$$dN_{\omega} = \frac{V\omega^2 d\omega}{\pi^2 c^3} \frac{1}{e^{\frac{h\omega_l}{kT}} - 1} d\omega$$

最后得到普朗克的黑体辐射公式:

$$dE_{\omega} = \frac{V}{\pi^2 c^3} \frac{h\omega^3}{e^{\frac{h\omega_l}{kT}} - 1} d\omega$$

3.6.2 德拜比热理论

考虑晶体的比热。在高温下,晶体比热很容易求出为3R,但在低温下,比热会逐步衰减到0。 德拜给出了这种纯晶格振动比热的公式,基本概 念是将晶体中的振动看成一组独立的简正模式。

作为独立振动模式,每个模式的平均能量可 以用玻尔兹曼统计法给出即

$$\epsilon_{\nu} = \frac{h\nu}{e^{h\nu/kT} - 1} + \epsilon_0$$

问题只是计算模式的数目。

首先,在N很大的极限下,可以认为频率是 基本连续的,类似前面黑体辐射的结果,在频率 从v到v+dv的范围内,模式数大约是

$$2\frac{4\pi V}{c_1^3}v^2 dv + \frac{4\pi V}{c_2^3}v^2 dv = Bv^2 dv$$

此外,与光子气体不同,总模式数必须是3N,因此 定义一个截断频率v_D,只考虑频率小于截断频率 的振动。

于是总的振动能量为

第三章 统计力学基础

$$U=E_0+B\int_0^{\nu_D}\frac{h\nu^3}{e^{h\nu/kT}-1}d\nu$$

这就是德拜理论。

上述计算需要计算德拜积分,考虑当T-> 0的时候,这时可以将积分上限提高到无穷,于是 得出

$$U = E_0 + B \frac{kT^4}{h^3} \int_0^\infty \frac{y^3}{e^y - 1} dy$$

于是得出低温下的热容量为 $C_v \rightarrow T^3$ 。

当 $T \rightarrow \infty$ 的时候,将指数函数展成级数,于 是

$$U = E_0 + kT \int_0^{\nu_D} B\nu^2 d\nu$$

最后的积分就是总模式数,它必定等于3N,于是热容量还原为经典结果3R。

3.6.3 玻色-爱因斯坦凝聚

考虑有质量的玻色气体,这时粒子数守恒.按 照布居数公式,其化学势必须为负数或者0。化学 势的确定关系是

$$N = \sum a_l = \frac{4\pi Vg}{h^3} \sqrt{2}m^{3/2} \int_0^\infty \frac{\sqrt{\epsilon}d\epsilon}{e^{\frac{\epsilon-\mu}{kT}} - 1}$$

现在在保持N/V不变的条件下降低系统的温度, 这个积分必须保持常数,为了保持积分不变,μ必 须增大,但温度降低到一定程度的时候,会引起 μ=0。此后,μ已经不能再升高,继续降低温度, 这时出现了矛盾。

唯一的可能是在这时候大量粒子堆积在最低 能级上,确定这个温度的关系式是

$$N = \sum a_l = \frac{4\pi Vg}{h^3} \sqrt{2}m^{3/2} \int_0^\infty \frac{\sqrt{\epsilon}d\epsilon}{e^{\frac{\epsilon-\mu}{kT_C}} - 1}$$

温度更低的时候,这个积分的结果是所有其 他能级上的粒子数,因此

$$N_{\epsilon} = \sum a_l = \frac{4\pi Vg}{h^3} \sqrt{2}m^{3/2} \int_0^\infty \frac{\sqrt{\epsilon}d\epsilon}{e^{\frac{\epsilon-\mu}{kT}} - 1}$$

算出这两个积分,得出

$$N_{\epsilon} = N(\frac{T}{T_c})^{3/2}$$

于是在温度低于*T*_C后,大量粒子会"凝聚" 在基态上,称为玻色-爱因斯坦凝聚。

3.6.4 费米气体

和玻色气体不同,费米子因为每个状态只能 排布一个粒子,所以粒子必须从低到高逐步排列 到每个能级上。当系统温度为0的时候,从分布律 可以看出,凡是能量低于某个定值的状态,就会 直接得到一个为1的布居数,而能量高于这个值, 布居数就是0。在动量空间中,能量低于这个值的 状态成为一个球,球面就是等能面,这个面叫做 费米面,而整个球称为费米球。

考虑体积V中的粒子,在p到p+dp范围内的 状态数目为(电子有两个自旋状态):

$$\omega(p)dp = \frac{8\pi V}{h^3}p^2dp$$

因此费米球中的状态数是

$$N = \frac{8\pi V}{h^3} \frac{p_F^3}{3}$$

这样得出费米能量。

当温度不为零但仍然远远低于费米能量时, 可以用近似展开的方法计算费米气体的比热。计 算中,需要使用电子的能量动量关系式,此外还 需用到费米积分的展开式

$$I = \int_0^\infty \frac{f(\epsilon)d\epsilon}{e^{\frac{\epsilon-\mu}{kT}} + 1}$$

=
$$\int_0^\mu f(\epsilon)d\epsilon + \frac{\pi^2}{6}(kT)^2 f'(\mu) + \frac{7\pi^4}{360}(kT)^4 f'''(\mu)$$

习题:考虑中子星的核心部分,它是质子-中 子-电子达到基本平衡的状态。假设三种组分都是 极端相对论的,因此可以忽略静止质量。计算质 子中子电子的数目比。

第三章 统计力学基础

第四章 特殊函数

4.1 勒让德多项式

4.1.1 按照本征函数的展开

在傅里叶分析中学到,任何在[0,2π]中且满 足f(0) = f(2π)的分段函数都可以展开成为傅里叶 级数。对于连续函数,展开级数在区间内一致收 敛于该函数。此外,如果函数的行为良好,则展 开系数随着 $n \to \infty$ 逐步趋向于0。这样,在解决问 题的时候,我们可以取前几个展开系数,并且利 用这些系数的行为研究函数的行为。由于傅里叶 级数的每一项都是三角函数,其微分性质比大部 分函数都好,所以通常这种展开会大大简化问题 的处理。

尽管如此,傅里叶展开也存在某些问题,其 中之一是,如果函数不连续,则在突变点处级数 将收敛于均值 $\frac{1}{2}(f(x_0+0)+f(x_0-0))$,这就意味着, 如果函数本身不是周期的,边界点0,2π处的展开 将非常的不准确,特别是如果取的项数较少,在 边界处的函数 误差将扩散出一段距离。

考虑一般情况,我们在量子力学中,常常采 用把某个态矢1/w>展开为一组基矢的和的形式。当 投影到坐标表象的时候,问题就变成了一个函数 按照某些基函数的 展开,这种展开可以写成

$$\psi(x) = \sum_{n} c_n \phi_n(x)$$

这个级数必须在所求范围内一致收敛于其和函数; 其次,为了计算系数c,的方便,我们要求基函数必 须是正交归一的,这是因为 计算系数的方法是两 边乘以 $\phi_n^*(x)$ 并且积分,所以只有当 $\phi_n(x)$ 正交归一 的时候,这个计算才容易作出。第三,对于大部 分"行为良好"的函数,系数cn必须足够快地趋 向于0.

我们姑且不考虑第三个问题,问题就变为把 任何函数展开成为对应函数级数,第一个问题对 级数的性质提出了隐含的限制。例如,对于傅里 叶级数,因为每一项都是周期的,所以和 函数 也是周期的,于是这种展开仅能针对周期函数进 行。

上述问题的严格数学处理需要使用泛函分析, 但这里我们绕过这个问题, 而是直接去寻找类 似于傅里叶级数的展开级数,并且研究其适用范 围。

4.1.2 正交多项式

无疑, 在区间[-1,1]上, 任何行为良好的函 数都可以用多项式展开,比如, Taylor级数就 是多项式展开的一个例子,只是其基函数 是1, $x, x^2, ..., x^n, ...,$ 因此基函数不是正交归一的。上 这种展开法的有用性依赖于某些条件。首先, 面的分析说明,可以去寻找一组多项式 (x), 它

第四章 特殊函数

们满足正交归一性关系式

$$\int_{-1}^1 \phi_l^*(x)\phi_{l'}(x)dx = \delta_{ll'}$$

无疑,头两个多项式是

$$\phi_0(x) = \sqrt{\frac{1}{2}}$$

以及

$$\phi_1(x) = \sqrt{\frac{3}{2}}x$$

此 后,利 用 $\phi_2 \pi \phi_1, \phi_0$ 的 正 交 性 关 系 可 以 算 出 $\phi_2(x) = ax^2 + bx + c$,再进一步算出 $\phi_3(x)$,如 此类推。

上述算法非常繁琐,而且我们需要 $\phi_n(x)$ 的明 显表达式,为此,我们首先注意到,n次多项式 有n+1个系数,而同时按照我们的要求它必须和前 面n个多项式 $\phi_0, \phi_1, ..., \phi_{n-1}$ 正交,这样关于其系数 产生了n个方程式,此外归一化关系将产生另外一 个方程,所以如果严格限制正交归一关系,并且 要求所有多项式是实的,则这些多项式将是唯一 的。然后可以考虑多项式

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

首先,这个多项式是一个n次多项式,所以可 以用作展开函数的基,剩下的只是考虑其正交关 系,不难写出

$$\int_{-1}^{1} P_n(x) P_m(x) =$$

$$\frac{1}{2^n n! 2^m m!} \int_{-1}^{1} \frac{d^n}{dx^n} (x^2 - 1)^n \frac{d^m}{dx^m} (x^2 - 1)^m dx \quad (4.1)$$

右边积分号里面的东西可以分部积分得到

$$\int_{-1}^{1} \frac{d^{n}}{dx^{n}} (x^{2} - 1)^{n} \frac{d^{m}}{dx^{m}} (x^{2} - 1)^{m} dx$$
$$= \frac{d^{n-1}}{dx^{n-1}} (x^{2} - 1)^{n} \frac{d^{m}}{dx^{m}} (x^{2} - 1)^{m} |_{-1}^{1}$$
$$- \int_{-1}^{1} d^{n-1} dx^{n-1} (x^{2} - 1)^{n} d^{m+1} dx^{m+1} (x^{2} - 1)^{m} dx \quad (4.2)$$
`
array of a static structure is a static structure in the state of the s

分部积分的第一项因为求导次数是*n* – 1,而乘方次数是*n*,所以必然剩下一个(*x*² – 1)没有被求导消除,因此第一项必然是0.

反复运用上述分部积分手法,最后得到

$$\int_{-1}^{1} P_n(x) P_m(x) =$$

$$\frac{1}{2^n n! 2^m m!} \int_{-1}^{1} (-1)^n (x^2 - 1)^n \frac{d^{n+m}}{dx^{n+m}} (x^2 - 1)^{n+m} dx$$
(4.3)

考虑*n* > *m*的情况(如果*n* < *m*则交换分部积分顺 序),于是得到*n* + *m* > 2*m*,所以这个积分为0。

如果n = m,则求导结果必然是

$$\frac{d^{2n}}{dx^{2n}}(x^2-1)^n = (2n)!$$

最后的积分可以用变量替换($x = \sin \theta$)+分部 积分求出,结果是

$$\int_{-1}^{1} P_n(x) P_m(x) = \delta_{mn} \frac{2}{2n+1}$$

于是,我们得到了一组正交的多项式 $P_n(x)$, 而如果乘以归一化常数 $\sqrt{\frac{2n+2}{2}}$,就得到需要的基函 数 $\phi_n(x)$ 。而 $P_n(x)$ 称为n次勒让德多项式。

不难看出,利用勒让德多项式的展开,实际 等价于泰勒展开,因此需要函数的可微性质。

此外,可以证明*P_n*(1) = 1,这可以通过注意 到*x*² - 1 = 2(1 - *x*)然后取n次微分得出。由于前面 .1) 所述的唯一性关系,n次正交多项式组之间最多只 能差一个系数,而一旦选择了*P_n*(1),那么得到的 结果一定是勒让德多项式。 4.1 勒让德多项式

4.1.3 多极矩展开和勒让德方程式

在电磁学中,在有限体积V内分布的电荷产生的静电场,可以用积分形式表述为

$$V(R) = \int_{V} \frac{\rho(r)}{|R-r|} d^{3}r$$

可以将其展开为幂级数

$$V(R) = \sum_{n=0}^{\infty} \frac{\sigma_n}{R^{n+1}}$$

这就是多极矩展开。我们取 \vec{R} 的方向为z轴并令l = r/R, $x = cos\theta$,引入

$$H(l, x) = R \frac{1}{|R - r|} = (1 + l^2 - 2lx)^{-1/2}$$

于是可以把H(l, x)展开成为

$$H(l, x) = \sum_{n=0}^{\infty} \frac{l^n}{n!} \frac{\partial^n}{\partial l^n} (1 + l^2 - 2lx)^{-1/2}|_{l=0}$$

于是只要算出上述导数,就可以通过积分求 出*σ_n*(与**R**无关),这个做法称为多极矩展开。

可以一致地计算出上述所有导数,但实践 中不需要这么做,因为可以证明上述各项系数 实际就是勒让德多项式。为了证明这一点,需 要用到勒让德多项式的唯一性:满足正交条件 和*P*(1) = 1条件的多项式必然是勒让德多项式。

注意到

$$\nabla^2(\frac{1}{|R-r|}) = 0$$

写出

$$\frac{1}{|R-r|} = \frac{1}{R}\sum_{n=0}^{\infty} P_n(x)(\frac{r}{R})^n$$

代入拉普拉斯方程得出

$$\sum_{n=0}^{infty} \frac{1}{R^{n+1}} \nabla^2 [P_n(\cos\theta)r^n = 0]$$

乘以R之后取R->∞的极限得出

$$\nabla^2 (P_0 r^0) + \sum_{n=1}^{\infty} \frac{1}{R^n} \nabla^2 [P_n(\cos\theta) r^n = 0]$$

后面那个求和在*R*->∞时必须等于0,于是

$$\nabla^2 (P_0 r^0) = 0$$

。消去这一项,再乘以**R**²,继续取极限,依次进行下去,最后得出

$$\nabla^2 [P_n(\cos\theta)r^n] = 0$$

展开⊽2的球坐标表达式,并且注意到

$$\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial}{\partial r})r^n = n(n+1)r^{n-2}$$

得出

$$\frac{1}{\sin\theta} \frac{d}{d\theta} [\sin\theta \frac{dP_n(\cos\theta)}{d\theta}] + n(n+1)P(\cos\theta) = 0$$
恢复到使用x的表达式,得到勒让德方程式

$$\frac{d}{dx}[(1-x^2)\frac{dP_n(x)}{dx}] = -n(n+1)P_n(x)$$

现在的任务是证明这里的*P_n(x*)就是我们导出的勒让德多项式。考虑上述*H(l,x)*的展开,其 第n个系数必然是关于x的n次多项式(证明之)。 将上述方程写成本征方程的形式,即

$$HP_n(x) = -n(n+1)P_n(x)$$

使用分部积分法不难证明H是个Hermite算子:

$$\int_{-1}^{1} \phi^{*} H \psi dx = \phi^{*} (1 - x^{2}) \frac{d\psi}{dx} \Big|_{-1}^{1}$$
$$- \int_{-1}^{1} (1 - x^{2}) \frac{d\psi}{dx} \frac{d\phi^{*}}{dx} dx$$
$$= - \int_{-1}^{1} (1 - x^{2}) \frac{d\psi}{dx} \frac{d\phi^{*}}{dx} dx \qquad (4.4)$$

同样计算得出

$$\int_{-1}^{1} \psi^* H \phi dx = \psi^* (1 - x^2) \frac{d\phi}{dx} \Big|_{-1}^{1}$$
$$- \int_{-1}^{1} (1 - x^2) \frac{d\phi}{dx} \frac{d\psi^*}{dx} dx$$
$$= - \int_{-1}^{1} (1 - x^2) \frac{d\phi}{dx} \frac{d\psi^*}{dx} dx \qquad (4.5)$$

这两个表达式正好共轭,于是 $P_n(x)$ 必然正交;剩下的任务只是证明 $P_n(1)$ 为1。当x = 1的时候展开 式是

$$\frac{1}{\sqrt{1-2l+l^2}} = \frac{1}{1-l}$$

所以立刻知道 $P_n(1) = 1$ 。

H(*l*, *x*)称为勒让德多项式的母函数,也叫生成 函数。

4.1.4 递推关系

实际上在理论研究中很少计算勒让德多项式 (尽管在数值处理中经常需要),通常使用一些递 推公式来处理。基本思路是在上述展开公式两边 取对数,于是

$$-\frac{1}{2}\log(1+l^2-2xl) = \log(\sum_n P_n l^n)$$

然后对参数求导,例如对1的求导给出

$$\frac{-l+x}{1+l^2-2lx} = \frac{\sum_{n} nP_{n}l^{n-1}}{\sum_{n} P_{n}l^{n}}$$

乘以
$$(1 + l^2 - 2lx) \sum_n P_n l^n$$
, 化简后得出

 $(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0$

这是常用的递推公式之一。此外如果对x求导,则 得出另一个递推关系式

$$P_{n+1}' - 2xP_n' + P_{n-1}' = P_n$$

4.2 球谐函数

在前面的结果中可以看出,不考虑¢的情况 下,勒让德展开式在球坐标系统的角向函数是完 备的。现在来考虑角向方程,不难证明角动量算 符

$$\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial}{\partial\theta}) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}$$

是个厄米算符,于是它的本征函数是正交的,可 以证明也是完备的。现在考虑如何写出它的本征 函数。

分离变量后, φ方向的方程变得非常简单, 其 解简单的是e^{imφ}, 而θ方向的方程为

$$\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial\Theta}{\partial\theta}) + (\lambda - \frac{m^2}{\sin^2\theta})\Theta = 0$$

直接求解这个方程相当困难,但我们不难看 到,在这个问题中,一般意义上的基本函数系 是cosⁿ θsin^mθe^{imθ},而相比于勒让德多项式,前面 的θ多项式显然是勒让德多项式对θ做若干次微分 的结果。考虑这个问题,引入

$$P_l^m(x) = (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_l(x) = (1 - x^2)^{m/2} y_l^m(x)$$

剩下的只是繁琐的计算,最后得出

$$\frac{d}{dx}[(1-x^2)\frac{d}{dx}P_l^m(x)] + [l(l+1) - \frac{m^2}{1-x^2}]P_l^m(x) = 0$$

4.3 贝赛尔函数

于 是, 我 们 得 出: L^2 的 本 征 函 数 是 $P_l^lm(cos\theta)\exp im\phi$,本征值为l(l+1)。这个函数 称为球谐函数。通常我们取其为正交归一的,于 是需要再乘以一个归一化因子。 正交性条件由 算符厄米性可以直接得出,也可以通过直接计 算 $P_l^m(x)$ 的积分得出。需要注意的是,勒让德多项 式的正交性条件是对 $x = cos\theta$ 的积分,所以球函 数 的正交性条件必然也是针对x的积分,或者如果 用 θ, ϕ 积分需要乘以体积因子 $sin\theta$:

 $\iint Y^*_{lm}(\theta,\phi)T_{l'm'}(\theta,\phi)sin\theta d\theta d\phi = \delta_{ll'}\delta_{mm'}$ 归一化后的球函数写成

$$Y_{l}m(\theta,\phi) = \sqrt{\frac{(l=|m|)!(2l+1)}{(l+|m|)!4\pi}} P_{l}^{\dagger}m|(\cos\theta)e^{im\phi}$$

最后,引入球函数的加法定理,考虑三套同 原点的坐标系,则

$$P_{l}(cos\theta) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} Y_{l}m^{*}(\theta', \phi')Y_{lm}(\theta'', \phi'')$$

4.3 贝赛尔函数

前面的球函数理论,给出了在球坐标中许多 问题的展开模式,现在考虑另外一个典型的模式, 即柱坐标中的展开。

4.3.1 贝赛尔函数和诺依曼函数

考虑贝赛尔方程

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - v^{2})y = 0$$

如果v不是整数,那么使用级数法就求出两个基本的解

$$J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(k+\nu+1)(\frac{x}{2})^{2k+\nu}}$$

以及

而

千是

$$I_{-\nu}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(k-\nu+1)(\frac{x}{2})^{2k-\nu}}$$

如果v是个整数,那么问题变得比较困难,此时*J_nu*和*J_{-v}*具有相同的形式。此时需要构造一个和*j_v*线性无关的函数来构成基本解。一个常用的选择是

$$N_m(x) = \lim_{v \to m} N_v(x)$$

$$N_{\nu}(x) = \frac{J_{\nu}(x)cos\nu\pi - J_{-\nu}(x)}{sin\nu\pi}$$

$$N_m(x) = \frac{1}{\pi} [(\frac{\partial J_v}{\partial v})_{v=m} - (-1)^m (\frac{\partial J_{-v}}{\partial v})_{v=m}]$$

J和N分别称为贝赛尔函数和诺依曼函数。

如同我们前面指出的,函数系展开中,必须 考虑函数的收敛性,对于柱坐标展开,展开中包 含零点和无穷远点,利用渐近展开法可以得到这 两个函数的无穷远行为

$$J_{\nu}(x) \sim \sqrt{\frac{2}{\pi x}} \cos(x - \frac{n\pi}{2} - \frac{\pi}{4})$$
$$N_{\nu}(x) \sim \sqrt{\frac{2}{\pi x}} \sin(x - \frac{n\pi}{2} - \frac{\pi}{4})$$

或者说这两个函数都是振荡收敛的函数。 在零点附近,J函数的行为是正则的,也就是

$$J_0(0) = 1 \tag{4.6}$$

$$J_n(0) = 0$$
 (4.7)

而诺依曼函数则是个发散函数,也就是当 $x \to 0$ 的时候

$$N_0(x) \sim \log x \tag{4.8}$$

$$N_n(x) \sim x^{-m} \tag{4.9}$$

第四章 特殊函数

换句话说,对于零点处行为是正则的函数,其柱 坐标展开中将只包含贝赛尔函数。最后,有时候 需要使用一个复数形式的贝赛尔函数,即

$$H_{\nu}^{(1)}(x) = J_{\nu}(x) + iN_{\nu}(x)$$

$$H_{\nu}^{(2)}(x) = J_{\nu}(x) - iN_{\nu}(x)$$

这一对函数称为汉克尔函数。

通常也可以用递推关系式计算贝赛尔方程, 即

$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{x} J_{\nu}(x)$$

以及

$$N_{\nu-1}(x) + N_{\nu+1}(x) = \frac{2\nu}{x} N_{\nu}(x)$$

此外还有各种类型的递推公式,一般我们把满足 下列递推关系的函数Z_v(x)称为柱函数:

$$Z_{\nu-1}(x) + Z_{\nu+1}(x) = \frac{2\nu}{x} Z_{nu}(x)$$

$$Z_{\nu-1}(x) - Z_{\nu+1}(x) = 2Z'_{\nu}(x)$$
$$\frac{d}{dx}(x^{\nu}Z_{\nu}) = x^{\nu}Z_{\nu-1}$$
$$\frac{d}{dx}(x^{-\nu}Z_{\nu}) = -x^{-\nu}Z_{\nu-1}$$

柱函数必然满足贝赛尔方程。(虽然反之未必)

4.3.2 生成函数和展开公式

通过直接求导,可以写出贝赛尔函数的生成 函数:

$$e^{\frac{x}{2}(t-\frac{1}{t})} = \sum_{m=-\infty}^{\infty} J_m(x)t^m$$

或者用围道积分表示为

$$J_m(x) = \frac{1}{2\pi i} \oint \frac{e^{\frac{x}{2}(t-\frac{1}{t})}}{t^{m+1}} dt$$

这个展开公式在理论研究中相当重要,起着 类似多极矩展开式的作用。特别是,如果取 $t = ie^{i\theta}$ 就得到

$$\exp(ix\cos\theta) = J_0(x) + \sum_{n=1}^{\infty} i^n J_n(x)\cos n\theta$$

4.3.3 柱坐标方程的解

通常贝赛尔方程是在求解柱坐标中的波动方 程的时候产生的。如同球坐标中的球谐函数展开 一样,圆柱域内的函数总可以展开成为柱函数的 级数。写出柱坐标中的拉普拉斯算符,它是

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial}{\partial r}) + \frac{\partial^2}{\partial z^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2}$$

于是,基函数可以写成

$$u_{mk\nu} = R_n u(r) \exp\{ikz\} \exp\{im\phi\}$$

其中决定径向函数的方程是

$$\frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial R}{\partial r}) + (\lambda - k^2 - \frac{m^2}{r^2})R = 0$$

当 $\lambda - k^2 > 0$ 时,取 $x = \sqrt{\lambda - k^2}r$,这个方程就化为 贝赛尔方程,因此其解就是*m*阶贝赛尔函数。

如果 $\lambda - k^2 < 0$,可以在贝赛尔函数中做变换x = iy,这样得到虚宗量形式的解。

在处理这类问题中,通常会用到贝赛尔函数 零点的一些定理:

1. *J_m(x)*有无穷多个实零点,且所有零点都是 实数,在数轴上对称分布。

2. 在*J_m(x*)的两个零点之间有且只有一个*j_{m+1}(x)*的零点,反之亦然。

3.J_m(x)的最小正零点比J_{m+1}的最小正零点小。

4.4 球贝赛尔函数

习题:求解圆形波导管中的波振动模式。

此问题可以直接用展开式求解,然而,需要 考虑λ-k²的正负号,看起来,似乎模式波长可以 等于无穷大,但实际上,圆柱形波导管的边界条 件是 $r = R_0$ 处振动为0.从贝赛尔函数的性质一,知 道虚宗量贝赛尔函数没有有限零点, 于是, 相应 于虚宗量贝赛尔函数的展开系数都是0(否则将在 边界处展开一个有限和),所以,最高振动模式将 被限制。

当进行实际计算的时候,需要求出相应于贝 赛尔函数的展开系数。其基本解决方案仍然是引 入正交归一关系式。我们注意到∇2是个厄米算符, 因此它相对于不同本征值的本征函数正交, 也就 是(为了简单,只写出两维)

$$\iint [J_{\nu}(r)^* e^{-im\theta}] [J_{\nu'}(r) e^{im'\theta}] dxdy = C\delta_{\nu\nu'}\delta_{mm'}$$

到极坐标,考虑 $m = m' = 0$ 的情况,得出正

变换 关系式

$$\int r J_{\nu}(r) J_{\nu'}(r) dr = C \delta_{\nu\nu'}$$

这里的积分区间是实际问题的区间,例如对于我 们前面的问题,就是从0到波导管半径R。 接下来 需要计算出常数C。由于实际计算的时候在区间内 积分,需要引用边界条件才能求值。例如针对前 面的第一类边界条件,积分域为0到R.把贝赛尔方 程写成

 $x^2 J_m(x) = m^2 J_m(x) - x \frac{d}{dx} [x J'm(x)]$

这样

$$\int_{0}^{R} x J_{m}^{2}(x) dx = \frac{1}{2} \int J_{m}^{2}(x) d(x^{2})$$
$$= \frac{1}{2} [x^{2} J_{m}^{2}(x)]_{0}^{R} - 2 \int_{0}^{R} x^{2} J_{m} J_{m}' dx]$$
$$= \frac{1}{2} [(x J_{m})^{2} - m^{2} J_{m}^{2} + (x J_{m}')^{2}]_{0}^{R} \qquad (4.10)$$

这样就可以给出所需要的积分常数。

球贝赛尔函数 4.4

考虑球坐标中的亥姆霍兹问题,径向方程现 在变成

$$\frac{\partial}{\partial r} \left(r^2 \frac{\partial R_{nl}}{\partial r} \right) + [k^2 r^2 - l(l+1)] R_{nl} = 0$$

首先消除掉k,即令x = kr,方程成为

$$x^{2}R'' + 2xR' + [x^{2} - l(l+1)]R = 0$$

再引入 $R = \frac{y}{\sqrt{r}}$,得到标准形式的方程

$$x^2y^{\prime\prime} + xy^\prime + [x^2 - (l + \frac{1}{2})^2]R = 0$$

于是这个方程的解就是j+1阶的贝赛尔函数。 通常我们把这个径向方程的解乘以一个系 E交 数 $\sqrt{\frac{\Pi}{2}}$,称为球贝赛尔函数:

$$R_{nl}(r) = \sqrt{\frac{\pi}{2kr}} J_{l+\frac{1}{2}}(r) \equiv j_l(kr)$$

球贝赛尔函数可以用三角函数表达出来,例

$$j_0(x) = \frac{\sin x}{x}$$
$$j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x}$$

依次类推。

如

【练习】写出球贝赛尔函数当 $x \to \infty$ 时的渐 近公式。