A Lap Around Internet Explorer 9
Learning Objectives
This lab demonstrates the several new development features in Internet Explorer 9.   After completing this lab, you will be familiar with new features in the following areas: 
· Support for Web Standards
· DOM Filtering
· SVG support
· Performance Instrumentation
· Developer Tools
Overview
Internet Explorer 9 adds new support for HTML5, CSS3, and many other new web standards. This lab focuses on key areas of the new features as well as additions to the developer tools.
Prerequisites
Before working on this lab, you must have: 
· Working knowledge of web development practices.
Lab Details
Lab Version: 1.0
Last Updated: 10/19/2010
Tested With: Internet Explorer 9 Beta
For More Information
You may visit the following websites to learn more about various topics covered throughout this manual.
Developer Guide:
http://msdn.microsoft.com/en-us/ie/ff468705.aspx
Release Notes:
http://ie.microsoft.com/testdrive/info/ReleaseNotes/Default.html
Scenario
In this lab, we will be creating a weather information “widget” that takes advantage of new HTML5 support in in Internet Explorer 9.
Est. time to complete this lab
45 minutes
Helpful Hints
Don’t forget the F12 Developer Tools built into Internet Explorer 9, with support for debugging, break points, and plenty more. If you run into problems, this is a great set of tools for understanding what may be going wrong.
Exercise 1 – Support for Web Standards
In this exercise, you will be creating a simple web page to take advantage of Internet Explorer 9’s newly supported web standards. Web standards allow web designers to target multiple browsers with the same markup. Internet Explorer 9 has better support for a number of CSS3 features, new HTML5 support, and built-in support for several SVG modules.
Internet Explorer 9 increases support for Cascading Style Sheets (CSS).  Internet Explorer 8 is fully compliant with the CSS2.1 specification. Internet Explorer 9 adds support for many components of CSS3. 
Task 1: Add Rounded Corners with the CSS3 Border-Radius Property
In this task you will add rounded corners with the CSS3 border radius to the header style. Before we change the style, let’s look at the current web page.
1. Open the LapAroundIE9 project with Visual Studio or Visual Web Developer Express and start the project without debugging (CTRL-F5), it should open the default.html in Internet Explorer 9.
[image: ]
As you can see, we have a very simple box with a background image borders.
2. Return to Visual Web Developer and open default.html.  At the top of the page, you’ll see a link to the stylesheet weather.css. 
3. Open weather.css. We will modify the border classes to add a rounded border. Internet Explorer 9 uses the property border-radius to define the rounded border. To support other browsers, we’ll also include -moz-border-radius and -webkit-border-radius.
4. Add the following highlighted updates to weather.css:
	
.rainwrap
{
    position: absolute;
    top: 0;
    left: 0;
    width: 506px;
    height: 238px;
    overflow: hidden;
    background-image: url(rain.jpg);
    border: 0px solid transparent;
    -webkit-border-radius: 25px;
    -moz-border-radius: 25px;
    border-radius: 25px;
}
.outerborder
{
    position: absolute;
    top: 0;
    left: 0;
    width: 502px;
    height: 234px;
    border: 2px solid transparent;
    -webkit-border-radius: 25px;
    -moz-border-radius: 25px;
    border-radius: 25px;
}
.innerborder
{
    position: absolute;
    top: 2px;
    left: 2px;
    width: 500px;
    height: 232px;
    border: solid 1px white;
    -webkit-border-radius: 24px;
    -moz-border-radius: 24px;
    border-radius: 24px;
}
.bottomshade
{
    position: absolute;
    top: 50%;
    left: 0;
    width: 100%;
    height: 50%;
    border: solid 0px transparent;
    -webkit-border-bottom-left-radius: 25px;
    -webkit-border-bottom-right-radius: 25px;
    -moz-border-radius-bottomleft: 25px;
    -moz-border-radius-bottomright: 25px;
    border-bottom-left-radius: 25px;
    border-bottom-right-radius: 25px;
}




5. Press F5 to refresh the browser and note the widget now has rounded borders.
[image: ]
6. Open the page in Firefox or Safari to see the rounded corners working across all browsers that support them.
Task 2: Add RGBA background
Internet Explorer 9 adds support for the CSS3 Color module. This module includes support for the RGBA, HSL, and HSLA color models; the opacity property; and the currentColor keyword. Internet Explorer 9 also expands support for the transparent keyword.
We will add a black background with 50% opacity to the bottom half of the widget using the RGBA color model.  Like the RGB color model, the first three values represent the amount of red, green, and blue with values between 0 and 255. The last value is the alpha channel that represents opacity with a value between 0 (transparent) and 1 (opaque).
1. In the weather.css file, add background-color: rgba(0,0,0,0.5); to the .bottomshade selector.
	
.bottomshade
{
    position: absolute;
    top: 50%;
    left: 0;
    width: 100%;
    height: 50%;
    border: solid 0px transparent;
    -webkit-border-bottom-left-radius: 25px;
    -webkit-border-bottom-right-radius: 25px;
    -moz-border-radius-bottomleft: 25px;
    -moz-border-radius-bottomright: 25px;
    border-bottom-left-radius: 25px;
    border-bottom-right-radius: 25px;
    background-color: rgba(0,0,0,0.5);
}




2. Press F5 to refresh the browser and note the darker shade of the bottom half of the background image:
[image: ]
For more information on CSS Color and backgrounds, see: http://msdn.microsoft.com/en-us/ie/ff468705.aspx#_CSS3_BG_Borders
Task 3: Use CSS3 Opacity property to create a fade effect
Let’s implement the ability to change the temperature scale from Celsius to Fahrenheit. When we change scales, we will use the opacity property to create a fade effect when transitioning between the scales.
1. In default.html, we will add a simple link to switch between the temperature scales. Add the following div tag below the “temp” div tag:
	
<div id="temp" class="toptext">20°C</div>

<div id="FC" class="units">
    <a id="out" href="#" onclick="fadeOutIn()">°F | °C</a>
</div>




2. We will now add some JavaScript to decrease and increase the opacity property of the tag to generate a fade effect. Add the following code to weather.js:
	
// Temperature scale fading

var intendedOpacity = 1.000;
var theGraphic = document.getElementById("temp");
var Cel = 1;

function fadeOutIn() {

    var fading = 0;
    if (fading == 0) {
        fading = 1;
        fadeOut();
    }
}

function fadeOut() {

    if (typeof theGraphic.style.opacity == 'undefined') {
        intendedOpacity = 0;
        theGraphic.style.visibility = "hidden";
        return;
    }

    if (intendedOpacity > 0.0) {
        intendedOpacity = Math.max(intendedOpacity - 0.025, 0);   
        // don't let us get below zero
        theGraphic.style.opacity = intendedOpacity;
        window.setTimeout(fadeOut, 10);
    }
    else
    {
        if (Cel == 1) {
            document.getElementById("temp").innerHTML = "68&deg;F";
            Cel = 0;
        }
        else {
            document.getElementById("temp").innerHTML = "20&deg;C";
            Cel = 1;
        }
        fadeIn();
    }
}

function fadeIn() {
    if (typeof theGraphic.style.opacity == 'undefined') {
        intendedOpacity = 0;
        theGraphic.style.visibility = "visible";
        return;
    }

    if (intendedOpacity < 1.0) {
        intendedOpacity = Math.min(intendedOpacity + 0.025, 1); 
        // some browsers reject values over one
        theGraphic.style.opacity = intendedOpacity;
        window.setTimeout(fadeIn, 10);
    }
    else {
        fading = 0;
    }
}




3. Finally, let’s add style to our link.  Add the following to weather.css:
	
.units
{
    color: white;
    padding-right:5%;
    font: 10pt Verdana;
    text-align: right;
}




4. Press F5.  Click the “°F | °C” link to observe the fade we just implemented:
[image: ]
Please Note: In Internet Explorer 9 Beta there is a known issue where in some cases the temperature will disappear, clicking on the area where the temperature should be will cause it to appear again.
Task 4: Web Fonts
Better typographic control has been a consistent feature of each new version of CSS. Internet Explorer 9 enhances existing support for CSS fonts to provide support for the CSS3 Fonts Module, including support for the Web Open Font Format (WOFF) and raw fonts.
Let’s change our widget to use a Web Open Font for the temperature and city name.
1. Update weather.css to include the following web font:
	
@font-face {
    font-family: HandelGothicOTS;
    src: url('HandelGothicOTS.woff');
}




2. Update the .toptext and .bottomtext selector to include our new web font as shown highlighted below:
	
.toptext
{
    color: white;
    font: 27pt HandelGothicOTS, sans-serif;
    font-size: 60pt;
    text-align: right;
    padding-right:5%;
}
.bottomtext
{
    color: White;
    padding: 10px 15px;
    font: 27pt HandelGothicOTS, sans-serif;
    font-size: 20pt;
    text-align: right;
}




3. Press F5 to refresh the browser and note the font change in the temperature and city.
[image: ]
For more information on the WOFF format, see http://www.w3.org/TR/WOFF/ 
Exercise 2: HTML5
Internet Explorer 9 builds on the work done to implement HTML5 features in Internet Explorer 8, and adds several compelling features. Support for the video and audio elements enables native, hardware accelerated video and audio content on a webpage without the need for a plug-in. Developers can now insert a video or audio clip onto their page as easily as they do an image. Plus, support for the canvas element enables easy and dynamic graphics rendering, all while taking advantage of hardware acceleration through Windows and the graphics card. Additionally, support for the Selection APIs enables programmatic selection of text on a page, and HTML parsing improvements help make HTML authoring more versatile.
Task 1: Canvas
The <canvas> element is a part of the HTML5 Standards specification and allows for dynamic scriptable rendering of 2D graphics.  We will use a canvas element to represent the temperature as a graphical bar thermometer.
1. In default.html, add the following div tag below the “FC” div tag.
	
<div id="FC" class="units">
   <a id="out" href="#" onclick="fadeOutIn()">°F | °C</a>
</div>

<div id="thermometer" class="thermometer">
  <canvas id="Temp1" height="10" width="100%"></canvas>
</div>



The canvas tag will allow us to place a png image in this area of the widget. 

2. Add the following JavaScript to weather.js.  This will “fill in” the thermometer with png image that represent segments of the thermometer.

Note: Make sure to call the drawTherm in the init function:
	
function init() {
    drawTherm("Temp1", 68);
}

// Canvas Thermometer
var segment = new Image();
segment.src = "therm.png";

function drawTherm(ElementID, rating) {
    var canvas = document.getElementById(ElementID);
    var ctx = canvas.getContext("2d");

    for (var x = 0; x < rating; x += 10) {
        ctx.drawImage(segment, x, 0, 10, 10);
    }
}




3. Finally, let’s change the style of the thermometer.  Add the following selector to weather.css. 
	
.thermometer
{
    position: absolute;
    top: 45%;
    left: 3%;
    width: 90%;
    height: 10px;
    border: solid 1px white;
    -webkit-border-radius: 0px 10px 10px 0px;
    -moz-border-radius: 0px 10px 10px 0px;
    border-radius: 0px 10px 10px 0px;
    background-color: rgba(255,255,255,0.2);
}




4. Press F5 to refresh the browser. The widget now has a graphical thermometer

[image: ]

Task 2: Adding multimedia elements to the page with the <video> and <audio>
The video and audio elements enable embedding of video and audio content into an HTML page. Web developers can also specify several attributes for both elements. 
1. Let’s add a video clip to our widget. Add the following code to the body of default.html:
	
<div class="bottomshade">
                                         
   <div id="weatherCam" class="videocam">
      <video controls height="64px" width="115px">
         <source src="berlin.mp4" type="video/mp4" />
            Your browser doesn't support the video element.
      </video>
   </div>




The video tag we’ve defined indicates to the browser that the video control should be shown, and defines the default width and height of the video element so that the browser knows the size of the video before downloading it – preventing a redraw once the video has been downloaded.  Inside the <video> element, we’ve defined the location of the source file and the type of source file.  For more information about the HTML5 Video tag – check out the HTML5 Video hands on lab.
2. Add the following selector to weather.css to position and add a border to the “web cam”:
	
.videocam
{
    position: absolute;
    top: 25px;
    left: 15px;
    border: solid 1px white;
}




3. Switch back to the browser and reload the page.  We can now see the video appear within the widget, and when we hover our mouse over the video, the video controls appear allowing us to start and stop the video.
[image: ] 
Exercise 3 – DOM Filtering
HTML5 supports iterators that allow you to navigate a filtered view of your DOM. This can be very useful when doing things like changing a subset of elements properties – such as their visibility. 
Task 1: Filter forecast data
We are going to create a function called showNewFilter which will be used by the user to display whichever types of forecast data. The function showNewFilter will take two parameters. The first is a filter function which will determine which items to modify, and the second is the value to set the display style to if the item meets the filter criteria.
1. In weather.js, add a function that will update the display of the filtered items.
	
function showNewFilter(filter, display) {
    var forecastList = document.getElementById("Forecast");
    var nodeIterator = document.createNodeIterator(
        forecastList,
        NodeFilter.SHOW_ELEMENT,
        filter,
        false
    );
    var node = nodeIterator.nextNode();
    node.style.display = '';

    while (node = nodeIterator.nextNode()) {
        node.style.display = display;
    }
}



The first parameter to showNewFilter is the function which determines which items appear in the filtered iterator. The second parameter is the value to use when setting the filtered item’s display style. For list items, “none” will make them invisible and ‘’ will make them visible again.
2. Add the filter functions for teach of the forecast types and one that returns all of the items.
	
if (!NodeFilter) {
    var NodeFilter = new Object();

    NodeFilter.SHOW_ELEMENT = 1;
    NodeFilter.FILTER_ACCEPT = 1;
    NodeFilter.FILTER_REJECT = 2;
    NodeFilter.FILTER_SKIP = 3;
}

function allFilter(node) {
    return NodeFilter.FILTER_ACCEPT;
}

function forecastFilter(node, forecastType) {
    var result;

    if (node.nodeName == 'TD') {
        if (node.title == forecastType)
            result = NodeFilter.FILTER_ACCEPT;
        else
            result = NodeFilter.FILTER_REJECT;
    }
    else
        result = NodeFilter.FILTER_ACCEPT;

    return result;
}


function precipFilter(node) {
    return forecastFilter(node, "precip");
}

function sunFilter(node) {
    return forecastFilter(node, "riseset");
}




When the user selects to only see the precipitation data, we want to call showNewFilter with the precipFilter as the first parameter and “” as the second parameter. 
NodeFilter is an object which stores some enumerable values that are used by the filter iterator to determine whether to iterate the element. The filter function will be invoked once for each element in the DOM (under the selected parent element) and will be exposed by the iterator if the filter function returns NodeFilter.FILTER_ACCEPT. If the filter function returns NodeFilter.FILTER_REJECT, then the iterator will skip that element.
3. In default.html, let’s add some UI elements that will allow the user to invoke showNewFilter with the proper parameters to filter precipitation and sunrise and sunset data. Note that in order to filter we will first need to hide all the data with one call to showNewFilter and then expose the filtered ones with another call to showNewFilter. This could be done in one call but is done here in multiples in order to simplify the function for demonstration purposes.  Add the following links to the page:
	
<div id="city" class="bottomtext">Berlin, DEU</div>
                        
<div class="forecastshade">

   <div id="filterActions" class="forcastactions">
      <a href="javascript:void(0);" 
         onclick="showNewFilter(allFilter,     
         'none');showNewFilter(precipFilter, '');">
         Precipitation</a> |
      <a href="javascript:void(0);" 
         onclick="showNewFilter(allFilter, 
         'none');showNewFilter(sunFilter, '');">
         Sunrise/Sunset</a>
   </div>

   <table id="Forecast">
      <tr><th>Today</th><th>Tomorrow</th><th>Today + 2</th></tr>
      <tr title="precip">
        <td title="precip">20%</td>
        <td title="precip">30%</td><td title="precip">40%</td>
      </tr>
      <tr title="riseset">
        <td title="riseset">5:17 / 21:08</td>
        <td title="riseset">5:18 / 21:07</td>
        <td title="riseset">5:20  / 21:05</td>
      </tr>
   </table>
</div>




4. To initially filter the data for precipitation, add the following calls to the init() routine:
	
function init() {
    drawTherm("Temp1", 68);

    showNewFilter(allFilter, 'none');
    showNewFilter(precipFilter, '');




5. Finally, let’s update weather.css with the following selectors to formatting the data:
	
.forecastshade
{
    margin-left: 30%;
}

.forcastactions
{
    color: White;
    font: 8pt Verdana;
    text-align: center;
}

table, th, td
{
    color: White;
    font: 10pt Verdana;
    text-align: center;
}

table
{
     width:95%;
     margin-left:10px;
     background-color: rgba(0,0,0,0.4);
     -webkit-border-radius: 10px;
     -moz-border-radius: 10px;
     border-radius: 10px;
}

td, th
{
    width:100px;
}

th
{
    background-color: rgba(0,0,0,0.4);
    border-radius: 8px 8px 0px 0px;
    font-weight: bold;
    border-bottom-style: solid;
    border-bottom-width: thin;
    border-bottom-color: #FFFFFF;
}




6. Open default.html in Internet Explorer 9.  Click on the Precipitation and Sunrise/Sunset links and notice the list will update to only show visible items that have the appropriate title tag set.
[image: ]
Exercise 4 – Scalable Vector Graphics (SVG)
Support for Scalable Vector Graphics (SVG) has become one of the most requested features for implementation in Internet Explorer, and is a powerful way to add attention-grabbing visuals of any size to a website without the need for a plug-in or separate viewer.
With Internet Explorer 9, we are proud to introduce interoperable support for the SVG element feature set. The SVG support in Internet Explorer 9 is based on the SVG 1.1 (Second Edition) draft specification for desktop browsers. Like the new HTML5 media features, SVG in Internet Explorer 9 takes advantage of hardware-accelerated graphics.
Task 1: Add A Wind Direction Indicator With SVG
Let’s draw a simple triangle to represent a compass to show wind direction.
1. In default.html, add the following div tag that includes the SVG tag
	
<div id="infographic" class="rainwrap">
                
   <div id="compass" class="compasswrap">
      <svg width="60" height="60" version="1.1"
        xmlns="http://www.w3.org/2000/svg">
          <polygon id="wind" points="5,0 25,50 45,0 25,10"
            style="fill:#9999ff; stroke:#dddddd;stroke-width:1"/>
      </svg>
   </div>




The SVG markup defines a polygon triangle pointer that we will rotate using JavaScript.
2. In weather.js, add the following routine to simulate wind direction.  Our code will randomly rotate the indicator up to 5 degrees every 0.5 seconds:
	// Wind compass

var windDirection = 0;

function wind() {
    var compass = document.getElementById("wind");

    windDirection += Math.floor(Math.random() * 11) - 5
      compass.setAttribute("transform", 
        "rotate(" + windDirection + ", 25, 25)");
    window.setTimeout(wind, 500);
}



3. Add a call to the wind() function to the init():
	
   showNewFilter(precipFilter, '');

   wind();




4. Finally, we’ll position the indicator by adding the following sector to weather.css
	
.compasswrap
{
    position: absolute;
    left: 10%;
    top: 15%;
    width: 50px;
    height: 50px;
}




5. Open default.html in Internet Explorer 9, you should see the wind direction indicator rotating randomly.
[image: ]
For more information, please see http://msdn.microsoft.com/en-us/ie/ff468705.aspx#_Scaling_Vector_Graphics 
Exercise 5: Performance Instrumentation with window.msPerformance
Measuring real-world performance of websites is difficult and error prone today. Developers are forced to use hacks, such as injecting low resolution JavaScript timestamps throughout their code, which slows down the pages for end users, introduces an observer effect, and provides inaccurate results which can drive the wrong behavior.
The browser knows exactly how long it takes to load and execute a webpage, so we believe the right solution is for the browser to provide developers an API to access these performance results. Web developers shouldn’t have to think about how to measure performance – it should just be available for them.
Task 1: Output Performance Statistics
Let’s put in a simple button and write out a few performance statistics for our web page.
1. In default.html, at the bottom of the body, add the following code:
	
<hr />

<button onclick="perfMetrics();">Performance Stats</button>
<div id="perfStats"></div>




2. Let’s hook up the button with some JavaScript code to retrieve the performance statistics and display it out at the bottom of the page.  In weather.js, add the following function:
	
function perfMetrics() {
    var perfList = "<ul>";

    perfList += "<li>Navigation: " +
      window.msPerformance.timingMeasures.navigation + "ms</li>";
    perfList += "<li>Request: " + 
      window.msPerformance.timingMeasures.request + "ms</li>";
    perfList += "<li>Request count: " +   
      window.msPerformance.navigation.requestCount + "</li>";
    perfList += "</ul>";

    document.getElementById("perfStats").innerHTML = perfList;
}




3. Refresh the page in the browser and click the Performance Stats button at the bottom of the page to see the performance stats.
[image: ]
For more information, please see http://blogs.msdn.com/b/ie/archive/2010/06/28/measuring-web-page-performance.aspx 
Exercise 6: Developer Tools
Internet Explorer 8 introduced built-in developer tools to aid in rapidly prototyping, testing, and debugging webpages by enabling developers to test changes to their source code from within the browser itself before implementing the changes to their pages on the back end. The tools to edit and debug CSS and HTML, test and debug script, profile script performance, view or change the Document Object Model (DOM), examine applied rules, and trace the origin of style values have all become indispensible to Internet Explorer developers. Internet Explorer 9 adds to these capabilities several new features for fine-tuning site performance and layout. These include an improved JavaScript profiler, a user-agent switching tool, and a network traffic inspector, as well as performance improvements to the tools themselves.
Task 1: Capture Network Traffic
Let’s look at the new network tab to capture and analyze what is being sent and received by Internet Explorer.
1. In Internet Explorer 9, press the F12 key to open the F12 Developer Tools.  
[image: ]
If you’ve used the developer tools in the past, this dialog will look very familiar.  Developer tools can be used for viewing and debugging HTML, CSS, Script, etc. For more detail on using these features, see the links in the For More Information section. In this task, we will be looking at the new Network tab.
2. Before we do any network tracing, let’s clear the browser cache to make sure we’re requesting all of the files over the network.  Under the Cache menu item, choose “Clear Browser Cache (CTRL-R)” 
3. In the Developer Tools window, click on the Network tab then click on the “Start Capturing” button on the toolbar to start F12 Developer Tools capturing all web traffic in Internet Explorer 9.
[image: ]
4. Navigate to http://localhost/NetMonSample/ and allow the page to load.
[image: ]
5. Switch back to the Developer Tools and click “Stop Capturing”.  As you can see, there is a lot of network data that we can analyze to understand if there were any problems, and figure out how to fix them.
[image: ]
6. Let’s look at some of the detail collected for a request.  Double click on the first request in the list.
[image: ]
Notice the tabs available to break out the additional information about the request.  We can see in the Request Header that we are sending a user agent string of “Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)”.  Note: this may be slightly different if you’re on a 32bit machine.
7. Using the network monitoring tools, how many issues can you find?  The answers are available at the bottom of the page.

[bookmark: _GoBack]Task 2: Changing the User Agent String
Many web sites use the user agent string to detect the browser type and perform logic to render the site differently.  This can cause problems since Internet Explorer 9 defaults to standards mode. The Developer Tools now allow you to change the user agent string to different values including other standards based browsers.
1. With the F12 Developer Tools open, open the Tools menu, and select Change User Agent String and choose one of the alternate user agent strings.
[image: ]
2. Clear the Network log by clicking Clear button on the toolbar, and then click Start Capturing to start the network capture. 
3. Switch to Internet Explorer 9 and navigate to any website, once the site has loaded, return to the developer tools and click Stop Capturing.
4. Let’s look at the detail collected for the request.  Double click on the first request in the list and look at the details in the Request Headers tab.
[image: ]
You’ll notice Internet Explorer 9 sends the user agent string specified in step 1.
For more information, please see the following links:
http://msdn.microsoft.com/en-us/ie/ff468705.aspx#_Dev_Tools 
Developer Tools Overview and Tutorials 
http://msdn.microsoft.com/en-us/library/cc848891(VS.85).aspx
Debugging HTML and CSS with the Developer Tools
http://msdn.microsoft.com/en-us/library/dd433046(VS.85).aspx 
Debugging Script with the Developer Tools 
http://msdn.microsoft.com/en-us/library/cc848892(VS.85).aspx 
Profiling Script with the Developer Tools 
http://msdn.microsoft.com/en-us/library/cc848895(VS.85).aspx 
Developer Tools Keyboard Shortcuts Reference 
http://msdn.microsoft.com/en-us/library/cc848896(VS.85).aspx 
Developer Tools User Interface Reference 
http://msdn.microsoft.com/en-us/library/cc848893(VS.85).aspx 
Testing Webpages in Different Modes 
http://msdn.microsoft.com/en-us/library/dd433045(VS.85).aspx 
Defining Document Compatibility:
 http://msdn.microsoft.com/en-us/library/cc288325(VS.85).aspx 
This concludes the A Lap Around Internet Explorer 9 Hands On Lab.
image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

