
1

Coding in Delphi

写在前面的话

 本次翻译纯属爱好，目的是提高对英文文档的理解和阅读能力，本文档大部分采用直

译的方式，而且保留了原来的英文。目的只是辅助大家理解，不喜勿喷。翻译的认为不正确

的，强烈的欢迎大家入群讨论(DIOCP 群: 320641073)一起翻译，衷心希望有英文功底加入进

行指导。

 常驻翻译：Ryan, D10.天地弦,join

 客串翻译：小生(骗术师)....和 DIOCP 群内的小伙伴。

 友情审核：bp，逆水寒，爱国贼。

 文档整理：D10.天地弦,Join（从第 3 章开始由 Join 整理）

 此次翻译利用中午休息的时间进行的，大家每天在一起翻译一小段，然后讨论的方式，

力争每个词都理解到位。把他整理成 PDF，希望能够帮到大家。

1. 异常和异常处理

1.1. 介绍

 Added into Delphi back at the very beginning with Delphi 1, exception handling was a

fundamental change to the way we thought about and wrote our code.

自 delphi1 开始加入的异常处理，从根本上改变了我们的思考和代码编写的方式。

Unfortunately, despite almost twenty years of use, there are still many misconceptions and

misunderstandings about how exceptions work and especially about how they should be used.

不幸的是尽管使用了近 20 年，对异常的原理理解，特别是在怎么样使用方面还存在着很多

的误解。

 In this chapter, I’ll look at how exception handling should be done.

在这一章，我会着眼于应该怎样进行异常处理。

I’ll start out with examples of the wrong way to use and handle exceptions.

我会用一个错误方式使用和处理异常的例子开始。

Using that as a base, I’ll then discuss proper ways for using exception handling.

以此基础,我会讨论正确使用异常处理的方式。

Used improperly, exception handling can actually cause more problems and errors than it

prevents. Used correctly, they can aid you in writing clean, well-designed code that is easy to

maintain. I’ll assume that you are familiar with exception handling syntax, and the basics of how

exceptions work.

使用不当，异常处理实际上会导致更多的问题和错误比预防。使用得当，他可以辅助你编写

干净的、设计巧妙且易于维护的代码。本章假定你已经熟悉的异常处理的语法和了解异常的

2

基本工作原理。

1.2. 结构化异常处理(SEH)

 An exception is a language feature that allows a programmer to stop execution of a process or

thread immediately, but intercept that “stop” at any point in the call stack when necessary.

Structured exception handling is a combination of language features and good design that makes

use of exceptions in order to allow programmers to make useful assumptions when writing code

and, most critically, respond correctly when those assumptions turn out not to be true.

 异常是一种语言特性(它允许程序员在一个进程或者线程中立即停止执行), 但是当有需

要的时候拦截那个"停止"在调用堆栈的任何一个位置。

结构化异常处理是语言特征和良好设计的组合,利用异常是为了让程序员在编写代码的时候

做有用的假设，最重要的是当这些假设不成立时做出正确的回应。

 These assumptions are often called preconditions – they are things which must be true for a

method to succeed. For example, a method that deletes a record from a database might have the

precondition that the user is logged into the database before it is run. Because the program’s

user interface is structured to only run the method after logging in, a programmer might assume

that

this precondition will always be true. But what happens when the database server crashes?

 这些假设通常被成为一个方法执行成功的前提条件。比如一个方法：从数据库里面删

除一条记录，这个方法的前提条件是用户已经登陆到数据库。用户这个程序的用户接口是一

个只有用户登陆后才能运行的方法, 程序员假定这个前提条件总是成立，但是如果数据库服

务器奔溃了呢?

 The programmer could address this by checking to ensure that the server is connected at

the start of every method. But this is by no means the only precondition, and may lead to

duplication of code. Or the programmer might forget to include all of the relevant checks when

writing a new method. Structured exception handling provides an elegant solution to all of these

issues. It ensures that a method will fail if the preconditions are not fulfilled, and furthermore

that it fails in such a way that the developer can recognize and respond to the failure.

 当然程序员可以通过在每个函数的开始地方检测是否已经登陆到数据库服务器来解决

这个问题，但是这可不是唯一的前提，而且这种解决方法会导致很多重复的代码，在写新的

方法的时候也有可能程序员忘记了加入这些检测。结构化异常处理提供了这些问题完美的解

决方案。以确保 在前提条件不满足的情况下 方法不会执行成功！而且这种失败可以提供给

开发者能做出正确的反应。

1.3. 怎么不使用异常(How Not to use Exceptions)

Much of the work I do involves working on existing projects that have been struggling – most

often

because of poor design – and rewriting code that wasn’t well done in the first place.

我涉及的大量工作是在现有的项目中苦苦挣扎 -- 通常是因为糟糕的设计和一开始没有做

3

好而导致的代码重写。

One of the most common coding errors I see is the misuse of exceptions – sometimes really ugly

misuse. To start off, I’ll go through a few “Don’ts” for exception handling use, discussing why each

is not a good technique.

重写代码在项目的前期都是不好的。在我参与的项目中，我看到的最常见的编码错误就是异

常的使用不当，有时候是相当的不当。我通过一些[注意事项]来说明异常处理的使用，讨论

每一个不恰当的使用。

Don’t Eat Exceptions

不要吃异常

Probably the most common — and really egregious – misuse of exceptions is the “eating” of

exceptions. Very often I’ll see code like this;

异常使用不当中最常见的就是：粗暴的吃掉异常。我经常看到一些这样的代码：

try

 SomeRoutineThatSometimesCausesAHardToFindAccessViolation

except

end;

 For the Love of Baby Elvis, please do not do this. As you can see, this code will “eat” any

exception that gets raised in the called routine. Very often, the code in the try block raises an

error that isn’t easily found, and rather than do the hard work of actually tracking down the error,

the programmer will take the easy way out and just eat the exception. Sometimes, the reason for

eating the exception is nothing more than the desire to never let the end user see any error

messages. If that is your goal, however, you should do so in such a way that you don’t conceal the

errors from the rest of your code, as well.

 正如你所见, 这段代码会吃掉所有调用过程中抛出的异常, 最常见的是我们很难发现在

try 块中的代码引发的错误,程序员宁可选择逃避吃掉异常,也不愿意认真的去追踪错误.往往

吃掉异常的原因只是不希望最终的用户看到错误信息,如果这是你所期望的, 那也不应该去

隐藏你其他代码中的错误.

 Rest assured, the user will see no error messages as a result of this code. Every single

exception that could possibly arise from this code will be suppressed – database exceptions, out

of memory exceptions, hardware failures, anything. This means that your program may return

incorrect results while appearing to succeed. It is better to clearly indicate failure than to silently

make an error that could result in an incorrect paycheck or worse!

 的确，用户看不多任何的异常信息。任何一个异常信息都被这写代码屏蔽了, 数据库异

常，内存溢出，硬件错误，等等。这意味着你的程序总是会显示执行成功，即使刚刚说的这

一切都发生了。清楚的标明故障比让默默的犯错而导致付错薪金或造成更大错误来说是更明

智的选择。

4

The only time I can think of when simply eating an exception is acceptable is when you need to

prevent an exception from propagating across module boundaries.

这样简单的吃掉异常, 我唯一能想到的是在跨模块之间阻止异常传播。

If you are doing inter-module programming, for instance, code that will run in a DLL, you

shouldn't let any exceptions escape from the current module.

如果你跨模块编程，例如，代码运行在一个 DLL 里面，你不应该让任何异常逃离当前这个模

块(DLL).

In this case, using an empty exception handler on the outer boundary of a DLL call do that for

you.

在这种情况下，你可以在 DLL 调用边界中使用一个空异常来处理.

But unless such is the case, eating exception handlers like this should be considered a gross error

and a coding horror.

但是除了这种情况，吃掉异常会被认为是一种严重的过失和的非常不合适的编码。

Even in this situation, you should somehow log the exception, or acknowledge it in some way.

Eating exceptions means that the information about the error – which could make fixing it easy –

is gone for good.

即使是在这种情况，你应该以某种形式记录这些异常或者以某种方式承认他。吃掉异常将使

得原本可以很容易修复问题的信息再也不会出现了.

Your customer may never realize there is a problem, and even if they do you may not be able to

figure out why it happened and how to fix it.

你的客户可能不会意识到这是一个问题, 即使他们意识到这是个问题, 你也不见得可以找出

这种问题是怎么发生的, 也不知道怎么去解决它。

Bottom line: just don't eat exceptions

底线:不要吃异常

Don't Generically Trap Exceptions

不要一般的抓捕异常

Sometimes I see code that looks like this:

有时我看到一些这样的代码:

5

try

 SomeCodeThatMightCauseAProblem

except

 on E: Exception do

 begin

 MessageDlg(E.Message, mtWarning, [mbOK], 0);

 end;

end;

And I think "That's sort of like drinking Caffeine-Free Diet Coke" - in other words, why bother?

我认为"就像喝无咖啡因的健怡可乐",换句话说，何苦呢？

This code doesn't do anything other than report an exception that will likely be reported anyway.

Actually, it does one other thing, and that is to stop the exception in its tracks, The exception will

be handled locally, and will never be allowed to escape the current scope, In addition, it will trap

all exceptions, including ones that you may very well not want trapped.

这些代码除了看上去总会报告一个异常之外没有做任何事情。实际上

它还做了另外一件事, 就是阻止了异常的传播方向(轨迹), 异常会被就地处理, 永远都无法

脱离当前的范围, 并且这也会使得所有的异常包括那些你可能非常不想捕捉的异常被捕捉

到。

The only time that you might even consider using this construct - which is only slightly better

than eating the exception altogether - is when you known that the calling routine doesn't want to

handle any exceptions or when the calling routine expect to handle the specific exception.

唯一的情况你可以考虑使用这种结构(稍微比吃掉所有异常好一点点)是当你知道调用他的

过程不想处理任何异常的时候或者期望处理特定异常的时候。

For instance, the TClientDataSet has an OnReconcileError event that actually passes an exception

into it If were doing some batch processing with a Clientdataet, then allowing this exception to

bubble up the stack will stop the loop. In this case, you might want to generically trap all the

exceptions that are passed into the event handler.

例如，TClientDataSet 有一个 OnReconcileError 事件, 实际上传递一个异常进去给他,如果用一

个 ClientDataSet 做一些批量处理，然后让这个异常冒出来停止堆栈的循环。在这种情况你可

能想一般的捕获传递到事件处理程序的所有异常。

Don't Go Looking For Exceptions

不要去寻找异常

Exceptions are fairly expensive in terms of processing power to create and handle, and so you

shouldn’t be creating them as a matter of course.

6

异常的创建和处理对处理能力的开销是十分大的，所以你不应该理所当然地去创建它他。

In addition, you shouldn’t be creating them on purpose or using them for the purpose of error

checking, per se.

另外，你本身也不应该以检查错误为目的去创建和使用他们。

For instance, you might be tempting to do something like this admittedly contrived example:

例如，你可能尝试着去编写下面这种做作的例子:

function StringIsInteger(aStr: string): Boolean;

var

 Temp: integer;

begin

 Result := True;

 try

 Temp := StrToInt(aStr);

 except

 Result := False;

 end;

end;

This code will do what you want it to do – determine whether a string holds a valid integer, but it

will also probably raise a lot of exceptions that can hurt performance, especially if the number of

times that it is expected to return false is high.

这代码将实现你想做的事情(判断一个字符串是否是一个有效的整数), 但是也有可能引发很

多影响性能的异常, 尤其是期望返回 false 很频繁的时候。

Performance issues aside, this is an incorrect use of exception handling because it is not a

violation of a precondition for the method.

撇开性能问题不说, 这不是异常处理的正确用法, 因为这不是用来判定一个方法是否违规的

先决条件.

The method is clearly designed to accept non-integer arguments, hence it should not use the

exception method, even internally, to handle such a case. A better

implementation of this method would use the TryStrToInt function in SysUtils.

这个函数很清晰的被设计成接受非整型数字参数, 因此即使在内部也不应该去使用异常方

法处理这种情况, 这个方法更好的实现是使用 Sysutils 里的 TryStrToInt 函数.

Don't Use the Exception Handling System as a Generic

Signaling System

不要将异常当作信号传递系统来使用

type

7

 TNormalBehaviorException = class(Exception);

...

begin

 SomeCodeThatDoesNormalThingsAndDoesntHaveAnyErrors;

 raise TNormalBehaviorException.Create('Something perfectly normal' +

 'and expected happened’);

end;

You might be tempted to write the above code as a means of signaling the calling code about

some type of information, especially if your custom exception handler has additional information

in it that can be ‘signaled’ back to the calling routine.

你可能为了传递给调用者某些类型的信息就随手写出上面的代码, 特别是你自己定义的异

常处理过程有一些额外的信息可能会被传回到调用者。

Remember that exceptions are a flow control mechanism as well as a tool for conveying

information. Raising exceptions when you simply want to send a message can have unexpected

consequences for program flow.

你要记住的是异常不但是一种信息传递工具同时也是一种流程控制机制,为了简单发送一个

信息而引发异常可能会导致程序流程出现非预期的后果 (意思是会打乱原来程序预期的执

行顺序)。

Raising unneeded exceptions can be very irritating, even if your application always captures and

handles the exception in question, or your custom exception descends from EAbort and won’t

result in an error message that they user will see.

引发不必要的异常是很令人讨厌的。即使你的程序总是会捕捉和处理这些异常问题, 或者你

自定义的异常源于 EAbort,不会导致用户看到错误信息。

For one thing, this is a pretty processor-intense way of signaling and passing information.

首先 这是发信号和传递信息非常不错额外处理方式.

Secondly, the error will appear at design-time, driving you and other developers crazy, as well as

at run-time, annoying users. (A very popular third-party library does this sort of thing, and it

drives me to distraction.)

其次这些错误会在设计期间出现，把你和其他开发者会逼疯。而且在运行时会骚扰用户(一

个非常流行的三方库也做类似的事情，我快要发疯了.)

As a general rule, if you are raising an exception that pretty much requires your users to add that

exception to the list of exceptions to be ignored by the IDE, then you should think twice about

raising that exception at all.

一般情况下, 如果你引发一个你的用户在 IDE 中非常需要添加到异常忽略列表中的异常, 那

你就需要三思一下是不是完全没必要这么做!

8

1.4. 怎么样正确的使用异常 (How to Use Exceptions

Properly)

Now that you’ve seen some of the ways not to use exceptions, here are some tips for properly

using Delphi’s exception handling system.

现在你已经看到了一些不使用异常的方式，这里是一些正确使用 Delphi 异常处理系统的小

巧门。

Use Exceptions to Allow Your Code to Flow without the

Interruption of Error Handling Code

使用异常使你的代码在没有错误处理代码中断的情况下运行流畅。

One of the main purposes of exception handling is to allow you to remove error-checking code

altogether and to separate error handling code from the main logic of your application.

异常处理最主要的一个目的是允许你从应用程序的主要逻辑中移除掉错误检测代码和分离

错误处理代码。

With exception handling, you can write your code as if nothing ever goes wrong, and then wrap

that code up with try...except blocks to deal with any of the errors and problems that may occur.

This enables your code to run more efficiently, as it isn’t constantly checking parameters and

other data to make sure that it is in the proper form before doing anything with it.

使用异常处理，你可以在没有任何错误发生前提下编写你的代码, 然后用 try..except 块包住

你的代码来处理可能发生的任何错误和问题。这样使你的代码运行更高效， 因为不用经常

去检测在使用参数和其他数据之前确保它是否符合格式。

One way to separate code and exceptions is to handle exceptions centrally. TApplication has an

event that allows you to do just that – the OnException event. You can use this event to deal with

all exceptions of any type that aren’t otherwise handled by your application. You can use this

event to log your exceptions, or provide specific handling for specific types of exceptions.

一种分离代码和异常处理的方式是集中处理异常。TApplication 有一个事件(OnExeption)允许

你做这件事情。您可以使用这个事件来处理其他没有（经你的应用程序）处理的任何异常。

你可以使用这个事件去记录你的异常,或者为特定类型的异常提供特殊处理。

Application Writers Should Trap Exceptions

应用程序编写者应该抓捕异常

As will be discussed below, components and library code should be the main source of

exceptions;

9

正如下面将要讨论的，组件和库代码应该是异常的主要来源;

that is, components and library code should be the place where most exceptions are created and

raised.

也就是说,组件和库代码应该是大多异常创建和引发的地方。

When writing applications, there is little need for you to create and raise exceptions.

当编写应用程序时几乎没有必要创建和抛出异常。

Application writers should mainly be about the business of handling exceptions that are raised by

components and library code.

应用程序编写者应主要针对组件和库代码抛出的异常进行业务处理。

Trap only specific exceptions

只捕获特定异常

As noted above, you should never eat exceptions. What you should do instead is to trap only

specific exceptions that might reasonably be expected to occur in your code.

如上所说, 你永不该吃掉异常, 取而代之你应该做的是捕捉你代码中可能发生的特定异常。

If you are doing a lot of math, you might want to trap for EMathError exceptions. If you are doing

a lot of conversions, you might want to trap for EConvertError.

如果你正在做大量算法运算,你可能想捕获 EMathError 的异常.如果你正在做大量转换,你可

能只想捕获 EConvertError。

Likewise, when doing database work, you might want to look out for EDatabaseError exceptions.

同样地，当你做数据库工作的时候，你可能只想关注 EDatabaseError 异常。

But even those errors might be a bit general. For instance, within database code, there may be

specific descendant classes of EDatabaseError that occur when specific database actions are

taken.

但即使是这些错误也可能有一些笼统了. 举个例子, 在数据库代码中, 当特定的数据库操作

被执行时可能会发生派生自 EdatabaseError 的特定异常。

So if you are opening a query, perhaps you should trap for exceptions that occur only on the

opening of datasets, rather than the more generic EDatabaseError.

所以当你正在打开一个查询时, 也许你应该捕捉那些只会出现在打开数据库操作时的异常

特例,而不是更笼统的 EdatabaseError。

As I mentioned above, I see code that eats exceptions added because the developer (or manager,

or someone not thinking very clearly) never wants the user to see any errors. The way to deal

with that is to trap the specific exception that the user is seeing. For instance:

如上我所提到的, 我明白了添加那吃掉异常的代码是因为开发者(或经理、或某些没有经过

深思熟虑的人）不希望用户看到任何错误。处理那种问题的方式是捕获用户看见的特定异常,

10

例如

try

 SomeCodeThatRaisesAnEConvertError;

except

 on E: EConvertError do

 begin

 // Deal with this specific exception here

 end;

end;

This code is better than simply eating all exceptions, no matter what you do with the exception,

because at the very least, it will only trap that one exception and not every exception that comes

along.

无论你对这个异常做何处理, 这样的代码比简单的吃掉所有的异常(的代码)要好, 因为至

少，他只会捕获那一个异常而不是每个出现的异常。

Furthermore, database exceptions (and some others, like COM errors) generally include an error

code, and you may wish to trap only errors with a certain error code and allow others to surface.

You can do this as follows:

此外,数据库异常(和一些其他的，像 COM 错误)一般包含一个错误代码, 你可能希望至捕获

某一些错误代码的错误然后让其他一下错误浮现。你可以像下面一样做：

try

 SomeCodeThatRaisesAnEConvertError;

except

 on E: EIBError do

 begin

 if E.ErrorCode = iSomeCodeIWantToCatch then

 begin

 // Deal with this specific exception here

 end else

 begin

 raise; // re-raise the exception if it’s not the one I handle

 end;

 end;

end;

Another reason to trap exceptions as far down the hierarchy chain as possible is that there may

11

be future exceptions created that descend from the more generic Exception class. For instance, if

you have this code:

另外一个尽可能捕获层次链下层的异常的原因是未来可能会创建继承自更笼统异常类的异

常, 例如, 你有如下的代码:

try

 SomeDataset.Open

except

 on E: EDatabaseError do

 begin

 // Handle exception

 end;

end;

And then I come along and declare:

然后我这样申明了

type

 ENxStrangeDatabaseError = class(EDatabaseError)

My new and strange exception will be trapped by your code, and perhaps that isn’t what you

want to have happen. Obviously you can’t prevent this from ever happening, as a developer can

descend from any existing exception, but you can make it happen less by trapping exceptions at

the bottom of the class diagram.

你的这段代码将捕获我这个新陌生异常, 也许这不是你所想要的, 明显你永远不能阻止这样

的事, 因为开发者可以从任何已存在的异常中继承, 但是你可以通过捕获类图中最底端的异

常来减少这样的情况.

Bottom line: Trap exceptions as far down the class hierarchy as you can and only trap those

exceptions that you are planning on handling.

底线是: 尽可能的捕获那些类层次中最下层的异常, 并且只捕获你打算处理的异常。

Component Writers and Library Code Writers Raise Exceptions

组件和库代码编写者引发异常。

Exceptions do not mysteriously appear. The vast majority of them are created and raised within

framework code. (Some can actually occur outside the purview of Delphi code.) And it is perfectly

acceptable for you to raise your own exceptions as well.

12

异常不会无缘无故的出现。他们绝大多少在框架代码里面被创建和引发。(事实上有一些发

生在 Delphi 代码范围以为.) 引发你自己的异常对于你也是完全可以接受的

As a general rule, you should raise specific exceptions in your library code and in your

components. That way, application writers can trap those specific exceptions in their code as

discussed above.

通常情况下，你要在你的代码库和组件中引发一个特定的异常。那样的话，应用程序编写者

可以按如上讨论的方式捕捉到代码中所有的具体异常

You should write library code and component methods in such a way that they do one of two

things:

你应该按这种方式写库或组件方法代码，使其只能有两种可能性:

they either execute successfully and return, or they raise an exception. Application writers should

assume the same thing – that a routine that is called will either return successfully (with a valid

result if the routine is a function) or that it will raise an exception.

要么执行成功和返回，要么引发一个异常。作为应用程序开发者应该做同样的假设(一个过

程被调用要么返回成功(如果是 function 要有一个有效返回值)，要么引发一个异常)

Raise Your Own Custom Exceptions

引发你自己自定义异常

When you do raise exceptions, always raise your own custom exceptions. For instance, I have a

library of code that I use in a file called NixUtils.pas. In that file I declare

当你引发一个异常的时候，总是去引发你自己自定义的异常。例如，我有一个库代码引用了

NixUtils.pas，在那个文件里面我定义了

NixUtilsException = class(Exception);

And any exceptions that I raise in the routines found there are either of that type or are

descendants of NixUtilsException.

然后我在过程中引发的任何异常(发现)要么是 NixUtilsException 要么是 NixUtilsException 的派

生类型。

Doing this allows users of your library code and components to do what I’ve exhorted you to do

above: trap only specific exceptions.

这样一来，允许你库代码和组件的使用者去像我上面劝你去做的那样:只捕捉特定的异常。

Don’t be afraid to declare your own exception classes and then descend from them, even to the

point of having specific exceptions for specific routines.

不要害怕去定义你自己的异常类和它的派生类，甚至有时候需要为特定的过程定义特定的异

常。

13

This allows your users to trap exceptions with whatever level of granularity they require.

这样允许你的用户以他们所需的任何级别的颗粒度去捕捉异常.

Let Your Users See Exception Messages

让你的用户看到错误信息。

If you are tempted to hide all errors from the tender eyes of your users, ask yourself this

question:

如果你想从你用户温柔的眼睛中隐藏错误信息(不想让用户看到错误信息),问一下你自己这

问题:

Which is worse, having your users see error messages, or having the application roll along as if

nothing has gone wrong, possibly leaving a trail of bad calculations and corrupt data?

让你的用户看到错误信息，或者让应用程序在好像什么错误都没有发生的情况下继续运行，

可能留下一个个错误的计算和不正确的数据，哪个更糟糕？

Sadly, I’ve seen a lot of code that answers that question with the latter option rather than the

former.

不幸的是, 我看到很多代码回答了这个问题(更愿意选择后者).

That’s how you end up with code that has empty exception handlers and eats any and all

exceptions.

那就是你最终的代码:一个空异常来处理和吃掉任何所有的异常。

Exceptions occur because something is wrong. Ignoring them can have unexpected results. Eating

an EOutOfMemory exception can have disastrous results, because your application – and your

users – will continue on as if nothing bad has happened, when in fact bad things have happened.

异常的发生是因为有些东西错误。忽略他们可能会得到意想不到的结果。吃掉一个

EOutOfMemory 异常会得到一个灾难性的结果，因为你的应用程序和你的用户会继续好像没

有好像没发生什么糟糕的事情。

Users are fearful of dialog boxes, as many user interface experts have noted, but if your dialog

box actually gives them something to do, then the dialog boxes may be more useful than they

normally are.

许多用户界面专家已经指出, 用户害怕对话框. 但是如果你的对话框实际上给他们要做的事

情，那样的话这对话框可能是非常有用的比起平常的对话框。

Feel Free To Provide Good Exception Messages

14

随意的提供好的异常信息

You don’t have to be terse and uninformative with your errors. When you raise an exception, feel

free to make the message passed up the stack as informative as you like:

你错误不一定简洁和无信息的。 当你引发一个异常的时候，随意的编写这个信息沿着堆栈

中向上传递,这个信息你喜欢多详细都可以:

No need to do this:

不需要这样做:

type

 ESomeException = class(Exception);

procedure CauseAnException;

begin

 raise ESomeException.Create('Boring message');

end;

when you can do something like this:

需要的时候你可以下面这样做：

type

 ESomeException = class(Exception);

procedure CauseAnException;

begin

 raise ESomeException.Create('An exception occurred, and here is exactly what happene

d....');

end;

 Write full, descriptive errormessages. You can even include the procedure name, the

TObject.ClassName, or whatever you like in the message.

写满描述性错误信息.甚至你可以在信息里面包含过程名，类名，或者你喜欢的一些信息。

You can, in fact, enhance an existing exception’s error message, set the new exception as the

“outer” exception, and raise your new exception with the original exception as the inner

exception:

事实上，你可以加强一个现有的错误的信息，作为这"外部的"异常来设定这新的异常，然后

用原有的异常作为内部异常来引发这个新的异常。

15

type

 EMyException = class(Exception);

 EMyInnerException = class(Exception);

procedure RaiseInnerException;

begin

 try

 raise EMyException.Create('This is the message from EMyException');

 except

 on E: EMyException do

 begin

 E.RaiseOuterException(EMyInnerException.Create('This is the message from FMyIn

nerException'));

 end;

 end;

end;

Since the exception handler includes the call to raise an outer exception, the exception isn’t being

eaten here, but the code provides information about where the error occurred, etc. You include

information about where users can go for help, what they should do if the error persists, etc.

自从这个异常处理包括调用引发一个外包异常，这个异常没有在这里被吃掉。但是这代码提

供了关于在哪里产生错误的信息，等. 你可以包含关于用户在哪里可以得到帮助，如果这个

错误持续存在他们应该怎么做，等。

Provide Two Versions Of A Library Routine

提供两个版本的库函数

Sometimes people don’t like routines that return exceptions. Well, okay, why not accommodate

them? The RTL does this – it sometimes provides two functions that do the same thing, with one

raising an exception on failure and the other returning nil or some error value, depending on the

result.

有些时候人们不喜欢函数抛出异常, 嗯, 那好, 何不满足他们呢? RTL 就是这么干的, 某些时

候它会提供2个函数做同样的事情, 一个函数是错误的时候抛出异常, 一个则是返回nil或者

一个错误码, 这取决于结果.

The FindClass/GetClass pair comes to mind. FindClass locates and returns a class type by name,

and if it can’t find it, it raises an exception. GetClass, on the other hand, will simply return nil if

the class cannot be found.

让我想到了 FindClass/GetClass 这对函数。FindClass 根据名称查找和返回类，然后如果找不

16

到这个类，这个函数就会引发一个异常。GetClass 在另外一个方面，当这个类没有被找到的

时候将简单的返回 nil。

1.5. 结论 Conclusion

 It’s quite easy to fall into the trap of using exception handling improperly. The ability to make

errors and problems ‘disappear’ is quite tempting. However, misunderstanding and misusing

exceptions in your code can lead to some real problems, including untraceable crashes and data

loss. The proper use of exceptions can make your code easier to read an maintain. Use exceptions

wisely, and you’ll be able to product robust, clean code.

错误的使用异常处理很容易掉入陷阱中. 异常让问题和错误”消失”的能力是很诱人的`， 不

管怎么样, 误解和错误的在代码中使用异常都会导致真正的问题, 包括不可追踪的程序崩溃

和数据丢失, 异常正确的使用可以使得你的代码容易阅读和维护. 明智的使用异常能产生强

健,干净的代码.

2. 使用接口(Using Interfaces)

本章常驻翻译：Ryan, D10.天地弦, 小生(骗术师) ，QDAC- swish

友情翻译: 五毒公主ら

友情坐镇：bp，逆水寒，爱国贼。

文档整理：D10.天地弦

2.1. 介绍(Introduction)

Just about everything that I write about in this book will be predicated on the use of interfaces. If

you aren’t using interfaces for just about everything you do, you need to start. I once tweeted

我在这本书里写的几乎所有的东西都是基于接口的使用之上, 如果你对所做的任何东西没

有使用接口的话, 那么你需要开始用了. 我曾经在推特上写过：

“If I could teach a new programmer one thing it would be this: Program to an interface, not an

implementation.1”

如果我能教一个新的程序员一件东西，那将是: 针对接口编程, 而非针对实现编程

17

Program to an interface, not an implementation

对接口编程,而不是对实现

When you use interfaces, you can decouple yourself from any particular implementation. When

one module of code isn’t directly connected to another module of code, that code is said to be

“loosely coupled”. And as I will probably repeat countless times throughout this book, loosely

coupled code is a very good thing.

当你使用接口编程的时候, 你就可以分离任何一个独立的实现 做到去耦, 当一个模块的代

码不是直接关联到另外一个模块中的代码的时候, 我们称之为”松散耦合的”, 正如贯穿本

书里我可能无数次强调的, 松散耦合的代码是非常棒的.

2.2. 解耦(Decoupling)

All through this book, I’ll talk a lot about decoupling your code and why that is really good. But a

definition here is probably a good idea.

贯穿本书，我将讨论了许多有关解耦代码和这样做会带有什么样的好处的话题。不过在这里

定义也许是一个好主意。

Code can be said to be decoupled when your classes are designed in such away that they don’t

depend on the concrete implementations of other classes. Two classes are loosely coupled when

they know as little about each other as possible, the dependencies between them are as thin as

possible, and the communication lines between them are as simple as possible.

当你的类如果是这样设计的: 它们不依赖于其他类的具体实现, 这样的代码可以说是松散耦

合的. 两个类当相互之间了解的尽可能的少, 相互依赖尽可能的弱, 彼此之间通讯尽可能的

简单, 这样的两个类是松散耦合的.

In other words, decoupling is the process of limiting your dependencies to abstractions as much

as possible. If you want to write good, clean code, you will try to couple only to abstractions;

interfaces are abstractions. Much of what will be discussed in this book will be about using

interfaces to code against abstractions. As I tweeted above, this is critical to writing good code

that is easy to maintain.

换句话说, 解耦就是限制你尽可能多的依赖抽象的过程, 如果你想写出漂亮干净的代码, 你

该试试只耦合抽象, 接口就是抽象的, 这本书里很多将要讨论的就是使用接口写出针对抽象

的代码, 如我在上面推特里写到的, 这是写出容易维护的好代码的关键.

18

In Delphi, decoupling starts by limiting what goes into the uses clause of any given unit. Every

time you use code from another unit, you are creating a connection or a coupling of code. You

should try as much as possible to expose units that declare only Delphi interfaces to other units.

You should endeavor to put as little as possible in the interface section of your units. This will

allow you to limit the coupling of your code – if you don’t put it in the interface section, it can’t

be coupled to.

Delphi 中,解耦从限制任何进入 uses 的单元开始. 每当你使用另外一个单元的代码时，你是

在创建一个关联或者说是耦合代码，你应该尽可能的尝试去暴露那些只申明了接口的单元给

其他单元。你应该努力做到尽可能少放代码在你单元的 interface 部分. 这将限制你代码的耦

合 - 如果你不不放在 interface 节中,那它不会被耦合.

Once you have limited the connections between your units, you can then start limiting the

connections between your classes. Classes have to connect to each other somehow – otherwise

you can’t build a system. But if you are going to connect things together, you want those

connections to be as thin as possible. That’s where interfaces come in.

一旦你已经限制了单元之间关联, 你就可以限制类之间的关联. 类不得不以某种方法连接在

一起, 否则你就不能构建出一个系统, 但是如果你将要把一些东西关联在一起, 你就要让这

些关联尽可能的弱, 那就是接口的用武之地.

Of course to program against an interface, you have to first know what an interface is.

当然针对接口编程，你首先必须知道什么是接口

2.3. 什么接口(What are Interfaces?)

Interfaces are kind of hard to describe, but I’ll have to try anyway, eh?

接口是很难描述的，但是我无论如何必须的试试，额？

The dictionary describes an interface as:

Interface – n. : A point where two systems, subjects, organizations, etc., meet and interact.

字典中是这样描述一个接口：

接口 - 名词. : 在两个系统，主题，组织等等之间接触和互动的一个点.

In the general case of code, an interface is the means by which code modules – usually classes –

interact with each other to perform specified actions. Your code needs to do something, and

interfaces are the definitions that allow code modules to work together.

代码中一般情况下, 接口是指代码模块-通常是指类-彼此交互执行特定的动作。你的代码要

完成一些功能，而接口就是模块之间协同工作的约定

19

That’s the general definition – but Delphi has a reserved word interface which has a specific

syntactical meaning and which provides a specific functionality. So what are interfaces in Delphi?

Interfaces are an abstract definition of functionality.

那是一般的定义, 但是 delphi 有一个保留的 interface 关键字, 这个关键字有一个特殊的句

法含义, 还提供了特殊的功能。在 Delphi 中接口又是什么意思呢？接口是功能的一个抽象定

义。

Okay, that sounds all intellectual, doesn’t it, but it’s true.

OK,这听起来太学术了是吧，但确实如此。

An interface declaration defines a set of properties and methods that you can use for a specific

purpose. Interfaces declare and require no specific implementation for that purpose. They define

what a class can do and limit the exposure of a class to only those things defined by the interface.

接口申明定义了一系列的属性和方法，你可以用他们达到特定的目的。为了那个目标接口不

需要特定的实现那些申明。他们定了一个类能做写什么和限定一个类只能暴露接口定义的这

些东西。

Of course, an interface must be implemented to be useful. And when you use an interface, you

ultimately don’t care about how it is implemented; you just know that you can call the methods

and properties on the interface and the functionality you need will be provided. Implementation

hiding (i.e., abstraction) is one of the main purposes of using interfaces.

当然，一个接口必须被实现才是有用的。当你使用一个接口时，你根本不需要关心他是怎么

实现的; 你只需要知道你可以调用这个接口的方法和属性，而且你需要的功能将会被提供。

隐藏实现(即，抽象)是使用接口的一个主要目的。

2.4. 接口无处不在(Interfaces Everywhere)

We see interfaces in our lives every day. Electric plugs are an interface. In the United States, our

electric plugs have two vertical, rectangular slots for the positive and negative nodes, and one

round hole below for the grounding node. What is that but a definition of functionality? In order

to implement the interface, you merely provide a plug that matches the interface, and your

device will work.

在日常生活中我们每天都能看到接口, 电源插座就是一种接口, 在美国, 我们的电源插座有

2 个垂直的矩形插槽分别接火线和零线, 还有一个圆形的孔是接地线, 这不是接口的功能定

义是什么呢? 为了实现该接口, 你只需要提供一个符合该接口的插头就能让你的设备工作

了.

20

A plug is just an interface

(一个插座就是接口)

You can plug in hair dryers and computer monitors – the interface doesn’t care. These items

could be said to be “powerable” as a result.

你可以接上吹风机或者电脑显示器, 接口不关心这些, 这些东西最终都可以被看作是电源驱

动的.,

Delphi developers are already doing this with interfaces, perhaps without even realizing it. Well, a

form of interfaces, anyway. Every Delphi unit has a section in it called the interface section, right?

This section declares the functionality that the unit provides. Only those things declared in the

interface section of a unit may be used by other units. Classes and methods in the interface

section are implemented in the implementation section of the unit, and that implementation is

hidden from

users of the unit. You can’t put implementing code in the interface section. Code declared in a

unit’s implementation section is not usable outside the unit. In this way, a unit is a simple

example of what interfaces are for: declaring functionality and hiding (but still providing) an

implementation.

21

delphi 的开发者们或许都还没有意识到接口就已经在用它做开发了, 嗯, 接口无非只是一

种形式, 在 delphi 的单元里都有一个小节叫做 inteface 段, 对吧? 这个节描述了该单元提供

的功能, 也只有这些在单元 interface 节中声明的东西才能被其它单元使用, interface 节中的

类和方法是在单元的 implementation 节中实现的, 这些实现对该单元的用户是隐藏的, 你不

能把实现代码放在 interface 节中, 在实现节中声明的代码无法在单元外使用. 单元其实就是

一个简单的例子, 它描绘出了接口是什么: 声明功能和隐藏(但提供了)实现.

The second main reason for using interfaces is the one discussed above – decoupling. If you

program against interfaces, you can write your code in such a way that it is never coupled – or

“connected” – to anything but that interface. The more loosely coupled your code is, the less

likely it is that a change in one place will affect code in another. In addition, by coding against an

interface, you can replace the implementation with a better one without breaking anything.

(Once again, I’ll be harping on loosely coupled code throughout the book, and particularly in the

discussion about Dependency Injection.) For now, the point is that interfaces are critical in

decoupling your code, and that decoupled code is good.

在上面已经说过了使用接口的第二个主要原因 - 解耦.如果你要针对接口编程,你可以用这

种除了接口外从不耦合或关联的方式.你的代码耦合度越低,你的改动对其他代码的影响就越

小.此外,对接口编程,你就可以用更好的代码修改实现而不会产生任何破坏.(不止一次,我可

能书中一直唠叨松耦合,尤其当讨论依赖注入时.)现在,接口是解耦代码的关键临界点,而且解

耦的代码是很好的.

The code for an interface is actually quite simple: It is a declaration of methods and properties

without an implementation. However, that simplicity can make them hard to understand.

Interfaces as a language feature were first introduced in Delphi 3, and I remember very clearly

thinking “Huh? Why in the world would you want to use interfaces?” Little did I know then,

however, that interfaces are probably the single most effective coding tool in your arsenal. Once

you truly understand what interfaces are for and what they can do, it will make it so much easier

to write clean, uncoupled, testable code. (We’ll be talking about the meaning of “testable code”

in the chapter on Unit Testing.)

一个接口的代码实际上是相当简单的: 就是一些方法和属性的申明而且不带实现。不过那简

单使他们难以理解(理解接口并不容易)。接口作为一个语言特征第一次引入是在 Delphi 3, 而

且我还记得非常清楚的思考过"呃，究竟是为什么想使用接口?" 那时候我根本不知道，不过

接口可能是最有效代码工具。一旦你真正明白了接口是什么和接口可以做什么, 他可以使你

轻易的写出整洁，非耦合，可测试的代码。(我们会在单元测试(Unit Testing)章节讨论"可测

试的代码")

Interfaces are similar to abstract classes in that they can define a set of methods that must be

implemented. They differ in that they have no implementation themselves, whereas an abstract

class might have implementation of non-abstract methods. The most analogous thing to an

interface would be an abstract class that has all abstract methods and thus no implementation at

all.

接口与一个抽象类相似之处他们可以定义一系列的必须被实现的方法. (接口和派生类)他们

的不同之处在于:接口(They 是指 Interfaces)没有自己的实现，反之一个抽象类抽象类可能有

22

非抽象方法的实现。 和接口最相似的就是全部都是抽象方法而且都没实现的抽象类。

抽象类(Abstract Classes) 接口(Interfaces)

…can contain abstract methods which are

normally overridden by descendants

包含通常被派生类重写的方法

…contain a list of methods that must

be implemented by the implementing classes

包含一系列必须被实现类实现的方法。

…can be but normally are not Instantiated

通常不会实例化

… can’t be instantiated because they are

merely a definition of functionality

不能被实例化，因为他们仅仅是功能的定义

…can contain concrete functionality which will

thus be provided to all descendants

可以包含具体的功能提供给所有派生类

…have no functionality at all attached to them.

They depend entirely on their implementing

class for functionality.

根本就没有附加任何的功能。他们的功能完

全依赖于实现类

…are not reference counted and must be

manually freed.

没有引用计算需要手工释放

…are normally reference counted and their

implementing instance will by default be freed

automatically.

通常引用计数, 他们的实现的实例默认是自

动释放的

… can only have single-inheritance

descendants

只能有单继承派生类

… can be combined together in an

implementing class that implements multiple

interfaces

实现类可以实现多个接口

Interfaces cannot themselves be instantiated, and are only useful when implemented. They are

pure references. An interface is implemented by a class that declares in its type definition that it

will implement a given interface. The implementing class must then provide an implementation

for the exact set of methods and properties as declared in the interface. A failure to do so will

result in a compiler error. Any class can implement any interface – that is one of the strengths of

the feature.

接口本身是不能被实例化的, 只有当他们被实现了才有用, 他们是纯引用, 一个接口被一

个类实现, 这个类在他的类型定义中声明他将会实现给定的接口, 实现类必须之后为由接口

中定义的一系列方法和属性提供实现, 如果没有这样做将会导致编译错误, 任何的类可以实

现任意接口, 这是接口特性的优点之一

A class may also implement any number of interfaces. In this way, Delphi can provide a

functionality similar to multiple inheritance without all the trappings and difficulties of that

feature. (I don’t know if he originated the statement, but Zack Urlocker, Delphi’s original Product

Manager, has been quoted as saying “Multiple inheritance is the GOTO of the nineties.” I always

loved that, even though the nineties were a while ago.) Interfaces can also inherit from, and thus

enhance, another

single interface.

一个类也可以实现任意多个接口, 这样的话, delphi 就可以提供类似多重继承的功能, 又可

以摆脱掉多重继承中所有的陷阱和难点这样的特性(我不知道是不是他创造的语句, 但是

delphi 先前的产品经理 Zack Urlocker 说过这样一句话"多重继承是 90 年代的 GOTO", 尽管

23

90 年代刚刚过去, 但我一直深爱着这句话), 接口也是可以继承于另外一个单独的接口来得

以加强.

2.5. 一个简单例子(A Simple Example)

For example, here is a declaration of a very simple interface:

例如， 这里有一个非常简单的接口申明:

type

 IName = interface

 ['{671FDA43-BD31-417C-9F9D-83BA5156D5AD}']

 function FirstName: string;

 function LastName: string;

 end;

Interfaces consist of a name (in this case, IName) and a declaration of methods and properties. By

convention, Delphi interfaces start with the letter “I,” but that is not enforced. You can create

interfaces with any name you want, but using the “I” makes it easier to identify an interface in

your code. An interface includes no “real” code for implementing functionality. An interface

cannot declare fields, variables or constants. Nor can they define scope such as private, protected,

etc. It is purely a declaration of capability. Thus, every member of an interface is essentially

public.

接口由一个名字(这里是 IName)和方法和属性的申明组成. 按照惯例， Delphi 接口一字母"I"

开头, 但那不是强制的。你可以用任何你想要的名字建立一个接口，但是使用“I"开头可以

在你的代码中轻易的标明出一个接口。接口不包含实现功能的"真正"代码。接口不能申明字

段(成员变量)。变量或者常量. 他们也不能定义 private, protected，等这样的范围。接口只是

单纯的功能声明。所以每个接口的成员本质上是说是公有的(public)

In the case above, the interface says “Hey, when I am implemented, I’ll give you information

about someone’s name.” It tells you what functionality is available. It does not tell you how the

functionality will be implemented. In fact, the interface doesn’t care, and the user of the

interface shouldn’t care either. The implementation of the interface might do any number of

things to get the name information – randomly pick from a list, grab it from a file, or pull it from a

database or some other data store. The interface itself doesn’t care and cannot dictate where the

name comes from. All the interface knows is that it’s implementer will return a string – that’s it.

It’s not even guaranteed that the string will be a person’s name, though that is obviously the

intent.

在上面这个例子，接口说“海,当我被实现的时候，我会给你某个人的名字."，他告诉你功能

是有效的。不会告诉你功能是怎么样被实现的。实际上，接口不会在意这些，接口的用户同

样也不会在意。接口的实现可能为获取名称信息做很多事情-从列表中随机抽取，从文件中

抓取，或者从数据库或者他数据存储中拉取一个。接口本身并不在乎也不能决定这名称的由

24

来. 所有的接口知道的是实现类将会返回一个字符串-就这样。他甚至不能担保哪个字符串

是一个人的名字, 尽管那是有意为之。

Note that the declaration of the interface has a Globally Unique Identifier

(GUID) right after the initial declaration.

注意, 接口的声明中有一个全局唯一标识(GUID) 直接跟在初始的声明

之后

This GUID is used by the compiler to identify this interface.

GUID 是用于编译器来识别这个接口的

You can use an interface without the GUID, but much of the RTL and most

frameworks that take advantage of interfaces will require a GUID be present. (You can generate a

GUID any time you want in the IDE by typing CTRL+SHIFT+G)

你可以使用一个没有GUID 的接口, 但是多数RTL 和大多数的框架需要 GUID的存在才能利用

接口的优势,(你可以在在 IDE 中任何想要的时候按下 CRTL+SHIFT+G 来产生一个 GUID)

Of course, the purpose here is to create an implementing class that has some meaning when it

goes into “Get me a person’s name” mode. For instance, you might have a form that gathers the

name from the user. You might be iterating over records in a database and use the interface to

grab each name as they are iterated. The point is that it doesn’t matter what the implementing

objects are or what they do – they just produce a name when treated as an IName interface.

当然, 目的是创建一个具有获取一个人名功能的实现类(很拗口直译:这里的目的是创建一个

实现类, 当这个实现类进入到"获取一个人名字"的模式时，这个类具有一定的意义)。例如,

你可能有一个窗体可以从用户那收集名字. 你可能正在遍历数据库中整个的结构并且当它

们被遍历到的时候使用一个接口来抓取每个名字。重点是它不关心实现对象是什么或者它们

做了什么, -当它们被当作 IName 接口时只是产生一个名字而已。

2.6. 实现接口(Implementing an Interface)

But of course, as you’ve guessed, an interface can’t do anything without an implementing class.

Fortunately, Delphi makes it really easy to implement interfaces. To do so, you need to declare a

class as implementing an interface, and then make sure that class implements all the methods in

the interface.

当然，就像你想的那样，接口如果没有实现类不能做任何事情。所幸的是，Delphi 使得实现

接口相当容易。这样做：你需要申明一个类来实现接口, 然后确保这个类实现了接口中的所

有方法。

In order to implement IName, you might declare a class as follows:

实现 IName， 你可以定义如下一个类

type

 TPerson = class(TInterfacedObject, IName)

 protected

25

 function FirstName: string;

 function LastName: string;

 end;

 function TPerson.FirstName: string;

 begin

 // Could get this from a database or anywhere, but for demo purposes,

 // we'll hard-code it

 Result := 'Fred';

 end;

 function TPerson.LastName: string;

 begin

 // Could get this from a database or anywhere, but for demo purposes,

 // we'll hard-code it

 Result := 'Flintstone';

 end;

Here are some things to note:

注意事项:

 .The class declares IName after the base class. (The base class is TInterfacedObject – we’ll

discuss this special class below.) It declares and implements the two functions required by

IName.

 类申明 IName在基类后面.(这基类是TInterfacedObject - 我们会在下面讨论这特殊的类.)

这个类申明和实现 IName 必须的两个函数。

 .The declaration of the two methods is defined as protected. The interface doesn’t care what

the visibility is – it will allow access to any implementing method regardless of the visibility –

but by declaring the methods as a visibility not available to users of the class, you can ensure

that the only way to talk to the class is via the interface.

 这两个方法的申明被定义成保护的。接口不关心可见性是什么-它允许访问任何实现的

方法而不管可见性-但是定义的方法作为类的用户不可访问的话，你唯一的途径和这个

类对话是通过接口。

type

 IAged = interface

 ['{3D7E1BBE-6273-47A9-9CB7-CB31FDF6AB69}']

 function GetAge: integer;

26

 procedure SetAge(aValue: integer);

 property Age: integer read GetAge write SetAge;

 end;

Note that this means that the getters and setters can be called directly from the

interface - even if they are private in the implementing classes. Of course, you

should leave those getters and setters totally alone and only access them via the

property.

请注意这意味着 getters 和 setters 从接口可以直接调用 - 即使他们在实现类

的私有部分。当然你可以完全不理会 getters 和 setters 而只通过属性去访问他们。

Thus, you can declare an implementing object like so:

因此，你可以像下面一样申明实现对象：

TAgedThing = class(TInterfacedObject, IAged)

private

 FAge: integer;

 function GetAge: integer;

 procedure SetAge(aValue: integer);

public

 property Age: integer read GetAge write SetAge;

end;

A class can implement any number of interfaces, so you can have a class declaration like so:

一个类可以实现任何数量的接口，所以你可以有一个像这样的类申明：

TAgedPerson = class(TInterfacedObject, IName, IAged)

private

 FAge: integer;

 function GetAge: integer;

 procedure SetAge(aValue: integer);

public

 function FirstName: string;

 function LastName: string;

 property Age: integer read GetAge write SetAge;

end;

wherein the TAgedPerson class provides an implementation for all the interfaces included in its

declaration.

27

TAgedPerson 类中提供所有申明在类中接口的实现

2.7. 进一步需要注意的东西 (Some Further Things to

Note):

 An implementing class can have any number of other fields and methods that it needs or

requires, as long as it has the methods defined by the interface. If you fail to provide all the

necessary methods, the compiler will give you an error until you do. But the class can be as

complex as you need it to be (though generally you should frown on complex classes, right?)

 一个实现类可以有任意个需要的或需求的其他字段和方法, 只要有接口中定义的方法

就行.如果你没有提供需要的方法, 编译器会提示错误, 直到你提供了为止.但是这个类

你想要多复杂就有多复杂. (尽管你一般可能看不惯复杂的类, 对不?)

 The base class can be any base class as long as it implements the necessary methods for

Delphi’s interface reference counting. (TInterfacedObject does this automatically for you –

more on TInterfacedObject and what reference counting is will be discussed below.) But I

want to stress again – the base class can be anything. It could be a class you created. It

could be a VCL class. It could be TButton or TClientDataset or anything. It doesn’t matter,

and the interface doesn’t care, as long as you provide implementations for all the necessary

methods.

 基类可以是任何只要实现了 delphi 接口引用计数需要的方法的基础

类,(TInterfacedObjecy 自动的为你做了这些., 更多关于 TInterfacedObject 和引用计数是

什么将会在后面讨论.)但是 我想再次强调, - 基类可以是任何类, 有可能是你创建的类.

可能是一个 VCL 类, 可能是一个 TButton 或者 TClientDataset 或者其他的.这都无关紧要

并且接口不关心这个, 只要你提供了需要的方法的实现.

2.8. 接口继承(Interface Inheritance)

Interfaces can inherit from other interfaces, so you can declare an interface like so:

接口可以继承自其他接口， 所以你可以像这样申明一个接口

IFullName = interface(IName)

 ['{07E8CFE2-4C2B-41F4-8934-D9D3B5BE39BC}']

 function FullName: string;

end;

In this way, the child interface will require an implementation for all its declared methods as well

28

as those of its parent. Any class that implements IFullName will have to provide implementations

for all of the methods in IFullName as well as IName.

这样，子接口需要它申明以及那些它父类的方法的实现. 任何实现了 IFullName 的类必须提

供 IFullName 以及 IName 的所有方法的实现

Note that an implementation of the child interface is not an explicit implementation of the parent.

An implementation must explicitly declare the interface that it wants to implement, even if it

declares all the required members. That is, unless a class explicitly lists a given interface as part of

its declaration, it cannot be used to implement that interface. Thus, you need to list both parent

and child interfaces in an implementing declaration if you want use it as both the parent and

child interface.

请注意子接口的实现并不是父接口的显式实现.需要实现的接口的必须被显式的声明在实现

类中,即使该类声明了所有需要的成员.也就是说,除非一个类在声明中显式的列出了给出的

接口,否则它不能用来实现那个接口.所以,如果你想要一起实现父接口与子接口,那么你需要

在类声明中一起列出父接口与子接口.

Actually, the use of the phrase 'interface inheritance' is a bit misleading – it’s not really true

inheritance in that you can’t override a method from a parent interface, and there is no

polymorphic behavior that results. 'Interface augmentation' might be a better way to phrase

it.

事实上,使用的短语"接口继承"是有误导性的 - 它并不是真正的继承,你无法覆盖来自父

接口中的方法, 并且这导致了没有多态行为."接口增益"可以能更好的形容它.

2.9. 思考的其他事情(Other Things to Think About)

Here are a few things to think about when creating and dealing with interfaces:

当创建使用接口处理的时候这里有一些事情需要考虑

 As a general rule, you should declare interfaces in their own unit, preferably one interface

per unit. Interfaces should be defined separately from any implementation or any other

code. It’s very tempting to declare an interface and a class that implements it in the same

unit, but you should resist this temptation. Keep interfaces separate and completely

decoupled from any particular implementation.

 通常情况下，你可以自己的单元中申明接口，最好的做法是一个单元一个接口。接口定

义应该跟实现和其他代码分开。在同一个单元非常容易申明一个接口和一个实现类，但

是你应该抵制这种诱惑。保持接口独立的并且从任何特定实现完全解耦出来。

 It’s a good idea to have interfaces be specific and to the point. If you have a large interface –

one with many methods, you might consider breaking it down. This is known as the

Interface Segregation Principle

(http://en.wikipedia.org/wiki/Interface_segregation_principle) – the idea that interfaces

29

shouldn’t have methods that the implementer doesn’t need. There are times when it’s okay

to have a larger interface, but don’t be afraid to have interfaces with just a handful of – or

even one – methods, and don’t be shy about having a class implement more than one

interface.

 让接口细化并且简明扼要是个好办法.如果你有一个包含很多方法的大接口, 你可能需

要考虑分解它了.这是大家所知的接口的分离原则

(http://en.wikipedia.org/wiki/Interface_segregation_principle). 思想是接口不应该包含实

现者不需要的方法.有些时候有一个大接口没什么问题, 但是不要害怕让接口只有少量

甚至只有一个方法, 也不用胆怯让类实现不止一个接口.

 Interfaces can be used as abstractions for your code, but not all interfaces are necessarily

abstractions. If you have a “leaky” abstraction, then your interface isn’t truly an abstraction.

A leaky abstraction is one that allows implementation details to sneak through, thus

dictating a certain kind of implementation. Say you had an interface called IDataSource and

that interface had a method called GetConnectionString. Having that method appears to

strongly imply the notion of a database that requires a connection string. An

implementation of IDataSource might use a collection or a list, and so the notion of a

connection string shouldn’t be part of the implementation. In this case, the implementation

detail of having a connection string has “leaked through” your attempt at abstracting the

notion of a data source. Along those lines, if your interfaces are merely a reproduction of the

public class you use to implement it, then it is very likely that you have a leaky abstraction.

In this case, you should go back to the drawing board and refactor your code accordingly.

 接口可以用于抽象你的代码, 但是不是所有的接口都需要抽象.如果你有一个"泄漏"的

抽象, 那么你的接口就不是真正的抽象.一个抽象泄漏是指允许绕过实现细节, 而指定

某一种实现.假设你有一个叫做 IDataSource 的接口, 那个接口有一个方法叫做

GetConnectionString.有那样的方法就很强烈的暗示了需要连接字符串的数据库概

念.IDataSource 的实现可能使用一个集合或者列表, 因此连接字符串的概念就不是实现

的一部分.这样含有连接字符串的实现细节就泄漏了你企图抽象数据源的概念. 根据这

些线索, 如果你的接口只是你用于实现它的公共类的一个翻版,, 那么这就很有可能你

有了一个抽象泄漏. 这样的话, 你就该回到画图板上相应的重构你的代码了

2.10. 关于 TInterfacedObject (About TInterfacedObject)

Okay, so there’s a bit more to it than what I’ve discussed so far. In Delphi, interface references are

reference counted. That is, the compiler keeps track of each reference to the implementing

object, increasing the count when a reference is added and decreasing the count when a

reference goes out of scope. The compiler automatically generates calls (AddRef and Release)

that can be used to keep track of the number of times that an interface has been referenced. As

we’ll see, the “normal” way for interfaces to work is to use those compiler-generated calls to

keep a count of those references. When the interface’s reference count goes down to zero, then

the compiler automatically frees the instance that is implementing that interface.

好了, 关于 Tinterfacedobject, 除我迄今为止讨论过的, 还有一些东西.在 delphi 里, 接口引

30

用是引用计数的.也就是说, 编译器会跟踪每一个对实现对象的引用, 在引用增加时增加计

数, 离开作用域时减少计数.编译器自动产生调用(AddRef 和 Release), 这些调用可以用于追

踪一个接口被引用的次数.如我们知道的, 让接口合理的工作的方式是使用这些编译器产生

的调用来保持这些引用的计数.当接口的引用计数减少到 0 的时候, 编译器会自动销毁掉实

现该接口的(对象)实例.

In this way, Delphi can do automatic memory management for interfaces. This means that once

you create a class that is referenced by an interface, you can’t call Free on the instance – unless

you happen to have a member called Free on the interface itself. Instead, the compiler will write

all the code to track the references and free the object when it is no longer referenced.

这样的话,Delphi 就可以为接口做内存自动管理. 这意味着一旦你创建了一个被接口引用的

类, 你可以不用调用该实例的 free, 除非很偶然接口本身有一个叫 Free 的成员。反倒是编译

器会产生所有的代码来追踪引用, 并在它不再被引用的时候释放掉该对象.

Thus, the compiler needs a way to do all that reference tracking. It also needs a way to figure out

which interface is what (remember the GUID from above?). In order to do that, all classes that

implement an interface need to declare and implement three methods:

因此，编译器需要一种途径来实现所有引用的跟踪。也需要一种途径去找出哪个接口是什么

(记得之前的 GUID 吗?). 为了这些，所有那些实现一个接口的类需要申明和实现下面三个方

法：

function _AddRef: Integer; stdcall;

function _Release: Integer; stdcall;

function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;

These three methods are part of the root interface for all interfaces, IInterface. The first two

methods are called automatically by the compiler each time it sees that a reference is used

(_AddRef) and goes out of scope (_Release). The QueryInterface method is used to determine if

the class implements a given interface. All three of these methods are required by the base

interface IInterface and thus are required by all interfaces.

这三个方法是所有接口的根接口(IInterface)中的一部分,头两个方法是每当遇到引用(_Addref)

和离开作用域时被编译器自动调用的。QueryInterface 是用来判断类是否实现了给定的接口.

所有这 3 个方法都是基础接口 IInterface 所必须的, 因此所有的接口也都需要它们.在这里我

不打算继续深入了, 但到现在你至少可以理解 TinterfacedObject 的声明(和实现)了.

TInterfacedObject = class(TObject, IInterface)

protected

 FRefCount: Integer;

 function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;

 function _AddRef: Integer; stdcall;

 function _Release: Integer; stdcall;

public

31

 procedure AfterConstruction; override;

 procedure BeforeDestruction; override;

 class function NewInstance: TObject; override;

 property RefCount: Integer read FRefCount;

end;

....

function TInterfacedObject._AddRef: Integer;

begin

 Result := InterlockedIncrement(FRefCount);

end;

function TInterfacedObject._Release: Integer;

begin

 Result := InterlockedDecrement(FRefCount);

 if Result = 0 then

 Destroy;

end;

You can see the entire declaration of TInterfacedObject in the System.pas unit. It basically does all

the housekeeping of managing the reference count of the implementing object, and destroying it

when the count gets to zero. It should be noted, too, that referencing an interface’s reference

count is thread-safe because the _AddRef and _Release methods use Interlocked operations. This

means that you can safely access interface implementations across multiple threads. Note that

this doesn’t mean that all your code is thread-safe – just that the referencing of interfaces

between threads is thread-safe.

你可以在 System.pas单元看到 TInterfacedObject 的整个声明它基本上做了所有管理实现对象

引用计数的家务活, 并且在计数变成0的时候销毁掉该对象.这里也应该注意的是, 涉及一个

接口的引用计数是线程安全的, 因为_AddRef 和_Release 方法使用了 Interlocked 系列操作.这

意味着你可以很安全跨越线程来访问接口的实现.注意, 这不意味着你所有的代码是线程安

全的, 只是线程间接口的引用是线程安全的。

Some further things to note about using TInterfacedObject:

更多关于使用 TInterfacedObject 的东西：

 If you want reference counting for your interfaces, you need to either descend your

implementing classes from TInterfacedObject, or declare similar functionality in your

class.The majority of your interface implementing classes will probably descend directly

32

from TInterfacedObject.

 如果你想为你的接口实现引用计数, 你需要从 TInterfacedObject 继承你的实现类或者在

你的 class 中声明相似的功能 大多数接口的实现类可能从 TInterfacedObject 直接继承。

 The RTL also provides two additional, but less commonly used, classes that implement the

three “magic” interface functions. TAggregatedObject and TContainedObject are designed to

be aggregated or contained by an outer, controlling class. If you have an implementing class

that will create and control internal interfaces, you can use these classes as base classes and

they will be reference counted and managed by their controlling, external classes.

 RTL 也提供了 2 个额外的但不是很常用的类, 它们实现了这 3 个"神奇的"接口方法，

TAggregatedObject 和 TContainedObject 是为了被外部控制类聚合和包含而设计的，如

果你有一个实现类创建和控制内部的接口, 你就可以使用这些类来作为基类 , 它们是

有引用计数的, 并且由外部控制类来管理的。

 You should never have a need to call the three “magic” methods of TInterfacedObject. If you

feel the need to, you almost certainly are doing something you shouldn’t be. Pay no

attention to what the IDE’s code completion tells you – don’t call them or mess with them in

any way.

 你根本就没有必要去调用 TInterfacedObject 里的 3 个"神奇的"方法, 如果你觉得有必要

去调用的话, 那你无疑是在做一些本不该做的事，不用在意 IDE 的代码自动完成给你的

提示, 无论如何也不要调用它们或者用它们把事情弄乱了。

 With regard to the previous note, it is interesting that you can call the methods on

TInterfacedObject in your code despite them being protected or even private in scope.

Remember, they are part of the interface, and the interface doesn’t have the notion of

private, protected, or public.

 关于前面的提醒, 有意思的是你可以在代码中调用 TInterfacedObject 上的方法, 尽管它

们是被保护甚至是在私有的作用域中。 记住了, 它们是 Interface 的一部分, 并且接口

没有私有,保护和公开的概念。

Reference counting of interfaces also means that you should never, ever mix interface references

with “real” object references to an implementing class. Never. Just don’t do it – it can lead to the

reference counting system being by-passed, leaving you with stranded references to objects out

on the heap.

接口的引用计数也意味着永远不要混用接口引用和实现类的"实际"对象引用. 永远不要, 就

不要这样干, 这样可能会导致引用计数系统被绕过, 留下的是堆上被搁置的对象引用.(内存

泄漏)。

For instance, the following code mixes object and interface references:

举个例子, 下面的代码混用了对象和接口引用：

procedure DoNotMixInterfaceAndObjectReferences;

var

 ObjectReference: TInterfacedObject;

 InterfaceReference: IInterface;

begin

33

 ObjectReference := TInterfacedObject.Create();

 // RefCount is 0

 InterfaceReference := ObjectReference;

 // RefCount is 1

 InterfaceReference := nil;

 // this causes RefCount = 0, thereby destroying the underlying object

 // but ObjectReference is still in scope and might be used.

end;

Again, don’t do this as it is very easy to create an access violation. Keep your interface references

and your object references completely away from each other and don’t mix them.

再说一次, 不要这样做, 因为这样很容易导致内存违规访问, 保持你的接口引用和你的对象

引用彼此分离, 而不要混在一起。

2.11. 如何使用接口(How to Actually Use Interfaces)

Okay, so now you know about declaring and implementing interfaces. But how do you actually

use them? It’s quite straight forward. You simply declare a variable of the interface type you want

to create, and then assign to it an instance of an object that implements that interface. A simple

example would look like this:

好了, 现在你已经了解了接口的声明和实现. 但是你该如何使用他们呢？ 这很直接, 你只

需声明一个你想要创建的接口类型变量, 然后将它赋值为实现该接口的对象实例。一个简单

的例子可能是这样的：

var

 NamedPerson: IName;

begin

 NamedPerson:= TPerson.Create;

 WriteLn(NamedPerson.FirstName, ' ', NamedPerson.LastName, ' is a person.

');

end;

Here are some things to note about the simple example above:

关于上面简单例子的一些说明

First, TPerson descends from TInterfacedObject, and therefore it meets the minimum

requirements for implementing an interface – that is, _AddRef, _Release, and QueryInterface.

首先, TPerson 是从 TInterfacedObject 继承的, 所以它满足了实现接口的最小需求,也就是

_AddRef, _Release, and QueryInterface。

34

NamedPerson is defined as IName. This means that you can only call the methods of IName on

NamedPerson even though TPerson may have more methods than IName does.

NamedPerson 是被定义为 IName 类型, 也就意味着即使 TPerson 中的方法比 IName 有的还

多,你也只能在 NamedPerson 上调用 IName 中的方法。

Because interfaces are reference counted, there is no need for a try...finally block with a call to

Free. Sure, you create an object, but the compiler will keep track of all references to the instance

and free it when there are no references left. The construct may look a little strange to you at first

– I know that I was very used to seeing the try...finally block – but the resulting code is simpler

and easier to manage.

由于接口是引用计数的, 所以没有必要使用 Try..finally 块来调用 free, 的确, 你创建了一个对

象, 但是编译器会跟踪该实例的所有引用并且在没有引用存在的时候释放它, 我习惯看到

try..finally 块, 我知道这个概念对于你来说一开始可能看上有点奇怪,但是这样的写出的代码

更简单也更容易维护。

Interfaces can be used anywhere that regular variables are used. You can pass them as

parameters and declare them as fields, properties and local variables. Indeed, you should take

advantage of interfaces everywhere you can.

任何常规变量使用的地方, 接口都可以使用, 你可以把他当作参数传递, 也可以把他们声明

为字段, 属性和局部变量. 的确, 你应该在任何能用的地方利用好接口。

针对抽象编程(Coding Against Abstractions)

Interfaces allow you do something that is critical to writing good code: They allow you to program

to an abstraction. A pure abstraction, in fact. Why do you want to program to abstractions and

not implementations? The simple answer is this: an interface is the smallest, thinnest, and least

complicated thing you can couple your code to. As discussed above, loosely coupled code is good.

接口是编写好代码的关键：允许你面向抽象编程. 实际上是一个纯抽象。为什么你想面对抽

象而不是实现呢？简单的说：接口是最小的，最薄的，最少的复杂东西你可以耦合到你的代

码. 就像上面讨论的那样，低耦合的代码是不错的。

Now, if your code is completely decoupled, then it can’t do anything at all. Code has to be

coupled to something in order to provide any useful functionality, so “perfectly decoupled” code

is going a touch too far – what you really want is loosely coupled code. Very loosely coupled code.

You want the coupling of your code to be as loose as humanly possible. If you never couple to

anything but interfaces, then that is as loosely coupled as you can get.

现在，如果你的代码是完全解耦的，那么根本不能做任何事情。为了提供任何有用的功能，

代码必须被耦合, 所以“完全解耦"的代码是有点过头 - 你真正想要的是松散耦合的代码。

非常松散耦合的代码。 你想尽可能的松散耦合你的代码。如果你除了耦合接口不耦合其他

任何东西， 那么这是你能得到的松散耦合。

Ultimately, this is the bottom line reason why you should use interfaces in Delphi: They provide a

35

very thin – but very powerful – abstraction to your code. Much of the rest of this book is really an

expansion on that one simple but fundamental idea. Think of your code as Lego blocks, with pins

on one side and holes on the other side. With this loosely coupled interface you can join any

block to every other block and create anything you want. It would be very limiting if the red

blocks had a different hole size than the green blocks’ pins, no?

最终，这是为什么你应该在 Delphi 中使用接口的基本理由：他们能在你的代码中提供一个

非常简短但是非常强大的抽象。本书中剩下的大多数东西是基于简单但又基础的概念的延伸.

把你的代码想象成是乐高积木, 一边是插脚另外一边是插孔, 用这种松散耦合的接口你就可

以把任意的一块积木和任何其他的积木连接在一起来创造你想要的东西。它将要成为如果红

色块有一个与绿色块插脚相比较的不同孔径的恰当限制。不是吗？

As I’ve said before, and I’ll say again: A good developer codes against abstractions, and not

implementations. Interfaces are a great way to create abstractions. If you want a thorough

discussion on why this is a good idea, I suggest reading Erich Gamma on the topic2 – but I’ll talk a

bit about it here.

正如我以前说的,并且我要再说一次:好的程序员针对抽象而不是针对实现来编程.接口是一

个伟大的方法去创造抽象.如果你想要彻底的讨论为什么这是一个好主意,我建议你去读

Erich Gamma 的话题(http://www.artima.com/lejava/articles/designprinciples.html) - 但我会在

这里讲解一部分。

可拔插的实现(Pluggable Implementations)

If you program against abstractions, you can’t couple yourself to a specific implementation.

Interfaces allow you to make the coupling between your classes very loose. Classes should be

developed and tested in isolation with few or no external dependencies. But they almost

certainly have to depend on something. And certainly once you have a well-designed class library

created, you need to piece it together to create the system you need to build – just like a child

can build almost anything he or she wants out of Lego blocks. In the end, an interface is the

lightest and thinnest thing that a class can depend on. (I’ve likened coupling to interfaces as

“grasping at smoke”.) So, if you program primarily with interfaces, you can’t help but create very

loosely coupled code. And we all know that loosely coupled code is good. So interfaces help

produce good code.

如果你要针对抽象编程,你就不能耦合特定的实现.接口能让你的类之间的耦合非常松散.类

能被独立的开发与测试而少依赖甚至不依赖外部.但是它们几乎肯定是依赖于一些东西.并且

一旦你创建了一个优良设计的类库,你就需要把组合起来去创造你需要构建的系统-就像一

个孩子用乐高积木几乎能创建任何他想要的东西 .最后,接口是类能依赖的最轻最瘦的东

西.(我把接口耦合比做"抓住烟".)所以如果你主要用接口来编程,你会自然而然的做到松耦合.

并且我们知道松耦合的代码是很好的.所以接口帮助我们创作出好代码.

But there’s more – interfaces also let you alter implementations, even at runtime. Because you

are dealing with an interface, and not an implementation, you can very easily pick and choose

what implementation you want when you want. For instance, you can write code like this:

这里还有一些 - 接口也让你改变实现, 甚至在运行时也可以。因为你是用接口来处理的，

而不是一个实现，你可以非常轻易的选择你想要的实现。例如，你可以想这样的写代码：

36

procedure EncryptSomething(aSuperSecretStuff:TBuffer; const aIWantToBeSafe:

 Boolean);

var

 Encryptor: IEncrypt;

begin

 if aIWantToBeSafe then

 begin

 Encryptor := TSuperDuperPowerfulEncryption.Create;

 end else

 begin

 Encryptor := TWhoCaresHowSafe.Create;

 end;

 Encryptor.Encrypt(aSuperSecretStuff);

end;

This is a silly example, but you can see how this can be very useful – you can have a single

interface and select the proper implementation at runtime as needed. In fact, I’d say that if you

can’t choose your implementation at runtime, then your code is too tightly coupled.

这是一个糊涂的的例子，但是你可以看到这个是非常有用的 - 你可以你可以有一个单一个

的接口并且在运行的时候根据需要选择一个合适的实现。实际上，我想说的是:如果你不能

在运行时选择实现，那么你的代码太紧密耦合了。

A more practical example might be an ICreditCardProcessor interface where you instantiate

different credit card implementations based on the choice made by your customer. Because you

aren’t tied to a specific implementation, you can use a single ICreditCard interface while making it

easy to alter which implementation gets used. If you want to add a new credit card processor,it’s

as easy as implementing a new class and adding it to the means you use to choose the credit card

processor. No changing the main code that handles credit cards – it doesn’t matter what

implementation you use.

一个更实用性的例子可能是一个 ICreditCardProcessor 接口,你用它来实现基于你客户选择的

不同的信用卡的实例.因为你没有被栓在一个特定的实现上,你可以使用单一的 ICreditCard 接

口以使你在使用时容易的更换实现.如果你想要增加一个新的信用卡处理机,你只要简单的实

现一个新的类并且增加到信用卡处理机的选择上.用来处理信用卡的主代码并没有改变-它

不在意你使用了什么实现。

And of course, you might think that your implementation of your interface is great, but it’s

entirely possible that a better one will come along, and you want to be able to easily plug that

new implementation in without having to radically change your code. Interfaces make that quite

possible and easy. A good rule of thumb is to “Always develop against interfaces and code as if a

radically better implementation is just around the corner.○3 ” (That sounds too good to be my

original quote. I can’t find it’s origin, and I did try. If the quote is yours, please let me know and I’ll

be happy to provide proper attribution.)

37

当然,你可能认为你接口的实现是很棒的,但完全有可能会有更好的改进,而你想要很容易的

插入新的实现并且无需不得不从根本上修改你的代码.接口让这成为了可能并且非常容易.一

个好的经验准则是 " 经常针对接口编程 , 则在根本上更好的实现就指日可待

了.(https://twitter.com/NickHodges/status/146018445002145792)"(这听上去好像与我的原始

引用不尽相同.我没能找到原始出处.如果这话是引用你的,请告知我,我很乐于给它加上正确

的归属.)

模块之间通信(Intermodule Communications)

But wait, there is more! Interfaces are good for inter-module communications. Say you have a

large system with different teams working on different major modules. Those teams are

responsible for providing functionality in their own modules, and thus they are responsible for

the integrity and quality of the code in their modules. Let’s say you are on the Widget team, and

you need the Sprocket team to do something for you. You go to the Sprocket guys and say “Hey, I

need to add a few things in the Sprocket code so that we can do some Sprocket-type stuff in our

Widget.” The Sprocket guys are going to laugh at you – like they are going to let you poke around

in their carefully crafted system!

不要着急，我还要说：接口对于模块间通讯是个好主意。假设你有一个由不同团队不同模块

构成的大型系统，它可以提供在模块间很好的功能响应及处理模块代码的完整性和质量。假

设你在一个部件团队，你需要齿轮团队来为你做一些事情。你找到齿轮团队的同伴说：“嗨，

我需要在齿轮代码中添加一些东西，以便于我们可以在我们部件中处理一些齿轮类型的东

西。”齿轮团队将笑话你-就像他们允许你在他们精心设计的系统中瞎折腾。

No, instead, they will likely ask you what you need, build the functionality, and hand you some

code with an interface and a factory for instantiating an implementation of that interface. They

aren’t going to let you anywhere near their code – but they are happy to let you have an interface

into that code. You get what you want – some Sprocket functionality – and they don’t have to

expose anything more than an interface to you.

不,相反的,他们可能会问你需要什么,并构建功能,然后传给你一些代码,包含接口和能实例化

接口实现的工厂.他们不会让你从任何地方接近他们的代码-但是他们很乐于让你拥有一个

连接那段代码的接口.你得到了你想要的东西-一些扣链齿轮的功能-并且他们除了接口没有

暴露任何给你。

And later, if they completely re-architect their code, what do you care? Your interface still

works,even if they completely change the internal implementation. That’s a sound way to

develop, all made possible because of interfaces。

将来,如果他们完全重构他们的代码,你需要关心什么?你的接口依然工作,即使他们完全改变

了内部实现. 那是一个好的开发方式, 因为接口一切变得可能。

可测试的代码(Testable Code)

It doesn’t end there – interfaces make your code testable. As noted above, because you are using

interfaces you can readily substitute any implementation you want.What if you are testing and

38

you don’t want to connect to the production database? You can simply provide a fake

implementation for your database connection interface – one that only pretends to be the

database and that returns canned data – and now you can test your code in isolation without

actually connecting to a database. I’ll discuss this more in the chapter on unit testing.

还没结束-接口接口使你的代码可测试。就像上面提到的，因为你是使用接口，你可以轻易

的替换你想要的任何实现。如果你测试的不想连接产品数据库那怎么办呢？你可以简单的为

你的数据库连接提供一个虚拟的实现 - 一个只是假装的数据库并且返回存储数据 - 然后

你可以在没有真实连接数据库的环境下测试你的代码。我们将在单元测试章节进行更多的讨

论。

模式(Patterns)

Finally, interfaces make it easy to implement design patterns and do things like Dependency

Injection. Most of the new patterns and practices – including Dependency Injection frameworks –

are enabled because of the power and flexibility of interfaces. Development patterns and

architectures such as Model-View-Controller (MVC) and Model-View-ViewModel (MVVM) are

much easier to implement and use when designed with interfaces.

最后，接口便于实现设计模式,并像依赖注入一样完成它.大多数新的模式和实践-包括依赖注

入框架 - 因为接口的功能和灵活性才得以使用 . 接口令开发模式和架构的比如

MVC(Model-View-Controller: 模型-视图-控制器)和 MVVM(Model-View-ViewModel: 模型视图

查看模型)能更容易的实现和使用.。

If you choose not to embrace interfaces, then you are locking yourself out of new and effective

programming frameworks and techniques. I’ll be covering Dependency Injection in depth in a

later chapter, and you’ll see then that without interfaces, Dependency Injection would not be as

easy as it could be.

如果你选择不去拥抱接口,那么你将会困住自己而无缘新的有效的编程框架和技术.我将会在

后面的章节中深度的使用依赖注入,而你将会明白离开了接口,依赖注入将不那么易用.。

Still not convinced? I’ll put it another way: all the cool kids are doing interfaces, and you want to

be part of the cool kid group, right?

还不信服?那我换种方式来说服你: 所有的酷程序员都使用接口,而你也想成为酷程序员中的

一员,对吧?

3. 理解泛型(Understanding Generics)

本章常驻翻译：Ryan, D10.天地弦, 小生(骗术师) ，QDAC- swish，join

友情翻译: 深圳-小白 松鼠

友情坐镇：

文档整理：join

39

Added to the language in Delphi 2009, Generics are a powerful language feature that allow you

to write type-safe classes, interfaces, arrays and even methods that act upon a “type to be named

later”. Sometimes you write code and you realize that you have to do a lot of type-casting to

coerce something to be a specific type. Or perhaps you are writing a lot of subclasses to handle

the specific case of a specific type, and you are writing a lot of duplicate code. This is where

Generics come in.

泛型被添加到语言是在 Delphi2009，它是一个强大的语言特性，它允许你编写类型安全的类、

接口、数组以及事件方法，并赋予它们“类型后期命名”"的能力。有时你编写代码时，意识

到有很多类型需要强制转换成指定的类型，或许，你正在编写很多子类去处理特定类型转换，

由此产生很多重复代码时，泛型由此应运而生。

A generic type is one that takes a type as a parameter, and allows you to use that type in your

code without knowing ahead of time what the exact type is. (It’s kind of hard to define generics

without using the word ‘type’ all the time…). You can tell your generic type to accept any type, or

you can use constraints, which will limit the types that can be passed to ones with parameterless

constructors, or types of a specific class or those that implement specific interfaces。

泛型是指把类型作为参数，并且允许你在代码中使用这个类型，而无须提前知道确切的类型

是什么。（不使用关键字‘type’ 则很难定义泛型）。你可以让你定义的泛型接受任何的类

型，或者限制类型，什么类型呢：可以传递过去的，具有无参构造函数的类型，或者是那些

特定对类，或者是那些实现了接口的类。

The term “Generics” is sort of a common term for this language feature. I prefer the more formal

“Parameterized Types” to describe them. Why? Well, because I think parameterized types is more

accurate and descriptive. You are ‘passing in’ the type to the method just like you pass in regular

parameters. The syntax is slightly different, but once you realize that, “parameterized types” makes

more sense. However, most people call them generics, and so that is the term I’ll use throughout

the book. However, I won’t hesitate to point out how generics really are types being passed as

parameters. And besides, “generics” is easier to type.

泛型 (Generics)"是一种语言特性的常用术语。我更喜欢使用更正式的“参数化类型

(Parameterized Types)”来描述他们。为什么呢？因为我认为参数化类型更准确和更具描述性。

你传递给方法的类型就像传递普通参数一样，虽然语法上稍微不同。但是一旦你意识这点，

那么“参数化类型(Parameterized Types)”会更有意义。然而，更多人仍将它们称之为泛型，

因此在本书中，我也使用泛型这个术语。不过，我会毫不犹豫的点出泛型是如何作为参数的

类型来被传递的, 除此之外"泛型"更容易输入(注：指英文“Generics”比“Parameterized Types”

更易输入).

40

Most of the examples in this chapter will focus on using generics with classes, but you

should note that generics work equally well with interfaces and records.

Let’s start off with a simple example. Consider the following code:

本章节大多数例子都是通过在类中使用泛型，当然，你也应该注意到，泛型在接口和结构

体中同样工作的很好。让我们从一个简单的例子开始吧，请考虑下面代码：

type

TStack = class

private

FStack: array of Pointer;

public

procedure Push(X: Pointer);

function Pop: Pointer;

end;

This is a very simple stack declaration (We won’t worry about the implementation here…). But it

has a problem – it is a stack of pointers. And that’s great if you want to keep a stack of raw

pointers, but it becomes a bit of a problem if you want to put, say, integers or strings or

something else in the stack. You can do it, but you’ll have to either typecast the integers when

pushing and popping, or you’ll have to create a new stack specifically for integers. The former is

tricky and error prone, and the latter, say:

这是一个非常简单的栈声明（这里，我们先不要关心其代码实现…）。但却存在一个问题—

这是一个指针栈，如果往里面存储原生指针，那非常有用，但是，如果往里面存储整型

（Integer）或者 字符串（String）或者其他类型指针，这存在一个小问题。如果一定要往栈

里面存储这些指针类型，你不得不在入栈和出栈时对他们进行指针类型转换，或者你不得不，

创建一个指定为整型（Integer）的栈。前者复杂且容易出错，而后者如下：

type

TIntegerStack = class

private

FStack: array of integer;

public

procedure Push(X: integer);

function Pop: integer;

end;

means that now you have two classes that you have to maintain. Create one for every type that

you might want to deal with and now you have a large set of classes to deal with, and if you

find a bug in your implementation, then you have to change it in all of them.

这意味着你现在需要维护 2 个类。为每种你需要处理的类型创建一个类，就会有一大堆的类

需要去处理，倘若你在实现的代码中发现一个 Bug，你就不得不修改所有的类。

41

So this presents a bunch of problems. First, the two “solutions” are both tedious. The first one –

the type-casting way – requires lots of specific type-casting which may seem okay, but really isn’t

something that you should be doing at all. In addition, it breaks the notion of encapsulation by

playing fast and loose with the types being managed in a class. The other requires the creation

and maintenance of a bunch of very similar classes. Plus, the work never ends, because you may

come across new things that you want to store in a stack, meaning you need to create a new class

for each one of them. Who wants all that?

因此，这会出现一堆的问题。首先，这两个“方案”都比较单调冗长。第一个，类型转换的

方式--需要大量的类型转换操作，虽然看上去很 OK，但事实上，根本就没必要做这些事情，

另外，无节制地通过类来管理这些类型，显然是违背了封装的思想；另一种方案，需求创建

和维护一大堆相似的类，并且，这样的工作将永无尽头，因为当碰到新的类型需要存储到栈

里时，这就意味着，你需要为每个新的类型创建一个新类。谁又想要那样做呢？

3.1. 泛型的救援(Generics to the Rescue)

A stack is a stack, right? Do we really care what kind of item is being stored in the stack? Well, no,

we do not. The code is going to be the same whether you are tracking strings or TWidgets. The

type doesn’t matter, right? If only there was a way that we could just somehow pass in the type

itself as a parameter, and then have a stack that operates on that passed-in type!

Hah! We can! That’s exactly what generics do.

栈就是栈, 对吧, 那我们真的有必要关心什么东西被存储在栈里吗? 是的, 我们不需要, 不

管你是追踪字符串还是 TWIdgets, 代码都是一样的. 类型无关紧要, 对吧?

要是有办法让我们可以以某种方式把类型本身当做参数传进去, 并且让栈可以操作传递进

来的类型, 哈, 我们可以做到, 这恰恰是泛型干的事.

Consider this code:

请考虑下面的代码：

type

TStack<T> = class

private

FStack: array of T;

public

procedure Push(X: T);

function Pop: T;

end

The type declaration for TStack takes a parameterized type T using angle brackets (<..>). The T

represents any type at all. The code uses the T all throughout the code as if the T were the actual

type. T is a convention for the variable name and is generally understood to represent ‘type’. But

it is just a convention – you can use any name that you like to represent the parameterized type.

In addition, you can pass in as many type parameters as you wish:

42

TStack 使用一对尖括号(<..>)包含的参数化类型 T 来声明,T 代表任何类型,整段代码中 T 都被

当作成一种实际的类型使用.T 是一个通常用来表示类型的名称约定。但它仅仅是一个约定，

你可以使用任何你喜欢的名称来对应于参数化类型。另外，你可以传入多个需要的参数化类

型：

type

TMultipleTypes<T1, T2, T3, T4> = class

There are a few things to note here:

下面是一些注意事项:

• T can be any type at all. This can be a good thing or a problem, depending on what you want

to do with T. For now, T can be anything, but later on we’ll look at how you can constrain T

to be a specific type or interface in order to provide more functionality.

 T 可以是任何类型.是好事还是坏事,这是取决于你想用 T 来做什么.从现在起，T 可以是任何

类型，但在后面，我们将看到如何通过特定的类型、接口来约束 T，以提供更多的功能。

• The type parameter T is passed to the type declaration, not to a method (although we’ll see

later that you can pass them to methods as well). That is where the notion of ‘parameterized

types’ comes from. Think of the T as a parameterized type (hehe) on the main type itself,

only it’s being passed in using angle brackets and not regular parentheses.

类型参数 T 传递给类型声明，而不是一个方法（虽然在后面，你会看到它也可以传递给方

法）这就是“参数化类型”的由来。注意，在类型声明中 T 作为参数化类型时(呵呵)，只能

通过尖括号("<>")而不是圆括号("()")传入。

• Once the T is passed in, you can use it anywhere in the class – as a variable inside a method,

as a result type to a function, anywhere. Given the proper constraints, you can even create

aninstance of T.

一旦 T 被传入，你可以在类中任何地方使用它-包括在方法中当作变量，在函数中作返回

类型。无论什么地方.给定适当的约束, 你甚至可以创建 T 类型的实例。

• T is completely type-safe. Once the type is declared, you can’t change it or use a different type

than the one you declared in place for T. Once you insert a specific type for T, your declaration is

type-safe and you are committed to using only that type.

T 是一个完全安全的类型, 一旦类型声明了, 就不能再改变或者在声明 T 的位置使用一个不

同的类型, 一旦你插入一个 T 的特定类型, 你的声明就是类型安全的, 你应该保证只使用那个

类型.

• Regular polymorphic behavior applies here. If T is an interface or class type, you can pass

43

references to descendants of T.

普通的多态行为在这里也是适用的, 如果 T 是一个接口或者类类型, 你可以传递 T 的子

类引用.

Using this class is really easy. Say you wanted to have a stack of buttons. You simply declare a

variable:

使用这个类真的很容易.假设你想去创建一个按钮栈,你只有简单地声明一个变量.

var

ButtonStack: TStack<TButton>;

and that is it. Now you can create an instance:

现在,你可以创建一个实例

ButtonStack := TStack<TButton>.Create;

and use the ButtonStack like any other stack. The really cool thing is that TButtonStack is

totally type safe – the compiler will not let you push anything into the stack except a valid

TButton.

像其他栈一样的使用ButtonStack, 真正酷的是TButtonStack是完全类型安全的, --编译器

除了允许 TButton 类型可以入栈外，其它任何类型一概不允许

So why do you want to do this? Why use Generics? Well, there are a number of reasons:

那么为什么你想这么做? 为什么要用泛型, 有许多的原因:

• You can have one class that will handle any type. No more TButtonStack and TStringStack

and TIntegerStack and all that. You merely have one TStack<T> to use and maintain. That

is less code to worry about.

你仅需要有一个类，就能处理任何类型，不再需要 TButtonStack 、TStringStack

、TIntegerStack 等其它类。只需使用和维护一个 TStack<T> 即可，且考虑的代码也很少。

• You aren’t duplicating code. This is good for many reasons, including a single point of

failure and a single point to fix that failure. Having to fix the same bug in many places is

inefficient,no fun, and error-prone. One class for any type is much easier to handle than

many, one-type classes.

你无需重复编码，这是较好的一个理由，包括单点故障单点修复。而在很多地方修复相

同的 bug，这样做是低效、无趣且易错的。处理支持任意类型的单个类比处理多个只支持单

一类型的类更容易。

44

• As mentioned, you get full type safety – always a good thing. No more typecasting and

type checking in your code.

如前所述, 你得到了完全的类型安全, 通常是一件好事，不再需要在代码中做类型转换

和类型检查。

One of the added benefits of the type safety of generics is that once you declare a generic

type, you get full CodeInsight support for that type in the IDE.

泛型的类型安全还有一个额外的好处, 就是一旦你声明了一个泛型的类型, 在 IDE 中就

会有完整的 CodeInsight 支持。

3.2. 约束类型(Constraints)

One of the things that you may have noticed is that since the compiler doesn’t have a clue

about what the type of T is, you can’t do anything to T except keep track of it. You can’t

manipulate it or do anything to it. As noted above, if you pass in a class, you can’t call any of it’s

methods. That’s not any fun.

你可能已经注意到,编译器没有给出 T 的实际类型是什么的提示信息，除了跟踪它之外

不能对它做任何事情.你无法操控它或者对它做任何事.如上所述,如果将它传给类,在类里不

能调用他的任何方法.这真的很不爽。

That’s where the notion of constraints comes in. Constraints allow you to tell the compiler “I

want to use a generic type here, but I want to constrain (i.e. limit) it to be a specific subset of

types”. By doing that, you can then call methods on the type or use the type in a known way

because you’ve given the compiler enough information to figure out what you are doing.

这就是约束的来由。约束允许你告诉编译器“我想用一个泛型，但我想约束（如限制）它为

一个特定的类型子集”。这么做的话，因为您给编译器足够的信息来告诉它如何做，你可以

调用类型的方法或作为一个已知类型使用 。

The syntax for constraints is, as with most Pascal constructs, easy to understand. It consists

of a colon after the parameterized type, followed by the constraint name:

约束的语法和大多数 Pascal 语法中类的构造函数一样容易理解，它由参数化类型后面的

冒号以及跟着的约束名构成.

TConstraintedType<T: constraint> = class

…

end;

A class can have multiple constraints separated by commas:

一个类可以有多个约束,用逗号分隔:

45

TConstraintedType<T: constraint1, constraint2> = class

…

end;

The things that can be used in place of <constraint> are discussed below.

能用在<constraint>处的约束将在下面的进行讨论:

构造约束(constructor Constraint)

The constructor constraint requires that the parameterized type include a simple,

parameter-less constructor called Create. This constraint will not usually be used standing alone,

but will most normally be used in conjunction with the class constraint as described below. Thus,

the following code will compile:

构造约束是指参数化类型上只需要一个无参的构造函数 Create，该约束通常不能单独使

用，而是和下面描述的类一起使用。因此，下面的代码是可以编译的。

uses

SysUtils;

type

TSomeClass<T: constructor> = class

function GetType: T;

end;

function TSomeClass<T>.GetType: T;

begin

Result := T.Create;

end;

Given the above declaration, you now can create:

基于上面的代码声明，你也可以这样写：

SomeClass := TSomeClass<SomeObject>;

but you can’t create

但是约束的类型不能是 Integer, 所以不能写成这样：

SomeClass := TSomeClass<integer>;

because the integer type doesn’t have a constructor

因为整数类型（Integer）没有构造函数。

46

类约束(class Constraint)

The class constraint ensures that the type passed is – you guessed it! – a class. The class

constraint means that the parameterized type must be a class type – that is, a TObject or one of

it’s descendants. Here is, for instance, the declaration of the TObjectList<T> from the

Generics.Collections.pas

类约束是指确保传入的类型一定是类，这一点你早就能猜到。类约束意味着参数类型化

必须是一个类--TObject 类或者其子类型。在 Generics.Collections.pas 单元只有一个

TObjectList<T>

例子

unit:

 TObjectList<T: class> = class(TList<T>)

 private

 FOwnsObjects: Boolean;

 protected

 procedure Notify(const Value: T; Action: TCollectionNotification); override;

 public

 constructor Create(AOwnsObjects: Boolean = True); overload;

 constructor Create(const AComparer: IComparer<T>; AOwnsObjects: Boolean = True);

overload;

 constructor Create(Collection: TEnumerable<T>; AOwnsObjects: Boolean =

True);overload;

 property OwnsObjects: Boolean read FOwnsObjects write FOwnsObjects;

 end;

This class specifically tracks and contains objects, so the class constraint ensures that the

parameterized type accepted by TObjectList<T: class> is indeed a class type.

这个类本身已经明确地指出跟踪和包含的对象，因此，类约束确保了由 TObjectList<T: class>

接受的参数类型化的只能是一个类。

It should be noted that the class constraint itself is not enough to ensure that you can construct

an instance of the class passed in. In fact, this code will not compile:

应该注意的是，类约束还不足以保证你把创建类的实例传进来，实际上，这段代码是无法

编译的。

type

 TSomeClass<T: class> = class

 function GetType: T;

end;

47

function TSomeClass<T>.GetType: T;

 begin

 Result := T.Create; // <---- Fails here

 end;

It produces the following compiler error:

这会产生下面的编译的错误：

[dcc32 Error] ConstructorConstraint.dpr(20): E2568 Can't create new instance without

CONSTRUCTOR constraint in type parameter declaration

[dcc32 Error] ConstructorConstraint.dpr(20): E2568 不能创建新实例对象，是因为在声明时没

有使用类型参数化构造函数约束。

In order to be able to create an instance of the parameterized type, the constructor constraint

must be included as well. Thus, the following code will compile:

为了能够创建参数类型化实例对象，构造约束（constructor constraint） 必须被包含，因此

下面的代码可以编译：

type

// Notice the addition of the constructor constraint

//注意构造约束（constructor constraint）添加的地方

TSomeClass<T: class, constructor> = class

function GetType: T;

end;

{ TSomeClass<T> }

function TSomeClass<T>.GetType: T;

begin

Result := T.Create;

end;

The constructor constraint might seem redundant here, but there might be certain situations –

say, when you have private constructor as with a factory class or a singleton – where you want to

be able to guarantee that a default constructor is present.

构造约束感觉似乎多余，但是在某种情况下会非常有用- 也就是说，当你有一个私有构

造函数用于工厂类或单例来确保缺省的构造函数情况。

结构体约束(record Constraint)

I’m betting you can guess what the record constraint does. Yes! It constrains your type to be a

record– or more specifically, a non-nullable value type.

48

Thus, if you have code like the following:

我敢说，你一定能猜到结构体约束用来做什么？对! 它限制你的类型是一个结构体 –或

更确切的说,是不可以为空的类型.

 所以,对于下面的代码:

type

TMyRecord = record

SomeInt: Integer;

end;

type

TSomeClass<T: record> = class

private

FType: T;

public

constructor Create(aType: T);

function GetType: T;

end;

constructor TSomeClass<T>.Create(aType: T);

begin

inherited Create;

FType := aType;

end;

function TSomeClass<T>.GetType: T;

begin

Result := FType;

end;

var

SomeClass: TSomeClass<TMyRecord>;

You are able to declare the variable SomeClass with a TMyRecord, but if you tried to pass in a

class type to TSomeClass, you’d get the following compiler error:

你可以使用 TMyRecord来申明变量 SomeClass,但如果你尝试传入类类型给 TSomeClass,,你将

得到下面的编译器错误:

[dcc32 Error] Project44.dpr(40): E2512 Type parameter 'T' must be a non-nullable value type

[dcc32 Error] Project44.dpr(40):类型参数'T'必须是非空值类型

49

接口约束(interface Constraint)

You can limit your parameterized types to accept only instances that implement specific

interfaces. By declaring one or more interfaces (separated by commas) you declare that the type

you will pass in must implement all of those interfaces. The compiler will check to make sure that

your type meets the constraints. When such a constraint is met, your code can then call any of

the interface’s methods:

你可以对参数化类型作出限制，只接受实现指定接口的类实例。通过声明一个或多个

接口（多个接口通过逗号分隔）来要求你必须传入此接口的实现。编译器将检查并确保你的

类型受约束，一旦有了此约束，你的代码就可以调用接口的任何方法了。

type

IStoppable = interface

procedure Stop;

end;

TWidget<T: IStoppable> = class

FProcess: T;

procedure StopProcess;

end;

{ TWidget<T> }

procedure TWidget<T>.StopProcess;

begin

FProcess.Stop;

end;

In this simple example, you can see that the TWidget<T: IStoppable> class does not care what

type you pass to it, as long as it can be stopped. Thus you can create a class that accepts types

that are capable of specific tasks as defined by an interface.

在这个简单的例子里，你能看到 TWidget<T: IStoppable> 类并不关心你传入什么类型，只

要这个类型实现 IStoppable 接口的 Stop 方法即可。这样你就能创建一个类来接收由接口定

义的能执行特定任务的类型。

传递参数化类型结构体(Passing Records as Parameterized

Types)

One nice feature of parameterized types is the ability to pass records as unconstrained types.

Consider the following example:

参数类型化的一个好特征：能传递无约束的结构体类型。

请看下面的代码：

type

50

TFoo<T> = class

AnyType: T;

end;

TSomeRecord = record

procedure Blech;

end;

var

Foo: TFoo<TSomeRecord>;

procedure TSomeRecord.Blech;

begin

WriteLn('Blech!');

end;

begin

Foo := TFoo<TSomeRecord>.Create;

try

Foo.AnyType.Blech;

finally

Foo.Free;

end;

end.

Here you can see that the compiler is smart enough to recognize the type of the type parameter

and allow you to call it at run-time.

这里，你能看到编译很聪明地认出了参数化类型， 并且允许你在运行时调用它。

3.3. 泛型接口(Generic Interfaces)

So far we’ve only declared generic classes. However, Delphi also allows you to add parameters

to interface declarations:

目前为止我们只声明过泛型类,然而,Delphi 同样允许你在接口申明中增加参数.

type

IMyInterface<T> = interface

procedure DoSomething(aType: T);

end;

This makes for a very powerful means of using generics. (I told you interfaces always

better). Rather than constrain your parameterized type to a specific class, you can inste

it to a particular defined functionality – an interface – and insulate yourself from an

implementation. (Sound familiar? I’ll keep harping on that point time and time again…)

51

这令使用泛型具有强力的意义.(我说过接口是好事).相对于约束你的参数化类型到特定的

类,你现在能限制它包含特定的功能集合-接口-把你自己从任何特定实现中解救了出来.(耳熟

么?我一直不断重复这个观点.)

3.4. 泛型方法(Generic Methods)

You can pass a parameterized type to the name of any method without declaring the class itself

as generic class:

你可以直接传递参数化类型给方法名,而无需将类本身声明成泛型类:：

type

TWidgetMaker = class

public

function CreateWidget<T: TWidget>(aWidgetName: string): T;

end;

...

MyWidget := TWidgetMaker.CreateWidget<TSpecialWidget>('SpecialWidget');

Once you do that, the type parameter is available for use inside the method and no whe

are some limitations to this:

一旦你这样做，这类型参数在函数内部使用是有效的(其他地方不可用)，下面是一些使用

限制：

• Interfaces cannot have generic methods

接口不能有泛型方法;

• Constructors, destructors, message methods and record operators cannot be generic

methods.

构造函数、析构函数、消息方法及记录操作不能是泛型方法。

• Properties cannot have generic methods for their getters and setters

属性的 Getter 和 setter 方法不能是泛型方法.

Otherwise, you may pass parameterized types as part of a single method call. An exa

might be to pass an IComparer implementation to a method called Compare that will do

comparing things, allowing you to be flexible in just how that comparison gets done.

另外，你传递的参数化类型可作为单个方法调用的一部分。这方面的例子表现在：传递一

个 IComparer 接口的实现给一个方法，在方法里调用 Compare 来完成比较的工作， 从而让

你更灵活的完成比较操作.

3.5. 泛型集合(Generic Collections)

Earlier I discussed a hypothetical TStack<T> which was useful because you didn’t ever have to do

anything with the parameterized type inside the stack. Collections like this are good, straight

forward examples of how generics can be useful. And because they are useful in this way, it is no

surprise that Delphi includes a set of such collections that act on any type.

52

 前面我讨论的假想的 TStack<T>是很有用的，因为你甚至不需要对栈中的参数化类型做任

何事情 .这类容器都是很好的,直截了当的表现了泛型的好用.正因为它们如此好用,所以不用

惊讶 Delphi 包含了一系列的容器用来处理任何类型.

我们将会在以后的章节中学习这些集合容器,但我在这里提到它们，是因为它们在 Delphi

运行时库中是非常常用的泛型.

These collections are found in the Generics.Collections.pas unit. In addition, Spring4D has an

even more extensive and powerful collections unit that we’ll cover as well.

这些集合容器可以在 Generics.Collections.pas 单元中找到.此外,我们后面也会学到的

Spring4D 框架拥有更多更强的容器集合.

Generics.Collections contains the following generic classes for common use:

Generics.Collections 单元包含下列常用泛型类：

• TList<T>

• TThreadedList<T>

• TQueue<T>

• TStack<T>

• TDictionary<TKey, TValue>

• TObjectList<T>

• TObjectStack<T>

• TObjectDictionary<TKey, TValue>

• TThreadedQueue<T>

The Spring4D framework contains a unit named Spring.Collections.pas which includes a similar

set of collection classes, but which are more powerful in that they all follow the IEnumerable<T>

pattern. These classes will be covered more thoroughly in a coming chapter. Because of that, I

won’t discuss them much here, other than to point out that:

Spring4D 框架含有一个名为 Spring.Collections.pas 的单元，它包含一系列类似功能的集合容

器类，这些集合容器因遵循 IEnumerable<T>模式而提供更强大的功能，在后面的章节我们会

非常详细地学习它们，这里先不做详细讨论，只提几点：

• These collections provide type-safe containers for easy use

 提供了类型安全易用的集合容器；

• They provide a single class as a collection for any type, improving maintenance. One class to

fix is much better than multiple classes for multiple types.

We’ll cover these collections in detail in a coming chapter, but I mention them here

because they are a very common use of generics in the Delphi run-time library

53

他们为任何类型都提供了一个可以作为容器的类, 增强可维护性, 修正一个类要比修正针

对多个类型的多个类要好的多；

• These classes should replace the use of their non-generic counter parts (TList, TStack, etc.).

You don’t have to do this right away, but you should gradually replace your existing use of

the regular, non-generic collection classes and their descendants with the new, generic-based

ones.

这些类应该替换掉它们的非泛型的副本（TList，TStack 等）,当然，你没必要立刻去做, 但

你应该逐步地用泛型集合容器替换掉你原来非泛型集合容器类以及它们的子类.

3.6. 思考泛型(Thinking Generically)

So far we have looked at the “consuming” side of generics. Things like TList<T> are all very

useful classes, and our code is made much simpler, easier to maintain, and more type-safe

because of them. But using them merely makes us consumers of generics. If we want to truly take

advantage of generics, we need to become producers of generic classes. It’s a big step to see the

benefit of generic collections, but the truly big step is to start seeing opportunities for the use of

generics in your own code.

到目前为止，我们已经看到了泛型强大的一面。类似 TList<T>这样非常有用的类，它们

让我们的的代码变得非常简单、易于维护且更加类型安全。但是这仅仅是泛型应用的一面。

如果我们想真的从泛型中获益，我们应该变成泛型类的生产者。明白泛型容器的好处是一大

步，但是能在你自己的代码里恰当时候使用泛型，才是真正的一大步。

3.7. 一个设计简单的例子(A Contrived, Simple Example)

So in order to start thinking about generics with a producer’s mindset, consider the following

code:

为了站在泛型生产者的角度上思考，考虑下面的代码：

type

TOrderItem = class

ID: integer;

end;

TOrder = class

ID: integer;

end;

TCustomer = class

ID: TGUID;

end;

Now this code is very simple – a set of classes that might represent a basic order entry system.

But right away, something should occur to you. All three have something in common – they are

54

entities in your system. Down the road, you may want to act upon all the entities in your system,

so you might create a superclass like so:

这些代码非常简单 – 这一系列的类，可能表示一个基本的订单录入系统，但马上，你应该

想到，所有这三个类有一些公共的东西- 它们是你系统中的实体。未来你可能想对它们做一

些事情，所以你可能创建一个基类，类似下面的代码：

type

TEntity = class

end;

TOrderItem = class(TEntity)

ID: integer;

end;

TOrder = class(TEntity)

ID: integer;

end;

TCustomer = class(TEntity)

ID: TGUID;

end;

However, you might be frustrated because you want your TEntity class to have an ID field that is

in use by all descendants, but that pesky TCustomer class can’t oblige – it needs a GUID for its ID

tag instead of an integer like the other classes. And there might be other entities that need

different types of ID tags.

然而，你可能很失望，因为你想让类 TEntity 有一个 ID 字段，好像所有继承它的子类能够

使用。但是烦人的 TCumstomer 类，并不需要- 它需要一个 ID 标识类型是 TGUID 而不是像

其它的类需要的 Integer 型，而且可能有其他实体的 ID 标识还需要其它不同的类型.

Instead of fretting about those different types of ID tags, how about just create one that doesn’t

care what type it is? Well, this is where the power of generics comes in. How about you give the

TEntity class a parameterized type – a generic – as its ID, and then just tell all the classes what

type their ID tag will be?

为了不被这些不同类型的 ID 标识烦恼, 怎么样去创建一个不用关心类型是什么的类呢? 这

就是泛型的强大之处。怎么样给 TEntity 类一个参数化类型--一个泛型来做为他的 ID

然后只需要告诉所有的类它们的 Id 标识是什么？

type

TEntity<T> = class

ID: T;

end;

TOrderItem = class(TEntity<integer>)

end;

TOrder = class(TEntity<integer>)

55

end;

TCustomer = class(TEntity<TGUID>)

end;

Now, given the above, your entities can all have ID’s, but you don’t have to have the same type

for all of them. If a TEntity descendant needs an ID of a different type, you can just descend

from TEntity and pass the correct ID type in the class declaration.

如上面的代码，所有的实体都同样的 ID 标识，但是它们不再限制同样的类型，如果一个

TEntity 子类需要不同类型的 ID，你只要在类声明中从 TEntity 继承并传一个正确的 ID 类型即

可。

Again, the example is quite contrived, but I think it does a nice job of showing how you can start

“thinking generically” and not just accept a rigid type structure.

再次强调一下，这个例子十分的做作，但是，我认为它起到了向你展示:怎样去“思考泛型”

而不是仅仅去接受一个死板的构造类型。

In addition, it illustrates why the more formal name for generics is “parameterized types”. The

type in the brackets is passed in to the type declaration, and then used within the class, just as

method parameters are passed in to functions and procedures.

另外，它说明了为什么泛型更正式的命名为“参数化类型”。尖括号〈〉里的类型被传递给

类型声明，然后在类中使用，就像方法参数被传递给函数和过程一样。

A simple, contrived example, sure. But hopefully it illustrates how generics can be used to turn

you from a consumer of generic classes to making them a common tool in your code.

当然这是一个简单设计的例子。这个例子希望它能展示泛型的使用，使你从泛型的“消费

者”变成你代码中泛型工具类的制作者。

3.8. 一个实用的例子(A Practical Example)

While you will see generics used throughout the rest of the book, a straight-forward practical

example is in order here. So often the simple example you see is TList<T> which is useful, but

almost too simple. Above, I encouraged you to “Think Generically”, and so here’s an example of

doing just that. It also has the added advantage of being useful.

你将看到泛型的使用贯穿本书剩余的章节，先在这里举一个简单实用的例子。你常常看到

TList <T> 这样的使用示例，但它太简单了。我们鼓励你去“用泛型思考”，所以这里的例子

也这么做。它还具有额外的附加优势。

TEnum

56

Enumerations are cool, and sometimes it is cool to get the string value for an enumeration. But

who wants the hassle of using the TypInfo.pas unit and trying to figure that all out. How about,

instead, we come up with a nice little record that wraps that all up for us while illustrating how

methods can take parameterized types just like classes can? Consider the following code:

TEnum 枚举是很酷的，有时酷到可以直接获取枚举中字符串值，但谁也不想麻烦地使用

TypInfo.pas 去尝试找到所有的值。怎么办呢？相反,我们想到用一个比较好用的小结构体来

包装所有的东西,然后如同类一样来使用参数化类型。 参照如下代码：

uses

TypInfo;

type

TEnum = record

public

class function AsString<T>(aEnum: T): string; static;

class function AsInteger<T>(aEnum: T): Integer; static;

end;

class function TEnum.AsString<T>(aEnum: T): string;

begin

Result := GetEnumName(TypeInfo(T), AsInteger(aEnum));

end;

class function TEnum.AsInteger<T>(aEnum: T): Integer;

begin

case Sizeof(T) of

1: Result := pByte(@aEnum)^;

2: Result := pWord(@aEnum)^;

4: Result := pCardinal(@aEnum)^;

end;

end;

This code uses generics to allow you to find out the string and integer value of any enumerated

type.Here is an example of it in use:

这些使用泛型的代码允许你找出任何枚举类型的字符串（string）和整型(integer)值，下面

是使用泛型的例子：

program EnumDemo;

{$APPTYPE CONSOLE}

uses

SysUtils;

type

TNick = (Blah, Yech, Floo);

begin

WriteLn(TEnum.AsString<TNick>(Blah)); // writes ‘Blah’

WriteLn(TEnum.AsString<TNick>(Yech)); // writes ‘Yech’

WriteLn(TEnum.AsString<TNick>(Floo)); // writes ‘Floo’

57

WriteLn(TEnum.AsInteger<TNick>(Blah)); // writes 0

WriteLn(TEnum.AsInteger<TNick>(Yech)); // writes 1

WriteLn(TEnum.AsInteger<TNick>(Floo)); // writes 2

ReadLn;

end.

Here are some things to note about the above code:

对于上面的代码有一些注意事项：

• TEnum is a record with only class methods. It contains two functions:

TEnum 是一个只有类方法的记录（record）,它包含两个函数：

– The AsString<T> function uses the simple GetEnumName call from TypInfo.pas. It

returns a string value for the enumerated value. Note that it uses the AsInteger function

to retrieve its result.

 –AsString<T>函数简单使用来自 TypeInfo.pas 单元的 GetEnumName 调用，它返回枚举

值中的一个字符串值。注意它使用 AsInteger 函数返回检索结果。

– The AsInteger<T> function is a bit more complicated. Because the compiler can treat

enumerated types as different integer types, the code must determine which specific

integer type the value is based on its size.

- AsInteger<T>函数稍微有点复杂。因为编译器可以把枚举类型当作不同的整数类型处理，

这里的代码必须根据它的大小确定是那种特定的整数类型。

• This record really is just a simple wrapper around the function GetEnumName from

Typinfo.pas.Its power comes from the use of generics. Because each of the methods takes a

parameterized type, you can use any enumeration with it.

这里的 Record 只是简单的包装了来自 Typeinfo.pas 单元的 GetEnumName 函数。

它功能很强大来源于泛型的使用。因为每个带有参数化类型的方法在使用任何枚举时，都

可以使用它。

• Unfortunately, there is no generic constraint that limits the passed type to be an enumeration.

As a result, you can pass any type at all to TEnum<T>, so be careful.

不幸的是，这里没有泛型约束来限制传递给枚举的类型。因而，你可以传递任何类型给

TEnum<T>,但是必须要小心。

• The very simple demo application merely creates a simple enumerated type, and then

displays the string and integer values for each of its three items. It is nothing fancy, but illustrates

how to use the record.

这是一个非常简单的示例程序，仅仅创建了一个简单枚举类型，然后为它的枚举类型显示

出三个字符串和整形的值。它没有什么特别的，只是说明了如何使用记录。

• Since this is just demonstration code, there is no error handling in the event of a

nonenumerated type being passed to TEnum methods. There is no constraint that requires you

pass an enumeration, so there is no way to protect against that at compile time. The record

constraint can be used to constrain the types passed somewhat, but adding such error handling

is left as an exercise for the reader.

58

因为这仅仅是示例代码，并没有针对非枚举类型传递给 TEnum 方法时做错误处理。这里的

代码没有约束你一定得传递枚举类型，所以在编译期没有办法来保护它们。Record 约束常

用来约束传递的类型，但是增加这样的错误处理权当一个练习，留给读者们。

Problems with Generics

泛型的问题

Generics are a powerful and useful tool, but there are a few issues with them in Delphi.

泛型是强大有用的工具，但是在 Delphi 中有几个关于他们的问题.

First, they tend to drastically increase the amount of code that the compiler generates. Every

time you declare a generic type, the compiler creates a new and separate type.

首先，他们往往会大大的增加编译器生成的代码量。每当你声明一个泛型类型，编译器都

会创建一个新的独立类型，

For instance, if you declare

例如，你声明

var

FirstIntegerList: TList<integer>;

SecondIntegerList: TList<string>;

the compiler creates two separate types. One would wish that the same type could be used

internally, but currently such is not the case.The second area where Delphi’s generics may be a

problem is that they don’t support covariance and contravariance

编译器创建两个单独类型。一个希望同类型可以在内部使用，但目前情况并非如此，另一个

在 Delphi 泛型可能是一个问题，他们不支持协变(covariance)和逆变(contravariance)。

Covariance is the notion that a given type can be converted from a specific type to a more

general type. (Example: Corvettes can be substituted for Cars). That is, you can use a child class in

place of a parent class because the child class has everything that the parent class has.

协方差的概念:可以把一个类型从一个特定的类型转换到一个更一般的类型(比如：克尔维

特牌汽车可以取代汽车)。意思是你可以用子类代替父类，因为父类有的，子类都有。

Likewise, contravariance is the notion that the general type can be substituted for the specific

type.(Example, a car can replace a Corvette) Contravariance is a little trickier, and normally not

allowedin object-oriented systems, because a child class can have more functionality than a

parent class,and thus a parent class cannot be a perfect substitute for the child class if the child

instance usesthat additional functionality.

59

同样，逆变（contravariance ）的概念指出通用类型可替代特定类型（例如，汽车可以替换

克尔维特牌汽车）逆变有点复杂，通常在面向对象的系统中是不允许的。因为子类比父类有

更多的功能，所以在子类使用额外功能的情况下，父类并不能完全替代。

Delphi doesn’t support either contravariance or covariance with generic types. This means that

the following code won’t compile:

Delphi 不支持任何泛型类型的协变和逆变，这意味着下面的代码不能编译：

program CovarianceExample;

{$APPTYPE CONSOLE}

uses

System.SysUtils,

Generics.Collections;

Type

TParent = class

procedure Foo;

end;

TChild = class(TParent)

procedure Bar;

end;

procedure TChild.Bar;

begin

WriteLn('Bar');

end;

procedure TParent.Foo;

begin

WriteLn('Foo');

end;

var

ParentList: TList<TParent>;

begin

ParentList := TList<TChild>.Create; // <--- Will not compile //不能编译

end.

3.9. 结论(Conclusion)

That is a simple introduction to parameterized types, or generics. You’ll see the use of generics

all throughout the rest of this book, so this chapter was designed to make you familiar with them.

Generics are a powerful language feature indeed, as you will soon see.

60

这里只是简单介绍参数化类型或者说泛型，在本书的后面章节里，你将看到泛型的使用，

因而这个章节的内容被设计用来让你先熟悉一下泛型。泛型的确是一个强大语言特性，你将

很快见识它的强大。

3.10. 与泛型的一次访谈 (An Interview with Generics)

Nick: Generics – thanks for being with us today.

Nick：Generics，感谢你今天来这里。

Generics: Yeah, whatever. Usually people aren’t too interested in talking to me. I pretty much

don’t care what goes on, so I’m usually really boring.

Generics：是啊，然而通常人们都不太感兴趣谈论到我。我几乎不关心怎么去沟通，大约我

确实令人厌烦。

Nick: Well, I’ll bet we can find something interesting to talk about. So, what’s your deal? Why

are you in the language?

Nick：很好，我敢说，我们能发现一些感兴趣的东西来谈论。比如，你能用来做什么？为

什么在语言里？

Generics: That’s just it – as I said, I don’t care what goes on around me. I’m a type that can be

anything. I really don’t care.

Generic：就是那样- 正如我说过的，我并不关心大家怎么谈论我，我是一个类型，可以是

任何类型，其它的，我真的不关心。

Nick: So why is that good?

Nike：为什么那是好的呢？

Generics: Because I can provide functionality that doesn’t care what the type being acted on is.

You can design me to work with anything. Whatever. I don’t care.

Generics: 因为我可以提供功能而不在乎这类型被用来做什么。你可以设计让我去做任何工

作，无论怎么样，我都不在意。

Nick: Well, don’t be so hard on yourself.

Nike：好吧,不要对自己这么苛刻嘛.

Generics: Yeah, hey, well, when you have no purpose in and of yourself, it can be tough on your

self-esteem, you know?

Generics：是啊,嗯,好的,当你的人生没有任何目的时,这会严重的打击你的自尊心的, 你知道

么?

Nick: But you are such a great team player! Team you up with another type and you really have

something.

61

Nike：但你是一个有团队合作精神的人！和其它类型一起合作，你确实做了些事情了。

Generics: That’s true enough. You instantiate me with a specific type, and I really come alive!

TList<T> looks about as boring as it gets, but TList<TButton>? That’s something, I guess.

Generics：这倒是真的。你用特定的类型实例化让我活跃起来。 TList<T>看起非常厌烦正如

它展示的那样，但是 TList<TButton>呢? 我猜那一定是某种东西。

4. 理解匿名方法(Understanding Anonymous

Methods)

本章常驻翻译： D10.天地弦, 小生(骗术师) ，青铜时代，join，

友情翻译: 松鼠 Ryan

文档整理：join

4.1. 介绍(Introduction)

When I speak to Delphi developers about anonymous methods, many are at least aware of their

existence, but almost no one uses them. That’s too bad. Anonymous methods are a powerful and

flexible way to make your code pluggable, expandable, and adaptable. They can cause you to look

at your code from different perspectives. This chapter will introduce you to the notion of

anonymous methods and provide a few examples of their use. By the end of this chapter, I hope

that you are scheming of ways to integrate anonymous methods into your code.

当我和 Delphi 开发者谈论关于匿名方法时，很多人至少知道匿名方法的存在，但他们当中

大多数人却没有使用。那太糟糕了。匿名方法提供强大，灵活的途径，让你的代码可插拔，

可扩展，可适配。同时促使你以不同的角度来审视自己的代码。这章将引导你理解匿名方法

的概念和提供少数使用匿名方法的例子。到本章结束，我希望你正计划将匿名方法集成到你

的代码中。

62

4.2. 定义(Definition)

You’re probably not going to believe this, but an anonymous method is a method without – yes

– a name. It is a “chunk” of code that stands alone without being attached to any class or even

any specific named procedure. You can declare the code to stand alone, as a variable, and even

pass them around as parameters to other methods.

你可能不相信，但是匿名方法就是一个不带方法名称的方法，它只是一个独立的代码块，

不依赖任何的类或任何指定名称的过程。你可单独声明代码赋值给一个变量，甚至可把它作

为一个参数传递给其它的方法。

Why are they anonymous? Well, it’s a bit strange, but they are anonymous so that you can give

them a name at the right time. They can be given a name when they are declared as variables or

parameters. And since they don’t have a name, they can’t be arbitrarily called elsewhere. No one

can come along and go “Oh, hey, there’s a method I can use” and start altering the scope of a

method by using it in places where it doesn’t belong. By being anonymous, such methods are

naturally limited in scope. And limiting scope is good.

他们为什么叫匿名，这的确这有些奇怪，但正因为他们是匿名，所以你可以在适当的时机

给你们指定名字，如当他们被声明成变量或参数时就可以指定名字。既然没有名字，它们就

不能在其它地方随意被调用。没有人可以来了就说“嘿，这里有一个我能使用的方法”，而

只能通过修改方法的作用域来达到在以前不能被调用的范围可以调用。通过匿名方式，这些

的方法就很自然地被现在在指定的作用域里。限制好域是很好的方式。

Here is an example of an excessively simple anonymous method:

 下面是一个极简单的匿名方法的例子:

There are a few things to notice here:

下面是一些注意事项：

First, a quick word on syntax. Anonymous methods have syntax similar to regular methods, but

with two differences. The most obvious is that they don’t have a name. That’s not surprising,

given that they are called Anonymous Methods.

首先，简单介绍一下语法，匿名方法和普通方法在语法上很相似，但有 2 个不同之处 ，最

明显的是匿名方法没有名字而普通方法有名字，不要感觉这很奇怪，正因为没有名字才被称

作为匿名方法。

Second, you are probably thinking that I made a typo up there, because I didn’t put a semicolon

at the end of parameter declaration or at the anonymous method itself. Well, think again!

Anonymous methods don’t have semicolons at their end and they don’t have one before the

63

begin of the main body. Like all other language statements, they are stand-alone elements that

have no semicolon in and of themselves.

其次，你可能在想，我在这里犯了一个打印错误。因为我没有在参数声明或匿名方法后面

加分号。好吧，再想想，匿名方法结尾处没有分号，并且在方法体前面开始处也没有分号。

就像其它语言的语句一样，他们是没有分号的独立元素。

Now, you’ll often see a semicolon at the end, but that’s because they are the last part of a

complete statement, such as when you assign an anonymous method to a variable of the proper

type and the semicolon is there to separate statements. Now I know that every ounce of your

being, as a true Delphi developer, is screaming out for a semi-colon at the end of that anonymous

method, but I assure you that you shouldn’t put one there.

现在，你将经常看见在语句结尾处的分号，那是因为分号一条完整语句不可分割的一部分，

比如，当你将匿名方法赋值给一个正确类型的变量时，分号是作为此赋值语句的分割符。现

在我知道你一定认为，没有分号结尾的语句出现的非常少。 作为一个真正的 Delphi 开发者，

肯定是为匿名方法后面没有分号而尖叫。但是，我确信你不会将分号放在匿名函数后面。

In order to declare an anonymous method, you must first declare its type. That is done by

declaring a type name followed by a reference to the signature of the method to be used. For

example, the type declaration for the above anonymous method would be:

为了声明匿名方法，你必须首先声明其类型。这可以通过在 Type 关键字后面跟着 reference

to 标记的要使用的方法。例如：上面的匿名方法通过 Type 声明如下:

type

TOutputProc = reference to procedure(const aString: string);

That would enable you to declare a variable of type TOutputProc:

下面允许你申明一个 TOutputProc 类型的变量：

var

OutputProc: TOutputProc;

And then you can assign the anonymous method above to such a variable if you want:

你还可以直接将匿名方法赋值给上面声明的变量 OutputProc。

OutputProc := procedure(const aString: string)

begin

 WriteLn(aString);

end;

And now you are saying “Aha! You do put a semi-colon at the end of anonymous methods!”

Well, no. The semi-colon is there to terminate the assignment.

64

Don’t believe me? Okay, look at the following code:

现在，你可以说“啊哈，你不是在匿名方法的后面放了一个分号！”，你注意到了这很好，

不过这不是匿名方法的分号，这里面的分号只是赋值语句的结束符；还不相信我？请看下面

的代码：

procedure ProcessASprocket(aSprocket: Tsprocket; Reporter:

TOutputProc;)

begin

VerifyTheSprocket(aSprocket);

EnterSprocketInDatabase(aSprocket);

Reporter(aSpocket.Name + ' has been processed');

end;
You could then call the above regular method like so:

你可以这样调用上面的普遍方法：

ProcessASprocket(MySprocket, procedure(const aString: string)

begin

 WriteEntryInLoggingTool(aString);

end);

See? The semi-colon goes on the outside of the closing parenthesis.

看到没有? 上面的分号是放在最后面右括号的外面。（注：是指 end 后面的圆括号，end 后

面没有直接跟分号）

One further thing to note is how anonymous methods are invoked. Above I mentioned about

how all anonymous methods eventually do get a name. In the case above, the ProcessASprocket

procedure has a parameter named Reporter that takes an anonymous method type. At this point,

then, you’ve assigned a name in the local scope to the anonymous method, and thus you can call

it as above: Reporter('This is a string');

我们还需要注意匿名方法是怎么被调用的. 我上面提到关于匿名方法最终是如何得到一个

名字的, 在上面的例子中, ProcessASprocket 方法有一个名

为 Reporter 类型为匿名方法的参数, 在这之后, 你就已经在局部作用域里给了匿名方法一

个名字（Reporter）, 因此你可以这样调用:Reporter('This is a string');

4.3. 为什么(Why)?

If you aren’t already familiar with anonymous methods, you are probably at this point asking,

“Why in the world would you ever want to do something like that – it just looks like a more

complicated way to do what I’m already doing?” That’s understandable – they are a bit complex.

But their use will, as I mentioned above, start you thinking about your code in new, interesting

and powerful ways.

65

如果你对匿名方法还不熟悉，你可能会提出疑问：“ 为什么要用这种方式来做呢- 使用看

起来更复杂的方法去处理我已经做过的事情？”，这好理解--虽然它们是有点复杂，但是它

们却很好用，正如我上面已经提及到的，它们可以让你以新的，有趣及强大的方式来思考你

的代码。

A Simple Example

First, they can be used to define a method signature that your code can call, but that can be

defined later. This enables you to define a class that is open to additional functionality at

run-time by consumers of that class. Here’s an example.

一个简单的例子

首先，它们可以被用来定义方法签名，以便你的代码调用，不过，它们是可以被推迟定义

的。这就允许你可以定义一个开放类，在运行期间来添加消费类提供的附加功能。

这里有一个例子：

Let’s say you want to create a simple calculator. You might do it like this:

比方说，你将创建一个简单的计算器（caclulator）,代码可能像下面这样：

type

TCalculator = class

function Add(x, y: integer): integer;

function Subtract(x, y: integer): integer;

end;

...

function TCalculator.Add(x, y: integer): integer;

begin

Result := x + y;

end;

function TCalculator.Subtract(x, y: integer): integer;

begin

Result := x - y;

end;

Now, this is a pretty straight forward class. But its functionality is fixed, and you can’t do

anything to it except Add and Subtract. That is it. If you want to multiply, you are out of luck. You

have to either add functionality to the class or descend from it and extend its functionality using

inheritance.

这是一个非常直接的类，但是它的功能是固定的，并且你除了加（Add）减（Subtract）之

外不能做其它任何事情。如果你想做乘法，很不幸运，你不得不通过在类中增加功能或者通

过继承的方式来扩展功能。

Either way, you as the developer of the code have to do that. If you are trying to build a

framework that others might want to use, they’d have to alter your framework or use inheritance

to make it do things that they might want it to do, too.

66

无论使用哪种方式，作为这段代码的开发者，你都必须那样去做。如果你试图去构建一个

框架，并且其它人可能使用到，那么他们也就不得不修改你的框架或者通过使用继承的方式

才能做他们想做的事情。

But what if there were a way to provide the ability to extend this class at run-time? What if you

could provide a way for other developers to do other types of calculations without them having

to alter your class? What if someone thinks up a much, much better way to do addition that is so

cool that they want to replace your lame addition algorithm with theirs?

但是，如果有种方法在运用时提供类的扩展的能力呢？如果你能提供为其它的开发者提供

一种方法 在他们不修改类的情况下，去做其它类型的计算呢？如果有想的更周，更好的方

式去做加法（addition），他们就可以去替代你差劲的加法算法(addition algorithm)了，那将太

酷了吧？

Have you guessed yet that anonymous methods let you do all of that and more? Sure you have.

Okay, so take a look at this calculator class:

你已经猜到匿名方法可以让你做所有那样的事，甚至更多？ 我确信你已经猜到。好吧，那

来看看下面这个计算器类：

TIntegerFunction = reference to function(const x, y: integer): integer;

TIntegerCalculator = class

strict private

FList: IDictionary<string, TIntegerFunction>;

procedure RegisterOperators;

public

constructor Create;

procedure RegisterMathOperator(aName: string; aCalculation:

TIntegerFunction);

function Calculate(aName: string; x, y: integer): integer;

end;

...

function TIntegerCalculator.Calculate(aName: string; x, y: integer):

integer;

begin

Result := FList[aName](x, y);

end;

constructor TIntegerCalculator.Create;

begin

inherited;

FList := TDictionary<string, TIntegerFunction>;

RegisterOperators;

67

end;

procedure TintegerCalculator.RegisterOperators;

begin

RegisterMathOperator('Add', function(x, y: integer): integer

begin

 Result := x + y;

end);

RegisterMathOperator('Subtract', function(x, y: integer): integer

begin

Result := x - y;

end);

RegisterMathOperator('Multiply', function(x, y: integer): integer

begin

Result := x * y;

end);

end;

procedure TIntegerCalculator.RegisterMathOperator(aName: string;

aCalculation: TIntegerFunction);

begin

FList.Add(aName, aCalculation);

end;

Okay, so this looks kind of complicated for a calculator. And it is more complicated than the first

demo, but it is of course more capable. Now, you have a class that can do any kind of calculation

on a pair of integers as long as you define and register the function that does it by name.

Internally,it registers three mathematical operations, but of course, anyone using the class can

add any type of calculation that they want. For instance, one only need add the following to

include a Power function:

好的，这里的计算器代码看起来有点复杂，相对于第一个例子（Demo）要复杂的多，但却

更具有扩展性。现在，你已经有了一个类，它可以对两个整数做任何类型的计算,只要你定

义函数并且通过名字注册此函数。在内部，它只是注册了三个类型的数学运算，当然，任何

人都可以在此类上扩展他们想要的任何类型的计算。例如，下面增加了一个包含幂函数

(Power)的代码:

function Power(x, y: integer) : integer;

begin

if y = 0 then

begin

 Result : = 1 ;

end else

begin

 Result : = x * Power(x, y - 1) ;

end;

68

end;

. . .

MyCalculator. RegisterMathOperator(' Power' , function(x, y: integer) : integer

Begin

 Result : = Power(x, y) ;

end) ;

Here are some things to note about the above code:

关于上面的代码，需要注意的事项：

• By adding the Power function, you’ve extended the capabilities of the class without altering

it, and provided a way for the consumers of your code to provide their own implementations

and methods without having to change your class. In fact, the class doesn’t do anything but

provide that capability, really.

通过添加 Power 函数，你就已经扩展了类的功能, 而你并没有修改此类。这为用户提供了

一种方法，不用修改类来而提供他们自己的实现和方法。事实上，类除了提供了扩展性外，

并没有做什么，这是真的。

• And in case you haven’t noticed, that means that your class is following the SOLID¹ principle

of leaving your class open for extension but closed for modification (i.e., the Open/Closed

Principle).

可能你没有注意到,使你的类对扩展开放对修改关闭的做法(即 OCP)意味着你的类遵守了

SOLID 原则(即，开/闭原则，注：开/闭原则为面向对象编程的五项基本原则之一).

• The functions themselves were passed as literals. That is, the method parameter called for an

anonymous method type, and that code was literally entered right into the method call.

函数本身被当作为字符串传人，就是说，该方法参数作为匿名方法类型被调用，并且代码

是按字面意思正确的进入到方法调用。（指调用 方法，通过’ Add’， ‘Subtract’，’Power’）

• Anonymous methods are called as you would expect – by the local name, with any

parameters required passed as parameters normally are.

正如你期待的那样-- 通过本地名称和像普通参数一样传递其所需求的任何参数，来调用匿

名方法。

• Note as well that the implementation of a specific anonymous method must match the

declaration of the anonymous method type. All anonymous methods must be defined before

they can be declared.

同时要注意，特定匿名方法的实现必须与匿名方法类型的申明相匹配.所有匿名方法必须在

申明前被定义。

Anonymous Methods as Variables

匿名方法作为变量

Above we saw anonymous methods being passed as literals. You can also assign code to a

variable and then pass that variable around like any other. The RegisterMathCalculation might be

called like this:

上面我们看到的匿名方法用字符的方式进行传递。你也可以把代码赋值给一个变量然后传

递像传递其他变量一样传递这个变量。RegisterMathCalculation 可以像下面一样调用：

69

Var

 SubtractCalc: TIntegerFunction;

Begin

 SubtractCalc : = function(x, y: integer) : integer

 begin

 Result : = x - y;

 end) ;

 RegisterMathCalculation(' Subtract' , SubtractCalc) ;

end;

In this way, you can treat blocks of code like variables.

这样的话，你可以把一块代码当成变量来对待。

4.4. 闭包(Closures)

By now, you may be saying “Why should I use anonymous methods? I’ve been doing exactly this

with method pointers for years.”. Okay, fair enough. But anonymous methods provide a powerful

feature not supported by mere method pointers – closures.

到目前为止,你可能在想"我为什么要去用匿名方法呢?我用了很多年的方法指针同样

做的很好."好吧,说得对.但是匿名方法提供了方法指针所没有的强力特性 - 闭包.

 A closure is the notion that an anonymous method can capture or “close around” the state of

the method within which they are called. Anonymous methods can reference and thus capture

local variables outside of their specific scope but within the scope in which they are called. In this

way, they are similar to nested functions but are more flexible because they can be called from

outside the scope where they are defined. They will not just capture local variables, but all

variables seen in the current scope, including any variables declared by the object where the

anonymous method resides.

 闭包的概念是指匿名方法能够捕获或者"包围"它所被调用的方法的状态.匿名方法能

够引用和捕获其作用域外的本地变量，但此变量又是调用它的方法（指调用匿名方法）

内的局部变量.这样看来,它们和内嵌函数有些相似,但它们却比它们复杂。因为它们能被

在它们所在定义之外的作用域被调用.它们不但能够捕获局部变量,还能使用当前域的变

量,包括它们所在对象中声明的任何变量.

Keeping with our arithmetic theme, here is a very simple demo of a closure occurring in a

method:

继续我们的运算的主题， 这里有一个非常简单的闭包的 demo，匿名方法出现在一个

方法里：

unit ClosureDemo;

interface

type

TSingleInteger = reference to procedure(x: integer) ;

procedure DoStuff;

 implementation

procedure DoStuff;

70

var

a: integer;

b: integer;

AddFive: TSingleInteger;

Begin

b : = 5;

AddFive : = procedure(x: integer)

Begin

 WriteLn(x + b) ;

end;

for a : = 1 to 10 do

begin

 AddFive(a) ;

end;

end;

end.

This is a very simple example, but it shows what closures do. In this case, a local variable b

exists outside the scope of the AddFive procedure, but b is still available and “captured” inside

the anonymous method. In this way, anonymous methods can participate in the greater scope of

a method in which they are contained.

这是一个非常简单的例子，但是它展示了闭包的功能，这个实例中，本地变量 b 存在

于 AddFive 过程的作用域之外，但是变量 b 对于匿名方法仍旧是有效，可以

被使用。这样，匿名方法能够参与到它所在方法的更高作用域里。

If AddFive were to be passed out of the DoStuff procedure,the value for b would go right along

into the remote call despite being outside the scope of AddFive. It should be noted that these

variables are captured by reference and not by value.

如果 AddFive 是从 DoStuff 过程外部传入,变量 b 的值可以继续传递到远程调用（指

AddFive）中使用，但是却属于 AddFive 外部作用域。需要注意的是这些变量的捕获是

被引用而不是传值。

4.5.标准声明(Standard Declarations)

The Delphi Runtime Library (RTL) declares a number of anonymous procedure and function

types that are “standard” fare for your use in your code. These declarations save you the trouble

of declaring your own types and ensure that a common set of types are used throughout a

module.These declarations are found in the System.SysUtils.pas unit.

Delphi 运行时库(Delphi Runtime Library RTL)申明了一些的匿名过程和函数类型,你

可以代在码中使用这些"标准"类型.这些申明省去了你申明自定义类型的麻烦，并且确保

了整个模块中使用一套通用类型。这些声明可以在 System.SysUtils.pas 单元中找到。

The first is a series of procedures that take up to four parameters:

下面是一些过程的声明，有些过程需要四个参数；

71

type

 TProc = reference to procedure;

 TProc< T> = reference to procedure (Arg1 : T) ;

 TProc< T1 , T2> = reference to procedure (Arg1 : T1 ; Arg2: T2) ;

 TProc< T1 , T2, T3> = reference to procedure (Arg1 : T1 ; Arg2: T2; Arg3: T3) ;

 TProc< T1 , T2, T3, T4> = reference to procedure (Arg1 : T1 ; Arg2: T2; Arg3: T3; Arg4: T4) ;

Notice, of course, that these are parameterized types, allowing the arguments to be of any type

that you want. So for instance, if you want to declare an anonymous procedure that takes a string

and a double as parameters, you can declare:

同时请注意，这些都是参数化的类型，允许你传人想要的任意类型的参数。举例说明，

如果你想声明一个匿名过程，并且使用字符串和双精度作为参数的话，你可以如下声明：

Var

 StringDoubleProc: TProc< string, double> ;

Begin

StringDoubleProc : = procedure(aString: string; aDouble: Double)

Begin

 ShowMessage(aString + ' ' + FloatToStr(aDouble)) ;

end;

end;

The RTL provides declarations for up to four parameters. You can declare your own if you need

more than four, but at that point you might consider refactoring to not require so many

parameters.There are also standard declarations for functions:

RTL 默认提供了最多有 4 个参数的匿名函数标准声明(指 System.SysUtils.pas)。如果你

需要使用超过 4 个参数的函数，那么就需要自己进行声明。但这种情况下你可能更倾向

考虑对函数进行重构，而不是提供更多的参数。下面是 RTL 提供的几个函数标准声明：

TFunc< TResult> = reference to function: TResult;

TFunc< T, TResult> = reference to function (Arg1 : T) : TResult;

TFunc< T1 , T2, TResult> = reference to function (Arg1 : T1 ; Arg2: T2) : TResult;

TFunc< T1 , T2, T3, TResult> = reference to function (Arg1 : T1 ; Arg2: T2; Arg3: T3) : TResult;

TFunc< T1 , T2, T3, T4, TResult> = reference to function (Arg1 : T1 ; Arg2: T2; Arg3: T3; Arg4:

T4) : TResult;

These are declared in a similar manner to the procedures, only because they are functions, they

include a parameterized type that defines the return type for the function. Thus, you can do the

following:

这些声明和过程类似,仅因为他们是函数,所以含有一个参数化类型的函数返回值,因此,

你可以按下面这样做:

function AddIntegers(a, b: integer) : integer;

var

AddFunc: TFunc< integer, integer, integer> ;

Begin

72

AddFunc : = function(x, y: integer) : integer

 begin

 Result : = x + y;

end;

 Result : = AddFunc(a, b) ;

end;

4.6. 一个实际例子(A Practical Example)

One way in which anonymous methods are useful is by simplifying code for common coding

patterns.

For instance, the following code pattern is probably familiar and common:

在常见编码模式中，匿名方法对于简化代码是非常有用的。例如，下面的代码模式是

大家比较熟悉和常见的：

Begin

OldCursor : = GetCurrentCursor;

Try

Cursor : = crHourglass;

// Do some lengthy process that makes you want to show the hourglass cursor

//在此放一些需要长时间处理的代码，以便保证你可以显示出沙漏光标

finally

 Cursor : = OldCursor

 end;

end;

Well, this kind of construct is screaming out for an anonymous method:

 很好，这种类型的结构非常适合匿名方法的使用场景：

procedure ShowHourGlass(Proc: TProc) ;

var

OldCursor: TCursor;

Begin

OldCursor: = Screen. Cursor;

Screen. Cursor:= crHourGlass;

Try

Proc;

Finally

Screen. Cursor : = OldCursor

end;

end;

Then, you can call it like so:

然后，你可以像下面这样调用：

73

ShowHourGlass(procedure

Var

i : integer;

begin

for i : = 1 to 99999999 do;

end) ;

The result is fewer lines of code and a common way to display the hourglass cursor in all

instances.I’m sure you can find other similar patterns in your code where anonymous methods

might prove useful. For instance, if you do threading code, I bet you have a lot of try...finally

blocks with locks, TMonitor, and critical sections that are ripe for using anonymous methods.

上面的代码使用很少的代码和常见方式来显示沙漏光标，此代码可以应用在所有的实

例中。我相信你在自己的代码中能找出类似的模式，这就足以证明匿名方法的实用。例

如，如果你写线程代码，我敢打赌你一定使用了很多的 try...finally 的块和锁，TMonitor

和临界区（Critical Sections）。这显示出使用匿名方法的时机已经到来。

4.7. 另一个很酷的例子（Another, Cooler Example）

The C# guys love to brag about their cool using feature. It’s sort of like a combination of

Delphi’s with and try...finally statements. It defines a particular scope which, when left, will

automatically dispose of the object in question. Delphi doesn’t have this specific language

construct,but by combining anonymous methods and generics, we can provide the same

functionality:

使用 c#的家伙总喜欢吹嘘他们的语言的那些很酷的特性，这些特性,有些类似 Delphi

中 with 和 try...finally 语句块组合，它定义了指定的作用域，当离开作用域时，有问题

的对象将自动销毁。Delphi 没有这样特定的语言结构，但是通过组合匿名方法和泛型，

我们也能提供同样的功能：

Obj = class

class procedure Using< T: class> (O: T; Proc: TProc< T>) ; static;

end;

class procedure Obj . Using< T> (O: T; Proc: TProc< T>) ;

begin

try

 Proc(O) ;

Finally

 O. Free;

end;

end;

This is basically a (sorry) generic way of wrapping up try...finally blocks just like we did with

the cursor above. You can use it like so:

正如上面我们做的那样，这里使用基本的通用方式来包装 Try...finally 代码块。你可以

像下面这样使用：

74

Obj .Using<TStringList> (TStringList.Create, procedure (List: TStringList)

Begin

List. Add(' One') ;

List. Add(' Two') ;

List. Add(' Three') ;

List. Add(' Four') ;

ListBox1.Items := List;

end) ;

This is another good example of using a coding pattern with an anonymous method to make

coding a little easier. In this case, the Obj.Using enables you to set the items in a listbox in a single

step. It can be useful for a small, short-lived object that you need to do something within a single

method.You might want to consider using this technique anytime you create a variable on the

stack. Now I have to be honest and point out that I have taken this example directly from Allen

Bauer’s blog².

这是另一个很好的例子，通过使用匿名方法的编码模式，来使代码更简洁些。在这个

实例中，Obj.Using 允许你在单一步骤中将 Items 值赋给 listbox 对象。 这样，在单个方

法中对小而短的对象做一些事情，是非常有效的。当你在堆栈上创建一个变量时，你可

能会考虑使用这种技术。现在我必须诚实地指出我使用的这个例子直接来自于 Allen

Bauer 的博客。

Anonymous Methods are very flexible

灵活的匿名方法

Since the very beginning, Delphi has had a strong event-driven model. Methods could be

declared with the of object syntax and then they could be assigned object methods to run when

called. A typical event declaration looks like this:

从一开始 Delphi 就拥有强大的事件驱动模型。方法可以通过用 of object 语法来声明，

在调用时，可以将其赋值给对象方法。如下是一个典型的事件声明：

Type

 TNotifyEvent = procedure(Sender: TObject) of object;

then, you could declare a method – and it had to be a method of an object – of type

TNotifyEvent and assign it to a variable of that type.

然后，你可以声明一个方法- 它必须是一个对象方法，并且把它赋值给一个

TNotifyEvent 类型的变量.

property OnClick: TNotifyEvent read FOnClick write FOnClick

Then, your code could call the variable when the event is fired:

当事件触发时，你的代码里就能调用这个变量.

proceduire DoOnClick;

begin

 if Assigned(FOnClick) then FOnClick(Self) ;

75

end;

Where do anonymous methods enter into things here? If you declare a variable as an

anonymous method, you can assign to that variable an anonymous method (of course), a method

reference,and even a regular old stand-alone procedure. This means that you can declare your

event types as anonymous methods, and then have great flexibility in what kind of code you can

assign to those methods.Consider the following code:

匿名方法的使用场景在哪里呢？如果你声明了一个匿名方法变量，你当然会将其赋值

为匿名方法- 一个方法的引用，甚至是已注册过的单独过程。这意味着你能

声明匿名方法的事件类型，你用哪种代码给那些方法赋值拥有很大的灵活性。请考虑

下面的代码。

program AssignAnyProcToAnonMethods;

{$APPTYPE CONSOLE}

uses

System. SysUtils;

Type

TMethodReference = procedure(aString: string) of object;

TAnonMethod = reference to procedure(aString: string) ;

TProcReference = procedure(aString: string) ;

Var

AM: TAnonMethod;

PR: TProcReference;

procedure ProcReference(aString: string) ;

begin

 WriteLn(' I am a Procedure Reference: ' + aString) ;

end;

type

TSomeClass = class

Private

FEvent: TAnonMethod;

Public

procedure MethodReference(aString: string) ;

procedure SetMethodReference(aAnonReference: TAnonMethod) ;

constructor Create;

procedure FireEvent;

property OnEvent: TAnonMethod read FEvent write FEvent;

end;

var

SomeClass: TSomeClass;

constructor TSomeClass. Create;

begin

inherited;

FEvent : = MethodReference;

76

end;

procedure TSomeClass. FireEvent;

begin

if Assigned(FEvent) then

FEvent(' Firing Event') ;

end;

procedure TSomeClass. MethodReference(aString: string) ;

begin

WriteLn(' I am a Method Reference: ' + aString) ;

end;

procedure TSomeClass. SetMethodReference(aAnonReference: TAnonMethod) ;

begin

 FEvent : = aAnonReference;

end;

begin

 PR : = ProcReference;

 AM : = procedure(aString: string)

Begin

WriteLn(' I am an Anonymous Method: ' + aString) ;

end;

SomeClass : = TSomeClass. Create;

Try

SomeClass. SetMethodReference(AM) ;

SomeClass. FireEvent;

SomeClass. SetMethodReference(PR) ;

SomeClass. FireEvent;

SomeClass. SetMethodReference(SomeClass. MethodReference) ;

SomeClass. FireEvent;

 Finally

SomeClass. Free;

 end;

ReadLn;

end.

Here are some things to note about the above code:

关于上面代码的一些注意事项：

• Instead of declaring the event as of object which is typical in the Delphi RTL and VCL, it

declares the event as an anonymous method using reference to.

•使用 reference to 关键字将事件声明为匿名方法,而不是 Delphi RTL 和 VCL 中典型的

做法那样，用 of object 关键字来声明事件.

• The OnEvent event is then assigned three different types of routines, all which have the same

signature: a stand-alone procedure, a method reference, and an anonymous method. All three

are assigned and then run, showing that you can assign any of the three to an anonymous

method reference.

77

•赋值给 OnEvent 事件的三种不同类型的例程，都有相同的标签：独立过程,方法引用和

匿名方法。三种例程都可以被赋值并且运行,这就代表你可以使用三种的任意一个赋值给

匿名函数引用.

• This code illustrates that going forward, you should strongly consider declaring all of your

event types as anonymous methods, which will give you more flexibility in implementing

your events.

•这段代码描绘了未来的趋势，你应大力考虑将代码中事件类型声明为匿名方法，这将

给你在实现事件时带来更大的灵活性。

4.8. RTL 中的匿名方法(Anonymous methods in the RTL)

The Run-time Library in Delphi XE has begun to take advantage of anonymous methods.

DelphiXE 的运行时库已经开始利用匿名方法了。

线程类和匿名方法（TThread and Anonymous Methods）

Just as above, where the using construct provides a means of using a small, discreet type that

needs to perform a task within the local scope, you may have a small discreet chunk of code that

you want to run in a separate thread.First, there is the CreateAnonymousThread method:

class function CreateAnonymousThread(const ThreadProc: TProc): TThread; static;

正如上面所述，构造方法中提供了小而简单的类型，并且需要在局部范围内执行，你

可能会用小而简单的代码块运行在独立线程来实现，首先，这里有一个

CreateAnonymousThread 方法：

class function CreateAnonymousThread(const ThreadProc: TProc): TThread; static;

that will create a thread from your anonymous method. The thread is created suspended, so

you can call start on it as you please. It is also created with FreeOnTerminate set to True, so once

you start the thread, you should “forget” about it and let it run. Again, this can be used as a “fire

and forget”thread for a discrete, small chunk of code that you want to run in a separate

thread.Next, if you need to ensure that your code needs to be synchronized with the rest of your

application (perhaps because it calls VCL code…..) then you can use this overloaded version of

Queue:class procedure Queue(AThread: TThread; AThreadProc: TThreadProcedure);

overload;static;to call code using TThread’s synchronization logic with an anonymous method.

它将在匿名方法里创建线程，线程创建后被设置为挂起状态,你可以在需要时调 start 方

法来启动线程。在线程的 Create 方法中设置 FreeOnTerminate 属性为 True，这样你一旦

启动线程，你可以不用管它并让它自己运行。另外，它还可以被用来当作“fire and forget”

线程处理小且短的代码块，让其在一个独立线程中运行。其次，如果你需要让你的代码

与应用程序的其它部分同步运行（比如可能调用了 VCL 代码），那么你可以使用重载

Queue 版本 Queue:class procedure Queue(AThread: TThread; AThreadProc:

TThreadProcedure); overload;static;，通过 TThread 的同步逻辑和匿名方法来调用代码。

78

4.9. 断言(Predicates)

What is a predicate you ask? Well, it’s simple. A predicate is a specific type of function that takes

a single parameter and returns a Boolean value. It is basically a reference to a method (usually an

anonymous method) that is tied to a type that it takes as a parameter and returns either True or

False. That’s it. Told you it was simple. Okay, I guess there is more to it than that. Most commonly,

a predicate will take the form of an anonymous method. The Delphi RTL declares the following

type:

你会问什么是断言呢？很好，其实它很简单，一个断言就是一个特定类型的函数，它

带有一个参数化类型的 Single 参数，并且返回一个 Boolean 类型的值。它基上来讲就是

一个方法的引用（通过是一个匿名方法），带有某种类型的参数并返回 True 或 False 值，

就这样，很简单吧!

很好，我想可能还有比这更复杂的,但多数情况下，常见的一个断言会采用的匿名方法

的形式。Delphi RTL 申明如下类型：

TPredicate< T> = reference to function (Arg1 : T) : Boolean;

Thus, a predicate is a generic type that takes the parameterized type as a single argument and

returns a Boolean result. Just like I said.

因此，一个断言是一个泛型类型，带有一个参数化类型的 Single 参数，并且返回一个

Boolean 类型的值。正如像我刚说到的.

So What?

By now you are probably asking “So what?” Well, TPredicate allows you to declare things like

this:

那又怎么样使用的呢？到目前为止，你可能正要问“那又怎么样使用呢？”很好，接

下来看下面的使用, 首先 TPredicate 允许你申明如下的变量：

Var

IsLessThan10: TPredicate< integer> ;

Begin

IsLessThan10 : = function(const aValue: integer) : Boolean

Begin

 Result : = aValue < 10;

end;

…

end;

Now you have a nice compact, portable way to determine if a number is less than ten. You can

pass that around to methods and use it to determine if a number is greater or less than ten.

现在你有一个很简洁的、轻便的方式来决定一个数是否小于 10，可以通过把数传递给

它，并使用它来决定一个数是否大于或小于 10.

procedure CheckIsLessThan10;

Var

IsLessThan10: TPredicate< integer> ;

79

i : integer;

begin

 IsLessThan10 : = function(const aValue: integer) : Boolean

Begin

Result : = aValue < 10;

end;

Write(' Enter an integer: ') ;

Readln(i) ;

if IsLessThan10(i) then

begin

Writeln(i , ' is LESS THAN 10') ;

end else

begin

Writeln(i , ' is GREATER THAN OR EQUAL to 10') ;

end;

end;

So your next question is “Why use an anonymous method? Why not just use a regular

function?” Well, predicates can be an elegant replacement for if statements. Not for every if

statement, but for some. For instance, a predicate can answer the question “Should I include you

or not?” on each item in a list of items.Let’s say that your Boss comes to you and asks you to give

him all the numbers from one to 100 that are evenly divisible by seven. You might write your

code like this:

那么你的下一个问题是“为什么要使用匿名方法？为什么不使用一个普通函数呢？”

显然，断言可以优雅的替代 if 语句，虽然不能全部替换，但是至少能替换一部分。例如，

一个断言对于列表中的每一项时,可以回答这个问题-“我是否可以包含你？”让我们假

设一下，你的老板过来要求你找出从 1 到 100 能被 7 整除的数，你可能写成这样的代码：

procedure IsDivisibleBy7;

var

i : Integer;

begin

for i : = 1 to 100 do

begin

 if i mod 7 = 0 then

begin

Write(i , ' , ') ;

end;

end;

 WriteLn;

end;

And that will work great. No sweat. Your boss loves the results, but then he comes and says “Hey,

how about a list of numbers that are less than 25 and divisible by two?” You say sure, and then

you work up a procedure called IsLessThan25, but as you are writing it, you realize that there’s a

pattern here – and that your boss is probably going to keep asking for things like this.

80

它工作的很好，你轻易实现了。但是他又走过来对你说“嘿，怎么样列出小于 25 且被

2 整除的数呢？”你说没有问题，然后实现了一个标示为 IsLessThan25 的过程，但是，

当你在写代码时候，你会突然意识代码模式--老板可能会继续提类似的的要求。

You’re lazy, and you don’t want to keep writing the same routine over and over again with only

minor changes. You know that could become a maintenance nightmare. And then you see the

pattern – the only thing that will change is the boolean statement that you are using. Predicates

to the rescue!

你很懒，你不想因为微小的改动，一次又一次地写同样的例程。你知道，从可维护性

来说讲，那将非常可怕。然后你看这模式 - 唯一要改变的是你使用 boolean 语句。断言

可以来改变这种状况。

procedure OutputMatchingNumbers(aIsQualified: TPredicate< integer>) ;

var

i : Integer;

begin

for i : = 1 to 100 do

begin

 if aIsQualified(i) then

begin

Write(i , ' , ') ;

end;

end;

WriteLn;

end;

And here’s the program for your Boss:

这里的程序满足你老板的要求：

procedure DoOutputMatchingNumbers;

var

IsDivisibleBy7: TPredicate< integer> ;

IsLessThan25DivBy2: TPredicate< integer> ;

Begin

IsDivisibleBy7 : = function(const aInteger: integer) : Boolean

Begin

Result : = aInteger mod 7 = 0;

end;

OutputMatchingNumbers(IsDivisibleBy7) ;

IsLessThan25DivBy2: = function(const aInteger: integer) : Boolean

Begin

 Result : = (aInteger < 25) and (aInteger mod 2 = 0) ;

end;

OutputMatchingNumbers(IsLessThan25DivBy2) ;

end;

Now, when your Boss comes and asks for another output, it becomes nothing more than adding

another predicate and calling it using your standalone function. And who knows what kind of

81

stuff your boss is going to ask for, right? You have a template and a simple function for doing

exactly what he wants, over and over again.

现在，当你的老板过来要求其它的输出，你只要添加另外一个断言并且使用标准函数

调用它，除此之外，不要做其它任何事情。谁又知道你的老板将来会要求其它类型的输

出,是吧？你现在有了一个模板和一个简单的函数，可以准确地一次又一次完成他想要的

实现。

 And not only that, because the solution involves an anonymous method, you have a re-usable

algorithm in case another system requires such a predicate. Okay, so that was a pretty simple yet

illustrative example. By now you should at least have a basic idea of how predicates work. In the

coming chapters, you’ll see a more practical application for them, similar to what we saw above –

similar but more useful.

不仅如此，因为此解决方案包含一个匿名方法，在其他系统需要诸如一个断言的情况下，

你已经有了一个可重用的规则。好吧，这只是一个很简单且有示例性例子。到现在为止，

你至少应该基本概念，知道断言是怎么样工作的。在接下来的章节中，你将会看到更多

它们在实际中的应用，类似于我们上面看到的-但是会更有用。

4.10. 结论（Conclusion）

That’s a brief overview of anonymous methods. You’ll see them again along with generics in

some of the later chapters. This powerful feature enables a lot of cool new constructs and

interesting techniques. The Delphi Spring Framework will make use of them as will the new

DUnitX Unit Testing Framework.

这是一个匿名方法的简要概述。在后面的章节中，你还会看到他和泛型在一起。这强

大的特性允许有很多很酷的新构造和有趣的技术。Delphi Spring 框架将使用它们作为新

的 DUnitX 单元测试框架。

4.11. 与匿名方法的一次访谈（ An Interview with

Anonymous Methods）

Nick: Anonymous Methods, you are a hard guy to find!

Nike：匿名方法，你真是一个很难找到的家伙啊！

AM: Yes, I am. I like it that way.

AM：是啊，我就是喜欢这样不容易被找到哦。

Nick: Well, I appreciate you taking the time to answer my questions, even if it is only over

IM.

Nick：很好，我很感谢你花时间来回答我的问题，哪怕是以 IM 的沟通方式。

AM: Yeah, no problem. You’ll never figure out who I am anyway.

AM：恩，没问题，反正你永远也不会知道我是谁。

Nick: Indeed – so what is up with this whole “no name” thing anyway? How is anyone

supposed to call you?

Nick:确实- 完全“没有名字”又会怎么样？别人怎么调用到你呢？

82

AM: Well, I don’t have a name for a reason. If I had a name you could call me anywhere!

We can’t have that! Because I don’t have a name, I can only be called in the exact places

where my type is asked for. This gives me a lot of power despite the limitation of not having a

name.

AM:嗯，我没有名字是有原因的。如果我有名字你就能在任何地方调用到我！我们不

能那样做！因为我没有名字，我只能在对类型有要求且适合的地方被调用。尽管没有名

字的限制，但这给了我许多的能力。

Nick: Like what? What can you do that a named method can’t?

Nick: 比如说呢?相比有名字的方法，哪些是它们做不到的事？

AM: Well, for starters, I can be assigned to a variable. If you declare a variable of my type,

say TFunc<T, TResult> , then you can pass me around just like any other variable. Watch:

MyAdditionFunction : = function(a, b: integer) begin Result : = a + b; end;

Sweet, huh?

AM:好吧,对于初学者来说,我可以被赋值给变量.如果你定义了属于我类型的一个变量

比如说 TFunc<T, TResult>，然后，你可以把我像其它的变量一样传入，看这里：

MyAdditionFunction : = function(a, b: integer) begin Result : = a + b; end;

酷吧,嗯哼?

Nick: That could be interesting.

Nick:那的确很有趣。

AM: Yeah, it sure is, particularly when you consider I also take advantage of Closures.

AM: 是，这当然是,尤其是当你发现我同时还具有闭包的优点.

Nick: Closures?

Nick:闭包？

AM: Yeah – wherever I am, I can “close” around all the variables that are in my scope, and

those variables go with me wherever you send me. That can be useful and powerful.

AM: 是的 - 无论我在哪,作用域内的变量对我来说是"封闭的",无论你在哪传入给我这

些变量,它们都跟着我走.这非常有用且功能强大.

Nick: Yeah, I can see that. What other advantages do you have because you are anonymous?

Nick：是的,我看到了.作为匿名的你还有其他优点吗?

AM: Well, you can pass me directly as a parameter. No kidding. Like this:

Begin

ProcessAWidget(procedure(aWidget, aWidgetProcessor) begin

 aWidgetProcessor. ProcessWidget(aWidget) end) ;

end;

Let’s see one of those named routines do that! Hoo Hoo Hoo!

 AM:很好，你可以把我作为一个参数直接传递，没开玩笑,就像这样:

 让我们看看有哪一个命名例程可以做到这样!耶!耶!耶! !

Nick: Whoa – settle down, now. So basically, because you have no name, you can act like a

variable.

Nick：哇，请安静。那么基本上可以这样认为，因为你没有名字，所以你可以像一个

变量那样使用。

83

AM: Yeah, that’s pretty much right. The trick is that you just have to define my type via a

specific signature before hand. Then, you can provide any number of instances of code for

that particular type, and go to town.

AM: 是的，这非常正确。其诀窍是，你必须事先通过特定的签名来定义我的类型，然

后你就可以提供许多特定类型的实例代码，热情去做吧!

Nick: And what does that mean?

Nick:那是什么意思？

AM: Well, it means that you don’t have to formally declare all kinds of methods. It means

you can easily choose among different implementations at run-time based on a simple

variable name. For instance, you can create a thread and execute me all in one step – no need

to even create a thread.

AM :嗯，意思是你不必正式地定义所有类型的方法。这意味着当在运行时基于简单变

量名时，你可以很容易选择出不同的实现方式。例如，你可以创建一个线程然后执行

“我”，这只需要一步就行 - 而无需再创建一个线程。

Nick: Whoa, huh?

Nick: 哇, 是吗？

AM: Yeah, TThread has a new class function that does that. Booyah! Try that easily with a

named method!

AM: 是的, TThread 类有一个新的类方法做这个事情。太好了！

你用有名字的方法能简单的做得到么！

Nick: That is cool.

Nick:那太酷。

AM: Damn skippy it is.

AM：对！是的。

Nick: Hey, thanks for stopping by – this is good information.

 Nick:嘿，感谢你配合我的这次走访-这是一个好开头。

AM: Yeah, you’re welcome. Just don’t tell anyone who I am.

AM:耶，不客气。不要告诉任何人我是谁

5. Delphi 集合(Delphi Collections)

5.1 Introduction

Delphi developers should be very familiar with collections, though the term itself can be

misleading.We’ve all used some type of data structure to hold on to a bunch of similar

items, whether it be an array, a TList, or some other similar structure.

However, with the advent of parameterized types as well as the for...in statement, the

types of collections and the things that those collections can do have improved

dramatically. In fact, the generics-based collections are so powerful and preferable, that

we won’t even discuss the nonparameterized collection types in Delphi. This chapter will

cover the basics of those collections and how you can use them to improve your code

84

quality.

The term “collection” is a bit overloaded. In the general sense, it is used to

describe any data structure that is meant to hold and maintain elements of a given type or

interface Lists, stacks, queues, dictionaries and a bevy of other more complex structures

are all collectively called “collections.” However, with Delphi “collection” is itself a

specific type of container – that is, one which contains items in no specific order. I will

endeavor to be clear about my usage of the word.

In this chapter, we’ll discuss two sets of collections: those provided by Delphi out

of the box in the Generics.Collections unit, as well as the collections that come with the

Delphi Spring Framework.

5.2 General Notions about Collections

There are many types of collections. Below is a table covering the most common

types of collections and how they differ:

Collection Type Description/Discussion

Collection A Collection is a group of items in no particular order. In computer science terms,

they are often referred to as a “bag”. You can’t insert items into a specific location in a

collection, only add or remove them. A collection can’t be sorted because it has no

order.

List A list is a group of items in a particular order. Items can be sorted and inserted at any

index position in the list. Lists are array-like. Their elements are numbered from zero

and have a specific index which can be used to find each item.

Delphi Collections 66

Collection Type Description/Discussion

Dictionary A dictionary is a data structure that allows you to “look up” items. Items in the

structure have both a key and a value. A particular value can be found by looking it

up using its associated key. With Delphi’s dictionary, the key can be of any type (it

doesn’t have to be a string as in other languages) and the value can be of any type too.

Stack A stack is a “First In, Last Out” data structure. Think of a spring-loaded stack of plates

at the cafeteria – you “push” plates onto the stack, and then “pop” them off in reverse

order.

Queue A queue is a First In, First Out data structure. Think of an ordinary line that you wait

in, or a tube in which items are inserted at one end and taken out on the other.

These are the only collections we’ll discuss here, as they are the ones provided by both

the

Generics.Collections unit and the Delphi Spring Framework.

5.3 The Delphi-Provided Collections

Delphi includes a unit called System.Generics.Collections. In it is a set of generic

collections that

you can easily use in place of the traditional collections that you’ve used in the past. It

contains the

following types:

85

• TList<T>

• TQueue<T>

• TStack<T>

• TDictionary<TKey, TValue>

In addition, there are descendant classes that can manage the lifetime of the objects that

they contain:

• TObjectList<T>

• TObjectQueue<T>

• TObjectStack<T>

• TObjectDictionary<TKey, TValue>

Further, there are two types that handle their items via threading:

• TThreadList<T>

• TThreadedQueue<T>

All of these collections, with the exception of TThreadList and TThreadedQueue are able to

be used

with Delphi’s for...in syntax. (The “why” and “how” of this will be discussed below.)

Delphi Collections 67

TList<T>

TList<T> is probably the most commonly used of all the collections. As noted above, it is

a collection

that provides indexing, insertion, deletion, exchanging, searching, and sorting. Because it

is generic,

it can keep track of literally any type that you want, while remaining completely type

safe. It

probably will become the “workhorse” of your collections arsenal.

Here is a simple example that shows the basics of what TList<T> can do:

unit uListDemo;

interface

procedure DemoList;

implementation

uses

Generics.Collections

;

type

TIntegerList = TList< integer> ;

procedure OutputList(aMessage: string; aIntegerList: TIntegerList);

var

i: integer;

begin

Write(aMessage, ' , the list is: ');

for i in aIntegerList do

begin

Write(i, ' , ');

86

end;

WriteLn;

end;

procedure DemoList;

var

IntegerList: TIntegerList;

Temp: Integer;

i: integer;

begin

IntegerList := TIntegerList.Create;

Delphi Collections 68

try

for Temp := 1 to 10 do

begin

IntegerList.Add(Temp);

end;

OutputList(' At the start' , IntegerList);

for i in IntegerList do

begin

if i mod 2 = 0 then

begin

IntegerList.Remove(i);

end;

end;

OutputList(' After removing even numbers' , IntegerList);

// Insert 42 where the evens were

for Temp := 1 to 9 do

begin

if Temp mod 2 = 0 then

begin

IntegerList.Insert(Temp, 42);

end;

end;

OutputList(' After inserting 42' , IntegerList);

IntegerList.Sort;

OutputList(' After sorting' , IntegerList);

finally

IntegerList.Free;

end;

end;

end.

As you can see, the list can be manipulated in almost any way you want. The demo

above illustrates

how you can easily create a list of integers without having to declare a completely

87

separate class

each time, and without any type-casting.

TStack<T>

Delphi’s collections also include TStack<T> , which provides the normal functionality of

this classic

data structure. You can push items onto the stack and pop them off in a Last In, First Out

(LIFO)

Delphi Collections 69

manner. A stack is often illustrated by the spring-loaded stack of plates at a cafeteria,

where you

“push” plates down onto the stack of plates, and customers “pop” them off the top in the

reverse

order that they were put in.

Interestingly, a fun test of a stack is to see if it can detect palindromes. A palindrome is a

word,

phrase or any sequence of letters that reads the same forwards and backwards. Since a

stack pushes

things in one direction and then pops them off in reverse order, a stack can be used to

detect if a

given string is a palindrome.

unit uStackDemo;

interface

function IsPalindrome(const aString: string) : Boolean;

implementation

uses

Generics. Collections

, System. SysUtils

, Character

;

type

TCharStack = TStack< Char> ;

function IsPalindrome(const aString: string) : Boolean;

var

Stack: TCharStack;

C: Char;

TempStr: string;

i : integer;

CharOnly: string;

begin

Stack : = TCharStack. Create;

try

for C in aString do

begin

88

if TCharacter. IsLetter(C) then

Stack. Push(TCharacter. ToLower(C)) ;

end;

TempStr : = ' ' ;

Delphi Collections 70

for i : = 0 to Stack. Count - 1 do

begin

TempStr : = TempStr + Stack. Pop;

end;

CharOnly : = ' ' ;

for C in aString do

begin

if TCharacter. IsLetter(C) then

CharOnly : = CharOnly + C. ToLower;

end;

Result : = TempStr = CharOnly;

finally

Stack. Free;

end;

end;

end.

This code demonstrates the basic functionality of TStack<T> . Each individual character

of the given

string is “pushed” down onto the stack, and then they are “popped” off in reverse order.

In addition, the class provides the ability to Peek at the next item on the stack without

removing it.

And of course, being a parameterized collection, it can contain elements of any single

type with full

type safety.

5.4 TQueue<T>

TQueue<T> is similar to a stack, but instead of a LIFO process, it uses a FIFO process,

“First In, First

Out”. I like to think of it as a tube where you put golf balls in one end and then let them

roll through

to the other end. The first golf ball you put in is the first one that comes out the other end,

and the

rest “wait their turn” to come out after the first ones.

A common use for queues is to hold on to tasks that are yet to be done. A simple demo

might be

to track maintenance requests at an apartment building. There might be any number of

requests

that come in for things to be fixed, and to be fair, you want to fix them in the order that

they are

89

received. Thus, a very simple system might look something like this:

Delphi Collections 71

unit uQueueDemo;

interface

uses

Generics.Collections

;

type

TWorkOrder = record

Description: string;

constructor Create(aDescription: string);

end;

TWorkOrderQueue = TQueue< TWorkOrder> ;

procedure DoRepairs;

implementation

procedure DoWorkOrder(aWorkOrder: TWorkOrder);

begin

WriteLn(' I am now doing this job: ' , aWorkOrder.Description);

end;

procedure DoRepairs;

var

WorkOrderQueue: TWorkOrderQueue;

i: Integer;

begin

WorkOrderQueue := TWorkOrderQueue.Create;

try

// Orders come in

WorkOrderQueue.Enqueue(TWorkOrder.Create(' Fix the sink in #543'));

WorkOrderQueue.Enqueue(TWorkOrder.Create(' Repair air conditioner in #156' \

));

//Time for one item

DoWorkOrder(WorkOrderQueue.Dequeue);

// More orders come in!

WorkOrderQueue.Enqueue(TWorkOrder.Create(' Stock the public bathroom'));

Delphi Collections 72

WorkOrderQueue.Enqueue(TWorkOrder.Create(' Fix door handle on #307'));

WorkOrderQueue.Enqueue(TWorkOrder.Create(' Catch mouse in #124'));

WorkOrderQueue.Enqueue(TWorkOrder.Create(' Repair the refrigerator in #402\

'));

// I can squeeze one in!

DoWorkOrder(WorkOrderQueue.Dequeue);

// More work!!!

WorkOrderQueue.Enqueue(TWorkOrder.Create(' Unplug toilet in #109'));

WorkOrderQueue.Enqueue(TWorkOrder.Create(' Repair Carpet in #405'));

90

WorkOrderQueue.Enqueue(TWorkOrder.Create(' Replace bathroom doorknob in #3\

22'));

WorkOrderQueue.Enqueue(TWorkOrder.Create(' Repair air conditioner in #143' \

));

// All right, let's finish them all

while not WorkOrderQueue.IsEmpty

begin

DoWorkOrder(WorkOrderQueue.Dequeue);

end;

finally

WorkOrderQueue.Free;

end;

end;

{ TWorkOrder }

constructor TWorkOrder.Create(aDescription: string);

begin

Description := aDescription;

end;

end.

This simple example shows how a queue can be used to line things up for later use.

Delphi Collections 73

TDictionary<TKey, TValue>

TDictionary<TKey, TValue> is a powerful collection type. It is a container that stores

key/value

pairs, such that you can retrieve a value by using its key to search for it. Its strength lies

in the fact

that it is a generic type and that both the key and the value can be of any type at all. For

instance,

you could have a dictionary that had a TLabel as the key and a TButton as the value.

For a simple example, we’ll create a TDictionary<string, double> that will track student’s

grade

point averages (GPA). In it, we can add students with their GPAs, look those GPAs up,

and then

change them.

unit uDictionaryDemo;

interface

uses

Generics. Collections

;

type

TStudentGPADictionary = TDictionary< string, double> ;

procedure ProcessStudents;

implementation

91

uses

System. SysUtils

;

procedure ReportOnStudents(aStudents: TStudentGPADictionary) ;

var

Student: string;

begin

for Student in aStudents. Keys do

begin

WriteLn(Student, ' has a ' , Format(' %.2f' , [aStudents[Student]]) , ' GPA. ' \

) ;

end;

end;

procedure ProcessStudents;

Delphi Collections 74

var

StudentGPADictionary: TStudentGPADictionary;

begin

StudentGPADictionary : = TStudentGPADictionary. Create;

try

// Add some students

StudentGPADictionary. Add(' Sally Superstar' , 4.0) ;

StudentGPADictionary. Add(' Harry Hardworker' , 3.73) ;

StudentGPADictionary. Add(' Andy Average' , 2.55) ;

StudentGPADictionary. Add(' Freddy Failure' , 1.01) ;

// Report out on students

ReportOnStudents(StudentGPADictionary) ;

WriteLn;

WriteLn(' Oops, we miscalculated!.... ') ;

StudentGPADictionary[' Andy Average'] : = 2.62;

StudentGPADictionary[' Harry Hardworker'] : = 3.70;

// Report out on students

ReportOnStudents(StudentGPADictionary) ;

WriteLn;

finally

StudentGPADictionary. Free;

end;

end;

end.

Some things to note:

• Items in a dictionary are not stored in any particular order.

• Enumerating over the items will not necessarily produce them in the same order in

which

they were entered.

92

Object Collections

All of the collections above have descendants that allow you to manage objects (i.e.,

TObjectList<T> ,

TObjectStack<T> , TObjectQueue<T> , and TObjectDictionary<TKey, TValue> . These classes

behave

exactly like their parents, except they are specifically designed to contain objects. You

can, via the

constructor or the OwnsObjects property, tell the container that it is the owner of the

contained

classes – that is, when the OwnsObjects property is True, the container is responsible for

freeing the

objects it contains. If OwnsObjects is False, then TObjectList<T> is basically the same as

‘TList

Delphi Collections 75

5.5 Collections in the Delphi Spring Framework

The Spring.Collections unit in the Delphi Spring Framework contains a similar set of

functionality

as does Generics.Collections, but it is more powerful and flexible in a number of

significant ways.

The collections classes in Spring4D are similar enough and perform basically the same

as the ones

in the Delphi RTL that I won’t spend a lot of time covering the specifics. I will however,

highlight

some of the differences and additional capabilities provided by Spring4D.

General Discussion

The Collections in Spring4D are all accessible through the Spring.Collections unit. The

various

collections themselves are implemented in other units, but you should never need to use

them. Why?

Because Spring.Collections defines a set of interfaces that give you access to all the

functionality

of the other units. All the collections in Spring4D are accessed via interfaces, making

them more

flexible and easier to use than classes.

Further, the collections can all be created by a factory class called TCollections, which is a

collection

of class methods that return implementations of the various collections. This class will

provide

instances for most of the collection types that you will need. If you do need to create a

collection

with a specific constructor, you can add the specific implementing units to your project

93

and call them

from that unit. However, you should always access the Spring4D collections via their

interfaces.

For instance, if you want to create an IQueue<T> , all you need to do is the following:

var

MyQueue: IQueue< string>

begin

MyQueue : = TCollections. CreateQueue< string> ;

. . .

end;

Spring4D provides the following collection interfaces:

Non-generic collections:

• ICollection

• IList

• IDictionary

• IStack

• IQueue

• ISet

Delphi Collections 76

These types are useful in that they can contain TValue types – a variant-like data structure

that is

part of the new Delphi RTTI.

In addition, Spring4D has these generic collections that can hold any type:

• ICollection<T>

• IList<T>

• IDictionary<T>

• IStack<T>

• IQueue<T>

• ISet<T>

Of course, Spring4D also provides complete implementations of these classes as well as

easy access

to those implementations via the TCollections factory.

These interfaces behave in the same general way as their counterpart classes in the

Delphi RTL, with

one big exception – the IEnumerable<T> interface. In Spring4D, IEnumerable<T> is a very

powerful,

feature-rich interface that is implemented by all the generic collections in Spring4D.

IEnumerable<T>

is so cool that I’ll devote a whole chapter to it.

Two Collection Types Not Yet Covered

Spring4D has two collection types that aren’t found in the set of Delphi generic

collection types –

ICollection<T> and ISet<T> .

94

ICollection<T> is the most basic collection type there is – it merely contains items in no

particular

order. I’ve seen this collection type called a “bag” or a “bucket” before. All you can do is

Add and

Remove items from the collection, as well as iterate over all of them. That’s it – no

sorting, ordering,

inserting at specific locations or any of the other things that a List will do. The only way

to get at

the items is by enumerating them.

ISet<T> is probably what you’d expect – a set-like collection that allows you to

determine and create

relationships between two collections. ISet<T> descends from ICollection<T> and adds the

ability

to treat collections as sets. You can determine the union and intersection of two

collections, as well

as whether the two collections overlap or not. You can merge two collections together or

create a

new collection that is the intersection of the two.

5.6 Why you should be using the Spring4D Collections

I recommend that you use the collections in the Spring.Collections.pas unit instead of the

ones

that come with the Delphi RTL. I do so for the following reasons:

• The Spring4D collections are interface-based and are thus easier to manage in your

code.

• They all implement Spring4D’s IEnumerable<T> . As we’ll see in the next chapter, this

is a

powerful interface for managing, iterating, and using collections.

• They provide two collections that are not provided by the Delphi RTL – ICollection and

ISet.

Delphi Collections 77

5.7 Conclusion

Collection classes are a common and necessary part of development. When combined

with generics

and interfaces, they become a very powerful coding tool. In the next two chapters we’ll

see ways to

make collections even more powerful by using enumeration and IEnumerable<T>

6. Delphi 中的枚举(Enumerators in Delphi)

6.1 Introduction

95

I’ve talked about how these collections can work with Delphi’s for...in syntax. But how

do you

make your own classes work with the for...in statement?

Well, it’s pretty easy. In order to do so, you need to provide these four things.

1. A class or record that will enumerate within for...in must provide a function called

GetEnumerator() .

2. The GetEnumerator function must return a class, record, or implemented interface that

has

the following:

3. A method called MoveNext that returns a Boolean indicating whether the end of the

collection

has been reached or not

4. A read-only property called Current that indicates the item that is currently being

“looked

at” as the enumeration occurs.

That’s a bit convoluted, so at this point a simple demo would be helpful, no?

You can already enumerate the characters in a string, but it’s a simple example, and so

how about

we create an enumerator that runs through the characters in a string?

TForInDemoClassEnumerator = class

private

FString: string;

FIndex: integer;

protected

function GetCurrent: Char; virtual ;

public

constructor Create(aString: string) ;

function MoveNext: Boolean;

property Current: Char read GetCurrent;

end;

TForInDemo = class

private

FTheString: string;

Enumerators in Delphi 79

procedure SetTheString(const Value: string) ;

public

constructor Create(aString: string) ;

function GetEnumerator: TForInDemoClassEnumerator;

property TheString: string read FTheString write SetTheString;

end;

This code declares two classes. The first class is the enumerator – the class that does the

work of

moving over each item, and which will be returned by the call to GetEnumerator. The

second is

96

the class that will be enumerated. Notice, too, that TForInDemoClassEnumerator has the

read-only

property Current with the reader GetCurrent and MoveNext methods. The TForInDemo

class has a

call to GetEnumerator that returns an instance of TForInDemoClassEnumerator.

First let’s look at TForInDemoClassEnumerator. You create it by passing the constructor the

item to

be enumerated – in this case a string. Hence, the constructor:

constructor Create(aString: string) ;

Here is the implementation of the MoveNext method:

function TForInDemoClassEnumerator. MoveNext: Boolean;

begin

Result : = FIndex < FString. Length;

if Result then

begin

Inc(FIndex) ;

end;

end;

This code does two things. First, it sets the result. The function returns True if the

enumerator is

able to move to the next item, and False if it has reached the end of the items to be

enumerated. In

this case, it merely checks to see the index is before the length of the string. If the end

has not yet

been reached, it just increases the FIndex field. So its job is to move the index along, and

report if

the end has been reached.

The actual item itself is returned by the GetCurrent method, which is self-explanatory:

function TForInDemoClassEnumerator. GetCurrent: Char;

begin

Result : = FString[FIndex] ;

end;

Enumerators in Delphi 80

One thing that should be noted is that MoveNext is called before the Current property is

accessed for

the first time. This can trip you up and cause off-by-one errors if you aren’t aware of this.

Be very

careful when implementing your enumerators, as it is easy to make a mistake.

And that is it for the enumerator. It’s pretty simple. But we’ll soon see that you can do

some cool

things with these enumerators because you have complete control over how they return

the data

that they are enumerating over.

The next step is to see how the actual class to be enumerated provides its enumerator to

97

the compiler.

When the compiler builds the for...in loop construct, it looks at the in part of the construct

and

thinks “Hey, I need an enumerator here, so I’ll call GetEnumerator”. If the item in

question indeed

has a method called GetEnumerator, it calls it, and all is well. If not, the compiler raises an

error

because the type in the in part of the for...in loop isn’t able to be enumerated.

But of course, our TForInDemo class has such a method, and it is quite simple:

function TForInDemo. GetEnumerator: TForInDemoClassEnumerator;

begin

Result : = TForInDemoClassEnumerator. Create(FTheString) ;

end;

It merely creates and returns an instance of our enumerator, passing it the string value it

is storing

for the purpose of enumerating. Pretty easy and straight-forward, really.

Now that we’ve created all these classes, you can run the following code:

procedure DoStuff;

var

ForInDemo: TForInDemo;

C: Char;

begin

ForInDemo : = TForInDemo. Create(' HelloWorld') ; ;

try

for C in ForInDemo do

begin

Write(C, ' , ') ;

end;

WriteLn;

finally

ForInDemo. Free;

end;

end;

Enumerators in Delphi 81

6.2 IEnumerator<T> Interface

Now, the above discussion talks a lot about specific methods that must be included as

part of

an enumerator and as part of a class that wants to be enumerated. And of course, that

should

immediately make you think “Interfaces!” And sure enough, there are some nice

interfaces that

fall out of this (You knew I’d work interfaces into things here eventually, didn’t you? Yes,

you did.).

98

Consider this interface:

type

IEnumerator< T> = interface

[' {DD445F01-975D-405E-BCC1-09D3E78CB0FF} ']

function GetCurrent: T;

function MoveNext: Boolean;

property Current: T read GetCurrent;

end;

That should look awfully familiar. It’s the exact two methods and one property needed to

implement

an enumerator – hence the name.

I’ve declared this IEnumerator<T> interface myself, but the Delphi RTL includes a similar

one in

the System.pas unit. And at its base, IEnumerable<T> is all about implementing the

GetEnumerator

method.

It leverages generics because the type of what is being enumerated doesn’t matter as far

as the

interface is concerned. And remember when I said that a call to GetEnumerator could

return an

interface? Well it can, and the compiler will happily use an IEnumerator<T> to implement

the

for...in loop.

Thus, your enumerators can implement this interface and your calls to GetEnumerator can

return

this interface, and you can add flexibility to how they are implemented. Here’s an

example:

TStringEnumerator = class(TInterfacedObject, IEnumerator< Char>)

private

FIndex: integer;

FString: string;

function GetCurrent: Char;

public

constructor Create(aString: string) ;

function MoveNext: Boolean;

property Current: Char read GetCurrent;

end;

TInterfaceEnumeratorDemo = class

Enumerators in Delphi 82

private

FTheString: string;

procedure SetTheString(const Value: string) ;

public

constructor Create(aString: string) ;

99

function GetEnumerator: IEnumerator< Char> ;

property TheString: string read FTheString write SetTheString;

end;

Notice that the call to GetEnumerator returns an IEnumerator<Char> which is actually the

individual

type being iterated. In this case, the generic type needs to be the same type as the

variable being

returned in the for part of the for...in loop.

This enables you to do the following:

procedure DoInterfaceStuff;

var

InterfacedEnumerator: TInterfaceEnumeratorDemo;

c: Char;

begin

InterfacedEnumerator : = TInterfaceEnumeratorDemo. Create(' GoodbyeWorld') ;

try

for c in InterfacedEnumerator do

begin

Write(C, ' , ') ;

end;

WriteLn;

finally

InterfacedEnumerator. Free;

end;

end;

6.3 Specialized Enumerators

The implementation of an enumerator is, as I mentioned, really simple. But what if you

wanted to

get a little creative in the GetCurrent method? After all, at that point you have complete

control

over what the enumerator returns. In our simple case with characters and strings, what if

we decided

to, say, always return the uppercase version of the character? Or if we were iterating over

integers,

return the squares of the numbers in the collection? That would be super easy, right? Well,

yes, it

would.

Consider this code:

Enumerators in Delphi 83

TForInDemoClassUpperCaseEnumerator = class(TForInDemoClassEnumerator)

protected

function GetCurrent: Char; override;

end;

100

. . .

function TForInDemoClassUpperCaseEnumerator. GetCurrent: Char;

begin

Result : = UpCase(inherited GetCurrent) ;

end;

This class descends from TForInDemoClassEnumerator and overrides the existing

enumerator for

our demo class and returns the uppercase of the character in question.

If we wanted, we could return this class from our GetEnumerator call, but that would be

sort of

playing a trick on the user of our code. How about if we provide two different

enumerators, and

then make each available for enumeration in a for...in loop. Surely that is possible, right?

Of

course it is.

First, we’ll look at the end result and then work our way backwards to see how it was

implemented,

because you have to play a little trick to expose more than one enumerator for a class:

procedure DoMoreStuff;

var

C: Char;

ForInExtraDemo: TForInDemoExtraIterators;

begin

ForInExtraDemo : = TForInDemoExtraIterators. Create(' Greetings') ;

try

for C in ForInExtraDemo. AsUpperCase do

begin

Write(C, ' , ') ;

end;

WriteLn;

end;

This little routine will display the string “Greetings” as G,R,E,E,T,I,N,G,S in the console.

But note

in the for...in loop that the actual class is not passed to the in clause, but a method that

returns a

“proxy” class that has the desired enumerator attached to it instead. This is implemented

as follows:

Enumerators in Delphi 84

TUpperCaseEnumeratorProxy = class

private

FOwner: TForInDemo;

public

constructor Create(aOwner: TForInDemo) ;

function GetEnumerator: TForInDemoClassUpperCaseEnumerator;

101

end;

. .

constructor TUpperCaseEnumeratorProxy. Create(aOwner: TForInDemo) ;

begin

inherited Create;

FOwner : = aOwner

end;

function TUpperCaseEnumeratorProxy. GetEnumerator: TForInDemoClassUpperCaseEnum\

erator;

begin

Result : = TForInDemoClassUpperCaseEnumerator. Create(FOwner. TheString) ;

end;

This is just another class that can be enumerated – it has a call to GetEnumerator – and

thus be

returned by a method call on our “real” enumerating class. It returns an instance of an

enumerator

called TForInDemoClassUpperCaseEnumerator which we looked at above. So, if you want

to iterate

over the upper case version of the strings, you call it as we did in the DoMoreStuff method

above.

The trick here is that instead of iterating over the class itself, you iterate over the proxy

class using

ForInExtraDemo.AsUpperCase. It’s a neat little trick, eh?

Thus, the enumerating class becomes:

TForInDemoExtraIterators = class(TForInDemo)

private

FUpper: TUpperCaseEnumeratorProxy;

public

constructor Create(aString: string) ;

property AsUpperCase: TUpperCaseEnumeratorProxy read FUpper;

end;

. . .

constructor TForInDemoExtraIterators. Create(aString: string) ;

begin

inherited Create(aString) ;

FUpper : = TUpperCaseEnumeratorProxy. Create(Self) ;

end;

Enumerators in Delphi 85

So, that should give you a little insight into what happens with for...in loops and how you

can

create classes that participate automatically. As you can see, there is some power there,

and in the

rest of this chapter and the next, we’ll be building on this principle to look at some

interesting uses

102

of this ability to enumerate.

6.4 TEnumerable<T> in Generics.Collections

All of the collections above descend from a class called TEnumerator<T> . In the Delphi

RTL,

TEnumerator<T> is an abstract class that defines two methods that needs to be overridden,

namely

DoGetCurrent and DoMoveNext. What each does should be self-explanatory based on what

we’ve

seen in this chapter. Each of the generic collections has a nested type called TEnumerator

that

overrides and implements these methods.

Similar to what we just did in the previous section, DoGetEnumerator returns an instance

of

TEnumerator<T> which in turn defines the methods needed for an enumerator. Those

methods are

DoCurrent, which gets the current item and returns it via the Current property, and

MoveNext, which

returns a boolean that indicates whether or not the enumerator was able to move to the

next item.

Thus, as a result of descending from TEnumerable<T> , the non-threaded collections are

usable with

Delphi’s for...in syntax.

Note that an enumerator doesn’t guarantee that the items will be returned in any given

order, just that every item will be returned once.

6.5 Conclusion

Enumerators are a powerful tool to use with your collections. They enable you to control

access to

the elements of a collection and to retrieve them out of the collection under your own

terms.

7. IEnumerable

In the Collections chapter, I talked about the Spring4D collections, and how they all

implement

IEnumerable<T> . This interface and its implementation is so cool that it requires its own

chapter.

Normally, one of the common things that you’ll want to do with a collection is to iterate

over the

contained items in search of a specific subset. Sometimes you want the first five of them.

Sometimes

you want all the even ones, or all the items that start with ‘k’.

103

For instance, let’s say you have a collection of integers, and you want to find out which

one of them

is the biggest. The classic solution has usually been something like this:

program ListEnumerableDemo;

{$APPTYPE CONSOLE}

uses

System. SysUtils

, Spring. Collections;

var

List: IList< Integer> ;

i , Biggest: integer;

begin

List : = TCollections. CreateList< integer> ;

List. AddRange([1 , 6, 2, 9, 54, 3, 2, 7, 9, 1]) ;

Biggest : = MaxInt - 1 ;

for i : = 0 to List. Count - 1 do

begin

if List[i] > Biggest then

begin

Biggest : = List[i] ;

end;

end;

WriteLn(' The biggest is: ' , Biggest) ;

end.

That’s really conventional, and will certainly get the job done. But in this day and age,

that’s the

“old-fashioned” way to do it. Wouldn’t it be so much more fun to do it in one line of

code, like this:

IEnumerable 87

program ListEnumerableDemo;

{$APPTYPE CONSOLE}

uses

System. SysUtils

, Spring. Collections;

var

List: IList< Integer> ;

begin

List : = TCollections. CreateList< integer> ;

List. AddRange([1 , 6, 2, 9, 5487, 3, 2, 7, 9, 1]) ;

WriteLn(List. Max) ;

ReadLn;

end.

Now that is how you find something in a collection. There doesn’t even appear to be any

looping

104

going on at all. Obviously somewhere the list is being iterated over, but it’s all been

abstracted away

for you. You want the maximum value to be found in the list? Just ask for it. Cool.

The key part above, of course, is the use of two things. First, the IList<T> – an interface

to a generic

list – and secondly, the IEnumerable<T> which descends from IEnumerable. Both are

defined in the

Spring.Collections unit.

Again, I should point out that this entire chapter is based on the collections unit of the

Spring4D framework. While the Delphi RTL contains a set of generic collections, they

are much more limited in functionality than what Spring4D provides. It’s implementation

of IEnumerable<T> for instance, is much more powerful and complete – and closer

to what .Net provides.

7.1 IEnumerable<T>

Those of you who also use .Net are probably familiar with IEnumerable<T> already, but

perhaps

you didn’t know that much of the same power was available to you in your Delphi code.

For those

of you not familiar, you are in for a treat.

The IEnumerable<T> interface is implemented by all of the classes discussed in the

previous

chapter, and so any of them can be accessed as an IEnumerable<T> . Here is the

declaration of

IEnumerable<T> :

IEnumerable 88

IEnumerable< T> = interface(IEnumerable)

function GetEnumerator: IEnumerator< T> ;

function AsObject: TObject;

function TryGetFirst(out value: T) : Boolean;

function TryGetLast(out value: T) : Boolean;

function First: T; overload;

function First(const predicate: TPredicate< T>) : T; overload;

function FirstOrDefault: T; overload;

function FirstOrDefault(const defaultValue: T) : T; overload;

function FirstOrDefault(const predicate: TPredicate< T>) : T; overload;

function Last: T; overload;

function Last(const predicate: TPredicate< T>) : T; overload;

function LastOrDefault: T; overload;

function LastOrDefault(const defaultValue: T) : T; overload;

function LastOrDefault(const predicate: TPredicate< T>) : T; overload;

function Single: T; overload;

function Single(const predicate: TPredicate< T>) : T; overload;

function SingleOrDefault: T; overload;

105

function SingleOrDefault(const predicate: TPredicate< T>) : T; overload;

function ElementAt(index: Integer) : T;

function ElementAtOrDefault(index: Integer) : T;

function All (const predicate: TPredicate< T>) : Boolean;

function Any(const predicate: TPredicate< T>) : Boolean;

function Contains(const item: T) : Boolean; overload;

function Contains(const item: T; const comparer: IEqualityComparer< T>) : Boolean\

; overload;

function Min: T;

function Max: T;

function Where(const predicate: TPredicate< T>) : IEnumerable< T> ;

function Skip(count: Integer) : IEnumerable< T> ;

function SkipWhile(const predicate: TPredicate< T>) : IEnumerable< T> ; overload;

function SkipWhile(const predicate: TFunc< T, Integer, Boolean>) : IEnumerable< T> \

; overload;

function Take(count: Integer) : IEnumerable< T> ;

function TakeWhile(const predicate: TPredicate< T>) : IEnumerable< T> ; overload;

function TakeWhile(const predicate: TFunc< T, Integer, Boolean>) : IEnumerable< T> \

; overload;

function Concat(const collection: IEnumerable< T>) : IEnumerable< T> ;

function Reversed: IEnumerable< T> ;

procedure ForEach(const action: TAction< T>) ; overload;

procedure ForEach(const action: TActionProc< T>) ; overload;

procedure ForEach(const action: TActionMethod< T>) ; overload;

IEnumerable 89

function EqualsTo(const collection: IEnumerable< T>) : Boolean; overload;

function EqualsTo(const collection: IEnumerable< T> ; const comparer: IEqualityCo\

mparer< T>) : Boolean; overload;

function ToArray: TArray< T> ;

function ToList: IList< T> ;

function ToSet: ISet< T> ;

function GetCount: Integer;

function GetIsEmpty: Boolean;

property Count: Integer read GetCount;

property IsEmpty: Boolean read GetIsEmpty;

end;

That’s a lot of cool stuff, right? Many of the methods here are pretty clear – it’s pretty

obvious what

the Min and Max methods do. But some of the others are a bit trickier. You can get all of

the items.

You can get the First and Last items. You can get the first “x” number of items. You can

get the

items back out as a List, an Array, or a Set. And most powerfully, you can get any

particular group

106

of the items using a predicate.

7.2 Predicates

Remember our humble little predicates from a previous chapter? The anonymous method

type

declared as:

TPredicate< T> = reference to function(const value: T) : Boolean;

Well, they are about to become really important and useful. IEnumerable<T> uses them

frequently

and effectively. Remember the example of “included or not?” Well, that’s what

IEnumerable<T> is

really good at. It holds an iteration of things. You pass a predicate, and it can determine if

you want

the items to be part of the result or not. If the predicate is True, then the individual item is

“in”, or

included. If it is “out”, then the predicate will return False, or excluded. So if you want to

get all the

items in a list strings that contain the letter ‘z’, then you can do the following:

IEnumerable 90

function ContainsLetterZ: IEnumerable< string> ;

var

List: IList< string> ;

begin

List : = TCollections. CreateList< string> ;

List. AddRange([' zoo' , ' park' , ' city' , ' town' , ' museum' , ' jazz festival ']) ;

Result : = List. Where(function(const aString: string) : Boolean

begin

Result : = aString. Contains(' z') ;

end) ;

end;

The above uses the Where method to determine items that should be returned as part of a

new

IEnumerable<string> . The above is saying “return to me an enumerable item where all the

strings

in the list have ‘z’ in them.”

You can do similar things with the TakeWhile method, which returns items from the start

of the

list as long as the predicate is True, and stops once the predicate is False. You can

determine if a

given container has or doesn’t have a given element. You can Skip over a given number

of elements

and take the rest. You can use a predicate to SkipWhile a certain thing is true, and then

return the

rest once the predicate returns True. Basically, once you have a reference to a collection

107

or any

IEnumerable<T> instance, you can get out of it pretty much anything you want using

predicates.

Another nice feature here is that many of the functions in IEnumerable<T> return an

IEnumerable<T> ,

enabling you to chain them together if you like, such as:

for Element in List. Skip(1) . Take(10) do…

You can even combine them with predicates to return desired values. For instance, the

following

code returns the first even number in a given list:

List. Where(function(Num: Integer)

begin

Result : = Num mod 2 = 0;

end) . First() ;

Here is a simple table that describes what each of the methods of IEnumerable<T> does.

When I refer

to “the collection” in this table, I’m referring to the collection that is represented by the

instance of

IEnumerable<T> .

IEnumerable 91

Method Description

function GetEnumerator: IEnumerator<T>; Returns the enumerator for the collection in case

you want to enumerate the items yourself.

function AsObject: TObject; Returns an instance to the collection itself.

function TryGetFirst(out value: T): Boolean; Returns True if the first item in the collection can

be found, and False if it cannot. The item itself is

returned in the out parameter.

function TryGetLast(out value: T): Boolean; Same as TryGetFirst, only for the last item in the

collection

function First: T; overload; Returns the first item in the collection.

function First(const predicate:

TPredicate<T>): T; overload;

Returns the first item in the collection that causes

the predicate to return True.

function FirstOrDefault: T; overload; Returns the first value found in the collection, or

the default value if nothing is found. The Default

value is the one returned by the Default()

function for the given type. This is a “compiler

magic” function that basically returns a “zero

memory” value for the type (i.e., zero for numbers,

and empty string, or nil.

function FirstOrDefault(const defaultValue:

T): T; overload;

Returns the first item found in the collection or the

108

default value that you specify

function FirstOrDefault(const predicate:

TPredicate<T>): T; overload;

Returns the first item found that causes the

predicate to return True. If none are found, then

the Default value is returned.

function Last: T; overload; function

Last(const predicate: TPredicate<T>): T;

overload; , function LastOrDefault(const

defaultValue: T): T; overload; function

LastOrDefault(const defaultValue: T): T;

overload;

The same as the First methods, only for the Last

item in the collection

function Single: T; overload; , function

Single(const predicate: TPredicate<T>): T;

overload; function SingleOrDefault: T;

overload; function SingleOrDefault(const

predicate: TPredicate<T>): T; overload;

Returns the only element in the collection (or the

default value). If the collection has more than one

element, an exception is raised.

function ElementAt(index: Integer): T;

function ElementAtOrDefault(index:

Integer): T;

Returns the item at a specific index (or the default

value)

function All(const predicate:

TPredicate<T>): Boolean;

Return True if every element in the collection

satisfies the predicate.

function Any(const predicate:

TPredicate<T>): Boolean;

Returns True if any of the elements in the

collection satisfy the predicate.

function Contains(const item: T): Boolean;

overload; function Contains(const item: T;

const comparer: IEqualityComparer<T>):

Boolean; overload;

Determines if a given collection contains a specific

item, using either the default comparer or one

which you provide.

IEnumerable 92

Method Description

109

function Min: T; function Max: T; Returns the minimum and maximum values in the

collection.

function Where(const predicate:

TPredicate<T>): IEnumerable<T>;

Returns an IEnumerable<T> that contains all the

items in the collection that match the criteria of the

predicate

function Skip(count: Integer):

IEnumerable<T>

Skips over the first count items in the collection,

and then returns an IEnumerable<T> containing

the rest.

function SkipWhile(const predicate:

TPredicate<T>): IEnumerable<T>; overload;

Skips over items until it reaches one that satisfies

the predicate, and then returns an IEnumerable<T>

containing the remaining items.

function Take(count: Integer):

IEnumerable<T>;

Returns the first count items in the collection.

function TakeWhile(const predicate:

TPredicate<T>): IEnumerable<T>; overload;

Returns items as IEnumerable<T> from the

beginning of the collection until the predicate is

False.

function Concat(const collection:

IEnumerable<T>): IEnumerable<T>;

Returns the two given collections as a single

‘IEnumerable

function Reversed: IEnumerable<T>; Returns the items in the collection in reverse order

procedure ForEach(const action: TAction<T>);

overload; procedure ForEach(const action:

TActionProc<T>); overload;

Performs a given action on each item in the

collection.

function EqualsTo(const collection:

IEnumerable<T>): Boolean; overload function

EqualsTo(const collection: IEnumerable<T>;

const comparer: IEqualityComparer<T>):

Boolean; overload;

Determines whether the two collections are equal,

using either the default comparer or a comparer

that you provide.

function ToArray: TArray<T>; function

110

ToList: IList<T>; function ToSet: ISet<T>;

Returns the collection as an Array<T> , an

IList<T> , or an ISet<T>

property Count: Integer read GetCount; Returns the total number of items in the collection.

property IsEmpty: Boolean read GetIsEmpty; Returns True if the collection is empty, and False

otherwise.

The code for this book includes an example application that illustrates the use of most of

the items

in the table above. That code can be found as part of IEnumerableExample.dproj at:

https://bitbucket.org/NickHodges/nickdemocode/¹

.

If you consider it for a moment, you can see that that IEnumerable<T> is really the root of the

LINQ feature of .Net. One way to view LINQ is that LINQ statements are parsed, turned into a

predicate, and run against a collection, whether that collection originates in a database or a list or

¹https://bitbucket.org/NickHodges/nickdemocode/

IEnumerable 93

.

XML.

http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx

.

Something to consider: If you have a nicely composed class that includes a private IList<T> which

gets exposed through proxy methods, then you might want to expose access to the items via a

property of type IEnumerable<T> instead of exposing the actual list itself.

The real power of IEnumerable<T> is shown with the very powerful ForEach methods.

Folks have

always pined for the lovely ForEach since the days of Borland Pascal’s old TCollection

object, and

now it’s back in full force, leveraging the power of anonymous methods. Thus, you can

have a

collection and very easily do what you please with the items.

Here is a simple example of just outputting them to the console window, but you can

have your

TAction<T> do anything at all that you like for each (sorry) element in the container.

procedure SimpleForEachDemo;

var

List: IList< integer> ;

Action: TAction< integer> ;

i : Integer;

begin

Action : = procedure(const aInt: integer) begin Writeln(Format(' This number \

is: %d' , [aInt])) ; end;

List : = TCollections. CreateList< integer> ;

for i : = 1 to 10 do

begin

111

List. Add(Random(100)) ;

end;

List. ForEach(Action) ;

end;

So, basically you have a lot of untapped power there in Spring.Collections.pas, eh? The use

of

IEnumerable<T> and predicates ought to transform your code and change the way you

look for

things in lists and collections. If you aren’t using these powerful tools yet, I strongly

recommend

that you add them to your tool chest.

IEnumerable 94

7.3 An Interview with IEnumerable<T> (IEoT):

Nick: Hey, IEoT, thanks for stopping by and chatting with us today

IEoT: No problem – I’m glad to do it.

Nick: First, let’s talk about your role in Delphi. Up until now you haven’t been very

popular.

IEoT: Well, no, and that’s bothered me. Delphi developers haven’t really paid much

attention to me

as I think they believe that the Spring Framework is all about Dependency Injection.

Don’t get me

wrong – I love TContainer. He’s a great guy and fun to be around. But he’s not all there is.

I’m a

powerful part of what Spring for Delphi does, and yeah, I won’t lie – I’ve felt

under-appreciated.

Nick: I can understand that.

IEoT: Well, I appreciate you having me on to talk about what I can do.

Nick: No worries, glad to do it. First up, tell me what this whole “of T” business is all

about.

IEoT: Well, I can be a container for any type you like. Just define the type that you want

me to keep

track of, and I’ll keep track of it for you. Any type at all. Doesn’t matter.

Nick: So, you have been accused of being implemented too much. What do you have to

say about

that?

IEoT: Oh, you want to get into that, eh? Well, it’s true that I get implemented by a lot of

classes.

But that just proves the power and usefulness of interfaces, right? I mean, who cares

whether I’m

a front for a list or a collection or whatever? That’s sort of the point. I can do my thing no

matter

what is behind my scenes.

Nick: Well, sure, tell us a bit about what your basic methods do.

112

IEoT: Well, my most very basic functionality provides access to everything inside of the

container

I’m implementing. You can easily do a for...in on me and get out every item I contain.

You can

get my First item or my Last. You can get the biggest or the smallest with a simple

method call.

Shoot, you can even tell me how to compare two things together and I’ll tell you the

biggest of any

complex type. But that’s getting ahead of myself.

Nick: Yeah, let’s hold off on that for now. Let’s move on to some of the more advanced

things you

can do, say, with predicates.

IEoT: Yeah, predicates really let me strut my stuff. Pass me a predicate and you can

really control

what I return back. Predicates let you tell me what to keep and what to toss. Then I return

all the

keepers, and you have another instance of me with all of them in it. It’s a win all around

once you

learn to use predicates. Want to keep all the strings that have more than three vowels in

them? You

can do it. And that’s just if you pass me predicates.

Nick: What else can you be passed?

IEoT: Well, you can pass me actions. An action is just some code that I’ll run against

each element

I have. I’ll do anything you want to every item I have. Just call my ForEach method with

an Action

IEnumerable 95

– probably it will be an Anonymous Method – and you have me do your will against

everything I

have. Pretty cool.

Nick: Indeed. What are some other things you can do?

IEoT: Well, let’s see. I can be a list, a set, or an array if you want. I can tell you how

many items I

have, and I can tell you if I contain any given item. If I’m empty, I can let you know.

Basically, I can

tell you anything at all about the stuff I contain.

Nick: Hey, we are out of time. Thanks, IEnumerable<T> , for chatting with us.

IEoT: Thanks for having me.

113

8. 运行时类型信息(Run-time Type

Information)

8.1 Introduction

Run-time Type Information (RTTI) is information about a class that the compiler gathers

and

attaches to a class at compile time. That information is then retrievable and modifiable

by the

developer at run-time – hence the name. At compile time, the compiler attaches

information –

metadata – about a given class to the class itself for retrieval and examination at runtime.

Delphi has had RTTI since Delphi 1.0. It is the old RTTI that lets the Object Inspector

get and set

property values in the Form Designer. However, the old RTTI system was not based on

classes and

was a bit cumbersome to use. The old RTTI system only stored information about

published values.

Delphi 2010 introduced a very powerful new version of RTTI (found appropriately

enough in the

RTTI.pas unit) that provides run-time access to a class’s fields, properties, and methods as

well as

the parameters of those methods.

In addition, the new RTTI means that you can attach your own runtime information to

classes via

attributes.

In this chapter, we look at basic RTTI, how you can find out almost anything about a

given class at

run-time. In the next chapter, we’ll see how you can attach your own RTTI to a class

with attributes,

and end with a practical example of using RTTI.

Though it might seem complicated on the surface, RTTI is actually a rather simple

feature. During

the process of compiling, the compiler has a lot of information about the types that it is

compiling.

The compiler takes that information and “attaches” it to the class in the resulting binary.

The RTTI

unit contains a set of classes for retrieving this information from the binary. Unless you

otherwise

specify (and how to do that will be discussed below), RTTI is generated for every

eligible type

114

compiled into your binary, including classes, records, enumerated types, interfaces,

ordinal types,

and more.

With RTTI, you can do the following:

• Gather information about the fields, properties, and methods of a type, including the

parameters of those methods.

• Get and set values for fields and properties

• Invoke any method, including passing values for any number of parameters, and

returning

values for functions.

However, before you can really dive into RTTI, you need to understand one of its basic

building

blocks, TValue.

Run-time Type Information 97

8.2 TValue

TValue is a new record type that was introduced along with the new RTTI in Delphi 2010.

In some

ways it is similar to a variant, but it is not the same, and should not be used as such. It is

able to

hold data of various types, and it can convert that data to types that are assignment

compatible,

such as Integer to Word or Char to String. It wasn’t designed to be used as a variant –

where you

could change its type easily – but instead as a transport for getting data from its concrete

values to

dynamic RTTI and back. A TValue can’t change its type once set.

TValue can hold virtually any Delphi type. Its declaration includes a private field

FValueData of

type TValueData which is declared as follows:

TValueData = record

FTypeInfo: PTypeInfo;

// FValueData vs old FHeapData:

// FHeapData doubled as storage for interfaces. However, that was ambiguous

// in the case of nil interface values: FTypeInfo couldn't be trusted

// because it looked like the structure was uninitialized. Then, DataSize

// would be 0.

// FValueData is different: interfaces are always stored like strings etc.,

// as a reference stored in a blob on the heap.

FValueData: IValueData;

case Integer of

0: (FAsUByte: Byte);

1 : (FAsUWord: Word);

2: (FAsULong: LongWord);

115

3: (FAsObject: Pointer);

4: (FAsClass: TClass);

5: (FAsSByte: Shortint);

6: (FAsSWord: Smallint);

7: (FAsSLong: Longint);

8: (FAsSingle: Single);

9: (FAsDouble: Double);

10: (FAsExtended: Extended);

11 : (FAsComp: Comp);

12: (FAsCurr: Currency);

13: (FAsUInt64: UInt64);

14: (FAsSInt64: Int64);

15: (FAsMethod: TMethod);

16: (FAsPointer: Pointer);

end;

Thus, it is capable of being type compatible with any of the data types listed above,

including any

Run-time Type Information 98

Delphi object. However, the one thing that they cannot do is change their established

type or be

assigned to a different type. Thus, the following code will not compile:

var

V: TValue;

i: integer;

begin

V : = 42;

i : = V; // You can't do this

end;

However, the following code will compile, as TValue can be asked to cast itself into a

compatible

type:

var

V: TValue;

i: integer;

begin

V : = 42;

i : = V.AsInteger; // You can do this

end;

Once set to an integer, though, it cannot be cast as a string:

// This will not compile

// i := v;

// but this will

i : = v.AsInteger;

// and this will not

116

//s := V.AsString;

These simple demos should serve to show that TValue is designed to accept arbitrary

types, transport

them, and then easily get their original type back. They aren’t really designed to accept

one type

and become another.

TValue does have the smarts to cast itself to another TValue with a compatible type,

however:

Run-time Type Information 99

var

V: TValue;

begin

V := 42;

V2 := V.Cast< Byte> ;

WriteLn(' V2 is now a Byte: ' , V2.ToString);

end;

And you can use the IsType<T> method to prove it:

if V.IsType< Byte> then

begin

WriteLn(' Yes it is true, V is a Byte');

end else

begin

WriteLn(' Oops, V is not a Byte');

end;

In addition to holding the standard types, TValue allows you to declare your own types

and the

“make” them into a TValue. For instance, given this record type…

type

TExampleRecord = record

SomeInt: integer;

SomeBytes: array[0. . 5] of Char;

end;

…you can put data into an instance:

var

ERIn: TExampleRecord;

. . .

ERIn. SomeInt : = 99;

ERIn. SomeBytes[0] : = ' a' ;

ERIn. SomeBytes[1] : = ' b' ;

ERIn. SomeBytes[2] : = ' c' ;

ERIn. SomeBytes[3] : = ' d' ;

ERIn. SomeBytes[4] : = ' e' ;

ERIn. SomeBytes[5] : = ' f' ;

And once you have that record, you can call the TValue.Make method to create an

117

instance of TValue

that holds a TExampleRecord.

Run-time Type Information 100

// We can create our very own type and make it a TValue

TValue. Make(@ERIn, TypeInfo(TExampleRecord) , V2) ;

In this example, V2 becomes the TValue that holds TExampleRecord, and so we can report

out on it

using the following code:

if V2. IsType< TExampleRecord> then

begin

WriteLn(' V2 is a TExampleRecord') ;

end else

begin

WriteLn(' V2 is NOT a TExampleRecord') ;

end;

EROut : = V2. AsType< TExampleRecord> ;

WriteLn(' EROut.SomeInt = ' , EROut. SomeInt) ;

Write(' And this ought to be the first six letters in the alphabet: ') ;

for C in EROut. SomeBytes do

begin

Write(C) ;

end;

WriteLn;

The above shows that once you Make your TValue with your own type, you can still

extract the

information that was put into it.

Thus TValue can hold any type needed as part of the larger RTTI eco-system.

8.3 RTTI on Classes

The basic functionality of RTTI is to look at the features of a class. So let’s define a class

that we can

then use RTTI to look at:

Run-time Type Information 101

unit uRTTIDemoClass;

interface

type

TRTTIDemoClass = class

private

FPrivateField: integer;

FPublicProperty: string;

FIndexedProperty: array of string;

procedure PrivateMethod;

procedure SetPublicProperty(const Value: string) ;

function GetIndexedProperty(aIndex: integer) : string;

118

procedure SetIndexedProperty(aIndex: integer; const Value: string) ;

protected

procedure ProtectedMethod;

public

PublicField: Double;

procedure PublicMethod;

procedure PublicMethodWithParams(aString: string; aExtended: Extended) ;

property PublicProperty: string read FPublicProperty write SetPublicProperty;

property IndexedProperty[aIndex: integer] : string read GetIndexedProperty wri \

te SetIndexedProperty;

end;

implementation

function TRTTIDemoClass. GetIndexedProperty(aIndex: integer) : string;

begin

Result : = FIndexedProperty[aIndex] ;

end;

procedure TRTTIDemoClass. PrivateMethod;

begin

WriteLn(' This is a private method') ;

end;

procedure TRTTIDemoClass. ProtectedMethod;

begin

WriteLn(' This is a protected method') ;

end;

Run-time Type Information 102

procedure TRTTIDemoClass. PublicMethod;

begin

WriteLn(' This is a public method') ;

end;

procedure TRTTIDemoClass. PublicMethodWithParams(aString: string; aExtended: Exten\

ded) ;

begin

WriteLn(' You passed in ' , aString, ' and ' , aExtended) ;

end;

procedure TRTTIDemoClass. SetIndexedProperty(aIndex: integer; const Value: string) ;

begin

FIndexedProperty[aIndex] : = Value;

end;

procedure TRTTIDemoClass. SetPublicProperty(const Value: string) ;

begin

FPublicProperty : = Value;

end;

end.

TRTTIDemoClass contains all the various fields, methods, and properties that can be

119

detected by

RTTI. Thus, it is illustrative of what RTTI can do.

Delphi’s RTTI all starts with the TRttiContext record. It is the record from which all RTTI

information flows. The basic function of TRttiContext is to find and return an TRttiType

instance

for a given type that will be examined. So for our demo, the first line of code will be:

var

Context: TRTTIContext;

TempType: TRttiType;

begin

TempType : = Context. GetType(TRTTIDemoClass. ClassInfo) ;

. . .

end;

In the above code, Context is used to get the type information for our demo class and

return it as a

TRttiType. TRttiContext provides access to all RTTI information for the whole binary and

thus is

the main access point to that information. TRttiContext can retrieve RTTI for a specific

type via its

TClass information. It can get an array containing RTTI for every type in the binary, or it

can get

the information for a specific type based on its fully qualified name.

Run-time Type Information 103

TRttiType

TRttiType holds the information about a given type. Given the above code, TempType is

now a

reference to the RTTI for TRTTIDemoClass. Below is part of the public interface that

contains the

most common methods for accessing the information about the given type:

function GetMethods: TArray< TRttiMethod> ; overload; virtual ;

function GetFields: TArray< TRttiField> ; virtual ;

function GetProperties: TArray< TRttiProperty> ; virtual ;

function GetIndexedProperties: TArray< TRttiIndexedProperty> ; virtual ;

function GetMethod(const AName: string) : TRttiMethod; virtual ;

function GetMethods(const AName: string) : TArray< TRttiMethod> ; overload; virtual ;

function GetField(const AName: string) : TRttiField; virtual ;

function GetProperty(const AName: string) : TRttiProperty; virtual ;

function GetIndexedProperty(const AName: string) : TRttiIndexedProperty; virtual ;

Note the RTTI for indexed properties (the last function above) only is available in XE2

and above.

TRttiType is the class that actually holds all the RTTI information about the class being

inspected.

Using the methods listed above, you can ask it for all the fields, properties, and methods

120

of the given

class. You can ask for all in an array, or a specific item by name.

To get a TRttiType, you call TRttiContext.GetType() , an overloaded method. You can pass

it a

TClass reference or a pointer to the type information for a given class. Above, we’ve

gotten the

TempType reference with a call to the ClassInfo class method of TRTTIDemoClass.

Each member type has a specific RTTI type assigned to it. Fields have a TRttiField class

to describe

them. There is also TRttiMethod, TRttiProperty, and TRttiIndexedProperty. Each TRttiMethod

has within it the TRttiParameter classes needed to define the parameters (if any) associated

with

the method.

TRttiField

RTTI is available for all fields of a class regardless of scope. So, for instance, you can

call:

Run-time Type Information 104

TempType : = Context. GetType(TRTTIDemoClass) ;

// Fields

WriteLn(TempType. Name, ' has the following fields: ') ;

for TempField in TempType. GetFields do

begin

WriteLn(' ' , TempField. ToString, ' with visiblility: '

, GetEnumName(TypeInfo(TMemberVisibility)

, Integer(TempField. Visibility))) ;

end;

and that will output to the console all the field names of the given class including the

visibility of the

field. The call to GetFields returns a TArray<TRttiFields> , which you can then enumerate

over.

If you have the name of a field as a string, you can call:

TempField : = TempType. GetField(' FPrivateField') ;

and gain access that way.

TRttiField encapsulates all the information about the field. You’ve seen the Name and

Visibility

fields above. In addition, the ToString method will return the fields name, type, and hex

offset from

the memory location allocated for the class.

TRttiProperty

Properties work basically the same as fields. TRttiType has GetProperties and GetMethods

methods

that return arrays of the appropriate type. It also has GetProperty which takes a string

value of the

exact name of the item being asked for.

121

The following code will print out the properties of our demo class:

WriteLn(TempType. Name, ' has the following properties: ') ;

for TempProperty in TempType. GetProperties do

begin

WriteLn(' ' , TempProperty. ToString, ' with the visibility: ' , GetEnumName(Type\

Info(TMemberVisibility) , Integer(TempProperty. Visibility))) ;

end;

Likewise, you can gather information about the indexed properties of a class:

Run-time Type Information 105

WriteLn(TempType. Name, ' has the following indexed properties: ') ;

for TempIdxProperty in TempType. GetIndexedProperties do

begin

WriteLn(' ' , TempIdxProperty. ToString, ' with the visibility: '

, GetEnumName(TypeInfo(TMemberVisibility)

, Integer(TempIdxProperty. Visibility))) ;

end;

TRttiMethod

Methods can be extracted in much the same way. However, methods also provide

information about

their parameters. The TRttiMethod class can enumerate its parameters like so:

// Methods

WriteLn(TempType. Name, ' has the following methods: ') ;

for TempMethod in TempType. GetDeclaredMethods do

begin

WriteLn(' ' , TempMethod. Name) ;

TempParams : = TempMethod. GetParameters;

if Length(TempParams) > 0 then

begin

for TempParam in TempParams do

begin

WriteLn(' ' , TempParam. ToString) ;

end;

end else

begin

WriteLn(' ' , ' No Parameters') ;

end;

end;

This code checks to see if the method in question is a method directly on

TRTTIDemoClass by using

the GetDeclaredMethods instead of just GetMethods, which returns all methods, including

those

from parent classes. If the method has any parameters, those are listed as well.

8.4 Using RTTI to Affect Instances

122

The previous examples all worked on classes, as opposed to instances. In other words,

the RTTI

retrieved information from a TClass reference as opposed to an instance of that TClass.

However,

Delphi’s RTTI library allows you to retrieve information from live instances. It also

allows you to

set values and execute methods on those instances. Pretty cool, eh?

So let’s take a look. Again, we’ll be using our demo class, TRTTIDemoClass to show how

things work.

Run-time Type Information 106

Getting and Setting Values

One of the basic things to do with a class instance is to set and retrieve values of

variables. Delphi’s

RTTI lets you do that for any field of a class.

The first thing to note is that you must have a valid instance of a class that you want to

alter. Once

you have that, RTTI will take it as a parameter and operate on it as desired. For instance,

here is some

code that will take an instance of TRTTIDemoClass and set values for its field called

‘FPrivateField:

Note that the type of the parameter sent to the SetValue field that sets the new value is our

old pal

TValue. The code illustrates this by setting the new value to a TValue explicitly:

WriteLn(' Getting and setting a private field.... ') ;

TempType : = Context. GetType(TRTTIDemoClass. ClassInfo) ;

TempField : = TempType. GetField(' FPrivateField') ;

NewValue : = ' This is a new value for PublicProperty held by a TValue' ;

TempField. SetValue(RDC, NewValue) ;

WriteLn(' You can get the value using RTTI: ' , TempField. GetValue(RDC) . ToString) ;

Note that you can’t get at the value you’ve set from the object itself, but you can access it

via RTTI.

.

And as a side note, while RTTI allows you to do it, it is bad practice to change the values of

internal

fields on a class. Instead, you should use the properties of a class to alter its internal state.

Properties work almost exactly the same way, except we can “prove” that the value was

set by asking

for the value directly from the instance:

WriteLn(' Getting and setting a property... ') ;

TempProperty : = TempType. GetProperty(' PublicProperty') ;

NewValue : = ' NewValue for PublicProperty' ;

TempProperty. SetValue(RDC, NewValue) ;

WriteLn(' PublicProperty is now set to: ' , RDC. PublicProperty) ;

123

WriteLn(' You can also get the value using RTTI: ' , TempProperty. GetValue(RDC) . ToS\

tring) ;

Indexed properties work exactly as you’d expect:

Run-time Type Information 107

TempIdxProperty : = TempType. GetIndexedProperty(' IndexedProperty') ;

NewValue : = ' This is index 0' ;

TempIdxProperty. SetValue(RDC, [0] , NewValue) ;

NewValue : = ' This is index 1 ' ;

TempIdxProperty. SetValue(RDC, [1] , NewValue) ;

WriteLn(' IndexedProperty[0] retrieved via RTTI: ' , TempIdxProperty. GetValue(RDC, \

[0]) . ToString) ;

WriteLn(' IndexedProperty[1] retrieved right from the instance: ' , RDC. IndexedProp\

erty[1]) ;

Thus, any field or property can be set or retrieved using Delphi’s RTTI library. But wait,

there’s

more! – you can actually invoke any public method.

Invoking Methods

Not only can you set and get values of a class instance, you can also call its methods. The

TRttiMethod class has a method called Invoke that takes two parameters:

function TRttiMethod. Invoke(Instance: TObject; const Args: array of TValue) : TVal \

ue;

The first is the instance itself whose method you are going to call. The second is an array

of TValue

that represent the parameters that are passed to the method. If the method is a function,

then the

result of that function call is returned as a TValue by the call to Invoke.

procedure CallMethodsWithRTTI ;

var

RDC: TRTTIDemoClass;

Context: TRttiContext;

TempType: TRttiType;

TempMethod: TRttiMethod;

TempParameters: TArray< TRttiParameter> ;

TempParameter: TRttiParameter;

TempValue: TValue;

TempResult: TValue;

ParameterValues: array[0. . 1] of TValue;

i : Integer;

begin

RDC : = TRTTIDemoClass. Create;

try

TempType : = Context. GetType(TRTTIDemoClass) ;

Run-time Type Information 108

124

for TempMethod in TempType. GetDeclaredMethods do

begin

// Ignore constructor and grab only public methods

if (TempMethod. Visibility < > mvPublic) then Continue;

if TempMethod. IsConstructor then Continue;

WriteLn(' About to invoke the method named: ' , TempMethod. Name) ;

case TempMethod. MethodKind of

mkProcedure: begin

TempParameters : = TempMethod. GetParameters;

// We know the possibilities here...

i : = 0;

case Length(TempParameters) of

0: TempMethod. Invoke(RDC, []) ;

1 : TempMethod. Invoke(RDC, [0]) ;

2: begin

for TempParameter in TempParameters do

begin

case TempParameter. ParamType. TypeKind of

tkString,

tkUString: TempValue : = ' Passed in via Invoke' ;

tkFloat: TempValue : = 3.14159;

tkInteger: TempValue : = 0;

end;

ParameterValues[i] : = TempValue;

inc(i) ;

end;

TempMethod. Invoke(RDC, [ParameterValues[0] , Parame\

terValues[1]]) ;

end;

end;

end;

mkFunction: begin

// Ignore the property getters

if not UpperCase(TempMethod. Name) . Contains(' GET') then

begin

TempResult : = TempMethod. Invoke(RDC, []) ;

WriteLn(' Result of a call to ' , TempMethod. Name, ' : ' , \

TempResult. ToString) ;

end;

end;

Run-time Type Information 109

else

Continue;

end;

125

end;

finally

RDC. Free;

end;

end;

The above code does the following things:

• It creates an instance of TRTTIDemoClass so that an active instance can be called. It may

not

be totally obvious – but you need to have a live instance to call.

• It gets a TRttiType for TRTTIDemo class. Then, it enumerates over each of the methods

for that

type.

• It enumerates only the declared – that is, declared in TRTTIDemoClass itself – and

ignores the

constructor and any non-public method.

• Then it checks the MethodType property to see if it is a procedure or a function.

– If it is a procedure, it determines the parameters and calls Invoke on the method. We’ve

cheated a little bit here, as the code knows exactly that the parameters are and acts

accordingly.

– If it is a function, it calls the function, captures the result, and displays it.

8.5 General Notes

Some additional things to note about Delphi’s RTTI:

• You can use the IsClassMethod and the IsStatic calls to determine, well, if the method is a

class method or if it is a static method.

• If the method is a class method, you can call it by passing the ClassType to Invoke as the

first

parameter without having a valid instance.

• You can also retrieve the calling convention and the dispatch type of a method, as well

as a

pointer to its actual location in the Virtual Method Table.

8.6 RTTI for Non-classes

Classes are probably the most common use case, but Delphi can also track RTTI for

non-class types

such as records, enumerations, ordinal types, and others.

RTTI for Ordinal Types

You can gather RTTI about the various ordinal types. Consider the following code:

Run-time Type Information 110

var

Context: TRttiContext;

TempType: TRttiType;

TempOrd: TRTTIOrdinalType;

126

TempName: string;

begin

// Ordinal

TempType : = Context. GetType(TypeInfo(Byte)) ;

if TempType. IsOrdinal then

begin

TempOrd : = TempType as TRTTIOrdinalType;

WriteLn(' The minimum value for ' , TempOrd. Name, ' is: ' , TempOrd. MinValue) ;

WriteLn(' The maximum value for ' , TempOrd. Name, ' is: ' , TempOrd. MaxValue) ;

end;

end;

Here we grab the RTTI for a Byte, and display the minimum (0) and maximum (255)

available values.

RTTI for Records

Records can have RTTI attached to them as well. Their RTTI works very similarly to that

of a class:

// Record

TempType : = Context. GetType(TypeInfo(TDemoRecord)) ;

if TempType. IsRecord then

begin

TempRecord : = TempType. AsRecord;

WriteLn(TempRecord. Name, ' has the following methods: ') ;

for TempMethod in TempRecord. GetMethods do

begin

WriteLn(' ' , TempMethod. Name) ;

end;

WriteLn(' ... and the following fields: ') ;

for TempField in TempRecord. GetFields do

begin

WriteLn(' ' , TempField. Name) ;

end;

WriteLn;

end;

RTTI for Arrays

You can determine general information about arrays as well:

Run-time Type Information 111

// Arrays

TempType : = Context. GetType(TypeInfo(TThreeStringArray)) ;

if TempType. TypeKind = tkArray then

begin

TempArrayType : = TempType as TRttiArrayType;

WriteLn(TempArrayType. Name, ' is a ' , TempArrayType. DimensionCount, ' dimensi\

127

on array with a total of ' , TempArrayType. TotalElementCount, ' elements of type ' \

, TempArrayType. ElementType. Name) ;

end;

8.7 Miscellaneous Methods

There are a few other things that you can do with Delphi’s RTTI:

• Every RTTI object has a Parent property that tells you its owning member. So for

instance, a

parameter is parented by a method, which in turn is parented by a type.

• The TRttiType class can tell you if a type IsManaged (strings and interfaces), IsOrdinal ,

IsRecord, and

• TRttiType has a set of methods that find the “Declared” fields, properties, and methods.

The

methods with “Declared” in their names return only those items actually declared in the

class

itself and not its ancestors.

• RTTI is also available for interfaces via the TRttiInterfaceType class. You can grab the

GUID

and declared methods for any interface.

8.8 RTTI Compiler Directives

The new RTTI features are cool and powerful, but one of the downsides is that it adds a

lot of data to

the resulting binary. In order to limit that increase in size, Delphi provides a set of

compiler directives

that can be used to limit the amount of RTTI information that is stored.

I should add that this section covers code that should fall into the “only do this if you

really know what you are doing” area. Turning off RTTI, even for certain portions of

your code, could make your code stop working as expected, especially if you are using

libraries that expect RTTI to be present, like an object-relational mapping library, a

Dependency Injection container, etc.

If you want to turn off RTTI for all the units in your application, then put this at the top

of your

DPR file, right before the uses clause:

Run-time Type Information 112

{$WEAKLINKRTTI ON}

{$RTTI EXPLICIT METHODS([]) PROPERTIES([]) FIELDS([])}

This will tell the compiler to not put RTTI into any of your code. Note that it will not

prevent RTTI

from being compiled into the VCL, FMX, or any third-party code.

This same code can be placed in individual units if you want to limit the RTTI for only

the classes in

that unit. Placing it in the DPR makes the directives valid application wide. You should

place these

128

directives only when you aren’t going to be using RTTI within the scope of the directives.

The {$WEAKLINKRTTI ON} directive tells the compiler to not place RTTI on methods of

classes

that are not directly referenced. By default, the compiler includes RTTI for all methods

of classes,

whether they are called directly or not. This is done to ensure that any class method can

be invoked

dynamically if desired. If you know that a given class or unit will not be invoked

dynamically, you

can use the {$WEAKLINKRTTI} directive to tell the compiler not to include the RTTI for

methods not

directly referenced in code.

However, if a class is declared but never instantiated, then no RTTI will be generated for

it and the

class will not be present anywhere in the resulting binary.

Note that the {$WEAKLINKRTTI} directive only affects linking and not compiling. That

is, it doesn’t

affect the information placed into DCU files, but only the information linked from them.

The {$RTTI} directive gives you more control over exactly what RTTI information is and

isn’t

emitted by the compiler for classes within the scope of the directive.

The first parameter will be one of two values: INHERIT or EXPLICIT. INHERIT indicates

that the RTTI

directives will be inherited from its base class. That is, if you have

{$RTTI INHERIT}

TChild = class(TParent)

then TChild will contain inherit the {$RTTI} directives from TParent.

EXPLICIT will do the opposite. If you declare:

{$RTTI EXPLICIT}

TChild = class(TParent)

then TChild will not contain the RTTI directives for TParent, but only for its own declared

methods,

properties, and fields. The EXPLICIT parameter will remove all previous {$RTTI}

directives from

parent classes and assert the directives directly on the class.

You can even have more fine control over the emitted RTTI than that. You can use the

METHODS,

PROPERTIES and FIELDS parameters to limit specifically the RTTI for those members.

Furthermore,

you can declare for each whether the scope included should be vcPrivate , vcProtected,

vcPublic,

and/or vcPublished.

For instance, if you wanted to declare a class and have only the public properties and

fields as well

129

as the public and published methods included with RTTI, you could declare the

following directive:

Run-time Type Information 113

{$RTTI EXPLICIT PROPERTIES([vcPublic]) FIELDS([vcPublic]) METHODS([vcPublic vcPub\

lished])}

In this way, you can fine tune your classes to emit exactly the amount and scope of RTTI

that you

want.

One thing to note is that if you have published members, the compiler will automatically

turn on

the {$METHODINFO ON} switch, meaning that the published fields will have RTTI

information

included for them, and there doesn’t seem to be any way to convince the compiler not to

do that –

not even with explicitly turning off MethodInfo with the {$M-} switch.

Thus, given the following class:

type

{$M-}

{$RTTI EXPLICIT METHODS([vcPublic]) PROPERTIES([vcPublic]) FIELDS([vcPublic])}

TPublicStuffOnly = class(TObject)

private

PrivateField: double;

FPublicPropertyField: string;

FPublishedPropertyField: string;

procedure PrivateMethod;

protected

ProtectedField: string;

procedure ProtectedMethod;

public

PublicField: integer;

procedure PublicMethod;

property PublicProperty: string read FPublicPropertyField write FPublicProper\

tyField;

published

{$M-}

PublishedField: TObject;

function PublishedMethod(aParam: string) : integer;

property PublishedProperty: string read FPublishedPropertyField write FPublis\

hedPropertyField;

{$M+}

end;

This code will output only the public and published fields, properties and methods of

TPublicStuffOnly.

Run-time Type Information 114

130

procedure DisplayLimitedRTTI ;

var

Context: TRttiContext;

TempType: TRttiType;

TempMethod: TRttiMethod;

TempProperty: TRttiProperty;

TempField: TRttiField;

begin

WriteLn(' There should only be public fields listed below for ' , TPublicStuffOnl \

y. ClassName) ;

TempType : = Context. GetType(TPublicStuffOnly) ;

WriteLn(' Fields: ') ;

for TempField in TempType. GetDeclaredFields do

begin

WriteLn(' ' , TempField. Name) ;

end;

WriteLn(' Properties: ') ;

for TempProperty in TempType. GetDeclaredProperties do

begin

WriteLn(' ' , TempProperty. Name) ;

end;

WriteLn(' Methods: ') ;

for TempMethod in TempType. GetDeclaredMethods do

begin

WriteLn(' ' , TempMethod. Name) ;

end;

end;

Strong Type Linking

If you create a class, put in in your app, but never actually instantiate it, then by default,

that class

will not be included in the resulting binary, and since the class isn’t there, there naturally

won’t be

any resulting RTTI for the class. If you want to ensure that every class is included and

that all those

classes include RTTI, you can use the following compiler directive:

{$STRONGLINKTYPES ON}

If you want it to be effective for the entire binary, then you need to include it in the DPR

file. Note

that this directive is not required for a Delphi package (BPL) because a package includes

all classes

and RTTI by default.

Run-time Type Information 115

8.9 Conclusion

131

So there you have the basics of Run-time Type Information. In this chapter, we saw how

you can

identify, evaluate, set, and invoke the fields, properties, and methods of classes and

records. In the

next chapter we’ll see how you can add your own custom run-time information to classes

via a

feature called Attributes.

9. 属性(Attributes)

9.1 Introduction

Okay, so far we’ve seen how Delphi’s compiler attaches RTTI meta-data to your classes

and other

types. We’ve seen how you can control the extent of RTTI which is included in your

binary. And so

here is this chapter’s rhetorical question: Wouldn’t it be cool if you could attach your

own custom

information to a class, method, property, field, or parameter?

Why yes, it would be cool! And as always, I would never ask this question if the answer

weren’t

“Yes, you can do that!”. So, yes, you can do that through a language feature called

attributes. By

adding attributes to classes, records and other items, you can define your own run-time

information

that can then be retrieved using the RTTI framework.

9.2 What are Attributes

Attributes are very simple, really. You can declare a custom attribute as a descendant of

TCustomAttribute,

a class declared in System.pas.

// Defines a simple attribute

SimpleAttribute = class(TCustomAttribute)

private

FNumber: integer;

public

constructor Create(aNumber: integer) ;

property Number: integer read FNumber;

end;

That’s all there is to a basic attribute – it’s a simple class that declares an integer property.

Things

132

get even simpler when you see that TCustomAttribute itself is a direct descendant of

TObject:

TCustomAttribute = class(TObject)

end;

That’s it – seriously. An attribute is nothing more than a class that descends from

TCustomAttribute

and which can, if desired, have properties and a constructor to set the properties. The

constructor is

needed because you can pass parameters to it in the attribute declaration.

Attributes 117

As a general rule, a custom attribute will have a property for each item passed to the

constructor.

The constructor will keep the values passed to it as read-only properties. Those property

values will

then be available at run-time for your retrieval.

So how do you add an attribute to the RTTI for your binary? Attributes are declared with

square

brackets:

TAttributeOnProperty = class

private

function GetBottlesOfBeer: string;

public

[SimpleAttribute(99)] // Attribute on a property

property BottlesOfBeer: string read GetBottlesOfBeer;

end;

Note a couple of things:

• The attribute declaration is surrounded by square brackets.

• The attribute takes a single integer, which corresponds to the single integer parameter in

the constructor. There is no need to explicitly call Create, and if you do, the compiler will

complain.

• By convention, the phrase ‘Attribute’ is actually optional – the attribute can be declared

as

[Simple(99)] which the compiler treats exactly the same as [SimpleAttribute(99)]

• Also by convention, attributes don’t start with the traditional T.

• Attributes can be placed almost anywhere in a class: on the class itself, as well as on

fields,

properties, methods, and even on the parameters of methods.

• Attributes can have methods that you can also call at run-time if so desired.

When an attribute is attached to a class member, the compiler will take the information

from the

declaration and attach it to the item just like regular RTTI information.

And then, getting the custom attribute information is done as follows:

function TAttributeOnProperty. GetPropertyAttribute: string;

var

133

Context: TRttiContext;

TempType: TRttiType;

TempProperty: TRttiProperty;

TempAttributes: TArray< TCustomAttribute> ;

TempValue: TValue;

Attribute: TCustomAttribute;

begin

Attributes 118

Result : = ' ' ;

TempType : = Context. GetType(Self. ClassType) ;

TempProperty : = TempType. GetProperty(' BottlesOfBeer') ;

TempAttributes : = TempProperty. GetAttributes;

for Attribute in TempAttributes do

begin

if Attribute is SimpleAttribute then

begin

TempValue : = SimpleAttribute(Attribute) . Number;

end;

end;

Result : = TempValue. ToString;

end;

This routine grabs the value of the Number property on an attached attribute and returns it

as a string.

It does that by:

• First, grabbing the type information for the class that has a property that has

SimpleAttribute

attached to it.

• Next, it finds that property using GetProperty. In this case, the property is named

‘BottlesOfBeer’.

• Once it has a reference to the property, it calls GetAttributes to get an array of all the

attributes for that property. Note any element can have any number of attributes declared

on it. Note, as well, that the call to GetAttributes returns an array of TCustomAttribute,

which will be the very class (or classes) that is declared as the attribute.

• Then, the code enumerates over all the attributes determining if any of them are of type

SimpleAttribute. If so, then we know that the Attribute variable is in fact an instance of

SimpleAttribute, and thus we can cast it polymorphically and call anything we want on it,

including determining its properties and calling its methods.

As mentioned above, attributes can be placed in numerous types of places on a class.

Consider the

following code, which demonstrates all the places that attributes might be placed.

Attributes 119

type

SampleAttribute = class(TCustomAttribute) ;

[Sample]

134

TAttributesEverywhere = class

private

[Sample]

FSomeProperty: Extended;

procedure SetSomeProperty(const Value: Extended) ;

public

[Sample]

procedure DoThis([Sample]aString: string) ;

[Sample]

function DoThat([Sample]aObject: TObject) : integer;

[Sample]

property SomeProperty: Extended read FSomeProperty write SetSomeProperty;

end;

Here we see the Sample attribute being placed at numerous locations. The following code

hunts

them all up and displays them in the console window:

procedure DoAttributesEverywhere;

var

Context: TRTTIContext;

TempClassType: TRttiType;

TempEnumType: TRttiOrdinalType;

TempAttribute: TCustomAttribute;

TempAttribute1 : TCustomAttribute;

TempField: TRttiField;

TempMethod: TRttiMethod;

TempParam: TRttiParameter;

TempProperty: TRttiProperty;

begin

// Enum

TempEnumType : = Context. GetType(TypeInfo(TStopLight)) . AsOrdinal ;

for TempAttribute in TempEnumType. GetAttributes do

begin

WriteLn(TempEnumType. Name, ' has the following attributes: ') ;

Write(' ' , TempAttribute. ToString) ;

end;

WriteLn;

WriteLn;

Attributes 120

// Class

TempClassType : = Context. GetType(TAttributesEverywhere) ;

WriteLn(' TAttributesEverywhere has the following attributes: ') ;

for TempAttribute in TempClassType. GetAttributes do

begin

WriteLn(' Class Attribute: ' , TempAttribute. ToString) ;

135

end;

WriteLn;

// Fields

for TempField in TempClassType. GetFields do

begin

WriteLn(' The ' , TempField. Name, ' has the following attributes: ') ;

for TempAttribute in TempField. GetAttributes do

begin

WriteLn(' ' , TempAttribute. ToString) ;

end;

end;

WriteLn;

// Methods

for TempMethod in TempClassType. GetMethods do

begin

for TempAttribute in TempMethod. GetAttributes do

begin

WriteLn(' The ' , TempMethod. Name, ' method has the ' , TempAttribute. T\

oString, ' attribute. ') ;

for TempParam in TempMethod. GetParameters do

begin

for TempAttribute1 in TempParam. GetAttributes do

begin

WriteLn(' The ' , TempParam. Name, ' parameter has the ' , TempAt\

tribute1 . ToString, ' attribute. ') ;

end;

if TempMethod. ReturnType < > nil then

begin

Writeln(' The ' , TempMethod. Name, ' method is a function that \

returns a ' , TempMethod. ReturnType. Name, ' . ') ;

end else

begin

WriteLn(' The ' , TempMethod. Name, ' method is a procedure. ') ;

end;

Attributes 121

end;

end;

end;

WriteLn;

// Properties

for TempProperty in TempClassType. GetProperties do

begin

for TempAttribute in TempProperty. GetAttributes do

begin

136

WriteLn(' The ' , TempProperty. Name, ' has the ' , TempAttribute. ToStr\

ing, ' property. ') ;

end;

end;

end;

As noted, a given item can have multiple attributes attached to it:

type

FirstAttribute = class(TCustomAttribute) ;

SecondAttribute = class(TCustomAttribute) ;

ThirdAttribute = class(TCustomAttribute) ;

[First][Second][Third]

TMultipleAttributes = class(TObject) ;

Each of those attributes can be retrieved as well:

procedure DoMultipleAttributes;

var

Context: TRTTIContext;

TempType: TRttiType;

TempAttribute: TCustomAttribute;

begin

TempType : = Context. GetType(TMultipleAttributes) ;

WriteLn(TMultipleAttributes. ClassName, ' has the following attributes: \

') ;

for TempAttribute in TempType. GetAttributes do

begin

WriteLn(' ' , TempAttribute. ToString) ;

end;

end;

Attributes 122

Here are some important things to note about attributes in general:

• They are retrieved basically the same way that fields, methods, and properties are

retrieved.

One difference is that you can only retrieve all the attributes via a call to GetAttributes.

There is no way to get a single attribute by name as there is with methods, properties,

and

fields.

• Another subtle difference is that the call to GetAttributes will return an array of the

actual

attributes themselves and not a class that is part of the RTTI unit. This means that once

you

have a reference to the attribute, you can treat it like a regular class. This also means that

you

can add fields, properties, and methods to the class that are available at runtime.

.

If you declare an unknown attribute anywhere in your code, the compiler will accept it, but you

137

will receive the following compiler warning: W1025 Unsupported language feature: 'custom

attribute'

9.3 A Simple Example

Attributes can be very useful. They are most often used to tag items in your code with

useful

information. For example, you may have a class that you want to display as part of your

UI. However,

when you do, you don’t want the identifier names in your code to be used to display the

labels for

the associated data. Instead, you can ‘tag’ the properties that you want to display with an

attribute.

First, you can declare an attribute type that will take as a single string parameter the text

that you

want to use in the label:

type

DisplayTextAttribute = class(TCustomAttribute)

private

FDisplayText: string;

public

constructor Create(aDisplayText: string) ;

property DisplayText: string read FDisplayText write FDisplayText;

end;

Then, you place that attribute on each of the properties that you want to display:

Attributes 123

type

TCustomer = Class(TObject)

private

FFirstName: string;

FLastName: string;

FStreetAddress: string;

FZIP: string;

FState: string;

FCity: string;

` FPhone: string;

public

[DisplayTextAttribute(' First Name')]

property FirstName: string read FFirstName write FFirstName;

[DisplayText(' Last Name')]

property LastName: string read FLastName write FLastName;

[DisplayText(' Street Address')]

property StreetAddress: string read FStreetAddress write FStreetAddress;

[DisplayText(' City')]

property City: string read FCity write FCity;

138

[DisplayText(' State')]

property State: string read FState write FState;

[DisplayText(' ZIP Code')]

property ZIP: string read FZIP write FZIP;

[DisplayText(' Phone #')]

property Phone: string read FPhone write FPhone;

end;

Once the labels are defined for each property, you can retrieve them. In the code below,

we grab the

property name and the display text and put them into a name/value pair within a

TStringList for

easy retrieval:

procedure GetAllDisplayTextsForClass(aType: TClass; const aStringList: TStrings) ;

function GetDisplayTextForProperty(aProp: TRTTIProperty; aPropName: string) : \

string;

var

TempAttribute: TCustomAttribute;

begin

Result : = ' ' ;

if aProp < > nil then

begin

for TempAttribute in aProp. GetAttributes do

Attributes 124

begin

if TempAttribute is TDisplayTextAttribute then

begin

Result : = TDisplayTextAttribute(TempAttribute) . DisplayText;

end;

end;

end;

end;

var

TempContext: TRttiContext;

TempProp: TRTTIProperty;

TempType: TRttiType;

TempName, TempValue: string;

begin

if aStringList = nil then

Exit;

aStringList. Clear;

TempContext : = TRttiContext. Create;

try

TempType : = TempContext. GetType(aType) ;

for TempProp in TempType. GetProperties do

139

begin

TempName : = TempProp. Name;

TempValue : = GetDisplayTextForProperty(TempProp, TempName) ;

aStringList. Values[TempName] : = TempValue;

end;

finally

TempContext. Free;

end;

end;

9.4 Conclusion

Attributes are cool. You can use them to add specific data to the RTTI of your classes,

records, and

enumerations. You can easily retrieve that data and use it in your applications, enabling

your code to

be richer and more complete with the addition of some simple syntax. If you aren’t using

attributes

to decorate your code, you should start.

9.5 An Interview with Attributes

Nick: Attributes, thanks for sitting down with me today. Very much appreciated

Attributes 125

Attribute: Glad to do it – I like to help out where I can.

Nick: Speaking of that, where can you help out?

Attribute: I can pretty much help out anywhere. I’m happy to tag along on enumerations,

classes,

methods, parameters, properties – almost anywhere.

Nick: And what do you like to do when you tag along?

Attribute: Well, I can mark things. For instance, if you want a method to be a test in a

testing

framework, you might add me like this: [Test] .

Nick: And you can actually carry along information, right?

Attribute: That’s right, Nick. You can declare me with constructor parameters and I’ll

gladly carry

that information right along. Of course, you can only pass constant values to me, but hey,

it’s

information that will ride right along with me and let the developer know what it is with

a bit

of simple code.

Nick: That’s cool. You must be really complicated.

Attribute: No, actually, I’m not. I merely descend from TCustomAtttribute, and that is it.

The

compiler does all the real work of binding me to the RTTI for the given entity I’m

attached to.

140

Nick: Interesting. Well, hey, thanks for your time.

Attribute: No problem – like I said, I’m always happy to come alongside and help out

10. 使用虚拟接口类（Using

TVirtualInterface）

By now you should realize that you need to be programming against interfaces and not

implementations. (Didn’t I promise you in the first chapter that I’d keep harping on this

point?) Interfaces

let you write loosely coupled code. And if you don’t believe by now that decoupling your

code is

terribly important, I’d like you to stop reading right now, get a small ball-peen hammer,

and keep

hitting yourself in the forehead until you change your mind.

So if you have made it this far, you will know that interfaces must be implemented

before they can

be used. You have to put some code behind an interface to make it do anything. Normally,

this is

done with an implementing class:

type

ISprocketProcessor = interface

procedure ProcessSprockets;

end;

TSprocketProcessor = class(TInterfacedObject, ISprocketProcessor)

procedure ProcessSprockets;

end;

But what if you could implement an interface without having a specific class? What if

there were a

way to implement any interface with a single module of code? What if you could decide

at runtime

how to implement an interface? Would I even be asking these questions and writing this

if those

things weren’t possible?

So, yes, obviously there is a way. Delphi XE2 introduced a very cool new class called

TVirtualInterface.

Its purpose is to allow you to descend from it and respond to any interface dynamically.

If you think

about that for a second, you’ll realize that this is pretty powerful. For instance, it’s the

thing that lets

141

the awesome Delphi Mocks Framework (which we’ll talk about in a later chapter)

provide a mock

implementation of any interface that you pass to it.

As we saw in Chapter 2, normally when you implement an interface, you provide a class

that

implements it in a specific way – i.e. that implementation becomes static at runtime.

There are

ways – typically via Dependency Injection – that allow you to choose an implementation,

but even

then you are limited to a specific set of implementations.

TVirtualInterface allows you to dynamically – i.e. at runtime – determine how an interface

will

be implemented. I’ll start out with some simple examples, and then we’ll move to a

useful use of

TVirtualInterface.

Here’s the public interface for TVirtualInterface:

Using TVirtualInterface 127

{ TVirtualInterface: Creates an implementation of an interface at runtime.

All methods in the Interface are marshaled through a generic stub function

that raises the OnInvoke event.}

TVirtualInterface = class(TInterfacedObject, IInterface)

. . .

public

function QueryInterface(const IID: TGUID; out Obj) : HResult; virtual ; stdcall ;

{ Create an instance of TVirtualInterface that implements the methods of

an interface. PIID is the PTypeInfo for the Interface that is to be

implemented. The Interface must have TypeInfo ($M+). Either inherit from

IInvokable, or enable TypeInfo for the interface. Because this is an

TInterfacedObject, it is reference counted and it should not be Freed direc\

tly.

}

constructor Create(PIID: PTypeInfo) ; overload;

constructor Create(PIID: PTypeInfo; InvokeEvent: TVirtualInterfaceInvokeEvent\

) ; overload;

destructor Destroy; override;

{ OnInvoke: Event raised when a method of the implemented interface is called.

Assign a OnInvoke handler to perform some action on invoked methods.}

property OnInvoke: TVirtualInterfaceInvokeEvent read FOnInvoke write FOnInvok\

e;

end;

Here are some things to note about the declaration:

• First, you should notice that TVirtualInterface descends from TInterfacedObject and

implements IInterface. The three methods of IInterface are implemented to allow the class

to be properly reference counted like any other interface-implementing class.

142

• Second, the interface that you want to implement with it needs to have TypeInfo

enabled for it.

The easiest way to make that happen is to descend your interface from IInvokable.

Otherwise,

you’ll need to use the {$M+} switch for your interface. Notice, too, that the comment

above

the class declaration says what I said earlier – using TVirtualInterface will let you, well, do

anything you want with an interface at runtime. Cool.

• Finally, note that the class re-declares QueryInterface and makes it virtual.

In order to actually make TVirtualInterface do something, you need to create a descendant

class

and provide two things: a constructor and an implementation of the DoEvent method.

Here’s a TVirtualInterface descendant that is as simple an example as I could think of:

Using TVirtualInterface 128

type

TSimplestVirtualInterface = class(TVirtualInterface)

constructor Create(PIID: PTypeInfo) ;

procedure DoInvoke(Method: TRttiMethod; const Args: TArray< TValue> ; out Resu\

lt: TValue) ;

end;

constructor TSimplestVirtualInterface. Create(PIID: PTypeInfo) ;

begin

inherited Create(PIID, DoInvoke) ;

end;

procedure TSimplestVirtualInterface. DoInvoke(Method: TRttiMethod;

const Args: TArray< TValue> ; out Result: TValue) ;

begin

WriteLn(' You called a method on an interface') ;

end;

The only thing this will do is to write out to the console – no matter what method you

call. You can

pretend it implements any interface, and no matter what you call on that interface, it will

merely

write to the console.

The constructor takes a single parameter, PIID, which is the TypeInfo for the interface

you want

to implement (That’s why the interface in question must have the {M+} switch – again,

usually

and most easily via IInvokable.). Inside the constructor, a call to a different constructor is

made.

The PIID parameter is passed in, as is a reference to DoInvoke, which is a method that

matches the

type TVirtualInterfaceInvokeEvent. Thus, the constructor is basically saying “Here is the

type of

143

information for the interface I’m implementing, and the method you should run whenever

a method

is called on that interface.”

In our case, the DoInvoke method only does one thing no matter what – writes to the

console.

So, for instance, say you declare an interface:

type

IGoStop = interface(IInvokable)

[' {3B2171B0-D1C3-4A8C-B09E-ACAC4D625E57} ']

procedure Go;

procedure Stop(aInteger: integer) ;

end;

And then you run the following code in a console application:

Using TVirtualInterface 129

GoStop : = TSimplestVirtualInterface. Create(TypeInfo(IGoStop)) as IGoStop;

GoStop. Go;

GoStop. Stop(42) ;

the console output will look like this:

You called a method on an interface

You called a method on an interface

You see the output twice because the code called two methods. It doesn’t matter what

you call – that

output will happen no matter what. It doesn’t matter what interface you pass in or what

method

you call, the result will be the same.

But of course that isn’t useful – to be of any use, you need to be able to know what is

getting called,

what is getting passed in, and respond accordingly.

Well, you can do that, because if you look at the signature of the DoInvoke method, you’ll

note

that when it gets called by the TVirtualInterface.OnInvoke event, it gets passed the RTTI

for the

method that was called, an array of TValue that contain the interface itself and all the

arguments

that the method was passed, as well as an out parameter of type TValue that allows you to

return a

value if the method being called is a function.

So how about we simply use the DoInvoke event to report out what all that information

that it

receives.

procedure TReportingVirtualInterface. DoInvoke(Method: TRttiMethod;

const Args: TArray< TValue> ; out Result: TValue) ;

var

Arg: TValue;

144

ArgType, ArgName: string;

TempKind: TTypeKind;

begin

Write(' You called the ' , Method. Name, ' method ') ;

if Length(Args) > 1 then

begin

Writeln(' and it has ' , Length(Args) - 1 , ' parameters: ') ;

for Arg in Args do

begin

TempKind : = Arg. Kind;

if TempKind < > tkInterface then

begin

ArgName : = Arg. ToString;

ArgType : = Arg. TypeInfo. Name;

Using TVirtualInterface 130

Writeln(ArgName, ' which is of the type ' , ArgType) ;

end;

end;

end else

begin

Writeln(' and it has no parameters. ') ;

end;

end;

This code simply looks over and reports out about the Method and Args parameters that

get passed

in when the interface is invoked. The very first item in the array is always type

information about

the interface itself, and the rest are the parameters, in order, as they were passed in. Here,

the code

simply reports out their values and types, but of course, you can process them as you

please.

Again, that is interesting information, but it’s just a step towards understanding how

TVirtualInferface

works. Let’s create something that actually does what we want it to.

Here’s a basic interface:

type

IActuallyUseful = interface

[' {16F01BF0-961F-4461-AEBE-B1ACB8D3F0F4} ']

procedure SayHello;

function ReverseString(aString: string) : string;

function Multiply(x, y: integer) : integer;

end;

Then, below is the DoInvoke method for a TActuallyUseful class that will actually do what

the

145

interface purports to do:

procedure TActuallyUseful . DoInvoke(Method: TRttiMethod;

const Args: TArray< TValue> ; out Result: TValue) ;

begin

if UpperCase(Method. Name) = ' SAYHELLO' then

begin

WriteLn(' Hello World! ') ;

end else

begin

if UpperCase(Method. Name) = ' REVERSESTRING' then

begin

Result : = ReverseString(Args[1] . AsString)

end else

begin

Using TVirtualInterface 131

if UpperCase(Method. Name) = ' MULTIPLY' then

begin

Result : = Args[1] . AsInteger * Args[2] . AsInteger;

end else

begin

raise Exception. Create(' Bad Parameter name was passed in to the DoInvoke \

method') ;

end;

end;

end;

end;

This code should be fairly self-explanatory. It simply checks for the name of the method

that was

called and then executes code using the parameter information passed in the Args

parameter. If the

call is a function, the Result parameter is used to return a value.

You should remember that the initial item in the Args array (that is, the one at the

“zero-eth” position)

is the interface type itself. The code above also makes assumptions about the number and

types of

the parameters. Since the code can only be invoked by the methods declared on

IActuallyUseful

interface, the code can make safe assumptions about the types and order of the

parameters.

Now all of this code above is fairly straight-forward – we are basically simulating an

implementing

class in our examples. Nothing is truly dynamic. The code so far merely shows simple

examples of

how TVirtualInterface works in a fairly static way. You should now be able to see how you

146

could

dynamically implement an interface using a TVirtualInterface descendant.

10.1 A Slightly Better TVirtualInterface

So far, all we’ve looked at is demo code. I can’t think of any reason why you’d actually,

in the real

world, implement an interface that way. But it serves to show you how TVirtualInterface

works

and how you can get it to do what you want.

Now TVirtualInterface is a cool class, but as is, it’s a little clumsy to use. How about we

write a

descendant class that does most of the “under the hood” work for you and makes it really

easy to

dynamically create a virtual interface?

Back in the chapter on Generics, I tried to get you to “think generically” and how

generics (or as I

prefer to think of them, parameterized types) are useful in more ways than just

collections and lists.

Well, I got to looking at TVirtualInterface and I thought, “You know, here’s a class that

actually

requires type information about a given type, and in order for it to do anything useful,

you have to

give it a type in the constructor, so hmmm.” And perhaps you can guess where I went

from there.

So, consider the following class declaration:

Using TVirtualInterface 132

type

TVirtualInterfaceEx< T: IInvokable> = class(TVirtualInterface)

protected

procedure DoInvoke(Method: TRttiMethod; const Args: TArray< TValue> ; out Result\

: TValue) ;

procedure DoInvokeImpl (Method: TRttiMethod; const Args: TArray< TValue> ; out Re\

sult: TValue) ; virtual ; abstract;

public

constructor Create;

end;

This is a pretty simple descendant for TVirtualInterface. The most obvious thing is that it

takes

a parameterized type T that is constrained to be an interface descending from IInvokable.

That

enables you to explicitly declare what interface TVirtualInterfaceEx is going to implement.

You

should notice, too, that TVirtualInterfaceEx is an abstract class, as the DoInvokeImpl

method is

147

abstract.

So once you have the parameterized type, you know everything you need to implement

the interface.

As you know from the previous section, the thing you need to do is to provide an

implementation

of DoInvoke. TVirtualInterfaceEx employs the technique whereby you implement the

interface in

the base class and provide a “real” implementation in a separate method invoked by the

base class.

So the implementation looks like this:

constructor TVirtualInterfaceEx< T> . Create;

begin

inherited Create(TypeInfo(T) , DoInvoke) ;

end;

procedure TVirtualInterfaceEx< T> . DoInvoke(Method: TRttiMethod; const Args: TArra\

y< TValue> ; out Result: TValue) ;

begin

DoInvokeImpl(Method, Args, Result) ;

end;

The constructor is pretty simple – it is parameter-less and calls a sibling constructor,

passing in the

TypeInfo for your interface and the DoInvoke method which is of type

TVirtualInterfaceInvokeEvent.

The code for the DoInvoke method simply calls the DoInvokeImpl method, which, because

it is

abstract, descendant classes must override.

Thus, to use this class, all you need to do is to descend from it and provide an interface

as a

parameterized type and an implementation for DoInvokeImpl . So if we wanted to

implement the

IActuallyUseful interface from the previous example, all we need to do is:

Using TVirtualInterface 133

TActuallyUsefulEx = class(TVirtualInterfaceEx< IActuallyUseful >)

protected

procedure DoInvokeImpl (Method: TRttiMethod; const Args: TArray< TValue> ; out Re\

sult: TValue) ; override;

end;

implementing DoInvokeImpl with the same code that was in the DoInvoke event of the

TActuallyUseful

class.

This isn’t anything really fancy, but I liked it because it simplified the process of creating

virtual

interface implementations and provided another example of a good use for parameterized

types. I

148

also like what I mentioned previously – that it clearly declares what interface it is

implementing.

10.2 An Actually Useful Example

Okay, enough with the not-all-that-useful examples. I mean, the previous examples were

illustrative,

but not really “real-world useful.”

The true usefulness of TVirtualInterface occurs when you use it to create code where you

have no

idea what interface the user of your code is going to try to implement. All the examples

so far have

shown only implementing classes where you do know which interface is being used. The

exception

so far is the TReportingVirtualInterface example which reports information on any

interface you

pass to it. Since we have proven that you can use TVirtualInterface to do something useful,

let’s

take it a step further.

A practical use of TVirtualInterface is to create a mocking library for unit testing. I’ve

mentioned

previously the Delphi Mocks Framework by Vince Parrett of FinalBuilder fame (We’ll

be covering

that framework extensively in a later chapter.). Another excellent implementation of a

mocking

framework (as well as a bunch of other very innovative and interesting stuff) is by Stefan

Glienke as part of his DSharp framework. Both of these use TVirtualInterface to provide a

mock implementation for any interface (though the DSharp code implements its own

version of

TVirtualInterface that works with Delphi XE – very cool). Both, of course, allow you to

pass

them any interface, and they’ll happily mock your interface for unit testing purposes. So

why not

do an example here of a very simple mocking object that you can actually use if you

want?

10.3 ISimpleStub

In the Unit Testing chapter, I will discuss “The Vocabulary of Unit Testing.” In it I’ll

describe fully

the distinction between a stub and a mock. There, you’ll see that a “stub” is “a fake that

has no effect

on the passing or failing of the test, and that exists purely to allow the test to run.” So

how about we

build a universal stub – a class that can pretend to be any interface you want, and not do

anything

149

at all. That can’t be that tough, can it?

Using TVirtualInterface 134

Well, we already have a class that can implement an interface, but we need to find a way

for that

class to actually be the interface. If you want a stub, the stub has to actually be the

interface type

you are trying to stub out, right?

First, since we always code against abstractions, let’s declare an interface:

ISimpleStub< T> = interface

[' {6AA7C2F0-E62F-497B-9A77-04D6F369A288} ']

function InterfaceToCall : T;

end;

And then let’s implement it with a descendant of TVirtualInterfaceEx<T> :

TSimpleStub< T: IInvokable> = class(TVirtualInterfaceEx< T> , ISimpleStub< T>)

protected

procedure DoInvokeImpl (Method: TRttiMethod; const Args: TArray< TValue> ; out Re\

sult: TValue) ; override;

public

function InterfaceToCall : T;

end;

Because TSimpleStub<T> descends from TVirtualInterfaceEx<T> , it can implement any

interface

you pass to it. It thus overrides DoInvokeImpl from TVirtualInterfaceEx<T> as well as

implementing InterfaceToCall from ISimpleStub<T> .

First, let’s look at DoInvokeImpl :

procedure TSimpleStub< T> . DoInvokeImpl(Method: TRttiMethod; const Args: TArray< TVa\

lue> ; out Result: TValue) ;

begin

// Since this is a pure stub, don't do anything!

end;

Not much to see here – it doesn’t do anything. And for a stub, that is fine. That’s exactly

what stubs

are supposed to do – nothing. We don’t care what happens when the methods get called;

you just

need to actually be able to call them in your testing code.

That’s where the InterfaceToCall function comes in. The class knows about the type of

interface

being stubbed because we are passing that type in as a parameterized type. The class

itself knows

how to implement that interface. There has to be a way to get an actual reference to that

implemented

interface, right?

Using TVirtualInterface 135

function TSimpleStub< T> . InterfaceToCall : T;

150

var

pInfo : PTypeInfo;

begin

pInfo : = TypeInfo(T) ;

if QueryInterface(GetTypeData(pInfo) . Guid, Result) < > 0 then

begin

raise Exception. CreateFmt(' Sorry, TSimpleStub<T> is unable to cast %s to its \

interface ' , [string(pInfo. Name)]) ;

end;

end;

Since TSimpleStub<T> knows the type that T is, you can call QueryInterface on the type

information

about T itself to get a reference to the interface in question. And of course, once you have

that, you

can pass that reference anywhere you need to stub out the interface – normally as part of

unit

testing.

So now you can safely call methods on the stubbed interface. For instance, given this

interface:

IActuallyUseful = interface(IInvokable)

[' {16F01BF0-961F-4461-AEBE-B1ACB8D3F0F4} ']

procedure SayHello;

function ReverseString(aString: string) : string;

function Multiply(x, y: integer) : integer;

end;

Writeln(' Implementing a TSimpleStub') ;

SimpleStub : = TSimpleStub< IActuallyUseful > . Create;

WriteLn(' Nothing should appear between this and the next statement') ;

SimpleStub. InterfaceToCall . SayHello;

SimpleStub. InterfaceToCall . Multiply(4, 4) ;

SimpleStub. InterfaceToCall . ReverseString(' blah') ;

WriteLn(' Nothing should appear between this and the above statement') ;

WriteLn;

Nothing happens when you call the interface methods, but that’s by design: stubs should

do nothing.

What you can do is call them as part of your unit testing:

Using TVirtualInterface 136

begin

...

MyClassUnderTest : = TSprocketThatTakesAnIWhatever.Create(SimpleStub.InterfaceToCa\

ll)

...

end;

10.4 TSimpleMock

151

Okay, so there’s a useful, dynamic way to use TVirtualInterface. TSimpleStub<T> will work

great

for a stub that you expect absolutely nothing from. But sometimes you need a fake

interface that

does something more than just exist, and when that is the case, you are creating a mock.

In the unit

testing chapter, I’ll define a mock as “a fake that keeps track of the behavior of the Class

Under Test

and passes or fails the test based on that behavior.” Thus, a mock needs to do more than

exist like a

stub – it needs to behave in a way that you can define. So how about we take

‘TSimpleMock

One of the most common things that a mock interface does is to respond with “this”

when passed

“that”. How about we create a simple mock class that lets you define a specific response

to a method

call?

First, of course, is an interface to code against:

ISimpleMock< T> = interface(ISimpleStub< T>)

[' {9619542B-A53B-4C0C-B915-45ED140E6479} ']

procedure AddExpectation(aCallName: string; aReturnValue: TValue) ;

end;

The interface augments (remember, “inherits from” is not quite right with interfaces)

ISimpleStub<T>

and adds the AddExpectation method. This is the method that we’ll use to tell the mock

out to

respond when an interface method gets called.

Here’s the implementing class:

TSimpleMock< T: IInvokable> = class(TSimpleStub< T> , ISimpleMock< T>)

private

FActions: TDictionary< string, TValue> ;

protected

procedure DoInvokeImpl (Method: TRttiMethod; const Args: TArray< TValue> ; out Re\

sult: TValue) ; override;

public

constructor Create;

destructor Destroy; override;

procedure AddExpectation(aCallName: string; aReturnValue: TValue) ;

end;

Using TVirtualInterface 137

The first thing to notice is that TSimpleMock<T> inherits from TSimpleStub<T> , thus

enabling it to

be any interface it wants to be. And of course it also implements the AddExpectation

method. It

152

takes as parameters the name of the method on the interface that you can call, as well as

a return

value for when that method gets called. In this way you can define the behavior of the

mock class

however you want.

This very simple mocking example assumes that you are going to be mocking only

function calls

as methods on an interface. Within the confines of our simple example, it doesn’t make

sense to

mock procedures – they basically don’t do anything as far as the simple example is

concerned. As

we’ll see, a full-featured mock framework is able to keep track of whether a procedure is

called, how

many times it does get called, and other things associated with procedures. This simple

example

also doesn’t care what parameters you pass in, it will merely return a value whenever the

named

method is called. Remember, this is a simple – but useful in specific situations – example.

The implementation of TSimpleMock<T> is pretty, well, simple. Internally, it uses a

TDictionary<TKey,

TValue> to keep track of the method calls and the resulting responses that are added via

the

AddExpectation call. Here is the implementation of AddExpectation :

procedure TSimpleMock< T> . AddExpectation(const aCallName: string; aReturnValue: TV\

alue) ;

begin

FActions. Add(aCallName, aReturnValue) ;

end;

When you add an expectation, the class keeps track of it. When you then call that method

on the

interface, it is able to retrieve the expected return value from the dictionary and return it:

procedure TSimpleMock< T> . DoInvokeImpl(Method: TRttiMethod; const Args: TArray< TVa\

lue> ; out Result: TValue) ;

begin

Result : = FActions[Method. Name] ;

end;

The obvious shortcoming here is no error handling – you’ll get an exception if you try to

call a

method on the interface that doesn’t have an expectation entry. Another shortcoming is

that the

parameters passed mean nothing – a real mocking framework would be able to provide

specific

responses for specific parameter inputs. I’ll leave correcting this problem as an exercise

for the reader.

153

So now, when we exercise this class, it will actually return stuff that you tell it to:

This code:

Using TVirtualInterface 138

WriteLn(' IActuallyUseful with ISimpleMock') ;

SimpleMock : = TSimpleMock< IActuallyUseful > . Create;

SimpleMock. AddExpectation(' Multiply' , 99) ;

SimpleMock. AddExpectation(' ReverseString' , ' This is actually working') ;

WriteLn(SimpleMock. InterfaceToCall . Multiply(6, 7)) ;

WriteLn(SimpleMock. InterfaceToCall . ReverseString(' This does not matter')) ;

WriteLn;

has the following output:

Note that the responses are not what you think they would be based on the parameters

(you think

that 6 times 7 would return 42), but what you told them to be in the AddExpectation call.

Now, you can use ISimpleMock<T> to provide specific feedback for a given method call.

Maybe

you have an interface method that returns a Boolean value that you want to test. You can

use

ISimpleMock<IInterfaceWithBooleanMethod> to test what happens when the method returns

True

as well as when that method returns False.

10.5 Conclusion

Okay, so there you have it: A useful implementation of TVirtualInterface. Though the

above

examples are really simple, they can actually be used in real world testing – particularly

the

ISimpleStub<T> implementation. Stubbing is common in unit testing, and even though it

is a very

basic implementation, it can be used to stub out any interface.

None of this is useful if you know what interface you need and how you are going to

implement

it. But there are cases when you don’t know what interface you will need for a particular

problem,

and you need to be able to flex to whatever interface the situation calls for. Mocking and

stubbing

are perfect examples. That’s a powerful and useful thing to be able to do. Hopefully this

chapter has

helped you see that.

154

11. 介绍依赖注入（Introduction to

Dependency Injection）

11.1 Introduction

Dependency Injection is a very powerful and important coding technique. The idea

became popular

as the notion of “Inversion of Control” after Martin Fowler wrote an article entitled

“Inversion of

Control Containers and the Dependency Injection Pattern”¹, and since then the notion has

advanced

rapidly, spawning numerous frameworks, books, and articles describing how to use the

powerful and

essential technique.

Inversion of Control is the notion that rather than a class creating the things that it needs,

it

should instead “ask” for those things, receiving them either via a constructor, a property,

or a field.

Dependency Injection is just a coding technique driven by inversion of control, though

there are

frameworks that help to support its use. To truly get the concept of Dependency Injection,

though,

we should talk about some general topics. There are a few things that need to be accepted

and

understood before Dependency Injection can become infused into your development

process.

11.2 What is a Dependency?

A dependency is something that you depend on. That’s a bit of a snarky answer to the

question

posed by the section header, but it does get to the point: It’s quite common for one class

to depend

on another. And if one class depends on another, then those classes are coupled together.

Class A

depends on Class B when you can’t compile Class A without Class B. That’s really what

coupling

amounts to – and coupled code is bad, as we know.

How does a dependency get created? Most commonly, they get created any time you

create one class

inside of another. For example:

¹http://martinfowler.com/articles/injection.html

155

Introduction to Dependency Injection 140

procedure TWidget. SendWidget;

var

WidgetSender: TWidgetSender;

begin

WidgetSender : = TWidgetSender. Create;

try

WidgetSender. SendWidget(Self) ;

finally

WidgetSender. Free;

end;

end;

Given the above code, the TWidget class has a strict, tightly-coupled dependency on

TWidgetSender.

You can’t create and use a TWidget without also pulling in and using TWidgetSender (and

only

TWidgetSender). TWidget is irrevocably dependent on TWidgetSender. The unit that

TWidget is

declared in has to use the unit that TWidgetSender is in. They are hopelessly intertwined

and

connected to each other. You have no flexibility in the way widgets are sent – they are

sent the

way that TWidgetSender sends them, and that’s it.

The point here is: Don’t do that. Don’t create dependencies. And of course, at this point

you might

ask – how do I not create a dependency?

We’ll get to that, but first, let’s discuss an important thing that pertains to this whole

notion of

dependencies and not creating them – the Law of Demeter.

11.3 The Law of Demeter (LoD)

What exactly is the Law of Demeter, you ask? The strict definition goes like this:

.

A method of an object may only call methods of:

• The object itself.

• An argument of the method.

• Any object created within the method.

• Any direct properties/fields of the object.

That’s a bit formal, so here’s an example:

Let’s say you go into a store. You buy a bunch of stuff, and the total is $25. When you go

to pay,

what do you do? If you are believer in the Law of Demeter, you pull out your wallet and

give the

$25 to the clerk – just the money, nothing more.

156

Introduction to Dependency Injection 141

But no, you are a scofflaw and fear not the deep coupling of your wallet to other people

and thus

you think the Law of Demeter is for weaker people, so you pull out your wallet and hand

the whole

thing over to the clerk and let him decide what to do for the payment.

Sure, you intended to pay with cash, but instead the clerk takes your wallet, uses a credit

card to

pay for the stuff, drops your library card on the floor, runs your BuyMore loyalty card

through a

degaussing machine, and draws a mustache on the picture of your wife. You paid for the

stuff, but

wow, what a mess!

That is why you should follow the Law of Demeter. Its basic premise is that you should

only

hand over (and on the other side, only ask for) exactly what you need to hand over (or

ask for).

Things should be linked together with as thin a string as possible. The Venn diagram

illustrating

the connections between your classes should have as small an overlap as can be managed.

In this

example, you might not even want the clerk to know you have a wallet.

Or in another example, you wouldn’t let the paperboy search around your house for spare

change,

right? Same principle – keep the interfaces (ha!) between two things as thin and lean as

possible.

11.4 A Design Example

For instance, in code, you may have a Transaction class that needs a form of payment to

be

completed. And hey, look! The Customer class has different Forms of Payment, so you

pass a

Customer to the Transaction. At first all is well, because you are very careful and all you

do is

grab the Form of Payment from the customer and use it. What could possibly go wrong?

But a few months pass, and that (cough, cough) “less experienced” developer comes

along and is

doing some maintenance work on the Transaction class. He says, “Hey look! Here’s a

Customer

object! I think I’ll change his address here instead of over there!” and suddenly all heck

breaks

loose. Pretty soon, you are fixing a bug in the Transaction class and Customer data changes.

You

fix a Customer bug and access violations start flying when you try to commit transactions

157

to the

database. The next thing you know, changing a Customer address is sending major cash

bonuses to

your office cleaning service, and before you know it, there is no end to the havoc

wreaked by that

little Customer object innocently sitting in the Transaction class.

The right thing to do, of course, is to simply pass the Form of Payment itself, or better

yet, forget

the Form of Payment and pass in just the money itself in some form. The idea is that

your classes

should ask for a little as possible, and refuse to accept more than they need. If you have

code like

this –

Transaction.Customer.FormOfPayment.CreditCardNumber.ProcessCreditCard;

– that is, code that seems to drill down deep into a class hierarchy – then you probably

deserve a

ticket from the cops for breaking the Law of Demeter. You’ve gone searching down a

rabbit hole for

something that you should have just asked for to start with.

Introduction to Dependency Injection 142

The classic quote in computer science is “Only talk to your friends, and never talk to

strangers.”

“Mind your own business” comes to mind as well.

Or let’s put it in even starker terms: Pretend that every class you write is a pristine clean

room with

no germs, dirt, or any other yucky stuff in it – and that you plan on keeping it that way.

Are you

going to let some delivery guy who just tramped through a horse barn while sneezing

because of

the ebola virus just walk into your room and hand you a package? Heck no! You are

going to make

him shower, scrub, de-sanitize, purify, and otherwise delouse himself before entering.

Sheesh, you

should probably make this guy put on some sort of bio-hazard suit before you let him in.

Or even

better still, don’t let him in at all, and only let him pass in whatever he’s trying to give

you via some

secure slot in the door.

Here’s another way to think about it. Imagine you have a six year-old, and her seventh

birthday is

coming up. You need a cake. So you decide to bake one with her! Well, that’s sweet and

everything,

but you can figure out what your kitchen will look like afterwards – flour everywhere,

icing all over

158

you and the counters, a general big mess.

You can, of course, avoid that by going to the bakery and buying a cake. Or better yet,

have the cake

delivered right to your house.

It’s like that with code: If you create things yourself, you can end up with a big mess. But

if, instead,

your classes have what they need delivered to them ready-made and ready to go, then

things are a

lot cleaner.

And that is precisely where the basic notion of Dependency Injection lies.

11.5 Law of Demeter in Delphi

Delphi and the Law of Demeter can be good friends. Here are some pointers to help out

in your

Delphi code:

• Limit the scope of your uses clauses. If you can put an item in the uses clause of the

implementation, do so.

• Use strict private and strict protected. This will limit you from the temptation to make

classes

“friends” of each other in the same unit.

• As noted above, any time you have a chain of “dotted” properties in a single line, you

should

examine this for violations of the Law of Demeter.

• Any time you are creating a lot of temporary objects, this might indicate unnecessary

dependencies.

• Check your constructors – if they are creating anything or taking a lot of other classes

as

parameters, then the same thing applies: the possibility of too much coupling.

• Note that these aren’t iron-clad rules but rather suggestions of examination and

consideration.

It need not become a “dot counting exercise.” The idea is to reduce coupling and thus

limit the

effect any one modification can have on the system as a whole.

Introduction to Dependency Injection 143

One of the main reasons to follow the Law of Demeter is to write code and code modules

that are

loosely coupled. Loosely coupled modules have minimal interactions with other modules

and thus

have minimal effect on those other modules. Change something in a loosely coupled

module and

the chances of breaking something in another module are slim. If you have a minimal

connection

to another module, then you can only cause minimal bugs in that module.

And “minimal bugs” is a phrase to warm the heart of us all, no?

159

11.6 A Step-by-Step Code Example

Okay, so what does this all mean for the way you should code? Let’s go through a simple

example

that starts the “old-fashioned way” of doing things and moves step-by-step toward a

loosely coupled

solution that illustrates the basics of Dependency Injection.

Consider the following code:

unit Step1 ;

interface

type

TOrder = class

function Amount: integer;

end;

TOrderValidator = class

procedure ValidateOrder(aOrder: TOrder) ;

end;

TOrderProcessor = class

private

FOrderValidator: TOrderValidator;

public

constructor Create;

destructor Destroy; override;

procedure ProcessOrder(aOrder: TOrder) ;

end;

procedure ProcessOrders;

implementation

uses

Introduction to Dependency Injection 144

System. SysUtils

;

procedure ProcessOrders;

var

OrderProcessor: TOrderProcessor;

begin

OrderProcessor : = TOrderProcessor. Create;

try

OrderProcessor. ProcessOrder(TOrder. Create) ;

finally

OrderProcessor. Free;

end;

end;

function TOrder. Amount: integer;

begin

160

Result : = Random(1000) + 1

end;

constructor TOrderProcessor. Create;

begin

FOrderValidator : = TOrderValidator. Create;

end;

destructor TOrderProcessor. Destroy;

begin

FOrderValidator. Free;

inherited;

end;

procedure TOrderProcessor. ProcessOrder(aOrder: TOrder) ;

begin

FOrderValidator. ValidateOrder(aOrder) ;

end;

procedure TOrderValidator. ValidateOrder(aOrder: TOrder) ;

begin

WriteLn(' Order is valid for $' + IntToStr(aOrder. Amount)) ;

end;

end.

Introduction to Dependency Injection 145

This code represents the way that things have commonly been done in the past before

people

became more aware of Dependency Injection. There are three classes: TOrder,

TOrderProcessor, and

TOrderValidator. None of them does anything particularly interesting – they are designed

merely

for illustrative purposes. TOrderProcessor processes orders and validates them with

TOrderValidator.

We won’t look too closely at the TOrder class – it is there to give TOrderProcessor

something

to do. What we will do, however, is look at the relationship between TOrderValidator and

TOrderProcessor.

Take a look at the constructor for TOrderProcessor. In it, we create an instance of

TOrderValidator.

We can’t compile TOrderProcessor without compiling TOrderValidator. We are, therefore,

tightly

coupled to TOrderValidator. We must use that instance of TOrderProcessor and no other. If

we want to change the way orders are validated, then we’ll have a heck of a time

replacing

TOrderValidator. Any bugs in TOrderValidator can directly affect TOrderProcessor. In our

simple

example, it only has one method, but imagine a more complex situation where the

interface of

161

TOrderValidator was tied to a specific implementation and had many method calls that

ranged

about the application. Replacing it could be very difficult.

In addition, testing TOrderValidator will be difficult. Imagine if TOrderValidator created a

large

set of its own dependencies or connected to external resources or otherwise complicated

the

processing of orders. In order to test TOrderValidator, you’d have to take on those

additional

dependencies just to run tests.

So, let’s take a simple step. Instead of hard-coding the creation of TOrderValidator in the

constructor

of TOrderProcessor, let’s defer the construction of TOrderValidator and pass an existing

instance

of TOrderValidator to the constructor of TOrderProcessor. Here’s an updated version of our

code

that does this:

unit Step2;

interface

type

TOrder = class

function Amount: integer;

end;

TOrderValidator = class

procedure ValidateOrder(aOrder: TOrder) ;

end;

TOrderProcessor = class

private

FOrderValidator: TOrderValidator;

public

Introduction to Dependency Injection 146

constructor Create(aOrderValidator: TOrderValidator) ;

destructor Destroy; override;

procedure ProcessOrder(aOrder: TOrder) ;

end;

procedure ProcessOrders2;

implementation

uses

System. SysUtils

;

procedure ProcessOrders2;

var

Order: TOrder;

OrderProcessor: TOrderProcessor;

162

begin

OrderProcessor : = TOrderProcessor. Create(TOrderValidator. Create) ;

try

Order : = TOrder. Create;

try

OrderProcessor. ProcessOrder(Order) ;

finally

Order. Free;

end;

finally

OrderProcessor. Free;

end;

end;

function TOrder. Amount: integer;

begin

Result : = Random(1000) + 1

end;

{ TOrderProcessor }

constructor TOrderProcessor. Create(aOrderValidator: TOrderValidator) ;

begin

inherited Create;

FOrderValidator : = aOrderValidator;

Introduction to Dependency Injection 147

end;

destructor TOrderProcessor. Destroy;

begin

FOrderValidator. Free;

inherited Destroy;

end;

procedure TOrderProcessor. ProcessOrder(aOrder: TOrder) ;

begin

FOrderValidator. ValidateOrder(aOrder) ;

end;

procedure TOrderValidator. ValidateOrder(aOrder: TOrder) ;

begin

WriteLn(' Order is valid for $' + IntToStr(aOrder. Amount)) ;

end;

end.

Now, the TOrderProcessor class takes a TOrderValidator as a constructor parameter. Note,

too,

that it takes ownership of that class and destroys it in its destructor. In doing this, we get

only a

small improvement. We are not strictly tied to TOrderValidator, as we could pass in a

descendant

163

class. That gives us more flexibility and slightly less coupling. It’s not much, but it is

something.

The other thing to note, as well, is that we have “pushed back” the creation of

TOrderValidator

closer to the main root of the application. Keep an eye on that as we go forward – the

notion of

pushing back creation of objects is a key factor in Dependency Injection.

Let’s decouple things even further. Consider the following:

unit Step3;

interface

type

TOrder = class

function Amount: integer;

end;

IOrderValidator = interface

[' {4CCA1F87-21C2-4755-9E6F-8573B909CE11} ']

procedure ValidateOrder(aOrder: TOrder) ;

Introduction to Dependency Injection 148

end;

TOrderValidator = class(TInterfacedObject, IOrderValidator)

procedure ValidateOrder(aOrder: TOrder) ;

end;

TOrderProcessor = class

private

FOrderValidator: IOrderValidator;

public

constructor Create(aOrderValidator: IOrderValidator) ;

procedure ProcessOrder(aOrder: TOrder) ;

end;

procedure ProcessOrders3;

implementation

uses

System. SysUtils

;

procedure ProcessOrders3;

var

Order: TOrder;

OrderProcessor: TOrderProcessor;

begin

OrderProcessor : = TOrderProcessor. Create(TOrderValidator. Create) ;

try

Order : = TOrder. Create;

try

OrderProcessor. ProcessOrder(Order) ;

164

finally

Order. Free;

end;

finally

OrderProcessor. Free;

end;

end;

function TOrder. Amount: integer;

begin

Introduction to Dependency Injection 149

Result : = Random(1000) + 1

end;

constructor TOrderProcessor. Create(aOrderValidator: IOrderValidator) ;

begin

inherited Create;

FOrderValidator : = aOrderValidator;

end;

procedure TOrderProcessor. ProcessOrder(aOrder: TOrder) ;

begin

FOrderValidator. ValidateOrder(aOrder) ;

end;

{ TOrderValidator }

procedure TOrderValidator. ValidateOrder(aOrder: TOrder) ;

begin

WriteLn(' Order is valid for $' + IntToStr(aOrder. Amount)) ;

end;

end.

Here’s a bullet list of the things that have happened:

• We’ve declared an interface called IOrderValidator that has all the methods needed to do

the work of validating an order. Now, we don’t care what class implements

IOrderValidator,

we just know that we can call ValidateOrder on an order and it will get validated.

• TOrderProcessor now stores a reference to an interface internally instead of an object

reference.

• TOrderValidator now descends from TInterfacedObject, thus providing the reference

counting required by interfaces.

• We no longer have to worry about ownership. Because interfaces are reference counted,

we

don’t need the destructor on TOrderProcessor any more to free the instance.

Thus, in Step 3, we have decoupled TOrderProcessor from the class TOrderValidator and

are

coupled to IOrderValidator instead. As we discussed in the interfaces chapter, you have to

couple

to something, and an interface is the thinnest, leanest thing you can couple to. So in this

165

step,

we’ve decoupled further, but not completely. We still have to create a class that

implements

IOrderValidator.

Introduction to Dependency Injection 150

However, we have made a significant step: we have inverted the control of order

validation by making the decision about how orders are validated outside of the

TOrderProcessor class. The decision

about what implementation to use gets made in the call to ProcessOrder3. TOrderProcessor

doesn’t

care anymore about what implementation validates orders. This is a big step.

In addition, we have done the most basic and important kind of Dependency Injection:

Constructor

Injection. We have created an order validator outside the scope of TOrderProcessor and

then

“injected” that implementation into TOrderProcessor via its constructor. TOrderProcessor

has

been decoupled from any particular implementation of order validation, giving us the

freedom to

use any implementation we want. In addition, we’ve satisfied the Law of Demeter by

passing to

TOrderValidator the smallest thing we can – an interface.

However, we are still tied closely to a specific implementation – we’ve just pushed that

implementation decision back to the call to ProcessOrders3. There, we are still

hard-coding a call to

TOrderValidator. It’s decoupled from TOrderProcessor, but we’ve just moved that coupling

closer

to the program “root” – that is, the very first command executed by our application. In

Delphi

applications, that is the first line of the DPR file. This is one of the principles of

Dependency Injection

– to push the creation of objects as far back towards the application root as possible.

So the next step we’ll take is to isolate the interface. Currently, in our simple example,

we have

everything in the same unit. What we’ll do next is to separate the interface out from the

code that

implements that interface. This will ensure that the interface isn’t found in the same unit

as the

implementation, thus further separating and decoupling our code. When we do that,

though, we

need to declare an interface to an order – IOrder – so that our IOrderValidator interface is

no

longer coupled to the specific implementation found in TOrder, but rather to an interface.

See how

166

this is contagious – in a good way? By isolating things both via code and via putting

things in

separate units, we can start to clearly see a path towards more decoupled code.

As a result, we get a unit called OrderInterfaces.pas that looks like this:

unit OrderInterfaces;

interface

type

IOrder = interface

[' {B4680E66-2642-40CC-B4EB-EEE9172F49B1} ']

function Amount: integer;

end;

IOrderValidator = interface

[' {4CCA1F87-21C2-4755-9E6F-8573B909CE11} ']

procedure ValidateOrder(aOrder: IOrder) ;

end;

Introduction to Dependency Injection 151

implementation

end.

and an implementation that looks like this:

unit Step4;

interface

uses

OrderInterfaces

;

type

TOrder = class(TInterfacedObject, IOrder)

function Amount: integer;

end;

TOrderValidator = class(TInterfacedObject, IOrderValidator)

procedure ValidateOrder(aOrder: IOrder) ;

end;

TOrderProcessor = class

private

FOrderValidator: IOrderValidator;

public

constructor Create(aOrderValidator: IOrderValidator) ;

procedure ProcessOrder(aOrder: IOrder) ;

end;

procedure ProcessOrders4;

implementation

uses

System. SysUtils

;

procedure ProcessOrders4;

167

var

Introduction to Dependency Injection 152

Order: IOrder;

OrderProcessor: TOrderProcessor;

begin

OrderProcessor : = TOrderProcessor. Create(TOrderValidator. Create) ;

try

Order : = TOrder. Create;

OrderProcessor. ProcessOrder(Order) ;

finally

OrderProcessor. Free;

end;

end;

function TOrder. Amount: integer;

begin

Result : = Random(1000) + 1

end;

constructor TOrderProcessor. Create(aOrderValidator: IOrderValidator) ;

begin

inherited Create;

FOrderValidator : = aOrderValidator;

end;

procedure TOrderProcessor. ProcessOrder(aOrder: IOrder) ;

begin

FOrderValidator. ValidateOrder(aOrder) ;

end;

procedure TOrderValidator. ValidateOrder(aOrder: IOrder) ;

begin

WriteLn(' Order is valid for $' + IntToStr(aOrder. Amount)) ;

end;

end.

Things to note:

• Both TOrder and TOrderValidator implement interfaces.

• TOrderProcessor only takes interfaces and doesn’t deal with any concrete classes at all.

• Instantiation of TOrder and TOrderValidator can be done without concern about freeing

them because they are handled as interfaces. This makes coding and memory handling

simpler

and less prone to error.

Introduction to Dependency Injection 153

• Because IOrder and IOrderValidator are interfaces, it is much easier (but not easy enough

yet, as we’ll see later) to replace the existing implementation with another one. All that is

needed is a class that implements IOrderValidator, and IOrderProcessor will be happy.

That new class can easily replace the existing class in only one place.

We’ve done a good job of decoupling the classes from each other. We’ve moved creation

168

“back” closer

to the application root and made it so that we can replace an implementation more easily

if desired.

Let’s turn our attention to the place where all that creation is still taking place – the

ProcessOrdersX

method.

11.7 The Dependency Injection Container

Remember, every time you call Create, you are not only creating an instance, you are also

creating

a dependency. As we slowly push the creation of all these classes back as far as we can

towards the

very root of our application, the more decoupled the downstream things can be. And if

you haven’t

figured it out yet, we’re going to try to push the creation of objects so far back into the

bowels of your

application that you can’t even really see it. That way, everything is downstream from

the actual

creation of objects, letting you easily decouple your code because you’ll mainly be

coding against

interfaces, and leaving the creation of the code to processes at the very root of your

application.

So what is this method by which your classes will be created out of sight? The technique

is usually

called a Dependency Injection Container. The Delphi Spring Framework includes a

container that

is easy to use and is very powerful. We’ll look at the basics of using it in the rest of this

chapter and

at its advanced use in the next chapter.

A Dependency Injection container is a special class that holds information about the

interfaces you

use and the classes that implement them. You can register a given class as implementing

a given

interface. Once registered, you can retrieve an interface with an instantiated

implementation. Why

is this cool and good? Because when retrieving an instantiated interface, you only need to

know

about the interface and not about the class implementing it.

A Dependency Injection Container takes care of creating the class for you via RTTI; you

don’t ever

have to call Create yourself. Thus, you can deal purely with interfaces without ever

having to worry

about creating anything. And if you aren’t creating anything, you can’t cause

dependencies, and if

169

you can’t cause dependencies, then you can’t cause deep coupling.

How does all this work? The first thing you do with a container is register classes and

interfaces. The

code for registering can be found in the Spring.Container unit. Place that unit in the uses

clause of

the unit where your classes are declared and you can register them. The Container is

registered as a

singleton called GlobalContainer, and this is the class that you will use to register your

classes. In

our simple example, we’ll register our TOrderValidator class as implementing the

IOrderValidator

field in the initialization section of the unit as follows:

Introduction to Dependency Injection 154

initialization

GlobalContainer. RegisterType< TOrderValidator> . Implements< IOrderValidato\

r> ;

The above code basically reads as follows: “In the GlobalContainer, register the

TOrderValidator

class as implementing the IOrderValidator interface.” This way, the container now knows

what

class it should create when an IOrderValidator is needed. We do the registration in the

initialization

section to keep it as close to the root of the application as possible; the registration will

take place

right as the application starts up.

But of course, that is only half the battle. Instead of creating an instance of

TOrderValidator

ourselves and thus coupling to it, we use what is called the ServiceLocator to grab an

implemented instance for IOrderValidator out of the Container. The ServiceLocator is found

in the

Spring.Services unit and is used as follows:

procedure ProcessOrders5;

var

Order: IOrder;

OrderValidator: IOrderValidator;

OrderProcessor: TOrderProcessor;

begin

OrderValidator : = ServiceLocator. GetService< IOrderValidator> ;

OrderProcessor : = TOrderProcessor. Create(OrderValidator) ;

try

Order : = TOrder. Create;

OrderProcessor. ProcessOrder(Order) ;

finally

OrderProcessor. Free;

170

end;

end;

By using the ServiceLocator, we can separate completely from the creation of the class

implementing the desired interface. The call to ProcessOrders5 doesn’t have a Create call

on TOrderValidator.

However, we still have things all coupled together in one unit, but when we split

everything apart

in the next section, we can limit the exposure of our code to only having the units with

concrete

implementations in the DPR file and the units with the interface declarations as the only

units that

you need to get the functionality your code requires.

For now, we’ll use the ServiceLocator to create our classes, but in the next chapter, I’m

going to argue that we shouldn’t even be doing that.

So let’s do that in Step6. In Step6, we’ll do the following:

Introduction to Dependency Injection 155

1. Place TOrderValidator and TOrder in the implementation section of their own units and

registered them as implementing their interfaces with the GlobalContainer. Notice

something

interesting – this results in a unit with nothing in its interface section. Wild, huh? If there

is no

code in a unit’s interface section, it cannot couple to anything at all. Yet we can still

access

the code via the Container/ServiceLocator combination. I wouldn’t necessarily recommend

doing this in real code, but it is an indicator of how decoupled your code really can be

with

proper dependency injection techniques.

2. The main unit – Unit6 – where TOrderProcessor resides now only has the OrderInterfaces

unit in its uses clause, so it can only couple to interfaces now. It cannot connect any more

to

any concrete implementation. Keeping your uses clause as lean as possible is an

important

part of loose coupling in Delphi.

3. Since the registration takes place in the initialization section of the implementing units,

and since those units are included in the project, the management of the creation of

instances

has been pushed back all the way to the very root of the application itself.

4. In order for the GlobalContainer to work, it must be built, and so the very first line in

the

DPR file is GlobalContainer.Build. The creation of objects can’t be pushed back any farther

than that.

Thus, the uOrder.pas unit looks like this:

unit uOrder;

interface

171

implementation

uses

OrderInterfaces

, Spring. Container

;

type

TOrder = class(TInterfacedObject, IOrder)

function Amount: integer;

end;

function TOrder. Amount: integer;

begin

Result : = Random(1000) + 1

end;

Introduction to Dependency Injection 156

initialization

GlobalContainer. RegisterType< TOrder> . Implements< IOrder> ;

end.

Again, note the empty interface section.

The ProcessOrder method now looks a lot simpler, as well:

unit Step6;

interface

uses

OrderInterfaces

;

type

TOrderProcessor = class

private

FOrderValidator: IOrderValidator;

public

constructor Create(aOrderValidator: IOrderValidator) ;

procedure ProcessOrder(aOrder: IOrder) ;

end;

procedure ProcessOrders6;

implementation

uses

System. SysUtils

, Spring. Container

, Spring. Services

;

procedure ProcessOrders6;

var

Order: IOrder;

OrderValidator: IOrderValidator;

OrderProcessor: TOrderProcessor;

172

begin

Introduction to Dependency Injection 157

OrderValidator : = ServiceLocator. GetService< IOrderValidator> ;

OrderProcessor : = TOrderProcessor. Create(OrderValidator) ;

try

Order : = ServiceLocator. GetService< IOrder> ;

OrderProcessor. ProcessOrder(Order) ;

finally

OrderProcessor. Free;

end;

end;

constructor TOrderProcessor. Create(aOrderValidator: IOrderValidator) ;

begin

inherited Create;

FOrderValidator : = aOrderValidator;

end;

procedure TOrderProcessor. ProcessOrder(aOrder: IOrder) ;

begin

FOrderValidator. ValidateOrder(aOrder) ;

end;

end.

Notice that the only unit it requires from our library is OrderInterfaces, which contains

nothing

but interfaces. Thus, our ordering system is completely decoupled, communicating

purely with those

interfaces and the ServiceLocator. The creation of classes is pushed all the way back to the

DPR

file itself. Because you no longer need to worry about creating anything, but instead are

merely

requesting interfaces with implementations, you will actually have a difficult time

coupling code

together.

At this point, you might be wondering “What should I put in the Container?” Well, here

are some

rules of thumb that I’d recommend you follow:

• Always code to interfaces, and always register a class against that interface in the

container.

If you write a class, expose it as an interface and put it into the Container.

• Do not put Runtime Library or other similar code into the container. There’s no need

for

TStringList or TStream to be included in the container. Again, classes you write should go

into the container, but proven, stable library classes can be created locally and used

normally.

• Whenever you create something, stop and consider if that creation shouldn’t be done by

173

the

Container. Eventually, you can reduce your Create calls down to the basics of the RTL

and

nothing more.

• In general, when in doubt, put it into the container. As we’ll see in the next chapter, you

can even register multiple implementations against a single interface, so the Container is

incredibly useful. Things that are incredibly useful should be used, right?

Introduction to Dependency Injection 158

11.8 Conclusion

In this chapter, we covered the very basics of Dependency Injection, including a

discussion about

the Law of Demeter and how we should keep our coupling as thin as possible. This led to

talking

about constructor injection as a basic DI technique. An example of decoupling code

caused us to

use a DI Container to ensure that the creation of objects is done as far away from your

“real” code

as possible.

In the next chapter we’ll look more closely at the Spring Container and what it can do to

improve

your ability to inject dependencies rather than create them

12. 深层次审视依赖注入（A Deeper Look at

Dependency Injection）

Okay, so by now you should have the general idea about what Dependency Injection is.

You should

understand that one class should avoid directly creating instances of a second class, but

instead,

defer creation as far back as possible within the application, even to the point of letting a

container

create your classes for you.

But there’s a bit more structure to the notion of Dependency Injection and a lot more that

the Spring

Container can do for you, so we’ll examine both of those things in this chapter.

Let’s start with a simple example. Consider this class:

type

TKnight = class

private

FWeapon: IWeapon;

174

public

constructor Create(aWeapon: IWeapon)

end;

This is a pretty obvious example of constructor injection. The constructor takes a

parameter, aWeapon,

indicating that you can give the knight any weapon that he needs. The presence of the

parameter on

the constructor also is a message to developers that a Knight must have a weapon. You

can’t create a

knight without passing him a weapon (and we presume that the constructor fails if

aWeapon is nil).

Thus, constructor injection should be used to indicate the required dependencies that a

class has.

As noted above, it is standard practice not to accept nil parameters when constructing an

object. If

a constructor has a parameter, then that parameter represents a dependency that can never

be nil .

Thus, TKnight’s constructor might look like this:

A Deeper Look at Dependency Injection 160

constructor TKnight. Create(aWeapon: IWeapon) ;

begin

inherited Create;

if aWeapon = nil then

begin

raise ENoWeaponException. Create(' A knight must have a weapon') ;

end;

FWeapon : = aWeapon;

end;

By doing this, a class can ensure that it is never in an incorrect state. In the case of our

knight, a

knight should never be without a weapon, and the user of the TKnight class can code as if

a weapon

always exists.

12.1 Optional Dependencies

Sometimes, however, dependencies are not required. Thus, consider this class:

type

TBasketballPlayer = class

private

FBall : IBasketball ;

public

constructor Create(aBasketball : IBasketball) ;

end;

At first glance, this looks right – but then you stop to consider that basketball teams

175

require five

players and there is only one ball. Thus, you can’t create all five players, each with a ball.

The

dependency of a ball is optional in this case. What to do?

12.2 Setter Injection

This is where “Setter Injection” comes in. Instead of passing the dependency in via the

constructor

where it is required for creating a player, we can instead set the ball for each player as

they pass it

around:

A Deeper Look at Dependency Injection 161

type

TBasketballPlayer = class

private

FBall : IBasketball

public

constructor Create;

property Ball : IBasketball read FBall write FBall ;

end;

Now, instead of requiring that a player have the ball, we can create a player and

optionally let them

have or give up the ball via the Ball property. The ball is not required, but it can be

assigned as

needed to a given player. Thus, Setter Injection allows a dependency to be externally

assigned as

desired. Again, the construction of the dependency is done externally, and the

dependency is injected

into the class, this time via a property.

Note that Setter Injection can also be used to directly set a field value as opposed to a

property.

However, Field Injection, as it is called, is not a generally recommended technique for

the same

reasons that you should prefer properties over public fields. In addition, private fields are,

well,

private, and just as we shouldn’t externally change private field as a general rule, we

should avoid

using the container to do so.

Now consider this case:

type

TKnight = class

private

FWeapon: IWeapon;

public

176

constructor Create(aWeapon: IWeapon)

property Weapon: TWeapon read FWeapon write FWeapon;

end;

Here, we’ve combined Constructor Injection and Setter injection to indicate that the

Weapon

dependency is required – it must be passed in via the constructor, but that it is also

available for

modification. It might be that once you create a knight with a given weapon, you might

want to

change what weapon that knight is using.

12.3 Method Injection

A third type of Dependency Injection that you might use is Method Injection. Similar to

Setter

Injection, you instead use a method to assign the dependency. See the following code:

A Deeper Look at Dependency Injection 162

type

TKnight = class

private

FWeapon: IWeapon;

public

constructor Create(aWeapon: IWeapon)

procedure Arm(aWeapon: IWeapon) ;

property Weapon: TWeapon read FWeapon;

end;

In this code, we use Construction Injection to require that the knight has a weapon, but

we provide

a method that allows us to give the knight any weapon that we want.

All of techniques ensure that your dependencies are flexible and not hard-coded. They

allow you

to determine dependencies outside of the class itself. And if your dependencies are

injected, that

means that your code isn’t coupled.

But the question arises – if a dependency is optional, how do we handle that dependency

not being

present? Well, a real world example might look something like this:

type

TTextProcessor = class

private

FText: string;

FSpellChecker: ISpellChecker;

public

constructor Create(aText: string) ;

procedure ProcessText;

177

property SpellChecker: ISpellChecker read FSpellChecker write FSpellC\

hecker;

end;

constructor TTextProcessor. Create(aText: string) ;

begin

inherited Create;

FText : = aText;

FSpellChecker : = nil ;

end;

procedure TTextProcessor. ProcessText;

begin

if SpellChecker < > nil then

begin

A Deeper Look at Dependency Injection 163

FText : = SpellChecker. CheckSpelling(FText) ;

end;

// Do something to text?

end;

In the above code, we use Setter Injection to indicate that we can optionally have a spell

checker as

part of the text processing done by the class. When the time comes, you can check for the

presence of

a spell checker, and if there is one, use it to spell check the text. If there isn’t one, you

can process the

text without a spell check. This is a simple but effective way to manage your optional

dependencies.

There is another way to use Setter Injection. You can use it to allow for a dependency to

be changed,

but to have the constructor provide a “reasonable default” for the class. Consider this:

type

TKnight = class

private

FWeapon: IWeapon;

public

constructor Create;

property Weapon: TWeapon read FWeapon write FWeapon;

end;

constructor TKnight. Create;

begin

inherited Create;

FWeapon : = TSword. Create;

end;

Here, we have a parameter-less constructor, but the constructor creates a “default”

weapon, a sword,

178

for the knight. However, because of the presence of the Weapon property, the developer

can change

the weapon that the knight uses. This is a subtle but important difference in the use of

Constructor

Injection.

Thus, we can state the following general rules:

1. Use Constructor Injection to indicate that a dependency is required. Constructor

Injection can

enforce the presence of a given dependency by requiring that the class be constructed

with

valid instances of the dependencies indicated in the parameters.

2. Use Setter Injection to indicate that a dependency can be changed once established.

Secondarily, Setter Injection can indicate that a dependency is not strictly required. You

can then

write your code without assuming that the dependency is present.

3. Combine the two when you want to have a dependency that is required but

configurable.

4. Use Method Injection if you want to clearly indicate the means to alter a dependency.

A Deeper Look at Dependency Injection 164

5. Avoid Field Injection and prefer properties using Setter Injection.

That should provide you with a good overview of the basics of the different types of

Dependency

Injection. Once you have those principles down, you can make good use of the Spring

Container.

12.4 The Delphi Spring Container and Service

Locator

In the last chapter we got a very basic look at the Spring Container, using it to do all of

our object

creation and to push all of that creation back to the root of our application. In this section,

we’ll look

a little more closely at the container: how to use it and what it can do, as well as the

proper way to

configure your application to take advantage of it.

The primary purpose of the container is to create objects. If you really want to follow the

Single

Responsibility Principle¹ in your classes, then it is not the job of a class to create its

dependencies.

Instead, a class should defer the responsibility of creation to a class that has the single

responsibility

of creating things. That’s what a container is – a class whose single responsibility is to

create things.

The primary purpose of the ServiceLocator is to retrieve implementations of requested

179

services,

whether they be implemented interfaces or just instances of objects. However, the

techniques we’ll

see in this chapter will remove the need for the Service Locator, and by the end of the

chapter I’ll

argue that its use is actually an anti-pattern.

The first thing you must do before using the container is to register the relevant classes.

Here is a

look at the Container’s registration interface:

function RegisterType< TComponentType> : TRegistration< TComponentType> ; overloa\

d;

function RegisterType(componentType: PTypeInfo) : TRegistration; overload;

There are two ways to register a class: as a generic type or with the type information

from the class.

Thus, you can register a class in the following two ways:

GlobalContainer. RegisterType< TSword> ;

or

GlobalContainer. RegisterType(TSword. ClassInfo) ;

¹https://docs.google.com/file/d/0ByOwmqah_nuGNHEtcU5OekdDMkk/edit

A Deeper Look at Dependency Injection 165

I prefer using the generic method because it seems cleaner to me, but both ways will

work.

One more note on registering classes – it is common practice to register your classes with

the

container in the initialization section of the unit where the class is implemented. That

way, the

registration takes place as close to the application root as possible. The weakness here is

that the

registration of your classes and interfaces takes place all over your application.

If you prefer to centralize your registrations, you can create a single unit that uses all the

other units

in your application, have that unit register all the classes and interfaces in a single

method, and

then call that single method at the very beginning of your program in the DPR file. The

one thing to

remember is that you also need to call GlobalContainer.Build to ensure that all the

registrations

take place and that the container can pull together all the information for the

ServiceLocator to be

able to do its job.

Registering Interfaces

Registering classes is great, but of course the real benefit comes when you register a

particular class

180

as implementing an interface. The call to RegisterType returns an instance of type

TRegistration.

TRegistration represents the result of registering a class and allows you to describe an

interface

that is implemented by the registered class. Thus, it has the following overloaded

methods available

for associating interfaces to classes:

function Implements(serviceType: PTypeInfo) : TRegistration< T> ; overload;

function Implements(serviceType: PTypeInfo; const name: string) : TRegistratio\

n< T> ; overload;

function Implements< TServiceType> : TRegistration< T> ; overload;

function Implements< TServiceType> (const name: string) : TRegistration< T> ; over\

load;

Again, you can declare an implementing interface either by using generics or the type

information

for the interface. I’ll be using the generics method throughout as I think it is easier to

read and

understand.

Note that two of the overloads here take a name parameter. I’ll be discussing the benefits

of this

feature below.

Thus, you can now register TSword as implementing the IWeapon interface like so:

GlobalContainer. RegisterType< TSword> . Implements< IWeapon> ;

Now the container will have an association between TSword and IWeapon that will allow

it to create

an instance of TWeapon when asked for an implemented reference of IWeapon. That might

be done

like so:

A Deeper Look at Dependency Injection 166

var

Sword: IWeapon;

begin

Sword : = ServiceLocator. GetService< IWeapon> ;

Sword. Wield;

end;

Thus you can get a reference to TSword without having to create a reference to TSword or

even

putting TSword’s unit name in your uses clause.

But looking at this, I see an immediate problem. We’ve registered a TSword against the

IWeapon

interface. But a knight uses more than a sword. What if he wants to use a mace or a lance?

This

is where registering interfaces by name comes in. The container allows you to register by

name

181

multiple classes against the same interface:

GlobalContainer. RegisterType< TSword> . Implements< IWeapon> (' Sword') ;

GlobalContainer. RegisterType< TLance> . Implements< IWeapon> (' Lance') ;

And now, if our knight wants to use a sword, we call:

var

Sword: IWeapon;

begin

Sword : = ServiceLocator. GetService< IWeapon> (' Sword') ;

Sword. Wield;

end;

but if he needs to use his lance:

var

Lance: IWeapon;

begin

Lance : = ServiceLocator. GetService< IWeapon> (' Lance') ;

Lance. Wield;

end;

You can register by name as many different implementations of a given interface as you

like.

A Deeper Look at Dependency Injection 167

Lifetime Management

Since we are using interfaces, it is easy to forget about the lifetime of the objects behind

those

interfaces. As a consumer of interfaces, you don’t normally worry about the lifetime of

the

implementing class because you know that it will be destroyed when the interface goes

out of scope.

However, things are a bit different when you are using the Container. Sometimes your

implementing

classes need finer lifetime control than just ‘when the interface goes out of scope’. You

may have

limited resources associated with the class. You may want the same instance used for

every request,

or you may just want a new instance created for each request to the Container.

The Container lets you manage the lifetime of those objects by providing further

methods on the

TRegistration object that is returned when registering and declaring an implementation for

a given

class or interface.

TRegistration provides the following methods for determining the lifetime of the objects

that it

creates:

function AsSingleton: TRegistration; overload;

182

function AsSingleton(refCounting: TRefCounting) : TRegistration; overload;

function AsSingletonPerThread: TRegistration;

function AsTransient: TRegistration;

function AsPooled(minPoolSize, maxPoolSize: Integer) : TRegistration;

If you want to have your reference be a singleton – that is, one instance for all calls to the

given

registration – then declare it as follows:

GlobalContainer. RegisterType< TSword> . Implements< IWeapon> . AsSingleton;

That will ensure that whenever you ask for an IWeapon, you will be given back the same

exact

instance for all requests.

AsSingletonPerThread does what its name implies – it provides the same instance to each

request

within a given thread. There might be multiple instances of the implementation, but each

thread

will always get the same instance.

AsTransient is the default behavior. AsTransient will create a new instance for each request

made.

Assuming that you are using an interface reference, that transient instance will live as

long as the

interface remains in scope (i.e., as long as its reference count is greater than zero,

presuming you are

using “normal” reference counting).

AsPooled will create a pool of instances for use upon request. You can determine the

minimum and

maximum number of items in the pool. When an item is requested by the ServiceLocator,

it will

be retrieved from the pool of items. All the items in the pool are created when the

container is built,

and thus all are available when the program begins. Use pooling when creation is

expensive and

you want to pay that cost up front.

A Deeper Look at Dependency Injection 168

Custom Creation

As discussed, the main function of the Spring Container is to create objects for you.

Normally it

can do that because every object in Delphi has a default constructor or because the

constructor’s

parameters are also registered in the Container. But what happens if your class has

specific

requirements for creation?

Well, the Spring Container provides for this via a method called DelegateTo, which allows

you to

183

provide an anonymous method that creates your object however you want to create it.

For instance, consider the following code:

type

IWeapon = interface

procedure Fire;

end;

TSword = class(TInterfacedObject, IWeapon)

private

FHasScope: Boolean;

public

constructor Create(aIsValerianSteel : Boolean) ;

end;

You can register TSword with the container and grab it with the Service Locator, but it

won’t be

properly instantiated because you don’t have a way to get a hold of a sword with or

without Valerian

steel (In fact, because Boolean types always default to False, you’ll always get a sword

without

Valerian steel.). What to do?

Well, here’s what you do: You register two different instances by name, passing in an

anonymous

method that will create the sword as you want it to be created for each:

GlobalContainer. RegisterType< TSword> . Implements< IWeapon> (' ValerianSteel ')

. DelegateTo(function: TSword

begin

Result : = TSword. Create(True) ;

end) ;

GlobalContainer. RegisterType< TSword> . Implements< IWeapon> (' RegularSteel ')

. DelegateTo(function: TSword

begin

Result : = TSword. Create(False) ;

end) ;

Now we can grab from the container either a scoped or a non-scoped sword, thanks to

the

DelegateTo function and a simple anonymous function that returns an instance of TSword.

Sweet.

A Deeper Look at Dependency Injection 169

Setting a Default Type

Since you can register multiple types to the same interface by name, it’s possible to

create an

ambiguous situation when asking for an implementation without a name. Consider the

following:

Say you register two weapons by name:

184

initialization

GlobalContainer. RegisterType< TSword> . Implements< IWeapon> (' sword') ;

GlobalContainer. RegisterType< TDagger> . Implements< IWeapon> (' dagger') ;

… but then later, you ask for a weapon without a name attached.

var

Dagger: IWeapon;

begin

Dagger : = ServiceLocator. GetService< IWeapon> ;

end;

If you do this, you’ll get an “Unsatisfied Dependency” exception, because the container

doesn’t know

which weapon you want. And of course, you won’t know this until runtime. Alas.

But there is a solution. You can declare one of the weapons as the default weapon, and it

will be the

one returned if there is any ambiguity about which IWeapon is required. Thus, you should

declare

your registrations as follows:

initialization

GlobalContainer. RegisterType< TSword> . Implements< IWeapon> (' sword') ;

GlobalContainer. RegisterType< TDagger> . Implements< IWeapon> (' dagger') . AsDefault< \

IWeapon> ;

Thus, if you ask for an IWeapon without a name, you’ll get the dagger by default. Note,

though, that

if you ask for an IWeapon with a name that doesn’t exist, you’ll still get an exception and

not the

default weapon.

Register the same type for two interfaces

Sometimes a class can implement more than one interface. Well, no problem – you can

register that

class as implementing both of those interfaces in a single, chained together statement:

A Deeper Look at Dependency Injection 170

TSharpEdgedShield = class(TInterfacedObject, IWeapon, IShield)

procedure WieldWeapon;

procedure Block;

end;

GlobalContainer. RegisterType< TSharpEdgedShield> . Implements< IWeapon> (' shield')

. Implements< IShield> (' sharpshiel\

d') ;

Using Registration to Inject Fields and Properties

Many times, you’ll have one registered class that has a field or property of a type that is

also a

registered class. When this happens, you can use the container to automatically connect

185

up the field

or property with the appropriate, registered implementation. This means that you don’t

actually

have to create or even assign instances for your fields and properties; the container will

do it for you

instead ‘auto-magically’.

For instance, consider this set of types:

type

IFirearm = interface

[' {47C93F4A-D07F-4E66-964C-6E21A3F4AB17} ']

procedure Fire;

end;

IAimingDevice = interface

[' {3DB34251-B82B-443D-AF1C-7182DC46D014} ']

procedure Aim;

end;

TScope = class(TInterfacedObject, IAimingDevice)

procedure Aim;

end;

TRifle = class(TInterfacedObject, IFirearm)

private

FScope: IAimingDevice;

public

procedure Fire;

property Scope: IAimingDevice read FScope write FScope;

end;

Here we have a TRifle class that has a Scope interface property of type IAimingDevice.

TScope is

an implementation of IAimingDevice. Thus, we can register all of these classes like so:

A Deeper Look at Dependency Injection 171

GlobalContainer. RegisterType< TRifle> . Implements< IFirearm> . InjectProperty(' Scope\

') ;

GlobalContainer. RegisterType< TScope> . Implements< IAimingDevice> ;

The first registration means “Register the type TRifle as implementing the interface

IWeapon, and

when you see the property named Scope, go ahead and grab an implementation of that

class from

the container based on its type.”

The next line registers TScope as the implementer for the IAimingDevice interface, thus

completing

the loop. Because TScope is of type IAimingDevice and because TScope is registered as

implementing

IAimingDevice, everything gets all hooked up just fine. This is just another easier step in

‘wiring

186

together’ your classes. It also allows you to pass off the creation of objects to the

Container.

The same basic principle works for fields:

TRifle = class(TInterfacedObject, IFirearm)

private

FScope: IAimingDevice;

FMetalSight: IAimingDevice;

public

Clip: IClip;

procedure Fire;

property Scope: IAimingDevice read FScope write FScope;

property MetalSight: IAimingDevice read FMetalSight write FMetalSight;

end;

GlobalContainer. RegisterType< TRifle> . Implements< IFirearm> . InjectProperty(' Metal\

Sight' , ' sight')

. InjectField(' Clip') ;

GlobalContainer. RegisterType< TScope> . Implements< IAimingDevice> (' scope') . AsDefau\

lt< IAimingDevice> ;

GlobalContainer. RegisterType< TNormalSight> . Implements< IAimingDevice> (' sight') ;

GlobalContainer. RegisterType< T14RoundClip> . Implements< IClip> ;

Since we register T14RoundClip as implementing IClip, we can inject the field named Clip

with an

instance of T14RoundClip because it implements IClip.

This all works, of course, because everything is registered with the same container. The

container

knows about all the types involved. It can use RTTI to create any type registered within it.

When

it comes time to create an instance of a given implementation, the container can iterate

over all

of the fields and properties, and if any of them have registered “injections”, then those

types can

be instantiated an assigned as well. Thus, through a combination of the power of generics

and the

‘magic’ of RTTI, the DI container can provide a lot of power. In a bit, we’ll see how we

can even

label fields and properties with attributes in order to ensure that they are automatically

‘wired up’

for you.

A Deeper Look at Dependency Injection 172

Using Registration to Inject Constructors and Methods

When you register a class/interface pair in the container, it can inject an instance for you

anywhere

that interface is found. So far, we’ve been using Constructor Injection to pass in

187

dependencies to a

class. That is, we’ve used the parameters of a class’s constructor to pass in to it the

dependencies it

needs to do its job. Then, in the implementation of the constructor, instead of creating an

instance

of the dependency, we’ve retrieved it from the container. This works really nicely

because it couples

you only to the interfaces that you have in the constructors of your objects.

But that whole process seems rather algorithmic, right? And you know that RTTI can tell

you

everything about the parameters of the constructor, right? Doesn’t it stand to reason that

this process

could happen in an automated way? Of course it does.

The Container can actually inject an entire constructor into your class so that you use that

class

without actually having to manually call the Service Locator. This is commonly referred

to as “autowiring.”

Code always explains things well. Let’s return to our Knight and give him an interface.

IFightable = interface

[' {A24A33AD-ADD5-442A-A909-1BF7D3FE0237} ']

procedure Fight;

end;

TKnight = class(TInterfacedObject, IFightable)

private

FWeapon: IWeapon;

public

constructor Create(aWeapon: IWeapon) ;

procedure Fight;

end;

constructor TKnight. Create(aWeapon: IWeapon) ;

begin

inherited Create;

FWeapon : = aWeapon;

end;

procedure TKnight. Fight;

begin

Write(' The Knight engages in battle! ') ;

FWeapon. WieldWeapon;

end;

A Deeper Look at Dependency Injection 173

. . .

GlobalContainer. RegisterType< TSword> . Implements< IWeapon> (' sword') . AsDefault<

IWe\

apon> ;

188

GlobalContainer. RegisterType< TDagger> . Implements< IWeapon> (' dagger') ;

GlobalContainer. RegisterType< TKnight> . Implements< IFightable> . InjectConstructor(\

[' sword']) ;

As you can see, TKnight’s constructor takes an IWeapon. Well, given the above

registrations, the

container knows about Knights, swords, daggers, and fighting. The last registration also

contains

something new – a call to InjectConstructor. It takes as its last parameter a string naming

one of

the IWeapon registrations, in this case the ‘sword’. Given all of that information, the

container can

now “inject” an IWeapon into the constructor of TKnight when it is called internally.

Because the

parameter is a type registered in the Container, the system can look up the implementing

type by

name (‘sword’) and create a sword for use in the constructor. So now, the following code

works just

fine:

procedure KnightFights;

var

Knight: IFightable;

begin

Knight : = ServiceLocator. GetService< IFightable> ;

Knight. Fight;

end;

The thing to note is that nowhere in your code does an instance for IWeapon get created

or even

retrieved via the ServiceLocator. The Container knows that you’ve told it the way to

construct a

TKnight and properly injects a sword into the constructor when it creates an instance of

TKnight

for the IFightable interface.

But what if you need to pass in more than just registered types? Constructors don’t

always cooperate

and take only registered types, right? Well, you can do that, too.

Let’s create a new class, TKing, where the constructor takes a string parameter that gives

the king a

name in addition to the Weapon that every good king should have.

A Deeper Look at Dependency Injection 174

TKing = class

private

FWeapon: IWeapon;

FName: string;

public

189

constructor Create(aWeapon: IWeapon; aName: string) ;

procedure Fight;

end;

The InjectConstructor method can take an array of TValue as a parameter, allowing you to

register all the parameters of the constructor for TKing:

GlobalContainer. RegisterType< TKing> . InjectConstructor([' sword' , ' Arthur']) ;

In this case, we have given the king the name “Arthur” and a sword for a weapon

(Remember,

registered items are retrieved by name and thus must be registered by name.).

12.5 Registering via attributes

Back in the attributes chapter, we saw how you can use brackets ([]) to declare attributes

to add

your own runtime information to classes.

The Spring Container provides attributes to mark constructors, fields, properties, and

methods as

injected. By using the [Inject] attribute, you can mark a class member as requiring the

container

to inject a value for it, and avoid registering it explicitly. In general, an attribute is clearer

code

because the declaration is right next to the affected class member, rather than separated

off in a

registration call in an initialization section.

The [Inject] attribute can be used to replace any of the method registration calls that we

discussed

in the previous section. You can place the [Inject] attribute on fields, properties, and the

parameters

of methods and constructors. The attribute can also take a string parameter that will

correspond to

the name of the item that should be injected.

Let’s look at a code example. This example will show the [Inject] attribute attached to a

field, a

property, and the parameter of a constructor.

First, here are some interfaces:

A Deeper Look at Dependency Injection 175

type

IFireFighter = interface

[' {12188A33-536C-483E-A0C7-D372EDDF63B1} ']

procedure FightFire;

end;

IFireTool = interface

[' {D70EACE6-9F78-43AE-AFB1-2AE20FE117B2} ']

procedure UseToFightFire;

end;

190

The first is an interface to describe anyone that fights a fire. IFireTool is designed to

represent

anything that an IFireFighter would use to fight a fire.

Next, we’ll implement these interfaces:

TFireHose = class(TInterfacedObject, IFireTool)

procedure UseToFightFire;

end;

TAxe = class(TInterfacedObject, IFireTool)

procedure UseToFightFire;

end;

TProtectiveGear = class(TInterfacedObject, IFireTool)

procedure UseToFightFire;

end;

TFireman = class(TInterfacedObject, IFireFighter)

private

[Inject(' gear')]

FGear: IFireTool ;

FMainTool : IFireTool ;

FSecondaryTool : IFireTool ;

public

constructor Create([Inject(' hose')]aTool : IFireTool) ;

[Inject(' axe')]

property SecondaryTool : IFireTool read FSecondaryTool write FSecondaryTool ;

procedure FightFire;

end;

and here’s the registration:

A Deeper Look at Dependency Injection 176

initialization

GlobalContainer. RegisterType< TFireman> . Implements< IFireFighter> ;

GlobalContainer. RegisterType< TFireHose> . Implements< IFireTool > (' hose') ;

GlobalContainer. RegisterType< TAxe> . Implements< IFireTool > (' axe') ;

GlobalContainer. RegisterType< TProtectiveGear> . Implements< IFireTool > (' gear') ;

The first thing to note is that the registrations are simplified: There is no call to

InjectConstructor,

InjectField, or InjectProperty. Second, I’ve left the implementations out to keep things

concise,

but they are exactly what you’d expect: nothing but assignments and calls to WriteLn.

What is most

noticeably missing is any call to Create. Everything is injected, either via property or

constructor

injection.

The key part to note here is the three uses of the [Inject] attribute. The first is on the field

FGear, which tells the container “When you need to create an instance of TFireman, grab

the

191

implementation of IFireTool named ‘gear’ and assign it to FGear. The second is basically

the same

thing for the SecondaryTool property, and the third is for the parameter of type IFireTool on

the

constructor of TFireman. All three basically inform the container what to create and

assign when

the TFireman class is created. There’s no need for you to create anything, and there’s no

need to

have any kind of hard-coded coupling to any particular implementation.

This is a simple, contrived demo. In a real application, you should put your interfaces

into a separate

unit, and then use only that unit when dealing with the functionality they provide.

Implementations

should be referred to only in the DPR file with their registrations taking place in

implementation

sections.

Some general things to note:

• Method Injection and Constructor Injection are unfortunate names. They both tend to

give

you the idea that you are adding in a method or a constructor to your class. Better terms

might

have been “Injection via Constructor” and “Injection via Method”.

• You can have a lot of control over what implementations get injected. Since you can

register a

class/interface pair by name and then inject them by name, you can configure your

application

in different ways based on those names.

• Because attributes are simple to deploy, direct replacements for registration calls, and

easier

to see in code, I recommend that you use them as much as possible as opposed to direct

registration calls.

• The one downside here is that the use of attributes does tie you to the specific

implementation

in the Spring Framework. Using [Inject] is specific to the Spring Framework. By using

the

registration methods, you could theoretically replace the IContainer interface with a

different

implementation. Using the [Inject] attribute means you are tied to the Spring Framework

more closely.

A Deeper Look at Dependency Injection 177

12.6 ServiceLocator as Anti-pattern

An “anti-pattern” is defined as “a pattern used in … software engineering that may be

commonly

192

used but is ineffective and/or counterproductive in practice².” Anti-patterns should be

avoided, yet

sometimes they appear to be good or proper solutions to problems.

In all of the examples so far, we have relied on multiple calls to ServiceLocator. They

have occurred

as far back as they can – at the point when there is no more constructor injection to be

done. In the

next section, though, I’m going to argue that ServiceLocator is an anti-pattern and

shouldn’t be

used except once at the very root of your program.

So in the previous demos, we used the ServiceLocator to grab instances of registered

classes. It helped

us to properly decouple the code and end up with nothing but a unit of interfaces in your

uses clause.

Nice. Things were really well decoupled. However, those calls might start to bug you

after a while

– they did me. I noticed that, in essence, the calls to ServiceLocator merely became

replacements

for calls to Create. They became a proxy for the very code that we were trying to avoid.

Now here is the thing: you can write all of that code without using the ServiceLocator, and

instead,

you can accomplish the same thing by injecting everything. Previously, we used these

methods to

inject dependencies:

function InjectConstructor(const parameterTypes: array of PTypeInfo) : TRegistrati \

on< T> ; overload;

function InjectProperty(const propertyName: string) : TRegistration< T> ; overload;

function InjectMethod(const methodName: string) : TRegistration< T> ; overload;

function InjectMethod(const methodName: string; const parameterTypes: array of PT\

ypeInfo) : TRegistration< T> ; overload;

function InjectField(const fieldName: string) : TRegistration< T> ; overload;

These methods allow you to inject (duh) different items into your classes and

automatically

instantiate them as a result. And when you inject something directly with them, the

Container

becomes smart enough to create them for you automatically, even without the

psuedo-Create call

that is ServiceLocator.

We’ve discussed how you should be using Constructor Injection (and possibly Setter

Injection) as

often as you can, and how you need to push the creation of your component graph all the

way

back to the composite root. In Delphi, that means all the way back to the first line of the

DPR file.

193

And if you do that, you could end up with this monster constructor that requires every

single class

your application needs. Think about it – every class dependency, with its constructors

passing in

dependencies for its dependencies, and so on, and you could end up with a royal mess

back at the

very root of the problem.

But remember, every time you use one of the five above methods, you eliminate the need

for a

call to the ServiceLocator. Thus, it stands to reason that they can be used to cause the

creation of

²http://en.wikipedia.org/wiki/Anti-pattern

A Deeper Look at Dependency Injection 178

every single class needed for your application during the registration process. They can

completely

eliminate the need for you to ever call the ServiceLocator (with one exception, discussed

below)

because if you can call the ServiceLocator, you can use these methods to register the

connection

between what you need the ServiceLocator for and the registration process.

Put another way, every call to the ServiceLocator can be replaced by a registration call.

You don’t

need the ServiceLocator because the registration process alone is enough.

Consider the following unit of code:

unit uNoServiceLocatorDemo;

interface

uses

Spring. Container

, Spring. Services

, Spring. Collections

;

type

IWeapon = interface

[' {0F63DF32-F65F-4708-958E-E1931814EC33} ']

procedure Weild;

end;

IFighter = interface

[' {0C926753-A70D-40E3-8C35-85CA2C4B18CA} ']

procedure Fight;

end;

TBattleField = class

private

FFighter: IFighter;

public

194

procedure AddFighter(aFighter: IFighter) ;

procedure Battle;

end;

TSword = class(TInterfacedObject, IWeapon)

procedure Weild;

end;

TKnight = class(TInterfacedObject, IFighter)

A Deeper Look at Dependency Injection 179

private

FWeapon: IWeapon;

public

constructor Create(aWeapon: IWeapon) ;

procedure Fight;

end;

implementation

procedure TBattleField. AddFighter(aFighter: IFighter) ;

begin

FFighter : = aFighter;

end;

procedure TBattleField. Battle;

begin

WriteLn(' The Battle is on! ') ;

FFighter. Fight;

end;

constructor TKnight. Create(aWeapon: IWeapon) ;

begin

inherited Create;

FWeapon : = aWeapon;

end;

procedure TKnight. Fight;

begin

WriteLn(' The knight swings into action! ') ;

FWeapon. Weild;

end;

procedure TSword. Weild;

begin

WriteLn(' "Swoosh" goes the sword! ') ;

end;

initialization

GlobalContainer. RegisterType< TSword> . Implements< IWeapon> (' sword') ;

GlobalContainer. RegisterType< TKnight> . Implements< IFighter> (' knight') ;

A Deeper Look at Dependency Injection 180

end.

Here we have some classes that are all nicely decoupled. Our registrations are neatly

195

named. The

classes use constructor injection to ask for their dependencies, and the TKnight and the

TSword are

nicely registered, just waiting to be grabbed and used in a decoupled way using the

ServiceLocator.

All is great. And then, in order to actually have our cast of characters do anything, you

might do

something like this:

procedure FightBattle;

var

Battlefield: TBattleField;

TempKnight: IFighter;

TempSword: IWeapon;

begin

Battlefield : = TBattleField. Create;

try

TempKnight : = ServiceLocator. GetService< IFighter> ;

TempSword : = ServiceLocator. GetService< IWeapon> ;

TempKnight. Weapon : = TempSword;

Battlefield. AddFighter(TempKnight) ;

Battlefield. Battle;

finally

Battlefield. Free;

end;

end;

You need a knight and a sword? Well, just call the ServiceLocator, grab the sword, arm the

knight,

add him to the battle, and off it goes.

It all works, and it is all decoupled. But you are still using the ServiceLocator as a

replacement for

calls to Create. Again, that’s cool – things are decoupled, but…

The argument against the ServiceLocator is pretty simple: It’s a singleton, singletons are

global

variables, and global variables are bad. Plus, if you don’t need it, why use it?

Well, you don’t need it. Watch.

The rule of thumb is that you get one call to the ServiceLocator at the very root of your

application.

You get one shot. We’ll see that one shot below.

Let’s change how we register our classes and interfaces:

A Deeper Look at Dependency Injection 181

GlobalContainer. RegisterType< TBattleField> . InjectMethod(' AddFighter' , [' knight']) ;

GlobalContainer. RegisterType< TSword> . Implements< IWeapon> (' sword') ;

GlobalContainer. RegisterType< TKnight> . Implements< IFighter> (' knight') . InjectConstr\

uctor([' sword']) ;

196

Some things to note:

• We only changed the way things were registered. We didn’t change the class structure

or

relationships at all.

• We are now registering TBattlefield. We need to do that for two reasons. First, it is the

“root”

of the application for our simple example. It is the place where everything starts in

relation

to our object graph. To get an instance of TBattlefield, we make our one allowable call to

ServiceLocator. Second, we need to inject a method, as discussed next.

• Into TBattleField we have injected a method, specifically the AddFighter method. Here’s

what the call to InjectMethod does – it says “When the container creates an instance of

TBattlefield, look up the AddFighter method and pass to it as its parameter an instance of

the interface named ‘knight’.” Thus, when the container creates an instance of

TBattleField

for you, the AddFighter method will be automatically called, and a valid weapon will be

passed to it. There goes one call to the ServiceLocator.

• The second call to ServiceLocator is eliminated by the call to InjectConstructor. This

registration now means “When you ask for an IFighter, create an instance of TKnight, and

when you do, pass the constructor an IWeapon from the registered type named ‘sword’.”

Again,

there goes the other call to ServiceLocator.

• Thus we’ve used the container to “wire up” all the dependencies and ensure that they

are

properly created before the main class or any other class is even asked for. The call to

GlobalContainer.Build in the DPR file will ensure this takes place.

Finally, we run everything with the much simpler and cleaner:

procedure FightBattle;

var

Battlefield: TBattleField;

begin

Battlefield : = ServiceLocator. GetService< TBattlefield> ;

try

Battlefield. Battle;

finally

Battlefield. Free;

end;

end;

A Deeper Look at Dependency Injection 182

And there’s our one call to ServiceLocator at the very root of our application (FightBattle

gets

called in the DPR file as this is a console application).

You can do the same thing with constructors – you can call InjectConstructor, passing the

names of registrations for each of the parameters in the constructor. And if need be, for

197

both

InjectConstructor and InjectMethod, you can add in non-registered parameters such as

integers

and strings, etc.

Bottom line: Use the injection methods and the container to connect up your classes and

inject

dependencies, not the ServiceLocator.

12.7 Dependency Injection Summary

Do’s.

1. Do program against interfaces, not implementations.

2. Do keep constructors simple – assignments only and no logic.

3. Do use constructor injection everywhere you can.

4. Do use a container to do all your creating.

5. Do give a name to all your implementation registrations.

6. Do use injection methods and attributes to hook up all your dependencies.

Dont’s:

1. Don’t mix UI code and business logic

2. Don’t use event handlers for anything other than displaying data and changing the UI.

Don’t

put business logic in your UI event handlers.

3. Don’t create anything except known, proven RTL classes and the like.

4. Don’t use the Service Locator anywhere except at the very root of your application.

[1] http://en.wikipedia.org/wiki/Anti-pattern

13.单元测试(Unit Testing)

Am I suggesting 100% test coverage? No, I’m demanding it. Every single line of code

that

you write should be tested. Period.

I don’t want management to mandate 100% test coverage. I want your conscience to

mandate it as a point of honor.

How about: if you have 100%, you can refactor savagely whenever you want with

confidence.

I took the above quotes from a Twitter conversation that Uncle Bob Martin¹ had with

some of his

followers. He is pretty passionate about code coverage and unit testing. We all might not

be quite

as serious as Uncle Bob, but we all definitely should be at least a little passionate about

unit testing.

And that passion should stem from a desire to write good code. I’m going to make the

case that the

http://en.wikipedia.org/wiki/Anti-pattern

198

only way you can call your code “good” is if it is fully unit tested. If you write and

deliver code that

isn’t completely unit tested, you should feel like you are walking down the street naked.

You should

feel exposed and like everyone is looking at you. You should believe firmly that your

code will fail

miserably unless it is completely covered by unit tests.

13.1 So What is Unit Testing?

Unit testing is the testing of code to ensure that it performs the task that it is meant to

perform. It

tests code at the very lowest level possible – the individual methods of your classes. It is

the key

to writing clean, maintainable code. If you concentrate on writing code that is easily

testable, you

can’t help but end up with decoupled, clean, high-quality code that is easy to maintain.

What’s not

to like?

But sometimes there are questions over the definition of terms when it comes to unit

testing. For

instance, what, exactly, is a “unit”? What does “mocking” mean? How do I know

whether I actually

am doing unit testing? In this chapter, we’ll cover what these terms all mean, and then

we’ll take a

look at a simple example that illustrates the way to go about writing tests and code

together.

¹https://twitter.com/unclebobmartin

Unit Testing 184

What is a “Unit”?

The first question that comes up when discussing unit testing is, well, what is a unit? You

can’t do

unit testing without knowing what a unit is.

When it comes to unit testing, I view a “unit” as any discreet module of code that can be

tested in

isolation. It can be something as simple as a stand-alone routine (think StringReplace or

IncMonth),

but normally it will be a single class and its methods. A class is the basic, discrete code

entity of

modern languages. In Delphi, classes (and records which are conceptually very similar)

are the base

building blocks of your code. They are the data structures that, when used together, form

a system.

In the world of unit testing, that class is generally referred to as the “Class Under Test

199

(CUT)” or

the “System Under Test (SUT).” You’ll see those terms used extensively – to the point

where it is

strongly recommended that you use CUT as the variable name for your classes being

tested.

Definition: A unit is any code entity that can be tested in isolation, usually a class.

Am I Actually Doing Unit Testing?

So when you are doing unit testing, you are generally testing classes (And for the sake of

the

discussion, that will be the assumption hereafter.). But the key thing to note is that when

unit testing

a class, you are unit testing the given class and only the given class. Unit testing is

always done in

isolation – that is, the class under test needs to be completely isolated from any other

classes or any

other systems. If you are testing a class and you need some external entity, then you are

no longer

unit testing. A class is only “testable” when it’s dependencies can be and are “faked” and

thus tested

without any of its real external dependencies. So if you are running what you think is a

unit test,

and that test needs to access a database, a file system, or any other external system, then

you have

stopped doing unit testing and you’ve started doing integration testing.

One thing I want to be clear about: There’s no shame in doing integration testing.

Integration testing

is really important and should be done. Unit testing frameworks are often a very good

way to do

integration testing. I don’t want to leave you with the impression that because integration

is not unit

testing, you shouldn’t be doing it – quite the contrary. Nevertheless, it is an important

distinction.

The point here is to recognize what unit tests are and to strive to write them when it is

intended to

write them. By all means, write integration tests, but don’t write them in lieu of unit

testing.

Think of it this way: Every unit test framework – DUnit and DUnitX included – creates a

test

executable. If you can’t take that test executable and run it successfully on your mother’s

computer

in a directory that is read only, then you aren’t unit testing anymore.

Definition: Unit testing is the act of testing a single class in isolation, completely apart

from any of its actual dependencies.

200

Definition: Integration testing is the act of testing a single class along with one or more

of its actual external dependencies.

Unit Testing 185

What is an Isolation Framework?

Commonly, developers have used the term “mocking framework” to describe code that

provides

faking services to allow classes to be tested in isolation. However, as we’ll see below

(and discuss

more fully in the next chapter), a “mock” is actually a specific kind of fake class, along

with stubs.

Thus, it is probably more accurate to use the term “Isolation Framework” instead of

“Mocking

Framework.” A good isolation framework will allow for the easy creation of both types

of fakes

– mocks and stubs.

Fakes allow you to test a class in isolation by providing implementations of

dependencies without

requiring the real dependencies.

Definition: An isolation framework is a collection of code that enables the easy creation

of fakes.

Definition: A Fake Class is any class that provides functionality sufficient to pretend

that it is a dependency needed by a class under test. There are two kind of fakes – stubs

and mocks.

If you really want to learn about this stuff in depth, I strongly recommend you read “The

Art of Unit

Testing: With Examples in .Net” by Roy Osherove². For you Delphi guys, don’t be

scared off by the

C# examples – this book is a great treatise on unit testing and gives plenty of

descriptions, proper

techniques, and definitions of unit testing in far more detail than I’ve done here. Or you

can listen to

Roy talk to Scott Hanselman on the Hanselminutes podcast³. If you really want to get

super geeky,

get a hold of a copy of “xUnit Test Patterns: Refactoring Test Code” by Gerard

Meszaros⁴. This heavy

tome is a tour de force of unit testing, outlining a complete taxonomy of tests and testing

patterns.

It’s not for the faint of heart, but if you read that book, you’ll know everything there is to

know and

then some.

Stubs

A stub is a class that does the absolute minimum to appear to be an actual dependency

for the Class

201

Under Test. It provides no functionality required by the test, except to appear to

implement a given

interface or descend from a given base class. When the CUT calls it, a stub usually does

nothing.

Stubs are completely peripheral to testing the CUT, and exist purely to enable the CUT to

run. A

typical example is a stub that provides logging services. The CUT may need an

implementation

of, say, ILogger in order to execute, but none of the tests care about the logging. In fact,

you

specifically don’t want the CUT logging anything. Thus, the stub pretends to be the

logging service

²http://www.amazon.com/gp/product/1617290890/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=

1617290890&linkCode=as2&tag=nickhodgeshomepa

³http://hanselminutes.com/169/the-art-of-unit-testing-with-roy-osherove

⁴http://www.amazon.com/gp/product/0131495054/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=

0131495054&linkCode=as2&tag=nickhodgeshomepa

Unit Testing 186

by implementing the interface, but that implementation actually does nothing. Its

implementing

methods might literally be empty. Furthermore, while a stub might return data for the

purpose of

keeping the CUT happy and running, it can never take any action that will fail a test. If it

does, then

it ceases to be a stub, and it becomes a “mock.”

Definition: A stub is a fake that has no effect on the passing or failing of the test and

that exists purely to allow the test to run.

Mocks

Mocks are a bit more complicated. Mocks do what stubs do in that they provide a fake

implementation of a dependency needed by the CUT. However, they go beyond being a

mere stub by recording

the interaction between itself and the CUT. A mock keeps a record of all the interactions

with the

CUT and reports back, passing the test if the CUT behaved correctly, and failing the test

if it did

not. Thus, it is actually the Mock, and not the CUT itself, that determines if a test passes

or fails.

Here is an example – say you have a class TWidgetProcessor. It has two dependencies, an

ILogger

and an IVerifier. In order to test TWidgetProcessor, you need to fake both of those

dependencies.

However, in order to really test TWidgetProcessor, you’ll want to do two tests - one where

you stub

ILogger and test the interaction with IVerifier, and another where you stub IVerifier and test

202

the interaction with ILogger. Both require fakes, but in each case, you’ll provide a stub

class for one

and a mock class for the other.

Let’s look a bit closer at the first scenario – where we stub out ILogger and use a mock

for IVerifier.

The stub we’ve discussed – you either write an empty implementation of ILogger, or you

use an

isolation framework to implement the interface to do nothing. However, the fake for

IVerifier

becomes a bit more interesting – it needs a mock class. Say the process of verifying a

widget takes

two steps: first the processor needs to see if the widget is in the system, and then, if it is,

the processor

needs to check if the widget is properly configured.

Thus, if you are testing the TWidgetProcessor, you need to run a test that checks whether

TWidgetProcessor makes the second call if it gets True back from the first call. This test

will require

the mock class to do two things: first, it needs to return True from the first call, and then

it needs

to keep track of whether or not the resulting configuration call actually gets made. Then

it becomes

the job of the mock class to provide the pass/fail information – if the second call is made

after the

first call returns True, then the test passes; if not, the test fails. This is what makes this

fake class a

mock: The mock itself contains the information that needs to be checked for the pass/fail

criteria.

Definition: A mock is a fake that keeps track of the behavior of the Class Under Test

and passes or fails the test based on that behavior.

Most isolation frameworks include the ability to do extensive and sophisticated tracking

of exactly

what happens inside a mock class. For instance, mocks can not only tell if a given

method was called,

it can track the number of times given methods are called and the parameters that are

passed to those

Unit Testing 187

calls. They can determine and decide if something is called that isn’t supposed to be, or if

something

isn’t called that is supposed to be. As part of the test setup, you can tell the mock exactly

what to

expect, and to fail if that exact sequence of events and parameters is not executed as

expected. Stubs

are fairly easy and straightforward, but mocks can get rather sophisticated.

In the next chapter, we’ll take a closer look at the Delphi Mocks Framework⁵. It takes

203

advantage of

some cool new RTL features that first appeared in Delphi XE2. It’s also a very generous

and awesome

gift to the Delphi community from Vince Parrett, who makes the very awesome

FinalBuilder⁶. If you

have XE2 or newer and are doing unit testing, you should get Delphi Mocks and use it. If

you don’t

have XE2 or above and are doing unit testing, you should upgrade so you can start using

this very

valuable isolation framework.

But again, the whole point here is to test your classes in isolation; you want your CUT to

be able to

perform its duties without any outside, real, external dependencies.

Thus, a final definition:

Unit testing is the testing of a single code entity when isolated completely from its

dependencies.

13.2 Why Do Unit Testing?

I find that there is a lot of resistance to doing unit testing. Many developers seem to view

it as a

waste of time or as effort that will merely delay the completion of a project under

deadline. They

feel that they can’t get any benefit from it. I couldn’t disagree more. Here’s why.

Unit Testing will find bugs

Whether you do Test Driven Development and write your tests first, write your tests as

you go along,

or write tests long after the code as been written, unit testing will find bugs. When you

write a full

suite of tests that define what the expected behavior is for a given class, anything in that

class that

isn’t behaving as expected will be revealed.

Unit Testing will keep bugs away

A complete and thorough suite of unit tests will help to ensure that any bugs that creep

into your

code will be revealed immediately. Make a change that introduces a bug, and your tests

can reveal

it the very next time you run your tests. If you find a bug that is outside the realm of your

unit test

suite and you can write a test for it to ensure that the bug never returns.

⁵https://github.com/VSoftTechnologies/Delphi-Mocks

⁶http://www.finalbuilder.com

Unit Testing 188

204

Unit Testing saves time

This is the most controversial notion about unit testing. Most developers believe that

writing unit

tests takes more time than it saves. I don’t believe this - in fact, I argue the opposite.

Writing unit

tests helps ensure that your code is working as designed right from the start. Unit tests

define what

your code should do, and thus you won’t spend time writing code that does things that it

shouldn’t

do. Every unit test becomes a regression test, ensuring that things continue to work as

designed

while you develop. They help ensure that subsequent changes don’t break things. They

help ensure

that what you write the first time is the right thing. All of these benefits save time both in

the short

and the long term.

And if you think about it, you already test your code while you are writing it. Maybe you

write a

simple console app. At the very least you compile and see it running. No one checks in

code that

they don’t believe works, and you have to do something to make yourself think that it

works. Spend

that time writing unit tests, and you’ll have decoupled working coding with a suite of

regression

tests.

Unit Testing gives peace of mind

Having a full, complete, and thorough set of tests that cover the complete functionality of

your code

might be difficult to achieve, but having it will give you peace of mind. You can run all

those tests

and know that your code works as it is supposed to. You can refactor and change the

code knowing

that if you break anything, you’ll know right away. Knowing the state of your code, that

it works,

and that you can update and improve it without fear is a very good thing.

All code ages, but you can keep your code from ever truly becoming legacy code. There

are a number

of ways to define legacy code, but one way is “Code you are afraid to touch”. If your

code has unit

tests, it is really hard for it to become legacy code. Many of us have that chunk of code

that we are

afraid to touch – but with unit testing, you’ll not have that kind of code. Unit testing

205

removes that

fear of touching code. In “Working Effectively with Legacy Code⁷,” Michael Feathers

goes so far as

to define legacy code as any code that doesn’t have unit tests. Want to avoid your code

becoming

legacy code? Write unit tests for it.

Unit Testing documents the proper use of a class

One of the benefits of unit testing is that your tests can define for subsequent developers

how the

class should be used. Unit tests become, in effect, simple examples of how your code

works, what it

is expected to do, and the proper way to use the code being tested. Consumers of your

code can look

to your unit tests for information about the proper way to make your code do what it is

supposed

to do.

⁷http://www.amazon.com/gp/product/0131177052/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=

0131177052&linkCode=as2&tag=nickhodgeshomepa”

Unit Testing 189

13.3 Unit Testing in Delphi

For many years, the main unit testing framework has been DUnit⁸. Based on the original

Delphi

RTTI, it’s been the mainstay of Delphi unit testing for a decade or more. DUnit is a

complete xUnit

testing solution, but while venerable and well-used, it is at this point somewhat outdated.

Recently a new framework has appeared called DUnitX⁹. DUnitX leverages attributes

and Delphi’s

new RTTI to make test classes and methods more flexible and easy to manage. As of this

writing,

DUnitX is quite usable but still under development.

I’ll be discussing both here in the book. First, I’ll give a basic overview of each and how

they work,

and then I’ll be mixing in examples of each as we go along.

DUnit

DUnit was originally published in the late 1990s and was written by Juanco Añez. He

followed the

original pattern set forth for all xUnit frameworks defined by Kent Beck¹⁰. DUnit is an

open source

project that can be found on SourceForge. ¹¹

Starting with Delphi 2005, DUnit has shipped with RAD Studio and has been integrated

into the

206

IDE. Developers can use the IDE expert to automatically generate test cases for a given

Delphi unit.

DUnit is based on the “old” RTTI built into Delphi. Tests are based on a class called

TTestCase. To

use TTestCase, you create a descendant class and add published methods as tests. The

framework

then uses RTTI to find all the published methods and execute them.

Testing is done using a set of overloaded functions that start with CheckXXX, such as

CheckEquals

or CheckNotEquals. They take as parameters an expected value, an actual value, and an

optional

message parameter that lets you provide information for output in the event of a test

failure. The

Check calls raise an internal exception if the test fails, and in this way tests can be tracked

as passing

or failing. TTestCase also included virtual methods called Setup and TearDown that allow

you to do

as their names say – setup things for testing and then “tear down” anything you created

in Setup.

Setup and TearDown are run once for every test, allowing you to ensure that each test is

run with a

“clean slate.”

DUnitX

DUnitX, on the other hand, utilized the new RTTI to allow any class you want to contain

tests. Using

the [TestFixture] attribute on a class allows it to contain methods that are tests. Any

method on

such a class can be labeled as a test by attaching the attribute [Test] to it. Setup and tear

down is

done by decorating any method with [Setup] and [TearDown] attributes. In addition, the

framework

⁸http://dunit.sourceforge.net/

⁹https://github.com/VSoftTechnologies/DUnitX

¹⁰http://en.wikipedia.org/wiki/Kent_Beck

¹¹http://dunit.sourceforge.net/

Unit Testing 190

allows for test fixture level setup and tear down with the [SetupFixture] and

[TearDownFixture]

attributes. These last two are called once per test run. DUnitX is also an open source

project that

can be found on GitHub¹².

As I said, as of this writing, DUnitX is still in development. It can be used to create

Console

207

applications for visual output. In addition, you can integrated it into your continuous

integration

solution by using the XML output. A graphical output is currently in the works.

13.4 General Rules for Unit Tests

Test one thing at a time in isolation.

This is probably the baseline rule to follow when it comes to unit tests. All classes should

be tested in

isolation. They should not depend on anything other than mocks and stubs. They

shouldn’t depend

on the results of other tests. They should be able to run on any machine. You should be

able to take

your unit test executable and run it on your mother’s machine while it isn’t even

connected to the

Internet.

Follow the AAA rule: Arrange, Act, Assert

When it comes to unit testing, AAA stands for “Arrange, Act, Assert”. It is a general

pattern for

writing individual tests to make them more readable and effective. First, you “Arrange.”

In this step,

you set things up to be tested. You set variables, fields and properties to enable the test to

be run, as

well as define the expected result. Then you “Act” – that is, you actually call the method

that you

are testing. Finally, you “Assert” – call the testing framework to verify that the result of

your “Act”

is what was expected. Follow the AAA principle, and your test will be clear and easy to

read.

Here’s an example of a test that follows the AAA rule:

procedure TDateUtilsOfTests. TestDateOf;

var

Expected: TDateTime;

Actual : TDateTime;

Input: TDateTime;

begin

//Arrange

Input : = EncodeDateTime(1944, 1 , 2, 3, 4, 5, 6) ;

Expected : = EncodeDate(1944, 1 , 2) ;

//Act

Actual : = DateOf(Input) ;

// Assert

Assert. AreEqual(Expected, Actual) ;

end;

208

¹²https://github.com/VSoftTechnologies/DUnitX

Unit Testing 191

Write simple, “right down the middle” tests first

The first tests you write should be the simplest tests – the “happy path,” They should be

the ones

that easily and basically illustrate the functionality you are trying to write. If you are

writing an

addition algorithm, the early tests that you write should make sure that your code can do

2 + 2 = 4.

Then, once those tests pass, you should start writing the more complicated tests (as

discussed below)

that test the edges and boundaries of your code.

Write tests that test the edges

Once the basics are tested and you know that your basic functionality works, you should

test “the

edges.” That is, you should test what happens if an overflow occurs. What if values go to

zero or

below zero? What if they go to MaxInt? MinInt? If you doing something with geometry,

what if

you try to create an arc of 361 degrees? What happens if you pass in an empty string? A

string that

is 2GB in size? A good set of tests will explore the outer edges of what might happen to a

given

method.

Test across boundaries

Unit tests should test both sides of a given boundary. If you are building some tests for

TDateTime,

try testing one second before midnight and one second after. Test across the date value of

0.0. If

you are dealing with a structure that holds a rectangle, then test what happens to points

inside and

outside the rectangle. What about above or below? To the left or right? Above and to the

right?

Below and to the left? Moving across boundaries are places where your code might fail

or perform

in unpredictable ways.

If you can, test the entire spectrum

If it is practical, test the entire set of possibilities for your functionality. If it involves an

enumerated

type, test the functionality with every one of the items in the enumeration. It might be

209

impractical

to test every possible string or every integer, but if you can test every possibility, do it.

If possible, cover every code path

This one is challenging as well, but if your code is designed for testing, and you make

use of a code

coverage tool, you can ensure that every line of your code is covered by unit tests at least

once.

Delphi has a very good code coverage tool available for your use¹³. Use it in concert with

your unit

tests. Covering every code path won’t guarantee that there aren’t any bugs, but it surely

gives you

valuable information about the state of every line of code.

¹³https://code.google.com/p/delphi-code-coverage/

Unit Testing 192

Write tests that reveal a bug, then fix it

This is a powerful and useful technique. If you find a bug, write a test that reveals it.

Then, you can

easily fix the bug by debugging the test. Then you have a nice regression test to make

sure that if

that bug comes back for any reason, you’ll know right away. It’s really easy to fix a bug

when you

have a simple, straightforward test to run in the debugger.

A side benefit here is that you’ve “tested your test.” Because you’ve seen the test fail and

then have

seen it pass, you know that the test is valid in that it has proven to work correctly. This

makes it an

even better regression test.

Make each test independent of each other

Tests should never depend on each other. If your tests have to be run in a certain order,

then you need

to change your tests. Instead, you should make proper use of the Setup and TearDown

features of

your unit testing framework to ensure each test is ready to run individually. Unit tests

frameworks

don’t guarantee that tests are going to be run in any particular order, and if your tests

depend on

tests running in a specific order, then you may find yourself with some subtle, hard to

track down

bugs in your tests themselves. Make sure each test stands alone, and you won’t have this

problem.

Write one assert per test

210

You should write one assert per test. If you can’t do that, then refactor your tests so that

your

SetUp and TearDown events are used to correctly create the environment so that each

test can be

run individually. If your tests require elaborate setup and you feel the need to run

multiple tests

and call Check/Assert multiple times, then you need to create a new test case class and

utilize its

Setup/TearDown feature for that particular test case, enabling you to create multiple tests

for the

specific situation.

Name your tests clearly. Don’t be afraid of long names.

Since you are doing one assert per test, each test can end up being very specific. Thus,

don’t be afraid

to use a long, complete test name. It is better to have

TestDivisionWhenNumeratorPositiveDenominatorNegative

than DivisionTest3. A long complete name lets you know immediately what test failed and

what

exactly what the test was trying to do. Long, clearly named tests also can document your

tests. For

example, a test named “DivisionByZeroShouldThrowException” documents exactly

what the code

does when you try to divide by 0.

Test that every raised exception is in fact raised.

If your code raises exceptions, then write tests to ensure that every exception you raise in

fact gets

raised when it is supposed to. Both DUnit and DUnitX have the ability to test for an

exception being

raised, so you should use that feature to ensure that every exception your code raises is

indeed raised

under the proper circumstances.

Unit Testing 193

Avoid the use of CheckTrue or Assert.IsTrue

Avoid checking for a Boolean condition. For instance, instead of checking if two things

are equal

with CheckTrue or Assert.IsTrue, use CheckEquals or Assert.AreEqual instead. Why?

Because this:

CheckTrue(Expected, Actual)

will report something like “Some test failed: Expected True but actual result was False”.

That doesn’t

tell you anything. Instead, use CheckEquals:

211

CheckEquals(Expected, Actual)

which will tell you the actual values involved, such as “Some test failed: Expected 7 but

actual result

was 3.”

Constantly run your tests

Run your tests while you are writing code. Your tests should run fast, enabling you to run

them

after even minor changes. If you can’t run your tests as part of your normal development

process

then something is going wrong – unit tests are supposed to run almost instantly. If they

aren’t, it’s

probably because you aren’t running them in isolation.

Run your tests as part of every automated build.

Just as you should be running your tests as you develop, they should also be an integral

part of

your continuous integration process. A failed test should mean that your build is broken.

Don’t let

a failing test linger – consider it a build failure and fix it immediately.

13.5 Test Driven Development

Probably the most controversial facet of unit testing is the question “When should I write

my tests?”

This question is controversial because the rise of unit testing coincided with the rise of

the notion of

Test Driven Development, or TDD. TDD says that you should write unit tests first,

before anything

else, and that your tests should drive your code and your design.

Some people object to TDD because they say that adding the writing of tests will add

time to the

project and make it either late or longer. Proponents say that the time spent up front will

save more

time in the long run because your code will work right the first time and you’ll have a set

of tests to

prove it. I’m not here to settle this debate or even to engage much in it. Whether you

decide to test

first, test in the middle, or test after, I just want you to write tests.

Unit Testing 194

The basic idea behind TDD is the notion of “Red, Green, Refactor.” In other words, write

tests that

fail, write code that makes the tests pass, refactor your code so it is clean, and start again.

The tests

you write should define the correct behavior you want from your code. You then write

212

code to make

the tests pass. You then can improve – refactor – the code to improve it, all the while

making sure

your tests still pass. Once you are satisfied, you move on to the next requirement of your

code,

starting with a new test.

The Red/Green part comes from unit testing tools that show failed tests in red and

passing tests in green. Unit test proponents are happy when they “see green” in their

testing tool.

You repeat this cycle until your code is complete and all requirements are met. At the end,

you have

code that can be proven, via your unit tests, to do what it was defined and required to do.

The tests

then also serve as a regression suite to ensure that any subsequent changes you make

don’t break

the designed, required functionality.

That’s a very quick overview of unit testing. For a more in depth view, I recommend the

seminal

work on the subject by Kent Beck called “Test Driven Development: By Example”¹⁴. In

this book,

Beck lays out the entire case for TDD and takes you through the entire process. It is a

must read for

anyone interested in unit testing and TDD.

Although it’s a complete change of development mindset, when you use TDD, the

tendency is to

write decoupled code: you are writing the tests first, and then you must write the code. If

you write

coupled code, you cannot run the test; therefore, you will design it in a decoupled way so

that it can

be safely tested. Another great advantage lies in the Refactor phase - in that phase you

will see new

ways to write your code (and learn a lot). Usually in this phase you will see a lot of code

smells¹⁵

and rewrite your code to remove them. After some time, your code is more decoupled

and clean.

13.6 A Basic Example

So far all we’ve had is a lot of theory, so how about a little practice?

Let’s say we have a requirement to write a class that does basic mathematical actions. It

needs to add,

subtract, multiply, divide, and provide a Power function (that is, x raised to the y). For

simplicity’s

sake, we’ll assume all the math will be done with integers.

And here’s what we are going to do:

213

1. Write a test

2. Write code until the application compiles but the test fails

¹⁴http://www.amazon.com/gp/product/0321146530/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=

0321146530&linkCode=as2&tag=nickhodgeshomepa

¹⁵http://en.wikipedia.org/wiki/Code_smell

Unit Testing 195

3. Write code until the test passes

4. Refactor until we are happy with our code

5. Go to step 1

And we’ll do this until we are done and our class does everything it is supposed to do

and we have

tests that prove it.

So following TDD, the first thing we need to do is to write tests. We’ll use the DUnitX

testing suite

because it is easier to use in our examples. Here’s a class that will do a very basic test of

our addition

algorithm:

unit uCalculatorTests;

interface

uses

uCalculator

, DUnitX. TestFramework

;

type

[TestFixture]

TCalculatorTests = class

private

Expected, Actual : integer;

Calculator: TCalculator;

[Setup]

procedure Setup;

[TearDown]

procedure TearDown;

public

[Test]

procedure TestSimpleAddition;

end;

implementation

procedure TCalculatorTests. Setup;

begin

Calculator : = TCalculator. Create;

end;

procedure TCalculatorTests. TearDown;

Unit Testing 196

214

begin

Calculator. Free;

end;

procedure TCalculatorTests. TestSimpleAddition;

begin

Expected : = 4;

Actual : = Calculator. Add(2, 2) ;

Assert. AreEqual(Expected, Actual , ' The calculator thinks that 2 + 2 is not 4! ') ;

end;

end.

This is our first exposure to DUnitX, so some discussion is in order. First, the uses clause

includes

DUnitX.TestFramework. That unit is all you should need to include when building tests. It

includes

all the classes and interfaces you need to declare and write unit tests using the framework.

Next, you can declare a class as a “test fixture” by tagging it with the [TestFixture]

attribute. A Test

Fixture is a class that contains tests. Any class will do – it doesn’t matter what the class

descends

from, as long as it contains that attribute, it will be scanned for tests. This makes it pretty

easy to

write tests, as you don’t have to descend from a particular class as you do in the DUnit

framework.

In order to declare an actual test, you add a method to your Test Fixture that has the [Test]

attribute

attached to it. By convention, I like to make these methods public. Any method that has

the [Test]

attribute will be run by the DUnitX framework.

It is also common to declare a set of common fields in the private section of the Test

Fixture. Very

often, test methods will all require a similar set of variables, and it makes sense to

declare them as

class fields. In the above case, there are two variables, Expected and Actual , that will

likely be used

by every test, so they are declared in common.

We are going to be testing the TCalculator class, so naturally we’ll need an instance of

TCalculator.

Each test should run completely independent of each other, and so we’ll want to create a

new

instance for every test. We could do that in each [Test] method, but that would be tedious.

Unit

testing frameworks normally provide a means for simplifying this repetitive process via

the notion

of “Setup” and “TearDown.” Via the aptly named attributes [Setup] and [TearDown] , you

215

can write

code that will be called for every test. Thus, in our case, we can create and destroy an

instance of

TCalculator for each test. Any method tagged with the [Setup] attribute will be run at the

start

of every test, and any method tagged with the [TearDown] attribute will be run at the end

of every

test.

Though not shown here, you can also do Setup and TearDown at the Test Fixture level by

declaring

methods on the Test Fixture with the [SetUpFixture] and [TearDownFixture] attributes. Any

methods declared with these attributes will be run at the creation and destruction of the

Test Fixture,

respectively. You should only have one of each of these attributes in your class.

Unit Testing 197

In order for an actual test to be run, you must call a method of the Assert class. Assert has

a number of class methods on it that do the actual testing. The Assert class is defined in

the

DUnitX.TestFramework unit. You can see it there. Assert allows you to check most

anything and

has many overloads to ensure that you can test any data type.

All of the methods take an optional final parameter of type string. This allows you to add

your

own message on to the call to Assert so that you can explain the exact nature of the error

based

on the test. You can use this string to uniquely identify the test error and completely

explain why it

failed. This makes finding and fixing failing tests much easier. Don’t be afraid to provide

a complete,

specific message explaining the problem.

Okay, back to our example. Now here’s the fun part: Our code won’t compile. It claims

to use a unit

called uCalculator, but that unit is completely empty right now. We haven’t written any

code for

it yet because we wrote our test first. And it’s a really simple test – checking to see if our

calculator

can figure out that two and two is four. Not a tough test, but a critical one. If that doesn’t

work, then

nothing will.

So, in our TDD example here, our first step is done: we’ve written a test. The second step:

get the

code to compile.

In order to do that, we’ll create a TCalculator class with an Add method:

unit uCalculator;

216

interface

type

TCalculator = class

function Add(x, y: integer) : integer;

end;

implementation

{ TCalculator }

function TCalculator. Add(x, y: integer) : integer;

begin

end;

end.

Okay, so now the code compiles. It doesn’t do anything, and our test still fails, but it

compiles. Step

Two is complete.

Unit Testing 198

For Step Three, we’ll write code until our test passes. The first thing that we need to do is

to register

our test class. In order for DUnitX to do its magic, it needs to know that our Test Fixture

is available

for testing. Thus, in the initialization section of our test unit we’ll add the following:

initialization

TDUnitX. RegisterTestFixture(TCalculatorTests) ;

Next, we’ll update our DPR file to actually run DUnitX code. First, we’ll add these three

units to the

uses clause:

DUnitX. TestFramework,

DUnitX. Loggers. Console,

DUnitX. Windows. Console,

DUnitX.TestFramework is the unit that contains all the code for DUnitX’s main interface.

DUnitX.Loggers.Console contains a class that implements ILogger. The ILogger interface is

the

one that provides the output of the tests. In this case, the unit includes the

TDUnitXConsoleLogger

class that outputs the test results to the console.

DUnitX.Windows.Console contains a cool class that provide colors to the console, allowing

us to do

things like output green results for passing tests, red results for failing tests, and purple

for setup

code.

Then we have to declare three variables:

var

Runner: ITestRunner;

Logger: ITestLogger;

Results: ITestResults;

217

Runner is the interface that will actually run the tests. Logger is the reference to the

console runner

discussed above. And Results is the interface that will hold the results of the tests. We

won’t actually

do anything with the results in our simple example, but if you wanted to log or otherwise

record

the results somewhere, you could do this using the Results variable.

Then, we’ll use those variables in the DPR file:

Unit Testing 199

try

//Create the runner

Runner : = TDUnitX. CreateRunner;

Runner. UseRTTI : = True;

//tell the runner how we will log things

Logger : = TDUnitXConsoleLogger. Create;

Runner. AddLogger(Logger) ;

//Run tests

Results : = Runner. Execute;

System. Write(' Done.. press the <Enter> key to quit. ') ;

System. Readln;

except

on E: Exception do

System. Writeln(E. ClassName, ' : ' , E. Message) ;

end;

Basically we create and use the runner. This is fairly boilerplate code, so I won’t discuss

it too much.

It just runs the tests, displays the output in the console, and waits for you to press the

Enter key.

The real fun is that the code will now compile and run. Sure, the test fails, but we have

more code

to write. We’ll keep writing until the test passes.

And making the test pass is really easy. How about this:

function TCalculator. Add(x, y: integer) : integer;

begin

Result : = 4;

end;

Now, we run our test, and it passes. Yay!

At this point, let’s add another test.

procedure TCalculatorTests. AddingOneAndOneShouldReturnTwo;

begin

Expected : = 2;

Actual : = Calculator. Add(1 , 1) ;

Assert. AreEqual(Expected, Actual , ' The calculator thinks that 1 + 1 is not 2! ') ;

end;

218

Now we’ll run both tests, and – uh-oh – that new test doesn’t pass. Looks like it’s time to

refactor

by changing the code in our Add function to fix it.

In order to make both of the tests pass, we need to actually do an addition algorithm.

How about

this one:

Unit Testing 200

function TCalculator. Add(x, y: integer) : integer;

begin

Result : = (x + 6 + y - y + y - 6) * 2 div 2;

end;

(I know, it’s ridiculous, but it works. Bear with me….)

Yay! Now we have passing tests! Step Three complete!

So let’s keep refactoring. Clearly the above algorithm will work just fine – it gets the

correct result

for addition. But I’m guessing that a better one exists.

How about this:

function TCalculator. Add(x, y: integer) : integer;

begin

Result : = (x + y - y + y) * 2 div 2;

end;

If we change the algorithm to the above, our test still passes. We’ve made changes, and

our tests still

pass, so we know that our changes are safe. How about we add a test to test if we can

properly add

zero. That seems like a bit of an edge case:

procedure TCalculatorTests. TestAddingZero;

begin

Expected : = 4;

Actual : = Calculator. Add(4, 0) ;

Assert. AreEqual(Expected, Actual , ' The calculator thinks that 4 + 0 is not 4! ') ;

end;

Running that results in all of our tests passing.

How about adding negative numbers:

procedure TCalculatorTests. TestAddingTwoNegativeNumbers;

begin

Expected : = - 4;

Actual : = Calculator. Add(- 2, - 2) ;

Assert. AreEqual(Expected, Actual , ' The Add function failed to realize that -2 +\

-2 is -4') ;

end;

That passes, as well. So now we can move on to Step Four with some confidence (I’ll bet

you can think

of some other tests that might fit in here. What happens when you add a positive and a

219

negative?

What about sums that cross zero? Does all that work? I’ll leave that as an exercise for the

reader.).

Our addition algorithm is proving to be effective, but you aren’t satisfied. It looks a little

goofy, and

you go to that Math PhD you know, and he suggests that you use the following instead:

Unit Testing 201

function TCalculator. Add(x, y: integer) : integer;

begin

Result : = x + y + 1 ;

end;

That looks a little simplistic, but a PhD is a PhD, and so you add the refactored test to

your code.

But uh oh! It fails all the tests. There must be a problem with the new algorithm. That’s

not good.

But what is good is that you know right away that there is an issue, and you have a set of

tests that

can be easily debugged to find the problem. No finding the bug after delivery to QA, no

stepping

through complex application code to find the issue – just a quick debugging session in a

ready-made

test to find the issue. In our case, that pesky “+ 1” is the issue. Remove that, and lo and

behold, it

works! All the tests pass! Step Four is now complete! WooHoo!

Step Five says to start the whole process over. In our case, we would a test for the

Subtract method,

see it fail, write code until it passes, refactor to our satisfaction, and then start in on

Multiply and

Divide. A simple example, yes, but it should give you a taste of what the process should

be like and

how you can use the simple five step pattern to write tests and code together.

And of course, the end result is a class that meets requirements and has a load of unit

tests that can be

used as regression tests and that give confidence that you can refactor and alter your code

if desired

without fear of things breaking. Your changes might break things, but you’ll know

immediately

because you are running your tests constantly as you debug. Your tests can reveal bugs as

you write

them, and thus you can fix them immediately.

Now this example is a simple one. The tests all lack something that would probably be

very prevalent

in your real code – dependencies. As previously noted above, the key thing that you need

to do when

220

unit testing is test classes in isolation, meaning that the tests for the class should not be

dependent

on anything. As discussed above, dependencies need to be faked, and so in the next

chapter, we’ll

look at how you can create fake classes to take the place of real dependencies in order to

properly

isolate your classes for proper testing.

14.使用隔离框架进行测试（Testing with an

Isolation Framework）

In the previous chapter, we looked at the whys and hows of unit testing. We went through

a very

simple example of how to do Test Driven Development. But as I mentioned at the close

of the chapter,

it was simple – too simple, in fact for real world use.

In previous chapters, I have stressed many things, but particularly the notion of testing

your code

in isolation, and the decoupling of your code via Dependency Injection. So now, it’s time

for it all to

come together. The proper use of Dependency Injection should make testing your classes

in isolation

a piece of cake. I exhorted you to create a testing executable that could run on any

machine without

any specific dependencies present. But if you are going to do that, you’ll have to

substitute your

actual dependencies with ones that don’t actually couple to anything “real”. If only there

were a

way to do that simply and easily.

Hah – by now you should know that I drop the “If only” on you, there will be a way to

do that: in

this case, it’s Isolation Frameworks. We discussed them a bit in the last chapter, talking

about the

difference between Stubs and Mocks and how you can use them to test your classes in

isolation. I

promised that in this chapter we’d dive deeper into unit testing by showing how to use

fakes – that

is, stubs and mocks – to be able to test almost any code with any dependencies.

14.1 A Quick Review

Okay, first, let’s do a quick review. First, an isolation framework is a set of classes that

221

enables you to

provide fake dependencies for your classes. There are two kinds of fakes – stubs and

mocks. Stubs do

nothing other than the very minimum to replace their real counterpart. A test success or

failure won’t

depend on a stub, and generally, a stub will do nothing. A test should never fail because

of a stub.

A mock, however, is a fake representation that can and should provide feedback and

information to

a given test. In fact, the reason to use a mock instead of a stub is to interact with the

Class Under

Test and provide the ability to fail the test. That is the big distinction between a mock and

a stub: a

mock can fail a test where a stub never should.

14.2 Isolation Frameworks for Delphi

While there were mocking frameworks for Delphi before the introduction of virtual

interfaces and

generics, a true and complete isolation framework really wasn’t available until XE2. The

Delphi

Testing with an Isolation Framework 203

Mocks Framework¹ (as noted, it is common to call Isolation Frameworks “Mock

Frameworks”) is an

open source project built by none other than Vincent Parrett of FinalBuilder² fame – yes,

the same

guy that leads the development of the DUnitX project (He’s a busy guy….). You can

download and

install Delphi Mocks using Git (See the Resources section at the end of the book for

resources to

help you learn Git.).

14.3 Getting Started

In their simplest form, a fake object is an alternate implementation of a class that

provides “fake”

responses to method calls. For example, you have an interface ICustomer that has a

method

GetCustomerName, and normally, that call goes to the production database and gets the

name (a

simple, unlikely example, I know, but you get the idea). So to avoid the call to the

database, you

just create MockCustomer and implement its call to GetCustomerName and have it return

“George

Jetson” every time. This enables you to test the class that is using ICustomer without

having to hit

222

the database at all.

But that can get a bit clumsy. What if you want to return different values based on

different inputs?

What if you find a bug based on specific input or output, and you want to create a unit

test for that

specific case? What if you don’t want to return anything at all because you are testing

something

different, but need to call to GetCustomerName? Then a specially created fake class as

described above

gets harried, complicated, and hard to maintain.

Enter an Isolation Framework

What if we could have a framework that would allow us to implement any interface and

define

easily and exactly what the inputs and outputs should be? That would be cool. This

would enable

you to easily create a fake object that can respond to method calls in defined ways in a

flexible, easy

to set up manner. This is what an isolation framework does.

Obviously something this flexible needs some powerful language features. Such a

framework would

have to be able to flex to dynamically implement an interface. It would have to be able to

dynamically

recognize method calls and respond accordingly. Fortunately, as of XE2, Delphi is up to

the task. As

we saw in a previous chapter, Delphi XE2 introduced the TVirtualInterface class that lets

you

dynamically implement any interface at run-time. Combine that with the new RTTI, and

you have

the ability to build a very powerful mocking framework.

A Simple Stub

The Delphi Mocks Framework can easily create a simple stub for you to use to stub out a

dependency

that you don’t need for a given test. For instance, say you had a class as follows:

¹https://github.com/VSoftTechnologies/Delphi-Mocks

²https://github.com/VSoftTechnologies/Delphi-Mocks

Testing with an Isolation Framework 204

type

TDollarToGalleonsConverter = class

private

FLogger: ILogger;

public

constructor Create(aLogger: ILogger) ;

223

function ConvertDollarsToGalleons(aDollars: Double; aExchangeRate: Double) : \

Double;

end;

function TDollarToGalleonsConverter. ConvertDollarsToGalleons(aDollars, aExcha\

ngeRate: Double) : Double;

begin

Result : = aDollars * aExchangeRate;

FLogger. Log(Format(' Converted %f dollars to %f Galleons' , [aDollars, Result\

])) ;

end;

constructor TDollarToGalleonsConverter. Create(aLogger: ILogger) ;

begin

inherited Create;

FLogger : = aLogger;

end;

It has a single dependency of type ILogger, which passed to it via constructor injection.

Normally,

the logger will make an entry in the database every time you convert Dollars to Galleons,

but you

don’t want that to happen for fake transactions that will happen when you run your unit

tests.

Instead, you’d like to simply ignore the logging as part of testing of the conversion. In

other words,

you want a stub for the ILogger interfaces.

First, let’s look at ILogger:

type

ILogger = interface(IInvokable)

[' {B571A28D-A576-4C83-A0D3-CB211435CDEA} ']

procedure Log(aString: string) ;

end;

This is a typical interface with one exception – it augments the IInvokable interface.

IInvokable

is simply an interface that has the {M+} switch turned on. This is required by the Delphi

Mocks

Framework in order for it to stub or mock and interface. It is probably a good idea to

descend all of

your interfaces from IInvokable for this reason.

Testing with an Isolation Framework 205

Once you have your class ready to test, here’s a test that you can write that creates a stub

for ILogger

and lets you focus on testing the conversion process:

procedure TDollarToGalleonConverterTest. TestPointFiveCutsDollarsinHalf;

var

Expected: Double;

224

Actual : Double;

TempConverter: TDollarToGalleonsConverter;

TempLogger: TMock< ILogger> ;

begin

//Arrange

TempLogger : = TMock< ILogger> . Create;

TempConverter : = TDollarToGalleonsConverter. Create(TempLogger) ;

try

Expected : = 1.0;

//Act

Actual : = TempConverter. ConvertDollarsToGalleons(2, 0.5) ;

//Assert

Assert. AreEqual(Expected, Actual , ' Converter failed to convert 2 dollars to 1\

galleon') ;

finally

TempConverter. Free;

end;

end;

Creating the stub is as simple as creating an instance of TMock<ILogger> . TMock is a

generic record

that takes an interface. The interface has to have the {M+} compiler flag attached to it.

You can either

add the directive yourself or descend all your interfaces from IInvokable as mentioned

above. Once

a TMock<T> is created, it assumes the role of the interface type passed to it. Thus, you

can pass the

resulting type to the constructor of TDollarToGalleonConverter class and none shall be the

wiser.

If the class calls methods on the logger, they will be ignored by the fake instances of

ILogger.

Thus, that is all there is to creating a simple stub interface for use in our tests. You can

now

test TDollarToGalleanCoverter.ConvertDollarsToGalleons in isolation, apart from any

specific

implementation of a logger.

Testing the Logger

Now you’ve written tests to ensure that the currency converter works as it should. But

you still have

something else to test – that is, does the logger actually do what it is supposed to do

when you make

a conversion? You expect (remember that word) that the logger will make a single call to

the Log

method whenever a conversion occurs, but how can you check to make sure that actually

225

happens

and that the class using the Logger is using it correctly?

Testing with an Isolation Framework 206

This is where the second kind of fake comes in – mocks. We discussed before that Mocks

are a fake

class that actively takes part in a unit test and can actually fail a test. In our case we want

a mock

that will make sure that the Log method will be called and that the correct thing will be

logged.

Consider the following test:

procedure TDollarToGalleonConverterTest. TestThatLoggerIsProperlyCalled;

var

Expected: Double;

Actual : Double;

TempConverter: TDollarToGalleonsConverter;

TempLogger: TMock< ILogger> ;

Input: Double;

TempMessage: string;

begin

//Arrange

TempLogger : = TMock< ILogger> . Create;

Input : = 2.0;

Expected : = 1.0;

TempMessage : = Format(' Converted %f dollars to %f Galleons' , [Input, Expect\

ed]) ;

TempLogger. Setup. Expect. Once. When. Log(TempMessage) ;

TempConverter : = TDollarToGalleonsConverter. Create(TempLogger) ;

try

//Act

Actual : = TempConverter. ConvertDollarsToGalleons(Input, 0.5) ;

//Assert

TempLogger. Verify() ;

finally

TempConverter. Free;

end;

end;

Some things to note:

• The setup for the mock must be done before the mock is sent to the Class Under Test.

• The setup code for the mock is using a fluent interface, where each call leads to the

next. One

could read the code as “For the TempLogger, do the setup by expecting that the method

will be

called once, and when it is, it will be passed a given string”

• The call to Verify is the assertion that you are making for the test. This is how a mock

226

can

fail the test. If the things that were expected didn’t happen, Verify will raise an exception

and

fail the test.

Testing with an Isolation Framework 207

• You can set up as many expectations for a given mock as you want. You can expect that

things will happen Once, Never, AtLeastOnce, Exactly a specified number of times, AtLeast

a

number of times, AtMost a number of times, Between a number of times, or Before and

After

other methods. In each case, you can also specify exactly what parameters are passed

When

that specific call is made.

• In other words, you can Expect whatever you want to have happen to the class during

the

test, and if those specified things don’t happen in the way you say that they should

happen,

then the test will fail.

• The When property returns an instance of the interface itself, so that is the point where

you

will make the call to the method of the interface you want to test. There you pass all the

parameters as they would be passed in the test itself.

Stubs That Do Stuff

Sometimes in the process of testing you need your stub to return a value from a function

call. As

your tests run, you know that your CUT will be calling a function on your stub, and you

want it to

behave in a predetermined way. No problem – Delphi Mocks allows you to tell your

stubs to return

values of functions. Instead of calling Expect, you can call WillReturn, passing to it an

expected

value as well as the actual method call with parameters via the When method.

Consider the following interface and implementing class:

unit uCreditCardValidator;

interface

uses

SysUtils;

type

ICreditCardValidator = interface(IInvokable)

[' {68553321-248C-4FD4-9881-C6B6B92B95AD} ']

function IsCreditCardValid(aCreditCardNumber: string) : Boolean;

procedure DoNotCallThisEver;

end;

227

TCreditCardValidator = class(TInterfacedObject, ICreditCardValidator)

function IsCreditCardValid(aCreditCardNumber: string) : Boolean;

procedure DoNotCallThisEver;

end;

ECreditCardValidatorException = class(Exception) ;

Testing with an Isolation Framework 208

implementation

uses

Dialogs;

function TCreditCardValidator. IsCreditCardValid(aCreditCardNumber: string) : Boole\

an;

begin

// Let's pretend this calls a SOAP server that charges $0.25 everytime

// you use it.

// For Demo purposes, we'll have the card be invalid if it the number 7 in it

Result : = Pos(' 7' , aCreditCardNumber) < = 0;

WriteLn(' Ka-Ching! You were just charged $0.25') ;

if not Result then

begin

raise ECreditCardValidatorException. Create(' Bad Credit Card! Do not accept! ' \

) ;

end;

end;

procedure TCreditCardValidator. DoNotCallThisEver;

begin

// This one will charge the company $500! We should never

// call this!

end;

end.

This code (pretends) to validate credit cards. It “charges” your company $0.25 every

time you use it,

so it is a dependency that performs an action that you need in order to test the class that

uses it, but

one that you obviously don’t want to have run every time your tests run.

Here’s a class that uses it:

Testing with an Isolation Framework 209

unit uCreditCardManager;

interface

uses

uCreditCardValidator

, SysUtils

;

type

TCreditCardManager = class

228

private

FCCValidator: ICreditCardValidator;

public

constructor Create(aCCValidator: ICreditCardValidator) ;

function CreditCardIsValid(aCCString: string) : Boolean;

function ProcessCreditCard(aCCString: string; aAmount: Double) : Double;

end;

EBadCreditCard = class(Exception) ;

implementation

function TCreditCardManager. CreditCardIsValid(aCCString: string) : Boolean;

begin

inherited;

Result : = FCCValidator. IsCreditCardValid(aCCString) ;

end;

function TCreditCardManager. ProcessCreditCard(aCCString: string; aAmount: Double) \

: Double;

begin

if CreditCardIsValid(aCCString) then

begin

// Charge the card

Result : = aAmount;

end else

begin

Result : = 0.0;

end;

end;

Testing with an Isolation Framework 210

constructor TCreditCardManager. Create(aCCValidator: ICreditCardValidator) ;

begin

inherited Create;

FCCValidator : = aCCValidator;

end;

end.

The TCreditCardManager class has a dependency on ICreditCardValidator. But if you want

to test

TCreditCardManager, you don’t want to depend on the real implementation of

ICreditCardValidator

because that wouldn’t allow your tests to run in isolation. However, when you test

TCreditCardManager,

you need the ICreditCardValidator to behave in a certain way – either accept or reject the

card.

You can tell the stub exactly what to do.

Here’s the test for a passing card:

procedure TestTCCValidator. TestCardChargeReturnsProperAmountWhenCardIsGood;

229

var

CCManager: TCreditCardManager;

CCValidator: TMock< ICreditCardValidator> ;

GoodCard: String;

Input: Double;

Expected, Actual : Double;

begin

//Arrange

GoodCard : = ' 123456' ;

Input : = 49.95;

Expected : = Input;

CCValidator : = TMock< ICreditCardValidator> . Create;

CCValidator. Setup. WillReturn(True) . When. IsCreditCardValid(GoodCard) ;

CCManager : = TCreditCardManager. Create(CCValidator) ;

try

//Act

Actual : = CCManager. ProcessCreditCard(GoodCard, Input)

finally

CCManager. Free;

end;

// Assert

Assert. AreEqual(Expected, Actual) ;

end;

Here, we call WillReturn(True) on the stub, allowing the credit card manager to return the

proper

amount charged. Next, we can tell the stub to return False for the validation and make

sure that the

Testing with an Isolation Framework 211

credit card manager returns zero in that case. The stub then doesn’t affect whether the

test passes or

fails, it merely exists purely for the purpose of letting the actual test run in the way that

you want

it to run.

Here is the test to ensure that the credit card manager returns $0.00 when the card is

invalid:

procedure TestTCCValidator. TestCardChargeReturnsZeroWhenCCIsBad;

var

CCManager: TCreditCardManager;

CCValidator: TMock< ICreditCardValidator> ;

GoodCard: String;

Input: Double;

Expected, Actual : Double;

begin

//Arrange

230

GoodCard : = ' 777777' ; // 7 in a card makes it bad.....

Input : = 49.95;

Expected : = 0;

CCValidator : = TMock< ICreditCardValidator> . Create;

// Tell the stub to make it a bad card

CCValidator. Setup. WillReturn(False) . When. IsCreditCardValid(GoodCard) ;

CCManager : = TCreditCardManager. Create(CCValidator) ;

try

//Act

Actual : = CCManager. ProcessCreditCard(GoodCard, Input)

finally

CCManager. Free;

end;

// Assert

Assert. AreEqual(Expected, Actual) ;

end;

Dependencies that Do Expected Things

Stubs are fakes that do nothing, or at least don’t do anything that can cause the test to fail.

In fact, a

Stub might be defined as a fake for which you have no declared expectations. Mocks, on

the other

hand, are fakes that do cause tests to fail and which do have declared expectations. Often

the reason

for that failure is that your class under test interacts with a dependency in an unexpected

way.

Mocks allow you to ensure that the interactions with a dependency are what is expected.

TMock<T>

allows you to state what the expectations are for a given interaction with a dependency

and then to

verify that those expectations were met.

Testing with an Isolation Framework 212

For instance, here is a simple class that manages a mailing list. It can take names and

email addresses,

and send out single or bulk emails (Okay, it can’t do anything at all like that – it only

pretends to

do that. But this is a simple demo.). Anyway, here’s the class:

TEmailListManager = class

private

FEmailSender: IEmailSender;

public

constructor Create(aEmailSender: IEmailSender) ;

procedure RegisterNewPerson(aName: string; aEmailAddress: string) ;

end;

231

. . .

constructor TEmailListManager. Create(aEmailSender: IEmailSender) ;

begin

inherited Create;

FEmailSender : = aEmailSender;

end;

procedure TEmailListManager. RegisterNewPerson(aName, aEmailAddress: string) ;

begin

// Insert person and email address into database

// Then send a confirmation email

FEmailSender. SendMail(aEmailAddress, ' Thanks for signing up' !) ;

end;

This class merely pretends to keep track of people who sign up for a mailing list. The

important

thing here is the code in the RegisterNewPerson method, where it uses its dependency to

send a

single email confirming that a person has signed up.

If you want to test this class, you don’t actually want it to send out emails – you want to

fake that

part. But when you test adding someone to the database (note that I have for simplicity’s

sake left

out the dependency which would do that) , you want to be sure that the dependency

actually does

make a call to the code that would send out that email. This is, again, what Mocks do –

they validate

that sort of thing.

So in order to do that, you’d write the following test:

Testing with an Isolation Framework 213

procedure TEmailManagerTester. TestAddingPersonSendingOneEmail ;

var

CUT: TEmailListManager;

MockSender: TMock< IEmailSender> ;

StubSL: TMock< TStringList> ;

begin

// Arrange

MockSender : = TMock< IEmailSender> . Create;

MockSender. Setup. Expect. Once. When. SendMail(TestEmail , TestMessage) ;

MockSender. Setup. Expect. Never. When. SendBulkEmail ;

CUT : = TEmailListManager. Create(MockSender) ;

try

// Act

CUT. RegisterNewPerson(' Marvin Martian' , TestEmail) ;

finally

CUT. Free;

232

end;

// Assert

MockSender. Verify() ;

end;

Here are some things to note:

• A mock can set up any number of expectations for a given test. In this case, MockSender

creates

two expectations that need to be met for the test to pass.

• First, it expects that the SendMail procedure will be called Once and only once. If it is

called

more than once or not at all, the test will fail.

• Second, it ensures that the SendBulkEmail method is Never called during the process of

signing

someone up. If it is called, then the test will fail.

• In order to determine whether or not the test passes, a call is made to MockSender.Verify.

If

the expectations are met, then the call does nothing. If an expectation is not met, then the

call

will raise an exception, resulting in a failing test.

In this way, you can make sure that your Class Under Test is doing the proper things with

your

dependencies without actually having to create a real dependency.

Testing with an Isolation Framework 214

Dependencies That Raise Exceptions

Often, your dependencies will raise exceptions, and you need to ensure that your testing

class

handles that properly. Here’s an interface and an implementing class that raises an

exception when

you try to validate a bad widget. In this case, we need a Mock, because we want to let the

test pass

or fail depending on whether or not the dependency raises the exception as expected.

Basically, any

time you are using a fake and you can call the Verify method, you are using a mock.

So for example, consider this unit:

unit uDependencyRaisesObjection;

interface

uses

SysUtils

;

type

IWidget = interface(IInvokable)

function IsValid: Boolean;

end;

233

TWidget = class(TInterfacedObject, IWidget)

public

function IsValid: Boolean;

end;

IWidgetProcessor = interface(IInvokable)

procedure ProcessWidget(aWidget: IWidget) ;

end;

TWidgetProcessor = class(TInterfacedObject, IWidgetProcessor)

public

procedure ProcessWidget(aWidget: IWidget) ;

end;

EInvalidWidgetException = class(Exception) ;

implementation

procedure TWidgetProcessor. ProcessWidget(aWidget: IWidget) ;

begin

Testing with an Isolation Framework 215

try

if aWidget. IsValid then

begin

WriteLn(' Widget has been properly processed') ;

end;

except

On E: EInvalidWidgetException do

begin

WriteLn(' IsValid failed to validate the widget') ;

end;

end;

end;

function TWidget. IsValid: Boolean;

begin

// Just for demo purposes, lets say that 1 in 100 widgets are bad

// But then again, we'll never call this code because it will be mocked out

Result : = Random(100) > = 99;

if not Result then

begin

raise EInvalidWidgetException. Create(' Bad Widget! Bad, bad widget! ') ;

end;

end;

end.

In it you should notice that the TWidget.IsValid call has the potential to raise an exception.

The

TWidgetProcessor class uses TWidget, and thus should know what to do in the case of

TWidget

raising an EInvalidWidgetException exception. The TWidgetProcessor.ProcessWidget method

234

has logic to properly handle the exception, but we want to test that, right?

In order to do that, we need to create a mock dependency based on IWidget that will raise

the

exception and make sure that TWidgetProcessor correctly handles it.

procedure TTestWidgetProcessor. TestBadWidgetRaisedException;

var

CUT: IWidgetProcessor;

MockWidget: TMock< IWidget> ;

begin

// Arrange

MockWidget : = TMock< IWidget> . Create;

MockWidget. Setup. WillRaise(EInvalidWidgetException) . When. IsValid;

CUT : = TWidgetProcessor. Create;

Testing with an Isolation Framework 216

// Act

CUT. ProcessWidget(MockWidget) ;

// Assert

MockWidget. Verify() ;

end;

This test is similar to the one in the previous section, except it establishes that a given

exception type

– EInvalidWidgetException – will be raised when IsValid is called. The test also makes sure

that

IsValid is only called once – no sense in letting code be called more than it need be.

Now you might look at that code above and say “But wait, you called IsValid, and yet it

wasn’t

valid.”. Well, yes – but remember, sometimes IsValid can raise an exception, and that is

what you

are telling the mock to do. In essence, the above code says “Call IsInvalid, raise an

exception, and

see if TWidgetProcessor handles the exception correctly. If it does, pass the test. If it

doesn’t, fail

the test.” Again, this is an example of a Mock determining whether or not a test fails.

Only One Mock Per Test

A given test should only ever have one mock per test. For instance, if you have a class

that has three

dependencies, you should always test that class with zero or one mocks and three or two

stubs.

You should never have two mocks because then you’d have two different ways for the

tests to fail.

Having only one mock means that the test can only fail one way. No matter how many

dependencies

you have, only one of them should be a Mock, and the rest should be stubs

235

Expectation Parameters Must Match

When you set an expectation and make a call to the interface, you must pass in

parameters. Those

parameters must then be used exactly as “expected” because if they are not, the Mock

won’t properly

verify. In other words, those parameter values are expected just as much as the behavior

itself. So

for instance, if you set the following expectation

SomeMock. Setup. Expect. Once. When. Add(5, 9) ;

then that expectation will not be met if you call the actual test with

MyAdder. Add(4, 3) ;

The parameters must match exactly. If the parameter is a reference type, the reference

must be

exactly the same one – a different reference will cause the mock not to verify.

Testing with an Isolation Framework 217

14.4 Conclusion

That should give you a good overview of Isolation Frameworks. Isolation Frameworks

exist to allow

you to test your classes in isolation. If you’ve used proper Dependency Injection, then

testing your

classes in isolation along with an Isolation Framework should be very easy. Stubs allow

you to test

classes by providing expectation-less fake classes and interfaces. Mocks allow you to test

your class’s

interaction with its dependencies by providing numerous ways to verify that your Class

Under Test

behaved as expected when tested – all without having to create real dependencies.

附录 A：资源(Appendix A: Resources)

Dependency Injection

• The best book on Dependency Injection is Dependency Injection in .Net by Mark

Seamann³.

The examples are all in C#, but don’t be put off by that – it’s an excellent, in-depth

resource

on a topic that I was only able to cover briefly.

• Mark’s website⁴ is also a great source of Dependency Injection information, Unit

Testing, and

general, all around techniques for writing good code.

236

Unit Testing

• The book I recommend on unit testing is “The Art of Unit Testing: With Examples

in .NET”⁵

by Roy Osherove. Again, the examples are in C#, but that’s of little matter. What is

important

is the thorough, clear descriptions that Roy gives of all aspects of unit testing.

• The seminal book for Test Driven Development is entitled – surprise! – “Test Driven

Development: By Example”⁶ by Kent Beck. He pretty much originated the idea and the

term.

• Another book to consider is the reference book entitled “xUnit Test Patterns.”⁷ This is a

deep

and thorough book on the topic of testing patterns. Seriously, it’s a big, deep book.

Really cool,

though.

• Misko Hevery is a Google employee who writes extensively about writing testable code.

You

can read his blog⁸ as well as watch the three videos below to see what Misko has to say

on

the subject of testing and testable code.

• The Clean Code Talks: Don’t Look for Things⁹

• How to Write Clean, Testable Code¹⁰

• The Clean Code Talks – Unit Testing¹¹

³http://www.amazon.com/gp/product/1935182501/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=

1935182501&linkCode=as2&tag=nickhodgeshomepa

⁴http://blog.ploeh.dk/

⁵http://www.amazon.com/gp/product/1617290890/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=

1617290890&linkCode=as2&tag=nickhodgeshomepa

⁶http://www.amazon.com/gp/product/0321146530/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=

0321146530&linkCode=as2&tag=nickhodgeshomepa

⁷http://www.amazon.com/gp/product/0131495054/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=

0131495054&linkCode=as2&tag=nickhodgeshomepa

⁸http://misko.hevery.com/

⁹http://www.youtube.com/watch?v=RlfLCWKxHJ0

¹⁰http://www.youtube.com/watch?v=XcT4yYu_TTs

¹¹http://www.youtube.com/watch?v=wEhu57pih5w

Appendix A: Resources 219

Source Control

Most of the frameworks I recommend in the book are obtained via public source control

repositories.

Here are some links to get you started if you aren’t familiar with Git, Mercurial, or

Subversion.

Subversion

237

Git

• A nice, step-by-step tutorial that teaches Git Basics: http://gitimmersion.com/¹²

• An excellent, online book teaching Git: http://git-scm.com/book/en/¹³

Mercurial

• A simple and well-done tutorial for Mercurial is hginit.com¹⁴. It’s specifically designed

for

people moving to a distributed source control system from a server-based world.

• The Mercurial team has a nice tutorial: http://mercurial.selenic.com/wiki/Tutorial¹⁵

Projects

• The Delphi Spring Framework: https://code.google.com/p/delphi-spring-framework/¹⁶

• The DUnitX Framework: https://github.com/VSoftTechnologies/DUnitX¹⁷

• The Delphi Sorcery Framework: https://code.google.com/p/delphisorcery/¹⁸

• The Delphi Mocks Framework: https://github.com/VSoftTechnologies/Delphi-Mocks¹⁹

• The OmniThread Library: https://code.google.com/p/omnithreadlibrary/²⁰

General Good Stuff

• Mason Wheeler has an excellent discussion on Contravariance and Covariance:

http://tech.turburpg.com/149/generics-and-the-covariance-problem ²¹

• Barry Kelly on closures and anonymous methods:

http://blog.barrkel.com/2008/07/anonymousmethod-details.html²²

¹²http://gitimmersion.com/

¹³http://git-scm.com/book/en/

¹⁴http://hginit.com

¹⁵http://mercurial.selenic.com/wiki/Tutorial

¹⁶https://code.google.com/p/delphi-spring-framework/

¹⁷https://github.com/VSoftTechnologies/DUnitX

¹⁸https://code.google.com/p/delphisorcery/

¹⁹https://github.com/VSoftTechnologies/Delphi-Mocks

²⁰https://code.google.com/p/omnithreadlibrary/

²¹http://tech.turbu-rpg.com/149/generics-and-the-covariance-problem

²²http://blog.barrkel.com/2008/07/anonymous-method-details.html

附录 B：我的 Delphi 故事(Appendix B: My

Delphi Story)

In 1991, I was a newly-married, Lieutenant (jg) in the United States Navy. I had just

come off of an overseas tour of ship duty. Life had slowed down considerably for me in

my new job, and I was looking for a hobby. A friend of mine was talking about how he

238

had written a flight and training scheduling application when he was in flight training,

and that he’d used Turbo Pascal to do it. I was intrigued.In the early 70’s I had been

taught BASIC in my Seventh Grade math class. You know:

200 REM *** MAKE A RANDOM LIST A(1) TO A(N)

210 A(1) =INT((N- 1) *RND(1) +2)

220 FOR K=2 TO N

230 A(K) =INT(N*RND(1) +1)

240 FOR J=1 TO K- 1

250 IF A(K) =A(J) THEN 230

260 NEXT J: NEXT K

etc. It was fun, and a couple of my friends and I actually built crude adventure games

using it: “You

are walking down the street and a bum asks you for a quarter: Do you…..” We typed the

programs in

on punch hole tape, and ran it through on a teletype that was hooked to a computer at the

University

of Minnesota via one of those modems where you press the phone into the rubber cups.

Wild to think

about now.

I kept programming after school and ended up being a “Computer Rat” in tenth grade –

the guy that

would take everyone’s punch cards and run them through the reader and then return them

with the

printout results. About that same time I finally discovered these strange things called

“girls” and

soon realized that these creatures didn’t think much of computer rats, so my early

programming

career ended. Alas – had I stuck with it I might have ended up rich in Silicon Valley – my

timing

would have been perfect. But it was not to be.

When that Navy friend handed me a copy of Tom Swan’s Programming Turbo Pascal 5.5

and a –

ahem – copy of Turbo Pascal 5.5 on a floppy, I dove in with abandon. Hey, I was already

married,

so it was a perfect way to expand the brain and build something. It took me a while to

understand

how you could program without line numbers, but I got the hang of it. My first purchase

was Turbo

Pascal for (the then brand new) Windows 1.0. I soon upgraded to Turbo Pascal for

Windows 1.5 with

(gasp) syntax highlighting!

This was the heyday of the PC age – you could use your modem to download shareware

from a local

bulletin board! Windows 3.0 was just taking off and I was totally into it. I was

239

downloading Windows

shareware and trying it out by the bucket load. I was teaching myself Windows

programming with

Appendix B: My Delphi Story 221

TPW and a book by Tom Swan called “Programming Turbo Pascal for Windows 3.0.” (I

still have this

wonderful, and now very tattered, book). I wrote a piece of shareware called Sysback,

which backed

up all your important configuration files (all your INI files, AUTOEXEC.BAT,

CONFIG.SYS, etc.). I

sold it for $2, and I bet I sold a couple thousand copies – people actually sent me money

through the

mail. Looking back, I should have charged $10, but I didn’t know about basic economics

and didn’t

believe that some knucklehead Navy Lieutenant could produce something of value. ;-)

I had a million questions, and I was dedicated enough to participate on the CompuServe

forums

for Turbo Pascal using an offline reader called TapCIS. It was perfect for me because I

was a long

distance call away from the nearest Compuserve node, and it would get on, download

and upload

what I wanted, and get off, storing everything for off-line reading. This was actually back

in the day

when you had to pay by the minute for long-distance, plus the per-minute charges on

Compuserve.

The costs added up, but I was determined to learn and loved every minute of it. I didn’t

understand

the difference between a PChar and a string or an OWL object and a Win32 API, but hey,

I did

manage to get my software to work, and I even made a little money.

Compuserve was enormously helpful, and I soon made friends with Borlanders such as

Xavier

Pacheco and Steve Teixeira. There was also a very dedicated group of volunteers called

TeamB.

I met such folks as Pat Ritchey, Kurt Barthelmess, and Steve Schafer. These guys all

soon became

my heroes, as I had quickly become a Borland Fan Boy. To be as smart and capable as a

TeamB

member was a dream.

In 1993, a very fortuitous thing happened – I was transferred to the Naval Post-graduate

School in

Monterey, CA to study Information Technology Management. This was only about an

hour away

from the new Borland campus, and I was able to attend the annual TeamB/Online picnic

240

held in

Scotts Valley every year. It was there that I finally got to meet my TeamB heroes and a

bunch of

other folks that worked at Borland. One of the guys I met at that first picnic was Zack

Urlocker,

then the Delphi Product Manager. I told Zack about my studies in Software Engineering,

and he did

something that I had only dreamed about – he signed me up for the Delphi field test. In

the summer

of 1994, Delphi was a code name for the next version of Turbo Pascal, and rumored to be

a “VB

Killer.”

Joining the Delphi Field Test was truly a life-changing experience for me. I was able to

get an early

start on a truly ground-breaking technology. To me, the coolest thing about Delphi was

the ease with

which you could write native components in Delphi itself (Remember, this was a time

when writing

components meant creating VBX controls for use in Visual Basic with C++.). In time,

TSmiley was

born, and the Borland guys picked up on it and demoed it all over the world. I was a bit

surprised

and honored. During the beta I also added a WAV file player to my shareware repertoire.

Using

Delphi made it so easy, it was almost criminal.

The highlight of early 1995 was skipping school to attend the Software Development ‘95

conference.

For the first time ever, Delphi was going to be shown publicly, and it was a sensation.

The Borland

booth was overwhelmed with people, the hourly demos were packed, and the whole

place was abuzz

with news of Delphi. The second morning Borland gave out a limited number of preview

disks, and

there was a near riot as people lined up to get one. That evening, Anders Hjelsberg

demonstrated

Delphi to a standing room only crowd, wowing them with the exception handling, the

blazingly fast

Appendix B: My Delphi Story 222

native compiler, and the amazingly powerful and easy to use VCL. It was truly a defining

moment

in the history of software development.

I was a dedicated and enthusiastic field tester. I started out asking a million questions, but

by the

end of the field test, I was answering as many questions as I was asking. Borland knew

241

that Delphi

was going to explode, and they looked to expand the size of TeamB. Imagine how I felt

when at the

TeamB picnic that summer they pulled me aside and asked if I’d be willing to join. It

took about

0.0001 seconds for me to say yes, though I remember being very nervous and feeling

inadequate.

However, it all worked out. I learned and learned, and eventually, in 2000, I got out of

the Navy and

started my new job working for Xapware, Xavier Pacheco’s company. A year later I

started my own

company in the Twin Cities area of Minnesota and soon joined forces with two other

developers to

form Lemanix. For five years we provided Delphi consulting and training. It was great to

be doing

Delphi full time.

Then, in 2006, Borland made a fateful decision to divest themselves of their developer

tools. Realizing

that they needed to beef up the product in order to sell it, they decided it was time for a

proper

Product Manager. Allen Bauer called me and asked me if I would be interested. Replying

only a

little slower than I had to the TeamB invitation, I soon moved to Scotts Valley to take my

dream job.

Two years later, I switched jobs to be the R&D Manager. After two years of that, well,

there was a

“difference of opinion” and I was asked to leave. I then moved to Pennsylvania where I

continued to

work as a development manager in a Delphi shop. Currently, I’m a full time Delphi

developer and

Development Manager at Veeva Systems.

It has been a long run. It’s been a great run. And the fun part is that it feels like it is all

beginning

again as Delphi makes the move to Mobile while still providing all the powerful, cool

features that

developers want. Things like Dependency Injection, Delphi Spring Framework, DSharp,

and other

cool tools all are making this a great time to be a Delphi developer.

	写在前面的话
	1. 异常和异常处理
	1.1. 介绍
	1.2. 结构化异常处理(SEH)
	1.3. 怎么不使用异常(How Not to use Exceptions)
	1.4. 怎么样正确的使用异常(How to Use Exceptions Properly)
	1.5. 结论Conclusion

	2. 使用接口(Using Interfaces)
	2.1. 介绍(Introduction)
	2.2. 解耦(Decoupling)
	2.3. 什么接口(What are Interfaces?)
	2.4. 接口无处不在(Interfaces Everywhere)
	2.5. 一个简单例子(A Simple Example)
	2.6. 实现接口(Implementing an Interface)
	2.7. 进一步需要注意的东西(Some Further Things to Note):
	2.8. 接口继承(Interface Inheritance)
	2.9. 思考的其他事情(Other Things to Think About)
	2.10. 关于TInterfacedObject (About TInterfacedObject)
	2.11. 如何使用接口(How to Actually Use Interfaces)

	3. 理解泛型(Understanding Generics)
	3.1. 泛型的救援(Generics to the Rescue)
	3.2. 约束类型(Constraints)
	构造约束(constructor Constraint)
	类约束(class Constraint)
	结构体约束(record Constraint)
	接口约束(interface Constraint)
	传递参数化类型结构体(Passing Records as Parameterized Types)

	3.3. 泛型接口(Generic Interfaces)
	3.4. 泛型方法(Generic Methods)
	3.5. 泛型集合(Generic Collections)
	3.6. 思考泛型(Thinking Generically)
	3.7. 一个设计简单的例子(A Contrived, Simple Example)
	3.8. 一个实用的例子(A Practical Example)
	3.9. 结论(Conclusion)
	3.10. 与泛型的一次访谈 (An Interview with Generics)

	4. 理解匿名方法(Understanding Anonymous Methods)
	4.1. 介绍(Introduction)
	4.2. 定义(Definition)
	4.3. 为什么(Why)?
	4.4. 闭包(Closures)
	4.5.标准声明(Standard Declarations)
	4.6. 一个实际例子(A Practical Example)
	4.7. 另一个很酷的例子（Another, Cooler Example）
	4.8. RTL中的匿名方法(Anonymous methods in the RTL)
	4.9. 断言(Predicates)
	4.10. 结论（Conclusion）
	4.11. 与匿名方法的一次访谈（An Interview with Anonymous Methods）

	5. Delphi集合(Delphi Collections)
	5.1 Introduction
	5.2 General Notions about Collections

	6. Delphi中的枚举(Enumerators in Delphi)
	7. IEnumerable
	8. 运行时类型信息(Run-time Type Information)
	9. 属性(Attributes)
	10. 使用虚拟接口类（Using TVirtualInterface）
	11. 介绍依赖注入（Introduction to Dependency Injection）
	12. 深层次审视依赖注入（A Deeper Look at Dependency Injection）
	13.单元测试(Unit Testing)
	14.使用隔离框架进行测试（Testing with an Isolation Framework）
	附录A：资源(Appendix A: Resources)
	附录B：我的Delphi 故事(Appendix B: My Delphi Story)

